PC-Transistortester TT 7001 Teil 3

Aufbau und Inbetriebnahme dieses innovativen Halbleiter-Testsystems beschreibt der dritte Teil dieses Artikels.

Nachbau

Die gesamte Schaltung des TT 7001 findet auf einer 262 x 138 mm messenden doppelseitigen, durchkontaktierten Leiterplatte Platz. Die Bestückung erfolgt in gewohnter Weise anhand des Bestückungsplanes und der Stückliste, wobei zuerst die niedrigen Bauteile, gefolgt von den höheren, eingesetzt und von der Unterseite her verlötet werden. Anschließend sind die überstehenden Drahtenden abzuschneiden.

Die Bauteile IC 1, R 84 und T 1 sind vorerst noch nicht zu bestücken.

Die Spannungsregler IC 2 bis IC 5 werden liegend montiert und vor dem Anlöten mit je einer M3x 6mm-Zylinderkopfschraube und einer M3-Mutter auf die Leiterplatte geschraubt.

Die Anschlußdrähte der Leuchtdioden D 24, D 17 und D 15 sind direkt hinter dem Gehäuse um 90° abzuwinkeln und im Abstand von 20 mm (15 mm bei D 24) zur Leiterplattenoberfläche einzulöten.

Nun erfolgt das Einsetzen des Ringkerntransformators, der mit einer M5x12mm-Zylinderkopfschraube auf die Leiterplatte geschraubt wird. Die Anschlußdrähte sind, wie im Schaltbild ersichtlich, mit den entsprechenden Anschlußpunkten der Leiterplatte zu verbinden. Dazu werden die Leitungen durch die entsprechenden Lötösen geführt und umgebogen, so daß die Leitungen in ihrer Position bleiben. Anschließend sind die Leitungen unter Zugabe von ausreichend Lötzinn zu verlöten.

Nun folgt die Vormontage der Alurückwand, auf welcher der Spannungsregler IC 1 und der Transistor T 1 mit je einer M3x8mm-Senkkopfschraube zu befestigen sind. Während der Spannungsregler ohne Isolation auf die Rückwand gesetzt wird, müssen bei dem Transistor eine Glimmerscheibe und ein Isoliernippel verwendet werden. Der Temperatursensor wird mit einer Metallschelle, einer M3x6mm-Senkkopfschraube sowie einer M3-Mutter auf die Rückwand montiert.

Jetzt ist die Zugentlastung einzusetzen, die von der Rückseite durch die Öffnung in der Rückwand geführt und mit der zugehörigen Mutter verschraubt wird.

Zum Abschluß erfolgt das Einsetzen der M3x8mm-Senkkopfschraube für den Anschluß des Schutzleiters. Auf die Schraube werden eine Fächerscheibe, die Lötöse,

eine zweite Fächerscheibe sowie zwei M3-Muttern aufgesetzt.

Damit sind die Vorarbeiten abgeschlossen, und es kann mit dem Einbau in das Gehäuse begonnen werden, dessen Unterhalbschale auf den Tisch gestellt wird, so daß die Lüftungslöcher nach vorn zeigen. Zuerst steckt man die M4x70mm-Zylinderkopfschrauben von der Unterseite durch die Löcher an den Gehäuseecken und darauf dann jeweils eine 1,5 mm dicke Kunststoffscheibe, gefolgt von einer M 4 x 5 mm Abstandshülse.

Von der SUB-D-Buchse sind die Haltebolzen abzuschrauben und anschließend die Rückwand an die Leiterplatte anzusetzen, wobei die Anschlußdrähte des IC 1, R 84 und T 1 durch die entsprechenden Bohrungen der Leiterplatte zu stecken sind.

Alsdann werden die Haltebolzen wieder eingesetzt und leicht angezogen, damit die Rückwand noch beweglich bleibt. Anschließend ist die Leiterplatte in das Gehäuse zu setzen, wobei die Schrauben durch die entsprechenden Bohrungen der Leiterplatte ragen und die Rückwand in den Führungsschienen liegen muß.

Nun ist ein Anschlußdraht des Transistors T 1 auf der Bestückungsseite anzulöten und die Haltebolzen der SUB-D-Buchse sind festzuschrauben, um die Rückwand zu fixieren. Jetzt wird die Platine mit montierter Rückwand wieder aus dem Gehäuse gehoben, um die restlichen Pins der Bauteile auf der Platinenunterseite zu verlöten und anschließend das Ganze wieder in das Gehäuseunterteil einzusetzen.

Im nächsten Schritt sind die Sicherheits-Buchsen in die Frontplatte zu schrauben und jeweils eine 50 mm lange Leitung anzulöten. Die Netzschalterschubstange wird, wie in Abbildung 21 dargestellt, geformt und anschließend mit dem Adapterstück und dem Druckknopf versehen.

Nach dem Einsetzen der Frontplatte in das Gehäuseunterteil können die Leitungen der Sicherheitsbuchsen an die entsprechenden Lötösen gelötet werden. Anschließend ist die Netzschalterschubstange von der Innenseite durch die Bohrung der Frontplatte zu führen und auf den Netzschalter zu stecken.

Beim Anschluß der Netzleitung sind zuerst die verzinnten Enden der blauen und braunen Ader abzuschneiden, die Isolierung am Ende auf 5 mm zu entfernen und jeweils eine Aderendhülse aufzuquetschen. Alsdann wird die Netzleitung durch die Zugentlastung und deren Verschraubung geführt und die grün/gelbe Ader auf der Innenseite der Rückwand durch die Lösöse gesteckt, abgewinkelt und verlötet. Die braune und die blaue Ader werden in die Netzklemme KL 1 gesteckt und verschraubt.

Damit ist der Aufbau weitgehend abgeschlossen, und das Gehäuse kann nun geschlossen werden. Auf die M4-Gehäuseschrauben ist jeweils eine M4x55mm-Abstandshülse zu stecken und anschließend das Gehäuseoberteil aufzusetzen. Das Gehäuse wird nun vorsichtig über die Tischkante geschoben, die Gehäuseschraube durch die Bohrungen des Gehäuseoberteils gesteckt und anschließend eine M4-Mutter aufgeschraubt. Nachdem alle vier Muttern aufgesetzt sind, können von der Geräteunterseite die Fußmodule mit Gummifüßen eingedrückt werden.

Sofern auf den TT 7001 kein weiteres 7000er Gehäuse gestellt werden soll, kann man die oberen Abdeckmodule ebenfalls einsetzen, um die Gehäuseschrauben zu verdecken.

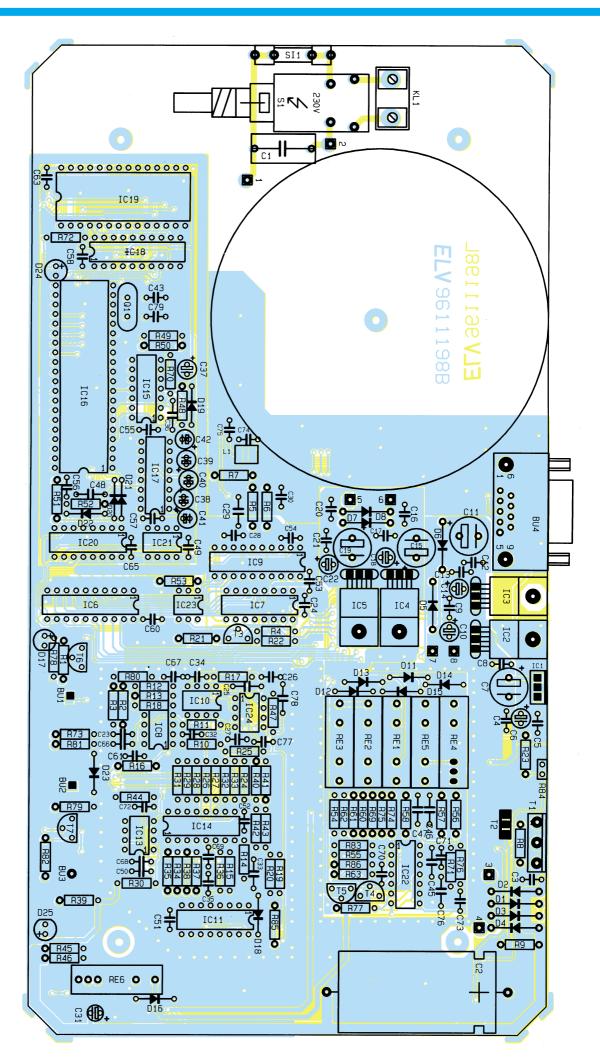
Achtung:

Da der TT 7001 mit der lebensgefährlichen 230V-Netzspannung betrieben wird, die innerhalb des Gerätes frei zugänglich ist, dürfen Aufbau und Inbetriebnahme nur von Fachleuten durchgeführt werden, die hierzu aufgrund ihrer Ausbildung befugt sind. Die einschlägigen VDE- und Sicherheitsvorschriften sind zu beachten.

Softwareinstallation und Abgleich

Der Abgleich des TT 7001 erfolgt in komfortabler Weise über die Windows-Software, die zunächst zu installieren ist. Dazu wird das Installationsprogramm "INSTALL.EXE", das sich auf der Programmdiskette befindet, aus dem Windows-Dateimanager heraus gestartet. Die Installation ist menügesteuert, wobei das Zielverzeichnis und die Programmgruppe frei wählbar sind.

Der TT 7001 wird nun über eine 1:1-Verbindungsleitung mit einer freien seriellen Schnittstelle des PCs verbunden, eingeschaltet und anschließend das Programm gestartet.


Zu Beginn prüft die Software, ob der TT 7001 mit dem PC verbunden ist. Da das Programm noch nicht konfiguriert ist, kann

58 ELVjournal 5/96

Ansicht der fertig bestückten Leiterplatte des TT 7001

Bestückungsplan des Transistortesters TT 7001

Stückliste: Transistortester TT 7001

Widerständ		680pF
1Ω/1W	R45, R46	2,2nF
47Ω	R9	10nF
82Ω	R61	33nF
220Ω	R53	47nF
330Ω	R83	100nF/ker
470Ω	R1, R4, R5	
	R72, R82	
820Ω	R60	
1kΩ	R7, R8, R10, R19	C63
1,2kΩ	R3, R40	100nF/250V
1,5kΩ	R30, R44	120nF
$1,8k\Omega$	R23	1μF/100V
	R15, R37, R55, R63	2,2μF/63V
	R2, R42, R50, R51	10μF/25V
	R41, R43	
$4,7k\Omega$	R21, R22, R78	220μF/40V.
6,8kΩ	R38	1000μF/16V
	R13, R20	2200μF/63V
	R6, R11, R12, R14, R18,	
]	R24, R39, R56, R57, R70,	Halbleiter:
	R73, R74, R76, R79-R81	7805
	R35	7905
	R17	7818
	R36	7918
	R33	74HC574
	R34	AD7524
	R32	TLC272
	R69	ADC0804
	R25, R75, R85	CD4053
	R28	OP07
	R31	CD4051
	R16, R27, R47-R49	CD4093
	R52	80C32
	R29, R54, R86	MAX232
	R58, R62	74HC373
	R26	ELV9503
	R71, R77	74HC138
SAS965	R84	FM24C04
		TL084
Kondensat		CNY17
		LM358
	C35	BD250C
	C30	BD139
470pF/ker	C73	BC548

600 E	G22
	C32
2,2nF	C48
	C33, C36, C46
33nF	
47nF	
100nF/ker	
,	C12, C13, C16, C17, C20,
	C21, C23, C24, C26-C28,
	C34, C49-C58, C60, C61,
C(2)	, C65-C72, C74, C75, C77
100-E/250M	, C03-C72, C74, C73, C77
	~C1
	C76
2,2μF/63V	C37
10μF/25V	C6, C10,
	C14 C18 C22
220uF/40V.	
1000uF/16V	
2200uF/63V	, axial
2200μ1 /03 τ	, uxiui
Halbleiter:	
	IC1, IC2
	IC3
	IC4
	IC5
	IC6
AD7524	IC7
TLC272	IC8, IC10
ADC0804	IC9
	IC11
	IC13
	IC14
	IC15
	IC15
	IC10
	IC18
	IC19
	IC20
FM24C04	IC21
	IC22
CNY17	IC23
LM358	IC24
BD250C	T1
	T2
	T3, T6, T7
200 10	13, 10, 17

BC639	T4
BC640	T5
1N5402	D1-D4
1N4002	D5-D8
1N4148	. D11-D16, D18-D23
LED, 3mm, grün	D17, D24, D25

Sonstiges:

Quarz, 16MHz	Q1
Spule, 10µH, SMD	-
Sicherung, 700mA,	
Single-Inline-Reed-	
1 v ein	RF1-RF3 RF5

1 x ein	RE1-RE3, RE5
Single-Inline-Reed	l-Relais,
1 x iim	RF4 RE6

1 x um RE4, RE6
Sicherheitsbananenbuchse, 4mm,
rot BU1
0' 1 1 '/ 1 1 1 4

Sichemensbahanenbuchse, 4mm,	
blau	BU2
Sicherheitsbananenbuchse, 4mm,	
•	DITTO

schwarzBU3 SUB-D-Buchse, 9polig, print BU4 Netzschraubklemmleiste KL1 1 Ringkerntrafo

1 Platinensicherungshalter (2 Hälften)

1 Sicherungsschutzkappe 1 Shadow-Netzschalter

1 Adapterstück

1 Verlängerungsachse

1 Druckknopf

4 Senkkopfschrauben, M3 x 6mm

3 Senkkopfschraube, M3 x 8mm

1 Zylinderkopfschraube, M5 x 12mm

9 Muttern, M3

13 Lötstifte mit Lötöse

1 Sensorschelle

1 Lötöse, 3,2mm

1 Glimmerscheibe für TO-3P

1 Isolierbuchse für TO-3P

1 Netzkabel, 3adrig

1 Netzkabeldurchführung

15cm flexible Leitung, 0,22mmØ

2 Aderendhülsen, 1,5 mm²

2 Fächerscheiben M3

28pol. IC-Sockel

es zu einer Fehlermeldung kommen, die mit .. Abbruch" zu quittieren ist. Daraufhin erscheint ein Vorschlag, die Baudrate automatisch zu ermitteln. Auch diese Meldung ist mit "Abbruch" zu quittieren. Darauf erscheint das Hauptfenster des Programms.

Zur Konfiguration ist zuerst im Menü

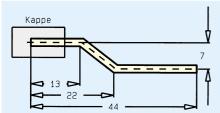


Bild 21: Skizze der Netzschalterschubstange

"Optionen" die Option "Einstellungen" zu wählen. Daraufhin erscheint ein Fenster, in dem der COM-Port eingestellt werden muß, an dem sich der TT 7001 befindet. Hier ist auch die Baudrate für die Datenübertragung zwischen PC und TT 7001 einzustellen, die vorerst mit 9600 Baud zu wählen

Nach Bestätigung der Eingaben erfolgt das Beenden des Programms und ein anschließender Neustart. Jetzt sollte der TT 7001 fehlerfrei erkannt werden und sofort das Hauptfenster erscheinen.

Um den Abgleich durchzuführen, ist der Punkt "Abgleich" im Menü "Optionen" auszuwählen und anschließend den menügeführten Abgleichanweisungen zu folgen. Zur Signalisierung, daß sich der TT 7001

im Abgleichmodus befindet, blinkt die Busy-LED.

Ein Multimeter ist wie auf den dargestellten Skizzen anzuschließen und mit dem Mauszeiger die digitalen Steuerwerte zu ändern, bis der vorgegebene Sollwert mit der Anzeige des Multimeters übereinstimmt. Die Übernahme des Abgleichwertes erfolgt durch den Button "Einstellung speichern", und mit dem Button "Weiter" wird zum nächsten Abgleichpunkt gewechselt.

Nach Durchführung des letzten Abgleichpunktes ist der Button "Ende" zu betätigen, um wieder in das Hauptfenster zu gelangen. Der Abgleich ist damit abgeschlossen, und die Einstellungen sind im ELV TT 7001 dauerhaft gespeichert.

ELV journal 5/96 61