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Introduction

● What is MIDIClock ?

● A program that can be used to synchronize synths, effects, 
sequencers, arpeggiators, ...

● Its main function is generating a midi beat clock signal on a 
midi output device at a selectable bpm rate. Other output 
signals are also possible through custom output drivers

● The software has no installer, simply unzip to where you 
need it. It is portable : it can be run from a removable 
disk/stick without installing anything.

● The latest trial version of MIDIClock can be downloaded 
from midiclock.com. 
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What is the midi clock protocol?

From wikipedia :

● MIDI beat clock is a clock signal that is broadcast via MIDI to ensure that several synthesizers 
stay in synchronization. It is not MIDI timecode.

● Unlike MIDI timecode, MIDI beat clock is sent at a rate that represents the current tempo, at 24 
ppqn (pulses per quarter note). It is used to maintain a synchronized tempo for synthesizers that 
have BPM-dependent voices and also for arpeggiator synchronization. It does not transmit any 
location information (bar number or time code) and so must be used in conjunction with a 
positional reference (such as timecode) for complete sync.

● MIDI beat clock defines the following real time messages:

●     * clock (decimal 248, hex 0xF8) 

●     * start (decimal 250, hex 0xFA)

●     * continue (decimal 251, hex 0xFB)

●     * stop (decimal 252, hex 0xFC)

● All the above real-time messages are supported by MIDIClock   
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MIDIClock Features :

● 2 MIDI output drivers supported

● Up to 32 midi simultaneous 
MIDI input action mappings
with MIDI learn function

● Fractional BPM rates from 
0.001 BPM to 1000 BPM

● Highly customizable through 
INI files.

● Stable, usable for gigs, studio, 
live shows,...

● Registration & Support : 
midiclock.com/upgrade

http://midiclock.com/upgrade
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MIDIClock Shapes

 

The form size of your midiclock

can be resized to reduce the 

claimed screen real estate.
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Main Screen functionality (1/2)
● Start /stop the timer

● Fractional part of the BPM

● Main BPM rate slider

● Tap tempo input button

● Small form factor 

● Device #1 Selection

● Device #1 Enable/Disable

● Device #1 Config editing

● Device #1 Tempo divider

● Device #1 Output driver  
● Tempo Chart  Visualisation 
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Main Screen functionality (2/2)
● Device #2 Selection

● Device #2 Output driver

● Device #2 Enable/Disable

● Device #2 Tempo divider

● Device #2 Config editing

● Input MIDI Device Selection

● Input MIDI Device 
Enable/Disable

● Input Map Editing

● Preset patch selection/edit
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Input Patch Editor
● MIDI command to 

action mapping

● Click on any line to 
edit the mapping

● Enable Realtime 
MIDI Clock Input 
processing : this 
makes midiclock 
respond to an 
incoming midi clock 
signal 

● Save as a new input 
driver

● Store as current 
input driver
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Editing Input Map #0 (1/2)

● Status byte

● Midi channel

● Parameter 1 of midi message

● Parameter 2 of midi message

● PC Keyboard  Learning 
function : → shows hex code for 
the key pressed

● Keyb Auto Enter : enters key 
code in fields automatically

● MIDI Learning function
--> updates map to incoming midi 
date. Use this for quick mapping.

● Filter on status byte in learning 
mode

● Filter on selected channel for 
incoming data in learning 
mode

● Apply the mask range when 
data comes in, in learning 
mode

● Automatically update the hex 
code in the editor on input
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Editing Input Map #0 (2/2)

● Action mapped to the defined 
input midi code
(for a list of actions see the 
special commands decription at 
the end of this document)

● Descriptive comment for this map

● Press ok to apply the settings
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Tempo Chart Visualisation
● Enable Output BPM rate 

display

● Enable display of Filtered 
Clock Input Values 

● Enable display of Raw Clock 
Input Values 

● Save chart as BMP

● Enable/Disable chart logging
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Keyboard Shortcuts
● CTRL+ALT+S : save current settings to clockpresets.ini. 

It creates the file if it does not yet exist.

● F1/RETURN : Start/Stop timer toggle

● F2 : Pause timer

● F3 : Continue/Resume timer

● F5 : set BPM to Preset #5

● CTRL+F5 : Store current BPM rate at preset #5

● F6/F7/F8 : Change BPM to Preset #6/7/8

● CTRL+F6/F7/F8 : Store BPM at preset #6/7/8

● SPACE : tap tempo trigger

● Any custom key can be mapped through the input map !!
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File Overview
● MIDIClock.exe : The application binary. Clicking this application 

starts up midiclock.

● clockpresets.ini : Startup application presets. These are saved by 
pressing CTRL+ALT+S.

● MidiclockRegistration.ini (optional) : contains the key for registered 
users.

● *.mcp files : alternative application preset patches. Same file format 
as clockpresets.ini.

● outdrv subdirectory : contains output drivers, such as :

● GMBASSDRUM.ini : a GM bass metronome

● GMCLICHEROCK1.ini : a typical GM pop-rock drum rhythm

● G71UT.ini : interfacing to a Zoom G7.1ut effect pedal

● indrv subdirectory : contains input drivers
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Clockpresets.ini layout (1/3)
● [APPLICATION_PRESETS]   ; Section indicating general application presets

● MAINSCREENPOSITIONTOP=155               ; Main screen top pixel position at program startup

● MAINSCREENPOSITIONLEFT=565 ; Main screen left pixel position at program startup

● DEFAULTSPEED=120 ; BPM Rate used at program startup

● SHOWFLASHING=1             ; 0 = disable window color flashing ; 1=enable window flashing at ¼ beat

● FULLFLASHING=0 ; 1 = enable full window flashing ; 0 = disable

● FLASHINGDURATION=1000 ; Color duration (unit = 1/24th of a beat). Set to 1000 for normal use.

● FLASHINGPERIOD=24 ; Cycle period for the flashing, define in 1/24th of a beat units

● IGNOREMOUSEWHEEL=0            ; 1=Disable mouse wheel influence on bpm rate

● IGNOREKEYBOARDTAP=1             ; 1=Ignore keyboard 'SPACE' for tapping and 'RETURN' for start/stop

● ALWAYSONTOP=0 ; 1= keep application window always in front of other applications

● AUTOSTARTONTAP=0 ; 1= automatically start the midi clock signal at beat 1 after tapping beat 4

● TAPTEMPOTIMEOUT = 5000 ; Tap tempo input state reset timeout  (in milliseconds)

● TAPTEMPOCOUNT=2  ; number of taps needed to trigger a tempo change (2, 3 or 4)

● BPMROUNDING=0.001  ; rounding step taken into account when determining the BPM rate

● BPMMINIMUM=0.001   ; the minimal BPM rate selectable in the midi clock GUI

● BPMMAXIMUM=330             ; the maximal BPM rate selectable in the midi clock GUI

● DONTASKSAVESETTINGS=0             ;   1= Shows “do you want to save settings”

● CLOSEMINIMIZESWHENRUNNING=0  ;   1 = Closing the application minimizes it when the clock is running
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Clockpresets.ini layout (2/3)
● [MIDIOUTPORT1] ; section containing the midi port #1 application settings

● MIDIPORTINDEX=1 ; Selection Order number of the midi port #1

● MIDIPORTNAME=Out To MIDI Yoke:  1 ; Device name of the midi port #1

● DEVICETYPE=MidiClock ; Output driver selected for this midi port #1

● CLOCKDIVIDER=1 ; Divider used on the clock signal on port #1

● [MIDIOUTPORT2]   ; section containing the midi port #2 application settings (same structure)

● MIDIPORTINDEX=9 ; Selection Order number of the midi port #2

● MIDIPORTNAME=E-MU Xmidi1X1 ; Device name of the midi port #2

● DEVICETYPE=MidiClock ; Output driver selected for this midi port #2

● CLOCKDIVIDER=1 ; Divider used on the clock signal on port #2

● [MIDIINPORT1]      ; section containing the midi input port  application settings

● MIDIPORTINDEX=2                ; Selection Order number of the midi input port 

● MIDIPORTNAME=In From MIDI Yoke:  3    ; Device name of the midi input port 

● DEVICETYPE=AKAILPD8_CH10           ; Input driver selected for this midi port
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Clockpresets.ini layout (3/3)
● [BPM_PRESETS] ; section containing BPM rate preset values. 

● F5BPM=100 ; pressing F5 will set the BPM rate to 100

● F6BPM=120 ; pressing F6 will set the BPM rate to 120

● F7BPM=140 ; pressing F7 will set the BPM rate to 140

● F8BPM=160 ; pressing F8 will set the BPM rate to 160

Note : since 4.00, custom keymaps can be set up in the input map editor. The F5/F6/F7/F8 presets are 
supported for backwards compatibility
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Input drivers : General Layout 
● [SPECIAL_COMMANDS] ; Powerful decription of remote controlling midi clock by MIDI messages

● INPUT0=933C40 ; MIDI Message to be parsed. (replace 933C40 with your midi message in hex)

● ACTION0=150 ; Action to be taken when receiving that MIDI message. 

● ...up to INPUT31 : 32 INPUT/ACTION pairs can be defined.

● INPUT specifier : 

● Speficies the 3 midi bytes in hex (status byte + 2 data bytes) on which midiclock reacts

● When the status byte is 0x60, the input is a PC keyboard keypress. The 2nd data byte determines the key code.

● For example the midi message 933C40 

– The keyboard plays middle C (note number 60, hexadecimal 3C) on channel 4 (the zero nibble of 94), at 
half the full velocity (velocity 64, hexadecimal 40). 

– INPUT0=933C40 ; this would define the above midi message as input signal

– ACTION0= 150    ; the action would be to set the bpm rate to 140 bpm

● What about velocity sensitive keyboards ?

– Use masking : using F0 as data byte 2 will make midiclock trigger on all non zero velocities

– Example : INPUT0=933CF0 : for every middle C played (note on event), the ACTION0 will be run

● ACTION0=130    ; example : set BPM RATE to 130 when the INPUT0 MIDI Message is received

● More advanced options and usage for INPUT/ACTION will be described on the next pages.
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Input drivers : Actions
●  The following target action codes can be executed on incoming midi commands :

●   0     = do nothing

●   1 --> 200 = set this specific BPM value

●   10000 = perform midi byte 2 to tempo transformation (see further on for the input masking options)

●   10000.1 = perform midi byte 1 to tempo transformation (see further on for the input masking options)

●   10001 = start-stop

●   10002 = pause

●   10003 = continue

●   10004 = start

●   10005 = stop

●   10006 = decrease tempo

●   10007 = increase tempo

●   10008 = tempo - 2 

●   10009 = tempo + 2

●   10010 = double tempo

●   10011 = halve tempo

●   10016 = tempo – rounding step

●   10017 = tempo + rounding step

●   10101 = beat reset

●   20001 = tap tempo trigger 

●   20001.1 = single byte special tap tempo trigger : ignores byte 2 and uses byte 1 only for range limits
            (can be used for 'any key' tap tempo)
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Input drivers : Tempo 
Transformation Input Masks (1/3)

●  In case of an action = 10000 --> several midi value to tempo transformation can be selected by input midi data byte 2

●  In case of an action = 10000.1 --> several midi value to tempo transformation can be selected by input midi data byte 1

● This is useful for mapping a specific controller range or patch onto a tempo range of choice.

● For byte E0 – EF, a custom transformation can be defined in the input driver. For example, for E0 :

● [CUSTOMRANGE_TRANSFORMS]

● RANGEMIN_E0=00

● RANGEMAX_E0=7F

● RANGEMULTIPLIER_E0=1.5

● RANGEOFFSET_E0=30

● Speficic values can also be overwritten by an explicit map, for example E1 :

● [CUSTOMRANGE_TRANSFORMS]

● RANGEMIN_E1=00

● RANGEMAX_E1=7F

● RANGEMULTIPLIER_E1=1

● RANGEOFFSET_E1=0

● RANGEMAP_E1=CUSTOMRANGE_MAP2
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Input drivers : Tempo 
Transformation Input Masks (2/3)

● This custom map can then be defined in a separate section. You can design your own mapping curve from a spreadsheet this 
way. 

● For example :

● [CUSTOMRANGE_MAP2]

● 0=60

● 1=60.72

● 2=61.45

● 3=62.19

● 4=62.93

● 5=63.69

● 6=64.45

● 7=65.23

● 8=66.01

● 9=66.8

● 10=67.6

● 11=68.41

● 12=69.23
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Input drivers : Tempo 
Transformation Input Masks (3/3)

● Midiclock will also transform the incoming data byte according to these fixed fomulas : 

● Mask byte 0xF0: From 0x00 to 0x7F --> multiplier = 1.58 and offset = 0

● Mask byte 0xF1: From 0x00 to 0x7F --> multiplier = 1 and offset = 0

● Mask byte 0xF2: From 0x00 to 0x7F --> multiplier = 2 and offset = 0

● Mask byte 0xF3: From 0x00 to 0x7F --> multiplier = 3 and offset = 0

● Mask byte 0xF4: From 0x00 to 0x7F --> multiplier = 4 and offset = 0

● Mask byte 0xF5: From 0x00 to 0x7F --> multiplier =1 and offset = 40

● Mask byte 0xFA: From 0x00 to 0x3F --> multiplier = 2 and offset = 0

● Mask byte  0xFB: From 0x40 to 0x7F --> multiplier = 2 and offset = 0

● Mask byte 0xFC: From 0x00 to 0x3F --> multiplier = 2 and offset = 50

● Mask byte 0xFD: From 0x40 to 0x7F --> multiplier = -2 and offset = 306

● Mask byte 0xFF: From 0x01 to 0x7F --> multiplier = 2 and offset = 0

● These mappings cannot be changed, and are kept in 3.xx releases for backwards compatibility
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Output drivers : General
● Midiclock contains a framework for custom MIDI output 

protocols. Those are located in the outdrv subdirectory.

● Midiclock includes a tiny tight sequencer for each output driver.

● Visual display of the beat position is possible

● Currently beat editing occurs through ini editing (see next page)
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Output drivers : Configuration

The subdirectory outdrv contains the selectable output drivers.
I will explain how this works, by explaining some examples :

Sample Midiclock.ini explained.
[DEVICECONFIGURATION]
DEVICETYPE=MidiClock ;  Name of the device
DEVICE_CLOCKOUTPUT_ENABLE=1 ; send out midiclock commands (F8)

Sample GMBOINKY.ini explained
[DEVICECONFIGURATION]
DEVICETYPE=GM BOINKY ;  Name of the device
DEVICE_SYSEXINIT_STRING= ;  sysex data to be sent on driver initialisation
DEVICE_CLOCKOUTPUT_ENABLE=0 ; 1 =  sends out midiclock (F8) bytes, 0 = doesn't send F8
DEVICE_SYSEX_ENABLE=0 ; 1 = enables sysex output,  0 = no sysex output
DEVICE_SYSEXRELEASE_STRING= ; sysex data to be sent on driver release
DEVICE_SYSEXTEMPOSET1_STRING= ; sysex data to be sent before the tempo code (on change)
DEVICE_SYSEXTEMPOSET2_STRING= ; sysex data to be sent after the tempo code (on change)
DEVICE_SYSEX_VALOFFSET=40 ; offset to be added to the sysex tempo code
DEVICE_TRACKS_ENABLE=1 ; 1= enables track sequencing, 0 = disables track sequencing
DEVICE_TRACKS_PROGRAMCHANGE=35 ;  Default prog change nr. to be sent before starting playback 
DEVICE_TRACKS_CHANNEL=0 ;  Default channel to be used by tracks
DEVICE_CLOCKOUTPUT_NOSTARTATSTART=1 ; 1= send no start byte (FA) when the clock is started
DEVICE_CLOCKOUTPUT_NOSTOPATEND=1 ; 1= send no stop byte (FC) when the clock is stopped
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Output Drivers : Sequences 

You can setup some parameters that are enforced on initializing 
the driver :
DEVICE_TRACKS_CHANNEL : default midi channel used (when 
not specified)
DEVICE_TRACKS_PROGRAMCHANGE : program nr used for 
default midi channel

Next up you can add TRACKS

C2247400=1000100010001000

So the key is built up like this :

track name = C2
note number = 24
note volume = 74
track channel = 00

an optional X can be put behind that, to indicate no note-off 
should be sent.

the track events are simply
1 = occurrence
0 = no occurrence

This way you can create a complete sequence

Beat sequences can be customized.
This currently happens by creating/editing an output driver.
You can find examples in the outdrv subdirectory.

GMBOINKY.INI is an example of a sequence.

[DEVICECONFIGURATION]
DEVICETYPE=GM BOINKY
DEVICE_SYSEXINIT_STRING=
DEVICE_CLOCKOUTPUT_ENABLE=0
DEVICE_SYSEX_ENABLE=0
DEVICE_SYSEXRELEASE_STRING=
DEVICE_SYSEXTEMPOSET1_STRING=
DEVICE_SYSEXTEMPOSET2_STRING=
DEVICE_TRACKS_ENABLE=1
DEVICE_TRACKS_PROGRAMCHANGE=35
DEVICE_TRACKS_CHANNEL=0
DEVICE_CLOCKOUTPUT_NOSTARTATSTART=1
DEVICE_CLOCKOUTPUT_NOSTOPATEND=1
[TRACKS]
C2247400=1000100010001000
C3307400=0010001000100100
C43C7400=0000000000000010
C5487400=0000000000000001
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Output Drivers : CTRL output

The CTRL OUTPUT feature is intended to allow controlling effect devices by setting a delay value 
parameter through a midi controller.  (requires midiclock 4.01 or higher)

● DEVICE_CTRLOUT_ENABLE=1     ; 1= enable CTRL driver

● DEVICE_CTRLOUT_CONVERT_BPM_TO_MS=1  ; 1 = convert BPM to millisecond, 0 = don't convert/

● DEVICE_CTRLOUT_FLOOR_OUTPUT_BYTE=0   ; 1 = floor the output byte : floor example  3.9 --> 3 
; 0 =rounding will be applied : round example : 3.9 --> 4

● DEVICE_CTRLOUT_BPM_OFFSET_VALUE=0    ;  offset added to BPM value, this can be negative, fractional,...

● DEVICE_CTRLOUT_BPM_MULTIPLIER=1     ; multiplier for bpm, this can be fractional, should be > 0.0001

● DEVICE_CTRLOUT_MS_MULTIPLIER=0.1    ; multiplier applied to the millisecond value 

● DEVICE_CTRLOUT_MIDICHANNEL=3           ; midi channel used for the control output

● DEVICE_CTRLOUT_MIDICTRL=5                    ;  controller value used for the output

Note concerning midi channel notation : MIDIClock starts counting from 0, most synths start counting from 1.
So when you set your midi channel to 1 on your synth, you probably use midi channel 0 in MIDIClock
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Any Questions ??

● Visit www.midiclock.com for more information...

http://www.midiclock.com/
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