
LCD Menu System 
 
The menus, along with the web server, which is described later, allow access to all of the Net Butler’s 

features. The two pushbuttons next to the LCD select which menu and submenu to display, and pressing 
both buttons at the same time performs a menu-specific action. The display is automatically updated if the 
status of an item being displayed changes, such as from a timer-based action or from clicking on a button 
on one of the Net Butler’s web pages. The following table shows all the menus and the various actions that 
can be performed: 

 
 
Menu Submenu Display Action when both buttons pressed 

Status System status & activity Toggle activity indicator latched mode Main 
Version Software version Execute bootloader 
12-hour Current day’s weather Send 12-hour weather update request Weather 
5-day Upcoming week’s weather Send 5-day weather update request 
Wifi Wifi network status Toggle wifi enabled / disabled 

Printer 1 Printer 1 (USB) power status Toggle printer 1 on / off 
System 

Printer 2 Printer 2 (External) power status Toggle printer 2 on / off 
IP address IP address Force DHCP lease to expire 
Netmask Netmask Force DHCP lease to expire 
Gateway Gateway IP address Force DHCP lease to expire 

Network 

Nameserver Nameserver IP address Force DHCP lease to expire 
Conflict - IP conflict device’s MAC address - 
 

Debug Port 
 
It’s not necessary to connect to the serial port to use the debugging features. The serial port character 

I/O routines also can read and write packets to a TCP connection with its TELNET server. It waits for an 
incoming connection, then treats input and output data as if it were coming from the serial port. It sends a 
TCP keep-alive packet every 30 seconds if there’s no output data being sent. That lets the server 
automatically drop a connection if the client is no longer active. I found this is needed for when the laptop 
goes into sleep mode, since it resets all network connections when it wakes back up without ever closing 
them down properly. 

 
There were no sockets available after all the other features were written, so I chose to share the ICMP 

socket used for destination unreachable processing with the TELNET server. Since they can’t both use the 
socket at once, the TELNET server is only enabled when ICMP processing is disabled. This is done with 
the Network Protocols section of the Configuration Settings web page described later on. 

 
Most application and protocol routines have one or more debug flags that can be set to enable messages, 

which show their activity and state transitions. These can be set or cleared by sending either an uppercase 
or lowercase letter, respectively, in the range A-P. These are useful when debugging, but they can also help 
to analyze some unexpected change in system behavior, such as from changes or upgrades to external 
devices that communicate with the Net Butler. For this reason, I’ve kept the debugging code enabled in the 
final version of the software, so the messages can be activated at any time. 

DHCP Client 
 
The Net Butler can be configured in either DHCP or static IP mode. The DHCP client attempts to locate 

a DHCP server on the network and negotiate a lease for an IP address. If it fails, it can either fall back to 



static IP mode (if Dhcp Enabled mode is set), or retry forever until it succeeds (if Dhcp Required mode is 
set). The Link LED will flash before configuration has been completed, and be on solid afterwards. 

 
I originally wrote the protocol to match the specifications in RFC 2131, then made some minor tweaks 

after trying it with a couple of servers, one of which didn’t follow all the details of the specification. 
 
When DHCP is first started, it is the only network protocol that is active. Once it completes and an IP 

address has been assigned, the rest of the protocols and applications are enabled. When the lease renewal 
time comes up (after half of the 24 hour lease has elapsed, in my network) the DHCP client runs without 
interrupting the rest of the system. If it’s unable to renew the lease, then it lets the remainder of the existing 
lease run out. At that point, it interrupts all other network operation while it starts over to obtain a new 
lease I configured the RG’s DHCP server to assign it the same fixed IP address each time it asks for one. 

DNS Proxy 
 
All devices on the network send their DNS requests to the Net Butler, which passes them on to the RG. 

The RG has its own DNS proxy, which allows it to resolve names for devices on the local network, and 
pass others on to the network provider’s nameservers. Sometimes those nameservers can be sluggish, and 
our DNS proxy can detect the problem and send requests to one or more alternate nameservers instead. 
This is more convenient, and I’ve found to be more reliable, than the retry mechanisms built into the 
various devices on the network. 

 
The domain name block list is stored in flash memory, between the end of the program code and the 

start of the bootloader. It’s at a fixed location, so it’s not affected if new code is downloaded. The list 
consists of a pointer array that points to the beginning of each entry, followed by the entries. Each entry 
consists of a length byte and the domain name in the encoded format that’s used in DNS records. When the 
list is updated, the entire area of memory is erased and rewritten with the new data. 

 
The DNS activity log is stored in RAM, and consists of a pointer array that points to the beginning of 

each entry, and a buffer containing the entries. Each new entry is appended to the end of the existing entries 
when it is first created. The entries contain the time the entry was created and when it was last accessed. 
The time is simply the number of minutes since the system was last reset. There is also a sequential number 
that increments on each access, which is used when entries are sorted by access time, to place entries in the 
proper order when there are several with the same time. The entries also have a counter that increments on 
each access, a byte containing the blocked and grouped flags, and a byte with the length of the name field. 
This is followed by the domain name, in DNS-record encoded format. 

Web Client 
 
When the wifi application gets a request to change the network status, it sends out a POST request with 

the exact data the RG expects to see as if I had clicked a button on its network configuration web page. 
Then it sends out a GET request to a different RG page to check the network status, and to see if there are 
any wireless devices currently active on the network. 

 
 The HTTP Client protocol engine navigates to a page and supplies data to the application as it arrives. 

It handles the header status codes according to the HTTP specification, including handling retries due to 
server errors and redirected web pages. It can generate both GET and POST requests. Basic operation is 
with a state machine that sequences through the process of looking up a host address, connecting to the 
host, sending the request and optionally the POST data, receiving the web page header and data, and finally 
disconnecting. 

 
The data receive process was too complex to handle with the main state machine, so it has a separate 

control flow. One of the key features of the client is that it can handle arbitrarily large web pages without 
buffering them. The receive process hands off a small section of each page at a time to the web client 
application using a callback function, as each block comes in. The application then scans the page for any 



fields it needs to collect data from. Since a field might cross a block boundary, the code needs to save some 
data from the end of each block and paste it onto the beginning of the next block before handing it off to be 
scanned. That prevents a field from being missed if it’s split across blocks. The value returned by the 
application’s callback function specifies how many bytes to save from the current block. It needs to be set 
to the size of the largest field that’s currently being searched for. A return value of zero means that the 
application is done and no more data is needed. 

 
The protocol engine uses a simple DNS client to look up web addresses. It’s completely separate from 

the DNS Proxy application. It uses a simple state machine and provides a status code to the Web Client to 
indicate when it has finished, or if an error has occurred. 

Web Server 
 
The web server provides access to all of the Net Butler’s features in one place. Like the web client, it 

consists of two parts: an application that generates dynamic web pages, and a protocol engine that manages 
the connection to the client. There are five different pages available. They can be seen in Screens.pdf. 

 
• Home Page – Network settings display, Wifi and printer control, Weather display 
• Configuration Settings – System configuration for network, protocols, and applications 
• ARP Request Table – ARP Reply Server request table showing all devices on the network 
• DNS Block List – DNS Proxy domain name block list display and update 
• DNS Activity Log – DNS Proxy domain name activity log display 

 
Pages are generated from the raw data each time they are requested. Each page consists of dynamic data 

combined with string constants. Rather than build a complete page in a large buffer, I wrote the low-level 
routine sendbuf(), based on WIZnet’s original TCP send() function, that buffers data directly in the TCPIP 
core’s transmit buffer until enough has been collected to send out as a TCP packet. It automatically sends 
out the packet while it collects more data to send, without any intervention by the caller. When the page is 
finished, calling sendbuf_end() sends out any data remaining in the buffer. 

 
The configuration settings page is generated differently from the others. Since the page is so large, and 

much of the data is made up of repetitive patterns, it’s stored as a specially formatted data table. The table 
is made up of text data, which is output unchanged, and 1-byte control codes, which are expanded into text 
fields. For example, 0x02 expands to “<td>”. The special control code 0x01 is converted into an HTML 
form input field, which is automatically filled in with the value of an item from the system’s stored 
configuration data. A separate pair of arrays specifies which configuration item to use, and the format of 
the item, for each input field. The name of each form input field, which is part of the data returned by the 
browser when the form is submitted, includes a number that is the index into each of these arrays. 

 
When a submit button is pressed on a page, the browser will send an HTTP POST request to the web 

server. Each page has its own routine to parse the data and take appropriate action. 
 
The HTTP Server protocol engine’s state machine handles the details of the connection. It listens for 

incoming connections, looking for valid GET and POST requests. For a POST request, or a GET request 
with posting data included with the URL (following a question mark), it calls the application’s POST 
callback function with the data. Then it calls the GET callback to generate the web page that is sent to the 
client. The GET function can output part or all of the web page, and returns with a true value when the page 
is complete, which lets the server know to disconnect and start waiting for a new incoming connection. 


