
learn design share labs project reader’s project

www.elektormagazine.com July & August 2016 79

People love to measure. Give a child a tape ruler and it will
immediately start to measure everything in sight. The BBC
micro:bit, initially intended for children, is equipped with two
sensors, an MMA8653 3D accelerometer that measures accel-
eration on three axes, and a MAG3110 3D magnetometer that
measure magnetic field strengths on three axes. The latter also
measures its die temperature and outputs it, giving yet another
measurement result. These sensors are intended for orienta-
tion, movement and gesture detection. To complete this set
of sensors, we added a BME280 combined humidity, pressure
and temperature sensor from Bosch Sensortec. Typical appli-
cations of this sensor are context awareness, skin detection
and vertical navigation, but it also happens to be an excellent
weather sensor. It provides very precise humidity, atmospheric
pressure and temperature data on an I²C or SPI bus. The joint
force of the three sensors allows you to turn the micro:bit into
an accurate inertial measurement unit (IMU). Or a wireless
weather station if you add micro:bit’s Bluetooth to the mix.

Hardware
The schematic of our add-on board is pretty straightforward
(Figure 1): a sensor (IC1, Figure 2), an LED, three resistors
and a capacitor. The hard part this time is the edge connector
K1 because it is difficult to find. For the rest, there is not much
to tell about such a simple design.

We connected the CSB signal of IC1 (pin 2) to VIO (which is
connected to VCC). This selects the device’s I²C interface. IC1
can also do SPI in three- or four-wire mode, but for that the
CSB pin must be pulled Low. Once CSB is sampled Low, the
device remains in SPI mode. If, for some reason, you want to
select the I²C interface by using an external signal, this signal
must have a level of VIO before the chip is reset.
The SPI interface is compatible with SPI mode ‘00’ (CPOL =
CPHA = ‘0’) and mode ‘11’ (CPOL = CPHA = ‘1’). Mode selec-
tion is automatic, and determined by the value of SCK after
the CSB falling edge. Three- or four-wire mode is controlled in
software by the SPI3W_EN bit. SDI is the data line in three-
wire mode, SDO is not used in this case.
Because we use the device in I²C mode, we provided the
possibility of adding pull-up resistors to the bus (R2 & R3). If
you only use the extension board with the micro:bit you don’t
need these, because they are already present on the micro:bit.
When the BME280 is in I²C mode, its SDO pin (pin 5) deter-
mines its Slave address. Connecting SDO to GND sets the
Slave address to 0x76; connecting it to VIO like we did results
in 0x77. The SDO pin cannot be left floating.
LED1 is a power indicator — it’s helpful because the one on the
micro:bit itself becomes invisible when the board is inserted in
connector K1. LED1 remains visible at all times.
K2 is a pin header that provides easy connections of the

BBC micro:bit
Weather Station
Doubles as a generic
extension board

The BBC micro:bit is a
small powerhouse loaded
with cool functions and
supported by a suite of
excellent development
tools and libraries. Its edge
connector allows access to
goodies like GPIO ports, analog
inputs, an I²C bus and an SPI port. To show how to use it we build a small weather station for it.

By Clemens Valens
(Elektor Labs)

learn design share

80 July & August 2016 www.elektormagazine.com

micro:bit edge connector to, for instance, a breadboard. The
order of the pins on K2 is slightly different from the micro:bit
because we chose to put them in increasing order from 0 to
20. On the micro:bit pins 0, 1 and 2 correspond to the large
banana-plug-compatible holes that each take up several con-
tacts of K1. The other contacts count from 3 to 21 from left to
right (LED matrix side visible, edge connector at the bottom).

Software…
… is needed for the microcontroller to be ‘at speaking terms’
with the BME280 and so we wrote a driver for it. While we did
this the micro:bit was still unreleased and the nice libraries
for it were not available yet. However, the board was already
a known platform in mbed [1] and so we wrote our driver as

an mbed project. We also did an Arduino Sketch for it, you can
get it at [2] or [3], so you can use the sensor with an Arduino
compatible board.
Bosch Sensortec provides a driver for the BME280 on GitHub,
but it is rather complicated, not only because it is supposed
to work on all sorts of platforms, 64-bit, 32-bit, 16-bit, with
or without floating point units (FPUs), but also because it sup-
ports every detail of the chip. For our simple weather station
application we don’t need all this, and since it is rather instruc-
tive to write your own driver, that is what we did. Our driver
[2],[3] also lets you control every bit in every corner, but you
will need the datasheet to figure out what to write to, and read
from, specific locations. And since C++ permitted us to write
an Arduino-style API, we wrote our driver in C++.

Using our driver is easy enough. It starts by creating a BME280
object and then calling its begin function, as has become cus-
tomary since Arduino rules the world:

BME280 bme280;
bme280.begin(0x77);

The function (or method if you prefer) begin takes the I²C
address as argument, on our board it is hardwired to 0x77. If
you choose not to provide an address, the driver will default

VCC

R1

68
0R

LED1

VCC

VCC

BME280

IC1

GND

SDI
SCK

CSB

SDO

VDD

GND

VIO

2

8

1

3 5
4

7

6

R2

10
k

R3

10
k

VCC VCC

C1

100n

P0 / analog in
P1 / analog in
P2 / analog in

P4 / button A
P3 / analog in / LED col 1

P5 / analog in / LED col 2
P6 / LED row 1
P7 / LED row 2

P8
P9 /LED row 3

P10 / analog in /LED col 3
P11 / button B

P12
P13 / MOSI
P14 / MISO
P15 / SCK

P16

P19 / SCL
P20 / SDA

3V
GND

K1

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 401 2 3 4 5 6 7 8 9K2

10
11
12
13
14
15
16
17
18
19
20
21

1
2
3
4
5
6
7
8
9

150652 - 11

0 1 2 3V GND

73 4/B
UT

-A
5 6 8 9 10 11

/B
UT

-B
12 13

/M
OS

I
14

/M
IS

O
15

/S
CK

16 17 18 19
/S

CL
20

/S
DA

21 22

BBC
micro:bit

* *

Figure 1. Schematic of the weather station extension board for the BBC micro:bit.

Figure 2. IC1, the tiny metal can in the middle of the board, contains three
high-precision sensors.

copyright

learn design share labs project reader’s project

www.elektormagazine.com July & August 2016 81

to an SPI bus. The function returns 0 if the sensor was found
on the bus and if its calibration data could be read. The next
step is to configure the sensor:

bme280.writeConfigRegister(BME280_STANDBY_500_
US,BME280_FILTER_OFF,0);
bme280.writeControlRegisters(BME280_
OVERSAMPLING_1X,BME280_OVERSAMPLING_1X,
BME280_OVERSAMPLING_1X,BME280_MODE_NORMAL);

We used basic settings here — no fancy stuff, no high speed,
no filtering. Now you’re ready to collect data. You do this by
first calling the function read to get the data from the sensor
into the driver and then by calling one or more of the member
functions temperature, pressure and humidity. Typically you
would do this in a loop, but you don’t have to.

bme280.read();
printf(“T=%d degrees C, “, bme280.temperature()/100);
printf(“P=%d mbar, “, bme280.pressure()/100);
printf(“RH=%d%%\n”, bme280.humidity()>>10);

Note how the values obtained are being scaled. Temperature
must be divided by 100 to obtain degrees Celsius. Pressure is
expressed in Pascal and to be practical must be divided by 100
to obtain milli-bars (mb). Humidity has to be divided by 1024
(which is the same as shifting it 10 bits to the right) to obtain
a percentage. It is possible to enable floating point arithmetic
in the driver by making BME280_ALLOW_FLOAT unequal to 0 (at
the top of the file bme280.h):

#define BME280_ALLOW_FLOAT (1)

This will probably make the executable bigger and slower,
but it depends on your application if that presents a problem
or not. The floating point versions of the member functions
temperature and humidity do not require scaling, pressure is
again in Pascal.

Our driver can handle both SPI and I²C busses (although we
didn’t test SPI) and it is the user’s responsibility to provide
the functions for it. The driver will call

i2cWrite(…) & i2cRead(…)
spiWrite(…) & spiRead(…)

as needed, depending on how it was set up. All four func-
tions must be provided, but may remain empty. If you use
I²C leave the SPI stubs empty, if you use SPI then leave the
I²C stubs empty.
Note that in mbed I²C addresses are 8-bit because the read/
write bit is included at bit 0, meaning that 0x77 becomes 0xee.
In Arduino the address is 0x77.

Expanding further
Connector K2 is supposed to be a pinheader, but you are free
to make anything that suits your application. With a pinheader
or socket it is easy to connect the board to a breadboard,
especially if you have some of those very practical breadboard
wires. If you mount a pinheader, horizontal or vertical, you
will be ready for our upcoming micro:bit project: the micro:bit
Dock. Stay tuned…

 (150652)

Web Links

[1] https://developer.mbed.org/platforms/Microbit/

[2] https://github.com/ElektorLabs/bme280-driver

[3] www.elektormagazine.
com/150652

Component List
Resistors
5%, 50V, 0.1W, 0603
R1 = 680Ω
R2, R3 = 10kΩ

Capacitor
C1 = 100nF, 0603

Semiconductor
IC1 = BME280
LED1 = LED, green, 0603

Miscellaneous
K1 = socket, PCB-to-PCB, 2x40 links, 0.05’’

(1.27mm) pitch
K2 = pinheader, 1x21 pins, 0.1” pitch
PCB # 150652-1 v2.1

www.elektor-labs.com

