

JAVA
TM

IN A NUTSHELL

Other Java™ resources from O’Reilly

Related titles Learning Java™

Java™ Cookbook
Java™ Threads
Java™ 5.0 Tiger:

A Developer’s Notebook

Better, Faster, Lighter
Java™

Enterprise JavaBeans™

Head First Java™

Java™ Network
Programming

Java Books
Resource Center

java.oreilly.com is a complete catalog of O’Reilly’s books
on Java and related technologies, including sample chap-
ters and code examples.

OnJava.com is a one-stop resource for enterprise Java de-
velopers, featuring news, code recipes, interviews,
weblogs, and more.

Conferences O’Reilly Media brings diverse innovators together to nur-
ture the ideas that spark revolutionary industries. We
specialize in documenting the latest tools and systems,
translating the innovator’s knowledge into useful skills
for those in the trenches. Visit conferences.oreilly.com for
our upcoming events.

Safari Bookshelf (safari.oreilly.com) is the premier online
reference library for programmers and IT professionals.
Conduct searches across more than 1,000 books. Sub-
scribers can zero in on answers to time-critical questions
in a matter of seconds. Read the books on your Book-
shelf from cover to cover or simply flip to the page you
need. Try it today with a free trial.

Fifth Edition

JAVA
TM

IN A NUTSHELL

David Flanagan

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

Java™ in a Nutshell, Fifth Edition
by David Flanagan

Copyright © 2005, 2002, 1999, 1997, 1996 O’Reilly Media, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online
editions are also available for most titles (safari.oreilly.com). For more information, contact
our corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editors: Debra Cameron and Mike Loukides

Production Editor: Jamie Peppard

Cover Designer: Edie Freedman

Interior Designer: David Futato

Printing History:

February 1996: First Edition.

May 1997: Second Edition.

November 1999: Third Edition.

March 2002: Fourth Edition.

March 2005: Fifth Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered
trademarks of O’Reilly Media, Inc. The In a Nutshell series designations, Java in a Nutshell,
the image of the Javan tiger, and related trade dress are trademarks of O’Reilly Media, Inc.

Java™ and all Java-based trademarks and logos are trademarks or registered trademarks of
Sun Microsystems, Inc., in the United States and other countries. O’Reilly Media, Inc. is
independent of Sun Microsystems.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and O’Reilly Media,
Inc. was aware of a trademark claim, the designations have been printed in caps or initial
caps.

While every precaution has been taken in the preparation of this book, the publisher and
author assume no responsibility for errors or omissions, or for damages resulting from the use
of the information contained herein.

ISBN: 978-0-596-00773-7
[M] [2012-12-21]

,copyright.23003 Page iv Wednesday, December 19, 2012 3:25 PM

This book is dedicated to all

who teach peace and resist violence.

vii

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Table of Contents

Preface . xvii

Part I. Introducing Java

1. Introduction . 1
What Is Java? 1

The Java Programming Language 1
The Java Virtual Machine 2
The Java Platform 2
Versions of Java 3

Key Benefits of Java 4
Write Once, Run Anywhere 4
Security 5
Network-Centric Programming 5
Dynamic, Extensible Programs 5
Internationalization 6
Performance 6
Programmer Efficiency and Time-to-Market 6

An Example Program 7
Compiling and Running the Program 7
Analyzing the Program 9
Exceptions 15

2. Java Syntax from the Ground Up . 17
Java Programs from the Top Down 18

viii | Table of Contents

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Lexical Structure 18
The Unicode Character Set 18
Case-Sensitivity and Whitespace 19
Comments 19
Reserved Words 20
Identifiers 20
Literals 21
Punctuation 21

Primitive Data Types 21
The boolean Type 22
The char Type 22
Strings 24
Integer Types 24
Floating-Point Types 25
Primitive Type Conversions 26

Expressions and Operators 28
Operator Summary 28
Arithmetic Operators 32
String Concatenation Operator 33
Increment and Decrement Operators 34
Comparison Operators 34
Boolean Operators 35
Bitwise and Shift Operators 37
Assignment Operators 39
The Conditional Operator 39
The instanceof Operator 40
Special Operators 40

Statements 42
Expression Statements 42
Compound Statements 43
The Empty Statement 43
Labeled Statements 43
Local Variable Declaration Statements 43
The if/else Statement 44
The switch Statement 46
The while Statement 48
The do Statement 49
The for Statement 49
The for/in Statement 50
The break Statement 54
The continue Statement 54
The return Statement 55
The synchronized Statement 55
The throw Statement 56
The try/catch/finally Statement 58
The assert Statement 60

Table of Contents | ix

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Methods 64
Defining Methods 64
Method Modifiers 66
Declaring Checked Exceptions 68
Variable-Length Argument Lists 69
Covariant Return Types 70

Classes and Objects Introduced 71
Defining a Class 72
Creating an Object 72
Using an Object 73
Object Literals 73

Arrays 74
Array Types 75
Creating and Initializing Arrays 76
Using Arrays 77
Multidimensional Arrays 80

Reference Types 81
Reference vs. Primitive Types 82
Copying Objects 83
Comparing Objects 85
Terminology: Pass by Value 86
Memory Allocation and Garbage Collection 86
Reference Type Conversions 86
Boxing and Unboxing Conversions 88

Packages and the Java Namespace 89
Package Declaration 90
Globally Unique Package Names 90
Importing Types 90
Importing Static Members 92

Java File Structure 93
Defining and Running Java Programs 94
Differences Between C and Java 95

3. Object-Oriented Programming in Java . 98
Class Definition Syntax 99
Fields and Methods 100

Field Declaration Syntax 101
Class Fields 102
Class Methods 102
Instance Fields 103
Instance Methods 104
Case Study: System.out.println() 106

Creating and Initializing Objects 106
Defining a Constructor 107

x | Table of Contents

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Defining Multiple Constructors 108
Invoking One Constructor from Another 108
Field Defaults and Initializers 109

Destroying and Finalizing Objects 111
Garbage Collection 111
Memory Leaks in Java 112
Object Finalization 113

Subclasses and Inheritance 114
Extending a Class 114
Superclasses, Object, and the Class Hierarchy 116
Subclass Constructors 116
Constructor Chaining and the Default Constructor 117
Hiding Superclass Fields 119
Overriding Superclass Methods 120

Data Hiding and Encapsulation 123
Access Control 124
Data Accessor Methods 127

Abstract Classes and Methods 128
Important Methods of java.lang.Object 130

toString() 132
equals() 132
hashCode() 133
Comparable.compareTo() 133
clone() 134

Interfaces 135
Defining an Interface 135
Implementing an Interface 136
Interfaces vs. Abstract Classes 138
Marker Interfaces 139
Interfaces and Constants 139

Nested Types 140
Static Member Types 141
Nonstatic Member Classes 143
Local Classes 147
Anonymous Classes 151
How Nested Types Work 154

Modifier Summary 156
C++ Features Not Found in Java 157

4. Java 5.0 Language Features . 159
Generic Types 160

Typesafe Collections 160
Understanding Generic Types 163
Type Parameter Wildcards 166

Table of Contents | xi

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Writing Generic Types and Methods 169
Generics Case Study: Comparable and Enum 176

Enumerated Types 178
Enumerated Types Basics 179
Using Enumerated Types 181
Advanced Enum Syntax 185
The Typesafe Enum Pattern 190

Annotations 191
Annotation Concepts and Terminology 192
Using Standard Annotations 194
Annotation Syntax 196
Annotations and Reflection 198
Defining Annotation Types 199
Meta-Annotations 201

5. The Java Platform . 203
Java Platform Overview 203
Text 205

The String Class 205
The Character Class 206
The StringBuffer Class 206
The CharSequence Interface 207
The Appendable Interface 207
String Concatenation 208
String Comparison 208
Supplementary Characters 209
Formatting Text with printf() and format() 210
Logging 211
Pattern Matching with Regular Expressions 212
Tokenizing Text 215
StringTokenizer 216

Numbers and Math 217
Mathematical Functions 217
Random Numbers 218
Big Numbers 218
Converting Numbers from and to Strings 219
Formatting Numbers 220

Dates and Times 221
Milliseconds and Nanoseconds 221
The Date Class 222
The Calendar Class 222
Formatting Dates and Times 223

Arrays 224
Collections 225

xii | Table of Contents

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

The Collection Interface 225
The Set Interface 227
The List Interface 229
The Map Interface 231
The Queue and BlockingQueue Interfaces 234
Collection Wrappers 236
Special-Case Collections 236
Converting to and from Arrays 237
Collections Utility Methods 237
Implementing Collections 238

Threads and Concurrency 238
Creating, Running, and Manipulating Threads 238
Making a Thread Sleep 241
Running and Scheduling Tasks 241
Exclusion and Locks 245
Coordinating Threads 247
Thread Interruption 250
Blocking Queues 251
Atomic Variables 252

Files and Directories 252
RandomAccessFile 253

Input/Output with java.io 254
Reading Console Input 254
Reading Lines from a Text File 254
Writing Text to a File 255
Reading a Binary File 255
Compressing Data 255
Reading ZIP Files 256
Computing Message Digests 256
Streaming Data to and from Arrays 257
Thread Communication with Pipes 257

Networking with java.net 258
Networking with the URL Class 258
Working with Sockets 258
Secure Sockets with SSL 259
Servers 261
Datagrams 262
Testing the Reachability of a Host 263

I/O and Networking with java.nio 263
Basic Buffer Operations 264
Basic Channel Operations 265
Encoding and Decoding Text with Charsets 267
Working with Files 268
Client-Side Networking 271
Server-Side Networking 272
Nonblocking I/O 273

Table of Contents | xiii

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

XML 276
Parsing XML with SAX 277
Parsing XML with DOM 278
Transforming XML Documents 280
Validating XML Documents 281
Evaluating XPath Expressions 283

Types, Reflection, and Dynamic Loading 283
Class Objects 284
Reflecting on a Class 284
Dynamic Class Loading 285
Dynamic Proxies 286

Object Persistence 286
Serialization 286
JavaBeans Persistence 287

Security 288
Message Digests 288
Digital Signatures 289
Signed Objects 290

Cryptography 290
Secret Keys 290
Encryption and Decryption with Cipher 291
Encrypting and Decrypting Streams 292
Encrypted Objects 292

Miscellaneous Platform Features 292
Properties 293
Preferences 294
Processes 295
Management and Instrumentation 296

6. Java Security . 299
Security Risks 300
Java VM Security and Class File Verification 300
Authentication and Cryptography 301
Access Control 301

Java 1.0: The Sandbox 301
Java 1.1: Digitally Signed Classes 302
Java 1.2: Permissions and Policies 303

Security for Everyone 304
Security for System Programmers 304
Security for Application Programmers 304
Security for System Administrators 305
Security for End Users 305

Permission Classes 306

xiv | Table of Contents

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

7. Programming and Documentation Conventions 308
Naming and Capitalization Conventions 308
Portability Conventions and Pure Java Rules 310
Java Documentation Comments 312

Structure of a Doc Comment 313
Doc-Comment Tags 314
Inline Doc Comment Tags 316
Cross-References in Doc Comments 318
Doc Comments for Packages 319

JavaBeans Conventions 320
Bean Basics 320
Bean Classes 321
Properties 322
Indexed Properties 322
Bound Properties 322
Constrained Properties 323
Events 324

8. Java Development Tools . 326
apt 326
extcheck 327
jarsigner 328
jar 329
java 332
javac 338
javadoc 342
javah 348
javap 349
javaws 351
jconsole 352
jdb 353
jinfo 357
jmap 358
jps 358
jsadebugd 359
jstack 359
jstat 360
jstatd 362
keytool 362
native2ascii 366
pack200 366
policytool 368

Table of Contents | xv

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

serialver 370
unpack200 370

Part II. API Quick Reference

How to Use This Quick Reference . 375

9. java.io . 385

10. java.lang and Subpackages . 439

11. java.math . 543

12. java.net . 549

13. java.nio and Subpackages . 586

14. java.security and Subpackages . 638

15. java.text . 724

16. java.util and Subpackages . 750

17. javax.crypto and Subpackages . 921

18. javax.net and javax.net.ssl . 946

19. javax.security.auth and Subpackages . 970

20. javax.xml and Subpackages . 994

21. org.w3c.dom . 1032

22. org.xml.sax and Subpackages . 1051

Class, Method, and Field Index . 1077

Index . 1147

xvii

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Chapter 1

Preface

This book is a desktop Java™ quick reference, designed to sit faithfully by your
keyboard while you program. Part I of the book is a fast-paced, “no-fluff” intro-
duction to the Java programming language and the core APIs of the Java platform.
Part II is a quick reference section that succinctly details most classes and inter-
faces of those core APIs. The book covers Java 1.0, 1.1, 1.2, 1.3, 1.4, and 5.0.

Changes in the Fifth Edition
The fifth edition of this book covers Java 5.0. As its incremented version number
attests, this new version of Java has a lot of new features. The three most signifi-
cant new language features are generic types, enumerated types, and annotations,
which are covered in a new chapter of their own. Experienced Java programmers
who just want to learn about these new features can jump straight to Chapter 4.

Other new language features of Java 5.0 are:

• The for/in statement for easily iterating through arrays and collections (this
statement is sometimes called “foreach”).

• Autoboxing and autounboxing conversions to automatically convert back
and forth between primitive values and their corresponding wrapper objects
(such as int values and Integer objects) as needed.

• Varargs methods to define and invoke methods that accept an arbitrary num-
ber of arguments.

• Covariant returns to allow a subclass to override a superclass method and
narrow the return type of the method.

• The import static declaration to import the static members of a type into
the namespace.

Although each of these features is new in Java 5.0, none of them is large enough to
merit a chapter of its own. Coverage of these features is integrated into Chapter 2.

xviii | Preface

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

In addition to these language changes, Java 5.0 also includes changes to the Java
platform. Important enhancements include the following:

• The java.util collections classes have been converted to be generic types,
providing support for typesafe collections. This is covered in Chapter 4.

• The java.util package also includes the new Formatter class. This class
enables C-style formatted text output with printf() and format() methods.
Examples are included in Chapter 5. The java.util.Formatter entry in the
quick reference includes a detailed table of formatting options.

• The new package java.util.concurrent includes important utilities for
threadsafe concurrent programming. Chapter 5 provides examples.

• java.lang has three new subpackages:

• java.lang.annotation

• java.lang.instrument

• java.lang.management

These packages support Java 5.0 annotations and the instrumentation, man-
agement, and monitoring of a running Java interpreter. Although their posi-
tion in the java.lang hierarchy marks these packages as very important, they
are not commonly used. Annotation examples are provided in Chapter 4, and
a simple instrumentation and management example is found in Chapter 5.

• New packages have been added to the javax.xml hierarchy. javax.xml.
validation supports document validation with schemas. javax.xml.xpath
supports the XPath query language. And javax.xml.namespace provides sim-
ple support for XML namespaces. Validation and XPath examples are in
Chapter 5.

In a mostly futile attempt to make room for this new material, I’ve had to make
some cuts. I’ve removed coverage of the packages java.beans, java.beans.
beancontext, java.security.acl, and org.ietf.jgss from the quick reference.
JavaBeans standards have not caught on in core Java APIs and now appear to be
relevant only for Swing and related graphical APIs. As such, they are no longer
relevant in this book. The java.security.acl package has been deprecated since
Java 1.2 and I’ve taken this opportunity to remove it. And the org.ietf.jgss
package is of interest to only a very narrow subset of readers.

Along with removing coverage of java.beans from the quick reference section, I’ve
also cut the chapter on JavaBeans from Part I of this book. The material on Java-
Beans naming conventions from that chapter remains useful, however, and has
been moved into Chapter 7.

Contents of This Book
The first eight chapters of this book document the Java language, the Java plat-
form, and the Java development tools that are supplied with Sun’s Java
Development Kit (JDK). The first five chapters are essential; the next three cover
topics of interest to some, but not all, Java programmers.

Preface | xix

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Chapter 1: Introduction
This chapter is an overview of the Java language and the Java platform that
explains the important features and benefits of Java. It concludes with an
example Java program and walks the new Java programmer through it line
by line.

Chapter 2: Java Syntax from the Ground Up
This chapter explains the details of the Java programming language,
including some of the Java 5.0 language changes. It is a long and detailed
chapter that does not assume substantial programming experience. Experi-
enced Java programmers can use it as a language reference. Programmers
with substantial experience with languages such as C and C++ should be able
to pick up Java syntax quickly by reading this chapter; beginning program-
mers with only a modest amount of experience should be able to learn Java
programming by studying this chapter carefully.

Chapter 3: Object-Oriented Programming in Java
This chapter describes how the basic Java syntax documented in Chapter 2 is
used to write object-oriented programs in Java. The chapter assumes no prior
experience with OO programming. It can be used as a tutorial by new
programmers or as a reference by experienced Java programmers.

Chapter 4: Java 5.0 Language Features
This chapter documents the three biggest new features of Java 5.0: generic
types, enumerated types, and annotations. If you read previous editions of
this book, you might want to skip directly to this chapter.

Chapter 5: The Java Platform
This chapter is an overview of the essential Java APIs covered in this book. It
contains numerous short examples that demonstrate how to perform
common tasks with the classes and interfaces that comprise the Java plat-
form. Programmers who are new to Java (and especially those who learn best
by example) should find this a valuable chapter.

Chapter 6: Java Security
This chapter explains the Java security architecture that allows untrusted
code to run in a secure environment from which it cannot do any malicious
damage to the host system. It is important for all Java programmers to have
at least a passing familiarity with Java security mechanisms.

Chapter 7: Programming and Documentation Conventions
This chapter documents important and widely adopted Java programming
conventions, including JavaBeans naming conventions. It also explains how
you can make your Java code self-documenting by including specially
formatted documentation comments.

Chapter 8: Java Development Tools
Sun’s JDK includes a number of useful Java development tools, most notably
the Java interpreter and the Java compiler. This chapter documents those tools.

These first eight chapters teach you the Java language and get you up and running
with the Java APIs. Part II of the book is a succinct but detailed API reference
formatted for optimum ease of use. Please be sure to read How to Use This Quick

xx | Preface

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Reference in Part II; it explains how to get the most out of the quick reference
section. Also, please note that the quick reference chapters are followed by one
final chapter called “Class, Method, and Field Index.” This special index allows
you to look up the name of a type and find the package in which it is defined or to
look up the name of a method or field and find the type in which it it is defined.

Related Books
O’Reilly publishes an entire series of books on Java programming, including
several companion books to this one. The companion books are:

Java Examples in a Nutshell
This book contains hundreds of complete, working examples illustrating
many common Java programming tasks using the core, enterprise, and
desktop APIs. Java Examples in a Nutshell is like Chapter 4 of this book, but
greatly expanded in breadth and depth, and with all the code snippets fully
fleshed out into working examples. This is a particularly valuable book for
readers who learn well by experimenting with existing code.

Java Enterprise in a Nutshell
This book is a succinct tutorial for the Java “Enterprise” APIs such as JDBC,
RMI, JNDI, and CORBA. It also cover enterprise tools such as Hibernate,
Struts, Ant, JUnit, and XDoclet.

J2ME in a Nutshell
This book is a tutorial and quick reference for the graphics, networking, and
database APIs of the Java 2 Micro Edition (J2ME) platform.

You can find a complete list of Java books from O’Reilly at http://java.oreilly.com/.
Books that focus on the core Java APIs, as this one does, include:

 Learning Java, by Pat Niemeyer and Jonathan Knudsen
This book is a comprehensive tutorial introduction to Java, with an emphasis
on client-side Java programming.

Java Swing, by Marc Loy, Robert Eckstein, Dave Wood, James Elliott, and Brian Cole
This book provides excellent coverage of the Swing APIs and is a must-read
for GUI developers.

 Java Threads, by Scott Oaks and Henry Wong
Java makes multithreaded programming easy, but doing it right can still be
tricky. This book explains everything you need to know.

 Java I/O, by Elliotte Rusty Harold
Java’s stream-based input/output architecture is a thing of beauty. This book
covers it in the detail it deserves.

 Java Network Programming, by Elliotte Rusty Harold
This book documents the Java networking APIs in detail.

 Java Security, by Scott Oaks
This book explains the Java access-control mechanisms in detail and also
documents the authentication mechanisms of digital signatures and message
digests.

Preface | xxi

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

 Java Cryptography, by Jonathan Knudsen
This book provides thorough coverage of the Java Cryptography Extension,
the javax.crypto.* packages, and cryptography in Java.

Examples Online
The examples in this book are available online and can be downloaded from the
home page for the book at http://www.oreilly.com/catalog/javanut5. You may
also want to visit this site for any important notes or errata that have been
published there.

Conventions Used in This Book
We use the following formatting conventions in this book:

Italic
Used for emphasis and to signify the first use of a term. Italic is also used for
commands, email addresses, web sites, FTP sites, and file and directory
names.

Bold
Occasionally used to refer to particular keys on a computer keyboard or to
portions of a user interface, such as the Back button or the Options menu.

Constant Width
Used for all Java code as well as for anything that you would type literally
when programming, including keywords, data types, constants, method
names, variables, class names, and interface names.

Constant Width Italic
Used for the names of function arguments and generally as a placeholder to
indicate an item that should be replaced with an actual value in your
program. Sometimes used to refer to a conceptual section or line of code as in
statement.

Franklin Gothic Book Condensed
Used for the Java class synopses in the quick reference section. This very
narrow font allows us to fit a lot of information on the page without a lot of
distracting line breaks. This font is also used for code entities in the descrip-
tions in the quick reference section.

Franklin Gothic Demi Condensed
Used for highlighting class, method, field, property, and constructor names in
the quick reference section, which makes it easier to scan the class synopses.

Franklin Gothic Book Condensed Italic
Used for method parameter names and comments in the quick reference
section.

xxii | Preface

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Request for Comments
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)
(707) 829-1014 (fax)

There is a web page for this book, which lists errata, examples, and any addi-
tional information. You can access this page at:

http://www.oreilly.com/catalog/javanut5

To ask technical questions or comment on this book, send email to:

bookquestions@oreilly.com

For more information about books, conferences, Resource Centers, and the
O’Reilly Network, see the O’Reilly web site at:

http://www.oreilly.com

How the Quick Reference Is Generated
For the curious reader, this section explains a bit about how the quick reference
material in Java in a Nutshell and related books is created.

As Java has evolved, so has my system for generating Java quick reference mate-
rial. The current system is part of a larger commercial documentation browser
system I’m developing (visit http://www.davidflanagan.com/Jude for more informa-
tion about it). The program works in two passes: the first pass collects and
organizes the API information, and the second pass outputs that information in
the form of quick reference chapters.

The first pass begins by reading the class files for all of the classes and interfaces to
be documented. Almost all of the API information in the quick reference is avail-
able in these class files. The notable exception is the names of method arguments,
which are not stored in class files. These argument names are obtained by parsing
the Java source file for each class and interface. Where source files are not available,
I obtain method argument names by parsing the API documentation generated by
javadoc. The parsers I use to extract API information from the source files and
javadoc files are created using the Antlr parser generator developed by Terence Parr.
(See http://www.antlr.org for details on this very powerful programming tool.)

Once the API information has been obtained by reading class files, source files,
and javadoc files, the program spends some time sorting and cross-referencing
everything. Then it stores all the API information into a single large data file.

The second pass reads API information from that data file and outputs quick
reference chapters using a custom XML doctype. Once I’ve generated the XML
output, I hand it off to the production team at O’Reilly. In the past, these XML

Preface | xxiii

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

documents were converted to troff and formatted with GNU groff using a highly
customized macro package. In this edition, the chapters were converted from
XML to Framemaker instead, using in-house production tools.

When you see a Safari®-enabled icon on the cover of your favorite
technology book, that means the book is available online through
the O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-Books. It’s a virtual
library that lets you easily search thousands of top tech books, cut and paste code
samples, download chapters, and find quick answers when you need the most
accurate, current information. Try it free at http://safari.oreilly.com.

Acknowledgments
Many people helped in the creation of this book, and I am grateful to them all. I
am indebted to the many, many readers of the first four editions who wrote in
with comments, suggestions, bug reports, and praise. Their many small contribu-
tions are scattered throughout the book. Also, my apologies to those who made
many good suggestions that could not be incorporated into this edition.

Deb Cameron was the editor for the fifth edition. Deb edited not only the mate-
rial that was new in this edition but also made the time to carefully read over the
old material, giving it a much-needed updating. Deb was patient when my work
on this book veered off in an unexpected direction and provided steady guidance
to help get me back on track. The fourth edition was edited by Bob Eckstein, a
careful editor with a great sense of humor. Paula Ferguson, a friend and colleague,
was the editor of the first three editions of this book. Her careful reading and
practical suggestions made the book stronger, clearer, and more useful.

As usual, I’ve had a crack team of technical reviewers for this edition of the book.
Gilad Bracha of Sun reviewed the material on generic types. Josh Bloch, a former
Sun employee who is now at Google, reviewed the material on enumerated types
and annotations. Josh was also a reviewer for the third and fourth editions of the
book, and his helpful input has been an invaluable resource for me. Josh’s book
Effective Java Programming Guide (Addison Wesley) is highly recommended. Neal
Gafter, who, like Josh, left Sun for Google, answered many questions about anno-
tations and generics. David Biesack of SAS, Changshin Lee of the Korean
company Tmax Soft, and Tim Peierls were colleagues of mine on the JSR-201
expert group that was responsible for a number of language changes in Java 5.0.
They reviewed the generics and enumerated type material. Joseph Bowbeer, Brian
Goetz, and Bill Pugh were members of the JSR-166 or JSR-133 expert groups and
helped me to understand threading and concurrency issues behind the java.util.
concurrency package. Iris Garcia of Sun answered my questions about the new
java.util.Formatter class that she authored. My sincere thanks go to each of
these engineers. Any mistakes that remain in the book are, of course, my own.

The fourth edition was also reviewed by a number of engineers from Sun and else-
where. Josh Bloch reviewed material on assertions and the Preferences API. Bob
Eckstein reviewed XML material. Graham Hamilton reviewed the Logging API
material. Ron Hitchens reviewed the New I/O material. Jonathan Knudsen (who

xxiv | Preface

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

is also an O’Reilly author) reviewed the JSSE and Certification Path material.
Charlie Lai reviewed the JAAS material. Ram Marti reviewed the JGSS material.
Philip Milne, a former Sun employee, now at Dresdner Kleinwort Wasserstein,
reviewed the material on the JavaBeans persistence mechanism. Mark Reinhold
reviewed the java.nio material. Mark deserves special thanks for having been a
reviewer for the second, third, and fourth editions of this book. Andreas Sterbenz
and Brad Wetmore reviewed the JSSE material.

The third edition also benefited greatly from the contributions of reviewers who are
intimately familiar with the Java platform. Joshua Bloch, one of the primary authors
of the Java collections framework, reviewed my descriptions of the collections
classes and interfaces. Josh was also helpful in discussing the Timer and TimerTask
classes of Java 1.3 with me. Mark Reinhold, creator of the java.lang.ref package,
explained the package to me and reviewed my documentation of it. Scott Oaks
reviewed my descriptions of the Java security and cryptography classes and inter-
faces. The documentation of the javax.crypto package and its subpackages was
also reviewed by Jon Eaves. Finally, Chapter 1 was improved by the comments of
reviewers who were not already familiar with the Java platform: Christina Byrne
reviewed it from the standpoint of a novice programmer, and Judita Byrne of
Virginia Power offered her comments as a professional COBOL programmer.

For the second edition, John Zukowski reviewed my Java 1.1 AWT quick refer-
ence material, and George Reese reviewed most of the remaining new material.
The second edition was also blessed with a “dream team” of technical reviewers
from Sun. John Rose, the author of the Java inner class specification, reviewed the
chapter on inner classes. Mark Reinhold, author of the new character stream
classes in java.io, reviewed my documentation of these classes. Nakul Saraiya,
the designer of the Java Reflection API, reviewed my documentation of the java.
lang.reflect package.

Mike Loukides provided high-level direction and guidance for the first edition of
the book. Eric Raymond and Troy Downing reviewed that first edition—they
helped spot my errors and omissions and offered good advice on making the book
more useful to Java programmers.

The O’Reilly production team has done its usual fine work of creating a book out
of the electronic files I submit. My thanks to them all.

As always, my thanks and love to Christie.

—David Flanagan
http://www.davidflanagan.com

March 2005

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

I
Introducing Java

Part I is an introduction to the Java language and the Java platform. These chap-
ters provide enough information for you to get started using Java right away.

Chapter 1, Introduction
Chapter 2, Java Syntax from the Ground Up
Chapter 3, Object-Oriented Programming in Java
Chapter 4, Java 5.0 Language Features
Chapter 5, The Java Platform
Chapter 6, Java Security
Chapter 7, Programming and Documentation Conventions
Chapter 8, Java Development Tools

1

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Chapter 1Introduction

1
Introduction

Welcome to Java. This chapter begins by explaining what Java is and describing
some of the features that distinguish it from other programming languages. Next,
it outlines the structure of this book, with special emphasis on what is new in Java
5.0. Finally, as a quick tutorial introduction to the language, it walks you through
a simple Java program you can type, compile, and run.

What Is Java?
In discussing Java, it is important to distinguish between the Java programming
language, the Java Virtual Machine, and the Java platform. The Java program-
ming language is the language in which Java applications, applets, servlets, and
components are written. When a Java program is compiled, it is converted to byte
codes that are the portable machine language of a CPU architecture known as the
Java Virtual Machine (also called the Java VM or JVM). The JVM can be imple-
mented directly in hardware, but it is usually implemented in the form of a
software program that interprets and executes byte codes.

The Java platform is distinct from both the Java language and Java VM. The Java
platform is the predefined set of Java classes that exist on every Java installation;
these classes are available for use by all Java programs. The Java platform is also
sometimes referred to as the Java runtime environment or the core Java APIs
(application programming interfaces). The Java platform can be extended with
optional packages (formerly called standard extensions). These APIs exist in some
Java installations but are not guaranteed to exist in all installations.

The Java Programming Language

The Java programming language is a state-of-the-art, object-oriented language
that has a syntax similar to that of C. The language designers strove to make the
Java language powerful, but, at the same time, they tried to avoid the overly

2 | Chapter 1: Introduction

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

complex features that have bogged down other object-oriented languages like
C++. By keeping the language simple, the designers also made it easier for
programmers to write robust, bug-free code. As a result of its elegant design and
next-generation features, the Java language has proved popular with program-
mers, who typically find it a pleasure to work with Java after struggling with more
difficult, less powerful languages.

Java 5.0, the latest version of the Java language,* includes a number of new
language features, most notably generic types, which increase both the complexity
and the power of the language. Most experienced Java programmers have
welcomed the new features, despite the added complexity they bring.

The Java Virtual Machine

The Java Virtual Machine, or Java interpreter, is the crucial piece of every Java
installation. By design, Java programs are portable, but they are only portable to
platforms to which a Java interpreter has been ported. Sun ships VM implementa-
tions for its own Solaris operating system and for Microsoft Windows and Linux
platforms. Many other vendors, including Apple and various commercial Unix
vendors, provide Java interpreters for their platforms. The Java VM is not only for
desktop systems, however. It has been ported to set-top boxes and handheld
devices that run Windows CE and PalmOS.

Although interpreters are not typically considered high-performance systems, Java
VM performance has improved dramatically since the first versions of the
language. The latest releases of Java run remarkably fast. Of particular note is a
VM technology called just-in-time (JIT) compilation whereby Java byte codes are
converted on the fly into native platform machine language, boosting execution
speed for code that is run repeatedly.

The Java Platform

The Java platform is just as important as the Java programming language and the
Java Virtual Machine. All programs written in the Java language rely on the set of
predefined classes† that comprise the Java platform. Java classes are organized
into related groups known as packages. The Java platform defines packages for
functionality such as input/output, networking, graphics, user-interface creation,
security, and much more.

It is important to understand what is meant by the term platform. To a computer
programmer, a platform is defined by the APIs he can rely on when writing
programs. These APIs are usually defined by the operating system of the target
computer. Thus, a programmer writing a program to run under Microsoft Windows
must use a different set of APIs than a programmer writing the same program for a
Unix-based system. In this respect, Windows and Unix are distinct platforms.

* Java 5.0 represents a significant change in version numbering for Sun. The previous version of
Java is Java 1.4 so you may sometimes hear Java 5.0 informally referred to as Java 1.5.

† A class is a module of Java code that defines a data structure and a set of methods (also called pro-
cedures, functions, or subroutines) that operate on that data.

What Is Java? | 3

Introduction

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Java is not an operating system. Nevertheless, the Java platform provides APIs
with a comparable breadth and depth to those defined by an operating system.
With the Java platform, you can write applications in Java without sacrificing the
advanced features available to programmers writing native applications targeted at
a particular underlying operating system. An application written on the Java plat-
form runs on any operating system that supports the Java platform. This means
you do not have to create distinct Windows, Macintosh, and Unix versions of
your programs, for example. A single Java program runs on all these operating
systems, which explains why “Write once, run anywhere” is Sun’s motto for Java.

The Java platform is not an operating system, but for programmers, it is an alter-
native development target and a very popular one at that. The Java platform
reduces programmers’ reliance on the underlying operating system, and, by
allowing programs to run on top of any operating system, it increases end users’
freedom to choose an operating system.

Versions of Java

As of this writing, there have been six major versions of Java. They are:

Java 1.0
This was the first public version of Java. It contained 212 classes organized in
8 packages. It was simple and elegant but is now completely outdated.

Java 1.1
This release of Java more than doubled the size of the Java platform to 504
classes in 23 packages. It introduced nested types (or “inner classes”), an
important change to the Java language itself, and included significant perfor-
mance improvements in the Java VM. This version is outdated.

Java 1.2
This was a very significant release of Java; it tripled the size of the Java plat-
form to 1,520 classes in 59 packages. Important additions included the
Collections API for working with sets, lists, and maps of objects and the
Swing API for creating graphical user interfaces. Because of the many new
features included in the 1.2 release, the platform was rebranded as “the Java 2
Platform.” The term “Java 2” was simply a trademark, however, and not an
actual version number for the release.

Java 1.3
This was primarily a maintenance release, focused on bug fixes, stability, and
performance improvements (including the high-performance “HotSpot” virtual
machine). Additions to the platform included the Java Naming and Directory
Interface (JNDI) and the Java Sound APIs, which were previously available as
extensions to the platform. The most interesting classes in this release were
probably java.util.Timer and java.lang.reflect.Proxy. In total, Java 1.3
contains 1,842 classes in 76 packages.

Java 1.4
This was another big release, adding important new functionality and
increasing the size of the platform by 62% to 2,991 classes and interfaces in
135 packages. New features included a high-performance, low-level I/O API;

4 | Chapter 1: Introduction

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

support for pattern matching with regular expressions; a logging API; a user
preferences API; new Collections classes; an XML-based persistence mecha-
nism for JavaBeans; support for XML parsing using both the DOM and SAX
APIs; user authentication with the Java Authentication and Authorization
Service (JAAS) API; support for secure network connections using the SSL
protocol; support for cryptography; a new API for reading and writing image
files; an API for network printing; a handful of new GUI components in the
Swing API; and a simplified drag-and-drop architecture for Swing. In addi-
tion to these platform changes, the 1.4 release introduced an assert
statement to the Java language.

Java 5.0
The most recent release of Java introduces a number of changes to the core
language itself including generic types, enumerated types, annotations,
varargs methods, autoboxing, and a new for/in statement. Because of the
major language changes, the version number was incremented. This release
would logically be known as “Java 2.0” if Sun had not already used the term
“Java 2” for marketing Java 1.2.

In addition to the language changes, Java 5.0 includes a number of additions
to the Java platform as well. This release includes 3562 classes and interfaces
in 166 packages. Notable additions include utilities for concurrent program-
ming, a remote management framework, and classes for the remote
management and instrumentation of the Java VM itself.

See the Preface for a list of changes in this edition of the book, including
pointers to coverage of the new language and platform features.

To write programs in Java, you must obtain the Java Development Kit (JDK). Sun
releases a new version of the JDK for each new version of Java. Don’t confuse the
JDK with the Java Runtime Environment (JRE). The JRE contains everything you
need to run Java programs, but it does not contain the tools you need to develop
Java programs (primarily the compiler).

In addition to the Standard Edition of Java used by most Java developers and
documented in this book, Sun has also released the Java 2 Platform, Enterprise
Edition (or J2EE) for enterprise developers and the Java 2 Platform, Micro Edition
(J2ME) for consumer electronic systems, such as handheld PDAs and cellular tele-
phones. See Java Enterprise in a Nutshell and Java Micro Edition in a Nutshell
(both by O’Reilly) for more information on these other editions.

Key Benefits of Java
Why use Java at all? Is it worth learning a new language and a new platform? This
section explores some of the key benefits of Java.

Write Once, Run Anywhere

Sun identifies “Write once, run anywhere” as the core value proposition of the
Java platform. Translated from business jargon, this means that the most impor-

Key Benefits of Java | 5

Introduction

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

tant promise of Java technology is that you have to write your application only
once—for the Java platform—and then you’ll be able to run it anywhere.

Anywhere, that is, that supports the Java platform. Fortunately, Java support is
becoming ubiquitous. It is integrated into practically all major operating
systems. It is built into the popular web browsers, which places it on virtually
every Internet-connected PC in the world. It is even being built into consumer
electronic devices such as television set-top boxes, PDAs, and cell phones.

Security

Another key benefit of Java is its security features. Both the language and the plat-
form were designed from the ground up with security in mind. The Java platform
allows users to download untrusted code over a network and run it in a secure
environment in which it cannot do any harm: untrusted code cannot infect the
host system with a virus, cannot read or write files from the hard drive, and so
forth. This capability alone makes the Java platform unique.

Java 1.2 took the security model a step further. It made security levels and restric-
tions highly configurable and extended them beyond applets. As of Java 1.2, any
Java code, whether it is an applet, a servlet, a JavaBeans component, or a
complete Java application, can be run with restricted permissions that prevent it
from doing harm to the host system.

The security features of the Java language and platform have been subjected to
intense scrutiny by security experts around the world. In the earlier days of Java,
security-related bugs, some of them potentially serious, were found and promptly
fixed. Because of the strong security promises Java makes, it is big news when a
new security bug is found. No other mainstream platform can make security guar-
antees nearly as strong as those Java makes. No one can say that Java security
holes will not be found in the future, but if Java’s security is not yet perfect, it has
been proven strong enough for practical day-to-day use and is certainly better
than any of the alternatives.

Network-Centric Programming

Sun’s corporate motto has always been “The network is the computer.” The
designers of the Java platform believed in the importance of networking and
designed the Java platform to be network-centric. From a programmer’s point of
view, Java makes it easy to work with resources across a network and to create
network-based applications using client/server or multitier architectures.

Dynamic, Extensible Programs

Java is both dynamic and extensible. Java code is organized in modular object-
oriented units called classes. Classes are stored in separate files and are loaded into
the Java interpreter only when needed. This means that an application can decide
as it is running what classes it needs and can load them when it needs them. It
also means that a program can dynamically extend itself by loading the classes it
needs to expand its functionality.

6 | Chapter 1: Introduction

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

The network-centric design of the Java platform means that a Java application can
dynamically extend itself by loading new classes over a network. An application that
takes advantage of these features ceases to be a monolithic block of code. Instead, it
becomes an interacting collection of independent software components. Thus, Java
enables a powerful new metaphor of application design and development.

Internationalization

The Java language and the Java platform were designed from the start with the
rest of the world in mind. When it was created, Java was the only commonly used
programming language that had internationalization features at its core rather
than tacked on as an afterthought. While most programming languages use 8-bit
characters that represent only the alphabets of English and Western European
languages, Java uses 16-bit Unicode characters that represent the phonetic alpha-
bets and ideographic character sets of the entire world. Java’s internationalization
features are not restricted to just low-level character representation, however. The
features permeate the Java platform, making it easier to write internationalized
programs with Java than it is with any other environment.

Performance

As described earlier, Java programs are compiled to a portable intermediate form
known as byte codes, rather than to native machine-language instructions. The
Java Virtual Machine runs a Java program by interpreting these portable byte-
code instructions. This architecture means that Java programs are faster than
programs or scripts written in purely interpreted languages, but Java programs are
typically slower than C and C++ programs compiled to native machine language.
Keep in mind, however, that although Java programs are compiled to byte code,
not all of the Java platform is implemented with interpreted byte codes. For effi-
ciency, computationally intensive portions of the Java platform—such as the
string-manipulation methods—are implemented using native machine code.

Although early releases of Java suffered from performance problems, the speed of
the Java VM has improved dramatically with each new release. The VM has been
highly tuned and optimized in many significant ways. Furthermore, most current
implementations include a just-in-time (JIT) compiler, which converts Java byte
codes to native machine instructions on the fly. Using sophisticated JIT compilers,
Java programs can execute at speeds comparable to the speeds of native C and
C++ applications.

Java is a portable, interpreted language; Java programs run almost as fast as
native, nonportable C and C++ programs. Performance used to be an issue that
made some programmers avoid using Java. With the improvements made in Java
1.2, 1.3, 1.4, and 5.0, performance issues should no longer keep anyone away.

Programmer Efficiency and Time-to-Market

The final, and perhaps most important, reason to use Java is that programmers like
it. Java is an elegant language combined with a powerful and (usually) well-designed
set of APIs. Programmers enjoy programming in Java and are often amazed at how

An Example Program | 7

Introduction

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

quickly they can get results with it. Because Java is a simple and elegant language
with a well-designed, intuitive set of APIs, programmers write better code with
fewer bugs than for other platforms, thus reducing development time.

An Example Program
Example 1-1 shows a Java program to compute factorials.* Note that the numbers
at the beginning of each line are not part of the program; they are there for ease of
reference when we dissect the program line-by-line.

Compiling and Running the Program

Before we look at how the program works, we must first discuss how to run it. In
order to compile and run the program, you need a Java development kit (JDK) of
some sort. Sun Microsystems created the Java language and ships a free JDK for its
Solaris operating system and also for Linux and Microsoft Windows platforms.† At
the time of this writing, the current version of Sun’s JDK is available for download
from http://java.sun.com. Be sure to get the JDK and not the Java Runtime Environ-
ment. The JRE enables you to run existing Java programs, but not to write and
compile your own.

* The factorial of an integer is the product of the number and all positive integers less than the num-
ber. So, for example, the factorial of 4, which is also written 4!, is 4 times 3 times 2 times 1, or 24.
By definition, 0! is 1.

Example 1-1. Factorial.java: a program to compute factorials

 1 /**
 2 * This program computes the factorial of a number
 3 */
 4 public class Factorial { // Define a class
 5 public static void main(String[] args) { // The program starts here
 6 int input = Integer.parseInt(args[0]); // Get the user's input
 7 double result = factorial(input); // Compute the factorial
 8 System.out.println(result); // Print out the result
 9 } // The main() method ends here
10
11 public static double factorial(int x) { // This method computes x!
12 if (x < 0) // Check for bad input
13 return 0.0; // If bad, return 0
14 double fact = 1.0; // Begin with an initial value
15 while(x > 1) { // Loop until x equals 1
16 fact = fact * x; // Multiply by x each time
17 x = x - 1; // And then decrement x
18 } // Jump back to start of loop
19 return fact; // Return the result
20 } // factorial() ends here
21 } // The class ends here

† Other companies, such as Apple, have licensed and ported the JDK to their operating systems. In
Apple’s case, this arrangement leads to a delay in the latest JDK being available on that platform.

8 | Chapter 1: Introduction

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

The Sun JDK is not the only Java programming environment you can use. gcj, for
example, is a Java compiler released under the GNU general public license. A
number of companies sell Java IDEs (integrated development environments), and
high-quality open-source IDEs are also available. This book assumes that you are
using Sun’s JDK and its accompanying command-line tools. If you are using a
product from some other vendor, be sure to read that vendor’s documentation to
learn how to compile and run a simple program, like that shown in Example 1-1.

Once you have a Java programming environment installed, the first step towards
running our program is to type it in. Using your favorite text editor, enter the
program as it is shown in Example 1-1.* Omit the line numbers, which are just for
reference. Note that Java is a case-sensitive language, so you must type lowercase
letters in lowercase and uppercase letters in uppercase. You’ll notice that many of
the lines of this program end with semicolons. It is a common mistake to forget
these characters, but the program won’t work without them, so be careful! You
can omit everything from // to the end of a line: those are comments that are there
for your benefit and are ignored by Java.

When writing Java programs, you should use a text editor that saves files in plain-
text format, not a word processor that supports fonts and formatting and saves
files in a proprietary format. My favorite text editor on Unix systems is Emacs. If
you use a Windows system, you might use Notepad or WordPad, if you don’t have
a more specialized programmer’s editor (versions of GNU Emacs, for example, are
available for Windows). If you are using an IDE, it should include an appropriate
text editor; read the documentation that came with the product. When you are
done entering the program, save it in a file named Factorial.java. This is impor-
tant; the program will not work if you save it by any other name.

After writing a program like this one, the next step is to compile it. With Sun’s
JDK, the Java compiler is known as javac. javac is a command-line tool, so you
can only use it from a terminal window, such as an MS-DOS window on a
Windows system or an xterm window on a Unix system. Compile the program by
typing the following command:

C:\> javac Factorial.java

If this command prints any error messages, you probably got something wrong
when you typed in the program. If it does not print any error messages, however,
the compilation has succeeded, and javac creates a file called Factorial.class. This
is the compiled version of the program.

Once you have compiled a Java program, you must still run it. Java programs are
not compiled into native machine language, so they cannot be executed directly
by the system. Instead, they are run by another program known as the Java inter-
preter. In Sun’s JDK, the interpreter is a command-line program named,
appropriately enough, java. To run the factorial program, type:

C:\> java Factorial 4

* I recommend that you type this example in by hand, to get a feel for the language. If you really
don’t want to, however, you can download this, and all examples in the book, from http://www.
oreilly.com/catalog/javanut5/.

An Example Program | 9

Introduction

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java is the command to run the Java interpreter, Factorial is the name of the Java
program we want the interpreter to run, and 4 is the input data—the number we
want the interpreter to compute the factorial of. The program prints a single line
of output, telling us that the factorial of 4 is 24:

C:\> java Factorial 4
24.0

Congratulations! You’ve just written, compiled, and run your first Java program.
Try running it again to compute the factorials of some other numbers.

Analyzing the Program

Now that you have run the factorial program, let’s analyze it line by line to see
what makes a Java program tick.

Comments

The first three lines of the program are a comment. Java ignores them, but they
tell a human programmer what the program does. A comment begins with the
characters /* and ends with the characters */. Any amount of text, including
multiple lines of text, may appear between these characters. Java also supports
another type of comment, which you can see in lines 4 through 21. If the charac-
ters // appear in a Java program, Java ignores those characters and any other text
that appears between those characters and the end of the line.

Defining a class

Line 4 is the first line of Java code. It says that we are defining a class named
Factorial. This explains why the program had to be stored in a file named Facto-
rial.java. That filename indicates that the file contains Java source code for a class
named Factorial. The word public is a modifier; it says that the class is publicly
available and that anyone may use it. The open curly-brace character ({) marks
the beginning of the body of the class, which extends all the way to line 21, where
we find the matching close curly-brace character (}). The program contains a
number of pairs of curly braces; the lines are indented to show the nesting within
these braces.

A class is the fundamental unit of program structure in Java, so it is not
surprising that the first line of our program declares a class. All Java programs
are classes, although some programs use many classes instead of just one. Java is
an object-oriented programming language, and classes are a fundamental part of
the object-oriented paradigm. Each class defines a unique kind of object.
Example 1-1 is not really an object-oriented program, however, so I’m not going
to go into detail about classes and objects here. That is the topic of Chapter 3.
For now, all you need to understand is that a class defines a set of interacting
members. Those members may be fields, methods, or other classes. The
Factorial class contains two members, both of which are methods. They are
described in upcoming sections.

10 | Chapter 1: Introduction

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Defining a method

Line 5 begins the definition of a method of our Factorial class. A method is a
named chunk of Java code. A Java program can call, or invoke, a method to
execute the code in it. If you have programmed in other languages, you have prob-
ably seen methods before, but they may have been called functions, procedures,
or subroutines. The interesting thing about methods is that they have parameters
and return values. When you call a method, you pass it some data you want it to
operate on, and it returns a result to you. A method is like an algebraic function:

y = f(x)

Here, the mathematical function f performs some computation on the value
represented by x and returns a value, which we represent by y.

To return to line 5, the public and static keywords are modifiers. public means
the method is publicly accessible; anyone can use it. The meaning of the static
modifier is not important here; it is explained in Chapter 3. The void keyword
specifies the return value of the method. In this case, it specifies that this method
does not have a return value.

The word main is the name of the method. main is a special name.* When you run
the Java interpreter, it reads in the class you specify, then looks for a method
named main().† When the interpreter finds this method, it starts running the
program at that method. When the main() method finishes, the program is done,
and the Java interpreter exits. In other words, the main() method is the main entry
point into a Java program. It is not actually sufficient for a method to be named
main(), however. The method must be declared public static void exactly as
shown in line 5. In fact, the only part of line 5 you can change is the word args,
which you can replace with any word you want. You’ll be using this line in all of
your Java programs, so go ahead and commit it to memory now!

Following the name of the main() method is a list of method parameters in paren-
theses. This main() method has only a single parameter. String[] specifies the
type of the parameter, which is an array of strings (i.e., a numbered list of strings
of text). args specifies the name of the parameter. In the algebraic equation f(x), x
is simply a way of referring to an unknown value. args serves the same purpose
for the main() method. As we’ll see, the name args is used in the body of the
method to refer to the unknown value that is passed to the method.

* All Java programs that are run directly by the Java interpreter must have a main() method. Pro-
grams of this sort are often called applications. It is possible to write programs that are not run
directly by the interpreter, but are dynamically loaded into some other already running Java pro-
gram. Examples are applets, which are programs run by a web browser, and servlets, which are
programs run by a web server. Applets are discussed in Java Foundation Classes in a Nutshell
(O’Reilly) while servlets are discussed in Java Enterprise in a Nutshell (O’Reilly). In this book, we
consider only applications.

† By convention, when this book refers to a method, it follows the name of the method by a pair of
parentheses. As you’ll see, parentheses are an important part of method syntax, and they serve
here to keep method names distinct from the names of classes, fields, variables, and so on.

An Example Program | 11

Introduction

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

As I’ve just explained, the main() method is a special one that is called by the Java
interpreter when it starts running a Java class (program). When you invoke the
Java interpreter like this:

C:\> java Factorial 4

the string “4” is passed to the main() method as the value of the parameter named
args. More precisely, an array of strings containing only one entry, 4, is passed to
main(). If we invoke the program like this:

C:\> java Factorial 4 3 2 1

then an array of four strings, 4, 3, 2, and 1, is passed to the main() method as the
value of the parameter named args. Our program looks only at the first string in
the array, so the other strings are ignored.

Finally, the last thing on line 5 is an open curly brace. This marks the beginning of
the body of the main() method, which continues until the matching close curly
brace on line 9. Methods are composed of statements, which the Java interpreter
executes in sequential order. In this case, lines 6, 7, and 8 are three statements
that compose the body of the main() method. Each statement ends with a semi-
colon to separate it from the next. This is an important part of Java syntax;
beginning programmers often forget the semicolons.

Declaring a variable and parsing input

The first statement of the main() method, line 6, declares a variable and assigns a
value to it. In any programming language, a variable is simply a symbolic name for
a value. We’ve already seen that, in this program, the name args refers to the
parameter value passed to the main() method. Method parameters are one type of
variable. It is also possible for methods to declare additional “local” variables.
Methods can use local variables to store and reference the intermediate values
they use while performing their computations.

This is exactly what we are doing on line 6. That line begins with the words int
input, which declare a variable named input and specify that the variable has the
type int; that is, it is an integer. Java can work with several different types of
values, including integers, real or floating-point numbers, characters (e.g., letters
and digits), and strings of text. Java is a strongly typed language, which means that
all variables must have a type specified and can refer only to values of that type.
Our input variable always refers to an integer, so it cannot refer to a floating-point
number or a string. Method parameters are also typed. Recall that the args param-
eter had a type of String[].

Continuing with line 6, the variable declaration int input is followed by the =
character. This is the assignment operator in Java; it sets the value of a variable.
When reading Java code, don’t read = as “equals,” but instead read it as “is
assigned the value.” As we’ll see in Chapter 2, there is a different operator for
“equals.”

The value assigned to our input variable is Integer.parseInt(args[0]). This is a
method invocation. This first statement of the main() method invokes another
method whose name is Integer.parseInt(). As you might guess, this method
“parses” an integer; that is, it converts a string representation of an integer, such

12 | Chapter 1: Introduction

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

as 4, to the integer itself. The Integer.parseInt() method is not part of the Java
language, but it is a core part of the Java API or Application Programming Inter-
face. Every Java program can use the powerful set of classes and methods defined
by this core API. The second half of this book is a quick reference that documents
that core API.

When you call a method, you pass values (called arguments) that are assigned to
the corresponding parameters defined by the method, and the method returns a
value. The argument passed to Integer.parseInt() is args[0]. Recall that args is
the name of the parameter for main(); it specifies an array (or list) of strings. The
elements of an array are numbered sequentially, and the first one is always
numbered 0. We care about only the first string in the args array, so we use the
expression args[0] to refer to that string. When we invoke the program as shown
earlier, line 6 takes the first string specified after the name of the class, 4, and
passes it to the method named Integer.parseInt(). This method converts the
string to the corresponding integer and returns the integer as its return value.
Finally, this returned integer is assigned to the variable named input.

Computing the result

The statement on line 7 is a lot like the statement on line 6. It declares a variable
and assigns a value to it. The value assigned to the variable is computed by
invoking a method. The variable is named result, and it has a type of double.
double means a double-precision floating-point number. The variable is assigned a
value that is computed by the factorial() method. The factorial() method,
however, is not part of the standard Java API. Instead, it is defined as part of our
program by lines 11 through 19. The argument passed to factorial() is the value
referred to by the input variable that was computed on line 6. We’ll consider the
body of the factorial() method shortly, but you can surmise from its name that
this method takes an input value, computes the factorial of that value, and returns
the result.

Displaying output

Line 8 simply calls a method named System.out.println(). This commonly used
method is part of the core Java API; it causes the Java interpreter to print out a
value. In this case, the value that it prints is the value referred to by the variable
named result. This is the result of our factorial computation. If the input variable
holds the value 4, the result variable holds the value 24, and this line prints out
that value.

The System.out.println() method does not have a return value. There is no vari-
able declaration or = assignment operator in this statement since there is no value
to assign to anything. Another way to say this is that, like the main() method of
line 5, System.out.println() is declared void.

The end of a method

Line 9 contains only a single character, }. This marks the end of the method.
When the Java interpreter gets here, it is through executing the main() method, so
it stops running. The end of the main() method is also the end of the variable

An Example Program | 13

Introduction

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

scope for the input and result variables declared within main() and for the args
parameter of main(). These variable and parameter names have meaning only
within the main() method and cannot be used elsewhere in the program unless
other parts of the program declare different variables or parameters that happen
to have the same name.

Blank lines

Line 10 is a blank line. You can insert blank lines and spaces anywhere in a
program, and you should use them liberally to make the program readable. A
blank line appears here to separate the main() method from the factorial()
method that begins on line 11. You’ll notice that the program also uses
whitespace to indent the various lines of code. This kind of indentation is
optional; it emphasizes the structure of the program and greatly enhances the
readability of the code.

Another method

Line 11 begins the definition of the factorial() method that was used by the
main() method. Compare this line to line 5 to note its similarities and differences.
The factorial() method has the same public and static modifiers. It takes a
single integer parameter, which we call x. Unlike the main() method, which had
no return value (void), factorial() returns a value of type double. The open curly
brace marks the beginning of the method body, which continues past the nested
braces on lines 15 and 18 to line 20, where the matching close curly brace is
found. The body of the factorial() method, like the body of the main() method,
is composed of statements, which are found on lines 12 through 19.

Checking for valid input

In the main() method, we saw variable declarations, assignments, and method
invocations. The statement on line 12 is different. It is an if statement, which
executes another statement conditionally. We saw earlier that the Java interpreter
executes the three statements of the main() method one after another. It always
executes them in exactly that way, in exactly that order. An if statement is a flow-
control statement; it can affect the way the interpreter runs a program.

The if keyword is followed by a parenthesized expression and a statement. The Java
interpreter first evaluates the expression. If it is true, the interpreter executes the
statement. If the expression is false, however, the interpreter skips the statement
and goes to the next one. The condition for the if statement on line 12 is x < 0. It
checks whether the value passed to the factorial() method is less than zero. If it is,
this expression is true, and the statement on line 13 is executed. Line 12 does not
end with a semicolon because the statement on line 13 is part of the if statement.
Semicolons are required only at the end of a statement.

Line 13 is a return statement. It says that the return value of the factorial()
method is 0.0. return is also a flow-control statement. When the Java interpreter
sees a return, it stops executing the current method and returns the specified
value immediately. A return statement can stand alone, but in this case, the
return statement is part of the if statement on line 12. The indentation of line 13

14 | Chapter 1: Introduction

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

helps emphasize this fact. (Java ignores this indentation, but it is very helpful for
humans who read Java code!) Line 13 is executed only if the expression on line 12
is true.

Before we move on, we should pull back a bit and talk about why lines 12 and 13
are necessary in the first place. It is an error to try to compute a factorial for a
negative number, so these lines make sure that the input value x is valid. If it is not
valid, they cause factorial() to return a consistent invalid result, 0.0.

An important variable

Line 14 is another variable declaration; it declares a variable named fact of type
double and assigns it an initial value of 1.0. This variable holds the value of the
factorial as we compute it in the statements that follow. In Java, variables can be
declared anywhere; they are not restricted to the beginning of a method or block
of code.

Looping and computing the factorial

Line 15 introduces another type of statement: the while loop. Like an if state-
ment, a while statement consists of a parenthesized expression and a statement.
When the Java interpreter sees a while statement, it evaluates the associated
expression. If that expression is true, the interpreter executes the statement. The
interpreter repeats this process, evaluating the expression and executing the state-
ment if the expression is true, until the expression evaluates to false. The
expression on line 15 is x > 1, so the while statement loops while the parameter x
holds a value that is greater than 1. Another way to say this is that the loop
continues until x holds a value less than or equal to 1. We can assume from this
expression that if the loop is ever going to terminate, the value of x must somehow
be modified by the statement that the loop executes.

The major difference between the if statement on lines 12–13 and the while loop
on lines 15–18 is that the statement associated with the while loop is a compound
statement. A compound statement is zero or more statements grouped between
curly braces. The while keyword on line 15 is followed by an expression in paren-
theses and then by an open curly brace. This means that the body of the loop
consists of all statements between that opening brace and the closing brace on line
18. Earlier in the chapter, I said that all Java statements end with semicolons. This
rule does not apply to compound statements, however, as you can see by the lack
of a semicolon at the end of line 18. The statements inside the compound state-
ment (lines 16 and 17) do end with semicolons, of course.

The body of the while loop consists of the statements on line 16 and 17. Line 16
multiplies the value of fact by the value of x and stores the result back into fact.
Line 17 is similar. It subtracts 1 from the value of x and stores the result back into
x. The * character on line 16 is important: it is the multiplication operator. And, as
you can probably guess, the – on line 17 is the subtraction operator. An operator
is a key part of Java syntax: it performs a computation on one or two operands to
produce a new value. Operands and operators combine to form expressions, such
as fact * x or x – 1. We’ve seen other operators in the program. Line 15, for
example, uses the greater-than operator (>) in the expression x > 1, which

An Example Program | 15

Introduction

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

compares the value of the variable x to 1. The value of this expression is a boolean
truth value—either true or false, depending on the result of the comparison.

To understand this while loop, it is helpful to think like the Java interpreter.
Suppose we are trying to compute the factorial of 4. Before the loop starts, fact is
1.0, and x is 4. After the body of the loop has been executed once—after the first
iteration—fact is 4.0, and x is 3. After the second iteration, fact is 12.0, and x is 2.
After the third iteration, fact is 24.0, and x is 1. When the interpreter tests the
loop condition after the third iteration, it finds that x > 1 is no longer true, so it
stops running the loop, and the program resumes at line 19.

Returning the result

Line 19 is another return statement, like the one we saw on line 13. This one does
not return a constant value like 0.0, but instead returns the value of the fact vari-
able. If the value of x passed into the factorial() function is 4, then, as we saw
earlier, the value of fact is 24.0, so this is the value returned. Recall that the
factorial() method was invoked on line 7 of the program. When this return
statement is executed, control returns to line 7, where the return value is assigned
to the variable named result.

Exceptions

If you’ve made it all the way through the line-by-line analysis of Example 1-1, you
are well on your way to understanding the basics of the Java language.* It is a
simple but nontrivial program that illustrates many of the features of Java. There
is one more important feature of Java programming I want to introduce, but it is
one that does not appear in the program listing itself. Recall that the program
computes the factorial of the number you specify on the command line. What
happens if you run the program without specifying a number?

C:\> java Factorial
java.lang.ArrayIndexOutOfBoundsException: 0
 at Factorial.main(Factorial.java:6)
C:\>

And what happens if you specify a value that is not a number?

C:\> java Factorial ten
java.lang.NumberFormatException: ten
 at java.lang.Integer.parseInt(Integer.java)
 at java.lang.Integer.parseInt(Integer.java)
 at Factorial.main(Factorial.java:6)
C:\>

* If you didn’t understand all the details of this factorial program, don’t worry. We’ll cover the de-
tails of the Java language a lot more thoroughly in subsequent chapters. However, if you feel like
you didn’t understand any of the line-by-line analysis, you may also find that the upcoming chap-
ters are over your head. In that case, you should probably go elsewhere to learn the basics of the
Java language and return to this book to solidify your understanding, and, of course, to use as a
reference. One resource you may find useful in learning the language is Sun’s online Java tutorial,
available at http://java.sun.com/docs/books/tutorial.

16 | Chapter 1: Introduction

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

In both cases, an error occurs or, in Java terminology, an exception is thrown.
When an exception is thrown, the Java interpreter prints a message that explains
what type of exception it was and where it occurred (both exceptions above
occurred on line 6). In the first case, the exception is thrown because there are no
strings in the args list, meaning we asked for a nonexistent string with args[0]. In
the second case, the exception is thrown because Integer.parseInt() cannot
convert the string “ten” to a number. We’ll see more about exceptions in
Chapter 2 and learn how to handle them gracefully as they occur.

17

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Chapter 2Java Syntax

2
Java Syntax from the Ground Up

This chapter is a terse but comprehensive introduction to Java syntax. It is written
primarily for readers who are new to the language but have at least some previous
programming experience. Determined novices with no prior programming experi-
ence may also find it useful. If you already know Java, you should find it a useful
language reference. The chapter includes comparisons of Java to C and C++ for
the benefit of programmers coming from those languages.

This chapter documents the syntax of Java programs by starting at the very lowest
level of Java syntax and building from there, covering increasingly higher orders of
structure. It covers:

• The characters used to write Java programs and the encoding of those
characters.

• Literal values, identifiers, and other tokens that comprise a Java program.

• The data types that Java can manipulate.

• The operators used in Java to group individual tokens into larger expressions.

• Statements, which group expressions and other statements to form logical
chunks of Java code.

• Methods (also called functions, procedures, or subroutines), which are
named collections of Java statements that can be invoked by other Java code.

• Classes, which are collections of methods and fields. Classes are the central
program element in Java and form the basis for object-oriented program-
ming. Chapter 3 is devoted entirely to a discussion of classes and objects.

• Packages, which are collections of related classes.

• Java programs, which consist of one or more interacting classes that may be
drawn from one or more packages.

The syntax of most programming languages is complex, and Java is no exception.
In general, it is not possible to document all elements of a language without refer-
ring to other elements that have not yet been discussed. For example, it is not

18 | Chapter 2: Java Syntax from the Ground Up

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

really possible to explain in a meaningful way the operators and statements
supported by Java without referring to objects. But it is also not possible to docu-
ment objects thoroughly without referring to the operators and statements of the
language. The process of learning Java, or any language, is therefore an iterative
one. If you are new to Java (or a Java-style programming language), you may find
that you benefit greatly from working through this chapter and the next twice, so
that you can grasp the interrelated concepts.

Java Programs from the Top Down
Before we begin our bottom-up exploration of Java syntax, let’s take a moment
for a top-down overview of a Java program. Java programs consist of one or more
files, or compilation units, of Java source code. Near the end of the chapter, we
describe the structure of a Java file and explain how to compile and run a Java
program. Each compilation unit begins with an optional package declaration
followed by zero or more import declarations. These declarations specify the
namespace within which the compilation unit will define names, and the
namespaces from which the compilation unit imports names. We’ll see package
and import again in “Packages and the Java Namespace” later in this chapter.

The optional package and import declarations are followed by zero or more refer-
ence type definitions. These are typically class or interface definitions, but in
Java 5.0 and later, they can also be enum definitions or annotation definitions. The
general features of reference types are covered later in this chapter, and detailed
coverage of the various kinds of reference types is in Chapters 3 and 4.

Type definitions include members such as fields, methods, and constructors.
Methods are the most important type member. Methods are blocks of Java code
comprised of statements. Most statements include expressions, which are built
using operators and values known as primitive data types. Finally, the keywords
used to write statements, the punctuation characters that represent operators, and
the literals values that appear in a program are all tokens, which are described
next. As the name of this section implies, this chapter moves from describing the
smallest units, tokens, to progressively larger units. Since the concepts build upon
one another, we recommend reading this chapter sequentially.

Lexical Structure
This section explains the lexical structure of a Java program. It starts with a
discussion of the Unicode character set in which Java programs are written . It
then covers the tokens that comprise a Java program, explaining comments, iden-
tifiers, reserved words, literals, and so on.

The Unicode Character Set

Java programs are written using Unicode. You can use Unicode characters
anywhere in a Java program, including comments and identifiers such as variable
names. Unlike the 7-bit ASCII character set, which is useful only for English, and
the 8-bit ISO Latin-1 character set, which is useful only for major Western Euro-
pean languages, the Unicode character set can represent virtually every written

Lexical Structure | 19

Java Syntax

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

language in common use on the planet. 16-bit Unicode characters are typically
written to files using an encoding known as UTF-8, which converts the 16-bit
characters into a stream of bytes. The format is designed so that plain ASCII text
(and the 7-bit characters of Latin-1) are valid UTF-8 byte streams. Thus, you can
simply write plain ASCII programs, and they will work as valid Unicode.

If you do not use a Unicode-enabled text editor, or if you do not want to force
other programmers who view or edit your code to use a Unicode-enabled editor,
you can embed Unicode characters into your Java programs using the special
Unicode escape sequence \uxxxx, in other words, a backslash and a lowercase u,
followed by four hexadecimal characters. For example, \u0020 is the space char-
acter, and \u03c0 is the character π.

Unicode 3.1 and above, used in Java 5.0 and later, includes “supplementary charac-
ters” that require 21 bits to represent. 16-bit encodings of Unicode characters
represent these supplementary characters using a surrogate pair, which is a sequence
of two 16-bit characters taken from a special reserved range of the 16-bit encoding
space. If you ever need to include one of these (rarely used) supplementary charac-
ters in Java source code, use two \u sequences to represent the surrogate pair.
(Details of surrogate pair encoding are beyond the scope of this book, however.)

Case-Sensitivity and Whitespace

Java is a case-sensitive language. Its keywords are written in lowercase and must
always be used that way. That is, While and WHILE are not the same as the while
keyword. Similarly, if you declare a variable named i in your program, you may
not refer to it as I.

Java ignores spaces, tabs, newlines, and other whitespace, except when it appears
within quoted characters and string literals. Programmers typically use whitespace
to format and indent their code for easy readability, and you will see common
indentation conventions in the code examples of this book.

Comments

Comments are natural-language text intended for human readers of a program.
They are ignored by the Java compiler. Java supports three types of comments.
The first type is a single-line comment, which begins with the characters // and
continues until the end of the current line. For example:

int i = 0; // Initialize the loop variable

The second kind of comment is a multiline comment. It begins with the characters /
* and continues, over any number of lines, until the characters */. Any text between
the /* and the */ is ignored by the Java compiler. Although this style of comment is
typically used for multiline comments, it can also be used for single-line comments.
This type of comment cannot be nested (i.e., one /* */ comment cannot appear
within another). When writing multiline comments, programmers often use extra *
characters to make the comments stand out. Here is a typical multiline comment:

/*
 * First, establish a connection to the server.
 * If the connection attempt fails, quit right away.
 */

20 | Chapter 2: Java Syntax from the Ground Up

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

The third type of comment is a special case of the second. If a comment begins
with /**, it is regarded as a special doc comment. Like regular multiline comments,
doc comments end with */ and cannot be nested. When you write a Java class you
expect other programmers to use, use doc comments to embed documentation
about the class and each of its methods directly into the source code. A program
named javadoc extracts these comments and processes them to create online
documentation for your class. A doc comment can contain HTML tags and can
use additional syntax understood by javadoc. For example:

/**
 * Upload a file to a web server.
 *
 * @param file The file to upload.
 * @return <tt>true</tt> on success,
 * <tt>false</tt> on failure.
 * @author David Flanagan
 */

See Chapter 7 for more information on the doc comment syntax and Chapter 8
for more information on the javadoc program.

Comments may appear between any tokens of a Java program, but may not
appear within a token. In particular, comments may not appear within double-
quoted string literals. A comment within a string literal simply becomes a literal
part of that string.

Reserved Words

The following words are reserved in Java: they are part of the syntax of the
language and may not be used to name variables, classes, and so forth.

abstract const final int public throw
assert continue finally interface return throws
boolean default float long short transient
break do for native static true
byte double goto new strictfp try
case else if null super void
catch enum implements package switch volatile
char extends import private synchronized while
class false instanceof protected this

We’ll meet each of these reserved words again later in this book. Some of them
are the names of primitive types and others are the names of Java statements, both
of which are discussed later in this chapter. Still others are used to define classes
and their members (see Chapter 3).

Note that const and goto are reserved but aren’t actually used in the language.
strictfp was added in Java 1.2, assert was added in Java 1.4, and enum was added
in Java 5.0.

Identifiers

An identifier is simply a name given to some part of a Java program, such as a
class, a method within a class, or a variable declared within a method. Identifiers

Primitive Data Types | 21

Java Syntax

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

may be of any length and may contain letters and digits drawn from the entire
Unicode character set. An identifier may not begin with a digit, however, because
the compiler would then think it was a numeric literal rather than an identifier.

In general, identifiers may not contain punctuation characters. Exceptions
include the ASCII underscore (_) and dollar sign ($) as well as other Unicode
currency symbols such as £ and ¥. Currency symbols are intended for use in
automatically generated source code, such as code produced by parser genera-
tors. By avoiding the use of currency symbols in your own identifiers you don’t
have to worry about collisions with automatically generated identifiers.
Formally, the characters allowed at the beginning of and within an identifier are
defined by the methods isJavaIdentifierStart() and isJavaIdentifierPart() of
the class java.lang.Character.

The following are examples of legal identifiers:

i x1 theCurrentTime the_current_time θ

Literals

Literals are values that appear directly in Java source code. They include integer
and floating-point numbers, characters within single quotes, strings of characters
within double quotes, and the reserved words true, false and null. For example,
the following are all literals:

1 1.0 '1' "one" true false null

The syntax for expressing numeric, character, and string literals is detailed in
“Primitive Data Types” later in this chapter.

Punctuation

Java also uses a number of punctuation characters as tokens. The Java Language
Specification divides these characters (somewhat arbitrarily) into two categories,
separators and operators. Separators are:

() { } [] < > : ; , . @

Operators are:

+ - * / % & | ^ << >> >>>
+= -= *= /= %= &= |= ^= <<= >>= >>>=
= == != < <= > >=
! ~ && || ++ -- ? :

We’ll see separators throughout the book, and will cover each operator individu-
ally in “Expressions and Operators” later in this chapter.

Primitive Data Types
Java supports eight basic data types known as primitive types as described in
Table 2-1. The primitive types include a boolean type, a character type, four integer
types, and two floating-point types. The four integer types and the two floating-
point types differ in the number of bits that represent them and therefore in the

22 | Chapter 2: Java Syntax from the Ground Up

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

range of numbers they can represent. The next section summarizes these primitive
data types. In addition to these primitive types, Java supports nonprimitive data
types such as classes, interfaces, and arrays. These composite types are known as
reference types, which are introduced in “Reference Types” later in this chapter.

The boolean Type

The boolean type represents truth values. This type has only two possible values,
representing the two boolean states: on or off, yes or no, true or false. Java
reserves the words true and false to represent these two boolean values.

C and C++ programmers should note that Java is quite strict about its boolean type:
boolean values can never be converted to or from other data types. In particular, a
boolean is not an integral type, and integer values cannot be used in place of a
boolean. In other words, you cannot take shortcuts such as the following in Java:

if (o) {
 while(i) {
 }
}

Instead, Java forces you to write cleaner code by explicitly stating the compari-
sons you want:

if (o != null) {
 while(i != 0) {
 }
}

The char Type

The char type represents Unicode characters. It surprises many experienced
programmers to learn that Java char values are 16 bits long, but in practice this
fact is totally transparent. To include a character literal in a Java program, simply
place it between single quotes (apostrophes):

char c = 'A';

Table 2-1. Java primitive data types

Type Contains Default Size Range

boolean true or false false 1 bit NA

char Unicode character \u0000 16 bits \u0000 to \uFFFF

byte Signed integer 0 8 bits –128 to 127

short Signed integer 0 16 bits –32768 to 32767

int Signed integer 0 32 bits –2147483648 to 2147483647

long Signed integer 0 64 bits –9223372036854775808 to
9223372036854775807

float IEEE 754 floating point 0.0 32 bits ±1.4E-45 to ±3.4028235E+38

double IEEE 754 floating point 0.0 64 bits ±4.9E-324 to ±1.7976931348623157E+308

Primitive Data Types | 23

Java Syntax

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

You can, of course, use any Unicode character as a character literal, and you can
use the \u Unicode escape sequence. In addition, Java supports a number of other
escape sequences that make it easy both to represent commonly used nonprinting
ASCII characters such as newline and to escape certain punctuation characters
that have special meaning in Java. For example:

char tab = '\t', apostrophe = '\'', nul = '\000', aleph='\u05D0';

Table 2-2 lists the escape characters that can be used in char literals. These char-
acters can also be used in string literals, which are covered in the next section.

char values can be converted to and from the various integral types. Unlike byte,
short, int, and long, however, char is an unsigned type. The Character class
defines a number of useful static methods for working with characters, including
isDigit(), isJavaLetter(), isLowerCase(), and toUpperCase().

The Java language and its char type were designed with Unicode in mind. The
Unicode standard is evolving, however, and each new version of Java adopts the
latest version of Unicode. Java 1.4 used Unicode 3.0 and Java 5.0 adopts Unicode
4.0. This is significant because Unicode 3.1 was the first release to include charac-
ters whose encodings, or codepoints, do not fit in 16 bits. These supplementary
characters, which are mostly infrequently used Han (Chinese) ideographs, occupy
21 bits and cannot be represented in a single char value. Instead, you must use an
int value to hold the codepoint of a supplementary character, or you must encode
it into a so-called “surrogate pair” of two char values. Unless you commonly write
programs that use Asian languages, you are unlikely to encounter any supplemen-
tary characters. If you do anticipate having to process characters that do not fit
into a char, Java 5.0 has added methods to the Character, String, and related
classes for working with text using int codepoints.

Table 2-2. Java escape characters

Escape sequence Character value

\b Backspace

\t Horizontal tab

\n Newline

\f Form feed

\r Carriage return

\" Double quote

\' Single quote

\\ Backslash

\xxx The Latin-1 character with the encoding xxx, where xxx is an octal (base 8) number between
000 and 377. The forms \x and \xx are also legal, as in '\0', but are not recommended
because they can cause difficulties in string constants where the escape sequence is followed by
a regular digit.

\uxxxx The Unicode character with encoding xxxx, where xxxx is four hexadecimal digits. Unicode
escapes can appear anywhere in a Java program, not only in character and string literals.

24 | Chapter 2: Java Syntax from the Ground Up

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Strings

In addition to the char type, Java also has a data type for working with strings of
text (usually simply called strings). The String type is a class, however, and is not
one of the primitive types of the language. Because strings are so commonly used,
though, Java does have a syntax for including string values literally in a program.
A String literal consists of arbitrary text within double quotes. For example:

"Hello, world"
"'This' is a string!"

String literals can contain any of the escape sequences that can appear as char
literals (see Table 2-2). Use the \" sequence to include a double-quote within a
String literal. Since String is a reference type, string literals are described in more
detail in “Object Literals” later in this chapter. Chapter 5 demonstrates some of
the ways you can work with String objects in Java.

Integer Types

The integer types in Java are byte, short, int, and long. As shown in Table 2-1,
these four types differ only in the number of bits and, therefore, in the range of
numbers each type can represent. All integral types represent signed numbers;
there is no unsigned keyword as there is in C and C++.

Literals for each of these types are written exactly as you would expect: as a string
of decimal digits, optionally preceded by a minus sign.* Here are some legal
integer literals:

0
1
123
-42000

Integer literals can also be expressed in hexadecimal or octal notation. A literal
that begins with 0x or 0X is taken as a hexadecimal number, using the letters A to F
(or a to f) as the additional digits required for base-16 numbers. Integer literals
beginning with a leading 0 are taken to be octal (base-8) numbers and cannot
include the digits 8 or 9. Java does not allow integer literals to be expressed in
binary (base-2) notation. Legal hexadecimal and octal literals include:

0xff // Decimal 255, expressed in hexadecimal
0377 // The same number, expressed in octal (base 8)
0xCAFEBABE // A magic number used to identify Java class files

* Technically, the minus sign is an operator that operates on the literal, but is not part of the literal
itself. Also, all integer literals are 32-bit int values unless followed by the letter L, in which case
they are 64-bit long values. There is no special syntax for byte and short literals, but int literals
are usually converted to these shorter types as needed. For example, in the following code

byte b = 123;

123 is a 32-bit int literal that is automatically converted (without requiring a cast) to a byte in the
assignment statement.

Primitive Data Types | 25

Java Syntax

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Integer literals are 32-bit int values unless they end with the character L or l, in
which case they are 64-bit long values:

1234 // An int value
1234L // A long value
0xffL // Another long value

Integer arithmetic in Java is modular, which means that it never produces an over-
flow or an underflow when you exceed the range of a given integer type. Instead,
numbers just wrap around. For example:

byte b1 = 127, b2 = 1; // Largest byte is 127
byte sum = (byte)(b1 + b2); // Sum wraps to -128, which is the smallest byte

Neither the Java compiler nor the Java interpreter warns you in any way when this
occurs. When doing integer arithmetic, you simply must ensure that the type you
are using has a sufficient range for the purposes you intend. Integer division by zero
and modulo by zero are illegal and cause an ArithmeticException to be thrown.

Each integer type has a corresponding wrapper class: Byte, Short, Integer, and
Long. Each of these classes defines MIN_VALUE and MAX_VALUE constants that describe
the range of the type. The classes also define useful static methods, such as Byte.
parseByte() and Integer.parseInt(), for converting strings to integer values.

Floating-Point Types

Real numbers in Java are represented by the float and double data types. As
shown in Table 2-1, float is a 32-bit, single-precision floating-point value, and
double is a 64-bit, double-precision floating-point value. Both types adhere to the
IEEE 754-1985 standard, which specifies both the format of the numbers and the
behavior of arithmetic for the numbers.

Floating-point values can be included literally in a Java program as an optional
string of digits, followed by a decimal point and another string of digits. Here are
some examples:

123.45
0.0
.01

Floating-point literals can also use exponential, or scientific, notation, in which a
number is followed by the letter e or E (for exponent) and another number. This
second number represents the power of ten by which the first number is multi-
plied. For example:

1.2345E02 // 1.2345 × 102, or 123.45
1e-6 // 1 × 10-6, or 0.000001
6.02e23 // Avogadro's Number: 6.02 × 1023

Floating-point literals are double values by default. To include a float value liter-
ally in a program, follow the number with f or F:

double d = 6.02E23;
float f = 6.02e23f;

Floating-point literals cannot be expressed in hexadecimal or octal notation.

26 | Chapter 2: Java Syntax from the Ground Up

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Most real numbers, by their very nature, cannot be represented exactly in any finite
number of bits. Thus, it is important to remember that float and double values are
only approximations of the numbers they are meant to represent. A float is a 32-bit
approximation, which results in at least 6 significant decimal digits, and a double is
a 64-bit approximation, which results in at least 15 significant digits. In practice,
these data types are suitable for most real-number computations.

In addition to representing ordinary numbers, the float and double types can also
represent four special values: positive and negative infinity, zero, and NaN. The
infinity values result when a floating-point computation produces a value that over-
flows the representable range of a float or double. When a floating-point
computation underflows the representable range of a float or a double, a zero value
results. The Java floating-point types make a distinction between positive zero and
negative zero, depending on the direction from which the underflow occurred. In
practice, positive and negative zero behave pretty much the same. Finally, the last
special floating-point value is NaN, which stands for “not-a-number.” The NaN
value results when an illegal floating-point operation, such as 0.0/0.0, is performed.
Here are examples of statements that result in these special values:

double inf = 1.0/0.0; // Infinity
double neginf = -1.0/0.0; // -Infinity
double negzero = -1.0/inf; // Negative zero
double NaN = 0.0/0.0; // Not-a-Number

Because the Java floating-point types can handle overflow to infinity and under-
flow to zero and have a special NaN value, floating-point arithmetic never throws
exceptions, even when performing illegal operations, like dividing zero by zero or
taking the square root of a negative number.

The float and double primitive types have corresponding classes, named Float and
Double. Each of these classes defines the following useful constants: MIN_VALUE,
MAX_VALUE, NEGATIVE_INFINITY, POSITIVE_INFINITY, and NaN.

The infinite floating-point values behave as you would expect. Adding or
subtracting any finite value to or from infinity, for example, yields infinity. Nega-
tive zero behaves almost identically to positive zero, and, in fact, the = = equality
operator reports that negative zero is equal to positive zero. One way to distin-
guish negative zero from positive, or regular, zero is to divide by it. 1.0/0.0 yields
positive infinity, but 1.0 divided by negative zero yields negative infinity. Finally,
since NaN is not-a-number, the = = operator says that it is not equal to any other
number, including itself! To check whether a float or double value is NaN, you
must use the Float.isNaN() and Double.isNaN() methods.

Primitive Type Conversions

Java allows conversions between integer values and floating-point values. In addi-
tion, because every character corresponds to a number in the Unicode encoding,
char values can be converted to and from the integer and floating-point types. In
fact, boolean is the only primitive type that cannot be converted to or from
another primitive type in Java.

There are two basic types of conversions. A widening conversion occurs when a
value of one type is converted to a wider type—one that has a larger range of legal

Primitive Data Types | 27

Java Syntax

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

values. Java performs widening conversions automatically when, for example, you
assign an int literal to a double variable or a char literal to an int variable.

Narrowing conversions are another matter, however. A narrowing conversion
occurs when a value is converted to a type that is not wider than it is. Narrowing
conversions are not always safe: it is reasonable to convert the integer value 13 to
a byte, for example, but it is not reasonable to convert 13000 to a byte since byte
can hold only numbers between –128 and 127. Because you can lose data in a
narrowing conversion, the Java compiler complains when you attempt any
narrowing conversion, even if the value being converted would in fact fit in the
narrower range of the specified type:

int i = 13;
byte b = i; // The compiler does not allow this

The one exception to this rule is that you can assign an integer literal (an int
value) to a byte or short variable if the literal falls within the range of the variable.

If you need to perform a narrowing conversion and are confident you can do so
without losing data or precision, you can force Java to perform the conversion
using a language construct known as a cast. Perform a cast by placing the name of
the desired type in parentheses before the value to be converted. For example:

int i = 13;
byte b = (byte) i; // Force the int to be converted to a byte
i = (int) 13.456; // Force this double literal to the int 13

Casts of primitive types are most often used to convert floating-point values to
integers. When you do this, the fractional part of the floating-point value is simply
truncated (i.e., the floating-point value is rounded towards zero, not towards the
nearest integer). The methods Math.round(), Math.floor(), and Math.ceil()
perform other types of rounding.

The char type acts like an integer type in most ways, so a char value can be used
anywhere an int or long value is required. Recall, however, that the char type is
unsigned, so it behaves differently than the short type, even though both are 16
bits wide:

short s = (short) 0xffff; // These bits represent the number -1
char c = '\uffff'; // The same bits, representing a Unicode character
int i1 = s; // Converting the short to an int yields -1
int i2 = c; // Converting the char to an int yields 65535

Table 2-3 shows which primitive types can be converted to which other types and
how the conversion is performed. The letter N in the table means that the conver-
sion cannot be performed. The letter Y means that the conversion is a widening
conversion and is therefore performed automatically and implicitly by Java. The
letter C means that the conversion is a narrowing conversion and requires an
explicit cast. Finally, the notation Y* means that the conversion is an automatic
widening conversion, but that some of the least significant digits of the value may
be lost in the conversion. This can happen when converting an int or long to a
float or double. The floating-point types have a larger range than the integer
types, so any int or long can be represented by a float or double. However, the
floating-point types are approximations of numbers and cannot always hold as
many significant digits as the integer types.

28 | Chapter 2: Java Syntax from the Ground Up

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Expressions and Operators
So far in this chapter, we’ve learned about the primitive types that Java programs can
manipulate and seen how to include primitive values as literals in a Java program.
We’ve also used variables as symbolic names that represent, or hold, values. These
literals and variables are the tokens out of which Java programs are built.

An expression is the next higher level of structure in a Java program. The Java
interpreter evaluates an expression to compute its value. The very simplest expres-
sions are called primary expressions and consist of literals and variables. So, for
example, the following are all expressions:

1.7 // A floating-point literal
true // A boolean literal
sum // A variable

When the Java interpreter evaluates a literal expression, the resulting value is the
literal itself. When the interpreter evaluates a variable expression, the resulting
value is the value stored in the variable.

Primary expressions are not very interesting. More complex expressions are made
by using operators to combine primary expressions. For example, the following
expression uses the assignment operator to combine two primary expressions—a
variable and a floating-point literal—into an assignment expression:

sum = 1.7

But operators are used not only with primary expressions; they can also be used
with expressions at any level of complexity. The following are all legal
expressions:

sum = 1 + 2 + 3*1.2 + (4 + 8)/3.0
sum/Math.sqrt(3.0 * 1.234)
(int)(sum + 33)

Operator Summary

The kinds of expressions you can write in a programming language depend entirely
on the set of operators available to you. Table 2-4 summarizes the operators avail-

Table 2-3. Java primitive type conversions

Convert Convert to:

from: boolean byte short char int long float double

boolean – N N N N N N N

byte N – Y C Y Y Y Y

short N C – C Y Y Y Y

char N C C – Y Y Y Y

int N C C C – Y Y* Y

long N C C C C – Y* Y*

float N C C C C C – Y

double N C C C C C C –

Expressions and Operators | 29

Java Syntax

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

able in Java. The P and A columns of the table specify the precedence and
associativity of each group of related operators, respectively. These concepts—and
the operators themselves—are explained in more detail in the following sections.

Table 2-4. Java operators

P A Operator Operand type(s) Operation performed

15 L . object, member object member access

[] array, int array element access

(args) method, arglist method invocation

++, -- variable post-increment, decrement

14 R ++, -- variable pre-increment, decrement

+, - number unary plus, unary minus

~ integer bitwise complement

! boolean boolean NOT

13 R new class, arglist object creation

(type) type, any cast (type conversion)

12 L *, /, % number, number multiplication, division, remainder

11 L +, - number, number addition, subtraction

+ string, any string concatenation

10 L << integer, integer left shift

>> integer, integer right shift with sign extension

>>> integer, integer right shift with zero extension

9 L <, <= number, number less than, less than or equal

>, >= number, number greater than, greater than or equal

instanceof reference, type type comparison

8 L = = primitive, primitive equal (have identical values)

!= primitive, primitive not equal (have different values)

= = reference, reference equal (refer to same object)

!= reference, reference not equal (refer to different objects)

7 L & integer, integer bitwise AND

& boolean, boolean boolean AND

6 L ^ integer, integer bitwise XOR

^ boolean, boolean boolean XOR

5 L | integer, integer bitwise OR

| boolean, boolean boolean OR

4 L && boolean, boolean conditional AND

3 L || boolean, boolean conditional OR

2 R ?: boolean, any conditional (ternary) operator

1 R = variable, any assignment

*=, /=, %=, variable, any assignment with operation

+=, -=, <<=,

>>=, >>>=,

&=, ^=, |=

30 | Chapter 2: Java Syntax from the Ground Up

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Precedence

The P column of Table 2-4 specifies the precedence of each operator. Precedence
specifies the order in which operations are performed. Consider this expression:

a + b * c

The multiplication operator has higher precedence than the addition operator, so
a is added to the product of b and c. Operator precedence can be thought of as a
measure of how tightly operators bind to their operands. The higher the number,
the more tightly they bind.

Default operator precedence can be overridden through the use of parentheses
that explicitly specify the order of operations. The previous expression can be
rewritten as follows to specify that the addition should be performed before the
multiplication:

(a + b) * c

The default operator precedence in Java was chosen for compatibility with C; the
designers of C chose this precedence so that most expressions can be written
naturally without parentheses. There are only a few common Java idioms for
which parentheses are required. Examples include:

// Class cast combined with member access
((Integer) o).intValue();

// Assignment combined with comparison
while((line = in.readLine()) != null) { ... }

// Bitwise operators combined with comparison
if ((flags & (PUBLIC | PROTECTED)) != 0) { ... }

Associativity

When an expression involves several operators that have the same precedence, the
operator associativity governs the order in which the operations are performed. Most
operators are left-to-right associative, which means that the operations are performed
from left to right. The assignment and unary operators, however, have right-to-left
associativity. The A column of Table 2-4 specifies the associativity of each operator
or group of operators. The value L means left to right, and R means right to left.

The additive operators are all left-to-right associative, so the expression a+b-c is
evaluated from left to right: (a+b)-c. Unary operators and assignment operators
are evaluated from right to left. Consider this complex expression:

a = b += c = -~d

This is evaluated as follows:

a = (b += (c = -(~d)))

As with operator precedence, operator associativity establishes a default order of
evaluation for an expression. This default order can be overridden through the use
of parentheses. However, the default operator associativity in Java has been
chosen to yield a natural expression syntax, and you rarely need to alter it.

Expressions and Operators | 31

Java Syntax

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Operand number and type

The fourth column of Table 2-4 specifies the number and type of the operands
expected by each operator. Some operators operate on only one operand; these
are called unary operators. For example, the unary minus operator changes the
sign of a single number:

-n // The unary minus operator

Most operators, however, are binary operators that operate on two operand
values. The - operator actually comes in both forms:

a - b // The subtraction operator is a binary operator

Java also defines one ternary operator, often called the conditional operator. It is
like an if statement inside an expression. Its three operands are separated by a
question mark and a colon; the second and third operands must be convertible to
the same type:

x > y ? x : y // Ternary expression; evaluates to the larger of x and y

In addition to expecting a certain number of operands, each operator also expects
particular types of operands. Column four of the table lists the operand types.
Some of the codes used in that column require further explanation:

number
An integer, floating-point value, or character (i.e., any primitive type except
boolean). In Java 5.0 and later, autounboxing (see “Boxing and Unboxing
Conversions” later in this chapter) means that the wrapper classes (such as
Character, Integer, and Double) for these types can be be used in this context
as well.

integer
A byte, short, int, long, or char value (long values are not allowed for the
array access operator []). With autounboxing, Byte, Short, Integer, Long,
and Character values are also allowed.

reference
An object or array.

variable
A variable or anything else, such as an array element, to which a value can be
assigned

Return type

Just as every operator expects its operands to be of specific types, each operator
produces a value of a specific type. The arithmetic, increment and decrement,
bitwise, and shift operators return a double if at least one of the operands is a
double. They return a float if at least one of the operands is a float. They return a
long if at least one of the operands is a long. Otherwise, they return an int, even if
both operands are byte, short, or char types that are narrower than int.

The comparison, equality, and boolean operators always return boolean values.
Each assignment operator returns whatever value it assigned, which is of a type
compatible with the variable on the left side of the expression. The conditional

32 | Chapter 2: Java Syntax from the Ground Up

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

operator returns the value of its second or third argument (which must both be of
the same type).

Side effects

Every operator computes a value based on one or more operand values. Some
operators, however, have side effects in addition to their basic evaluation. If an
expression contains side effects, evaluating it changes the state of a Java program
in such a way that evaluating the expression again may yield a different result. For
example, the ++ increment operator has the side effect of incrementing a variable.
The expression ++a increments the variable a and returns the newly incremented
value. If this expression is evaluated again, the value will be different. The various
assignment operators also have side effects. For example, the expression a*=2 can
also be written as a=a*2. The value of the expression is the value of a multiplied by
2, but the expression also has the side effect of storing that value back into a. The
method invocation operator () has side effects if the invoked method has side
effects. Some methods, such as Math.sqrt(), simply compute and return a value
without side effects of any kind. Typically, however, methods do have side effects.
Finally, the new operator has the profound side effect of creating a new object.

Order of evaluation

When the Java interpreter evaluates an expression, it performs the various opera-
tions in an order specified by the parentheses in the expression, the precedence of
the operators, and the associativity of the operators. Before any operation is
performed, however, the interpreter first evaluates the operands of the operator.
(The exceptions are the &&, ||, and ?: operators, which do not always evaluate all
their operands.) The interpreter always evaluates operands in order from left to
right. This matters if any of the operands are expressions that contain side effects.
Consider this code, for example:

int a = 2;
int v = ++a + ++a * ++a;

Although the multiplication is performed before the addition, the operands of the
+ operator are evaluated first. Thus, the expression evaluates to 3+4*5, or 23.

Arithmetic Operators

Since most programs operate primarily on numbers, the most commonly used
operators are often those that perform arithmetic operations. The arithmetic oper-
ators can be used with integers, floating-point numbers, and even characters (i.e.,
they can be used with any primitive type other than boolean). If either of the oper-
ands is a floating-point number, floating-point arithmetic is used; otherwise,
integer arithmetic is used. This matters because integer arithmetic and floating-
point arithmetic differ in the way division is performed and in the way under-
flows and overflows are handled, for example. The arithmetic operators are:

Addition (+)
The + operator adds two numbers. As we’ll see shortly, the + operator can
also be used to concatenate strings. If either operand of + is a string, the other

Expressions and Operators | 33

Java Syntax

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

one is converted to a string as well. Be sure to use parentheses when you want
to combine addition with concatenation. For example:

System.out.println("Total: " + 3 + 4); // Prints "Total: 34", not 7!

 Subtraction (-)
When the - operator is used as a binary operator, it subtracts its second
operand from its first. For example, 7-3 evaluates to 4. The - operator can
also perform unary negation.

 Multiplication (*)
The * operator multiplies its two operands. For example, 7*3 evaluates to 21.

 Division (/)
The / operator divides its first operand by its second. If both operands are
integers, the result is an integer, and any remainder is lost. If either operand is
a floating-point value, however, the result is a floating-point value. When
dividing two integers, division by zero throws an ArithmeticException. For
floating-point calculations, however, division by zero simply yields an infi-
nite result or NaN:

7/3 // Evaluates to 2
7/3.0f // Evaluates to 2.333333f
7/0 // Throws an ArithmeticException
7/0.0 // Evaluates to positive infinity
0.0/0.0 // Evaluates to NaN

Modulo (%)
The % operator computes the first operand modulo the second operand (i.e.,
it returns the remainder when the first operand is divided by the second
operand an integral number of times). For example, 7%3 is 1. The sign of the
result is the same as the sign of the first operand. While the modulo operator
is typically used with integer operands, it also works for floating-point values.
For example, 4.3%2.1 evaluates to 0.1. When operating with integers, trying
to compute a value modulo zero causes an ArithmeticException. When
working with floating-point values, anything modulo 0.0 evaluates to NaN, as
does infinity modulo anything.

 Unary minus (-)
When the - operator is used as a unary operator—that is, before a single
operand—it performs unary negation. In other words, it converts a positive
value to an equivalently negative value, and vice versa.

String Concatenation Operator

In addition to adding numbers, the + operator (and the related += operator) also
concatenates, or joins, strings. If either of the operands to + is a string, the oper-
ator converts the other operand to a string. For example:

System.out.println("Quotient: " + 7/3.0f); // Prints "Quotient: 2.3333333"

As a result, you must be careful to put any addition expressions in parentheses
when combining them with string concatenation. If you do not, the addition oper-
ator is interpreted as a concatenation operator.

34 | Chapter 2: Java Syntax from the Ground Up

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

The Java interpreter has built-in string conversions for all primitive types. An
object is converted to a string by invoking its toString() method. Some classes
define custom toString() methods so that objects of that class can easily be
converted to strings in this way. An array is converted to a string by invoking the
built-in toString() method, which, unfortunately, does not return a useful string
representation of the array contents.

Increment and Decrement Operators

The ++ operator increments its single operand, which must be a variable, an
element of an array, or a field of an object, by one. The behavior of this operator
depends on its position relative to the operand. When used before the operand,
where it is known as the pre-increment operator, it increments the operand and
evaluates to the incremented value of that operand. When used after the operand,
where it is known as the post-increment operator, it increments its operand, but
evaluates to the value of that operand before it was incremented.

For example, the following code sets both i and j to 2:

i = 1;
j = ++i;

But these lines set i to 2 and j to 1:

i = 1;
j = i++;

Similarly, the -- operator decrements its single numeric operand, which must be a
variable, an element of an array, or a field of an object, by one. Like the ++ oper-
ator, the behavior of -- depends on its position relative to the operand. When
used before the operand, it decrements the operand and returns the decremented
value. When used after the operand, it decrements the operand, but returns the
undecremented value.

The expressions x++ and x-- are equivalent to x=x+1 and x=x-1, respectively,
except that when using the increment and decrement operators, x is only evalu-
ated once. If x is itself an expression with side effects, this makes a big difference.
For example, these two expressions are not equivalent:

a[i++]++; // Increments an element of an array
a[i++] = a[i++] + 1; // Adds one to an array element and stores it in another

These operators, in both prefix and postfix forms, are most commonly used to
increment or decrement the counter that controls a loop.

Comparison Operators

The comparison operators consist of the equality operators that test values for
equality or inequality and the relational operators used with ordered types (numbers
and characters) to test for greater than and less than relationships. Both types of
operators yield a boolean result, so they are typically used with if statements and
while and for loops to make branching and looping decisions. For example:

if (o != null) ...; // The not equals operator
while(i < a.length) ...; // The less than operator

Expressions and Operators | 35

Java Syntax

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Java provides the following equality operators:

 Equals (= =)
The = = operator evaluates to true if its two operands are equal and false
otherwise. With primitive operands, it tests whether the operand values
themselves are identical. For operands of reference types, however, it tests
whether the operands refer to the same object or array. In other words, it
does not test the equality of two distinct objects or arrays. In particular, note
that you cannot test two distinct strings for equality with this operator.

If = = is used to compare two numeric or character operands that are not of the
same type, the narrower operand is converted to the type of the wider operand
before the comparison is done. For example, when comparing a short to a
float, the short is first converted to a float before the comparison is
performed. For floating-point numbers, the special negative zero value tests
equal to the regular, positive zero value. Also, the special NaN (not-a-number)
value is not equal to any other number, including itself. To test whether a
floating-point value is NaN, use the Float.isNan() or Double.isNan() method.

 Not equals (!=)
The != operator is exactly the opposite of the = = operator. It evaluates to true
if its two primitive operands have different values or if its two reference oper-
ands refer to different objects or arrays. Otherwise, it evaluates to false.

The relational operators can be used with numbers and characters, but not with
boolean values, objects, or arrays because those types are not ordered. Java
provides the following relational operators:

 Less than (<)
Evaluates to true if the first operand is less than the second.

 Less than or equal (<=)
Evaluates to true if the first operand is less than or equal to the second.

 Greater than (>)
Evaluates to true if the first operand is greater than the second.

 Greater than or equal (>=)
Evaluates to true if the first operand is greater than or equal to the second.

Boolean Operators

As we’ve just seen, the comparison operators compare their operands and yield a
boolean result, which is often used in branching and looping statements. In order
to make branching and looping decisions based on conditions more interesting
than a single comparison, you can use the boolean (or logical) operators to
combine multiple comparison expressions into a single, more complex expres-
sion. The boolean operators require their operands to be boolean values and they
evaluate to boolean values. The operators are:

 Conditional AND (&&)
This operator performs a boolean AND operation on its operands. It evalu-
ates to true if and only if both its operands are true. If either or both
operands are false, it evaluates to false. For example:

36 | Chapter 2: Java Syntax from the Ground Up

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

if (x < 10 && y > 3) ... // If both comparisons are true

This operator (and all the boolean operators except the unary ! operator)
have a lower precedence than the comparison operators. Thus, it is perfectly
legal to write a line of code like the one above. However, some programmers
prefer to use parentheses to make the order of evaluation explicit:

if ((x < 10) && (y > 3)) ...

You should use whichever style you find easier to read.

This operator is called a conditional AND because it conditionally evaluates
its second operand. If the first operand evaluates to false, the value of the
expression is false, regardless of the value of the second operand. Therefore,
to increase efficiency, the Java interpreter takes a shortcut and skips the
second operand. Since the second operand is not guaranteed to be evaluated,
you must use caution when using this operator with expressions that have
side effects. On the other hand, the conditional nature of this operator allows
us to write Java expressions such as the following:

if (data != null && i < data.length && data[i] != -1)
 ...

The second and third comparisons in this expression would cause errors if the
first or second comparisons evaluated to false. Fortunately, we don’t have to
worry about this because of the conditional behavior of the && operator.

 Conditional OR (||)
This operator performs a boolean OR operation on its two boolean operands.
It evaluates to true if either or both of its operands are true. If both operands
are false, it evaluates to false. Like the && operator, || does not always eval-
uate its second operand. If the first operand evaluates to true, the value of the
expression is true, regardless of the value of the second operand. Thus, the
operator simply skips the second operand in that case.

Boolean NOT (!)
This unary operator changes the boolean value of its operand. If applied to a
true value, it evaluates to false, and if applied to a false value, it evaluates to
true. It is useful in expressions like these:

if (!found) ... // found is a boolean variable declared somewhere
while (!c.isEmpty()) ... // The isEmpty() method returns a boolean value

Because ! is a unary operator, it has a high precedence and often must be
used with parentheses:

if (!(x > y && y > z))

 Boolean AND (&)
When used with boolean operands, the & operator behaves like the && oper-
ator, except that it always evaluates both operands, regardless of the value of
the first operand. This operator is almost always used as a bitwise operator
with integer operands, however, and many Java programmers would not even
recognize its use with boolean operands as legal Java code.

Expressions and Operators | 37

Java Syntax

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Boolean OR (|)
This operator performs a boolean OR operation on its two boolean operands.
It is like the || operator, except that it always evaluates both operands, even
if the first one is true. The | operator is almost always used as a bitwise oper-
ator on integer operands; its use with boolean operands is very rare.

Boolean XOR (^)
When used with boolean operands, this operator computes the Exclusive OR
(XOR) of its operands. It evaluates to true if exactly one of the two operands
is true. In other words, it evaluates to false if both operands are false or if
both operands are true. Unlike the && and || operators, this one must always
evaluate both operands. The ^ operator is much more commonly used as a
bitwise operator on integer operands. With boolean operands, this operator is
equivalent to the != operator.

Bitwise and Shift Operators

The bitwise and shift operators are low-level operators that manipulate the indi-
vidual bits that make up an integer value. The bitwise operators are most
commonly used for testing and setting individual flag bits in a value. In order to
understand their behavior, you must understand binary (base-2) numbers and the
twos-complement format used to represent negative integers. You cannot use
these operators with floating-point, boolean, array, or object operands. When
used with boolean operands, the &, |, and ^ operators perform a different opera-
tion, as described in the previous section.

If either of the arguments to a bitwise operator is a long, the result is a long.
Otherwise, the result is an int. If the left operand of a shift operator is a long, the
result is a long; otherwise, the result is an int. The operators are:

 Bitwise complement (~)
The unary ~ operator is known as the bitwise complement, or bitwise NOT,
operator. It inverts each bit of its single operand, converting ones to zeros and
zeros to ones. For example:

byte b = ~12; // ~00001100 ==> 11110011 or -13 decimal
flags = flags & ~f; // Clear flag f in a set of flags

 Bitwise AND (&)
This operator combines its two integer operands by performing a boolean
AND operation on their individual bits. The result has a bit set only if the
corresponding bit is set in both operands. For example:

10 & 7 // 00001010 & 00000111 ==> 00000010 or 2
if ((flags & f) != 0) // Test whether flag f is set

When used with boolean operands, & is the infrequently used boolean AND
operator described earlier.

 Bitwise OR (|)
This operator combines its two integer operands by performing a boolean OR
operation on their individual bits. The result has a bit set if the corre-
sponding bit is set in either or both of the operands. It has a zero bit only
where both corresponding operand bits are zero. For example:

38 | Chapter 2: Java Syntax from the Ground Up

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

10 | 7 // 00001010 | 00000111 ==> 00001111 or 15
flags = flags | f; // Set flag f

When used with boolean operands, | is the infrequently used boolean OR
operator described earlier.

 Bitwise XOR (^)
This operator combines its two integer operands by performing a boolean
XOR (Exclusive OR) operation on their individual bits. The result has a bit
set if the corresponding bits in the two operands are different. If the corre-
sponding operand bits are both ones or both zeros, the result bit is a zero. For
example:

10 ^ 7 // 00001010 ^ 00000111 ==> 00001101 or 13

When used with boolean operands, ^ is the infrequently used boolean XOR
operator.

 Left shift (<<)
The << operator shifts the bits of the left operand left by the number of places
specified by the right operand. High-order bits of the left operand are lost,
and zero bits are shifted in from the right. Shifting an integer left by n places
is equivalent to multiplying that number by 2n. For example:

10 << 1 // 00001010 << 1 = 00010100 = 20 = 10*2
7 << 3 // 00000111 << 3 = 00111000 = 56 = 7*8
-1 << 2 // 0xFFFFFFFF << 2 = 0xFFFFFFFC = -4 = -1*4

If the left operand is a long, the right operand should be between 0 and 63.
Otherwise, the left operand is taken to be an int, and the right operand
should be between 0 and 31.

 Signed right shift (>>)
The >> operator shifts the bits of the left operand to the right by the number
of places specified by the right operand. The low-order bits of the left
operand are shifted away and are lost. The high-order bits shifted in are the
same as the original high-order bit of the left operand. In other words, if the
left operand is positive, zeros are shifted into the high-order bits. If the left
operand is negative, ones are shifted in instead. This technique is known as
sign extension; it is used to preserve the sign of the left operand. For example:

10 >> 1 // 00001010 >> 1 = 00000101 = 5 = 10/2
27 >> 3 // 00011011 >> 3 = 00000011 = 3 = 27/8
-50 >> 2 // 11001110 >> 2 = 11110011 = -13 != -50/4

If the left operand is positive and the right operand is n, the >> operator is the
same as integer division by 2n.

 Unsigned right shift (>>>)
This operator is like the >> operator, except that it always shifts zeros into the
high-order bits of the result, regardless of the sign of the left-hand operand.
This technique is called zero extension; it is appropriate when the left operand
is being treated as an unsigned value (despite the fact that Java integer types
are all signed). These are examples:

0xff >>> 4 // 11111111 >>> 4 = 00001111 = 15 = 255/16
-50 >>> 2 // 0xFFFFFFCE >>> 2 = 0x3FFFFFF3 = 1073741811

Expressions and Operators | 39

Java Syntax

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Assignment Operators

The assignment operators store, or assign, a value into some kind of variable. The
left operand must evaluate to an appropriate local variable, array element, or
object field. The right side can be any value of a type compatible with the vari-
able. An assignment expression evaluates to the value that is assigned to the
variable. More importantly, however, the expression has the side effect of actually
performing the assignment. Unlike all other binary operators, the assignment
operators are right-associative, which means that the assignments in a=b=c are
performed right-to-left, as follows: a=(b=c).

The basic assignment operator is =. Do not confuse it with the equality operator, = =.
In order to keep these two operators distinct, I recommend that you read = as “is
assigned the value.”

In addition to this simple assignment operator, Java also defines 11 other opera-
tors that combine assignment with the 5 arithmetic operators and the 6 bitwise
and shift operators. For example, the += operator reads the value of the left vari-
able, adds the value of the right operand to it, stores the sum back into the left
variable as a side effect, and returns the sum as the value of the expression. Thus,
the expression x+=2 is almost the same as x=x+2. The difference between these two
expressions is that when you use the += operator, the left operand is evaluated
only once. This makes a difference when that operand has a side effect. Consider
the following two expressions, which are not equivalent:

a[i++] += 2;
a[i++] = a[i++] + 2;

The general form of these combination assignment operators is:

var op= value

This is equivalent (unless there are side effects in var) to:

var = var op value

The available operators are:

+= -= *= /= %= // Arithmetic operators plus assignment
&= |= ^= // Bitwise operators plus assignment
<<= >>= >>>= // Shift operators plus assignment

The most commonly used operators are += and -=, although &= and |= can also be
useful when working with boolean flags. For example:

i += 2; // Increment a loop counter by 2
c -= 5; // Decrement a counter by 5
flags |= f; // Set a flag f in an integer set of flags
flags &= ~f; // Clear a flag f in an integer set of flags

The Conditional Operator

The conditional operator ?: is a somewhat obscure ternary (three-operand) oper-
ator inherited from C. It allows you to embed a conditional within an expression.
You can think of it as the operator version of the if/else statement. The first and
second operands of the conditional operator are separated by a question mark (?)

40 | Chapter 2: Java Syntax from the Ground Up

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

while the second and third operands are separated by a colon (:). The first
operand must evaluate to a boolean value. The second and third operands can be
of any type, but they must be convertible to the same type.

The conditional operator starts by evaluating its first operand. If it is true, the
operator evaluates its second operand and uses that as the value of the expres-
sion. On the other hand, if the first operand is false, the conditional operator
evaluates and returns its third operand. The conditional operator never evaluates
both its second and third operand, so be careful when using expressions with side
effects with this operator. Examples of this operator are:

int max = (x > y) ? x : y;
String name = (name != null) ? name : "unknown";

Note that the ?: operator has lower precedence than all other operators except the
assignment operators, so parentheses are not usually necessary around the oper-
ands of this operator. Many programmers find conditional expressions easier to
read if the first operand is placed within parentheses, however. This is especially
true because the conditional if statement always has its conditional expression
written within parentheses.

The instanceof Operator

The instanceof operator requires an object or array value as its left operand and
the name of a reference type as its right operand. It evaluates to true if the object
or array is an instance of the specified type; it returns false otherwise. If the left
operand is null, instanceof always evaluates to false. If an instanceof expression
evaluates to true, it means that you can safely cast and assign the left operand to a
variable of the type of the right operand.

The instanceof operator can be used only with reference types and objects, not
primitive types and values. Examples of instanceof are:

"string" instanceof String // True: all strings are instances of String
"" instanceof Object // True: strings are also instances of Object
null instanceof String // False: null is never an instance of anything

Object o = new int[] {1,2,3};
o instanceof int[] // True: the array value is an int array
o instanceof byte[] // False: the array value is not a byte array
o instanceof Object // True: all arrays are instances of Object

// Use instanceof to make sure that it is safe to cast an object
if (object instanceof Point) {
 Point p = (Point) object;
}

Special Operators

Java has five language constructs that are sometimes considered operators and
sometimes considered simply part of the basic language syntax. These “operators”
were included in Table 2-4 in order to show their precedence relative to the other

Expressions and Operators | 41

Java Syntax

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

true operators. The use of these language constructs is detailed elsewhere in this
book but is described briefly here so that you can recognize them in code examples.

 Object member access (.)
An object is a collection of data and methods that operate on that data; the
data fields and methods of an object are called its members. The dot (.) oper-
ator accesses these members. If o is an expression that evaluates to an object
reference, and f is the name of a field of the object, o.f evaluates to the value
contained in that field. If m is the name of a method, o.m refers to that method
and allows it to be invoked using the () operator shown later.

 Array element access ([])
An array is a numbered list of values. Each element of an array can be
referred to by its number, or index. The [] operator allows you to refer to the
individual elements of an array. If a is an array, and i is an expression that
evaluates to an int, a[i] refers to one of the elements of a. Unlike other oper-
ators that work with integer values, this operator restricts array index values
to be of type int or narrower.

 Method invocation (())
A method is a named collection of Java code that can be run, or invoked, by
following the name of the method with zero or more comma-separated
expressions contained within parentheses. The values of these expressions are
the arguments to the method. The method processes the arguments and
optionally returns a value that becomes the value of the method invocation
expression. If o.m is a method that expects no arguments, the method can be
invoked with o.m(). If the method expects three arguments, for example, it
can be invoked with an expression such as o.m(x,y,z). Before the Java inter-
preter invokes a method, it evaluates each of the arguments to be passed to
the method. These expressions are guaranteed to be evaluated in order from
left to right (which matters if any of the arguments have side effects).

 Object creation (new)
In Java, objects (and arrays) are created with the new operator, which is
followed by the type of the object to be created and a parenthesized list of
arguments to be passed to the object constructor. A constructor is a special
method that initializes a newly created object, so the object creation syntax is
similar to the Java method invocation syntax. For example:

new ArrayList();
new Point(1,2)

 Type conversion or casting (())
As we’ve already seen, parentheses can also be used as an operator to perform
narrowing type conversions, or casts. The first operand of this operator is the
type to be converted to; it is placed between the parentheses. The second
operand is the value to be converted; it follows the parentheses. For example:

(byte) 28 // An integer literal cast to a byte type
(int) (x + 3.14f) // A floating-point sum value cast to an integer value
(String)h.get(k) // A generic object cast to a more specific string type

42 | Chapter 2: Java Syntax from the Ground Up

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Statements
A statement is a single command executed by the Java interpreter. By default, the
Java interpreter runs one statement after another, in the order they are written.
Many of the statements defined by Java, however, are flow-control statements,
such as conditionals and loops, that alter this default order of execution in well-
defined ways. Table 2-5 summarizes the statements defined by Java.

Expression Statements

As we saw earlier in the chapter, certain types of Java expressions have side
effects. In other words, they do not simply evaluate to some value; they also
change the program state in some way. Any expression with side effects can be
used as a statement simply by following it with a semicolon. The legal types of
expression statements are assignments, increments and decrements, method calls,
and object creation. For example:

a = 1; // Assignment
x *= 2; // Assignment with operation
i++; // Post-increment
--c; // Pre-decrement
System.out.println("statement"); // Method invocation

Table 2-5. Java statements

Statement Purpose Syntax

expression side effects var = expr; expr++; method(); new Type();

compound group statements { statements }

empty do nothing ;

labeled name a statement label : statement

variable declare a variable [final] type name [= value] [, name [= value]] .
..;

if conditional if (expr) statement [else statement]

switch conditional switch (expr) { [case expr : statements]
... [default: statements] }

while loop while (expr) statement

do loop do statement while (expr);

for simplified loop for (init ; test ; increment) statement

for/in collection iteration for (variable : iterable) statement
Java 5.0 and later; also called “foreach”

break exit block break [label] ;

continue restart loop continue [label] ;

return end method return [expr] ;

synchronized critical section synchronized (expr) { statements }

throw throw exception throw expr ;

try handle exception try { statements } [catch (type name) {
statements }] ... [finally { statements }]

assert verify invariant assert invariant [: error] ;
Java 1.4 and later.

Statements | 43

Java Syntax

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Compound Statements

A compound statement is any number and kind of statements grouped together
within curly braces. You can use a compound statement anywhere a statement is
required by Java syntax:

for(int i = 0; i < 10; i++) {
 a[i]++; // Body of this loop is a compound statement.
 b[i]--; // It consists of two expression statements
} // within curly braces.

The Empty Statement

An empty statement in Java is written as a single semicolon. The empty statement
doesn’t do anything, but the syntax is occasionally useful. For example, you can
use it to indicate an empty loop body in a for loop:

for(int i = 0; i < 10; a[i++]++) // Increment array elements
 /* empty */; // Loop body is empty statement

Labeled Statements

A labeled statement is simply a statement that has been given a name by
prepending an identifier and a colon to it. Labels are used by the break and
continue statements. For example:

rowLoop: for(int r = 0; r < rows.length; r++) { // A labeled loop
 colLoop: for(int c = 0; c < columns.length; c++) { // Another one
 break rowLoop; // Use a label
 }
}

Local Variable Declaration Statements

A local variable, often simply called a variable, is a symbolic name for a location to
store a value that is defined within a method or compound statement. All vari-
ables must be declared before they can be used; this is done with a variable
declaration statement. Because Java is a strongly typed language, a variable decla-
ration specifies the type of the variable, and only values of that type can be stored
in the variable.

In its simplest form, a variable declaration specifies a variable’s type and name:

int counter;
String s;

A variable declaration can also include an initializer: an expression that specifies
an initial value for the variable. For example:

int i = 0;
String s = readLine();
int[] data = {x+1, x+2, x+3}; // Array initializers are documented later

The Java compiler does not allow you to use a local variable that has not been
initialized, so it is usually convenient to combine variable declaration and initial-

44 | Chapter 2: Java Syntax from the Ground Up

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

ization into a single statement. The initializer expression need not be a literal
value or a constant expression that can be evaluated by the compiler; it can be an
arbitrarily complex expression whose value is computed when the program is run.

A single variable declaration statement can declare and initialize more than one
variable, but all variables must be of the same type. Variable names and optional
initializers are separated from each other with commas:

int i, j, k;
float x = 1.0, y = 1.0;
String question = "Really Quit?", response;

In Java 1.1 and later, variable declaration statements can begin with the final
keyword. This modifier specifies that once an initial value is specified for the vari-
able, that value is never allowed to change:

final String greeting = getLocalLanguageGreeting();

C programmers should note that Java variable declaration statements can appear
anywhere in Java code; they are not restricted to the beginning of a method or
block of code. Local variable declarations can also be integrated with the initialize
portion of a for loop, as we’ll discuss shortly.

Local variables can be used only within the method or block of code in which they
are defined. This is called their scope or lexical scope:

void method() { // A method definition
 int i = 0; // Declare variable i
 while (i < 10) { // i is in scope here
 int j = 0; // Declare j; the scope of j begins here
 i++; // i is in scope here; increment it
 } // j is no longer in scope; can't use it anymore
 System.out.println(i); // i is still in scope here
} // The scope of i ends here

The if/else Statement

The if statement is the fundamental control statement that allows Java to make
decisions or, more precisely, to execute statements conditionally. The if state-
ment has an associated expression and statement. If the expression evaluates to
true, the interpreter executes the statement. If the expression evaluates to false
the interpreter skips the statement. In Java 5.0, the expression may be of the
wrapper type Boolean instead of the primitive type boolean. In this case, the
wrapper object is automatically unboxed.

Here is an example if statement:

if (username == null) // If username is null,
 username = "John Doe"; // use a default value

Although they look extraneous, the parentheses around the expression are a
required part of the syntax for the if statement.

As I already mentioned, a block of statements enclosed in curly braces is itself a
statement, so we can also write if statements that look like this:

if ((address == null) || (address.equals(""))) {

Statements | 45

Java Syntax

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

 address = "[undefined]";
 System.out.println("WARNING: no address specified.");
}

An if statement can include an optional else keyword that is followed by a
second statement. In this form of the statement, the expression is evaluated, and,
if it is true, the first statement is executed. Otherwise, the second statement is
executed. For example:

if (username != null)
 System.out.println("Hello " + username);
else {
 username = askQuestion("What is your name?");
 System.out.println("Hello " + username + ". Welcome!");
}

When you use nested if/else statements, some caution is required to ensure that
the else clause goes with the appropriate if statement. Consider the following lines:

if (i == j)
 if (j == k)
 System.out.println("i equals k");
else
 System.out.println("i doesn't equal j"); // WRONG!!

In this example, the inner if statement forms the single statement allowed by the
syntax of the outer if statement. Unfortunately, it is not clear (except from the
hint given by the indentation) which if the else goes with. And in this example,
the indentation hint is wrong. The rule is that an else clause like this is associated
with the nearest if statement. Properly indented, this code looks like this:

if (i == j)
 if (j == k)
 System.out.println("i equals k");
 else
 System.out.println("i doesn't equal j"); // WRONG!!

This is legal code, but it is clearly not what the programmer had in mind. When
working with nested if statements, you should use curly braces to make your
code easier to read. Here is a better way to write the code:

if (i == j) {
 if (j == k)
 System.out.println("i equals k");
}
else {
 System.out.println("i doesn't equal j");
}

The else if clause

The if/else statement is useful for testing a condition and choosing between two
statements or blocks of code to execute. But what about when you need to choose
between several blocks of code? This is typically done with an else if clause,
which is not really new syntax, but a common idiomatic usage of the standard if/
else statement. It looks like this:

46 | Chapter 2: Java Syntax from the Ground Up

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

if (n == 1) {
 // Execute code block #1
}
else if (n == 2) {
 // Execute code block #2
}
else if (n == 3) {
 // Execute code block #3
}
else {
 // If all else fails, execute block #4
}

There is nothing special about this code. It is just a series of if statements, where
each if is part of the else clause of the previous statement. Using the else if
idiom is preferable to, and more legible than, writing these statements out in their
fully nested form:

if (n == 1) {
 // Execute code block #1
}
else {
 if (n == 2) {
 // Execute code block #2
 }
 else {
 if (n == 3) {
 // Execute code block #3
 }
 else {
 // If all else fails, execute block #4
 }
 }
}

The switch Statement

An if statement causes a branch in the flow of a program’s execution. You can
use multiple if statements, as shown in the previous section, to perform a
multiway branch. This is not always the best solution, however, especially when
all of the branches depend on the value of a single variable. In this case, it is ineffi-
cient to repeatedly check the value of the same variable in multiple if statements.

A better solution is to use a switch statement, which is inherited from the C
programming language. Although the syntax of this statement is not nearly as
elegant as other parts of Java, the brute practicality of the construct makes it
worthwhile. If you are not familiar with the switch statement itself, you may at
least be familiar with the basic concept, under the name computed goto or jump
table.

A switch statement starts with an expression whose type is an int, short, char, or
byte. In Java 5.0 Integer, Short, Character and Byte wrapper types are allowed, as
are enumerated types. (Enums are new in Java 5.0; see Chapter 4 for details on
enumerated types and their use in switch statements.) This expression is followed

Statements | 47

Java Syntax

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

by a block of code in curly braces that contains various entry points that corre-
spond to possible values for the expression. For example, the following switch
statement is equivalent to the repeated if and else/if statements shown in the
previous section:

switch(n) {
 case 1: // Start here if n == 1
 // Execute code block #1
 break; // Stop here
 case 2: // Start here if n == 2
 // Execute code block #2
 break; // Stop here
 case 3: // Start here if n == 3
 // Execute code block #3
 break; // Stop here
 default: // If all else fails...
 // Execute code block #4
 break; // Stop here
}

As you can see from the example, the various entry points into a switch statement
are labeled either with the keyword case, followed by an integer value and a
colon, or with the special default keyword, followed by a colon. When a switch
statement executes, the interpreter computes the value of the expression in paren-
theses and then looks for a case label that matches that value. If it finds one, the
interpreter starts executing the block of code at the first statement following the
case label. If it does not find a case label with a matching value, the interpreter
starts execution at the first statement following a special-case default: label. Or, if
there is no default: label, the interpreter skips the body of the switch statement
altogether.

Note the use of the break keyword at the end of each case in the previous code.
The break statement is described later in this chapter, but, in this case, it causes
the interpreter to exit the body of the switch statement. The case clauses in a
switch statement specify only the starting point of the desired code. The indi-
vidual cases are not independent blocks of code, and they do not have any
implicit ending point. Therefore, you must explicitly specify the end of each case
with a break or related statement. In the absence of break statements, a switch
statement begins executing code at the first statement after the matching case
label and continues executing statements until it reaches the end of the block. On
rare occasions, it is useful to write code like this that falls through from one case
label to the next, but 99% of the time you should be careful to end every case and
default section with a statement that causes the switch statement to stop
executing. Normally you use a break statement, but return and throw also work.

A switch statement can have more than one case clause labeling the same state-
ment. Consider the switch statement in the following method:

boolean parseYesOrNoResponse(char response) {
 switch(response) {
 case 'y':
 case 'Y': return true;
 case 'n':

48 | Chapter 2: Java Syntax from the Ground Up

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

 case 'N': return false;
 default: throw new IllegalArgumentException("Response must be Y or N");
 }
}

The switch statement and its case labels have some important restrictions. First,
the expression associated with a switch statement must have a byte, char, short,
or int value. The floating-point and boolean types are not supported, and neither
is long, even though long is an integer type. Second, the value associated with
each case label must be a constant value or a constant expression the compiler
can evaluate. A case label cannot contain a runtime expression involving vari-
ables or method calls, for example. Third, the case label values must be within the
range of the data type used for the switch expression. And finally, it is obviously
not legal to have two or more case labels with the same value or more than one
default label.

The while Statement

Just as the if statement is the basic control statement that allows Java to make
decisions, the while statement is the basic statement that allows Java to perform
repetitive actions. It has the following syntax:

while (expression)
statement

The while statement works by first evaluating the expression, which must result
in a boolean (or, in Java 5.0, a Boolean) value. If the value is false, the interpreter
skips the statement associated with the loop and moves to the next statement in
the program. If it is true, however, the statement that forms the body of the loop
is executed, and the expression is reevaluated. Again, if the value of expression is
false, the interpreter moves on to the next statement in the program; otherwise it
executes the statement again. This cycle continues while the expression remains
true (i.e., until it evaluates to false), at which point the while statement ends, and
the interpreter moves on to the next statement. You can create an infinite loop
with the syntax while(true).

Here is an example while loop that prints the numbers 0 to 9:

int count = 0;
while (count < 10) {
 System.out.println(count);
 count++;
}

As you can see, the variable count starts off at 0 in this example and is incre-
mented each time the body of the loop runs. Once the loop has executed 10
times, the expression becomes false (i.e., count is no longer less than 10), the
while statement finishes, and the Java interpreter can move to the next statement
in the program. Most loops have a counter variable like count. The variable names
i, j, and k are commonly used as loop counters, although you should use more
descriptive names if it makes your code easier to understand.

Statements | 49

Java Syntax

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

The do Statement

A do loop is much like a while loop, except that the loop expression is tested at
the bottom of the loop rather than at the top. This means that the body of the
loop is always executed at least once. The syntax is:

do
statement

while (expression) ;

Notice a couple of differences between the do loop and the more ordinary while
loop. First, the do loop requires both the do keyword to mark the beginning of the
loop and the while keyword to mark the end and introduce the loop condition.
Also, unlike the while loop, the do loop is terminated with a semicolon. This is
because the do loop ends with the loop condition rather than simply ending with a
curly brace that marks the end of the loop body. The following do loop prints the
same output as the while loop just discussed:

int count = 0;
do {
 System.out.println(count);
 count++;
} while(count < 10);

The do loop is much less commonly used than its while cousin because, in prac-
tice, it is unusual to encounter a situation where you are sure you always want a
loop to execute at least once.

The for Statement

The for statement provides a looping construct that is often more convenient than
the while and do loops. The for statement takes advantage of a common looping
pattern. Most loops have a counter, or state variable of some kind, that is initial-
ized before the loop starts, tested to determine whether to execute the loop body,
and then incremented or updated somehow at the end of the loop body before the
test expression is evaluated again. The initialization, test, and update steps are the
three crucial manipulations of a loop variable, and the for statement makes these
three steps an explicit part of the loop syntax:

for(initialize ; test ; update)
statement

This for loop is basically equivalent to the following while loop:*

initialize;
while(test) {

statement;
update;

}

* As you’ll see when we consider the continue statement, this while loop is not exactly equivalent
to the for loop.

50 | Chapter 2: Java Syntax from the Ground Up

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Placing the initialize, test, and update expressions at the top of a for loop
makes it especially easy to understand what the loop is doing, and it prevents
mistakes such as forgetting to initialize or update the loop variable. The inter-
preter discards the values of the initialize and update expressions, so in order to
be useful, these expressions must have side effects. initialize is typically an
assignment expression while update is usually an increment, decrement, or some
other assignment.

The following for loop prints the numbers 0 to 9, just as the previous while and
do loops have done:

int count;
for(count = 0 ; count < 10 ; count++)
 System.out.println(count);

Notice how this syntax places all the important information about the loop vari-
able on a single line, making it very clear how the loop executes. Placing the
update expression in the for statement itself also simplifies the body of the loop to
a single statement; we don’t even need to use curly braces to produce a statement
block.

The for loop supports some additional syntax that makes it even more conve-
nient to use. Because many loops use their loop variables only within the loop, the
for loop allows the initialize expression to be a full variable declaration, so that
the variable is scoped to the body of the loop and is not visible outside of it. For
example:

for(int count = 0 ; count < 10 ; count++)
 System.out.println(count);

Furthermore, the for loop syntax does not restrict you to writing loops that use
only a single variable. Both the initialize and update expressions of a for loop
can use a comma to separate multiple initializations and update expressions. For
example:

for(int i = 0, j = 10 ; i < 10 ; i++, j--)
 sum += i * j;

Even though all the examples so far have counted numbers, for loops are not
restricted to loops that count numbers. For example, you might use a for loop to
iterate through the elements of a linked list:

for(Node n = listHead; n != null; n = n.nextNode())
 process(n);

The initialize, test, and update expressions of a for loop are all optional; only
the semicolons that separate the expressions are required. If the test expression is
omitted, it is assumed to be true. Thus, you can write an infinite loop as for(;;).

The for/in Statement

The for/in statement is a powerful new loop that was added to the language in
Java 5.0. It iterates through the elements of an array or collection or any object
that implements java.lang.Iterable (we’ll see more about this new interface in a
moment). On each iteration it assigns an element of the array or Iterable object

Statements | 51

Java Syntax

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

to the loop variable you declare and then executes the loop body, which typically
uses the loop variable to operate on the element. No loop counter or Iterator
object is involved; the for/in loop performs the iteration automatically, and you
need not concern yourself with correct initialization or termination of the loop.

A for/in loop is written as the keyword for followed by an open parenthesis, a
variable declaration (without initializer), a colon, an expression, a close paren-
thesis, and finally the statement (or block) that forms the body of the loop.

for(declaration : expression)
statement

Despite its name, the for/in loop does not use the keyword in. It is common to
read the colon as “in,” however. Because this statement does not have a keyword
of its own, it does not have an unambiguous name. You may also see it called
“enhanced for” or “foreach.”

For the while, do, and for loops, we’ve shown an example that prints ten
numbers. The for/in loop can do this too, but not on its own. for/in is not a
general-purpose loop like the others. It is a specialized loop that executes its body
once for each element in an array or collection. So, in order to loop ten times (to
print out ten numbers), we need an array or other collection with ten elements.
Here’s code we can use:

// These are the numbers we want to print
int[] primes = new int[] { 2, 3, 5, 7, 11, 13, 17, 19, 23, 29 };
// This is the loop that prints them
for(int n : primes)
 System.out.println(n);

Here are some more things you should know about the syntax of the for/in loop:

• As noted earlier, expression must be either an array or an object that imple-
ments the java.lang.Iterable interface. This type must be known at compile-
time so that the compiler can generate appropriate looping code. For exam-
ple, you can’t use this loop with an array or List that you have cast to an
Object.

• The type of the array or Iterable elements must be assignment-compatible
with the type of the variable declared in the declaration. If you use an
Iterable object that is not parameterized with an element type, the variable
must be declared as an Object. (Parameterized types are also new in Java 5.0;
they are covered in Chapter 4.)

• The declaration usually consists of just a type and a variable name, but it
may include a final modifier and any appropriate annotations (see
Chapter 4). Using final prevents the loop variable from taking on any value
other than the array or collection element the loop assigns it and serves to
emphasize that the array or collection cannot be altered through the loop
variable.

• The loop variable of the for/in loop must be declared as part of the loop,
with both a type and a variable name. You cannot use a variable declared out-
side the loop as you can with the for loop.

52 | Chapter 2: Java Syntax from the Ground Up

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

The following class further illustrates the use of the for/in statement. It relies on
parameterized types, which are covered in Chapter 4, and you may want to return
to this section after reading that chapter.

import java.util.*;

public class ForInDemo {
 public static void main(String[] args) {
 // This is a collection we'll iterate over below.
 Set<String> wordset = new HashSet<String>();

 // We start with a basic loop over the elements of an array.
 // The body of the loop is executed once for each element of args[].
 // Each time through one element is assigned to the variable word.
 for(String word : args) {
 System.out.print(word + " ");
 wordset.add(word);
 }
 System.out.println();

 // Now iterate through the elements of the Set.
 for(String word : wordset) System.out.print(word + " ");
 }
}

Iterable and iterator

To understand how the for/in loop works with collections, we need to consider
two interfaces, java.lang.Iterable, introduced in Java 5.0, and java.util.
Iterator, introduced in Java 1.2, but parameterized with the rest of the Collec-
tions Framework in Java 5.0.* The APIs of both interfaces are reproduced here for
convenience:

public interface Iterator<E> {
 boolean hasNext();
 E next();
 void remove();
}

Iterator defines a way to iterate through the elements of a collection or other data
structure. It works like this: while there are more elements in the collection
(hasNext() returns true), call next() to obtain the next element of the collection.
Ordered collections, such as lists, typically have iterators that guarantee that
they’ll return elements in order. Unordered collections like Set simply guarantee
that repeated calls to next() return all elements of the set without omissions or
duplications but do not specify an ordering.

public interface Iterable<E> {
 java.util.Iterator<E> iterator();
}

* If you are not already familiar with parameterized types, you may want to skip this section now
and return to it after reading Chapter 4.

Statements | 53

Java Syntax

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

The Iterable interface was introduced to make the for/in loop work. A class
implements this interface in order to advertise that it is able to provide an
Iterator to anyone interested. (This can be useful in its own right, even when you
are not using the for/in loop). If an object is Iterable<E>, that means that that it
has an iterator() method that returns an Iterator<E>, which has a next()
method that returns an object of type E. If you implement Iterable and provide an
Iterator for your own classes, you’ll be able to iterate over those classes with the
for/in loop.

Remember that if you use the for/in loop with an Iterable<E>, the loop variable
must be of type E or a superclass or interface. For example, to iterate through the
elements of a List<String>, the variable must be declared String or its superclass
Object, or one of its interfaces CharSequence, Comparable, or Serializable.

If you use for/in to iterate through the elements of a raw List with no type
parameter, the Iterable and Iterator also have no type parameter, and the type
returned by the next() method of the raw Iterator is Object. In this case, you
have no choice but to declare the loop variable to be an Object.

What for/in cannot do

for/in is a specialized loop that can simplify your code and reduce the possibility
of looping errors in many circumstances. It is not a general replacement for the
while, for, or do loops, however, because it hides the loop counter or Iterator
from you. This means that some algorithms simply cannot be expressed with a
for/in loop.

Suppose you want to print the elements of an array as a comma-separated list. To
do this, you need to print a comma after every element of the array except the last,
or equivalently, before every element of the array except the first. With a tradi-
tional for loop, the code might look like this:

for(int i = 0; i < words.length; i++) {
 if (i > 0) System.out.print(", ");
 System.out.print(words[i]);
}

This is a very straightforward task, but you simply cannot do it with for/in. The
problem is that the for/in loop doesn’t give you a loop counter or any other way
to tell if you’re on the first iteration, the last iteration, or somewhere in between.
Here are two other simple loops that can’t be converted to use for/in, for the
same basic reason:

String[] args; // Initialized elsewhere
for(int i = 0; i < args.length; i++)
 System.out.println(i + ": " + args[i]);

// Map words to the position at which they occur.
List<String> words; // Initialized elsewhere
Map<String,Integer> map = new HashMap<String,Integer>();
for(int i = 0, n = words.size(); i < n; i++) map.put(words.get(i), i);

A similar issue exists when using for/in to iterate through the elements of the
collection. Just as a for/in loop over an array has no way to obtain the array index
of the current element, a for/in loop over a collection has no way to obtain the

54 | Chapter 2: Java Syntax from the Ground Up

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Iterator object that is being used to itemize the elements of the collection. This
means, for example, that you cannot use the remove() method of the iterator (or
any of the additional methods defined by java.util.ListIterator) as you could if
you used the Iterator explicitly yourself.

Here are some other things you cannot do with for/in:

• Iterate backwards through the elements of an array or List.

• Use a single loop counter to access the same-numbered elements of two dis-
tinct arrays.

• Iterate through the elements of a List using calls to its get() method rather
than calls to its iterator.

The break Statement

A break statement causes the Java interpreter to skip immediately to the end of a
containing statement. We have already seen the break statement used with the
switch statement. The break statement is most often written as simply the
keyword break followed by a semicolon:

break;

When used in this form, it causes the Java interpreter to immediately exit the
innermost containing while, do, for, or switch statement. For example:

for(int i = 0; i < data.length; i++) { // Loop through the data array.
 if (data[i] == target) { // When we find what we're looking for,
 index = i; // remember where we found it
 break; // and stop looking!
 }
} // The Java interpreter goes here after executing break

The break statement can also be followed by the name of a containing labeled
statement. When used in this form, break causes the Java interpreter to immedi-
ately exit the named block, which can be any kind of statement, not just a loop or
switch. For example:

testfornull: if (data != null) { // If the array is defined,
 for(int row = 0; row < numrows; row++) { // loop through one dimension,
 for(int col = 0; col < numcols; col++) { // then loop through the other.
 if (data[row][col] == null) // If the array is missing data,
 break testfornull; // treat the array as undefined.
 }
 }
} // Java interpreter goes here after executing break testfornull

The continue Statement

While a break statement exits a loop, a continue statement quits the current itera-
tion of a loop and starts the next one. continue, in both its unlabeled and labeled
forms, can be used only within a while, do, or for loop. When used without a
label, continue causes the innermost loop to start a new iteration. When used
with a label that is the name of a containing loop, it causes the named loop to
start a new iteration. For example:

Statements | 55

Java Syntax

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

for(int i = 0; i < data.length; i++) { // Loop through data.
 if (data[i] == -1) // If a data value is missing,
 continue; // skip to the next iteration.
 process(data[i]); // Process the data value.
}

while, do, and for loops differ slightly in the way that continue starts a new
iteration:

• With a while loop, the Java interpreter simply returns to the top of the loop,
tests the loop condition again, and, if it evaluates to true, executes the body
of the loop again.

• With a do loop, the interpreter jumps to the bottom of the loop, where it tests
the loop condition to decide whether to perform another iteration of the
loop.

• With a for loop, the interpreter jumps to the top of the loop, where it first
evaluates the update expression and then evaluates the test expression to
decide whether to loop again. As you can see, the behavior of a for loop with
a continue statement is different from the behavior of the “basically equiva-
lent” while loop presented earlier; update gets evaluated in the for loop but
not in the equivalent while loop.

The return Statement

A return statement tells the Java interpreter to stop executing the current method.
If the method is declared to return a value, the return statement is followed by an
expression. The value of the expression becomes the return value of the method.
For example, the following method computes and returns the square of a number:

double square(double x) { // A method to compute x squared
 return x * x; // Compute and return a value
}

Some methods are declared void to indicate that they do not return any value. The
Java interpreter runs methods like this by executing their statements one by one
until it reaches the end of the method. After executing the last statement, the
interpreter returns implicitly. Sometimes, however, a void method has to return
explicitly before reaching the last statement. In this case, it can use the return
statement by itself, without any expression. For example, the following method
prints, but does not return, the square root of its argument. If the argument is a
negative number, it returns without printing anything:

void printSquareRoot(double x) { // A method to print square root of x
 if (x < 0) return; // If x is negative, return explicitly
 System.out.println(Math.sqrt(x)); // Print the square root of x
} // End of method: return implicitly

The synchronized Statement

Java makes it easy to write multithreaded programs (see Chapter 5 for examples).
When working with multiple threads, you must often take care to prevent
multiple threads from modifying an object simultaneously in a way that might

56 | Chapter 2: Java Syntax from the Ground Up

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

corrupt the object’s state. Sections of code that must not be executed simulta-
neously are known as critical sections. Java provides the synchronized statement to
protect these critical sections. The syntax is:

synchronized (expression) {
statements

}

expression is an expression that must evaluate to an object or an array. The
statements constitute the code of the critical section and must be enclosed in curly
braces. Before executing the critical section, the Java interpreter first obtains an
exclusive lock on the object or array specified by expression. It holds the lock
until it is finished running the critical section, then releases it. While a thread
holds the lock on an object, no other thread can obtain that lock. Therefore, no
other thread can execute this or any other critical sections that require a lock on
the same object. If a thread cannot immediately obtain the lock required to
execute a critical section, it simply waits until the lock becomes available.

Note that you do not have to use the synchronized statement unless your program
creates multiple threads that share data. If only one thread ever accesses a data
structure, there is no need to protect it with synchronized. When you do have to
use synchronized, it might be in code like the following:

public static void SortIntArray(int[] a) {
 // Sort the array a. This is synchronized so that some other thread
 // cannot change elements of the array while we're sorting it (at
 // least not other threads that protect their changes to the array
 // with synchronized).
 synchronized (a) {
 // Do the array sort here
 }
}

The synchronized keyword is also available as a modifier in Java and is more
commonly used in this form than as a statement. When applied to a method, the
synchronized keyword indicates that the entire method is a critical section. For a
synchronized class method (a static method), Java obtains an exclusive lock on the
class before executing the method. For a synchronized instance method, Java
obtains an exclusive lock on the class instance. (Class and instance methods are
discussed in Chapter 3.)

The throw Statement

An exception is a signal that indicates some sort of exceptional condition or error
has occurred. To throw an exception is to signal an exceptional condition. To
catch an exception is to handle it—to take whatever actions are necessary to
recover from it.

In Java, the throw statement is used to throw an exception:

throw expression ;

The expression must evaluate to an exception object that describes the exception
or error that has occurred. We’ll talk more about types of exceptions shortly; for

Statements | 57

Java Syntax

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

now, all you need to know is that an exception is represented by an object. Here is
some example code that throws an exception:

public static double factorial(int x) {
 if (x < 0)
 throw new IllegalArgumentException("x must be >= 0");
 double fact;
 for(fact=1.0; x > 1; fact *= x, x--)
 /* empty */ ; // Note use of the empty statement
 return fact;
}

When the Java interpreter executes a throw statement, it immediately stops
normal program execution and starts looking for an exception handler that can
catch, or handle, the exception. Exception handlers are written with the try/
catch/finally statement, which is described in the next section. The Java inter-
preter first looks at the enclosing block of code to see if it has an associated
exception handler. If so, it exits that block of code and starts running the excep-
tion-handling code associated with the block. After running the exception
handler, the interpreter continues execution at the statement immediately
following the handler code.

If the enclosing block of code does not have an appropriate exception handler, the
interpreter checks the next higher enclosing block of code in the method. This
continues until a handler is found. If the method does not contain an exception
handler that can handle the exception thrown by the throw statement, the inter-
preter stops running the current method and returns to the caller. Now the
interpreter starts looking for an exception handler in the blocks of code of the
calling method. In this way, exceptions propagate up through the lexical struc-
ture of Java methods, up the call stack of the Java interpreter. If the exception is
never caught, it propagates all the way up to the main() method of the program. If
it is not handled in that method, the Java interpreter prints an error message,
prints a stack trace to indicate where the exception occurred, and then exits.

Exception types

An exception in Java is an object. The type of this object is java.lang.Throwable,
or more commonly, some subclass* of Throwable that more specifically describes
the type of exception that occurred. Throwable has two standard subclasses:
java.lang.Error and java.lang.Exception. Exceptions that are subclasses of
Error generally indicate unrecoverable problems: the virtual machine has run
out of memory, or a class file is corrupted and cannot be read, for example.
Exceptions of this sort can be caught and handled, but it is rare to do so. Excep-
tions that are subclasses of Exception, on the other hand, indicate less severe
conditions. These exceptions can be reasonably caught and handled. They
include such exceptions as java.io.EOFException, which signals the end of a file,
and java.lang.ArrayIndexOutOfBoundsException, which indicates that a program
has tried to read past the end of an array. In this book, I use the term “excep-

* We haven’t talked about subclasses yet; they are covered in detail in Chapter 3.

58 | Chapter 2: Java Syntax from the Ground Up

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

tion” to refer to any exception object, regardless of whether the type of that
exception is Exception or Error.

Since an exception is an object, it can contain data, and its class can define methods
that operate on that data. The Throwable class and all its subclasses include a String
field that stores a human-readable error message that describes the exceptional
condition. It’s set when the exception object is created and can be read from the
exception with the getMessage() method. Most exceptions contain only this single
message, but a few add other data. The java.io.InterruptedIOException, for
example, adds a field named bytesTransferred that specifies how much input or
output was completed before the exceptional condition interrupted it.

The try/catch/finally Statement

The try/catch/finally statement is Java’s exception-handling mechanism. The
try clause of this statement establishes a block of code for exception handling.
This try block is followed by zero or more catch clauses, each of which is a block
of statements designed to handle a specific type of exception. The catch clauses
are followed by an optional finally block that contains cleanup code guaranteed
to be executed regardless of what happens in the try block. Both the catch and
finally clauses are optional, but every try block must be accompanied by at least
one or the other. The try, catch, and finally blocks all begin and end with curly
braces. These are a required part of the syntax and cannot be omitted, even if the
clause contains only a single statement.

The following code illustrates the syntax and purpose of the try/catch/finally
statement:

try {
 // Normally this code runs from the top of the block to the bottom
 // without problems. But it can sometimes throw an exception,
 // either directly with a throw statement or indirectly by calling
 // a method that throws an exception.
}
catch (SomeException e1) {
 // This block contains statements that handle an exception object
 // of type SomeException or a subclass of that type. Statements in
 // this block can refer to that exception object by the name e1.
}
catch (AnotherException e2) {
 // This block contains statements that handle an exception object
 // of type AnotherException or a subclass of that type. Statements
 // in this block can refer to that exception object by the name e2.
}
finally {
 // This block contains statements that are always executed
 // after we leave the try clause, regardless of whether we leave it:
 // 1) normally, after reaching the bottom of the block;
 // 2) because of a break, continue, or return statement;
 // 3) with an exception that is handled by a catch clause above; or
 // 4) with an uncaught exception that has not been handled.
 // If the try clause calls System.exit(), however, the interpreter
 // exits before the finally clause can be run.
}

Statements | 59

Java Syntax

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

try

The try clause simply establishes a block of code that either has its exceptions
handled or needs special cleanup code to be run when it terminates for any
reason. The try clause by itself doesn’t do anything interesting; it is the catch and
finally clauses that do the exception-handling and cleanup operations.

catch

A try block can be followed by zero or more catch clauses that specify code to
handle various types of exceptions. Each catch clause is declared with a single
argument that specifies the type of exceptions the clause can handle and also
provides a name the clause can use to refer to the exception object it is currently
handling. The type and name of an exception handled by a catch clause are
exactly like the type and name of an argument passed to a method, except that for
a catch clause, the argument type must be Throwable or one of its subclasses.

When an exception is thrown, the Java interpreter looks for a catch clause with an
argument of the same type as the exception object or a superclass of that type.
The interpreter invokes the first such catch clause it finds. The code within a
catch block should take whatever action is necessary to cope with the exceptional
condition. If the exception is a java.io.FileNotFoundException exception, for
example, you might handle it by asking the user to check his spelling and try
again. It is not required to have a catch clause for every possible exception; in
some cases the correct response is to allow the exception to propagate up and be
caught by the invoking method. In other cases, such as a programming error
signaled by NullPointerException, the correct response is probably not to catch
the exception at all, but allow it to propagate and have the Java interpreter exit
with a stack trace and an error message.

finally

The finally clause is generally used to clean up after the code in the try clause (e.g.,
close files and shut down network connections). What is useful about the finally
clause is that it is guaranteed to be executed if any portion of the try block is
executed, regardless of how the code in the try block completes. In fact, the only way
a try clause can exit without allowing the finally clause to be executed is by
invoking the System.exit() method, which causes the Java interpreter to stop
running.

In the normal case, control reaches the end of the try block and then proceeds to
the finally block, which performs any necessary cleanup. If control leaves the try
block because of a return, continue, or break statement, the finally block is
executed before control transfers to its new destination.

If an exception occurs in the try block and there is an associated catch block to
handle the exception, control transfers first to the catch block and then to the
finally block. If there is no local catch block to handle the exception, control
transfers first to the finally block, and then propagates up to the nearest
containing catch clause that can handle the exception.

If a finally block itself transfers control with a return, continue, break, or throw
statement or by calling a method that throws an exception, the pending control

60 | Chapter 2: Java Syntax from the Ground Up

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

transfer is abandoned, and this new transfer is processed. For example, if a
finally clause throws an exception, that exception replaces any exception that
was in the process of being thrown. If a finally clause issues a return statement,
the method returns normally, even if an exception has been thrown and has not
yet been handled.

try and finally can be used together without exceptions or any catch clauses. In
this case, the finally block is simply cleanup code that is guaranteed to be executed,
regardless of any break, continue, or return statements within the try clause.

In previous discussions of the for and continue statements, we’ve seen that a for
loop cannot be naively translated into a while loop because the continue state-
ment behaves slightly differently when used in a for loop than it does when used
in a while loop. The finally clause gives us a way to write a while loop that
handles the continue statement in the same way that a for loop does. Consider
the following generalized for loop:

for(initialize ; test ; update)
statement

The following while loop behaves the same, even if the statement block contains a
continue statement:

initialize ;
while (test) {
 try { statement }
 finally { update ; }
}

Note, however, that placing the update statement within a finally block causes
this while loop to respond to break statements differently than the for loop does.

The assert Statement

An assert statement is used to document and verify design assumptions in Java
code. This statement was added in Java 1.4 and cannot be used with previous
versions of the language. An assertion consists of the assert keyword followed
by a boolean expression that the programmer believes should always evaluate to
true. By default, assertions are not enabled, and the assert statement does not
actually do anything. It is possible to enable assertions as a debugging and
testing tool, however; when this is done, the assert statement evaluates the
expression. If it is indeed true, assert does nothing. On the other hand, if the
expression evaluates to false, the assertion fails, and the assert statement
throws a java.lang.AssertionError.

The assert statement may include an optional second expression, separated from the
first by a colon. When assertions are enabled and the first expression evaluates to
false, the value of the second expression is taken as an error code or error message
and is passed to the AssertionError() constructor. The full syntax of the statement is:

assert assertion ;

or:

assert assertion : errorcode ;

Statements | 61

Java Syntax

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

It is important to remember that the assertion must be a boolean expression,
which typically means that it contains a comparison operator or invokes a
boolean-valued method.

Compiling assertions

Because the assert statement was added in Java 1.4, and because assert was not
a reserved word prior to Java 1.4, the introduction of this new statement can
cause code that uses “assert” as an identifier to break. For this reason, the javac
compiler does not recognize the assert statement by default. To compile Java
code that uses the assert statement, you must use the command-line argument
-source 1.4. For example:

javac -source 1.4 ClassWithAssertions.java

In Java 1.4, the javac compiler allows “assert” to be used as an identifier unless
-source 1.4 is specified. If it finds assert used as an identifier, it issues an
incompatibility warning to encourage you to modify your code.

In Java 5.0, the javac compiler recognizes the assert statement (as well as all the
new Java 5.0 syntax) by default, and no special compiler arguments are required
to compile code that contains assertions. If you have legacy code that still uses
assert as an identifier, it will no longer compile by default in Java 5.0. If you can’t
fix it, you can compile it in Java 5.0 using the -source 1.3 option.

Enabling assertions

assert statements encode assumptions that should always be true. For efficiency,
it does not make sense to test assertions each time code is executed. Thus, by
default, assertions are disabled, and assert statements have no effect. The asser-
tion code remains compiled in the class files, however, so it can always be enabled
for testing, diagnostic, and debugging purposes. You can enable assertions, either
across the board or selectively, with command-line arguments to the Java inter-
preter. To enable assertions in all classes except for system classes, use the -ea
argument. To enable assertions in system classes, use -esa. To enable assertions
within a specific class, use -ea followed by a colon and the classname:

java -ea:com.example.sorters.MergeSort com.example.sorters.Test

To enable assertions for all classes in a package and in all of its subpackages,
follow the -ea argument with a colon, the package name, and three dots:

java -ea:com.example.sorters... com.example.sorters.Test

You can disable assertions in the same way, using the -da argument. For example,
to enable assertions throughout a package and then disable them in a specific
class or subpackage, use:

java -ea:com.example.sorters... -da:com.example.sorters.QuickSort
java -ea:com.example.sorters... -da:com.example.sorters.plugins...

If you prefer verbose command-line arguments, you can use -enableassertions
and -disableassertions instead of -ea and -da and -enablesystemassertions
instead of -esa.

62 | Chapter 2: Java Syntax from the Ground Up

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Java 1.4 added to java.lang.ClassLoader methods for enabling and disabling the
assertions for classes loaded through that ClassLoader. If you use a custom class
loader in your program and want to turn on assertions, you may be interested in
these methods. See ClassLoader in the reference section.

Using assertions

Because assertions are disabled by default and impose no performance penalty on
your code, you can use them liberally to document any assumptions you make
while programming. It may take some time to get used to this, but as you do, you’ll
find more and more uses for the assert statement. Suppose, for example, that
you’re writing a method in such a way that you know that the variable x is either 0
or 1. Without assertions, you might code an if statement that looks like this:

if (x == 0) {
 ...
}
else { // x is 1
 ...
}

The comment in this code is an informal assertion indicating that you believe that
within the body of the else clause, x will always equal 1.

Now suppose your code is later modified in such a way that x can take on a value
other than 0 and 1. The comment and the assumption that go along with it are no
longer valid, and this may cause a bug that is not immediately apparent or is diffi-
cult to localize. The solution in this situation is to convert your comment into an
assert statement. The code becomes:

if (x == 0) {
 ...
}
else {
 assert x == 1 : x // x must be 0 or 1
 ...
}

Now, if x somehow ends up holding an unexpected value, an AssertionError is
thrown, which makes the bug immediately apparent and easy to pinpoint. Further-
more, the second expression (following the colon) in the assert statement includes
the unexpected value of x as the “error message” of the AssertionError. This message
is not intended to mean anything to an end user, but to provide enough information
so that you know not just that an assertion failed but also what caused it to fail.

A similar technique is useful with switch statements. If you write a switch state-
ment without a default clause, you make an assumption about the set of possible
values for the switch expression. If you believe that no other value is possible, you
can add an assert statement to document and validate that fact. For example:

switch(x) {
 case -1: return LESS;
 case 0: return EQUALS;
 case 1: return GREATER;
 default: assert false:x; // Throw AssertionError if x is not -1, 0, or 1.
}

Statements | 63

Java Syntax

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Note that the form assert false; always fails. It is a useful “dead-end” statement
when you believe that the statement can never be reached.

Another common use of the assert statement is to test whether the arguments
passed to a method all have values that are legal for that method; this is also
known as enforcing method preconditions. For example:

private static Object[] subArray(Object[] a, int x, int y) {
 assert x <= y : "subArray: x > y"; // Precondition: x must be <= y
 // Now go on to create and return a subarray of a...
}

Note that this is a private method. The programmer has used an assert statement
to document a precondition of the subArray() method and state that she believes
that all methods that invoke this private method do in fact honor that precondi-
tion. She can state this because she has control over all the methods that invoke
subArray(). She can verify her belief by enabling assertions while testing the code.
But once the code is tested, if assertions are left disabled, the method does not
suffer the overhead of testing its arguments each time it is called. Note that the
programmer did not use an assert statement to test that argument a is non-null
and that the x and y arguments were legal indexes into that array. These implicit
preconditions are always tested by Java at runtime, and a failure results in an
unchecked NullPointerException or an ArrayIndexOutOfBoundsException, so an
assertion is not required for them.

It is important to understand that the assert statement is not suitable for
enforcing preconditions on public methods. A public method can be called from
anywhere, and the programmer cannot assert in advance that it will be invoked
correctly. To be robust, a public API must explicitly test its arguments and enforce
its preconditions each time it is called, whether or not assertions are enabled.

A related use of the assert statement is to verify a class invariant. Suppose you are
creating a class that represents a list of objects and allows objects to be inserted
and deleted but always maintains the list in sorted order. You believe that your
implementation is correct and that the insertion methods always leave the list in
sorted order, but you want to test this to be sure. You might write a method that
tests whether the list is actually sorted, then use an assert statement to invoke the
method at the end of each method that modifies the list. For example:

public void insert(Object o) {
 ... // Do the insertion here
 assert isSorted(); // Assert the class invariant here
}

When writing code that must be threadsafe, you must obtain locks (using a
synchronized method or statement) when required. One common use of the
assert statement in this situation is to verify that the current thread holds the lock
it requires:

assert Thread.holdsLock(data);

The Thread.holdsLock() method was added in Java 1.4 primarily for use with the
assert statement.

To use assertions effectively, you must be aware of a couple of fine points. First,
remember that your programs will sometimes run with assertions enabled and

64 | Chapter 2: Java Syntax from the Ground Up

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

sometimes with assertions disabled. This means that you should be careful not to
write assertion expressions that contain side effects. If you do, your code will run
differently when assertions are enabled than it will when they are disabled. There
are a few exceptions to this rule, of course. For example, if a method contains two
assert statements, the first can include a side effect that affects only the second
assertion. Another use of side effects in assertions is the following idiom that
determines whether assertions are enabled (which is not something that your code
should ever really need to do):

boolean assertions = false; // Whether assertions are enabled
assert assertions = true; // This assert never fails but has a side effect

Note that the expression in the assert statement is an assignment, not a compar-
ison. The value of an assignment expression is always the value assigned, so this
expression always evaluates to true, and the assertion never fails. Because this
assignment expression is part of an assert statement, the assertions variable is set
to true only if assertions are enabled.

In addition to avoiding side effects in your assertions, another rule for working
with the assert statement is that you should never try to catch an AssertionError
(unless you catch it at the top level simply so that you can display the error in a
more user-friendly fashion). If an AssertionError is thrown, it indicates that one
of the programmer’s assumptions has not held up. This means that the code is
being used outside of the parameters for which it was designed, and it cannot be
expected to work correctly. In short, there is no plausible way to recover from an
AssertionError, and you should not attempt to catch it.

Methods
A method is a named sequence of Java statements that can be invoked by other
Java code. When a method is invoked, it is passed zero or more values known as
arguments. The method performs some computations and, optionally, returns a
value. As described in “Expressions and Operators” earlier in this chapter, a
method invocation is an expression that is evaluated by the Java interpreter.
Because method invocations can have side effects, however, they can also be used
as expression statements. This section does not discuss method invocation, but
instead describes how to define methods.

Defining Methods

You already know how to define the body of a method; it is simply an arbitrary
sequence of statements enclosed within curly braces. What is more interesting
about a method is its signature.* The signature specifies the following:

• The name of the method

• The number, order, type, and name of the parameters used by the method

• The type of the value returned by the method

* In the Java Language Specification, the term “signature” has a technical meaning that is slightly
different than that used here. This book uses a less formal definition of method signature.

Methods | 65

Java Syntax

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

• The checked exceptions that the method can throw (the signature may also
list unchecked exceptions, but these are not required)

• Various method modifiers that provide additional information about the
method

A method signature defines everything you need to know about a method before
calling it. It is the method specification and defines the API for the method. The
reference section of this book is essentially a list of method signatures for all
publicly accessible methods of all publicly accessible classes of the Java platform.
In order to use the reference section of this book, you need to know how to read a
method signature. And, in order to write Java programs, you need to know how
to define your own methods, each of which begins with a method signature.

A method signature looks like this:

modifiers type name (paramlist) [throws exceptions]

The signature (the method specification) is followed by the method body (the
method implementation), which is simply a sequence of Java statements enclosed
in curly braces. If the method is abstract (see Chapter 3), the implementation is
omitted, and the method body is replaced with a single semicolon. In Java 5.0 and
later, the signature of a generic method may also include type variable declara-
tions. Generic methods and type variables are discussed in Chapter 4.

Here are some example method definitions, which begin with the signature and
are followed by the method body:

// This method is passed an array of strings and has no return value.
// All Java programs have a main entry point with this name and signature.
public static void main(String[] args) {
 if (args.length > 0) System.out.println("Hello " + args[0]);
 else System.out.println("Hello world");
}

// This method is passed two double arguments and returns a double.
static double distanceFromOrigin(double x, double y) {
 return Math.sqrt(x*x + y*y);
}

// This method is abstract which means it has no body.
// Note that it may throw exceptions when invoked.
protected abstract String readText(File f, String encoding)
 throws FileNotFoundException, UnsupportedEncodingException;

modifiers is zero or more special modifier keywords, separated from each other
by spaces. A method might be declared with the public and static modifiers, for
example. The allowed modifiers and their meanings are described in the next
section.

The type in a method signature specifies the return type of the method. If the
method does not return a value, type must be void. If a method is declared with a
non-void return type, it must include a return statement that returns a value of (or
convertible to) the declared type.

66 | Chapter 2: Java Syntax from the Ground Up

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

A constructor is a special kind of method used to initialize newly created objects.
As we’ll see in Chapter 3, constructors are defined just like methods, except that
their signatures do not include this type specification.

The name of a method follows the specification of its modifiers and type. Method
names, like variable names, are Java identifiers and, like all Java identifiers, may
contain letters in any language represented by the Unicode character set. It is
legal, and often quite useful, to define more than one method with the same
name, as long as each version of the method has a different parameter list.
Defining multiple methods with the same name is called method overloading. The
System.out.println() method we’ve seen so much of is an overloaded method.
One method by this name prints a string and other methods by the same name
print the values of the various primitive types. The Java compiler decides which
method to call based on the type of the argument passed to the method.

When you are defining a method, the name of the method is always followed by
the method’s parameter list, which must be enclosed in parentheses. The param-
eter list defines zero or more arguments that are passed to the method. The
parameter specifications, if there are any, each consist of a type and a name and
are separated from each other by commas (if there are multiple parameters).
When a method is invoked, the argument values it is passed must match the
number, type, and order of the parameters specified in this method signature line.
The values passed need not have exactly the same type as specified in the signa-
ture, but they must be convertible to those types without casting. C and C++
programmers should note that when a Java method expects no arguments, its
parameter list is simply (), not (void).

In Java 5.0 and later, it is possible to define and invoke methods that accept a vari-
able number of arguments, using a syntax known colloquially as varargs. Varargs
are covered in detail later in this chapter.

The final part of a method signature is the throws clause, which is used to list the
checked exceptions that a method can throw. Checked exceptions are a category of
exception classes that must be listed in the throws clauses of methods that can
throw them. If a method uses the throw statement to throw a checked exception,
or if it calls some other method that throws a checked exception and does not
catch or handle that exception, the method must declare that it can throw that
exception. If a method can throw one or more checked exceptions, it specifies this
by placing the throws keyword after the argument list and following it by the
name of the exception class or classes it can throw. If a method does not throw
any exceptions, it does not use the throws keyword. If a method throws more than
one type of exception, separate the names of the exception classes from each other
with commas. More on this in a bit.

Method Modifiers

The modifiers of a method consist of zero or more modifier keywords such as
public, static, or abstract. Here is a list of allowed modifiers and their mean-
ings. Note that in Java 5.0 and later, annotations, such as @Override, @Deprecated,
and @SuppressWarnings, are treated as modifiers and may be mixed in with the

Methods | 67

Java Syntax

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

modifier list. Anyone can define new annotation types, so it is not possible to list
all possible method annotations. See Chapter 4 for more on annotations.

abstract
An abstract method is a specification without an implementation. The curly
braces and Java statements that would normally comprise the body of the
method are replaced with a single semicolon. A class that includes an
abstract method must itself be declared abstract. Such a class is incomplete
and cannot be instantiated (see Chapter 3).

final
A final method may not be overridden or hidden by a subclass, which makes
it amenable to compiler optimizations that are not possible for regular
methods. All private methods are implicitly final, as are all methods of any
class that is declared final.

native
The native modifier specifies that the method implementation is written in
some “native” language such as C and is provided externally to the Java
program. Like abstract methods, native methods have no body: the curly
braces are replaced with a semicolon.

When Java was first released, native methods were sometimes used for effi-
ciency reasons. That is almost never necessary today. Instead, native methods
are used to interface Java code to existing libraries written in C or C++.
Native methods are implicitly platform-dependent, and the procedure for
linking the implementation with the Java class that declares the method is
dependent on the implementation of the Java virtual machine. Native
methods are not covered in this book.

public, protected, private
These access modifiers specify whether and where a method can be used
outside of the class that defines it. These very important modifiers are
explained in Chapter 3.

static
A method declared static is a class method associated with the class itself rather
than with an instance of the class. This is explained in detail in Chapter 3.

strictfp
A method declared strictfp must perform floating-point arithmetic using 32-
or 64-bit floating point formats strictly and may not take advantage of any
extended exponent bits available to the platform’s floating-point hardware. The
“fp” in this awkwardly named, rarely used modifier stands for “floating point.”

synchronized
The synchronized modifier makes a method threadsafe. Before a thread can
invoke a synchronized method, it must obtain a lock on the method’s class
(for static methods) or on the relevant instance of the class (for non-static
methods). This prevents two threads from executing the method at the same
time.

The synchronized modifier is an implementation detail (because methods can
make themselves threadsafe in other ways) and is not formally part of the

68 | Chapter 2: Java Syntax from the Ground Up

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

method specification or API. Good documentation specifies explicitly whether
a method is threadsafe; you should not rely on the presence or absence of the
synchronized keyword when working with multithreaded programs.

Declaring Checked Exceptions

In the discussion of the throw statement, we said that exceptions are Throwable
objects and that exceptions fall into two main categories, specified by the Error
and Exception subclasses. In addition to making a distinction between Error and
Exception classes, the Java exception-handling scheme also distinguishes between
checked and unchecked exceptions. Any exception object that is an Error is
unchecked. Any exception object that is an Exception is checked, unless it is a
subclass of java.lang.RuntimeException, in which case it is unchecked.
(RuntimeException is a subclass of Exception.)

The distinction between checked and unchecked exceptions has to do with the
circumstances under which the exceptions are thrown. Practically any method can
throw an unchecked exception at essentially any time. There is no way to predict an
OutOfMemoryError, for example, and any method that uses objects or arrays can
throw a NullPointerException if it is passed an invalid null argument. Checked
exceptions, on the other hand, arise only in specific, well-defined circumstances. If
you try to read data from a file, for example, you must at least consider the possi-
bility that a FileNotFoundException will be thrown if the specified file cannot be
found.

Java has different rules for working with checked and unchecked exceptions. If
you write a method that throws a checked exception, you must use a throws
clause to declare the exception in the method signature. The reason these types of
exceptions are called checked exceptions is that the Java compiler checks to make
sure you have declared them in method signatures and produces a compilation
error if you have not.

Even if you never throw an exception yourself, sometimes you must use a throws
clause to declare an exception. If your method calls a method that can throw a
checked exception, you must either include exception-handling code to handle
that exception or use throws to declare that your method can also throw that
exception. For example, the following method reads the first line of text from a
named file. It uses methods that can throw various types of java.io.IOException
objects, so it declares this fact with a throws clause:

public static String readFirstLine(String filename) throws IOException {
 BufferedReader in = new BufferedReader(new FileReader(filename));
 String firstline = in.readLine();
 in.close();
 return firstline;
}

How do you know if the method you are calling can throw a checked exception?
You can look at its method signature to find out. Or, failing that, the Java
compiler will tell you (by reporting a compilation error) if you’ve called a method
whose exceptions you must handle or declare.

Methods | 69

Java Syntax

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Variable-Length Argument Lists

In Java 5.0 and later, methods may be declared to accept, and may be invoked
with, variable numbers of arguments. Such methods are commonly known as
varargs methods. The new System.out.printf() method as well as the related
format() methods of String and java.util.Formatter use varargs. The similar,
but unrelated, format() method of java.text.MessageFormat has been converted
to use varargs as have a number of important methods from the Reflection API of
java.lang.reflect.

A variable-length argument list is declared by following the type of the last argu-
ment to the method with an ellipsis (...), indicating that this last argument can
be repeated zero or more times. For example:

public static int max(int first, int... rest) {
 int max = first;
 for(int i: rest) {
 if (i > max) max = i;
 }
 return max;
}

This max() method is declared with two arguments. The first is just a regular int
value. The second, however may be repeated zero or more times. All of the
following are legal invocations of max():

max(0)
max(1, 2)
max(16, 8, 4, 2, 1)

As you can tell from the for/in statement in the body of max(), the second argu-
ment is treated as an array of int values. Varargs methods are handled purely by
the compiler. To the Java interpreter, the max() method is indistinguishable from
this one:

public static int max(int first, int[] rest) { /* body omitted */ }

To convert a varargs signature to the “real” signature, simply replace ... with [].
Remember that only one ellipsis can appear in a parameter list, and it may only
appear on the last parameter in the list.

Since varargs methods are compiled into methods that expect an array of argu-
ments, invocations of those methods are compiled to include code that creates
and initializes such an array. So the call max(1,2,3) is compiled to this:

max(1, new int[] { 2, 3 })

If you already have method arguments stored in an array, it is perfectly legal for
you to pass them to the method that way, instead of writing them out individu-
ally. You can treat any ... argument as if it were declared as an array. The
converse is not true, however: you can only use varargs method invocation syntax
when the method is actually declared as a varargs method using an ellipsis.

Varargs methods interact particularly well with the new autoboxing feature of
Java 5.0 (see “Boxing and Unboxing Conversions” later in this chapter). A
method that has an Object... variable length argument list can take arguments of

70 | Chapter 2: Java Syntax from the Ground Up

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

any reference type because all objects and arrays are subclasses of Object. Further-
more, autoboxing allows you to invoke the method using primitive values as well:
the compiler boxes these up into wrapper objects as it builds the Object[] that is
the true argument to the method. The printf() and format() methods mentioned
at the beginning of this section are all declared with an Object... parameter.

One quirk arises with methods with an Object... parameter. It does not arise very
often in practice, but studying the quirk will solidify your understanding of
varargs. Recall that varargs methods can be invoked with an argument of array
type or any number of arguments of the element type. When a method is declared
with an Object... argument, you can pass an Object[] of arguments, or zero or
more individual Object arguments. But every Object[] is also an Object. What do
you do if you want to pass an Object[] as the single object argument to the
method? Consider the following code that uses the printf() method:

import static java.lang.System.out; // out now refers to System.out

// Here we invoke the varargs method with individual Object arguments.
// Note the use of autoboxing to convert primitives to wrapper objects
out.printf("%d %d %d\n", 1, 2, 3);

// This line does the same thing but passes the arguments in an array
// that has already been created:
Object[] args = new Object[] { 1, 2, 3 };
out.printf("%d %d %d\n", args);

// Now consider the following Object[], which we wish to pass
// as a single argument, not as an array of two arguments.
Object[] arg = new Object[] { "hello", "world" };
// These two lines do the same thing: print "hello". Not what we want.
out.printf("%s\n", "hello", "world");
out.printf("%s\n", arg);

// If we want arg to be treated as a single Object argument, we need to
// pass it as an the element of an array. Here's one way:
out.printf("%s\n", new Object[] { arg });

// An easier way is to convince the compiler to create the array itself.
// We use a cast to say that arg is a single Object argument, not an array:
out.printf("%s\n", (Object)arg);

Covariant Return Types

As part of the addition of generic types, Java 5.0 now also supports covariant
returns. This means that an overriding method may narrow the return type of the
method it overrides.* The following example makes this clearer:

class Point2D { int x, y; }
class Point3D extends Point2D { int z; }

* Method overriding is not the same as method overloading discussed earlier in this section. Meth-
od overriding involves subclassing and is covered in Chapter 3. If you are not already familiar with
these concepts, you should skip this section for now and return to it later.

Classes and Objects Introduced | 71

Java Syntax

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

class Event2D {
 public Point2D getLocation() { return new Point2D(); }
}

class Event3D extends Event2D {
 @Override public Point3D getLocation() { return new Point3D(); }
}

This code defines four classes: a two-dimensional point, a three-dimensional
point, and event objects that represent an event in two-dimensional space and in
three-dimensional space. Each event class has a getLocation() method. The
Event2D method returns a Point2D object. Event3D subclasses Event2D and over-
rides getLocation(). Its version of the method sensibly returns a Point3D. Because
every Point3D object is also a Point2D object, this is a perfectly reasonable thing to
do. It simply wasn’t allowed prior to Java 5.0.

In Java 1.4 and earlier, the return type of an overriding method must be identical
to the type of the method it overrides. In order to compile under Java 1.4, the
Event3D.getLocation() method would have to be modified to have a return type
of Point2D. It could still return a Point3D object, of course, but the caller would
have to cast the return value from Point2D to Point3D.

The @Override in the code example is an annotation, covered in Chapter 4. This
one is a compile-time assertion that the method overrides something. The
compiler would have produced a compilation error if the assertion failed.

Classes and Objects Introduced
Now that we have introduced operators, expressions, statements, and methods,
we can finally talk about classes. A class is a named collection of fields that hold
data values and methods that operate on those values. Classes are just one of five
reference types supported by Java, but they are the most important type. Classes
are thoroughly documented in a chapter of their own, Chapter 3. We introduce
them here, however, because they are the next higher level of syntax after
methods, and because the rest of this chapter requires a basic familiarity with the
concept of class and the basic syntax for defining a class, instantiating it, and
using the resulting object.

The most important thing about classes is that they define new data types. For
example, you might define a class named Point to represent a data point in the
two-dimensional Cartesian coordinate system. This class would define fields (each
of type double) to hold the X and Y coordinates of a point and methods to manip-
ulate and operate on the point. The Point class is a new data type.

When discussing data types, it is important to distinguish between the data type
itself and the values the data type represents. char is a data type: it represents
Unicode characters. But a char value represents a single specific character. A class
is a data type; a class value is called an object. We use the name class because each
class defines a type (or kind, or species, or class) of objects. The Point class is a
data type that represents X,Y points, while a Point object represents a single
specific X,Y point. As you might imagine, classes and their objects are closely
linked. In the sections that follow, we will discuss both.

72 | Chapter 2: Java Syntax from the Ground Up

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Defining a Class

Here is a possible definition of the Point class we have been discussing:

/** Represents a Cartesian (x,y) point */
public class Point {
 public double x, y; // The coordinates of the point
 public Point(double x, double y) { // A constructor that
 this.x = x; this.y = y; // initializes the fields
 }

 public double distanceFromOrigin() { // A method that operates on
 return Math.sqrt(x*x + y*y); // the x and y fields
 }
}

This class definition is stored in a file named Point.java and compiled to a file
named Point.class, where it is available for use by Java programs and other classes.
This class definition is provided here for completeness and to provide context, but
don’t expect to understand all the details just yet; most of Chapter 3 is devoted to
the topic of defining classes.

Keep in mind that you don’t have to define every class you want to use in a Java
program. The Java platform includes thousands of predefined classes that are
guaranteed to be available on every computer that runs Java.

Creating an Object

Now that we have defined the Point class as a new data type, we can use the
following line to declare a variable that holds a Point object:

Point p;

Declaring a variable to hold a Point object does not create the object itself,
however. To actually create an object, you must use the new operator. This
keyword is followed by the object’s class (i.e., its type) and an optional argument
list in parentheses. These arguments are passed to the constructor method for the
class, which initializes internal fields in the new object:

// Create a Point object representing (2,-3.5).
// Declare a variable p and store a reference to the new Point object in it.
Point p = new Point(2.0, -3.5);

// Create some other objects as well
Date d = new Date(); // A Date object that represents the current time
Set words = new HashSet(); // A HashSet object to hold a set of objects

The new keyword is by far the most common way to create objects in Java. A few
other ways are also worth mentioning. First, a couple of classes are so important
that Java defines special literal syntax for creating objects of those types (as we
discuss later in this section). Second, Java supports a dynamic loading mecha-
nism that allows programs to load classes and create instances of those classes
dynamically. This dynamic instantiation is done with the newInstance() methods
of java.lang.Class and java.lang.reflect.Constructor. Finally, objects can also

Classes and Objects Introduced | 73

Java Syntax

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

be created by deserializing them. In other words, an object that has had its state
saved, or serialized, usually to a file, can be recreated using the java.io.
ObjectInputStream class.

Using an Object

Now that we’ve seen how to define classes and instantiate them by creating
objects, we need to look at the Java syntax that allows us to use those objects.
Recall that a class defines a collection of fields and methods. Each object has its
own copies of those fields and has access to those methods. We use the dot char-
acter (.) to access the named fields and methods of an object. For example:

Point p = new Point(2, 3); // Create an object
double x = p.x; // Read a field of the object
p.y = p.x * p.x; // Set the value of a field
double d = p.distanceFromOrigin(); // Access a method of the object

This syntax is central to object-oriented programming in Java, so you’ll see it a
lot. Note, in particular, the expression p.distanceFromOrigin(). This tells the Java
compiler to look up a method named distanceFromOrigin() defined by the class
Point and use that method to perform a computation on the fields of the object p.
We’ll cover the details of this operation in Chapter 3.

Object Literals

In our discussion of primitive types, we saw that each primitive type has a literal
syntax for including values of the type literally into the text of a program. Java
also defines a literal syntax for a few special reference types, as described next.

String literals

The String class represents text as a string of characters. Since programs usually
communicate with their users through the written word, the ability to manipulate
strings of text is quite important in any programming language. In some
languages, strings are a primitive type, on a par with integers and characters. In
Java, however, strings are objects; the data type used to represent text is the
String class.

Because strings are such a fundamental data type, Java allows you to include text
literally in programs by placing it between double-quote (") characters. For
example:

String name = "David";
System.out.println("Hello, " + name);

Don’t confuse the double-quote characters that surround string literals with the
single-quote (or apostrophe) characters that surround char literals. String literals
can contain any of the escape sequences char literals can (see Table 2-2). Escape
sequences are particularly useful for embedding double-quote characters within
double-quoted string literals. For example:

String story = "\t\"How can you stand it?\" he asked sarcastically.\n";

74 | Chapter 2: Java Syntax from the Ground Up

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

String literals cannot contain comments and may consist of only a single line. Java
does not support any kind of continuation-character syntax that allows two sepa-
rate lines to be treated as a single line. If you need to represent a long string of text
that does not fit on a single line, break it into independent string literals and use
the + operator to concatenate the literals. For example:

String s = "This is a test of the // This is illegal; string literals
 emergency broadcast system"; // cannot be broken across lines.

String s = "This is a test of the " + // Do this instead
 "emergency broadcast system";

This concatenation of literals is done when your program is compiled, not when it
is run, so you do not need to worry about any kind of performance penalty.

Type literals

The second type that supports its own special object literal syntax is the class
named Class. Instances of the Class class represent a Java data type. To include
a Class object literally in a Java program, follow the name of any data type with
.class. For example:

Class typeInt = int.class;
Class typeIntArray = int[].class;
Class typePoint = Point.class;

The null reference

The null keyword is a special literal value that is a reference to nothing, or an
absence of a reference. The null value is unique because it is a member of every
reference type. You can assign null to variables of any reference type. For
example:

String s = null;
Point p = null;

Arrays
An array is a special kind of object that holds zero or more primitive values or
references. These values are held in the elements of the array, which are unnamed
variables referred to by their position or index. The type of an array is character-
ized by its element type, and all elements of the array must be of that type.

Array elements are numbered starting with zero, and valid indexes range from
zero to the number of elements minus one. The array element with index 1, for
example, is the second element in the array. The number of elements in an array is
its length. The length of an array is specified when the array is created, and it
never changes.

The element type of an array may be any valid Java type, including array types.
This means that Java supports arrays of arrays, which provide a kind of multi-
dimensional array capability. Java does not support the matrix-style
multidimensional arrays found in some languages.

Arrays | 75

Java Syntax

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Array Types

Array types are reference types, just as classes are. Instances of arrays are objects,
just as the instances of a class are.* Unlike classes, array types do not have to be
defined. Simply place square brackets after the element type. For example, the
following code declares three variables of array type:

byte b; // byte is a primitive type
byte[] arrayOfBytes; // byte[] is an array type: array of byte
byte[][] arrayOfArrayOfBytes; // byte[][] is another type: array of byte[]
String[] points; // String[] is an array of String objects

The length of an array is not part of the array type. It is not possible, for example,
to declare a method that expects an array of exactly four int values, for example.
If a method parameter is of type int[], a caller can pass an array with any number
(including zero) of elements.

Array types are not classes, but array instances are objects. This means that arrays
inherit the methods of java.lang.Object. Arrays implement the Cloneable inter-
face and override the clone() method to guarantee that an array can always be
cloned and that clone() never throws a CloneNotSupportedException. Arrays also
implement Serializable so that any array can be serialized if its element type can
be serialized. Finally, all arrays have a public final int field named length that
specifies the number of elements in the array.

Array type widening conversions

Since arrays extend Object and implement the Cloneable and Serializable inter-
faces, any array type can be widened to any of these three types. But certain array
types can also be widened to other array types. If the element type of an array is a
reference type T, and T is assignable to a type S, the array type T[] is assignable to
the array type S[]. Note that there are no widening conversions of this sort for
arrays of a given primitive type. As examples, the following lines of code show
legal array widening conversions:

String[] arrayOfStrings; // Created elsewhere
int[][] arrayOfArraysOfInt; // Created elsewhere
// String is assignable to Object, so String[] is assignable to Object[]
Object[] oa = arrayOfStrings;
// String implements Comparable, so a String[] can be considered a Comparable[]
Comparable[] ca = arrayOfStrings;
// An int[] is an Object, so int[][] is assignable to Object[]
Object[] oa2 = arrayOfArraysOfInt;
// All arrays are cloneable, serializable Objects
Object o = arrayOfStrings;
Cloneable c = arrayOfArraysOfInt;
Serializable s = arrayOfArraysOfInt[0];

* There is a terminology difficulty when discussing arrays. Unlike with classes and their instances,
we use the term “array” for both the array type and the array instance. In practice, it is usually
clear from context whether a type or a value is being discussed.

76 | Chapter 2: Java Syntax from the Ground Up

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

This ability to widen an array type to another array type means that the compile-
time type of an array is not always the same as its runtime type. The compiler
must usually insert runtime checks before any operation that stores a reference
value into an array element to ensure that the runtime type of the value matches
the runtime type of the array element. If the runtime check fails, an
ArrayStoreException is thrown.

C compatibility syntax

As we’ve seen, an array type is written simply by placing brackets after the
element type. For compatibility with C and C++, however, Java supports an alter-
native syntax in variable declarations: brackets may be placed after the name of
the variable instead of, or in addition to, the element type. This applies to local
variables, fields, and method parameters. For example:

// This line declares local variables of type int, int[] and int[][]
int justOne, arrayOfThem[], arrayOfArrays[][];

// These three lines declare fields of the same array type:
public String[][] aas1; // Preferred Java syntax
public String aas2[][]; // C syntax
public String[] aas3[]; // Confusing hybrid syntax

// This method signature includes two parameters with the same type
public static double dotProduct(double[] x, double y[]) { ... }

This compatibility syntax is uncommon, and its use is strongly discouraged.

Creating and Initializing Arrays

To create an array value in Java, you use the new keyword, just as you do to create
an object. Array types don’t have constructors, but you are required to specify a
length whenever you create an array. Specify the desired size of your array as a
nonnegative integer between square brackets:

byte[] buffer = new byte[1024]; // Create a new array to hold 1024 bytes
String[] lines = new String[50]; // Create an array of 50 references to strings

When you create an array with this syntax, each of the array elements is automati-
cally initialized to the same default value that is used for the fields of a class: false
for boolean elements, '\u0000' for char elements, 0 for integer elements, 0.0 for
floating-point elements, and null for elements of reference type.

Array creation expressions can also be used to create and initialize a multidimen-
sional rectangular array of arrays. This syntax is somewhat more complicated and
is explained later in this section.

Array initializers

To create an array and initialize its elements in a single expression, omit the array
length and follow the square brackets with a comma-separated list of expressions
within curly braces. The type of each expression must be assignable to the
element type of the array, of course. The length of the array that is created is equal

Arrays | 77

Java Syntax

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

to the number of expressions. It is legal, but not necessary, to include a trailing
comma following the last expression in the list. For example:

String[] greetings = new String[] { "Hello", "Hi", "Howdy" };
int[] smallPrimes = new int[] { 2, 3, 5, 7, 11, 13, 17, 19, };

Note that this syntax allows arrays to be created, initialized, and used without
ever being assigned to a variable. In a sense these array creation expressions are
anonymous array literals. Here are examples:

// Call a method, passing an anonymous array literal that contains two strings
String response = askQuestion("Do you want to quit?",
 new String[] {"Yes", "No"});

// Call another method with an anonymous array (of anonymous objects)
double d = computeAreaOfTriangle(new Point[] { new Point(1,2),
 new Point(3,4),
 new Point(3,2) });

When an array initializer is part of a variable declaration, you may omit the new
keyword and element type and list the desired array elements within curly braces:

String[] greetings = { "Hello", "Hi", "Howdy" };
int[] powersOfTwo = {1, 2, 4, 8, 16, 32, 64, 128};

The Java Virtual Machine architecture does not support any kind of efficient array
initialization. In other words, array literals are created and initialized when the
program is run, not when the program is compiled. Consider the following array
literal:

int[] perfectNumbers = {6, 28};

This is compiled into Java byte codes that are equivalent to:

int[] perfectNumbers = new int[2];
perfectNumbers[0] = 6;
perfectNumbers[1] = 28;

If you want to initialize a large array, you should think twice before including the
values literally in the program, since the Java compiler has to emit lots of Java byte
codes to initialize the array. It may be more space-efficient to store your data in an
external file and read it into the program at runtime.

The fact that Java does all array initialization at runtime has an important corol-
lary, however. It means that the expressions in an array initializer may be
computed at runtime and need not be compile-time constants. For example:

Point[] points = { circle1.getCenterPoint(), circle2.getCenterPoint() };

Using Arrays

Once an array has been created, you are ready to start using it. The following
sections explain basic access to the elements of an array and cover common
idioms of array usage such as iterating through the elements of an array and
copying an array or part of an array.

78 | Chapter 2: Java Syntax from the Ground Up

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Accessing array elements

The elements of an array are variables. When an array element appears in an
expression, it evaluates to the value held in the element. And when an array
element appears on the left-hand side of an assignment operator, a new value is
stored into that element. Unlike a normal variable, however, an array element has
no name, only a number. Array elements are accessed using a square bracket nota-
tion. If a is an expression that evaluates to an array reference, you index that array
and refer to a specific element with a[i], where i is an integer literal or an expres-
sion that evaluates to an int. For example:

String[] responses = new String[2]; // Create an array of two strings
responses[0] = "Yes"; // Set the first element of the array
responses[1] = "No"; // Set the second element of the array

// Now read these array elements
System.out.println(question + " (" + responses[0] + "/" +
 responses[1] + "): ");

// Both the array reference and the array index may be more complex expressions
double datum = data.getMatrix()[data.row()*data.numColumns() + data.column()];

The array index expression must be of type int, or a type that can be widened to
an int: byte, short, or even char. It is obviously not legal to index an array with a
boolean, float, or double value. Remember that the length field of an array is an
int and that arrays may not have more than Integer.MAX_VALUE elements. Indexing
an array with an expression of type long generates a compile-time error, even if
the value of that expression at runtime would be within the range of an int.

Array bounds

Remember that the first element of an array a is a[0] , the second element is a[1]
and the last is a[a.length-1]. If you are accustomed to a language in which the
arrays are 1-based, 0-based arrays take some getting used to.

A common bug involving arrays is use of an index that is too small (a negative
index) or too large (greater than or equal to the array length). In languages like C
or C++, accessing elements before the beginning or after the end of an array yields
unpredictable behavior that can vary from invocation to invocation and platform
to platform. Such bugs may not always be caught, and if a failure occurs, it may
be at some later time. While it is just as easy to write faulty array indexing code in
Java, Java guarantees predictable results by checking every array access at
runtime. If an array index is too small or too large, Java throws an
ArrayIndexOutOfBoundsException immediately.

Iterating arrays

It is common to write loops that iterate through each of the elements of an array
in order to perform some operation on it. This is typically done with a for loop.
The following code, for example, computes the sum of an array of integers:

int[] primes = { 2, 3, 5, 7, 11, 13, 17, 19 };
int sumOfPrimes = 0;

Arrays | 79

Java Syntax

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

for(int i = 0; i < primes.length; i++)
 sumOfPrimes += primes[i];

The structure of this for loop is idiomatic, and you’ll see it frequently.

In Java 5.0 and later, arrays can also be iterated with the for/in loop. The
summing code could be rewritten succinctly as follows:

for(int p : primes) sumOfPrimes += p;

Copying arrays

All array types implement the Cloneable interface, and any array can be copied by
invoking its clone() method. Note that a cast is required to convert the return
value to the appropriate array type, but that the clone() method of arrays is guar-
anteed not to throw CloneNotSupportedException:

int[] data = { 1, 2, 3 };
int[] copy = (int[]) data.clone();

The clone() method makes a shallow copy. If the element type of the array is a
reference type, only the references are copied, not the referenced objects them-
selves. Because the copy is shallow, any array can be cloned, even if the element
type is not itself Cloneable.

Sometimes you simply want to copy elements from one existing array to another
existing array. The System.arraycopy() method is designed to do this efficiently,
and you can assume that Java VM implementations performs this method using
high-speed block copy operations on the underlying hardware.

arraycopy() is a straightforward function that is difficult to use only because it
has five arguments to remember. First pass the source array from which elements
are to be copied. Second, pass the index of the start element in that array. Pass the
destination array and the destination index as the third and fourth arguments.
Finally, as the fifth argument, specify the number of elements to be copied.

arraycopy() works correctly even for overlapping copies within the same array.
For example, if you’ve “deleted” the element at index 0 from array a and want to
shift the elements between indexes 1 and n down one so that they occupy indexes
0 through n-1 you could do this:

System.arraycopy(a, 1, a, 0, n);

Array utilities

The java.util.Arrays class contains a number of static utility methods for
working with arrays. Most of these methods are heavily overloaded, with versions
for arrays of each primitive type and another version for arrays of objects. The
sort() and binarySearch() methods are particularly useful for sorting and
searching arrays. The equals() method allows you to compare the content of two
arrays. The Arrays.toString() method is useful when you want to convert array
content to a string, such as for debugging or logging output.

As of Java 5.0, the Arrays class includes deepEquals(), deepHashCode(), and
deepToString() methods that work correctly for multidimensional arrays.

80 | Chapter 2: Java Syntax from the Ground Up

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Multidimensional Arrays

As we’ve seen, an array type is written as the element type followed by a pair of
square brackets. An array of char is char[], and an array of arrays of char is
char[][]. When the elements of an array are themselves arrays, we say that the
array is multidimensional. In order to work with multidimensional arrays, you
need to understand a few additional details.

Imagine that you want to use a multidimensional array to represent a multiplica-
tion table:

int[][] products; // A multiplication table

Each of the pairs of square brackets represents one dimension, so this is a two-
dimensional array. To access a single int element of this two-dimensional array,
you must specify two index values, one for each dimension. Assuming that this
array was actually initialized as a multiplication table, the int value stored at any
given element would be the product of the two indexes. That is, products[2][4]
would be 8, and products[3][7] would be 21.

To create a new multidimensional array, use the new keyword and specify the size
of both dimensions of the array. For example:

int[][] products = new int[10][10];

In some languages, an array like this would be created as a single block of 100 int
values. Java does not work this way. This line of code does three things:

• Declares a variable named products to hold an array of arrays of int.

• Creates a 10-element array to hold 10 arrays of int.

• Creates 10 more arrays, each of which is a 10-element array of int. It assigns
each of these 10 new arrays to the elements of the initial array. The default
value of every int element of each of these 10 new arrays is 0.

To put this another way, the previous single line of code is equivalent to the
following code:

int[][] products = new int[10][]; // An array to hold 10 int[] values
for(int i = 0; i < 10; i++) // Loop 10 times...
 products[i] = new int[10]; // ...and create 10 arrays

The new keyword performs this additional initialization automatically for you. It
works with arrays with more than two dimensions as well:

float[][][] globalTemperatureData = new float[360][180][100];

When using new with multidimensional arrays, you do not have to specify a size
for all dimensions of the array, only the leftmost dimension or dimensions. For
example, the following two lines are legal:

float[][][] globalTemperatureData = new float[360][][];
float[][][] globalTemperatureData = new float[360][180][];

The first line creates a single-dimensional array, where each element of the array
can hold a float[][]. The second line creates a two-dimensional array, where
each element of the array is a float[]. If you specify a size for only some of the

Reference Types | 81

Java Syntax

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

dimensions of an array, however, those dimensions must be the leftmost ones.
The following lines are not legal:

float[][][] globalTemperatureData = new float[360][][100]; // Error!
float[][][] globalTemperatureData = new float[][180][100]; // Error!

Like a one-dimensional array, a multidimensional array can be initialized using an
array initializer. Simply use nested sets of curly braces to nest arrays within arrays.
For example, we can declare, create, and initialize a 5×5 multiplication table like this:

int[][] products = { {0, 0, 0, 0, 0},
 {0, 1, 2, 3, 4},
 {0, 2, 4, 6, 8},
 {0, 3, 6, 9, 12},
 {0, 4, 8, 12, 16} };

Or, if you want to use a multidimensional array without declaring a variable, you
can use the anonymous initializer syntax:

boolean response = bilingualQuestion(question, new String[][] {
 { "Yes", "No" },
 { "Oui", "Non" }});

When you create a multidimensional array using the new keyword, you always get
a rectangular array: one in which all the array values for a given dimension have
the same size. This is perfect for rectangular data structures, such as matrices.
However, because multidimensional arrays are implemented as arrays of arrays in
Java, instead of as a single rectangular block of elements, you are in no way
constrained to use rectangular arrays. For example, since our multiplication table
is symmetrical diagonally from top left to bottom right, we can represent the same
information in a nonrectangular array with fewer elements:

int[][] products = { {0},
 {0, 1},
 {0, 2, 4},
 {0, 3, 6, 9},
 {0, 4, 8, 12, 16} };

When working with multidimensional arrays, you’ll often find yourself using
nested loops to create or initialize them. For example, you can create and initialize
a large triangular multiplication table as follows:

int[][] products = new int[12][]; // An array of 12 arrays of int.
for(int row = 0; row < 12; row++) { // For each element of that array,
 products[row] = new int[row+1]; // allocate an array of int.
 for(int col = 0; col < row+1; col++) // For each element of the int[],
 products[row][col] = row * col; // initialize it to the product.
}

Reference Types
Now that we’ve covered arrays and introduced classes and objects, we can turn to
a more general description of reference types. Classes and arrays are two of Java’s
five kinds of reference types. Classes were introduced earlier and are covered in
complete detail, along with interfaces, in Chapter 3. Enumerated types and anno-
tation types are reference types introduced in Java 5.0 (see Chapter 4).

82 | Chapter 2: Java Syntax from the Ground Up

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

This section does not cover specific syntax for any particular reference type, but
instead explains the general behavior of reference types and illustrates how they
differ from Java’s primitive types. In this section, the term object refers to a value
or instance of any reference type, including arrays.

Reference vs. Primitive Types

Reference types and objects differ substantially from primitive types and their
primitive values:

• Eight primitive types are defined by the Java language. Reference types are
user-defined, so there is an unlimited number of them. For example, a pro-
gram might define a class named Point and use objects of this newly defined
type to store and manipulate X,Y points in a Cartesian coordinate system.
The same program might use an array of characters—of type char[]—to
store text and might use an array of Point objects—of type Point[]—to store
a sequence of points.

• Primitive types represent single values. Reference types are aggregate types
that hold zero or more primitive values or objects. Our hypothetical Point
class, for example, might hold two double values to represent the X and Y
coordinates of the points. The char[] and Point[] array types are obviously
aggregate types because they hold a sequence of primitive char values or
Point objects.

• Primitive types require between one and eight bytes of memory. When a
primitive value is stored in a variable or passed to a method, the computer
makes a copy of the bytes that hold the value. Objects, on the other hand,
may require substantially more memory. Memory to store an object is
dynamically allocated on the heap when the object is created and this mem-
ory is automatically “garbage-collected” when the object is no longer needed.
When an object is assigned to a variable or passed to a method, the memory
that represents the object is not copied. Instead, only a reference to that
memory is stored in the variable or passed to the method.

This last difference between primitive and reference types explains why reference
types are so named. The sections that follow are devoted to exploring the substan-
tial differences between types that are manipulated by value and types that are
manipulated by reference.

Before moving on, however, it is worth briefly considering the nature of refer-
ences. A reference is simply some kind of reference to an object. References are
completely opaque in Java and the representation of a reference is an implementa-
tion detail of the Java interpreter. If you are a C programmer, however, you can
safely imagine a reference as a pointer or a memory address. Remember, though,
that Java programs cannot manipulate references in any way. Unlike pointers in C
and C++, references cannot be converted to or from integers, and they cannot be
incremented or decremented. C and C++ programmers should also note that Java
does not support the & address-of operator or the * and -> dereference operators.
In Java, primitive types are always handled exclusively by value, and objects are
always handled exclusively by reference: the . operator in Java is more like the ->
operator in C and C++ than it is like the . operator of those languages.

Reference Types | 83

Java Syntax

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Copying Objects

The following code manipulates a primitive int value:

int x = 42;
int y = x;

After these lines execute, the variable y contains a copy of the value held in the
variable x. Inside the Java VM, there are two independent copies of the 32-bit
integer 42.

Now think about what happens if we run the same basic code but use a reference
type instead of a primitive type:

Point p = new Point(1.0, 2.0);
Point q = p;

After this code runs, the variable q holds a copy of the reference held in the vari-
able p. There is still only one copy of the Point object in the VM, but there are
now two copies of the reference to that object. This has some important implica-
tions. Suppose the two previous lines of code are followed by this code:

System.out.println(p.x); // Print out the X coordinate of p: 1.0
q.x = 13.0; // Now change the X coordinate of q
System.out.println(p.x); // Print out p.x again; this time it is 13.0

Since the variables p and q hold references to the same object, either variable can
be used to make changes to the object, and those changes are visible through the
other variable as well.

This behavior is not specific to objects; the same thing happens with arrays, as
illustrated by the following code:

char[] greet = { 'h','e','l','l','o' }; // greet holds an array reference
char[] cuss = greet; // cuss holds the same reference
cuss[4] = '!'; // Use reference to change an element
System.out.println(greet); // Prints "hell!"

A similar difference in behavior between primitive types and reference types
occurs when arguments are passed to methods. Consider the following method:

void changePrimitive(int x) {
 while(x > 0)
 System.out.println(x--);
}

When this method is invoked, the method is given a copy of the argument used to
invoke the method in the parameter x. The code in the method uses x as a loop
counter and decrements it to zero. Since x is a primitive type, the method has its
own private copy of this value, so this is a perfectly reasonable thing to do.

On the other hand, consider what happens if we modify the method so that the
parameter is a reference type:

void changeReference(Point p) {
 while(p.x > 0)
 System.out.println(p.x--);
}

84 | Chapter 2: Java Syntax from the Ground Up

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

When this method is invoked, it is passed a private copy of a reference to a Point
object and can use this reference to change the Point object. Consider the
following:

Point q = new Point(3.0, 4.5); // A point with an X coordinate of 3
changeReference(q); // Prints 3,2,1 and modifies the Point
System.out.println(q.x); // The X coordinate of q is now 0!

When the changeReference() method is invoked, it is passed a copy of the refer-
ence held in variable q. Now both the variable q and the method parameter p hold
references to the same object. The method can use its reference to change the
contents of the object. Note, however, that it cannot change the contents of the
variable q. In other words, the method can change the Point object beyond recog-
nition, but it cannot change the fact that the variable q refers to that object.

The title of this section is “Copying Objects,” but, so far, we’ve only seen copies
of references to objects, not copies of the objects and arrays themselves. To make
an actual copy of an object, you must use the special clone() method (inherited
by all objects from java.lang.Object):

Point p = new Point(1,2); // p refers to one object
Point q = (Point) p.clone(); // q refers to a copy of that object
q.y = 42; // Modify the copied object, but not the original

int[] data = {1,2,3,4,5}; // An array
int[] copy = (int[]) data.clone(); // A copy of the array

Note that a cast is necessary to coerce the return value of the clone() method to
the correct type. There are a couple of points you should be aware of when using
clone(). First, not all objects can be cloned. Java only allows an object to be
cloned if the object’s class has explicitly declared itself to be cloneable by imple-
menting the Cloneable interface. (We haven’t discussed interfaces or how they are
implemented yet; that is covered in Chapter 3.) The definition of Point that we
showed earlier does not actually implement this interface, so our Point type, as
implemented, is not cloneable. Note, however, that arrays are always cloneable. If
you call the clone() method for a noncloneable object, it throws a
CloneNotSupportedException. When you use the clone() method, you may want
to use it within a try block to catch this exception.

The second thing you need to understand about clone() is that, by default, it
creates a shallow copy of an object. The copied object contains copies of all the
primitive values and references in the original object. In other words, any refer-
ences in the object are copied, not cloned; clone() does not recursively make
copies of the objects referred to by those references. A class may need to override
this shallow copy behavior by defining its own version of the clone() method that
explicitly performs a deeper copy where needed. To understand the shallow copy
behavior of clone(), consider cloning a two-dimensional array of arrays:

int[][] data = {{1,2,3}, {4,5}}; // An array of 2 references
int[][] copy = (int[][]) data.clone(); // Copy the 2 refs to a new array
copy[0][0] = 99; // This changes data[0][0] too!
copy[1] = new int[] {7,8,9}; // This does not change data[1]

Reference Types | 85

Java Syntax

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

If you want to make a deep copy of this multidimensional array, you have to copy
each dimension explicitly:

int[][] data = {{1,2,3}, {4,5}}; // An array of 2 references
int[][] copy = new int[data.length][]; // A new array to hold copied arrays
for(int i = 0; i < data.length; i++)
 copy[i] = (int[]) data[i].clone();

Comparing Objects

We’ve seen that primitive types and reference types differ significantly in the way
they are assigned to variables, passed to methods, and copied. The types also
differ in the way they are compared for equality. When used with primitive values,
the equality operator (= =) simply tests whether two values are identical (i.e.,
whether they have exactly the same bits). With reference types, however, = =
compares references, not actual objects. In other words, = = tests whether two
references refer to the same object; it does not test whether two objects have the
same content. For example:

String letter = "o";
String s = "hello"; // These two String objects
String t = "hell" + letter; // contain exactly the same text.
if (s == t) System.out.println("equal"); // But they are not equal!

byte[] a = { 1, 2, 3 }; // An array.
byte[] b = (byte[]) a.clone(); // A copy with identical content.
if (a == b) System.out.println("equal"); // But they are not equal!

When working with reference types, there are two kinds of equality: equality of
reference and equality of object. It is important to distinguish between these two
kinds of equality. One way to do this is to use the word “identical” when talking
about equality of references and the word “equal” when talking about two distinct
objects that have the same content. To test two nonidentical objects for equality,
pass one of them to the equals() method of the other:

String letter = "o";
String s = "hello"; // These two String objects
String t = "hell" + letter; // contain exactly the same text.
if (s.equals(t)) // And the equals() method
 System.out.println("equal"); // tells us so.

All objects inherit an equals() method (from Object), but the default implemen-
tation simply uses = = to test for identity of references, not equality of content. A
class that wants to allow objects to be compared for equality can define its own
version of the equals() method. Our Point class does not do this, but the String
class does, as indicated in the code example. You can call the equals() method
on an array, but it is the same as using the = = operator, because arrays always
inherit the default equals() method that compares references rather than array
content. You can compare arrays for equality with the convenience method
java.util.Arrays.equals().

86 | Chapter 2: Java Syntax from the Ground Up

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Terminology: Pass by Value

I’ve said that Java handles objects “by reference.” Don’t confuse this with the phrase
“pass by reference.” “Pass by reference” is a term used to describe the method-
calling conventions of some programming languages. In a pass-by-reference
language, values—even primitive values—are not passed directly to methods.
Instead, methods are always passed references to values. Thus, if the method modi-
fies its parameters, those modifications are visible when the method returns, even
for primitive types.

Java does not do this; it is a “pass by value” language. However, when a reference
type is involved, the value that is passed is a reference. But this is still not the same
as pass-by-reference. If Java were a pass-by-reference language, when a reference
type is passed to a method, it would be passed as a reference to the reference.

Memory Allocation and Garbage Collection

As we’ve already noted, objects are composite values that can contain a number of
other values and may require a substantial amount of memory. When you use the
new keyword to create a new object or use an object literal in your program, Java
automatically creates the object for you, allocating whatever amount of memory is
necessary. You don’t need to do anything to make this happen.

In addition, Java also automatically reclaims that memory for reuse when it is no
longer needed. It does this through a process called garbage collection. An object
is considered garbage when no references to it are stored in any variables, the
fields of any objects, or the elements of any arrays. For example:

Point p = new Point(1,2); // Create an object
double d = p.distanceFromOrigin(); // Use it for something
p = new Point(2,3); // Create a new object

After the Java interpreter executes the third line, a reference to the new Point
object has replaced the reference to the first one. No references to the first object
remain, so it is garbage. At some point, the garbage collector discovers this and
reclaims the memory used by the object.

C programmers, who are used to using malloc() and free() to manage memory,
and C++ programmers, who are used to explicitly deleting their objects with
delete, may find it a little hard to relinquish control and trust the garbage
collector. Even though it seems like magic, it really works! There is a slight, but
usually negligible, performance penalty due to the use of garbage collection.
However, having garbage collection built into the language dramatically reduces
the occurrence of memory leaks and related bugs and almost always improves
programmer productivity.

Reference Type Conversions

Objects can be converted between different reference types. As with primitive
types, reference type conversions can be widening conversions (allowed automati-
cally by the compiler) or narrowing conversions that require a cast (and possibly a

Reference Types | 87

Java Syntax

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

runtime check). In order to understand reference type conversions, you need to
understand that reference types form a hierarchy, usually called the class
hierarchy.

Every Java reference type extends some other type, known as its superclass. A type
inherits the fields and methods of its superclass and then defines its own addi-
tional fields and methods. A special class named Object serves as the root of the
class hierarchy in Java. All Java classes extend Object directly or indirectly. The
Object class defines a number of special methods that are inherited (or over-
ridden) by all objects.

The predefined String class and the Point class we discussed earlier in this
chapter both extend Object. Thus, we can say that all String objects are also
Object objects. We can also say that all Point objects are Object objects. The
opposite is not true, however. We cannot say that every Object is a String
because, as we’ve just seen, some Object objects are Point objects.

With this simple understanding of the class hierarchy, we can return to the rules
of reference type conversion:

• An object cannot be converted to an unrelated type. The Java compiler does
not allow you to convert a String to a Point, for example, even if you use a
cast operator.

• An object can be converted to the type of its superclass or of any ancestor class.
This is a widening conversion, so no cast is required. For example, a String
value can be assigned to a variable of type Object or passed to a method where
an Object parameter is expected. Note that no conversion is actually per-
formed; the object is simply treated as if it were an instance of the superclass.

• An object can be converted to the type of a subclass, but this is a narrowing
conversion and requires a cast. The Java compiler provisionally allows this
kind of conversion, but the Java interpreter checks at runtime to make sure it
is valid. Only cast an object to the type of a subclass if you are sure, based on
the logic of your program, that the object is actually an instance of the sub-
class. If it is not, the interpreter throws a ClassCastException. For example, if
we assign a String object to a variable of type Object, we can later cast the
value of that variable back to type String:

Object o = "string"; // Widening conversion from String to Object
// Later in the program...
String s = (String) o; // Narrowing conversion from Object to String

Arrays are objects and follow some conversion rules of their own. First, any array
can be converted to an Object value through a widening conversion. A narrowing
conversion with a cast can convert such an object value back to an array. For
example:

Object o = new int[] {1,2,3}; // Widening conversion from array to Object
// Later in the program...
int[] a = (int[]) o; // Narrowing conversion back to array type

88 | Chapter 2: Java Syntax from the Ground Up

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

In addition to converting an array to an object, an array can be converted to
another type of array if the “base types” of the two arrays are reference types that
can themselves be converted. For example:

// Here is an array of strings.
String[] strings = new String[] { "hi", "there" };
// A widening conversion to CharSequence[] is allowed because String
// can be widened to CharSequence
CharSequence[] sequences = strings;
// The narrowing conversion back to String[] requires a cast.
strings = (String[]) sequences;
// This is an array of arrays of strings
String[][] s = new String[][] { strings };
// It cannot be converted to CharSequence[] because String[] cannot be
// converted to CharSequence: the number of dimensions don't match
sequences = s; // This line will not compile
// s can be converted to Object or Object[], however because all array types
// (including String[] and String[][]) can be converted to Object.
Object[] objects = s;

Note that these array conversion rules apply only to arrays of objects and arrays of
arrays. An array of primitive type cannot be converted to any other array type,
even if the primitive base types can be converted:

// Can't convert int[] to double[] even though int can be widened to double
double[] data = new int[] {1,2,3}; // This line causes a compilation error
// This line is legal, however, since int[] can be converted to Object
Object[] objects = new int[][] {{1,2},{3,4}};

Boxing and Unboxing Conversions

Primitive types and reference types behave quite differently. It is sometimes useful
to treat primitive values as objects, and for this reason, the Java platform includes
wrapper classes for each of the primitive types. Boolean, Byte, Short, Character,
Integer, Long, Float, and Double are immutable classes whose instances each hold
a single primitive value. These wrapper classes are usually used when you want to
store primitive values in collections such as java.util.List:

List numbers = new ArrayList(); // Create a List collection
numbers.add(new Integer(-1)); // Store a wrapped primitive
int i = ((Integer)numbers.get(0)).intValue(); // Extract the primitive value

Prior to Java 5.0, no conversions between primitive types and reference types were
allowed. This code explicitly calls the Integer() constructor to wrap a primitive
int in an object and explicitly calls the intValue() method to extract a primitive
value from the wrapper object.

Java 5.0 introduces two new types of conversions known as boxing and unboxing
conversions. Boxing conversions convert a primitive value to its corresponding
wrapper object and unboxing conversions do the opposite. You may explicitly
specify a boxing or unboxing conversion with a cast, but this is unnecessary since
these conversions are automatically performed when you assign a value to a vari-
able or pass a value to a method. Furthermore, unboxing conversions are also

Packages and the Java Namespace | 89

Java Syntax

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

automatic if you use a wrapper object when a Java operator or statement expects a
primitive value. Because Java 5.0 performs boxing and unboxing automatically,
this new language feature is often known as autoboxing.

Here are some examples of automatic boxing and unboxing conversions:

Integer i = 0; // int literal 0 is boxed into an Integer object
Number n = 0.0f; // float literal is boxed into Float and widened to Number
Integer i = 1; // this is a boxing conversion
int j = i; // i is unboxed here
i++; // i is unboxed, incremented, and then boxed up again
Integer k = i+2; // i is unboxed and the sum is boxed up again
i = null;
j = i; // unboxing here throws a NullPointerException

Automatic boxing and unboxing conversions make it much simpler to use primi-
tive values with collection classes. The list-of-numbers code earlier in this section
can be translated as follows in Java 5.0. Note that the translation also uses
generics, another new feature of Java 5.0 that is covered in Chapter 4.

List<Integer> numbers = new ArrayList<Integer>(); // Create a List of Integer
numbers.add(-1); // Box int to Integer
int i = numbers.get(0); // Unbox Integer to int

Packages and the Java Namespace
A package is a named collection of classes, interfaces, and other reference types.
Packages serve to group related classes and define a namespace for the classes they
contain.

The core classes of the Java platform are in packages whose names begin with java.
For example, the most fundamental classes of the language are in the package
java.lang. Various utility classes are in java.util. Classes for input and output are
in java.io, and classes for networking are in java.net. Some of these packages
contain subpackages, such as java.lang.reflect and java.util.regex. Extensions
to the Java platform that have been standardized by Sun typically have package
names that begin with javax. Some of these extensions, such as javax.swing and its
myriad subpackages, were later adopted into the core platform itself. Finally, the
Java platform also includes several “endorsed standards,” which have packages
named after the standards body that created them, such as org.w3c and org.omg.

Every class has both a simple name, which is the name given to it in its definition,
and a fully qualified name, which includes the name of the package of which it is a
part. The String class, for example, is part of the java.lang package, so its fully
qualified name is java.lang.String.

This section explains how to place your own classes and interfaces into a package
and how to choose a package name that won’t conflict with anyone else’s package
name. Next, it explains how to selectively import type names into the namespace
so that you don’t have to type the package name of every class or interface you
use. Finally, the section explains a feature that is new in Java 5.0: the ability to
import static members of types into the namespace so that you don’t need to
prefix these with a package name or a class name.

90 | Chapter 2: Java Syntax from the Ground Up

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Package Declaration

To specify the package a class is to be part of, you use a package declaration. The
package keyword, if it appears, must be the first token of Java code (i.e., the first
thing other than comments and space) in the Java file. The keyword should be
followed by the name of the desired package and a semicolon. Consider a Java file
that begins with this directive:

package com.davidflanagan.examples;

All classes defined by this file are part of the package com.davidflanagan.examples.

If no package directive appears in a Java file, all classes defined in that file are part
of an unnamed default package. In this case, the qualified and unqualified names
of a class are the same. The possibility of naming conflicts means that you should
use this default package only for very simple code or early on in the development
process of a larger project.

Globally Unique Package Names

One of the important functions of packages is to partition the Java namespace and
prevent name collisions between classes. It is only their package names that keep
the java.util.List and java.awt.List classes distinct, for example. In order for
this to work, however, package names must themselves be distinct. As the devel-
oper of Java, Sun controls all package names that begin with java, javax, and sun.

For the rest of us, Sun proposes a package-naming scheme, which, if followed
correctly, guarantees globally unique package names. The scheme is to use your
Internet domain name, with its elements reversed, as the prefix for all your
package names. My web site is at http://davidflanagan.com, so all my Java pack-
ages begin with com.davidflanagan. It is up to me to decide how to partition the
namespace below com.davidflanagan, but since I own that domain name, no other
person or organization who is playing by the rules can define a package with the
same name as any of mine.

Note that these package-naming rules apply primarily to API developers. If other
programmers will be using classes that you develop along with unknown other
classes, it is important that your package name be globally unique. On the other
hand, if you are developing a Java application and will not be releasing any of the
classes for reuse by others, you know the complete set of classes that your applica-
tion will be deployed with and do not have to worry about unforeseen naming
conflicts. In this case, you can choose a package naming scheme for your own
convenience rather than for global uniqueness. One common approach is to use
the application name as the main package name (it may have subpackages
beneath it).

Importing Types

When referring to a class or interface in your Java code, you must, by default, use
the fully qualified name of the type, including the package name. If you’re writing
code to manipulate a file and need to use the File class of the java.io package,
you must type java.io.File. This rule has three exceptions:

Packages and the Java Namespace | 91

Java Syntax

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

• Types from the package java.lang are so important and so commonly used
that they can always be referred to by their simple names.

• The code in a type p.T may refer to other types defined in the package p by
their simple names.

• Types that have been imported into the namespace with an import declara-
tion may be referred to by their simple names.

The first two exceptions are known as “automatic imports.” The types from java.
lang and the current package are “imported” into the namespace so that they can
be used without their package name. Typing the package name of commonly used
types that are not in java.lang or the current package quickly becomes tedious,
and so it is also possible to explicitly import types from other packages into the
namespace. This is done with the import declaration.

import declarations must appear at the start of a Java file, immediately after the
package declaration, if there is one, and before any type definitions. You may use
any number of import declarations in a file. An import declaration applies to all
type definitions in the file (but not to any import declarations that follow it).

The import declaration has two forms. To import a single type into the
namespace, follow the import keyword with the name of the type and a
semicolon:

import java.io.File; // Now we can type File instead of java.io.File

This is known as the “single type import” declaration.

The other form of import is the “on-demand type import.” In this form, you
specify the name of a package followed the characters .* to indicate that any type
from that package may be used without its package name. Thus, if you want to
use several other classes from the java.io package in addition to the File class,
you can simply import the entire package:

import java.io.*; // Now we can use simple names for all classes in java.io

This on-demand import syntax does not apply to subpackages. If I import the
java.util package, I must still refer to the java.util.zip.ZipInputStream class by
its fully qualified name.

Using an on-demand type import declaration is not the same as explicitly writing
out a single type import declaration for every type in the package. It is more like
an explicit single type import for every type in the package that you actually use in
your code. This is the reason it’s called “on demand”; types are imported as you
use them.

Naming conflicts and shadowing

import declarations are invaluable to Java programming. They do expose us to the
possibility of naming conflicts, however. Consider the packages java.util and
java.awt. Both contain types named List. java.util.List is an important and
commonly used interface. The java.awt package contains a number of important
types that are commonly used in client-side applications, but java.awt.List has

92 | Chapter 2: Java Syntax from the Ground Up

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

been superseded and is not one of these important types. It is illegal to import
both java.util.List and java.awt.List in the same Java file. The following single
type import declarations produce a compilation error:

import java.util.List;
import java.awt.List;

Using on-demand type imports for the two packages is legal:

import java.util.*; // For collections and other utilities.
import java.awt.*; // For fonts, colors, and graphics.

Difficulty arises, however, if you actually try to use the type List. This type can be
imported “on demand” from either package, and any attempt to use List as an
unqualified type name produces a compilation error. The workaround, in this
case, is to explicitly specify the package name you want.

Because java.util.List is much more commonly used than java.awt.List, it is
useful to combine the two on-demand type import declarations with a single-type
import declaration that serves to disambiguate what we mean when we say List:

import java.util.*; // For collections and other utilities.
import java.awt.*; // For fonts, colors, and graphics.
import java.util.List; // To disambiguate from java.awt.List

With these import declarations in place, we can use List to mean the java.util.List
interface. If we actually need to use the java.awt.List class, we can still do so as long
as we include its package name. There are no other naming conflicts between java.
util and java.awt, and their types will be imported “on demand” when we use them
without a package name.

Importing Static Members

In Java 5.0 and later, you can import the static members of types as well as types
themselves using the keywords import static. (Static members are explained in
Chapter 3. If you are not already familiar with them, you may want to come back
to this section later.) Like type import declarations, these static import declara-
tions come in two forms: single static member import and on-demand static
member import. Suppose, for example, that you are writing a text-based program
that sends a lot of output to System.out. In this case, you might use this single
static member import to save yourself typing:

import static java.lang.System.out;

With this import in place, you can then use out.print() instead of System.out.
print(). Or suppose you are writing a program that uses many of the the trigono-
metric and other functions of the Math class. In a program that is clearly focused
on numerical methods like this, having to repeatedly type the class name “Math”
does not add clarity to your code; it just gets in the way. In this case, an on-
demand static member import may be appropriate:

import static java.lang.Math.*

With this import declaration, you are free to write concise expressions like
sqrt(abs(sin(x))) without having to prefix the name of each static method with
the class name Math.

Java File Structure | 93

Java Syntax

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Another important use of import static declarations is to import the names of
constants into your code. This works particularly well with enumerated types (see
Chapter 4). Suppose, for example that you want to use the values of this enumer-
ated type in code you are writing:

package climate.temperate;
enum Seasons { WINTER, SPRING, SUMMER, AUTUMN };

You could import the type climate.temperate.Seasons and then prefix the
constants with the type name: Seasons.SPRING. For more concise code, you could
import the enumerated values themselves:

import static climate.temperate.Seasons.*;

Using static member import declarations for constants is generally a better tech-
nique than implementing an interface that defines the constants.

Static member imports and overloaded methods

A static import declaration imports a name, not any one specific member with
that name. Since Java allows method overloading and allows a type to have fields
and methods with the same name, a single static member import declaration may
actually import more than one member. Consider this code:

import static java.util.Arrays.sort;

This declaration imports the name “sort” into the namespace, not any one of the
19 sort() methods defined by java.util.Arrays. If you use the imported name
sort to invoke a method, the compiler will look at the types of the method argu-
ments to determine which method you mean.

It is even legal to import static methods with the same name from two or more
different types as long as the methods all have different signatures. Here is one
natural example:

import static java.util.Arrays.sort;
import static java.util.Collections.sort;

You might expect that this code would cause a syntax error. In fact, it does not
because the sort() methods defined by the Collections class have different signa-
tures than all of the sort() methods defined by the Arrays class. When you use
the name “sort” in your code, the compiler looks at the types of the arguments to
determine which of the 21 possible imported methods you mean.

Java File Structure
This chapter has taken us from the smallest to the largest elements of Java syntax,
from individual characters and tokens to operators, expressions, statements, and
methods, and on up to classes and packages. From a practical standpoint, the unit
of Java program structure you will be dealing with most often is the Java file. A

94 | Chapter 2: Java Syntax from the Ground Up

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Java file is the smallest unit of Java code that can be compiled by the Java
compiler. A Java file consists of:

• An optional package directive

• Zero or more import or import static directives

• One or more type definitions

These elements can be interspersed with comments, of course, but they must
appear in this order. This is all there is to a Java file. All Java statements (except
the package and import directives, which are not true statements) must appear
within methods, and all methods must appear within a type definition.

Java files have a couple of other important restrictions. First, each file can contain
at most one class that is declared public. A public class is one that is designed for
use by other classes in other packages. This restriction on public classes only
applies to top-level classes; a class can contain any number of nested or inner
classes that are declared public. We’ll see more about the public modifier and
nested classes in Chapter 3.

The second restriction concerns the filename of a Java file. If a Java file contains a
public class, the name of the file must be the same as the name of the class, with
the extension .java appended. Thus, if Point is defined as a public class, its source
code must appear in a file named Point.java. Regardless of whether your classes
are public or not, it is good programming practice to define only one per file and
to give the file the same name as the class.

When a Java file is compiled, each of the classes it defines is compiled into a
separate class file that contains Java byte codes to be interpreted by the Java
Virtual Machine. A class file has the same name as the class it defines, with the
extension .class appended. Thus, if the file Point.java defines a class named
Point, a Java compiler compiles it to a file named Point.class. On most systems,
class files are stored in directories that correspond to their package names.
Thus, the class com.davidflanagan.examples.Point is defined by the class file
com/davidflanagan/examples/Point.class.

The Java interpreter knows where the class files for the standard system classes
are located and can load them as needed. When the interpreter runs a program
that wants to use a class named com.davidflanagan.examples.Point, it knows that
the code for that class is located in a directory named com/davidflanagan/exam-
ples/ and, by default, it “looks” in the current directory for a subdirectory of that
name. In order to tell the interpreter to look in locations other than the current
directory, you must use the -classpath option when invoking the interpreter or
set the CLASSPATH environment variable. For details, see the documentation for the
Java interpreter, java, in Chapter 8.

Defining and Running Java Programs
A Java program consists of a set of interacting class definitions. But not every Java
class or Java file defines a program. To create a program, you must define a class
that has a special method with the following signature:

public static void main(String[] args)

Differences Between C and Java | 95

Java Syntax

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

This main() method is the main entry point for your program. It is where the Java
interpreter starts running. This method is passed an array of strings and returns no
value. When main() returns, the Java interpreter exits (unless main() has created
separate threads, in which case the interpreter waits for all those threads to exit).

To run a Java program, you run the Java interpreter, java, specifying the fully
qualified name of the class that contains the main() method. Note that you
specify the name of the class, not the name of the class file that contains the
class. Any additional arguments you specify on the command line are passed to
the main() method as its String[] parameter. You may also need to specify the
-classpath option (or -cp) to tell the interpreter where to look for the classes
needed by the program. Consider the following command:

% java -classpath /usr/local/Jude com.davidflanagan.jude.Jude datafile.jude

java is the command to run the Java interpreter. -classpath /usr/local/Jude tells the
interpreter where to look for .class files. com.davidflanagan.jude.Jude is the name
of the program to run (i.e., the name of the class that defines the main() method).
Finally, datafile.jude is a string that is passed to that main() method as the single
element of an array of String objects.

There is an easier way to run programs. If a program and all its auxiliary classes
(except those that are part of the Java platform) have been properly bundled in a
Java archive (JAR) file, you can run the program simply by specifying the name of
the JAR file:

% java -jar /usr/local/Jude/jude.jar datafile.jude

Some operating systems make JAR files automatically executable. On those
systems, you can simply say:

% /usr/local/Jude/jude.jar datafile.jude

See Chapter 8 for details.

Differences Between C and Java
If you are a C or C++ programmer, you should have found much of the syntax of
Java—particularly at the level of operators and statements—to be familiar.
Because Java and C are so similar in some ways, it is important for C and C++
programmers to understand where the similarities end. C and Java differ in impor-
tant ways, as summarized in the following list:

No preprocessor
Java does not include a preprocessor and does not define any analogs of the
#define, #include, and #ifdef directives. Constant definitions are replaced
with static final fields in Java. (See the java.lang.Math.PI field for an
example.) Macro definitions are not available in Java, but advanced compiler
technology and inlining has made them less useful. Java does not require an
#include directive because Java has no header files. Java class files contain
both the class API and the class implementation, and the compiler reads API
information from class files as necessary. Java lacks any form of conditional
compilation, but its cross-platform portability means that this feature is rarely
needed.

96 | Chapter 2: Java Syntax from the Ground Up

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

No global variables
Java defines a very clean namespace. Packages contain classes, classes contain
fields and methods, and methods contain local variables. But Java has no
global variables, and thus there is no possibility of namespace collisions
among those variables.

Well-defined primitive type sizes
All the primitive types in Java have well-defined sizes. In C, the size of short,
int, and long types is platform-dependent, which hampers portability.

No pointers
Java classes and arrays are reference types, and references to objects and
arrays are akin to pointers in C. Unlike C pointers, however, references in
Java are entirely opaque. There is no way to convert a reference to a primi-
tive type, and a reference cannot be incremented or decremented. There is no
address-of operator like &, dereference operator like * or ->, or sizeof oper-
ator. Pointers are a notorious source of bugs. Eliminating them simplifies the
language and makes Java programs more robust and secure.

Garbage collection
The Java Virtual Machine performs garbage collection so that Java program-
mers do not have to explicitly manage the memory used by all objects and
arrays. This feature eliminates another entire category of common bugs and
all but eliminates memory leaks from Java programs.

No goto statement
Java doesn’t support a goto statement. Use of goto except in certain well-
defined circumstances is regarded as poor programming practice. Java adds
exception handling and labeled break and continue statements to the flow-
control statements offered by C. These are a good substitute for goto.

Variable declarations anywhere
C requires local variable declarations to be made at the beginning of a
method or block, while Java allows them anywhere in a method or block.
Many programmers prefer to keep all their variable declarations grouped
together at the top of a method, however.

Forward references
The Java compiler is smarter than the C compiler in that it allows methods to
be invoked before they are defined. This eliminates the need to declare func-
tions in a header file before defining them in a program file, as is done in C.

Method overloading
Java programs can define multiple methods with the same name, as long as
the methods have different parameter lists.

No struct and union types
Java doesn’t support C struct and union types. A Java class can be thought
of as an enhanced struct, however.

No bitfields
Java doesn’t support the (infrequently used) ability of C to specify the
number of individual bits occupied by fields of a struct.

Differences Between C and Java | 97

Java Syntax

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

No typedef
Java doesn’t support the typedef keyword used in C to define aliases for type
names. Java’s lack of pointers makes its type-naming scheme simpler and
more consistent than C’s, however, so many of the common uses of typedef
are not really necessary in Java.

No method pointers
C allows you to store the address of a function in a variable and pass this
function pointer to other functions. You cannot do this with Java methods,
but you can often achieve similar results by passing an object that imple-
ments a particular interface. Also, a Java method can be represented and
invoked through a java.lang.reflect.Method object.

98

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Chapter 3Object-Oriented

3
Object-Oriented Programming
in Java

Now that we’ve covered fundamental Java syntax, we are ready to begin object-
oriented programming in Java. All Java programs use objects, and the type of an
object is defined by its class or interface. Every Java program is defined as a class,
and nontrivial programs usually include a number of classes and interface defini-
tions. This chapter explains how to define new classes and interfaces and how to
do object-oriented programming with them.*

This is a relatively long and detailed chapter, so we begin with an overview and
some definitions. A class is a collection of fields that hold values and methods that
operate on those values. Classes are the most fundamental structural element of all
Java programs. You cannot write Java code without defining a class. All Java state-
ments appear within methods, and all methods are implemented within classes.

A class defines a new reference type, such as the Point type defined in Chapter 2.
An object is an instance of a class. The Point class defines a type that is the set of
all possible two-dimensional points. A Point object is a value of that type: it repre-
sents a single two-dimensional point.

Objects are usually created by instantiating a class with the new keyword and a
constructor invocation, as shown here:

Point p = new Point(1.0, 2.0);

Constructors are covered in “Creating and Initializing Objects” later in this
chapter.

* If you do not have object-oriented (OO) programming background, don’t worry; this chapter
does not assume any prior experience. If you do have experience with OO programming, howev-
er, be careful. The term “object-oriented” has different meanings in different languages. Don’t as-
sume that Java works the same way as your favorite OO language. This is particularly true for
C++ programmers. Although Java and C++ borrow much syntax from C, the similarities between
the two languages do not go far beyond the level of syntax. Don’t let your experience with C++
lull you into a false familiarity with Java.

Class Definition Syntax | 99

Object-
Oriented

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

A class definition consists of a signature and a body. The class signature defines
the name of the class and may also specify other important information. The body
of a class is a set of members enclosed in curly braces. The members of a class may
include fields and methods, constructors and initializers, and nested types.

Members can be static or nonstatic. A static member belongs to the class itself
while a nonstatic member is associated with the instances of a class (see “Fields
and Methods” later in this chapter).

The signature of a class may declare that the class extends another class. The
extended class is known as the superclass and the extension is known as the
subclass. A subclass inherits the members of its superclass and may declare new
members or override inherited methods with new implementations.

The signature of a class may also declare that the class implements one or more
interfaces. An interface is a reference type that defines method signatures but does
not include method bodies to implement the methods. A class that implements an
interface is required to provide bodies for the interface’s methods. Instances of
such a class are also instances of the interface type that it implements.

The members of a class may have access modifiers public, protected, or private,
which specify their visibility and accessibility to clients and to subclasses. This
allows classes to hide members that are not part of their public API. When
applied to fields, this ability to hide members enables an object-oriented design
technique known as data encapsulation.

Classes and interfaces are the most important of the five fundamental reference
types defined by Java. Arrays, enumerated types (or “enums”) and annotation
types are the other three. Arrays are covered in Chapter 2. Enumerated types and
annotation types were introduced in Java 5.0 (see Chapter 4). Enums are a
specialized kind of class and annotation types are a specialized kind of interface.

Class Definition Syntax
At its simplest level, a class definition consists of the keyword class followed by
the name of the class and a set of class members within curly braces. The class
keyword may be preceded by modifier keywords and annotations (see Chapter 4).
If the class extends another class, the class name is followed by the extends
keyword and the name of the class being extended. If the class implements one or
more interfaces then the class name or the extends clause is followed by the
implements keyword and a comma-separated list of interface names. For example:

public class Integer extends Number implements Serializable, Comparable {
 // class members go here
}

Generic class declarations include additional syntax that is covered in Chapter 4.

Class declarations may include zero or more of the following modifiers:

public
A public class is visible to classes defined outside of its package. See “Data
Hiding and Encapsulation” later in this chapter.

100 | Chapter 3: Object-Oriented Programming in Java

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

abstract
An abstract class is one whose implementation is incomplete and cannot be
instantiated. Any class with one or more abstract methods must be declared
abstract.

final
The final modifier specifies that the class may not be extended. Declaring a
class final may enable the Java VM to optimize its methods.

strictfp
If a class is declared strictfp, all its methods behave as if they were declared
strictfp. This rarely used modifier is discussed in “Methods” in Chapter 2.

A class cannot be both abstract and final. By convention, if a class has more than
one modifier, they appear in the order shown.

Fields and Methods
A class can be viewed as a collection of data and code to operate on that data. The
data is stored in fields, and the code is organized into methods. This section
covers fields and methods, the two most important kinds of class members. Fields
and methods come in two distinct types: class members (also known as static
members) are associated with the class itself, while instance members are associ-
ated with individual instances of the class (i.e., with objects). This gives us four
kinds of members:

• Class fields

• Class methods

• Instance fields

• Instance methods

The simple class definition for the class Circle, shown in Example 3-1, contains
all four types of members.

Example 3-1. A simple class and its members

public class Circle {
 // A class field
 public static final double PI= 3.14159; // A useful constant

 // A class method: just compute a value based on the arguments
 public static double radiansToDegrees(double rads) {
 return rads * 180 / PI;
 }

 // An instance field
 public double r; // The radius of the circle

 // Two instance methods: they operate on the instance fields of an object
 public double area() { // Compute the area of the circle
 return PI * r * r;
 }

Fields and Methods | 101

Object-
Oriented

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

The following sections explain all four kinds of members. First, however, we
cover field declaration syntax. (Method declaration syntax is covered in
“Methods” later in this chapter.)

Field Declaration Syntax

Field declaration syntax is much like the syntax for declaring local variables (see
Chapter 2) except that field definitions may also include modifiers. The simplest
field declaration consists of the field type followed by the field name. The type
may be preceded by zero or more modifier keywords or annotations (see
Chapter 4), and the name may be followed by an equals sign and initializer
expression that provides the initial value of the field. If two or more fields share
the same type and modifiers, the type may be followed by a comma-separated list
of field names and initializers. Here are some valid field declarations:

int x = 1;
private String name;
public static final DAYS_PER_WEEK = 7;
String[] daynames = new String[DAYS_PER_WEEK];
private int a = 17, b = 37, c = 53;

Field modifiers are comprised of zero or more of the following keywords:

public, protected, private
These access modifiers specify whether and where a field can be used outside
of the class that defines it. These important modifiers are covered in “Data
Hiding and Encapsulation” later in this chapter. No more than one of these
access modifiers may appear in any field declaration.

static
If present, this modifier specifies that the field is associated with the defining
class itself rather than with each instance of the class.

final
This modifier specifies that once the field has been initialized, its value may
never be changed. Fields that are both static and final are compile-time
constants that the compiler can inline. final fields can also be used to create
classes whose instances are immutable.

transient
This modifier specifies that a field is not part of the persistent state of an
object and that it need not be serialized along with the rest of the object. Seri-
alization is covered in Chapter 5.

volatile
Roughly speaking, a volatile field is like a synchronized method: safe for
concurrent use by two or more threads. More accurately, volatile says that

 public double circumference() { // Compute the circumference of the circle
 return 2 * PI * r;
 }
}

Example 3-1. A simple class and its members (continued)

102 | Chapter 3: Object-Oriented Programming in Java

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

the value of a field must always be read from and flushed to main memory,
and that it may not be cached by a thread (in a register or CPU cache).

Class Fields

A class field is associated with the class in which it is defined rather than with an
instance of the class. The following line declares a class field:

public static final double PI = 3.14159;

This line declares a field of type double named PI and assigns it a value of 3.14159.
As you can see, a field declaration looks quite a bit like a local variable declara-
tion. The difference, of course, is that variables are defined within methods while
fields are members of classes.

The static modifier says that the field is a class field. Class fields are sometimes
called static fields because of this static modifier. The final modifier says that
the value of the field does not change. Since the field PI represents a constant, we
declare it final so that it cannot be changed. It is a convention in Java (and many
other languages) that constants are named with capital letters, which is why our
field is named PI, not pi. Defining constants like this is a common use for class
fields, meaning that the static and final modifiers are often used together. Not
all class fields are constants, however. In other words, a field can be declared
static without being declared final. Finally, the public modifier says that anyone
can use the field. This is a visibility modifier, and we’ll discuss it and related
modifiers in more detail later in this chapter.

The key point to understand about a static field is that there is only a single copy
of it. This field is associated with the class itself, not with instances of the class. If
you look at the various methods of the Circle class, you’ll see that they use this
field. From inside the Circle class, the field can be referred to simply as PI.
Outside the class, however, both class and field names are required to uniquely
specify the field. Methods that are not part of Circle access this field as Circle.PI.

A public class field is essentially a global variable. The names of class fields are
qualified by the unique names of the classes that contain them, however. Thus,
Java does not suffer from the name collisions that can affect other languages when
different modules of code define global variables with the same name.

Class Methods

As with class fields, class methods are declared with the static modifier:

public static double radiansToDegrees(double rads) { return rads * 180 / PI; }

This line declares a class method named radiansToDegrees(). It has a single
parameter of type double and returns a double value. The body of the method is
quite short; it performs a simple computation and returns the result.

Like class fields, class methods are associated with a class, rather than with an
object. When invoking a class method from code that exists outside the class, you
must specify both the name of the class and the method. For example:

// How many degrees is 2.0 radians?
double d = Circle.radiansToDegrees(2.0);

Fields and Methods | 103

Object-
Oriented

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

If you want to invoke a class method from inside the class in which it is defined,
you don’t have to specify the class name. However, it is often good style to specify
the class name anyway, to make it clear that a class method is being invoked.

Note that the body of our Circle.radiansToDegrees() method uses the class field
PI. A class method can use any class fields and class methods of its own class (or
of any other class). But it cannot use any instance fields or instance methods
because class methods are not associated with an instance of the class. In other
words, although the radiansToDegrees() method is defined in the Circle class, it
does not use any Circle objects. The instance fields and instance methods of the
class are associated with Circle objects, not with the class itself. Since a class
method is not associated with an instance of its class, it cannot use any instance
methods or fields.

As we discussed earlier, a class field is essentially a global variable. In a similar
way, a class method is a global method, or global function. Although
radiansToDegrees() does not operate on Circle objects, it is defined within the
Circle class because it is a utility method that is sometimes useful when working
with circles. In many nonobject-oriented programming languages, all methods, or
functions, are global. You can write complex Java programs using only class
methods. This is not object-oriented programming, however, and does not take
advantage of the power of the Java language. To do true object-oriented program-
ming, we need to add instance fields and instance methods to our repertoire.

Instance Fields

Any field declared without the static modifier is an instance field:

public double r; // The radius of the circle

Instance fields are associated with instances of the class, rather than with the class
itself. Thus, every Circle object we create has its own copy of the double field r. In
our example, r represents the radius of a circle. Thus, each Circle object can have
a radius independent of all other Circle objects.

Inside a class definition, instance fields are referred to by name alone. You can see
an example of this if you look at the method body of the circumference() instance
method. In code outside the class, the name of an instance method must be
prefixed with a reference to the object that contains it. For example, if the vari-
able c holds a reference to a Circle object, we use the expression c.r to refer to
the radius of that circle:

Circle c = new Circle(); // Create a Circle object; store a reference in c
c.r = 2.0; // Assign a value to its instance field r
Circle d = new Circle(); // Create a different Circle object
d.r = c.r * 2; // Make this one twice as big

Instance fields are key to object-oriented programming. Instance fields hold the
state of an object; the values of those fields make one object distinct from another.

104 | Chapter 3: Object-Oriented Programming in Java

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Instance Methods

Any method not declared with the static keyword is an instance method. An
instance method operates on an instance of a class (an object) instead of operating
on the class itself. It is with instance methods that object-oriented programming
starts to get interesting. The Circle class defined in Example 3-1 contains two
instance methods, area() and circumference(), that compute and return the area
and circumference of the circle represented by a given Circle object.

To use an instance method from outside the class in which it is defined, we must
prefix it with a reference to the instance that is to be operated on. For example:

Circle c = new Circle(); // Create a Circle object; store in variable c
c.r = 2.0; // Set an instance field of the object
double a = c.area(); // Invoke an instance method of the object

If you’re new to object-oriented programming, that last line of code may look a
little strange. We do not write:

a = area(c);

Instead, we write:

a = c.area();

This is why it is called object-oriented programming; the object is the focus here,
not the function call. This small syntactic difference is perhaps the single most
important feature of the object-oriented paradigm.

The point here is that we don’t have to pass an argument to c.area(). The object
we are operating on, c, is implicit in the syntax. Take a look at Example 3-1 again.
You’ll notice the same thing in the signature of the area() method: it doesn’t have
a parameter. Now look at the body of the area() method: it uses the instance field
r. Because the area() method is part of the same class that defines this instance
field, the method can use the unqualified name r. It is understood that this refers
to the radius of whatever Circle instance invokes the method.

Another important thing to notice about the bodies of the area() and
circumference() methods is that they both use the class field PI. We saw earlier
that class methods can use only class fields and class methods, not instance fields
or methods. Instance methods are not restricted in this way: they can use any
member of a class, whether it is declared static or not.

How instance methods work

Consider this line of code again:

a = c.area();

What’s going on here? How can a method that has no parameters know what data
to operate on? In fact, the area() method does have a parameter. All instance
methods are implemented with an implicit parameter not shown in the method
signature. The implicit argument is named this; it holds a reference to the object
through which the method is invoked. In our example, that object is a Circle.

Fields and Methods | 105

Object-
Oriented

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

The implicit this parameter is not shown in method signatures because it is
usually not needed; whenever a Java method accesses the instance fields in its
class, it is implicit that it is accessing fields in the object referred to by the this
parameter. The same is true when an instance method invokes another instance
method in the same class. I said earlier that to invoke an instance method you
must prepend a reference to the object to be operated on. When an instance
method is invoked within another instance method in the same class, however,
you don’t need to specify an object. In this case, it is implicit that the method is
being invoked on the this object.

You can use the this keyword explicitly when you want to make it clear that a
method is accessing its own fields and/or methods. For example, we can rewrite
the area() method to use this explicitly to refer to instance fields:

public double area() { return Circle.PI * this.r * this.r; }

This code also uses the class name explicitly to refer to class field PI. In a method
this simple, it is not necessary to be explicit. In more complicated cases, however,
you may find that it increases the clarity of your code to use an explicit this where
it is not strictly required.

In some cases, the this keyword is required, however. For example, when a
method parameter or local variable in a method has the same name as one of the
fields of the class, you must use this to refer to the field since the field name used
alone refers to the method parameter or local variable. For example, we can add
the following method to the Circle class:

public void setRadius(double r) {
 this.r = r; // Assign the argument (r) to the field (this.r)
 // Note that we cannot just say r = r
}

Finally, note that while instance methods can use the this keyword, class
methods cannot. This is because class methods are not associated with objects.

Instance methods or class methods?

Instance methods are one of the key features of object-oriented programming.
That doesn’t mean, however, that you should shun class methods. In many cases,
it is perfectly reasonable to define class methods. When working with the Circle
class, for example, you might find that you often want to compute the area of a
circle with a given radius but don’t want to bother creating a Circle object to
represent that circle. In this case, a class method is more convenient:

public static double area(double r) { return PI * r * r; }

It is perfectly legal for a class to define more than one method with the same
name, as long as the methods have different parameters. Since this version of the
area() method is a class method, it does not have an implicit this parameter and
must have a parameter that specifies the radius of the circle. This parameter keeps
it distinct from the instance method of the same name.

As another example of the choice between instance methods and class methods,
consider defining a method named bigger() that examines two Circle objects

106 | Chapter 3: Object-Oriented Programming in Java

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

and returns whichever has the larger radius. We can write bigger() as an instance
method as follows:

// Compare the implicit "this" circle to the "that" circle passed
// explicitly as an argument and return the bigger one.
public Circle bigger(Circle that) {
 if (this.r > that.r) return this;
 else return that;
}

We can also implement bigger() as a class method as follows:

// Compare circle a to circle b and return the one with the larger radius
public static Circle bigger(Circle a, Circle b) {
 if (a.r > b.r) return a;
 else return b;
}

Given two Circle objects, x and y, we can use either the instance method or the
class method to determine which is bigger. The invocation syntax differs signifi-
cantly for the two methods, however:

Circle biggest = x.bigger(y); // Instance method: also y.bigger(x)
Circle biggest = Circle.bigger(x, y); // Static method

Both methods work well, and, from an object-oriented design standpoint, neither
of these methods is “more correct” than the other. The instance method is more
formally object-oriented, but its invocation syntax suffers from a kind of asym-
metry. In a case like this, the choice between an instance method and a class
method is simply a design decision. Depending on the circumstances, one or the
other will likely be the more natural choice.

Case Study: System.out.println()

Throughout this book, we’ve seen a method named System.out.println() used to
display output to the terminal window or console. We’ve never explained why this
method has such an long, awkward name or what those two periods are doing in it.
Now that you understand class and instance fields and class and instance methods,
it is easier to understand what is going on: System is a class. It has a class field
named out. The field System.out refers to an object. The object System.out has an
instance method named println(). If you want to explore this in more detail, you
can look up the java.lang.System class in the reference section. The class synopsis
there tells you that the field out is of type java.io.PrintStream, and you can look up
that class to find out about the println() method.

Creating and Initializing Objects
Now that we’ve covered fields and methods, we move on to other important
members of a class. Constructors and initializers are class members whose job is
to initialize the fields of a class.

Take another look at how we’ve been creating Circle objects:

Circle c = new Circle();

Creating and Initializing Objects | 107

Object-
Oriented

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

What are those parentheses doing there? They make it look like we’re calling a
method. In fact, that is exactly what we’re doing. Every class in Java has at least
one constructor, which is a method that has the same name as the class and whose
purpose is to perform any necessary initialization for a new object. Since we didn’t
explicitly define a constructor for our Circle class in Example 3-1, Java gave us a
default constructor that takes no arguments and performs no special initialization.

Here’s how a constructor works. The new operator creates a new, but uninitial-
ized, instance of the class. The constructor method is then called, with the new
object passed implicitly (a this reference, as we saw earlier) as well as whatever
arguments that are specified between parentheses passed explicitly. The
constructor can use these arguments to do whatever initialization is necessary.

Defining a Constructor

There is some obvious initialization we could do for our circle objects, so let’s
define a constructor. Example 3-2 shows a new definition for Circle that contains
a constructor that lets us specify the radius of a new Circle object. The
constructor also uses the this reference to distinguish between a method param-
eter and an instance field of the same name.

When we relied on the default constructor supplied by the compiler, we had to
write code like this to initialize the radius explicitly:

Circle c = new Circle();
c.r = 0.25;

With this new constructor, the initialization becomes part of the object
creation step:

Circle c = new Circle(0.25);

Here are some important notes about naming, declaring, and writing
constructors:

• The constructor name is always the same as the class name.

• Unlike all other methods, a constructor is declared without a return type, not
even void.

Example 3-2. A constructor for the Circle class

public class Circle {
 public static final double PI = 3.14159; // A constant
 public double r; // An instance field that holds the radius of the circle

 // The constructor method: initialize the radius field
 public Circle(double r) { this.r = r; }

 // The instance methods: compute values based on the radius
 public double circumference() { return 2 * PI * r; }
 public double area() { return PI * r*r; }
}

108 | Chapter 3: Object-Oriented Programming in Java

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

• The body of a constructor should initialize the this object.

• A constructor may not return this or any other value. A constructor may
include a return statement, but only one that does not include a return value.

Defining Multiple Constructors

Sometimes you want to initialize an object in a number of different ways,
depending on what is most convenient in a particular circumstance. For example,
we might want to initialize the radius of a circle to a specified value or a reason-
able default value. Since our Circle class has only a single instance field, we can’t
initialize it too many ways, of course. But in more complex classes, it is often
convenient to define a variety of constructors. Here’s how we can define two
constructors for Circle:

public Circle() { r = 1.0; }
public Circle(double r) { this.r = r; }

It is perfectly legal to define multiple constructors for a class, as long as each
constructor has a different parameter list. The compiler determines which
constructor you wish to use based on the number and type of arguments you
supply. This is simply an example of method overloading, as we discussed in
Chapter 2.

Invoking One Constructor from Another

A specialized use of the this keyword arises when a class has multiple construc-
tors; it can be used from a constructor to invoke one of the other constructors of
the same class. In other words, we can rewrite the two previous Circle construc-
tors as follows:

// This is the basic constructor: initialize the radius
public Circle(double r) { this.r = r; }
// This constructor uses this() to invoke the constructor above
public Circle() { this(1.0); }

The this() syntax is a method invocation that calls one of the other constructors
of the class. The particular constructor that is invoked is determined by the
number and type of arguments, of course. This is a useful technique when a
number of constructors share a significant amount of initialization code, as it
avoids repetition of that code. This would be a more impressive example, of
course, if the one-parameter version of the Circle() constructor did more initial-
ization than it does.

There is an important restriction on using this(): it can appear only as the first
statement in a constructor. It may, of course, be followed by any additional initial-
ization a particular version of the constructor needs to do. The reason for this
restriction involves the automatic invocation of superclass constructor methods,
which we’ll explore later in this chapter.

Creating and Initializing Objects | 109

Object-
Oriented

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Field Defaults and Initializers

Not every field of a class requires initialization. Unlike local variables, which have
no default value and cannot be used until explicitly initialized, the fields of a class
are automatically initialized to the default value false, '\u0000', 0, 0.0, or null,
depending on their type. These default values are guaranteed by Java and apply to
both instance fields and class fields.

If the default field value is not appropriate for your field, you can explicitly
provide a different initial value. For example:

public static final double PI = 3.14159;
public double r = 1.0;

Field declarations and local variable declarations have similar syntax, but there is
an important difference in how their initializer expressions are handled. As
described in Chapter 2, a local variable declaration is a statement that appears
within a Java method; the variable initialization is performed when the statement
is executed. Field declarations, however, are not part of any method, so they
cannot be executed as statements are. Instead, the Java compiler generates
instance-field initialization code automatically and puts it in the constructor or
constructors for the class. The initialization code is inserted into a constructor in
the order in which it appears in the source code, which means that a field initial-
izer can use the initial values of any fields declared before it. Consider the
following code excerpt, which shows a constructor and two instance fields of a
hypothetical class:

public class TestClass {
 public int len = 10;
 public int[] table = new int[len];

 public TestClass() {
 for(int i = 0; i < len; i++) table[i] = i;
 }

 // The rest of the class is omitted...
}

In this case, the code generated for the constructor is actually equivalent to the
following:

public TestClass() {
 len = 10;
 table = new int[len];
 for(int i = 0; i < len; i++) table[i] = i;
}

If a constructor begins with a this() call to another constructor, the field initial-
ization code does not appear in the first constructor. Instead, the initialization is
handled in the constructor invoked by the this() call.

So, if instance fields are initialized in constructor methods, where are class fields
initialized? These fields are associated with the class, even if no instances of the
class are ever created, so they need to be initialized even before a constructor is
called. To support this, the Java compiler generates a class initialization method

110 | Chapter 3: Object-Oriented Programming in Java

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

automatically for every class. Class fields are initialized in the body of this
method, which is invoked exactly once before the class is first used (often when
the class is first loaded by the Java VM.)* As with instance field initialization, class
field initialization expressions are inserted into the class initialization method in
the order in which they appear in the source code. This means that the initializa-
tion expression for a class field can use the class fields declared before it. The class
initialization method is an internal method that is hidden from Java program-
mers. In the class file, it bears the name <clinit>.

Initializer blocks

So far, we’ve seen that objects can be initialized through the initialization expres-
sions for their fields and by arbitrary code in their constructor methods. A class
has a class initialization method, which is like a constructor, but we cannot
explicitly define the body of this method as we can for a constructor. Java does
allow us to write arbitrary code for the initialization of class fields, however, with
a construct known as a static initializer. A static initializer is simply the keyword
static followed by a block of code in curly braces. A static initializer can appear
in a class definition anywhere a field or method definition can appear. For
example, consider the following code that performs some nontrivial initialization
for two class fields:

// We can draw the outline of a circle using trigonometric functions
// Trigonometry is slow, though, so we precompute a bunch of values
public class TrigCircle {
 // Here are our static lookup tables and their own simple initializers
 private static final int NUMPTS = 500;
 private static double sines[] = new double[NUMPTS];
 private static double cosines[] = new double[NUMPTS];

 // Here's a static initializer that fills in the arrays
 static {
 double x = 0.0;
 double delta_x = (Circle.PI/2)/(NUMPTS-1);
 for(int i = 0, x = 0.0; i < NUMPTS; i++, x += delta_x) {
 sines[i] = Math.sin(x);
 cosines[i] = Math.cos(x);
 }
 }
 // The rest of the class is omitted...
}

A class can have any number of static initializers. The body of each initializer block
is incorporated into the class initialization method, along with any static field initial-
ization expressions. A static initializer is like a class method in that it cannot use the
this keyword or any instance fields or instance methods of the class.

* It is actually possible to write a class initializer for a class C that calls a method of another class
that creates an instance of C. In this contrived recursive case, an instance of C is created before
the class C is fully initialized. This situation is not common in everyday practice, however.

Destroying and Finalizing Objects | 111

Object-
Oriented

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

In Java 1.1 and later, classes are also allowed to have instance initializers. An
instance initializer is like a static initializer, except that it initializes an object, not a
class. A class can have any number of instance initializers, and they can appear
anywhere a field or method definition can appear. The body of each instance initial-
izer is inserted at the beginning of every constructor for the class, along with any
field initialization expressions. An instance initializer looks just like a static initial-
izer, except that it doesn’t use the static keyword. In other words, an instance
initializer is just a block of arbitrary Java code that appears within curly braces.

Instance initializers can initialize arrays or other fields that require complex initial-
ization. They are sometimes useful because they locate the initialization code right
next to the field, instead of separating into a constructor method. For example:

private static final int NUMPTS = 100;
private int[] data = new int[NUMPTS];
{ for(int i = 0; i < NUMPTS; i++) data[i] = i; }

In practice, however, this use of instance initializers is fairly rare. Instance initial-
izers were introduced in Java 1.1 to support anonymous inner classes, which are
not allowed to define constructors. (Anonymous inner classes are covered in
“Nested Types” later in this chapter.)

Destroying and Finalizing Objects
Now that we’ve seen how new objects are created and initialized in Java, we need
to study the other end of the object life cycle and examine how objects are final-
ized and destroyed. Finalization is the opposite of initialization.

In Java, the memory occupied by an object is automatically reclaimed when the
object is no longer needed. This is done through a process known as garbage
collection. Garbage collection is a technique that has been around for years in
languages such as Lisp. It takes some getting used to for programmers accus-
tomed to such languages as C and C++, in which you must call the free()
function or the delete operator to reclaim memory. The fact that you don’t need
to remember to destroy every object you create is one of the features that makes
Java a pleasant language to work with. It is also one of the features that makes
programs written in Java less prone to bugs than those written in languages that
don’t support automatic garbage collection.

Garbage Collection

The Java interpreter knows exactly what objects and arrays it has allocated. It can
also figure out which local variables refer to which objects and arrays and which
objects and arrays refer to which other objects and arrays. Thus, the interpreter is
able to determine when an allocated object is no longer referred to by any other
active object or variable. When the interpreter finds such an object, it knows it
can safely reclaim the object’s memory and does so. The garbage collector can
also detect and destroy cycles of objects that refer to each other, but are not refer-
enced by any other active objects. Any such cycles are also reclaimed.

Different VM implementations handle garbage collection in different ways. It is
reasonable, however, to imagine the garbage collector running as a low-priority

112 | Chapter 3: Object-Oriented Programming in Java

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

background thread, so it does most of its work when nothing else is going on,
such as during idle time while waiting for user input. The only time the garbage
collector must run while something high-priority is going on (i.e., the only time it
actually slows down the system) is when available memory has become danger-
ously low. This doesn’t happen very often because the low-priority thread cleans
things up in the background.

Memory Leaks in Java

The fact that Java supports garbage collection dramatically reduces the incidence
of a class of bugs known as memory leaks. A memory leak occurs when memory is
allocated and never reclaimed. At first glance, it might seem that garbage collec-
tion prevents all memory leaks because it reclaims all unused objects. A memory
leak can still occur in Java, however, if a valid (but unused) reference to an unused
object is left hanging around. For example, when a method runs for a long time
(or forever), the local variables in that method can retain object references much
longer than they are actually required. The following code illustrates:

public static void main(String args[]) {
 int big_array[] = new int[100000];

 // Do some computations with big_array and get a result.
 int result = compute(big_array);

 // We no longer need big_array. It will get garbage collected when there
 // are no more references to it. Since big_array is a local variable,
 // it refers to the array until this method returns. But this method
 // doesn't return. So we've got to explicitly get rid of the reference
 // ourselves, so the garbage collector knows it can reclaim the array.
 big_array = null;

 // Loop forever, handling the user's input
 for(;;) handle_input(result);
}

Memory leaks can also occur when you use a hash table or similar data structure to
associate one object with another. Even when neither object is required anymore,
the association remains in the hash table, preventing the objects from being
reclaimed until the hash table itself is reclaimed. If the hash table has a substantially
longer lifetime than the objects it holds, this can cause memory leaks.

The key to avoiding memory leaks is to set object references to null when they are
no longer needed if the object that contains those references is going to continue
to exist. One common source of leaks is in data structures in which an Object
array is used to represent a collection of objects. It is common to use a separate
size field to keep track of which elements of the array are currently valid. When
removing an object from the collection, it is not sufficient to simply decrement
this size field: you must also set the appropriate array element to null so that the
obsolete object reference does not live on.

Destroying and Finalizing Objects | 113

Object-
Oriented

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Object Finalization

A finalizer in Java is the opposite of a constructor. While a constructor method
performs initialization for an object, a finalizer method can be used to perform
cleanup or “finalization” for the object. Garbage collection automatically frees up
the memory resources used by objects, but objects can hold other kinds of
resources, such as open files and network connections. The garbage collector
cannot free these resources for you, so you may occasionally want to write a final-
izer method for any object that needs to perform such tasks as closing files,
terminating network connections, deleting temporary files, and so on. This is
particularly true for classes that use native methods: these classes may need a
native finalizer to release native resources (including memory) that are not under
the control of the Java garbage collector.

A finalizer is an instance method that takes no arguments and returns no value.
There can be only one finalizer per class, and it must be named finalize().* A
finalizer can throw any kind of exception or error, but when a finalizer is automat-
ically invoked by the garbage collector, any exception or error it throws is ignored
and serves only to cause the finalizer method to return. Finalizer methods are typi-
cally declared protected (which we have not discussed yet) but can also be
declared public. An example finalizer looks like this:

protected void finalize() throws Throwable {
 // Invoke the finalizer of our superclass
 // We haven't discussed superclasses or this syntax yet
 super.finalize();

 // Delete a temporary file we were using
 // If the file doesn't exist or tempfile is null, this can throw
 // an exception, but that exception is ignored.
 tempfile.delete();
}

Here are some important points about finalizers:

• If an object has a finalizer, the finalizer method is invoked sometime after the
object becomes unused (or unreachable), but before the garbage collector
reclaims the object.

• Java makes no guarantees about when garbage collection will occur or in
what order objects will be collected. Therefore, Java can make no guarantees
about when (or even whether) a finalizer will be invoked, in what order final-
izers will be invoked, or what thread will execute finalizers.

• The Java interpreter can exit without garbage collecting all outstanding
objects, so some finalizers may never be invoked. In this case, resources such
as network connections are closed and reclaimed by the operating system.
Note, however, that if a finalizer that deletes a file does not run, that file will
not be deleted by the operating system.

* C++ programmers should note that although Java constructor methods are named like C++ con-
structors, Java finalization methods are not named like C++ destructor methods. As we will see,
they do not behave quite like C++ destructor methods either.

114 | Chapter 3: Object-Oriented Programming in Java

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

To ensure that certain actions are taken before the VM exits, Java 1.1 pro-
vided the Runtime method runFinalizersOnExit(). Unfortunately, however,
this method can cause deadlock and is inherently unsafe; it was deprecated in
1.2. In Java 1.3 and later, the Runtime method addShutdownHook() can safely
execute arbitrary code before the Java interpreter exits.

• After a finalizer is invoked, objects are not freed right away. This is because a
finalizer method can resurrect an object by storing the this pointer some-
where so that the object once again has references. Thus, after finalize() is
called, the garbage collector must once again determine that the object is
unreferenced before it can garbage-collect it. However, even if an object is
resurrected, the finalizer method is never invoked more than once. Resurrect-
ing an object is never a useful thing to do—just a strange quirk of object
finalization.

• The finalize() method is an instance method, and finalizers act on
instances. There is no equivalent mechanism for finalizing a class.

In practice, it is quite rare for an application-level class to require a finalize()
method. Finalizer methods are more useful, however, when writing Java classes
that interface to native platform code with native methods. In this case, the native
implementation can allocate memory or other resources that are not under the
control of the Java garbage collector and need to be reclaimed explicitly by a
native finalize() method.

Furthermore, because of the uncertainty about when and whether a finalizer runs, it
is best to avoid dependence on finalizers. For example, a class that includes a refer-
ence to a network socket should define a public close() method, which calls the
close() method of the socket. This way, when the user of your class is done with it,
she can call close() and be sure that the network connection is closed. You might,
however, define a finalize() method as backup in case the user of your class
forgets to call close() and allows an unclosed instance to be garbage-collected.

Subclasses and Inheritance
The Circle defined earlier is a simple class that distinguishes circle objects only by
their radii. Suppose, instead, that we want to represent circles that have both a
size and a position. For example, a circle of radius 1.0 centered at point 0,0 in the
Cartesian plane is different from the circle of radius 1.0 centered at point 1,2. To
do this, we need a new class, which we’ll call PlaneCircle. We’d like to add the
ability to represent the position of a circle without losing any of the existing func-
tionality of the Circle class. This is done by defining PlaneCircle as a subclass of
Circle so that PlaneCircle inherits the fields and methods of its superclass,
Circle. The ability to add functionality to a class by subclassing, or extending, is
central to the object-oriented programming paradigm.

Extending a Class

Example 3-3 shows how we can implement PlaneCircle as a subclass of the
Circle class.

Subclasses and Inheritance | 115

Object-
Oriented

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Note the use of the keyword extends in the first line of Example 3-3. This
keyword tells Java that PlaneCircle extends, or subclasses, Circle, meaning that it
inherits the fields and methods of that class.* The definition of the isInside()
method shows field inheritance; this method uses the field r (defined by the
Circle class) as if it were defined right in PlaneCircle itself. PlaneCircle also
inherits the methods of Circle. Thus, if we have a PlaneCircle object referenced
by variable pc, we can say:

double ratio = pc.circumference() / pc.area();

This works just as if the area() and circumference() methods were defined in
PlaneCircle itself.

Another feature of subclassing is that every PlaneCircle object is also a perfectly
legal Circle object. If pc refers to a PlaneCircle object, we can assign it to a Circle
variable and forget all about its extra positioning capabilities:

PlaneCircle pc = new PlaneCircle(1.0, 0.0, 0.0); // Unit circle at the origin
Circle c = pc; // Assigned to a Circle variable without casting

This assignment of a PlaneCircle object to a Circle variable can be done without
a cast. As we discussed in “Reference Type Conversions” in Chapter 2 a widening
conversion like this is always legal. The value held in the Circle variable c is still a
valid PlaneCircle object, but the compiler cannot know this for sure, so it doesn’t
allow us to do the opposite (narrowing) conversion without a cast:

Example 3-3. Extending the Circle class

public class PlaneCircle extends Circle {
 // We automatically inherit the fields and methods of Circle,
 // so we only have to put the new stuff here.
 // New instance fields that store the center point of the circle
 public double cx, cy;

 // A new constructor method to initialize the new fields
 // It uses a special syntax to invoke the Circle() constructor
 public PlaneCircle(double r, double x, double y) {
 super(r); // Invoke the constructor of the superclass, Circle()
 this.cx = x; // Initialize the instance field cx
 this.cy = y; // Initialize the instance field cy
 }

 // The area() and circumference() methods are inherited from Circle
 // A new instance method that checks whether a point is inside the circle
 // Note that it uses the inherited instance field r
 public boolean isInside(double x, double y) {
 double dx = x - cx, dy = y - cy; // Distance from center
 double distance = Math.sqrt(dx*dx + dy*dy); // Pythagorean theorem
 return (distance < r); // Returns true or false
 }
}

* C++ programmers should note that extends is the Java equivalent of : in C++; both are used to
indicate the superclass of a class.

116 | Chapter 3: Object-Oriented Programming in Java

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

// Narrowing conversions require a cast (and a runtime check by the VM)
PlaneCircle pc2 = (PlaneCircle) c;
boolean origininside = ((PlaneCircle) c).isInside(0.0, 0.0);

Final classes

When a class is declared with the final modifier, it means that it cannot be
extended or subclassed. java.lang.String is an example of a final class.
Declaring a class final prevents unwanted extensions to the class: if you invoke a
method on a String object, you know that the method is the one defined by the
String class itself, even if the String is passed to you from some unknown outside
source. Because String is final, no one can create a subclass of it and change the
meaning or behavior of its methods.

Declaring a class final also allows the compiler to make certain optimizations
when invoking the methods of a class. We’ll explore this when we talk about
method overriding later in this chapter.

Superclasses, Object, and the Class Hierarchy

In our example, PlaneCircle is a subclass from Circle. We can also say that
Circle is the superclass of PlaneCircle. The superclass of a class is specified in its
extends clause:

public class PlaneCircle extends Circle { ... }

Every class you define has a superclass. If you do not specify the superclass with
an extends clause, the superclass is the class java.lang.Object. Object is a special
class for a couple of reasons:

• It is the only class in Java that does not have a superclass.

• All Java classes inherit the methods of Object.

Because every class has a superclass, classes in Java form a class hierarchy, which
can be represented as a tree with Object at its root. Figure 3-1 shows a partial class
hierarchy diagram that includes our Circle and PlaneCircle classes, as well as
some of the standard classes from the Java API.

Subclass Constructors

Look again at the PlaneCircle() constructor method of Example 3-3:

public PlaneCircle(double r, double x, double y) {
 super(r); // Invoke the constructor of the superclass, Circle()
 this.cx = x; // Initialize the instance field cx
 this.cy = y; // Initialize the instance field cy
}

This constructor explicitly initializes the cx and cy fields newly defined by
PlaneCircle, but it relies on the superclass Circle() constructor to initialize the
inherited fields of the class. To invoke the superclass constructor, our constructor
calls super(). super is a reserved word in Java. One of its uses is to invoke the
constructor method of a superclass from within the constructor method of a
subclass. This use is analogous to the use of this() to invoke one constructor

Subclasses and Inheritance | 117

Object-
Oriented

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

method of a class from within another constructor method of the same class.
Invoking a constructor using super() is subject to the same restrictions as is using
this() :

• super() can be used in this way only within a constructor method.

• The call to the superclass constructor must appear as the first statement
within the constructor method, even before local variable declarations.

The arguments passed to super() must match the parameters of the superclass
constructor. If the superclass defines more than one constructor, super() can be
used to invoke any one of them, depending on the arguments passed.

Constructor Chaining and the Default Constructor

Java guarantees that the constructor method of a class is called whenever an
instance of that class is created. It also guarantees that the constructor is called
whenever an instance of any subclass is created. In order to guarantee this second
point, Java must ensure that every constructor method calls its superclass
constructor method. Thus, if the first statement in a constructor does not explic-
itly invoke another constructor with this() or super(), Java implicitly inserts the
call super(), that is, it calls the superclass constructor with no arguments. If the
superclass does not have a constructor that takes no arguments, this implicit invo-
cation causes a compilation error.

Consider what happens when we create a new instance of the PlaneCircle class.
First, the PlaneCircle constructor is invoked. This constructor explicitly calls
super(r) to invoke a Circle constructor, and that Circle() constructor implicitly
calls super() to invoke the constructor of its superclass, Object. The body of the
Object constructor runs first. When it returns, the body of the Circle()
constructor runs. Finally, when the call to super(r) returns, the remaining state-
ments of the PlaneCircle() constructor are executed.

What all this means is that constructor calls are chained; any time an object is
created, a sequence of constructor methods is invoked, from subclass to super-

Figure 3-1. A class hierarchy diagram

Object Circle

Math

System

Reader

PlaneCircle

InputStreamReader

FilterReader

StringReader

FileReader

118 | Chapter 3: Object-Oriented Programming in Java

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

class on up to Object at the root of the class hierarchy. Because a superclass
constructor is always invoked as the first statement of its subclass constructor, the
body of the Object constructor always runs first, followed by the constructor of its
subclass and on down the class hierarchy to the class that is being instantiated.
There is an important implication here; when a constructor is invoked, it can
count on the fields of its superclass to be initialized.

The default constructor

There is one missing piece in the previous description of constructor chaining. If a
constructor does not invoke a superclass constructor, Java does so implicitly. But
what if a class is declared without a constructor? In this case, Java implicitly adds
a constructor to the class. This default constructor does nothing but invoke the
superclass constructor. For example, if we don’t declare a constructor for the
PlaneCircle class, Java implicitly inserts this constructor:

public PlaneCircle() { super(); }

If the superclass, Circle, doesn’t declare a no-argument constructor, the super()
call in this automatically inserted default constructor for PlaneCircle() causes a
compilation error. In general, if a class does not define a no-argument constructor,
all its subclasses must define constructors that explicitly invoke the superclass
constructor with the necessary arguments.

If a class does not declare any constructors, it is given a no-argument constructor
by default. Classes declared public are given public constructors. All other classes
are given a default constructor that is declared without any visibility modifier:
such a constructor has default visibility. (The notion of visibility is explained later
in this chapter.) If you are creating a public class that should not be publicly
instantiated, you should declare at least one non-public constructor to prevent the
insertion of a default public constructor. Classes that should never be instanti-
ated (such as java.lang.Math or java.lang.System) should define a private
constructor. Such a constructor can never be invoked from outside of the class,
but it prevents the automatic insertion of the default constructor.

Finalizer chaining?

You might assume that since Java chains constructor methods, it also automati-
cally chains the finalizer methods for an object. In other words, you might assume
that the finalizer method of a class automatically invokes the finalizer of its super-
class, and so on. In fact, Java does not do this. When you write a finalize()
method, you must explicitly invoke the superclass finalizer. (You should do this
even if you know that the superclass does not have a finalizer because a future
implementation of the superclass might add a finalizer.)

As we saw in our example finalizer earlier in the chapter, you can invoke a super-
class method with a special syntax that uses the super keyword:

// Invoke the finalizer of our superclass
super.finalize();

We’ll discuss this syntax in more detail when we consider method overriding. In
practice, the need for finalizer methods, and thus finalizer chaining, rarely arises.

Subclasses and Inheritance | 119

Object-
Oriented

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Hiding Superclass Fields

For the sake of example, imagine that our PlaneCircle class needs to know the
distance between the center of the circle and the origin (0,0). We can add another
instance field to hold this value:

public double r;

Adding the following line to the constructor computes the value of the field:

this.r = Math.sqrt(cx*cx + cy*cy); // Pythagorean theorem

But wait; this new field r has the same name as the radius field r in the Circle
superclass. When this happens, we say that the field r of PlaneCircle hides the
field r of Circle. (This is a contrived example, of course: the new field should
really be called distanceFromOrigin. Although you should attempt to avoid it,
subclass fields do sometimes hide fields of their superclass.)

With this new definition of PlaneCircle, the expressions r and this.r both refer
to the field of PlaneCircle. How, then, can we refer to the field r of Circle that
holds the radius of the circle? A special syntax for this uses the super keyword:

r // Refers to the PlaneCircle field
this.r // Refers to the PlaneCircle field
super.r // Refers to the Circle field

Another way to refer to a hidden field is to cast this (or any instance of the class)
to the appropriate superclass and then access the field:

((Circle) this).r // Refers to field r of the Circle class

This casting technique is particularly useful when you need to refer to a hidden
field defined in a class that is not the immediate superclass. Suppose, for example,
that classes A, B, and C all define a field named x and that C is a subclass of B,
which is a subclass of A. Then, in the methods of class C, you can refer to these
different fields as follows:

x // Field x in class C
this.x // Field x in class C
super.x // Field x in class B
((B)this).x // Field x in class B
((A)this).x // Field x in class A
super.super.x // Illegal; does not refer to x in class A

You cannot refer to a hidden field x in the superclass of a superclass with
super.super.x. This is not legal syntax.

Similarly, if you have an instance c of class C, you can refer to the three fields
named x like this:

c.x // Field x of class C
((B)c).x // Field x of class B
((A)c).x // Field x of class A

So far, we’ve been discussing instance fields. Class fields can also be hidden. You
can use the same super syntax to refer to the hidden value of the field, but this is
never necessary since you can always refer to a class field by prepending the name
of the desired class. Suppose that the implementer of PlaneCircle decides that the

120 | Chapter 3: Object-Oriented Programming in Java

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Circle.PI field does not express π to enough decimal places. She can define her
own class field PI:

public static final double PI = 3.14159265358979323846;

Now, code in PlaneCircle can use this more accurate value with the expressions
PI or PlaneCircle.PI. It can also refer to the old, less accurate value with the
expressions super.PI and Circle.PI. Note, however, that the area() and
circumference() methods inherited by PlaneCircle are defined in the Circle class,
so they use the value Circle.PI, even though that value is hidden now by
PlaneCircle.PI.

Overriding Superclass Methods

When a class defines an instance method using the same name, return type, and
parameters as a method in its superclass, that method overrides the method of the
superclass. When the method is invoked for an object of the class, it is the new
definition of the method that is called, not the superclass’s old definition. In Java
5.0 and later, the return type of the overriding method may be a subclass of return
type of the overridden method instead of being exactly the same type. This is
known as a covariant return and is described in “Covariant Return Types” in
Chapter 2.

Method overriding is an important and useful technique in object-oriented
programming. PlaneCircle does not override either of the methods defined by
Circle, but suppose we define another subclass of Circle, named Ellipse.* In this
case, it is important for Ellipse to override the area() and circumference()
methods of Circle since the formulas used to compute the area and circumfer-
ence of a circle do not work for ellipses.

The upcoming discussion of method overriding considers only instance methods.
Class methods behave quite differently, and there isn’t much to say. Like fields,
class methods can be hidden by a subclass but not overridden. As noted earlier in
this chapter, it is good programming style to always prefix a class method invoca-
tion with the name of the class in which it is defined. If you consider the class
name part of the class method name, the two methods have different names, so
nothing is actually hidden at all. It is, however, illegal for a class method to hide
an instance method.

Before we go any further with the discussion of method overriding, you should
understand the difference between method overriding and method overloading.
As we discussed in Chapter 2, method overloading refers to the practice of
defining multiple methods (in the same class) that have the same name but
different parameter lists. This is very different from method overriding, so don’t
get them confused.

* Mathematical purists may argue that since all circles are ellipses, Ellipse should be the superclass
and Circle the subclass. A pragmatic engineer might counter that circles can be represented with
fewer instance fields, so Circle objects should not be burdened by inheriting unnecessary fields
from Ellipse. In any case, this is a useful example here.

Subclasses and Inheritance | 121

Object-
Oriented

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Overriding is not hiding

Although Java treats the fields and methods of a class analogously in many ways,
method overriding is not like field hiding at all. You can refer to hidden fields
simply by casting an object to an instance of the appropriate superclass, but you
cannot invoke overridden instance methods with this technique. The following
code illustrates this crucial difference:

class A { // Define a class named A
 int i = 1; // An instance field
 int f() { return i; } // An instance method
 static char g() { return 'A'; } // A class method
}

class B extends A { // Define a subclass of A
 int i = 2; // Hides field i in class A
 int f() { return -i; } // Overrides instance method f in class A
 static char g() { return 'B'; } // Hides class method g() in class A
}

public class OverrideTest {
 public static void main(String args[]) {
 B b = new B(); // Creates a new object of type B
 System.out.println(b.i); // Refers to B.i; prints 2
 System.out.println(b.f()); // Refers to B.f(); prints -2
 System.out.println(b.g()); // Refers to B.g(); prints B
 System.out.println(B.g()); // This is a better way to invoke B.g()

 A a = (A) b; // Casts b to an instance of class A
 System.out.println(a.i); // Now refers to A.i; prints 1
 System.out.println(a.f()); // Still refers to B.f(); prints -2
 System.out.println(a.g()); // Refers to A.g(); prints A
 System.out.println(A.g()); // This is a better way to invoke A.g()
 }
}

While this difference between method overriding and field hiding may seem
surprising at first, a little thought makes the purpose clear. Suppose we are manip-
ulating a bunch of Circle and Ellipse objects. To keep track of the circles and
ellipses, we store them in an array of type Circle[]. (We can do this because
Ellipse is a subclass of Circle, so all Ellipse objects are legal Circle objects.)
When we loop through the elements of this array, we don’t have to know or care
whether the element is actually a Circle or an Ellipse. What we do care about
very much, however, is that the correct value is computed when we invoke the
area() method of any element of the array. In other words, we don’t want to use
the formula for the area of a circle when the object is actually an ellipse! Seen in
this context, it is not surprising at all that method overriding is handled differ-
ently by Java than is field hiding.

Dynamic method lookup

If we have a Circle[] array that holds Circle and Ellipse objects, how does the
compiler know whether to call the area() method of the Circle class or the

122 | Chapter 3: Object-Oriented Programming in Java

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Ellipse class for any given item in the array? In fact, the compiler does not know
this because it cannot know it. The compiler knows that it does not know,
however, and produces code that uses dynamic method lookup at runtime. When
the interpreter runs the code, it looks up the appropriate area() method to call
for each of the objects in the array. That is, when the interpreter interprets the
expression o.area(), it checks the actual type of the object referred to by the vari-
able o and then finds the area() method that is appropriate for that type. It does
not simply use the area() method that is statically associated with the type of the
variable o. This process of dynamic method lookup is sometimes also called
virtual method invocation.*

Final methods and static method lookup

Virtual method invocation is fast, but method invocation is faster when no
dynamic lookup is necessary at runtime. Fortunately, Java does not always need
to use dynamic method lookup. In particular, if a method is declared with the
final modifier, it means that the method definition is the final one; it cannot be
overridden by any subclasses. If a method cannot be overridden, the compiler
knows that there is only one version of the method, and dynamic method
lookup is not necessary.† In addition, all methods of a final class are them-
selves implicitly final and cannot be overridden. As we’ll discuss later in this
chapter, private methods are not inherited by subclasses and, therefore, cannot
be overridden (i.e., all private methods are implicitly final). Finally, class
methods behave like fields (i.e., they can be hidden by subclasses but not over-
ridden). Taken together, this means that all methods of a class that is declared
final, as well as all methods that are final, private, or static, are invoked
without dynamic method lookup. These methods are also candidates for
inlining at runtime by a just-in-time compiler (JIT) or similar optimization tool.

Invoking an overridden method

We’ve seen the important differences between method overriding and field hiding.
Nevertheless, the Java syntax for invoking an overridden method is quite similar
to the syntax for accessing a hidden field: both use the super keyword. The
following code illustrates:

class A {
 int i = 1; // An instance field hidden by subclass B
 int f() { return i; } // An instance method overridden by subclass B
}

class B extends A {
 int i; // This field hides i in A
 int f() { // This method overrides f() in A

* C++ programmers should note that dynamic method lookup is what C++ does for virtual func-
tions. An important difference between Java and C++ is that Java does not have a virtual key-
word. In Java, methods are virtual by default.

† In this sense, the final modifier is the opposite of the virtual modifier in C++. All non-final
methods in Java are virtual.

Data Hiding and Encapsulation | 123

Object-
Oriented

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

 i = super.i + 1; // It can retrieve A.i like this
 return super.f() + i; // It can invoke A.f() like this
 }
}

Recall that when you use super to refer to a hidden field, it is the same as casting
this to the superclass type and accessing the field through that. Using super to
invoke an overridden method, however, is not the same as casting this. In other
words, in the previous code, the expression super.f() is not the same as
((A)this).f().

When the interpreter invokes an instance method with this super syntax, a modi-
fied form of dynamic method lookup is performed. The first step, as in regular
dynamic method lookup, is to determine the actual class of the object through
which the method is invoked. Normally, the dynamic search for an appropriate
method definition would begin with this class. When a method is invoked with
the super syntax, however, the search begins at the superclass of the class. If the
superclass implements the method directly, that version of the method is invoked.
If the superclass inherits the method, the inherited version of the method is
invoked.

Note that the super keyword invokes the most immediately overridden version of a
method. Suppose class A has a subclass B that has a subclass C and that all three classes
define the same method f(). The method C.f() can invoke the method B.f(), which
it overrides directly, with super.f(). But there is no way for C.f() to invoke A.f()
directly: super.super.f() is not legal Java syntax. Of course, if C.f() invokes B.f(),
it is reasonable to suppose that B.f() might also invoke A.f(). This kind of chaining
is relatively common when working with overridden methods: it is a way of
augmenting the behavior of a method without replacing the method entirely. We saw
this technique in the the example finalize() method shown earlier in the chapter:
that method invoked super.finalize() to run its superclass finalization method.

Don’t confuse the use of super to invoke an overridden method with the super()
method call used in constructor methods to invoke a superclass constructor.
Although they both use the same keyword, these are two entirely different
syntaxes. In particular, you can use super to invoke an overridden method
anywhere in the overriding class while you can use super() only to invoke a super-
class constructor as the very first statement of a constructor.

It is also important to remember that super can be used only to invoke an over-
ridden method from within the class that overrides it. Given an Ellipse object e,
there is no way for a program that uses an object (with or without the super
syntax) to invoke the area() method defined by the Circle class on this object.

Data Hiding and Encapsulation
We started this chapter by describing a class as a collection of data and methods.
One of the important object-oriented techniques we haven’t discussed so far is
hiding the data within the class and making it available only through the methods.
This technique is known as encapsulation because it seals the data (and internal

124 | Chapter 3: Object-Oriented Programming in Java

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

methods) safely inside the “capsule” of the class, where it can be accessed only by
trusted users (i.e., the methods of the class).

Why would you want to do this? The most important reason is to hide the
internal implementation details of your class. If you prevent programmers from
relying on those details, you can safely modify the implementation without
worrying that you will break existing code that uses the class.

Another reason for encapsulation is to protect your class against accidental or
willful stupidity. A class often contains a number of interdependent fields that
must be in a consistent state. If you allow a programmer (including yourself) to
manipulate those fields directly, he may change one field without changing impor-
tant related fields, leaving the class in an inconsistent state. If instead he has to call
a method to change the field, that method can be sure to do everything necessary
to keep the state consistent. Similarly, if a class defines certain methods for internal
use only, hiding these methods prevents users of the class from calling them.

Here’s another way to think about encapsulation: when all the data for a class is
hidden, the methods define the only possible operations that can be performed on
objects of that class. Once you have carefully tested and debugged your methods,
you can be confident that the class will work as expected. On the other hand, if all
the fields of the class can be directly manipulated, the number of possibilities you
have to test becomes unmanageable.

Other reasons to hide fields and methods of a class include:

• Internal fields and methods that are visible outside the class just clutter up
the API. Keeping visible fields to a minimum keeps your class tidy and there-
fore easier to use and understand.

• If a field or method is visible to the users of your class, you have to document
it. Save yourself time and effort by hiding it instead.

Access Control

All the fields and methods of a class can always be used within the body of the
class itself. Java defines access control rules that restrict members of a class from
being used outside the class. In a number of examples in this chapter, you’ve seen
the public modifier used in field and method declarations. This public keyword,
along with protected and private, are access control modifiers; they specify the
access rules for the field or method.

Access to packages

A package is always accessible to code defined within the package. Whether it is
accessible to code from other packages depends on the way the package is
deployed on the host system. When the class files that comprise a package are
stored in a directory, for example, a user must have read access to the directory
and the files within it in order to have access to the package. Package access is not
part of the Java language itself. Access control is usually done at the level of
classes and members of classes instead.

Data Hiding and Encapsulation | 125

Object-
Oriented

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Access to classes

By default, top-level classes are accessible within the package in which they are
defined. However, if a top-level class is declared public, it is accessible every-
where (or everywhere that the package itself is accessible). The reason that we’ve
restricted these statements to top-level classes is that, as we’ll see later in this
chapter, classes can also be defined as members of other classes. Because these
inner classes are members of a class, they obey the member access-control rules.

Access to members

The members of a class are always accessible within the body of the class. By
default, members are also accessible throughout the package in which the class is
defined. This implies that classes placed in the same package should trust each
other with their internal implementation details. This default level of access is
often called package access. It is only one of four possible levels of access. The
other three levels of access are defined by the public, protected, and private
modifiers. Here is some example code that uses these modifiers:

public class Laundromat { // People can use this class.
 private Laundry[] dirty; // They cannot use this internal field,
 public void wash() { ... } // but they can use these public methods
 public void dry() { ... } // to manipulate the internal field.
 protected int temperature; // A subclass might want to tweak this field
}

These access rules apply to members of a class:

• If a member of a class is declared with the public modifier, it means that the
member is accessible anywhere the containing class is accessible. This is the
least restrictive type of access control.

• If a member of a class is declared private, the member is never accessible,
except within the class itself. This is the most restrictive type of access control.

• If a member of a class is declared protected, it is accessible to all classes
within the package (the same as the default package accessibility) and also
accessible within the body of any subclass of the class, regardless of the pack-
age in which that subclass is defined. This is more restrictive than public
access, but less restrictive than package access.

• If a member of a class is not declared with any of these modifiers, it has the
default package access: it is accessible to code within all classes that are
defined in the same package but inaccessible outside of the package.

protected access requires a little more elaboration. Suppose class A declares a
protected field x and is extended by a class B, which is defined in a different
package (this last point is important). Class B inherits the protected field x, and its
code can access that field in the current instance of B or in any other instances of B
that the code can refer to. This does not mean, however, that the code of class B
can start reading the protected fields of arbitrary instances of A! If an object is an
instance of A but is not an instance of B, its fields are obviously not inherited by B,
and the code of class B cannot read them.

126 | Chapter 3: Object-Oriented Programming in Java

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Access control and inheritance

The Java specification states that a subclass inherits all the instance fields and
instance methods of its superclass accessible to it. If the subclass is defined in the
same package as the superclass, it inherits all non-private instance fields and
methods. If the subclass is defined in a different package, however, it inherits all
protected and public instance fields and methods. private fields and methods are
never inherited; neither are class fields or class methods. Finally, constructors are
not inherited; they are chained, as described earlier in this chapter.

The statement that a subclass does not inherit the inaccessible fields and methods
of its superclass can be a confusing one. It would seem to imply that when you
create an instance of a subclass, no memory is allocated for any private fields
defined by the superclass. This is not the intent of the statement, however. Every
instance of a subclass does, in fact, include a complete instance of the superclass
within it, including all inaccessible fields and methods. It is simply a matter of
terminology. Because the inaccessible fields cannot be used in the subclass, we say
they are not inherited. Earlier in this section we said that the members of a class
are always accessible within the body of the class. If this statement is to apply to
all members of the class, including inherited members, we must define “inherited
members” to include only those members that are accessible. If you don’t care for
this definition, you can think of it this way instead:

• A class inherits all instance fields and instance methods (but not construc-
tors) of its superclass.

• The body of a class can always access all the fields and methods it declares
itself. It can also access the accessible fields and members it inherits from its
superclass.

Member access summary

Table 3-1 summarizes the member access rules.

Here are some simple rules of thumb for using visibility modifiers:

• Use public only for methods and constants that form part of the public API
of the class. Certain important or frequently used fields can also be public,
but it is common practice to make fields non-public and encapsulate them
with public accessor methods.

• Use protected for fields and methods that aren’t required by most program-
mers using the class but that may be of interest to anyone creating a subclass

Table 3-1. Class member accessibility

Member visibility

Accessible to Public Protected Package Private

Defining class Yes Yes Yes Yes

Class in same package Yes Yes Yes No

Subclass in different package Yes Yes No No

Non-subclass different package Yes No No No

Data Hiding and Encapsulation | 127

Object-
Oriented

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

as part of a different package. Note that protected members are technically
part of the exported API of a class. They should be documented and cannot
be changed without potentially breaking code that relies on them.

• Use the default package visibility for fields and methods that are internal
implementation details but are used by cooperating classes in the same pack-
age. You cannot take real advantage of package visibility unless you use the
package directive to group your cooperating classes into a package.

• Use private for fields and methods that are used only inside the class and
should be hidden everywhere else.

If you are not sure whether to use protected, package, or private accessibility, it is
better to start with overly restrictive member access. You can always relax the
access restrictions in future versions of your class, if necessary. Doing the reverse
is not a good idea because increasing access restrictions is not a backward-
compatible change and can break code that relies on access to those members.

Data Accessor Methods

In the Circle example, we declared the circle radius to be a public field. The
Circle class is one in which it may well be reasonable to keep that field publicly
accessible; it is a simple enough class, with no dependencies between its fields. On
the other hand, our current implementation of the class allows a Circle object to
have a negative radius, and circles with negative radii should simply not exist. As
long as the radius is stored in a public field, however, any programmer can set the
field to any value she wants, no matter how unreasonable. The only solution is to
restrict the programmer’s direct access to the field and define public methods that
provide indirect access to the field. Providing public methods to read and write a
field is not the same as making the field itself public. The crucial difference is that
methods can perform error checking.

Example 3-4 shows how we might reimplement Circle to prevent circles with
negative radii. This version of Circle declares the r field to be protected and
defines accessor methods named getRadius() and setRadius() to read and write
the field value while enforcing the restriction on negative radius values. Because
the r field is protected, it is directly (and more efficiently) accessible to subclasses.

Example 3-4. The Circle class using data hiding and encapsulation

package shapes; // Specify a package for the class

public class Circle { // The class is still public
 // This is a generally useful constant, so we keep it public
 public static final double PI = 3.14159;

 protected double r; // Radius is hidden but visible to subclasses

 // A method to enforce the restriction on the radius
 // This is an implementation detail that may be of interest to subclasses
 protected void checkRadius(double radius) {
 if (radius < 0.0)
 throw new IllegalArgumentException("radius may not be negative.");

128 | Chapter 3: Object-Oriented Programming in Java

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

We have defined the Circle class within a package named shapes. Since r is
protected, any other classes in the shapes package have direct access to that field
and can set it however they like. The assumption here is that all classes within the
shapes package were written by the same author or a closely cooperating group of
authors and that the classes all trust each other not to abuse their privileged level
of access to each other’s implementation details.

Finally, the code that enforces the restriction against negative radius values is itself
placed within a protected method, checkRadius(). Although users of the Circle
class cannot call this method, subclasses of the class can call it and even override
it if they want to change the restrictions on the radius.

Note particularly the getRadius() and setRadius() methods of Example 3-4. It is
a common convention in Java that data accessor methods begin with the prefixes
“get” and “set.” If the field being accessed is of type boolean, however, the get()
method may be replaced with an equivalent method that begins with “is.” For
example, the accessor method for a boolean field named readable is typically
called isReadable() instead of getReadable(). In the programming conventions of
the JavaBeans component model (covered in Chapter 7), a hidden field with one
or more data accessor methods whose names begin with “get,” “is,” or “set” is
called a property. An interesting way to study a complex class is to look at the set
of properties it defines. Properties are particularly common in the AWT and
Swing APIs, which are covered in Java Foundation Classes in a Nutshell (O’Reilly).

Abstract Classes and Methods
In Example 3-4, we declared our Circle class to be part of a package named
shapes. Suppose we plan to implement a number of shape classes: Rectangle,
Square, Ellipse, Triangle, and so on. We can give these shape classes our two
basic area() and circumference() methods. Now, to make it easy to work with an

 }

 // The constructor method
 public Circle(double r) {
 checkRadius(r);
 this.r = r;
 }

 // Public data accessor methods
 public double getRadius() { return r; }
 public void setRadius(double r) {
 checkRadius(r);
 this.r = r;
 }

 // Methods to operate on the instance field
 public double area() { return PI * r * r; }
 public double circumference() { return 2 * PI * r; }
}

Example 3-4. The Circle class using data hiding and encapsulation (continued)

Abstract Classes and Methods | 129

Object-
Oriented

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

array of shapes, it would be helpful if all our shape classes had a common super-
class, Shape. If we structure our class hierarchy this way, every shape object,
regardless of the actual type of shape it represents, can be assigned to variables,
fields, or array elements of type Shape. We want the Shape class to encapsulate
whatever features all our shapes have in common (e.g., the area() and
circumference() methods). But our generic Shape class doesn’t represent any real
kind of shape, so it cannot define useful implementations of the methods. Java
handles this situation with abstract methods.

Java lets us define a method without implementing it by declaring the method
with the abstract modifier. An abstract method has no body; it simply has a
signature definition followed by a semicolon.* Here are the rules about abstract
methods and the abstract classes that contain them:

• Any class with an abstract method is automatically abstract itself and must
be declared as such.

• An abstract class cannot be instantiated.

• A subclass of an abstract class can be instantiated only if it overrides each of
the abstract methods of its superclass and provides an implementation (i.e.,
a method body) for all of them. Such a class is often called a concrete sub-
class, to emphasize the fact that it is not abstract.

• If a subclass of an abstract class does not implement all the abstract meth-
ods it inherits, that subclass is itself abstract and must be declared as such.

• static, private, and final methods cannot be abstract since these types of
methods cannot be overridden by a subclass. Similarly, a final class cannot
contain any abstract methods.

• A class can be declared abstract even if it does not actually have any abstract
methods. Declaring such a class abstract indicates that the implementation is
somehow incomplete and is meant to serve as a superclass for one or more sub-
classes that complete the implementation. Such a class cannot be instantiated.

There is an important feature of the rules of abstract methods. If we define the
Shape class to have abstract area() and circumference() methods, any subclass of
Shape is required to provide implementations of these methods so that it can be
instantiated. In other words, every Shape object is guaranteed to have implementa-
tions of these methods defined. Example 3-5 shows how this might work. It
defines an abstract Shape class and two concrete subclasses of it.

* An abstract method in Java is something like a pure virtual function in C++ (i.e., a virtual func-
tion that is declared = 0). In C++, a class that contains a pure virtual function is called an abstract
class and cannot be instantiated. The same is true of Java classes that contain abstract methods.

Example 3-5. An abstract class and concrete subclasses

public abstract class Shape {
 public abstract double area(); // Abstract methods: note
 public abstract double circumference(); // semicolon instead of body.
}

class Circle extends Shape {

130 | Chapter 3: Object-Oriented Programming in Java

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Each abstract method in Shape has a semicolon right after its parentheses. They
have no curly braces, and no method body is defined. Using the classes defined in
Example 3-5, we can now write code such as:

Shape[] shapes = new Shape[3]; // Create an array to hold shapes
shapes[0] = new Circle(2.0); // Fill in the array
shapes[1] = new Rectangle(1.0, 3.0);
shapes[2] = new Rectangle(4.0, 2.0);

double total_area = 0;
for(int i = 0; i < shapes.length; i++)
 total_area += shapes[i].area(); // Compute the area of the shapes

Notice two important points here:

• Subclasses of Shape can be assigned to elements of an array of Shape. No cast
is necessary. This is another example of a widening reference type conversion
(discussed in Chapter 2).

• You can invoke the area() and circumference() methods for any Shape
object, even though the Shape class does not define a body for these methods.
When you do this, the method to be invoked is found using dynamic method
lookup, so the area of a circle is computed using the method defined by
Circle, and the area of a rectangle is computed using the method defined by
Rectangle.

Important Methods of java.lang.Object
As we’ve noted, all classes extend, directly or indirectly, java.lang.Object. This
class defines several important methods that you should consider overriding in
every class you write. Example 3-6 shows a class that overrides these methods.
The sections that follow the example document the default implementation of

 public static final double PI = 3.14159265358979323846;
 protected double r; // Instance data
 public Circle(double r) { this.r = r; } // Constructor
 public double getRadius() { return r; } // Accessor
 public double area() { return PI*r*r; } // Implementations of
 public double circumference() { return 2*PI*r; } // abstract methods.
}

class Rectangle extends Shape {
 protected double w, h; // Instance data
 public Rectangle(double w, double h) { // Constructor
 this.w = w; this.h = h;
 }
 public double getWidth() { return w; } // Accessor method
 public double getHeight() { return h; } // Another accessor
 public double area() { return w*h; } // Implementations of
 public double circumference() { return 2*(w + h); } // abstract methods.
}

Example 3-5. An abstract class and concrete subclasses (continued)

Important Methods of java.lang.Object | 131

Object-
Oriented

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

each method and explain why you might want to override it. You may also find it
helpful to look up Object in the reference section for an API listing.

Some of the syntax in Example 3-6 may be unfamiliar to you. The example uses
two Java 5.0 features. First, it implements a parameterized, or generic, version of
the Comparable interface. Second, the example uses the @Override annotation to
emphasize (and have the compiler verify) that certain methods override Object.
Parameterized types and annotations are covered in Chapter 4.

Example 3-6. A class that overrides important Object methods

// This class represents a circle with immutable position and radius.
public class Circle implements Comparable<Circle> {
 // These fields hold the coordinates of the center and the radius.
 // They are private for data encapsulation and final for immutability
 private final int x, y, r;

 // The basic constructor: initialize the fields to specified values
 public Circle(int x, int y, int r) {
 if (r < 0) throw new IllegalArgumentException("negative radius");
 this.x = x; this.y = y; this.r = r;
 }

 // This is a "copy constructor"--a useful alternative to clone()
 public Circle(Circle original) {
 x = original.x; // Just copy the fields from the original
 y = original.y;
 r = original.r;
 }

 // Public accessor methods for the private fields.
 // These are part of data encapsulation.
 public int getX() { return x; }
 public int getY() { return y; }
 public int getR() { return r; }

 // Return a string representation
 @Override public String toString() {
 return String.format("center=(%d,%d); radius=%d", x, y, r);
 }

 // Test for equality with another object
 @Override public boolean equals(Object o) {
 if (o == this) return true; // Identical references?
 if (!(o instanceof Circle)) return false; // Correct type and non-null?
 Circle that = (Circle) o; // Cast to our type
 if (this.x == that.x && this.y == that.y && this.r == that.r)
 return true; // If all fields match
 else
 return false; // If fields differ
 }

 // A hash code allows an object to be used in a hash table.
 // Equal objects must have equal hash codes. Unequal objects are allowed

132 | Chapter 3: Object-Oriented Programming in Java

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

toString()

The purpose of the toString() method is to return a textual representation of an
object. The method is invoked automatically on objects during string concatena-
tion and by methods such as System.out.println(). Giving objects a textual
representation can be quite helpful for debugging or logging output, and a well-
crafted toString() method can even help with tasks such as report generation.

The version of toString() inherited from Object returns a string that includes
the name of the class of the object as well as a hexadecimal representation of the
hashCode() value of the object (discussed later in this chapter). This default
implementation provides basic type and identity information for an object but is
not usually very useful. The toString() method in Example 3-6 instead returns
a human-readable string that includes the value of each of the fields of the
Circle class.

equals()

The = = operator tests two references to see if they refer to the same object. If you
want to test whether two distinct objects are equal to one another, you must use
the equals() method instead. Any class can define its own notion of equality by
overriding equals(). The Object.equals() method simply uses the == operator:
this default method considers two objects equal only if they are actually the very
same object.

 // to have equal hash codes as well, but we try to avoid that.
 // We must override this method since we also override equals().
 @Override public int hashCode() {
 int result = 17; // This hash code algorithm from the book
 result = 37*result + x; // _Effective Java_, by Joshua Bloch
 result = 37*result + y;
 result = 37*result + r;
 return result;
 }

 // This method is defined by the Comparable interface.
 // Compare this Circle to that Circle. Return a value < 0 if this < that.
 // Return 0 if this == that. Return a value > 0 if this > that.
 // Circles are ordered top to bottom, left to right, and then by radius
 public int compareTo(Circle that) {
 long result = (long)that.y-this.y; // Smaller circles have bigger y
 if (result==0) result = (long)this.x-that.x; // If same compare l-to-r
 if (result==0) result = (long)this.r-that.r; // If same compare radius

 // We have to use a long value for subtraction because the differences
 // between a large positive and large negative value could overflow
 // an int. But we can't return the long, so return its sign as an int.
 return Long.signum(result); // new in Java 5.0
 }
}

Example 3-6. A class that overrides important Object methods (continued)

Important Methods of java.lang.Object | 133

Object-
Oriented

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

The equals() method in Example 3-6 considers two distinct Circle objects to be
equal if their fields are all equal. Note that it first does a quick identity test with = =
as an optimization and then checks the type of the other object with instanceof: a
Circle can be equal only to another Circle, and it is not acceptable for an equals()
method to throw a ClassCastException. Note that the instanceof test also rules out
null arguments: instanceof always evaluates to false if its left-hand operand is
null.

hashCode()

Whenever you override equals(), you must also override hashCode(). This
method returns an integer for use by hash table data structures. It is critical that
two objects have the same hash code if they are equal according to the equals()
method. It is important (for efficient operation of hash tables) but not required
that unequal objects have unequal hash codes, or at least that unequal objects are
unlikely to share a hash code. This second criterion can lead to hashCode()
methods that involve mildly tricky arithmetic or bit-manipulation.

The Object.hashCode() method works with the Object.equals() method and
returns a hash code based on object identity rather than object equality. (If you
ever need an identity-based hash code, you can access the functionality of
Object.hashCode() through the static method System.identityHashCode().) When
you override equals(), you must always override hashCode() to guarantee that
equal objects have equal hash codes. Since the equals() method in Example 3-6
bases object equality on the values of the three fields, the hashCode() method
computes its hash code based on these three fields as well. It is clear from the
code that if two Circle objects have the same field values, they will have the
same hash code.

Note that the hashCode() method in Example 3-6 does not simply add the three
fields and return their sum. Such an implementation would be legal but not effi-
cient because two circles with the same radius but whose X and Y coordinates
were reversed would then have the same hash code. The repeated multiplication
and addition steps “spread out” the range of hash codes and dramatically reduce
the likelihood that two unequal Circle objects have the same code. Effective Java
Programming Guide by Joshua Bloch (Addison Wesley) includes a helpful recipe
for constructing efficient hashCode() methods like this one.

Comparable.compareTo()

Example 3-6 includes a compareTo() method. This method is defined by the
java.lang.Comparable interface rather than by Object. (It actually uses the
generics features of Java 5.0 and implements a parameterized version of the
interface: Comparable<Circle>, but we can ignore that fact until Chapter 4.) The
purpose of Comparable and its compareTo() method is to allow instances of a
class to be compared to each other in the way that the <, <=, > and >= operators
compare numbers. If a class implements Comparable, we can say that one
instance is less than, greater than, or equal to another instance. Instances of a
Comparable class can be sorted.

134 | Chapter 3: Object-Oriented Programming in Java

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Since compareTo() is defined by an interface, the Object class does not provide any
default implementation. It is up to each individual class to determine whether and
how its instances should be ordered and to include a compareTo() method that
implements that ordering. The ordering defined by Example 3-6 compares Circle
objects as if they were words on a page. Circles are first ordered from top to
bottom: circles with larger Y coordinates are less than circles with smaller Y coor-
dinates. If two circles have the same Y coordinate, they are ordered from left to
right. A circle with a smaller X coordinate is less than a circle with a larger X coor-
dinate. Finally, if two circles have the same X and Y coordinates, they are
compared by radius. The circle with the smaller radius is smaller. Notice that
under this ordering, two circles are equal only if all three of their fields are equal.
This means that the ordering defined by compareTo() is consistent with the
equality defined by equals(). This is very desirable (but not strictly required).

The compareTo() method returns an int value that requires further explanation.
compareTo() should return a negative number if the this object is less than the
object passed to it. It should return 0 if the two objects are equal. And compareTo()
should return a positive number if this is greater than the method argument.

clone()

Object defines a method named clone() whose purpose is to return an object with
fields set identically to those of the current object. This is an unusual method for
two reasons. First, it works only if the class implements the java.lang.Cloneable
interface. Cloneable does not define any methods, so implementing it is simply a
matter of listing it in the implements clause of the class signature. The other
unusual feature of clone() is that it is declared protected (see “Data Hiding and
Encapsulation” earlier in this chapter). This means that subclasses of Object can
call and override Object.clone(), but other code cannot call it. Therefore, if you
want your object to be cloneable, you must implement Cloneable and override the
clone() method, making it public.

The Circle class of Example 3-6 does not implement Cloneable; instead it
provides a copy constructor for making copies of Circle objects:

Circle original = new Circle(1, 2, 3); // regular constructor
Circle copy = new Circle(original); // copy constructor

It can be difficult to implement clone() correctly, and it is usually easier and
safer to provide a copy constructor. To make the Circle class cloneable, you
would add Cloneable to the implements clause and add the following method to
the class body:

@Override public Object clone() {
 try { return super.clone(); }
 catch(CloneNotSupportedException e) { throw new AssertionError(e); }
}

See Effective Java Programming Guide by Joshua Bloch for a detailed discussion of
the ins and outs of clone() and Cloneable.

Interfaces | 135

Object-
Oriented

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Interfaces
Like a class, an interface defines a new reference type. Unlike classes, however,
interfaces provide no implementation for the types they define. As its name
implies, an interface specifies only an API: all of its methods are abstract and
have no bodies. It is not possible to directly instantiate an interface and create a
member of the interface type. Instead, a class must implement the interface to
provide the necessary method bodies. Any instances of that class are members of
both the type defined by the class and the type defined by the interface. Inter-
faces provide a limited but very powerful alternative to multiple inheritance.*
Classes in Java can inherit members from only a single superclass, but they can
implement any number of interfaces. Objects that do not share the same class or
superclass may still be members of the same type by virtue of implementing the
same interface.

Defining an Interface

An interface definition is much like a class definition in which all the methods are
abstract and the keyword class has been replaced with interface. For example,
the following code shows the definition of an interface named Centered. A Shape
class, such as those defined earlier in the chapter, might implement this interface
if it wants to allow the coordinates of its center to be set and queried:

public interface Centered {
 void setCenter(double x, double y);
 double getCenterX();
 double getCenterY();
}

A number of restrictions apply to the members of an interface:

• An interface contains no implementation whatsoever. All methods of an
interface are implicitly abstract and must have a semicolon in place of a
method body. The abstract modifier is allowed but, by convention, is usu-
ally omitted. Since static methods may not be abstract, the methods of an
interface may not be declared static.

• An interface defines a public API. All members of an interface are implicitly
public, and it is conventional to omit the unnecessary public modifier. It is
an error to define a protected or private method in an interface.

• An interface may not define any instance fields. Fields are an implementation
detail, and an interface is a pure specification without any implementation.
The only fields allowed in an interface definition are constants that are
declared both static and final.

• An interface cannot be instantiated, so it does not define a constructor.

• Interfaces may contain nested types. Any such types are implicitly public and
static. See “Nested Types” later in this chapter.

* C++ supports multiple inheritance, but the ability of a class to have more than one superclass
adds a lot of complexity to the language.

136 | Chapter 3: Object-Oriented Programming in Java

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Extending interfaces

Interfaces may extend other interfaces, and, like a class definition, an interface
definition may include an extends clause. When one interface extends another, it
inherits all the abstract methods and constants of its superinterface and can define
new abstract methods and constants. Unlike classes, however, the extends clause
of an interface definition may include more than one superinterface. For example,
here are some interfaces that extend other interfaces:

public interface Positionable extends Centered {
 void setUpperRightCorner(double x, double y);
 double getUpperRightX();
 double getUpperRightY();
}
public interface Transformable extends Scalable, Translatable, Rotatable {}
public interface SuperShape extends Positionable, Transformable {}

An interface that extends more than one interface inherits all the abstract methods
and constants from each of those interfaces and can define its own additional
abstract methods and constants. A class that implements such an interface must
implement the abstract methods defined directly by the interface, as well as all the
abstract methods inherited from all the superinterfaces.

Implementing an Interface

Just as a class uses extends to specify its superclass, it can use implements to name
one or more interfaces it supports. implements is a Java keyword that can appear
in a class declaration following the extends clause. implements should be followed
by a comma-separated list of interfaces that the class implements.

When a class declares an interface in its implements clause, it is saying that it
provides an implementation (i.e., a body) for each method of that interface. If a
class implements an interface but does not provide an implementation for every
interface method, it inherits those unimplemented abstract methods from the
interface and must itself be declared abstract. If a class implements more than
one interface, it must implement every method of each interface it implements (or
be declared abstract).

The following code shows how we can define a CenteredRectangle class that
extends the Rectangle class from earlier in the chapter and implements our
Centered interface.

public class CenteredRectangle extends Rectangle implements Centered {
 // New instance fields
 private double cx, cy;

 // A constructor
 public CenteredRectangle(double cx, double cy, double w, double h) {
 super(w, h);
 this.cx = cx;
 this.cy = cy;
 }

 // We inherit all the methods of Rectangle but must

Interfaces | 137

Object-
Oriented

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

 // provide implementations of all the Centered methods.
 public void setCenter(double x, double y) { cx = x; cy = y; }
 public double getCenterX() { return cx; }
 public double getCenterY() { return cy; }
}

Suppose we implement CenteredCircle and CenteredSquare just as we have imple-
mented this CenteredRectangle class. Since each class extends Shape, instances of
the classes can be treated as instances of the Shape class, as we saw earlier. Since
each class implements the Centered interface, instances can also be treated as
instances of that type. The following code demonstrates how objects can be
members of both a class type and an interface type:

Shape[] shapes = new Shape[3]; // Create an array to hold shapes

// Create some centered shapes, and store them in the Shape[]
// No cast necessary: these are all widening conversions
shapes[0] = new CenteredCircle(1.0, 1.0, 1.0);
shapes[1] = new CenteredSquare(2.5, 2, 3);
shapes[2] = new CenteredRectangle(2.3, 4.5, 3, 4);

// Compute average area of the shapes and average distance from the origin
double totalArea = 0;
double totalDistance = 0;
for(int i = 0; i < shapes.length; i++) {
 totalArea += shapes[i].area(); // Compute the area of the shapes
 if (shapes[i] instanceof Centered) { // The shape is a Centered shape
 // Note the required cast from Shape to Centered (no cast would
 // be required to go from CenteredSquare to Centered, however).
 Centered c = (Centered) shapes[i]; // Assign it to a Centered variable
 double cx = c.getCenterX(); // Get coordinates of the center
 double cy = c.getCenterY(); // Compute distance from origin
 totalDistance += Math.sqrt(cx*cx + cy*cy);
 }
}
System.out.println("Average area: " + totalArea/shapes.length);
System.out.println("Average distance: " + totalDistance/shapes.length);

This example demonstrates that interfaces are data types in Java, just like classes.
When a class implements an interface, instances of that class can be assigned to
variables of the interface type. Don’t interpret this example to imply that you
must assign a CenteredRectangle object to a Centered variable before you can
invoke the setCenter() method or to a Shape variable before you can invoke the
area() method. CenteredRectangle defines setCenter() and inherits area() from
its Rectangle superclass, so you can always invoke these methods.

Implementing multiple interfaces

Suppose we want shape objects that can be positioned in terms of not only their
center points but also their upper-right corners. And suppose we also want shapes
that can be scaled larger and smaller. Remember that although a class can extend
only a single superclass, it can implement any number of interfaces. Assuming we

138 | Chapter 3: Object-Oriented Programming in Java

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

have defined appropriate UpperRightCornered and Scalable interfaces, we can
declare a class as follows:

public class SuperDuperSquare extends Shape
 implements Centered, UpperRightCornered, Scalable {
 // Class members omitted here
}

When a class implements more than one interface, it simply means that it must
provide implementations for all abstract methods in all its interfaces.

Interfaces vs. Abstract Classes

When defining an abstract type (e.g., Shape) that you expect to have many
subtypes (e.g., Circle, Rectangle, Square), you are often faced with a choice
between interfaces and abstract classes. Since they have similar features, it is not
always clear which to use.

An interface is useful because any class can implement it, even if that class extends
some entirely unrelated superclass. But an interface is a pure API specification and
contains no implementation. If an interface has numerous methods, it can become
tedious to implement the methods over and over, especially when much of the
implementation is duplicated by each implementing class.

An abstract class does not need to be entirely abstract; it can contain a partial
implementation that subclasses can take advantage of. In some cases, numerous
subclasses can rely on default method implementations provided by an abstract
class. But a class that extends an abstract class cannot extend any other class,
which can cause design difficulties in some situations.

Another important difference between interfaces and abstract classes has to do
with compatibility. If you define an interface as part of a public API and then later
add a new method to the interface, you break any classes that implemented the
previous version of the interface. If you use an abstract class, however, you can
safely add nonabstract methods to that class without requiring modifications to
existing classes that extend the abstract class.

In some situations, it is clear that an interface or an abstract class is the right
design choice. In other cases, a common design pattern is to use both. Define the
type as a totally abstract interface, then create an abstract class that implements
the interface and provides useful default implementations that subclasses can take
advantage of. For example:

// Here is a basic interface. It represents a shape that fits inside
// of a rectangular bounding box. Any class that wants to serve as a
// RectangularShape can implement these methods from scratch.
public interface RectangularShape {
 void setSize(double width, double height);
 void setPosition(double x, double y);
 void translate(double dx, double dy);
 double area();
 boolean isInside();
}

Interfaces | 139

Object-
Oriented

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

// Here is a partial implementation of that interface. Many
// implementations may find this a useful starting point.
public abstract class AbstractRectangularShape implements RectangularShape {
 // The position and size of the shape
 protected double x, y, w, h;

 // Default implementations of some of the interface methods
 public void setSize(double width, double height) { w = width; h = height; }
 public void setPosition(double x, double y) { this.x = x; this.y = y; }
 public void translate (double dx, double dy) { x += dx; y += dy; }
}

Marker Interfaces

Sometimes it is useful to define an interface that is entirely empty. A class can
implement this interface simply by naming it in its implements clause without
having to implement any methods. In this case, any instances of the class become
valid instances of the interface. Java code can check whether an object is an
instance of the interface using the instanceof operator, so this technique is a
useful way to provide additional information about an object.

The java.io.Serializable interface is a marker interface of this sort. A class imple-
ments Serializable interface to tell ObjectOutputStream that its instances may
safely be serialized. java.util.RandomAccess is another example: java.util.List
implementations implement this interface to advertise that they provide fast random
access to the elements of the list. ArrayList implements RandomAccess, for example,
while LinkedList does not. Algorithms that care about the performance of random-
access operations can test for RandomAccess like this:

// Before sorting the elements of a long arbitrary list, we may want to make
// sure that the list allows fast random access. If not, it may be quicker
// make a random-access copy of the list before sorting it.
// Note that this is not necessary when using java.util.Collections.sort().
List l = ...; // Some arbitrary list we're given
if (l.size() > 2 && !(l instanceof RandomAccess)) l = new ArrayList(l);
sortListInPlace(l);

Interfaces and Constants

As noted earlier, constants can appear in an interface definition. Any class that
implements an interface inherits the constants it defines and can use them as if
they were defined directly in the class itself. Importantly, there is no need to prefix
the constants with the name of the interface or provide any kind of implementa-
tion of the constants.

When a set of constants is used by more than one class, it is tempting to define
the constants once in an interface and then have any classes that require the
constants implement the interface. This situation might arise, for example, when
client and server classes implement a network protocol whose details (such as the
port number to connect to and listen on) are captured in a set of symbolic
constants. As a concrete example, consider the java.io.ObjectStreamConstants

140 | Chapter 3: Object-Oriented Programming in Java

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

interface, which defines constants for the object serialization protocol and is
implemented by both ObjectInputStream and ObjectOutputStream.

The primary benefit of inheriting constant definitions from an interface is that it
saves typing: you don’t need to specify the type that defines the constants. Despite
its use with ObjectStreamConstants, this is not a recommended technique. The use
of constants is an implementation detail that is not appropriate to declare in the
implements clause of a class signature.

A better approach is to define constants in a class and use the constants by typing
the full class name and the constant name. In Java 5.0 and later, you can save
typing by importing the constants from their defining class with the import static
declaration. See “Packages and the Java Namespace” in Chapter 2 for details.

Nested Types
The classes, interfaces, and enumerated types we have seen so far in this book
have all been defined as top-level classes. This means that they are direct members
of packages, defined independently of other types. However, type definitions can
also be nested within other type definitions. These nested types, commonly known
as “inner classes,” are a powerful and elegant feature of the Java language. A type
can be nested within another type in four ways:

Static member types
A static member type is any type defined as a static member of another type.
A static method is called a class method, so, by analogy, we could call this
type of nested type a “class type,” but this terminology would obviously be
confusing. A static member type behaves much like an ordinary top-level
type, but its name is part of the namespace, rather than the package, of the
containing type. Also, a static member type can access the static members of
the class that contains it. Nested interfaces, enumerated types, and annota-
tion types are implicitly static, whether or not the static keyword appears.
Any type nested within an interface or annotation is also implicitly static.
Static member types may be defined within top-level types or nested to any
depth within other static member types. A static member type may not be
defined within any other kind of nested type, however.

Nonstatic member classes
A “nonstatic member type” is simply a member type that is not declared
static. Since interfaces, enumerated types, and annotations are always
implicitly static, however, we usually use the term “nonstatic member class”
instead. Nonstatic member classes may be defined within other classes or
enumerated types and are analogous to instance methods or fields. An
instance of a nonstatic member class is always associated with an instance of
the enclosing type, and the code of a nonstatic member class has access to all
the fields and methods (both static and non-static) of its enclosing type.
Several features of Java syntax exist specifically to work with the enclosing
instance of a nonstatic member class.

Nested Types | 141

Object-
Oriented

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Local classes
A local class is a class defined within a block of Java code. Interfaces, enumer-
ated types, and annotation types may not be defined locally. Like a local
variable, a local class is visible only within the block in which it is defined.
Although local classes are not member classes, they are still defined within an
enclosing class, so they share many of the features of member classes. Addi-
tionally, however, a local class can access any final local variables or
parameters that are accessible in the scope of the block that defines the class.

Anonymous classes
An anonymous class is a kind of local class that has no name; it combines the
syntax for class definition with the syntax for object instantiation. While a
local class definition is a Java statement, an anonymous class definition (and
instantiation) is a Java expression, so it can appear as part of a larger expres-
sion, such as method invocation. Interfaces, enumerated types, and
annotation types cannot be defined anonymously.

Nested types have no universally adopted nomenclature. The term “inner class” is
commonly used. Sometimes, however, inner class is used to refer to a nonstatic
member class, local class, or anonymous class, but not a static member type.
Although the terminology for describing nested types is not always clear, the
syntax for working with them is, and it is usually clear from context which kind of
nested type is being discussed.

Now we’ll describe each of the four kinds of nested types in greater detail. Each
section describes the features of the nested type, the restrictions on its use, and
any special Java syntax used with the type. These four sections are followed by an
implementation note that explains how nested types work under the hood.

Static Member Types

A static member type is much like a regular top-level type. For convenience,
however, it is nested within the namespace of another type. Example 3-7 shows a
helper interface defined as a static member of a containing class. The example also
shows how this interface is used both within the class that contains it and by
external classes. Note the use of its hierarchical name in the external class.

Example 3-7. Defining and using a static member interface

// A class that implements a stack as a linked list
public class LinkedStack {
 // This static member interface defines how objects are linked
 // The static keyword is optional: all nested interfaces are static
 public static interface Linkable {
 public Linkable getNext();
 public void setNext(Linkable node);
 }

 // The head of the list is a Linkable object
 Linkable head;

 // Method bodies omitted

142 | Chapter 3: Object-Oriented Programming in Java

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Features of static member types

A static member type is defined as a static member of a containing type. Any
type (class, interface, enumerated type, or annotation type) may be defined as a
static member of any other type. Interfaces, enumerated types, and annotation
types are implicitly static, whether or not the static keyword appears in their
definition.

A static member type is like the other static members of a class: static fields and
static methods. Like a class method, a static member type is not associated with
any instance of the containing class (i.e., there is no this object). A static member
type does, however, have access to all the static members (including any other
static member types) of its containing type. A static member type can use any
other static member without qualifying its name with the name of the containing
type.

A static member type has access to all static members of its containing type,
including private members. The reverse is true as well: the methods of the
containing type have access to all members of a static member type, including the
private members. A static member type even has access to all the members of any
other static member types, including the private members of those types.

Top-level types can be declared with or without the public modifier, but they
cannot use the private and protected modifiers. Static member types, however,
are members and can use any access control modifiers that other members of the
containing type can. These modifiers have the same meanings for static member
types as they do for other members of a type. In Example 3-7, the Linkable inter-
face is declared public, so it can be implemented by any class that is interested in
being stored on a LinkedStack. Recall that all members of interfaces (and annota-
tion types) are implicitly public, so static member types nested within interfaces
or annotation types cannot be protected or private.

 public void push(Linkable node) { ... }
 public Object pop() { ... }
}

// This class implements the static member interface
class LinkableInteger implements LinkedStack.Linkable {
 // Here's the node's data and constructor
 int i;
 public LinkableInteger(int i) { this.i = i; }

 // Here are the data and methods required to implement the interface
 LinkedStack.Linkable next;
 public LinkedStack.Linkable getNext() { return next; }
 public void setNext(LinkedStack.Linkable node) { next = node; }
}

Example 3-7. Defining and using a static member interface (continued)

Nested Types | 143

Object-
Oriented

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Restrictions on static member types

A static member type cannot have the same name as any of its enclosing classes.
In addition, static member types can be defined only within top-level types and
other static member types. This is actually part of a larger prohibition against
static members of any sort within member, local, and anonymous classes.

Syntax for static member types

In code outside the containing class, a static member type is named by combining
the name of the outer type with the name of the inner type (e.g., LinkedStack.
Linkable). You can use the import directive to import a static member type:

import pkg.LinkedStack.Linkable; // Import a specific nested type
import pkg.LinkedStack.*; // Import all nested types of LinkedStack

In Java 5.0 and later, you can also use the import static directive to import a
static member type. See “Packages and the Java Namespace” in Chapter 2 for
details on import and import static. Note that importing a nested type obscures
the fact that that type is closely associated with its containing type, and it is not
commonly done.

Nonstatic Member Classes

A nonstatic member class is a class that is declared as a member of a containing
class or enumerated type without the static keyword. If a static member type is
analogous to a class field or class method, a nonstatic member class is analogous
to an instance field or instance method. Example 3-8 shows how a member class
can be defined and used. This example extends the previous LinkedStack example
to allow enumeration of the elements on the stack by defining an iterator()
method that returns an implementation of the java.util.Iterator interface. The
implementation of this interface is defined as a member class. The example uses
Java 5.0 generic type syntax in a couple of places, but this should not prevent you
from understanding it. (Generics are covered in Chapter 4.)

Example 3-8. An iterator implemented as a member class

import java.util.Iterator;

public class LinkedStack {
 // Our static member interface
 public interface Linkable {
 public Linkable getNext();
 public void setNext(Linkable node);
 }

 // The head of the list
 private Linkable head;

 // Method bodies omitted here
 public void push(Linkable node) { ... }
 public Linkable pop() { ... }

144 | Chapter 3: Object-Oriented Programming in Java

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Notice how the LinkedIterator class is nested within the LinkedStack class. Since
LinkedIterator is a helper class used only within LinkedStack, there is real
elegance to having it defined so close to where it is used by the containing class.

Features of member classes

Like instance fields and instance methods, every instance of a nonstatic member
class is associated with an instance of the class in which it is defined. This means
that the code of a member class has access to all the instance fields and instance
methods (as well as the static members) of the containing class, including any
that are declared private.

This crucial feature is illustrated in Example 3-8. Here is the LinkedStack.
LinkedIterator() constructor again:

public LinkedIterator() { current = head; }

This single line of code sets the current field of the inner class to the value of the
head field of the containing class. The code works as shown, even though head is
declared as a private field in the containing class.

A nonstatic member class, like any member of a class, can be assigned one of
three visibility levels: public, protected, or private. If none of these visibility
modifiers is specified, the default package visibility is used. In Example 3-8, the
LinkedIterator class is declared protected, so it is inaccessible to code (in a
different package) that uses the LinkedStack class but is accessible to any class that
subclasses LinkedStack.

 // This method returns an Iterator object for this LinkedStack
 public Iterator<Linkable> iterator() { return new LinkedIterator(); }

 // Here is the implementation of the Iterator interface,
 // defined as a nonstatic member class.
 protected class LinkedIterator implements Iterator<Linkable> {
 Linkable current;
 // The constructor uses the private head field of the containing class
 public LinkedIterator() { current = head; }
 // The following 3 methods are defined by the Iterator interface
 public boolean hasNext() { return current != null; }
 public Linkable next() {
 if (current == null) throw new java.util.NoSuchElementException();
 Linkable value = current;
 current = current.getNext();
 return value;
 }
 public void remove() { throw new UnsupportedOperationException(); }
 }
}

Example 3-8. An iterator implemented as a member class (continued)

Nested Types | 145

Object-
Oriented

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Restrictions on member classes

Member classes have three important restrictions:

• A nonstatic member class cannot have the same name as any containing class
or package. This is an important rule, one not shared by fields and methods.

• Nonstatic member classes cannot contain any static fields, methods, or
types, except for constant fields declared both static and final. static mem-
bers are top-level constructs not associated with any particular object while
every member class is associated with an instance of its enclosing class. Defin-
ing a static top-level member within a member class that is not at the top
level would cause confusion, so it is not allowed.

• Only classes may be defined as nonstatic members. Interfaces, enumerated
types, and annotation types are all implicitly static, even if the static key-
word is omitted.

Syntax for member classes

The most important feature of a member class is that it can access the instance
fields and methods in its containing object. We saw this in the LinkedStack.
LinkedIterator() constructor of Example 3-8:

public LinkedIterator() { current = head; }

In this example, head is a field of the LinkedStack class, and we assign it to the
current field of the LinkedIterator class. What if we want to make these refer-
ences explicit? We could try code like this:

public LinkedIterator() { this.current = this.head; }

This code does not compile, however. this.current is fine; it is an explicit reference
to the current field in the newly created LinkedIterator object. It is the this.head
expression that causes the problem; it refers to a field named head in the
LinkedIterator object. Since there is no such field, the compiler generates an error.
To solve this problem, Java defines a special syntax for explicitly referring to the
containing instance of the this object. Thus, if we want to be explicit in our
constructor, we can use the following syntax:

public LinkedIterator() { this.current = LinkedStack.this.head; }

The general syntax is classname.this, where classname is the name of a containing
class. Note that member classes can themselves contain member classes, nested to
any depth. Since no member class can have the same name as any containing
class, however, the use of the enclosing class name prepended to this is a
perfectly general way to refer to any containing instance. This syntax is needed
only when referring to a member of a containing class that is hidden by a member
of the same name in the member class.

Accessing superclass members of the containing class. When a class shadows or overrides a
member of its superclass, you can use the keyword super to refer to the hidden
member. This super syntax can be extended to work with member classes as well.
On the rare occasion when you need to refer to a shadowed field f or an over-

146 | Chapter 3: Object-Oriented Programming in Java

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

ridden method m of a superclass of a containing class C, use the following
expressions:

C.super.f
C.super.m()

Specifying the containing instance. As we’ve seen, every instance of a member class is
associated with an instance of its containing class. Look again at our definition of
the iterator() method in Example 3-8:

public Iterator<Linkable> iterator() { return new LinkedIterator(); }

When a member class constructor is invoked like this, the new instance of the
member class is automatically associated with the this object. This is what you
would expect to happen and exactly what you want to occur in most cases. Occa-
sionally, however, you may want to specify the containing instance explicitly
when instantiating a member class. You can do this by preceding the new operator
with a reference to the containing instance. Thus, the iterator() method shown
earlier is shorthand for the following:

public Iterator<Linkable> iterator() { return this.new LinkedIterator(); }

Let’s pretend we didn’t define an iterator() method for LinkedStack. In this case,
the code to obtain an LinkedIterator object for a given LinkedStack object might
look like this:

LinkedStack stack = new LinkedStack(); // Create an empty stack
Iterator i = stack.new LinkedIterator(); // Create an Iterator for it

The containing instance implicitly specifies the containing class; it is a syntax
error to explicitly specify the containing class name:

Iterator i = stack.new LinkedStack.LinkedIterator(); // Syntax error

One other special piece of Java syntax specifies an enclosing instance for a
member class explicitly. Before we consider it, however, let me point out that you
should rarely, if ever, need to use this syntax. It is one of the pathological cases
that snuck into the language along with all the elegant features of nested types.

As strange as it may seem, it is possible for a top-level class to extend a member
class. This means that the subclass does not have a containing instance, but its
superclass does. When the subclass constructor invokes the superclass
constructor, it must specify the containing instance. It does this by prepending the
containing instance and a period to the super keyword. If we had not declared our
LinkedIterator class to be a protected member of LinkedStack, we could subclass
it. Although it is not clear why we would want to do so, we could write code like
the following:

// A top-level class that extends a member class
class SpecialIterator extends LinkedStack.LinkedIterator {
 // The constructor must explicitly specify a containing instance
 // when invoking the superclass constructor.
 public SpecialIterator(LinkedStack s) { s.super(); }
 // Rest of class omitted...
}

Nested Types | 147

Object-
Oriented

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Scope versus inheritance

We’ve just noted that a top-level class can extend a member class. With the intro-
duction of nonstatic member classes, two separate hierarchies must be considered
for any class. The first is the inheritance hierarchy, from superclass to subclass,
that defines the fields and methods a member class inherits. The second is the
containment hierarchy, from containing class to contained class, that defines a set
of fields and methods that are in the scope of (and are therefore accessible to) the
member class.

The two hierarchies are entirely distinct from each other; it is important that you
do not confuse them. This should not be a problem if you refrain from creating
naming conflicts, where a field or method in a superclass has the same name as a
field or method in a containing class. If such a naming conflict does arise,
however, the inherited field or method takes precedence over the field or method
of the same name in the containing class. This behavior is logical: when a class
inherits a field or method, that field or method effectively becomes part of that
class. Therefore, inherited fields and methods are in the scope of the class that
inherits them and take precedence over fields and methods by the same name in
enclosing scopes.

A good way to prevent confusion between the class hierarchy and the contain-
ment hierarchy is to avoid deep containment hierarchies. If a class is nested more
than two levels deep, it is probably going to cause more confusion than it is
worth. Furthermore, if a class has a deep class hierarchy (i.e., it has many ances-
tors), consider defining it as a top-level class rather than as a nonstatic member
class.

Local Classes

A local class is declared locally within a block of Java code rather than as a
member of a class. Only classes may be defined locally: interfaces, enumerated
types and annotation types must be top-level or static member types. Typically, a
local class is defined within a method, but it can also be defined within a static
initializer or instance initializer of a class. Because all blocks of Java code appear
within class definitions, all local classes are nested within containing classes. For
this reason, local classes share many of the features of member classes. It is
usually more appropriate, however, to think of them as an entirely separate kind
of nested type. A local class has approximately the same relationship to a member
class as a local variable has to an instance variable of a class.

The defining characteristic of a local class is that it is local to a block of code. Like
a local variable, a local class is valid only within the scope defined by its enclosing
block. If a member class is used only within a single method of its containing class,
for example, there is usually no reason it cannot be coded as a local class rather
than a member class. Example 3-9 shows how we can modify the iterator()
method of the LinkedStack class so it defines LinkedIterator as a local class
instead of a member class. By doing this, we move the definition of the class even
closer to where it is used and hopefully improve the clarity of the code even
further. For brevity, Example 3-9 shows only the iterator() method, not the
entire LinkedStack class that contains it.

148 | Chapter 3: Object-Oriented Programming in Java

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Features of local classes

Local classes have the following interesting features:

• Like member classes, local classes are associated with a containing instance
and can access any members, including private members, of the containing
class.

• In addition to accessing fields defined by the containing class, local classes
can access any local variables, method parameters, or exception parameters
that are in the scope of the local method definition and are declared final.

Restrictions on local classes

Local classes are subject to the following restrictions:

• The name of a local class is defined only within the block that defines it; it
can never be used outside that block. (Note however that instances of a local
class created within the scope of the class can continue to exist outside of that
scope. This situation is described in more detail later in this section.)

• Local classes cannot be declared public, protected, private, or static. These
modifiers are for members of classes; they are not allowed with local variable
declarations or local class declarations.

• Like member classes, and for the same reasons, local classes cannot contain
static fields, methods, or classes. The only exception is for constants that are
declared both static and final.

• Interfaces, enumerated types, and annotation types cannot be defined locally.

Example 3-9. Defining and using a local class

// This method returns an Iterator object for this LinkedStack
public Iterator<Linkable> Iterator() {
 // Here's the definition of LinkedIterator as a local class
 class LinkedIterator implements Iterator<Linkable> {
 Linkable current;

 // The constructor uses the private head field of the containing class
 public LinkedIterator() { current = head; }
 // The following 3 methods are defined by the Iterator interface
 public boolean hasNext() { return current != null; }
 public Linkable next() {
 if (current == null) throw new java.util.NoSuchElementException();
 Linkable value = current;
 current = current.getNext();
 return value;
 }
 public void remove() { throw new UnsupportedOperationException(); }
 }

 // Create and return an instance of the class we just defined
 return new LinkedIterator();
}

Nested Types | 149

Object-
Oriented

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

• A local class, like a member class, cannot have the same name as any of its
enclosing classes.

• As noted earlier, a local class can use the local variables, method parame-
ters, and even exception parameters that are in its scope but only if those
variables or parameters are declared final. This is because the lifetime of an
instance of a local class can be much longer than the execution of the
method in which the class is defined. For this reason, a local class must have
a private internal copy of all local variables it uses (these copies are automat-
ically generated by the compiler). The only way to ensure that the local vari-
able and the private copy are always the same is to insist that the local
variable is final.

Syntax for local classes

In Java 1.0, only fields, methods, and classes could be declared final. The addi-
tion of local classes in Java 1.1 required a liberalization in the use of the final
modifier. As of Java 1.1, final can be applied to local variables, method parame-
ters, and even the exception parameter of a catch statement. The meaning of the
final modifier remains the same in these new uses: once the local variable or
parameter has been assigned a value, that value cannot be changed.

Instances of local classes, like instances of nonstatic member classes, have an
enclosing instance that is implicitly passed to all constructors of the local class.
Local classes can use the same this syntax as nonstatic member classes to refer
explicitly to members of enclosing classes. Because local classes are never visible
outside the blocks that define them, however, there is never a need to use the new
and super syntax used by member classes to specify the enclosing instance
explicitly.

Scope of a local class

In discussing nonstatic member classes, we saw that a member class can access
any members inherited from superclasses and any members defined by its
containing classes. The same is true for local classes, but local classes can also
access final local variables and parameters. The following code illustrates the
many fields and variables that may be accessible to a local class:

class A { protected char a = 'a'; }
class B { protected char b = 'b'; }

public class C extends A {
 private char c = 'c'; // Private fields visible to local class
 public static char d = 'd';
 public void createLocalObject(final char e)
 {
 final char f = 'f';
 int i = 0; // i not final; not usable by local class
 class Local extends B
 {
 char g = 'g';
 public void printVars()
 {

150 | Chapter 3: Object-Oriented Programming in Java

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

 // All of these fields and variables are accessible to this class
 System.out.println(g); // (this.g) g is a field of this class
 System.out.println(f); // f is a final local variable
 System.out.println(e); // e is a final local parameter
 System.out.println(d); // (C.this.d) d -- field of containing class
 System.out.println(c); // (C.this.c) c -- field of containing class
 System.out.println(b); // b is inherited by this class
 System.out.println(a); // a is inherited by the containing class
 }
 }
 Local l = new Local(); // Create an instance of the local class
 l.printVars(); // and call its printVars() method.
 }
}

Local variables, lexical scoping, and closures

A local variable is defined within a block of code that defines its scope. A local
variable ceases to exist outside of its scope. Java is a lexically scoped language,
which means that its concept of scope has to do with the way the source code is
written. Any code within the curly braces that define the boundaries of a block
can use local variables defined in that block.*

Lexical scoping simply defines a segment of source code within which a variable
can be used. It is common, however, to think of a scope as a temporal scope—to
think of a local variable as existing from the time the Java interpreter begins
executing the block until the time the interpreter exits the block. This is usually a
reasonable way to think about local variables and their scope.

The introduction of local classes confuses the picture, however, because local
classes can use local variables, and instances of a local class can have a lifetime
much longer than the time it takes the interpreter to execute the block of code. In
other words, if you create an instance of a local class, the instance does not auto-
matically go away when the interpreter finishes executing the block that defines
the class, as shown in the following code:

public class Weird {
 // A static member interface used below
 public static interface IntHolder { public int getValue(); }

 public static void main(String[] args) {
 IntHolder[] holders = new IntHolder[10]; // An array to hold 10 objects
 for(int i = 0; i < 10; i++) { // Loop to fill the array up
 final int fi = i; // A final local variable
 class MyIntHolder implements IntHolder {// A local class
 public int getValue() { return fi; } // It uses the final variable
 }
 holders[i] = new MyIntHolder(); // Instantiate the local class
 }

* This section covers advanced material; first-time readers may want to skip it for now and return
to it later.

Nested Types | 151

Object-
Oriented

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

 // The local class is now out of scope, so we can't use it. But we have
 // 10 valid instances of that class in our array. The local variable
 // fi is not in our scope here, but it is still in scope for the
 // getValue() method of each of those 10 objects. So call getValue()
 // for each object and print it out. This prints the digits 0 to 9.
 for(int i = 0; i < 10; i++) System.out.println(holders[i].getValue());
 }
}

The behavior of the previous program is pretty surprising. To make sense of it,
remember that the lexical scope of the methods of a local class has nothing to do
with when the interpreter enters and exits the block of code that defines the local
class. Here’s another way to think about it: each instance of a local class has an
automatically created private copy of each of the final local variables it uses, so, in
effect, it has its own private copy of the scope that existed when it was created.

The local class MyIntHolder is sometimes called a closure. In general terms, a
closure is an object that saves the state of a scope and makes that scope available
later. Closures are useful in some styles of programming, and different program-
ming languages define and implement closures in different ways. Java’s closures
are relatively weak (and some would argue that they are not truly closures)
because they retain the state of only final variables.

Anonymous Classes

An anonymous class is a local class without a name. An anonymous class is
defined and instantiated in a single succinct expression using the new operator.
While a local class definition is a statement in a block of Java code, an anony-
mous class definition is an expression, which means that it can be included as part
of a larger expression, such as a method call. In practice, anonymous classes are
much more common than local classes. If you find yourself defining a short local
class and then instantiating it exactly once, consider rewriting it using anony-
mous class syntax, which places the definition and use of the class in exactly the
same place.

Consider Example 3-10, which shows the LinkedIterator class implemented as an
anonymous class within the iterator() method of the LinkedStack class.
Compare it with Example 3-9, which shows the same class implemented as a local
class. The generic syntax in this example is covered in Chapter 4.

Example 3-10. An enumeration implemented with an anonymous class

public Iterator<Linkable> iterator() {
 // The anonymous class is defined as part of the return statement
 return new Iterator<Linkable>() {
 Linkable current;
 // Replace constructor with an instance initializer
 { current = head; }

 // The following 3 methods are defined by the Iterator interface
 public boolean hasNext() { return current != null; }
 public Linkable next() {
 if (current == null) throw new java.util.NoSuchElementException();

152 | Chapter 3: Object-Oriented Programming in Java

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

One common use for an anonymous class is to provide a simple implementation of
an adapter class. An adapter class is one that defines code that is invoked by some
other object. Take, for example, the list() method of the java.io.File class. This
method lists the files in a directory. Before it returns the list, though, it passes the
name of each file to a FilenameFilter object you must supply. This FilenameFilter
object accepts or rejects each file. When you implement the FilenameFilter inter-
face, you are defining an adapter class for use with the File.list() method. Since
the body of such a class is typically quite short, it is easy to define an adapter class as
an anonymous class. Here’s how you can define a FilenameFilter class to list only
those files whose names end with .java:

File f = new File("/src"); // The directory to list

// Now call the list() method with a single FilenameFilter argument
// Define and instantiate an anonymous implementation of FilenameFilter
// as part of the method invocation expression.
String[] filelist = f.list(new FilenameFilter() {
 public boolean accept(File f, String s) { return s.endsWith(".java"); }
}); // Don't forget the parenthesis and semicolon that end the method call!

As you can see, the syntax for defining an anonymous class and creating an
instance of that class uses the new keyword, followed by the name of a class and a
class body definition in curly braces. If the name following the new keyword is the
name of a class, the anonymous class is a subclass of the named class. If the name
following new specifies an interface, as in the two previous examples, the anony-
mous class implements that interface and extends Object. The syntax does not
include any way to specify an extends clause, an implements clause, or a name for
the class.

Because an anonymous class has no name, it is not possible to define a
constructor for it within the class body. This is one of the basic restrictions on
anonymous classes. Any arguments you specify between the parentheses
following the superclass name in an anonymous class definition are implicitly
passed to the superclass constructor. Anonymous classes are commonly used to
subclass simple classes that do not take any constructor arguments, so the paren-
theses in the anonymous class definition syntax are often empty. In the previous
examples, each anonymous class implemented an interface and extended Object.
Since the Object() constructor takes no arguments, the parentheses were empty
in those examples.

 Linkable value = current;
 current = current.getNext();
 return value;
 }
 public void remove() { throw new UnsupportedOperationException(); }
 }; // Note the required semicolon. It terminates the return statement
}

Example 3-10. An enumeration implemented with an anonymous class (continued)

Nested Types | 153

Object-
Oriented

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Features of anonymous classes

Anonymous classes allow you to define a one-shot class exactly where it is
needed. Anonymous classes have all the features of local classes but use a more
concise syntax that can reduce clutter in your code.

Restrictions on anonymous classes

Because an anonymous class is just a type of local class, anonymous classes and
local classes share the same restrictions. An anonymous class cannot define any
static fields, methods, or classes, except for static final constants. Interfaces,
enumerated types, and annotation types cannot be defined anonymously. Also,
like local classes, anonymous classes cannot be public, private, protected, or
static.

Since an anonymous class has no name, it is not possible to define a constructor
for an anonymous class. If your class requires a constructor, you must use a local
class instead. However, you can often use an instance initializer as a substitute for
a constructor.

The syntax for defining an anonymous class combines definition with instantia-
tion. Using an anonymous class instead of a local class is not appropriate if you
need to create more than a single instance of the class each time the containing
block is executed.

Syntax for anonymous classes

We’ve already seen examples of the syntax for defining and instantiating an anon-
ymous class. We can express that syntax more formally as:

new class-name ([argument-list]) { class-body }

or:

new interface-name () { class-body }

Although they are not limited to use with anonymous classes, instance initializers
were introduced into the language for this purpose. As described earlier in this
chapter in “Field Defaults and Initializers,” an instance initializer is a block of
initialization code contained within curly braces inside a class definition. The
contents of all instance initializers for a class are automatically inserted into all
constructors for the class, including any automatically created default constructor.
An anonymous class cannot define a constructor, so it gets a default constructor.
By using an instance initializer, you can get around the fact that you cannot define
a constructor for an anonymous class.

When to use an anonymous class

As we’ve discussed, an anonymous class behaves just like a local class and is
distinguished from a local class merely in the syntax used to define and instan-
tiate it. In your own code, when you have to choose between using an anonymous
class and a local class, the decision often comes down to a matter of style. You
should use whichever syntax makes your code clearer. In general, you should
consider using an anonymous class instead of a local class if:

154 | Chapter 3: Object-Oriented Programming in Java

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

• The class has a very short body.

• Only one instance of the class is needed.

• The class is used right after it is defined.

• The name of the class does not make your code any easier to understand.

Anonymous class indentation and formatting

The common indentation and formatting conventions we are familiar with for
block-structured languages like Java and C begin to break down somewhat once
we start placing anonymous class definitions within arbitrary expressions. Based
on their experience with nested types, the engineers at Sun recommend the
following formatting rules:

• The opening curly brace should not be on a line by itself; instead, it should
follow the closing parenthesis of the new operator. Similarly, the new operator
should, when possible, appear on the same line as the assignment or other
expression of which it is a part.

• The body of the anonymous class should be indented relative to the begin-
ning of the line that contains the new keyword.

• The closing curly brace of an anonymous class should not be on a line by
itself either; it should be followed by whatever tokens are required by the rest
of the expression. Often this is a semicolon or a closing parenthesis followed
by a semicolon. This extra punctuation serves as a flag to the reader that this
is not just an ordinary block of code and makes it easier to understand anony-
mous classes in a code listing.

How Nested Types Work

The preceding sections explained the features and behavior of the four kinds of
nested types. Strictly speaking, that should be all you need to know about nested
types. You may find it easier to understand nested types if you understand how
they are implemented, however.

Nested types were added in Java 1.1. Despite the dramatic changes to the Java
language, the introduction of nested types did not change the Java Virtual
Machine or the Java class file format. As far as the Java interpreter is concerned,
there is no such thing as a nested type: all classes are normal top-level classes. In
order to make a nested type behave as if it is actually defined inside another class,
the Java compiler ends up inserting hidden fields, methods, and constructor argu-
ments into the classes it generates. You may want to use the javap disassembler to
disassemble some of the class files for nested types so you can see what tricks the
compiler has used to make the nested types work. (See Chapter 8 for information
on javap.)

Static member type implementation

Recall our first LinkedStack example (Example 3-7), which defined a static
member interface named Linkable. When you compile this LinkedStack class, the
compiler actually generates two class files. The first one is LinkedStack.class, as

Nested Types | 155

Object-
Oriented

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

expected. The second class file, however, is called LinkedStack$Linkable.class.
The $ in this name is automatically inserted by the Java compiler. This second
class file contains the implementation of the static member interface.

As we discussed earlier, a static member type can access all the static members of
its containing class. If a static member type does this, the compiler automatically
qualifies the member access expression with the name of the containing class. A
static member type is even allowed to access the private static fields of its
containing class. Since the static member type is compiled into an ordinary top-
level class, however, there is no way it can directly access the private members of
its container. Therefore, if a static member type uses a private member of its
containing type (or vice versa), the compiler generates synthetic non-private
access methods and converts the expressions that access the private members
into expressions that invoke these specially generated methods. These methods
are given the default package access, which is sufficient, as the member class and
its containing class are guaranteed to be in the same package.

Nonstatic member class implementation

A nonstatic member class is implemented much like a static member type. It is
compiled into a separate top-level class file, and the compiler performs various
code manipulations to make interclass member access work correctly.

The most significant difference between a nonstatic member class and a static
member type is that each instance of a nonstatic member class is associated with
an instance of the enclosing class. The compiler enforces this association by
defining a synthetic field named this$0 in each member class. This field is used to
hold a reference to the enclosing instance. Every nonstatic member class
constructor is given an extra parameter that initializes this field. Every time a
member class constructor is invoked, the compiler automatically passes a refer-
ence to the enclosing class for this extra parameter.

As we’ve seen, a nonstatic member class, like any member of a class, can be
declared public, protected, or private, or given the default package visibility.
Member classes are compiled to class files just like top-level classes, but top-level
classes can have only public or package access. Therefore, as far as the Java inter-
preter is concerned, member classes can have only public or package visibility.
This means that a member class declared protected is actually treated as a public
class, and a member class declared private actually has package visibility. This
does not mean you should never declare a member class as protected or private.
Although the Java VM cannot enforce these access control modifiers, the modi-
fiers are stored in the class file and conforming Java compilers do enforce them.

Local and anonymous class implementation

A local class is able to refer to fields and methods in its containing class for exactly
the same reason that a nonstatic member class can; it is passed a hidden reference
to the containing class in its constructor and saves that reference away in a
private synthetic field added by the compiler. Also, like nonstatic member
classes, local classes can use private fields and methods of their containing class
because the compiler inserts any required accessor methods.

156 | Chapter 3: Object-Oriented Programming in Java

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

What makes local classes different from member classes is that they have the
ability to refer to local variables in the scope that defines them. The crucial restric-
tion on this ability, however, is that local classes can reference only local variables
and parameters that are declared final. The reason for this restriction becomes
apparent in the implementation. A local class can use local variables because the
compiler automatically gives the class a private instance field to hold a copy of
each local variable the class uses. The compiler also adds hidden parameters to
each local class constructor to initialize these automatically created private fields.
A local class does not actually access local variables but merely its own private
copies of them. The only way this can work correctly is if the local variables are
declared final so that they are guaranteed not to change. With this guarantee, the
local class can be assured that its internal copies of the variables are always in sync
with the real local variables.

Since anonymous classes have no names, you may wonder what the class files that
represent them are named. This is an implementation detail, but Sun’s Java
compiler uses numbers to provide anonymous class names. If you compile the
example code shown in Example 3-10, you’ll find that it produces a class file for
the anonymous class with a name like LinkedStack$1.class.

Modifier Summary
As we’ve seen, classes, interfaces, and their members can be declared with one or
more modifiers—keywords such as public, static, and final. Table 3-2 lists the
Java modifiers, explains what types of Java constructs they can modify, and
explains what they do. See also “Class Definition Syntax” and “Field Declaration
Syntax” earlier in this chapter, as well as “Method Modifiers” in Chapter 2.

Table 3-2. Java modifiers

Modifier Used on Meaning

abstract Class The class contains unimplemented methods and cannot be instantiated.

Interface All interfaces are abstract. The modifier is optional in interface declarations.

abstract Method No body is provided for the method; it is provided by a subclass. The signature is
followed by a semicolon. The enclosing class must also be abstract.

final Class The class cannot be subclassed.

Method The method cannot be overridden (and is not subject to dynamic method
lookup).

Field The field cannot have its value changed. static final fields are compile-
time constants.

Variable A local variable, method parameter, or exception parameter cannot have its
value changed. Useful with local classes.

native Method The method is implemented in some platform-dependent way (often in C). No
body is provided; the signature is followed by a semicolon.

None (package) Class A non-public class is accessible only in its package.

Interface A non-public interface is accessible only in its package.

Member A member that is not private, protected, or public has package visibility
and is accessible only within its package.

private Member The member is accessible only within the class that defines it.

C++ Features Not Found in Java | 157

Object-
Oriented

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

C++ Features Not Found in Java
This chapter indicates similarities and differences between Java and C++ in foot-
notes. Java shares enough concepts and features with C++ to make it an easy
language for C++ programmers to pick up. Several features of C++ have no
parallel in Java, however. In general, Java does not adopt those features of C++
that make the language significantly more complicated.

C++ supports multiple inheritance of method implementations from more than
one superclass at a time. While this seems like a useful feature, it actually intro-
duces many complexities to the language. The Java language designers chose to
avoid the added complexity by using interfaces instead. Thus, a class in Java can
inherit method implementations only from a single superclass, but it can inherit
method declarations from any number of interfaces.

C++ supports templates that allow you, for example, to implement a Stack class
and then instantiate it as Stack<int> or Stack<double> to produce two separate

protected Member The member is accessible only within the package in which it is defined and
within subclasses.

public Class The class is accessible anywhere its package is.

Interface The interface is accessible anywhere its package is.

Member The member is accessible anywhere its class is.

strictfp Class All methods of the class are implicitly strictfp.

strictfp Method All floating-point computation done by the method must be performed in a way
that strictly conforms to the IEEE 754 standard. In particular, all values, including
intermediate results, must be expressed as IEEE float or double values and
cannot take advantage of any extra precision or range offered by native platform
floating-point formats or hardware. This modifier is rarely used.

static Class An inner class declared static is a top-level class, not associated with a
member of the containing class.

Method A static method is a class method. It is not passed an implicit this object
reference. It can be invoked through the class name.

Field A static field is a class field. There is only one instance of the field, regardless
of the number of class instances created. It can be accessed through the class
name.

Initializer The initializer is run when the class is loaded rather than when an instance is
created.

synchronized Method The method makes nonatomic modifications to the class or instance, so care must
be taken to ensure that two threads cannot modify the class or instance at the
same time. For a static method, a lock for the class is acquired before
executing the method. For a non-static method, a lock for the specific object
instance is acquired.

transient Field The field is not part of the persistent state of the object and should not be
serialized with the object. Used with object serialization; see
java.io.ObjectOutputStream.

volatile Field The field can be accessed by unsynchronized threads, so certain optimizations
must not be performed on it. This modifier can sometimes be used as an alterna-
tive to synchronized. This modifier is very rarely used.

Table 3-2. Java modifiers (continued)

Modifier Used on Meaning

158 | Chapter 3: Object-Oriented Programming in Java

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

types: a stack of integers and a stack of floating-point values. Java 5.0 introduces
parameterized types or “generics” that provide similar functionality in a more
robust fashion. Generics are covered in Chapter 4.

C++ allows you to define operators that perform arbitrary operations on instances
of your classes. In effect, it allows you to extend the syntax of the language. This
is a nifty feature, called operator overloading, that makes for elegant examples. In
practice, however, it tends to make code quite difficult to understand. After much
debate, the Java language designers decided to omit such operator overloading
from the language. Note, though, that the use of the + operator for string concate-
nation in Java is at least reminiscent of operator overloading.

C++ allows you to define conversion functions for a class that automatically
invokes an appropriate constructor method when a value is assigned to a variable
of that class. This is simply a syntactic shortcut (similar to overriding the assign-
ment operator) and is not included in Java.

In C++, objects are manipulated by value by default; you must use & to specify a
variable or function argument automatically manipulated by reference. In Java, all
objects are manipulated by reference, so there is no need for the & syntax.

159

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Chapter 4Java 5.0

4
Java 5.0 Language Features

This chapter covers the three most important new language features of Java 5.0.
Generics add type-safety and expressiveness to Java programs by allowing types to
be parameterized with other types. A List that contains String objects, for
example, can be written as List<String>. Using parameterized types makes Java
code clearer and allows us to remove most casts from our programs.

Enumerated types, or enums, are a new category of reference type, like classes and
interfaces. An enumerated type defines a finite (“enumerated”) set of values, and,
importantly, provides type-safety: a variable of enumerated type can hold only
values of that enumerated type or null. Here is a simple enumerated type definition:

public enum Seasons { WINTER, SPRING, SUMMER, AUTUMN }

The third Java 5.0 feature discussed in this chapter is program annotations and the
annotation types that define them. An annotation associates arbitrary data (or meta-
data) with a program element such as a class, method, field, or even a method
parameter or local variable. The type of data held in an annotation is defined by its
annotation type, which, like enumerated types, is another new category of reference
type. The Java 5.0 platform includes three standard annotation types used to
provide additional information to the Java compiler. Annotations will probably find
their greatest use with code generation tools in Java enterprise programming.

Java 5.0 also introduces a number of other important new language features that
don’t require a special chapter to explain. Coverage of these changes is found in
sections throughout Chapter 2. They include:

• Autoboxing and unboxing conversions

• The for/in looping statement, sometimes called “foreach”

• Methods with variable-length argument lists, also known as varargs methods

• The ability to narrow the return type of a method when overriding, known as
a “covariant return”

• The import static directive, which imports the static members of a type into
the namespace

160 | Chapter 4: Java 5.0 Language Features

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Generic Types
Generic types and methods are the defining new feature of Java 5.0. A generic type
is defined using one or more type variables and has one or more methods that use
a type variable as a placeholder for an argument or return type. For example, the
type java.util.List<E> is a generic type: a list that holds elements of some type
represented by the placeholder E. This type has a method named add(), declared
to take an argument of type E, and a method named get(), declared to return a
value of type E.

In order to use a generic type like this, you specify actual types for the type vari-
able (or variables), producing a parameterized type such as List<String>.* The
reason to specify this extra type information is that the compiler can provide
much stronger compile-time type checking for you, increasing the type safety of
your programs. This type checking prevents you from adding a String[], for
example, to a List that is intended to hold only String objects. Also, the addi-
tional type information enables the compiler to do some casting for you. The
compiler knows that the get() method of a List<String> (for example) returns a
String object: you are no longer required to cast a return value of type Object to a
String.

The collections classes of the java.util package have been made generic in Java 5.0,
and you will probably use them frequently in your programs. Typesafe collections
are the canonical use case for generic types. Even if you never define generic types of
your own and never use generic types other than the collections classes in java.
util, the benefits of typesafe collections are so significant that they justify the
complexity of this major new language feature.

We begin by exploring the basic use of generics in typesafe collections, then delve
into more complex details about the use of generic types. Next we cover type
parameter wildcards and bounded wildcards. After describing how to use generic
types, we explain how to write your own generic types and generic methods. Our
coverage of generics concludes with a tour of important generic types in the core
Java API. It explores these types and their use in depth in order to provide a
deeper understanding of how generics work.

Typesafe Collections

The java.util package includes the Java Collections Framework for working with
sets and lists of objects and mappings from key objects to value objects. Collec-
tions are covered in Chapter 5. Here, we discuss the fact that in Java 5.0 the
collections classes use type parameters to identify the type of the objects in the
collection. This is not the case in Java 1.4 and earlier. Without generics, the use of
collections requires the programmer to remember the proper element type for
each collection. When you create a collection in Java 1.4, you know what type of

* Throughout this chapter, I’ve tried to consistently use the term “generic type” to mean a type that
declares one or more type variables and the term “parameterized type” to mean a generic type that
has had actual type arguments substituted for its type varaiables. In common usage, however, the
distinction is not a sharp one and the terms are sometimes used interchangeably.

Generic Types | 161

Java 5.0

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

objects you intend to store in that collection, but the compiler cannot know this.
You must be careful to add elements of the appropriate type. And when querying
elements from a collection, you must write explicit casts to convert them from
Object to their actual type. Consider the following Java 1.4 code:

public static void main(String[] args) {
 // This list is intended to hold only strings.
 // The compiler doesn't know that so we have to remember ourselves.
 List wordlist = new ArrayList();

 // Oops! We added a String[] instead of a String.
 // The compiler doesn't know that this is an error.
 wordlist.add(args);

 // Since List can hold arbitrary objects, the get() method returns
 // Object. Since the list is intended to hold strings, we cast the
 // return value to String but get a ClassCastException because of
 // the error above.
 String word = (String)wordlist.get(0);
}

Generic types solve the type safety problem illustrated by this code. List and the
other collection classes in java.util have been rewritten to be generic. As
mentioned above, List has been redefined in terms of a type variable named E that
represents the type of the elements of the list. The add() method is redefined to
expect an argument of type E instead of Object and get() has been redefined to
return E instead of Object.

In Java 5.0, when we declare a List variable or create an instance of an ArrayList,
we specify the actual type we want E to represent by placing the actual type in
angle brackets following the name of the generic type. A List that holds strings is
a List<String>, for example. Note that this is much like passing an argument to a
method, except that we use types rather than values and angle brackets instead of
parentheses.

The elements of the java.util collection classes must be objects; they cannot be
used with primitive values. The introduction of generics does not change this.
Generics do not work with primitives: we can’t declare a Set<char>, or a List<int>
for example. Note, however, that the autoboxing and autounboxing features of
Java 5.0 make working with a Set<Character> or a List<Integer> just as easy as
working directly with char and int values. (See Chapter 2 for details on auto-
boxing and autounboxing).

In Java 5.0, the example above would be rewritten as follows:

public static void main(String[] args) {
 // This list can only hold String objects
 List<String> wordlist = new ArrayList<String>();

 // args is a String[], not String, so the compiler won't let us do this
 wordlist.add(args); // Compilation error!

 // We can do this, though.
 // Notice the use of the new for/in looping statement

162 | Chapter 4: Java 5.0 Language Features

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

 for(String arg : args) wordlist.add(arg);

 // No cast is required. List<String>.get() returns a String.
 String word = wordlist.get(0);
}

Note that this code isn’t much shorter than the nongeneric example it replaces.
The cast, which uses the word String in parentheses, is replaced with the type
parameter, which places the word String in angle brackets. The difference is that
the type parameter has to be declared only once, but the list can be used any
number of times without a cast. This would be more apparent in a longer
example. But even in cases where the generic syntax is more verbose than the
nongeneric syntax, it is still very much worth using generics because the extra type
information allows the compiler to perform much stronger error checking on your
code. Errors that would only be apparent at runtime can now be detected at
compile time. Furthermore, the compilation error appears at the exact line where
the type safety violation occurs. Without generics, a ClassCastException can be
thrown far from the actual source of the error.

Just as methods can have any number of arguments, classes can have more than
one type variable. The java.util.Map interface is an example. A Map is a mapping
from key objects to value objects. The Map interface declares one type variable to
represent the type of the keys and one variable to represent the type of the values.
As an example, suppose you want to map from String objects to Integer objects:

public static void main(String[] args) {
 // A map from strings to their position in the args[] array
 Map<String,Integer> map = new HashMap<String,Integer>();

 // Note that we use autoboxing to wrap i in an Integer object.
 for(int i=0; i < args.length; i++) map.put(args[i], i);

 // Find the array index of a word. Note no cast is required!
 Integer position = map.get("hello");

 // We can also rely on autounboxing to convert directly to an int,
 // but this throws a NullPointerException if the key does not exist
 // in the map
 int pos = map.get("world");
}

A parameterized type like List<String> is itself a type and can be used as the value
of a type parameter for some other type. You might see code like this:

// Look at all those nested angle brackets!
Map<String, List<List<int[]>>> map = getWeirdMap();

// The compiler knows all the types and we can write expressions
// like this without casting. We might still get NullPointerException
// or ArrayIndexOutOfBounds at runtime, of course.
int value = map.get(key).get(0).get(0)[0];

// Here's how we break that expression down step by step.
List<List<int[]>> listOfLists = map.get(key);

Generic Types | 163

Java 5.0

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

List<int[]> listOfIntArrays = listOfLists.get(0);
int[] array = listOfIntArrays.get(0);
int element = array[0];

In the code above, the get() methods of java.util.List<E> and java.util.
Map<K,V> return a list or map element of type E and V respectively. Note, however,
that generic types can use their variables in more sophisticated ways. Look up
List<E> in the reference section of this book, and you’ll find that its iterator()
method is declared to return an Iterator<E>. That is, the method returns an instance
of a parameterized type whose actual type parameter is the same as the actual type
parameter of the list. To illustrate this concretely, here is a way to obtain the first
element of a List<String> without calling get(0).

List<String> words = // ...initialized elsewhere...
Iterator<String> iterator = words.iterator();
String firstword = iterator.next();

Understanding Generic Types

This section delves deeper into the details of generic type usage, explaining the
following topics:

• The consequences of using generic types without type parameters

• The parameterized type hierarchy

• A hole in the compile-time type safety of generic types and a patch to ensure
runtime type safety

• Why arrays of parameterized types are not typesafe

Raw types and unchecked warnings

Even though the Java collection classes have been modified to take advantage of
generics, you are not required to specify type parameters to use them. A generic
type used without type parameters is known as a raw type. Existing pre-5.0 code
continues to work: you simply write all the casts that you’re already used to
writing, and you put up with some pestering from the compiler. Consider the
following code that stores objects of mixed types into a raw List:

List l = new ArrayList();
l.add("hello");
l.add(new Integer(123));
Object o = l.get(0);

This code works fine in Java 1.4. If we compile it using Java 5.0, however, javac
compiles the code but prints this complaint:

Note: Test.java uses unchecked or unsafe operations.
Note: Recompile with -Xlint:unchecked for details.

When we recompile with the -Xlint option as suggested, we see these warnings:

Test.java:6: warning: [unchecked]
 unchecked call to add(E) as a member of the raw type java.util.List
 l.add("hello");
 ^

164 | Chapter 4: Java 5.0 Language Features

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Test.java:7: warning: [unchecked]
 unchecked call to add(E) as a member of the raw type java.util.List
 l.add(new Integer(123));
 ^

The compiler warns us about the add() calls because it cannot ensure that the values
being added to the list have the correct types. It is letting us know that because we’ve
used a raw type, it cannot verify that our code is typesafe. Note that the call to get()
is okay because it is extracting an element that is already safely in the list.

If you get unchecked warnings on files that do not use any of the new Java 5.0
features, you can simply compile them with the -source 1.4 flag, and the
compiler won’t complain. If you can’t do that, you can ignore the warnings,
suppress them with an @SuppressWarnings("unchecked") annotation (see “Annota-
tions” later in this chapter) or upgrade your code to specify a type parameter.* The
following code, for example, compiles with no warnings and still allows you to
add objects of mixed types to the list:

List<Object> l = new ArrayList<Object>();
l.add("hello");
l.add(123); // autoboxing
Object o = l.get(0);

The parameterized type hierarchy

Parameterized types form a type hierarchy, just as normal types do. The hierarchy
is based on the base type, however, and not on the type of the parameters. Here
are some experiments you can try:

ArrayList<Integer> l = new ArrayList<Integer>();
List<Integer> m = l; // okay
Collection<Integer> n = l; // okay
ArrayList<Number> o = l; // error
Collection<Object> p = (Collection<Object>)l; // error, even with cast

A List<Integer> is a Collection<Integer>, but it is not a List<Object>. This is
nonintuitive, and it is important to understand why generics work this way.
Consider this code:

List<Integer> li = new ArrayList<Integer>();
li.add(123);

// The line below will not compile. But for the purposes of this
// thought-experiment, assume that it does compile and see how much
// trouble we get ourselves into.
List<Object> lo = li;

// Now we can retrieve elements of the list as Object instead of Integer
Object number = lo.get(0);

// But what about this?

* At the time of this writing, javac does not yet honor the @SuppressWarnings annotation. It is ex-
pected to do so in Java 5.1.

Generic Types | 165

Java 5.0

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

lo.add("hello world");

// If the line above is allowed then the line below throws ClassCastException
Integer i = li.get(1); // Can't cast a String to Integer!

This then is the reason that a List<Integer> is not a List<Object>, even though all
elements of a List<Integer> are in fact instances of Object. If the conversion to
List<Object> were allowed, non-Integer objects could be added to the list.

Runtime type safety

As we’ve seen, a List<X> cannot be converted to a List<Y>, even when X can be
converted to Y. A List<X> can be converted to a List, however, so that you can
pass it to a legacy method that expects an argument of that type and has not been
updated for generics.

This ability to convert parameterized types to nonparameterized types is essential
for backward compatibility, but it does open up a hole in the type safety system
that generics offer:

// Here's a basic parameterized list.
List<Integer> li = new ArrayList<Integer>();

// It is legal to assign a parameterized type to a nonparameterized variable
List l = li;

// This line is a bug, but it compiles and runs.
// The Java 5.0 compiler will issue an unchecked warning about it.
// If it appeared as part of a legacy class compiled with Java 1.4, however,
// then we'd never even get the warning.
l.add("hello");

// This line compiles without warning but throws ClassCastException at runtime.
// Note that the failure can occur far away from the actual bug.
Integer i = li.get(0);

Generics provide compile-time type safety only. If you compile all your code with
the Java 5.0 compiler and do not get any unchecked warnings, these compile-time
checks are enough to ensure that your code is also typesafe at runtime. But if you
have unchecked warnings or are working with legacy code that manipulates your
collections as raw types, you may want to take additional steps to ensure type
safety at runtime. You can do this with methods like checkedList() and
checkedMap() of java.util.Collections. These methods enclose your collection in
a wrapper collection that performs runtime type checks to ensure that only values
of the correct type are added to the collection. For example, we could prevent the
type safety hole shown above like this:

// Here's a basic parameterized list.
List<Integer> li = new ArrayList<Integer>();

// Wrap it for runtime type safety
List<Integer> cli = Collections.checkedList(li, Integer.class);

// Now widen the checked list to the raw type

166 | Chapter 4: Java 5.0 Language Features

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

List l = cli;

// This line compiles but fails at runtime with a ClassCastException.
// The exception occurs exactly where the bug is, rather than far away
l.add("hello");

Arrays of parameterized type

Arrays require special consideration when working with generic types. Recall that
an array of type S[] is also of type T[], if T is a superclass (or interface) of S.
Because of this, the Java interpreter must perform a runtime check every time you
store an object in an array to ensure that the runtime type of the object and of the
array are compatible. For example, the following code fails this runtime check and
throws an ArrayStoreException:

String[] words = new String[10];
Object[] objs = words;
objs[0] = 1; // 1 autoboxed to an Integer, throws ArrayStoreException

Although the compile-time type of objs is Object[], its runtime type is String[],
and it is not legal to store an Integer in it.

When we work with generic types, the runtime check for array store exceptions is
no longer sufficient because a check performed at runtime does not have access to
the compile-time type parameter information. Consider this (hypothetical) code:

List<String>[] wordlists = new ArrayList<String>[10];
ArrayList<Integer> ali = new ArrayList<Integer>();
ali.add(123);
Object[] objs = wordlists;
objs[0] = ali; // No ArrayStoreException
String s = wordlists[0].get(0); // ClassCastException!

If the code above were allowed, the runtime array store check would succeed:
without compile-time type parameters, the code simply stores an ArrayList into
an ArrayList[] array, which is perfectly legal. Since the compiler can’t prevent
you from defeating type safety in this way, it instead prevents you from creating
any array of parameterized type. The scenario above can never occur because the
compiler will refuse to compile the first line.

Note that this is not a blanket restriction on using arrays with generics; it is just a
restriction on creating arrays of parameterized type. We’ll return to this issue
when we look at how to write generic methods.

Type Parameter Wildcards

Suppose we want to write a method to display the elements of a List.* Before List
was a generic type, we’d just write code like this:

public static void printList(PrintWriter out, List list) {

* The three printList() methods shown in this section ignore the fact that the List implementations
classes in java.util all provide working toString() methods. Notice also that the methods assume
that the List implements RandomAccess and provides very poor performance on LinkedList instances.

Generic Types | 167

Java 5.0

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

 for(int i=0, n=list.size(); i < n; i++) {
 if (i > 0) out.print(", ");
 out.print(list.get(i).toString());
 }
}

In Java 5.0, List is a generic type, and, if we try to compile this method, we’ll get
unchecked warnings. In order to get rid of those warnings, you might be tempted
to modify the method as follows:

public static void printList(PrintWriter out, List<Object> list) {
 for(int i=0, n=list.size(); i < n; i++) {
 if (i > 0) out.print(", ");
 out.print(list.get(i).toString());
 }
}

This code compiles without warnings but isn’t very useful because the only lists
that can be passed to it are lists explicitly declared of type List<Object>.
Remember that List<String> and List<Integer> (for example) cannot be widened
or cast to List<Object>. What we really want is a typesafe printList() method to
which we can pass any List, regardless of how it has been parameterized. The
solution is to use a wildcard as the type parameter. The method would then be
written like this:

public static void printList(PrintWriter out, List<?> list) {
 for(int i=0, n=list.size(); i < n; i++) {
 if (i > 0) out.print(", ");
 Object o = list.get(i);
 out.print(o.toString());
 }
}

This version of the method compiles without warnings and can be used the way
we want it to be used. The ? wildcard represents an unknown type, and the type
List<?> is read as “List of unknown.”

As a general rule, if a type is generic and you don’t know or don’t care about the
value of the type variable, you should always use a ? wildcard instead of using a
raw type. Raw types are allowed only for backward compatibility and should be
used only in legacy code. Note, however, that you cannot use a wildcard when
invoking a constructor. The following code is not legal:

List<?> l = new ArrayList<?>();

There is no sense in creating a List of unknown type. If you are creating it, you
should know what kind of elements it will hold. You may later want to pass such
a list to a method that does not care about its element type, but you need to
specify an element type when you create it. If what you really want is a List that
can hold any type of object, do this:

List<Object> l = new ArrayList<Object>();

It should be clear from the printList() variants above that a List<?> is not the
same thing as a List<Object> and that neither is the same thing as a raw List. A
List<?> has two important properties that result from the use of a wildcard. First,

168 | Chapter 4: Java 5.0 Language Features

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

consider methods like get() that are declared to return a value of the same type as
the type parameter. In this case, that type is unknown, so these methods return an
Object. Since all we need to do with the object is invoke its toString() method,
this is fine for our needs.

Second, consider List methods such as add() that are declared to accept an argu-
ment whose type is specified by the type parameter. This is the more surprising
case: when the type parameter is unknown, the compiler does not let you invoke
any methods that have a parameter of the unknown type because it cannot check
that you are passing an appropriate value. A List<?> is effectively read-only since
the compiler does not allow us to invoke methods like add(), set(), and addAll().

Bounded wildcards

Let’s continue now with a slightly more complex variant of our original example.
Suppose that we want to write a sumList() method to compute the sum of a list of
Number objects. As before, we could use a raw List, but we would give up type
safety and have to deal with unchecked warnings from the compiler. Or we could
use a List<Number>, but then we wouldn’t be able to call the method for a
List<Integer> or List<Double>, types we are more likely to use in practice. But if
we use a wildcard, we don’t actually get the type safety that we want because we
have to trust that our method will be called with a List whose type parameter is
actually Number or a subclass and not, say, a String. Here’s what such a method
might look like:

public static double sumList(List<?> list) {
 double total = 0.0;
 for(Object o : list) {
 Number n = (Number) o; // A cast is required and may fail
 total += n.doubleValue();
 }
 return total;
}

To fix this method and make it truly typesafe, we need to use a bounded wildcard
that states that the type parameter of the List is an unknown type that is either
Number or a subclass of Number. The following code does just what we want:

public static double sumList(List<? extends Number> list) {
 double total = 0.0;
 for(Number n : list) total += n.doubleValue();
 return total;
}

The type List<? extends Number> could be read as “List of unknown descendant
of Number.” It is important to understand that, in this context, Number is consid-
ered a descendant of itself.

Note that the cast is no longer required. We don’t know the type of the elements of
the list, but we know that they have an “upper bound” of Number so we can extract
them from the list as Number objects. The use of a for/in loop obscures the process
of extracting elements from a list somewhat. The general rule is that when you use a
bounded wildcard with an upper bound, methods (like the get() method of List)
that return a value of the type parameter use the upper bound. So if we called list.

Generic Types | 169

Java 5.0

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

get() instead of using a for/in loop, we’d also get a Number. The prohibition on
calling methods like list.add() that have arguments of the type parameter type still
stands: if the compiler allowed us to call those methods we could add an Integer to
a list that was declared to hold only Short values, for example.

It is also possible to specify a lower-bounded wildcard using the keyword super
instead of extends. This technique has a different impact on what methods can be
called. Lower-bounded wildcards are much less commonly used than upper-
bounded wildcards, and we discuss them later in the chapter.

Writing Generic Types and Methods

Creating a simple generic type is straightforward. First, declare your type vari-
ables by enclosing a comma-separated list of their names within angle brackets
after the name of the class or interface. You can use those type variables anywhere
a type is required in any instance fields or methods of the class. Remember,
though, that type variables exist only at compile time, so you can’t use a type vari-
able with the runtime operators instanceof and new.

We begin this section with a simple generic type, which we will subsequently
refine. This code defines a Tree data structure that uses the type variable V to
represent the type of the value held in each node of the tree:

import java.util.*;

/**
 * A tree is a data structure that holds values of type V.
 * Each tree has a single value of type V and can have any number of
 * branches, each of which is itself a Tree.
 */
public class Tree<V> {
 // The value of the tree is of type V.
 V value;

 // A Tree<V> can have branches, each of which is also a Tree<V>
 List<Tree<V>> branches = new ArrayList<Tree<V>>();

 // Here's the constructor. Note the use of the type variable V.
 public Tree(V value) { this.value = value; }

 // These are instance methods for manipulating the node value and branches.
 // Note the use of the type variable V in the arguments or return types.
 V getValue() { return value; }
 void setValue(V value) { this.value = value; }
 int getNumBranches() { return branches.size(); }
 Tree<V> getBranch(int n) { return branches.get(n); }
 void addBranch(Tree<V> branch) { branches.add(branch); }
}

As you’ve probably noticed, the naming convention for type variables is to use a
single capital letter. The use of a single letter distinguishes these variables from the
names of actual types since real-world types always have longer, more descriptive
names. The use of a capital letter is consistent with type naming conventions and

170 | Chapter 4: Java 5.0 Language Features

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

distinguishes type variables from local variables, method parameters, and fields,
which are sometimes written with a single lowercase letter. Collection classes like
those in java.util often use the type variable E for “Element type.” When a type
variable can represent absolutely anything, T (for Type) and S are used as the most
generic type variable names possible (like using i and j as loop variables).

Notice that the type variables declared by a generic type can be used only by the
instance fields and methods (and nested types) of the type and not by static fields
and methods. The reason, of course, is that it is instances of generic types that are
parameterized. Static members are shared by all instances and parameterizations
of the class, so static members do not have type parameters associated with them.
Methods, including static methods, can declare and use their own type parame-
ters, however, and each invocation of such a method can be parameterized
differently. We’ll cover this later in the chapter.

Type variable bounds

The type variable V in the declaration above of the Tree<V> class is unconstrained:
Tree can be parameterized with absolutely any type. Often we want to place some
constraints on the type that can be used: we might want to enforce that a type
parameter implements one or more interfaces, or that it is a subclass of a speci-
fied class. This can be done by specifying a bound for the type variable. We’ve
already seen upper bounds for wildcards, and upper bounds can also be specified
for type variables using a similar syntax. The following code is the Tree example
rewritten to make Tree objects Serializable and Comparable. In order to do this,
the example uses a type variable bound to ensure that its value type is also
Serializable and Comparable. Note how the addition of the Comparable bound on
V enables us to write the compareTo() method Tree by guaranteeing the existence
of a compareTo() method on V.*

import java.io.Serializable;
import java.util.*;

public class Tree<V extends Serializable & Comparable<V>>
 implements Serializable, Comparable<Tree<V>>
{
 V value;
 List<Tree<V>> branches = new ArrayList<Tree<V>>();

 public Tree(V value) { this.value = value; }

 // Instance methods
 V getValue() { return value; }
 void setValue(V value) { this.value = value; }
 int getNumBranches() { return branches.size(); }
 Tree<V> getBranch(int n) { return branches.get(n); }

* The bound shown here requires that the value type V is comparable to itself, in other words, that
it implements the Comparable interface directly. This rules out the use of types that inherit the
Comparable interface from a superclass. We’ll consider the Comparable interface in much more de-
tail at the end of this section and present an alternative there.

Generic Types | 171

Java 5.0

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

 void addBranch(Tree<V> branch) { branches.add(branch); }

 // This method is a nonrecursive implementation of Comparable<Tree<V>>
 // It only compares the value of this node and ignores branches.
 public int compareTo(Tree<V> that) {
 if (this.value == null && that.value == null) return 0;
 if (this.value == null) return -1;
 if (that.value == null) return 1;
 return this.value.compareTo(that.value);
 }

 // javac -Xlint warns us if we omit this field in a Serializable class
 private static final long serialVersionUID = 833546143621133467L;
}

The bounds of a type variable are expressed by following the name of the variable
with the word extends and a list of types (which may themselves be parameter-
ized, as Comparable is). Note that with more than one bound, as in this case, the
bound types are separated with an ampersand rather than a comma. Commas are
used to separate type variables and would be ambiguous if used to separate type
variable bounds as well. A type variable can have any number of bounds,
including any number of interfaces and at most one class.

Wildcards in generic types

Earlier in the chapter we saw examples using wildcards and bounded wildcards in
methods that manipulated parameterized types. They are also useful in generic
types. Our current design of the Tree class requires the value object of every node
to have exactly the same type, V. Perhaps this is too strict, and we should allow
branches of a tree to have values that are a subtype of V instead of requiring V
itself. This version of the Tree class (minus the Comparable and Serializable
implementation) is more flexible:

public class Tree<V> {
 // These fields hold the value and the branches
 V value;
 List<Tree<? extends V>> branches = new ArrayList<Tree<? extends V>>();

 // Here's a constructor
 public Tree(V value) { this.value = value; }

 // These are instance methods for manipulating value and branches
 V getValue() { return value; }
 void setValue(V value) { this.value = value; }
 int getNumBranches() { return branches.size(); }
 Tree<? extends V> getBranch(int n) { return branches.get(n); }
 void addBranch(Tree<? extends V> branch) { branches.add(branch); }
}

The use of bounded wildcards for the branch type allow us to add a Tree<Integer>,
for example, as a branch of a Tree<Number>:

Tree<Number> t = new Tree<Number>(0); // Note autoboxing
t.addBranch(new Tree<Integer>(1)); // int 1 autoboxed to Integer

172 | Chapter 4: Java 5.0 Language Features

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

If we query the branch with the getBranch() method, the value type of the
returned branch is unknown, and we must use a wildcard to express this. The
next two lines are legal, but the third is not:

Tree<? extends Number> b = t.getBranch(0);
Tree<?> b2 = t.getBranch(0);
Tree<Number> b3 = t.getBranch(0); // compilation error

When we query a branch like this, we don’t know the precise type of the value,
but we do still have an upper bound on the value type, so we can do this:

Tree<? extends Number> b = t.getBranch(0);
Number value = b.getValue();

What we cannot do, however, is set the value of the branch, or add a new branch
to that branch. As explained earlier in the chapter, the existence of the upper
bound does not change the fact that the value type is unknown. The compiler
does not have enough information to allow us to safely pass a value to setValue()
or a new branch (which includes a value type) to addBranch(). Both of these lines
of code are illegal:

b.setValue(3.0); // Illegal, value type is unknown
b.addBranch(new Tree<Double>(Math.PI));

This example has illustrated a typical trade-off in the design of a generic type:
using a bounded wildcard made the data structure more flexible but reduced our
ability to safely use some of its methods. Whether or not this was a good design
is probably a matter of context. In general, generic types are more difficult to
design well. Fortunately, most of us will use the preexisting generic types in the
java.util package much more frequently than we will have to create our own.

Generic methods

As noted earlier, the type variables of a generic type can be used only in the
instance members of the type, not in the static members. Like instance
methods, however, static methods can use wildcards. And although static
methods cannot use the type variables of their containing class, they can
declare their own type variables. When a method declares its own type vari-
able, it is called a generic method.

Here is a static method that could be added to the Tree class. It is not a generic
method but uses a bounded wildcard much like the sumList() method we saw
earlier in the chapter:

/** Recursively compute the sum of the values of all nodes on the tree */
public static double sum(Tree<? extends Number> t) {
 double total = t.value.doubleValue();
 for(Tree<? extends Number> b : t.branches) total += sum(b);
 return total;
}

This method could also be rewritten as a generic method by declaring a type vari-
able to express the upper bound imposed by the wildcard:

public static <N extends Number> double sum(Tree<N> t) {
 N value = t.value;

Generic Types | 173

Java 5.0

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

 double total = value.doubleValue();
 for(Tree<? extends N> b : t.branches) total += sum(b);
 return total;
}

The generic version of sum() is no simpler than the wildcard version and the decla-
ration of the type variable does not gain us anything. In a case like this, the
wildcard solution is typically preferred over the generic solution. Generic methods
are required where a single type variable is used to express a relationship between
two parameters or between a parameter and a return value. The following method
is an example:

// This method returns the largest of two trees, where tree size
// is computed by the sum() method. The type variable ensures that
// both trees have the same value type and that both can be passed to sum().
public static <N extends Number> Tree<N> max(Tree<N> t, Tree<N> u) {
 double ts = sum(t);
 double us = sum(u);
 if (ts > us) return t;
 else return u;
}

This method uses the type variable N to express the constraint that both argu-
ments and the return value have the same type parameter and that that type
parameter is Number or a subclass.

It could be argued that constraining both arguments to have the same value type
is too restrictive and that we should be allowed to call the max() method on a
Tree<Integer> and a Tree<Double>. One way to express this is to use two unre-
lated type variables to represent the two unrelated value types. Note, however,
that we cannot use either variable in the return type of the method and must use a
wildcard there:

public static <N extends Number, M extends Number>
 Tree<? extends Number> max(Tree<N> t, Tree<M> u) {...}

Since the two type variables N and M have no relation to each other, and since each
is used in only a single place in the signature, they offer no advantage over
bounded wildcards. The method is better written this way:

public static Tree<? extends Number> max(Tree<? extends Number> t,
 Tree<? extends Number> u) {...}

All the examples of generic methods shown here have been static methods.
This is not a requirement: instance methods can declare their own type vari-
ables as well.

Invoking generic methods

When you use a generic type, you must specify the actual type parameters to be
substituted for its type variables. The same is not generally true for generic
methods: the compiler can almost always figure out the correct parameterization
of a generic method based on the arguments you pass to the method. Consider the
max() method defined above, for instance:

public static <N extends Number> Tree<N> max(Tree<N> t, Tree<N> u) {...}

174 | Chapter 4: Java 5.0 Language Features

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

You need not specify N when you invoke this method because N is implicitly speci-
fied in the values of the method arguments t and u. In the following code, for
example, the compiler determines that N is Integer:

Tree<Integer> x = new Tree<Integer>(1);
Tree<Integer> y = new Tree<Integer>(2);
Tree<Integer> z = Tree.max(x, y);

The process the compiler uses to determine the type parameters for a generic
method is called type inference. Type inference is relatively intuitive to under-
stand, but the actual algorithm the compiler must use is surprisingly complex and
is well beyond the scope of this book. Complete details are in Chapter 15 of The
Java Language Specification, Third Edition.

Let’s look at a slightly more complex version of type inference. Consider this
method:

public class Util {
 /** Set all elements of a to the value v; return a. */
 public static <T> T[] fill(T[] a, T v) {
 for(int i = 0; i < a.length; i++) a[i] = v;
 return a;
 }
}

Here are two invocations of the method:

Boolean[] booleans = Util.fill(new Boolean[100], Boolean.TRUE);
Object o = Util.fill(new Number[5], new Integer(42));

In the first invocation, the compiler can easily determine that T is Boolean. In the
second invocation, the compiler determines that T is Number.

In very rare circumstances you may need to explicitly specify the type parameters
for a generic method. This is sometimes necessary, for example, when a generic
method expects no arguments. Consider the java.util.Collections.emptySet()
method: it returns a set with no elements, but unlike the Collections.singleton()
method (you can look these up in the reference section), it takes no arguments
that would specify the type parameter for the returned set. You can specify the
type parameter explicitly by placing it in angle brackets before the method name:

Set<String> empty = Collections.<String>emptySet();

Type parameters cannot be used with an unqualified method name: they must
follow a dot or come after the keyword new or before the keyword this or super
used in a constructor.

It turns out that if you assign the return value of Collections.emptySet() to a vari-
able, as we did above the type inference mechanism is able to infer the type
parameter based on the variable type. Although the explicit type parameter speci-
fication in the code above can be a helpful clarification, it is not necessary and the
line could be rewritten as:

Set<String> empty = Collections.emptySet();

An explicit type parameter is necessary when you use the return value of the
emptySet() method within a method invocation expression. For example, suppose

Generic Types | 175

Java 5.0

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

you want to call a method named printWords() that expects a single argument of
type Set<String>. If you want to pass an empty set to this method, you could use
this code:

printWords(Collections.<String>emptySet());

In this case, the explicit specification of the type parameter String is required.

Generic methods and arrays

Earlier in the chapter we saw that the compiler does not allow you to create an
array whose type is parameterized. This is not, however, a restriction on all uses of
arrays with generics. Consider the Util.fill() method defined above, for
example. Its first argument and its return value are both of type T[]. The body of
the method does not have to create an array whose element type is T, so the
method is perfectly legal.

If you write a method that uses varargs (see “Variable-Length Argument Lists” in
Chapter 2) and a type variable, remember that invoking a varargs method
performs an implicit array creation. Consider this method:

/** Return the largest of the specified values or null if there are none */
public static <T extends Comparable<T>> T max(T... values) { ... }

You can invoke this method with parameters of type Integer because the compiler
can insert the necessary array creation code for you when you call it. But you
cannot call the method if you’ve cast the same arguments to be type
Comparable<Integer> because it is not legal to create an array of type
Comparable<Integer>[].

Parameterized exceptions

Exceptions are thrown and caught at runtime, and there is no way for the
compiler to perform type checking to ensure that an exception of unknown origin
matches type parameters specified in a catch clause. For this reason, catch clauses
may not include type variables or wildcards. Since it is not possible to catch an
exception at runtime with compile-time type parameters intact, you are not
allowed to make any subclass of Throwable generic. Parameterized exceptions are
simply not allowed.

You can, however, use a type variable in the throws clause of a method signature.
Consider this code, for example:

public interface Command<X extends Exception> {
 public void doit(String arg) throws X;
}

This interface represents a “command”: a block of code with a single string argu-
ment and no return value. The code may throw an exception represented by the
type parameter X. Here is an example that uses a parameterization of this interface:

Command<IOException> save = new Command<IOException>() {
 public void doit(String filename) throws IOException {
 PrintWriter out = new PrintWriter(new FileWriter(filename));
 out.println("hello world");

176 | Chapter 4: Java 5.0 Language Features

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

 out.close();
 }
};

try { save.doit("/tmp/foo"); }
catch(IOException e) { System.out.println(e); }

Generics Case Study: Comparable and Enum

The new generics features in Java 5.0 are used in the Java 5.0 APIs, most notably
in java.util but also in java.lang, java.lang.reflect, and java.util.concurrent.
These APIs were carefully created or reviewed by the inventors of generic types,
and we can learn a lot about the good design of generic types and methods
through the study of these APIs.

The generic types of java.util are relatively easy: for the most part they are
collections classes, and type variables are used to represent the element type of the
collection. Several important generic types in java.lang are more difficult. They
are not collections, and it is not immediately apparent why they have been made
generic. Studying these difficult generic types gives us a deeper understanding of
how generics work and introduces some concepts that we have not yet covered in
this chapter. Specifically, we’ll examine the Comparable interface and the Enum class
(the supertype of enumerated types, described later in this chapter) and will learn
about an important but infrequently used feature of generics known as lower-
bounded wildcards.

In Java 5.0, the Comparable interface has been made generic, with a type variable
that specifies what a class is comparable to. Most classes that implement
Comparable implement it on themselves. Consider Integer:

public final class Integer extends Number implements Comparable<Integer>

The raw Comparable interface is problematic from a type-safety standpoint. It is
possible to have two Comparable objects that cannot be meaningfully compared to
each other. Prior to Java 5.0, the nongeneric Comparable interface was useful but
not fully satisfactory. The generic version of this interface, however, captures
exactly the information we want: it tells us that a type is comparable and tells us
what we can compare it to.

Now consider subclasses of comparable classes. Integer is final and cannot be
subclassed, so let’s look at java.math.BigInteger instead:

public class BigInteger extends Number implements Comparable<BigInteger>

If we implement a BiggerInteger subclass of BigInteger, it inherits the Comparable
interface from its superclass. But note that it inherits Comparable<BigInteger> and
not Comparable<BiggerInteger>. This means that BigInteger and BiggerInteger
objects are mutually comparable, which is usually a good thing. BiggerInteger
can override the compareTo() method of its superclass, but it is not allowed to
implement a different parameterization of Comparable. That is, BiggerInteger
cannot both extend BigInteger and implement Comparable<BiggerInteger>. (In
general, a class is not allowed to implement two different parameterizations of the

Generic Types | 177

Java 5.0

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

same interface: we cannot define a type that implements both
Comparable<Integer> and Comparable<String>, for example.)

When you’re working with comparable objects (as you do when writing sorting
algorithms, for example), remember two things. First, it is not sufficient to use
Comparable as a raw type: for type safety, you must also specify what it is compa-
rable to. Second, types are not always comparable to themselves: sometimes
they’re comparable to one of their ancestors. To make this concrete, consider the
java.util.Collections.max() method:

public static <T extends Comparable<? super T>> T max(Collection<? extends T> c)

This is a long, complex generic method signature. Let’s walk through it:

• The method has a type variable T with complicated bounds that we’ll return
to later.

• The method returns a value of type T.

• The name of the method is max().

• The method’s argument is a Collection. The element type of the collection
is specified with a bounded wildcard. We don’t know the exact type of the
collection’s elements, but we know that they have an upper bound of T.
That is, we know that the elements of the collection are type T or a subclass
of T. Any element of the collection could therefore be used as the return
value of the method.

That much is relatively straightforward. We’ve seen upper-bounded wildcards
elsewhere in this section. Now let’s look again at the type variable declaration
used by the max() method:

<T extends Comparable<? super T>>

This says first that the type T must implement Comparable. (Generics syntax uses
the keyword extends for all type variable bounds, whether classes or interfaces.)
This is expected since the purpose of the method is to find the “maximum” object
in a collection. But look at the parameterization of the Comparable interface. This
is a wildcard, but it is bounded with the keyword super instead of the keyword
extends. This is a lower-bounded wildcard. ? extends T is the familiar upper
bound: it means T or a subclass. ? super T is less commonly used: it means T or a
superclass.

To summarize, then, the type variable declaration states “T is a type that is compa-
rable to itself or to some superclass of itself.” The Collections.min() and
Collections.binarySearch() methods have similar signatures.

For other examples of lower-bounded wildcards (that have nothing to do with
Comparable), consider the addAll(), copy(), and fill() methods of Collections.
Here is the signature for addAll():

public static <T> boolean addAll(Collection<? super T> c, T... a)

This is a varargs method that accepts any number of arguments of type T and
passes them as a T[] named a. It adds all the elements of a to the collection c. The
element type of the collection is unknown but has a lower bound: the elements
are all of type T or a superclass of T. Whatever the type is, we are assured that the

178 | Chapter 4: Java 5.0 Language Features

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

elements of the array are instances of that type, and so it is always legal to add
those array elements to the collection.

Recall from our earlier discussion of upper-bounded wildcards that if you have a
collection whose element type is an upper-bounded wildcard, it is effectively read-
only. Consider List<? extends Serializable>. We know that all elements are
Serializable, so methods like get() return a value of type Serializable. The
compiler won’t let us call methods like add() because the actual element type of
the list is unknown. You can’t add arbitrary serializable objects to the list because
their implementing class may not be of the correct type.

Since upper-bounded wildcards result in read-only collections, you might expect
lower-bounded wildcards to result in write-only collections. This isn’t actually the
case, however. Suppose we have a List<? super Integer>. The actual element
type is unknown, but the only possibilities are Integer or its ancestors Number and
Object. Whatever the actual type is, it is safe to add Integer objects (but not
Number or Object objects) to the list. And, whatever the actual element type is, all
elements of the list are instances of Object, so List methods like get() return
Object in this case.

Finally, let’s turn our attention to the java.lang.Enum class. Enum serves as the
supertype of all enumerated types (described later). It implements the Comparable
interface but has a confusing generic signature:

public class Enum<E extends Enum<E>> implements Comparable<E>, Serializable

At first glance, the declaration of the type variable E appears circular. Take a
closer look though: what this signature really says is that Enum must be parameter-
ized by a type that is itself an Enum. The reason for this seemingly circular type
variable declaration becomes apparent if we look at the implements clause of the
signature. As we’ve seen, Comparable classes are usually defined to be comparable
to themselves. And subclasses of those classes are comparable to their superclass
instead. Enum, on the other hand, implements the Comparable interface not for itself
but for a subclass E of itself!

Enumerated Types
In previous chapters, we’ve seen the class keyword used to define class types, and
the interface keyword used to define interface types. This section introduces the
enum keyword, which is used to define an enumerated type (informally called an
enum). Enumerated types are new in Java 5.0, and the features described here
cannot be used (although they can be partially simulated) prior to that release.

We begin with the basics: how to define and use an enumerated type, including
common programming idioms involving enumerated types and values. Next, we
discuss the more advanced features of enums and show how to simulate enums
prior to Java 5.0.

Enumerated Types | 179

Java 5.0

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Enumerated Types Basics

An enumerated type is a reference type with a finite (usually small) set of possible
values, each of which is individually listed, or enumerated. Here is a simple
enumerated type defined in Java:

public enum DownloadStatus { CONNECTING, READING, DONE, ERROR }

Like class and interface, the enum keyword defines a new reference type. The
single line of Java code above defines an enumerated type named DownloadStatus.
The body of this type is simply a comma-separated list of the four values of the
type. These values are like static final fields (which is why their names are capi-
talized), and you refer to them with names like DownloadStatus.CONNECTING,
DownloadStatus.READING, and so on. A variable of type DownloadStatus can be
assigned one of these four values or null but nothing else. The values of an
enumerated type are called enumerated values and are sometimes also referred to
as enum constants.

It is possible to define more complex enumerated types than the one shown here,
and we describe the complete enum syntax later in this chapter. For now, however,
you can define simple, but very useful, enumerated types with this basic syntax.

Enumerated types are classes

Prior to the introduction of enumerated types in Java 5.0, the DownloadStatus
values would probably have been implemented as integer constants with lines like
the following in a class or interface:

public static final int CONNECTING = 1;
public static final int READING = 2;
public static final int DONE = 3;
public static final int ERROR = 4;

The use of integer constants has a number of shortcomings, the most important of
which is its lack of type safety. If a method expects a download status constant
value, for example, no error checking prevents me from passing an illegal value.
The compiler can’t tell me that I’ve used the constant UploadStatus.DONE when I
should have used DownloadStatus.DONE.

Fortunately, enumerated types in Java are not simple integer constants. The type
defined by an enum keyword is actually a class and its enumerated values are
instances of that class. This provides type safety: if I try to pass a DownloadStatus
value to a method that expects an UploadStatus, the compiler issues an error.
Enumerated types do not have a public constructor, so a program cannot create a
new undefined instance of the type. If a method expects a DownloadStatus, it can
be confident that it will not be passed some unknown instance of the type.

If you are accustomed to writing code using integer constants instead of true
enumerated types, you have probably already made a list of pragmatic advantages
of integers over objects for enumerated values. Hold your judgment, however: the
sections that follow illustrate common enumerated type programming idioms and
demonstrate that anything you can do with integer constants can be done
elegantly, efficiently, and more safely with enums. First, however, we consider the
basic features of all enumerated types.

180 | Chapter 4: Java 5.0 Language Features

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Features of enumerated types

The following list describes the basic facts about enumerated types. These are the
features of enums that you need to know to understand and use them effectively:

• Enumerated types have no public constructor. The only instances of an enu-
merated type are those declared by the enum.

• Enums are not Cloneable, so copies of the existing instances cannot be created.

• Enums implement java.io.Serializable so they can be serialized, but the
Java serialization mechanism handles them specially to ensure that no new
instances are ever created.

• Instances of an enumerated type are immutable: each enum value retains its
identity. (We’ll see later in this chapter that you can add your own fields and
methods to an enumerated type, which means that you can create enumer-
ated values that have mutable portions. This is not recommended, but does
not affect the basic identity of each value.)

• Instances of an enumerated type are stored in public static final fields of
the type itself. Because these fields are final, they cannot be overwritten with
inappropriate values: you can’t assign the DownloadStatus.ERROR value to the
DownloadStatus.DONE field, for example.

• By convention, the values of enumerated types are written using all capital
letters, just as other static final fields are.

• Because there is a strictly limited set of distinct enumerated values, it is
always safe to compare enum values using the = = operator instead of calling
the equals() method.

• Enumerated types do have a working equals() method, however. The
method uses = = internally and is final so that it cannot be overridden. This
working equals() method allows enumerated values to be used as members
of collections such as Set, List, and Map.

• Enumerated types have a working hashCode() method consistent with their
equals() method. Like equals(), hashCode() is final. It allows enumerated
values to be used with classes like java.util.HashMap.

• Enumerated types implement java.lang.Comparable, and the compareTo()
method orders enumerated values in the order in which they appear in the
enum declaration.

• Enumerated types include a working toString() method that returns the
name of the enumerated value. For example, DownloadStatus.DONE.toString()
returns the string "DONE" by default. This method is not final, and enum types
can provide a custom implementation if they choose.

• Enumerated types provide a static valueOf() method that does the opposite of
the default toString() method. For example, DownloadStatus.valueOf("DONE")
would return DownloadStatus.DONE.

• Enumerated types define a final instance method named ordinal() that
returns an integer for each enumerated value. The ordinal of an enumerated
value represents its position (starting at zero) in the list of value names in the
enum declaration. You do not typically need to use the ordinal() method, but it
is used by a number of enum-related facilities, as described later in the chapter.

Enumerated Types | 181

Java 5.0

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

• Each enumerated type defines a static method named values() that returns
an array of enumerated values of that type. This array contains the complete
set of values, in the order they were declared, and is useful for iterating
through the complete set of possible values. Because arrays are mutable, the
values() method always returns a newly created and initialized array.

• Enumerated types are subclasses of java.lang.Enum, which is new in Java 5.0.
(Enum is not itself an enumerated type.) You cannot produce an enumerated type
by manually extending the Enum class, and it is a compilation error to attempt
this. The only way to define an enumerated type is with the enum keyword.

• It is not possible to extend an enumerated type. Enumerated types are effec-
tively final, but the final keyword is neither required nor permitted in their
declarations. Because enums are effectively final, they may not be abstract.
(We’ll return to this point later in the chapter.)

• Like classes, enumerated types may implement interfaces. (We’ll see how
enumerated types may define methods later in the chapter.)

Using Enumerated Types

The following sections illustrate common idioms for working with enumerated
types. They demonstrate the use of the switch statement with enumerated types
and introduce the important new EnumSet and EnumMap collections.

Enums and the switch statement

In Java 1.4 and earlier, the switch statement works only with int, short, char, and
byte values. Because enumerated types have a finite set of values, they are ideally
suited for use with the switch statement, and this statement has been extended in
Java 5.0 to support the use of enumerated types. If the compile-time type of the
switch expression is an enumerated type, the case labels must all be unqualified
names of instances of that type. The following hypothetical code shows a switch
statement used with the DownloadStatus enumerated type.

DownloadStatus status = imageLoader.getStatus();
switch(status) {
case CONNECTING:
 imageLoader.waitForConnection();
 imageLoader.startReading();
 break;
case READING:
 break;
case DONE:
 return imageLoader.getImage();
case ERROR:
 throw new IOException(imageLoader.getError());
}

Note that the case labels are just the constant name: the syntax of the switch
statement does not allow the class name DownloadStatus to appear here. The
ability to omit the class name is very convenient since it would otherwise appear
in every single case. However the requirement that the class name be omitted is
surprising since (in the absence of an import static declaration) the class name is
required in every other context.

182 | Chapter 4: Java 5.0 Language Features

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

If the switch expression (status in the code above) evaluates to null, a
NullPointerException is thrown. It is not legal to use null as the value of a case
label.

If you use the switch statement on an enumerated type and do not include either a
default: label or a case label for each enumerated value, the compiler will most
likely issue an -Xlint warning letting you know that you have not written code to
handle all possible values of the enumerated type.* Even when you do write a case
for each enumerated value, you may still want to include a default: clause; this
covers the possibility that a new value is added to the enumerated type after your
switch statement has been compiled. The following default clause, for example,
could be added to the switch statement shown earlier:

default: throw new AssertionError("Unexpected enumerated value: " + status);

EnumMap

A common programming technique when using integer constants instead of true
enumerated values is to use those constants as array indexes. For example, if the
DownloadStatus values are defined as integers between 0 and 3, we can write code
like this:

String[] statusLineMessages = new String[] {
 "Connecting...", // CONNECTING
 "Loading...", // READING
 "Done.", // DONE
 "Download Failed." // ERROR
};

int status = getStatus();
String message = statusLineMessages[status];

In the big picture, this technique creates a mapping from enumerated integer
constants to strings. We can’t use Java’s enumerated values as array indexes, but
we can use them as keys in a java.util.Map. Because this is a common thing to
do, Java 5.0 defines a new java.util.EnumMap class that is optimized for exactly
this case. EnumMap requires an enumerated type as its key, and, relying on the fact
the number of possible keys is finite, it uses an array to hold the corresponding
values. This implementation means that EnumMap is more efficient than HashMap.
The EnumMap equivalent of the code above is:

EnumMap<DownloadStatus,String> messages =
 new EnumMap<DownloadStatus,String>(DownloadStatus.class);
messages.put(DownloadStatus.CONNECTING, "Connecting...");
messages.put(DownloadStatus.READING, "Loading...");
messages.put(DownloadStatus.DONE, "Done.");
messages.put(DownloadStatus.ERROR, "Download Failed.");

DownloadStatus status = getStatus();
String message = messages.get(status);

* At the time of this writing, this warning is expected to appear in Java 5.1.

Enumerated Types | 183

Java 5.0

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Like other collection classes in Java 5.0, EnumMap is a generic type that accepts type
parameters.

The use of an EnumMap to associate a value with each instance of an enumerated
type is appropriate when you’re working with an enum defined elsewhere. If you
defined the enum value yourself, you can create the necessary associations as part
of the enum definition itself. We’ll see how to do this later in the chapter.

EnumSet

Another common programming idiom when using integer-based constants
instead of an enumerated type is to define all the constants as powers of two so
that a set of those constants can be compactly represented as bit-flags in an
integer. Consider the following flags that describe options that can apply to an
American-style espresso drink:

public static final int SHORT = 0x01; // 8 ounces
public static final int TALL = 0x02; // 12 ounces
public static final int GRANDE = 0x04; // 16 ounces
public static final int DOUBLE = 0x08; // 2 shots of espresso
public static final int SKINNY = 0x10; // made with nonfat milk
public static final int WITH_ROOM = 0x20; // leave room for cream
public static final int SPLIT_SHOT = 0x40; // half decaffeinated
public static final int DECAF = 0x80; // fully decaffeinated

These power-of-two constants can be combined with the bitwise OR operator (|)
to create a compact set of constants that is easy to work with:

int drinkflags = DOUBLE | SHORT | WITH_ROOM;

The bitwise AND operator (&) can be used to test for the presence or absence of
bits:

boolean isBig = (drinkflags & (TALL | GRANDE)) != 0;

If we step back from the binary representation of these bit flags and the boolean
operators that manipulate them, we can see that integer bit flags are simply
compact sets of values. For reference types such as Java’s enumerated values, we can
use a java.util.Set instead. Since this is an important and common thing to do
with enumerated values, Java 5.0 provides the special-purpose java.util.EnumSet
class. Like EnumMap, EnumSet is optimized for enumerated types. It requires that its
members be values of the same enumerated type and uses a compact and fast repre-
sentation of the set based on bit flags that correspond to the ordinal() of each
enumerated value.

The espresso drink code above could be rewritten as follows using an enum and
EnumSet:

public enum DrinkFlags {
 SHORT, TALL, GRANDE, DOUBLE, SKINNY, WITH_ROOM, SPLIT_SHOT, DECAF
}

EnumSet<DrinkFlags> drinkflags =
 EnumSet.of(DrinkFlags.DOUBLE, DrinkFlags.SHORT, DrinkFlags.WITH_ROOM);

boolean isbig =

184 | Chapter 4: Java 5.0 Language Features

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

 drinkflags.contains(DrinkFlags.TALL) ||
 drinkflags.contains(DrinkFlags.GRANDE);

Note that the code above can be made as compact as the integer-based code with
a simple static import:

// Import all static DrinkFlag enum constants
import static com.davidflanagan.coffee.DrinkFlags.*;

See “Packages and the Java Namespace” in Chapter 2 for details on the import
static declaration.

EnumSet defines a number of useful factory methods for initializing sets of enumer-
ated values. The of() method shown above is overloaded: several versions of the
method take different fixed numbers of arguments. A varargs (see Chapter 2) form
that can accept any number of arguments is also defined. Here are some other
ways that you can use of() and related EnumSet factories:

// Make the following examples fit on the page better
import static com.davidflanagan.coffee.DrinkFlags.*;

// We can remove individual members or sets of members from a set.
// Start with a set that includes all enumerated values, then remove a subset:
EnumSet<DrinkFlags> fullCaffeine = EnumSet.allOf(DrinkFlags.class);
fullCaffeine.removeAll(EnumSet.of(DECAF, SPLIT_SHOT));

// Here's another technique to achieve the same result:
EnumSet<DrinkFlags> fullCaffeine =
 EnumSet.complementOf(EnumSet.of(DECAF,SPLIT_SHOT));

// Here's an empty set if you ever need one
// Note that since we don't specify a value, we must specify the element type
EnumSet<DrinkFlags> plainDrink = EnumSet.noneOf(DrinkFlags.class);

// You can also easily describe a contiguous subset of values:
EnumSet<DrinkFlags> drinkSizes = EnumSet.range(SHORT, GRANDE);

// EnumSet is Iterable, and its iterator returns values in ordinal() order,
// so it is easy to loop through the elements of an EnumSet.
for(DrinkFlag size : drinkSizes) System.out.println(size);

The example code shown here demonstrates the use and capabilities of the
EnumSet class. Note, however, that an EnumSet<DrinkFlags> is not really an appro-
priate representation for the description of an espresso drink. An
EnumSet<DrinkFlags> might be overspecified, including both SHORT and GRANDE, for
example, or it might be underspecified and include no drink size at all.

At the root, the problem is that the DrinkFlag type is a naive translation of the integer
bit flags we began this section with. A better and more complete representation is
captured by the following interface, which requires one value from each of five
different enumerated types and a set of values from a sixth enum. The enums are
defined as nested types within the interface itself (see Chapter 3). This example high-
lights the type safety provided by enumerated types. It is not possible (as it would be
with integer constants) to specify a drink strength where a drink size is required, for
example.

Enumerated Types | 185

Java 5.0

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

public interface Espresso {
 enum Drink { LATTE, MOCHA, AMERICANO, CAPPUCCINO, ESPRESSO }
 enum Size { SHORT, TALL, GRANDE }
 enum Strength { SINGLE, DOUBLE, TRIPLE, QUAD }
 enum Milk { SKINNY, ONE_PERCENT, TWO_PERCENT, WHOLE, SOY }
 enum Caffeine { REGULAR, SPLIT_SHOT, DECAF }
 enum Flags { WITH_ROOM, EXTRA_HOT, DRY }

 Drink getDrink();
 Size getSize();
 Strength getStrength();
 Milk getMilk();
 Caffeine getCaffeine();
 java.util.Set<Flags> getFlags();
}

Advanced Enum Syntax

The examples shown so far have all used the simplest enum syntax in which the
body of the enum simply consists of a comma-separated list of value names. The
full enum syntax actually provides quite a bit more power and flexibility:

• You can define your own fields, methods, and constructors for the enumer-
ated type.

• If you define one or more constructors, you can invoke a constructor for each
enumerated value by following the value name with constructor arguments in
parentheses.

• Although an enum may not extend anything, it may implement one or more
interfaces.

• Most esoterically, individual enumerated values can have their own class bod-
ies that override methods defined by the type.

Rather than formally specifying the syntax for each of these advanced enum decla-
rations, we’ll demonstrate the syntax in the examples that follow.

The class body of an enumerated type

Consider the type Prefix, defined below. It is an enum that includes a regular class
body following the list of enumerated values. It defines two instance fields and
accessor methods for those fields. It defines a custom constructor that initializes
the instance field. Each named value of the enumerated type is followed by
constructor arguments in parentheses:

public enum Prefix {
 // These are the values of this enumerated type.
 // Each one is followed by constructor arguments in parentheses.
 // The values are separated from each other by commas, and the
 // list of values is terminated with a semicolon to separate it from
 // the class body that follows.
 MILLI("m", .001),
 CENTI("c", .01),
 DECI("d", .1),

186 | Chapter 4: Java 5.0 Language Features

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

 DECA("D", 10.0),
 HECTA("h", 100.0),
 KILO("k", 1000.0); // Note semicolon

 // This is the constructor invoked for each value above.
 Prefix(String abbrev, double multiplier) {
 this.abbrev = abbrev;
 this.multiplier = multiplier;
 }

 // These are the private fields set by the constructor
 private String abbrev;
 private double multiplier;

 // These are accessor methods for the fields. They are instance methods
 // of each value of the enumerated type.
 public String abbrev() { return abbrev; }
 public double multiplier() { return multiplier; }
}

Note that enum syntax requires a semicolon after the last enumerated value if that
value is followed by a class body. This semicolon may be omitted in the simple
case where there is no class body. It is also worth noting that enum syntax allows a
comma following the last enumerated value. A trailing comma looks somewhat
odd but prevents syntax errors if in the future you add new enumerated values or
rearrange existing ones.

Implementing an interface

An enum cannot be declared to extend a class or enumerated type. It is perfectly
legal, however, for an enumerated type to implement one or more interfaces.
Suppose, for example, that you defined a new enumerated type Unit with an
abbrev() method like Prefix has. In this case, you might define an interface
Abbrevable for any objects that have abbreviations. Your code might look like this:

public interface Abbrevable {
 String abbrev();
}

public enum Prefix implements Abbrevable {
 // the body of this enum type remains the same as above.
}

Value-specific class bodies

In addition to defining a class body for the enumerated type itself, you can also
provide a class body for individual enumerated values within the type. We’ve seen
above that we can add fields to an enumerated type and use a constructor to
initialize those fields. This gives us value-specific data. The ability to define class
bodies for each enumerated value means that we can write methods for each one:
this gives us value-specific behavior. Value-specific behavior is useful when
defining an enumerated type that represents an operator in an expression parser

Enumerated Types | 187

Java 5.0

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

or an opcode in a virtual machine of some sort. The Operator.ADD constant might
have a compute() method that behaves differently than the Operator.SUBTRACT
constant, for example.

To define a class body for an individual enumerated value, simply follow the value
name and its constructor arguments with the class body in curly braces. Indi-
vidual values must still be separated from each other with commas, and the last
value in the list must be separated from the type’s class body with a semicolon: it
can be easy to forget about this required punctuation with the presence of curly
braces for class and method bodies.

Each value-specific class body you write results in the creation of an anonymous
subclass of the enumerated type and makes the enumerated value a singleton
instance of that anonymous subclass. (Enumerated types can not be extended, but
they are not strictly final in the sense that final classes are since they can have
these anonymous subclasses.) Because these subclasses are anonymous, you
cannot refer to them in your code: the compile-time type of each enumerated
value is the enumerated type, not the anonymous subclass specific to that value.
Therefore, the only useful thing you can do in value-specific class bodies is over-
ride methods defined by the type itself. If you define a new public field or method,
you will not be able to refer to or invoke it. (It is perfectly legitimate, of course, to
define helper methods or fields that you invoke or use from the overriding
methods.)

A common pattern is to define default behavior in a method of the type-specific
class body. Then, each enumerated value that requires behavior other than the
default can override that method in its value-specific class body. A very useful
variant of this pattern is to declare the method in the type-specific class body
abstract and to define a value-specific implementation of the method for every
enumerated value. If the type-specific method is abstract, the compiler forces you
to implement that method for every enumerated value in the type: it is not
possible to accidentally omit an implementation. Note that even though the type-
specific class body contains an abstract method, the enumerated type as a whole
is not abstract (and may not be declared abstract) since each value-specific class
body implements the method.

The following code is an excerpt from a larger example that uses an enumerated
type to represent the opcodes of a simulated stack-based CPU. The Opcode
enumerated type defines an abstract method perform(), which is then imple-
mented by the class body of each value of the type. The type includes a
constructor to illustrate the full syntax for each enumerated value: name,
constructor arguments, and class body. enum syntax requires the enumerated
values and their class bodies to appear first. The code is easiest to understand,
however, if you skip past the values and read the type-specific class body first:

// These are the opcodes that our stack machine can execute.
public enum Opcode {
 // Push the single operand onto the stack
 PUSH(1) {
 public void perform(StackMachine machine, int[] operands) {
 machine.push(operands[0]);
 }

188 | Chapter 4: Java 5.0 Language Features

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

 }, // Remember to separate enum values with commas

 // Add the top two values on the stack and push the result
 ADD(0) {
 public void perform(StackMachine machine, int[] operands) {
 machine.push(machine.pop() + machine.pop());
 }
 },

 /* Other opcode values have been omitted for brevity */

 // Branch if Equal to Zero
 BEZ(1) {
 public void perform(StackMachine machine, int[] operands) {
 if (machine.top() == 0) machine.setPC(operands[0]);
 }
 }; // Remember the required semicolon before the class body

 // This is the constructor for the type.
 Opcode(int numOperands) { this.numOperands = numOperands; }

 int numOperands; // how many integer operands does it expect?

 // Each opcode constant must implement this abstract method in a
 // value-specific class body to perform the operation it represents.
 public abstract void perform(StackMachine machine, int[] operands);
}

When to use value-specific class bodies. Value-specific class bodies are an extremely
powerful language feature when each enumerated value must perform a unique
computation of some sort. Keep in mind, however, that value-specific class bodies
are an advanced feature that is not commonly used and may be confusing to less
experienced programmers. Before you decide to use this feature, be sure that it is
necessary.

Before using value-specific class bodies, ensure that your design is neither too
simple nor too complex for the feature. First, check that you do indeed require
value-specific behavior and not simply value-specific data. Value-specific data can
be encoded in constructor arguments as was shown in the Prefix example earlier.
It would be unnecessary and inappropriate to rewrite that example to use value-
specific versions of the abbrev() method, for example.

Next, think about whether an enumerated type is sufficient for your needs. If your
design requires value-specific methods with complex implementations or requires
more than a few methods for each value, you may find it unwieldy to code every-
thing within a single type. Instead, consider defining your own custom type
hierarchy using traditional class and interface declarations and whatever
singleton instances are necessary.

If value-specific behavior is indeed required within the framework of an enumer-
ated type, value-specific class bodies are appropriate. Whether value-specific
bodies are truly elegant or simply confusing is a matter of opinion, and some

Enumerated Types | 189

Java 5.0

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

programmers prefer to avoid them when possible. An alternative that appeals to
some is to encode the value-specific behavior in a type-specific method that uses a
switch statement to treat each value as a separate case. The compute() method of
the following enum is an example. The simplicity of this enumerated type makes a
switch statement a compelling alternative to value-specific class bodies:

public enum ArithmeticOperator {
 // The enumerated values
 ADD, SUBTRACT, MULTIPLY, DIVIDE;

 // Value-specific behavior using a switch statement
 public double compute(double x, double y) {
 switch(this) {
 case ADD: return x + y;
 case SUBTRACT: return x - y;
 case MULTIPLY: return x * y;
 case DIVIDE: return x / y;
 default: throw new AssertionError(this);
 }
 }

 // Test case for using this enum
 public static void main(String args[]) {
 double x = Double.parseDouble(args[0]);
 double y = Double.parseDouble(args[1]);
 for(ArithmeticOperator op : ArithmeticOperator.values())
 System.out.printf("%f %s %f = %f%n", x, op, y, op.compute(x,y));
 }
}

A shortcoming to the switch approach is that each time you add a new enumer-
ated value, you must remember to add a corresponding case to the switch
statement. And if there is more than one method that uses a switch statement,
you’ll have to maintain their switch statements in parallel. Forgetting to imple-
ment value-specific behavior using a switch statement leads to a runtime
AssertionError. With a value-specific class body overriding an abstract method
in the type-specific class body, the same omission leads to a compilation error and
can be corrected sooner.

The performance of value-specific methods and switch statements in a type-
specific method are quite similar. The overhead of virtual method invocation in
one case is balanced by the overhead of the switch statement in the other. Value-
specific class bodies result in the generation of additional class files, each of which
has overhead in terms of storage space and loading time.

Restrictions on enum types

Java places a few restrictions on the code that can appear in an enumerated type.
You won’t encounter these restrictions that often in practice, but you should still
be aware of them.

When you define an enumerated type, the compiler does a lot of work behind the
scenes: it creates a class that extends java.lang.Enum and it generates the values()

190 | Chapter 4: Java 5.0 Language Features

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

and valueOf() methods as well as the static fields that hold the enumerated
values. If you include a class body for the type, you should not include members
whose names conflict with the automatically generated members or with the final
methods inherited from Enum.

enum types may not be declared final. Enumerated types are effectively final, and
the compiler does not allow you to extend an enum. The class file generated for an
enum is not technically declared final if the enum contains value-specific class
bodies, however.

Types in Java may not be both final and abstract. Since enumerated types are
effectively final, they may not be declared abstract. If the type-specific class body
of an enum declaration contains an abstract method, the compiler requires that
each enum value have a value-specific class body that includes an implementation
of that abstract method. Considered as a self-contained whole, the enumerated
type defined this way is not abstract.

The constructor, instance field initializers, and instance initializer blocks of an
enumerated type are subject to a sweeping but obscure restriction: they may not
use the static fields of the type (including the enumerated values themselves). The
reason for this is that static initialization of enumerated types (and of all types)
proceeds from top to bottom. The enumerated values are static fields that appear
at the top of the type and are initialized first. Since they are self-typed fields, they
invoke the constructor and any other instance initializer code of the type. This
means that the instance initialization code is invoked before the static initializa-
tion of the class is complete. Since the static fields have not been initialized yet,
the compiler does not allow them to be used. The only exception is static fields
whose values are compile-time constant expressions (such as integers and strings)
that the compiler resolves.

If you define a constructor for an enumerated type, it may not use the super()
keyword to invoke the superclass constructor. This is because the compiler auto-
matically inserts hidden name and ordinal arguments into any constructor you
define. If you define more than one constructor for the type, it is okay to use this()
to invoke one constructor from the other. Remember that the class bodies of indi-
vidual enumerated values (if you define any) are anonymous, which means that
they cannot have any constructors at all.

The Typesafe Enum Pattern

For a deeper understanding of how the enum keyword works, or to be able to
simulate enumerated types prior to Java 5.0, it is useful to understand the Type-
safe Enum Pattern. This pattern is described definitively by Joshua Bloch* in his
book Effective Java Programming Language Guide (Addison Wesley); we do not
cover all the nuances here.

If you want to use the enumerated type Prefix (from earlier in the chapter) prior
to Java 5.0, you could approximate it with a class like the following one. Note,

* Josh was cochair of the the JSR 201 committee that developed many of the new language features
of Java 5.0. He is the creator of and the driving force behind enumerated types.

Annotations | 191

Java 5.0

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

however, that instances of this class won’t work with the switch statement or with
the EnumSet and EnumMap classes. Also, the code shown here does not include the
values() or valueOf() methods that the compiler generates automatically for true
enum types. A class like this does not have special serialization support like an enum
type does, so if you make it Serializable, you must provide a readResolve()
method to prevent deserialization from creating multiple instances of the enumer-
ated values.

public final class Prefix {
 // These are the self-typed constants
 public static final Prefix MILLI = new Prefix("m", .001);
 public static final Prefix CENTI = new Prefix("c", .01);
 public static final Prefix DECI = new Prefix("d", .1);
 public static final Prefix DECA = new Prefix("D", 10.0);
 public static final Prefix HECTA = new Prefix("h", 100.0);
 public static final Prefix KILO = new Prefix("k", 1000.0);

 // Keep the fields private so the instances are immutable
 private String name;
 private double multiplier;

 // The constructor is private so no instances can be created except
 // for the ones above.
 private Prefix(String name, double multiplier) {
 this.name = name;
 this.multiplier = multiplier;
 }

 // These accessor methods are public
 public String toString() { return name; }
 public double getMultiplier() { return multiplier; }
}

Annotations
Annotations provide a way to associate arbitrary information or metadata with
program elements. Syntactically, annotations are used like modifiers and can be
applied to the declarations of packages, types, constructors, methods, fields,
parameters, and local variables. The information stored in an annotation takes the
form of name=value pairs, whose type is specified by the annotation type. The
annotation type is a kind of interface that also serves to provide access to the
annotation through the Java Reflection API.

Annotations can be used to associate any kind of information you want with a
program element. The only fundamental rule is that an annotation cannot affect
the way the program runs: the code must run identically even if you add or
remove annotations. Another way to say this is that the Java interpreter ignores
annotations (although it does make “runtime-visible” annotations available for
reflective access through the Java Reflection API). Since the Java VM ignores
annotations, an annotation type is not useful unless accompanied by a tool that
can do something with the information stored in annotations of that type. In this
chapter we’ll cover standard annotation and meta-annotation types like Override

192 | Chapter 4: Java 5.0 Language Features

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

and Target. The tool that accompanies these types is the Java compiler, which
must process them in certain ways (as we’ll describe later in this section).

It is easy to imagine any number of other uses for annotations.* A local variable
might be annotated with a type named NonNull, as an assertion that the variable
would never have a null value. An associated (hypothetical) code-analysis tool
could then parse the code and attempt to verify the assertion. The JDK includes a
tool named apt (for Annotation Processing Tool) that provides a framework for
annotation processing tools: it scans source code for annotations and invokes
specially written annotation processor classes that you provide. See Chapter 8 for
more on apt. Annotations will probably find their widest use in enterprise
programming where they may replace tools such as XDoclet, which processes
metadata embedded in ad-hoc javadoc comments.

This section begins with an introduction to annotation-related terminology. We
then cover the standard annotation types introduced in Java 5.0, annotations
supported by javac that you can use in your programs right away. Next, we
describe the syntax for writing arbitrary annotations and briefly cover the use of
the Java Reflection API for querying annotations at runtime. At this point, we
move on to more esoteric material on defining new annotation types, a task that
few programmers will ever need to do. This final part of the chapter also discusses
meta-annotations.

Annotation Concepts and Terminology

The key concept to understand about annotations is that an annotation simply
associates information or metadata with a program element. Annotations never
affect the way a Java program runs, but they may affect things like compiler warn-
ings or the behavior of auxiliary tools such as documentation generators, stub
generators, and so forth.

The following terms are used frequently when discussing annotations. Of partic-
ular importance is the distinction between annotation and annotation type.

annotation
An annotation associates arbitrary information or metadata with a Java
program element. Annotations use new syntax introduced in Java 5.0 and
behave like modifiers such as public or final. Each annotation has a name
and zero or more members. Each member has a name and a value, and it is
these name=value pairs that carry the annotation’s information.

annotation type
The name of an annotation as well as the names, types, and default values of
its members are defined by the annotation type. An annotation type is essen-
tially a Java interface with some restrictions on its members and some new
syntax used in its declaration. When you query an annotation using the Java
Reflection API, the returned value is an object that implements the annota-

* We won’t have to imagine these uses for long. At the time of this writing, JSR 250 is making its
way through the Java Community Process to define a standard set of common annotations for
J2SE and J2EE.

Annotations | 193

Java 5.0

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

tion type interface and allows individual annotation members to be queried.
Java 5.0 includes three standard annotation types in the java.lang package.
We’ll see these annotations in “Using Standard Annotations” later in this
chapter.

annotation member
The members of an annotation are declared in an annotation type as no-
argument methods. The method name and return type define the name and
type of the member. A special default syntax allows the declaration of a
default value for any annotation member. An annotation appearing on a
program element includes name=value pairs that define values for all annota-
tion members that do not have default values and may also include values
that override the defaults of other members.

marker annotation
An annotation type that defines no members is called a marker annotation.
An annotation of this type carries information simply by its presence or
absence.

meta-annotation
A meta-annotation is an annotation applied to the declaration of an annota-
tion type. Java 5.0 includes several standard meta-annotation types in the
java.lang.annotation package. They are used to specify things like which
program elements the annotation can be applied to.

target
The target of an annotation is the program element that is annotated. Anno-
tations can be applied to packages, types (classes, interfaces, enumerated
types, and even annotation types), type members (methods, constructors,
fields, and enumerated values), method parameters, and local variables
(including loop variables and catch parameters). The declaration of an anno-
tation type may include a meta-annotation that restricts the allowable targets
for that type of annotation.

retention
The retention of an annotation specifies how long the information contained
in the annotation is retained. Some annotations are discarded by the compiler
and appear only in source code. Others are compiled into the class file. Of
those that are compiled into the class file, some are ignored by the virtual
machine, and others are read by the virtual machine when the class that
contains them is loaded. The declaration of an annotation type can use a
meta-annotation to specify the retention for annotations of that type. Annota-
tions that are loaded by the VM are runtime-visible and can be queried by the
reflective APIs of java.lang.reflect.

metadata
When discussing annotations, the term metadata commonly refers to the
information carried by an annotation or to the annotation itself. Because this
term is used in many different ways in computer programming literature, I
have avoided using it in this chapter.

194 | Chapter 4: Java 5.0 Language Features

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Using Standard Annotations

Java 5.0 defines three standard annotation types in the java.lang package. The
following sections describe these annotation types and explain how to use them to
annotate your code.

Override

java.lang.Override is a marker annotation type that can be used to annotate
methods but no other program element. An annotation of this type serves as an
assertion that the annotated method overrides a method of a superclass. If you use
this annotation on a method that does not override a superclass method, the
compiler issues a compilation error to alert you to this fact.

This annotation is intended to address a common category of programming errors
that result when you attempt to override a superclass method but get the method
name or signature wrong. In this case, you may have overloaded the method name
but not actually overridden the method, and your code never gets invoked.

To use this annotation type, simply include @Override in the modifiers of the
desired method. By convention, @Override comes before other modifiers. Also by
convention, there is no space between the @ character and the name Override,
even though it is technically allowed. Note that because the java.lang package is
always automatically imported, you never need to include the package name to
use this annotation type. Here is an example in which the @Override annotation is
used on a method that fails to correctly override the toString() method of its
superclass.

@Override
public String toSting() { // Oops. Note the misspelling here!
 // Simply put square brackets around our superclass's output
 return "[" + super.toString() + "]";
}

Without the annotation, the typo might go unnoticed and we’d have a puzzling
bug: why isn’t the toString() method working correctly? But with the annota-
tion, the compiler gives us the answer: the toString() method does not work as
expected because it is not actually overridden.

Note that the @Override annotation applies only to methods that are intended to
override a superclass method and not to methods that are intended to implement
a method defined in an interface. The compiler already produces an error if you
fail to correctly implement an interface method.

Deprecated

java.lang.Deprecated is a marker annotation that is similar to the @deprecated
javadoc tag. (See Chapter 7 for details on writing Java documentation comments.)
If you annotate a type or type member with @Deprecated, it tells the compiler that
use of the annotated element is discouraged. If you use (or extend or override) a
deprecated type or member from code that is not itself declared @Deprecated, the
compiler issues a warning.

Annotations | 195

Java 5.0

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Note that the @Deprecated annotation type does not deprecate the @deprecated
javadoc tag. The @Deprecated annotation is intended for the Java compiler. The
javadoc tag, on the other hand, is intended for the javadoc tool and serves as
documentation: it may include a description of why the program element has
been deprecated and what it has been superseded by or replaced with.

In Java 5.0, the compiler continues to look for @deprecated javadoc tags and uses
them to generate warnings as it always has. This behavior may be phased out,
however, and you should begin to use the @Deprecated annotation in addition to
the @deprecated javadoc tag.

Here is an example that uses both the annotation and the javadoc tag:

/**
 * The Sony Betamax video cassette format.
 * @deprecated No one has players for this format any more. Use VHS instead.
 */
@Deprecated public class Betamax { ... }

SuppressWarnings

The @SuppressWarnings annotation is used to selectively turn off compiler warn-
ings for classes, methods, or field and variable initializers.* In Java 5.0, Sun’s javac
compiler has a powerful -Xlint option that causes it to issue warnings about
“lint” in your program—code that is legal but is likely to represent a program-
ming error. These warnings include the “unchecked warning” that appears when
you use a generic collection class without specifying a value for its type parame-
ters, for example, or the warning that appears if a case in a switch statement does
not end with a break, return, or throw and allows control to “fall through” to the
next case.

Typically, when you see one of these lint warnings from the compiler, you should
investigate the code that caused it. If it truly represents an error, you then correct
it. If it simply represents sloppy programming, you may be able to rewrite your
code so that the warning is no longer necessary. For example, if the warning tells
you that you have not covered all possible cases in a switch statement on an
enumerated type, you can avoid the warning by adding a defensive default case to
the switch statement, even if you are sure that it will never be invoked.

On the other hand, sometimes there is nothing you can do to avoid the error. For
example, if you use a generic collection class in code that must interact with
nongeneric legacy code, you cannot avoid an unchecked warning. This is where
@SuppressWarnings comes in: add this annotation to the nearest relevant set of
modifiers (typically on method modifiers) to tell the compiler that you’re aware of
the issue and that it should stop pestering you about it.

Unlike Override and Deprecated, SuppressWarnings is not a marker annotation. It
has a single member named value whose type is String[]. The value of this
member is the names of the warnings to be suppressed. The SuppressWarnings
annotation does not define what warning names are allowed: this is an issue for

* The javac compiler did not yet support the @SuppressWarnings annotation when this chapter was
written. Full support is expected in Java 5.1.

196 | Chapter 4: Java 5.0 Language Features

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

compiler implementors. For the javac compiler, the warning names accepted by
the -Xlint option are also legal for the @SuppressWarnings annotation. It is legal to
specify any warning names you want: compilers ignore (but may warn about)
warning names they do not recognize.

So, to suppress warnings named unchecked and fallthrough, you could use an
annotation that looks like the following. Annotation syntax follows the name of
the annotation type with a parenthesized, comma-separated list of name=value
pairs. In this case, the SuppressWarnings annotation type defines only a single
member, so there is only a single pair within parentheses. Since the member value
is an array, curly braces are used to delimit array elements:

@SuppressWarnings(value={"unchecked","fallthrough"})
public void lintTrap() { /* sloppy method body omitted */ }

We can abbreviate this annotation somewhat. When an annotation has a single
member and that member is named “value”, you are allowed (and encouraged)
to omit the “value=” in the annotation. So the annotation above should be
rewritten as:

@SuppressWarnings({"unchecked","fallthrough"})

Hopefully you will not often have more than one unresolvable lint warning in any
particular method and will need to suppress only a single named warning. In this
case, another annotation abbreviation is possible. When writing an array value
that contains only a single member, you are allowed to omit the curly braces. In
this case we might have an annotation like this:

@SuppressWarnings("unchecked")

Annotation Syntax

In the descriptions of the standard annotation types, we’ve seen the syntax for
writing marker annotations and the syntax for writing single-member annota-
tions, including the shortcut allowed when the single member is named “value”
and the shortcut allowed when an array-typed member has only a single array
element. This section describes the complete syntax for writing annotations.

An annotation consists of the @ character followed by the name of the annotation
type (which may include a package name) followed by a parenthesized, comma-
separated list of name=value pairs for each of the members defined by the annota-
tion type. Members may appear in any order and may be omitted if the annotation
type defines a default value for that member. Each value must be a literal or
compile-time constant, a nested annotation, or an array.

Near the end of this chapter, we define an annotation type named Reviews that
has a single member that is an array of @Review annotations. The Review annota-
tion type has three members: “reviewer” is a String, “comment” is an optional
String with a default value, and “grade” is a value of the nested enumerated type
Review.Grade. Assuming that the Reviews and Review types are properly imported,
an annotation using these types might look like this (note the use of nested anno-
tations, enumerated types, and arrays in this annotation):

@Reviews({ // Single-value annotation, so "value=" is omitted here
 @Review(grade=Review.Grade.EXCELLENT,

Annotations | 197

Java 5.0

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

 reviewer="df"),
 @Review(grade=Review.Grade.UNSATISFACTORY,
 reviewer="eg",
 comment="This method needs an @Override annotation")
})

Another important rule of annotation syntax is that no program element may have
more than one instance of the same annotation. It is not legal, for example, to
simply place multiple @Review annotations on a class. This is why the @Reviews
annotation is defined to allow an array of @Review annotations.

Annotation member types and values

The values of annotation members must be non-null compile-time constant
expressions that are assignment-compatible with the declared type of the member.
Allowed member types are the primitive types, String, Class, enumerated types,
annotation types, and arrays of any of the above types (but not an array of arrays).
For example, the expressions 2*Math.PI and "hello"+"world" are legal values for
members of type double and String, respectively.

Near the end of the chapter, we define an annotation type named
UncheckedExceptions whose sole member is an array of classes that extend
RuntimeException. An annotation of this type might look like this:

@UncheckedExceptions({
 IllegalArgumentException.class, StringIndexOutOfBoundsException.class
})

Annotation targets

Annotations are most commonly placed on type definitions (such as classes) and
their members (such as methods and fields). Annotations may also appear on
packages, parameters, and local variables. This section provides more informa-
tion about these less common annotation targets.

A package annotation appears before the package declaration in a file named
package-info.java. This file should not contain any type declarations (“package-
info” is not a legal Java identifier, so it cannot contain any public type definitions).
Instead, it should contain an optional javadoc comment, zero or more annota-
tions, and a package declaration. For example:

/**
 * This package holds my custom annotation types.
 */
@com.davidflanagan.annotations.Author("David Flanagan")
package com.davidflanagan.annotations;

When the package-info.java file is compiled, it produces a class file named
package-info.class that contains a synthetic interface declaration. This interface
has no members, and its name, package-info, is not a legal Java identifier, so it
cannot be used in Java source code. It exists simply as a placeholder for package
annotations with class or runtime retention.

198 | Chapter 4: Java 5.0 Language Features

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Note that package annotations appear outside the scope of any package or import
declaration. This means that package annotations should always include the
package name of the annotation type (unless the package is java.lang).

Annotations on method parameters, catch clause parameters, and local variables
simply appear as part of the modifier list for those program elements. The Java
class file format has no provision for storing annotations on local variables or
catch clause parameters, so those annotations always have source retention.
Method parameter annotations can be retained in the class file, however, and may
have class or runtime retention.

Finally, note that the syntax for enumerated type definitions does not allow any
modifiers to be specified for enumerated values. It does, however, allow annota-
tions on any of the values.

Annotations and defaults

Annotations must include a value for every member that does not have a default
value defined by the annotation type. Annotations may, of course, include values
for other members as well.

There is one important detail to understand about how default values are
handled. Default values are stored in the class file of the annotation type and are
not compiled into annotations themselves. If you modify an annotation type so
that the default value of one of its members changes, that change affects all anno-
tations of that type that do not specify an explicit value for that member. Already-
compiled annotations are affected, even if they are never recompiled after the
change to the type.

Annotations and Reflection

The Reflection API of java.lang.reflect has been extended in Java 5.0 to support
reading of runtime-visible annotations. (Remember that an annotation is only visible
at runtime if its annotation type is specified to have runtime retention, that is, if the
annotation is both stored in the class file and read by the Java VM when the class file
is loaded.) This section briefly covers the new reflective capabilities. For full details,
look up the interface java.lang.reflect.AnnotatedElement in the reference section.
AnnotatedElement represents a program element that can be queried for annotations.
It is implemented by java.lang.Package, java.lang.Class, and indirectly imple-
mented by the Method, Constructor, and Field classes of java.lang.reflect.
Annotations on method parameters can be queried with the
getParameterAnnotations() method of the Method or Constructor class.

The following code uses the isAnnotationPresent() method of AnnotatedElement
to determine whether a method is unstable by checking for an @Unstable annota-
tion. It assumes that the Unstable annotation type, which we’ll define later in the
chapter, has runtime retention. Note that this code uses class literals to specify
both the class to be checked and the annotation to check for:

import java.lang.reflect.*;

Class c = WhizzBangClass.class;

Annotations | 199

Java 5.0

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Method m = c.getMethod("whizzy", int.class, int.class);
boolean unstable = m.isAnnotationPresent(Unstable.class);

isAnnotationPresent() is useful for marker annotations. When working with
annotations that have members, though, we typically want to know the value of
those members. For this, we use the getAnnotation() method. And here we see
the beauty of the Java annotation system: if the specified annotation exists, the
object returned by this method implements the annotation type interface, and you
can query the value of any member simply by invoking the annotation type
method that defines that member. Consider the @Reviews annotation that
appeared earlier in the chapter, for example. If the annotation type was declared
with runtime retention, you could query it as follows:

AnnotatedElement target = WhizzBangClass.class; // the type to query
// Ask for the @Reviews annotation as an object that implements Reviews
Reviews annotation = target.getAnnotation(Reviews.class);
// Reviews has a single member named "value" that is an array of reviews
Review[] reviews = annotation.value();
// Loop through the reviews
for(Review r : reviews) {
 Review.Grade grade = r.grade();
 String reviewer = r.reviewer();
 String comment = r.comment();
 System.out.printf("%s assigned a grade of %s and comment '%s'%n",
 reviewer, grade, comment);
}

Note that these reflective methods correctly resolve default annotation values for
you. If an annotation does not include a value for a member with a default value,
the default value is looked up within the annotation type itself.

Defining Annotation Types

An annotation type is an interface, but it is not a normal one. An annotation type
differs from a normal interface in the following ways:

• An annotation type is defined with the keyword @interface rather than
with interface. An @interface declaration implicitly extends the interface
java.lang.annotation.Annotation and may not have an explicit extends
clause of its own.

• The methods of an annotation type must be declared with no arguments and
may not throw exceptions. These methods define annotation members: the
method name becomes the member name, and the method return type
becomes the member type.

• The return value of annotation methods may be a primitive type, a String, a
Class, an enumerated type, another annotation type, or a single-dimensional
array of one of those types.

• Any method of an annotation type may be followed by the keyword default
and a value compatible with the return type of the method. This strange new
syntax specifies the default value of the annotation member that corresponds
to the method. The syntax for default values is the same as the syntax used to

200 | Chapter 4: Java 5.0 Language Features

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

specify member values when writing an annotation. null is never a legal
default value.

• Annotation types and their methods may not have type parameters—anno-
tation types and members cannot be made generic. The only valid use of
generics in annotation types is for methods whose return type is Class.
These methods may use a bounded wildcard to specify a constraint on the
returned class.

In other ways, annotation types declared with @interface are just like regular
interfaces. They may include constant definitions and static member types such as
enumerated type definitions. Annotation types may also be implemented or
extended just as normal interfaces are. (The classes and interfaces that result from
doing this are not themselves annotation types, however: annotation types can be
created only with an @interface declaration.)

We now define the annotation types used in our examples. These examples illus-
trate the syntax of annotation type declarations and demonstrate many of the
differences between @interface and interface. We start with the simple marker
annotation type Unstable. Because we used this type earlier in the chapter in a
reflection example, its definition includes a meta-annotation that gives it runtime
retention and makes it accessible to the reflection API. Meta-annotations are
covered below.

package com.davidflanagan.annotations;
import java.lang.annotation.*;

/**
 * Specifies that the annotated element is unstable and its API is
 * subject to change.
 */
@Retention(RetentionPolicy.RUNTIME)
public @interface Unstable {}

The next annotation type defines a single member. By naming the member value,
we enable a syntactic shortcut for anyone using the annotation:

/**
 * Specifies the author of a program element.
 */
public @interface Author {
 /** Return the name of the author */
 String value();
}

The next example is more complex. The Reviews annotation type has a single
member, but the type of the member is complex: it is an array of Review annota-
tions. The Review annotation type has three members, one of which has an
enumerated type defined as a member of the Review type itself, and another of
which has a default value. Because the Reviews annotation type is used in a reflec-
tion example, we’ve given it runtime retention with a meta-annotation:

import java.lang.annotation.*;

/**

Annotations | 201

Java 5.0

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

 * An annotation of this type specifies the results of one or more
 * code reviews for the annotated element
 */
@Retention(RetentionPolicy.RUNTIME)
public @interface Reviews {
 Review[] value();
}

/**
 * An annotation of this type represents a single code review of the
 * annotated element. Every review must specify the name of the reviewer
 * and the grade assigned to the code. Optionally, reviews may also include
 * a comment string.
 */
public @interface Review {
 // Nested enumerated type
 public static enum Grade { EXCELLENT, SATISFACTORY, UNSATISFACTORY };

 // These methods define the annotation members
 Grade grade(); // member named "grade" with type Grade
 String reviewer();
 String comment() default ""; // Note default value here.
}

Finally, suppose we wanted to annotate methods to list the unchecked exceptions
(but not errors) that they might throw. Our annotation type would have a single
member of array type. Each element of the array would be the Class of an excep-
tion. In order to enforce the requirement that only unchecked exceptions are
used, we use a bounded wildcard on Class:

public @interface UncheckedExceptions {
 Class<? extends RuntimeException>[] value();
}

Meta-Annotations

Annotation types can themselves be annotated. Java 5.0 defines four standard
meta-annotation types that provide information about the use and meaning of
other annotation types. These types and their supporting classes are in the
java.lang.annotation package, and you can find complete details in the quick-
reference section of the book.

Target

The Target meta-annotation type specifies the “targets” for an annotation type.
That is, it specifies which program elements may have annotations of that type. If
an annotation type does not have a Target meta-annotation, it can be used with
any of the program elements described earlier. Some annotation types, however,
make sense only when applied to certain program elements. Override is one
example: it is only meaningful when applied to a method. An @Target meta-anno-
tation applied to the declaration of the Override type makes this explicit and allows
the compiler to reject an @Override when it appears in an inappropriate context.

202 | Chapter 4: Java 5.0 Language Features

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

The Target meta-annotation type has a single member named value. The type of this
member is java.lang.annotation.ElementType[]. ElementType is an enumerated
type whose enumerated values represent program elements that can be annotated.

Retention

We discussed annotation retention earlier in the chapter. It specifies whether an
annotation is discarded by the compiler or retained in the class file, and, if it is
retained in the class file, whether it is read by the VM when the class file is loaded.
By default, annotations are stored in the class file but not available for runtime
reflective access. The three possible retention values (source, class, and runtime)
are described by the enumerated type java.lang.annotation.RetentionPolicy.

The Retention meta-annotation type has a single member named value whose
type is RetentionPolicy.

Documented

Documented is a meta-annotation type used to specify that annotations of some
other type should be considered part of the public API of the annotated program
element and should therefore be documented by tools like javadoc. Documented is a
marker annotation: it has no members.

Inherited

The @Inherited meta-annotation is a marker annotation that specifies that the
annotated type is an inherited one. That is, if an annotation type @Inherited is
used to annotate a class, the annotation applies to subclasses of that class as well.

Note that @Inherited annotation types are inherited only by subclasses of an
annotated class. Classes do not inherit annotations from interfaces they imple-
ment, and methods do not inherit annotations from methods they override.

The Reflection API enforces the inheritance if the @Inherited annotation type is also
annotated @Retention(RetentionPolicy.RUNTIME). If you use java.lang.reflect to
query a class for an annotation of an @Inherited type, the reflection code checks the
specified class and each of its ancestors until an annotation of the specified type is
found or the top of the class hierarchy is reached.

203

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Chapter 5The Java Platform

5
The Java Platform

Chapters 2, 3, and 4 documented the Java programming language. This chapter
switches gears and covers the Java platform—a vast collection of predefined
classes available to every Java program, regardless of the underlying host system
on which it is running. The classes of the Java platform are collected into related
groups, known as packages. This chapter begins with an overview of the packages
of the Java platform that are documented in this book. It then moves on to
demonstrate, in the form of short examples, the most useful classes in these pack-
ages. Most of the examples are code snippets only, not full programs you can
compile and run. For fully fleshed-out, real-world examples, see Java Examples in
a Nutshell (O’Reilly). That book expands greatly on this chapter and is intended
as a companion to this book.

Java Platform Overview
Table 5-1 summarizes the key packages of the Java platform that are covered in
this book.

Table 5-1. Key packages of the Java platform

Package Description

java.io Classes and interfaces for input and output. Although some of the classes in this
package are for working directly with files, most are for working with streams of
bytes or characters.

java.lang The core classes of the language, such as String, Math, System, Thread, and
Exception.

java.lang.annotation Annotation types and other supporting types for the Java 5.0 annotation feature.
(See Chapter 4.)

java.lang.instrument Support classes for Java virtual machine instrumentation agents, which are allowed
to modify the byte code of the program the JVM is running. New in Java 5.0.

java.lang.management A framework for monitoring and managing a running Java virtual machine. New in
Java 5.0.

204 | Chapter 5: The Java Platform

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Table 5-1 does not list all the packages in the Java platform, only the most impor-
tant of those documented in this book. Java also defines numerous packages for
graphics and graphical user interface programming and for distributed, or enter-
prise, computing. The graphics and GUI packages are java.awt and javax.swing
and their many subpackages. These packages are documented in Java Foundation
Classes in a Nutshell and Java Swing, both from O’Reilly. The enterprise packages
of Java include java.rmi, java.sql, javax.jndi, org.omg.CORBA, org.omg.CosNaming,
and all of their subpackages. These packages, as well as several standard exten-
sions to the Java platform, are documented in Java Enterprise in a Nutshell
(O’Reilly).

java.lang.ref Classes that define weak references to objects. A weak reference is one that does
not prevent the referent object from being garbage-collected.

java.lang.reflect Classes and interfaces that allow Java programs to reflect on themselves by exam-
ining the constructors, methods, and fields of classes.

java.math A small package that contains classes for arbitrary-precision integer and floating-
point arithmetic.

java.net Classes and interfaces for networking with other systems.

java.nio Buffer classes for the New I/O API. Added in Java 1.4.

java.nio.channels Channel and selector interfaces and classes for high-performance, nonblocking I/O.

java.nio.charset Character set encoders and decoders for converting Unicode strings to and from
bytes.

java.security Classes and interfaces for access control and authentication. This package and its
subpackages support cryptographic message digests and digital signatures.

java.text Classes and interfaces for working with text in internationalized applications.

java.util Various utility classes, including the powerful collections framework for working
with collections of objects.

java.util.concurrent Thread pools and other utility classes for concurrent programming. Subpackages
support atomic variables and locks. New in Java 5.0.

java.util.jar Classes for reading and writing JAR files.

java.util.logging A flexible logging facility. Added in Java 1.4.

java.util.prefs An API to read and write user and system preferences. Added in Java 1.4.

java.util.regex Text pattern matching using regular expressions. Added in Java 1.4.

java.util.zip Classes for reading and writing ZIP files.

javax.crypto Classes and interfaces for encryption and decryption of data.

javax.net Defines factory classes for creating sockets and server sockets. Enables the creation
of socket types other than the default.

javax.net.ssl Classes for encrypted network communication using the Secure Sockets Layer (SSL).

javax.security.auth The top-level package for the JAAS API for authentication and authorization.
Various subpackages hold most of the actual classes. Added in Java 1.4.

javax.xml.parsers A high-level API for parsing XML documents using pluggable DOM and SAX parsers.

javax.xml.transform A high-level API for transforming XML documents using a pluggable XSLT transfor-
mation engine and for converting XML documents between streams, DOM trees,
and SAX events. Subpackages provide support for DOM, SAX and stream transfor-
mations. Added in Java 1.4.

Table 5-1. Key packages of the Java platform (continued)

Package Description

Text | 205

The Java
Platform

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Text
Most programs manipulate text in one form or another, and the Java platform
defines a number of important classes and interfaces for representing, formatting,
and scanning text. The sections that follow provide an overview.

The String Class

Strings of text are a fundamental and commonly used data type. In Java, however,
strings are not a primitive type, like char, int, and float. Instead, strings are
represented by the java.lang.String class, which defines many useful methods for
manipulating strings. String objects are immutable: once a String object has been
created, there is no way to modify the string of text it represents. Thus, each
method that operates on a string typically returns a new String object that holds
the modified string.

This code shows some of the basic operations you can perform on strings:

// Creating strings
String s = "Now"; // String objects have a special literal syntax
String t = s + " is the time."; // Concatenate strings with + operator
String t1 = s + " " + 23.4; // + converts other values to strings
t1 = String.valueOf('c'); // Get string corresponding to char value
t1 = String.valueOf(42); // Get string version of integer or any value
t1 = object.toString(); // Convert objects to strings with toString()

// String length
int len = t.length(); // Number of characters in the string: 16

// Substrings of a string
String sub = t.substring(4); // Returns char 4 to end: "is the time."
sub = t.substring(4, 6); // Returns chars 4 and 5: "is"
sub = t.substring(0, 3); // Returns chars 0 through 2: "Now"
sub = t.substring(x, y); // Returns chars between pos x and y-1
int numchars = sub.length(); // Length of substring is always (y-x)

// Extracting characters from a string
char c = t.charAt(2); // Get the 3rd character of t: w
char[] ca = t.toCharArray(); // Convert string to an array of characters
t.getChars(0, 3, ca, 1); // Put 1st 3 chars of t into ca[1]-ca[3]

// Case conversion
String caps = t.toUpperCase(); // Convert to uppercase
String lower = t.toLowerCase(); // Convert to lowercase

// Comparing strings
boolean b1 = t.equals("hello"); // Returns false: strings not equal
boolean b2 = t.equalsIgnoreCase(caps); // Case-insensitive compare: true
boolean b3 = t.startsWith("Now"); // Returns true
boolean b4 = t.endsWith("time."); // Returns true
int r1 = s.compareTo("Pow"); // Returns < 0: s comes before "Pow"
int r2 = s.compareTo("Now"); // Returns 0: strings are equal
int r3 = s.compareTo("Mow"); // Returns > 0: s comes after "Mow"
r1 = s.compareToIgnoreCase("pow"); // Returns < 0 (Java 1.2 and later)

206 | Chapter 5: The Java Platform

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

// Searching for characters and substrings
int pos = t.indexOf('i'); // Position of first 'i': 4
pos = t.indexOf('i', pos+1); // Position of the next 'i': 12
pos = t.indexOf('i', pos+1); // No more 'i's in string, returns -1
pos = t.lastIndexOf('i'); // Position of last 'i' in string: 12
pos = t.lastIndexOf('i', pos-1); // Search backwards for 'i' from char 11

pos = t.indexOf("is"); // Search for substring: returns 4
pos = t.indexOf("is", pos+1); // Only appears once: returns -1
pos = t.lastIndexOf("the "); // Search backwards for a string
String noun = t.substring(pos+4); // Extract word following "the"

// Replace all instances of one character with another character
String exclaim = t.replace('.', '!'); // Works only with chars, not substrings

// Strip blank space off the beginning and end of a string
String noextraspaces = t.trim();

// Obtain unique instances of strings with intern()
String s1 = s.intern(); // Returns s1 equal to s
String s2 = "Now"; // String literals are automatically interned
boolean equals = (s1 == s2); // Now can test for equality with ==

The Character Class

As you know, individual characters are represented in Java by the primitive char
type. The Java platform also defines a Character class, which contains useful class
methods for checking the type of a character and for converting the case of a char-
acter. For example:

char[] text; // An array of characters, initialized somewhere else
int p = 0; // Our current position in the array of characters
// Skip leading whitespace
while((p < text.length) && Character.isWhitespace(text[p])) p++;
// Capitalize the first word of text
while((p < text.length) && Character.isLetter(text[p])) {
 text[p] = Character.toUpperCase(text[p]);
 p++;
}

The StringBuffer Class

Since String objects are immutable, you cannot manipulate the characters of an
instantiated String. If you need to do this, use a java.lang.StringBuffer or
java.lang.StringBuilder instead. These two classes are identical except that
StringBuffer has synchronized methods. StringBuilder was introduced in Java
5.0 and you should use it in preference to StringBuffer unless it might actually
be manipulated by multiple threads. The following code demonstrates the
StringBuffer API but could be easily changed to use StringBuilder:

// Create a string buffer from a string
StringBuffer b = new StringBuffer("Mow");

// Get and set individual characters of the StringBuffer
char c = b.charAt(0); // Returns 'M': just like String.charAt()

Text | 207

The Java
Platform

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

b.setCharAt(0, 'N'); // b holds "Now": can't do that with a String!

// Append to a StringBuffer
b.append(' '); // Append a character
b.append("is the time."); // Append a string
b.append(23); // Append an integer or any other value

// Insert Strings or other values into a StringBuffer
b.insert(6, "n't"); // b now holds: "Now isn't the time.23"

// Replace a range of characters with a string (Java 1.2 and later)
b.replace(4, 9, "is"); // Back to "Now is the time.23"

// Delete characters
b.delete(16, 18); // Delete a range: "Now is the time"
b.deleteCharAt(2); // Delete 2nd character: "No is the time"
b.setLength(5); // Truncate by setting the length: "No is"

// Other useful operations
b.reverse(); // Reverse characters: "si oN"
String s = b.toString(); // Convert back to an immutable string
s = b.substring(1,2); // Or take a substring: "i"
b.setLength(0); // Erase buffer; now it is ready for reuse

The CharSequence Interface

As of Java 1.4, both the String and the StringBuffer classes implement the
java.lang.CharSequence interface, which is a standard interface for querying the
length of and extracting characters and subsequences from a readable sequence
of characters. This interface is also implemented by the java.nio.CharBuffer
interface, which is part of the New I/O API that was introduced in Java 1.4.
CharSequence provides a way to perform simple operations on strings of charac-
ters regardless of the underlying implementation of those strings. For example:

/**
 * Return a prefix of the specified CharSequence that starts at the first
 * character of the sequence and extends up to (and includes) the first
 * occurrence of the character c in the sequence. Returns null if c is
 * not found. s may be a String, StringBuffer, or java.nio.CharBuffer.
 */
public static CharSequence prefix(CharSequence s, char c) {
 int numChars = s.length(); // How long is the sequence?
 for(int i = 0; i < numChars; i++) { // Loop through characters in sequence
 if (s.charAt(i) == c) // If we find c,
 return s.subSequence(0,i+1); // then return the prefix subsequence
 }
 return null; // Otherwise, return null
}

The Appendable Interface

Appendable is a Java 5.0 interface that represents an object that can have a char or
a CharSequence appended to it. Implementing classes include StringBuffer,

208 | Chapter 5: The Java Platform

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

StringBuilder, java.nio.CharBuffer, java.io.PrintStream, and java.io.Writer
and all of its character output stream subclasses, including PrintWriter. Thus, the
Appendable interface represents the common appendability of the text buffer
classes and the text output stream classes. As we’ll see below, a Formatter object
can send its output to any Appendable object.

String Concatenation

The + operator concatenates two String objects or one String and one value of
some other type, producing a new String object. Be aware that each time a string
concatenation is performed and the result stored in a variable or passed to a
method, a new String object has been created. In some circumstances, this can be
inefficient and can result in poor performance. It is especially important to be
careful when doing string concatenation within a loop. The following code is inef-
ficient, for example:

// Inefficient: don't do this
public String join(List<String> words) {
 String sentence = "";
 // Each iteration creates a new String object and discards an old one.
 for(String word: words) sentence += word;
 return sentence;
}

When you find yourself writing code like this, switch to a StringBuffer or a
StringBuilder and use the append() method:

// This is the right way to do it
public String join(List<String> words) {
 StringBuilder sentence = new StringBuilder();
 for(String word: words) sentence.append(word);
 return sentence.toString();
}

There is no need to be paranoid about string concatenation, however. Remember
that string literals are concatenated by the compiler rather than the Java inter-
preter. Also, when a single expression contains multiple string concatenations,
these are compiled efficiently using a StringBuilder (or StringBuffer prior to Java
5.0) and result in the creation of only a single new String object.

String Comparison

Since strings are objects rather than primitive values, they cannot, in general, be
compared for equality with the = = operator. == compares references and can deter-
mine if two expressions evaluate to a reference to the same string. It cannot
determine if two distinct strings contain the same text. To do that, use the equals()
method. In Java 5.0 you can compare the content of a string to any other
CharSequence with the contentEquals() method.

Similarly, the < and > relational operators do not work with strings. To compare
the order of strings, use the compareTo() method, which is defined by the
Comparable<String> interface and is illustrated in the sample code above. To
compare strings without taking the case of the letters into account, use
compareToIgnoreCase().

Text | 209

The Java
Platform

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Note that StringBuffer and StringBuilder do not implement Comparable and do
not override the default versions of equals() and hashCode() that they inherit
from Object. This means that it is not possible to compare the text held in two
StringBuffer or StringBuilder objects for equality or for order.

One important, but little understood method of the String class is intern().
When passed a string s, it returns a string t that is guaranteed to have the same
content as s. What’s important, though, is that for any given string content, it
always returns a reference to the same String object. That is, if s and t are two
String objects such that s.equals(t), then:

s.intern() == t.intern()

This means that the intern() method provides a way of doing fast string compari-
sons using ==. Importantly, string literals are always implicitly interned by the Java
VM, so if you plan to compare a string s against a number of string literals, you
may want to intern s first and then do the comparison with = =.

The compareTo() and equals() methods of the String class allow you to compare
strings. compareTo() bases its comparison on the character order defined by the
Unicode encoding while equals() defines string equality as strict character-by-
character equality. These are not always the right methods to use, however. In
some languages, the character ordering imposed by the Unicode standard does
not match the dictionary ordering used when alphabetizing strings. In Spanish, for
example, the letters “ch” are considered a single letter that comes after “c” and
before “d.” When comparing human-readable strings in an internationalized
application, you should use the java.text.Collator class instead:

import java.text.*;

// Compare two strings; results depend on where the program is run
// Return values of Collator.compare() have same meanings as String.compareTo()
Collator c = Collator.getInstance(); // Get Collator for current locale
int result = c.compare("chica", "coche"); // Use it to compare two strings

Supplementary Characters

Java 5.0 has adopted the Unicode 4.0 standard, which, for the first time, has
defined codepoints that fall outside the 16-bit range of the char type. When
working with these “supplementary characters” (which are primarily Han ideo-
graphs), you must use int values to represent the individual character. In String
objects, or for any other type that represents text as a sequence of char values,
these supplementary characters are represented as a series of two char values
known as a surrogate pair.

Although readers of the English edition of this book are unlikely to ever encounter
supplementary characters, you should be aware of them if you are working on
programs that might be localized for use in China or another country that uses
Han ideographs. To help you work with supplementary characters, the Character,
String, StringBuffer, and StringBuilder classes have been extended with new
methods that operate on int codepoints rather than char values. The following
code illustrates some of these methods. You can find other, similar methods in the
reference section and read about them in the online javadoc documentation.

210 | Chapter 5: The Java Platform

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

int codepoint = 0x10001; // This codepoint doesn't fit in a char
// Get the UTF-16 surrogate pair of chars for the codepoint
char[] surrogatePair = Character.toChars(codepoint);
// Convert the chars to a string.
String s = new String(surrogatePair);

// Print string length in characters and codepoints
System.out.println(s.length());
System.out.println(s.codePointCount(0, s.length()-1));

// Print encoding of first character, then encoding of first codepoint.
System.out.println(Integer.toHexString(s.charAt(0)));
System.out.println(Integer.toHexString(s.codePointAt(0)));

// Here's how to safely loop through a string that may contain
// supplementary characters
String tricky = s + "Testing" + s + "!";
int i = 0, n = tricky.length();
while(i < n) {
 // Get the codepoint at the current position
 int cp = tricky.codePointAt(i);
 if (cp < '\uffff') System.out.println((char) cp);
 else System.out.println("\\u" + Integer.toHexString(cp));

 // Increment the string index by one codepoint (1 or 2 chars).
 i = tricky.offsetByCodePoints(i, 1);
}

Formatting Text with printf() and format()

A common task when working with text output is to combine values of various
types into a single block of human-readable text. One way to accomplish this
relies on the string-conversion power of Java’s string concatenation operator. It
results in code like this:

System.out.println(username + " logged in after " + numattempts +
 "attempts. Last login at: " + lastLoginDate);

Java 5.0 introduces an alternative that is familiar to C programmers: a printf()
method. “printf” is short for “print formatted” and it combines the printing and
formatting functions into one call. The printf() method has been added to the
PrintWriter and PrintStream output stream classes in Java 5.0. It is a varargs
method that expects one or more arguments. The first argument is the “format
string.” It specifies the text to be printed and typically includes one or more
“format specifiers,” which are escape sequences beginning with character %. The
remaining arguments to printf() are values to be converted to strings and substi-
tuted into the format string in place of the format specifiers. The format specifiers
constrain the types of the remaining arguments and specify exactly how they are
converted to strings. The string concatenation shown above can be rewritten as
follows in Java 5.0:

System.out.printf("%s logged in after %d attempts. Last login at: %tc%n",
 username, numattempts, lastLoginDate);

Text | 211

The Java
Platform

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

The format specifier %s simply substitutes a string. %d expects the corresponding
argument to be an integer and displays it as such. %tc expects a Date, Calendar, or
number of milliseconds and converts that value to text representation of the full
date and time. %n performs no conversion: it simply outputs the platform-specific
line terminator, just as the println() method does.

The conversions performed by printf() are all properly localized. Times and dates
are displayed with locale-appropriate punctuation, for example. And if you request
that a number be displayed with a thousands separator, you’ll get locale-specific
punctuation there, too (a comma in England and a period in France, for example).

In addition to the basic printf() method, PrintWriter and PrintStream also define
a synonymous method named format(): it takes exactly the same arguments and
behaves in exactly the same way. The String class also has a format() method in
Java 5.0. This static String.format() method behaves like PrintWriter.format()
except that instead of printing the formatted string to a stream, it simply returns it:

// Format a string, converting a double value to text using two decimal
// places and a thousands separator.
double balance = getBalance();
String msg = String.format("Account balance: $%,.2f", balance);

The java.util.Formatter class is the general-purpose formatter class behind the
printf() and format() utility methods. It can format text to any Appendable object
or to a named file. The following code uses a Formatter object to write a file:

public static void writeFile(String filename, String[] lines)
 throws IOException
{
 Formatter out = new Formatter(filename); // format to a named file
 for(int i = 0; i < lines.length; i++) {
 // Write a line of the file
 out.format("%d: %s%n", i, lines[i]);
 // Check for exceptions
 IOException e = out.ioException();
 if (e != null) throw e;
 }
 out.close();
}

When you concatenate an object to a string, the object is converted to a string by
calling its toString() method. This is what the Formatter class does by default as
well. Classes that want more precise control over their formatting can implement
the java.util.Formattable interface in addition to implementing toString().

We’ll see additional examples of formatting with printf() when we cover the
APIs for working with numbers, dates, and times. See java.util.Formatter for a
complete list of available format specifiers and options.

Logging

Simple terminal-based programs can send their output and error messages to
the console with System.out.println() or System.out.print(). Server programs
that run unattended for long periods need a different solution for output: the

212 | Chapter 5: The Java Platform

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

hardware they run on may not have a display terminal attached, and, if it does,
there is unlikely to be anyone looking at it. Programs like this need logging func-
tionality in which output messages are sent to a file for later analysis or through
a network socket for remote monitoring. Java 1.4 provides a logging API in the
java.util.logging package.

Typically, the application developer uses a Logger object associated with the class
or package of the application to generate log messages at any of seven severity
levels (see java.util.logging.Level). These messages may report errors and warn-
ings or provide informational messages about interesting events in the
application’s life cycle. They can include debugging information or even trace the
execution of important methods within the program.

The system administrator or end user of the application is responsible for setting
up a logging configuration file that specifies where log messages are directed (the
console, a file, a network socket, or a combination of these), how they are
formatted (as plain text or XML documents), and at what severity threshold they
are logged (log messages with a severity below the specified threshold are
discarded with very little overhead and should not significantly impact the perfor-
mance of the application). The logging level severity threshold can be configured
independently so that Logger objects associated with different classes or packages
can be “tuned in” or “tuned out.” Because of this end-user configurability, you
should feel free to use logging output liberally in your program. In normal opera-
tion, most log messages will be discarded efficiently and automatically. During
program development, or when diagnosing a problem in a deployed application,
however, the log messages can prove very valuable.

For most applications, using the Logging API is quite simple. Obtain a named
Logger object whenever necessary by calling the static Logger.getLogger()
method, passing the class or package name of the application as the logger name.
Then, use one of the many Logger instance methods to generate log messages. The
easiest methods to use have names that correspond to severity levels, such as
severe(), warning(), and info(). Here is some sample code:

import java.util.logging.*;

// Get a Logger object named after the current package
Logger logger = Logger.getLogger("com.davidflanagan.servers.pop");
logger.info("Starting server."); // Log an informational message
ServerSocket ss; // Do some stuff
try { ss = new ServerSocket(110); }
catch(Exception e) { // Log exceptions
 logger.log(Level.SEVERE, "Can't bind port 110", e); // Complex log message
 logger.warning("Exiting"); // Simple warning
 return;
}
logger.fine("got server socket"); // Fine-detail (low-severity) debug message

Pattern Matching with Regular Expressions

In Java 1.4 and later, you can perform textual pattern matching with regular
expressions. Regular expression support is provided by the Pattern and Matcher

Text | 213

The Java
Platform

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

classes of the java.util.regex package, but the String class defines a number of
convenient methods that allow you to use regular expressions even more simply.
Regular expressions use a fairly complex grammar to describe patterns of charac-
ters. The Java implementation uses the same regex syntax as the Perl 5
programming language. See the java.util.regex.Pattern class in the reference
section for a summary of this syntax or consult a good Perl programming book for
further details. For a complete tutorial on Perl-style regular expressions, see
Mastering Regular Expressions (O’Reilly).

The simplest String method that accepts a regular expression argument is
matches(); it returns true if the string matches the pattern defined by the speci-
fied regular expression:

// This string is a regular expression that describes the pattern of a typical
// sentence. In Perl-style regular expression syntax, it specifies
// a string that begins with a capital letter and ends with a period,
// a question mark, or an exclamation point.
String pattern = "^[A-Z].*[\\.?!]$";
String s = "Java is fun!";
s.matches(pattern); // The string matches the pattern, so this returns true.

The matches() method returns true only if the entire string is a match for the
specified pattern. Perl programmers should note that this differs from Perl’s
behavior, in which a match means only that some portion of the string matches
the pattern. To determine if a string or any substring matches a pattern, simply
alter the regular expression to allow arbitrary characters before and after the
desired pattern. In the following code, the regular expression characters .* match
any number of arbitrary characters:

s.matches(".*\\bJava\\b.*"); // True if s contains the word "Java" anywhere
 // The b specifies a word boundary

If you are already familiar with Perl’s regular expression syntax, you know that it
relies on the liberal use of backslashes to escape certain characters. In Perl, regular
expressions are language primitives and their syntax is part of the language itself.
In Java, however, regular expressions are described using strings and are typically
embedded in programs using string literals. The syntax for Java string literals also
uses the backslash as an escape character, so to include a single backslash in the
regular expression, you must use two backslashes. Thus, in Java programming,
you will often see double backslashes in regular expressions.

In addition to matching, regular expressions can be used for search-and-replace
operations. The replaceFirst() and replaceAll() methods search a string for the
first substring or all substrings that match a given pattern and replace the string or
strings with the specified replacement text, returning a new string that contains
the replacements. For example, you could use this code to ensure that the word
“Java” is correctly capitalized in a string s:

s.replaceAll("(?i)\\bjava\\b",// Pattern: the word "java", case-insensitive
 "Java"); // The replacement string, correctly capitalized

The replacement string passed to replaceAll() and replaceFirst() need not be a
simple literal string; it may also include references to text that matched parenthe-
sized subexpressions within the pattern. These references take the form of a dollar

214 | Chapter 5: The Java Platform

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

sign followed by the number of the subexpression. (If you are not familiar with
parenthesized subexpressions within a regular expression, see java.util.regex.
Pattern in the reference section.) For example, to search for words such as Java-
Bean, JavaScript, JavaOS, and JavaVM (but not Java or Javanese) and to replace
the Java prefix with the letter J without altering the suffix, you could use code
such as:

s.replaceAll("\\bJava([A-Z]\\w+)", // The pattern
 "J$1"); // J followed by the suffix that matched the
 // subexpression in parentheses: [A-Z]\\w+

The other String method that uses regular expressions is split(), which returns
an array of the substrings of a string, separated by delimiters that match the speci-
fied pattern. To obtain an array of words in a string separated by any number of
spaces, tabs, or newlines, do this:

String sentence = "This is a\n\ttwo-line sentence";
String[] words = sentence.split("[\t\n\r]+");

An optional second argument specifies the maximum number of entries in the
returned array.

The matches(), replaceFirst(), replaceAll(), and split() methods are suitable
for when you use a regular expression only once. If you want to use a regular
expression for multiple matches, you should explicitly use the Pattern and
Matcher classes of the java.util.regex package. First, create a Pattern object to
represent your regular expression with the static Pattern.compile() method.
(Another reason to use the Pattern class explicitly instead of the String conve-
nience methods is that Pattern.compile() allows you to specify flags such as
Pattern.CASE_INSENSITIVE that globally alter the way the pattern matching is
done.) Note that the compile() method can throw a PatternSyntaxException if you
pass it an invalid regular expression string. (This exception is also thrown by the
various String convenience methods.) The Pattern class defines split() methods
that are similar to the String.split() methods. For all other matching, however,
you must create a Matcher object with the matcher() method and specify the text
to be matched against:

import java.util.regex.*;

Pattern javaword = Pattern.compile("\\bJava(\\w*)", Pattern.CASE_INSENSITIVE);
Matcher m = javaword.matcher(sentence);
boolean match = m.matches(); // True if text matches pattern exactly

Once you have a Matcher object, you can compare the string to the pattern in
various ways. One of the more sophisticated ways is to find all substrings that
match the pattern:

String text = "Java is fun; JavaScript is funny.";
m.reset(text); // Start matching against a new string
// Loop to find all matches of the string and print details of each match
while(m.find()) {
 System.out.println("Found '" + m.group(0) + "' at position " + m.start(0));
 if (m.start(1) < m.end(1)) System.out.println("Suffix is " + m.group(1));
}

Text | 215

The Java
Platform

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

The Matcher class has been enhanced in several ways in Java 5.0. The most impor-
tant of these is the ability to save the results of the most recent match in a
MatchResult object. The previous algorithm that finds all matches in a string could
be rewritten in Java 5.0 as follows:

import java.util.regex.*;
import java.util.*;

public class FindAll {
 public static void main(String[] args) {
 Pattern pattern = Pattern.compile(args[0]);
 String text = args[1];

 List<MatchResult> results = findAll(pattern, text);
 for(MatchResult r : results) {
 System.out.printf("Found '%s' at (%d,%d)%n",
 r.group(), r.start(), r.end());
 }
 }

 public static List<MatchResult> findAll(Pattern pattern, CharSequence text)
 {
 List<MatchResult> results = new ArrayList<MatchResult>();
 Matcher m = pattern.matcher(text);
 while(m.find()) results.add(m.toMatchResult());
 return results;
 }
}

Tokenizing Text

java.util.Scanner is a general purpose text tokenizer, added in Java 5.0 to
complement the java.util.Formatter class described earlier in this chapter.
Scanner takes full advantage of Java regular expressions and can take its input text
from a string, file, stream, or any object that implements the java.lang.Readable
interface. Readable is also new in Java 5.0 and is the opposite of the Appendable
interface.

A Scanner can break its input text into tokens separated by whitespace or any
desired delimiter character or regular expression. It implements the
Iterator<String> interface, which allows for simple looping through the returned
tokens. Scanner also defines a variety of convenience methods for parsing tokens
as boolean, integer, or floating-point values, with locale-sensitive number parsing.
It has skip() methods for skipping input text that matches a specified pattern and
also has methods for searching ahead in the input text for text that matches a
specified pattern.

Here’s how you could use a Scanner to break a String into space-separated words:

public static List<String> getTokens(String line) {
 List<String> result = new ArrayList<String>();
 for(Scanner s = Scanner.create(line); s.hasNext();)
 result.add(s.next());
 return result;
}

216 | Chapter 5: The Java Platform

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Here’s how you might use a Scanner to break a file into lines:

public static void printLines(File f) throws IOException {
 Scanner s = Scanner.create(f);
 // Use a regex to specify line terminators as the token delimiter
 s.useDelimiter("\r\n|\n|\r");
 while(s.hasNext()) System.out.println(s.next());
}

The following method uses Scanner to parse an input line in the form x + y = z. It
demonstrates the ability of a Scanner to scan numbers. Note that Scanner does not
just parse Java-style integer literals: it supports thousands separators and does so
in a locale-sensitive way—for example, it would parse the integer 1,234 for an
American user and 1.234 for a French user. This code also demonstrates the
skip() method and shows that a Scanner can scan text directly from an
InputStream.

public static boolean parseSum() {
 System.out.print("enter sum> "); // Prompt the user for input
 System.out.flush(); // Make sure prompt is visible immediately

 try {
 // Read and parse the user's input from the console
 Scanner s = Scanner.create(System.in);
 s.useDelimiter(""); // Don't require spaces between tokens
 int x = s.nextInt(); // Parse an integer
 s.skip("\\s*\\+\\s*"); // Skip optional space and literal +
 int y = s.nextInt(); // Parse another integer
 s.skip("\\s*=\\s*"); // Skip optional space and literal =
 int z = s.nextInt(); // Parse a third integer

 return x + y == z;
 }
 catch(InputMismatchException e) { // pattern does not match
 throw new IllegalArgumentException("syntax error");
 }
 catch(NoSuchElementException e) { // no more input available
 throw new IllegalArgumentException("syntax error");
 }
}

StringTokenizer

A number of other Java classes operate on strings and characters. One notable
class is java.util.StringTokenizer, which you can use to break a string of text
into its component words:

String s = "Now is the time";
java.util.StringTokenizer st = new java.util.StringTokenizer(s);
while(st.hasMoreTokens()) {
 System.out.println(st.nextToken());
}

Numbers and Math | 217

The Java
Platform

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

You can even use this class to tokenize words that are delimited by characters
other than spaces:

String s = "a:b:c:d";
java.util.StringTokenizer st = new java.util.StringTokenizer(s, ":");

java.io.StreamTokenizer is another tokenizing class. It has a more complicated
API and has more powerful features than StringTokenizer.

Numbers and Math
Java provides the byte, short, int, long, float, and double primitive types for
representing numbers. The java.lang package includes the corresponding Byte,
Short, Integer, Long, Float, and Double classes, each of which is a subclass of
Number. These classes can be useful as object wrappers around their primitive
types, and they also define some useful constants:

// Integral range constants: Integer, Long, and Character also define these
Byte.MIN_VALUE // The smallest (most negative) byte value
Byte.MAX_VALUE // The largest byte value
Short.MIN_VALUE // The most negative short value
Short.MAX_VALUE // The largest short value

// Floating-point range constants: Double also defines these
Float.MIN_VALUE // Smallest (closest to zero) positive float value
Float.MAX_VALUE // Largest positive float value

// Other useful constants
Math.PI // 3.14159265358979323846
Math.E // 2.7182818284590452354

Mathematical Functions

The Math class defines a number of methods that provide trigonometric, loga-
rithmic, exponential, and rounding operations, among others. This class is
primarily useful with floating-point values. For the trigonometric functions, angles
are expressed in radians. The logarithm and exponentiation functions are base e,
not base 10. Here are some examples:

double d = Math.toRadians(27); // Convert 27 degrees to radians
d = Math.cos(d); // Take the cosine
d = Math.sqrt(d); // Take the square root
d = Math.log(d); // Take the natural logarithm
d = Math.exp(d); // Do the inverse: e to the power d
d = Math.pow(10, d); // Raise 10 to this power
d = Math.atan(d); // Compute the arc tangent
d = Math.toDegrees(d); // Convert back to degrees
double up = Math.ceil(d); // Round to ceiling
double down = Math.floor(d); // Round to floor
long nearest = Math.round(d); // Round to nearest

218 | Chapter 5: The Java Platform

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

In Java 5.0, several new functions have been added to the Math class, including the
following:

double d = 27;
d = Math.cbrt(d); // cube root
d = Math.log10(d); // base-10 logarithm
d = Math.sinh(d); // hyperbolic sine. Also cosh() and tanh()
d = Math.hypot(3, 4); // Hypotenuse

Random Numbers

The Math class also defines a rudimentary method for generating pseudo-random
numbers, but the java.util.Random class is more flexible. If you need very random
pseudo-random numbers, you can use the java.security.SecureRandom class:

// A simple random number
double r = Math.random(); // Returns d such that: 0.0 <= d < 1.0

// Create a new Random object, seeding with the current time
java.util.Random generator = new java.util.Random(System.currentTimeMillis());
double d = generator.nextDouble(); // 0.0 <= d < 1.0
float f = generator.nextFloat(); // 0.0 <= f < 1.0
long l = generator.nextLong(); // Chosen from the entire range of long
int i = generator.nextInt(); // Chosen from the entire range of int
i = generator.nextInt(limit); // 0 <= i < limit (Java 1.2 and later)
boolean b = generator.nextBoolean(); // true or false (Java 1.2 and later)
d = generator.nextGaussian(); // Mean value: 0.0; std. deviation: 1.0
byte[] randomBytes = new byte[128];
generator.nextBytes(randomBytes); // Fill in array with random bytes

// For cryptographic strength random numbers, use the SecureRandom subclass
java.security.SecureRandom generator2 = new java.security.SecureRandom();
// Have the generator generate its own 16-byte seed; takes a *long* time
generator2.setSeed(generator2.generateSeed(16)); // Extra random 16-byte seed
// Then use SecureRandom like any other Random object
generator2.nextBytes(randomBytes); // Generate more random bytes

Big Numbers

The java.math package contains the BigInteger and BigDecimal classes. These
classes allow you to work with arbitrary-size and arbitrary-precision integers and
floating-point values. For example:

import java.math.*;

// Compute the factorial of 1000
BigInteger total = BigInteger.valueOf(1);
for(int i = 2; i <= 1000; i++)
 total = total.multiply(BigInteger.valueOf(i));
System.out.println(total.toString());

Numbers and Math | 219

The Java
Platform

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

In Java 1.4, BigInteger has a method to randomly generate large prime numbers,
which is useful in many cryptographic applications:

BigInteger prime =
 BigInteger.probablePrime(1024, // 1024 bits long
 generator2); // Source of randomness. From above.

The BigDecimal class has been overhauled in Java 5.0 and is much more usable in
this release. In addition to its utility for representing very large or very precise
floating point numbers, it is also useful for financial calculations because it relies
on a decimal representation of fractions rather than a binary representation. float
and double values cannot precisely represent a number as simple as 0.1, and this
can cause rounding errors that are often unacceptable when representing mone-
tary values. BigDecimal and its associated MathContext and RoundingMode types
provide a solution. For example:

// Compute monthly interest payments on a loan
public static BigDecimal monthlyPayment(int amount, // amount of loan
 int years, // term in years
 double apr) // annual interest %
{
 // Convert the loan amount to a BigDecimal
 BigDecimal principal = new BigDecimal(amount);

 // Convert term of loan in years to number of monthly payments
 int payments=years*12;

 // Convert interest from annual percent to a monthly decimal
 BigDecimal interest = BigDecimal.valueOf(apr);
 interest = interest.divide(new BigDecimal(100)); // as fraction
 interest = interest.divide(new BigDecimal(12)); // monthly

 // The monthly payment computation
 BigDecimal x = interest.add(BigDecimal.ONE).pow(payments);
 BigDecimal y = principal.multiply(interest).multiply(x);
 BigDecimal monthly = y.divide(x.subtract(BigDecimal.ONE),
 MathContext.DECIMAL64); // note context

 // Convert to two decimal places
 monthly = monthly.setScale(2, RoundingMode.HALF_EVEN);

 return monthly;
}

Converting Numbers from and to Strings

A Java program that operates on numbers must get its input values from some-
where. Often, such a program reads a textual representation of a number and
must convert it to a numeric representation. The various Number subclasses define
useful conversion methods:

String s = "-42";
byte b = Byte.parseByte(s); // s as a byte
short sh = Short.parseShort(s); // s as a short

220 | Chapter 5: The Java Platform

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

int i = Integer.parseInt(s); // s as an int
long l = Long.parseLong(s); // s as a long
float f = Float.parseFloat(s); // s as a float (Java 1.2 and later)
f = Float.valueOf(s).floatValue(); // s as a float (prior to Java 1.2)
double d = Double.parseDouble(s); // s as a double (Java 1.2 and later)
d = Double.valueOf(s).doubleValue(); // s as a double (prior to Java 1.2)

// The integer conversion routines handle numbers in other bases
byte b = Byte.parseByte("1011", 2); // 1011 in binary is 11 in decimal
short sh = Short.parseShort("ff", 16); // ff in base 16 is 255 in decimal

// The valueOf() method can handle arbitrary bases between 2 and 36
int i = Integer.valueOf("egg", 17).intValue(); // Base 17!

// The decode() method handles octal, decimal, or hexadecimal, depending
// on the numeric prefix of the string
short sh = Short.decode("0377").byteValue(); // Leading 0 means base 8
int i = Integer.decode("0xff").shortValue(); // Leading 0x means base 16
long l = Long.decode("255").intValue(); // Other numbers mean base 10

// Integer class can convert numbers to strings
String decimal = Integer.toString(42);
String binary = Integer.toBinaryString(42);
String octal = Integer.toOctalString(42);
String hex = Integer.toHexString(42);
String base36 = Integer.toString(42, 36);

Formatting Numbers

The printf() and format() methods of Java 5.0 described earlier in this chapter
work well for formatting numbers. The %d format specifier is for formatting inte-
gers in decimal format:

// Format int, long and BigInteger to the string "1 10 100"
String s = String.format("%d %d %d", 1, 10L, BigInteger.TEN.pow(2));
// Add thousands separators
s = String.format("%,d", Integer.MAX_VALUE); // "2,147,483,647"
// Output value right-justified in a field 8 characters wide
s = String.format("%8d", 123); // " 123"
// Pad on the left with zeros to make 5 digits total
s = String.format("%05d", 123); // "00123"

Floating-point numbers can be formatted using %f, %e, or %g format specifiers,
which differ in whether and when exponential notation is used:

double x = 1.234E9; // (1.234 billion)
// returns "1234000000.000000 1.234000e+09 1.234000e+09 1234.000000"
s = String.format("%f %e %g %g", x, x, x, x/1e6);

You’ll notice that the numbers above are all formatted with six digits following
the decimal point. This default can be altered by specifying a precision in the
format string:

// display a BigDecimal with 2 significant digits
s = String.format("%.2f", new BigDecimal("1.234")); // "1.23"

Dates and Times | 221

The Java
Platform

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Other flags can be applied to floating-point conversions as well. The following
code formats a column of numbers right-justified within a field 10 characters
wide. Each number has two digits following the decimal place and includes thou-
sands separators when necessary. Negative values are formatted in parentheses, a
common formatting convention in accounting.

// A column of 4 numbers. %n is newline.
s = String.format("%(,10.2f%n%(,10.2f%n%(,10.2f%n%(,10.2f%n",
 BigDecimal.TEN, // 10.00
 BigDecimal.TEN.movePointRight(3), // 10,000.00
 BigDecimal.TEN.movePointLeft(3), // 0.01
 BigDecimal.TEN.negate()); // (10.00)

See java.util.Formatter in the reference section for complete details on
supported format specifiers and formatting options.

Prior to Java 5.0, numbers can be formatted using the java.text.NumberFormat
class:

import java.text.*;

// Use NumberFormat to format and parse numbers for the current locale
NumberFormat nf = NumberFormat.getNumberInstance(); // Get a NumberFormat
System.out.println(nf.format(9876543.21)); // Format number for current locale
try {
 Number n = nf.parse("1.234.567,89"); // Parse strings according to locale
} catch (ParseException e) { /* Handle exception */ }

// Monetary values are sometimes formatted differently than other numbers
NumberFormat moneyFmt = NumberFormat.getCurrencyInstance();
System.out.println(moneyFmt.format(1234.56)); // Prints $1,234.56 in U.S.

Dates and Times
Java allows dates and times to be represented and manipulated in three forms: as
long values or as java.util.Date or java.util.Calendar objects. Java 5.0 intro-
duces the enumerated type java.util.concurrent.TimeUnit. The values of this
type represent time granularities or units: seconds, milliseconds, microseconds,
and nanoseconds. They have useful convenience methods but do not themselves
represent a time value.

Milliseconds and Nanoseconds

At the lowest level, dates and times are represented as a long value that holds the
positive or negative number of milliseconds since midnight on January 1, 1970.
This special date and time is known as the epoch and is measured in Greenwich
Mean Time (GMT) or Universal Time (UTC). To query the current time in this
millisecond representation, use System.currentTimeMillis()

long now = System.currentTimeMillis();

In Java 5.0 and later, you can use System.nanoTime() to query time in nano-
seconds. This method returns a long number of nanoseconds long. Unlike
currentTimeMillis(), the nanoTime() does not return a time relative to any defined

222 | Chapter 5: The Java Platform

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

epoch. nanoTime() is good for measuring relative or elapsed time (as long as the
elapsed time is not more than 292 years) but is not suitable for absolute time:

long start = System.nanoTime();
doSomething();
long end = System.nanoTime();
long elapsedNanoSeconds = end - start;

The Date Class

java.util.Date is an object wrapper around a long that holds a number of milli-
seconds since the epoch. Using a Date object instead of a long allows simple
conversion to a nonlocalized string with the toString method. Date objects can be
compared for equality with the equals() method and they can be compared for
order with the compareTo() method or the before() and after() methods.

The no-argument version of the Date() constructor creates a Date that represents
the current time. You can also pass a long number of milliseconds to create a Date
that represents some other time. getTime() returns the millisecond representation
of the Date. Date is a mutable class, so you can also pass a number of milliseconds
to setTime().

Date has a number of methods for querying and setting the year, month, day,
hour, minute, and second. All of these methods have been deprecated, however,
in favor of the Calendar class, described next.

The Calendar Class

The java.util.Calendar class is a properly localized version of Date. It is simply a
wrapper around a long number of milliseconds but can represent that instant in
time according to the calendar of the current locale (usually a Gregorian calendar)
and the time zone of the current locale. Furthermore, it has methods for querying,
setting, and doing arithmetic on the various fields of the date and time.

The code below shows common uses of the Calendar class. Note that the set(),
get(), and add() methods all take an initial argument that specifies what field of
the date or time is being set, queried, or added to. Fields such as year, day of
month, day of week, hour, minute, and second are defined by integer constants in
the class. Other integer constants define values for the months and weekdays of
the Gregorian calendar. The month constant UNDECIMBER represents a 13th month
used in lunar calendars.

// Get a Calendar for current locale and time zone
Calendar cal = Calendar.getInstance();

// Figure out what day of the year today is
cal.setTimeInMillis(System.currentTimeMillis()); // Set to the current time
int dayOfYear = cal.get(Calendar.DAY_OF_YEAR); // What day of the year is it?

// What day of the week does the leap day in the year 2008 occur on?
cal.set(2008, Calendar.FEBRUARY, 29); // Set year, month, day fields
int dayOfWeek = cal.get(Calendar.DAY_OF_WEEK); // Query a different field

Dates and Times | 223

The Java
Platform

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

// What day of the month is the 3rd Thursday of May, 2005?
cal.set(Calendar.YEAR, 2005); // Set the year
cal.set(Calendar.MONTH, Calendar.MAY); // Set the month
cal.set(Calendar.DAY_OF_WEEK,Calendar.THURSDAY); // Set the day of week
cal.set(Calendar.DAY_OF_WEEK_IN_MONTH, 3); // Set the week
int dayOfMonth = cal.get(Calendar.DAY_OF_MONTH); // Query the day in month

// Get a Date object that represents three months from now
cal.setTimeInMillis(System.currentTimeMillis()); // Current time
cal.add(Calendar.MONTH, 3); // Add 3 months
Date expiration = cal.getTime(); // Retrieve result as a Date
long millis = cal.getTimeInMillis(); // or get it as a long

Formatting Dates and Times

The toString() method of Date produces a textual representation of a date and
time but does no localization and allows no customization of which fields (day,
month and year or hours and minutes, for example) are to be displayed. The
toString() method should be used only to produce a machine-readable time-
stamp, not a human-readable string.

Like numbers, dates and times can be converted to strings using the String.format()
method and the related java.util.Formatter class of Java 5.0. Format strings for
displaying dates and times are all two-character sequences that begin with the letter t.
The second letter of each sequence specifies the field or set of fields of the date or
time to display. For example %tR displays the hours and minutes fields using 24-hour
time, and %tD displays the month, day, and year fields separated by slashes. String.
format() can format a date or time specified as a long, a Date, or a Calendar:

// current hours and minutes
long now = System.currentTimeMillis();
String s = String.format("%tR", now); // "15:12"

// Current month/day/year
Date d = new Date(now);
s = String.format("%tD", d); // "07/13/04"

// Hours and minutes using 12-hour clock
Calendar c = Calendar.getInstance();
c.setTime(d);
s = String.format("%tl:%tM %tp", now, d, c); // "3:12 pm"

Prior to Java 5.0 and its Formatter class, you can format dates and times using the
java.text.DateFormat class, which automatically handles locale-specific conven-
tions for date and time formatting. DateFormat even works correctly in locales that
use a calendar other than the common era (Gregorian) calendar in use throughout
much of the world:

import java.util.Date;
import java.text.*;

// Display today's date using a default format for the current locale
DateFormat defaultDate = DateFormat.getDateInstance();
System.out.println(defaultDate.format(new Date()));

224 | Chapter 5: The Java Platform

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

// Display the current time using a short time format for the current locale
DateFormat shortTime = DateFormat.getTimeInstance(DateFormat.SHORT);
System.out.println(shortTime.format(new Date()));

// Display date and time using a long format for both
DateFormat longTimestamp =
 DateFormat.getDateTimeInstance(DateFormat.FULL, DateFormat.FULL);
System.out.println(longTimestamp.format(new Date()));

// Use SimpleDateFormat to define your own formatting template
// See java.text.SimpleDateFormat for the template syntax
DateFormat myformat = new SimpleDateFormat("yyyy.MM.dd");
System.out.println(myformat.format(new Date()));
try { // DateFormat can parse dates too
 Date leapday = myformat.parse("2000.02.29");
}
catch (ParseException e) { /* Handle parsing exception */ }

Arrays
The java.lang.System class defines an arraycopy() method that is useful for
copying specified elements in one array to a specified position in a second array.
The second array must be the same type as the first, and it can even be the same
array:

char[] text = "Now is the time".toCharArray();
char[] copy = new char[100];
// Copy 10 characters from element 4 of text into copy, starting at copy[0]
System.arraycopy(text, 4, copy, 0, 10);

// Move some of the text to later elements, making room for insertions
System.arraycopy(copy, 3, copy, 6, 7);

In Java 1.2 and later, the java.util.Arrays class defines useful array-manipula-
tion methods, including methods for sorting and searching arrays:

import java.util.Arrays;

int[] intarray = new int[] { 10, 5, 7, -3 }; // An array of integers
Arrays.sort(intarray); // Sort it in place
int pos = Arrays.binarySearch(intarray, 7); // Value 7 is found at index 2
pos = Arrays.binarySearch(intarray, 12); // Not found: negative return value

// Arrays of objects can be sorted and searched too
String[] strarray = new String[] { "now", "is", "the", "time" };
Arrays.sort(strarray); // sorted to: { "is", "now", "the", "time" }

// Arrays.equals() compares all elements of two arrays
String[] clone = (String[]) strarray.clone();
boolean b1 = Arrays.equals(strarray, clone); // Yes, they're equal

// Arrays.fill() initializes array elements
byte[] data = new byte[100]; // An empty array; elements set to 0
Arrays.fill(data, (byte) -1); // Set them all to -1
Arrays.fill(data, 5, 10, (byte) -2); // Set elements 5, 6, 7, 8, 9 to -2

Collections | 225

The Java
Platform

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Arrays can be treated and manipulated as objects in Java. Given an arbitrary
object o, you can use code such as the following to find out if the object is an array
and, if so, what type of array it is:

Class type = o.getClass();
if (type.isArray()) {
 Class elementType = type.getComponentType();
}

Collections
The Java Collections Framework is a set of important utility classes and interfaces
in the java.util package for working with collections of objects. The Collections
Framework defines two fundamental types of collections. A Collection is a group
of objects while a Map is a set of mappings, or associations, between objects. A Set
is a type of Collection with no duplicates, and a List is a Collection in which the
elements are ordered. SortedSet and SortedMap are specialized sets and maps that
maintain their elements in a sorted order. Collection, Set, List, Map, SortedSet,
and SortedMap are all interfaces, but the java.util package also defines various
concrete implementations, such as lists based on arrays and linked lists, and maps
and sets based on hashtables or binary trees. Other important interfaces are
Iterator and ListIterator, which allow you to loop through the objects in a
collection. The Collections Framework was added in Java 1.2, but prior to that
release you can use Vector and Hashtable, which are approximately the same as
ArrayList and HashMap.

In Java 1.4, the Collections API added the RandomAccess marker interface, which is
implemented by List implementations that support efficient random access (i.e.,
it is implemented by ArrayList and Vector but not by LinkedList). Java 1.4 also
introduced LinkedHashMap and LinkedHashSet, which are hashtable-based maps
and sets that preserve the insertion order of elements. Finally, IdentityHashMap is a
hashtable-based Map implementation that uses the == operator to compare key
objects rather than using the equals() method to compare them.

The Collections Framework has been overhauled in Java 5.0 to use generics (see
Chapter 4). Java 5.0 also adds EnumSet and EnumMap classes that are specialized for
working with enumerated values (see Chapter 4) and the java.lang.Iterable
interface used by the new for/in looping statement. Finally, Java 5.0 adds the
Queue interface. Most of the interesting Queue implementations are BlockingQueue
implementations in java.util.concurrent.

The Collection Interface

Collection<E> is a parameterized interface that represents a generic group of
objects of type E. The group may or may not allow duplicate elements and may or
may not impose an ordering on the elements. Methods are defined for adding and
removing objects from the group, testing an object for membership in the group,
and iterating through all elements in the group. Additional methods return the
elements of the group as an array and return the size of the collection.

226 | Chapter 5: The Java Platform

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

The Java Collections Framework does not provide any implementations of
Collection, but this interface is still very important because it defines the features
common to all Set, List, and Queue implementations. The following code illus-
trates the operations you can perform on Collection objects:

// Create some collections to work with.
Collection<String> c = new HashSet<String>(); // An empty set
// We'll see these utility methods later
Collection<String> d = Arrays.asList("one", "two"); // immutable
Collection<String> e = Collections.singleton("three"); // immutable

// Add elements to a collection. These methods return true if the collection
// changes, which is useful with Sets that don't allow duplicates.
c.add("zero"); // Add a single element
c.addAll(d); // Add a collection of elements

// Copy a collection: most implementations have a copy constructor
Collection<String> copy = new ArrayList<String>(c);

// Remove elements from a collection.
// All but clear() return true if the collection changes.
c.remove("zero"); // Remove a single element
c.removeAll(e); // Remove a collection of elements
c.retainAll(d); // Remove all elements that are not in e
c.clear(); // Remove all elements from the collection

// Querying collection size
boolean b = c.isEmpty(); // Collection is now empty
int s = c.size(); // Collection size is now 0.

// Restore collection from the copy we made
c.addAll(copy);

// Test membership in the collection. Membership is based on the equals()
// method, not the == operator.
b = c.contains("zero"); // true
b = c.containsAll(d); // true

// Iterate through collection elements with a while loop.
// Some implementations (such as lists) guarantee an order of iteration
// Others make no guarantees.
Iterator<String> iterator = c.iterator();
while(iterator.hasNext()) System.out.println(iterator.next());

// Iteration with a for loop
for(Iterator<String> i = c.iterator(); i.hasNext();)
 System.out.println(i.next());

// Java 5.0 iteration using a for/in loop
for(String word : c) System.out.println(word);

// Most Collection implementations have a useful toString() method
System.out.println(c); // As an alternative to the iterations above

Collections | 227

The Java
Platform

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

// Obtain an array of collection elements. If the iterator guarantees
// an order, this array has the same order. The array is a copy, not a
// reference to an internal data structure.
Object[] elements = c.toArray();

// If we want the elements in a String[], we must pass one in
String[] strings = c.toArray(new String[c.size()]);

// Or we can pass an empty String[] just to specify the type and
// the toArray() method will allocate an array for us
strings = c.toArray(new String[0]);

Remember that you can use any of the methods shown above with any Set, List,
or Queue. These subinterfaces may impose membership restrictions or ordering
constraints on the elements of the collection but still provide the same basic
methods. Methods such as add(), remove(), clear(), and retainAll() that alter
the collection are optional, and read-only implementations may throw
UnsupportedOperationException.

Collection, Map, and their subinterfaces do not extend the Cloneable or
Serializable interfaces. All of the collection and map implementation classes
provided in the Java Collections Framework, however, do implement these
interfaces.

Some collection implementations place restrictions on the elements that they can
contain. An implementation might prohibit null as an element, for example. And
EnumSet restricts membership to the values of a specified enumerated type.
Attempting to add a prohibited element to a collection always throws an
unchecked exception such as NullPointerException or ClassCastException.
Checking whether a collection contains a prohibited element may also throw such
an exception, or it may simply return false.

The Set Interface

A set is a collection of objects that does not allow duplicates: it may not contain
two references to the same object, two references to null, or references to two
objects a and b such that a.equals(b). Most general-purpose Set implementations
impose no ordering on the elements of the set, but ordered sets are not prohibited
(see SortedSet and LinkedHashSet). Sets are further distinguished from ordered
collections like lists by the general expectation that they have an efficient
contains() method that runs in constant or logarithmic time.

Set defines no additional methods beyond those defined by Collection but places
additional restrictions on those methods. The add() and addAll() methods of a
Set are required to enforce the no-duplicates rules: they may not add an element
to the Set if the set already contains that element. Recall that the add() and
addAll() methods defined by the Collection interface return true if the call
resulted in a change to the collection and false if it did not. This return value is
relevant for Set objects because the no-duplicates restriction means that adding an
element does not always result in a change to the set.

Table 5-2 lists the implementations of the Set interface and summarizes their
internal representation, ordering characteristics, member restrictions, and the

228 | Chapter 5: The Java Platform

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

performance of the basic add(), remove(), and contains() operations as well as
iteration performance. You can read more about each class in the reference
section. Note that CopyOnWriteArraySet is in the java.util.concurrent package; all
the other implementations are part of java.util. Also note that java.util.BitSet
is not a Set implementation. This legacy class is useful as a compact and efficient
list of boolean values but is not part of the Java Collections Framework.

The TreeSet implementation uses a red-black tree data structure to maintain a set
that is iterated in ascending order according to the natural ordering of Comparable
objects or according to an ordering specified by a Comparator object. TreeSet actu-
ally implements the SortedSet interface, which is a subinterface of Set.

SortedSet offers several interesting methods that take advantage of its sorted
nature. The following code illustrates:

public static void testSortedSet(String[] args) {
 // Create a SortedSet
 SortedSet<String> s = new TreeSet<String>(Arrays.asList(args));

 // Iterate set: elements are automatically sorted
 for(String word : s) System.out.println(word);

 // Special elements
 String first = s.first(); // First element
 String last = s.last(); // Last element
 // Subrange views of the set
 SortedSet<String> tail = s.tailSet(first+'\0'); // all elements but first
 SortedSet<String> head = s.headSet(last); // all elements but last
 SortedSet<String> middle = s.subSet(first+'\0', // all but ends
 last);
}

Table 5-2. Set Implementations

Class

Internal
represen-
tation

Element
order

Member
restric-
tions

Basic
opera-
tions

Iteration
perfor-
mance Notes

HashSet hashtable none none O(1) O(capacity) Best general-purpose
implementation.

LinkedHashSet linked
hashtable

insertion
order

none O(1) O(n) Preserves insertion
order.

EnumSet bit fields enum
declaration

enum
values

O(1) O(n) Holds non-null
enum values only.

TreeSet red-black
tree

sorted
ascending

compa-
rable

O(log(n)) O(n) Comparable
elements or
Comparator.

CopyOnWrite
ArraySet

array insertion
order

none O(n) O(n) Threadsafe without
synchronized
methods.

Collections | 229

The Java
Platform

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

The List Interface

A List is an ordered collection of objects. Each element of a list has a position in
the list, and the List interface defines methods to query or set the element at a
particular position, or index. In this respect a List is like an array whose size
changes as needed to accommodate the number of elements it contains. Unlike
sets, lists allow duplicate elements.

In addition to its index-based get() and set() methods, the List interface defines
methods to add or remove an element at a particular index and also defines
methods to return the index of the first or last occurrence of a particular value in
the list. The add() and remove() methods inherited from Collection are defined to
append to the list and to remove the first occurrence of the specified value from
the list. The inherited addAll() appends all elements in the specified collection to
the end of the list, and another version inserts the elements at a specified index.
The retainAll() and removeAll() methods behave as they do for any Collection,
retaining or removing multiple occurrences of the same value, if needed.

The List interface does not define methods that operate on a range of list indexes.
Instead it defines a single subList method that returns a List object that represents
just the specified range of the original list. The sublist is backed by the parent list,
and any changes made to the sublist are immediately visible in the parent list. Exam-
ples of subList() and the other basic List manipulation methods are below.

// Create lists to work with
List<String> l = new ArrayList<String>(Arrays.asList(args));
List<String> words = Arrays.asList("hello", "world");

// Querying and setting elements by index
String first = l.get(0); // First element of list
String last = l.get(l.size()-1); // Last element of list
l.set(0, last); // The last shall be first

// Adding and inserting elements. add() can append or insert
l.add(first); // Append the first word at end of list
l.add(0, first); // Insert first word at the start of the list again
l.addAll(words); // Append a collection at the end of the list
l.addAll(1, words); // Insert collection after first word

// Sublists: backed by the original list
List<String> sub = l.subList(1,3); // second and third elements
sub.set(0, "hi"); // modifies 2nd element of l
// Sublists can restrict operations to a subrange of backing list
String s = Collections.min(l.subList(0,4));
Collections.sort(l.subList(0,4));
// Independent copies of a sublist don't affect the parent list.
List<String> subcopy = new ArrayList<String>(l.subList(1,3));

// Searching lists
int p = l.indexOf(last); // Where does the last word appear?
p = l.lastIndexOf(last); // Search backward

// Print the index of all occurrences of last in l. Note subList()

230 | Chapter 5: The Java Platform

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

int n = l.size();
p = 0;
do {
 // Get a view of the list that includes only the elements we
 // haven't searched yet.
 List<String> list = l.subList(p, n);
 int q = list.indexOf(last);
 if (q == -1) break;
 System.out.printf("Found '%s' at index %d%n", last, p+q);
 p += q+1;
} while(p < n);

// Removing elements from a list
l.remove(last); // Remove first occurrence of the element
l.remove(0); // Remove element at specified index
l.subList(0,2).clear(); // Remove a range of elements using subList()
l.retainAll(words); // Remove all but elements in words
l.removeAll(words); // Remove all occurrences of elements in words
l.clear(); // Remove everything

A general expectation of List implementations is that they can be efficiently iter-
ated, typically in time proportional to the size of the list. Lists do not all provide
efficient random-access to the elements at any index, however. Sequential-access
lists, such as the LinkedList class, provide efficient insertion and deletion opera-
tions at the expense of random access performance. In Java 1.4 and later,
implementations that provide efficient random access implement the RandomAccess
marker interface, and you can test for this interface with instanceof if you need to
ensure efficient list manipulations:

List<?> l = ...; // Arbitrary list we're passed to manipulate
// Ensure we can do efficient random access. If not, use a copy constructor
// to make a random-access copy of the list before manipulating it.
if (!(l instanceof RandomAccess)) l = new ArrayList<?>(l);

The Iterator returned by the iterator() method of a List iterates the list
elements in the order that they occur in the list. List implements Iterable, and
lists can be iterated with a for/in loop just as any other collection can.

To iterate just a portion of a list, you can use the subList() method to create a
sublist view:

List<String> words = ...; // Get a list to iterate

// Iterate just all elements of the list but the first
for(String word : words.subList(1, words.size()))
 System.out.println(word);

In addition to normal iteration, lists also provide enhanced bidirectional iteration
using a ListIterator object returned by the listIterator() method. To iterate
backward through a List, for example, start with a ListIterator with its cursor
positioned after the end of the list:

ListIterator<String> li = words.listIterator(words.size());
while(li.hasPrevious()) {
 System.out.println(li.previous());
}

Collections | 231

The Java
Platform

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Table 5-3 summarizes the five general-purpose List implementations in the Java
platform. Vector and Stack are legacy implementations left over from Java 1.0.
CopyOnWriteArrayList is a new in Java 5.0 and is part of the java.util.concurrent
package.

The Map Interface

A map is a set of key objects and a mapping from each member of that set to a
value object. The Map interface defines an API for defining and querying mappings.
Map is part of the Java Collections Framework, but it does not extend the
Collection interface, so a Map is a little-c collection, not a big-C Collection. Map is
a parameterized type with two type variables. Type variable K represents the type
of keys held by the map, and type variable V represents the type of the values that
the keys are mapped to. A mapping from String keys to Integer values, for
example, can be represented with a Map<String,Integer>.

The most important Map methods are put(), which defines a key/value pair in the
map, get(), which queries the value associated with a specified key, and remove(),
which removes the specified key and its associated value from the map. The general
performance expectation for Map implementations is that these three basic methods
are quite efficient: they should usually run in constant time and certainly no worse
than in logarithmic time.

An important feature of Map is its support for “collection views.” Although a Map is not
a Collection, its keys can be viewed as a Set, its values can be viewed as a Collection,
and its mappings can be viewed as a Set of Map.Entry objects. (Map.Entry is a nested
interface defined within Map: it simply represents a single key/value pair.)

The sample code below shows the get(), put(), remove(), and other methods of a
Map and also demonstrates some common uses of the collection views of a Map:

// Create maps to work with
Map<String,Integer> m = new HashMap<String,Integer>(); // New, empty map
// Immutable Map containing a single key-value pair
Map<String,Integer> singleton = Collections.singletonMap("testing", -1);
// Note this rarely-used syntax to explicitly specify the parameter
// types of the generic emptyMap() method. The returned map is immutable
Map<String,Integer> empty = Collections.<String,Integer>emptyMap();

// Populate the map using the put() method to define mappings from array
// elements to the index at which each element appears

Table 5-3. List implementations

Class Representation Random access Notes

ArrayList array yes Best all-around implementation.

LinkedList double-linked list no Efficient insertion and deletion.

CopyOnWriteArrayList array yes Threadsafe; fast traversal, slow
modification.

Vector array yes Legacy class; synchronized method.

Stack array yes Extends Vector; adds push(),
pop(), peek().

232 | Chapter 5: The Java Platform

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

String[] words = { "this", "is", "a", "test" };
for(int i = 0; i < words.length; i++)
 m.put(words[i], i); // Note autoboxing of int to Integer

// Each key must map to a single value. But keys may map to the same value
for(int i = 0; i < words.length; i++)
 m.put(words[i].toUpperCase(), i);

// The putAll() method copies mappings from another Map
m.putAll(singleton);

// Query the mappings with the get() method
for(int i = 0; i < words.length; i++)
 if (m.get(words[i]) != i) throw new AssertionError();

// Key and value membership testing
m.containsKey(words[0]); // true
m.containsValue(words.length); // false

// Map keys, values, and entries can be viewed as collections
Set<String> keys = m.keySet();
Collection<Integer> values = m.values();
Set<Map.Entry<String,Integer>> entries = m.entrySet();

// The Map and its collection views typically have useful toString() methods
System.out.printf("Map: %s%nKeys: %s%nValues: %s%nEntries: %s%n",
 m, keys, values, entries);

// These collections can be iterated.
// Most maps have an undefined iteration order (but see SortedMap)
for(String key : m.keySet()) System.out.println(key);
for(Integer value: m.values()) System.out.println(value);

// The Map.Entry<K,V> type represents a single key/value pair in a map
for(Map.Entry<String,Integer> pair : m.entrySet()) {
 // Print out mappings
 System.out.printf("'%s' ==> %d%n", pair.getKey(), pair.getValue());
 // And increment the value of each Entry
 pair.setValue(pair.getValue() + 1);
}

// Removing mappings
m.put("testing", null); // Mapping to null can "erase" a mapping:
m.get("testing"); // Returns null
m.containsKey("testing"); // Returns true: mapping still exists
m.remove("testing"); // Deletes the mapping altogether
m.get("testing"); // Still returns null
m.containsKey("testing"); // Now returns false.

// Deletions may also be made via the collection views of a map.
// Additions to the map may not be made this way, however.
m.keySet().remove(words[0]); // Same as m.remove(words[0]);
m.values().remove(2); // Remove one mapping to the value 2
m.values().removeAll(Collections.singleton(4)); // Remove all mappings to 4
m.values().retainAll(Arrays.asList(2, 3)); // Keep only mappings to 2 & 3

Collections | 233

The Java
Platform

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

// Deletions can also be done via iterators
Iterator<Map.Entry<String,Integer>> iter = m.entrySet().iterator();
while(iter.hasNext()) {
 Map.Entry<String,Integer> e = iter.next();
 if (e.getValue() == 2) iter.remove();
}

// Find values that appear in both of two maps. In general, addAll() and
// retainAll() with keySet() and values() allow union and intersection
Set<Integer> v = new HashSet<Integer>(m.values());
v.retainAll(singleton.values());

// Miscellaneous methods
m.clear(); // Deletes all mappings
m.size(); // Returns number of mappings: currently 0
m.isEmpty(); // Returns true
m.equals(empty); // true: Maps implementations override equals

The Map interface includes a variety of general-purpose and special-purpose imple-
mentations, which are summarized in Table 5-4. As always, complete details are
in the reference section. All classes in Table 5-4 are in the java.util package
except ConcurrentHashMap, which is part of java.util.concurrent.

The ConcurrentHashMap class of the java.util.concurrent package implements the
ConcurrentMap interface of the same package. ConcurrentMap extends Map and
defines some additional atomic operations that are important in multithreaded
programming. For example, the putIfAbsent() method is like put() but adds the
key/value pair to the map only if the key is not already mapped.

TreeMap implements the SortedMap interface, which extends Map to add methods
that take advantage of the sorted nature of the map. SortedMap is quite similar to
the SortedSet interface. The firstKey() and lastKey() methods return the first

Table 5-4. Map implementations

Class Representation Since
null
keys

null
values Notes

HashMap hashtable 1.2 yes yes General-purpose implementation.

Concurrent-
HashMap

hashtable 5.0 no no General-purpose threadsafe imple-
mentation; see ConcurrentMap
interface.

EnumMap array 5.0 no yes Keys are instances of an enum.

LinkedHashMap hashtable plus
list

1.4 yes yes Preserves insertion or access order.

TreeMap red-black tree 1.2 no yes Sorts by key value. Operations are
O(log(n)). See SortedMap.

Identity-
HashMap

hashtable 1.4 yes yes Compares with = = instead of
equals().

WeakHashMap hashtable 1.2 yes yes Doesn’t prevent garbage collection of
keys.

Hashtable hashtable 1.0 no no Legacy class; synchronized methods.

Properties hashtable 1.0 no no Extends Hashtable with String
methods.

234 | Chapter 5: The Java Platform

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

and last keys in the keySet(). And headMap(), tailMap(), and subMap() return a
restricted range of the original map.

The Queue and BlockingQueue Interfaces

A queue is an ordered collection of elements with methods for extracting
elements, in order, from the head of the queue. Queue implementations are
commonly based on insertion order as in first-in, first-out (FIFO) queues or last
in, first-out queues (LIFO queues are also known as stacks). Other orderings are
possible, however: a priority queue orders its elements according to an external
Comparator object, or according to the natural ordering of Comparable elements.
Unlike a Set, Queue implementations typically allow duplicate elements. Unlike
List, the Queue interface does not define methods for manipulating queue
elements at arbitrary positions. Only the element at the head of the queue is avail-
able for examination. It is common for Queue implementations to have a fixed
capacity: when a queue is full, it is not possible to add more elements. Similarly,
when a queue is empty, it is not possible to remove any more elements. Because
full and empty conditions are a normal part of many queue-based algorithms, the
Queue interface defines methods that signal these conditions with return values
rather than by throwing exceptions. Specifically, the peek() and poll() methods
return null to indicate that the queue is empty. For this reason, most Queue imple-
mentations do not allow null elements.

A blocking queue is a type of queue that defines blocking put() and take()
methods. The put() method adds an element to the queue, waiting, if necessary,
until there is space in the queue for the element. And the take() method removes
an element from the head of the queue, waiting, if necessary, until there is an
element to remove. Blocking queues are an important part of many multithreaded
algorithms, and the BlockingQueue interface (which extends Queue) is defined as
part of the java.util.concurrent package. Queue, BlockingQueue, and their imple-
mentations are new in Java 5.0. See “Blocking Queues” later in this chapter for a
list of BlockingQueue implementations.

Queues are not nearly as commonly used as sets, lists, and maps, except perhaps
in certain multithreaded programming styles. In lieu of example code here, we’ll
try to clarify the confusing array of queue insertion and removal operations:

• Adding elements to queues

add()
This Collection method simply adds an element in the normal way. In
bounded queues, this method may throw an exception if the queue is full.

offer()
This Queue method is like add() but returns false instead of throwing an
exception if the element cannot be added because a bounded queue is full.

BlockingQueue defines a timeout version of offer() that waits up to a
specified amount of time for space to become available in a full queue.
Like the basic version of the method, it returns true if the element was
inserted and false otherwise.

Collections | 235

The Java
Platform

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

put()
This BlockingQueue method blocks: if the element cannot be inserted
because the queue is full, put() waits until some other thread removes an
element from the queue, and space becomes available for the new element.

• Removing elements from queues

remove()
In addition to the Collection.remove() method, which removes a speci-
fied element from the queue, the Queue interface defines a no-argument
version of remove() that removes and returns the element at the head of
the queue. If the queue is empty, this method throws a
NoSuchElementException.

poll()
This Queue method removes and returns the element at the head of the
queue, like remove() does but returns null if the queue is empty instead
of throwing an exception.

BlockingQueue defines a timeout version of poll() that waits up to a spec-
ified amount of time for an element to be added to an empty queue.

take()
This BlockingQueue method removes and returns the element at the head
of the queue. If the queue is empty, it blocks until some other thread
adds an element to the queue.

drainTo()
This BlockingQueue method removes all available elements from the
queue and adds them to a specified Collection. It does not block to wait
for elements to be added to the queue. A variant of the method accepts a
maximum number of elements to drain.

• Querying the element at the head, without removing it from the queue

element()
This Queue method returns the element at the head of the queue but does
not remove that element from the queue. If the queue is empty, it throws
NoSuchElementException.

peek()
This Queue method is like element() but returns null if the queue is empty.

The LinkedList class has been retrofitted, in Java 5.0, to implement Queue. It
provides unbounded FIFO (first in, first out) ordering, and insertion and removal
operations require constant time. LinkedList allows null elements, although their
use is discouraged when the list is being used as a queue.

The only other Queue implementation in the java.util package is PriorityQueue,
which orders its elements according to a Comparator or orders Comparable elements
according to the order defined by their compareTo() methods. The head of a
PriorityQueue is always the smallest element according to the defined ordering.

The java.util.concurrent package contains a number of BlockingQueue imple-
mentations; they are described later in the chapter. This package also contains
ConcurrentLinkedQueue, an efficient threadsafe Queue implementation that does not
suffer the overhead of synchronized methods.

236 | Chapter 5: The Java Platform

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Collection Wrappers

The java.util.Collections class is home to quite a few static utility methods
designed for use with collections. One important group of these methods are the
collection wrapper methods: they return a special-purpose collection wrapped
around a collection you specify. The purpose of the wrapper collection is to wrap
additional functionality around a collection that does not provide it itself. Wrap-
pers exist to provide thread-safety, write-protection and runtime type checking.
Wrapper collections are always backed by the original collection, which means
that the methods of the wrapper simply dispatch to the equivalent methods of the
wrapped collection. This means that changes made to the collection through the
wrapper are visible through the wrapped collection and vice versa.

The first set of wrapper methods provides threadsafe wrappers around collec-
tions. Except for the legacy classes Vector and Hashtable, the collection
implementations in java.util do not have synchronized methods and are not
protected against concurrent access by multiple threads. If you need threadsafe
collections, create them with code like this:

List<String> list = Collections.synchronizedList(new ArrayList<String>());
Set<Integer> set = Collections.synchronizedSet(new HashSet<Integer>());
Map<String,Integer> map =
 Collections.synchronizedMap(new HashMap<String,Integer>());

A second set of wrapper methods provides collection objects through which the
underlying collection cannot be modified. They return a read-only view of a
collection: any attempt to change the content of the collection results in an
UnsupportedOperationException. These wrappers are useful when you must pass a
collection to a method that must not be allowed to modify or mutate the content
of the collection in any way:

List<Integer> primes = new ArrayList<Integer>();
List<Integer> readonly = Collections.unmodifiableList(primes);
// We can modify the list through primes
primes.addAll(Arrays.asList(2, 3, 5, 7, 11, 13, 17, 19));
// But we can't modify through the read-only wrapper
readonly.add(23); // UnsupportedOperationException

The final set of wrapper methods provides runtime type checking of any values
added to the collection. They were added in Java 5.0 to complement the compile-
time type safety provided by generics. These wrappers are helpful when working
with legacy code that has not been converted to use generics. If you have a
SortedSet<String>, for example, and must pass it to a method that expects a Set,
you can use a checked wrapper to ensure that that method cannot add anything to
the set that is not a String:

SortedSet<String> words = new TreeSet<String>(); // A set
SortedSet<String> checkedWords = // A checked set
 Collections.checkedSortedSet(words, String.class);
addWordsFromFile(checkedWords, filename); // Passed to legacy method

Special-Case Collections

In addition to its wrapper methods, the java.util.Collections class also defines
utility methods for creating immutable collection instances that contain a single

Collections | 237

The Java
Platform

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

element and other methods for creating empty collections. singleton(),
singletonList(), and singletonMap() return immutable Set, List, and Map objects
that contain a single specified object or a single key/value pair. These methods are
useful, for example, when you need to pass a single object to a method that
expects a collection.

The Collections class also includes methods that return empty collections. If you
are writing a method that returns a collection, it is usually best to handle the no-
values-to-return case by returning an empty collection instead of a special-case
value like null:

Set<Integer> si = Collections.emptySet();
List<String> ss = Collections.emptyList();
Map<String,Integer> m = Collections.emptyMap();

Finally, nCopies() returns an immutable List that contains a specified number of
copies of a single specified object:

List<Integer> tenzeros = Collections.nCopies(10, 0);

Converting to and from Arrays

Arrays of objects and collections serve similar purposes. It is possible to convert
from one to the other:

String[] a ={ "this", "is", "a", "test" }; // An array
List<String> l = Arrays.asList(a); // View array as an ungrowable list
List<String> m = new ArrayList<String>(l); // Make a growable copy of the view

// In Java 5.0, asList() is a varargs method so we can do this, too:
Set<Character> abc = new HashSet<Character>(Arrays.asList('a', 'b', 'c'));

// Collection defines the toArray() method. The no-args version creates
// an Object[] array, copies collection elements to it and returns it
Object[] members = set.toArray(); // Get set elements as an array
Object[] items = list.toArray(); // Get list elements as an array
Object[] keys = map.keySet().toArray(); // Get map key objects as an array
Object[] values = map.values().toArray(); // Get map value objects as an array

// If you want the return value to be something other than Object[], pass
// in an array of the appropriate type. If the array is not big enough,
// another one of the same type will be allocated. If the array is too big,
// the collection elements copied to it will be null-terminated
String[] c = l.toArray(new String[0]);

Collections Utility Methods

Just as the java.util.Arrays class defined methods to operate on arrays, the java.
util.Collections class defines methods to operate on collections. Most notable
are methods to sort and search the elements of collections:

Collections.sort(list);
int pos = Collections.binarySearch(list, "key"); // list must be sorted first

238 | Chapter 5: The Java Platform

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Here are some other interesting Collections methods:

Collections.copy(list1, list2); // Copy list2 into list1, overwriting list1
Collections.fill(list, o); // Fill list with Object o
Collections.max(c); // Find the largest element in Collection c
Collections.min(c); // Find the smallest element in Collection c

Collections.reverse(list); // Reverse list
Collections.shuffle(list); // Mix up list

Implementing Collections

The Java Collections Framework provides abstract classes that make it simple to
implement common types of collections. The following code extends
AbstractList to define a QuadraticSequence, a list implementation that computes
list values on demand rather than actually storing them in memory anywhere. See
also AbstractSet, AbstractMap, AbstractQueue, and AbstractSequentialList.

import java.util.*;

/** An immutable List<Double> representing the sequence ax^2 + bx + c */
public class QuadraticSequence extends AbstractList<Double> {
 final int size;
 final double a, b, c;

 QuadraticSequence(double a, double b, double c, int size) {
 this.a = a; this.b = b; this.c = c; this.size = size;
 }

 @Override public int size() { return size; }

 @Override public Double get(int index) {
 if (index<0 || index>=size) throw new ArrayIndexOutOfBoundsException();
 return a*index*index + b*index + c;
 }
}

Threads and Concurrency
The Java platform has supported multithreaded or concurrent programming with
the Thread class and Runnable interface since Java 1.0. Java 5.0 bolsters that
support with a comprehensive set of new utilities for concurrent programming.

Creating, Running, and Manipulating Threads

Java makes it easy to define and work with multiple threads of execution within a
program. java.lang.Thread is the fundamental thread class in the Java API. There
are two ways to define a thread. One is to subclass Thread, override the run()
method and then instantiate your Thread subclass. The other is to define a class
that implements the Runnable method (i.e., define a run() method) and then pass
an instance of this Runnable object to the Thread() constructor. In either case, the
result is a Thread object, where the run() method is the body of the thread. When
you call the start() method of the Thread object, the interpreter creates a new

Threads and Concurrency | 239

The Java
Platform

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

thread to execute the run() method. This new thread continues to run until the
run() method exits. Meanwhile, the original thread continues running itself,
starting with the statement following the start() method. The following code
demonstrates:

final List list; // Some long unsorted list of objects; initialized elsewhere

/** A Thread class for sorting a List in the background */
class BackgroundSorter extends Thread {
 List l;
 public BackgroundSorter(List l) { this.l = l; } // Constructor
 public void run() { Collections.sort(l); } // Thread body
}

// Create a BackgroundSorter thread
Thread sorter = new BackgroundSorter(list);
// Start it running; the new thread runs the run() method above while
// the original thread continues with whatever statement comes next.
sorter.start();

// Here's another way to define a similar thread
Thread t = new Thread(new Runnable() { // Create a new thread
 public void run() { Collections.sort(list); } // to sort the list of objects.
});
t.start(); // Start it running

Thread lifecycle

A thread can be in one of six states. In Java 5.0, these states are represented by the
Thread.State enumerated type, and the state of a thread can be queried with the
getState() method. A listing of the Thread.State constants provides a good over-
view of the lifecycle of a thread:

NEW
The Thread has been created but its start() method has not yet been called.
All threads start in this state.

RUNNABLE
The thread is running or is available to run when the operating system sched-
ules it.

BLOCKED
The thread is not running because it is waiting to acquire a lock so that it can
enter a synchronized method or block. We’ll see more about synchronized
methods and blocks later in this section.

WAITING
The thread is not running because it has called Object.wait() or Thread.join().

TIMED_WAITING
The thread is not running because it has called Thread.sleep() or has called
Object.wait() or Thread.join() with a timeout value.

TERMINATED
The thread has completed execution. Its run() method has exited normally
or by throwing an exception.

240 | Chapter 5: The Java Platform

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Thread priorities

Threads can run at different priority levels. A thread at a given priority level does
not typically run unless no higher-priority threads are waiting to run. Here is some
code you can use when working with thread priorities:

// Set a thread t to lower-than-normal priority
t.setPriority(Thread.NORM_PRIORITY-1);

// Set a thread to lower priority than the current thread
t.setPriority(Thread.currentThread().getPriority() - 1);

// Threads that don't pause for I/O should explicitly yield the CPU
// to give other threads with the same priority a chance to run.
Thread t = new Thread(new Runnable() {
 public void run() {
 for(int i = 0; i < data.length; i++) { // Loop through a bunch of data
 process(data[i]); // Process it
 if ((i % 10) == 0) // But after every 10 iterations,
 Thread.yield(); // pause to let other threads run.
 }
 }
});

Handling uncaught exceptions

A thread terminates normally when it reaches the end of its run() method or
when it executes a return statement in that method. A thread can also terminate
by throwing an exception, however. When a thread exits in this way, the default
behavior is to print the name of the thread, the type of the exception, the excep-
tion message, and a stack trace. In Java 5.0, you can install a custom handler for
uncaught exceptions in a thread. For example:

// This thread just throws an exception
Thread t = new Thread() {
 public void run() {throw new UnsupportedOperationException();}
 };

// Giving threads a name helps with debugging
t.setName("My Broken Thread");

// Here's a handler for the error.
t.setUncaughtExceptionHandler(new Thread.UncaughtExceptionHandler() {
 public void uncaughtException(Thread t, Throwable e) {
 System.err.printf("Exception in thread %d '%s':" +
 "%s at line %d of %s%n",
 t.getId(), // Thread id
 t.getName(), // Thread name
 e.toString(), // Exception name and message
 e.getStackTrace()[0].getLineNumber(), // line #
 e.getStackTrace()[0].getFileName()); // filename
 }
 });

Threads and Concurrency | 241

The Java
Platform

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Making a Thread Sleep

Often, threads are used to perform some kind of repetitive task at a fixed interval.
This is particularly true when doing graphical programming that involves anima-
tion or similar effects. The key to doing this is making a thread sleep, or stop
running, for a specified amount of time. This is done with the static Thread.sleep()
method, or, in Java 5.0, with utility methods of enumerated constants of the
TimeUnit class:

import static java.util.concurrent.TimeUnit.SECONDS; // utility class

public class Clock extends Thread {
 // This field is volatile because two different threads may access it
 volatile boolean keepRunning = true;

 public Clock() { // The constructor
 setDaemon(true); // Daemon thread: interpreter can exit while it runs
 }

 public void run() { // The body of the thread
 while(keepRunning) { // This thread runs until asked to stop
 long now = System.currentTimeMillis(); // Get current time
 System.out.printf("%tr%n", now); // Print it out
 try { Thread.sleep(1000); } // Wait 1000 milliseconds
 catch (InterruptedException e) { return; }// Quit on interrupt
 }
 }

 // Ask the thread to stop running. An alternative to interrupt().
 public void pleaseStop() { keepRunning = false; }

 // This method demonstrates how to use the Clock class
 public static void main(String[] args) {
 Clock c = new Clock(); // Create a Clock thread
 c.start(); // Start it
 try { SECONDS.sleep(10); } // Wait 10 seconds
 catch(InterruptedException ignore) {} // Ignore interrupts
 // Now stop the clock thread. We could also use c.interrupt()
 c.pleaseStop();
 }
}

Notice the pleaseStop() method in this example: it is designed to stop the clock
thread in a controlled way. The example is coded so that it can also be stopped by
calling the interrupt() method it inherits from Thread. The Thread class defines a
stop() method, but it is deprecated.

Running and Scheduling Tasks

Java provides a number of ways to run tasks asynchronously or to schedule them
for future execution without having to explicitly create Thread objects. The
following sections illustrate the Timer class added in Java 1.3 and the executors
framework of the Java 5.0 java.util.concurrent package.

242 | Chapter 5: The Java Platform

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Scheduling tasks with Timer

Added in Java 1.3, the java.util.Timer and java.util.TimerTask classes make it
easy to run repetitive tasks. Here is some code that behaves much like the Clock
class shown earlier:

import java.util.*;

// Define the time-display task
TimerTask displayTime = new TimerTask() {
 public void run() { System.out.printf("%tr%n", System.currentTimeMillis()); }
};
// Create a timer object to run the task (and possibly others)
Timer timer = new Timer();
// Now schedule that task to be run every 1,000 milliseconds, starting now
timer.schedule(displayTime, 0, 1000);

// To stop the time-display task
displayTime.cancel();

The Executor interface

In Java 5.0, the java.util.concurrent package includes the Executor interface. An
Executor is an object that can execute a Runnable object. A user of an Executor
often does not need to be aware of just how the Executor accomplishes this: it just
needs to know that the Runnable will, at some point, run. Executor implementa-
tions can be created to use a number of different threading strategies, as the
following code makes clear. (Note that this example also demonstrates the use of
a BlockingQueue.)

import java.util.concurrent.*;

/** Execute a Runnable in the current thread. */
class CurrentThreadExecutor implements Executor {
 public void execute(Runnable r) { r.run(); }
}

/** Execute each Runnable using a newly created thread */
class NewThreadExecutor implements Executor {
 public void execute(Runnable r) { new Thread(r).start(); }
}

/**
 * Queue up the Runnables and execute them in order using a single thread
 * created for that purpose.
 */
class SingleThreadExecutor extends Thread implements Executor {
 BlockingQueue<Runnable> q = new LinkedBlockingQueue<Runnable>();

 public void execute(Runnable r) {
 // Don't execute the Runnable here; just put it on the queue.
 // Our queue is effectively unbounded, so this should never block.
 // Since it never blocks, it should never throw InterruptedException.
 try { q.put(r); }

Threads and Concurrency | 243

The Java
Platform

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

 catch(InterruptedException never) { throw new AssertionError(never); }
 }

 // This is the body of the thread that actually executes the Runnables
 public void run() {
 for(;;) { // Loop forever
 try {
 Runnable r = q.take(); // Get next Runnable, or wait
 r.run(); // Run it!
 }
 catch(InterruptedException e) {
 // If interrupted, stop executing queued Runnables.
 return;
 }
 }
 }
}

These sample implementations help demonstrate how an Executor works and
how it separates the notion of executing a task from the scheduling policy and
threading details of the implementation. It is rarely necessary to actually imple-
ment your own Executor, however, since java.util.concurrent provides the
flexible and powerful ThreadPoolExecutor class. This class is typically used via one
of the static factory methods in the Executors class:

Executor oneThread = Executors.newSingleThreadExecutor(); // pool size of 1
Executor fixedPool = Executors.newFixedThreadPool(10); // 10 threads in pool
Executor unboundedPool = Executors.newCachedThreadPool(); // as many as needed

In addition to these convenient factory methods, you can also explicitly create a
ThreadPoolExecutor if you want to specify a minimum and maximum size for the
thread pool or want to specify the queue type (bounded, unbounded, priority-
sorted, or synchronized, for example) to use for tasks that cannot immediately be
run by a thread.

ExecutorService

If you’ve looked at the signature for ThreadPoolExecutor or for the Executors
factory methods cited above, you’ll see that it is an ExecutorService. The
ExecutorService interface extends Executor and adds the ability to execute
Callable objects. Callable is something like a Runnable. Instead of encapsulating
arbitrary code in a run() method, however, a Callable puts that code in a call()
method. call() differs from run() in two important ways: it returns a result, and
it is allowed to throw exceptions.

Because call() returns a result, the Callable interface takes the result type as a
parameter. A time-consuming chunk of code that computes a large prime number,
for example, could be wrapped in a Callable<BigInteger>:

import java.util.concurrent.*;
import java.math.BigInteger;
import java.util.Random;
import java.security.SecureRandom;

244 | Chapter 5: The Java Platform

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

/** This is a Callable implementation for computing big primes. */
public class RandomPrimeSearch implements Callable<BigInteger> {
 static Random prng = new SecureRandom(); // self-seeding
 int n;
 public RandomPrimeSearch(int bitsize) { n = bitsize; }
 public BigInteger call() { return BigInteger.probablePrime(n, prng); }
}

You can invoke the call() method of any Callable object directly, of course, but
to execute it using an ExecutorService, you pass it to the submit() method.
Because ExecutorService implementations typically run tasks asynchronously, the
submit() method cannot simply return the result of the call() method. Instead,
submit() returns a Future object. A Future is simply the promise of a result some-
time in the future. It is parameterized with the type of the result, as shown in this
code snippet:

// Try to compute two primes at the same time
ExecutorService threadpool = Executors.newFixedThreadPool(2);
Future<BigInteger> p = threadpool.submit(new RandomPrimeSearch(512));
Future<BigInteger> q = threadpool.submit(new RandomPrimeSearch(512));

Once you have a Future object, what can you do with it? You can call isDone() to
see if the Callable has finished running. You can call cancel() to cancel execu-
tion of the Callable and can call isCancelled() to see if the Callable was canceled
before it completed. But most of the time, you simply call get() to get the result
of the call() method. get() blocks, if necessary, to wait for the call() method to
complete. Here is code you might use with the Future objects shown above:

BigInteger product = p.get().multiply(q.get());

Note that the get() method may throw an ExecutionException. Recall that
Callable.call() can throw any kind of exception. If this happens, the Future
wraps that exception in an ExecutionException and throws it from get(). Note
that the Future.isDone() method considers a Callable to be “done,” even if the
call() method terminated abnormally with an exception.

ScheduledExecutorService

ScheduledExecutorService is an extension of ExecutorService that adds Timer-like
scheduling capabilities. It allows you to schedule a Runnable or Callable to be
executed once after a specified time delay or to schedule a Runnable for repeated
execution. In each case, the result of scheduling a task for future execution is a
ScheduledFuture object. This is simply a Future that also implements the Delay
interface and provides a getDelay() method that can be used to query the
remaining time before execution of the task.

The easiest way to obtain a ScheduledExecutorService is with factory methods of
the Executors class. The following code uses a ScheduledExecutorService to
repeatedly perform an action and also to cancel the repeated action after a fixed
interval.

/**
 * Print random ASCII characters at a rate of cps characters per second
 * for a total of totalSeconds seconds.

Threads and Concurrency | 245

The Java
Platform

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

 */
public static void spew(int cps, int totalSeconds) {
 final Random rng = new Random(System.currentTimeMillis());
 final ScheduledExecutorService executor =
 Executors.newSingleThreadScheduledExecutor();
 final ScheduledFuture<?> spewer =
 executor.scheduleAtFixedRate(new Runnable() {
 public void run() {
 System.out.print((char)(rng.nextInt('~' - ' ') + ' '));
 System.out.flush();
 }
 },
 0, 1000000/cps, TimeUnit.MICROSECONDS);
 executor.schedule(new Runnable() {
 public void run() {
 spewer.cancel(false);
 executor.shutdown();
 System.out.println();
 }
 },
 totalSeconds, TimeUnit.SECONDS);
}

Exclusion and Locks

When using multiple threads, you must be very careful if you allow more than one
thread to access the same data structure. Consider what would happen if one
thread was trying to loop through the elements of a List while another thread was
sorting those elements. Preventing this kind of unwanted concurrency is one of
the central problems of multithreaded computing. The basic technique for
preventing two threads from accessing the same object at the same time is to
require a thread to obtain a lock on the object before the thread can modify it.
While any one thread holds the lock, another thread that requests the lock has to
wait until the first thread is done and releases the lock. Every Java object has the
fundamental ability to provide such a locking capability.

The easiest way to keep objects threadsafe is to declare all sensitive methods
synchronized. A thread must obtain a lock on an object before it can execute any
of its synchronized methods, which means that no other thread can execute any
other synchronized method at the same time. (If a static method is declared
synchronized, the thread must obtain a lock on the class, and this works in the
same manner.) To do finer-grained locking, you can specify synchronized blocks
of code that hold a lock on a specified object for a short time:

// This method swaps two array elements in a synchronized block
public static void swap(Object[] array, int index1, int index2) {
 synchronized(array) {
 Object tmp = array[index1];
 array[index1] = array[index2];
 array[index2] = tmp;
 }
}

// The Collection, Set, List, and Map implementations in java.util do

246 | Chapter 5: The Java Platform

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

// not have synchronized methods (except for the legacy implementations
// Vector and Hashtable). When working with multiple threads, you can
// obtain synchronized wrapper objects.
List synclist = Collections.synchronizedList(list);
Map syncmap = Collections.synchronizedMap(map);

The java.util.concurrent.locks package

Note that when you use the synchronized modifier or statement, the lock you
acquire is block-scoped, and is automatically released when the thread exits the
method or block. The java.util.concurrent.locks package in Java 5.0 provides
an alternative: a Lock object that you explicitly lock and unlock. Lock objects are
not automatically block-scoped and you must be careful to use try/finally
constructs to ensure that locks are always released. On the other hand, Lock
enables algorithms that are simply not possible with block-scoped locks, such as
the following “hand-over-hand” linked list traversal:

import java.util.concurrent.locks.*; // New in Java 5.0

/**
 * A partial implementation of a linked list of values of type E.
 * It demonstrates hand-over-hand locking with Lock
 */
public class LinkList<E> {
 E value; // The value of this node of the list
 LinkList<E> rest; // The rest of the list
 Lock lock; // A lock for this node

 public LinkList(E value) { // Constructor for a list
 this.value = value; // Node value
 rest = null; // This is the only node in the list
 lock = new ReentrantLock(); // We can lock this node
 }

 /**
 * Append a node to the end of the list, traversing the list using
 * hand-over-hand locking. This method is threadsafe: multiple threads
 * may traverse different portions of the list at the same time.
 **/
 public void append(E value) {
 LinkList<E> node = this; // Start at this node
 node.lock.lock(); // Lock it.

 // Loop 'till we find the last node in the list
 while(node.rest != null) {
 LinkList<E> next = node.rest;

 // This is the hand-over-hand part. Lock the next node and then
 // unlock the current node. We use a try/finally construct so
 // that the current node is unlocked even if the lock on the
 // next node fails with an exception.
 try { next.lock.lock(); } // lock the next node
 finally { node.lock.unlock(); } // unlock the current node
 node = next;

Threads and Concurrency | 247

The Java
Platform

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

 }

 // At this point, node is the final node in the list, and we have
 // a lock on it. Use a try/finally to ensure that we unlock it.
 try {
 node.rest = new LinkList<E>(value); // Append new node
 }
 finally { node.lock.unlock(); }
 }
}

Deadlock

When you are using locking to prevent threads from accessing the same data at
the same time, you must be careful to avoid deadlock, which occurs when two
threads end up waiting for each other to release a lock they need. Since neither
can proceed, neither one can release the lock it holds, and they both stop running.
The following code is prone to deadlock. Whether or not a deadlock actually
occurs may vary from system to system and from execution to execution.

// When two threads try to lock two objects, deadlock can occur unless
// they always request the locks in the same order.
final Object resource1 = new Object(); // Here are two objects to lock
final Object resource2 = new Object();
Thread t1 = new Thread(new Runnable() { // Locks resource1 then resource2
 public void run() {
 synchronized(resource1) {
 synchronized(resource2) { compute(); }
 }
 }
});

Thread t2 = new Thread(new Runnable() { // Locks resource2 then resource1
 public void run() {
 synchronized(resource2) {
 synchronized(resource1) { compute(); }
 }
 }
});

t1.start(); // Locks resource1
t2.start(); // Locks resource2 and now neither thread can progress!

Coordinating Threads

It is common in multithreaded programming to require one thread to wait for
another thread to take some action. The Java platform provides a number of ways
to coordinate threads, including methods built into the Object and Thread classes,
as well as “synchronizer” utility classes introduced in Java 5.0.

248 | Chapter 5: The Java Platform

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

wait() and notify()

Sometimes a thread needs to stop running and wait until some kind of event
occurs, at which point it is told to continue running. This is done with the wait()
and notify() methods. These aren’t methods of the Thread class, however; they
are methods of Object. Just as every Java object has a lock associated with it, every
object can maintain a list of waiting threads. When a thread calls the wait()
method of an object, any locks the thread holds are temporarily released, and the
thread is added to the list of waiting threads for that object and stops running.
When another thread calls the notifyAll() method of the same object, the object
wakes up the waiting threads and allows them to continue running:

import java.util.*;

/**
 * A queue. One thread calls push() to put an object on the queue.
 * Another calls pop() to get an object off the queue. If there is no
 * data, pop() waits until there is some, using wait()/notify().
 * wait() and notify() must be used within a synchronized method or
 * block. In Java 5.0, use a java.util.concurrent.BlockingQueue instead.
 */
public class WaitingQueue<E> {
 LinkedList<E> q = new LinkedList<E>(); // Where objects are stored
 public synchronized void push(E o) {
 q.add(o); // Append the object to the end of the list
 this.notifyAll(); // Tell waiting threads that data is ready
 }
 public synchronized E pop() {
 while(q.size() == 0) {
 try { this.wait(); }
 catch (InterruptedException ignore) {}
 }
 return q.remove(0);
 }
}

Note that such a class is not necessary in Java 5.0 because java.util.concurrent
defines the BlockingQueue interface and general-purpose implementations such
as ArrayBlockingQueue.

Waiting on a Condition

Java 5.0 provides an alternative to the wait() and notifyAll() methods of Object.
java.util.concurrent.locks defines a Condition object with await() and
signalAll() methods. Condition objects are always associated with Lock objects
and are used in much the same way as the locking and waiting capability built
into each Java object. The primary benefit is that it is possible to have more than
one Condition for each Lock, something that is not possible with Object-based
locking and waiting.

Threads and Concurrency | 249

The Java
Platform

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Waiting for a thread to finish

Sometimes one thread needs to stop and wait for another thread to complete. You
can accomplish this with the join() method:

List list; // A long list of objects to be sorted; initialized elsewhere

// Define a thread to sort the list: lower its priority, so it runs only
// when the current thread is waiting for I/O and then start it running.
Thread sorter = new BackgroundSorter(list); // Defined earlier
sorter.setPriority(Thread.currentThread.getPriority()-1); // Lower priority
sorter.start(); // Start sorting

// Meanwhile, in this original thread, read data from a file
byte[] data = readData(); // Method defined elsewhere

// Before we can proceed, we need the list to be fully sorted, so
// we must wait for the sorter thread to exit, if it hasn't already.
try { sorter.join(); } catch(InterruptedException e) {}

Synchronizer utilities

java.util.concurrent includes four “synchronizer” classes that help to synchro-
nize the state of a concurrent program by making threads wait until certain
conditions hold:

Semaphore
The Semaphore class models semaphores, a traditional concurrent program-
ming construct. Conceptually, a semaphore represents one or more “permits.”
A thread that needs a permit calls acquire() and then calls release() when
done with it. acquire() blocks if no permits are available, suspending the
thread until another thread releases a permit.

CountDownLatch
A latch is conceptually any variable or concurrency construct that has two
possible states and transitions from its initial state to its final state only once.
Once the transition occurs, it remains in that final state forever.
CountDownLatch is a concurrency utility that can exist in two states, closed and
open. In its initial closed state, any threads that call the await() method
block and cannot proceed until it transitions to its latched open state. Once
this transition occurs, all waiting threads proceed, and any threads that call
await() in the future will not block at all. The transition from closed to open
occurs when a specified number of calls to countDown() have occurred.

Exchanger
An Exchanger is a utility that allows two threads to rendezvous and exchange
values. The first thread to call the exchange() method blocks until a second
thread calls the same method. When this happens, the argument passed to
the exchange() method by the first thread becomes the return value of the
method for the second thread and vice-versa. When the two exchange() invo-
cations return, both threads are free to continue running concurrently.
Exchanger is a generic type and uses its type parameter to specify the type of
values to be exchanged.

250 | Chapter 5: The Java Platform

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

CyclicBarrier
A CyclicBarrier is a utility that enables a group of N threads to wait for each
other to reach a synchronization point. The number of threads is specified
when the CyclicBarrier is first created. Threads call the await() method to
block until the last thread calls await(), at which point all threads resume
again. Unlike a CountDownLatch, a CyclicBarrier resets its count and is ready
for immediate reuse. CyclicBarrier is useful in parallel algorithms in which a
computation is decomposed into parts, and each part is handled by a sepa-
rate thread. In such algorithms, the threads must typically rendezvous so that
their partial solutions can be merged into a complete solution. To facilitate
this, the CyclicBarrier constructor allows you to specify a Runnable object to
be executed by the last thread that calls await() before any of the other
threads are woken up and allowed to resume. This Runnable can provide the
coordination required to assemble a solution from the threads’ computations
or to assign a new computation to each of the threads.

Thread Interruption

In the examples illustrating the sleep(), join(), and wait() methods, you may
have noticed that calls to each of these methods are wrapped in a try statement
that catches an InterruptedException. This is necessary because the interrupt()
method allows one thread to interrupt the execution of another. The outcome of
an interrupt depends on how you handle the InterruptedException. The response
that is usually preferred is for an interrupted thread to stop running. On the other
hand, if you simply catch and ignore the InterruptedException, an interrupt
simply stops a thread from blocking.

If the interrupt() method is called on a thread that is not blocked, the thread
continues running, but its “interrupt status” is set to indicate that an interrupt has
been requested. A thread can test its own interrupt status by calling the static
Thread.interrupted() method, which returns true if the thread has been inter-
rupted and, as a side effect, clears the interrupt status. One thread can test the
interrupt status of another thread with the instance method isInterrupted(),
which queries the status but does not clear it.

If a thread calls sleep(), join(), or wait() while its interrupt status is set, it does
not block but immediately throws an InterruptedException (the interrupt status is
cleared as a side effect of throwing the exception). Similarly, if the interrupt()
method is called on a thread that is already blocked in a call to sleep(), join(), or
wait(), that thread stops blocking by throwing an InterruptedException.

One of the most common times that threads block is while doing input/output; a
thread often has to pause and wait for data to become available from the file-
system or from the network. (The java.io, java.net, and java.nio APIs for
performing I/O operations are discussed later in this chapter.) Unfortunately, the
interrupt() method does not wake up a thread blocked in an I/O method of the
java.io package. This is one of the shortcomings of java.io that is cured by the
New I/O API in java.nio. If a thread is interrupted while blocked in an I/O opera-
tion on any channel that implements java.nio.channels.InterruptibleChannel,
the channel is closed, the thread’s interrupt status is set, and the thread wakes up
by throwing a java.nio.channels.ClosedByInterruptException. The same thing

Threads and Concurrency | 251

The Java
Platform

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

happens if a thread tries to call a blocking I/O method while its interrupt status is
set. Similarly, if a thread is interrupted while it is blocked in the select() method
of a java.nio.channels.Selector (or if it calls select() while its interrupt status is
set), select() will stop blocking (or will never start) and will return immediately.
No exception is thrown in this case; the interrupted thread simply wakes up, and
the select() call returns.

Blocking Queues

As noted in “The Queue and BlockingQueue Interfaces” earlier in this chapter, a
queue is a collection in which elements are inserted at the “tail” and removed at
the “head.” The Queue interface and various implementations were added to
java.util as part of Java 5.0. java.util.concurrent extends the Queue interface:
BlockingQueue defines put() and take() methods that allow you to add and
remove elements of the queue, blocking if necessary until the queue has room,
or until there is an element to be removed. The use of blocking queues is a
common pattern in multithreaded programming: one thread produces objects
and places them on a queue for consumption by another thread which removes
them from the queue.

java.util.concurrent provides five implementations of BlockingQueue:

ArrayBlockingQueue
This implementation is based on an array, and, like all arrays, has a fixed
capacity established when it is created. At the cost of reduced throughput,
this queue can operate in a “fair” mode in which threads blocking to put() or
take() an element are served in the order in which they arrived.

LinkedBlockingQueue
This implementation is based on a linked-list data structure. It may have a
maximum size specified, but, by default, it is essentially unbounded.

PriorityBlockingQueue
This unbounded queue does not implement FIFO (first-in, first-out) ordering.
Instead, it orders its elements based on a specified Comparator object, or based
on their natural ordering if they are Comparable objects and no Comparator is
specified. The element returned by take() is the smallest element according to
the Comparator or Comparable ordering. See also java.util.PriorityQueue for a
nonblocking version.

DelayQueue
A DelayQueue is like a PriorityBlockingQueue for elements that implement the
Delayed interface. Delayed is Comparable and orders elements by how long
they are delayed. But DelayQueue is more than just an unbounded queue that
sorts its elements. It also restricts take() and related methods so that
elements cannot be removed from the queue until their delay has elapsed.

SynchronousQueue
This class implements the degenerate case of a BlockingQueue with a capacity
of zero. A call to put() blocks until some other thread calls take(), and a call
to take() blocks until some other thread calls put().

252 | Chapter 5: The Java Platform

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Atomic Variables

The java.util.concurrent.atomic package contains utility classes that permit
atomic operations on fields without locking. An atomic operation is one that is
indivisible: no other thread can observe an atomic variable in the middle of an
atomic operation on it. These utility classes define get() and set() accessor
methods that have the properties of volatile fields but also define compound
operations such as compare-and-set and get-and-increment that behave atomi-
cally. The code below demonstrates the use of AtomicInteger and contrasts it with
the use of a traditional synchronized method:

// The count1(), count2() and count3() methods are all threadsafe. Two
// threads can call these methods at the same time, and they will never
// see the same return value.
public class Counters {
 // A counter using a synchronized method and locking
 int count1 = 0;
 public synchronized int count1() { return count1++; }

 // A counter using an atomic increment on an AtomicInteger
 AtomicInteger count2 = new AtomicInteger(0);
 public int count2() { return count2.getAndIncrement(); }

 // An optimistic counter using compareAndSet()
 AtomicInteger count3 = new AtomicInteger(0);
 public int count3() {
 // Get the counter value with get() and set it with compareAndSet().
 // If compareAndSet() returns false, try again until we get
 // through the loop without interference.
 int result;
 do {
 result = count3.get();
 } while(!count3.compareAndSet(result, result+1));
 return result;
 }
}

Files and Directories
The java.io.File class represents a file or a directory and defines a number of
important methods for manipulating files and directories. Note, however, that
none of these methods allow you to read the contents of a file; that is the job of
java.io.FileInputStream, which is just one of the many types of I/O streams
used in Java and discussed in the next section. Here are some things you can do
with File:

import java.io.*;
import java.util.*;

// Get the name of the user's home directory and represent it with a File
File homedir = new File(System.getProperty("user.home"));
// Create a File object to represent a file in that directory
File f = new File(homedir, ".configfile");

Files and Directories | 253

The Java
Platform

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

// Find out how big a file is and when it was last modified
long filelength = f.length();
Date lastModified = new java.util.Date(f.lastModified());

// If the file exists, is not a directory, and is readable,
// move it into a newly created directory.
if (f.exists() && f.isFile() && f.canRead()) { // Check config file
 File configdir = new File(homedir, ".configdir"); // A new config directory
 configdir.mkdir(); // Create that directory
 f.renameTo(new File(configdir, ".config")); // Move the file into it
}

// List all files in the home directory
String[] allfiles = homedir.list();

// List all files that have a ".java" suffix
String[] sourcecode = homedir.list(new FilenameFilter() {
 public boolean accept(File d, String name) { return name.endsWith(".java"); }
});

The File class gained some important additional functionality as of Java 1.2:

// List all filesystem root directories; on Windows, this gives us
// File objects for all drive letters (Java 1.2 and later).
File[] rootdirs = File.listRoots();

// Atomically, create a lock file, then delete it (Java 1.2 and later)
File lock = new File(configdir, ".lock");
if (lock.createNewFile()) {
 // We successfully created the file. Now arrange to delete it on exit
 lock.deleteOnExit();

 // Now run the application secure in the knowledge that no one else
 // is running it at the same time
 ...
}
else {
 // We didn't create the file; someone else has a lock
 System.err.println("Can't create lock file; exiting.");
 System.exit(1);
}

// Create a temporary file to use during processing (Java 1.2 and later)
File temp = File.createTempFile("app", ".tmp"); // Filename prefix and suffix
// Do something with the temp file
 ...
// And delete it when we're done
temp.delete();

RandomAccessFile

The java.io package also defines a RandomAccessFile class that allows you to read
binary data from arbitrary locations in a file. This can be useful in certain situa-

254 | Chapter 5: The Java Platform

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

tions, but most applications read files sequentially, using the stream classes
described in the next section. Here is a short example of using RandomAccessFile:

// Open a file for read/write ("rw") access
File datafile = new File(configdir, "datafile");
RandomAccessFile f = new RandomAccessFile(datafile, "rw");
f.seek(100); // Move to byte 100 of the file
byte[] data = new byte[100]; // Create a buffer to hold data
f.read(data); // Read 100 bytes from the file
int i = f.readInt(); // Read a 4-byte integer from the file
f.seek(100); // Move back to byte 100
f.writeInt(i); // Write the integer first
f.write(data); // Then write the 100 bytes
f.close(); // Close file when done with it

Input/Output with java.io
The java.io package defines a large number of classes for reading and writing
streaming, or sequential, data. The InputStream and OutputStream classes are for
reading and writing streams of bytes while the Reader and Writer classes are for
reading and writing streams of characters. Streams can be nested, meaning you
might read characters from a FilterReader object that reads and processes charac-
ters from an underlying Reader stream. This underlying Reader stream might read
bytes from an InputStream and convert them to characters.

Reading Console Input

You can perform a number of common operations with streams. One is to read
lines of input the user types at the console:

import java.io.*;

BufferedReader console = new BufferedReader(new InputStreamReader(System.in));
System.out.print("What is your name: ");
String name = null;
try {
 name = console.readLine();
}
catch (IOException e) { name = "<" + e + ">"; } // This should never happen
System.out.println("Hello " + name);

Reading Lines from a Text File

Reading lines of text from a file is a similar operation. The following code reads an
entire text file and quits when it reaches the end:

String filename = System.getProperty("user.home") + File.separator + ".cshrc";
try {
 BufferedReader in = new BufferedReader(new FileReader(filename));
 String line;
 while((line = in.readLine()) != null) { // Read line, check for end-of-file
 System.out.println(line); // Print the line
 }

Input/Output with java.io | 255

The Java
Platform

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

 in.close(); // Always close a stream when you are done with it
}
catch (IOException e) {
 // Handle FileNotFoundException, etc. here
}

Writing Text to a File

Throughout this book, you’ve seen the use of the System.out.println() method
to display text on the console. System.out simply refers to an output stream. You
can print text to any output stream using similar techniques. The following code
shows how to output text to a file:

try {
 File f = new File(homedir, ".config");
 PrintWriter out = new PrintWriter(new FileWriter(f));
 out.println("## Automatically generated config file. DO NOT EDIT!");
 out.close(); // We're done writing
}
catch (IOException e) { /* Handle exceptions */ }

Reading a Binary File

Not all files contain text, however. The following lines of code treat a file as a
stream of bytes and read the bytes into a large array:

try {
 File f; // File to read; initialized elsewhere
 int filesize = (int) f.length(); // Figure out the file size
 byte[] data = new byte[filesize]; // Create an array that is big enough
 // Create a stream to read the file
 DataInputStream in = new DataInputStream(new FileInputStream(f));
 in.readFully(data); // Read file contents into array
 in.close();
}
catch (IOException e) { /* Handle exceptions */ }

Compressing Data

Various other packages of the Java platform define specialized stream classes that
operate on streaming data in some useful way. The following code shows how to
use stream classes from java.util.zip to compute a checksum of data and then
compress the data while writing it to a file:

import java.io.*;
import java.util.zip.*;

try {
 File f; // File to write to; initialized elsewhere
 byte[] data; // Data to write; initialized elsewhere
 Checksum check = new Adler32(); // An object to compute a simple checksum

 // Create a stream that writes bytes to the file f
 FileOutputStream fos = new FileOutputStream(f);

256 | Chapter 5: The Java Platform

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

 // Create a stream that compresses bytes and writes them to fos
 GZIPOutputStream gzos = new GZIPOutputStream(fos);
 // Create a stream that computes a checksum on the bytes it writes to gzos
 CheckedOutputStream cos = new CheckedOutputStream(gzos, check);

 cos.write(data); // Now write the data to the nested streams
 cos.close(); // Close down the nested chain of streams
 long sum = check.getValue(); // Obtain the computed checksum
}
catch (IOException e) { /* Handle exceptions */ }

Reading ZIP Files

The java.util.zip package also contains a ZipFile class that gives you random
access to the entries of a ZIP archive and allows you to read those entries through
a stream:

import java.io.*;
import java.util.zip.*;

String filename; // File to read; initialized elsewhere
String entryname; // Entry to read from the ZIP file; initialized elsewhere
ZipFile zipfile = new ZipFile(filename); // Open the ZIP file
ZipEntry entry = zipfile.getEntry(entryname); // Get one entry
InputStream in = zipfile.getInputStream(entry); // A stream to read the entry
BufferedInputStream bis = new BufferedInputStream(in); // Improves efficiency
// Now read bytes from bis...
// Print out contents of the ZIP file
for(java.util.Enumeration e = zipfile.entries(); e.hasMoreElements();) {
 ZipEntry zipentry = (ZipEntry) e.nextElement();
 System.out.println(zipentry.getName());
}

Computing Message Digests

If you need to compute a cryptographic-strength checksum (also known as a
message digest), use one of the stream classes of the java.security package. For
example:

import java.io.*;
import java.security.*;
import java.util.*;

File f; // File to read and compute digest on; initialized elsewhere
List text = new ArrayList(); // We'll store the lines of text here

// Get an object that can compute an SHA message digest
MessageDigest digester = MessageDigest.getInstance("SHA");
// A stream to read bytes from the file f
FileInputStream fis = new FileInputStream(f);
// A stream that reads bytes from fis and computes an SHA message digest
DigestInputStream dis = new DigestInputStream(fis, digester);
// A stream that reads bytes from dis and converts them to characters

Input/Output with java.io | 257

The Java
Platform

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

InputStreamReader isr = new InputStreamReader(dis);
// A stream that can read a line at a time
BufferedReader br = new BufferedReader(isr);
// Now read lines from the stream
for(String line; (line = br.readLine()) != null; text.add(line)) ;
// Close the streams
br.close();
// Get the message digest
byte[] digest = digester.digest();

Streaming Data to and from Arrays

So far, we’ve used a variety of stream classes to manipulate streaming data, but the
data itself ultimately comes from a file or is written to the console. The java.io
package defines other stream classes that can read data from and write data to
arrays of bytes or strings of text:

import java.io.*;

// Set up a stream that uses a byte array as its destination
ByteArrayOutputStream baos = new ByteArrayOutputStream();
DataOutputStream out = new DataOutputStream(baos);
out.writeUTF("hello"); // Write some string data out as bytes
out.writeDouble(Math.PI); // Write a floating-point value out as bytes
byte[] data = baos.toByteArray(); // Get the array of bytes we've written
out.close(); // Close the streams

// Set up a stream to read characters from a string
Reader in = new StringReader("Now is the time!");
// Read characters from it until we reach the end
int c;
while((c = in.read()) != -1) System.out.print((char) c);

Other classes that operate this way include ByteArrayInputStream, StringWriter,
CharArrayReader, and CharArrayWriter.

Thread Communication with Pipes

PipedInputStream and PipedOutputStream and their character-based counterparts,
PipedReader and PipedWriter, are another interesting set of streams defined by
java.io. These streams are used in pairs by two threads that want to communi-
cate. One thread writes bytes to a PipedOutputStream or characters to a
PipedWriter, and another thread reads bytes or characters from the corre-
sponding PipedInputStream or PipedReader:

// A pair of connected piped I/O streams forms a pipe. One thread writes
// bytes to the PipedOutputStream, and another thread reads them from the
// corresponding PipedInputStream. Or use PipedWriter/PipedReader for chars.
final PipedOutputStream writeEndOfPipe = new PipedOutputStream();
final PipedInputStream readEndOfPipe = new PipedInputStream(writeEndOfPipe);

// This thread reads bytes from the pipe and discards them
Thread devnull = new Thread(new Runnable() {
 public void run() {

258 | Chapter 5: The Java Platform

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

 try { while(readEndOfPipe.read() != -1); }
 catch (IOException e) {} // ignore it
 }
});
devnull.start();

Networking with java.net
The java.net package defines a number of classes that make writing networked
applications surprisingly easy. Various examples follow.

Networking with the URL Class

The easiest networking class to use is URL, which represents a uniform resource
locator. Different Java implementations may support different sets of URL proto-
cols, but, at a minimum, you can rely on support for the http://, ftp://, and
file:// protocols. As of Java 1.4, secure HTTP is also supported with the https://
protocol. Here are some ways you can use the URL class:

import java.net.*;
import java.io.*;

// Create some URL objects
URL url=null, url2=null, url3=null;
try {
 url = new URL("http://www.oreilly.com"); // An absolute URL
 url2 = new URL(url, "catalog/books/javanut4/"); // A relative URL
 url3 = new URL("http:", "www.oreilly.com", "index.html");
} catch (MalformedURLException e) { /* Ignore this exception */ }

// Read the content of a URL from an input stream
InputStream in = url.openStream();

// For more control over the reading process, get a URLConnection object
URLConnection conn = url.openConnection();

// Now get some information about the URL
String type = conn.getContentType();
String encoding = conn.getContentEncoding();
java.util.Date lastModified = new java.util.Date(conn.getLastModified());
int len = conn.getContentLength();

// If necessary, read the contents of the URL using this stream
InputStream in = conn.getInputStream();

Working with Sockets

Sometimes you need more control over your networked application than is
possible with the URL class. In this case, you can use a Socket to communicate
directly with a server. For example:

import java.net.*;
import java.io.*;

Networking with java.net | 259

The Java
Platform

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

// Here's a simple client program that connects to a web server,
// requests a document and reads the document from the server.
String hostname = "java.oreilly.com"; // The server to connect to
int port = 80; // Standard port for HTTP
String filename = "/index.html"; // The file to read from the server
Socket s = new Socket(hostname, port); // Connect to the server

// Get I/O streams we can use to talk to the server
InputStream sin = s.getInputStream();
BufferedReader fromServer = new BufferedReader(new InputStreamReader(sin));
OutputStream sout = s.getOutputStream();
PrintWriter toServer = new PrintWriter(new OutputStreamWriter(sout));

// Request the file from the server, using the HTTP protocol
toServer.print("GET " + filename + " HTTP/1.0\r\n\r\n");
toServer.flush();

// Now read the server's response, assume it is a text file, and print it out
for(String l = null; (l = fromServer.readLine()) != null;)
 System.out.println(l);

// Close everything down when we're done
toServer.close();
fromServer.close();
s.close();

Secure Sockets with SSL

In Java 1.4, the Java Secure Socket Extension, or JSSE, was added to the core Java
platform in the packages javax.net and javax.net.ssl.* This API enables
encrypted network communication over sockets that use the SSL (Secure Sockets
Layer, also known as TLS) protocol. SSL is widely used on the Internet: it is the
basis for secure web communication using the https:// protocol. In Java 1.4 and
later, you can use https:// with the URL class as previously shown to securely
download documents from web servers that support SSL.

Like all Java security APIs, JSSE is highly configurable and gives low-level control
over all details of setting up and communicating over an SSL socket. The javax.
net and javax.net.ssl packages are fairly complex, but in practice, you need only
a few classes to securely communicate with a server. The following program is a
variant on the preceding code that uses HTTPS instead of HTTP to securely
transfer the contents of the requested URL:

import java.io.*;
import java.net.*;
import javax.net.ssl.*;
import java.security.cert.*;

/**

* An earlier version of JSSE using different package names is available as a separate download for
use with Java 1.2 and Java 1.3. See http://java.sun.com/products/jsse/.

260 | Chapter 5: The Java Platform

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

 * Get a document from a web server using HTTPS. Usage:
 * java HttpsDownload <hostname> <filename>
 **/
public class HttpsDownload {
 public static void main(String[] args) throws IOException {
 // Get a SocketFactory object for creating SSL sockets
 SSLSocketFactory factory =
 (SSLSocketFactory) SSLSocketFactory.getDefault();

 // Use the factory to create a secure socket connected to the
 // HTTPS port of the specified web server.
 SSLSocket sslsock=(SSLSocket)factory.createSocket(args[0], // Hostname
 443); // HTTPS port

 // Get the certificate presented by the web server
 SSLSession session = sslsock.getSession();
 X509Certificate cert;
 try { cert = (X509Certificate)session.getPeerCertificates()[0]; }
 catch(SSLPeerUnverifiedException e) { // If no or invalid certificate
 System.err.println(session.getPeerHost() +
 " did not present a valid certificate.");
 return;
 }

 // Display details about the certificate
 System.out.println(session.getPeerHost() +
 " has presented a certificate belonging to:");
 System.out.println("\t[" + cert.getSubjectDN().getName() + "]");
 System.out.println("The certificate bears the valid signature of:");
 System.out.println("\t[" + cert.getIssuerDN().getName() + "]");

 // If the user does not trust the certificate, abort
 System.out.print("Do you trust this certificate (y/n)? ");
 System.out.flush();
 BufferedReader console =
 new BufferedReader(new InputStreamReader(System.in));
 if (Character.toLowerCase(console.readLine().charAt(0)) != 'y') return;

 // Now use the secure socket just as you would use a regular socket
 // First, send a regular HTTP request over the SSL socket
 PrintWriter out = new PrintWriter(sslsock.getOutputStream());
 out.print("GET " + args[1] + " HTTP/1.0\r\n\r\n");
 out.flush();

 // Next, read the server's response and print it to the console
 BufferedReader in =
 new BufferedReader(new InputStreamReader(sslsock.getInputStream()));
 String line;
 while((line = in.readLine()) != null) System.out.println(line);

 // Finally, close the socket
 sslsock.close();
 }
}

Networking with java.net | 261

The Java
Platform

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Servers

A client application uses a Socket to communicate with a server. The server does
the same thing: it uses a Socket object to communicate with each of its clients.
However, the server has an additional task in that it must be able to recognize and
accept client connection requests. This is done with the ServerSocket class. The
following code shows how you might use a ServerSocket. The code implements a
simple HTTP server that responds to all requests by sending back (or mirroring)
the exact contents of the HTTP request. A dummy server like this is useful when
debugging HTTP clients:

import java.io.*;
import java.net.*;

public class HttpMirror {
 public static void main(String[] args) {
 try {
 int port = Integer.parseInt(args[0]); // The port to listen on
 ServerSocket ss = new ServerSocket(port); // Create a socket to listen
 for(;;) { // Loop forever
 Socket client = ss.accept(); // Wait for a connection
 ClientThread t = new ClientThread(client);// A thread to handle it
 t.start(); // Start the thread running
 } // Loop again
 }
 catch (Exception e) {
 System.err.println(e.getMessage());
 System.err.println("Usage: java HttpMirror <port>;");
 }
 }

 static class ClientThread extends Thread {
 Socket client;
 ClientThread(Socket client) { this.client = client; }
 public void run() {
 try {
 // Get streams to talk to the client
 BufferedReader in =
 new BufferedReader(new InputStreamReader(client.getInputStream()));
 PrintWriter out =
 new PrintWriter(new OutputStreamWriter(client.getOutputStream()));

 // Send an HTTP response header to the client
 out.print("HTTP/1.0 200\r\nContent-Type: text/plain\r\n\r\n");

 // Read the HTTP request from the client and send it right back
 // Stop when we read the blank line from the client that marks
 // the end of the request and its headers.
 String line;
 while((line = in.readLine()) != null) {
 if (line.length() == 0) break;
 out.println(line);
 }

262 | Chapter 5: The Java Platform

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

 out.close();
 in.close();
 client.close();
 }
 catch (IOException e) { /* Ignore exceptions */ }
 }
 }
}

This server code could be modified using JSSE to support SSL connections.
Making a server secure is more complex than making a client secure, however,
because a server must have a certificate it can present to the client. Therefore,
server-side JSSE is not demonstrated here.

Datagrams

Both URL and Socket perform networking on top of a stream-based network
connection. Setting up and maintaining a stream across a network takes work at
the network level, however. Sometimes you need a low-level way to speed a
packet of data across a network, but you don’t care about maintaining a stream.
If, in addition, you don’t need a guarantee that your data will get there or that the
packets of data will arrive in the order you sent them, you may be interested in the
DatagramSocket and DatagramPacket classes:

import java.net.*;

// Send a message to another computer via a datagram
try {
 String hostname = "host.example.com"; // The computer to send the data to
 InetAddress address = // Convert the DNS hostname
 InetAddress.getByName(hostname); // to a lower-level IP address.
 int port = 1234; // The port to connect to
 String message = "The eagle has landed."; // The message to send
 byte[] data = message.getBytes(); // Convert string to bytes
 DatagramSocket s = new DatagramSocket(); // Socket to send message with
 DatagramPacket p = // Create the packet to send
 new DatagramPacket(data, data.length, address, port);
 s.send(p); // Now send it!
 s.close(); // Always close sockets when done
}
catch (UnknownHostException e) {} // Thrown by InetAddress.getByName()
catch (SocketException e) {} // Thrown by new DatagramSocket()
catch (java.io.IOException e) {} // Thrown by DatagramSocket.send()

// Here's how the other computer can receive the datagram
try {
 byte[] buffer = new byte[4096]; // Buffer to hold data

 DatagramSocket s = new DatagramSocket(1234); // Socket that receives it
 // through
 DatagramPacket p =
 new DatagramPacket(buffer, buffer.length); // The packet that receives it
 s.receive(p); // Wait for a packet to arrive
 String msg = // Convert the bytes from the

I/O and Networking with java.nio | 263

The Java
Platform

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

 new String(buffer, 0, p.getLength()); // packet back to a string.
 s.close(); // Always close the socket
}
catch (SocketException e) {} // Thrown by new DatagramSocket()
catch (java.io.IOException e) {} // Thrown by DatagramSocket.receive()

Testing the Reachability of a Host

In Java 5.0 the InetAddress class has an isReachable() method that attempts to
determine whether the host is reachable. The following code uses it in a naive Java
implementation of the Unix ping utility:

import java.io.IOException;
import java.net.InetAddress;
import java.net.UnknownHostException;

public class Ping {
 public static void main(String[] args) throws IOException {
 try {
 String hostname = args[0];
 int timeout = (args.length > 1)?Integer.parseInt(args[1]):2000;
 InetAddress[] addresses = InetAddress.getAllByName(hostname);
 for(InetAddress address : addresses) {
 if (address.isReachable(timeout))
 System.out.printf("%s is reachable%n", address);
 else
 System.out.printf("%s could not be contacted%n", address);
 }
 }
 catch (UnknownHostException e) {
 System.out.printf("Unknown host: %s%n", args[0]);
 }
 catch(IOException e) { System.out.printf("Network error: %s%n", e); }
 catch (Exception e) {
 // ArrayIndexOutOfBoundsException or NumberFormatException
 System.out.println("Usage: java Ping <hostname> [timeout in ms]");
 }
 }
}

I/O and Networking with java.nio
Java 1.4 introduced an entirely new API for high-performance, nonblocking I/O
and networking. This API consists primarily of three new packages. java.nio
defines Buffer classes that are used to store sequences of bytes or other primitive
values. java.nio.channels defines channels through which data can be transferred
between a buffer and a data source or sink, such as a file or a network socket. This
package also contains important classes used for nonblocking I/O. Finally, the
java.nio.charset package contains classes for efficiently converting buffers of
bytes into buffers of characters. The sections that follow contain examples of
using all three of these packages as well as examples of specific I/O tasks with the
New I/O API.

264 | Chapter 5: The Java Platform

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Basic Buffer Operations

The java.nio package includes an abstract Buffer class, which defines generic
operations on buffers. This package also defines type-specific subclasses such as
ByteBuffer, CharBuffer, and IntBuffer. (See Buffer and ByteBuffer in the refer-
ence section for details on these classes and their various methods.) The following
code illustrates typical sequences of buffer operations on a ByteBuffer. The other
type-specific buffer classes have similar methods.

import java.nio.*;

// Buffers don't have public constructors. They are allocated instead.
ByteBuffer b = ByteBuffer.allocate(4096); // Create a buffer for 4,096 bytes
// Or do this to try to get an efficient buffer from the low-level OS
ByteBuffer buf2 = ByteBuffer.allocateDirect(65536);
// Here's another way to get a buffer: by "wrapping" an array
byte[] data; // Assume this array is created and initialized elsewhere
ByteBuffer buf3 = ByteBuffer.wrap(data); // Create buffer that uses the array
// It is also possible to create a "view buffer" to view bytes as other types
buf3.order(ByteOrder.BIG_ENDIAN); // Specify the byte order for the buffer
IntBuffer ib = buf3.asIntBuffer(); // View those bytes as integers

// Now store some data in the buffer
b.put(data); // Copy bytes from array to buffer at current position
b.put((byte)42); // Store another byte at the new current position
b.put(0, (byte)9); // Overwrite first byte in buffer. Don't change position.
b.order(ByteOrder.BIG_ENDIAN); // Set the byte order of the buffer
b.putChar('x'); // Store the two bytes of a Unicode character in buffer
b.putInt(0xcafebabe); // Store four bytes of an int into the buffer

// Here are methods for querying basic numbers about a buffer
int capacity = b.capacity(); // How many bytes can the buffer hold? (4,096)
int position = b.position(); // Where will the next byte be written or read?
// A buffer's limit specifies how many bytes of the buffer can be used.
// When writing into a buffer, this should be the capacity. When reading data
// from a buffer, it should be the number of bytes that were previously
// written.
int limit = b.limit(); // How many should be used?
int remaining = b.remaining(); // How many left? Return limit-position.
boolean more=b.hasRemaining(); // Test if there is still room in the buffer

// The position and limit can also be set with methods of the same name
// Suppose you want to read the bytes you've written into the buffer
b.limit(b.position()); // Set limit to current position
b.position(0); // Set limit to 0; start reading at beginning

// Instead of the two previous calls, you usually use a convenience method
b.flip(); // Set limit to position and position to 0; prepare for reading
b.rewind(); // Set position to 0; don't change limit; prepare for rereading
b.clear(); // Set position to 0 and limit to capacity; prepare for writing

// Assuming you've called flip(), you can start reading bytes from the buffer
buf2.put(b); // Read all bytes from b and put them into buf2
b.rewind(); // Rewind b for rereading from the beginning

I/O and Networking with java.nio | 265

The Java
Platform

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

byte b0 = b.get(); // Read first byte; increment buffer position
byte b1 = b.get(); // Read second byte; increment buffer position
byte[] fourbytes = new byte[4];
b.get(fourbytes); // Read next four bytes, add 4 to buffer position
byte b9 = b.get(9); // Read 10th byte, without changing current position
int i = b.getInt(); // Read next four bytes as an integer; add 4 to position

// Discard bytes you've already read; shift the remaining ones to the
// beginning of the buffer; set position to new limit and limit to capacity,
// preparing the buffer for writing more bytes into it.
b.compact();

You may notice that many buffer methods return the object on which they
operate. This is done so that method calls can be “chained” in code, as follows:

ByteBuffer bb=ByteBuffer.allocate(32).order(ByteOrder.BIG_ENDIAN).putInt(1234);

Many methods throughout java.nio and its subpackages return the current object
to enable this kind of method chaining. Note that the use of this kind of chaining
is a stylistic choice (which I have avoided in this chapter) and does not have any
significant impact on efficiency.

ByteBuffer is the most important of the buffer classes. However, another
commonly used class is CharBuffer. CharBuffer objects can be created by wrap-
ping a string and can also be converted to strings. CharBuffer implements the new
java.lang.CharSequence interface, which means that it can be used like a String or
StringBuffer in certain applications (e.g., for regular expression pattern
matching).

// Create a read-only CharBuffer from a string
CharBuffer cb = CharBuffer.wrap("This string is the data for the CharBuffer");
String s = cb.toString(); // Convert to a String with toString() method
System.out.println(cb); // or rely on an implicit call to toString().
char c = cb.charAt(0); // Use CharSequence methods to get characters
char d = cb.get(1); // or use a CharBuffer absolute read.
// A relative read that reads the char and increments the current position
// Note that only the characters between the position and limit are used when
// a CharBuffer is converted to a String or used as a CharSequence.
char e = cb.get();

Bytes in a ByteBuffer are commonly converted to characters in a CharBuffer and
vice versa. We’ll see how to do this when we consider the java.nio.charset
package.

Basic Channel Operations

Buffers are not all that useful on their own—there isn’t much point in storing
bytes into a buffer only to read them out again. Instead, buffers are typically used
with channels: your program stores bytes into a buffer, then passes the buffer to a
channel, which reads the bytes out of the buffer and writes them to a file, network
socket, or some other destination. Or, in the reverse, your program passes a buffer
to a channel, which reads bytes from a file, socket, or other source and stores
those bytes into the buffer, where they can then be retrieved by your program.
The java.nio.channels package defines several channel classes that represent files,

266 | Chapter 5: The Java Platform

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

sockets, datagrams, and pipes. (We’ll see examples of these concrete classes later
in this chapter.) The following code, however, is based on the capabilities of the
various channel interfaces defined by java.nio.channels and should work with
any Channel object:

Channel c; // Object that implements Channel interface; initialized elsewhere
if (c.isOpen()) c.close(); // These are the only methods defined by Channel

// The read() and write() methods are defined by the
// ReadableByteChannel and WritableByteChannel interfaces.
ReadableByteChannel source; // Initialized elsewhere
WritableByteChannel destination; // Initialized elsewhere
ByteBuffer buffer = ByteBuffer.allocateDirect(16384); // Low-level 16 KB buffer

// Here is the basic loop to use when reading bytes from a source channel and
// writing them to a destination channel until there are no more bytes to read
// from the source and no more buffered bytes to write to the destination.
while(source.read(buffer) != -1 || buffer.position() > 0) {
 // Flip buffer: set limit to position and position to 0. This prepares
 // the buffer for reading (which is done by a channel *write* operation).
 buffer.flip();
 // Write some or all of the bytes in the buffer to the destination
 destination.write(buffer);
 // Discard the bytes that were written, copying the remaining ones to
 // the start of the buffer. Set position to limit and limit to capacity,
 // preparing the buffer for writing (done by a channel *read* operation).
 buffer.compact();
}

// Don't forget to close the channels
source.close();
destination.close();

In addition to the ReadableByteChannel and WritableByteChannel interfaces illus-
trated in the preceding code, java.nio.channels defines several other channel
interfaces. ByteChannel simply extends the readable and writable interfaces
without adding any new methods. It is a useful shorthand for channels that
support both reading and writing. GatheringByteChannel is an extension of
WritableByteChannel that defines write() methods that gather bytes from more
than one buffer and write them out. Similarly, ScatteringByteChannel is an exten-
sion of ReadableByteChannel that defines read() methods that read bytes from the
channel and scatter or distribute them into more than one buffer. The gathering
and scattering write() and read() methods can be useful when working with
network protocols that use fixed-size headers that you want to store in a buffer
separate from the rest of the transferred data.

One confusing point to be aware of is that a channel read operation involves
writing (or putting) bytes into a buffer, and a channel write operation involves
reading (or getting) bytes from a buffer. Thus, when I say that the flip() method
prepares a buffer for reading, I mean that it prepares a buffer for use in a channel
write() operation! The reverse is true for the buffer’s compact() method.

I/O and Networking with java.nio | 267

The Java
Platform

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Encoding and Decoding Text with Charsets

A java.nio.charset.Charset object represents a character set plus an encoding for
that character set. Charset and its associated classes, CharsetEncoder and
CharsetDecoder, define methods for encoding strings of characters into sequences
of bytes and decoding sequences of bytes into strings of characters. Since these
classes are part of the New I/O API, they use the ByteBuffer and CharBuffer
classes:

// The simplest case. Use Charset convenience routines to convert.
Charset charset = Charset.forName("ISO-8859-1"); // Get Latin-1 Charset
CharBuffer cb = CharBuffer.wrap("Hello World"); // Characters to encode
// Encode the characters and store the bytes in a newly allocated ByteBuffer
ByteBuffer bb = charset.encode(cb);
// Decode these bytes into a newly allocated CharBuffer and print them out
System.out.println(charset.decode(bb));

Note the use of the ISO-8859-1 (a.k.a. Latin-1) charset in this example. This 8-bit
charset is suitable for most Western European languages, including English.
Programmers who work only with English may also use the 7-bit US-ASCII
charset. The Charset class does not do encoding and decoding itself, and the
previous convenience routines create CharsetEncoder and CharsetDecoder classes
internally. If you plan to encode or decode multiple times, it is more efficient to
create these objects yourself:

Charset charset = Charset.forName("US-ASCII"); // Get the charset
CharsetEncoder encoder = charset.newEncoder(); // Create an encoder from it
CharBuffer cb = CharBuffer.wrap("Hello World!"); // Get a CharBuffer
WritableByteChannel destination; // Initialized elsewhere
destination.write(encoder.encode(cb)); // Encode chars and write

The preceding CharsetEncoder.encode() method must allocate a new ByteBuffer
each time it is called. For maximum efficiency, you can call lower-level methods
to do the encoding and decoding into an existing buffer:

ReadableByteChannel source; // Initialized elsewhere
Charset charset = Charset.forName("ISO-8859-1"); // Get the charset
CharsetDecoder decoder = charset.newDecoder(); // Create a decoder from it
ByteBuffer bb = ByteBuffer.allocateDirect(2048); // Buffer to hold bytes
CharBuffer cb = CharBuffer.allocate(2048); // Buffer to hold characters

while(source.read(bb) != -1) { // Read bytes from the channel until EOF
 bb.flip(); // Flip byte buffer to prepare for decoding
 decoder.decode(bb, cb, true); // Decode bytes into characters
 cb.flip(); // Flip char buffer to prepare for printing
 System.out.print(cb); // Print the characters
 cb.clear(); // Clear char buffer to prepare for decoding
 bb.clear(); // Prepare byte buffer for next channel read
}
source.close(); // Done with the channel, so close it
System.out.flush(); // Make sure all output characters appear

The preceding code relies on the fact that ISO-8859-1 is an 8-bit encoding charset
and that there is one-to-one mapping between characters and bytes. For more
complex charsets, such as the UTF-8 encoding of Unicode or the EUC-JP charset

268 | Chapter 5: The Java Platform

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

used with Japanese text; however, this does not hold, and more than one byte is
required for some (or all) characters. When this is the case, there is no guarantee
that all bytes in a buffer can be decoded at once (the end of the buffer may contain
a partial character). Also, since a single character may encode to more than one
byte, it can be tricky to know how many bytes a given string will encode into. The
following code shows a loop you can use to decode bytes in a more general way:

ReadableByteChannel source; // Initialized elsewhere
Charset charset = Charset.forName("UTF-8"); // A Unicode encoding
CharsetDecoder decoder = charset.newDecoder(); // Create a decoder from it
ByteBuffer bb = ByteBuffer.allocateDirect(2048); // Buffer to hold bytes
CharBuffer cb = CharBuffer.allocate(2048); // Buffer to hold characters

// Tell the decoder to ignore errors that might result from bad bytes
decoder.onMalformedInput(CodingErrorAction.IGNORE);
decoder.onUnmappableCharacter(CodingErrorAction.IGNORE);

decoder.reset(); // Reset decoder if it has been used before
while(source.read(bb) != -1) { // Read bytes from the channel until EOF
 bb.flip(); // Flip byte buffer to prepare for decoding
 decoder.decode(bb, cb, false); // Decode bytes into characters
 cb.flip(); // Flip char buffer to prepare for printing
 System.out.print(cb); // Print the characters
 cb.clear(); // Clear the character buffer
 bb.compact(); // Discard already decoded bytes
}
source.close(); // Done with the channel, so close it

// At this point, there may still be some bytes in the buffer to decode
bb.flip(); // Prepare for decoding
decoder.decode(bb, cb, true); // Pass true to indicate this is the last call
decoder.flush(cb); // Output any final characters
cb.flip(); // Flip char buffer
System.out.print(cb); // Print the final characters

Working with Files

FileChannel is a concrete Channel class that performs file I/O and implements
ReadableByteChannel and WritableByteChannel (although its read() method works
only if the underlying file is open for reading, and its write() method works only
if the file is open for writing). Obtain a FileChannel object by using the java.io
package to create a FileInputStream, a FileOutputStream, or a RandomAccessFile
and then call the getChannel() method (added in Java 1.4) of that object. As an
example, you can use two FileChannel objects to copy a file:

String filename = "test"; // The name of the file to copy
// Create streams to read the original and write the copy
FileInputStream fin = new FileInputStream(filename);
FileOutputStream fout = new FileOutputStream(filename + ".copy");
// Use the streams to create corresponding channel objects
FileChannel in = fin.getChannel();
FileChannel out = fout.getChannel();
// Allocate a low-level 8KB buffer for the copy

I/O and Networking with java.nio | 269

The Java
Platform

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

ByteBuffer buffer = ByteBuffer.allocateDirect(8192);
while(in.read(buffer) != -1 || buffer.position() > 0) {
 buffer.flip(); // Prepare to read from the buffer and write to the file
 out.write(buffer); // Write some or all buffer contents
 buffer.compact(); // Discard all bytes that were written and prepare to
} // read more from the file and store them in the buffer.
in.close(); // Always close channels and streams when done with them
out.close();
fin.close(); // Note that closing a FileChannel does not
fout.close(); // automatically close the underlying stream.

FileChannel has special transferTo() and transferFrom() methods that make it
particularly easy (and on many operating systems, particularly efficient) to
transfer a specified number of bytes from a FileChannel to some other specified
channel, or from some other channel to a FileChannel. These methods allow us to
simplify the preceding file-copying code to the following:

FileChannel in, out; // Assume these are initialized as in the
 // preceding example.
long numbytes = in.size(); // Number of bytes in original file
in.transferTo(0, numbytes, out); // Transfer that amount to output channel

This code could be equally well-written using transferFrom() instead of
transferTo() (note that these two methods expect their arguments in different
orders):

long numbytes = in.size();
out.transferFrom(in, 0, numbytes);

FileChannel has other capabilities that are not shared by other channel classes.
One of the most important is the ability to “memory map” a file or a portion of a
file, i.e., to obtain a MappedByteBuffer (a subclass of ByteBuffer) that represents
the contents of the file and allows you to read (and optionally write) file contents
simply by reading from and writing to the buffer. Memory mapping a file is a
somewhat expensive operation, so this technique is usually efficient only when
you are working with a large file to which you need repeated access. Memory
mapping offers you yet another way to perform the same file-copy operation
shown previously:

long filesize = in.size();
ByteBuffer bb = in.map(FileChannel.MapMode.READ_ONLY, 0, filesize);
while(bb.hasRemaining()) out.write(bb);

The channel interfaces defined by java.nio.channels include ByteChannel but not
CharChannel. The channel API is low-level and provides methods for reading bytes
only. All of the previous examples have treated files as binary files. It is possible to
use the CharsetEncoder and CharsetDecoder classes introduced earlier to convert
between bytes and characters, but when you want to work with text files, the
Reader and Writer classes of the java.io package are usually much easier to use
than CharBuffer. Fortunately, the Channels class defines convenience methods that
bridge between the old and new APIs. Here is code that wraps a Reader and a
Writer object around input and output channels, reads lines of Latin-1 text from

270 | Chapter 5: The Java Platform

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

the input channel, and writes them back out to the output channel, with the
encoding changed to UTF-8:

ReadableByteChannel in; // Assume these are initialized elsewhere
WritableByteChannel out;
// Create a Reader and Writer from a FileChannel and charset name
BufferedReader reader=new BufferedReader(Channels.newReader(in, "ISO-8859-1"));
PrintWriter writer = new PrintWriter(Channels.newWriter(out, "UTF-8"));
String line;
while((line = reader.readLine()) != null) writer.println(line);
reader.close();
writer.close();

Unlike the FileInputStream and FileOutputStream classes, the FileChannel class
allows random access to the contents of the file. The zero-argument position()
method returns the file pointer (the position of the next byte to be read), and the
one-argument position() method allows you to set this pointer to any value you
want. This allows you to skip around in a file in the way that the java.io.
RandomAccessFile does. Here is an example:

// Suppose you have a file that has data records scattered throughout, and the
// last 1,024 bytes of the file are an index that provides the position of
// those records. Here is code that reads the index of the file, looks up the
// position of the first record within the file and then reads that record.
FileChannel in = new FileInputStream("test.data").getChannel(); // The channel
ByteBuffer index = ByteBuffer.allocate(1024); // A buffer to hold the index
long size = in.size(); // The size of the file
in.position(size - 1024); // Position at start of index
in.read(index); // Read the index
int record0Position = index.getInt(0); // Get first index entry
in.position(record0Position); // Position file at that point
ByteBuffer record0 = ByteBuffer.allocate(128); // Get buffer to hold data
in.read(record0); // Finally, read the record

The final feature of FileChannel that we’ll consider here is its ability to lock a file
or a portion of a file against all concurrent access (an exclusive lock) or against
concurrent writes (a shared lock). (Note that some operating systems strictly
enforce all locks while others provide only an advisory locking facility that
requires programs to cooperate and to attempt to acquire a lock before reading or
writing portions of a shared file.) In the previous random-access example, suppose
we wanted to ensure that no other program was modifying the record data while
we read it. We could acquire a shared lock on that portion of the file with the
following code:

FileLock lock = in.lock(record0Position, // Start of locked region
 128, // Length of locked region
 true); // Shared lock: prevent concurrent updates
 // but allow concurrent reads.
in.position(record0Position); // Move to start of index
in.read(record0); // Read the index data
lock.release(); // You're done with the lock, so release it

I/O and Networking with java.nio | 271

The Java
Platform

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Client-Side Networking

The New I/O API includes networking capabilities as well as file-access capabilities.
To communicate over the network, you can use the SocketChannel class. Create a
SocketChannel with the static open() method, then read and write bytes from and to
it as you would with any other channel object. The following code uses
SocketChannel to send an HTTP request to a web server and saves the server’s
response (including all of the HTTP headers) to a file. Note the use of java.net.
InetSocketAddress, a subclass of java.net.SocketAddress, to tell the SocketChannel
what to connect to. These classes were also introduced as part of the New I/O API.

import java.io.*;
import java.net.*;
import java.nio.*;
import java.nio.channels.*;
import java.nio.charset.*;

// Create a SocketChannel connected to the web server at www.oreilly.com
SocketChannel socket =
 SocketChannel.open(new InetSocketAddress("www.oreilly.com",80));
// A charset for encoding the HTTP request
Charset charset = Charset.forName("ISO-8859-1");
// Send an HTTP request to the server. Start with a string, wrap it to
// a CharBuffer, encode it to a ByteBuffer, then write it to the socket.
socket.write(charset.encode(CharBuffer.wrap("GET / HTTP/1.0\r\n\r\n")));
// Create a FileChannel to save the server's response to
FileOutputStream out = new FileOutputStream("oreilly.html");
FileChannel file = out.getChannel();
// Get a buffer for holding bytes while transferring from socket to file
ByteBuffer buffer = ByteBuffer.allocateDirect(8192);
// Now loop until all bytes are read from the socket and written to the file
while(socket.read(buffer) != -1 || buffer.position() > 0) { // Are we done?
 buffer.flip(); // Prepare to read bytes from buffer and write to file
 file.write(buffer); // Write some or all bytes to the file
 buffer.compact(); // Discard those that were written
}
socket.close(); // Close the socket channel
file.close(); // Close the file channel
out.close(); // Close the underlying file

Another way to create a SocketChannel is with the no-argument version of open(),
which creates an unconnected channel. This allows you to call the socket()
method to obtain the underlying socket, configure the socket as desired, and
connect to the desired host with the connect method. For example:

SocketChannel sc = SocketChannel.open(); // Open an unconnected socket channel
Socket s = sc.socket(); // Get underlying java.net.Socket
s.setSoTimeout(3000); // Time out after three seconds
// Now connect the socket channel to the desired host and port
sc.connect(new InetSocketAddress("www.davidflanagan.com", 80));

ByteBuffer buffer = ByteBuffer.allocate(8192); // Create a buffer
try { sc.read(buffer); } // Try to read from socket
catch(SocketTimeoutException e) { // Catch timeouts here

272 | Chapter 5: The Java Platform

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

 System.out.println("The remote computer is not responding.");
 sc.close();
}

In addition to the SocketChannel class, the java.nio.channels package defines a
DatagramChannel for networking with datagrams instead of sockets.
DatagramChannel is not demonstrated here, but you can read about it in the refer-
ence section.

One of the most powerful features of the New I/O API is that channels such as
SocketChannel and DatagramChannel can be used in nonblocking mode. We’ll see
examples of this in later sections.

Server-Side Networking

The java.net package defines a Socket class for communication between a client
and a server and defines a ServerSocket class used by the server to listen for and
accept connections from clients. The java.nio.channels package is analogous: it
defines a SocketChannel class for data transfer and a ServerSocketChannel class for
accepting connections. ServerSocketChannel is an unusual channel because it does
not implement ReadableByteChannel or WritableByteChannel. Instead of read()
and write() methods, it has an accept() method for accepting client connections
and obtaining a SocketChannel through which it communicates with the client.
Here is the code for a simple, single-threaded server that listens for connections
on port 8000 and reports the current time to any client that connects:

import java.nio.*;
import java.nio.channels.*;
import java.nio.charset.*;

public class DateServer {
 public static void main(String[] args) throws java.io.IOException {
 // Get a CharsetEncoder for encoding the text sent to the client
 CharsetEncoder encoder = Charset.forName("US-ASCII").newEncoder();

 // Create a new ServerSocketChannel and bind it to port 8000
 // Note that this must be done using the underlying ServerSocket
 ServerSocketChannel server = ServerSocketChannel.open();
 server.socket().bind(new java.net.InetSocketAddress(8000));

 for(;;) { // This server runs forever
 // Wait for a client to connect
 SocketChannel client = server.accept();
 // Get the current date and time as a string
 String response = new java.util.Date().toString() + "\r\n";
 // Wrap, encode, and send the string to the client
 client.write(encoder.encode(CharBuffer.wrap(response)));
 // Disconnect from the client
 client.close();
 }
 }
}

I/O and Networking with java.nio | 273

The Java
Platform

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Nonblocking I/O

The preceding DateServer class is a simple network server. Because it does not
maintain a connection with any client, it never needs to communicate with more
than one at a time, and there is never more than one SocketChannel in use. More
realistic servers must be able to communicate with more than one client at a time.
The java.io and java.net APIs allow only blocking I/O, so servers written using
these APIs must use a separate thread for each client. For large-scale servers with
many clients, this approach does not scale well. To solve this problem, the New I/O
API allows most channels (but not FileChannel) to be used in nonblocking mode
and allows a single thread to manage all pending connections. This is done with a
Selector object, which keeps track of a set of registered channels and can block
until one or more of those channels is ready for I/O, as the following code illus-
trates. This is a longer example than most in this chapter, but it is a complete
working server class that manages a ServerSocketChannel and any number of
SocketChannel connections to clients through a single Selector object.

import java.io.*;
import java.net.*;
import java.nio.*;
import java.nio.channels.*;
import java.nio.charset.*;
import java.util.*; // For Set and Iterator

public class NonBlockingServer {
 public static void main(String[] args) throws IOException {

 // Get the character encoders and decoders you'll need
 Charset charset = Charset.forName("ISO-8859-1");
 CharsetEncoder encoder = charset.newEncoder();
 CharsetDecoder decoder = charset.newDecoder();

 // Allocate a buffer for communicating with clients
 ByteBuffer buffer = ByteBuffer.allocate(512);

 // All of the channels in this code will be in nonblocking mode.
 // So create a Selector object that will block while monitoring
 // all of the channels and stop blocking only when one or more
 // of the channels is ready for I/O of some sort.
 Selector selector = Selector.open();

 // Create a new ServerSocketChannel and bind it to port 8000
 // Note that this must be done using the underlying ServerSocket
 ServerSocketChannel server = ServerSocketChannel.open();
 server.socket().bind(new java.net.InetSocketAddress(8000));
 // Put the ServerSocketChannel into nonblocking mode
 server.configureBlocking(false);
 // Now register it with the Selector (note that register() is called
 // on the channel, not on the selector object, however).
 // The SelectionKey represents the registration of this channel with
 // this Selector.
 SelectionKey serverkey = server.register(selector,
 SelectionKey.OP_ACCEPT);

274 | Chapter 5: The Java Platform

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

 for(;;) { // The main server loop. The server runs forever.
 // This call blocks until there is activity on one of the
 // registered channels. This is the key method in nonblocking
 // I/O.
 selector.select();

 // Get a java.util.Set containing the SelectionKey objects for
 // all channels that are ready for I/O.
 Set keys = selector.selectedKeys();

 // Use a java.util.Iterator to loop through the selected keys
 for(Iterator i = keys.iterator(); i.hasNext();) {
 // Get the next SelectionKey in the set and remove it
 // from the set. It must be removed explicitly, or it will
 // be returned again by the next call to select().
 SelectionKey key = (SelectionKey) i.next();
 i.remove();

 // Check whether this key is the SelectionKey obtained when
 // you registered the ServerSocketChannel.
 if (key == serverkey) {
 // Activity on the ServerSocketChannel means a client
 // is trying to connect to the server.
 if (key.isAcceptable()) {
 // Accept the client connection and obtain a
 // SocketChannel to communicate with the client.
 SocketChannel client = server.accept();
 // Put the client channel in nonblocking mode
 client.configureBlocking(false);
 // Now register it with the Selector object,
 // telling it that you'd like to know when
 // there is data to be read from this channel.
 SelectionKey clientkey =
 client.register(selector, SelectionKey.OP_READ);
 // Attach some client state to the key. You'll
 // use this state when you talk to the client.
 clientkey.attach(new Integer(0));
 }
 }
 else {
 // If the key obtained from the Set of keys is not the
 // ServerSocketChannel key, then it must be a key
 // representing one of the client connections.
 // Get the channel from the key.
 SocketChannel client = (SocketChannel) key.channel();

 // If you are here, there should be data to read from
 // the channel, but double-check.
 if (!key.isReadable()) continue;

 // Now read bytes from the client. Assume that all the
 // client's bytes are in one read operation.
 int bytesread = client.read(buffer);

I/O and Networking with java.nio | 275

The Java
Platform

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

 // If read() returns -1, it indicates end-of-stream,
 // which means the client has disconnected, so
 // deregister the selection key and close the channel.
 if (bytesread == -1) {
 key.cancel();
 client.close();
 continue;
 }

 // Otherwise, decode the bytes to a request string
 buffer.flip();
 String request = decoder.decode(buffer).toString();
 buffer.clear();
 // Now reply to the client based on the request string
 if (request.trim().equals("quit")) {
 // If the request was "quit", send a final message
 // Close the channel and deregister the
 // SelectionKey
 client.write(encoder.encode(CharBuffer.wrap("Bye.")));
 key.cancel();
 client.close();
 }
 else {
 // Otherwise, send a response string comprised of
 // the sequence number of this request plus an
 // uppercase version of the request string. Note
 // that you keep track of the sequence number by
 // "attaching" an Integer object to the
 // SelectionKey and incrementing it each time.

 // Get sequence number from SelectionKey
 int num = ((Integer)key.attachment()).intValue();
 // For response string
 String response = num + ": " +
 request.toUpperCase();
 // Wrap, encode, and write the response string
 client.write(encoder.encode(CharBuffer.wrap(response)));
 // Attach an incremented sequence nubmer to the key
 key.attach(new Integer(num+1));
 }
 }
 }
 }
 }
}

Nonblocking I/O is most useful for writing network servers. It is also useful in
clients that have more than one network connection pending at the same time.
For example, consider a web browser downloading a web page and the images
referenced by that page at the same time. One other interesting use of
nonblocking I/O is to perform nonblocking socket connection operations. The
idea is that you can ask a SocketChannel to establish a connection to a remote host
and then go do other stuff (such as build a GUI, for example) while the under-

276 | Chapter 5: The Java Platform

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

lying OS is setting up the connection across the network. Later, you do a select()
call to block until the connection has been established, if it hasn’t been already.
The code for a nonblocking connect looks like this:

// Create a new, unconnected SocketChannel. Put it in nonblocking
// mode, register it with a new Selector, and then tell it to connect.
// The connect call will return instead of waiting for the network
// connect to be fully established.
Selector selector = Selector.open();
SocketChannel channel = SocketChannel.open();
channel.configureBlocking(false);
channel.register(selector, SelectionKey.OP_CONNECT);
channel.connect(new InetSocketAddress(hostname, port));

// Now go do other stuff while the connection is set up
// For example, you can create a GUI here

// Now block if necessary until the SocketChannel is ready to connect.
// Since you've registered only one channel with this selector, you
// don't need to examine the key set; you know which channel is ready.
while(selector.select() == 0) /* empty loop */;

// This call is necessary to finish the nonblocking connections
channel.finishConnect();

// Finally, close the selector, which deregisters the channel from it
selector.close();

XML
Java 1.4 and Java 5.0 have added powerful XML processing features to the Java
platform:

org.xml.sax
This package and its two subpackages define the de facto standard SAX API
(SAX stands for Simple API for XML). SAX is an event-driven, XML-parsing
API: a SAX parser invokes methods of a specified ContentHandler object (as
well as some other related handler objects) as it parses an XML document.
The structure and content of the document are fully described by the method
calls. This is a streaming API that does not build any permanent representa-
tion of the document. It is up to the ContentHandler implementation to store
any state or perform any actions that are appropriate. This package includes
classes for the SAX 2 API and deprecated classes for SAX 1.

org.w3c.dom
This package defines interfaces that represent an XML document in tree
form. The Document Object Model (DOM) is a recommendation (essentially
a standard) of the World Wide Web Consortium (W3C). A DOM parser
reads an XML document and converts it into a tree of nodes that represent
the full content of the document. Once the tree representation of the docu-
ment is created, a program can examine and manipulate it however it wants.

XML | 277

The Java
Platform

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Java 1.4 includes the core module of the Level 2 DOM, and Java 5.0 includes
the core, events, and load/save modules of the Level 3 DOM.

javax.xml.parsers
This package provides high-level interfaces for instantiating SAX and DOM
parsers for parsing XML documents.

javax.xml.transform
This package and its subpackages define a Java API for transforming XML
document content and representation using the XSLT standard.

javax.xml.validation
This Java 5.0 package provides support for validating an XML document
against a schema. Implementations are required to support the W3C XML
Schema standard and may also support other schema types as well.

javax.xml.xpath
This package, also new in Java 5.0, supports the evaluation of XPath for
selecting nodes in an XML document.

Examples using each of these packages are presented in the following sections.

Parsing XML with SAX

The first step in parsing an XML document with SAX is to obtain a SAX parser. If
you have a SAX parser implementation of your own, you can simply instantiate the
appropriate parser class. It is usually simpler, however, to use the javax.xml.parsers
package to instantiate whatever SAX parser is provided by the Java implementation.
The code looks like this:

import javax.xml.parsers.*;

// Obtain a factory object for creating SAX parsers
SAXParserFactory parserFactory = SAXParserFactory.newInstance();

// Configure the factory object to specify attributes of the parsers it creates
parserFactory.setValidating(true);
parserFactory.setNamespaceAware(true);

// Now create a SAXParser object
SAXParser parser = parserFactory.newSAXParser(); // May throw exceptions

The SAXParser class is a simple wrapper around the org.xml.sax.XMLReader class.
Once you have obtained one, as shown in the previous code, you can parse a
document by simply calling one of the various parse() methods. Some of these
methods use the deprecated SAX 1 HandlerBase class, and others use the current
SAX 2 org.xml.sax.helpers.DefaultHandler class. The DefaultHandler class
provides an empty implementation of all the methods of the ContentHandler,
ErrorHandler, DTDHandler, and EntityResolver interfaces. These are all the
methods that the SAX parser can call while parsing an XML document. By
subclassing DefaultHandler and defining the methods you care about, you can
perform whatever actions are necessary in response to the method calls generated
by the parser. The following code shows a method that uses SAX to parse an XML
file and determine the number of XML elements that appear in a document as

278 | Chapter 5: The Java Platform

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

well as the number of characters of plain text (possibly excluding “ignorable
whitespace”) that appear within those elements:

import java.io.*;
import javax.xml.parsers.*;
import org.xml.sax.*;
import org.xml.sax.helpers.*;

public class SAXCount {
 public static void main(String[] args)
 throws SAXException,IOException, ParserConfigurationException
 {
 // Create a parser factory and use it to create a parser
 SAXParserFactory parserFactory = SAXParserFactory.newInstance();
 SAXParser parser = parserFactory.newSAXParser();
 // This is the name of the file you're parsing
 String filename = args[0];
 // Instantiate a DefaultHandler subclass to do your counting for you
 CountHandler handler = new CountHandler();
 // Start the parser. It reads the file and calls methods of the handler.
 parser.parse(new File(filename), handler);
 // When you're done, report the results stored by your handler object
 System.out.println(filename + " contains " + handler.numElements +
 " elements and " + handler.numChars +
 " other characters ");
 }

 // This inner class extends DefaultHandler to count elements and text in
 // the XML file and saves the results in public fields. There are many
 // other DefaultHandler methods you could override, but you need only
 // these.
 public static class CountHandler extends DefaultHandler {
 public int numElements = 0, numChars = 0; // Save counts here
 // This method is invoked when the parser encounters the opening tag
 // of any XML element. Ignore the arguments but count the element.
 public void startElement(String uri, String localname, String qname,
 Attributes attributes) {
 numElements++;
 }

 // This method is called for any plain text within an element
 // Simply count the number of characters in that text
 public void characters(char[] text, int start, int length) {
 numChars += length;
 }
 }
}

Parsing XML with DOM

The DOM API is much different from the SAX API. While SAX is an efficient way
to scan an XML document, it is not well-suited for programs that want to modify
documents. Instead of converting an XML document into a series of method calls,

XML | 279

The Java
Platform

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

a DOM parser converts the document into an org.w3c.dom.Document object, which
is a tree of org.w3c.dom.Node objects. The conversion of the complete XML docu-
ment to tree form allows random access to the entire document but can consume
substantial amounts of memory.

In the DOM API, each node in the document tree implements the Node interface
and a type-specific subinterface. (The most common types of node in a DOM
document are Element and Text nodes.) When the parser is done parsing the docu-
ment, your program can examine and manipulate that tree using the various
methods of Node and its subinterfaces. The following code uses JAXP to obtain a
DOM parser (which, in JAXP parlance, is called a DocumentBuilder). It then parses
an XML file and builds a document tree from it. Next, it examines the Document
tree to search for <sect1> elements and prints the contents of the <title> of each.

import java.io.*;
import javax.xml.parsers.*;
import org.w3c.dom.*;

public class GetSectionTitles {
 public static void main(String[] args)
 throws IOException, ParserConfigurationException,
 org.xml.sax.SAXException
 {
 // Create a factory object for creating DOM parsers and configure it
 DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();
 factory.setIgnoringComments(true); // We want to ignore comments
 factory.setCoalescing(true); // Convert CDATA to Text nodes
 factory.setNamespaceAware(false); // No namespaces: this is default
 factory.setValidating(false); // Don't validate DTD: also default

 // Now use the factory to create a DOM parser, a.k.a. DocumentBuilder
 DocumentBuilder parser = factory.newDocumentBuilder();

 // Parse the file and build a Document tree to represent its content
 Document document = parser.parse(new File(args[0]));

 // Ask the document for a list of all <sect1> elements it contains
 NodeList sections = document.getElementsByTagName("sect1");
 // Loop through those <sect1> elements one at a time
 int numSections = sections.getLength();
 for(int i = 0; i < numSections; i++) {
 Element section = (Element)sections.item(i); // A <sect1>
 // The first Element child of each <sect1> should be a <title>
 // element, but there may be some whitespace Text nodes first, so
 // loop through the children until you find the first element
 // child.
 Node title = section.getFirstChild();
 while(title != null && title.getNodeType() != Node.ELEMENT_NODE)
 title = title.getNextSibling();
 // Print the text contained in the Text node child of this element
 if (title != null)
 System.out.println(title.getFirstChild().getNodeValue());
 }
 }
}

280 | Chapter 5: The Java Platform

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Transforming XML Documents

The javax.xml.transform package defines a TransformerFactory class for creating
Transformer objects. A Transformer can transform a document from its Source
representation into a new Result representation and optionally apply an XSLT
transformation to the document content in the process. Three subpackages define
concrete implementations of the Source and Result interfaces, which allow docu-
ments to be transformed among three representations:

javax.xml.transform.stream
Represents documents as streams of XML text.

javax.xml.transform.dom
Represents documents as DOM Document trees.

javax.xml.transform.sax
Represents documents as sequences of SAX method calls.

The following code shows one use of these packages to transform the representa-
tion of a document from a DOM Document tree into a stream of XML text. An
interesting feature of this code is that it does not create the Document tree by
parsing a file; instead, it builds it up from scratch.

import javax.xml.transform.*;
import javax.xml.transform.dom.*;
import javax.xml.transform.stream.*;
import javax.xml.parsers.*;
import org.w3c.dom.*;

public class DOMToStream {
 public static void main(String[] args)
 throws ParserConfigurationException,
 TransformerConfigurationException,
 TransformerException
 {
 // Create a DocumentBuilderFactory and a DocumentBuilder
 DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();
 DocumentBuilder db = dbf.newDocumentBuilder();
 // Instead of parsing an XML document, however, just create an empty
 // document that you can build up yourself.
 Document document = db.newDocument();

 // Now build a document tree using DOM methods
 Element book = document.createElement("book"); // Create new element
 book.setAttribute("id", "javanut4"); // Give it an attribute
 document.appendChild(book); // Add to the document
 for(int i = 1; i <= 3; i++) { // Add more elements
 Element chapter = document.createElement("chapter");
 Element title = document.createElement("title");
 title.appendChild(document.createTextNode("Chapter " + i));
 chapter.appendChild(title);
 chapter.appendChild(document.createElement("para"));
 book.appendChild(chapter);
 }

XML | 281

The Java
Platform

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

 // Now create a TransformerFactory and use it to create a Transformer
 // object to transform our DOM document into a stream of XML text.
 // No arguments to newTransformer() means no XSLT stylesheet
 TransformerFactory tf = TransformerFactory.newInstance();
 Transformer transformer = tf.newTransformer();

 // Create the Source and Result objects for the transformation
 DOMSource source = new DOMSource(document); // DOM document
 StreamResult result = new StreamResult(System.out); // to XML text

 // Finally, do the transformation
 transformer.transform(source, result);
 }
}

The most interesting uses of javax.xml.transform involve XSLT stylesheets. XSLT
is a complex but powerful XML grammar that describes how XML document
content should be converted to another form (e.g., XML, HTML, or plain text). A
tutorial on XSLT stylesheets is beyond the scope of this book, but the following
code (which contains only six key lines) shows how you can apply such a
stylesheet (which is an XML document itself) to another XML document and
write the resulting document to a stream:

import java.io.*;
import javax.xml.transform.*;
import javax.xml.transform.stream.*;
import javax.xml.parsers.*;
import org.w3c.dom.*;

public class Transform {
 public static void main(String[] args)
 throws TransformerConfigurationException,
 TransformerException
 {
 // Get Source and Result objects for input, stylesheet, and output
 StreamSource input = new StreamSource(new File(args[0]));
 StreamSource stylesheet = new StreamSource(new File(args[1]));
 StreamResult output = new StreamResult(new File(args[2]));

 // Create a transformer and perform the transformation
 TransformerFactory tf = TransformerFactory.newInstance();
 Transformer transformer = tf.newTransformer(stylesheet);
 transformer.transform(input, output);
 }
}

Validating XML Documents

The javax.xml.validation package allows you to validate XML documents
against a schema. SAX and DOM parsers obtained from the javax.xml.parsers
package can perform validation against a DTD during the parsing process, but
this package separates validation from parsing and also provides general support
for arbitrary schema types. All implementations must support W3C XML Schema
and are allowed to support other schema types, such as RELAX NG.

282 | Chapter 5: The Java Platform

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

To use this package, begin with a SchemaFactory instance—a parser for a specific
type of schema. Use this parser to parse a schema file into a Schema object. Obtain
a Validator from the Schema, and then use the Validator to validate your XML
document. The document is specified as a SAXSource or DOMSource object. You may
recall these classes from the subpackages of javax.xml.transform.

If the document is valid, the validate() method of the Validator object returns
normally. If it is not valid, validate() throws a SAXException. You can install an
org.xml.sax.ErrorHandler object for the Validator to provide some control over
the kinds of validation errors that cause exceptions.

import javax.xml.XMLConstants;
import javax.xml.validation.*;
import javax.xml.transform.sax.SAXSource;
import org.xml.sax.*;
import java.io.*;

public class Validate {
 public static void main(String[] args) throws IOException {
 File documentFile = new File(args[0]); // 1st arg is document
 File schemaFile = new File(args[1]); // 2nd arg is schema

 // Get a parser to parse W3C schemas. Note use of javax.xml package
 // This package contains just one class of constants.
 SchemaFactory factory =
 SchemaFactory.newInstance(XMLConstants.W3C_XML_SCHEMA_NS_URI);

 // Now parse the schema file to create a Schema object
 Schema schema = null;
 try { schema = factory.newSchema(schemaFile); }
 catch(SAXException e) { fail(e); }

 // Get a Validator object from the Schema.
 Validator validator = schema.newValidator();

 // Get a SAXSource object for the document
 // We could use a DOMSource here as well
 SAXSource source =
 new SAXSource(new InputSource(new FileReader(documentFile)));

 // Now validate the document
 try { validator.validate(source); }
 catch(SAXException e) { fail(e); }

 System.err.println("Document is valid");
 }

 static void fail(SAXException e) {
 if (e instanceof SAXParseException) {
 SAXParseException spe = (SAXParseException) e;
 System.err.printf("%s:%d:%d: %s%n",
 spe.getSystemId(), spe.getLineNumber(),
 spe.getColumnNumber(), spe.getMessage());
 }
 else {

Types, Reflection, and Dynamic Loading | 283

The Java
Platform

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

 System.err.println(e.getMessage());
 }
 System.exit(1);
 }
}

Evaluating XPath Expressions

XPath is a language for referring to specific nodes in an XML document. For
example, the XPath expression “//section/title/text()” refers to the text inside of a
<title> element inside a <section> element at any depth within the document. A
full description of the XPath language is beyond the scope of this book. The
javax.xml.xpath package, new in Java 5.0, provides a way to find all nodes in a
document that match an XPath expression.

import javax.xml.xpath.*;
import javax.xml.parsers.*;
import org.w3c.dom.*;

public class XPathEvaluator {
 public static void main(String[] args)
 throws ParserConfigurationException, XPathExpressionException,
 org.xml.sax.SAXException, java.io.IOException
 {
 String documentName = args[0];
 String expression = args[1];

 // Parse the document to a DOM tree
 // XPath can also be used with a SAX InputSource
 DocumentBuilder parser =
 DocumentBuilderFactory.newInstance().newDocumentBuilder();
 Document doc = parser.parse(new java.io.File(documentName));

 // Get an XPath object to evaluate the expression
 XPath xpath = XPathFactory.newInstance().newXPath();

 System.out.println(xpath.evaluate(expression, doc));

 // Or evaluate the expression to obtain a DOM NodeList of all matching
 // nodes. Then loop through each of the resulting nodes
 NodeList nodes = (NodeList)xpath.evaluate(expression, doc,
 XPathConstants.NODESET);
 for(int i = 0, n = nodes.getLength(); i < n; i++) {
 Node node = nodes.item(i);
 System.out.println(node);
 }
 }
}

Types, Reflection, and Dynamic Loading
The java.lang.Class class represents data types in Java and, along with the classes
in the java.lang.reflect package, gives Java programs the capability of introspec-

284 | Chapter 5: The Java Platform

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

tion (or self-reflection); a Java class can look at itself, or any other class, and
determine its superclass, what methods it defines, and so on.

Class Objects

You can obtain a Class object in Java in several ways:

// Obtain the Class of an arbitrary object o
Class c = o.getClass();

// Obtain a Class object for primitive types with various predefined constants
c = Void.TYPE; // The special "no-return-value" type
c = Byte.TYPE; // Class object that represents a byte
c = Integer.TYPE; // Class object that represents an int
c = Double.TYPE; // etc; see also Short, Character, Long, Float

// Express a class literal as a type name followed by ".class"
c = int.class; // Same as Integer.TYPE
c = String.class; // Same as "dummystring".getClass()
c = byte[].class; // Type of byte arrays
c = Class[][].class; // Type of array of arrays of Class objects

Reflecting on a Class

Once you have a Class object, you can perform some interesting reflective opera-
tions with it:

import java.lang.reflect.*;

Object o; // Some unknown object to investigate
Class c = o.getClass(); // Get its type

// If it is an array, figure out its base type
while (c.isArray()) c = c.getComponentType();

// If c is not a primitive type, print its class hierarchy
if (!c.isPrimitive()) {
 for(Class s = c; s != null; s = s.getSuperclass())
 System.out.println(s.getName() + " extends");
}

// Try to create a new instance of c; this requires a no-arg constructor
Object newobj = null;
try { newobj = c.newInstance(); }
catch (Exception e) {
 // Handle InstantiationException, IllegalAccessException
}

// See if the class has a method named setText that takes a single String
// If so, call it with a string argument
try {
 Method m = c.getMethod("setText", new Class[] { String.class });
 m.invoke(newobj, new Object[] { "My Label" });
} catch(Exception e) { /* Handle exceptions here */ }

Types, Reflection, and Dynamic Loading | 285

The Java
Platform

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

// These are varargs methods in Java 5.0 so the syntax is much cleaner.
// Look for and invoke a method named "put" that takes two Object arguments
try {
 Method m = c.getMethod("add", Object.class, Object.class);
 m.invoke(newobj, "key", "value");
} catch(Exception e) { System.out.println(e); }

// In Java 5.0 we can use reflection on enumerated types and constants
Class<Thread.State> ts = Thread.State.class; // Thread.State type
if (ts.isEnum()) { // If it is an enumerated type
 Thread.State[] constants = ts.getEnumConstants(); // get its constants
}
try {
 Field f = ts.getField("RUNNABLE"); // Get the field named "RUNNABLE"
 System.out.println(f.isEnumConstant()); // Is it an enumerated constant?
}
catch(Exception e) { System.out.println(e); }

// The VM discards generic type information at runtime, but it is stored
// in the class file for the compiler and is accessible through reflection
try {
 Class map = Class.forName("java.util.Map");

 TypeVariable<?>[] typevars = map.getTypeParameters();
 for(TypeVariable<?> typevar : typevars) {
 System.out.print(typevar.getName());
 Type[] bounds = typevar.getBounds();
 if (bounds.length > 0) System.out.print(" extends ");
 for(int i = 0; i < bounds.length; i++) {
 if (i > 0) System.out.print(" & ");
 System.out.print(bounds[i]);
 }
 System.out.println();
 }
}
catch(Exception e) { System.out.println(e); }

// In Java 5.0, reflection can also be used on annotation types and to
// determine the values of runtime visible annotations
Class<?> a = Override.class; // an annotation class
if (a.isAnnotation()) { // is this an annotation type?
 // Look for some meta-annotations
 java.lang.annotation.Retention retention =
 a.getAnnotation(java.lang.annotation.Retention.class);
 if (retention != null)
 System.out.printf("Retention: %s%n", retention.value());
}

Dynamic Class Loading

Class also provides a simple mechanism for dynamic class loading in Java. For
more complete control over dynamic class loading, however, you should use a
java.lang.ClassLoader object, typically a java.net.URLClassLoader. This tech-

286 | Chapter 5: The Java Platform

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

nique is useful, for example, when you want to load a class that is named in a
configuration file instead of being hardcoded into your program:

// Dynamically load a class specified by name in a config file
String classname = // Look up the name of the class
 config.getProperty("filterclass", // The property name
 "com.davidflanagan.filters.Default"); // A default

try {
 Class c = Class.forName(classname); // Dynamically load the class
 Object o = c.newInstance(); // Dynamically instantiate it
} catch (Exception e) { /* Handle exceptions */ }

The preceding code works only if the class to be loaded is in the class path. If this
is not the case, you can create a custom ClassLoader object to load a class from a
path (or URL) you specify yourself:

import java.net.*;
String classdir = config.getProperty("filterDirectory"); // Look up class path
try {
 ClassLoader loader = new URLClassLoader(new URL[] { new URL(classdir) });
 Class c = loader.loadClass(classname);
}
catch (Exception e) { /* Handle exceptions */ }

Dynamic Proxies

The Proxy class and InvocationHandler interface to the java.lang.reflect
package were added to Java 1.3. Proxy is a powerful but infrequently used class
that allows you to dynamically create a new class or instance that implements a
specified interface or set of interfaces. It also dispatches invocations of the
interface methods to an InvocationHandler object.

Object Persistence
The Java platform provides two mechanisms for object persistence: the ability to
save object state so that the object can later be recreated. Both mechanisms
involve serialization; the second is aimed particularly at JavaBeans.

Serialization

One of the most important features of the java.io package is the ability to seri-
alize objects: to convert an object into a stream of bytes that can later be
deserialized back into a copy of the original object. The following code shows
how to use serialization to save an object to a file and later read it back:

Object o; // The object we are serializing; it must implement Serializable
File f; // The file we are saving it to

try {
 // Serialize the object
 ObjectOutputStream oos = new ObjectOutputStream(new FileOutputStream(f));
 oos.writeObject(o);

Object Persistence | 287

The Java
Platform

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

 oos.close();

 // Read the object back in
 ObjectInputStream ois = new ObjectInputStream(new FileInputStream(f));
 Object copy = ois.readObject();
 ois.close();
}
catch (IOException e) { /* Handle input/output exceptions */ }
catch (ClassNotFoundException cnfe) { /* readObject() can throw this */ }

The previous example serializes to a file, but remember, you can write serialized
objects to any type of stream. Thus, you can write an object to a byte array, then
read it back from the byte array, creating a deep copy of the object. You can write
the object’s bytes to a compression stream or even write the bytes to a stream
connected across a network to another program!

JavaBeans Persistence

Java 1.4 introduced a serialization mechanism intended for use with JavaBeans
components. java.io serialization works by saving the state of the internal fields
of an object. java.beans persistence, on the other hand, works by saving a bean’s
state as a sequence of calls to the public methods defined by the class. Since it is
based on the public API rather than on the internal state, the JavaBeans persis-
tence mechanism allows interoperability between different implementations of the
same API, handles version skew more robustly, and is suitable for longer-term
storage of serialized objects.

A bean and any descendant beans or other objects that are serialized with
java.beans.XMLEncoder can be deserialized with java.beans.XMLDecoder. These
classes write to and read from specified streams, but they are not stream
classes themselves. Here is how you might encode a bean:

// Create a JavaBean, and set some properties on it
javax.swing.JFrame bean = new javax.swing.JFrame("PersistBean");
bean.setSize(300, 300);
// Now save its encoded form to the file bean.xml
BufferedOutputStream out = // Create an output stream
 new BufferedOutputStream(new FileOutputStream("bean.xml"));
XMLEncoder encoder = new XMLEncoder(out); // Create encoder for stream
encoder.writeObject(bean); // Encode the bean
encoder.close(); // Close encoder and stream

Here is the corresponding code to decode the bean from its serialized form:

BufferedInputStream in = // Create input stream
 new BufferedInputStream(new FileInputStream("bean.xml"));
XMLDecoder decoder = new XMLDecoder(in); // Create decoder for stream
Object b = decoder.readObject(); // Decode a bean
decoder.close(); // Close decoder and stream
bean = (javax.swing.JFrame) b; // Cast bean to proper type
bean.setVisible(true); // Start using it

288 | Chapter 5: The Java Platform

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Security
The java.security package defines quite a few classes related to the Java access-
control architecture, which is discussed in more detail in Chapter 6. These classes
allow Java programs to run untrusted code in a restricted environment from
which it can do no harm. While these are important classes, you rarely need to
use them. The more interesting classes are the ones used for message digests and
digital signatures; they are demonstrated in the sections that follow.

Message Digests

A message digest is a value, also known as cryptographic checksum or secure hash,
that is computed over a sequence of bytes. The length of the digest is typically
much smaller than the length of the data for which it is computed, but any
change, no matter how small, in the input bytes produces a change in the digest.
When transmitting data (a message), you can transmit a message digest along
with it. The recipient of the message can then recompute the message digest on
the received data and, by comparing the computed digest to the received digest,
determine whether the message or the digest was corrupted or tampered with
during transmission. We saw a way to compute a message digest earlier in the
chapter when we discussed streams. A similar technique can be used to compute a
message digest for nonstreaming binary data:

import java.security.*;

// Obtain an object to compute message digests using the "Secure Hash
// Algorithm"; this method can throw a NoSuchAlgorithmException.
MessageDigest md = MessageDigest.getInstance("SHA");

byte[] data, data1, data2, secret; // Some byte arrays initialized elsewhere

// Create a digest for a single array of bytes
byte[] digest = md.digest(data);

// Create a digest for several chunks of data
md.reset(); // Optional: automatically called by digest()
md.update(data1); // Process the first chunk of data
md.update(data2); // Process the second chunk of data
digest = md.digest(); // Compute the digest

// Create a keyed digest that can be verified if you know the secret bytes
md.update(data); // The data to be transmitted with the digest
digest = md.digest(secret); // Add the secret bytes and compute the digest

// Verify a digest like this
byte[] receivedData, receivedDigest; // The data and the digest we received
byte[] verifyDigest = md.digest(receivedData); // Digest the received data
// Compare computed digest to the received digest
boolean verified = java.util.Arrays.equals(receivedDigest, verifyDigest);

Security | 289

The Java
Platform

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Digital Signatures

A digital signature combines a message-digest algorithm with public-key cryptog-
raphy. The sender of a message, Alice, can compute a digest for a message and
then encrypt that digest with her private key. She then sends the message and the
encrypted digest to a recipient, Bob. Bob knows Alice’s public key (it is public,
after all), so he can use it to decrypt the digest and verify that the message has not
been tampered with. In performing this verification, Bob also learns that the
digest was encrypted with Alice’s private key since he was able to decrypt the
digest successfully using Alice’s public key. As Alice is the only one who knows
her private key, the message must have come from Alice. A digital signature is
called such because, like a pen-and-paper signature, it serves to authenticate the
origin of a document or message. Unlike a pen-and-paper signature, however, a
digital signature is very difficult, if not impossible, to forge, and it cannot simply
be cut and pasted onto another document.

Java makes creating digital signatures easy. In order to create a digital signature,
however, you need a java.security.PrivateKey object. Assuming that a keystore
exists on your system (see the keytool documentation in Chapter 8), you can get
one with code like the following:

// Here is some basic data we need
File homedir = new File(System.getProperty("user.home"));
File keyfile = new File(homedir, ".keystore"); // Or read from config file
String filepass = "KeyStore password"; // Password for entire file
String signer = "david"; // Read from config file
String password = "No one can guess this!"; // Better to prompt for this
PrivateKey key; // This is the key we want to look up from the keystore

try {
 // Obtain a KeyStore object and then load data into it
 KeyStore keystore = KeyStore.getInstance(KeyStore.getDefaultType());
 keystore.load(new BufferedInputStream(new FileInputStream(keyfile)),
 filepass.toCharArray());
 // Now ask for the desired key
 key = (PrivateKey) keystore.getKey(signer, password.toCharArray());
}
catch (Exception e) { /* Handle various exception types here */ }

Once you have a PrivateKey object, you can create a digital signature with a
java.security.Signature object:

PrivateKey key; // Initialized as shown previously
byte[] data; // The data to be signed
Signature s = // Obtain object to create and verify signatures
 Signature.getInstance("SHA1withDSA"); // Can throw a
 // NoSuchAlgorithmException
s.initSign(key); // Initialize it; can throw an InvalidKeyException
s.update(data); // Data to sign; can throw a SignatureException
/* s.update(data2); */ // Call multiple times to specify all data
byte[] signature = s.sign(); // Compute signature

A Signature object can verify a digital signature:

byte[] data; // The signed data; initialized elsewhere
byte[] signature; // The signature to be verified; initialized elsewhere

290 | Chapter 5: The Java Platform

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

String signername; // Who created the signature; initialized elsewhere
KeyStore keystore; // Where certificates stored; initialize as shown earlier

// Look for a public-key certificate for the signer
java.security.cert.Certificate cert = keystore.getCertificate(signername);
PublicKey publickey = cert.getPublicKey(); // Get the public key from it

Signature s = Signature.getInstance("SHA1withDSA"); // Or some other algorithm
s.initVerify(publickey); // Setup for verification
s.update(data); // Specify signed data
boolean verified = s.verify(signature); // Verify signature data

Signed Objects

The java.security.SignedObject class is a convenient utility for wrapping a digital
signature around an object. The SignedObject can then be serialized and trans-
mitted to a recipient, who can deserialize it and use the verify() method to verify
the signature:

Serializable o; // The object to be signed; must be Serializable
PrivateKey k; // The key to sign with; initialized elsewhere
Signature s = Signature.getInstance("SHA1withDSA"); // Signature "engine"
SignedObject so = new SignedObject(o, k, s); // Create the SignedObject

// The SignedObject encapsulates the object o; it can now be serialized
// and transmitted to a recipient.

// Here's how the recipient verifies the SignedObject
SignedObject so; // The deserialized SignedObject
Object o; // The original object to extract from it
PublicKey pk; // The key to verify with
Signature s = Signature.getInstance("SHA1withDSA"); // Verification "engine"
if (so.verify(pk,s)) // If the signature is valid,
 o = so.getObject(); // retrieve the encapsulated object.

Cryptography
The java.security package includes cryptography-based classes, but it does not
contain classes for actual encryption and decryption. That is the job of the javax.
crypto package. This package supports symmetric-key cryptography, in which the
same key is used for both encryption and decryption and must be known by both
the sender and the receiver of encrypted data.

Secret Keys

The SecretKey interface represents an encryption key; the first step of any crypto-
graphic operation is to obtain an appropriate SecretKey. Unfortunately, the
keytool program supplied with the JDK cannot generate and store secret keys, so a
program must handle these tasks itself. Here is some code that shows various
ways to work with SecretKey objects:

import javax.crypto.*;
import javax.crypto.spec.*;

Cryptography | 291

The Java
Platform

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

// Generate encryption keys with a KeyGenerator object
KeyGenerator desGen = KeyGenerator.getInstance("DES"); // DES algorithm
SecretKey desKey = desGen.generateKey(); // Generate a key
KeyGenerator desEdeGen = KeyGenerator.getInstance("DESede"); // Triple DES
SecretKey desEdeKey = desEdeGen.generateKey(); // Generate a key

// SecretKey is an opaque representation of a key. Use SecretKeyFactory to
// convert to a transparent representation that can be manipulated: saved
// to a file, securely transmitted to a receiving party, etc.
SecretKeyFactory desFactory = SecretKeyFactory.getInstance("DES");
DESKeySpec desSpec = (DESKeySpec)
 desFactory.getKeySpec(desKey, javax.crypto.spec.DESKeySpec.class);
byte[] rawDesKey = desSpec.getKey();
// Do the same for a DESede key
SecretKeyFactory desEdeFactory = SecretKeyFactory.getInstance("DESede");
DESedeKeySpec desEdeSpec = (DESedeKeySpec)
 desEdeFactory.getKeySpec(desEdeKey, javax.crypto.spec.DESedeKeySpec.class);
byte[] rawDesEdeKey = desEdeSpec.getKey();

// Convert the raw bytes of a key back to a SecretKey object
DESedeKeySpec keyspec = new DESedeKeySpec(rawDesEdeKey);
SecretKey k = desEdeFactory.generateSecret(keyspec);

// For DES and DESede keys, there is an even easier way to create keys
// SecretKeySpec implements SecretKey, so use it to represent these keys
byte[] desKeyData = new byte[8]; // Read 8 bytes of data from a file
byte[] tripleDesKeyData = new byte[24]; // Read 24 bytes of data from a file
SecretKey myDesKey = new SecretKeySpec(desKeyData, "DES");
SecretKey myTripleDesKey = new SecretKeySpec(tripleDesKeyData, "DESede");

Encryption and Decryption with Cipher

Once you have obtained an appropriate SecretKey object, the central class for
encryption and decryption is Cipher. Use it like this:

SecretKey key; // Obtain a SecretKey as shown earlier
byte[] plaintext; // The data to encrypt; initialized elsewhere

// Obtain an object to perform encryption or decryption
Cipher cipher = Cipher.getInstance("DESede"); // Triple-DES encryption
// Initialize the cipher object for encryption
cipher.init(Cipher.ENCRYPT_MODE, key);
// Now encrypt data
byte[] ciphertext = cipher.doFinal(plaintext);

// If we had multiple chunks of data to encrypt, we can do this
cipher.update(message1);
cipher.update(message2);
byte[] ciphertext = cipher.doFinal();

// We simply reverse things to decrypt
cipher.init(Cipher.DECRYPT_MODE, key);
byte[] decryptedMessage = cipher.doFinal(ciphertext);

292 | Chapter 5: The Java Platform

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

// To decrypt multiple chunks of data
byte[] decrypted1 = cipher.update(ciphertext1);
byte[] decrypted2 = cipher.update(ciphertext2);
byte[] decrypted3 = cipher.doFinal(ciphertext3);

Encrypting and Decrypting Streams

The Cipher class can also be used with CipherInputStream or CipherOutputStream
to encrypt or decrypt while reading or writing streaming data:

byte[] data; // The data to encrypt
SecretKey key; // Initialize as shown earlier
Cipher c = Cipher.getInstance("DESede"); // The object to perform encryption
c.init(Cipher.ENCRYPT_MODE, key); // Initialize it

// Create a stream to write bytes to a file
FileOutputStream fos = new FileOutputStream("encrypted.data");

// Create a stream that encrypts bytes before sending them to that stream
// See also CipherInputStream to encrypt or decrypt while reading bytes
CipherOutputStream cos = new CipherOutputStream(fos, c);

cos.write(data); // Encrypt and write the data to the file
cos.close(); // Always remember to close streams
java.util.Arrays.fill(data, (byte)0); // Erase the unencrypted data

Encrypted Objects

Finally, the javax.crypto.SealedObject class provides an especially easy way to
perform encryption. This class serializes a specified object and encrypts the
resulting stream of bytes. The SealedObject can then be serialized itself and trans-
mitted to a recipient. The recipient can retrieve the original object only if she
knows the required SecretKey:

Serializable o; // The object to be encrypted; must be Serializable
SecretKey key; // The key to encrypt it with
Cipher c = Cipher.getInstance("Blowfish"); // Object to perform encryption
c.init(Cipher.ENCRYPT_MODE, key); // Initialize it with the key
SealedObject so = new SealedObject(o, c); // Create the sealed object

// Object so is a wrapper around an encrypted form of the original object o;
// it can now be serialized and transmitted to another party.
// Here's how the recipient decrypts the original object
Object original = so.getObject(key); // Must use the same SecretKey

Miscellaneous Platform Features
The following sections detail important but miscellaneous features of the Java
platform, including properties, preferences, processes, and management and
instrumentation.

Miscellaneous Platform Features | 293

The Java
Platform

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Properties

java.util.Properties is a subclass of java.util.Hashtable, a legacy collections
class that predates the Collections API introduced in Java 1.2. A Properties object
maintains a mapping between string keys and string values and defines methods
that allow the mappings to be written to and read from a simple text file or (in
Java 5.0) an XML file. This makes the Properties class ideal for configuration and
user preference files. The Properties class is also used for the system properties
returned by System.getProperty():

import java.util.*;
import java.io.*;

// Note: many of these system properties calls throw a security exception if
// called from untrusted code such as applets.
String homedir = System.getProperty("user.home"); // Get a system property
Properties sysprops = System.getProperties(); // Get all system properties

// Print the names of all defined system properties
for(Enumeration e = sysprops.propertyNames(); e.hasMoreElements();)
 System.out.println(e.nextElement());

sysprops.list(System.out); // Here's an even easier way to list the properties

// Read properties from a configuration file
Properties options = new Properties(); // Empty properties list
File configfile = new File(homedir, ".config"); // The configuration file
try {
 options.load(new FileInputStream(configfile)); // Load props from the file
} catch (IOException e) { /* Handle exception here */ }

// Query a property ("color"), specifying a default ("gray") if undefined
String color = options.getProperty("color", "gray");

// Set a property named "color" to the value "green"
options.setProperty("color", "green");

// Store the contents of the Properties object back into a file
try {
 options.store(new FileOutputStream(configfile), // Output stream
 "MyApp Config File"); // File header comment text
} catch (IOException e) { /* Handle exception */ }

// In Java 5.0 properties can be written to or read from XML files
try {
 options.storeToXML(new FileOutputStream(configfile), // Output stream
 "MyApp Config File"); // Comment text
 options.loadFromXML(new FileInputStream(configfile)); // Read it back in
}
catch(IOException e) { /* Handle exception */ }
catch(InvalidPropertiesFormatException e) { /* malformed input */ }

294 | Chapter 5: The Java Platform

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Preferences

Java 1.4 introduced the Preferences API, which is specifically tailored for
working with user and systemwide preferences and is more useful than Proper-
ties for this purpose. The Preferences API is defined by the java.util.prefs
package. The key class in that package is Preferences. You can obtain a
Preferences object that contains user-specific preferences with the static method
Preferences.userNodeForPackage() and obtain a Preferences object that contains
systemwide preferences with Preferences.systemNodeForPackage(). Both
methods take a java.lang.Class object as their sole argument and return a
Preferences object shared by all classes in that package. (This means that the
preference names you use must be unique within the package.) Once you have a
Preferences object, use the get() method to query the string value of a named
preference, or use other type-specific methods such as getInt(), getBoolean(),
and getByteArray(). Note that to query preference values, a default value must
be passed for all methods. This default value is returned if no preference with
the specified name has been registered or if the file or database that holds the
preference data cannot be accessed. A typical use of Preferences is the
following:

package com.davidflanagan.editor;
import java.util.prefs.Preferences;

public class TextEditor {
 // Fields to be initialized from preference values
 public int width; // Screen width in columns
 public String dictionary; // Dictionary name for spell checking

 public void initPrefs() {
 // Get Preferences objects for user and system preferences for this package
 Preferences userprefs = Preferences.userNodeForPackage(TextEditor.class);
 Preferences sysprefs = Preferences.systemNodeForPackage(TextEditor.class);

 // Look up preference values. Note that you always pass a default value.
 width = userprefs.getInt("width", 80);
 // Look up a user preference using a system preference as the default
 dictionary = userprefs.get("dictionary",
 sysprefs.get("dictionary",
 "default_dictionary"));
 }
}

In addition to the get() methods for querying preference values, there are corre-
sponding put() methods for setting the values of named preferences:

// User has indicated a new preference, so store it
userprefs.putBoolean("autosave", false);

If your application wants to be notified of user or system preference changes
while the application is in progress, it may register a PreferenceChangeListener
with addPreferenceChangeListener(). A Preferences object can export the names
and values of its preferences as an XML file and can read preferences from such
an XML file. (See importPreferences(), exportNode(), and exportSubtree() in

Miscellaneous Platform Features | 295

The Java
Platform

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.pref.Preferences in the reference section.) Preferences objects exist
in a hierarchy that typically corresponds to the hierarchy of package names.
Methods for navigating this hierarchy exist but are not typically used by ordi-
nary applications.

Processes

Earlier in the chapter, we saw how easy it is to create and manipulate multiple
threads of execution running within the same Java interpreter. Java also has a
java.lang.Process class that represents an operating system process running
externally to the interpreter. A Java program can communicate with an external
process using streams in the same way that it might communicate with a server
running on some other computer on the network. Using a Process is always plat-
form-dependent and is rarely portable, but it is sometimes a useful thing to do:

// Maximize portability by looking up the name of the command to execute
// in a configuration file.
java.util.Properties config;
String cmd = config.getProperty("sysloadcmd");
if (cmd != null) {
 // Execute the command; Process p represents the running command
 Process p = Runtime.getRuntime().exec(cmd); // Start the command
 InputStream pin = p.getInputStream(); // Read bytes from it
 InputStreamReader cin = new InputStreamReader(pin); // Convert them to chars
 BufferedReader in = new BufferedReader(cin); // Read lines of chars
 String load = in.readLine(); // Get the command output
 in.close(); // Close the stream
}

In Java 5.0 the java.lang.ProcessBuilder class provides a more flexible way to
launch new processes than the Runtime.exec() method. ProcessBuilder allows
control of environment variables through a Map and makes it simple to set the
working directory. It also has an option to automatically redirect the standard
error stream of the processes it launches to the standard output stream, which
makes it much easier to read all output of a Process.

import java.util.Map;
import java.io.*

public class JavaShell {
 public static void main(String[] args) {
 // We use this to start commands
 ProcessBuilder launcher = new ProcessBuilder();
 // Our inherited environment vars. We may modify these below
 Map<String,String> environment = launcher.environment();
 // Our processes will merge error stream with standard output stream
 launcher.redirectErrorStream(true);
 // Where we read the user's input from
 BufferedReader console =
 new BufferedReader(new InputStreamReader(System.in));

 while(true) {
 try {

296 | Chapter 5: The Java Platform

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

 System.out.print("> "); // display prompt
 System.out.flush(); // force it to show
 String command = console.readLine(); // Read input

 if (command.equals("exit")) return; // Exit command

 else if (command.startsWith("cd ")) { // change directory
 launcher.directory(new File(command.substring(3)));
 }

 else if (command.startsWith("set ")) {// set environment var
 command = command.substring(4);
 int pos = command.indexOf('=');
 String name = command.substring(0,pos).trim();
 String var = command.substring(pos+1).trim();
 environment.put(name, var);
 }

 else { // Otherwise it is a process to launch
 // Break command into individual tokens
 String[] words = command.split(" ");
 launcher.command(words); // Set the command
 Process p = launcher.start(); // And launch a new process

 // Now read and display output from the process
 // until there is no more output to read
 BufferedReader output = new BufferedReader(
 new InputStreamReader(p.getInputStream()));
 String line;
 while((line = output.readLine()) != null)
 System.out.println(line);

 // The process should be done now, but wait to be sure.
 p.waitFor();
 }
 }
 catch(Exception e) {
 System.out.println(e);
 }
 }
 }
}

Management and Instrumentation

Java 5.0 includes the powerful JMX API for remote monitoring and management
of running applications. The full javax.management API is beyond the scope of this
book. The reference section does cover the java.lang.management package,
however: this package is an application of JMX for the monitoring and manage-
ment of the Java virtual machine itself. java.lang.instrument is another Java 5.0
package: it allows the definition of “agents” that can be used to instrument the
running JVM. In VMs that support it, java.lang.instrument can be used to rede-
fine class files as they are loaded to add profiling or coverage testing code, for

Miscellaneous Platform Features | 297

The Java
Platform

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

example. Class redefinition is beyond the scope of this chapter, but the following
code uses the new instrumentation and management features of Java 5.0 to deter-
mine resource usages of a Java program. The example also demonstrates the
Runtime.addShutdownHook() method, which registers code to be run when the VM
starts shutting down.

import java.lang.instrument.*;
import java.lang.management.*;
import java.util.List;
import java.io.*;

public class ResourceUsageAgent {
 // A Java agent class defines a premain() method to run before main()
 public static void premain(final String args, final Instrumentation inst) {
 // This agent simply registers a shutdown hook to run when the VM exits
 Runtime.getRuntime().addShutdownHook(new Thread() {
 public void run() {
 // This code runs when the VM exits
 try {
 // Decide where to send our output
 PrintWriter out;
 if (args != null && args.length() > 0)
 out = new PrintWriter(new FileWriter(args));
 else
 out = new PrintWriter(System.err);

 // Use java.lang.management to query peak thread usage
 ThreadMXBean tb = ManagementFactory.getThreadMXBean();
 out.printf("Current thread count: %d%n",
 tb.getThreadCount());
 out.printf("Peak thread count: %d%n",
 tb.getPeakThreadCount());

 // Use java.lang.management to query peak memory usage
 List<MemoryPoolMXBean> pools =
 ManagementFactory.getMemoryPoolMXBeans();
 for(MemoryPoolMXBean pool: pools) {
 MemoryUsage peak = pool.getPeakUsage();
 out.printf("Peak %s memory used: %,d%n",
 pool.getName(), peak.getUsed());
 out.printf("Peak %s memory reserved: %,d%n",
 pool.getName(), peak.getCommitted());
 }

 // Use the Instrumentation object passed to premain()
 // to get a list of all classes that have been loaded
 Class[] loaded = inst.getAllLoadedClasses();
 out.println("Loaded classes:");
 for(Class c : loaded) out.println(c.getName());

 out.close(); // close and flush the output stream
 }
 catch(Throwable t) {
 // Exceptions in shutdown hooks are ignored so

298 | Chapter 5: The Java Platform

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

 // we've got to print this out explicitly
 System.err.println("Exception in agent: " + t);
 }
 }
 });
 }
}

To monitor the resource usage of a Java program with this agent, you first must
compile the class normally. You then store the generated class files in a JAR file with
a manifest that specifies the class that contains the premain() method. Create a
manifest file that contains this line:

Premain-Class: ResourceUsageAgent

Create the JAR file with a command like this:

% jar cmf manifest agent.jar ResourceUsageAgent*.class

Finally, to use the agent, specify the JAR file and the agent arguments with the
-javaagent flag to the Java interpreter:

% java -javaagent:agent.jar=/tmp/usage.info my.java.Program

299

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Chapter 6Java Security

6
Java Security

Java programs can dynamically load Java classes from a variety of sources,
including untrusted sources, such as web sites reached across an insecure
network. The ability to create and work with such mobile code is one of the great
strengths and features of Java. To make it work successfully, however, Java puts
great emphasis on a security architecture that allows untrusted code to run safely,
without fear of damage to the host system.

The need for a security system in Java is most acutely demonstrated by
applets—miniature Java applications designed to be embedded in web pages.*
When a user visits a web page (with a Java-enabled web browser) that contains
an applet, the web browser downloads the Java class files that define that applet
and runs them. In the absence of a security system, an applet could wreak havoc
on the user’s system by deleting files, installing a virus, stealing confidential
information, and so on. Somewhat more subtly, an applet could take advantage
of the user’s system to forge email, generate spam, or launch hacking attempts
on other systems.

Java’s main line of defense against such malicious code is access control:
untrusted code is simply not given access to certain sensitive portions of the
core Java API. For example, an untrusted applet is not typically allowed to read,
write, or delete files on the host system or connect over the network to any
computer other than the web server from which it was downloaded. This
chapter describes the Java access control architecture and a few other facets of
the Java security system.

* Applets are documented in Java Foundation Classes in a Nutshell (O’Reilly) and are not covered
in this book. Still, they serve as good examples here.

300 | Chapter 6: Java Security

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Security Risks
Java has been designed from the ground up with security in mind; this gives it a
great advantage over many other existing systems and platforms. Nevertheless, no
system can guarantee 100% security, and Java is no exception.

The Java security architecture was designed by security experts and has been
studied and probed by many other security experts. The consensus is that the
architecture itself is strong and robust, theoretically without any security holes (at
least none that have been discovered yet). The implementation of the security
architecture is another matter, however, and there is a long history of security
flaws being found and patched in particular implementations of Java. For
example, in April 1999, a flaw was found in Sun’s implementation of the class
verifier in Java 1.1. Patches for Java 1.1.6 and 1.1.7 were issued and the problem
was fixed in Java 1.1.8. In August 1999, a severe flaw was found in Microsoft’s
Java Virtual Machine. Microsoft fixed the problem, and no longer distributes their
VM with the latest versions of their web browser.

In all likelihood, security flaws will continue to be discovered (and patched) in
Java VM implementations. Despite this, Java remains perhaps the most secure
platform currently available. There have been few, if any, reported instances of
malicious Java code exploiting security holes “in the wild.” For practical
purposes, the Java platform appears to be adequately secure, especially when
contrasted with some of the insecure and virus-ridden alternatives.

Java VM Security and Class File Verification
The lowest level of the Java security architecture involves the design of the Java
Virtual Machine and the byte codes it executes. The Java VM does not allow any
kind of direct access to individual memory addresses of the underlying system,
which prevents Java code from interfering with the native hardware and oper-
ating system. These intentional restrictions on the VM are reflected in the Java
language itself, which does not support pointers or pointer arithmetic. The
language does not allow an integer to be cast to an object reference or vice versa,
and there is no way whatsoever to obtain an object’s address in memory. Without
capabilities like these, malicious code simply cannot gain a foothold.

In addition to the secure design of the Virtual Machine instruction set, the VM
goes through a process known as byte-code verification whenever it loads an
untrusted class. This process ensures that the byte codes of a class (and their oper-
ands) are all valid; that the code never underflows or overflows the VM stack; that
local variables are not used before they are initialized; that field, method, and
class access control modifiers are respected; and so on. The verification step is
designed to prevent the VM from executing byte codes that might crash it or put it
into an undefined and untested state where it might be vulnerable to other attacks
by malicious code. Byte-code verification is a defense against malicious hand-
crafted Java byte codes and untrusted Java compilers that might output invalid
byte codes.

Access Control | 301

Java Security

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Authentication and Cryptography
The java.security package (and its subpackages) provides classes and interfaces
for authentication. As described in Chapter 5, this piece of the security architec-
ture allows Java code to create and verify message digests and digital signatures.
These technologies can ensure that any data (such as a Java class file) is authentic:
that it originates from the person who claims to have originated it and has not
been accidentally or maliciously modified in transit.

The Java Cryptography Extension, or JCE, consists of the javax.crypto package
and its subpackages. These packages define classes for encryption and decryption
of data. This is an important security-related feature for many applications, but is
not directly relevant to the basic problem of preventing untrusted code from
damaging the host system, so it is not discussed in this chapter.

Access Control
As we noted at the beginning of this chapter, the heart of the Java security architec-
ture is access control: untrusted code simply must not be granted access to the
sensitive parts of the Java API that would allow it to do malicious things. As we’ll
discuss in the following sections, the Java access control model evolved significantly
between Java 1.0 and Java 1.2. Since then, the access control model has been rela-
tively stable; it has not changed significantly since Java 1.2. The next sections
provide a brief history of the evolution of Java security as it developed from Java 1.0
to Java 1.2, which marked the last major changes to the security model.

Java 1.0: The Sandbox

In this first release of Java, all Java code installed locally on the system is trusted
implicitly. All code downloaded over the network, however, is untrusted and run in a
restricted environment playfully called “the sandbox.” The access control policies of
the sandbox are defined by the currently installed java.lang.SecurityManager
object. When system code is about to perform a restricted operation, such as reading
a file from the local filesystem, it first calls an appropriate method (such as
checkRead()) of the currently installed SecurityManager object. If untrusted code is
running, the SecurityManager throws a SecurityException that prevents the
restricted operation from taking place.

The most common user of the SecurityManager class is a Java-enabled web
browser, which installs a SecurityManager object to allow applets to run without
damaging the host system. The precise details of the security policy are an imple-
mentation detail of the web browser, of course, but applets are typically restricted
in the following ways:

• An applet cannot read, write, rename, or delete files. It cannot query the
length or modification date of a file or even check whether a given file exists.
Similarly, an applet cannot create, list, or delete a directory.

• An applet cannot connect to or accept a connection from any computer other
than the one it was downloaded from. It cannot use any privileged ports (i.e.,
ports below and including port 1024).

302 | Chapter 6: Java Security

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

• An applet cannot perform system-level functions, such as loading a native
library, spawning a new process, or exiting the Java interpreter. An applet
cannot manipulate any threads or thread groups, except for those it creates
itself. In Java 1.1 and later, applets cannot use the Java Reflection API to
obtain information about the nonpublic members of classes, except for
classes that were downloaded with the applet.

• An applet cannot access certain graphics- and GUI-related facilities. It can-
not initiate a print job or access the system clipboard or event queue. In addi-
tion, all windows created by an applet typically display a prominent visual
indicator that they are “insecure” to prevent an applet from spoofing the
appearance of some other application.

• An applet cannot read certain system properties, notably the user.home and
user.dir properties, that specify the user’s home directory and current work-
ing directory.

• An applet cannot circumvent these security restrictions by registering a new
SecurityManager object.

How the sandbox works

Suppose that an applet (or some other untrusted code running in the sandbox)
attempts to read the contents of the file /etc/passwd by passing this filename to the
FileInputStream() constructor. The programmers who wrote the FileInputStream
class were aware that the class provides access to a system resource (a file), so use
of the class should therefore be subject to access control. For this reason, they
coded the FileInputStream() constructor to use the SecurityManager class.

Every time FileInputStream() is called, it checks to see if a SecurityManager object
has been installed. If so, the constructor calls the checkRead() method of that
SecurityManager object, passing the filename (/etc/passwd, in this case) as the sole
argument. The checkRead() method has no return value; it either returns normally
or throws a SecurityException. If the method returns, the FileInputStream()
constructor simply proceeds with whatever initialization is necessary and returns.
Otherwise, it allows the SecurityException to propagate to the caller. When this
happens, no FileInputStream object is created, and the applet does not gain access
to the /etc/passwd file.

Java 1.1: Digitally Signed Classes

Java 1.1 retained the sandbox model of Java 1.0 but added the java.security
package and its digital signature capabilities. With these capabilities, Java classes
can be digitally signed and verified. Thus, web browsers and other Java installa-
tions can be configured to trust downloaded code that bears a valid digital
signature of a trusted entity. Such code is treated as if it were installed locally, so it
is given full access to the Java APIs. In this release, the javakey program manages
keys and digitally signs JAR files of Java code. Although Java 1.1 added the impor-
tant ability to trust digitally signed code that would otherwise be untrusted, it
sticks to the basic sandbox model: trusted code gets full access and untrusted
code gets totally restricted access.

Access Control | 303

Java Security

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Java 1.2: Permissions and Policies

Java 1.2 introduced substantial access control features into the Java security architec-
ture. These features are implemented by classes in the java.security package. The
Policy class is one of the most important: it defines a Java security policy. A Policy
object maps CodeSource objects to associated sets of Permission objects. A CodeSource
object represents the source of a piece of Java code, which includes both the URL of
the class file (and can be a local file) and a list of entities that have applied their digital
signatures to the class file. The Permission objects associated with a CodeSource in the
Policy define the permissions that are granted to code from a given source. Various
Java APIs include subclasses of Permission that represent different types of permis-
sions. These include java.lang.RuntimePermission, java.io.FilePermission, and
java.net.SocketPermission, for example.

Under this access control model, the SecurityManager class continues to be the
central class; access control requests are still made by invoking methods of a
SecurityManager. However, the default SecurityManager implementation delegates
most of those requests to an AccessController class that makes access decisions
based on the Permission and Policy architecture.

The Java 1.2 access control architecture has several important features:

• Code from different sources can be given different sets of permissions. In
other words, the architecture supports fine-grained levels of trust. Even
locally installed code can be treated as untrusted or partially untrusted.
Under this architecture, only system classes and standard extensions run as
fully trusted.

• It is no longer necessary to define a custom subclass of SecurityManager to
define a security policy. Policies can be configured by a system administrator
by editing a text file or using the policytool program, described in Chapter 8.

• The architecture is not limited to a fixed set of access control methods in the
SecurityManager class. Permission subclasses can be defined easily to govern
access to system resources (which might be exposed, for example, by stan-
dard extensions that include native code).

How policies and permissions work

Let’s return to the example of an applet that attempts to create a FileInputStream
to read the file /etc/passwd. In Java 1.2 and later, the FileInputStream()
constructor behaves exactly the same as it does in Java 1.0 and Java 1.1: it looks
to see if a SecurityManager is installed and, if so, calls its checkRead() method,
passing the name of the file to be read.

What changed as of Java 1.2 is the default behavior of the checkRead() method.
Unless a program has replaced the default security manager with one of its own,
the default implementation creates a FilePermission object to represent the access
being requested. This FilePermission object has a target of “/etc/passwd” and an
action of “read.” The checkRead() method passes this FilePermission object to the
static checkPermission() method of the java.security.AccessController class.

304 | Chapter 6: Java Security

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

It is the AccessController and its checkPermission() method that do the real work
of access control as of Java 1.2. The method determines the CodeSource of each
calling method and uses the current Policy object to determine the Permission
objects associated with it. With this information, the AccessController can deter-
mine whether read access to the /etc/passwd file should be allowed.

The Permission class represents both the permissions granted by a Policy and the
permissions requested by a method like the FileInputStream() constructor. When
requesting a permission, Java typically uses a FilePermission (or other Permission
subclass) with a very specific target, like “/etc/passwd”. When granting a permis-
sion, however, a Policy commonly uses a FilePermission object with a wildcard
target, such as “/etc/*”, to represent many files. One of the key features of a
Permission subclass such as FilePermission is that it defines an implies() method
that can determine whether permission to read “/etc/*” implies permission to read
“/etc/passwd”.

Security for Everyone
Programmers, system administrators, and end users all have different security
concerns and, thus, different roles to play in the Java security architecture.

Security for System Programmers

System programmers are the people who define new Java APIs that allow access to
sensitive system resources. These programmers are typically working with native
methods that have unprotected access to the system. They need to use the Java
access control architecture to prevent untrusted code from executing those native
methods. To do this, system programmers must carefully insert SecurityManager
calls at appropriate places in their code. A system programmer may choose to use
an existing Permission subclass to govern access to the system resources exposed
by her API, or she may decide to define a specialized subclass of Permission.

The system programmer carries a tremendous security burden: if she does not
perform appropriate access control checks in her code, she compromises the secu-
rity of the entire Java platform. The details are complex and are beyond the scope
of this book. Fortunately, however, system programming that involves native
methods is rare in Java; almost all of us are application programmers who can
simply rely on the existing APIs.

Security for Application Programmers

Programmers who use the core Java APIs and standard extensions but do not
define new extensions or write native methods can simply rely on the security
efforts of the system programmers who created those APIs. In other words, most
of us Java programmers can simply use the Java APIs and need not worry about
introducing security holes into the Java platform.

In fact, application programmers rarely have to use the access control architec-
ture. If you are writing Java code that may be run as untrusted code, you should
be aware of the restrictions placed on untrusted code by typical security policies.

Security for Everyone | 305

Java Security

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Keep in mind that some methods (such as methods that read or write files) can
throw SecurityException objects, but don’t feel you must write your code to catch
these exceptions. Often, the appropriate response to a SecurityException is to
allow it to propagate uncaught so that it terminates the application.

Sometimes, as an application programmer, you want to write an application (such
as an applet viewer) that can load untrusted classes and run them subject to access
control checks. To do this in Java 1.2 and later, you must first install a security
manager:

System.setSecurityManager(new SecurityManager());

You then use java.net.URLClassLoader to load the untrusted classes.
URLClassLoader assigns a default set of safe permissions to the classes it loads, but
in some cases you may want to modify the permissions granted to the loaded code
through the Policy and PermissionCollection classes.

Security for System Administrators

In Java 1.2 and later, system administrators are responsible for defining the
default security policy for the computers at their site. The default policy is stored
in the file lib/security/java.policy in the Java installation. A system administrator
can edit this text file by hand or use the policytool program from Sun to edit the
file graphically. policytool is the preferred way to define policies, so the syntax of
the underlying policy file is not documented in this book.

The default java.policy file defines a policy that is much like the policy of Java 1.0
and Java 1.1: system classes and installed extensions are fully trusted, while all
other code is untrusted and only allowed a few simple permissions. While this
default policy is adequate for many purposes, it may not be appropriate for all
sites. For example, at some organizations, it may be appropriate to grant extra
permissions to code downloaded from a secure intranet.

In order to define effective security policies, a system administrator must under-
stand the various Permission subclasses of the Java platform, the target and action
names they support, and the security implications of granting any particular
permission. These topics are explained well in a document titled “Permissions in
the Java 2 Standard Edition Development Kit (JDK),” which is available online at
http://java.sun.com/j2se/1.5.0/docs/guide/security/permissions.html.

Security for End Users

Most end users do not have to think about security at all: their Java programs
should simply run in a secure way with no intervention from them. Some
sophisticated end users may want to define their own security policies, however.
An end user can do this by running policytool himself to define personal policy
files that augment the system policy. The default personal policy is stored in a
file named .java.policy in the user’s home directory. By default, Java loads this
policy file and uses it to augment the system policy file.

306 | Chapter 6: Java Security

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

In Java 1.2 and later, a user can specify an additional policy file to use when
starting up the Java interpreter. To do so, you use the -D option to define the
java.security.policy property. For example:

C:\> java -Djava.security.policy=policyfile UntrustedApp

This line runs the class UntrustedApp after augmenting the default system and user
policies with the policy specified in the file or URL policyfile. To replace the
system and user policies instead of augmenting them, use a double equals sign in
the property specification:

C:\> java -Djava.security.policy==policyfile UntrustedApp

Note, however, that specifying a policy file is useful only if there is a
SecurityManager installed. If a user doesn’t trust an application, he presumably
doesn’t trust that application to voluntarily install its own security manager. In
this case, he can define the java.security.manager system property:

C:\> java -Djava.security.manager -Djava.security.policy=policyfile \
UntrustedApp

The value of this property does not matter; simply defining it is enough to tell the
Java interpreter to automatically install a default SecurityManager object that
subjects an application to the access control policies described in the system, user,
and java.security.policy policy files.

Permission Classes
Table 6-1 lists some important Permission subclasses defined by the core Java
platform and summarizes the permissions they represent. See the reference section
for more information on the individual classes. See http://java.sun.com/j2se/1.5.0/
docs/guide/security/permissions.html for a complete list and detailed description of
these permissions classes, along with their target and action names and a list of
methods and the permissions they require (this document is part of the standard
documentation bundle that can be downloaded along with the JDK).

Table 6-1. Java permission classes

Permission class Description

java.security.AllPermission An instance of this special permission class implies all other
permissions.

javax.sound.sampled.
AudioPermission

Controls the ability to play and record sound.

javax.security.auth.AuthPermission Controls access to authentication methods in
javax.security.auth and its subpackages.

java.awt.AWTPermission Controls access to sensitive methods in java.awt and its
subpackages.

java.io.FilePermission Governs access to the filesystem.

java.util.logging.
LoggingPermission

Controls the ability of a program to modify the logging
configuration.

java.net.NetPermission Governs access to networking-related resources such as
 stream handlers and HTTP authentication. See also
java.net.SocketPermission.

Permission Classes | 307

Java Security

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.PropertyPermission Governs access to system properties.

java.lang.reflect.
ReflectPermission

Governs access through the java.lang.reflect
package to classes and class members that would normally
be inaccessible.

java.lang.RuntimePermission Governs access to a number of methods and resources.
Many of the controlled methods are defined by
java.lang.System and java.lang.Runtime.

java.security.SecurityPermission Governs access to various security-related methods.

java.io.SerializablePermission Governs access to serialization-related methods.

java.net.SocketPermission Governs access to the network.

java.sql.SQLPermission Governs the ability to specify logging streams in the
java.sql JDBC API.

Table 6-1. Java permission classes (continued)

Permission class Description

308

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Chapter 7Java Conventions

7
Programming and
Documentation Conventions

This chapter explains a number of important and useful Java programming and
documentation conventions. It covers:

• General naming and capitalization conventions

• Portability tips and conventions

• Javadoc documentation comment syntax and conventions

• JavaBeans conventions

None of the conventions described here are mandatory. Following them,
however, will make your code easier to read and maintain, portable, and self-
documenting.

Naming and Capitalization Conventions
The following widely adopted naming conventions apply to packages, reference
types, methods, fields, and constants in Java. Because these conventions are
almost universally followed and because they affect the public API of the classes
you define, they should be followed carefully:

Packages
Ensure that your publicly visible package names are unique by prefixing them
with the inverted name of your Internet domain (e.g., com.davidflanagan.utils).
All package names should be lowercase. Packages of code used internally by
applications distributed in self-contained JAR files are not publicly visible and
need not follow this convention. It is common in this case to use the application
name as the package name or as a package prefix.

Reference types
A type name should begin with a capital letter and be written in mixed case
(e.g., String). If a class name consists of more than one word, each word
should begin with a capital letter (e.g., StringBuffer). If a type name, or one

Naming and Capitalization Conventions | 309

Java
Conventions

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

of the words of a type name, is an acronym, the acronym can be written in all
capital letters (e.g., URL, HTMLParser).

Since classes and enumerated types are designed to represent objects, you
should choose class names that are nouns (e.g., Thread, Teapot,
FormatConverter).

When an interface is used to provide additional information about the classes
that implement it, it is common to choose an interface name that is an adjec-
tive (e.g., Runnable, Cloneable, Serializable). Annotation types are also
commonly named in this way. When an interface works more like an abstract
superclass, use a name that is a noun (e.g., Document, FileNameMap,
Collection).

Methods
A method name always begins with a lowercase letter. If the name contains
more than one word, every word after the first begins with a capital letter (e.g.,
insert(), insertObject(), insertObjectAt()). Method names are typically
chosen so that the first word is a verb. Method names can be as long as is
necessary to make their purpose clear, but choose succinct names where
possible.

Fields and constants
Nonconstant field names follow the same capitalization conventions as
method names. If a field is a static final constant, it should be written in
uppercase. If the name of a constant includes more than one word, the words
should be separated with underscores (e.g., MAX_VALUE). A field name should
be chosen to best describe the purpose of the field or the value it holds.

The constants defined by enum types are also typically written in all capital
letters. Because other programming languages use lowercase or mixed case
for enumerated values, however, this convention is not as strong as the
convention for capital letters in the static final fields of classes and
interfaces.

Parameters
Method parameters follow the same capitalization conventions as noncon-
stant fields. The names of method parameters appear in the documentation
for a method, so you should choose names that make the purpose of the
parameters as clear as possible. Try to keep parameter names to a single word
and use them consistently. For example, if a WidgetProcessor class defines
many methods that accept a Widget object as the first parameter, name this
parameter widget or even w in each method.

Local variables
Local variable names are an implementation detail and never visible outside
your class. Nevertheless, choosing good names makes your code easier to
read, understand, and maintain. Variables are typically named following the
same conventions as methods and fields.

In addition to the conventions for specific types of names, there are conventions
regarding the characters you should use in your names. Java allows the $ char-
acter in any identifier, but, by convention, its use is reserved for synthetic names

310 | Chapter 7: Programming and Documentation Conventions

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

generated by source-code processors. (It is used by the Java compiler, for
example, to make inner classes work.) Also, Java allows names to use any alpha-
numeric characters from the entire Unicode character set. While this can be
convenient for non-English-speaking programmers, the use of Unicode characters
should typically be restricted to local variables, private methods and fields, and
other names that are not part of the public API of a class.

Portability Conventions and Pure Java Rules
Sun’s motto, or core value proposition, for Java is “Write once, run anywhere.”
Java makes it easy to write portable programs, but Java programs do not automat-
ically run successfully on any Java platform. The following tips help to avoid
portability problems. Portability rules like those listed here were the focus of Sun’s
now-defunct “100% Pure Java” certification program and branding campaign.

Native methods
Portable Java code can use any methods in the core Java APIs, including
methods implemented as native methods. However, portable code must not
define its own native methods. By their very nature, native methods must be
ported to each new platform, so they directly subvert the “Write once, run
anywhere” promise of Java.

The Runtime.exec() method
Calling the Runtime.exec() method to spawn a process and execute an
external command on the native system is rarely allowed in portable code.
This is because the native OS command to be executed is never guaranteed to
exist or behave the same way on all platforms. The only time it is legal to use
Runtime.exec() is when the user is allowed to specify the command to run,
either by typing the command at runtime or by specifying the command in a
configuration file or preferences dialog box.

The System.getenv() method
Using System.getenv() is nonportable. The method was deprecated but has
been reintroduced in Java 5.0.

Undocumented classes
Portable Java code must use only classes and interfaces that are a docu-
mented part of the Java platform. Most Java implementations ship with
additional undocumented public classes that are part of the implementation
but not part of the Java platform specification. Nothing prevents a program
from using and relying on these undocumented classes, but doing so is not
portable because the classes are not guaranteed to exist in all Java implemen-
tations or on all platforms.

The java.awt.peer package
The interfaces in the java.awt.peer package are part of the Java platform but
are documented for use by AWT implementors only. Applications that use
these interfaces directly are not portable.

Implementation-specific features
Portable code must not rely on features specific to a single implementation.
For example, Microsoft distributed a version of the Java runtime system that

Portability Conventions and Pure Java Rules | 311

Java
Conventions

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

included a number of additional methods that were not part of the Java plat-
form as defined by Sun. Any program that depends on such extensions is
obviously not portable to other platforms. Microsoft’s proprietary extension
of the Java platform resulted in legal action between Sun and Microsoft and
ultimately caused Microsoft to discontinue ongoing support for Java.

Implementation-specific bugs
Just as portable code must not depend on implementation-specific features, it
must not depend on implementation-specific bugs. If a class or method
behaves differently than the specification says it should, a portable program
cannot rely on this behavior, which may be different on different platforms,
and ultimately may be fixed.

Implementation-specific behavior
Sometimes different platforms and different implementations present
different behaviors, all of which are legal according to the Java specification.
Portable code must not depend on any one specific behavior. For example,
the Java specification does not indicate whether threads of equal priority
share the CPU or if one long-running thread can starve another thread at the
same priority. If an application assumes one behavior or the other, it may not
run properly on all platforms.

Standard extensions
Portable code can rely on standard extensions to the Java platform, but, if it
does so, it should clearly specify which extensions it uses and exit cleanly
with an appropriate error message when run on a system that does not have
the extensions installed.

Complete programs
Any portable Java program must be complete and self-contained: it must
supply all the classes it uses, except core platform and standard extension
classes.

Defining system classes
Portable Java code never defines classes in any of the system or standard
extension packages. Doing so violates the protection boundaries of those
packages and exposes package-visible implementation details.

Hardcoded filenames
A portable program contains no hardcoded file or directory names. This is
because different platforms have significantly different filesystem organiza-
tions and use different directory separator characters. If you need to work
with a file or directory, have the user specify the filename, or at least the base
directory beneath which the file can be found. This specification can be done
at runtime, in a configuration file, or as a command-line argument to the
program. When concatenating a file or directory name to a directory name,
use the File() constructor or the File.separator constant.

Line separators
Different systems use different characters or sequences of characters as line
separators. Do not hardcode \n, \r, or \r\n as the line separator in your
program. Instead, use the println() method of PrintStream or PrintWriter,
which automatically terminates a line with the line separator appropriate for

312 | Chapter 7: Programming and Documentation Conventions

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

the platform, or use the value of the line.separator system property. In Java
5.0 and later, you can also use the “%n” format string to printf() and
format() methods of java.util.Formatter and related classes.

Java Documentation Comments
Most ordinary comments within Java code explain the implementation details of
that code. By contrast, the Java language specification defines a special type of
comment known as a doc comment that serves to document the API of your code.
A doc comment is an ordinary multiline comment that begins with /** (instead of
the usual /*) and ends with */. A doc comment appears immediately before a type
or member definition and contains documentation for that type or member. The
documentation can include simple HTML formatting tags and other special
keywords that provide additional information. Doc comments are ignored by the
compiler, but they can be extracted and automatically turned into online HTML
documentation by the javadoc program. (See Chapter 8 for more information
about javadoc.) Here is an example class that contains appropriate doc comments:

/**
 * This immutable class represents <i>complex numbers</i>.
 *
 * @author David Flanagan
 * @version 1.0
 */
public class Complex {
 /**
 * Holds the real part of this complex number.
 * @see #y
 */
 protected double x;

 /**
 * Holds the imaginary part of this complex number.
 * @see #x
 */
 protected double y;

 /**
 * Creates a new Complex object that represents the complex number x+yi.
 * @param x The real part of the complex number.
 * @param y The imaginary part of the complex number.
 */
 public Complex(double x, double y) {
 this.x = x;
 this.y = y;
 }

 /**
 * Adds two Complex objects and produces a third object that represents
 * their sum.
 * @param c1 A Complex object
 * @param c2 Another Complex object

Java Documentation Comments | 313

Java
Conventions

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

 * @return A new Complex object that represents the sum of
 * <code>c1</code> and <code>c2</code>.
 * @exception java.lang.NullPointerException
 * If either argument is <code>null</code>.
 */
 public static Complex add(Complex c1, Complex c2) {
 return new Complex(c1.x + c2.x, c1.y + c2.y);
 }
}

Structure of a Doc Comment

The body of a doc comment should begin with a one-sentence summary of the
type or member being documented. This sentence may be displayed by itself as
summary documentation, so it should be written to stand on its own. The initial
sentence may be followed by any number of other sentences and paragraphs that
describe the class, interface, method, or field in full detail.

After the descriptive paragraphs, a doc comment can contain any number of other
paragraphs, each of which begins with a special doc-comment tag, such as
@author, @param, or @return. These tagged paragraphs provide specific informa-
tion about the class, interface, method, or field that the javadoc program displays
in a standard way. The full set of doc-comment tags is listed in the next section.

The descriptive material in a doc comment can contain simple HTML markup
tags, such as <i> for emphasis, <code> for class, method, and field names, and
<pre> for multiline code examples. It can also contain <p> tags to break the
description into separate paragraphs and , , and related tags to display
bulleted lists and similar structures. Remember, however, that the material you
write is embedded within a larger, more complex HTML document. For this
reason, doc comments should not contain major structural HTML tags, such as
<h2> or <hr>, that might interfere with the structure of the larger document.

Avoid the use of the <a> tag to include hyperlinks or cross-references in your doc
comments. Instead, use the special {@link} doc-comment tag, which, unlike the
other doc-comment tags, can appear anywhere within a doc comment. As
described in the next section, the {@link} tag allows you to specify hyperlinks to
other classes, interfaces, methods, and fields without knowing the HTML-struc-
turing conventions and filenames used by javadoc.

If you want to include an image in a doc comment, place the image file in a doc-
files subdirectory of the source code directory. Give the image the same name as
the class, with an integer suffix. For example, the second image that appears in
the doc comment for a class named Circle can be included with this HTML tag:

Because the lines of a doc comment are embedded within a Java comment, any
leading spaces and asterisks (*) are stripped from each line of the comment before
processing. Thus, you don’t need to worry about the asterisks appearing in the
generated documentation or about the indentation of the comment affecting the
indentation of code examples included within the comment with a <pre> tag.

314 | Chapter 7: Programming and Documentation Conventions

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Doc-Comment Tags

javadoc recognizes a number of special tags, each of which begins with an @ char-
acter. These doc-comment tags allow you to encode specific information into your
comments in a standardized way, and they allow javadoc to choose the appro-
priate output format for that information. For example, the @param tag lets you
specify the name and meaning of a single parameter for a method. javadoc can
extract this information and display it using an HTML <dl> list, an HTML
<table>, or however it sees fit.

The following doc-comment tags are recognized by javadoc; a doc comment
should typically use these tags in the order listed here:

@author name
Adds an “Author:” entry that contains the specified name. This tag should be
used for every class or interface definition but must not be used for indi-
vidual methods and fields. If a class has multiple authors, use multiple
@author tags on adjacent lines. For example:

@author David Flanagan
@author Paula Ferguson

List the authors in chronological order, with the original author first. If the
author is unknown, you can use “unascribed.” javadoc does not output
authorship information unless the -author command-line argument is
specified.

@version text
Inserts a “Version:” entry that contains the specified text. For example:

@version 1.32, 08/26/04

This tag should be included in every class and interface doc comment but
cannot be used for individual methods and fields. This tag is often used in
conjunction with the automated version-numbering capabilities of a version
control system, such as SCCS, RCS, or CVS. javadoc does not output version
information in its generated documentation unless the -version command-
line argument is specified.

@param parameter-name description
Adds the specified parameter and its description to the “Parameters:” section
of the current method. The doc comment for a method or constructor must
contain one @param tag for each parameter the method expects. These tags
should appear in the same order as the parameters specified by the method.
The tag can be used only in doc comments for methods and constructors.
You are encouraged to use phrases and sentence fragments where possible to
keep the descriptions brief. However, if a parameter requires detailed docu-
mentation, the description can wrap onto multiple lines and include as much
text as necessary. For readability in source-code form, consider using spaces
to align the descriptions with each other. For example:

@param o the object to insert
@param index the position to insert it at

Java Documentation Comments | 315

Java
Conventions

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

@return description
Inserts a “Returns:” section that contains the specified description. This tag
should appear in every doc comment for a method, unless the method returns
void or is a constructor. The description can be as long as necessary, but
consider using a sentence fragment to keep it short. For example:

@return <code>true</code> if the insertion is successful, or
 <code>false</code> if the list already contains the specified object.

@exception full-classname description
Adds a “Throws:” entry that contains the specified exception name and
description. A doc comment for a method or constructor should contain an
@exception tag for every checked exception that appears in its throws clause.
For example:

@exception java.io.FileNotFoundException
 If the specified file could not be found

The @exception tag can optionally be used to document unchecked excep-
tions (i.e., subclasses of RuntimeException) the method may throw, when
these are exceptions that a user of the method may reasonably want to catch.
If a method can throw more than one exception, use multiple @exception tags
on adjacent lines and list the exceptions in alphabetical order. The descrip-
tion can be as short or as long as necessary to describe the significance of the
exception. This tag can be used only for method and constructor comments.
The @throws tag is a synonym for @exception.

@throws full-classname description
This tag is a synonym for @exception.

@see reference
Adds a “See Also:” entry that contains the specified reference. This tag can
appear in any kind of doc comment. The syntax for the reference is
explained in “Cross-References in Doc Comments” later in this chapter.

@deprecated explanation
This tag specifies that the following type or member has been deprecated and
that its use should be avoided. javadoc adds a prominent “Deprecated” entry
to the documentation and includes the specified explanation text. This text
should specify when the class or member was deprecated and, if possible,
suggest a replacement class or member and include a link to it. For example:

@deprecated As of Version 3.0, this method is replaced
 by {@link #setColor}.

Although the Java compiler ignores all comments, it does take note of the
@deprecated tag in doc comments. When this tag appears, the compiler notes
the deprecation in the class file it produces. This allows it to issue warnings
for other classes that rely on the deprecated feature.

@since version
Specifies when the type or member was added to the API. This tag should be
followed by a version number or other version specification. For example:

@since JNUT 3.0

316 | Chapter 7: Programming and Documentation Conventions

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Every doc comment for a type should include an @since tag, and any
members added after the initial release of the type should have @since tags in
their doc comments.

@serial description
Technically, the way a class is serialized is part of its public API. If you write a
class that you expect to be serialized, you should document its serialization
format using @serial and the related tags listed below. @serial should appear
in the doc comment for any field that is part of the serialized state of a
Serializable class. For classes that use the default serialization mechanism,
this means all fields that are not declared transient, including fields declared
private. The description should be a brief description of the field and of its
purpose within a serialized object.

As of Java 1.4, you can also use the @serial tag at the class and package level
to specify whether a “serialized form page” should be generated for the class
or package. The syntax is:

@serial include
@serial exclude

@serialField name type description
A Serializable class can define its serialized format by declaring an array of
ObjectStreamField objects in a field named serialPersistentFields. For such
a class, the doc comment for serialPersistentFields should include an
@serialField tag for each element of the array. Each tag specifies the name,
type, and description for a particular field in the serialized state of the class.

@serialData description
A Serializable class can define a writeObject() method to write data other
than that written by the default serialization mechanism. An Externalizable
class defines a writeExternal() method responsible for writing the complete
state of an object to the serialization stream. The @serialData tag should be
used in the doc comments for these writeObject() and writeExternal()
methods, and the description should document the serialization format used
by the method.

Inline Doc Comment Tags

In addition to the preceding tags, javadoc also supports several inline tags that
may appear anywhere that HTML text appears in a doc comment. Because these
tags appear directly within the flow of HTML text, they require the use of curly
braces as delimiters to separate the tagged text from the HTML text. Supported
inline tags include the following:

{@link reference}
In Java 1.2 and later, the {@link} tag is like the @see tag except that instead of
placing a link to the specified reference in a special “See Also:” section, it
inserts the link inline. An {@link} tag can appear anywhere that HTML text
appears in a doc comment. In other words, it can appear in the initial descrip-
tion of the class, interface, method, or field and in the descriptions associated
with the @param, @returns, @exception, and @deprecated tags. The reference

Java Documentation Comments | 317

Java
Conventions

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

for the {@link} tag uses the syntax described next in “Cross-References in
Doc Comments.” For example:

@param regexp The regular expression to search for. This string
 argument must follow the syntax rules described for
 {@link java.util.regex.Pattern}.

{@linkplain reference}
In Java 1.4 and later, the {@linkplain} tag is just like the {@link} tag, except
that the text of the link is formatted using the normal font rather than the
code font used by the {@link} tag. This is most useful when reference
contains both a feature to link to and a label that specifies alternate text to
be displayed in the link. See “Cross-References in Doc Comments” for a
discussion of the feature and label portions of the reference argument.

{@inheritDoc}
When a method overrides a method in a superclass or implements a method
in an interface, you can omit a doc comment, and javadoc automatically
inherits the documentation from the overridden or implemented method. As
of Java 1.4, however, the {@inheritDoc} tag allows you to inherit the text of
individual tags. This tag also allows you to inherit and augment the descrip-
tive text of the comment. To inherit individual tags, use it like this:

@param index @{inheritDoc}
@return @{inheritDoc}

To inherit the entire doc comment, including your own text before and after
it, use the tag like this:

This method overrides {@link java.langObject#toString}, documented as follows:
<P>{@inheritDoc}
<P>This overridden version of the method returns a string of the form...

{@docRoot}
This inline tag takes no parameters and is replaced with a reference to the
root directory of the generated documentation. It is useful in hyperlinks that
refer to an external file, such as an image or a copyright statement:

This is Copyrighted material.

{@docRoot} was introduced in Java 1.3.

{@literal text}
This inline tag displays text literally, escaping any HTML in it and ignoring
any javadoc tags it may contain. It does not retain whitespace formatting but
is useful when used within a <pre> tag. {@literal} is available in Java 5.0 and
later.

{@code text}
This tag is like the {@literal} tag, but displays the literal text in code font.
Equivalent to:

<code>{@literal text}</code>

{@code} is available in Java 5.0 and later.

318 | Chapter 7: Programming and Documentation Conventions

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

{@value}
The {@value} tag, with no arguments, is used inline in doc comments for
static final fields and is replaced with the constant value of that field. This
tag was introduced in Java 1.4 and is used only for constant fields.

{@value reference}
This variant of the {@value} tag includes a reference to a static final field
and is replaced with the constant value of that field. Although the no-argu-
ment version of the {@value} tag was introduced in Java 1.4, this version is
available only in Java 5.0 and later. See “Cross-References in Doc
Comments” for the syntax of the reference.

Cross-References in Doc Comments

The @see tag and the inline tags {@link}, {@linkplain} and {@value} all encode a
cross-reference to some other source of documentation, typically to the documen-
tation comment for some other type or member.

reference can take three different forms. If it begins with a quote character, it is
taken to be the name of a book or some other printed resource and is displayed as
is. If reference begins with a < character, it is taken to be an arbitrary HTML
hyperlink that uses the <a> tag and the hyperlink is inserted into the output docu-
mentation as is. This form of the @see tag can insert links to other online
documents, such as a programmer’s guide or user’s manual.

If reference is not a quoted string or a hyperlink, it is expected to have the
following form:

feature label

In this case, javadoc outputs the text specified by label and encodes it as a hyper-
link to the specified feature. If label is omitted (as it usually is), javadoc uses the
name of the specified feature instead.

feature can refer to a package, type, or type member, using one of the following
forms:

pkgname
A reference to the named package. For example:

@see java.lang.reflect

pkgname.typename
A reference to a class, interface, enumerated type, or annotation type speci-
fied with its full package name. For example:

@see java.util.List

typename
A reference to a type specified without its package name. For example:

@see List

javadoc resolves this reference by searching the current package and the list of
imported classes for a class with this name.

Java Documentation Comments | 319

Java
Conventions

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

typename#methodname
A reference to a named method or constructor within the specified type. For
example:

@see java.io.InputStream#reset
@see InputStream#close

If the type is specified without its package name, it is resolved as described
for typename. This syntax is ambiguous if the method is overloaded or the
class defines a field by the same name.

typename#methodname(paramtypes)
A reference to a method or constructor with the type of its parameters explic-
itly specified. This is useful when cross-referencing an overloaded method.
For example:

@see InputStream#read(byte[], int, int)

#methodname
A reference to a nonoverloaded method or constructor in the current class or
interface or one of the containing classes, superclasses, or superinterfaces of
the current class or interface. Use this concise form to refer to other methods
in the same class. For example:

@see #setBackgroundColor

#methodname(paramtypes)
A reference to a method or constructor in the current class or interface or one
of its superclasses or containing classes. This form works with overloaded
methods because it lists the types of the method parameters explicitly. For
example:

@see #setPosition(int, int)

typename#fieldname
A reference to a named field within the specified class. For example:

@see java.io.BufferedInputStream#buf

If the type is specified without its package name, it is resolved as described
for typename.

#fieldname
A reference to a field in the current type or one of the containing classes,
superclasses, or superinterfaces of the current type. For example:

@see #x

Doc Comments for Packages

Documentation comments for classes, interfaces, methods, constructors, and
fields appear in Java source code immediately before the definitions of the features
they document. javadoc can also read and display summary documentation for
packages. Since a package is defined in a directory, not in a single file of source
code, javadoc looks for the package documentation in a file named package.html
in the directory that contains the source code for the classes of the package.

The package.html file should contain simple HTML documentation for the
package. It can also contain @see, @link, @deprecated, and @since tags. Since

320 | Chapter 7: Programming and Documentation Conventions

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

package.html is not a file of Java source code, the documentation it contains
should be HTML and should not be a Java comment (i.e., it should not be
enclosed within /** and */ characters). Finally, any @see and @link tags that
appear in package.html must use fully qualified class names.

In addition to defining a package.html file for each package, you can also provide
high-level documentation for a group of packages by defining an overview.html
file in the source tree for those packages. When javadoc is run over that source
tree, it uses overview.html as the highest level overview it displays.

JavaBeans Conventions
JavaBeans is a framework for defining reusable modular software components.
The JavaBeans specification includes the following definition of a bean: “a reus-
able software component that can be manipulated visually in a builder tool.” As
you can see, this is a rather loose definition; beans can take a variety of forms. The
most common use of beans is for graphical user interface components, such as
components of the java.awt and javax.swing packages, which are documented in
Java Foundation Classes in a Nutshell and Java Swing, both from O’Reilly.
Although all beans can be manipulated visually, this does not mean every bean
has its own visual representation. For example, the javax.sql.RowSet class (docu-
mented in O’Reilly’s Java Enterprise in a Nutshell) is a JavaBeans component that
represents the data resulting from a database query. There are no limits on the
simplicity or complexity of a JavaBeans component. The simplest beans are typi-
cally basic graphical interface components, such as a java.awt.Button object. But
even complex systems, such as an embeddable spreadsheet application, can func-
tion as individual beans.

The JavaBeans component model consists of the java.beans, the java.beans.
beancontext packages, and a number of important naming and API conventions to
which conforming beans and bean-manipulation tools must adhere. These conven-
tions are not part of the JavaBeans API itself but are in many ways more important to
bean developers than the API itself. The conventions are sometimes referred to as
design patterns; they specify such things as method names and signatures for prop-
erty accessor methods defined by a bean. If the class you are writing is not intended
to be a bean, suitable for visual manipulation in a builder tool, you don’t need to
follow these conventions. The JavaBeans conventions are widely used and well-
understood, however, and you can improve the usability and reusabilty of your code
by following the relevant ones. This is particularly true of the property accessor
method naming conventions.

We cover the conventions themselves later in this section. First, however, an over-
view of the JavaBeans model is in order.

Bean Basics

Any object that conforms to certain basic rules can be a bean; there is no Bean
class that all beans are required to subclass. Many beans are GUI components, but
it is also quite possible, and often useful, to write “invisible” beans that do not
have an onscreen appearance. (A bean having no onscreen appearance in a

JavaBeans Conventions | 321

Java
Conventions

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

finished application does not mean it cannot be visually manipulated by a
beanbox tool, however.)

A bean is characterized by the properties, events, and methods it exports. It is
these properties, events, and methods that an application designer manipulates in
a beanbox tool. A property is a piece of the bean’s internal state that can be
programmatically set and/or queried, usually through a standard pair of get and
set accessor methods.

A bean communicates with the application in which it is embedded as well as with
other beans by generating events. The JavaBeans API uses the same event model that
AWT and Swing components use. The model is based on the java.util.EventObject
class and the java.util.EventListener interface; it is described in detail in Java
Foundation Classes in a Nutshell (O’Reilly). In brief, the event model works like this:

• A bean defines an event if it provides add and remove methods for registering
and deregistering listener objects for that event.

• An application that wants to be notified when an event of that type occurs
uses these methods to register an event listener object of the appropriate type.

• When the event occurs, the bean notifies all registered listeners by passing an
event object that describes the event to a method defined by the event lis-
tener interface.

A unicast event is a rare kind of event for which there can be only a single regis-
tered listener object. The add registration method for a unicast event throws a
TooManyListenersException if an attempt is made to register more than a single
listener.

The methods exported by a bean are simply any public methods defined by the
bean, excluding those methods that get and set property values and register and
remove event listeners.

In addition to the regular sort of properties described earlier, the JavaBeans API also
supports several specialized property subtypes. An indexed property is a property that
has an array value, as well as getter and setter methods that access both individual
elements of the array and the entire array. A bound property is one that sends a
PropertyChangeEvent to any interested PropertyChangeListener objects whenever
the value of the property changes. A constrained property is one that can have any
changes vetoed by any interested listener. When the value of a constrained property
of a bean changes, the bean must send out a PropertyChangeEvent to the list of inter-
ested VetoableChangeListener objects. If any of these objects throws a
PropertyVetoException, the property value is not changed, and the
PropertyVetoException is propagated back to the property setter method.

Bean Classes

A bean class itself must adhere to the following conventions:

Class name
There are no restrictions on the class name of a bean.

Superclass
A bean can extend any other class. Beans are often AWT or Swing compo-
nents, but there are no restrictions.

322 | Chapter 7: Programming and Documentation Conventions

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Instantiation
A bean should provide a no-parameter constructor so bean manipulation
tools can easily instantiate the bean.

Properties

A bean defines a property p of type T if it has accessor methods that follow these
patterns (if T is boolean, a special form of getter method is allowed):

Getter
public T getP()

Boolean getter
public boolean isP()

Setter
public void setP(T)

Exceptions
Property accessor methods can throw any type of checked or unchecked
exceptions.

Indexed Properties

An indexed property is a property of array type that provides accessor methods
that get and set the entire array as well as methods that get and set individual
elements of the array. A bean defines an indexed property p of type T[] if it
defines the following accessor methods:

Array getter
public T[] getP()

Element getter
public T getP(int)

Array setter
public void setP(T[])

Element setter
public void setP(int,T)

Exceptions
Indexed property accessor methods can throw any type of checked or
unchecked exceptions. They should throw an ArrayIndexOutOfBoundsException
if the supplied index is out of bounds.

Bound Properties

A bound property is one that generates a PropertyChangeEvent when its value
changes. Here are the conventions for a bound property:

Accessor methods
The getter and setter methods for a bound property follow the same conven-
tions as a regular property.

JavaBeans Conventions | 323

Java
Conventions

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Listener registration
A bean that defines one or more bound properties must define a pair of
methods for the registration of listeners that are notified when any bound
property value changes. The methods must have these signatures:

public void addPropertyChangeListener(PropertyChangeListener)
public void removePropertyChangeListener(PropertyChangeListener)

Named property listener registration
A bean can optionally provide additional methods that allow event listeners
to be registered for changes to a single bound property value. These methods
are passed the name of a property and have the following signatures:

public void addPropertyChangeListener(String, PropertyChangeListener)
public void removePropertyChangeListener(String, PropertyChangeListener)

Per-property listener registration
A bean can optionally provide additional event listener registration methods
that are specific to a single property. For a property p, these methods have the
following signatures:

public void addPListener(PropertyChangeListener)
public void removePListener(PropertyChangeListener)

Methods of this type allow a beanbox to distinguish a bound property from
an unbound property.

Notification
When the value of a bound property changes, the bean should update its
internal state to reflect the change and then pass a PropertyChangeEvent to the
propertyChange() method of every PropertyChangeListener object registered
for the bean or the specific bound property.

Support
java.beans.PropertyChangeSupport is a helpful class for implementing bound
properties.

Constrained Properties

A constrained property is one for which any changes can be vetoed by registered
listeners. Most constrained properties are also bound properties. Here are the
conventions for a constrained property:

Getter
The getter method for a constrained property is the same as the getter
method for a regular property.

Setter
The setter method of a constrained property throws a PropertyVetoException
if the property change is vetoed. For a property p of type T, the signature
looks like this:

public void setP(T) throws PropertyVetoException

Listener registration
A bean that defines one or more constrained properties must define a pair of
methods for the registration of listeners that are notified when any

324 | Chapter 7: Programming and Documentation Conventions

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

constrained property value changes. The methods must have these
signatures:

public void addVetoableChangeListener(VetoableChangeListener)
public void removeVetoableChangeListener(VetoableChangeListener)

Named property listener registration
A bean can optionally provide additional methods that allow event listeners
to be registered for changes to a single constrained property value. These
methods are passed the name of a property and have the following signatures:

public void addVetoableChangeListener(String, VetoableChangeListener)
public void removeVetoableChangeListener(String, VetoableChangeListener)

Per-property listener registration
A bean can optionally provide additional listener registration methods that
are specific to a single constrained property. For a property p, these methods
have the following signatures:

public void addPListener(VetoableChangeListener)
public void removePListener(VetoableChangeListener)

Notification
When the setter method of a constrained property is invoked, the bean must
generate a PropertyChangeEvent that describes the requested change and pass
that event to the vetoableChange() method of every VetoableChangeListener
object registered for the bean or the specific constrained property. If any
listener vetoes the change by throwing a PropertyVetoException, the bean must
send out another PropertyChangeEvent to revert the property to its original
value. It should then throw a PropertyVetoException itself. If, on the other
hand, the property change is not vetoed, the bean should update its internal
state to reflect the change. If the constrained property is also a bound property,
the bean should notify PropertyChangeListener objects at this point.

Support
java.beans.VetoableChangeSupport is a helpful class for implementing
constrained properties.

Events

In addition to PropertyChangeEvent events generated when bound and constrained
properties are changed, a bean can generate other types of events. An event named
E should follow these conventions:

Event class
The event class should directly or indirectly extend java.util.EventObject
and should be named EEvent.

Listener interface
The event must be associated with an event listener interface that extends
java.util.EventListener and is named EListener.

Listener methods
The event listener interface can define any number of methods that take a
single argument of type EEvent and return void.

JavaBeans Conventions | 325

Java
Conventions

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Listener registration
The bean must define a pair of methods for registering event listeners that
want to be notified when an E event occurs. The methods should have the
following signatures:

public void addEListener(EListener)
public void removeEListener(EListener)

Unicast events
A unicast event allows only one listener object to be registered at a single
time. If E is a unicast event, the listener registration method should have this
signature:

public void addEListener(EListener) throws TooManyListenersException

326

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Chapter 8Java Tools

8
Java Development Tools

Sun’s implementation of Java includes a number of tools for Java developers.
Chief among these are the Java interpreter and the Java compiler, of course, but
there are a number of others as well. This chapter documents most tools shipped
with the JDK. Notable omissions are the RMI and IDL tools that are specific to
enterprise programming and which are documented in Java Enterprise in a
Nutshell (O’Reilly).

The tools documented here are part of Sun’s development kit; they are implemen-
tation details and not part of the Java specification itself. If you are using a Java
development environment other than Sun’s JDK, you should consult your
vendor’s tool documentation.

Some examples in this chapter use Unix conventions for file and path separators.
If Windows is your development platform, change forward slashes in filenames to
backward slashes, and colons in path specifications to semicolons.

apt Annotation Processing Tool

Synopsis
apt [options] sourcefiles

Description
apt reads and parses the specified sourcefiles. Any annotations it finds are passed to
appropriate annotation processor factory objects, which can use the annotations to
produce auxiliary source or resource files based on annotation content. apt next
compiles sourcefiles and generated files.

Annotation processor classes and factory classes are defined with the com.sun.mirror.apt
API and other subpackages of com.sun.mirror.

extcheck | 327

Java Tools

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Options
apt shares several options with javac. If a command-line argument begins with @, apt
treats it as a file and reads options and source files from that specified file. See javac for
more on this.

-Aname=value
Passes the name=value pair as an argument to annotation processors.

-cp path

-classpath path
Sets the classpath. See javac.

-d dir
The directory under which to place class files. See javac.

-factory classname
Explicitly specifies the class name of the annotation processor factory to use.

-factorypath path
A path to search for annotation processor factories instead of searching the
classpath.

-help
Prints usage information and exits.

-nocompile
Tells apt not to compile the sourcefiles or any generated files.

-print
Simply parses the specified sourcefiles and prints a synopsis of the types they
define. Does not process annotations or compile any files.

-s dir
Specifies the root directory beneath which generated source files will be stored.

-source version
Specifies what version of the language to accept. See javac.

-version
Prints apt version information.

-X
Displays information about nonstandard options.

See also javac, Chapter 4

extcheck JAR Version Conflict Utility

Synopsis
extcheck [-verbose] jarfile

Description
extcheck checks to see if the extension contained in the specified jarfile (or a newer
version of that extension) has already been installed on the system. It does this by
reading the Specification-Title and Specification-Version manifest attributes from
the specified jarfile and from all of the JAR files found in the system extensions
directory.

328 | Chapter 8: Java Development Tools

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

extcheck is designed for use in automated installation scripts. Without the -verbose
option, it does not print the results of its check. Instead, it sets its exit code to 0 if the
specified extension does not conflict with any installed extensions and can be safely
installed. It sets its exit code to a nonzero value if an extension with the same name is
already installed and has a specification version number equal to or greater than the
version of the specified file.

Options
-verbose

Lists the installed extensions as they are checked and displays the results of the
check.

See also jar

jarsigner JAR Signing and Verification Tool

Synopsis
jarsigner [options] jarfile signer
jarsigner -verify jarfile

Description
jarsigner adds a digital signature to the specified jarfile, or, if the -verify option is
specified, it verifies the digital signature or signatures already attached to the JAR file.
The specified signer is a case-insensitive nickname or alias for the entity whose signa-
ture is to be used. The specified signer name is used to look up the private key that
generates the signature.

When you apply your digital signature to a JAR file, you are implicitly vouching for the
contents of the archive. You are offering your personal word that the JAR file contains
only nonmalicious code, files that do not violate copyright laws, and so forth. When
you verify a digitally signed JAR file, you can determine who the signer or signers of
the file are and (if the verification succeeds) that the contents of the JAR file have not
been changed, corrupted, or tampered with since the signature or signatures were
applied. Verifying a digital signature is entirely different from deciding whether or not
you trust the person or organization whose signature you verified.

jarsigner and the related keytool program replace the javakey program of Java 1.1.

Options
jarsigner defines a number of options, many of which specify how a private key is to
be found for the specified signer. Most of these options are unnecessary when using
the -verify option to verify a signed JAR file:

-certs
If this option is specified along with either the -verify or -verbose option, it
causes jarsigner to display details of the public key certificates associated with the
signed JAR file.

-Jjavaoption
Passes the specified javaoption directly to the Java interpreter.

jar | 329

Java Tools

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

-keypass password
Specifies the password that encrypts the private key of the specified signer. If this
option is not specified, jarsigner prompts you for the password.

-keystore url
A keystore is a file that contains keys and certificates. This option specifies the
filename or URL of the keystore in which the private and public key certificates of
the specified signer are looked up. The default is the file named .keystore in the
user’s home directory (the value of the system property user.home). This is also
the default location of the keystore managed by keytool.

-sigfile basename
Specifies the base names of the .SF and .DSA files added to the META-INF/ direc-
tory of the JAR file. If you leave this option unspecified, the base filename is
chosen based on the signer name.

-signedjar outputfile
Specifies the name for the signed JAR file created by jarsigner. If this option is not
specified, jarsigner overwrites the jarfile specified on the command line.

-storepass password
Specifies the password that verifies the integrity of the keystore (but does not
encrypt the private key). If this option is omitted, jarsigner prompts you for the
password.

-storetype type
Specifies the type of keystore specified by the -keystore option. The default is the
system-default keystore type, which on most systems is the Java Keystore type,
known as JKS. If you have the Java Cryptography Extension installed, you may
want to use a JCEKS keystore instead.

-verbose
Displays extra information about the signing or verification process.

-verify
Specifies that jarsigner should verify the specified JAR file rather than sign it.

See also jar, keytool, javakey

jar Java Archive Tool

Synopsis
jar c|t|u|x[f][m][M][0][v] [jar-file] [manifest] [-C directory] [input-files]
jar i [jar-file]

Description
jar is a tool that can create and manipulate Java Archive (JAR) files. A JAR file is a ZIP
file that contains Java class files, auxiliary resource files required by those classes, and
optional meta-information. This meta-information includes a manifest file that lists the
contents of the JAR archive and provides auxiliary information about each file.

The jar command can create JAR files, list the contents of JAR files, and extract files
from a JAR archive. In Java 1.2 and later, it can also add files to an existing archive or
update the manifest file of an archive. In Java 1.3 and later, jar can also add an index
entry to a JAR file.

330 | Chapter 8: Java Development Tools

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

The syntax of the jar command is reminiscent of the Unix tar (tape archive) command.
Most options to jar are specified as a block of concatenated letters passed as a single
argument rather than as individual command-line arguments. The first letter of the
first argument specifies what action jar is to perform; it is required. Other letters are
optional. The various file arguments depend on which letters are specified.

As in javac, any command-line argument that begins with @ is taken to be the name of
a file that contains options or filenames.

Command options
The first letter of the first option to jar specifies the basic operation jar is to perform.
The available options are:

c Creates a new JAR archive. A list of input files and/or directories must be speci-
fied as the final arguments to jar. The newly created JAR file has a META-INF/
MANIFEST.MF file as its first entry. This automatically created manifest lists the
contents of the JAR file and contains a message digest for each file.

i Indexes the contents of this JAR file as well as the contents of all JAR files it refers
to in the Class-Path manifest attribute. The resulting index is stored in the JAR
file as META-INF/INDEX.LIST and can be used by a Java interpreter or applet
viewer to optimize its class and resource lookup algorithm and avoid down-
loading unnecessary JAR files. This i option must be followed by the name of the
JAR file to be indexed. No other options are allowed. Java 1.3 and later.

t Lists the contents of a JAR archive.

u Updates the contents of a JAR archive. Any files listed on the command line are
added to the archive. When used with the m option, this adds the specified mani-
fest information to the JAR file. Java 1.2 and later.

x Extracts the contents of a JAR archive. The files and directories specified on the
command line are extracted and created in the current working directory. If no file or
directory names are specified, all the files and directories in the JAR file are extracted.

Modifier options
Each of the four command specifier letters can be followed by additional letters that
provide further detail about the operation to be performed:

f Indicates that jar is to operate on a JAR file whose name is specified on the
command line. If this option is not present, jar reads a JAR file from standard
input and/or writes a JAR file to standard output. If the f option is present, the
command line must contain the name of the JAR file to operate on.

m When jar creates or updates a JAR file, it automatically creates (or updates) a
manifest file named META-INF/MANIFEST.MF in the JAR archive. This default
manifest simply lists the contents of the JAR file. Many JAR files require addi-
tional information to be specified in the manifest; the m option tells the jar
command that a manifest template is specified on the command line. jar reads
this manifest file and stores all the information it contains into the META-INF/
MANIFEST.MF file it creates. This m option should be used only with the c or u
commands, not with the t or x commands.

M Used with the c and u commands to tell jar not to create a default manifest file.

v Tells jar to produce verbose output.

0 Used with the c and u commands to tell jar to store files in the JAR archive without
compressing them. Note that this option is the digit zero, not the letter O.

jar | 331

Java Tools

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Files
The first option to jar consists of an initial command letter and various option letters.
This first option is followed by a list of files:

jar-file
If the first option contains the letter f, that option must be followed by the name
of the JAR file to create or manipulate.

manifest-file
If the first option contains the letter m, that option must be followed by the name
of the file that contains manifest information. If the first option contains both the
letters f and m, the JAR and manifest files should be listed in the same order the f
and m options appear. jar automatically creates a manifest for the JAR file it
creates unless the M option is specified. The manifest-file specified with the m
option should contain additional manifest entries to be placed in the manifest in
addition to the automatically generated entries.

files
The list of one or more files and/or directories to be inserted into or extracted
from the JAR archive.

Additional options
In addition to all the options listed previously, jar also supports the following:

-C dir
Used within the list of files to process; it tells jar to change to the specified dir
while processing the subsequent files and directories. The subsequent file and
directory names are interpreted relative to dir and are inserted into the JAR
archive without dir as a prefix. Any number of -C options can be used; each
remains in effect until the next is encountered. The directory specified by a -C
option is interpreted relative to the current working directory, not the directory
specified by the previous -C option. Java 1.2 and later.

-Jjavaopt
Passes the option javaopt to the Java interpreter.

Examples
The jar command has a confusing array of options, but, in most cases, its use is quite
simple. To create a simple JAR file that contains all the class files in the current direc-
tory and all files in a subdirectory called images, you can type:

% jar cf my.jar *.class images

To verbosely list the contents of a JAR archive:

% jar tvf your.jar

To extract the manifest file from a JAR file for examination or editing:

% jar xf the.jar META-INF/MANIFEST.MF

To update the manifest of a JAR file:

% jar ufm my.jar manifest.template

See also jarsigner

332 | Chapter 8: Java Development Tools

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java The Java Interpreter

Synopsis
java [interpreter-options] classname [program-arguments]
java [interpreter-options] -jar jarfile [program-arguments]

Description
java is the Java byte-code interpreter; it runs Java programs. The program to be run is
the class specified by classname. This must be a fully qualified name: it must include
the package name of the class but not the .class file extension. For example:

% java david.games.Checkers
% java Test

The specified class must define a main() method with exactly the following signature:

public static void main(String[] args)

This method serves as the program entry point: the interpreter begins execution here.

In Java 1.2 and later, a program can be packaged in an executable JAR file. To run a
program packaged in this fashion, use the -jar option to specify the JAR file. The
manifest of an executable JAR file must contain a Main-Class attribute that specifies
which class within the JAR file contains the main() method at which the interpreter is
to begin execution.

Any command-line options that precede the name of the class or JAR file to execute
are options to the Java interpreter itself. Any options that follow the class name or JAR
filename are options to the program; they are ignored by the Java interpreter and
passed as an array of strings to the main() method of the program.

The Java interpreter runs until the main() method exits, and any threads (except for
threads marked as daemon threads) created by the program have also exited.

Interpreter versions
The java program is the basic version of the Java interpreter. In addition to this
program, however, there are several other versions of the Java interpreter. Each of
these versions is similar to java but has a specialized function. This list includes all the
interpreter versions, including those that are no longer in use.

java
This is the basic version of the Java interpreter; it is usually the correct one to use.

javaw
This version of the interpreter is included only on Windows platforms. Use javaw
when you want to run a Java program (from a script, for example) without forcing
a console window to appear.

Client or Server VM
Sun’s “HotSpot” virtual machine comes in two versions: one is tuned for use with
short-lived client applications and one is for use with long-running server code.
As of Java 1.4, you can select the server version of the VM with the -server
option. You can specify the client VM (which is the default) with the -client
option. In Java 5.0, the interpreter automatically enters server mode if it detects
that it is running on “server-class” hardware (typically a computer with multiple
CPUs).

java | 333

Java Tools

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Legacy interpreter versions

oldjava
This version of the interpreter was included in Java 1.2 and Java 1.3 for compati-
bility with the Java 1.1 interpreter. It loaded classes using the Java 1.1 class-
loading scheme. Very few Java applications needed to use this version of the inter-
preter, and it was removed in Java 1.4.

oldjavaw
In Java 1.2 and 1.3, this version of the interpreter, included only on Windows
platforms, combined the features of oldjava and javaw.

java_g
In Java 1.0 and Java 1.1, java_g was a debugging version of the Java interpreter. It
included a few specialized command-line options. Windows platforms also had a
javaw_g program. java_g is not included in Java 1.2 or later versions.

Classic VM
In Java 1.3, you could use the -classic option to specify that you wanted to use
the “Classic VM” (essentially the same as the Java 1.2 VM) instead of the HotSpot
VM (which uses incremental compilation). This option was removed in Java 1.4.

Just-in-time compiler
In Java 1.2 and Java 1.3 when you specified the -classic option, the Java inter-
preter used a just-in-time compiler (if one were available for your platform). A JIT
converts Java byte codes to native machine instructions at runtime and signifi-
cantly speeds up the execution of a typical Java program. If you do not want to
use the JIT, you can disable it by setting the JAVA_COMPILER environment variable
to “NONE” or the java.compiler system property to “NONE” using the -D
option:

% setenv JAVA_COMPILER NONE // Unix csh syntax
% java -Djava.compiler=NONE MyProgram

If you want to use a different JIT compiler implementation, set the environment
variable or system property to the name of the desired implementation. This envi-
ronment variable and property are no longer used as of Java 1.4, which uses the
HotSpot VM, which includes efficient JIT technology.

Threading systems
On Solaris and related Unix platforms, you had a choice of the type of threads
used by the Java 1.2 interpreter and the “Classic VM” of Java 1.3. To use native
OS threads, you could specify -native. To use nonnative, or green, threads (the
default), you could specify -green. In Java 1.3, the default “Client VM” used native
threads. Specifying -green or -native in Java 1.3 implicitly specified -classic as
well. These options are no longer supported (or necessary) as of Java 1.4.

Common options
The following options are the most commonly used.

-classpath path
Specifies the directories and JAR files java searches when trying to load a class. In
Java 1.2 and later, this option specifies only the location of application classes. In
Java 1.0 and 1.1, and with the oldjava interpreter, this option specified the loca-
tion of system classes, extension classes, and application classes.

-cp
A synonym for -classpath. Java 1.2 and later.

334 | Chapter 8: Java Development Tools

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

-Dpropertyname=value
Defines propertyname to equal value in the system properties list. Your Java
program can then look up the specified value by its property name. You can
specify any number of -D options. For example:

% java -Dawt.button.color=gray -Dmy.class.pointsize=14 my.class

-fullversion
Prints the full Java version string, including build number, and exits. Compare
with -version.

-help, -?
Prints a usage message and exits. See also -X.

-jar jarfile
Runs the specified executable jarfile. The manifest of the specified jarfile must
contain a Main-Class attribute that identifies the class with the main() method at
which program execution is to begin. Java 1.2 and later.

-showversion
Works like the -version option, except that the interpreter continues running
after printing the version information. Java 1.3 and later.

-version
Prints the version of the Java interpreter and exits.

-X
Displays usage information for the nonstandard interpreter options (those begin-
ning with -X) and exits. See also -help. Java 1.2 and later.

-Xbootclasspath:path
Specifies a search path consisting of directories, ZIP files, and JAR files the java
interpreter should use to look up system classes. Use of this option is very rare.
Java 1.2 and later.

-Xbootclasspath/a:path
Appends the specified path to the system classpath. Java 1.3 and later.

-Xbootclasspath/p:path
Prepends the specified path to the system boot classpath. Java 1.3 and later.

Assertion options
The following options specify whether and where assertions are tested. These options
were added in Java 1.4.

-disableassertions[:where]
Disables assertions. It is new in Java 1.4 and can be abbreviated -da. Used alone,
it disables all assertions (except those in the system classes), which is the default.
To disable assertions in a single class, follow the option with a colon and the fully
qualified class name. To disable assertions in an entire package (and all of its
subpackages), follow this option with a colon, the name of the package, and three
dots. See also -enableassertions and -disablesystemassertions.

-da[:where]
Disables assertions. See -disableassertions.

-disablesystemassertions
Disables assertions in all system classes (which is the default). It can be abbrevi-
ated -dsa and takes no options.

-dsa
An abbreviation for -disablesystemassertions.

java | 335

Java Tools

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

-enableassertions[:where]
Enables assertions. This option can be abbreviated -ea. Used alone, it enables all
assertions (except in system classes). To enable assertions in a single class, follow the
option with a colon and the full class name. To enable assertions in an entire
package (and its subpackages), follow the option with a colon, the package name,
and three dots. See also -disableassertions and -enablesystemassertions.

-ea[:where]
Enables assertions. An abbreviation for -enableassertions.

-enablesystemassertions
Enables assertions in all system classes. May be abbreviated -esa.

-esa
An abbreviation for -enablesystemassertions.

Performance tuning options
The following options select which version of the VM is to be run and fine-tune its
memory allocation, garbage collection, and incremental compilation. Options begin-
ning with -X are nonstandard and may change from release to release.

-classic
Runs the “Classic VM” instead of the default high-performance “Client VM.”
Java 1.3 only.

-client
Optimizes the incremental compilation of the HotSpot VM for typical client-side
applications. This option typically defers some compilation to favor quicker
application launch times. Java 1.4 and later. See also the -server option.

-d32
Runs in 32-bit mode. This option is valid in Java 1.4 and later but is currently
implemented only for Solaris platforms.

-d64
Runs in 64-bit mode. This option is valid in Java 1.4 and later but is currently
implemented only for Solaris platforms.

-green
Selects nonnative, or green, threads on operating systems such as Solaris and
Linux that support multiple styles of threading. This is the default in Java 1.2. In
Java 1.3, using this option also selects the -classic option. See also -native. Java
1.2 and 1.3 only.

-native
Selects native threads, instead of the default green threads, on operating systems
such as Solaris that support multiple styles of threading. Using native threads can
be advantageous in some circumstances, such as when running on a multi-CPU
computer. In Java 1.3, the default HotSpot virtual machine uses native threads.
Java 1.2 and 1.3 only.

-server
Optimizes the incremental compilation of the VM for server-class applications. In
general, this option results in slower startup time but better subsequent perfor-
mance. Java 1.4 and later. In Java 5.0 and later, many VMs automatically select
this option if they are running on “server-class” hardware such as a dual-
processor machine. See also -client.

336 | Chapter 8: Java Development Tools

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

-Xbatch
Tells the HotSpot VM to perform all just-in-time compilation in the foreground,
regardless of the time required for compilation. Without this option, the VM
compiles methods in the background while interpreting them in the foreground.
Java 1.3 and later.

-Xincgc
Uses incremental garbage collection. In this mode, the garbage collector runs
continuously in the background, and a running program is rarely, if ever, subject
to noticeable pauses while garbage collection occurs. Using this option typically
results in a 10% decrease in overall performance, however. Java 1.3 and later.

-Xint
Tells the HotSpot VM to operate in interpreted mode only, without performing
any just-in-time compilation. Java 1.3 and later.

-Xmixed
Tells the HotSpot VM to perform just-in-time compilation on frequently used
methods (“hotspots”) and execute other methods in interpreted mode. This is the
default behavior. Contrast with -Xbatch and -Xint. Java 1.3 and later.

-Xms initmem[k|m]
Specifies how much memory is allocated for the heap when the interpreter starts
up. By default, initmem is specified in bytes. You can specify it in kilobytes by
appending the letter k or in megabytes by appending the letter m. The default is 2
MB. For large or memory-intensive applications (such as the Java compiler), you
can improve runtime performance by starting the interpreter with a larger amount
of memory. You must specify an initial heap size of at least 1 MB. Java 1.2 and
later. Prior to Java 1.2, use -ms.

-Xmxmaxmem[k|m]
Specifies the maximum heap size the interpreter uses for dynamically allocated
objects and arrays. maxmem is specified in bytes by default. You can specify maxmem
in kilobytes by appending the letter k and in megabytes by appending the letter m.
The default is 64 MB. You cannot specify a heap size less than 2 MB. Java 1.2 and
later. Prior to Java 1.2, use -mx.

-Xnoclassgc
Does not garbage-collect classes. Java 1.2 and later. In Java 1.1, use -noclassgc.

-Xsssize[k|m]
Sets the thread stack size in bytes, kilobytes, or megabytes. Java 1.3 and later.

Instrumentation options
The following options support debugging, profiling, and other VM instrumentation.
Options beginning with -X are nonstandard and may change from release to release.

-agentlib:agent[=options]
New in Java 5.0, this option specifies a JVMTI agent, and options for it, to be
started along with the interpeter. JVMTI is the Java Virtual Machine Tool Inter-
face, and it is slated to supersede the JVMDI and JVMPI (debugging and profiling
interfaces) in a future release. This means that the general -agentlib option will
replace tool-specific options such as -Xdebug and -Xrunhprof. Examples:

% java -agentlib:hprof=help
% java -agentlib:jdwp=help

java | 337

Java Tools

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

-agentpath:path-to-agent[=options]
Like -agentlib, but with an explicitly specified path to the agent library. Java 5.0
and later.

-debug
Causes java to start up in a way that allows the jdb debugger to attach itself to the
interpreter session. In Java 1.2 and later, this option has been replaced with -Xdebug.

-javaagent:jarfile[=options]
Load a Java-language instrumentation agent when the interpreter starts. The spec-
ified jarfile must have a manifest that includes an Agent-Class attribute. This
attribute must name a class that includes the agent’s premain() method. Any
options will be passed to this premain() method along with a java.lang.
instrument.Instrumentation object. See java.lang.instrument for further detail.

-verbose, -verbose:class
Prints a message each time java loads a class. In Java 1.2 and later, you can use
-verbose:class as a synonym.

-verbose:gc
Prints a message when garbage collection occurs. Java 1.2 and later. Prior to Java
1.2, use -verbosegc.

-verbose:jni
Prints a message when native methods are called. Java 1.2 and later.

-Xcheck:jni
Performs additional validity checks when using Java Native Interface functions.
Java 1.2 and later.

-Xdebug
Starts the interpreter in a way that allows a debugger to communicate with it.
Java 1.2 and later. Prior to Java 1.2, use -debug. Deprecated in Java 5.0 in favor
of the -agentlib option.

-Xfuture
Strictly checks the format of all class files loaded. Without this option, java
performs the same checks that were performed in Java 1.1. Java 1.2 and later.

-Xloggc:filename
Logs garbage collection events with timestamps to the named file.

-Xprof
Prints profiling output to standard output. Java 1.3 and later. In Java 1.2, or when
using the -classic option, use -Xrunhprof. Prior to Java 1.2, use -prof.

-Xrunhprof:suboptions
Turns on CPU, heap, or monitor profiling. suboptions is a comma-separated list
of name=value pairs. Use -Xrunhprof:help for a list of supported options and
values. Java 1.2 and later. Deprecated in Java 5.0 in favor of the -agentlib option.

Advanced options
The Java interpreter also supports quite a few advanced configuration options that
begin with -XX. These options are release and platform-dependent, and Sun’s docu-
mentation describes them as “not recommended for casual use.” If you want to fine-
tune the threading, memory allocation, garbage collection, signal-handling, or just-in-
time compilation performance of a production application, however, you may be inter-
ested in them. See http://java.sun.com/docs/hotspot/.

338 | Chapter 8: Java Development Tools

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Loading classes
The Java interpreter knows where to find the system classes that comprise the Java
platform. In Java 1.2 and later, it also knows where to find the class files for all exten-
sions installed in the system extensions directory. However, the interpreter must be
told where to find the nonsystem classes that comprise the application to be run.

Class files are stored in a directory that corresponds to their package name. For
example, the class com.davidflanagan.utils.Util is stored in a file com/davidflanagan/
utils/Util.class. By default, the interpreter uses the current working directory as the root
and looks for all classes in and beneath this directory.

The interpreter can also search for classes within ZIP and JAR files. To tell the inter-
preter where to look for classes, you specify a classpath: a list of directories and ZIP
and JAR archives. When looking for a class, the interpreter searches each of the speci-
fied locations in the order in which they are specified.

The easiest way to specify a classpath is to set the CLASSPATH environment variable,
which works much like the PATH variable used by a Unix shell or a Windows
command-interpreter path. To specify a classpath in Unix, you might type a command
like this:

% setenv CLASSPATH .:~/myclasses:/usr/lib/javautils.jar:/usr/lib/javaapps

On a Windows system, you might use a command like the following:

C:\> set CLASSPATH=.;c:\myclasses;c:\javatools\classes.zip;d:\javaapps

Note that Unix and Windows use different characters to separate directory and path
components.

You can also specify a classpath with the -classpath or -cp options to the Java inter-
preter. A path specified with one of these options overrides any path specified by the
CLASSPATH environment variable. In Java 1.2 and later, the -classpath option specifies
only the search path for application and user classes. Prior to Java 1.2, or when using
the oldjava interpreter, this option specified the search path for all classes, including
system classes and extension classes.

See also javac, jdb

javac The Java Compiler

Synopsis
javac [options] files

Description
javac is the Java compiler; it compiles Java source code (in .java files) into Java byte
codes (in .class files). The Java compiler is itself written in Java.

javac can be passed any number of Java source files, whose names must all end with
the .java extension. javac produces a separate .class class file for each class defined in
the source files. Each source file can contain any number of classes, although only one
can be a public top-level class. The name of the source file (minus the .java extension)
must match the name of the public class it contains.

In Java 1.2 and later, if a filename specified on the command line begins with the char-
acter @, that file is taken not as a Java source file but as a list of compiler options and

javac | 339

Java Tools

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Java source files. Thus, if you keep a list of Java source files for a particular project in a
file named project.list, you can compile all those files at once with the command:

% javac @project.list

To compile a source file, javac must be able to find definitions of all classes used in the
source file. It looks for definitions in both source-file and class-file form, automatically
compiling any source files that have no corresponding class files or that have been
modified since they were most recently compiled.

Common options
The most commonly used compilation options include the following:

-classpath path
Specifies the path javac uses to look up classes referenced in the specified source
code. This option overrides any path specified by the CLASSPATH environment vari-
able. The path specified is an ordered list of directories, ZIP files, and JAR
archives, separated by colons on Unix systems or semicolons on Windows
systems. If the -sourcepath option is not set, this option also specifies the search
path for source files.

-d directory
Specifies the directory in which (or beneath which) class files should be stored. By
default, javac stores the .class files it generates in the same directory as the .java
files those classes were defined in. If the -d option is specified, however, the speci-
fied directory is treated as the root of the class hierarchy, and .class files are
placed in this directory or the appropriate subdirectory below it, depending on
the package name of the class. Thus, the following command:

% javac -d /java/classes Checkers.java

places the file Checkers.class in the directory /java/classes if the Checkers.java file
has no package statement. On the other hand, if the source file specifies that it is
in a package:

package com.davidflanagan.games;

the .class file is stored in /java/classes/com/davidflanagan/games. When the -d
option is specified, javac automatically creates any directories it needs to store its
class files in the appropriate place.

-encoding encoding-name
Specifies the name of the character encoding used by the source files if it differs
from the default platform encoding.

-g
Tells javac to add line number, source file, and local variable information to the
output class files, for use by debuggers. By default, javac generates only the line
numbers.

-g:none
Tells javac to include no debugging information in the output class files. Java 1.2
and later.

-g:keyword-list
Tells javac to output the types of debugging information specified by the comma-
separated keyword-list. The valid keywords are: source, which specifies source-
file information; lines, which specifies line number information; and vars, which
specifies local variable debugging information. Java 1.2 and later.

340 | Chapter 8: Java Development Tools

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

-help
Prints a list of options. See also -X.

-Jjavaoption
Passes the argument javaoption directly through to the Java interpreter. For
example: -J-Xmx32m. javaoption should not contain spaces; if multiple arguments
must be passed to the interpreter, use multiple -J options. Java 1.1 and later.

-source release-number
Specifies the version of Java the code is written in. Legal values of release-number
are 5, 1.5, 1.4, and 1.3. The options 5 and 1.5 are synonyms and are the default: the
compiler accepts all Java 5.0 language features. Use -source 1.4 to have the
compiler ignore Java 5.0 language features such as the enum keyword. Use -source
1.3 to have the compiler ignore the assert keyword that was introduced in Java 1.4.
This option is available in Java 1.4 and later.

-sourcepath path
Specifies the list of directories, ZIP files, and JAR archives that javac searches
when looking for source files. The files found in this source path are compiled if
no corresponding class files are found or if the source files are newer than the
class files. By default, source files are searched for in the same places class files are
searched for. Java 1.2 and later.

-verbose
Tells the compiler to display messages about what it is doing. In particular, it
causes javac to list all the source files it compiles, including files that did not
appear on the command line.

-X
Tells the javac compiler to display usage information for its nonstandard options
(all of which begin with -X). Java 1.2 and later.

Warning options
The following options control the generation of warning messages by javac:

-deprecation
Tells javac to issue a warning for every use of a deprecated API. By default, javac
issues only a single warning for each source file that uses deprecated APIs. Java 1.1
and later. In Java 5.0, this is a synonym for -Xlint:deprecation.

-nowarn
Tells javac not to print warning messages. Errors are still reported as usual.

-Xlint
Enables all recommended warnings about program “lint.” At the time of this
writing, all the warnings detailed below are recommended.

-Xlint:warnings
Enables or disables a comma-separated list of named warning types. At the time
of this writing, the available warning types are the following. A named warning
can be suppressed by preceding it with a minus sign:

all
Enables all lint warnings.

deprecation
Warns about the use of deprecated APIs. See also -deprecation.

javac | 341

Java Tools

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

fallthrough
Warns when a case in a switch statement “falls through” to the next case.
See also -Xswitchcheck.

finally
Warns when a finally clause cannot complete normally.

path
Warns if any path directories specified elsewhere on the command line are
nonexistent.

serial
Warns about Serializable classes that do not have a serialVersionUID field.

unchecked
Provides detailed warnings about each unchecked use of a generic type.

-Xmaxerrors num

Don’t print more than num errors.

-Xmaxwarns num

Don’t print more than num warnings.

-Xstdout filename

Tells javac to send warning and error messages to the specified file instead of
writing them to the console. Java 1.4 and later.

-Xswitchcheck

Warns about case clauses in switch statements that “fall through.” In Java 5.0,
use -Xlint:fallthrough.

Cross-compilation options
The following options are useful when using javac to compile class files intended to
run under a different version of Java:

-bootclasspath path
Specifies the search path javac uses to look up system classes. This option does
not specify the system classes used to run the compiler itself, only the system
classes read by the compiler. Java 1.2 and later.

-endorseddirs path
Overrides the directories to search for endorsed standards JAR files.

-extdirs path
Specifies a list of directories to search for standard extension JAR files. Java 1.2
and later.

-target version
Specifies the class file format version to use for the generated class files. version
may be 1.1, 1.2, 1.3, 1.4, 1.5, or 5. The options 1.5 and 5 are synonyms and are
the default in Java 5.0, unless -source 1.4 is specified, in which case -target 1.4
is the default. Use of this flag sets the class file version number so that the
resulting class file cannot be run by VMs from previous releases.

-Xbootclasspath:path
An alternative to -bootclasspath

-Xbootclasspath/a:path
Appends the specified path to the bootclasspath. Java 1.3 and later.

-Xbootclasspath/p:path
Prefixes the bootclasspath with the specified path.

342 | Chapter 8: Java Development Tools

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Environment
CLASSPATH

Specifies an ordered list (colon-separated on Unix, semicolon-separated on
Windows systems) of directories, ZIP files, and JAR archives in which javac
should look for user class files and source files. This variable is overridden by the
-classpath option.

See also java, jdb

javadoc The Java Documentation Generator

Synopsis
javadoc [options] @list package... sourcefiles...

Description
javadoc generates API documentation for any number of packages and classes you
specify. The javadoc command line can list any number of package names and any
number of Java source files. For convenience, when working with a large number of
command-line options, or a large number of package or class names, you can place
them all in an auxiliary file and specify the name of that file on the command line,
preceded by an @ character.

javadoc uses the javac compiler to process all the specified Java source files and all the
Java source files in all the specified packages. It uses the information it gleans from this
processing to generate detailed API documentation. Most importantly, the generated
documentation includes the contents of all documentation comments included in the
source files. See Chapter 7 for information about writing doc comments in your own
Java code.

When you specify a Java source file for javadoc to process, you must specify the name
of the file that contains the source, including a complete path to the file. It is more
common, however, to use javadoc to create documentation for entire packages of
classes. When you specify a package for javadoc to process, you specify the package
name, not the directory that contains the source code for the package. In this case, you
may need to specify the -sourcepath option so that javadoc can find your package
source code correctly if it is not stored in a location already listed in your default
classpath.

javadoc creates HTML documentation by default, but you can customize its behavior
by defining a doclet class that generates documentation in whatever format you desire.
You can write your own doclets using the doclet API defined by the com.sun.javadoc
package. Documentation for this package is included in the standard documentation
bundle for Java 1.2 and later.

javadoc gained significant new functionality in Java 1.2. Here we document Java 1.2
and later versions of the program and do not distinguish these features from those in
previous versions.

Options
javadoc defines a large number of options. Some are standard options that are always
recognized by javadoc. Other options are defined by the doclet that produces the

javadoc | 343

Java Tools

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

documentation. The options for the standard HTML doclet are included in the
following list:

-1.1
Simulates the output style and directory structure of the Java 1.1 version of
javadoc. This option existed in Java 1.2 and 1.3 and was removed in Java 1.4.

-author
Includes authorship information specified with @author in the generated docu-
mentation. Default doclet only.

-bootclasspath
Specifies the location of an alternate set of system classes. This can be useful
when cross-compiling. See javac for more information on this option.

-bottom text
Displays text at the bottom of each generated HTML file. text can contain
HTML tags. See also -footer. Default doclet only.

-breakiterator
Uses the java.text.BreakIterator algorithm for determining the end of the
summary sentence in doc comments. Default doclet only.

-charset encoding
Specifies the character encoding for the output. This depends on the encoding
used in the documentation comments of your source code, of course. The
encoding value is used in a <meta> tag in the HTML output. Default doclet only.

-classpath path
Specifies a path javadoc uses to look up both class files and, if you do not specify
the -sourcepath option, source files. Because javadoc uses the javac compiler, it
needs to be able to locate class files for all classes referenced by the packages
being documented. See java and javac for more information about this option and
the default value provided by the CLASSPATH environment variable.

-d directory
Specifies the directory in and beneath which javadoc should store the HTML files
it generates. If this option is omitted, the current directory is used. Default doclet
only.

-docencoding encoding
Specifies the encoding to be used for output HTML documents. The name of the
encoding specified here may not exactly match the name of the charset specified
with the -charset option. Default doclet only.

-docfilessubdirs
Recursively copies any subdirectories of a doc-files directory instead of simply
copying the files contained directly within doc-files. Default doclet only.

-doclet classname
Specifies the name of the doclet class to use to generate the documentation. If this
option is not specified, javadoc generates documentation using the default HTML
doclet.

-docletpath classpath
Specifies a path from which the class specified by the -doclet tag can be loaded if
it is not available from the default classpath.

344 | Chapter 8: Java Development Tools

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

-doctitle text
Provides a title to display at the top of the documentation overview file. This file
is often the first thing readers see when they browse the generated documenta-
tion. The title can contain HTML tags. Default doclet only.

-encoding encoding-name
Specifies the character encoding of the input source files and the documentation
comments they contain. This can be different from the desired output encoding
specified by -docencoding. The default is the platform default encoding.

-exclude packages
Excludes the named packages from the set of packages defined by a -subpackages
option. packages is a colon-separated list of package names. Default doclet only.

-excludedocfilessubdir dirs
Excludes specified subdirectories of a doc-files directory when -docfilessubdirs is
specified. This is useful for excluding version control directories, for example. dirs is
a colon-separated list of directory names relative to the doc-files directory. Default
doclet only.

-extdirs dirlist
Specifies a list of directories to search for standard extensions. Only necessary
when cross-compiling with -bootclasspath. See javac for details.

-footer text
Specifies text to be displayed near the bottom of each file to the right of the navi-
gation bar. text can contain HTML tags. See also -bottom and -header. Default
doclet only.

-group title packagelist
javadoc generates a top-level overview page that lists all packages in the gener-
ated document. By default, these packages are listed in alphabetical order in a
single table. You can break them into groups of related packages with this option,
however. The title specifies the title of the package group, such as “Core Pack-
ages.” The packagelist is a colon-separated list of package names, each of which
can include a trailing * character as a wildcard. The javadoc command line can
contain any number of -group options. For example:

% javadoc -group "AWT Packages" java.awt* \
-group "Swing Packages" javax.accessibility:javax.swing*

-header text
Specifies text to be displayed near the top of file, to the right of the upper navigation
bar. text can contain HTML tags. See also -footer, -doctitle, and -windowtitle.
Default doclet only.

-help
Displays a usage message for javadoc.

-helpfile file
Specifies the name of an HTML file that contains help for using the generated
documentation. javadoc includes links to this help file in all files it generates. If
this option is not specified, javadoc creates a default help file. Default doclet only.

-Jjavaoption
Passes the argument javaoption directly through to the Java interpreter. When
processing a large number of packages, you may need to use this option to
increase the amount of memory javadoc is allowed to use. For example:

% javadoc -J-Xmx64m

javadoc | 345

Java Tools

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Note that because -J options are passed directly to the Java interpreter before
javadoc starts up, they cannot be included in an external file specified on the
command line with the @list syntax.

-keywords
Tells javadoc to include type and member names in <Meta> tag keyword lists.
Default doclet only.

-link url
Specifies an absolute or relative URL of the top-level directory of another javadoc-
generated document. javadoc uses this URL as the base URL for links from the
current document to packages, classes, methods, and fields that are not docu-
mented in the current document. For example, when using javadoc to produce
documentation for your own packages, you can use this option to link your docu-
mentation to the javadoc documentation for the core Java APIs. Default doclet only.

The directory specified by url must contain a file named package-list, and javadoc
must be able to read this file at runtime. This file is automatically generated by a
previous run of javadoc; it contains a list of all packages documented at the url.

More than one -link option can be specified, although this does not work prop-
erly in early releases of Java 1.2. If no -link option is specified, references in the
generated documentation to classes and members that are external to the docu-
mentation are not hyperlinked.

-linkoffline url packagelist
Similar to the -link option, except that the packagelist file is explicitly specified
on the command line. This is useful when the directory specified by url does not
have a package-list file or when that file is not available when javadoc is run.
Default doclet only.

-linksource
Creates an HTML version of each source file read and includes links to it from the
documentation pages. Default doclet only.

-locale language_country_variant
Specifies the locale to use for generated documentation. This is used to look up a
resource file that contains localized messages and text for the output files.

-nocomment
Ignores all doc comments and generates documentation that includes only raw
API information without any accompanying prose. Default doclet only.

-nodeprecated
Tells javadoc to omit documentation for deprecated features. This option implies
-nodeprecatedlist. Default doclet only.

-nodeprecatedlist
Tells javadoc not to generate the deprecated-list.html file and not to output a link
to it on the navigation bar. Default doclet only.

-nohelp
Tells javadoc not to generate a help file or a link to it in the navigation bar.
Default doclet only.

-noindex
Tells javadoc not to generate index files. Default doclet only.

346 | Chapter 8: Java Development Tools

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

-nonavbar
Tells javadoc to omit the navigation bars from the top and bottom of every file.
Also omits the text specified by -header and -footer. This is useful when gener-
ating documentation to be printed. Default doclet only.

-noqualifier packages | all
javadoc omits package names in its generated documentation for classes in the same
package being documented. This option tells it to additionally omit package names
for classes in the specified packages, or, if the all keyword is used, in all packages.
packages is a colon-separated list of package names, which may include the * wild-
card to indicate subpackages. For example, -noqualifier java.io:java.nio.*
would exclude package names for all classes in the java.io package and in java.nio
and its subpackages. Default doclet only.

-nosince
Ignores @since tags in doc comments. Default doclet only.

-notimestamp
Don’t output timestamps in HTML comments. Default doclet only.

-notree
Tells javadoc not to generate the tree.html class hierarchy diagram or a link to it in
the navigation bar. Default doclet only.

-overview filename
Reads an overview doc comment from filename and uses that comment in the
overview page. This file does not contain Java source code, so the doc comment
should not actually appear between /** and */ delimiters.

-package
Includes package-visible classes and members in the output, as well as public and
protected classes and members.

-private
Includes all classes and members, including private and package-visible classes
and members, in the generated documentation.

-protected
Includes public and protected classes and members in the generated output. This
is the default.

-public
Includes only public classes and members in the generated output. Omits
protected, private, and package-visible classes and members.

-quiet
Suppresses output except warnings and error messages.

-serialwarn
Issues warnings about serializable classes that do not adequately document
their serialization format with @serial and related doc-comment tags. Default
doclet only.

-source release
Specifies the release of Java for which the source files were written. See the
-source option of javac. Legal values are 5, 1.5, 1.4, and 1.3. The options 1.5
and 5 are synonyms and are the default.

javadoc | 347

Java Tools

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

-sourcepath path
Specifies a search path for source files, typically set to a single root directory.
javadoc uses this path when looking for the Java source files that implement a
specified package.

-splitindex
Generates multiple index files, one for each letter of the alphabet. Use this option
when documenting large amounts of code. Otherwise, the single index file gener-
ated by javadoc will be too large to be useful. Default doclet only.

-stylesheetfile file
Specifies a file to use as a CSS stylesheet for the generated HTML. javadoc inserts
appropriate links to this file in the generated documentation. Default doclet only.

-subpackages packages
Specifies that javadoc should process the specified packages and all of their
subpackages. packages is a colon-separated list of package names or package
name prefixes. Using this option is often easier than explicitly listing all desired
package names. For example:

-subpackages java:javax

See also -exclude. Default doclet only.

-tag tagname:where:header-text
Specifies that javadoc should handle a doc-comment tag named tagname by
outputting the text header-text followed by whatever text follows the tag. This
enables the use of simple custom tags (with the same syntax as @return and
@author) in doc comments. where is a string of characters that specifies the types
of doc comments in which this custom tag is allowed. The characters and their
meanings are a (all: valid everywhere), p (packages), t (types: classes and inter-
faces), c (constructors), m (methods), and f (fields).

A secondary purpose of the -tag option is to specify the order in which tags are
processed and in which their output appears. You can include the names of stan-
dard tags after the -tag option to specify this ordering. Custom tags and taglets
can be included within this list of standard -tag options. Default doclet only.

-taglet classname
Specifies the classname of a “taglet” class to process a custom tag. Writing taglets
is not covered here. -taglet tags may be interspersed with -tag tags to specify the
order in which tags should be processed and output. Default doclet only.

-tagletpath classpath
Specifies a colon-separated list of JAR files or directories that form the classpath
to be searched for taglet classes. Default doclet only.

-use
Generates and inserts links to an additional file for each class and package that
lists the uses of the class or package.

-verbose
Displays additional messages while processing source files.

-version
Includes information from @version tags in the generated output. This option
does not tell javadoc to print its own version number. Default doclet only.

348 | Chapter 8: Java Development Tools

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

-windowtitle text
Specifies text to be output in the <Title> tag of each generated file. This title typi-
cally appears as the title of the web browser window and in history and bookmark
lists. text should not contain HTML tags. See also -doctitle and -header. Default
doclet only.

Environment
CLASSPATH

This environment variable specifies the default classpath javadoc uses to find the
class files and source files. It is overridden by the -classpath and -sourcepath
options. See java and javac for further discussion of the classpath.

See also java, javac

javah Native Method C Stub Generator

Synopsis
javah [options] classnames

Description
javah generates C header and source files (.h and .c files) that are used when imple-
menting Java native methods in C. The preferred native method interface changed
between Java 1.0 and Java 1.1. In Java 1.1 and earlier, javah generated files for old-
style native methods. In Java 1.1, the -jni option specified that javah should generate
new-style files. In Java 1.2 and later, this option is the default.

This section describes only how to use javah. A full description of how to implement
Java native methods in C is beyond the scope of this book.

Options
-bootclasspath

Specifies the path to search for system classes. See javac for further discussion.
Java 1.2 and later.

-classpath path
Specifies the path javah uses to look up the classes named on the command line.
This option overrides any path specified by the CLASSPATH environment variable.
Prior to Java 1.2, this option can specify the location of the system classes and
extensions. In Java 1.2 and later, it specifies only the location of application
classes. See -bootclasspath. See also java for further discussion of the classpath.

-d directory
Specifies the directory into which javah stores the files it generates. By default, it
stores them in the current directory. This option cannot be used with -o.

-force
Causes javah to always write output files, even if they contain no useful content.

-help
Causes javah to display a simple usage message and exit.

-Jjavaopt
Passes the option javaopt to the Java interpreter.

javap | 349

Java Tools

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

-jni
Specifies that javah should output header files for use with the Java Native Inter-
face (JNI) rather than the old JDK 1.0 native interface. This option is the default
in Java 1.2 and later. See also -old. Java 1.1 and later.

-o outputfile
Combines all output into a single file, outputfile, instead of creating separate files
for each specified class.

-old
Outputs files for Java 1.0-style native methods. Prior to Java 1.2, this was the
default. See also -jni. Java 1.2 and later.

-stubs
Generates .c stub files for the class or classes instead of header files. This option is
only for the Java 1.0 native methods interface. See -old.

-trace
Specifies that javah should include tracing output commands in the stub files it
generates. In Java 1.2 and later, this option is obsolete and has been removed. In
its place, you can use the -verbose:jni option of the Java interpreter.

-v, -verbose
Specifies verbose mode. Causes javah to print messages about what it is doing. In
Java 1.2 and later, -verbose is a synonym.

-version
Causes javah to display its version number.

Environment
CLASSPATH

Specifies the default classpath javah searches to find the specified classes. See java
for a further discussion of the classpath.

See also java, javac

javap The Java Class Disassembler

Synopsis
javap [options] classnames

Description
javap reads the class files specified by the class names on the command line and prints
a human-readable version of the API defined by those classes. javap can also disas-
semble the specified classes, displaying the Java VM byte codes for the methods they
contain.

Options
-b

Enables backward compatibility with the output of the Java 1.1 version of javap.
This option exists for programs that depend on the precise output format of
javap. Java 1.2 and later.

350 | Chapter 8: Java Development Tools

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

-bootclasspath path
Specifies the search path for the system classes. See javac for information about
this rarely used option. Java 1.2 and later.

-c
Displays the code (i.e., Java VM byte codes) for each method of each specified
class. This option always disassembles all methods, regardless of their visibility
level.

-classpath path
Specifies the path javap uses to look up the classes named on the command line.
This option overrides the path specified by the CLASSPATH environment variable.
Prior to Java 1.2, this argument specifies the path for all system classes, exten-
sions, and application classes. In Java 1.2 and later, it specifies only the
application classpath. See also -bootclasspath and -extdirs. See java and javac
for more information on the classpath.

-extdirs dirs
Specifies one or more directories that should be searched for extension classes.
See javac for information about this rarely used option. Java 1.2 and later.

-Jjavaopt
Pass the option javaopt to the Java interpreter.

-l
Displays tables of line numbers and local variables, if available in the class files.
This option is typically useful only when used with -c. The javac compiler does
not include local variable information in its class files by default. See -g and
related options to javac.

-help
Prints a usage message and exits.

-Jjavaoption
Passes the specified javaoption directly to the Java interpreter.

-package
Displays package-visible, protected, and public class members, but not private
members. This is the default.

-private
Displays all class members, including private members.

-protected
Displays only protected and public members.

-public
Displays only public members of the specified classes.

-s
Outputs the class member declarations using the internal VM type and method
signature format instead of the more readable source-code format.

-verbose
Specifies verbose mode. Outputs additional information (in the form of Java
comments) about each member of each specified class.

javaws | 351

Java Tools

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Environment
CLASSPATH

Specifies the default search path for application classes. The -classpath option
overrides this environment variable. See java for a discussion of the classpath.

See also java, javac

javaws Java Web Start launcher

Synopsis
javaws
javaws [options] url

Description
javaws is the command-line interface to the Java Web Start network application
launcher. When started without a url, javaws displays a graphical cache viewer which
allows cached applications to be launched and Java Web Start to be configured.

If the URL of a JNLP (Java Network Launching Protocol) is specified on the command
line, javaws launches the specified application.

Options
-association

Allows the creation of file associations during a -silent -import.

-codebase url
Overrides the codebase in the JNLP file with the specified url.

-import
Imports the specified application to the user cache but does not run it.

-offline
Runs in offline mode.

-online
Starts in online mode. This is the default behavior.

-shortcut
Allows desktop shortcuts to be created during a -silent -import.

-silent
When used with -import, this option prevents a GUI window from appearing.

-system
Uses the system cache.

-uninstall
Removes the application identified by url from the user’s cache and exits.

-updateVersions
Updates the javaws configuration file (such as after upgrading to a newer version
of Java).

-userConfig name [value]
Sets the deployment property name or, if value is specified, sets it to the specified
value.

352 | Chapter 8: Java Development Tools

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

-viewer
Launches the cache viewer application. This is the default behavior if javaws is
invoked with no arguments.

-wait
Does not exit until the launched application exits.

-Xclearcache
Clears the user’s cache and exits.

-Xnosplash
Does not display the Java Web Start splash screen.

jconsole Graphical Java Process Monitor

Synopsis
jconsole [options]
jconsole [options] pid
jconsole [options] host:port

Description
jconsole is a graphical interface to the memory, thread, class loading, and other moni-
toring tools provided by the java.lang.management package. It can monitor one or
more local or remote Java processes. Processes can be monitored only if started with
special system properties set. To allow a Java VM to be monitored locally, start it with:

% jconsole -Dcom.sun.management.jmxremote=true

To allow a Java VM to be monitored remotely, start it with:

% jconsole -Dcom.sun.management.jmxremote.port=port

where port is the remote port to which jconsole will connect.

You may start jconsole with no local or remote process specified and use its Connec-
tion menu to establish connections. This is the only way to connect jconsole to more
than one Java process.

To connect jconsole to a local process when it starts up, simply list the process id on
the command line. See jps to determine process ids.

To connect jconsole to a remote process when it starts up, specify the hostname and
port number on the command line. The port should be the same as that specified by
the com.sun.management.jmxremote.port system property of the target process.

Options
-help

Display a usage message.

-interval=n
Set the update interval to n seconds. The default is 4.

-version
Display the jconsole version and exit.

See also jps, jstat

jdb | 353

Java Tools

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

jdb The Java Debugger

Synopsis
jdb [options] class [program options]
jdb connect options

Description
jdb is a debugger for Java classes. It is text-based, command-line-oriented, and has a
command syntax like that of the Unix dbx or gdb debuggers used with C and C++
programs.

jdb is written in Java, so it runs within a Java interpreter. When jdb is invoked with the
name of a Java class, it starts another copy of the java interpreter, using any inter-
preter options specified on the command line. The new interpreter is started with
special options that enable it to communicate with jdb. The new interpreter loads the
specified class file and then stops and waits for debugging commands before executing
the first byte code.

jdb can also debug a program that is already running in another Java interpreter. Doing
so requires that special options be passed to both the java interpreter and to jdb. See
the -attach option below.

jdb expression syntax
jdb debugging commands such as print, dump, and suspend allow you to refer to classes,
objects, methods, fields, and threads in the program being debugged. You can refer to
classes by name, with or without their package names. You can also refer to static class
members by name. You can refer to individual objects by object ID, which is an eight-
digit hexadecimal integer. Or, when the classes you are debugging contain local variable
information, you can often use local variable names to refer to objects. You can use
normal Java syntax to refer to the fields of an object and the elements of an array; you
can also use this syntax to write quite complex expressions. As of Java 1.3, jdb even
supports method invocation using standard Java syntax.

Options
When invoking jdb with a specified class file, any of the java interpreter options can be
specified. See the java reference page for an explanation of these options. In addition,
jdb supports the following options:

-attach [host:]port
Specifies that jdb should connect to the Java VM that is already running on the
specified host (or the local host, if unspecified) and listening for debugging
connections on the specified port. Java 1.3 and later.

In order to use jdb to connect to a running VM in this way, the VM must have been
started with special command-line options. In Java 1.3 and 1.4, use these options:

% java -Xdebug -Xrunjdwp:transport=dt_socket,address=8000,server=y,suspend=n

In Java 5.0, use these options instead:

% java -agentlib:jdwp=transport=dt_socket,address=8000,server=y,suspend=n

The Java debugging architecture allows a complex set of interpreter-to-debugger
connection options, and java and jdb provide a complex set of options and
suboptions to enable it. A detailed description of those options is beyond the
scope of this book.

354 | Chapter 8: Java Development Tools

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

-connect connector:args
This option provides the most general and flexible method for connecting jdb to
the process to be debugged. Specify the name of a connector (a Java class)
followed by a colon and a comma-separated list of arguments in name=value
form. Java 1.4 and later. See -listconnectors for available connectors and their
arguments.

-help
Displays a usage message listing supported options.

-launch
Starts the specified application when jdb starts. This avoids the need to explicitly
use the run command to start it. Java 1.3 and later.

-listconnectors
List available connection methods. Each connector is a Java class and a list of
arguments. Java 5.0 and later. See the -connect option.

-listen port
Listens on the specified port for a Java VM to connect to the debugger. To make
this work, the VM must be with options like these:

% java -agentlib:jdwp=transport=dt_socket,address=8000,server=n,suspend=y

Java 1.4 and later.

-listenany
Like the -listen option but jdb picks a port to listen on and prints out the port
number for use when launching the Java process to debug. Java 1.4 and later.

-sourcepath path
Specifies the locations jdb searches when attempting to find source files that
correspond to the class files being debugged. If unspecified, jdb uses the classpath
by default. Java 1.3 and later.

-tclient
Tells jdb to invoke the client version of the Java interpreter.

-tserver
Tells jdb to invoke the server version of the Java interpreter.

-version
Displays the jdb version number and exits.

Commands
jdb understands the following debugging commands. Use the help command for more.

? or help
Lists all supported commands, with a short explanation of each.

!!
A shorthand command that is replaced with the text of the last command entered.
It can be followed with additional text to append to that command.

catch [exception-class]
Causes a breakpoint whenever the specified exception is thrown. If no exception
is specified, the command lists the exceptions currently being caught. Use ignore
to stop these breakpoints from occurring.

classes
Lists all classes that have been loaded.

jdb | 355

Java Tools

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

clear
Lists all currently set breakpoints.

clear class.method[(param-type...)]
Clears the breakpoint set in the specified method of the specified class.

clear [class:line]
Removes the breakpoint set at the specified line of the specified class.

cont
Resumes execution. This command should be used when the current thread is
stopped at a breakpoint.

down [n]
Moves down n frames in the call stack of the current thread. If n is not specified,
moves down one frame.

dump id...
Prints the value of all fields of the specified object or objects. If you specify the
name of a class, dump displays all class (static) methods and variables of the class
and also displays the superclass and list of implemented interfaces. Objects and
classes can be specified by name or by their eight-digit hexadecimal ID numbers.
Threads can also be specified with the shorthand t@thread-number.

exit or quit
Quits jdb.

gc
Runs the garbage collector to force unused objects to be reclaimed.

ignore exception-class
Does not treat the specified exception as a breakpoint. This command turns off a
catch command. This command does not cause the Java interpreter to ignore
exceptions; it merely tells jdb to ignore them.

list [line-number]
Lists the specified line of source code as well as several lines that appear before
and after it. If no line number is specified, uses the line number of the current
stack frame of the current thread. The lines listed are from the source file of the
current stack frame of the current thread. Use the use command to tell jdb where
to find source files.

list method
Displays the source code of the specified method.

load classname
Loads the specified class into jdb.

locals
Displays a list of local variables for the current stack frame. Java code must be
compiled with the -g option in order to contain local variable information.

methods class
Lists all methods of the specified class. Use dump to list the instance variables of an
object or the class (static) variables of a class.

print id...
Prints the value of the specified item or items. Each item can be a class, object, field,
or local variable, and can be specified by name or by eight-digit hexadecimal ID
number. You can also refer to threads with the special syntax t@thread-number. The
print command displays an object’s value by invoking its toString() method.

356 | Chapter 8: Java Development Tools

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

next
Executes the current line of source code, including any method calls it makes. See
also step.

resume [thread-id...]
Resumes execution of the specified thread or threads. If no threads are specified,
all suspended threads are resumed. See also suspend.

run [class] [args]
Runs the main() method of the specified class, passing the specified arguments to
it. If no class or arguments are specified, uses the class and arguments specified on
the jdb command line.

step
Runs the current line of the current thread and stops again. If the line invokes a
method, steps into that method and stops. See also next.

stepi
Executes a single Java VM instruction.

step up
Runs until the current method returns to its caller and stops again.

stop
Lists current breakpoints.

stop at class:line
Sets a breakpoint at the specified line of the specified class. Program execution
stops when it reaches this line. Use clear to remove a breakpoint.

stop in class.method[(param-type...)]
Sets a breakpoint at the beginning of the specified method of the specified class.
Program execution stops when it enters the method. Use clear to remove a
breakpoint.

suspend [thread-id...]
Suspends the specified thread or threads. If no threads are specified, suspends all
running threads. Use resume to restart them.

thread thread-id
Sets the current thread to the specified thread number. This thread is used implic-
itly by a number of other jdb commands.

threadgroup name
Sets the current thread group.

threadgroups
Lists all thread groups running in the Java interpreter session being debugged.

threads [threadgroup]
Lists all threads in the named thread group. If no thread group is specified, lists
all threads in the current thread group (specified by threadgroup).

up [n]
Moves up n frames in the call stack of the current thread. If n is not specified,
moves up one frame.

use [source-file-path]
Sets the path used by jdb to look up source files for the classes being debugged. If
no path is specified, displays the current source path.

jinfo | 357

Java Tools

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

where [thread-id] [all]
Displays a stack trace for the specified thread. If no thread is specified, displays a
stack trace for the current thread. If all is specified, displays a stack trace for all
threads.

wherei [thread-idx]
Displays a stack trace for the specified or current thread, including detailed
program counter information.

Environment
CLASSPATH

Specifies an ordered list (colon-separated on Unix, semicolon-separated on Windows
systems) of directories, ZIP files, and JAR archives in which jdb should look for class
definitions. When a path is specified with this environment variable, jdb always
implicitly appends the location of the system classes to the end of the path. If this
environment variable is not specified, the default path is the current directory and
the system classes. This variable is overridden by the -classpath option.

See also java

jinfo Display configuration of a Java process

Synopsis
jinfo [options] pid // info on local process
jinfo [options] executable core // info from core file
jinfo [options] [process-name@]hostname // info from remote process

Description
jinfo prints the system properties and JVM command-line options for a running Java
process or core file. jinfo can be started in one of three ways:

• Specify the process id of a Java process running locally to obtain configuration
information about it. See jps to list local processes.

• To obtain post-mortem configuration information from a core file, specify the java
executable that produced the core file and the core file itself on the command line.

• To obtain configuration information about a Java process running remotely,
specify the name of the remote host, optionally prefixed by a remote process
name. jsadebugd must be running on the remote host.

In Java 5.0, jinfo is experimental, unsupported, and not available on all platforms.

Options
These options are mutually exclusive; only one may be specified.

-flags
Prints only JVM flags, not system properties.

-help, -h
Prints a help message.

-sysprops
Prints only system properties, not JVM flags.

See also jps, jsadebugd

358 | Chapter 8: Java Development Tools

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

jmap Display memory usage

Synopsis
jmap [options] pid // local process
jmap [options] executable core // core file
jmap [options] [process-name@]hostname // remote process

Description
jmap prints memory usage information for a local or remote Java process or a Java core
file. Depending on the option it is invoked with, jmap displays one of four memory
usage reports. See the Options section for details. jmap can be started in three ways:

• Specify the process id of a Java process running locally to obtain configuration
information about it. See jps to list local processes.

• To obtain post-mortem configuration information from a core file, specify the
java executable that produced the core file and the core file itself on the command
line.

• To obtain configuration information about a Java process running remotely,
specify the name of the remote host, optionally prefixed by a remote process
name and @ sign. jsadebugd must be running on the remote host.

In Java 5.0, jmap is experimental, unsupported, and not available on all platforms.

Options
When invoked with no options, jmap prints a memory map of the shared objects or
libraries loaded by the VM. Other reports can be produced by using the options below.
These options are mutually exclusive; only one may be specified.

-heap
Displays a summary of heap memory usage.

-help, -h
Prints a help message.

-histo
Displays a histogram of heap usage by class.

-permstat
Displays memory used by loaded classes, grouped by class loader.

See also jps, jsadebugd

jps List Java processes

Synopsis
jps [options] [hostname[:port]]

Description
jps lists the Java processes running on the local host or on the specified remote host. If
a remote host is specified, it must be running the jstatd daemon. For each Java process,
it displays a process id and names the class or JAR file that the process is executing.
Process ids are used by a number of other Java tools, such as jconsole, jstat, and jmap.

jstack | 359

Java Tools

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Options
The options below alter the default jps display. The single-letter options, except for -q,
may be combined into a single command-line argument, such as -lmv:

-help
Displays a usage message.

-l
Lists the full package name of the main class or the full path of the JAR file
running in each Java process.

-m
Lists the arguments passed to main() method of each Java process.

-q
Lists only Java process identifiers, without application name or any additional
information.

-v
Lists arguments passed to the Java interpreter for each Java process.

-V
Lists arguments passed to the interpreter through a flags file such as .hotspotrc.

See also jstatd

jsadebugd Daemon process for remote debugging

Synopsis
jsadebugd pid [process-name] // running process
jsadebugd executable core [process-name] // core file

Description
jsadebugd is a server process that allows remote invocations of jinfo, jmap, and jstack
on a local Java process or core file. Invoke jsadebugd by specifying either the process id
of a running Java process or an executable file and core file pair on the command line.
If more than one jsadebugd server will run on the same host at the same time, follow
these arguments with an identifying process name that remote clients can use to iden-
tify the desired process.

jsadebugd starts the rmiregistry server.

In Java 5.0, jsadebugd is experimental, unsupported, and not available on all
platforms.

See also jinfo, jmap, jstack

jstack Display stack traces for a Java process

Synopsis
jstack [options] pid // local process
jstack [options] executable core // core file
jstack [options] [process-name@]hostname // remote process

360 | Chapter 8: Java Development Tools

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Description
jstack prints stack traces for each of the Java threads running in the specified Java
process. jstack can be started in three ways:

• Specify the process id of a Java process running locally to obtain configuration
information about it. See jps to list local processes.

• To obtain post-mortem configuration information from a core file, specify the
Java executable that produced the core file and the core file itself on the
command line.

• To obtain configuration information about a Java process running remotely,
specify the name of the remote host, optionally prefixed by a remote process
name and @ sign. jsadebugd must be running on the remote host.

In Java 5.0, jstack is experimental, unsupported, and not available on all platforms.

Options
-help, -h

Prints a help message.

-m
Displays stack traces in “mixed mode,” that is, displays both Java and native
method stack frames. Without this option, the default is to display Java stack
frames only.

See also jps, jsadebugd

jstat Java VM statistics

Synopsis
jstat [options] pid [interval[s|ms] [count]]
jstat [options] pid@hostname[:port] [interval[s|ms] [count]]

Description
jstat probes a running JVM once or repeatedly and displays statistics about its class
loading, just-in-time compilation, memory, or garbage collection performance. The
type of information to be displayed is specified by options. A local process to be
probed is specified by its process id, as returned, for example, by jps. A remote Java
process may be probed by specifying the remote process id, the remote host name, and
the port number on which the remote host’s rmiregistry server is running (if other than
the default of 1099). The remote host must also be running the jstatd server.

By default, jstat probes the specified Java VM once. You may also specify a probe
interval, in milliseconds or seconds, to have it probe repeatedly. If you do this, you
may additionally specify a total number of probes it should conduct.

jconsole can report many of the same statistics that jstat does but displays them in
graphical rather than tabular form. In Java 5.0, jinfo is experimental, unsupported, and
not available on all platforms.

Options
-help

Displays a help message.

jstat | 361

Java Tools

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

-options
Displays a list of report types that jstat can display. You must use one of the listed
options each time you run jstat.

-version
Displays the jstat version information and exits.

-h n
When jstat probes the Java process repeatedly, this option specifies how often it
should repeat the table headers in its output. This option must follow one of the
report type options below.

-t
Adds a Timestamp column to the report generated by jstat. The column displays
elapsed time (in seconds) since the target Java process was started.

The following options specify the type of statistics to be reported by jstat. Unless you
run jstat with -help, -options or -version, you must specify exactly one of these
options, and it must be the first option on the command line. Most of the options
produce detailed reports of garbage collection minutiae. Consult Sun’s tool documen-
tation (part of the JDK documentation bundle) for the interpretation of these reports.

-class
Reports the number of classes loaded and their size in kilobytes.

-compiler
Reports the amount of just-in-time compilation that has been performed, and
how long it has taken.

-gc
Reports heap garbage collection statistics.

-gccapacity
Reports capacity information of the garbage collector’s various memory pools.

-gccause
Like the -gcutil report but includes information about the cause of the most
recent garbage collection.

-gcnew
Reports information on the “new generation” memory pools of the garbage
collector.

-gcnewcapacity
Reports capacity information for the garbage collector’s “new generation”
memory pools.

-gcold
Reports information on the old generation and permanent memory pools of the
garbage collector.

-gcoldcapacity
Reports capacity information for the garbage collector’s old generation memory
pools.

-gcpermcapacity
Reports capacity information for the garbage collector’s permanent generation.

-gcutil
Reports garbage collection summaries.

362 | Chapter 8: Java Development Tools

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

-printcompilation
Reports additional information about just-in-time compilation, including the
method names of compiled methods.

See also jconsole, jps, jstatd

jstatd jstat daemon

Synopsis
jstatd options

Description
jstatd is a server that provides information about local Java processes to the jps and
jstat programs running on remote hosts.

jstatd uses RMI and requires special security permissions to run successfully. To start
jstatd, create the following file and name it jstatd.policy:

grant codebase "file:${java.home}../lib/tools.jar {
 permission java.security.AllPermission
}

This policy grants all permissions to any class loaded from the JDK’s tools.jar JAR file.
To launch jstatd with this policy, use this command line:

% jstatd -J-Djava.security.policy=jstat.policy

If an existing rmiregistry server is running, jstatd uses it. Otherwise, it creates its own
RMI registry.

Options
-n rminame

Binds the jstatd remote object to the name rminame in the RMI registry. The
default name is “JStatRemoteHost”, which is what jps and jstat look for. Use of
this option requires rminame to be used in remote jps and jstat invocations.

-nr
Tells jstatd that not to start an internal RMI registry if none are already running.

-p port
Looks for an existing RMI registry on port, or starts one on that port if no existing
registry is found.

See also jps, jstat

keytool Key and Certificate Management Tool

Synopsis
keytool command options

Description
keytool manages and manipulates a keystore, a repository for public and private keys
and public key certificates. keytool defines various commands for generating keys,

keytool | 363

Java Tools

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

importing data into the keystore, and exporting and displaying keystore data. Keys and
certificates are stored in a keystore using a case-insensitive name or alias. keytool uses
this alias to refer to a key or certificate.

The first option to keytool always specifies the basic command to be performed. Subse-
quent options provide details about how the command is to be performed. Only the
command must be specified. If a command requires an option that does not have a
default value, keytool prompts you interactively for the value.

Commands
-certreq

Generates a certificate signing request in PKCS#10 format for the specified alias.
The request is written to the specified file or to the standard output stream. The
request should be sent to a certificate authority (CA), which authenticates the
requestor and sends back a signed certificate authenticating the requestor’s
public key. This signed certificate can then be imported into the keystore with
the -import command. This command uses the following options: -alias, -file,
-keypass, -keystore, -sigalg, -storepass, -storetype, and -v.

-delete
Deletes a specified alias from a specified keystore. This command uses the
following options: -alias, -keystore, -storepass, -storetype, and -v.

-export
Writes the certificate associated with the specified alias to the specified file or to
standard output. This command uses the following options: -alias, -file,
-keystore, -rfc, -storepass, -storetype, and -v.

-genkey
Generates a public/private key pair and a self-signed X.509 certificate for the
public key. Self-signed certificates are not often useful by themselves, so this
command is often followed by -certreq. This command uses the following
options: -alias, -dname, -keyalg, -keypass, -keysize, -keystore, -sigalg,
-storepass, -storetype, -v, and -validity.

-help
Lists all available keytool commands and their options. This command is not used
with any other options.

-identitydb
Reads keys and certificates from a legacy identity database managed with the depre-
cated javakey program and stores them into a keystore so that they can be
manipulated by keytool. The identity database is read from the specified file or from
standard input if no file is specified. The keys and certificates are written into the
specified keystore file, which is automatically created if it does not exist yet. This
command uses the following options: -file, -keystore, -storepass, -storetype,
and -v.

-import
Reads a certificate or PKCS#7-formatted certificate chain from a specified file or
from standard input and stores it as a trusted certificate in the keystore with the
specified alias. This command uses the following options: -alias, -file, -keypass,
-keystore, -noprompt, -storepass, -storetype, -trustcacerts, and -v.

364 | Chapter 8: Java Development Tools

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

-keyclone
Duplicates the keystore entry of a specified alias and stores it in the keystore
under a new alias. This command uses the following options: -alias, -dest,
-keypass, -keystore, -new, -storepass, -storetype, and -v.

-keypasswd
Changes the password that encrypts the private key associated with a specified
alias. This command uses the following options: -alias, -keypass, -new,
-storetype, and -v.

-list
Displays (on standard output) the fingerprint of the certificate associated with the
specified alias. With the -v option, prints certificate details in human-readable
format. With -rfc, prints certificate contents in a machine-readable, printable-
encoding format. This command uses the following options: -alias, -keystore,
-rfc, -storepass, -storetype, and -v.

-printcert
Displays the contents of a certificate read from the specified file or from standard
input. Unlike most keytool commands, this one does not use a keystore. This
command uses the following options: -file and -v.

-selfcert
Creates a self-signed certificate for the public key associated with the specified
alias and uses it to replace any certificate or certificate chain already associated
with that alias. This command uses the following options: -alias, -dname,
-keypass, -keystore, -sigalg, -storepass, -storetype, -v, and -validity.

-storepasswd
Changes the password that protects the integrity of the keystore as a whole. The
new password must be at least six characters long. This command uses the
following options: -keystore, -new, -storepass, -storetype, and -v.

Options
The various keytool commands can be passed various options from the following list.
Many of these options have reasonable default values. keytool interactively prompts for
any unspecified options that do not have defaults:

-alias name
Specifies the alias to be manipulated in the keystore. The default is “mykey”.

-dest newalias
Specifies the new alias name (the destination alias) for the -keyclone command. If
not specified, keytool prompts for a value.

-dname X.500-distinguished-name
Specifies the X.500 distinguished name to appear on the certificate generated by
-selfcert or -genkey. A distinguished name is a highly qualified name intended to
be globally unique. For example:

CN=David Flanagan, OU=Editorial, O=OReilly, L=Cambridge, S=Massachusetts,
C=US

The -genkey command of keytool prompts for a distinguished name if none is
specified. The -selfcert command uses the distinguished name of the current
certificate if no replacement name is specified.

keytool | 365

Java Tools

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

-file file
Specifies the input or output file for many of the keytool commands. If left
unspecified, keytool reads from the standard input or writes to the standard
output.

-keyalg algorithm-name
Used with -genkey to specify what type of cryptographic keys to generate. In the
default Java implementation shipped from Sun, the only supported algorithm is
“DSA”; this is the default if this option is omitted.

-keypass password
Specifies the password that encrypts a private key in the keystore. If this option is
unspecified, keytool first tries the -storepass password. If that does not work, it
prompts for the appropriate password.

-keysize size
Used with the -genkey command to specify the length in bits of the generated
keys. If unspecified, the default is 1024.

-keystore filename
Specifies the location of the keystore file. If unspecified, a file named .keystore in
the user’s home directory is used.

-new new-password-or-alias
Used with the -keyclone command to specify the new alias name and with
-keypasswd and -storepasswd to specify the new password. If unspecified, keytool
prompts for the value of this option.

-noprompt
Used with the -import command to disable interactive prompting of the user
when a chain of trust cannot be established for an imported certificate. If this
option is not specified, the -import command prompts the user.

-rfc
Used with the -list and -export commands to specify that certificate output
should be in the printable encoding format specified by RFC 1421. If this option
is not specified, -export outputs the certificate in binary format, and -list lists
only the certificate fingerprint. This option cannot be combined with -v in the
-list command.

-sigalg algorithm-name
Specifies a digital signature algorithm that signs a certificate. If omitted, the
default for this option depends on the type of underlying public key. If it is a DSA
key, the default algorithm is “SHA1withDSA”. If the key is an RSA key, the
default signature algorithm is “MD5withRSA”.

-storepass password
Specifies a password that protects the integrity of the entire keystore file. This
password also serves as a default password for any private keys that do not have
their own -keypass specified. If -storepass is not specified, keytool prompts for it.
The password must be at least six characters long.

-storetype type
Specifies the type of the keystore to be used. If this option is not specified, the
default is taken from the system security properties file. Often, the default is
“JKS”—Sun’s Java Keystore type.

366 | Chapter 8: Java Development Tools

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

-trustcacerts
Used with the -import command to specify that the self-signed certificate
authority certificates contained in the keystore in the jre/lib/security/cacerts file
should be considered trusted. If this option is omitted, keytool ignores that file.

-v
Specifies verbose mode, if present, and makes many keytool commands produce
additional output.

-validity time
Used with the -genkey and -selfcert commands to specify the period of validity
(in days) of the generated certificate. If unspecified, the default is 90 days.

See also jarsigner, policytool

native2ascii Convert text to ASCII with Unicode escapes

Synopsis
native2ascii [options] [inputfile [outputfile]]

Description
native2ascii is a simple program that reads a text file (usually of Java source code)
encoded using a local encoding and converts it to a Latin-1-plus-ASCII-encoded-
Unicode form allowed by the Java Language Specification. This is helpful when you
must edit a file of Java code but do not have an editor that can handle the encoding of
the file.

The inputfile and outputfile are optional. If unspecified, standard input and stan-
dard output are used, making native2ascii suitable for use in pipes.

Options
-encoding encoding-name

Specifies the encoding used by source files. If this option is not specified, the
encoding is taken from the file.encoding system property.

-reverse
Specifies that the conversion should be done in reverse—from encoded \uxxxx
characters to characters in the native encoding.

See also java.io.InputStreamReader, java.io.OutputStreamWriter

pack200 Compress a JAR file

Synopsis
pack200 [options] outputfile jarfile

Description
pack200 tightly compresses a JAR file using the compression algorithm defined by JSR
200 and the standard gzip compression algorithm. Notice that the output file is speci-
fied on the command line before the input JAR file.

pack200 | 367

Java Tools

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Basic options
All pack200 options exist in both a long form that begins with a double dash and a
single-letter form that begins with a single dash. When the option requires a value, the
value should be separated from the long form of the option with an equals sign and no
space or should immediately follow the short form with no intervening space or
punctuation.

--config-file=file, -ffile
Reads options from the specified configuration file. file should be a java.util.
Properties file in name=value format. Supported property names are the same as
the long-form option names listed here, with with hyphens converted to periods.

--effort=value, -Evalue
Specifies how hard to try to pack the JAR file. value must be a digit between 0
and 9. 0 means no compression at all and simply produces a copy of the input
JAR file. The default is 5.

--help, -h
Displays a help message and exits.

--log-file=file, -lfile
Log output to file.

--no-gzip, -g
Tells pack200 not to apply gzip compression to the packed JAR file. Use this
option if you want to apply a different compression filter, such as bzip2. The
default is --gzip.

--no-keep-file-order, -o
Allows pack200 to reorder the elements of the JAR file. --keep-file-order is
the default.

--quiet, -q
Suppresses output messages.

--pass-file=file, -Pfile
Passes the specified file without compression. If file ends with a /, all files in the
directory are passed through without packing. This option may be specified
multiple times.

--repack, -r
Packs the specified JAR file, and then immediately unpacks it. In this case, the
outputfile specified on the command line should be the name of a JAR file. It is
important to do a pack/unpack cycle on a JAR file before signing it with jarsigner
because the pack/unpack cycle reorders some internal elements of a class file and
invalidates any digital signatures or checksums in the JAR file manifest.

--strip-debug, -G
Permanently strips debugging attributes from the Java class files instead of
compressing them. This makes it harder to debug the resulting JAR file.

--verbose, -v
Displays more output messages.

--version, -V
Displays version number and exits.

368 | Chapter 8: Java Development Tools

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Advanced packing options
The following options provide fine control over the compression performed by
pack200.

--deflate-hint=value, -Hvalue
Specifies whether pack200 should preserve the deflation status of each entry in
the input JAR file. The default value is keep, which preserves the status. A value
of true places a hint in the packed archive that the unpacker should deflate all
entries after unpacking them. A value of true places a hint in the packed archive
that the unpacker should store each entry in the JAR file without deflation. Using
a value of true or false reduces the packed file size slightly because deflation
hints do not need to be stored for each entry.

--modification-time=value, -mvalue
With the default value of keep, pack200 transmits the modification time of each
entry in the JAR file. If you specify latest instead, only the most recent modifica-
tion time is transmitted, and is applied to all entries when they are unpacked.

--segment-limit=n, -Sn
Sets a target segment size of n. Pack200 files may be divided into separately
packed segments in order to reduce the amount of memory required by the
unpacker. This option sets the approximate size of each segment. The default
value is one million bytes. The value -1 produces a single large segment, and the
value 0 produces a single segment for each class file. Larger segment sizes result in
better compression ratios, but require additional memory to unpack.

--unknown-attribute=action, -Uaction
Specifies how pack200 should handle unknown class file attributes. The default
action is pass, which specifies that the entire class file will be transmitted with no
compression. An action of error specifies that pack200 should produce an error
message. An action of strip says that the attribute should be stripped from the
class file.

--class-attribute=name=action, -Cname=action,

--code-attribute=name=action, -Dname=action,

--field-attribute=name=action, -Fname=action,

--method-attribute=name=action, -Mname=action,
These four options specify how pack200 should handle specific named class,
field, method, and code attributes in a class file. The name of the attribute is spec-
ified by name. The action may be any of the pass, strip, and error values
supported by the --unknown-attribute option. The action may also be a “layout
string” that specifies how the attribute should be packed. See the Pack200 specifi-
cation for details on the layout language. These options may be repeated to
specify handling for more than one attribute.

See also unpack200

policytool Policy File Creation and Management Tool

Synopsis
policytool

policytool | 369

Java Tools

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Description
policytool displays a Swing user interface that makes it easy to edit security policy
configuration files. The Java security architecture is based on policy files, which specify
sets of permissions to be granted to code from various sources. By default, the Java
security policy is defined by a system policy file stored in the jre/lib/security/java.policy
file and a user policy file stored in the .java.policy file in the user’s home directory.
System administrators and users can edit these files with a text editor, but the syntax
of the file is somewhat complex, so it is usually easier to use policytool to define and
edit security policies.

Selecting the policy file to edit
When policytool starts up, it opens the .java.policy file in the user’s home directory by
default. Use the New, Open, and Save commands in the File menu to create a new
policy file, open an existing file, and save an edited file, respectively.

Editing the policy file
The main policytool window displays a list of the entries contained in the policy file.
Each entry specifies a code source and the permissions that are to be granted to code
from that source. The window also contains buttons that allow you to add a new
entry, edit an existing entry, or delete an entry from the policy file. If you add or edit
an entry, policytool opens a new window that displays the details of that policy entry.

With the addition of the JAAS API to the core Java platform in Java 1.4, policytool
allows the specification of a Principal to whom a set of permissions is granted.

Every policy file has an associated keystore from which it obtains the certificates it
needs when verifying the digital signatures of Java code. You can usually rely on the
default keystore, but if you need to specify the keystore explicitly for a policy file, use
the Change Keystore command in the Edit menu of the main policytool window.

Adding or editing a policy entry
The policy entry editor window displays the code source for the policy entry and a list
of permissions associated with that code source. It also contains buttons that allow
you to add a new permission, delete a permission, or edit an existing permission.

When defining a new policy entry, the first step is to specify the code source. A code
source is defined by a URL from which the code is downloaded and/or a list of digital
signatures that must appear on the code. Specify one or both of these values by typing
in a URL and/or a comma-separated list of aliases. These aliases identify trusted certifi-
cates in the keystore associated with the policy file.

After you have defined the code source for a policy entry, you must define the permis-
sions to be granted to code from that source. Use the Add Permission and Edit
Permission buttons to add and edit permissions. These buttons bring up yet another
policytool window.

Defining a permission
To define a permission in the permission editor window, first select the desired
permission type from the Permission pulldown menu, then select an appropriate target
value from the Target Name menu. The choices in this menu are customized
depending on the permission type you selected. Some types of permissions, such as
FilePermission, do not have a fixed set of possible targets, and you usually have to
type in the target you want. For example, you might type “/tmp” to specify the direc-

370 | Chapter 8: Java Development Tools

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

tory /tmp, “/tmp/*” to specify all the files in that directory, or “/tmp/-” to specify all
the files in the directory, and, recursively, any subdirectories. See the documentation
of the individual Permission classes for a description of the targets they support.

Depending on the type of permission you select, you may also have to select one or
more action values from the Actions menu. When you have selected a permission and
appropriate target and action values, click the Okay button to dismiss the window.

See also jarsigner, keytool

serialver Class Version Number Generator

Synopsis
serialver [-classpath path] classnames...
serialver [-classpath path] -show

Description
serialver displays the version number of a class or classes. This version number is used
for the purposes of serialization: the version number must change each time the serial-
ization format of the class changes.

If the specified class declares a long serialVersionUID constant, the value of that field
is displayed. Otherwise, a unique version number is computed by applying the Secure
Hash Algorithm (SHA) to the API defined by the class. This program is primarily
useful for computing an initial unique version number for a class, which is then
declared as a constant in the class. The output of serialver is a line of legal Java code,
suitable for pasting into a class definition.

Options
-classpath path

Specifies the search path for classes.

-show
When the -show option is specified, serialver displays a simple graphical interface
that allows the user to type in a single class name at a time and obtain its serializa-
tion UID. When using -show, no class names can be specified on the command line.

Environment
CLASSPATH

serialver is written in Java, so it is sensitive to the CLASSPATH environment variable
in the same way the java interpreter is. The specified classes are looked up rela-
tive to this classpath.

See also java.io.ObjectStreamClass

unpack200 Unpack a JAR file

Synopsis
unpack200 [options] packedfile jarfile

unpack200 | 371

Java Tools

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Description
unpack200 unpacks a JAR file that has been compressed, or packed, by the pack200
tool, and optionally additionally compressed with gzip. Specify the name of the packed
file and the name of the JAR file to unpack it to on the command line.

Because unpack200 is used as part of the Java installation process, it is a native appli-
cation that can run on a system without a Java interpreter.

Options
All unpack200 options exist in both a long form that begins with a double dash and a
single-letter form that begins with a single dash. When the option requires a value, the
value should be separated from the long form of the option with an equals sign and no
space or should immediately follow the short form with no intervening space or
punctuation.

--deflate-hint=value -Hvalue
Specifies whether unpack200 should compress individual entries in the resulting
JAR file. value must be true, false, or keep. The default is keep, which specifies
that each JAR entry should have the same compression that it had in the original
JAR file.

--help, -h
Displays a help message and exits.

--log-file=file, -lfile
Logs output to file.

--quiet, -q
Suppresses output messages.

--remove-pack-file, -r
Deletes the packed file after unpacking it.

--verbose, -v
Displays more output messages.

--version, -V
Displays version number and exits.

See also jar, pack200

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

II
API Quick Reference

Part II provides quick-reference material for the essential APIs of the Java plat-
form. Please read the following section, How to Use This Quick Reference, to learn
how to get the most out of this material.

Chapter 9 java.io
Chapter 10 java.lang and Subpackages
Chapter 11 java.math
Chapter 12 java.net
Chapter 13 java.nio and Subpackages
Chapter 14 java.security and Subpackages
Chapter 15 java.text
Chapter 16 java.util and Subpackages
Chapter 17 java.crypto and Subpackages
Chapter 18 java.net and javax.net.ssl
Chapter 19 javax.security.auth and Subpackages
Chapter 20 javax.xml and Subpackages
Chapter 21 org.w3c.dom
Chapter 22 org.xml.sax and Subpackages
Class, Method, and Field Index

375

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Chapter 9Quick Ref How-to

How to Use This Quick
Reference

The quick-reference section that follows packs a lot of information into a small
space. This introduction explains how to get the most out of that information. It
describes how the quick reference is organized and how to read the individual
quick-reference entries.

Finding a Quick-Reference Entry
The quick reference is organized into chapters, each of which documents a single
package of the Java platform or a group of related packages. Packages are listed
alphabetically within and between chapters, so you never really need to know
which chapter documents which package: you can simply search alphabetically,
as you might do in a dictionary. The documentation for each package begins with
a quick-reference entry for the package itself. This entry includes a short over-
view of the package and a listing of the classes and interfaces included in the
package. In this listing of package contents, package members are first grouped
by general category (interfaces, eumerated types, classes and exceptions, for
example). Within each category, they are grouped by class hierarchy, with inden-
tation to indicate the level of the hierarchy. Finally, classes and interfaces at the
same hierarchy level are listed alphabetically.

Each package overview is followed by individual quick-reference entries, in alpha-
betical order, for the types defined in the package. The overall organization of the
quick-reference is therefore alphabetical by the fully-qualified name of the type. To
look up a quick-reference entry for a particular type, you must also know the name
of the package that defines that type. Use the dictionary-style headers on the upper
corner of each page to help you quickly find the package and class you need.

Usually, the package name of a type is obvious from its context, and you should
have no trouble looking up the quick-reference entry you want. Occasionally, you
may need to look up a type for which you do not already know the package. In

376 | : How to Use This Quick Reference

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

this case, refer to the Class, Method, and Field Index. This index allows you to
look up a class by class name and find out what package it is part of.

Reading a Quick-Reference Entry
The quick-reference entries for classes and interfaces contain quite a bit of infor-
mation. The sections that follow describe the structure of a quick-reference entry,
explaining what information is available, where it is found, and what it means.
While reading the descriptions that follow, you may find it helpful to flip through
the reference section itself to find examples of the features being described.

Class Name, Package Name, Availability, and Flags

Each quick-reference entry begins with a four-part title that specifies the name,
package name, and availability of the class, and may also specify various addi-
tional flags that describe the class. The class name appears in bold at the upper
left of the title. The package name appears, in smaller print, in the lower left,
below the class name.

The upper-right portion of the title indicates the availability of the class; it specifies
the earliest release that contained the class. If a class was introduced in Java 1.1, for
example, this portion of the title reads “Java 1.1”. The availability section of the
title is also used to indicate whether a class has been deprecated, and, if so, in what
release. For example, it might read “Java 1.1; Deprecated in Java 1.2”.

In the lower-right corner of the title you may find a list of flags that describe the
class. Java 5.0 annotations and meta-annotations are listed here, as are the
following flags:

annotation
The type is an annotation type.

appendable
The class implements java.lang.Appendable.

checked
The class is a checked exception, meaning that it extends java.lang.Exception,
but not java.lang.RuntimeException. In other words, it must be declared in the
throws clause of any method that may throw it.

cloneable
The class, or a superclass, implements java.lang.Cloneable.

closeable
The class implements java.io.Closeable.

collection
The class, or a superclass, implements java.util.Collection or java.util.Map.

comparable
The class, or a superclass, implements java.lang.Comparable.

enum
The type is an enumerated type.

Reading a Quick-Reference Entry | 377

Quick Ref
H

ow
-to

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

error
The class extends java.lang.Error.

flushable
The class implements java.io.Flushable.

readable
The class implements java.lang.Readable.

runnable
The class, or a superclass, implements java.lang.Runnable.

serializable
The class, or a superclass, implements java.io.Serializable.

unchecked
The class is an unchecked exception, meaning that it extends
java.lang.RuntimeException and therefore does not need to be declared in the
throws clause of a method that may throw it.

Description

The title of each quick-reference entry is followed by a short description of the
most important features of the class or interface. This description is typically
about two paragraphs long.

Hierarchy

If a class or interface has a nontrivial class hierarchy, the “Description” section is
followed by a figure that illustrates the hierarchy and helps you understand the
class in the context of that hierarchy. The name of each class or interface in the
diagram appears in a box; classes and enumerated types appear in rectangles
(except for abstract classes, which appear in skewed rectangles or parallelo-
grams). Interfaces and annotation types appear in rounded rectangles, in which
the corners have been replaced by arcs. The current class—the one that is the
subject of the diagram—appears in a box that is bolder than the others. The
boxes are connected by lines: solid lines indicate an “extends” relationship, and
dotted lines indicate an “implements” relationship. The superclass-to-subclass
hierarchy reads from left to right in the top row (or only row) of boxes in the
figure. Interfaces are usually positioned beneath the classes that implement them,
although in simple cases an interface is sometimes positioned on the same line as
the class that implements it, resulting in a more compact figure. Note that the
hierarchy figure shows only the superclasses of a class. If a class has subclasses,
those are listed in the cross-reference section at the end of the quick-reference
entry for the class.

Synopsis

The most important part of every quick-reference entry is the synopsis, which
follows the title and description. The synopsis for a type looks a lot like the source
code for the type, except that the method bodies are omitted and some additional

378 | : How to Use This Quick Reference

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

annotations are added. If you know Java syntax, you know how to read the
synopsis.

The first line of the synopsis contains information about the class itself. It begins
with a list of modifiers, such as public, abstract, and final. These modifiers are
followed by the class, interface, enum, or @interface keyword and then by the
name of the class. The class name may be followed by type variables, an extends
clause that specifies the superclass, and an implements clause that specifies any
interfaces the class implements.

The class definition line is followed by a list of the fields, methods, and nested
types that the class defines. Once again, if you understand basic Java syntax, you
should have no trouble making sense of these lines. The listing for each member
includes the modifiers, type, and name of the member. For methods, the synopsis
also includes the type and name of each method parameter and an optional throws
clause that lists the exceptions the method can throw. The member names are in
boldface, so it is easy to scan the list of members looking for the one you want.
The names of method parameters are in italics to indicate that they are not to be
used literally. The member listings are printed on alternating gray and white back-
grounds to keep them visually separate.

Member availability and flags

Each member listing is a single line that defines the API for that member. These
listings use Java syntax, so their meaning is immediately clear to any Java
programmer. There is some auxiliary information associated with each member
synopsis that requires explanation, however.

Recall that each quick-reference entry begins with a title section that includes the
release in which the class was first defined. When a member is introduced into a
class after the initial release of the class, the version in which the member was
introduced appears, in small print, to the left of the member synopsis. For
example, if a class was first introduced in Java 1.1, but had a new method added
in Java 1.2 the title contains the string “1.1”, and the listing for the new member is
preceded by the number “1.2”. Furthermore, if a member has been deprecated,
that fact is indicated with a hash mark (#) to the left of the member synopsis.

The area to the right of the member synopsis is used to display a variety of flags
that provide additional information about the member. Some of these flags indi-
cate additional specification details that do not appear in the member API itself.
Other flags contain implementation-specific information. This information can be
quite useful in understanding the class and in debugging your code, but be aware
that it may differ between implementations. The implementation-specific flags
displayed in this book are based on Sun’s Linux implementation of Java.

The following flags may be displayed to the right of a member synopsis:

native
An implementation-specific flag that indicates that a method is implemented
in native code. Although native is a Java keyword and can appear in method

Reading a Quick-Reference Entry | 379

Quick Ref
H

ow
-to

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

signatures, it is part of the method implementation, not part of its specifica-
tion. Therefore, this information is included with the member flags, rather
than as part of the member listing. This flag is useful as a hint about the
expected performance of a method.

synchronized
An implementation-specific flag that indicates that a method implementation
is declared synchronized, meaning that it obtains a lock on the object or class
before executing. Like the native keyword, the synchronized keyword is part
of the method implementation, not part of the specification, so it appears as a
flag, not in the method synopsis itself. This flag is a useful hint that the
method is probably implemented in a threadsafe manner.

Whether or not a method is thread-safe is part of the method specification,
and this information should appear (although it often does not) in the method
documentation. There are a number of different ways to make a method
threadsafe, however, and declaring the method with the synchronized
keyword is only one possible implementation. In other words, a method that
does not bear the synchronized flag can still be threadsafe.

Overrides:
This flag indicates that a method overrides a method in one of its super-
classes. The flag is followed by the name of the superclass that the method
overrides. This is a specification detail, not an implementation detail. As we’ll
see in the next section, overriding methods are usually grouped together in
their own section of the class synopsis. The Overrides: flag is only used when
an overriding method is not grouped in that way.

Implements:
This flag indicates that a method implements a method in an interface. The
flag is followed by the name of the interface that is implemented. This is a
specification detail, not an implementation detail. As we’ll see in the next
section, methods that implement an interface are usually grouped into a
special section of the class synopsis. The Implements: flag is only used for
methods that are not grouped in this way.

empty
This flag indicates that the implementation of the method has an empty
body. This can be a hint to the programmer that the method may need to be
overridden in a subclass.

constant
An implementation-specific flag that indicates that a method has a trivial
implementation. Only methods with a void return type can be truly empty.
Any method declared to return a value must have at least a return statement.
The constant flag indicates that the method implementation is empty except
for a return statement that returns a constant value. Such a method might
have a body like return null; or return false;. Like the empty flag, this flag
may indicate that a method needs to be overridden.

default:
This flag is used with property accessor methods that read the value of a
property (i.e., methods whose names begins with get and take no argu-

380 | : How to Use This Quick Reference

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

ments). The flag is followed by the default value of the property. Strictly
speaking, default property values are a specification detail. In practice,
however, these defaults are not always documented, and care should be
taken, because the default values may change between implementations.

Not all property accessors have a default: flag. A default value is determined
by dynamically loading the class in question, instantiating it using a no-argu-
ment constructor, and then calling the method to find out what it returns.
This technique can be used only on classes that can be dynamically loaded
and instantiated and that have no-argument constructors, so default values
are shown for those classes only. Furthermore, note that when a class is
instantiated using a different constructor, the default values for its properties
may be different.

= For static final fields, this flag is followed by the constant value of the field.
Only constants of primitive and String types and constants with the value
null are displayed. Some constant values are specification details, while
others are implementation details. The reason that symbolic constants are
defined, however, is so you can write code that does not rely directly upon
the constant value. Use this flag to help you understand the class, but do not
rely upon the constant values in your own programs.

Functional grouping of members

Within a class synopsis, the members are not listed in strict alphabetical order.
Instead, they are broken down into functional groups and listed alphabetically
within each group. Constructors, methods, fields, and inner classes are all listed
separately. Instance methods are kept separate from static (class) methods.
Constants are separated from non-constant fields. Public members are listed sepa-
rately from protected members. Grouping members by category breaks a class
down into smaller, more comprehensible segments, making the class easier to
understand. This grouping also makes it easier for you to find a desired member.

Functional groups are separated from each other in a class synopsis with Java
comments, such as // Public Constructors, // Inner Classes, and // Methods
Implementing DataInput. The various functional categories are as follows (in the
order in which they appear in a class synopsis):

Constructors
Displays the constructors for the class. Public constructors and protected
constructors are displayed separately in subgroupings. If a class defines no
constructor at all, the Java compiler adds a default no-argument constructor
that is displayed here. If a class defines only private constructors, it cannot be
instantiated, so a special, empty grouping entitled “No Constructor” indi-
cates this fact. Constructors are listed first because the first thing you do with
most classes is instantiate them by calling a constructor.

Constants
Displays all of the constants (i.e., fields that are declared static and final)
defined by the class. Public and protected constants are displayed in separate
subgroups. Constants are listed here, near the top of the class synopsis,

Reading a Quick-Reference Entry | 381

Quick Ref
H

ow
-to

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

because constant values are often used throughout the class as legal values for
method parameters and return values.

Inner classes
Groups all of the inner classes and interfaces defined by the class or interface.
For each inner class, there is a single-line synopsis. Each inner class also has its
own quick-reference entry that includes a full class synopsis for the inner class.
Like constants, inner classes are listed near the top of the class synopsis because
they are often used by a number of other members of the class.

Static methods
Lists the static methods (class methods) of the class, broken down into
subgroups for public static methods and protected static methods.

Event listener registration methods
Lists the public instance methods that register and deregister event listener
objects with the class. The names of these methods begin with the words
“add” and “remove” and end in “Listener”. These methods are always passed
a java.util.EventListener object. The methods are typically defined in pairs,
so the pairs are listed together. The methods are listed alphabetically by event
name rather than by method name.

Public instance methods
Contains all of the public instance methods that are not grouped elsewhere.

Implementing methods
Groups the methods that implement the same interface. There is one
subgroup for each interface implemented by the class. Methods that are
defined by the same interface are almost always related to each other, so this
is a useful functional grouping of methods. If a class is modified so that it
implements an interface after its initial release, the methods of that interface
will be grouped here, but will also appear in the “Public Instance methods”
section.

Overriding methods
Groups the methods that override methods of a superclass broken down into
subgroups by superclass. This is typically a useful grouping, because it helps
to make it clear how a class modifies the default behavior of its superclasses.
In practice, it is also often true that methods that override the same super-
class are functionally related to each other.

Protected instance methods
Contains all of the protected instance methods that are not grouped
elsewhere.

Fields
Lists all the nonconstant fields of the class, breaking them down into
subgroups for public and protected static fields and public and protected
instance fields. Many classes do not define any publicly accessible fields. For
those that do, many object-oriented programmers prefer not to use those
fields directly, but instead to use accessor methods when such methods are
available.

382 | : How to Use This Quick Reference

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Deprecated members
Deprecated methods and deprecated fields are grouped at the very bottom of
the class synopsis. Use of these members is strongly discouraged.

Cross-References

The synopsis section of a quick-reference entry is followed by a number of
optional cross-reference sections that indicate other, related classes and methods
that may be of interest. These sections are the following:

Subclasses
This section lists the subclasses of this class, if there are any.

Implementations
This section lists classes that implement this interface.

Passed To
This section lists all of the methods and constructors that are passed an
object of this type as an argument. This is useful when you have an object of
a given type and want to figure out what you can do with it. Methods defined
by this type itself are not included in the list.

Returned By
This section lists all of the methods (but not constructors) that return an
object of this type. This is useful when you know that you want to work with
an object of this type, but don’t know how to obtain one. Methods of this
type itself are excluded.

Thrown By
For checked exception classes, this section lists all of the methods and
constructors that throw exceptions of this type. This material helps you
figure out when a given exception or error may be thrown. Note, however,
that this section is based on the exception types listed in the throws clauses of
methods and constructors. Subclasses of RuntimeException and Error do not
have to be listed in throws clauses, so it is not possible to generate a complete
cross-reference of methods that throw these types of unchecked exceptions.

Type Of
This section lists all of the fields and constants that are of this type, which
can help you figure out how to obtain an object of this type. If the type
defines self-typed fields or constants, they are not included on this list.

A Note About Class Names

Throughout the quick reference, you’ll notice that classes are sometimes referred
to by class name alone and at other times referred to by class name and package
name. If package names were always used, the class synopses would become long
and hard to read. On the other hand, if package names were never used, it would
sometimes be difficult to know what class was being referred to. The rules for
including or omitting the package name are complex. They can be summarized
approximately as follows, however:

Reading a Quick-Reference Entry | 383

Quick Ref
H

ow
-to

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

• If the class name alone is ambiguous, the package name is always used. The
name Annotation is ambiguous, for example, because it can refer to either
java.lang.annotation.Annotation or java.text.Annotation.

• If the class is part of the java.lang package or is a very commonly used class,
such as java.io.Serializable, the package name is omitted.

• If the class being referred to is part of the current package (and has a quick-
reference entry in the current chapter), the package name is omitted.

385

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Chapter 9java.io

9
java.io

Package java.io Java 1.0

The java.io package is large, but most of the classes it contains fall into a well-struc-
tured hierarchy. Most of the package consists of byte streams—subclasses of InputStream
or OutputStream and character streams—subclasses of Reader or Writer. Each of these stream
subtypes has a specific purpose, and, despite its size, java.io is a straightforward package
to understand and to use. In Java 1.4, the java.io package was complemented by a “New
I/O API” defined in the java.nio package and its subpackages. The java.nio package is
totally new, although it included some compatibility with the classes in this package. It
was designed for high-performance I/O, particularly for use in servers and has a lower-
level API than this package does. The I/O facilities of java.io are still quite adequate for
most of the I/O required by typical client-side applications.

Before we consider the stream classes that comprise the bulk of this package, let’s
examine the important nonstream classes. File represents a file or directory name in a
system-independent way and provides methods for listing directories, querying file
attributes, and renaming and deleting files. FilenameFilter is an interface that defines a
method that accepts or rejects specified filenames. It is used by File to specify what
types of files should be included in directory listings. RandomAccessFile allows you to read
from or write to arbitrary locations of a file. Often, though, you’ll prefer sequential
access to a file and should use one of the stream classes.

InputStream and OutputStream are abstract classes that define methods for reading and writing
bytes. Their subclasses allow bytes to be read from and written to a variety of sources and
sinks. FileInputStream and FileOutputStream read from and write to files. ByteArrayInputStream and
ByteArrayOutputStream read from and write to an array of bytes in memory. PipedInputStream
reads bytes from a PipedOutputStream, and PipedOutputStream writes bytes to a PipedInputStream.
These classes work together to implement a pipe for communication between threads.

FilterInputStream and FilterOutputStream are special; they filter input and output bytes. When
you create a FilterInputStream, you specify an InputStream for it to filter. When you call the
read() method of a FilterInputStream, it calls the read() method of its InputStream, processes the
bytes it reads, and returns the filtered bytes. Similarly, when you create a FilterOutputStream,

386 | Chapter 9: java.io

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

you specify an OutputStream to be filtered. Calling the write() method of a FilterOutputStream
causes it to process your bytes in some way and then pass those filtered bytes to the
write() method of its OutputStream.

FilterInputStream and FilterOutputStream do not perform any filtering themselves; this is done by
their subclasses. BufferedInputStream and BufferedOutputStream are filtered streams that provide
input and output buffering and can increase I/O efficiency. DataInputStream reads raw bytes
from a stream and interprets them in various binary formats. It has various methods to
read primitive Java data types in their standard binary formats. DataOutputStream allows you
to write Java primitive data types in binary format. The ObjectInputStream and ObjectOutput-
Stream classes are special. These byte-stream classes are used for serializing and
deserializing the internal state of objects for storage or interprocess communication.

The byte streams just described are complemented by an analogous set of character
input and output streams. Reader is the superclass of all character input streams, and
Writer is the superclass of all character output streams. Most of the Reader and Writer
streams have obvious byte-stream analogs. BufferedReader is a commonly used stream; it
provides buffering for efficiency and also has a readLine() method to read a line of text at
a time. PrintWriter is another very common stream; its methods allow output of a textual
representation of any primitive Java type or of any object (via the object’s toString()
method).

Java 5.0 adds the Closeable and Flushable interfaces to identify types that have close() and flush()
methods. All streams have a close() method and implement the Closeable interface. And all
byte and character output streams have a flush() method and implement Flushable. In a
related change, all character output streams (and the byte stream PrintStream) implement
the (new in Java 5.0) interface java.lang.Appendable, making them suitable for use with the
java.util.Formatter class. Similarly, all character input streams implement the java.lang.Readable
interface, making them suitable for use with the java.util.Scanner class. Finally, both Print-
Stream and PrintWriter have been enhanced in two ways for Java 5.0. Both now include
constructors for creating a stream that writes directly to a file. And both include
formatted-text output methods printf() and format(). See java.util.Formatter for details.

Interfaces
public interface Closeable;
public interface DataInput;
public interface DataOutput;
public interface Externalizable extends Serializable;
public interface FileFilter;
public interface FilenameFilter;
public interface Flushable;
public interface ObjectInput extends DataInput;
public interface ObjectInputValidation;
public interface ObjectOutput extends DataOutput;
public interface ObjectStreamConstants;
public interface Serializable;

Classes
public class File implements Serializable, Comparable<File>;
public final class FileDescriptor;
public final class FilePermission extends java.security.Permission implements Serializable;
public abstract class InputStream implements Closeable;

public class ByteArrayInputStream extends InputStream;
public class FileInputStream extends InputStream;

.Package java.io | 387

java.io

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

public class FilterInputStream extends InputStream;
public class BufferedInputStream extends FilterInputStream;
public class DataInputStream extends FilterInputStream implements DataInput;
public class LineNumberInputStream extends FilterInputStream;
public class PushbackInputStream extends FilterInputStream;

public class ObjectInputStream extends InputStream implements ObjectInput, ObjectStreamConstants;
public class PipedInputStream extends InputStream;
public class SequenceInputStream extends InputStream;
public class StringBufferInputStream extends InputStream;

public abstract static class ObjectInputStream.GetField;
public abstract static class ObjectOutputStream.PutField;
public class ObjectStreamClass implements Serializable;
public class ObjectStreamField implements Comparable<Object>;
public abstract class OutputStream implements Closeable, Flushable;

public class ByteArrayOutputStream extends OutputStream;
public class FileOutputStream extends OutputStream;
public class FilterOutputStream extends OutputStream;

public class BufferedOutputStream extends FilterOutputStream;
public class DataOutputStream extends FilterOutputStream implements DataOutput;
public class PrintStream extends FilterOutputStream implements Appendable, Closeable;

public class ObjectOutputStream extends OutputStream implements ObjectOutput, ObjectStreamConstants;
public class PipedOutputStream extends OutputStream;

public class RandomAccessFile implements Closeable, DataInput, DataOutput;
public abstract class Reader implements Closeable, Readable;

public class BufferedReader extends Reader;
public class LineNumberReader extends BufferedReader;

public class CharArrayReader extends Reader;
public abstract class FilterReader extends Reader;

public class PushbackReader extends FilterReader;
public class InputStreamReader extends Reader;

public class FileReader extends InputStreamReader;
public class PipedReader extends Reader;
public class StringReader extends Reader;

public final class SerializablePermission extends java.security.BasicPermission;
public class StreamTokenizer;
public abstract class Writer implements Appendable, Closeable, Flushable;

public class BufferedWriter extends Writer;
public class CharArrayWriter extends Writer;
public abstract class FilterWriter extends Writer;
public class OutputStreamWriter extends Writer;

public class FileWriter extends OutputStreamWriter;
public class PipedWriter extends Writer;
public class PrintWriter extends Writer;
public class StringWriter extends Writer;

Exceptions
public class IOException extends Exception;

public class CharConversionException extends IOException;
public class EOFException extends IOException;
public class FileNotFoundException extends IOException;
public class InterruptedIOException extends IOException;
public abstract class ObjectStreamException extends IOException;

public class InvalidClassException extends ObjectStreamException;

388 | Chapter 9: java.io

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.io.BufferedInputStream

public class InvalidObjectException extends ObjectStreamException;
public class NotActiveException extends ObjectStreamException;
public class NotSerializableException extends ObjectStreamException;
public class OptionalDataException extends ObjectStreamException;
public class StreamCorruptedException extends ObjectStreamException;
public class WriteAbortedException extends ObjectStreamException;

public class SyncFailedException extends IOException;
public class UnsupportedEncodingException extends IOException;
public class UTFDataFormatException extends IOException;

BufferedInputStream
java.io

Java 1.0

closeable

This class is a FilterInputStream that provides input data buffering; efficiency is increased
by reading in a large amount of data and storing it in an internal buffer. When data is
requested, it is usually available from the buffer. Thus, most calls to read data do not
actually have to read data from a disk, network, or other slow source. Create a Buffered-
InputStream by specifying the InputStream that is to be buffered in the call to the
constructor. See also BufferedReader.

BufferedOutputStream
java.io

Java 1.0

closeable flushable

This class is a FilterOutputStream that provides output data buffering; output efficiency is
increased by storing values to be written in a buffer and actually writing them out only
when the buffer fills up or when the flush() method is called. Create a BufferedOutputStream
by specifying the OutputStream that is to be buffered in the call to the constructor. See
also BufferedWriter.

public class BufferedInputStream extends FilterInputStream {
// Public Constructors

public BufferedInputStream(InputStream in);
public BufferedInputStream(InputStream in, int size);

// Public Methods Overriding FilterInputStream
public int available() throws IOException; synchronized

1.2 public void close() throws IOException;
public void mark(int readlimit); synchronized
public boolean markSupported(); constant
public int read() throws IOException; synchronized
public int read(byte[] b, int off, int len) throws IOException; synchronized
public void reset() throws IOException; synchronized
public long skip(long n) throws IOException; synchronized

// Protected Instance Fields
protected volatile byte[] buf;
protected int count;
protected int marklimit;
protected int markpos;
protected int pos;

}

Object InputStream FilterInputStream BufferedInputStream

Closeable

Chapter 9: java.io | 389

java.io

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.io.BufferedReader

BufferedReader
java.io

Java 1.1

readable closeable

This class applies buffering to a character input stream, thereby improving the effi-
ciency of character input. You create a BufferedReader by specifying some other character
input stream from which it is to buffer input. (You can also specify a buffer size at this
time, although the default size is usually fine.) Typically, you use this sort of buffering
with a FileReader or InputStreamReader. BufferedReader defines the standard set of Reader
methods and provides a readLine() method that reads a line of text (not including the
line terminator) and returns it as a String. BufferedReader is the character-stream analog of
BufferedInputStream. It also provides a replacement for the deprecated readLine() method of
DataInputStream, which did not properly convert bytes into characters.

Subclasses LineNumberReader

public class BufferedOutputStream extends FilterOutputStream {
// Public Constructors

public BufferedOutputStream(OutputStream out);
public BufferedOutputStream(OutputStream out, int size);

// Public Methods Overriding FilterOutputStream
public void flush() throws IOException; synchronized
public void write(int b) throws IOException; synchronized
public void write(byte[] b, int off, int len) throws IOException; synchronized

// Protected Instance Fields
protected byte[] buf;
protected int count;

}

public class BufferedReader extends Reader {
// Public Constructors

public BufferedReader(Reader in);
public BufferedReader(Reader in, int sz);

// Public Instance Methods
public String readLine() throws IOException;

// Public Methods Overriding Reader
public void close() throws IOException;
public void mark(int readAheadLimit) throws IOException;
public boolean markSupported(); constant
public int read() throws IOException;
public int read(char[] cbuf, int off, int len) throws IOException;
public boolean ready() throws IOException;
public void reset() throws IOException;
public long skip(long n) throws IOException;

}

Object OutputStream FilterOutputStream BufferedOutputStream

Closeable Flushable

Object Reader BufferedReader

Closeable Readable

390 | Chapter 9: java.io

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.io.BufferedWriter

BufferedWriter
java.io

Java 1.1

appendable closeable flushable

This class applies buffering to a character output stream, improving output efficiency by
coalescing many small write requests into a single larger request. You create a Buffered-
Writer by specifying some other character output stream to which it sends its buffered and
coalesced output. (You can also specify a buffer size at this time, although the default
size is usually satisfactory.) Typically, you use this sort of buffering with a FileWriter or
OutputStreamWriter. BufferedWriter defines the standard write(), flush(), and close() methods all
output streams define, but it adds a newLine() method that outputs the platform-depen-
dent line separator (usually a newline character, a carriage-return character, or both) to
the stream. BufferedWriter is the character-stream analog of BufferedOutputStream.

ByteArrayInputStream
java.io

Java 1.0

closeable

This class is a subclass of InputStream in which input data comes from a specified array of
byte values. This is useful when you want to read data in memory as if it were coming
from a file, pipe, or socket. Note that the specified array of bytes is not copied when a
ByteArrayInputStream is created. See also CharArrayReader.

public class BufferedWriter extends Writer {
// Public Constructors

public BufferedWriter(Writer out);
public BufferedWriter(Writer out, int sz);

// Public Instance Methods
public void newLine() throws IOException;

// Public Methods Overriding Writer
public void close() throws IOException;
public void flush() throws IOException;
public void write(int c) throws IOException;
public void write(char[] cbuf, int off, int len) throws IOException;
public void write(String s, int off, int len) throws IOException;

}

public class ByteArrayInputStream extends InputStream {
// Public Constructors

public ByteArrayInputStream(byte[] buf);
public ByteArrayInputStream(byte[] buf, int offset, int length);

// Public Methods Overriding InputStream
public int available(); synchronized

1.2 public void close() throws IOException; empty
1.1 public void mark(int readAheadLimit);
1.1 public boolean markSupported(); constant

public int read(); synchronized
public int read(byte[] b, int off, int len); synchronized
public void reset(); synchronized

Object Writer BufferedWriter

Appendable Closeable Flushable

Object InputStream ByteArrayInputStream

Closeable

Chapter 9: java.io | 391

java.io

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.io.CharArrayReader

ByteArrayOutputStream
java.io

Java 1.0

closeable flushable

This class is a subclass of OutputStream in which output data is stored in an internal byte
array. The internal array grows as necessary and can be retrieved with toByteArray() or
toString(). The reset() method discards any data currently stored in the internal array and
stores data from the beginning again. See also CharArrayWriter.

CharArrayReader
java.io

Java 1.1

readable closeable

This class is a character input stream that uses a character array as the source of the char-
acters it returns. You create a CharArrayReader by specifying the character array (or portion of
an array) it is to read from. CharArrayReader defines the usual Reader methods and supports
the mark() and reset() methods. Note that the character array you pass to the CharArrayReader()
constructor is not copied. This means that changes you make to the elements of the array
after you create the input stream affect the values read from the array. CharArrayReader is the
character-array analog of ByteArrayInputStream and is similar to StringReader.

public long skip(long n); synchronized
// Protected Instance Fields

protected byte[] buf;
protected int count;

1.1 protected int mark;
protected int pos;

}

public class ByteArrayOutputStream extends OutputStream {
// Public Constructors

public ByteArrayOutputStream();
public ByteArrayOutputStream(int size);

// Public Instance Methods
public void reset(); synchronized
public int size();
public byte[] toByteArray(); synchronized

1.1 public String toString(String enc) throws UnsupportedEncodingException;
public void writeTo(OutputStream out) throws IOException; synchronized

// Public Methods Overriding OutputStream
1.2 public void close() throws IOException; empty

public void write(int b); synchronized
public void write(byte[] b, int off, int len); synchronized

// Public Methods Overriding Object
public String toString();

// Protected Instance Fields
protected byte[] buf;
protected int count;

// Deprecated Public Methods
public String toString(int hibyte);
}

Object OutputStream ByteArrayOutputStream

Closeable Flushable

392 | Chapter 9: java.io

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.io.CharArrayWriter

CharArrayWriter
java.io

Java 1.1

appendable closeable flushable

This class is a character output stream that uses an internal character array as the
destination of characters written to it. When you create a CharArrayWriter, you may
optionally specify an initial size for the character array, but you do not specify the
character array itself; this array is managed internally by the CharArrayWriter and grows as
necessary to accommodate all the characters written to it. The toString() and toCharArray()
methods return a copy of all characters written to the stream, as a string and an array
of characters, respectively. CharArrayWriter defines the standard write(), flush(), and close()
methods all Writer subclasses define. It also defines a few other useful methods. size()
returns the number of characters that have been written to the stream. reset() resets the
stream to its initial state, with an empty character array; this is more efficient than
creating a new CharArrayWriter. Finally, writeTo() writes the contents of the internal char-
acter array to some other specified character stream. CharArrayWriter is the character-
stream analog of ByteArrayOutputStream and is quite similar to StringWriter.

public class CharArrayReader extends Reader {
// Public Constructors

public CharArrayReader(char[] buf);
public CharArrayReader(char[] buf, int offset, int length);

// Public Methods Overriding Reader
public void close();
public void mark(int readAheadLimit) throws IOException;
public boolean markSupported(); constant
public int read() throws IOException;
public int read(char[] b, int off, int len) throws IOException;
public boolean ready() throws IOException;
public void reset() throws IOException;
public long skip(long n) throws IOException;

// Protected Instance Fields
protected char[] buf;
protected int count;
protected int markedPos;
protected int pos;

}

public class CharArrayWriter extends Writer {
// Public Constructors

public CharArrayWriter();
public CharArrayWriter(int initialSize);

// Public Instance Methods
5.0 public CharArrayWriter append(CharSequence csq);
5.0 public CharArrayWriter append(char c);
5.0 public CharArrayWriter append(CharSequence csq, int start, int end);

public void reset();
public int size();

Object Reader CharArrayReader

Closeable Readable

Object Writer CharArrayWriter

Appendable Closeable Flushable

Chapter 9: java.io | 393

java.io

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.io.DataInput

CharConversionException
java.io

Java 1.1

serializable checked

Signals an error when converting bytes to characters or vice versa.

Closeable
java.io

Java 5.0

closeable

This interface defines a close() method and is implemented by closeable objects such as
java.io streams and java.nio channels. This interface was added in Java 5.0 to enable
java.util.Formatter to distinguish java.lang.Appendable objects that need to be closed (such as
streams) from those that do not (such as StringBuilder objects). See also Flushable.

Implementations InputStream, OutputStream, PrintStream, RandomAccessFile, Reader, Writer,
java.nio.channels.Channel, java.util.Formatter

DataInput
java.io

Java 1.0

This interface defines the methods required for streams that can read Java primitive
data types in a machine-independent binary format. It is implemented by DataInputStream
and RandomAccessFile. See DataInputStream for more information on the methods.

public char[] toCharArray();
public void writeTo(Writer out) throws IOException;

// Public Methods Overriding Writer
public void close(); empty
public void flush(); empty
public void write(int c);
public void write(char[] c, int off, int len);
public void write(String str, int off, int len);

// Public Methods Overriding Object
public String toString();

// Protected Instance Fields
protected char[] buf;
protected int count;

}

public class CharConversionException extends IOException {
// Public Constructors

public CharConversionException();
public CharConversionException(String s);

}

public interface Closeable {
// Public Instance Methods

void close() throws IOException;
}

public interface DataInput {
// Public Instance Methods

boolean readBoolean() throws IOException;

Object Throwable Exception IOException CharConversionException

Serializable

394 | Chapter 9: java.io

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.io.DataInputStream

Implementations DataInputStream, ObjectInput, RandomAccessFile

Passed To DataInputStream.readUTF()

DataInputStream
java.io

Java 1.0

closeable

This class is a type of FilterInputStream that allows you to read binary representations of
Java primitive data types in a portable way. Create a DataInputStream by specifying the
InputStream that is to be filtered in the call to the constructor. DataInputStream reads only
primitive Java types; use ObjectInputStream to read object values.

Many of the methods read and return a single Java primitive type, in binary format,
from the stream. readUnsignedByte() and readUnsignedShort() read unsigned values and return
them as int values, since unsigned byte and short types are not supported in Java. read()
reads data into an array of bytes, blocking until at least some data is available. By
contrast, readFully() reads data into an array of bytes, but blocks until all requested data
becomes available. skipBytes() blocks until the specified number of bytes have been read
and discarded. readLine() reads characters from the stream until it encounters a newline,
a carriage return, or a newline/carriage return pair. The returned string is not termi-
nated with a newline or carriage return. This method is deprecated as of Java 1.1; see
BufferedReader for an alternative. readUTF() reads a string of Unicode text encoded in a
slightly modified version of the UTF-8 transformation format. UTF-8 is an ASCII-
compatible encoding of Unicode characters that is often used for the transmission and
storage of Unicode text. This class uses a modified UTF-8 encoding that never
contains embedded null characters.

byte readByte() throws IOException;
char readChar() throws IOException;
double readDouble() throws IOException;
float readFloat() throws IOException;
void readFully(byte[] b) throws IOException;
void readFully(byte[] b, int off, int len) throws IOException;
int readInt() throws IOException;
String readLine() throws IOException;
long readLong() throws IOException;
short readShort() throws IOException;
int readUnsignedByte() throws IOException;
int readUnsignedShort() throws IOException;
String readUTF() throws IOException;
int skipBytes(int n) throws IOException;

}

public class DataInputStream extends FilterInputStream implements DataInput {
// Public Constructors

public DataInputStream(InputStream in);
// Public Class Methods

public static final String readUTF(DataInput in) throws IOException;
// Methods Implementing DataInput

public final boolean readBoolean() throws IOException;
public final byte readByte() throws IOException;
public final char readChar() throws IOException;

Object InputStream FilterInputStream DataInputStream

Closeable DataInput

Chapter 9: java.io | 395

java.io

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.io.DataOutputStream

DataOutput
java.io

Java 1.0

This interface defines the methods required for streams that can write Java primitive
data types in a machine-independent binary format. It is implemented by DataOutput-
Stream and RandomAccessFile. See DataOutputStream for more information on the methods.

Implementations DataOutputStream, ObjectOutput, RandomAccessFile

DataOutputStream
java.io

Java 1.0

closeable flushable

This class is a subclass of FilterOutputStream that allows you to write Java primitive data
types in a portable binary format. Create a DataOutputStream by specifying the OutputStream
that is to be filtered in the call to the constructor. DataOutputStream has methods that
output only primitive types; use ObjectOutputStream to output object values.

Many of this class’s methods write a single Java primitive type, in binary format, to the
output stream. write() writes a single byte, an array, or a subarray of bytes. flush() forces
any buffered data to be output. size() returns the number of bytes written so far.

public final double readDouble() throws IOException;
public final float readFloat() throws IOException;
public final void readFully(byte[] b) throws IOException;
public final void readFully(byte[] b, int off, int len) throws IOException;
public final int readInt() throws IOException;
public final long readLong() throws IOException;
public final short readShort() throws IOException;
public final int readUnsignedByte() throws IOException;
public final int readUnsignedShort() throws IOException;
public final String readUTF() throws IOException;
public final int skipBytes(int n) throws IOException;

// Public Methods Overriding FilterInputStream
public final int read(byte[] b) throws IOException;
public final int read(byte[] b, int off, int len) throws IOException;

// Deprecated Public Methods
public final String readLine() throws IOException; Implements:DataInput
}

public interface DataOutput {
// Public Instance Methods

void write(byte[] b) throws IOException;
void write(int b) throws IOException;
void write(byte[] b, int off, int len) throws IOException;
void writeBoolean(boolean v) throws IOException;
void writeByte(int v) throws IOException;
void writeBytes(String s) throws IOException;
void writeChar(int v) throws IOException;
void writeChars(String s) throws IOException;
void writeDouble(double v) throws IOException;
void writeFloat(float v) throws IOException;
void writeInt(int v) throws IOException;
void writeLong(long v) throws IOException;
void writeShort(int v) throws IOException;
void writeUTF(String str) throws IOException;

}

396 | Chapter 9: java.io

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.io.EOFException

writeUTF() outputs a Java string of Unicode characters using a slightly modified version
of the UTF-8 transformation format. UTF-8 is an ASCII-compatible encoding of
Unicode characters that is often used for the transmission and storage of Unicode text.
Except for the writeUTF() method, this class is used for binary output of data. Textual
output should be done with PrintWriter (or PrintStream in Java 1.0).

EOFException
java.io

Java 1.0

serializable checked

An IOException that signals the end-of-file.

Externalizable
java.io

Java 1.1

serializable

This interface defines the methods that must be implemented by an object that wants
complete control over the way it is serialized. The writeExternal() and readExternal() methods
should be implemented to write and read object data in some arbitrary format, using

public class DataOutputStream extends FilterOutputStream implements DataOutput {
// Public Constructors

public DataOutputStream(OutputStream out);
// Public Instance Methods

public final int size();
// Methods Implementing DataOutput

public void write(int b) throws IOException; synchronized
public void write(byte[] b, int off, int len) throws IOException; synchronized
public final void writeBoolean(boolean v) throws IOException;
public final void writeByte(int v) throws IOException;
public final void writeBytes(String s) throws IOException;
public final void writeChar(int v) throws IOException;
public final void writeChars(String s) throws IOException;
public final void writeDouble(double v) throws IOException;
public final void writeFloat(float v) throws IOException;
public final void writeInt(int v) throws IOException;
public final void writeLong(long v) throws IOException;
public final void writeShort(int v) throws IOException;
public final void writeUTF(String str) throws IOException;

// Public Methods Overriding FilterOutputStream
public void flush() throws IOException;

// Protected Instance Fields
protected int written;

}

public class EOFException extends IOException {
// Public Constructors

public EOFException();
public EOFException(String s);

}

Object OutputStream FilterOutputStream DataOutputStream

Closeable Flushable DataOutput

Object Throwable Exception IOException EOFException

Serializable

Chapter 9: java.io | 397

java.io

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.io.File

the methods of the DataOutput and DataInput interfaces. Externalizable objects must serialize
their own fields and are also responsible for serializing the fields of their superclasses.
Most objects do not need to define a custom output format and can use the Serializable
interface instead of Externalizable for serialization.

File
java.io

Java 1.0

serializable comparable

This class supports a platform-independent definition of file and directory names. It
also provides methods to list the files in a directory; check the existence, readability,
writability, type, size, and modification time of files and directories; make new directo-
ries; rename files and directories; delete files and directories; and create and delete
temporary and lock files. The constants defined by this class are the platform-depen-
dent directory and path-separator characters, available as a String and a char.

getName() returns the name of the File with any directory names omitted. getPath() returns
the full name of the file, including the directory name. getParent() and getParentFile() return
the directory that contains the File; the only difference between the two methods is that
one returns a String, while the other returns a File. isAbsolute() tests whether the File is an
absolute specification. If not, getAbsolutePath() returns an absolute filename created by
appending the relative filename to the current working directory. getAbsoluteFile() returns
the equivalent absolute File object. getCanonicalPath() and getCanonicalFile() are similar
methods: they return an absolute filename or File object that has been converted to its
system-dependent canonical form. This can be useful when comparing two File objects
to see if they refer to the same file or directory. In Java 1.4 and later, the toURI() method
returns a java.net.URI object that uses a file: scheme to name this file. This file-to-URI
transformation can be reversed by passing a file: URI object to the File() constructor.

exists(), canWrite(), canRead(), isFile(), isDirectory(), and isHidden() perform the obvious tests on
the specified File. length() returns the length of the file. lastModified() returns the modifica-
tion time of the file (which should be used for comparison with other file times only
and not interpreted as any particular time format). setLastModified() allows the modifica-
tion time to be set; setReadOnly() makes a file or directory read-only.

list() returns the names of all entries in a directory that are not rejected by an optional
FilenameFilter. listFiles() returns an array of File objects that represent all entries in a direc-
tory not rejected by an optional FilenameFilter or FileFilter. listRoots() returns an array of File
objects representing all root directories on the system. Unix systems typically have
only one root, /. Windows systems have a different root for each drive letter: c:\, d:\,
and e:\, for example.

mkdir() creates a directory, and mkdirs() creates all the directories in a File specification.
renameTo() renames a file or directory; delete() deletes a file or directory. Prior to Java
1.2, the File class doesn’t provide any way to create a file; that task is accomplished
typically with FileOutputStream. Two special-purpose file creation methods were added in
Java 1.2. The static createTempFile() method returns a File object that refers to a newly
created empty file with a unique name that begins with the specified prefix (which

public interface Externalizable extends Serializable {
// Public Instance Methods

void readExternal(ObjectInput in) throws IOException, ClassNotFoundException;
void writeExternal(ObjectOutput out) throws IOException;

}

Serializable Externalizable

398 | Chapter 9: java.io

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.io.File

must be at least three characters long) and ends with the specified suffix. One version
of this method creates the file in a specified directory, and the other creates it in the
system temporary directory. Applications can use temporary files for any purpose
without worrying about overwriting files belonging to other applications. The other
file-creation method of Java 1.2 is createNewFile(). This instance method attempts to
create a new, empty file with the name specified by the File object. If it succeeds, it
returns true. However, if the file already exists, it returns false. createNewFile() works atomi-
cally and is therefore useful for file locking and other mutual-exclusion schemes.
When working with createTempFile() or createNewFile(), consider using deleteOnExit() to request
that the files be deleted when the Java VM exits normally.

public class File implements Serializable, Comparable<File> {
// Public Constructors
1.4 public File(java.net.URI uri);

public File(String pathname);
public File(File parent, String child);
public File(String parent, String child);

// Public Constants
public static final String pathSeparator;
public static final char pathSeparatorChar;
public static final String separator;
public static final char separatorChar;

// Public Class Methods
1.2 public static File createTempFile(String prefix, String suffix) throws IOException;
1.2 public static File createTempFile(String prefix, String suffix, File directory) throws IOException;
1.2 public static File[] listRoots();
// Public Instance Methods

public boolean canRead();
public boolean canWrite();

1.2 public boolean createNewFile() throws IOException;
public boolean delete();

1.2 public void deleteOnExit();
public boolean exists();

1.2 public File getAbsoluteFile();
public String getAbsolutePath();

1.2 public File getCanonicalFile() throws IOException;
1.1 public String getCanonicalPath() throws IOException;

public String getName();
public String getParent();

1.2 public File getParentFile();
public String getPath();
public boolean isAbsolute();
public boolean isDirectory();
public boolean isFile();

1.2 public boolean isHidden();
public long lastModified();
public long length();
public String[] list();
public String[] list(FilenameFilter filter);

1.2 public File[] listFiles();

Object File

Comparable Serializable

Chapter 9: java.io | 399

java.io

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.io.FileFilter

Passed To Too many methods to list.

Returned By ProcessBuilder.directory()

FileDescriptor
java.io

Java 1.0

This class is a platform-independent representation of a low-level handle to an open
file or socket. The static in, out, and err variables are FileDescriptor objects that represent the
standard input, output, and error streams, respectively. There is no public constructor
method to create a FileDescriptor object. You can obtain one with the getFD() method of
FileInputStream, FileOutputStream, or RandomAccessFile.

Passed To FileInputStream.FileInputStream(), FileOutputStream.FileOutputStream(), FileReader.FileReader(),
FileWriter.FileWriter(), SecurityManager.{checkRead(), checkWrite()}

Returned By FileInputStream.getFD(), FileOutputStream.getFD(), RandomAccessFile.getFD(),
java.net.DatagramSocketImpl.getFileDescriptor(), java.net.SocketImpl.getFileDescriptor()

Type Of java.net.DatagramSocketImpl.fd, java.net.SocketImpl.fd

FileFilter
java.io

Java 1.2

This interface, added in Java 1.2, defines an accept() method that filters a list of files.
You can list the contents of a directory by calling the listFiles() method of the File object
that represents the desired directory. If you want a filtered listing, such as a listing of
files but not subdirectories or a listing of files whose names end in .class, you can pass
a FileFilter object to listFiles(). For each entry in the directory, a File object is passed to the

1.2 public File[] listFiles(FilenameFilter filter);
1.2 public File[] listFiles(FileFilter filter);

public boolean mkdir();
public boolean mkdirs();
public boolean renameTo(File dest);

1.2 public boolean setLastModified(long time);
1.2 public boolean setReadOnly();
1.4 public java.net.URI toURI();
1.2 public java.net.URL toURL() throws java.net.MalformedURLException;
// Methods Implementing Comparable
1.2 public int compareTo(File pathname);
// Public Methods Overriding Object

public boolean equals(Object obj);
public int hashCode();
public String toString();

}

public final class FileDescriptor {
// Public Constructors

public FileDescriptor();
// Public Constants

public static final FileDescriptor err;
public static final FileDescriptor in;
public static final FileDescriptor out;

// Public Instance Methods
1.1 public void sync() throws SyncFailedException; native

public boolean valid();
}

400 | Chapter 9: java.io

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.io.FileInputStream

accept() method. If accept() returns true, that File is included in the return value of listFiles().
If accept() returns false, that entry is not included in the listing. Use FilenameFilter if
compatibility with previous releases of Java is required or if you prefer to filter file-
names (i.e., String objects) rather than File objects.

Passed To File.listFiles()

FileInputStream
java.io

Java 1.0

closeable

This class is a subclass of InputStream that reads bytes from a file specified by name or by
a File or FileDescriptor object. read() reads a byte or array of bytes from the file. It returns –1
when the end-of-file has been reached. To read binary data, you typically use this class
in conjunction with a BufferedInputStream and DataInputStream. To read text, you typically use
it with an InputStreamReader and BufferedReader. Call close() to close the file when input is no
longer needed.

In Java 1.4 and later, use getChannel() to obtain a FileChannel object for reading from the
underlying file using the New I/O API of java.nio and its subpackages.

FilenameFilter
java.io

Java 1.0

This interface defines the accept() method that must be implemented by any object that
filters filenames (i.e., selects a subset of filenames from a list of filenames). There are no
standard FilenameFilter classes implemented by Java, but objects that implement this inter-
face are used by the java.awt.FileDialog object and the File.list() method. A typical FilenameFilter
object might check that the specified File represents a file (not a directory), is readable
(and possibly writable as well), and that its name ends with some desired extension.

public interface FileFilter {
// Public Instance Methods

boolean accept(File pathname);
}

public class FileInputStream extends InputStream {
// Public Constructors

public FileInputStream(String name) throws FileNotFoundException;
public FileInputStream(File file) throws FileNotFoundException;
public FileInputStream(FileDescriptor fdObj);

// Public Instance Methods
1.4 public java.nio.channels.FileChannel getChannel();

public final FileDescriptor getFD() throws IOException;
// Public Methods Overriding InputStream

public int available() throws IOException; native
public void close() throws IOException;
public int read() throws IOException; native
public int read(byte[] b) throws IOException;
public int read(byte[] b, int off, int len) throws IOException;
public long skip(long n) throws IOException; native

// Protected Methods Overriding Object
protected void finalize() throws IOException;

}

Object InputStream FileInputStream

Closeable

Chapter 9: java.io | 401

java.io

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.io.FileOutputStream

Passed To File.{list(), listFiles()}

FileNotFoundException
java.io

Java 1.0

serializable checked

An IOException that signals that a specified file cannot be found.

Thrown By Too many methods to list.

FileOutputStream
java.io

Java 1.0

closeable flushable

This class is a subclass of OutputStream that writes data to a file specified by name or by a
File or FileDescriptor object. If the specified file already exists, a FileOutputStream can be
configured to overwrite or append to the existing file. write() writes a byte or array of
bytes to the file. To write binary data, you typically use this class in conjunction with a
BufferedOutputStream and a DataOutputStream. To write text, you typically use it with a Print-
Writer, BufferedWriter and an OutputStreamWriter (or you use the convenience class FileWriter).
Use close() to close a FileOutputStream when no further output will be written to it.

In Java 1.4 and later, use getChannel() to obtain a FileChannel object for writing to the
underlying file using the New I/O API of java.nio and its subpackages.

public interface FilenameFilter {
// Public Instance Methods

boolean accept(File dir, String name);
}

public class FileNotFoundException extends IOException {
// Public Constructors

public FileNotFoundException();
public FileNotFoundException(String s);

}

public class FileOutputStream extends OutputStream {
// Public Constructors

public FileOutputStream(FileDescriptor fdObj);
public FileOutputStream(File file) throws FileNotFoundException;
public FileOutputStream(String name) throws FileNotFoundException;

1.1 public FileOutputStream(String name, boolean append) throws FileNotFoundException;
1.4 public FileOutputStream(File file, boolean append) throws FileNotFoundException;
// Public Instance Methods
1.4 public java.nio.channels.FileChannel getChannel();

public final FileDescriptor getFD() throws IOException;
// Public Methods Overriding OutputStream

public void close() throws IOException;
public void write(int b) throws IOException; native
public void write(byte[] b) throws IOException;
public void write(byte[] b, int off, int len) throws IOException;

Object Throwable Exception IOException FileNotFoundException

Serializable

Object OutputStream FileOutputStream

Closeable Flushable

402 | Chapter 9: java.io

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.io.FilePermission

FilePermission
java.io

Java 1.2

serializable permission

This class is a java.security.Permission that governs access to the local filesystem. A FilePermission
has a name, or target, which specifies what file or files it pertains to, and a comma-
separated list of actions that may be performed on the file or files. The supported actions
are read, write, delete, and execute. Read and write permission are required by any
methods that read or write a file. Delete permission is required by File.delete(), and execute
permission is required by Runtime.exec().

The name of a FilePermission may be as simple as a file or directory name. FilePermission also
supports the use of certain wildcards, however, to specify a permission that applies to
more than one file. If the name of the FilePermission is a directory name followed by /* (*
on Windows platforms), it specifies all files in the named directory. If the name is a
directory name followed by /– (\– on Windows), it specifies all files in the directory,
and, recursively, all files in all subdirectories. A * alone specifies all files in the current
directory, and a – alone specifies all files in or beneath the current directory. Finally,
the special name <<ALL FILES>> matches all files anywhere in the filesystem.

Applications do not need to use this class directly. Programmers writing system-level
code and system administrators configuring security policies may need to use it,
however. Be very careful when granting any type of FilePermission. Restricting access
(especially write access) to files is one of the cornerstones of the Java security model
with regard to untrusted code.

FileReader
java.io

Java 1.1

readable closeable

FileReader is a convenience subclass of InputStreamReader that is useful when you want to
read text (as opposed to binary data) from a file. You create a FileReader by specifying the
file to be read in any of three possible forms. The FileReader constructor internally
creates a FileInputStream to read bytes from the specified file and uses the functionality of
its superclass, InputStreamReader, to convert those bytes from characters in the local
encoding to the Unicode characters used by Java. Because FileReader is a trivial subclass
of InputStreamReader, it does not define any read() methods or other methods of its own.
Instead, it inherits all its methods from its superclass. If you want to read Unicode

// Protected Methods Overriding Object
protected void finalize() throws IOException;

}

public final class FilePermission extends java.security.Permission implements Serializable {
// Public Constructors

public FilePermission(String path, String actions);
// Public Methods Overriding Permission

public boolean equals(Object obj);
public String getActions();
public int hashCode();
public boolean implies(java.security.Permission p);
public java.security.PermissionCollection newPermissionCollection();

}

Object Permission FilePermission

Guard Serializable Serializable

Chapter 9: java.io | 403

java.io

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.io.FilterInputStream

characters from a file that uses some encoding other than the default encoding for the
locale, you must explicitly create your own InputStreamReader to perform the byte-to-char-
acter conversion.

FileWriter
java.io

Java 1.1

appendable closeable flushable

FileWriter is a convenience subclass of OutputStreamWriter that is useful when you want to
write text (as opposed to binary data) to a file. You create a FileWriter by specifying the file
to be written to and, optionally, whether the data should be appended to the end of an
existing file instead of overwriting that file. The FileWriter class creates an internal FileOutput-
Stream to write bytes to the specified file and uses the functionality of its superclass,
OutputStreamWriter, to convert the Unicode characters written to the stream into bytes using
the default encoding of the default locale. (If you want to use an encoding other than the
default, you cannot use FileWriter; in that case you must create your own OutputStreamWriter
and FileOutputStream.) Because FileWriter is a trivial subclass of OutputStreamWriter, it does not
define any methods of its own, but simply inherits them from its superclass.

FilterInputStream
java.io

Java 1.0

closeable

This class provides method definitions required to filter data obtained from the Input-
Stream specified when the FilterInputStream is created. It must be subclassed to perform
some sort of filtering operation and cannot be instantiated directly. See the subclasses
BufferedInputStream, DataInputStream, and PushbackInputStream.

public class FileReader extends InputStreamReader {
// Public Constructors

public FileReader(FileDescriptor fd);
public FileReader(File file) throws FileNotFoundException;
public FileReader(String fileName) throws FileNotFoundException;

}

public class FileWriter extends OutputStreamWriter {
// Public Constructors

public FileWriter(File file) throws IOException;
public FileWriter(FileDescriptor fd);
public FileWriter(String fileName) throws IOException;

1.4 public FileWriter(File file, boolean append) throws IOException;
public FileWriter(String fileName, boolean append) throws IOException;

}

public class FilterInputStream extends InputStream {
// Protected Constructors

Object Reader InputStreamReader FileReader

Closeable Readable

Object Writer OutputStreamWriter FileWriter

Appendable Closeable Flushable

Object InputStream FilterInputStream

Closeable

404 | Chapter 9: java.io

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.io.FilterOutputStream

Subclasses
BufferedInputStream, DataInputStream, LineNumberInputStream, PushbackInputStream,
java.security.DigestInputStream, java.util.zip.CheckedInputStream, java.util.zip.InflaterInputStream,
javax.crypto.CipherInputStream

FilterOutputStream
java.io

Java 1.0

closeable flushable

This class provides method definitions required to filter the data to be written to the
OutputStream specified when the FilterOutputStream is created. It must be subclassed to
perform some sort of filtering operation and may not be instantiated directly. See the
subclasses BufferedOutputStream and DataOutputStream.

Subclasses
BufferedOutputStream, DataOutputStream, PrintStream, java.security.DigestOutputStream,
java.util.zip.CheckedOutputStream, java.util.zip.DeflaterOutputStream, javax.crypto.CipherOutputStream

FilterReader
java.io

Java 1.1

readable closeable

This abstract class is intended to act as a superclass for character input streams that
read data from some other character input stream, filter it in some way, and then

protected FilterInputStream(InputStream in);
// Public Methods Overriding InputStream

public int available() throws IOException;
public void close() throws IOException;
public void mark(int readlimit); synchronized
public boolean markSupported();
public int read() throws IOException;
public int read(byte[] b) throws IOException;
public int read(byte[] b, int off, int len) throws IOException;
public void reset() throws IOException; synchronized
public long skip(long n) throws IOException;

// Protected Instance Fields
protected volatile InputStream in;

}

public class FilterOutputStream extends OutputStream {
// Public Constructors

public FilterOutputStream(OutputStream out);
// Public Methods Overriding OutputStream

public void close() throws IOException;
public void flush() throws IOException;
public void write(int b) throws IOException;
public void write(byte[] b) throws IOException;
public void write(byte[] b, int off, int len) throws IOException;

// Protected Instance Fields
protected OutputStream out;

}

Object OutputStream FilterOutputStream

Closeable Flushable

Chapter 9: java.io | 405

java.io

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.io.FilterWriter

return the filtered data when a read() method is called. FilterReader is declared abstract so
that it cannot be instantiated. But none of its methods are themselves abstract: they all
simply call the requested operation on the input stream passed to the FilterReader()
constructor. If you were allowed to instantiate a FilterReader, you’d find that it is a null
filter (i.e., it simply reads characters from the specified input stream and returns them
without any kind of filtering).

Because FilterReader implements a null filter, it is an ideal superclass for classes that want
to implement simple filters but do not want to override all the methods of Reader. In
order to create your own filtered character input stream, you should subclass Filter-
Reader and override both its read() methods to perform the desired filtering operation.
Note that you can implement one of the read() methods in terms of the other, and thus
only implement the filtration once. Recall that the other read() methods defined by
Reader are implemented in terms of these methods, so you do not need to override
those. In some cases, you may need to override other methods of FilterReader and provide
methods or constructors that are specific to your subclass. FilterReader is the character-
stream analog to FilterInputStream.

Subclasses PushbackReader

FilterWriter
java.io

Java 1.1

appendable closeable flushable

This abstract class is intended to act as a superclass for character output streams that
filter the data written to them before writing it to some other character output stream.
FilterWriter is declared abstract so that it cannot be instantiated. But none of its methods
are themselves abstract: they all simply invoke the corresponding method on the
output stream that was passed to the FilterWriter constructor. If you were allowed to
instantiate a FilterWriter object, you’d find that it acts as a null filter (i.e., it simply passes
the characters written to it along, without any filtration).

Because FilterWriter implements a null filter, it is an ideal superclass for classes that want
to implement simple filters without having to override all of the methods of Writer. In
order to create your own filtered character output stream, you should subclass Filter-
Writer and override all its write() methods to perform the desired filtering operation. Note

public abstract class FilterReader extends Reader {
// Protected Constructors

protected FilterReader(Reader in);
// Public Methods Overriding Reader

public void close() throws IOException;
public void mark(int readAheadLimit) throws IOException;
public boolean markSupported();
public int read() throws IOException;
public int read(char[] cbuf, int off, int len) throws IOException;
public boolean ready() throws IOException;
public void reset() throws IOException;
public long skip(long n) throws IOException;

// Protected Instance Fields
protected Reader in;

}

Object Reader FilterReader

Closeable Readable

406 | Chapter 9: java.io

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.io.Flushable

that you can implement two of the write() methods in terms of the third and thus imple-
ment your filtering algorithm only once. In some cases, you may want to override
other Writer methods and add other methods or constructors that are specific to your
subclass. FilterWriter is the character-stream analog of FilterOutputStream.

Flushable
java.io

Java 5.0

flushable

This interface defines a flush() method and is implemented by flushable objects such as
java.io streams. This interface was added in Java 5.0 to enable java.util.Formatter to distin-
guish java.lang.Appendable objects that need to be flushed (such as streams) from those
that do not (such as StringBuilder objects). See also Closeable.

Implementations OutputStream, Writer, java.util.Formatter

InputStream
java.io

Java 1.0

closeable

This abstract class is the superclass of all input streams. It defines the basic input
methods all input stream classes provide. read() reads a single byte or an array (or
subarray) of bytes. It returns the bytes read, the number of bytes read, or –1 if the end-
of-file has been reached. skip() skips a specified number of bytes of input. available()
returns the number of bytes that can be read without blocking. close() closes the input
stream and frees up any system resources associated with it. The stream should not be
used after close() has been called.

If markSupported() returns true for a given InputStream, that stream supports mark() and reset()
methods. mark() marks the current position in the input stream so that reset() can return
to that position (as long as no more than the specified number of bytes have been read
between the calls to mark() and reset()). See also Reader.

public abstract class FilterWriter extends Writer {
// Protected Constructors

protected FilterWriter(Writer out);
// Public Methods Overriding Writer

public void close() throws IOException;
public void flush() throws IOException;
public void write(int c) throws IOException;
public void write(char[] cbuf, int off, int len) throws IOException;
public void write(String str, int off, int len) throws IOException;

// Protected Instance Fields
protected Writer out;

}

public interface Flushable {
// Public Instance Methods

void flush() throws IOException;
}

Object Writer FilterWriter

Appendable Closeable Flushable

Object InputStream Closeable

Chapter 9: java.io | 407

java.io

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.io.InputStreamReader

Subclasses ByteArrayInputStream, FileInputStream, FilterInputStream, ObjectInputStream,
PipedInputStream, SequenceInputStream, StringBufferInputStream

Passed To Too many methods to list.

Returned By Too many methods to list.

Type Of FilterInputStream.in, System.in

InputStreamReader
java.io

Java 1.1

readable closeable

This class is a character input stream that uses a byte input stream as its data source. It
reads bytes from a specified InputStream and translates them into Unicode characters
according to a particular platform- and locale-dependent character encoding. This is
an important internationalization feature in Java 1.1 and later. InputStreamReader supports
the standard Reader methods. It also has a getEncoding() method that returns the name of
the encoding being used to convert bytes to characters.

When you create an InputStreamReader, you specify an InputStream from which the Input-
StreamReader is to read bytes and, optionally, the name of the character encoding used by
those bytes. If you do not specify an encoding name, the InputStreamReader uses the
default encoding for the default locale, which is usually the correct thing to do. In Java
1.4 and later, this class uses the charset conversion facilities of the java.nio.charset package
and allows you to explicitly specify the Charset or CharsetDecoder to be used. Prior to Java
1.4, the class allows you to specify only the name of the desired charset encoding.

public abstract class InputStream implements Closeable {
// Public Constructors

public InputStream();
// Public Instance Methods

public int available() throws IOException; constant
public void close() throws IOException; Implements:Closeable empty
public void mark(int readlimit); synchronized empty
public boolean markSupported(); constant
public abstract int read() throws IOException;
public int read(byte[] b) throws IOException;
public int read(byte[] b, int off, int len) throws IOException;
public void reset() throws IOException; synchronized
public long skip(long n) throws IOException;

// Methods Implementing Closeable
public void close() throws IOException; empty

}

public class InputStreamReader extends Reader {
// Public Constructors

public InputStreamReader(InputStream in);
public InputStreamReader(InputStream in, String charsetName) throws UnsupportedEncodingException;

1.4 public InputStreamReader(InputStream in, java.nio.charset.Charset cs);
1.4 public InputStreamReader(InputStream in, java.nio.charset.CharsetDecoder dec);
// Public Instance Methods

public String getEncoding();
// Public Methods Overriding Reader

Object Reader InputStreamReader

Closeable Readable

408 | Chapter 9: java.io

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.io.InterruptedIOException

Subclasses FileReader

InterruptedIOException
java.io

Java 1.0

serializable checked

An IOException that signals that an input or output operation was interrupted. The
bytesTransferred field contains the number of bytes read or written before the operation
was interrupted.

Subclasses java.net.SocketTimeoutException

InvalidClassException
java.io

Java 1.1

serializable checked

Signals that the serialization mechanism has encountered one of several possible prob-
lems with the class of an object that is being serialized or deserialized. The classname
field should contain the name of the class in question, and the getMessage() method is
overridden to return this class name with the message.

InvalidObjectException
java.io

Java 1.1

serializable checked

This exception should be thrown by the validateObject() method of an object that imple-
ments the ObjectInputValidation interface when a deserialized object fails an input
validation test for any reason.

public void close() throws IOException;
public int read() throws IOException;
public int read(char[] cbuf, int offset, int length) throws IOException;
public boolean ready() throws IOException;

}

public class InterruptedIOException extends IOException {
// Public Constructors

public InterruptedIOException();
public InterruptedIOException(String s);

// Public Instance Fields
public int bytesTransferred;

}

public class InvalidClassException extends ObjectStreamException {
// Public Constructors

public InvalidClassException(String reason);
public InvalidClassException(String cname, String reason);

// Public Methods Overriding Throwable
public String getMessage();

// Public Instance Fields
public String classname;

}

Object Throwable Exception IOException InterruptedIOException

Serializable

Object Throwable Exception IOException ObjectStreamException InvalidClassException

Serializable

Chapter 9: java.io | 409

java.io

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.io.LineNumberInputStream

Thrown By ObjectInputStream.registerValidation(), ObjectInputValidation.validateObject(),
java.text.AttributedCharacterIterator.Attribute.readResolve(), java.text.DateFormat.Field.readResolve(),
java.text.MessageFormat.Field.readResolve(), java.text.NumberFormat.Field.readResolve()

IOException
java.io

Java 1.0

serializable checked

Signals that an exceptional condition has occurred during input or output. This class
has several more specific subclasses. See EOFException, FileNotFoundException, InterruptedIO-
Exception, and UTFDataFormatException.

Subclasses CharConversionException, EOFException, FileNotFoundException, InterruptedIOException,
ObjectStreamException, SyncFailedException, UnsupportedEncodingException, UTFDataFormatException,
java.net.HttpRetryException, java.net.MalformedURLException, java.net.ProtocolException,
java.net.SocketException, java.net.UnknownHostException, java.net.UnknownServiceException,
java.nio.channels.ClosedChannelException, java.nio.channels.FileLockInterruptionException,
java.nio.charset.CharacterCodingException, java.util.InvalidPropertiesFormatException, java.util.zip.ZipException,
javax.net.ssl.SSLException

Passed To java.net.ProxySelector.connectFailed()

Returned By java.util.Formatter.ioException(), java.util.Scanner.ioException()

Thrown By Too many methods to list.

LineNumberInputStream
java.io

Java 1.0; Deprecated in 1.1

@Deprecated closeable

This class is a FilterInputStream that keeps track of the number of lines of data that have
been read. getLineNumber() returns the current line number; setLineNumber() sets the line
number of the current line. Subsequent lines are numbered starting from that number.
This class is deprecated as of Java 1.1 because it does not properly convert bytes to
characters. Use LineNumberReader instead.

public class InvalidObjectException extends ObjectStreamException {
// Public Constructors

public InvalidObjectException(String reason);
}

public class IOException extends Exception {
// Public Constructors

public IOException();
public IOException(String s);

}

Object Throwable Exception IOException ObjectStreamException InvalidObjectException

Serializable

Object Throwable Exception IOException

Serializable

Object InputStream FilterInputStream LineNumberInputStream

Closeable

410 | Chapter 9: java.io

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.io.LineNumberReader

LineNumberReader
java.io

Java 1.1

readable closeable

This class is a character input stream that keeps track of the number of lines of text that
have been read from it. It supports the usual Reader methods and also the readLine() method
introduced by its superclass. In addition to these methods, you can call getLineNumber() to
query the number of lines set so far. You can also call setLineNumber() to set the line number
for the current line. Subsequent lines are numbered sequentially from this specified
starting point. This class is a character-stream analog to LineNumberInputStream, which has
been deprecated as of Java 1.1.

NotActiveException
java.io

Java 1.1

serializable checked

This exception is thrown in several circumstances. It indicates that the invoked
method was not invoked at the right time or in the correct context. Typically, it means
that an ObjectOutputStream or ObjectInputStream is not currently active and therefore the
requested operation cannot be performed.

public class LineNumberInputStream extends FilterInputStream {
// Public Constructors

public LineNumberInputStream(InputStream in);
// Public Instance Methods

public int getLineNumber();
public void setLineNumber(int lineNumber);

// Public Methods Overriding FilterInputStream
public int available() throws IOException;
public void mark(int readlimit);
public int read() throws IOException;
public int read(byte[] b, int off, int len) throws IOException;
public void reset() throws IOException;
public long skip(long n) throws IOException;

}

public class LineNumberReader extends BufferedReader {
// Public Constructors

public LineNumberReader(Reader in);
public LineNumberReader(Reader in, int sz);

// Public Instance Methods
public int getLineNumber();
public void setLineNumber(int lineNumber);

// Public Methods Overriding BufferedReader
public void mark(int readAheadLimit) throws IOException;
public int read() throws IOException;
public int read(char[] cbuf, int off, int len) throws IOException;
public String readLine() throws IOException;
public void reset() throws IOException;
public long skip(long n) throws IOException;

}

Object Reader BufferedReader LineNumberReader

Closeable Readable

Chapter 9: java.io | 411

java.io

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.io.ObjectInput

Thrown By ObjectInputStream.registerValidation()

NotSerializableException
java.io

Java 1.1

serializable checked

Signals that an object cannot be serialized. It is thrown when serialization is attempted
on an instance of a class that does not implement the Serializable interface. Note that it is
also thrown when an attempt is made to serialize a Serializable object that refers to (or
contains) an object that is not Serializable. A subclass of a class that is Serializable can
prevent itself from being serialized by throwing this exception from its writeObject() and/
or readObject() methods.

ObjectInput
java.io

Java 1.1

This interface extends the DataInput interface and adds methods for deserializing objects
and reading bytes and arrays of bytes.

Implementations ObjectInputStream

Passed To Externalizable.readExternal()

public class NotActiveException extends ObjectStreamException {
// Public Constructors

public NotActiveException();
public NotActiveException(String reason);

}

public class NotSerializableException extends ObjectStreamException {
// Public Constructors

public NotSerializableException();
public NotSerializableException(String classname);

}

public interface ObjectInput extends DataInput {
// Public Instance Methods

int available() throws IOException;
void close() throws IOException;
int read() throws IOException;
int read(byte[] b) throws IOException;
int read(byte[] b, int off, int len) throws IOException;
Object readObject() throws ClassNotFoundException, IOException;
long skip(long n) throws IOException;

}

Object Throwable Exception IOException ObjectStreamException NotActiveException

Serializable

Object Throwable Exception IOException ObjectStreamException NotSerializableException

Serializable

DataInput ObjectInput

412 | Chapter 9: java.io

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.io.ObjectInputStream

ObjectInputStream
java.io

Java 1.1

closeable

ObjectInputStream deserializes objects, arrays, and other values from a stream that was
previously created with an ObjectOutputStream. The readObject() method deserializes objects
and arrays (which should then be cast to the appropriate type); various other methods
read primitive data values from the stream. Note that only objects that implement the
Serializable or Externalizable interface can be serialized and deserialized.

A class may implement its own private readObject(ObjectInputStream) method to customize the
way it is deserialized. If you define such a method, there are several ObjectInputStream
methods you can use to help deserialize the object. defaultReadObject() is the easiest. It reads
the content of the object just as an ObjectInputStream would normally do. If you wrote addi-
tional data before or after the default object contents, you should read that data before or
after calling defaultReadObject(). When working with multiple versions or implementations of
a class, you may have to deserialize a set of fields that do not match the fields of your class.
In this case, give your class a static field named serialPersistentFields whose value is an array of
ObjectStreamField objects that describe the fields to be deserialized. If you do this, your
readObject() method can call readFields() to read the specified fields from the stream and return
them in a ObjectInputStream.GetField object. See ObjectStreamField and ObjectInputStream.GetField for
more details. Finally, you can call registerValidation() from a custom readObject() method. This
method registers an ObjectInputValidation object (typically the object being deserialized) to be
notified when a complete tree of objects has been deserialized, and the original call to the
readObject() method of the ObjectInputStream is about to return to its caller.

The remaining methods include miscellaneous stream-manipulation methods and
several protected methods for use by subclasses that want to customize the deserializa-
tion behavior of ObjectInputStream.

public class ObjectInputStream extends InputStream implements ObjectInput, ObjectStreamConstants {
// Public Constructors

public ObjectInputStream(InputStream in) throws IOException;
// Protected Constructors
1.2 protected ObjectInputStream() throws IOException, SecurityException;
// Nested Types
1.2public abstract static class GetField;
// Public Instance Methods

public void defaultReadObject() throws IOException, ClassNotFoundException;
1.2 public ObjectInputStream.GetField readFields() throws IOException, ClassNotFoundException;
1.4 public Object readUnshared() throws IOException, ClassNotFoundException;

public void registerValidation(ObjectInputValidation obj, int prio) throws NotActiveException, InvalidObjectException;
// Methods Implementing DataInput

public boolean readBoolean() throws IOException;
public byte readByte() throws IOException;
public char readChar() throws IOException;
public double readDouble() throws IOException;
public float readFloat() throws IOException;
public void readFully(byte[] buf) throws IOException;
public void readFully(byte[] buf, int off, int len) throws IOException;
public int readInt() throws IOException;
public long readLong() throws IOException;
public short readShort() throws IOException;

Object InputStream ObjectInputStream

Closeable DataInput ObjectInput ObjectStreamConstants

Chapter 9: java.io | 413

java.io

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.io.ObjectInputStream.GetField

ObjectInputStream.GetField
java.io

Java 1.2

This class holds the values of named fields read by an ObjectInputStream. It gives the
programmer precise control over the deserialization process and is typically used when
implementing an object with a set of fields that do not match the set of fields (and the
serialization stream format) of the original implementation of the object. This class allows
the implementation of a class to change without breaking serialization compatibility.

In order to use the GetField class, your class must implement a private readObject() method
that is responsible for custom deserialization. Typically, when using the GetField class,
you have also specified an array of ObjectStreamField objects as the value of a private static
field named serialPersistentFields. This array specifies the names and types of all fields
expected to be found when reading from a serialization stream. If there is no serialPersis-
tentField field, the array of ObjectStreamField objects is created from the actual fields
(excluding static and transient fields) of the class.

Within the readObject() method of your class, call the readFields() method of
ObjectInputStream(). This method reads the values of all fields from the stream and stores
them in an ObjectInputStream.GetField object that it returns. This GetField object is essentially a
mapping from field names to field values, and you can extract the values of whatever
fields you need in order to restore the proper state of the object being deserialized. The
various get() methods return the values of named fields of specified types. Each method
takes a default value as an argument, in case no value for the named field was present
in the serialization stream. (This can happen when deserializing an object written by
an earlier version of the class, for example.) Use the defaulted() method to determine
whether the GetField object contains a value for the named field. If this method returns
true, the named field had no value in the stream, so the get() method of the GetField object
has to return the specified default value. The getObjectStreamClass() method of a GetField
object returns the ObjectStreamClass object for the object being deserialized. This Object-
StreamClass can obtain the array of ObjectStreamField objects for the class.

See also ObjectOutputStream.PutField

public int readUnsignedByte() throws IOException;
public int readUnsignedShort() throws IOException;
public String readUTF() throws IOException;
public int skipBytes(int len) throws IOException;

// Methods Implementing ObjectInput
public int available() throws IOException;
public void close() throws IOException;
public int read() throws IOException;
public int read(byte[] buf, int off, int len) throws IOException;
public final Object readObject() throws IOException, ClassNotFoundException;

// Protected Instance Methods
protected boolean enableResolveObject(boolean enable) throws SecurityException;

1.3 protected ObjectStreamClass readClassDescriptor() throws IOException, ClassNotFoundException;
1.2 protected Object readObjectOverride() throws IOException, ClassNotFoundException; constant

protected void readStreamHeader() throws IOException, StreamCorruptedException;
protected Class<?> resolveClass(ObjectStreamClass desc) throws IOException, ClassNotFoundException;
protected Object resolveObject(Object obj) throws IOException;

1.3 protected Class<?> resolveProxyClass(String[] interfaces) throws IOException, ClassNotFoundException;
// Deprecated Public Methods
public String readLine() throws IOException; Implements:DataInput
}

414 | Chapter 9: java.io

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.io.ObjectInputValidation

Returned By ObjectInputStream.readFields()

ObjectInputValidation
java.io

Java 1.1

A class implements this interface and defines the validateObject() method in order to validate
itself when it and all the objects it depends on have been completely deserialized from an
ObjectInputStream. The validateObject() method is only invoked, however, if the object is passed
to ObjectInputStream.registerValidation(); this must be done from the readObject() method of the
object. Note that if an object is deserialized as part of a larger object graph, its
validateObject() method is not invoked until the entire graph is read, and the original call to
ObjectInputStream.readObject() is about to return. validateObject() should throw an InvalidObject-
Exception if the object fails validation. This stops object serialization, and the original call to
ObjectInputStream.readObject() terminates with the InvalidObjectException exception.

Passed To ObjectInputStream.registerValidation()

ObjectOutput
java.io

Java 1.1

This interface extends the DataOutput interface and adds methods for serializing objects
and writing bytes and arrays of bytes.

public abstract static class ObjectInputStream.GetField {
// Public Constructors

public GetField();
// Public Instance Methods

public abstract boolean defaulted(String name) throws IOException;
public abstract boolean get(String name, boolean val) throws IOException;
public abstract byte get(String name, byte val) throws IOException;
public abstract char get(String name, char val) throws IOException;
public abstract short get(String name, short val) throws IOException;
public abstract int get(String name, int val) throws IOException;
public abstract long get(String name, long val) throws IOException;
public abstract float get(String name, float val) throws IOException;
public abstract double get(String name, double val) throws IOException;
public abstract Object get(String name, Object val) throws IOException;
public abstract ObjectStreamClass getObjectStreamClass();

}

public interface ObjectInputValidation {
// Public Instance Methods

void validateObject() throws InvalidObjectException;
}

public interface ObjectOutput extends DataOutput {
// Public Instance Methods

void close() throws IOException;
void flush() throws IOException;
void write(byte[] b) throws IOException;
void write(int b) throws IOException;
void write(byte[] b, int off, int len) throws IOException;
void writeObject(Object obj) throws IOException;

}

DataOutput ObjectOutput

Chapter 9: java.io | 415

java.io

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.io.ObjectOutputStream

Implementations ObjectOutputStream

Passed To Externalizable.writeExternal(), ObjectOutputStream.PutField.write()

ObjectOutputStream
java.io

Java 1.1

closeable flushable

The ObjectOutputStream serializes objects, arrays, and other values to a stream. The
writeObject() method serializes an object or array, and various other methods write primi-
tive data values to the stream. Note that only objects that implement the Serializable or
Externalizable interface can be serialized.

A class that wants to customize the way instances are serialized should declare a
private writeObject(ObjectOutputStream) method. This method is invoked when an object is
being serialized and can use several additional methods of ObjectOutputStream.
defaultWriteObject() performs the same serialization that would happen if no writeObject()
method existed. An object can call this method to serialize itself and then use other
methods of ObjectOutputStream to write additional data to the serialization stream. The
class must define a matching readObject() method to read that additional data, of course.
When working with multiple versions or implementations of a class, you may have to
serialize a set of fields that do not precisely match the fields of your class. In this case,
give your class a static field named serialPersistentFields whose value is an array of Object-
StreamField objects that describe the fields to be serialized. In your writeObject() method,
call putFields() to obtain an ObjectOutputStream.PutField object. Store field names and values
into this object, and then call writeFields() to write them out to the serialization stream.
See ObjectStreamField and ObjectOutputStream.PutField for further details.

The remaining methods of ObjectOutputStream are miscellaneous stream-manipulation
methods and protected methods for use by subclasses that want to customize its serial-
ization behavior.

public class ObjectOutputStream extends OutputStream implements ObjectOutput, ObjectStreamConstants {
// Public Constructors

public ObjectOutputStream(OutputStream out) throws IOException;
// Protected Constructors
1.2 protected ObjectOutputStream() throws IOException, SecurityException;
// Nested Types
1.2 public abstract static class PutField;
// Public Instance Methods

public void defaultWriteObject() throws IOException;
1.2 public ObjectOutputStream.PutField putFields() throws IOException;

public void reset() throws IOException;
1.2 public void useProtocolVersion(int version) throws IOException;
1.2 public void writeFields() throws IOException;
1.4 public void writeUnshared(Object obj) throws IOException;
// Methods Implementing DataOutput

public void writeBoolean(boolean val) throws IOException;
public void writeByte(int val) throws IOException;
public void writeBytes(String str) throws IOException;
public void writeChar(int val) throws IOException;
public void writeChars(String str) throws IOException;

Object OutputStream ObjectOutputStream

Closeable Flushable DataOutput ObjectOutput ObjectStreamConstants

416 | Chapter 9: java.io

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.io.ObjectOutputStream.PutField

ObjectOutputStream.PutField
java.io

Java 1.2

This class holds values of named fields and allows them to be written to an ObjectOutput-
Stream during the process of object serialization. It gives the programmer precise control
over the serialization process and is typically used when the set of fields defined by a
class does not match the set of fields (and the serialization stream format) defined by
the original implementation of the class. In other words, ObjectOutputStream.PutField allows
the implementation of a class to change without breaking serialization compatibility.

In order to use the PutField class, you typically define a private static serialPersistentFields
field that refers to an array of ObjectStreamField objects. This array defines the set of fields
written to the ObjectOutputStream and therefore defines the serialization format. If you do
not declare a serialPersistentFields field, the set of fields is all fields of the class, excluding
static and transient fields.

In addition to the serialPersistentFields field, your class must also define a private writeObject()
method that is responsible for the custom serialization of your class. In this method,
call the putFields() method of ObjectOutputStream to obtain an ObjectOutputStream.PutField object.
Once you have this object, use its various put() methods to specify the names and
values of the field to be written out. The set of named fields should match those speci-
fied by serialPersistentFields. You may specify the fields in any order; the PutField class is
responsible for writing them out in the correct order. Once you have specified the
values of all fields, call the write() method of your PutField object in order to write the
field values out to the serialization stream.

To reverse this custom serialization process, see ObjectInputStream.GetField.

public void writeDouble(double val) throws IOException;
public void writeFloat(float val) throws IOException;
public void writeInt(int val) throws IOException;
public void writeLong(long val) throws IOException;
public void writeShort(int val) throws IOException;
public void writeUTF(String str) throws IOException;

// Methods Implementing ObjectOutput
public void close() throws IOException;
public void flush() throws IOException;
public void write(int val) throws IOException;
public void write(byte[] buf) throws IOException;
public void write(byte[] buf, int off, int len) throws IOException;
public final void writeObject(Object obj) throws IOException;

// Protected Instance Methods
protected void annotateClass(Class<?> cl) throws IOException; empty

1.3 protected void annotateProxyClass(Class<?> cl) throws IOException; empty
protected void drain() throws IOException;
protected boolean enableReplaceObject(boolean enable) throws SecurityException;
protected Object replaceObject(Object obj) throws IOException;

1.3 protected void writeClassDescriptor(ObjectStreamClass desc) throws IOException;
1.2 protected void writeObjectOverride(Object obj) throws IOException; empty

protected void writeStreamHeader() throws IOException;
}

public abstract static class ObjectOutputStream.PutField {
// Public Constructors

public PutField();

Chapter 9: java.io | 417

java.io

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.io.ObjectStreamClass

Returned By ObjectOutputStream.putFields()

ObjectStreamClass
java.io

Java 1.1

serializable

This class represents a class that is being serialized. An ObjectStreamClass object contains
the name of a class, its unique version identifier, and the name and type of the fields
that constitute the serialization format for the class. getSerialVersionUID() returns a unique
version identifier for the class. It returns either the value of the private serialVersionUID
field of the class or a computed value that is based upon the public API of the class. In
Java 1.2 and later, getFields() returns an array of ObjectStreamField objects that represent the
names and types of the fields of the class to be serialized. getField() returns a single Object-
StreamField object that represents a single named field. By default, these methods use all
the fields of a class except those that are static or transient. However, this default set of
fields can be overridden by declaring a private serialPersistentFields field in the class. The
value of this field should be the desired array of ObjectStreamField objects.

ObjectStreamClass class does not have a constructor; you should use the static lookup()
method to obtain an ObjectStreamClass object for a given Class object. The forClass() instance
method performs the opposite operation; it returns the Class object that corresponds to
a given ObjectStreamClass. Most applications never need to use this class.

Passed To ObjectInputStream.resolveClass(), ObjectOutputStream.writeClassDescriptor()

Returned By ObjectInputStream.readClassDescriptor(), ObjectInputStream.GetField.getObjectStreamClass()

// Public Instance Methods
public abstract void put(String name, long val);
public abstract void put(String name, int val);
public abstract void put(String name, float val);
public abstract void put(String name, Object val);
public abstract void put(String name, double val);
public abstract void put(String name, byte val);
public abstract void put(String name, boolean val);
public abstract void put(String name, short val);
public abstract void put(String name, char val);

// Deprecated Public Methods
public abstract void write(ObjectOutput out) throws IOException;
}

public class ObjectStreamClass implements Serializable {
// No Constructor
// Public Constants
1.2 public static final ObjectStreamField[] NO_FIELDS;
// Public Class Methods

public static ObjectStreamClass lookup(Class<?> cl);
// Public Instance Methods

public Class<?> forClass();
1.2 public ObjectStreamField getField(String name);
1.2 public ObjectStreamField[] getFields();

public String getName();
public long getSerialVersionUID();

// Public Methods Overriding Object
public String toString();

}

Object ObjectStreamClass Serializable

418 | Chapter 9: java.io

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.io.ObjectStreamConstants

ObjectStreamConstants
java.io

Java 1.2

This interface defines various constants used by the Java object-serialization mecha-
nism. Two important constants are PROTOCOL_VERSION_1 and PROTOCOL_VERSION_2, which
specify the version of the serialization protocol to use. In Java 1.2, you can pass either
of these values to the useProtocolVersion() method of an ObjectOutputStream. By default, Java
1.2 uses Version 2 of the protocol, and Java 1.1 uses Version 1 when serializing
objects. Java 1.2 can deserialize objects written using either version of the protocol, as
can Java 1.1.7 and later. If you want to serialize an object so that it can be read by
versions of Java prior to Java 1.1.7, use PROTOCOL_VERSION_1.

The other constants defined by this interface are low-level values used by the serializa-
tion protocol. You do not need to use them unless you are reimplementing the
serialization mechanism yourself.

Implementations ObjectInputStream, ObjectOutputStream

public interface ObjectStreamConstants {
// Public Constants

public static final int baseWireHandle; =8257536
public static final int PROTOCOL_VERSION_1; =1
public static final int PROTOCOL_VERSION_2; =2
public static final byte SC_BLOCK_DATA; =8

5.0 public static final byte SC_ENUM; =16
public static final byte SC_EXTERNALIZABLE; =4
public static final byte SC_SERIALIZABLE; =2
public static final byte SC_WRITE_METHOD; =1
public static final short STREAM_MAGIC; =-21267
public static final short STREAM_VERSION; =5
public static final SerializablePermission SUBCLASS_IMPLEMENTATION_PERMISSION;
public static final SerializablePermission SUBSTITUTION_PERMISSION;
public static final byte TC_ARRAY; =117
public static final byte TC_BASE; =112
public static final byte TC_BLOCKDATA; =119
public static final byte TC_BLOCKDATALONG; =122
public static final byte TC_CLASS; =118
public static final byte TC_CLASSDESC; =114
public static final byte TC_ENDBLOCKDATA; =120

5.0 public static final byte TC_ENUM; =126
public static final byte TC_EXCEPTION; =123

1.3 public static final byte TC_LONGSTRING; =124
public static final byte TC_MAX; =126
public static final byte TC_NULL; =112
public static final byte TC_OBJECT; =115

1.3 public static final byte TC_PROXYCLASSDESC; =125
public static final byte TC_REFERENCE; =113
public static final byte TC_RESET; =121
public static final byte TC_STRING; =116

}

Chapter 9: java.io | 419

java.io

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.io.ObjectStreamField

ObjectStreamException
java.io

Java 1.1

serializable checked

This class is the superclass of a number of more specific exception types that may be
raised in the process of serializing and deserializing objects with the ObjectOutputStream
and ObjectInputStream classes.

Subclasses InvalidClassException, InvalidObjectException, NotActiveException,
NotSerializableException, OptionalDataException, StreamCorruptedException, WriteAbortedException

Thrown By java.security.KeyRep.readResolve(), java.security.cert.Certificate.writeReplace(),
java.security.cert.Certificate.CertificateRep.readResolve(), java.security.cert.CertPath.writeReplace(),
java.security.cert.CertPath.CertPathRep.readResolve()

ObjectStreamField
java.io

Java 1.2

comparable

This class represents a named field of a specified type (i.e., a specified Class). When a class
serializes itself by writing a set of fields that are different from the fields it uses in its own
implementation, it defines the set of fields to be written with an array of ObjectStreamField
objects. This array should be the value of a private static field named serialPersistentFields.
The methods of this class are used internally by the serialization mechanism and are not
typically used elsewhere. See also ObjectOutputStream.PutField and ObjectInputStream.GetField.

public abstract class ObjectStreamException extends IOException {
// Protected Constructors

protected ObjectStreamException();
protected ObjectStreamException(String classname);

}

public class ObjectStreamField implements Comparable<Object> {
// Public Constructors

public ObjectStreamField(String name, Class<?> type);
1.4 public ObjectStreamField(String name, Class<?> type, boolean unshared);
// Public Instance Methods

public String getName();
public int getOffset();
public Class<?> getType();
public char getTypeCode();
public String getTypeString();
public boolean isPrimitive();

1.4 public boolean isUnshared();
// Methods Implementing Comparable

public int compareTo(Object obj);
// Public Methods Overriding Object

public String toString();
// Protected Instance Methods

protected void setOffset(int offset);
}

Object Throwable Exception IOException ObjectStreamException

Serializable

Object ObjectStreamField Comparable

420 | Chapter 9: java.io

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.io.OptionalDataException

Returned By ObjectStreamClass.{getField(), getFields()}

Type Of ObjectStreamClass.NO_FIELDS

OptionalDataException
java.io

Java 1.1

serializable checked

Thrown by the readObject() method of an ObjectInputStream when it encounters primitive
type data where it expects object data. Despite the exception name, this data is not
optional, and object deserialization is stopped.

OutputStream
java.io

Java 1.0

closeable flushable

This abstract class is the superclass of all output streams. It defines the basic output
methods all output stream classes provide. write() writes a single byte or an array (or
subarray) of bytes. flush() forces any buffered output to be written. close() closes the
stream and frees up any system resources associated with it. The stream may not be
used once close() has been called. See also Writer.

Subclasses ByteArrayOutputStream, FileOutputStream, FilterOutputStream, ObjectOutputStream,
PipedOutputStream

Passed To Too many methods to list.

Returned By Process.getOutputStream(), Runtime.getLocalizedOutputStream(),
java.net.CacheRequest.getBody(), java.net.Socket.getOutputStream(), java.net.SocketImpl.getOutputStream(),
java.net.URLConnection.getOutputStream(), java.nio.channels.Channels.newOutputStream(),
javax.xml.transform.stream.StreamResult.getOutputStream()

public class OptionalDataException extends ObjectStreamException {
// No Constructor
// Public Instance Fields

public boolean eof;
public int length;

}

public abstract class OutputStream implements Closeable, Flushable {
// Public Constructors

public OutputStream();
// Public Instance Methods

public void close() throws IOException; Implements:Closeable empty
public void flush() throws IOException; Implements:Flushable empty
public abstract void write(int b) throws IOException;
public void write(byte[] b) throws IOException;
public void write(byte[] b, int off, int len) throws IOException;

// Methods Implementing Closeable
public void close() throws IOException; empty

// Methods Implementing Flushable
public void flush() throws IOException; empty

}

Object Throwable Exception IOException ObjectStreamException OptionalDataException

Serializable

Object OutputStream

Closeable Flushable

Chapter 9: java.io | 421

java.io

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.io.PipedInputStream

Type Of FilterOutputStream.out

OutputStreamWriter
java.io

Java 1.1

appendable closeable flushable

This class is a character output stream that uses a byte output stream as the destina-
tion for its data. When characters are written to an OutputStreamWriter, it translates them
into bytes according to a particular locale- and/or platform-specific character encoding
and writes those bytes to the specified OutputStream. This is a very important internation-
alization feature in Java 1.1 and later. OutputStreamWriter supports the usual Writer
methods. It also has a getEncoding() method that returns the name of the encoding being
used to convert characters to bytes.

When you create an OutputStreamWriter, specify the OutputStream to which it writes bytes and,
optionally, the name of the character encoding that should be used to convert characters
to bytes. If you do not specify an encoding name, the OutputStreamWriter uses the default
encoding of the default locale, which is usually the correct thing to do. In Java 1.4 and
later, this class uses the charset conversion facilities of the java.nio.charset package and
allows you to explicitly specify the Charset or CharsetEncoder to be used. Prior to Java 1.4, the
class allows you to specify only the name of the desired charset encoding.

Subclasses FileWriter

PipedInputStream
java.io

Java 1.0

closeable

This class is an InputStream that implements one half of a pipe and is useful for communica-
tion between threads. A PipedInputStream must be connected to a PipedOutputStream object,
which may be specified when the PipedInputStream is created or with the connect() method.
Data read from a PipedInputStream object is received from the PipedOutputStream to which it is
connected. See InputStream for information on the low-level methods for reading data from
a PipedInputStream. A FilterInputStream can provide a higher-level interface for reading data from
a PipedInputStream.

public class OutputStreamWriter extends Writer {
// Public Constructors

public OutputStreamWriter(OutputStream out);
public OutputStreamWriter(OutputStream out, String charsetName) throws UnsupportedEncodingException;

1.4 public OutputStreamWriter(OutputStream out, java.nio.charset.CharsetEncoder enc);
1.4 public OutputStreamWriter(OutputStream out, java.nio.charset.Charset cs);
// Public Instance Methods

public String getEncoding();
// Public Methods Overriding Writer

public void close() throws IOException;
public void flush() throws IOException;
public void write(int c) throws IOException;
public void write(char[] cbuf, int off, int len) throws IOException;
public void write(String str, int off, int len) throws IOException;

}

Object Writer OutputStreamWriter

Appendable Closeable Flushable

422 | Chapter 9: java.io

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.io.PipedOutputStream

Passed To PipedOutputStream.{connect(), PipedOutputStream()}

PipedOutputStream
java.io

Java 1.0

closeable flushable

This class is an OutputStream that implements one half a pipe and is useful for communica-
tion between threads. A PipedOutputStream must be connected to a PipedInputStream, which may
be specified when the PipedOutputStream is created or with the connect() method. Data written
to the PipedOutputStream is available for reading on the PipedInputStream. See OutputStream for
information on the low-level methods for writing data to a PipedOutputStream. A FilterOutput-
Stream can provide a higher-level interface for writing data to a PipedOutputStream.

Passed To PipedInputStream.{connect(), PipedInputStream()}

public class PipedInputStream extends InputStream {
// Public Constructors

public PipedInputStream();
public PipedInputStream(PipedOutputStream src) throws IOException;

// Protected Constants
1.1 protected static final int PIPE_SIZE; =1024
// Public Instance Methods

public void connect(PipedOutputStream src) throws IOException;
// Public Methods Overriding InputStream

public int available() throws IOException; synchronized
public void close() throws IOException;
public int read() throws IOException; synchronized
public int read(byte[] b, int off, int len) throws IOException; synchronized

// Protected Instance Methods
1.1 protected void receive(int b) throws IOException; synchronized
// Protected Instance Fields
1.1 protected byte[] buffer;
1.1 protected int in;
1.1 protected int out;
}

public class PipedOutputStream extends OutputStream {
// Public Constructors

public PipedOutputStream();
public PipedOutputStream(PipedInputStream snk) throws IOException;

// Public Instance Methods
public void connect(PipedInputStream snk) throws IOException; synchronized

// Public Methods Overriding OutputStream
public void close() throws IOException;
public void flush() throws IOException; synchronized
public void write(int b) throws IOException;
public void write(byte[] b, int off, int len) throws IOException;

}

Object InputStream PipedInputStream

Closeable

Object OutputStream PipedOutputStream

Closeable Flushable

Chapter 9: java.io | 423

java.io

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.io.PipedWriter

PipedReader
java.io

Java 1.1

readable closeable

PipedReader is a character input stream that reads characters from a PipedWriter character
output stream to which it is connected. PipedReader implements one half of a pipe and is
useful for communication between two threads of an application. A PipedReader cannot
be used until it is connected to a PipedWriter object, which may be passed to the
PipedReader() constructor or to the connect() method. PipedReader inherits most of the
methods of its superclass. See Reader for more information. PipedReader is the character-
stream analog of PipedInputStream.

Passed To PipedWriter.{connect(), PipedWriter()}

PipedWriter
java.io

Java 1.1

appendable closeable flushable

PipedWriter is a character output stream that writes characters to the PipedReader character
input stream to which it is connected. PipedWriter implements one half of a pipe and is
useful for communication between two threads of an application. A PipedWriter cannot
be used until it is connected to a PipedReader object, which may be passed to the
PipedWriter() constructor or to the connect() method. PipedWriter inherits most of the
methods of its superclass. See Writer for more information. PipedWriter is the character-
stream analog of PipedOutputStream.

public class PipedReader extends Reader {
// Public Constructors

public PipedReader();
public PipedReader(PipedWriter src) throws IOException;

// Public Instance Methods
public void connect(PipedWriter src) throws IOException;

// Public Methods Overriding Reader
public void close() throws IOException;

1.2 public int read() throws IOException; synchronized
public int read(char[] cbuf, int off, int len) throws IOException; synchronized

1.2 public boolean ready() throws IOException; synchronized
}

public class PipedWriter extends Writer {
// Public Constructors

public PipedWriter();
public PipedWriter(PipedReader snk) throws IOException;

// Public Instance Methods
public void connect(PipedReader snk) throws IOException; synchronized

// Public Methods Overriding Writer
public void close() throws IOException;
public void flush() throws IOException; synchronized

1.2 public void write(int c) throws IOException;

Object Reader PipedReader

Closeable Readable

Object Writer PipedWriter

Appendable Closeable Flushable

424 | Chapter 9: java.io

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.io.PrintStream

Passed To PipedReader.{connect(), PipedReader()}

PrintStream
java.io

Java 1.0

appendable closeable flushable

This class is a byte output stream that implements a number of methods for displaying
textual representations of Java primitive data types. System.out and System.err are Print-
Stream objects. PrintStream converts characters to bytes using the platform’s default
charset, or the charset or encoding named in the PrintStream() constructor invocation. In
Java 5.0, convenience constructors allow you to specify a file (either as a file name or a
File object) as the destination of a PrintStream. Prior to Java 5.0 the destination had to be
another OutputStream object.

The print() methods output standard textual representations of each data type. The println()
methods do the same and follow the representations with newlines. Each method
converts a Java primitive type to a String representation and outputs the resulting string.
When an Object is passed to a print() or println(), it is converted to a String by calling its
toString() method. In Java 5.0, you can also use the printf() methods (or the format() methods
that behave identically) for formatted output. These methods behave like the format()
method of a java.util.Formatter object that uses the PrintStream as its destination.

This class implements the java.lang.Appendable interface in Java 5.0, which makes it suit-
able for use with a java.util.Formatter.

See also PrintWriter for a character output stream with similar functionality. And see
DataOutputStream for a byte output stream that outputs binary, rather than textual, repre-
sentations of Java’s primitive types.

public void write(char[] cbuf, int off, int len) throws IOException;
}

public class PrintStream extends FilterOutputStream implements Appendable, Closeable {
// Public Constructors
5.0 public PrintStream(File file) throws FileNotFoundException;
5.0 public PrintStream(String fileName) throws FileNotFoundException;

public PrintStream(OutputStream out);
5.0 public PrintStream(String fileName, String csn) throws FileNotFoundException, UnsupportedEncodingException;

public PrintStream(OutputStream out, boolean autoFlush);
5.0 public PrintStream(File file, String csn) throws FileNotFoundException, UnsupportedEncodingException;
1.4 public PrintStream(OutputStream out, boolean autoFlush, String encoding) throws UnsupportedEncodingException;
// Public Instance Methods
5.0 public PrintStream append(char c);
5.0 public PrintStream append(CharSequence csq);
5.0 public PrintStream append(CharSequence csq, int start, int end);

public boolean checkError();
public void close(); Implements:Closeable

5.0 public PrintStream format(String format, Object... args);
5.0 public PrintStream format(java.util.Locale l, String format, Object... args);

public void print(double d);
public void print(float f);
public void print(char[] s);
public void print(Object obj);
public void print(String s);

Object OutputStream FilterOutputStream PrintStream

Closeable Flushable Appendable Closeable

Chapter 9: java.io | 425

java.io

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.io.PrintWriter

Passed To System.{setErr(), setOut()}, Throwable.printStackTrace(), java.util.Formatter.Formatter(),
java.util.Properties.list(), javax.xml.transform.TransformerException.printStackTrace(),
javax.xml.xpath.XPathException.printStackTrace()

Type Of System.{err, out}

PrintWriter
java.io

Java 1.1

appendable closeable flushable

This class is a character output stream that implements a number of print() and println()
methods that output textual representations of primitive values and objects. When
you create a PrintWriter object, you specify a character or byte output stream that it
should write its characters to and, optionally, whether the PrintWriter stream should be
automatically flushed whenever println() is called. If you specify a byte output stream as
the destination, the PrintWriter() constructor automatically creates the necessary Output-
StreamWriter object to convert characters to bytes using the default encoding. In Java 5.0,
convenience constructors allow you to specify a file (either as a file name or a File
object) as the destination. You may optionally specify the name of a charset to use for
character-to-byte conversion when writing to the file.

PrintWriter implements the normal write(), flush(), and close() methods all Writer subclasses
define. It is more common to use the higher-level print() and println() methods, each of
which converts its argument to a string before outputting it. println() can also terminate
the line (and optionally flush the buffer) after printing its argument. In Java 5.0, you
can also use the printf() methods (or the format() methods that behave identically) for
formatted output. These methods behave like the format() method of a java.util.Formatter
object that uses the PrintWriter as its destination.

public void print(long l);
public void print(boolean b);
public void print(char c);
public void print(int i);

5.0 public PrintStream printf(String format, Object... args);
5.0 public PrintStream printf(java.util.Locale l, String format, Object... args);

public void println();
public void println(char[] x);
public void println(double x);
public void println(Object x);
public void println(String x);
public void println(float x);
public void println(char x);
public void println(boolean x);
public void println(long x);
public void println(int x);

// Methods Implementing Closeable
public void close();

// Public Methods Overriding FilterOutputStream
public void flush();
public void write(int b);
public void write(byte[] buf, int off, int len);

// Protected Instance Methods
1.1 protected void setError();
}

426 | Chapter 9: java.io

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.io.PrintWriter

The methods of PrintWriter never throw exceptions. Instead, when errors occur, they set
an internal flag you can check by calling checkError(). checkError() first flushes the internal
stream and then returns true if any exception has occurred while writing values to that
stream. Once an error has occurred on a PrintWriter object, all subsequent calls to
checkError() return true; there is no way to reset the error flag.

PrintWriter is the character stream analog to PrintStream, which it supersedes. You can
usually easily replace any PrintStream objects in a program with PrintWriter objects. This is
particularly important for internationalized programs. The only valid remaining use
for the PrintStream class is for the System.out and System.err standard output streams. See
PrintStream for details.

public class PrintWriter extends Writer {
// Public Constructors
5.0 public PrintWriter(String fileName) throws FileNotFoundException;
5.0 public PrintWriter(File file) throws FileNotFoundException;

public PrintWriter(OutputStream out);
public PrintWriter(Writer out);

5.0 public PrintWriter(File file, String csn) throws FileNotFoundException, UnsupportedEncodingException;
5.0 public PrintWriter(String fileName, String csn) throws FileNotFoundException, UnsupportedEncodingException;

public PrintWriter(OutputStream out, boolean autoFlush);
public PrintWriter(Writer out, boolean autoFlush);

// Public Instance Methods
5.0 public PrintWriter append(char c);
5.0 public PrintWriter append(CharSequence csq);
5.0 public PrintWriter append(CharSequence csq, int start, int end);

public boolean checkError();
5.0 public PrintWriter format(String format, Object... args);
5.0 public PrintWriter format(java.util.Locale l, String format, Object... args);

public void print(double d);
public void print(float f);
public void print(long l);
public void print(Object obj);
public void print(String s);
public void print(char[] s);
public void print(boolean b);
public void print(char c);
public void print(int i);

5.0 public PrintWriter printf(String format, Object... args);
5.0 public PrintWriter printf(java.util.Locale l, String format, Object... args);

public void println();
public void println(double x);
public void println(float x);
public void println(char[] x);
public void println(Object x);
public void println(String x);
public void println(char x);
public void println(boolean x);
public void println(long x);
public void println(int x);

Object Writer PrintWriter

Appendable Closeable Flushable

Chapter 9: java.io | 427

java.io

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.io.PushbackInputStream

Passed To Throwable.printStackTrace(), java.util.Properties.list(),
javax.xml.transform.TransformerException.printStackTrace(), javax.xml.xpath.XPathException.printStackTrace()

PushbackInputStream
java.io

Java 1.0

closeable

This class is a FilterInputStream that implements a one-byte pushback buffer or, as of Java
1.1, a pushback buffer of a specified length. The unread() methods push bytes back into
the stream; these bytes are the first ones read by the next call to a read() method. This
class is sometimes useful when writing parsers. See also PushbackReader.

// Public Methods Overriding Writer
public void close();
public void flush();
public void write(String s);
public void write(char[] buf);
public void write(int c);
public void write(String s, int off, int len);
public void write(char[] buf, int off, int len);

// Protected Instance Methods
protected void setError();

// Protected Instance Fields
1.2 protected Writer out;
}

public class PushbackInputStream extends FilterInputStream {
// Public Constructors

public PushbackInputStream(InputStream in);
1.1 public PushbackInputStream(InputStream in, int size);
// Public Instance Methods

public void unread(int b) throws IOException;
1.1 public void unread(byte[] b) throws IOException;
1.1 public void unread(byte[] b, int off, int len) throws IOException;
// Public Methods Overriding FilterInputStream

public int available() throws IOException;
1.2 public void close() throws IOException; synchronized
5.0 public void mark(int readlimit); synchronized empty

public boolean markSupported(); constant
public int read() throws IOException;
public int read(byte[] b, int off, int len) throws IOException;

5.0 public void reset() throws IOException; synchronized
1.2 public long skip(long n) throws IOException;
// Protected Instance Fields
1.1 protected byte[] buf;
1.1 protected int pos;
}

Object InputStream FilterInputStream PushbackInputStream

Closeable

428 | Chapter 9: java.io

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.io.PushbackReader

PushbackReader
java.io

Java 1.1

readable closeable

This class is a character input stream that uses another input stream as its input source
and adds the ability to push characters back onto the stream. This feature is often
useful when writing parsers. When you create a PushbackReader stream, you specify the
stream to be read from and, optionally, the size of the pushback buffer (i.e., the
number of characters that may be pushed back onto the stream or unread). If you do
not specify a size for this buffer, the default size is one character. PushbackReader inherits
or overrides all standard Reader methods and adds three unread() methods that push a
single character, an array of characters, or a portion of an array of characters back onto
the stream. This class is the character stream analog of PushbackInputStream.

RandomAccessFile
java.io

Java 1.0

closeable

This class allows you to read and write arbitrary bytes, text, and primitive Java data types
from or to any specified location in a file. Because this class provides random, rather
than sequential, access to files, it is neither a subclass of InputStream nor of OutputStream, but
provides an entirely independent method for reading and writing data from or to files.
RandomAccessFile implements the same interfaces as DataInputStream and DataOutputStream, and
thus defines the same methods for reading and writing data as those classes do.

The seek() method provides random access to the file; it is used to select the position in
the file where data should be read or written. The various read and write methods
update this file position so that a sequence of read or write operations can be
performed on a contiguous portion of the file without having to call the seek() method
before each read or write.

The mode argument to the constructor methods should be “r” for a file that is to be
read-only or “rw” for a file that is to be written (and perhaps read as well). In Java 1.4
and later, two other values for the mode argument are allowed as well. A mode of “rwd”

public class PushbackReader extends FilterReader {
// Public Constructors

public PushbackReader(Reader in);
public PushbackReader(Reader in, int size);

// Public Instance Methods
public void unread(int c) throws IOException;
public void unread(char[] cbuf) throws IOException;
public void unread(char[] cbuf, int off, int len) throws IOException;

// Public Methods Overriding FilterReader
public void close() throws IOException;

1.2 public void mark(int readAheadLimit) throws IOException;
public boolean markSupported(); constant
public int read() throws IOException;
public int read(char[] cbuf, int off, int len) throws IOException;
public boolean ready() throws IOException;

1.2 public void reset() throws IOException;
1.4 public long skip(long n) throws IOException;
}

Object Reader FilterReader PushbackReader

Closeable Readable

Chapter 9: java.io | 429

java.io

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.io.RandomAccessFile

opens the file for reading and writing, and requires that (if the file resides on a local
filesystem) every update to the file content be written synchronously to the underlying
file. The “rws” mode is similar, but requires synchronous updates to both the file’s
content and its metadata (which includes things such as file access times). Using “rws”
mode may require that the file metadata be modified every time the file is read.

In Java 1.4 and later, use the getChannel() method to obtain a FileChannel object that you
can use to access the file using the New I/O API of java.nio and its subpackages. If the
RandomAccessFile was opened with a mode of “r”, the FileChannel allows only reading.
Otherwise, it allows both reading and writing.

public class RandomAccessFile implements Closeable, DataInput, DataOutput {
// Public Constructors

public RandomAccessFile(File file, String mode) throws FileNotFoundException;
public RandomAccessFile(String name, String mode) throws FileNotFoundException;

// Public Instance Methods
public void close() throws IOException; Implements:Closeable

1.4 public final java.nio.channels.FileChannel getChannel();
public final FileDescriptor getFD() throws IOException;
public long getFilePointer() throws IOException; native
public long length() throws IOException; native
public int read() throws IOException; native
public int read(byte[] b) throws IOException;
public int read(byte[] b, int off, int len) throws IOException;
public void seek(long pos) throws IOException; native

1.2 public void setLength(long newLength) throws IOException; native
// Methods Implementing Closeable

public void close() throws IOException;
// Methods Implementing DataInput

public final boolean readBoolean() throws IOException;
public final byte readByte() throws IOException;
public final char readChar() throws IOException;
public final double readDouble() throws IOException;
public final float readFloat() throws IOException;
public final void readFully(byte[] b) throws IOException;
public final void readFully(byte[] b, int off, int len) throws IOException;
public final int readInt() throws IOException;
public final String readLine() throws IOException;
public final long readLong() throws IOException;
public final short readShort() throws IOException;
public final int readUnsignedByte() throws IOException;
public final int readUnsignedShort() throws IOException;
public final String readUTF() throws IOException;
public int skipBytes(int n) throws IOException;

// Methods Implementing DataOutput
public void write(int b) throws IOException; native
public void write(byte[] b) throws IOException;
public void write(byte[] b, int off, int len) throws IOException;
public final void writeBoolean(boolean v) throws IOException;
public final void writeByte(int v) throws IOException;
public final void writeBytes(String s) throws IOException;

Object RandomAccessFile

Closeable DataInput DataOutput

430 | Chapter 9: java.io

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.io.Reader

Reader
java.io

Java 1.1

readable closeable

This abstract class is the superclass of all character input streams. It is an analog to
InputStream, which is the superclass of all byte input streams. Reader defines the basic
methods that all character output streams provide. read() returns a single character or
an array (or subarray) of characters, blocking if necessary; it returns –1 if the end of
the stream has been reached. ready() returns true if there are characters available for
reading. If ready() returns true, the next call to read() is guaranteed not to block. close()
closes the character input stream. skip() skips a specified number of characters in the
input stream. If markSupported() returns true, mark() marks a position in the stream and, if
necessary, creates a look-ahead buffer of the specified size. Future calls to reset() restore
the stream to the marked position if they occur within the specified look-ahead limit.
Note that not all stream types support this mark-and-reset functionality. To create a
subclass of Reader, you need only implement the three-argument version of read() and
the close() method. Most subclasses implement additional methods, however.

Subclasses BufferedReader, CharArrayReader, FilterReader, InputStreamReader, PipedReader, StringReader

public final void writeChar(int v) throws IOException;
public final void writeChars(String s) throws IOException;
public final void writeDouble(double v) throws IOException;
public final void writeFloat(float v) throws IOException;
public final void writeInt(int v) throws IOException;
public final void writeLong(long v) throws IOException;
public final void writeShort(int v) throws IOException;
public final void writeUTF(String str) throws IOException;

}

public abstract class Reader implements Closeable, Readable {
// Protected Constructors

protected Reader();
protected Reader(Object lock);

// Public Instance Methods
public abstract void close() throws IOException; Implements:Closeable
public void mark(int readAheadLimit) throws IOException;
public boolean markSupported(); constant
public int read() throws IOException;
public int read(char[] cbuf) throws IOException;
public abstract int read(char[] cbuf, int off, int len) throws IOException;
public boolean ready() throws IOException; constant
public void reset() throws IOException;
public long skip(long n) throws IOException;

// Methods Implementing Closeable
public abstract void close() throws IOException;

// Methods Implementing Readable
5.0 public int read(java.nio.CharBuffer target) throws IOException;
// Protected Instance Fields

protected Object lock;
}

Object Reader

Closeable Readable

Chapter 9: java.io | 431

java.io

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.io.Serializable

Passed To BufferedReader.BufferedReader(), FilterReader.FilterReader(),
LineNumberReader.LineNumberReader(), PushbackReader.PushbackReader(), StreamTokenizer.StreamTokenizer(),
javax.xml.transform.stream.StreamSource.{setReader(), StreamSource()}, org.xml.sax.InputSource.{InputSource(),
setCharacterStream()}

Returned By java.nio.channels.Channels.newReader(), javax.xml.transform.stream.StreamSource.getReader(),
org.xml.sax.InputSource.getCharacterStream()

Type Of FilterReader.in

SequenceInputStream
java.io

Java 1.0

closeable

This class provides a way of seamlessly concatenating the data from two or more input
streams. It provides an InputStream interface to a sequence of InputStream objects. Data is
read from the streams in the order in which the streams are specified. When the end of
one stream is reached, data is automatically read from the next stream. This class
might be useful, for example, when implementing an include file facility for a parser.

Serializable
java.io

Java 1.1

serializable

The Serializable interface defines no methods or constants. A class should implement this
interface simply to indicate that it allows itself to be serialized and deserialized with
ObjectOutputStream.writeObject() and ObjectInputStream.readObject().

Objects that need special handling during serialization or deserialization may imple-
ment one or both of the following methods; note, however, that these methods are not
part of the Serializable interface):

private void writeObject(java.io.ObjectOutputStream out) throws IOException;
private void readObject(java.io.ObjectInputStream in) throws IOException, ClassNotFoundException;

Typically, the writeObject() method performs any necessary cleanup or preparation for
serialization, invokes the defaultWriteObject() method of the ObjectOutputStream to serialize the
nontransient fields of the class, and optionally writes any additional data that is
required. Similarly, the readObject() method typically invokes the defaultReadObject() method
of the ObjectInputStream, reads any additional data written by the corresponding
writeObject() method, and performs any extra initialization required by the object. The
readObject() method may also register an ObjectInputValidation object to validate the object
once it is completely deserialized.

public class SequenceInputStream extends InputStream {
// Public Constructors

public SequenceInputStream(java.util.Enumeration<? extends InputStream> e);
public SequenceInputStream(InputStream s1, InputStream s2);

// Public Methods Overriding InputStream
1.1 public int available() throws IOException;

public void close() throws IOException;
public int read() throws IOException;
public int read(byte[] b, int off, int len) throws IOException;

}

public interface Serializable {
}

Object InputStream SequenceInputStream

Closeable

432 | Chapter 9: java.io

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.io.SerializablePermission

Implementations Too many classes to list.

Passed To java.security.SignedObject.SignedObject(), javax.crypto.SealedObject.SealedObject()

SerializablePermission
java.io

Java 1.2

serializable permission

This class is a java.security.Permission that governs the use of certain sensitive features of
serialization. SerializablePermission objects have a name, or target, but do not have an
action list. The name “enableSubclassImplementation” represents permission to seri-
alize and deserialize objects using subclasses of ObjectOutputStream and ObjectInputStream.
This capability is protected by a permission because malicious code can define object
stream subclasses that incorrectly serialize and deserialize objects.

The only other name supported by SerializablePermission is “enableSubstitution,” which repre-
sents permission for one object to be substituted for another during serialization or
deserialization. Permission of this type is required by the ObjectOutputStream.enableReplaceObject()
and ObjectInputStream.enableResolveObject() methods.

Applications never need to use this class. Programmers writing system-level code may
use it, and system administrators configuring security policies should be familiar with it.

Type Of ObjectStreamConstants.{SUBCLASS_IMPLEMENTATION_PERMISSION,
SUBSTITUTION_PERMISSION}

StreamCorruptedException
java.io

Java 1.1

serializable checked

Signals that the data stream being read by an ObjectInputStream has been corrupted and
does not contain valid serialized object data.

Thrown By ObjectInputStream.readStreamHeader()

StreamTokenizer
java.io

Java 1.0

This class performs lexical analysis of a specified input stream and breaks the input into
tokens. It can be extremely useful when writing simple parsers. nextToken() returns the
next token in the stream; this is either one of the constants defined by the class (which

public final class SerializablePermission extends java.security.BasicPermission {
// Public Constructors

public SerializablePermission(String name);
public SerializablePermission(String name, String actions);

}

public class StreamCorruptedException extends ObjectStreamException {
// Public Constructors

public StreamCorruptedException();
public StreamCorruptedException(String reason);

}

Object Permission BasicPermission SerializablePermission

Guard Serializable Serializable

Object Throwable Exception IOException ObjectStreamException StreamCorruptedException

Serializable

Chapter 9: java.io | 433

java.io

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.io.StreamTokenizer

represent end-of-file, end-of-line, a parsed floating-point number, and a parsed word) or
a character value. pushBack() pushes the token back onto the stream, so that it is returned
by the next call to nextToken(). The public variables sval and nval contain the string and
numeric values (if applicable) of the most recently read token. They are applicable when
the returned token is TT_WORD or TT_NUMBER. lineno() returns the current line number.

The remaining methods allow you to specify how tokens are recognized. wordChars()
specifies a range of characters that should be treated as parts of words. whitespaceChars()
specifies a range of characters that serve to delimit tokens. ordinaryChars() and ordinaryChar()
specify characters that are never part of tokens and should be returned as-is. resetSyntax()
makes all characters ordinary. eolIsSignificant() specifies whether end-of-line is significant.
If so, the TT_EOL constant is returned for end-of-lines; otherwise, they are treated as
whitespace. commentChar() specifies a character that begins a comment that lasts until the
end of the line. No characters in the comment are returned. slashStarComments() and
slashSlashComments() specify whether the StreamTokenizer should recognize C- and C++-style
comments. If so, no part of the comment is returned as a token. quoteChar() specifies a
character used to delimit strings. When a string token is parsed, the quote character is
returned as the token value, and the body of the string is stored in the sval variable.
lowerCaseMode() specifies whether TT_WORD tokens should be converted to all lowercase
characters before being stored in sval. parseNumbers() specifies that the StreamTokenizer
should recognize and return double-precision floating-point number tokens.

public class StreamTokenizer {
// Public Constructors
public StreamTokenizer(InputStream is);
1.1 public StreamTokenizer(Reader r);
// Public Constants

public static final int TT_EOF; =-1
public static final int TT_EOL; =10
public static final int TT_NUMBER; =-2
public static final int TT_WORD; =-3

// Public Instance Methods
public void commentChar(int ch);
public void eolIsSignificant(boolean flag);
public int lineno();
public void lowerCaseMode(boolean fl);
public int nextToken() throws IOException;
public void ordinaryChar(int ch);
public void ordinaryChars(int low, int hi);
public void parseNumbers();
public void pushBack();
public void quoteChar(int ch);
public void resetSyntax();
public void slashSlashComments(boolean flag);
public void slashStarComments(boolean flag);
public void whitespaceChars(int low, int hi);
public void wordChars(int low, int hi);

// Public Methods Overriding Object
public String toString();

// Public Instance Fields
public double nval;
public String sval;
public int ttype;

}

434 | Chapter 9: java.io

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.io.StringBufferInputStream

StringBufferInputStream
java.io

Java 1.0; Deprecated in 1.1

@Deprecated closeable

This class is a subclass of InputStream in which input bytes come from the characters of a
specified String object. This class does not correctly convert the characters of a String-
Buffer into bytes and is deprecated as of Java 1.1. Use StringReader instead to convert
characters into bytes or use ByteArrayInputStream to read bytes from an array of bytes.

StringReader
java.io

Java 1.1

readable closeable

This class is a character input stream that uses a String object as the source of the char-
acters it returns. When you create a StringReader, you must specify the String to read from.
StringReader defines the normal Reader methods and supports mark() and reset(). If reset() is
called before mark() has been called, the stream is reset to the beginning of the specified
string. StringReader is a character stream analog to StringBufferInputStream, which is depre-
cated as of Java 1.1. StringReader is also similar to CharArrayReader.

public class StringBufferInputStream extends InputStream {
// Public Constructors

public StringBufferInputStream(String s);
// Public Methods Overriding InputStream

public int available(); synchronized
public int read(); synchronized
public int read(byte[] b, int off, int len); synchronized
public void reset(); synchronized
public long skip(long n); synchronized

// Protected Instance Fields
protected String buffer;
protected int count;
protected int pos;

}

public class StringReader extends Reader {
// Public Constructors

public StringReader(String s);
// Public Methods Overriding Reader

public void close();
public void mark(int readAheadLimit) throws IOException;
public boolean markSupported(); constant
public int read() throws IOException;
public int read(char[] cbuf, int off, int len) throws IOException;
public boolean ready() throws IOException;
public void reset() throws IOException;
public long skip(long ns) throws IOException;

}

Object InputStream StringBufferInputStream

Closeable

Object Reader StringReader

Closeable Readable

Chapter 9: java.io | 435

java.io

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.io.SyncFailedException

StringWriter
java.io

Java 1.1

appendable closeable flushable

This class is a character output stream that uses an internal StringBuffer object as the
destination of the characters written to the stream. When you create a StringWriter, you
may optionally specify an initial size for the StringBuffer, but you do not specify the String-
Buffer itself; it is managed internally by the StringWriter and grows as necessary to
accommodate the characters written to it. StringWriter defines the standard write(), flush(),
and close() methods all Writer subclasses define, as well as two methods to obtain the
characters that have been written to the stream’s internal buffer. toString() returns the
contents of the internal buffer as a String, and getBuffer() returns the buffer itself. Note
that getBuffer() returns a reference to the actual internal buffer, not a copy of it, so any
changes you make to the buffer are reflected in subsequent calls to toString(). StringWriter is
quite similar to CharArrayWriter, but does not have a byte-stream analog.

SyncFailedException
java.io

Java 1.1

serializable checked

Signals that a call to FileDescriptor.sync() did not complete successfully.

Thrown By FileDescriptor.sync()

public class StringWriter extends Writer {
// Public Constructors

public StringWriter();
public StringWriter(int initialSize);

// Public Instance Methods
5.0 public StringWriter append(CharSequence csq);
5.0 public StringWriter append(char c);
5.0 public StringWriter append(CharSequence csq, int start, int end);

public StringBuffer getBuffer();
// Public Methods Overriding Writer

public void close() throws IOException; empty
public void flush(); empty
public void write(int c);
public void write(String str);
public void write(String str, int off, int len);
public void write(char[] cbuf, int off, int len);

// Public Methods Overriding Object
public String toString();

}

public class SyncFailedException extends IOException {
// Public Constructors

public SyncFailedException(String desc);
}

Object Writer StringWriter

Appendable Closeable Flushable

Object Throwable Exception IOException SyncFailedException

Serializable

436 | Chapter 9: java.io

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.io.UnsupportedEncodingException

UnsupportedEncodingException
java.io

Java 1.1

serializable checked

Signals that a requested character encoding is not supported by the current Java
Virtual Machine.

Thrown By Too many methods to list.

UTFDataFormatException
java.io

Java 1.0

serializable checked

An IOException that signals that a malformed UTF-8 string has been encountered by a class
that implements the DataInput interface. UTF-8 is an ASCII-compatible transformation
format for Unicode characters that is often used to store and transmit Unicode text.

WriteAbortedException
java.io

Java 1.1

serializable checked

Thrown when reading a stream of data that is incomplete because an exception was
thrown while it was being written. The detail field may contain the exception that
terminated the output stream. In Java 1.4 and later, this exception can also be
obtained with the standard Throwable getCause() method. The getMessage() method has been
overridden to include the message of this detail exception, if any.

public class UnsupportedEncodingException extends IOException {
// Public Constructors

public UnsupportedEncodingException();
public UnsupportedEncodingException(String s);

}

public class UTFDataFormatException extends IOException {
// Public Constructors

public UTFDataFormatException();
public UTFDataFormatException(String s);

}

public class WriteAbortedException extends ObjectStreamException {
// Public Constructors

public WriteAbortedException(String s, Exception ex);
// Public Methods Overriding Throwable
1.4 public Throwable getCause();

public String getMessage();
// Public Instance Fields

public Exception detail;
}

Object Throwable Exception IOException UnsupportedEncodingException

Serializable

Object Throwable Exception IOException UTFDataFormatException

Serializable

Object Throwable Exception IOException ObjectStreamException WriteAbortedException

Serializable

Chapter 9: java.io | 437

java.io

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.io.Writer

Writer
java.io

Java 1.1

appendable closeable flushable

This abstract class is the superclass of all character output streams. It is an analog
to OutputStream, which is the superclass of all byte output streams. Writer defines the
basic write(), flush(), and close() methods all character output streams provide. The five
versions of the write() method write a single character, a character array or subarray,
or a string or substring to the destination of the stream. The most general version of
this method—the one that writes a specified portion of a character array—is
abstract and must be implemented by all subclasses. By default, the other write()
methods are implemented in terms of this abstract one. The flush() method is
another abstract method all subclasses must implement. It should force any output
buffered by the stream to be written to its destination. If that destination is itself a
character or byte output stream, it should invoke the flush() method of the destina-
tion stream as well. The close() method is also abstract. A subclass must implement
this method so that it flushes and then closes the current stream and also closes
whatever destination stream it is connected to. Once the stream is closed, any
future calls to write() or flush() should throw an IOException.

In Java 5.0, this class has been modified to implement the Closeable and Flushable inter-
faces. It has also changed to implement java.lang.Appendable, which means that any Writer
object can be used as the destination for a java.util.Formatter.

Subclasses BufferedWriter, CharArrayWriter, FilterWriter, OutputStreamWriter, PipedWriter,
PrintWriter, StringWriter

public abstract class Writer implements Appendable, Closeable, Flushable {
// Protected Constructors

protected Writer();
protected Writer(Object lock);

// Public Instance Methods
5.0 public Writer append(char c) throws IOException;
5.0 public Writer append(CharSequence csq) throws IOException;
5.0 public Writer append(CharSequence csq, int start, int end) throws IOException;

public abstract void close() throws IOException; Implements:Closeable
public abstract void flush() throws IOException; Implements:Flushable
public void write(int c) throws IOException;
public void write(String str) throws IOException;
public void write(char[] cbuf) throws IOException;
public abstract void write(char[] cbuf, int off, int len) throws IOException;
public void write(String str, int off, int len) throws IOException;

// Methods Implementing Closeable
public abstract void close() throws IOException;

// Methods Implementing Flushable
public abstract void flush() throws IOException;

// Protected Instance Fields
protected Object lock;

}

Object Writer

Appendable Closeable Flushable

438 | Chapter 9: java.io

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.io.Writer

Passed To BufferedWriter.BufferedWriter(), CharArrayWriter.writeTo(), FilterWriter.FilterWriter(),
PrintWriter.PrintWriter(), javax.xml.transform.stream.StreamResult.{setWriter(), StreamResult()}

Returned By CharArrayWriter.append(), PrintWriter.append(), StringWriter.append(),
java.nio.channels.Channels.newWriter(), javax.xml.transform.stream.StreamResult.getWriter()

Type Of FilterWriter.out, PrintWriter.out

439

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Chapter 10java.lang.*

10
java.lang and Subpackages

This chapter covers the java.lang package which defines the core classes and inter-
faces that are indispensable to the Java platform and the Java programming
language. It also covers more specialized subpackages:

java.lang.annotation
Defines the Annotation interface that all annotation types extend, and also defines
meta-annotation types and related enumerated types. Added in Java 5.0.

java.lang.instrument
Provides support for Java-based “agents” that can instrument a Java program
by transforming class files as they are loaded. Added in Java 5.0.

java.lang.management
Defines “management bean” interfaces for remote monitoring and manage-
ment of a running Java interpreter.

java.lang.ref
Defines “reference” classes that are used to refer to objects without preventing
the garbage collector from reclaiming those objects.

java.lang.reflect
Allows Java programs to examine the members of arbitrary classes, invoking
methods, and querying and setting the value of fields.

Package java.lang Java 1.0

The java.lang package contains the classes that are most central to the Java language.
Object is the ultimate superclass of all Java classes and is therefore at the top of all class
hierarchies. Class is a class that describes a Java class. There is one Class object for each
class that is loaded into Java.

Boolean, Character, Byte, Short, Integer, Long, Float, and Double are immutable class wrappers
around each of the primitive Java data types. These classes are useful when you need

440 | Chapter 10: java.lang and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

.Package java.lang

to manipulate primitive types as objects. They also contain useful conversion and
utility methods. Void is a related class that defines a representation for the void method
return type, but that defines no methods. String and StringBuffer are objects that represent
strings. String is an immutable type, while StringBuffer can have its string changed in place.
In Java 5.0, StringBuilder is like StringBuffer but without synchronized methods, which makes it
the preferred choice in most applications. String, StringBuffer and StringBuilder implement the
Java 1.4 interface CharSequence which allows instances of these classes to be manipulated
through a simple shared API.

String and the various primitive type wrapper classes all implement the Comparable inter-
face which defines an ordering for instances of those classes and enables sorting and
searching algorithms (such as those of java.util.Arrays and java.util.Collections, for example).
Cloneable is an important marker interface that specifies that the Object.clone() method is
allowed to make copies of an object.

The Math class (and, in Java 1.3, the StrictMath class) defines static methods for various
floating-point mathematical functions.

The Thread class provides support for multiple threads of control running within the
same Java interpreter. The Runnable interface is implemented by objects that have a run()
method that can serve as the body of a thread.

System provides low-level system methods. Runtime provides similar low-level methods,
including an exec() method that, along with the Process class, defines a platform-depen-
dent API for running external processes. Java 5.0 allows Process objects to be created
more easily with the ProcessBuilder class.

Throwable is the root class of the exception and error hierarchy. Throwable objects are used
with the Java throw and catch statements. java.lang defines quite a few subclasses of Throw-
able. Exception and Error are the superclasses of all exceptions and errors. RuntimeException
defines a special class or “unchecked exceptions” that do not need to be declared in a
method’s throws clause. The Throwable class was overhauled in Java 1.4, adding the ability
to “chain” exceptions, and the ability to obtain the stack trace of an exception as an
array of StackTraceElement objects.

Java 5.0 adds three important interfaces to this package. Iterable marks types that have
an iterator() method and enables iteration with the for/in looping statement introduced in
Java 5.0. The Appendable interface is implemented by classes (such as StringBuilder and
character output streams) that can have characters appended to them. Implementing
this interface enables formatted text output with a java.util.Formatter. The Readable inter-
face is implemented by classes (such as character input streams) that can sequentially
copy characters into a buffer. It enables interaction with a java.util.Scanner.

Also new in Java 5.0 is Enum, which serves as the superclass of all enumerated types
declared with the new enum keyword. Deprecated, Override, and SuppressWarnings are annota-
tion types that provide metadata for the compiler.

Interfaces
public interface Appendable;
public interface CharSequence;
public interface Cloneable;
public interface Comparable<T>;
public interface Iterable<T>;
public interface Readable;
public interface Runnable;
public interface Thread.UncaughtExceptionHandler;

Chapter 10: java.lang and Subpackages | 441

java.lang.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

.Package java.lang

Enumerated Types
public enum Thread.State;

Annotation Types
public @interface Deprecated;
public @interface Override;
public @interface SuppressWarnings;

Classes
public class Object;

abstract class AbstractStringBuilder implements Appendable, CharSequence;
public final class StringBuffer extends AbstractStringBuilder implements CharSequence, Serializable;
public final class StringBuilder extends AbstractStringBuilder implements CharSequence, Serializable;

public final class Boolean implements Serializable, Comparable<Boolean>;
public final class Character implements Serializable, Comparable<Character>;
public static class Character.Subset;

public static final class Character.UnicodeBlock extends Character.Subset;
public final class Class<T> implements Serializable, java.lang.reflect.GenericDeclaration, java.lang.reflect.Type,

java.lang.reflect.AnnotatedElement;
public abstract class ClassLoader;
public final class Compiler;
public abstract class Enum<E extends Enum<E>> implements Comparable<E>, Serializable;
public final class Math;
public abstract class Number implements Serializable;

public final class Byte extends Number implements Comparable<Byte>;
public final class Double extends Number implements Comparable<Double>;
public final class Float extends Number implements Comparable<Float>;
public final class Integer extends Number implements Comparable<Integer>;
public final class Long extends Number implements Comparable<Long>;
public final class Short extends Number implements Comparable<Short>;

public class Package implements java.lang.reflect.AnnotatedElement;
public abstract class Process;
public final class ProcessBuilder;
public class Runtime;
public class SecurityManager;
public final class StackTraceElement implements Serializable;
public final class StrictMath;
public final class String implements Serializable, Comparable<String>, CharSequence;
public final class System;
public class Thread implements Runnable;
public class ThreadGroup implements Thread.UncaughtExceptionHandler;
public class ThreadLocal<T>;

public class InheritableThreadLocal<T> extends ThreadLocal<T>;
public class Throwable implements Serializable;
public final class Void;

public final class RuntimePermission extends java.security.BasicPermission;

Exceptions
public class Exception extends Throwable;

public class ClassNotFoundException extends Exception;
public class CloneNotSupportedException extends Exception;
public class IllegalAccessException extends Exception;

442 | Chapter 10: java.lang and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

.Package java.lang

public class InstantiationException extends Exception;
public class InterruptedException extends Exception;
public class NoSuchFieldException extends Exception;
public class NoSuchMethodException extends Exception;
public class RuntimeException extends Exception;

public class ArithmeticException extends RuntimeException;
public class ArrayStoreException extends RuntimeException;
public class ClassCastException extends RuntimeException;
public class EnumConstantNotPresentException extends RuntimeException;
public class IllegalArgumentException extends RuntimeException;

public class IllegalThreadStateException extends IllegalArgumentException;
public class NumberFormatException extends IllegalArgumentException;

public class IllegalMonitorStateException extends RuntimeException;
public class IllegalStateException extends RuntimeException;
public class IndexOutOfBoundsException extends RuntimeException;

public class ArrayIndexOutOfBoundsException extends IndexOutOfBoundsException;
public class StringIndexOutOfBoundsException extends IndexOutOfBoundsException;

public class NegativeArraySizeException extends RuntimeException;
public class NullPointerException extends RuntimeException;
public class SecurityException extends RuntimeException;
public class TypeNotPresentException extends RuntimeException;
public class UnsupportedOperationException extends RuntimeException;

Errors
public class Error extends Throwable;

public class AssertionError extends Error;
public class LinkageError extends Error;

public class ClassCircularityError extends LinkageError;
public class ClassFormatError extends LinkageError;

public class UnsupportedClassVersionError extends ClassFormatError;
public class ExceptionInInitializerError extends LinkageError;
public class IncompatibleClassChangeError extends LinkageError;

public class AbstractMethodError extends IncompatibleClassChangeError;
public class IllegalAccessError extends IncompatibleClassChangeError;
public class InstantiationError extends IncompatibleClassChangeError;
public class NoSuchFieldError extends IncompatibleClassChangeError;
public class NoSuchMethodError extends IncompatibleClassChangeError;

public class NoClassDefFoundError extends LinkageError;
public class UnsatisfiedLinkError extends LinkageError;
public class VerifyError extends LinkageError;

public class ThreadDeath extends Error;
public abstract class VirtualMachineError extends Error;

public class InternalError extends VirtualMachineError;
public class OutOfMemoryError extends VirtualMachineError;
public class StackOverflowError extends VirtualMachineError;
public class UnknownError extends VirtualMachineError;

Chapter 10: java.lang and Subpackages | 443

java.lang.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.lang.AbstractStringBuilder

AbstractMethodError
java.lang

Java 1.0

serializable error

Signals an attempt to invoke an abstract method.

AbstractStringBuilder
java.lang

Java 5.0

appendable

This package-private class is the abstract superclass of StringBuffer and StringBuilder.
Because this class is not public, you may not use it directly. It is included in this quick-
reference to fully document the shared API of its two subclasses.

Note that many of the methods of this class are declared to return an AbstractStringBuilder
object. StringBuilder and StringBuffer() override those methods and narrow the return type to
StringBuilder or StringBuffer. (This is an example of “covariant returns,” which are allowed
in Java 5.0 and later.)

public class AbstractMethodError extends IncompatibleClassChangeError {
// Public Constructors

public AbstractMethodError();
public AbstractMethodError(String s);

}

abstract class AbstractStringBuilder implements Appendable, CharSequence {
// No Constructor
// Public Instance Methods

public AbstractStringBuilder append(char[] str);
public AbstractStringBuilder append(boolean b);
public AbstractStringBuilder append(char c);
public AbstractStringBuilder append(Object obj);
public AbstractStringBuilder append(CharSequence s);
public AbstractStringBuilder append(StringBuffer sb);
public AbstractStringBuilder append(String str);
public AbstractStringBuilder append(int i);
public AbstractStringBuilder append(double d);
public AbstractStringBuilder append(float f);
public AbstractStringBuilder append(long l);
public AbstractStringBuilder append(char[] str, int offset, int len);
public AbstractStringBuilder append(CharSequence s, int start, int end);
public AbstractStringBuilder appendCodePoint(int codePoint);
public int capacity();
public int codePointAt(int index);
public int codePointBefore(int index);
public int codePointCount(int beginIndex, int endIndex);
public AbstractStringBuilder delete(int start, int end);
public AbstractStringBuilder deleteCharAt(int index);
public void ensureCapacity(int minimumCapacity);

Object Throwable Error LinkageError IncompatibleClassChangeError AbstractMethodError

Serializable

Object AbstractStringBuilder

Appendable CharSequence

444 | Chapter 10: java.lang and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.lang.Appendable

Subclasses StringBuffer, StringBuilder

Returned By Too many methods to list.

Appendable
java.lang

Java 5.0

appendable

Objects that implement this interface can have characters or character sequences
appended to them. Appendable was added in Java 5.0 as a simple unifying API for String-
Buffer and StringBuilder, java.nio.CharBuffer, and character output stream subclasses of
java.io.Writer. The java.util.Formatter class can send formatted output to any Appendable object.
See also Readable.

Implementations java.io.PrintStream, java.io.Writer, java.nio.CharBuffer

Passed To java.util.Formatter.Formatter()

Returned By Too many methods to list.

public void getChars(int srcBegin, int srcEnd, char[] dst, int dstBegin);
public int indexOf(String str);
public int indexOf(String str, int fromIndex);
public AbstractStringBuilder insert(int offset, char c);
public AbstractStringBuilder insert(int offset, boolean b);
public AbstractStringBuilder insert(int dstOffset, CharSequence s);
public AbstractStringBuilder insert(int offset, int i);
public AbstractStringBuilder insert(int offset, double d);
public AbstractStringBuilder insert(int offset, float f);
public AbstractStringBuilder insert(int offset, long l);
public AbstractStringBuilder insert(int offset, char[] str);
public AbstractStringBuilder insert(int offset, Object obj);
public AbstractStringBuilder insert(int offset, String str);
public AbstractStringBuilder insert(int index, char[] str, int offset, int len);
public AbstractStringBuilder insert(int dstOffset, CharSequence s, int start, int end);
public int lastIndexOf(String str);
public int lastIndexOf(String str, int fromIndex);
public int offsetByCodePoints(int index, int codePointOffset);
public AbstractStringBuilder replace(int start, int end, String str);
public AbstractStringBuilder reverse();
public void setCharAt(int index, char ch);
public void setLength(int newLength);
public String substring(int start);
public String substring(int start, int end);
public void trimToSize();

// Methods Implementing CharSequence
public char charAt(int index);
public int length();
public CharSequence subSequence(int start, int end);
public abstract String toString();

}

public interface Appendable {
// Public Instance Methods

Appendable append(char c) throws java.io.IOException;
Appendable append(CharSequence csq) throws java.io.IOException;
Appendable append(CharSequence csq, int start, int end) throws java.io.IOException;

}

Chapter 10: java.lang and Subpackages | 445

java.lang.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.lang.AssertionError

ArithmeticException
java.lang

Java 1.0

serializable unchecked

A RuntimeException that signals an exceptional arithmetic condition, such as integer divi-
sion by zero.

ArrayIndexOutOfBoundsException
java.lang

Java 1.0

serializable unchecked

Signals that an array index less than zero or greater than or equal to the array size has been used.

Thrown By Too many methods to list.

ArrayStoreException
java.lang

Java 1.0

serializable unchecked

Signals an attempt to store the wrong type of object into an array.

AssertionError
java.lang

Java 1.4

serializable error

An instance of this class is thrown if when an assertion fails. This happens when asser-
tions are enabled, and the expression following an assert statement does not evaluate to
true. If an assertion fails, and the assert statement has a second expression separated from
the first by a colon, then the second expression is evaluated and the resulting value is
passed to the AssertionError() constructor, where it is converted to a string and used as the
error message.

public class ArithmeticException extends RuntimeException {
// Public Constructors

public ArithmeticException();
public ArithmeticException(String s);

}

public class ArrayIndexOutOfBoundsException extends IndexOutOfBoundsException {
// Public Constructors

public ArrayIndexOutOfBoundsException();
public ArrayIndexOutOfBoundsException(String s);
public ArrayIndexOutOfBoundsException(int index);

}

public class ArrayStoreException extends RuntimeException {
// Public Constructors

public ArrayStoreException();
public ArrayStoreException(String s);

}

Object Throwable Exception RuntimeException ArithmeticException

Serializable

Object Throwable Exception RuntimeException IndexOutOfBoundsException ArrayIndexOutOfBoundsException

Serializable

Object Throwable Exception RuntimeException ArrayStoreException

Serializable

446 | Chapter 10: java.lang and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.lang.Boolean

Boolean
java.lang

Java 1.0

serializable comparable

This class provides an immutable object wrapper around the boolean primitive type.
Note that the TRUE and FALSE constants are Boolean objects; they are not the same as the
true and false boolean values. As of Java 1.1, this class defines a Class constant that repre-
sents the boolean type. booleanValue() returns the boolean value of a Boolean object. The class
method getBoolean() retrieves the boolean value of a named property from the system
property list. The static method valueOf() parses a string and returns the Boolean object it
represents. Java 1.4 added two static methods that convert primitive boolean values to
Boolean and String objects. In Java 5.0, the parseBoolean() method behaves like valueOf() but
returns a primitive boolean value instead of a Boolean object.

Prior to Java 5.0, this class does not implement the Comparable interface.

public class AssertionError extends Error {
// Public Constructors

public AssertionError();
public AssertionError(long detailMessage);
public AssertionError(float detailMessage);
public AssertionError(double detailMessage);
public AssertionError(int detailMessage);
public AssertionError(Object detailMessage);
public AssertionError(boolean detailMessage);
public AssertionError(char detailMessage);

}

public final class Boolean implements Serializable, Comparable<Boolean> {
// Public Constructors

public Boolean(String s);
public Boolean(boolean value);

// Public Constants
public static final Boolean FALSE;
public static final Boolean TRUE;

1.1 public static final Class<Boolean> TYPE;
// Public Class Methods

public static boolean getBoolean(String name);
5.0 public static boolean parseBoolean(String s);
1.4 public static String toString(boolean b);
1.4 public static Boolean valueOf(boolean b);

public static Boolean valueOf(String s);
// Public Instance Methods

public boolean booleanValue();
// Methods Implementing Comparable
5.0 public int compareTo(Boolean b);
// Public Methods Overriding Object

Object Throwable Error AssertionError

Serializable

Object Boolean

Comparable Serializable

Chapter 10: java.lang and Subpackages | 447

java.lang.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.lang.Byte

Byte
java.lang

Java 1.1

serializable comparable

This class provides an immutable object wrapper around the byte primitive type. It
defines useful constants for the minimum and maximum values that can be stored by
the byte type and a Class object constant that represents the byte type. It also provides
various methods for converting Byte values to and from strings and other numeric types.

Most of the static methods of this class can convert a String to a Byte object or a byte
value: the four parseByte() and valueOf() methods parse a number from the specified string
using an optionally specified radix and return it in one of these two forms. The decode()
method parses a byte specified in base 10, base 8, or base 16 and returns it as a Byte. If
the string begins with “0x” or “#”, it is interpreted as a hexadecimal number. If it
begins with “0”, it is interpreted as an octal number. Otherwise, it is interpreted as a
decimal number.

Note that this class has two toString() methods. One is static and converts a byte primitive
value to a string; the other is the usual toString() method that converts a Byte object to a
string. Most of the remaining methods convert a Byte to various primitive numeric types.

public boolean equals(Object obj);
public int hashCode();
public String toString();

}

public final class Byte extends Number implements Comparable<Byte> {
// Public Constructors

public Byte(byte value);
public Byte(String s) throws NumberFormatException;

// Public Constants
public static final byte MAX_VALUE; =127
public static final byte MIN_VALUE; =-128

5.0 public static final int SIZE; =8
public static final Class<Byte> TYPE;

// Public Class Methods
public static Byte decode(String nm) throws NumberFormatException;
public static byte parseByte(String s) throws NumberFormatException;
public static byte parseByte(String s, int radix) throws NumberFormatException;
public static String toString(byte b);
public static Byte valueOf(String s) throws NumberFormatException;

5.0 public static Byte valueOf(byte b);
public static Byte valueOf(String s, int radix) throws NumberFormatException;

// Methods Implementing Comparable
1.2 public int compareTo(Byte anotherByte);
// Public Methods Overriding Number

public byte byteValue();
public double doubleValue();
public float floatValue();
public int intValue();
public long longValue();
public short shortValue();

// Public Methods Overriding Object

Object Number Byte

Serializable Comparable

448 | Chapter 10: java.lang and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.lang.Character

Character
java.lang

Java 1.0

serializable comparable

This class provides an immutable object wrapper around the primitive char data type.
charValue() returns the char value of a Character object. The compareTo() method implements
the Comparable interface so that Character objects can be ordered and sorted. The static
methods are the most interesting thing about this class, however: they categorize char
values based on the categories defined by the Unicode standard. (Some of the methods
are only useful if you have a detailed understanding of that standard.) Static methods
beginning with “is” test whether a character is in a given category. isDigit(), isLetter(),
isWhitespace(), isUpperCase() and isLowerCase() are some of the most useful. Note that these
methods work for any Unicode character, not just with the familiar Latin letters and
Arabic numbers of the ASCII character set. getType() returns a constant that identifies
the category of a character. getDirectionality() returns a separate DIRECTIONALITY_ constant
that specifies the “directionality category” of a character.

In addition to testing the category of a character, this class also defines static methods
for converting characters. toUpperCase() returns the uppercase equivalent of the specified
character (or returns the character itself if the character is uppercase or has no upper-
case equivalent). toLowerCase() converts instead to lowercase. digit() returns the integer
equivalent of a given character in a given radix (or base; for example, use 16 for hexa-
decimal). It works with any Unicode digit character, and also (for sufficiently large
radix values) the ASCII letters a-z and A-Z. forDigit() returns the ASCII character that
corresponds to the specified value (0-35) for the specified radix. getNumericValue() is
similar, but also works with any Unicode character including those, such as Roman
numerals, that represent numbers but are not decimal digits. Finally, the static toString()
method returns a String of length 1 that contains the specified char value.

Java 5.0 introduces many new methods to this class to accommodate Unicode supple-
mentary characters that use 21 bits and do not fit in a single char value. The two
representations for these supplementary characters are as an int codepoint in the range 0
through 0x10ffff, or as a sequence of two char values known as a “surrogate pair.” The
first char of such a pair should fall in the “high surrogate” range and the second char
should fall in the “low surrogate” range. toChars() converts an int codepoint into one or
two char values. toCodePoint(), codePointAt(), and codePointBefore() convert one or two char values
into the corresponding int value. codePointCount() returns the number of characters in a char
array or CharSequence, counting surrogate pairs as a single supplementary character.
offsetByCodePoints() tells you how many char indexes to advance in a run of text if you want
to skip over the specified number of code points. Finally, the various character type
testing and case conversion methods such as isWhitespace() and toUpperCase() are available in
new versions that take an int codepoint argument instead of a single char argument.

public boolean equals(Object obj);
public int hashCode();
public String toString();

}

public final class Character implements Serializable, Comparable<Character> {
// Public Constructors

public Character(char value);

Object Character

Comparable Serializable

Chapter 10: java.lang and Subpackages | 449

java.lang.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.lang.Character

// Public Constants
1.1 public static final byte COMBINING_SPACING_MARK; =8
1.1 public static final byte CONNECTOR_PUNCTUATION; =23
1.1 public static final byte CONTROL; =15
1.1 public static final byte CURRENCY_SYMBOL; =26
1.1 public static final byte DASH_PUNCTUATION; =20
1.1 public static final byte DECIMAL_DIGIT_NUMBER; =9
1.4 public static final byte DIRECTIONALITY_ARABIC_NUMBER; =6
1.4 public static final byte DIRECTIONALITY_BOUNDARY_NEUTRAL; =9
1.4 public static final byte DIRECTIONALITY_COMMON_NUMBER_SEPARATOR; =7
1.4 public static final byte DIRECTIONALITY_EUROPEAN_NUMBER; =3
1.4 public static final byte DIRECTIONALITY_EUROPEAN_NUMBER_SEPARATOR; =4
1.4 public static final byte DIRECTIONALITY_EUROPEAN_NUMBER_TERMINATOR; =5
1.4 public static final byte DIRECTIONALITY_LEFT_TO_RIGHT; =0
1.4 public static final byte DIRECTIONALITY_LEFT_TO_RIGHT_EMBEDDING; =14
1.4 public static final byte DIRECTIONALITY_LEFT_TO_RIGHT_OVERRIDE; =15
1.4 public static final byte DIRECTIONALITY_NONSPACING_MARK; =8
1.4 public static final byte DIRECTIONALITY_OTHER_NEUTRALS; =13
1.4 public static final byte DIRECTIONALITY_PARAGRAPH_SEPARATOR; =10
1.4 public static final byte DIRECTIONALITY_POP_DIRECTIONAL_FORMAT; =18
1.4 public static final byte DIRECTIONALITY_RIGHT_TO_LEFT; =1
1.4 public static final byte DIRECTIONALITY_RIGHT_TO_LEFT_ARABIC; =2
1.4 public static final byte DIRECTIONALITY_RIGHT_TO_LEFT_EMBEDDING; =16
1.4 public static final byte DIRECTIONALITY_RIGHT_TO_LEFT_OVERRIDE; =17
1.4 public static final byte DIRECTIONALITY_SEGMENT_SEPARATOR; =11
1.4 public static final byte DIRECTIONALITY_UNDEFINED; =-1
1.4 public static final byte DIRECTIONALITY_WHITESPACE; =12
1.1 public static final byte ENCLOSING_MARK; =7
1.1 public static final byte END_PUNCTUATION; =22
1.4 public static final byte FINAL_QUOTE_PUNCTUATION; =30
1.1 public static final byte FORMAT; =16
1.4 public static final byte INITIAL_QUOTE_PUNCTUATION; =29
1.1 public static final byte LETTER_NUMBER; =10
1.1 public static final byte LINE_SEPARATOR; =13
1.1 public static final byte LOWERCASE_LETTER; =2
1.1 public static final byte MATH_SYMBOL; =25
5.0 public static final int MAX_CODE_POINT; =1114111
5.0 public static final char MAX_HIGH_SURROGATE; = \uDBFF
5.0 public static final char MAX_LOW_SURROGATE; = \uDFFF

public static final int MAX_RADIX; =36
5.0 public static final char MAX_SURROGATE; = \uDFFF

public static final char MAX_VALUE; = \uFFFF
5.0 public static final int MIN_CODE_POINT; =0
5.0 public static final char MIN_HIGH_SURROGATE; = \uD800
5.0 public static final char MIN_LOW_SURROGATE; = \uDC00

public static final int MIN_RADIX; =2
5.0 public static final int MIN_SUPPLEMENTARY_CODE_POINT; =65536
5.0 public static final char MIN_SURROGATE; = \uD800

public static final char MIN_VALUE; = \0
1.1 public static final byte MODIFIER_LETTER; =4
1.1 public static final byte MODIFIER_SYMBOL; =27
1.1 public static final byte NON_SPACING_MARK; =6
1.1 public static final byte OTHER_LETTER; =5

450 | Chapter 10: java.lang and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.lang.Character

1.1 public static final byte OTHER_NUMBER; =11
1.1 public static final byte OTHER_PUNCTUATION; =24
1.1 public static final byte OTHER_SYMBOL; =28
1.1 public static final byte PARAGRAPH_SEPARATOR; =14
1.1 public static final byte PRIVATE_USE; =18
5.0 public static final int SIZE; =16
1.1 public static final byte SPACE_SEPARATOR; =12
1.1 public static final byte START_PUNCTUATION; =21
1.1 public static final byte SURROGATE; =19
1.1 public static final byte TITLECASE_LETTER; =3
1.1 public static final Class<Character> TYPE;
1.1 public static final byte UNASSIGNED; =0
1.1 public static final byte UPPERCASE_LETTER; =1
// Nested Types
1.2 public static class Subset;
1.2 public static final class UnicodeBlock extends Character.Subset;
// Public Class Methods
5.0 public static int charCount(int codePoint);
5.0 public static int codePointAt(char[] a, int index);
5.0 public static int codePointAt(CharSequence seq, int index);
5.0 public static int codePointAt(char[] a, int index, int limit);
5.0 public static int codePointBefore(CharSequence seq, int index);
5.0 public static int codePointBefore(char[] a, int index);
5.0 public static int codePointBefore(char[] a, int index, int start);
5.0 public static int codePointCount(char[] a, int offset, int count);
5.0 public static int codePointCount(CharSequence seq, int beginIndex, int endIndex);
5.0 public static int digit(int codePoint, int radix);

public static int digit(char ch, int radix);
public static char forDigit(int digit, int radix);

1.4 public static byte getDirectionality(char ch);
5.0 public static byte getDirectionality(int codePoint);
1.1 public static int getNumericValue(char ch);
5.0 public static int getNumericValue(int codePoint);
1.1 public static int getType(char ch);
5.0 public static int getType(int codePoint);
5.0 public static boolean isDefined(int codePoint);

public static boolean isDefined(char ch);
5.0 public static boolean isDigit(int codePoint);

public static boolean isDigit(char ch);
5.0 public static boolean isHighSurrogate(char ch);
5.0 public static boolean isIdentifierIgnorable(int codePoint);
1.1 public static boolean isIdentifierIgnorable(char ch);
1.1 public static boolean isISOControl(char ch);
5.0 public static boolean isISOControl(int codePoint);
1.1 public static boolean isJavaIdentifierPart(char ch);
5.0 public static boolean isJavaIdentifierPart(int codePoint);
1.1 public static boolean isJavaIdentifierStart(char ch);
5.0 public static boolean isJavaIdentifierStart(int codePoint);

public static boolean isLetter(char ch);
5.0 public static boolean isLetter(int codePoint);

public static boolean isLetterOrDigit(char ch);
5.0 public static boolean isLetterOrDigit(int codePoint);
5.0 public static boolean isLowerCase(int codePoint);

Chapter 10: java.lang and Subpackages | 451

java.lang.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.lang.Character.Subset

Character.Subset
java.lang

Java 1.2

This class represents a named subset of the Unicode character set. The toString() method
returns the name of the subset. This is a base class intended for further subclassing.
Note, in particular, that it does not provide a way to list the members of the subset,
nor a way to test for membership in the subset. See Character.UnicodeBlock.

public static boolean isLowerCase(char ch);
5.0 public static boolean isLowSurrogate(char ch);
5.0 public static boolean isMirrored(int codePoint);
1.4 public static boolean isMirrored(char ch);
5.0 public static boolean isSpaceChar(int codePoint);
1.1 public static boolean isSpaceChar(char ch);
5.0 public static boolean isSupplementaryCodePoint(int codePoint);
5.0 public static boolean isSurrogatePair(char high, char low);

public static boolean isTitleCase(char ch);
5.0 public static boolean isTitleCase(int codePoint);
1.1 public static boolean isUnicodeIdentifierPart(char ch);
5.0 public static boolean isUnicodeIdentifierPart(int codePoint);
5.0 public static boolean isUnicodeIdentifierStart(int codePoint);
1.1 public static boolean isUnicodeIdentifierStart(char ch);

public static boolean isUpperCase(char ch);
5.0 public static boolean isUpperCase(int codePoint);
5.0 public static boolean isValidCodePoint(int codePoint);
5.0 public static boolean isWhitespace(int codePoint);
1.1 public static boolean isWhitespace(char ch);
5.0 public static int offsetByCodePoints(CharSequence seq, int index, int codePointOffset);
5.0 public static int offsetByCodePoints(char[] a, int start, int count, int index, int codePointOffset);
5.0 public static char reverseBytes(char ch);
5.0 public static char[] toChars(int codePoint);
5.0 public static int toChars(int codePoint, char[] dst, int dstIndex);
5.0 public static int toCodePoint(char high, char low);

public static char toLowerCase(char ch);
5.0 public static int toLowerCase(int codePoint);
1.4 public static String toString(char c);

public static char toTitleCase(char ch);
5.0 public static int toTitleCase(int codePoint);

public static char toUpperCase(char ch);
5.0 public static int toUpperCase(int codePoint);
5.0 public static Character valueOf(char c);
// Public Instance Methods

public char charValue();
// Methods Implementing Comparable
1.2 public int compareTo(Character anotherCharacter);
// Public Methods Overriding Object

public boolean equals(Object obj);
public int hashCode();
public String toString();

// Deprecated Public Methods
public static boolean isJavaLetter(char ch);
public static boolean isJavaLetterOrDigit(char ch);
public static boolean isSpace(char ch);
}

452 | Chapter 10: java.lang and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.lang.Character.UnicodeBlock

Subclasses Character.UnicodeBlock

Character.UnicodeBlock
java.lang

Java 1.2

This subclass of Character.Subset defines a number of constants that represent named
subsets of the Unicode character set. The subsets and their names are the character
blocks defined by the Unicode specification (see http://www.unicode.org/). Java 1.4 and
5.0 both update this class to a new version of the Unicode standard and define a
number of new block constants. The static method of() takes a character or int code-
point and returns the Character.UnicodeBlock to which it belongs, or null if it is not part of
any defined block. When presented with an unknown Unicode character, this method
provides a useful way to determine what alphabet it belongs to. In Java 5.0, the
forName() factory method allows lookup of a UnicodeBlock by name.

public static class Character.Subset {
// Protected Constructors

protected Subset(String name);
// Public Methods Overriding Object

public final boolean equals(Object obj);
public final int hashCode();
public final String toString();

}

public static final class Character.UnicodeBlock extends Character.Subset {
// No Constructor
// Public Constants
5.0 public static final Character.UnicodeBlock AEGEAN_NUMBERS;

public static final Character.UnicodeBlock ALPHABETIC_PRESENTATION_FORMS;
public static final Character.UnicodeBlock ARABIC;
public static final Character.UnicodeBlock ARABIC_PRESENTATION_FORMS_A;
public static final Character.UnicodeBlock ARABIC_PRESENTATION_FORMS_B;
public static final Character.UnicodeBlock ARMENIAN;
public static final Character.UnicodeBlock ARROWS;
public static final Character.UnicodeBlock BASIC_LATIN;
public static final Character.UnicodeBlock BENGALI;
public static final Character.UnicodeBlock BLOCK_ELEMENTS;
public static final Character.UnicodeBlock BOPOMOFO;

1.4 public static final Character.UnicodeBlock BOPOMOFO_EXTENDED;
public static final Character.UnicodeBlock BOX_DRAWING;

1.4 public static final Character.UnicodeBlock BRAILLE_PATTERNS;
5.0 public static final Character.UnicodeBlock BUHID;
5.0 public static final Character.UnicodeBlock BYZANTINE_MUSICAL_SYMBOLS;
1.4 public static final Character.UnicodeBlock CHEROKEE;

public static final Character.UnicodeBlock CJK_COMPATIBILITY;
public static final Character.UnicodeBlock CJK_COMPATIBILITY_FORMS;
public static final Character.UnicodeBlock CJK_COMPATIBILITY_IDEOGRAPHS;

5.0 public static final Character.UnicodeBlock CJK_COMPATIBILITY_IDEOGRAPHS_SUPPLEMENT;
1.4 public static final Character.UnicodeBlock CJK_RADICALS_SUPPLEMENT;

public static final Character.UnicodeBlock CJK_SYMBOLS_AND_PUNCTUATION;
public static final Character.UnicodeBlock CJK_UNIFIED_IDEOGRAPHS;

1.4 public static final Character.UnicodeBlock CJK_UNIFIED_IDEOGRAPHS_EXTENSION_A;
5.0 public static final Character.UnicodeBlock CJK_UNIFIED_IDEOGRAPHS_EXTENSION_B;

public static final Character.UnicodeBlock COMBINING_DIACRITICAL_MARKS;

Chapter 10: java.lang and Subpackages | 453

java.lang.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.lang.Character.UnicodeBlock

public static final Character.UnicodeBlock COMBINING_HALF_MARKS;
public static final Character.UnicodeBlock COMBINING_MARKS_FOR_SYMBOLS;
public static final Character.UnicodeBlock CONTROL_PICTURES;
public static final Character.UnicodeBlock CURRENCY_SYMBOLS;

5.0 public static final Character.UnicodeBlock CYPRIOT_SYLLABARY;
public static final Character.UnicodeBlock CYRILLIC;

5.0 public static final Character.UnicodeBlock CYRILLIC_SUPPLEMENTARY;
5.0 public static final Character.UnicodeBlock DESERET;

public static final Character.UnicodeBlock DEVANAGARI;
public static final Character.UnicodeBlock DINGBATS;
public static final Character.UnicodeBlock ENCLOSED_ALPHANUMERICS;
public static final Character.UnicodeBlock ENCLOSED_CJK_LETTERS_AND_MONTHS;

1.4 public static final Character.UnicodeBlock ETHIOPIC;
public static final Character.UnicodeBlock GENERAL_PUNCTUATION;
public static final Character.UnicodeBlock GEOMETRIC_SHAPES;
public static final Character.UnicodeBlock GEORGIAN;

5.0 public static final Character.UnicodeBlock GOTHIC;
public static final Character.UnicodeBlock GREEK;
public static final Character.UnicodeBlock GREEK_EXTENDED;
public static final Character.UnicodeBlock GUJARATI;
public static final Character.UnicodeBlock GURMUKHI;
public static final Character.UnicodeBlock HALFWIDTH_AND_FULLWIDTH_FORMS;
public static final Character.UnicodeBlock HANGUL_COMPATIBILITY_JAMO;
public static final Character.UnicodeBlock HANGUL_JAMO;
public static final Character.UnicodeBlock HANGUL_SYLLABLES;

5.0 public static final Character.UnicodeBlock HANUNOO;
public static final Character.UnicodeBlock HEBREW;

5.0 public static final Character.UnicodeBlock HIGH_PRIVATE_USE_SURROGATES;
5.0 public static final Character.UnicodeBlock HIGH_SURROGATES;

public static final Character.UnicodeBlock HIRAGANA;
1.4 public static final Character.UnicodeBlock IDEOGRAPHIC_DESCRIPTION_CHARACTERS;

public static final Character.UnicodeBlock IPA_EXTENSIONS;
public static final Character.UnicodeBlock KANBUN;

1.4 public static final Character.UnicodeBlock KANGXI_RADICALS;
public static final Character.UnicodeBlock KANNADA;
public static final Character.UnicodeBlock KATAKANA;

5.0 public static final Character.UnicodeBlock KATAKANA_PHONETIC_EXTENSIONS;
1.4 public static final Character.UnicodeBlock KHMER;
5.0 public static final Character.UnicodeBlock KHMER_SYMBOLS;

public static final Character.UnicodeBlock LAO;
public static final Character.UnicodeBlock LATIN_1_SUPPLEMENT;
public static final Character.UnicodeBlock LATIN_EXTENDED_A;
public static final Character.UnicodeBlock LATIN_EXTENDED_ADDITIONAL;
public static final Character.UnicodeBlock LATIN_EXTENDED_B;
public static final Character.UnicodeBlock LETTERLIKE_SYMBOLS;

5.0 public static final Character.UnicodeBlock LIMBU;
5.0 public static final Character.UnicodeBlock LINEAR_B_IDEOGRAMS;
5.0 public static final Character.UnicodeBlock LINEAR_B_SYLLABARY;
5.0 public static final Character.UnicodeBlock LOW_SURROGATES;

public static final Character.UnicodeBlock MALAYALAM;
5.0 public static final Character.UnicodeBlock MATHEMATICAL_ALPHANUMERIC_SYMBOLS;

public static final Character.UnicodeBlock MATHEMATICAL_OPERATORS;
5.0 public static final Character.UnicodeBlock MISCELLANEOUS_MATHEMATICAL_SYMBOLS_A;
5.0 public static final Character.UnicodeBlock MISCELLANEOUS_MATHEMATICAL_SYMBOLS_B;

454 | Chapter 10: java.lang and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.lang.Character.UnicodeBlock

public static final Character.UnicodeBlock MISCELLANEOUS_SYMBOLS;
5.0 public static final Character.UnicodeBlock MISCELLANEOUS_SYMBOLS_AND_ARROWS;

public static final Character.UnicodeBlock MISCELLANEOUS_TECHNICAL;
1.4 public static final Character.UnicodeBlock MONGOLIAN;
5.0 public static final Character.UnicodeBlock MUSICAL_SYMBOLS;
1.4 public static final Character.UnicodeBlock MYANMAR;

public static final Character.UnicodeBlock NUMBER_FORMS;
1.4 public static final Character.UnicodeBlock OGHAM;
5.0 public static final Character.UnicodeBlock OLD_ITALIC;

public static final Character.UnicodeBlock OPTICAL_CHARACTER_RECOGNITION;
public static final Character.UnicodeBlock ORIYA;

5.0 public static final Character.UnicodeBlock OSMANYA;
5.0 public static final Character.UnicodeBlock PHONETIC_EXTENSIONS;

public static final Character.UnicodeBlock PRIVATE_USE_AREA;
1.4 public static final Character.UnicodeBlock RUNIC;
5.0 public static final Character.UnicodeBlock SHAVIAN;
1.4 public static final Character.UnicodeBlock SINHALA;

public static final Character.UnicodeBlock SMALL_FORM_VARIANTS;
public static final Character.UnicodeBlock SPACING_MODIFIER_LETTERS;
public static final Character.UnicodeBlock SPECIALS;
public static final Character.UnicodeBlock SUPERSCRIPTS_AND_SUBSCRIPTS;

5.0 public static final Character.UnicodeBlock SUPPLEMENTAL_ARROWS_A;
5.0 public static final Character.UnicodeBlock SUPPLEMENTAL_ARROWS_B;
5.0 public static final Character.UnicodeBlock SUPPLEMENTAL_MATHEMATICAL_OPERATORS;
5.0 public static final Character.UnicodeBlock SUPPLEMENTARY_PRIVATE_USE_AREA_A;
5.0 public static final Character.UnicodeBlock SUPPLEMENTARY_PRIVATE_USE_AREA_B;
1.4 public static final Character.UnicodeBlock SYRIAC;
5.0 public static final Character.UnicodeBlock TAGALOG;
5.0 public static final Character.UnicodeBlock TAGBANWA;
5.0 public static final Character.UnicodeBlock TAGS;
5.0 public static final Character.UnicodeBlock TAI_LE;
5.0 public static final Character.UnicodeBlock TAI_XUAN_JING_SYMBOLS;

public static final Character.UnicodeBlock TAMIL;
public static final Character.UnicodeBlock TELUGU;

1.4 public static final Character.UnicodeBlock THAANA;
public static final Character.UnicodeBlock THAI;
public static final Character.UnicodeBlock TIBETAN;

5.0 public static final Character.UnicodeBlock UGARITIC;
1.4 public static final Character.UnicodeBlock UNIFIED_CANADIAN_ABORIGINAL_SYLLABICS;
5.0 public static final Character.UnicodeBlock VARIATION_SELECTORS;
5.0 public static final Character.UnicodeBlock VARIATION_SELECTORS_SUPPLEMENT;
1.4 public static final Character.UnicodeBlock YI_RADICALS;
1.4 public static final Character.UnicodeBlock YI_SYLLABLES;
5.0 public static final Character.UnicodeBlock YIJING_HEXAGRAM_SYMBOLS;
// Public Class Methods
5.0 public static final Character.UnicodeBlock forName(String blockName);
5.0 public static Character.UnicodeBlock of(int codePoint);

public static Character.UnicodeBlock of(char c);
// Deprecated Public Fields
public static final Character.UnicodeBlock SURROGATES_AREA;
}

Chapter 10: java.lang and Subpackages | 455

java.lang.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.lang.Class<T>

CharSequence
java.lang

Java 1.4

This interface defines a simple API for read-only access to sequences of characters. In the
core platform it is implemented by the String, StringBuffer and java.nio.CharBuffer classes. charAt()
returns the character at a specified position in the sequence. length() returns the number
of characters in the sequence. subSequence() returns a CharSequence that consists of the char-
acters starting at, and including, the specified start index, and continuing up to, but not
including the specified end index. Finally, toString() returns a String version of the sequence.

Note that CharSequence implementations do not typically have interoperable equals() or
hashCode() methods, and it is not usually possible to compare two CharSequence objects or
use multiple sequences in a set or hashtable unless they are instances of the same
implementing class.

Implementations String, StringBuffer, StringBuilder, java.nio.CharBuffer

Passed To Too many methods to list.

Returned By String.subSequence(), StringBuffer.subSequence(), java.nio.CharBuffer.subSequence()

Class<T>
java.lang

Java 1.0

serializable

This class represents a Java type. There is one Class object for each class that is loaded
into the Java Virtual Machine, and, as of Java 1.1, there are special Class objects that
represent the Java primitive types. The TYPE constants defined by Boolean, Integer, and the
other primitive wrapper classes hold these special Class objects. Array types are also
represented by Class objects in Java 1.1.

There is no constructor for this class. You can obtain a Class object by calling the
getClass() method of any instance of the desired class. In Java 1.1 and later, you can also
refer to a Class object by appending .class to the name of a class. Finally, and most inter-
estingly, a class can be dynamically loaded by passing its fully qualified name (i.e.,
package name plus class name) to the static Class.forName() method. This method loads
the named class (if it is not already loaded) into the Java interpreter and returns a Class
object for it. Classes can also be loaded with a ClassLoader object.

The newInstance() method creates an instance of a given class; this allows you to create
instances of dynamically loaded classes for which you cannot use the new keyword.
Note that this method works only when the target class has a no-argument
constructor. See newInstance() in java.lang.reflect.Constructor for a more powerful way to instan-
tiate dynamically loaded classes. In Java 5.0, Class is a generic type and the type variable
T specifies the type that is returned by the newInstance() method.

getName() returns the name of the class. getSuperclass() returns its superclass. isInterface()
tests whether the Class object represents an interface, and getInterfaces() returns an array of
the interfaces that this class implements. In Java 1.2 and later, getPackage() returns a
Package object that represents the package containing the class. getProtectionDomain()

public interface CharSequence {
// Public Instance Methods

char charAt(int index);
int length();
CharSequence subSequence(int start, int end);
String toString();

}

456 | Chapter 10: java.lang and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.lang.Class<T>

returns the java.security.ProtectionDomain to which this class belongs. The various other get()
and is() methods return other information about the represented class; they form part
of the Java Reflection API, along with the classes in java.lang.reflect.

Java 5.0 adds a number of methods to support the new language features it defines.
isAnnotation() tests whether a type is an annotation type. Class implements
java.lang.reflect.AnnotatedElement in Java 5.0 and the getAnnotation() and related methods allow
the retrieval of annotations (with runtime retention) on the class. isEnum() tests whether
a Class object represents an enumerated type and getEnumConstants() returns an array of the
constants defined by an enumerated type. getTypeParameters() returns the type variables
declared by a generic type. getGenericSuperclass() and getGenericInterfaces() are the generic vari-
ants of the getSuperclass() and getInterfaces() methods, returning the generic type
information that appears in the extends and implements clause of the class declaration. See
java.lang.reflect.Type for more information.

Java 5.0 also adds methods that are useful for reflection on inner classes. isMemberClass(),
isLocalClass(), and isAnonymousClass() determine whether a Class represents one of these kinds
of nested types. getEnclosingClass(), getEnclosingMethod(), and getEnclosingConstructor() return the
type, method, or constructor that an inner class is nested within. Finally, getSimpleName()
returns the name of a type as it would appear in Java source code. This is typically
more useful than the Java VM formatted names returned by getName().

public final class Class<T>
 implements Serializable, java.lang.reflect.GenericDeclaration, java.lang.reflect.Type,
java.lang.reflect.AnnotatedElement {

// No Constructor
// Public Class Methods

public static Class<?> forName(String className) throws ClassNotFoundException;
1.2 public static Class<?> forName(String name, boolean initialize, ClassLoader loader) throws ClassNotFoundException;
// Public Instance Methods
5.0 public <U> Class<? extends U> asSubclass(Class<U> clazz);
5.0 public T cast(Object obj);
1.4 public boolean desiredAssertionStatus();
5.0 public String getCanonicalName();
1.1 public Class[] getClasses();

public ClassLoader getClassLoader();
1.1 public Class<?> getComponentType(); native
1.1 public java.lang.reflect.Constructor<T> getConstructor(Class ... parameterTypes)

throws NoSuchMethodException, SecurityException
1.1 public java.lang.reflect.Constructor[] getConstructors() throws SecurityException;
1.1 public Class[] getDeclaredClasses() throws SecurityException;
1.1 public java.lang.reflect.Constructor<T> getDeclaredConstructor(Class ... parameterTypes)

throws NoSuchMethodException, SecurityException;
1.1 public java.lang.reflect.Constructor[] getDeclaredConstructors() throws SecurityException;
1.1 public java.lang.reflect.Field getDeclaredField(String name) throws NoSuchFieldException, SecurityException;
1.1 public java.lang.reflect.Field[] getDeclaredFields() throws SecurityException;
1.1 public java.lang.reflect.Method getDeclaredMethod(String name, Class... parameterTypes)

throws NoSuchMethodException, SecurityException;
1.1 public java.lang.reflect.Method[] getDeclaredMethods() throws SecurityException;
1.1 public Class<?> getDeclaringClass(); native
5.0 public Class<?> getEnclosingClass();

Object Class

AnnotatedElement GenericDeclaration Serializable Type

Chapter 10: java.lang and Subpackages | 457

java.lang.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.lang.ClassCastException

Passed To Too many methods to list.

Returned By Too many methods to list.

Type Of Boolean.TYPE, Byte.TYPE, Character.TYPE, Double.TYPE, Float.TYPE, Integer.TYPE, Long.TYPE,
Short.TYPE, Void.TYPE

ClassCastException
java.lang

Java 1.0

serializable unchecked

Signals an invalid cast of an object to a type of which it is not an instance.

5.0 public java.lang.reflect.Constructor<?> getEnclosingConstructor();
5.0 public java.lang.reflect.Method getEnclosingMethod();
5.0 public T[] getEnumConstants();
1.1 public java.lang.reflect.Field getField(String name) throws NoSuchFieldException, SecurityException;
1.1 public java.lang.reflect.Field[] getFields() throws SecurityException;
5.0 public java.lang.reflect.Type[] getGenericInterfaces();
5.0 public java.lang.reflect.Type getGenericSuperclass();

public Class[] getInterfaces(); native
1.1 public java.lang.reflect.Method getMethod(String name, Class... parameterTypes)

throws NoSuchMethodException, SecurityException;
1.1 public java.lang.reflect.Method[] getMethods() throws SecurityException;
1.1 public int getModifiers(); native

public String getName();
1.2 public Package getPackage();
1.2 public java.security.ProtectionDomain getProtectionDomain();
1.1 public java.net.URL getResource(String name);
1.1 public java.io.InputStream getResourceAsStream(String name);
1.1 public Object[] getSigners(); native
5.0 public String getSimpleName();

public Class<? super T> getSuperclass(); native
5.0 public boolean isAnnotation();
5.0 public boolean isAnonymousClass();
1.1 public boolean isArray(); native
1.1 public boolean isAssignableFrom(Class<?> cls); native
5.0 public boolean isEnum();
1.1 public boolean isInstance(Object obj); native

public boolean isInterface(); native
5.0 public boolean isLocalClass();
5.0 public boolean isMemberClass();
1.1 public boolean isPrimitive(); native
5.0 public boolean isSynthetic();

public T newInstance() throws InstantiationException, IllegalAccessException;
// Methods Implementing AnnotatedElement
5.0 public <A extends java.lang.annotation.Annotation> A getAnnotation(Class<A> annotationClass);
5.0 public java.lang.annotation.Annotation[] getAnnotations();
5.0 public java.lang.annotation.Annotation[] getDeclaredAnnotations();
5.0 public boolean isAnnotationPresent(Class<? extends java.lang.annotation.Annotation> annotationClass);
// Methods Implementing GenericDeclaration
5.0 public java.lang.reflect.TypeVariable<Class<T>>[] getTypeParameters();
// Public Methods Overriding Object

public String toString();
}

458 | Chapter 10: java.lang and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.lang.ClassCircularityError

Thrown By org.xml.sax.helpers.ParserFactory.makeParser()

ClassCircularityError
java.lang

Java 1.0

serializable error

Signals that a circular dependency has been detected while performing initialization for
a class.

ClassFormatError
java.lang

Java 1.0

serializable error

Signals an error in the binary format of a class file.

Subclasses UnsupportedClassVersionError, java.lang.reflect.GenericSignatureFormatError

Thrown By ClassLoader.defineClass()

ClassLoader
java.lang

Java 1.0

This class is the abstract superclass of objects that know how to load Java classes into
a Java VM. Given a ClassLoader object, you can dynamically load a class by calling the
public loadClass() method, specifying the full name of the desired class. You can obtain a
resource associated with a class by calling getResource(), getResources(), and
getResourceAsStream(). Many applications do not need to use ClassLoader directly; these appli-
cations use the Class.forName() and Class.getResource() methods to dynamically load classes
and resources using the ClassLoader object that loaded the application itself.

public class ClassCastException extends RuntimeException {
// Public Constructors

public ClassCastException();
public ClassCastException(String s);

}

public class ClassCircularityError extends LinkageError {
// Public Constructors

public ClassCircularityError();
public ClassCircularityError(String s);

}

public class ClassFormatError extends LinkageError {
// Public Constructors

public ClassFormatError();
public ClassFormatError(String s);

}

Object Throwable Exception RuntimeException ClassCastException

Serializable

Object Throwable Error LinkageError ClassCircularityError

Serializable

Object Throwable Error LinkageError ClassFormatError

Serializable

Chapter 10: java.lang and Subpackages | 459

java.lang.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.lang.ClassLoader

In order to load classes over the network or from any source other than the class path,
you must use a custom ClassLoader object that knows how to obtain data from that
source. A java.net.URLClassLoader is suitable for this purpose for almost all applications.
Only rarely should an application need to define a ClassLoader subclass of its own. When
this is necessary, the subclass should typically extend java.security.SecureClassLoader and
override the findClass() method. This method must find the bytes that comprise the
named class, then pass them to the defineClass() method and return the resulting Class
object. In Java 1.2 and later, the findClass() method must also define the Package object
associated with the class, if it has not already been defined. It can use getPackage() and
definePackage() for this purpose. Custom subclasses of ClassLoader should also override
findResource() and findResources() to enable the public getResource() and getResources() methods.

In Java 1.4 and later you can specify whether the classes loaded through a ClassLoader
should have assertions (assert statements) enabled. setDefaultAssertionStatus() enables or
disables assertions for all loaded classes. setPackageAssertionStatus() and setClassAssertionStatus()
allow you to override the default assertion status for a named package or a named
class. Finally, clearAssertionStatus() sets the default status to false and discards the asser-
tions status for any named packages and classes.

public abstract class ClassLoader {
// Protected Constructors

protected ClassLoader();
1.2 protected ClassLoader(ClassLoader parent);
// Public Class Methods
1.2 public static ClassLoader getSystemClassLoader();
1.1 public static java.net.URL getSystemResource(String name);
1.1 public static java.io.InputStream getSystemResourceAsStream(String name);
1.2 public static java.util.Enumeration<java.net.URL> getSystemResources(String name) throws java.io.IOException;
// Public Instance Methods
1.4 public void clearAssertionStatus(); synchronized
1.2 public final ClassLoader getParent();
1.1 public java.net.URL getResource(String name);
1.1 public java.io.InputStream getResourceAsStream(String name);
1.2 public java.util.Enumeration<java.net.URL> getResources(String name) throws java.io.IOException;
1.1 public Class<?> loadClass(String name) throws ClassNotFoundException;
1.4 public void setClassAssertionStatus(String className, boolean enabled); synchronized
1.4 public void setDefaultAssertionStatus(boolean enabled); synchronized
1.4 public void setPackageAssertionStatus(String packageName, boolean enabled); synchronized
// Protected Instance Methods
5.0 protected final Class<?> defineClass(String name, java.nio.ByteBuffer b,

java.security.ProtectionDomain protectionDomain)
throws ClassFormatError;

1.1 protected final Class<?> defineClass(String name, byte[] b, int off, int len) throws ClassFormatError;
1.2 protected final Class<?> defineClass(String name, byte[] b, int off, int len,

java.security.ProtectionDomain protectionDomain)
throws ClassFormatError;

1.2 protected Package definePackage(String name, String specTitle, String specVersion, String specVendor, String implTitle,
String implVersion, String implVendor, java.net.URL sealBase)

throws IllegalArgumentException;
1.2 protected Class<?> findClass(String name) throws ClassNotFoundException;
1.2 protected String findLibrary(String libname); constant
1.1 protected final Class<?> findLoadedClass(String name);
1.2 protected java.net.URL findResource(String name); constant
1.2 protected java.util.Enumeration<java.net.URL> findResources(String name) throws java.io.IOException;

460 | Chapter 10: java.lang and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.lang.ClassNotFoundException

Subclasses java.security.SecureClassLoader

Passed To Class.forName(), Thread.setContextClassLoader(),
java.lang.instrument.ClassFileTransformer.transform(), java.lang.instrument.Instrumentation.getInitiatedClasses(),
java.lang.reflect.Proxy.{getProxyClass(), newProxyInstance()}, java.net.URLClassLoader.{newInstance(),
URLClassLoader()}, java.security.ProtectionDomain.ProtectionDomain(),
java.security.SecureClassLoader.SecureClassLoader(), java.util.ResourceBundle.getBundle()

Returned By Class.getClassLoader(), SecurityManager.currentClassLoader(), Thread.getContextClassLoader(),
java.security.ProtectionDomain.getClassLoader()

ClassNotFoundException
java.lang

Java 1.0

serializable checked

Signals that a class to be loaded cannot be found. If an exception of this type was
caused by some underlying exception, you can query that lower-level exeption with
getException() or with the newer, more general getCause().

Thrown By Too many methods to list.

Cloneable
java.lang

Java 1.0

cloneable

This interface defines no methods or variables, but indicates that the class that imple-
ments it may be cloned (i.e., copied) by calling the Object method clone(). Calling clone()
for an object that does not implement this interface (and does not override clone() with
its own implementation) causes a CloneNotSupportedException to be thrown.

Implementations Too many classes to list.

protected final Class<?> findSystemClass(String name) throws ClassNotFoundException;
1.2 protected Package getPackage(String name);
1.2 protected Package[] getPackages();

protected Class<?> loadClass(String name, boolean resolve) throws ClassNotFoundException; synchronized
protected final void resolveClass(Class<?> c);

1.1 protected final void setSigners(Class<?> c, Object[] signers);
// Deprecated Protected Methods
protected final Class<?> defineClass(byte[] b, int off, int len) throws ClassFormatError;
}

public class ClassNotFoundException extends Exception {
// Public Constructors

public ClassNotFoundException();
public ClassNotFoundException(String s);

1.2 public ClassNotFoundException(String s, Throwable ex);
// Public Instance Methods
1.2 public Throwable getException(); default:null
// Public Methods Overriding Throwable
1.4 public Throwable getCause(); default:null
}

public interface Cloneable {
}

Object Throwable Exception ClassNotFoundException

Serializable

Chapter 10: java.lang and Subpackages | 461

java.lang.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.lang.Comparable<T>

CloneNotSupportedException
java.lang

Java 1.0

serializable checked

Signals that the clone() method has been called for an object of a class that does not
implement the Cloneable interface.

Thrown By Enum.clone(), Object.clone(), java.security.MessageDigest.clone(),
java.security.MessageDigestSpi.clone(), java.security.Signature.clone(), java.security.SignatureSpi.clone(),
java.util.AbstractMap.clone(), java.util.EnumMap.clone(), java.util.EnumSet.clone(), javax.crypto.Mac.clone(),
javax.crypto.MacSpi.clone()

Comparable<T>
java.lang

Java 1.2

comparable

This interface defines a single method, compareTo(), that is responsible for comparing
one object to another and determining their relative order, according to some natural
ordering for that class of objects. Any general-purpose class that represents a value that
can be sorted or ordered should implement this interface. Any class that does imple-
ment this interface can make use of various powerful methods such as
java.util.Collections.sort() and java.util.Arrays.binarySearch(). Many of the key classes in the Java API
implement this interface. In Java 5.0, this interface has been made generic. The type
variable T represents the type of the object that is passed to the compareTo() method.

The compareTo() method compares this object to the object passed as an argument. It
should assume that the supplied object is of the appropriate type; if it is not, it should
throw a ClassCastException. If this object is less than the supplied object or should appear
before the supplied object in a sorted list, compareTo() should return a negative number.
If this object is greater than the supplied object or should come after the supplied
object in a sorted list, compareTo() should return a positive integer. If the two objects are
equivalent, and their relative order in a sorted list does not matter, compareTo() should
return 0. If compareTo() returns 0 for two objects, the equals() method should typically
return true. If this is not the case, the Comparable objects are not suitable for use in
java.util.TreeSet and java.util.TreeMap classes.

See java.util.Comparator for a way to define an ordering for objects that do not imple-
ment Comparable or to define an ordering other than the natural ordering defined by a
Comparable class.

Implementations Too many classes to list.

public class CloneNotSupportedException extends Exception {
// Public Constructors

public CloneNotSupportedException();
public CloneNotSupportedException(String s);

}

public interface Comparable<T> {
// Public Instance Methods

int compareTo(T o);
}

Object Throwable Exception CloneNotSupportedException

Serializable

462 | Chapter 10: java.lang and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.lang.Compiler

Compiler
java.lang

Java 1.0

The static methods of this class provide an interface to the just-in-time (JIT) byte-code-
to-native code compiler in use by the Java interpreter. If no JIT compiler is in use by
the VM, these methods do nothing. compileClass() asks the JIT compiler to compile the
specified class. compileClasses() asks the JIT compiler to compile all classes that match the
specified name. These methods return true if the compilation was successful, or false if it
failed or if there is no JIT compiler on the system. enable() and disable() turn just-in-time
compilation on and off. command() asks the JIT compiler to perform some compiler-
specific operation; this is a hook for vendor extensions. No standard operations have
been defined.

Deprecated
java.lang

Java 5.0

@Documented @Retention(RUNTIME) annotation

This annotation type marks the annotated program element as deprecated. The Java
compiler issues a warning if the annotated element is used or overrided in code that is
not itself @Deprecated.

In Java 5.0, the @Deprecated annotation works in the same way as the @deprecated javadoc
tag. In future releases of Java, the compiler may ignore @deprecated javadoc tag and rely
only on the @Deprecated annotation.

This annotation type has runtime retention and does not have an @Target meta-annota-
tion, which means it may be applied to any program element. Deprecated has an
@Documented meta-annotation, meaning that the presence of an @Deprecated annotation
should be a documented part of the annotated element’s API.

Double
java.lang

Java 1.0

serializable comparable

This class provides an immutable object wrapper around the double primitive data type.
doubleValue() returns the primitive double value of a Double object, and there are other
methods (which override Number methods and whose names all end in “Value”) for
returning a wrapped double value as a variety of other primitive types.

This class also provides some useful constants and static methods for testing double
values. MIN_VALUE and MAX_VALUE are the smallest (closest to zero) and largest represent-
able double values. POSITIVE_INFINITY and NEGATIVE_INFINITY are the double representations of
infinity and negative infinity, and NaN is special double “not a number” value. isInfinite() in

public final class Compiler {
// No Constructor
// Public Class Methods

public static Object command(Object any); native
public static boolean compileClass(Class<?> clazz); native
public static boolean compileClasses(String string); native
public static void disable(); native
public static void enable(); native

}

public @interface Deprecated {
}

Annotation Deprecated

Chapter 10: java.lang and Subpackages | 463

java.lang.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.lang.Double

class and instance method forms tests whether a double or a Double has an infinite value.
Similarly, isNaN() tests whether a double or Double is not-a-number; this is a comparison
that cannot be done directly because the NaN constant never tests equal to any other
value, including itself.

The static parseDouble() method converts a String to a double. The static valueOf() converts a
String to a Double, and is basically equivalent to the Double() constructor that takes a String
argument. The static and instance toString() methods perform the opposite conversion:
they convert a double or a Double to a String. See also java.text.NumberFormat for more flexible
number parsing and formatting.

The compareTo() method makes Double object Comparable which is useful for ordering and
sorting. The static compare() method is similar (its return values have the same meaning
as those of Comparable.compareTo()) but works on primitive values rather than objects and
is useful when ordering and sorting arrays of double values.

doubleToLongBits(), doubleToRawBits() and longBitsToDouble() allow you to manipulate the bit
representation (defined by IEEE 754) of a double directly (which is not something that
most applications ever need to do).

public final class Double extends Number implements Comparable<Double> {
// Public Constructors

public Double(String s) throws NumberFormatException;
public Double(double value);

// Public Constants
public static final double MAX_VALUE; =1.7976931348623157E308
public static final double MIN_VALUE; =4.9E-324
public static final double NaN; =NaN
public static final double NEGATIVE_INFINITY; =-Infinity
public static final double POSITIVE_INFINITY; =Infinity

5.0 public static final int SIZE; =64
1.1 public static final Class<Double> TYPE;
// Public Class Methods
1.4 public static int compare(double d1, double d2);

public static long doubleToLongBits(double value); native
1.3 public static long doubleToRawLongBits(double value); native

public static boolean isInfinite(double v);
public static boolean isNaN(double v);
public static double longBitsToDouble(long bits); native

1.2 public static double parseDouble(String s) throws NumberFormatException;
5.0 public static String toHexString(double d);

public static String toString(double d);
public static Double valueOf(String s) throws NumberFormatException;

5.0 public static Double valueOf(double d);
// Public Instance Methods

public boolean isInfinite();
public boolean isNaN();

// Methods Implementing Comparable
1.2 public int compareTo(Double anotherDouble);
// Public Methods Overriding Number
1.1 public byte byteValue();

public double doubleValue();

Object Number Double

Serializable Comparable

464 | Chapter 10: java.lang and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.lang.Enum<E extends Enum<E>>

Enum<E extends Enum<E>>
java.lang

Java 5.0

serializable comparable

This class is the common superclass of all enumerated types. It is not itself an enum
type, however, and a Java compiler does not allow other classes to extend it.
Subclasses of Enum may be only created with enum declarations. Enum is a generic type,
and the type variable E represents the concrete enumerated type that actually extends
Enum. This type variable exists so that Enum can implement Comparable<E>.

Every enumerated constant has a name (the name it was declared with) and an ordinal
value—the first constant in an enum declaration has an ordinal of 0, the second has an
ordinal of 1, and so on. The final methods name() and ordinal() return these values. Most
users of enumerated constants will use toString() instead of name(). The implementation
of toString() defined by Enum returns the same value as name(). The toString() method is not
final, however, and it can be overridden in enum declarations.

Enum implements a number of Object and Comparable methods and makes its implementa-
tions final so that they are inherited by all enum types and may not be overridden. equals()
compares enumerated constants with the = = operator, and hashCode() returns the
System.identityHashCode() value. In order to make this identity-based equals() implementa-
tion work, Enum overrides the protected clone() method to throw CloneNotSupportedException,
preventing additional copies of enumerated values from being created. Finally, the
compareTo() method of the Comparable interface is defined to compare enumerated values
based on their ordinal() value.

getDeclaringClass() returns the Class object that represents the enum type of which the
constant is a part. It is like the getClass() method inherited from Object, but the return
values of these two methods will be different for enumerated constants that have
value-specific class bodies, since those constants are instances of an anonymous
subclass of the enum type.

The static valueOf() method is passed the type and name of an enumerated constant and
returns the object that represents that constant (or throws an IllegalArgumentException).

public float floatValue();
public int intValue();
public long longValue();

1.1 public short shortValue();
// Public Methods Overriding Object

public boolean equals(Object obj);
public int hashCode();
public String toString();

}

public abstract class Enum<E extends Enum<E>> implements Comparable<E>, Serializable {
// Protected Constructors

protected Enum(String name, int ordinal);
// Public Class Methods

public static <T extends Enum<T>> T valueOf(Class<T> enumType, String name);
// Public Instance Methods

public final Class<E> getDeclaringClass();
public final String name();

Object Enum

Comparable Serializable

Chapter 10: java.lang and Subpackages | 465

java.lang.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.lang.Error

Subclasses Thread.State, java.lang.annotation.ElementType, java.lang.annotation.RetentionPolicy,
java.lang.management.MemoryType, java.math.RoundingMode, java.net.Authenticator.RequestorType,
java.net.Proxy.Type, java.security.KeyRep.Type, java.util.Formatter.BigDecimalLayoutForm,
java.util.concurrent.TimeUnit, javax.net.ssl.SSLEngineResult.HandshakeStatus, javax.net.ssl.SSLEngineResult.Status

Passed To Too many methods to list.

EnumConstantNotPresentException
java.lang

Java 5.0

serializable unchecked

This unchecked exception is thrown when Java code attempts to use an enum
constant that no longer exists. This can happen only if the enumerated constant was
removed from its enumerated type after the referencing code was compiled. The
methods of the exception provide the Class of the enumerated type and the name of the
nonexistent constant.

Error
java.lang

Java 1.0

serializable error

This class forms the root of the error hierarchy in Java. Subclasses of Error, unlike
subclasses of Exception, should not be caught and generally cause termination of the
program. Subclasses of Error need not be declared in the throws clause of a method defi-
nition. This class inherits methods from Throwable but declares none of its own. Each of
its constructors simply invokes the corresponding Throwable() constructor. See Throwable for details.

public final int ordinal();
// Methods Implementing Comparable

public final int compareTo(E o);
// Public Methods Overriding Object

public final boolean equals(Object other);
public final int hashCode();
public String toString();

// Protected Methods Overriding Object
protected final Object clone() throws CloneNotSupportedException;

}

public class EnumConstantNotPresentException extends RuntimeException {
// Public Constructors

public EnumConstantNotPresentException(Class<? extends Enum> enumType, String constantName);
// Public Instance Methods

public String constantName();
public Class<? extends Enum> enumType();

}

public class Error extends Throwable {
// Public Constructors

public Error();
1.4 public Error(Throwable cause);

Object Throwable Exception RuntimeException EnumConstantNotPresentException

Serializable

Object Throwable Error

Serializable

466 | Chapter 10: java.lang and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.lang.Exception

Subclasses AssertionError, LinkageError, ThreadDeath, VirtualMachineError,
java.lang.annotation.AnnotationFormatError, java.nio.charset.CoderMalfunctionError,
javax.xml.parsers.FactoryConfigurationError, javax.xml.transform.TransformerFactoryConfigurationError

Exception
java.lang

Java 1.0

serializable checked

This class forms the root of the exception hierarchy in Java. An Exception signals an
abnormal condition that must be specially handled to prevent program termination.
Exceptions may be caught and handled. An exception that is not a subclass of Runtime-
Exception must be declared in the throws clause of any method that can throw it. This
class inherits methods from Throwable but declares none of its own. Each of its construc-
tors simply invokes the corresponding Throwable() constructor. See Throwable for details.

Subclasses Too many classes to list.

Passed To java.io.WriteAbortedException.WriteAbortedException(),
java.nio.charset.CoderMalfunctionError.CoderMalfunctionError(),
java.security.PrivilegedActionException.PrivilegedActionException(), java.util.logging.ErrorManager.error(),
java.util.logging.Handler.reportError(), javax.xml.parsers.FactoryConfigurationError.FactoryConfigurationError(),
javax.xml.transform.TransformerFactoryConfigurationError.TransformerFactoryConfigurationError(),
org.xml.sax.SAXException.SAXException(), org.xml.sax.SAXParseException.SAXParseException()

Returned By java.security.PrivilegedActionException.getException(),
javax.xml.parsers.FactoryConfigurationError.getException(),
javax.xml.transform.TransformerFactoryConfigurationError.getException(),
org.xml.sax.SAXException.getException()

Thrown By java.security.PrivilegedExceptionAction.run(), java.util.concurrent.Callable.call()

Type Of java.io.WriteAbortedException.detail

ExceptionInInitializerError
java.lang

Java 1.1

serializable error

This error is thrown by the Java Virtual Machine when an exception occurs in the
static initializer of a class. You can use the getException() method to obtain the Throwable
object that was thrown from the initializer. In Java 1.4 and later, getException() has been
superseded by the more general getCause() method of the Throwable class.

public Error(String message);
1.4 public Error(String message, Throwable cause);
}

public class Exception extends Throwable {
// Public Constructors

public Exception();
1.4 public Exception(Throwable cause);

public Exception(String message);
1.4 public Exception(String message, Throwable cause);
}

Object Throwable Exception

Serializable

Object Throwable Error LinkageError ExceptionInInitializerError

Serializable

Chapter 10: java.lang and Subpackages | 467

java.lang.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.lang.Float

Float
java.lang

Java 1.0

serializable comparable

This class provides an immutable object wrapper around a primitive float value.
floatValue() returns the primitive float value of a Float object, and there are methods for
returning the value of a Float as a variety of other primitive types. This class is very
similar to Double, and defines the same set of useful methods and constants as that class
does. See Double for details.

public class ExceptionInInitializerError extends LinkageError {
// Public Constructors

public ExceptionInInitializerError();
public ExceptionInInitializerError(String s);
public ExceptionInInitializerError(Throwable thrown);

// Public Instance Methods
public Throwable getException(); default:null

// Public Methods Overriding Throwable
1.4 public Throwable getCause(); default:null
}

public final class Float extends Number implements Comparable<Float> {
// Public Constructors

public Float(double value);
public Float(String s) throws NumberFormatException;
public Float(float value);

// Public Constants
public static final float MAX_VALUE; =3.4028235E38
public static final float MIN_VALUE; =1.4E-45
public static final float NaN; =NaN
public static final float NEGATIVE_INFINITY; =-Infinity
public static final float POSITIVE_INFINITY; =Infinity

5.0 public static final int SIZE; =32
1.1 public static final Class<Float> TYPE;
// Public Class Methods
1.4 public static int compare(float f1, float f2);

public static int floatToIntBits(float value); native
1.3 public static int floatToRawIntBits(float value); native

public static float intBitsToFloat(int bits); native
public static boolean isInfinite(float v);
public static boolean isNaN(float v);

1.2 public static float parseFloat(String s) throws NumberFormatException;
5.0 public static String toHexString(float f);

public static String toString(float f);
public static Float valueOf(String s) throws NumberFormatException;

5.0 public static Float valueOf(float f);
// Public Instance Methods

public boolean isInfinite();
public boolean isNaN();

// Methods Implementing Comparable
1.2 public int compareTo(Float anotherFloat);
// Public Methods Overriding Number

Object Number Float

Serializable Comparable

468 | Chapter 10: java.lang and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.lang.IllegalAccessError

IllegalAccessError
java.lang

Java 1.0

serializable error

Signals an attempted use of a class, method, or field that is not accessible.

IllegalAccessException
java.lang

Java 1.0

serializable checked

Signals that a class or initializer is not accessible. Thrown by Class.newInstance().

Thrown By Too many methods to list.

IllegalArgumentException
java.lang

Java 1.0

serializable unchecked

Signals an illegal argument to a method. See subclasses IllegalThreadStateException and
NumberFormatException.

1.1 public byte byteValue();
public double doubleValue();
public float floatValue();
public int intValue();
public long longValue();

1.1 public short shortValue();
// Public Methods Overriding Object

public boolean equals(Object obj);
public int hashCode();
public String toString();

}

public class IllegalAccessError extends IncompatibleClassChangeError {
// Public Constructors

public IllegalAccessError();
public IllegalAccessError(String s);

}

public class IllegalAccessException extends Exception {
// Public Constructors

public IllegalAccessException();
public IllegalAccessException(String s);

}

public class IllegalArgumentException extends RuntimeException {
// Public Constructors

public IllegalArgumentException();
5.0 public IllegalArgumentException(Throwable cause);

Object Throwable Error LinkageError IncompatibleClassChangeError IllegalAccessError

Serializable

Object Throwable Exception IllegalAccessException

Serializable

Object Throwable Exception RuntimeException IllegalArgumentException

Serializable

Chapter 10: java.lang and Subpackages | 469

java.lang.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.lang.IllegalStateException

Subclasses IllegalThreadStateException, NumberFormatException, java.nio.channels.IllegalSelectorException,
java.nio.channels.UnresolvedAddressException, java.nio.channels.UnsupportedAddressTypeException,
java.nio.charset.IllegalCharsetNameException, java.nio.charset.UnsupportedCharsetException,
java.security.InvalidParameterException, java.util.IllegalFormatException, java.util.regex.PatternSyntaxException

Thrown By Too many methods to list.

IllegalMonitorStateException
java.lang

Java 1.0

serializable unchecked

Signals an illegal monitor state. It is thrown by the Object notify() and wait() methods used
for thread synchronization.

IllegalStateException
java.lang

Java 1.1

serializable unchecked

Signals that a method has been invoked on an object that is not in an appropriate state
to perform the requested operation.

Subclasses java.nio.InvalidMarkException, java.nio.channels.AlreadyConnectedException,
java.nio.channels.CancelledKeyException, java.nio.channels.ClosedSelectorException,
java.nio.channels.ConnectionPendingException, java.nio.channels.IllegalBlockingModeException,
java.nio.channels.NoConnectionPendingException, java.nio.channels.NonReadableChannelException,
java.nio.channels.NonWritableChannelException, java.nio.channels.NotYetBoundException,
java.nio.channels.NotYetConnectedException, java.nio.channels.OverlappingFileLockException,
java.util.FormatterClosedException, java.util.concurrent.CancellationException

Thrown By Too many methods to list.

public IllegalArgumentException(String s);
5.0 public IllegalArgumentException(String message, Throwable cause);
}

public class IllegalMonitorStateException extends RuntimeException {
// Public Constructors

public IllegalMonitorStateException();
public IllegalMonitorStateException(String s);

}

public class IllegalStateException extends RuntimeException {
// Public Constructors

public IllegalStateException();
5.0 public IllegalStateException(Throwable cause);

public IllegalStateException(String s);
5.0 public IllegalStateException(String message, Throwable cause);
}

Object Throwable Exception RuntimeException IllegalMonitorStateException

Serializable

Object Throwable Exception RuntimeException IllegalStateException

Serializable

470 | Chapter 10: java.lang and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.lang.IllegalThreadStateException

IllegalThreadStateException
java.lang

Java 1.0

serializable unchecked

Signals that a thread is not in the appropriate state for an attempted operation to
succeed.

IncompatibleClassChangeError
java.lang

Java 1.0

serializable error

This is the superclass of a group of related error types. It signals an illegal use of a legal
class.

Subclasses AbstractMethodError, IllegalAccessError, InstantiationError, NoSuchFieldError, NoSuchMethodError

IndexOutOfBoundsException
java.lang

Java 1.0

serializable unchecked

Signals that an index is out of bounds. See the subclasses ArrayIndexOutOfBoundsException and
StringIndexOutOfBoundsException.

Subclasses ArrayIndexOutOfBoundsException, StringIndexOutOfBoundsException

InheritableThreadLocal<T>
java.lang

Java 1.2

This class holds a thread-local value that is inherited by child threads. See ThreadLocal for
a discussion of thread-local values. Note that the inheritance referred to in the name of
this class is not from superclass to subclass; it is inheritance from parent thread to

public class IllegalThreadStateException extends IllegalArgumentException {
// Public Constructors

public IllegalThreadStateException();
public IllegalThreadStateException(String s);

}

public class IncompatibleClassChangeError extends LinkageError {
// Public Constructors

public IncompatibleClassChangeError();
public IncompatibleClassChangeError(String s);

}

public class IndexOutOfBoundsException extends RuntimeException {
// Public Constructors

public IndexOutOfBoundsException();
public IndexOutOfBoundsException(String s);

}

Object Throwable Exception RuntimeException IllegalArgumentException IllegalThreadStateException

Serializable

Object Throwable Error LinkageError IncompatibleClassChangeError

Serializable

Object Throwable Exception RuntimeException IndexOutOfBoundsException

Serializable

Chapter 10: java.lang and Subpackages | 471

java.lang.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.lang.InstantiationException

child thread. Like its superclass, this class has been made generic in Java 5.0. The type
variable T represents the type of the referenced object.

This class is best understood by example. Suppose that an application has defined an
InheritableThreadLocal object and that a certain thread (the parent thread) has a thread-local
value stored in that object. Whenever that thread creates a new thread (a child thread),
the InheritableThreadLocal object is automatically updated so that the new child thread has
the same value associated with it as the parent thread. Note that the value associated
with the child thread is independent from the value associated with the parent thread.
If the child thread subsequently alters its value by calling the set() method of the Inherit-
ableThreadLocal, the value associated with the parent thread does not change.

By default, a child thread inherits a parent’s values unmodified. By overriding the
childValue() method, however, you can create a subclass of InheritableThreadLocal in which the
child thread inherits some arbitrary function of the parent thread’s value.

InstantiationError
java.lang

Java 1.0

serializable error

Signals an attempt to instantiate an interface or abstract class.

InstantiationException
java.lang

Java 1.0

serializable checked

Signals an attempt to instantiate an interface or an abstract class.

Thrown By Class.newInstance(), java.lang.reflect.Constructor.newInstance(),
org.xml.sax.helpers.ParserFactory.makeParser()

public class InheritableThreadLocal<T> extends ThreadLocal<T> {
// Public Constructors

public InheritableThreadLocal();
// Protected Instance Methods

protected T childValue(T parentValue);
}

public class InstantiationError extends IncompatibleClassChangeError {
// Public Constructors

public InstantiationError();
public InstantiationError(String s);

}

public class InstantiationException extends Exception {
// Public Constructors

public InstantiationException();
public InstantiationException(String s);

}

Object ThreadLocal InheritableThreadLocal

Object Throwable Error LinkageError IncompatibleClassChangeError InstantiationError

Serializable

Object Throwable Exception InstantiationException

Serializable

472 | Chapter 10: java.lang and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.lang.Integer

Integer
java.lang

Java 1.0

serializable comparable

This class provides an immutable object wrapper around the int primitive data type.
This class also contains useful minimum and maximum constants and useful conver-
sion methods. parseInt() and valueOf() convert a string to an int or to an Integer, respectively.
Each can take a radix argument to specify the base the value is represented in. decode()
also converts a String to an Integer. It assumes a hexadecimal number if the string begins
with “0X” or “0x”, or an octal number if the string begins with “0”. Otherwise, a
decimal number is assumed. toString() converts in the other direction, and the static
version takes a radix argument. toBinaryString(), toOctalString(), and toHexString() convert an int
to a string using base 2, base 8, and base 16. These methods treat the integer as an
unsigned value. Other routines return the value of an Integer as various primitive types,
and, finally, the getInteger() methods return the integer value of a named property from
the system property list, or the specified default value.

Java 5.0 adds a number of static methods that operate on the bits of an int value.
rotateLeft() and rotateRight() shift the bits the specified distance in the specified direction,
with bits shifted off one end being shifted in on the other end. signum() returns the sign
of the integer as -1, 0, or 1. highestOneBit(), numberOfTrailingZeros(), bitCount() and related
methods can be useful if you use an int value as a set of bits and want to iterate through
the ones bits in the set.

public final class Integer extends Number implements Comparable<Integer> {
// Public Constructors

public Integer(int value);
public Integer(String s) throws NumberFormatException;

// Public Constants
public static final int MAX_VALUE; =2147483647
public static final int MIN_VALUE; =-2147483648

5.0 public static final int SIZE; =32
1.1 public static final Class<Integer> TYPE;
// Public Class Methods
5.0 public static int bitCount(int i);
1.1 public static Integer decode(String nm) throws NumberFormatException;

public static Integer getInteger(String nm);
public static Integer getInteger(String nm, int val);
public static Integer getInteger(String nm, Integer val);

5.0 public static int highestOneBit(int i);
5.0 public static int lowestOneBit(int i);
5.0 public static int numberOfLeadingZeros(int i);
5.0 public static int numberOfTrailingZeros(int i);

public static int parseInt(String s) throws NumberFormatException;
public static int parseInt(String s, int radix) throws NumberFormatException;

5.0 public static int reverse(int i);
5.0 public static int reverseBytes(int i);
5.0 public static int rotateLeft(int i, int distance);
5.0 public static int rotateRight(int i, int distance);
5.0 public static int signum(int i);

public static String toBinaryString(int i);
public static String toHexString(int i);

Object Number Integer

Serializable Comparable

Chapter 10: java.lang and Subpackages | 473

java.lang.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.lang.Iterable<T>

InternalError
java.lang

Java 1.0

serializable error

Signals an internal error in the Java interpreter.

InterruptedException
java.lang

Java 1.0

serializable checked

Signals that the thread has been interrupted.

Thrown By Too many methods to list.

Iterable<T>
java.lang

Java 5.0

This interface defines a single method for returning a java.util.Iterator object. Iterable was
added in Java 5.0 to support the for/in loop, which is also new in Java 5.0. The Collection,

public static String toOctalString(int i);
public static String toString(int i);
public static String toString(int i, int radix);

5.0 public static Integer valueOf(int i);
public static Integer valueOf(String s) throws NumberFormatException;
public static Integer valueOf(String s, int radix) throws NumberFormatException;

// Methods Implementing Comparable
1.2 public int compareTo(Integer anotherInteger);
// Public Methods Overriding Number
1.1 public byte byteValue();

public double doubleValue();
public float floatValue();
public int intValue();
public long longValue();

1.1 public short shortValue();
// Public Methods Overriding Object

public boolean equals(Object obj);
public int hashCode();
public String toString();

}

public class InternalError extends VirtualMachineError {
// Public Constructors

public InternalError();
public InternalError(String s);

}

public class InterruptedException extends Exception {
// Public Constructors

public InterruptedException();
public InterruptedException(String s);

}

Object Throwable Error VirtualMachineError InternalError

Serializable

Object Throwable Exception InterruptedException

Serializable

474 | Chapter 10: java.lang and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.lang.LinkageError

List, Set, and Queue collection interfaces of java.util extend this interface, making all collec-
tions other than maps Iterable. You can implement this interface in your own classes if
you want to allow them to be iterated with the for/in loop.

The type variable T specifies the type parameter of the returned Iterator object, which, in
turn, specifies the element type of the collection being iterated over.

Implementations java.util.Collection

LinkageError
java.lang

Java 1.0

serializable error

The superclass of a group of errors that signal problems linking a class or resolving
dependencies between classes.

Subclasses ClassCircularityError, ClassFormatError, ExceptionInInitializerError,
IncompatibleClassChangeError, NoClassDefFoundError, UnsatisfiedLinkError, VerifyError

Long
java.lang

Java 1.0

serializable comparable

This class provides an immutable object wrapper around the long primitive data type.
This class also contains useful minimum and maximum constants and useful conver-
sion methods. parseLong() and valueOf() convert a string to a long or to a Long, respectively.
Each can take a radix argument to specify the base the value is represented in. toString()
converts in the other direction and may also take a radix argument. toBinaryString(),
toOctalString(), and toHexString() convert a long to a string using base 2, base 8, and base 16.
These methods treat the long as an unsigned value. Other routines return the value of a
Long as various primitive types, and, finally, the getLong() methods return the long value
of a named property or the value of the specified default.

Java 5.0 adds a number of static methods that operate on the bits of a long value.
Except for their argument type and return type, they are the same as the Integer
methods of the same name.

public interface Iterable<T> {
// Public Instance Methods

java.util.Iterator<T> iterator();
}

public class LinkageError extends Error {
// Public Constructors

public LinkageError();
public LinkageError(String s);

}

public final class Long extends Number implements Comparable<Long> {
// Public Constructors

public Long(long value);
public Long(String s) throws NumberFormatException;

Object Throwable Error LinkageError

Serializable

Object Number Long

Serializable Comparable

Chapter 10: java.lang and Subpackages | 475

java.lang.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.lang.Math

Math
java.lang

Java 1.0

This class defines constants for the mathematical values e and π and defines static
methods for floating-point trigonometry, exponentiation, and other operations. It is
the equivalent of the C <math.h> functions. It also contains methods for computing
minimum and maximum values and for generating pseudorandom numbers.

// Public Constants
public static final long MAX_VALUE; =9223372036854775807
public static final long MIN_VALUE; =-9223372036854775808

5.0 public static final int SIZE; =64
1.1 public static final Class<Long> TYPE;
// Public Class Methods
5.0 public static int bitCount(long i);
1.2 public static Long decode(String nm) throws NumberFormatException;

public static Long getLong(String nm);
public static Long getLong(String nm, Long val);
public static Long getLong(String nm, long val);

5.0 public static long highestOneBit(long i);
5.0 public static long lowestOneBit(long i);
5.0 public static int numberOfLeadingZeros(long i);
5.0 public static int numberOfTrailingZeros(long i);

public static long parseLong(String s) throws NumberFormatException;
public static long parseLong(String s, int radix) throws NumberFormatException;

5.0 public static long reverse(long i);
5.0 public static long reverseBytes(long i);
5.0 public static long rotateLeft(long i, int distance);
5.0 public static long rotateRight(long i, int distance);
5.0 public static int signum(long i);

public static String toBinaryString(long i);
public static String toHexString(long i);
public static String toOctalString(long i);
public static String toString(long i);
public static String toString(long i, int radix);

5.0 public static Long valueOf(long l);
public static Long valueOf(String s) throws NumberFormatException;
public static Long valueOf(String s, int radix) throws NumberFormatException;

// Methods Implementing Comparable
1.2 public int compareTo(Long anotherLong);
// Public Methods Overriding Number
1.1 public byte byteValue();

public double doubleValue();
public float floatValue();
public int intValue();
public long longValue();

1.1 public short shortValue();
// Public Methods Overriding Object

public boolean equals(Object obj);
public int hashCode();
public String toString();

}

476 | Chapter 10: java.lang and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.lang.Math

Most methods of Math operate on float and double floating-point values. Remember that
these values are only approximations of actual real numbers. To allow implementa-
tions to take full advantage of the floating-point capabilities of a native platform, the
methods of Math are not required to return exactly the same values on all platforms. In
other words, the results returned by different implementations may differ slightly in
the least-significant bits. As of Java 1.3, applications that require strict platform-inde-
pendence of results should use StrictMath instead.

Java 5.0 adds several methods including log10() to compute the base-ten logarithm, cbrt()
to compute the cube root of a number, and signum() to compute the sign of a number as
well as sinh(), cosh(), and tanh() hyperbolic trigonometric functions.

public final class Math {
// No Constructor
// Public Constants

public static final double E; =2.718281828459045
public static final double PI; =3.141592653589793

// Public Class Methods
public static int abs(int a);
public static long abs(long a);
public static float abs(float a);
public static double abs(double a);
public static double acos(double a);
public static double asin(double a);
public static double atan(double a);
public static double atan2(double y, double x);

5.0 public static double cbrt(double a);
public static double ceil(double a);
public static double cos(double a);

5.0 public static double cosh(double x);
public static double exp(double a);

5.0 public static double expm1(double x);
public static double floor(double a);

5.0 public static double hypot(double x, double y);
public static double IEEEremainder(double f1, double f2);
public static double log(double a);

5.0 public static double log10(double a);
5.0 public static double log1p(double x);

public static int max(int a, int b);
public static long max(long a, long b);
public static float max(float a, float b);
public static double max(double a, double b);
public static int min(int a, int b);
public static long min(long a, long b);
public static float min(float a, float b);
public static double min(double a, double b);
public static double pow(double a, double b);
public static double random();
public static double rint(double a);
public static int round(float a);
public static long round(double a);

5.0 public static float signum(float f);
5.0 public static double signum(double d);

public static double sin(double a);

Chapter 10: java.lang and Subpackages | 477

java.lang.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.lang.NoSuchFieldError

NegativeArraySizeException
java.lang

Java 1.0

serializable unchecked

Signals an attempt to allocate an array with fewer than zero elements.

Thrown By java.lang.reflect.Array.newInstance()

NoClassDefFoundError
java.lang

Java 1.0

serializable error

Signals that the definition of a specified class cannot be found.

NoSuchFieldError
java.lang

Java 1.0

serializable error

Signals that a specified field cannot be found.

5.0 public static double sinh(double x);
public static double sqrt(double a);
public static double tan(double a);

5.0 public static double tanh(double x);
1.2 public static double toDegrees(double angrad);
1.2 public static double toRadians(double angdeg);
5.0 public static float ulp(float f);
5.0 public static double ulp(double d);
}

public class NegativeArraySizeException extends RuntimeException {
// Public Constructors

public NegativeArraySizeException();
public NegativeArraySizeException(String s);

}

public class NoClassDefFoundError extends LinkageError {
// Public Constructors

public NoClassDefFoundError();
public NoClassDefFoundError(String s);

}

public class NoSuchFieldError extends IncompatibleClassChangeError {
// Public Constructors

public NoSuchFieldError();
public NoSuchFieldError(String s);

}

Object Throwable Exception RuntimeException NegativeArraySizeException

Serializable

Object Throwable Error LinkageError NoClassDefFoundError

Serializable

Object Throwable Error LinkageError IncompatibleClassChangeError NoSuchFieldError

Serializable

478 | Chapter 10: java.lang and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.lang.NoSuchFieldException

NoSuchFieldException
java.lang

Java 1.1

serializable checked

This exception signals that the specified field does not exist in the specified class.

Thrown By Class.{getDeclaredField(), getField()}

NoSuchMethodError
java.lang

Java 1.0

serializable error

Signals that a specified method cannot be found.

NoSuchMethodException
java.lang

Java 1.0

serializable checked

Signals that the specified method does not exist in the specified class.

Thrown By Class.{getConstructor(), getDeclaredConstructor(), getDeclaredMethod(), getMethod()}

NullPointerException
java.lang

Java 1.0

serializable unchecked

Signals an attempt to access a field or invoke a method of a null object.

public class NoSuchFieldException extends Exception {
// Public Constructors

public NoSuchFieldException();
public NoSuchFieldException(String s);

}

public class NoSuchMethodError extends IncompatibleClassChangeError {
// Public Constructors

public NoSuchMethodError();
public NoSuchMethodError(String s);

}

public class NoSuchMethodException extends Exception {
// Public Constructors

public NoSuchMethodException();
public NoSuchMethodException(String s);

}

Object Throwable Exception NoSuchFieldException

Serializable

Object Throwable Error LinkageError IncompatibleClassChangeError NoSuchMethodError

Serializable

Object Throwable Exception NoSuchMethodException

Serializable

Object Throwable Exception RuntimeException NullPointerException

Serializable

Chapter 10: java.lang and Subpackages | 479

java.lang.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.lang.Object

Thrown By org.xml.sax.helpers.ParserFactory.makeParser()

Number
java.lang

Java 1.0

serializable

This is an abstract class that is the superclass of Byte, Short, Integer, Long, Float, and Double. It
defines the conversion functions those types implement.

Subclasses Byte, Double, Float, Integer, Long, Short, java.math.BigDecimal, java.math.BigInteger,
java.util.concurrent.atomic.AtomicInteger, java.util.concurrent.atomic.AtomicLong

Returned By java.text.ChoiceFormat.parse(), java.text.DecimalFormat.parse(),
java.text.NumberFormat.parse(), javax.xml.datatype.Duration.getField()

NumberFormatException
java.lang

Java 1.0

serializable unchecked

Signals an illegal number format.

Thrown By Too many methods to list.

Object
java.lang

Java 1.0

This is the root class in Java. All classes are subclasses of Object, and thus all objects can
invoke the public and protected methods of this class. For classes that implement the Clone-
able interface, clone() makes a byte-for-byte copy of an Object. getClass() returns the Class
object associated with any Object, and the notify(), notifyAll(), and wait() methods are used
for thread synchronization on a given Object.

public class NullPointerException extends RuntimeException {
// Public Constructors

public NullPointerException();
public NullPointerException(String s);

}

public abstract class Number implements Serializable {
// Public Constructors

public Number();
// Public Instance Methods
1.1 public byte byteValue();

public abstract double doubleValue();
public abstract float floatValue();
public abstract int intValue();
public abstract long longValue();

1.1 public short shortValue();
}

public class NumberFormatException extends IllegalArgumentException {
// Public Constructors

public NumberFormatException();
public NumberFormatException(String s);

}

Object Number Serializable

Object Throwable Exception RuntimeException IllegalArgumentException NumberFormatException

Serializable

480 | Chapter 10: java.lang and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.lang.OutOfMemoryError

A number of these Object methods should be overridden by subclasses of Object. For
example, a subclass should provide its own definition of the toString() method so that it
can be used with the string concatenation operator and with the PrintWriter.println()
methods. Defining the toString() method for all objects also helps with debugging.

The default implementation of the equals() method simply uses the = = operator to test
whether this object reference and the specified object reference refer to the same
object. Many subclasses override this method to compare the individual fields of two
distinct objects (i.e., they override the method to test for the equivalence of distinct
objects rather than the equality of object references). Some classes, particularly those
that override equals(), may also want to override the hashCode() method to provide an
appropriate hashcode to be used when storing instances in a Hashtable data structure.

A class that allocates system resources other than memory (such as file descriptors or
windowing system graphic contexts) should override the finalize() method to release these
resources when the object is no longer referred to and is about to be garbage-collected.

Subclasses Too many classes to list.

Passed To Too many methods to list.

Returned By Too many methods to list.

Type Of java.io.Reader.lock, java.io.Writer.lock, java.util.EventObject.source, java.util.Vector.elementData,
java.util.prefs.AbstractPreferences.lock

OutOfMemoryError
java.lang

Java 1.0

serializable error

Signals that the interpreter has run out of memory (and that garbage collection is
unable to free any memory).

public class Object {
// Public Constructors

public Object(); empty
// Public Instance Methods

public boolean equals(Object obj);
public final Class<? extends Object> getClass(); native
public int hashCode(); native
public final void notify(); native
public final void notifyAll(); native
public String toString();
public final void wait() throws InterruptedException;
public final void wait(long timeout) throws InterruptedException; native
public final void wait(long timeout, int nanos) throws InterruptedException;

// Protected Instance Methods
protected Object clone() throws CloneNotSupportedException; native
protected void finalize() throws Throwable; empty

}

public class OutOfMemoryError extends VirtualMachineError {
// Public Constructors

public OutOfMemoryError();
public OutOfMemoryError(String s);

}

Object Throwable Error VirtualMachineError OutOfMemoryError

Serializable

Chapter 10: java.lang and Subpackages | 481

java.lang.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.lang.Package

Override
java.lang

Java 5.0

@Target(METHOD) @Retention(SOURCE) annotation

An annotation of this type may be applied to methods and indicates that the
programmer intends for the method to override a method from a superclass. In effect,
it is an assertion for the compiler to verify. If a method annotated @Override does not, in
fact, override another method (perhaps because the method name was misspelled or
an argument was incorrectly typed), the compiler issues an error. This annotation type
has source retention.

Package
java.lang

Java 1.2

This class represents a Java package. You can obtain the Package object for a given Class
by calling the getPackage() method of the Class object. The static Package.getPackage() method
returns a Package object for the named package, if any such package has been loaded by
the current class loader. Similarly, the static Package.getPackages() returns all Package objects
that have been loaded by the current class loader. Note that a Package object is not
defined unless at least one class has been loaded from that package. Although you can
obtain the Package of a given Class, you cannot obtain an array of Class objects contained
in a specified Package.

If the classes that comprise a package are contained in a JAR file that has the appro-
priate attributes set in its manifest file, the Package object allows you to query the title,
vendor, and version of both the package specification and the package implementa-
tion; all six values are strings. The specification version string has a special format. It
consists of one or more integers, separated from each other by periods. Each integer
can have leading zeros, but is not considered an octal digit. Increasing numbers indi-
cate later versions. The isCompatibleWith() method calls getSpecificationVersion() to obtain the
specification version and compares it with the version string supplied as an argu-
ment. If the package-specification version is the same as or greater than the specified
string, isCompatibleWith() returns true. This allows you to test whether the version of a
package (typically a standard extension) is new enough for the purposes of your
application.

Packages may be sealed, which means that all classes in the package must come from
the same JAR file. If a package is sealed, the no-argument version of isSealed() returns
true. The one-argument version of isSealed() returns true if the specified URL represents
the JAR file from which the package is loaded.

public @interface Override {
}

public class Package implements java.lang.reflect.AnnotatedElement {
// No Constructor
// Public Class Methods

public static Package getPackage(String name);
public static Package[] getPackages();

// Public Instance Methods
public String getImplementationTitle();
public String getImplementationVendor();

Annotation Override

Object Package AnnotatedElement

482 | Chapter 10: java.lang and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.lang.Process

Returned By Class.getPackage(), ClassLoader.{definePackage(), getPackage(), getPackages()},
java.net.URLClassLoader.definePackage()

Process
java.lang

Java 1.0

This class describes a process that is running externally to the Java interpreter. Note
that a Process is very different from a Thread; the Process class is abstract and cannot be
instantiated. Call one of the Runtime.exec() methods to start a process and return a corre-
sponding Process object.

waitFor() blocks until the process exits. exitValue() returns the exit code of the process.
destroy() kills the process. getErrorStream() returns an InputStream from which you can read
any bytes the process sends to its standard error stream. getInputStream() returns an Input-
Stream from which you can read any bytes the process sends to its standard output
stream. getOutputStream() returns an OutputStream you can use to send bytes to the standard
input stream of the process.

Returned By ProcessBuilder.start(), Runtime.exec()

ProcessBuilder
java.lang

Java 5.0

This class launches operating system processes, producing Process objects. Specify the
operating system command when you invoke the ProcessBuilder() constructor or with the
command() method. Commands are specified with one or more strings, typically the file-

public String getImplementationVersion();
public String getName();
public String getSpecificationTitle();
public String getSpecificationVendor();
public String getSpecificationVersion();
public boolean isCompatibleWith(String desired) throws NumberFormatException;
public boolean isSealed();
public boolean isSealed(java.net.URL url);

// Methods Implementing AnnotatedElement
5.0 public <A extends java.lang.annotation.Annotation> A getAnnotation(Class<A> annotationClass);
5.0 public java.lang.annotation.Annotation[] getAnnotations();
5.0 public java.lang.annotation.Annotation[] getDeclaredAnnotations();
5.0 public boolean isAnnotationPresent(Class<? extends java.lang.annotation.Annotation> annotationClass);
// Public Methods Overriding Object

public int hashCode();
public String toString();

}

public abstract class Process {
// Public Constructors

public Process();
// Public Instance Methods

public abstract void destroy();
public abstract int exitValue();
public abstract java.io.InputStream getErrorStream();
public abstract java.io.InputStream getInputStream();
public abstract java.io.OutputStream getOutputStream();
public abstract int waitFor() throws InterruptedException;

}

Chapter 10: java.lang and Subpackages | 483

java.lang.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.lang.Readable

name of the executable to run followed by the command-line arguments for the
executable. Specify these strings in a List, a String[], or, most conveniently, using a vari-
able-length argument list of strings.

Before launching the command you have specified, you can configure the ProcessBuilder.
Query the current working directory with the no-argument version of directory() and set
it with the one-argument version of the method. Query the mapping of environment
variables to values with the environment() method. You can alter the mappings in the
returned Map to specify the environment you want the child process to run in. Pass true
to redirectErrorStream() if you would like both the standard output and the standard error
stream of the child process to be merged into a single stream that you can obtain with
Process.getInputStream(). If you do so, you do not have to arrange to read two separate
input streams to get the output of the process.

Once you have specified a command and configured your ProcessBuilder as desired, call
the start() method to launch the process. You then use methods of the returned Process to
provide input to the process, read output from the process, or wait for the process to
exit. start() may throw an IOException. This may occur, for example, if the executable file-
name you have specified does not exist. The command() and directory() methods do not
perform error checking on the values you provide them; these checks are performed by
the start() method, so it is also possible for start() to throw exceptions based on bad
input to the configuration methods.

Note that a ProcessBuilder can be reused: once you have established a working directory
and environment variables, you can change the command() and launch multiple
processes with repeated calls to start().

Readable
java.lang

Java 5.0

readable

Objects that implement this interface can serve as a source of characters and can transfer
one or more at a time to a java.nio.CharBuffer. Readable was added in Java 5.0 as a simple
unifying API for java.nio.CharBuffer and character input stream subclasses of java.io.Reader. The
java.util.Scanner class can parse input from any Readable object. See also Appendable.

public final class ProcessBuilder {
// Public Constructors

public ProcessBuilder(java.util.List<String> command);
public ProcessBuilder(String... command);

// Public Instance Methods
public java.util.List<String> command();
public ProcessBuilder command(String... command);
public ProcessBuilder command(java.util.List<String> command);
public java.io.File directory();
public ProcessBuilder directory(java.io.File directory);
public java.util.Map<String,String> environment();
public boolean redirectErrorStream();
public ProcessBuilder redirectErrorStream(boolean redirectErrorStream);
public Process start() throws java.io.IOException;

}

public interface Readable {
// Public Instance Methods

int read(java.nio.CharBuffer cb) throws java.io.IOException;
}

484 | Chapter 10: java.lang and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.lang.Runnable

Implementations java.io.Reader, java.nio.CharBuffer

Passed To java.util.Scanner.Scanner()

Runnable
java.lang

Java 1.0

runnable

This interface specifies the run() method that is required to use with the Thread class. Any
class that implements this interface can provide the body of a thread. See Thread for
more information.

Implementations Thread, java.util.TimerTask, java.util.concurrent.FutureTask

Passed To Too many methods to list.

Returned By javax.net.ssl.SSLEngine.getDelegatedTask()

Runtime
java.lang

Java 1.0

This class encapsulates a number of platform-dependent system functions. The static
method getRuntime() returns the Runtime object for the current platform; this object can
perform system functions in a platform-independent way.

exit() causes the Java interpreter to exit and return a specified return code. This method
is usually invoked through System.exit(). In Java 1.3, addShutdownHook() registers an
unstarted Thread object that is run when the virtual machine shuts down, either through
a call to exit() or through a user interrupt (a CTRL-C, for example). The purpose of a
shutdown hook is to perform necessary cleanup, such as shutting down network
connections, deleting temporary files, and so on. Any number of hooks can be regis-
tered with addShutdownHook(). Before the interpreter exits, it starts all registered
shutdown-hook threads and lets them run concurrently. Any hooks you write should
perform their cleanup operation and exit promptly so they do not delay the shutdown
process. To remove a shutdown hook before it is run, call removeShutdownHook(). To force
an immediate exit that does not invoke the shutdown hooks, call halt().

exec() starts a new process running externally to the interpreter. Note that any processes
run outside of Java may be system-dependent.

freeMemory() returns the approximate amount of free memory. totalMemory() returns the
total amount of memory available to the Java interpreter. gc() forces the garbage
collector to run synchronously, which may free up more memory. Similarly,
runFinalization() forces the finalize() methods of unreferenced objects to be run immedi-
ately. This may free up system resources those objects were holding.

load() loads a dynamic library with a fully specified pathname. loadLibrary() loads a
dynamic library with only the library name specified; it looks in platform-dependent
locations for the specified library. These libraries generally contain native code defini-
tions for native methods.

traceInstructions() and traceMethodCalls() enable and disable tracing by the interpreter. These
methods are used for debugging or profiling an application. It is not specified how the
VM emits the trace information, and VMs are not even required to support this feature.

public interface Runnable {
// Public Instance Methods

void run();
}

Chapter 10: java.lang and Subpackages | 485

java.lang.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.lang.RuntimeException

Note that some of the Runtime methods are more commonly called via the static
methods of the System class.

RuntimeException
java.lang

Java 1.0

serializable unchecked

This exception type is not used directly, but serves as a superclass of a group of run-
time exceptions that need not be declared in the throws clause of a method definition.
These exceptions need not be declared because they are runtime conditions that can
generally occur in any Java method. Thus, declaring them would be unduly burden-
some, and Java does not require it.

This class inherits methods from Throwable but declares none of its own. Each of the
RuntimeException constructors simply invokes the corresponding Exception() and Throwable()
constructor. See Throwable for details.

public class Runtime {
// No Constructor
// Public Class Methods

public static Runtime getRuntime();
// Public Instance Methods
1.3 public void addShutdownHook(Thread hook);
1.4 public int availableProcessors(); native

public Process exec(String[] cmdarray) throws java.io.IOException;
public Process exec(String command) throws java.io.IOException;
public Process exec(String command, String[] envp) throws java.io.IOException;
public Process exec(String[] cmdarray, String[] envp) throws java.io.IOException;

1.3 public Process exec(String[] cmdarray, String[] envp, java.io.File dir) throws java.io.IOException;
1.3 public Process exec(String command, String[] envp, java.io.File dir) throws java.io.IOException;

public void exit(int status);
public long freeMemory(); native
public void gc(); native

1.3 public void halt(int status);
public void load(String filename);
public void loadLibrary(String libname);

1.4 public long maxMemory(); native
1.3 public boolean removeShutdownHook(Thread hook);

public void runFinalization();
public long totalMemory(); native
public void traceInstructions(boolean on); native
public void traceMethodCalls(boolean on); native

// Deprecated Public Methods
public java.io.InputStream getLocalizedInputStream(java.io.InputStream in);
public java.io.OutputStream getLocalizedOutputStream(java.io.OutputStream out);
1.1# public static void runFinalizersOnExit(boolean value);
}

public class RuntimeException extends Exception {
// Public Constructors

public RuntimeException();
1.4 public RuntimeException(Throwable cause);

Object Throwable Exception RuntimeException

Serializable

486 | Chapter 10: java.lang and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.lang.RuntimePermission

Subclasses Too many classes to list.

RuntimePermission
java.lang

Java 1.2

serializable permission

This class is a java.security.Permission that represents access to various important system facil-
ities. A RuntimePermission has a name, or target, that represents the facility for which
permission is being sought or granted. The name “exitVM” represents permission to call
System.exit(), and the name “accessClassInPackage.java.lang” represents permission to
read classes from the java.lang package. The name of a RuntimePermission may use a “.*” suffix
as a wildcard. For example, the name “accessClassInPackage.java.*” represents permis-
sion to read classes from any package whose name begins with “java.”. RuntimePermission
does not use action list strings as some Permission classes do; the name of the permission
alone is enough.

The following are supported RuntimePermssion names:

System administrators configuring security policies should be familiar with these
permission names, the operations they govern access to, and with the risks inherent in
granting any of them. Although system programmers may need to work with this class,
application programmers should never need to use RuntimePermssion directly.

SecurityException
java.lang

Java 1.0

serializable unchecked

Signals that an operation is not permitted for security reasons.

public RuntimeException(String message);
1.4 public RuntimeException(String message, Throwable cause);
}

accessClassInPackage.package getProtectionDomain setFactory

accessDeclaredMembers loadLibrary.library_name setIO

createClassLoader modifyThread setSecurityManager

createSecurityManager modifyThreadGroup stopThread

defineClassInPackage.package queuePrintJob writeFileDescriptor

exitVM readFileDescriptor

getClassLoader set-ContextClassLoader

public final class RuntimePermission extends java.security.BasicPermission {
// Public Constructors

public RuntimePermission(String name);
public RuntimePermission(String name, String actions);

}

public class SecurityException extends RuntimeException {
// Public Constructors

public SecurityException();

Object Permission BasicPermission RuntimePermission

Guard Serializable Serializable

Object Throwable Exception RuntimeException SecurityException

Serializable

Chapter 10: java.lang and Subpackages | 487

java.lang.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.lang.SecurityManager

Subclasses java.security.AccessControlException

Thrown By Too many methods to list.

SecurityManager
java.lang

Java 1.0

This class defines the methods necessary to implement a security policy for the safe
execution of untrusted code. Before performing potentially sensitive operations, Java
calls methods of the SecurityManager object currently in effect to determine whether the
operations are permitted. These methods throw a SecurityException if the operation is not
permitted. Typical applications do not need to use or subclass SecurityManager. It is typi-
cally used only by web browsers, applet viewers, and other programs that need to run
untrusted code in a controlled environment.

Prior to Java 1.2, this class is abstract, and the default implementation of each check()
method throws a SecurityException unconditionally. The Java security mechanism has
been overhauled as of Java 1.2. As part of the overhaul, this class is no longer abstract
and its methods have useful default implementations, so there is rarely a need to
subclass it. checkPermission() operates by invoking the checkPermission() method of the system
java.security.AccessController object. In Java 1.2 and later, all other check() methods of Security-
Manager are now implemented on top of checkPermission().

5.0 public SecurityException(Throwable cause);
public SecurityException(String s);

5.0 public SecurityException(String message, Throwable cause);
}

public class SecurityManager {
// Public Constructors

public SecurityManager();
// Public Instance Methods

public void checkAccept(String host, int port);
public void checkAccess(ThreadGroup g);
public void checkAccess(Thread t);

1.1 public void checkAwtEventQueueAccess();
public void checkConnect(String host, int port);
public void checkConnect(String host, int port, Object context);
public void checkCreateClassLoader();
public void checkDelete(String file);
public void checkExec(String cmd);
public void checkExit(int status);
public void checkLink(String lib);
public void checkListen(int port);

1.1 public void checkMemberAccess(Class<?> clazz, int which);
1.1 public void checkMulticast(java.net.InetAddress maddr);

public void checkPackageAccess(String pkg);
public void checkPackageDefinition(String pkg);

1.2 public void checkPermission(java.security.Permission perm);
1.2 public void checkPermission(java.security.Permission perm, Object context);
1.1 public void checkPrintJobAccess();

public void checkPropertiesAccess();
public void checkPropertyAccess(String key);
public void checkRead(String file);
public void checkRead(java.io.FileDescriptor fd);

488 | Chapter 10: java.lang and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.lang.Short

Passed To System.setSecurityManager()

Returned By System.getSecurityManager()

Short
java.lang

Java 1.1

serializable comparable

This class provides an immutable object wrapper around the short primitive type. It
defines useful constants for the minimum and maximum values that can be stored by the
short type, and also a Class object constant that represents the short type. It also provides
various methods for converting Short values to and from strings and other numeric types.

Most of the static methods of this class can convert a String to a Short object or a short
value; the four parseShort() and valueOf() methods parse a number from the specified string
using an optionally specified radix and return it in one of these two forms. The decode()
method parses a number specified in base 10, base 8, or base 16 and returns it as a
Short. If the string begins with “0x” or “#”, it is interpreted as a hexadecimal number; if
it begins with “0”, it is interpreted as an octal number. Otherwise, it is interpreted as a
decimal number.

Note that this class has two different toString() methods. One is static and converts a
short primitive value to a string. The other is the usual toString() method that converts a
Short object to a string. Most of the remaining methods convert a Short to various primi-
tive numeric types.

public void checkRead(String file, Object context);
1.1 public void checkSecurityAccess(String target);

public void checkSetFactory();
1.1 public void checkSystemClipboardAccess();

public boolean checkTopLevelWindow(Object window);
public void checkWrite(java.io.FileDescriptor fd);
public void checkWrite(String file);
public Object getSecurityContext(); default:AccessControlContext

1.1 public ThreadGroup getThreadGroup();
// Protected Instance Methods

protected Class[] getClassContext(); native
// Deprecated Public Methods
1.1#public void checkMulticast(java.net.InetAddress maddr, byte ttl);
public boolean getInCheck(); default:false
// Deprecated Protected Methods
protected int classDepth(String name); native
protected int classLoaderDepth();
protected ClassLoader currentClassLoader();
1.1# protected Class<?> currentLoadedClass();
protected boolean inClass(String name);
protected boolean inClassLoader();
// Deprecated Protected Fields
protected boolean inCheck;
}

public final class Short extends Number implements Comparable<Short> {
// Public Constructors

Object Number Short

Serializable Comparable

Chapter 10: java.lang and Subpackages | 489

java.lang.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.lang.StackTraceElement

StackOverflowError
java.lang

Java 1.0

serializable error

Signals that a stack overflow has occurred within the Java interpreter.

StackTraceElement
java.lang

Java 1.4

serializable

Instances of this class are returned in an array by Throwable.getStackTrace(). Each instance
represents one frame in the stack trace associated with an exception or error.
getClassName() and getMethodName() return the name of the class (including package name)
and method that contain the point of execution that the stack frame represents. If the
class file contains sufficient information, getFileName() and getLineNumber() return the

public Short(short value);
public Short(String s) throws NumberFormatException;

// Public Constants
public static final short MAX_VALUE; =32767
public static final short MIN_VALUE; =-32768

5.0 public static final int SIZE; =16
public static final Class<Short> TYPE;

// Public Class Methods
public static Short decode(String nm) throws NumberFormatException;
public static short parseShort(String s) throws NumberFormatException;
public static short parseShort(String s, int radix) throws NumberFormatException;

5.0 public static short reverseBytes(short i);
public static String toString(short s);
public static Short valueOf(String s) throws NumberFormatException;

5.0 public static Short valueOf(short s);
public static Short valueOf(String s, int radix) throws NumberFormatException;

// Methods Implementing Comparable
1.2 public int compareTo(Short anotherShort);
// Public Methods Overriding Number

public byte byteValue();
public double doubleValue();
public float floatValue();
public int intValue();
public long longValue();
public short shortValue();

// Public Methods Overriding Object
public boolean equals(Object obj);
public int hashCode();
public String toString();

}

public class StackOverflowError extends VirtualMachineError {
// Public Constructors

public StackOverflowError();
public StackOverflowError(String s);

}

Object Throwable Error VirtualMachineError StackOverflowError

Serializable

490 | Chapter 10: java.lang and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.lang.StrictMath

source file and line number associated with the frame. getFileName() returns null and
getLineNumber() returns a negative value if source or line number information is not avail-
able. isNativeMethod() returns true if the named method is a native method (and therefore
does not have a meaningful source file or line number).

Passed To Throwable.setStackTrace()

Returned By Thread.getStackTrace(), Throwable.getStackTrace(),
java.lang.management.ThreadInfo.getStackTrace()

StrictMath
java.lang

Java 1.3

This class is identical to the Math class, but additionally requires that its methods
strictly adhere to the behavior of certain published algorithms. The methods of Strict-
Math are intended to operate identically on all platforms, and must produce exactly the
same result (down to the very least significant bit) as certain well-known standard
algorithms. When strict platform-independence of floating-point results is not
required, use the Math class for better performance.

public final class StackTraceElement implements Serializable {
// Public Constructors
5.0 public StackTraceElement(String declaringClass, String methodName, String fileName, int lineNumber);
// Public Instance Methods

public String getClassName();
public String getFileName();
public int getLineNumber();
public String getMethodName();
public boolean isNativeMethod();

// Public Methods Overriding Object
public boolean equals(Object obj);
public int hashCode();
public String toString();

}

public final class StrictMath {
// No Constructor
// Public Constants

public static final double E; =2.718281828459045
public static final double PI; =3.141592653589793

// Public Class Methods
public static int abs(int a);
public static long abs(long a);
public static float abs(float a);
public static double abs(double a);
public static double acos(double a); native
public static double asin(double a); native
public static double atan(double a); native
public static double atan2(double y, double x); native

5.0 public static double cbrt(double a); native
public static double ceil(double a); native
public static double cos(double a); native

5.0 public static double cosh(double x); native

Object StackTraceElement Serializable

Chapter 10: java.lang and Subpackages | 491

java.lang.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.lang.String

String
java.lang

Java 1.0

serializable comparable

The String class represents a read-only string of characters. A String object is created by
the Java compiler whenever it encounters a string in double quotes; this method of
creation is typically simpler than using a constructor. The static valueOf() factory
methods create new String objects that hold the textual representation of various Java
primitive types. There are also valueOf() methods, copyValueOf() methods and String()
constructors for creating a String object that holds a copy of the text contained in
another String, StringBuffer, StringBuilder, or a char or int array. You can also use the String()
constructor to create a String object from an array of bytes. If you do this, you may
explicitly specify the name of the charset (or character encoding) to be used to decode
the bytes into characters, or you can rely on the default charset for your platform. (See
java.nio.charset.Charset for more on charset names.)

In Java 5.0, the static format() methods provide another useful way to create String objects
that hold formatted text. These utility methods create and use a new java.util.Formatter
object and behave like the sprintf() function in the C programming language.

length() returns the number of characters in a string. charAt() extracts a character from a
string. You can use these two methods to iterate through the characters of a string.

public static double exp(double a); native
5.0 public static double expm1(double x); native

public static double floor(double a); native
5.0 public static double hypot(double x, double y); native

public static double IEEEremainder(double f1, double f2); native
public static double log(double a); native

5.0 public static double log10(double a); native
5.0 public static double log1p(double x); native

public static int max(int a, int b);
public static long max(long a, long b);
public static float max(float a, float b);
public static double max(double a, double b);
public static int min(int a, int b);
public static long min(long a, long b);
public static float min(float a, float b);
public static double min(double a, double b);
public static double pow(double a, double b); native
public static double random();
public static double rint(double a);
public static int round(float a);
public static long round(double a);

5.0 public static float signum(float f);
5.0 public static double signum(double d);

public static double sin(double a); native
5.0 public static double sinh(double x); native

public static double sqrt(double a); native
public static double tan(double a); native

5.0 public static double tanh(double x); native
public static double toDegrees(double angrad); strictfp
public static double toRadians(double angdeg); strictfp

5.0 public static float ulp(float f);
5.0 public static double ulp(double d);
}

492 | Chapter 10: java.lang and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.lang.String

You can obtain a char array that holds the characters of a string with toCharArray(), or use
getChars() to copy just a selected region of the string into an existing array. Use getBytes()
if you want to obtain an array of bytes that contains the encoded form of the charac-
ters in a string, using either the platform’s default encoding or a named encoding.

This class defines many methods for comparing strings and substrings. equals() returns
true if two String objects contain the same text, and equalsIgnoreCase() returns true if two
strings are equal when uppercase and lowercase differences are ignored. As of Java 1.4,
the contentEquals() method compares a string to a specified StringBuffer object, returning true
if they contain the same text. startsWith() and endsWith() return true if a string starts with
the specified prefix string or ends with the specified suffix string. A two-argument
version of startsWith() allows you to specify a position within this string at which the
prefix comparison is to be done. The regionMatches() method is a generalized version of
this startsWith() method. It returns true if the specified region of the specified string
matches the characters that begin at a specified position within this string. The five-
argument version of this method allows you to perform this comparison ignoring the
case of the characters being compared. The final string comparison method is matches(),
which, as described below, compares a string to a regular expression pattern.

compareTo() is another string comparison method, but it is used for comparing the order
of two strings, rather than simply comparing them for equality. compareTo() implements
the Comparable interface and enables sorting of lists and arrays of String objects. See Compa-
rable for more information. compareToIgnoreCase() is like compareTo() but ignores the case of
the two strings when doing the comparison. The CASE_INSENSITIVE_ORDER constant is a
Comparator for sorting strings in a way that ignores the case of their characters. (The
java.util.Comparator interface is similar to the Comparable interface but allows the definition of
object orderings that are different from the default ordering defined by Comparable.) The
compareTo() and compareToIgnoreCase() methods and the CASE_INSENSITIVE_ORDER Comparator object
order strings based only on the numeric ordering of the Unicode encoding of their
characters. This is not always the preferred “alphabetical ordering” in some languages.
See java.text.Collator for a more general technique for collating strings.

indexOf() and lastIndexOf() search forward and backward in a string for a specified char-
acter or substring. They return the position of the match, or -1 if there is no match.
The one argument versions of these methods start at the beginning or end of the string,
and the two-argument versions start searching from a specified character position.

Java 5.0 adds new comparison methods that work with any CharSequence. A new version
of contentEquals() enables the comparison of a string with any CharSequence, including String-
Builder objects. The contains() method returns true if the string contains any sequence of
characters equal to the specified CharSequence.

substring() returns a string that consists of the characters from (and including) the speci-
fied start position to (but not including) the specified end position. A one-argument
version returns all characters from (and including) the specified start position to the
end of the string. As of Java 1.4, the String class implements the CharSequence interface and
defines the subSequence() method, which works just like the two-argument version of
substring() but returns the specified characters as a CharSequence rather than as a String.

Several methods return new strings that contain modified versions of the text held by
the original string (the original string remains unchanged). replace() creates a new string
with all occurrences of one character replaced by another. Java 5.0 adds a generalized
version of replace() that replaces all occurrences of one CharSequence with another. More
general methods, replaceAll() and replaceFirst(), use regular expression pattern matching;
they are described later in this section. toUpperCase() and toLowerCase() return a new string
in which all characters are converted to upper- or lowercase respectively. These case-

Chapter 10: java.lang and Subpackages | 493

java.lang.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.lang.String

conversion methods take an optional Locale argument to perform locale-specific case
conversion. trim() is a utility method that returns a new string in which all leading and
trailing whitespace has been removed. concat() returns the new string formed by concat-
enating or appending the specified string to this string. String concatenation is more
commonly done, however, with the + operator.

Note that String objects are immutable; there is no setCharAt() method to change the
contents. The methods that return a String do not modify the string they are invoked on
but instead return a new String object that holds a modified copy of the text of the orig-
inal. Use a StringBuffer if you want to manipulate the contents of a string or call
toCharArray() or getChars() to convert a string to an array of char values.

Java 1.4 introduced support for pattern matching with regular expressions. matches()
returns true if this string exactly matches the pattern specified by the regular expres-
sion argument. replaceAll() and replaceFirst() create a new string in which all occurrences or
the first occurrence of a substring that matches the specified regular expression is
replaced with the specified replacement string. The split() methods return an array of
substrings of this string, formed by splitting this string at positions that match the
specified regular expression. These regular expression methods are all convenience
methods that simply call methods of the same name in the java.util.regex package. See the
Pattern and Matcher classes in that package for further details.

Many programs use strings as commonly as they use Java primitive values. Because the
String type is an object rather than a primitive value, however, you cannot in general use
the = = operator to compare two strings for equality. Instead, even though strings are
immutable, you must use the more expensive equals() method. For programs that
perform a lot of string comparison, the intern() provides a way to speed up those
comparisons. The String class maintains a set of String objects that includes all double-
quoted string literals and all compile-time constant strings defined in a Java program.
The set is guaranteed not to contain duplicates, and the set is used to ensure that
duplicate String objects are not created unnecessarily. The intern() method looks up a
string in or adds a new string to this set of unique strings. It searches the set for a
string that contains exactly the same characters as the string you invoked the method
on. If such a string is found, intern() returns it. If no matching string is found, the string
you invoked intern() on is itself stored in the set (”interned”) and becomes the return
value of the method. What this means is that you can safely compare any strings
returned by the intern() method using the = = and != operators instead of equals(). You
can also successfully compare any string returned by intern() to any string constant with
= = and !=.

In Java 5.0, Unicode supplementary characters may be represented as a single int code-
point value or as a sequence of two char values known as a “surrogate pair.” See Character
for more on supplementary characters and methods for working with them. String
methods for working with supplementary characters, such as codePointAt(),
codePointCount(), and offsetByCodePoints(), are similar to those defined by Character.

public final class String implements Serializable, Comparable<String>, CharSequence {
// Public Constructors

public String();
5.0 public String(StringBuilder builder);

public String(StringBuffer buffer);

Object String

CharSequence Comparable Serializable

494 | Chapter 10: java.lang and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.lang.String

public String(char[] value);
public String(String original);

1.1 public String(byte[] bytes);
1.1 public String(byte[] bytes, String charsetName) throws java.io.UnsupportedEncodingException;
public String(byte[] ascii, int hibyte);

public String(char[] value, int offset, int count);
1.1 public String(byte[] bytes, int offset, int length);
5.0 public String(int[] codePoints, int offset, int count);
public String(byte[] ascii, int hibyte, int offset, int count);
1.1 public String(byte[] bytes, int offset, int length, String charsetName) throws java.io.UnsupportedEncodingException;
// Public Constants
1.2 public static final java.util.Comparator<String> CASE_INSENSITIVE_ORDER;
// Public Class Methods

public static String copyValueOf(char[] data);
public static String copyValueOf(char[] data, int offset, int count);

5.0 public static String format(String format, Object... args);
5.0 public static String format(java.util.Locale l, String format, Object... args);

public static String valueOf(float f);
public static String valueOf(long l);
public static String valueOf(Object obj);
public static String valueOf(double d);
public static String valueOf(boolean b);
public static String valueOf(char[] data);
public static String valueOf(int i);
public static String valueOf(char c);
public static String valueOf(char[] data, int offset, int count);

// Public Instance Methods
public char charAt(int index); Implements:CharSequence

5.0 public int codePointAt(int index);
5.0 public int codePointBefore(int index);
5.0 public int codePointCount(int beginIndex, int endIndex);

public int compareTo(String anotherString); Implements:Comparable
1.2 public int compareToIgnoreCase(String str);

public String concat(String str);
5.0 public boolean contains(CharSequence s);
1.4 public boolean contentEquals(StringBuffer sb);
5.0 public boolean contentEquals(CharSequence cs);

public boolean endsWith(String suffix);
public boolean equalsIgnoreCase(String anotherString);

1.1 public byte[] getBytes();
1.1 public byte[] getBytes(String charsetName) throws java.io.UnsupportedEncodingException;

public void getChars(int srcBegin, int srcEnd, char[] dst, int dstBegin);
public int indexOf(int ch);
public int indexOf(String str);
public int indexOf(int ch, int fromIndex);
public int indexOf(String str, int fromIndex);
public String intern(); native
public int lastIndexOf(String str);
public int lastIndexOf(int ch);
public int lastIndexOf(String str, int fromIndex);
public int lastIndexOf(int ch, int fromIndex);
public int length(); Implements:CharSequence

1.4 public boolean matches(String regex);

Chapter 10: java.lang and Subpackages | 495

java.lang.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.lang.StringBuffer

Passed To Too many methods to list.

Returned By Too many methods to list.

Type Of Too many fields to list.

StringBuffer
java.lang

Java 1.0

serializable appendable

This class represents a mutable string of characters that can grow or shrink as necessary.
Its mutability makes it suitable for processing text in place, which is not possible with
the immutable String class. Its resizability and the various methods it implements make it
easier to use than a char[]. Create a StringBuffer with the StringBuffer() constructor. You may
pass a String that contains the initial text for the buffer to this constructor, but if you do
not, the buffer will start out empty. You may also specify the initial capacity for the
buffer if you can estimate the number of characters the buffer will eventually hold.

The methods of this class are synchronized, which makes StringBuffer objects suitable for use
by multiple threads. In Java 5.0 and later, when working with a single thread, StringBuilder
is preferred over this class because it does not have the overhead of synchronized
methods. StringBuilder implements the same methods as StringBuffer and can be used in the
same way.

5.0 public int offsetByCodePoints(int index, int codePointOffset);
public boolean regionMatches(int toffset, String other, int ooffset, int len);
public boolean regionMatches(boolean ignoreCase, int toffset, String other, int ooffset, int len);
public String replace(char oldChar, char newChar);

5.0 public String replace(CharSequence target, CharSequence replacement);
1.4 public String replaceAll(String regex, String replacement);
1.4 public String replaceFirst(String regex, String replacement);
1.4 public String[] split(String regex);
1.4 public String[] split(String regex, int limit);

public boolean startsWith(String prefix);
public boolean startsWith(String prefix, int toffset);
public String substring(int beginIndex);
public String substring(int beginIndex, int endIndex);
public char[] toCharArray();
public String toLowerCase();

1.1 public String toLowerCase(java.util.Locale locale);
public String toString(); Implements:CharSequence
public String toUpperCase();

1.1 public String toUpperCase(java.util.Locale locale);
public String trim();

// Methods Implementing CharSequence
public char charAt(int index);
public int length();

1.4 public CharSequence subSequence(int beginIndex, int endIndex);
public String toString();

// Methods Implementing Comparable
public int compareTo(String anotherString);

// Public Methods Overriding Object
public boolean equals(Object anObject);
public int hashCode();

// Deprecated Public Methods
public void getBytes(int srcBegin, int srcEnd, byte[] dst, int dstBegin);
}

496 | Chapter 10: java.lang and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.lang.StringBuffer

Query the character stored at a given index with charAt() and set or delete that char-
acter with setCharAt() or deleteCharAt(). Use length() to return the length of the buffer, and
use setLength() to set the length of the buffer, truncating it or filling it with null charac-
ters (’\u0000’) as necessary. capacity() returns the number of characters a StringBuffer can
hold before its internal buffer needs to be reallocated. If you expect a StringBuffer to grow
substantially and can approximate its eventual size, you can use ensureCapacity() to preal-
locate sufficient internal storage.

Use the various append() methods to append text to the end of the buffer. Use insert() to
insert text at a specified position within the buffer. Note that in addition to strings,
primitive values, character arrays, and arbitrary objects may be passed to append() and
insert(). These values are converted to strings before they are appended or inserted. Use
delete() to delete a range of characters from the buffer and use replace() to replace a range
of characters with a specified String.

Use substring() to convert a portion of a StringBuffer to a String. The two versions of this
method work just like the same-named methods of String. Call toString() to obtain the
contents of a StringBuffer as a String object. Or use getChars() to extract the specified range
of characters from the StringBuffer and store them into the specified character array
starting at the specified index of that array.

As of Java 1.4, StringBuffer implements CharSequence and so also defines a subSequence()
method that is like substring() but returns its value as a CharSequence. Java 1.4 also added
indexOf() and lastIndexOf() methods that search forward or backward (from the optionally
specified index) in a StringBuffer for a sequence of characters that matches the specified
String. These methods return the index of the matching string or -1 if no match was found.
See also the similarly named methods of String after which these methods are modeled.

In Java 5.0, this class has a new constructor and new methods for working with Char-
Sequence objects. It implements the Appendable interface for use with java.util.Formatter and
includes new methods for working with 21-bit Unicode characters as int codepoints.

String concatenation in Java is performed with the + operator and is implemented,
prior to Java 5.0, using the append() method of a StringBuffer. In Java 5.0 and later, String-
Builder is used instead. After a string is processed in a StringBuffer object, it can be
efficiently converted to a String object for subsequent use. The StringBuffer.toString() method
is typically implemented so that it does not copy the internal array of characters.
Instead, it shares that array with the new String object, making a new copy for itself only
if and when further modifications are made to the StringBuffer object.

public final class StringBuffer extends AbstractStringBuilder implements CharSequence, Serializable {
// Public Constructors

public StringBuffer();
public StringBuffer(String str);
public StringBuffer(int capacity);

5.0 public StringBuffer(CharSequence seq);
// Public Instance Methods

public StringBuffer append(String str); synchronized
1.4 public StringBuffer append(StringBuffer sb); synchronized
5.0 public StringBuffer append(CharSequence s);

public StringBuffer append(Object obj); synchronized
public StringBuffer append(char[] str); synchronized

Object AbstractStringBuilder StringBuffer

Appendable CharSequence CharSequence Serializable

Chapter 10: java.lang and Subpackages | 497

java.lang.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.lang.StringBuffer

Passed To Too many methods to list.

Returned By Too many methods to list.

public StringBuffer append(long lng); synchronized
public StringBuffer append(float f); synchronized
public StringBuffer append(double d); synchronized
public StringBuffer append(boolean b); synchronized
public StringBuffer append(char c); synchronized
public StringBuffer append(int i); synchronized
public StringBuffer append(char[] str, int offset, int len); synchronized

5.0 public StringBuffer append(CharSequence s, int start, int end); synchronized
5.0 public StringBuffer appendCodePoint(int codePoint); synchronized

public char charAt(int index); Implements:CharSequence synchronized
1.2 public StringBuffer delete(int start, int end); synchronized
1.2 public StringBuffer deleteCharAt(int index); synchronized

public StringBuffer insert(int offset, char c); synchronized
public StringBuffer insert(int offset, boolean b);
public StringBuffer insert(int offset, long l);
public StringBuffer insert(int offset, int i);
public StringBuffer insert(int offset, String str); synchronized
public StringBuffer insert(int offset, Object obj); synchronized

5.0 public StringBuffer insert(int dstOffset, CharSequence s);
public StringBuffer insert(int offset, char[] str); synchronized
public StringBuffer insert(int offset, double d);
public StringBuffer insert(int offset, float f);

1.2 public StringBuffer insert(int index, char[] str, int offset, int len); synchronized
5.0 public StringBuffer insert(int dstOffset, CharSequence s, int start, int end); synchronized

public int length(); Implements:CharSequence synchronized
1.2 public StringBuffer replace(int start, int end, String str); synchronized

public StringBuffer reverse(); synchronized
public String toString(); Implements:CharSequence synchronized

// Methods Implementing CharSequence
public char charAt(int index); synchronized
public int length(); synchronized

1.4 public CharSequence subSequence(int start, int end); synchronized
public String toString(); synchronized

// Public Methods Overriding AbstractStringBuilder
public int capacity(); synchronized

5.0 public int codePointAt(int index); synchronized
5.0 public int codePointBefore(int index); synchronized
5.0 public int codePointCount(int beginIndex, int endIndex); synchronized

public void ensureCapacity(int minimumCapacity); synchronized
public void getChars(int srcBegin, int srcEnd, char[] dst, int dstBegin); synchronized

1.4 public int indexOf(String str);
1.4 public int indexOf(String str, int fromIndex); synchronized
1.4 public int lastIndexOf(String str);
1.4 public int lastIndexOf(String str, int fromIndex); synchronized
5.0 public int offsetByCodePoints(int index, int codePointOffset); synchronized

public void setCharAt(int index, char ch); synchronized
public void setLength(int newLength); synchronized

1.2 public String substring(int start); synchronized
1.2 public String substring(int start, int end); synchronized
5.0 public void trimToSize(); synchronized
}

498 | Chapter 10: java.lang and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.lang.StringBuilder

StringBuilder
java.lang

Java 5.0

serializable appendable

This class defines the same methods as StringBuffer but does not declare those methods
synchronized, which can result in better performance in the common case in which only a
single thread is using the object. StringBuilder is a drop-in replacement for StringBuffer and
should be used in preference to StringBuffer except where thread safety is required. See
StringBuffer for an overview of the methods shared by these two classes.

public final class StringBuilder extends AbstractStringBuilder implements CharSequence, Serializable {
// Public Constructors

public StringBuilder();
public StringBuilder(int capacity);
public StringBuilder(String str);
public StringBuilder(CharSequence seq);

// Public Instance Methods
public StringBuilder append(long lng);
public StringBuilder append(float f);
public StringBuilder append(double d);
public StringBuilder append(int i);
public StringBuilder append(String str);
public StringBuilder append(StringBuffer sb);
public StringBuilder append(CharSequence s);
public StringBuilder append(Object obj);
public StringBuilder append(char c);
public StringBuilder append(boolean b);
public StringBuilder append(char[] str);
public StringBuilder append(CharSequence s, int start, int end);
public StringBuilder append(char[] str, int offset, int len);
public StringBuilder appendCodePoint(int codePoint);
public StringBuilder delete(int start, int end);
public StringBuilder deleteCharAt(int index);
public StringBuilder insert(int offset, boolean b);
public StringBuilder insert(int offset, char c);
public StringBuilder insert(int offset, int i);
public StringBuilder insert(int dstOffset, CharSequence s);
public StringBuilder insert(int offset, Object obj);
public StringBuilder insert(int offset, String str);
public StringBuilder insert(int offset, char[] str);
public StringBuilder insert(int offset, double d);
public StringBuilder insert(int offset, long l);
public StringBuilder insert(int offset, float f);
public StringBuilder insert(int index, char[] str, int offset, int len);
public StringBuilder insert(int dstOffset, CharSequence s, int start, int end);
public StringBuilder replace(int start, int end, String str);
public StringBuilder reverse();

// Methods Implementing CharSequence
public String toString();

// Public Methods Overriding AbstractStringBuilder
public int indexOf(String str);

Object AbstractStringBuilder StringBuilder

Appendable CharSequence CharSequence Serializable

Chapter 10: java.lang and Subpackages | 499

java.lang.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.lang.System

Passed To String.String()

StringIndexOutOfBoundsException
java.lang

Java 1.0

serializable unchecked

Signals that the index used to access a character of a String or StringBuffer is less than zero
or is too large.

SuppressWarnings
java.lang

Java 5.0

@Target({TYPE, FIELD, METHOD, PARAMETER, CONSTRUCTOR, LOCAL_VARIABLE})
@Retention(SOURCE) annotation

An annotation of this type tells the Java compiler not to generate specified kinds of
warning messages for code within the annotated program element. Annotations of this
type have source retention and may be applied to any program element except pack-
ages and other annotation types. An @SuppressWarnings annotation has an array of String
objects as its value. These strings specify the names of the warnings to be suppressed.
The available warnings (and their names) depend on the compiler implementation,
and compilers will ignore warning names they do not support. Compiler vendors are
expected to cooperate in defining at least a core set of common warning names. In
Java 5.0, the @SuppressWarnings warning names supported by the javac compiler are the
same as the warning flags that can be specfied with the -Xlint compiler flag.

System
java.lang

Java 1.0

This class defines a platform-independent interface to system facilities, including
system properties and system input and output streams. All methods and variables of
this class are static, and the class cannot be instantiated. Because the methods defined
by this class are low-level system methods, most require special permissions and
cannot be executed by untrusted code.

public int indexOf(String str, int fromIndex);
public int lastIndexOf(String str);
public int lastIndexOf(String str, int fromIndex);

}

public class StringIndexOutOfBoundsException extends IndexOutOfBoundsException {
// Public Constructors

public StringIndexOutOfBoundsException();
public StringIndexOutOfBoundsException(int index);
public StringIndexOutOfBoundsException(String s);

}

public @interface SuppressWarnings {
// Public Instance Methods

String[] value();
}

Object Throwable Exception RuntimeException IndexOutOfBoundsException StringIndexOutOfBoundsException

Serializable

Annotation SuppressWarnings

500 | Chapter 10: java.lang and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.lang.System

getProperty() looks up a named property on the system properties list, returning the
optionally specified default value if no property definition is found. getProperties() returns
the entire properties list. setProperties() sets a Properties object on the properties list. In Java
1.2 and later, setProperty() sets the value of a system property. In Java 5.0, you can clear a
property setting with clearProperty(). The following table lists system properties that are
always defined. Untrusted code may be unable to read some or all of these properties.
Additional properties can be defined using the -D option when invoking the Java
interpreter.

The in, out, and err fields hold the standard input, output, and error streams for the
system. These fields are frequently used in calls such as System.out.println(). In Java 1.1,
setIn(), setOut(), and setErr() allow these streams to be redirected.

System also defines various other useful static methods. exit() causes the Java VM to exit.
arraycopy() efficiently copies an array or a portion of an array into a destination array.
currentTimeMillis() returns the current time in milliseconds since midnight GMT, January 1,
1970 GMT. In Java 5.0, nanoTime() returns a time in nanoseconds. Unlike currentTimeMillis()

Property name Description

file.separator Platform directory separator character

path.separator Platform path separator character

line.separator Platform line separator character(s)

user.name Current user s account name

user.home Home directory of current user

user.dir The current working directory

java.class.path Where classes are loaded from

java.class.version Version of the Java class file format

java.compiler The name of the just-in-time compiler

java.ext.dirs Path to directories that hold extensions

java.home The directory Java is installed in

java.io.tmpdir The directory that temporary files are written to

java.library.path Directories to search for native libraries

java.specification.version Version of the Java API specification

java.specification.vendor Vendor of the Java API specification

java.specification.name Name of the Java API specification

java.version Version of the Java API implementation

java.vendor Vendor of this Java API implementation

java.vendor.url URL of the vendor of this Java API implementation

java.vm.specification.version Version of the Java VM specification

java.vm.specification.vendor Vendor of the Java VM specification

java.vm.specification.name Name of the Java VM specification

java.vm.version Version of the Java VM implementation

java.vm.vendor Vendor of the Java VM implementation

java.vm.name Name of the Java VM implementation

os.name Name of the host operating system

os.arch Host operating system architecture

os.version Version of the host operating system

Chapter 10: java.lang and Subpackages | 501

java.lang.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.lang.System

this time is not relative to any fixed point and so is useful only for elapsed time
computations.

getenv() returns the value of a platform-dependent environment variable, or (in Java 5.0)
returns a Map of all environment variables. The one-argument version of getenv() was
previously deprecated but has been restored in Java 5.0.

identityHashCode() computes the hashcode for an object in the same way that the default
Object.hashCode() method does. It does this regardless of whether or how the hashCode()
method has been overridden.

In Java 5.0, inheritedChannel() returns a java.nio.channels.Channel object that represents a
network connection passed to the Java process by the invoking process. This allows
Java programs to be used with the Unix inetd daemon, for example.

load() and loadLibrary() can read libraries of native code into the system. mapLibraryName()
converts a system-independent library name into a system-dependent library filename.
Finally, getSecurityManager() and setSecurityManager() get and set the system SecurityManager
object responsible for the system security policy.

See also Runtime, which defines several other methods that provide low-level access to
system facilities.

public final class System {
// No Constructor
// Public Constants

public static final java.io.PrintStream err;
public static final java.io.InputStream in;
public static final java.io.PrintStream out;

// Public Class Methods
public static void arraycopy(Object src, int srcPos, Object dest, int destPos, int length); native

5.0 public static String clearProperty(String key);
public static long currentTimeMillis(); native
public static void exit(int status);
public static void gc();

5.0 public static java.util.Map<String,String> getenv();
public static String getenv(String name);
public static java.util.Properties getProperties();
public static String getProperty(String key);
public static String getProperty(String key, String def);
public static SecurityManager getSecurityManager();

1.1 public static int identityHashCode(Object x); native
5.0 public static java.nio.channels.Channel inheritedChannel() throws java.io.IOException;

public static void load(String filename);
public static void loadLibrary(String libname);

1.2 public static String mapLibraryName(String libname); native
5.0 public static long nanoTime(); native

public static void runFinalization();
1.1 public static void setErr(java.io.PrintStream err);
1.1 public static void setIn(java.io.InputStream in);
1.1 public static void setOut(java.io.PrintStream out);

public static void setProperties(java.util.Properties props);
1.2 public static String setProperty(String key, String value);

public static void setSecurityManager(SecurityManager s);
// Deprecated Public Methods
1.1#public static void runFinalizersOnExit(boolean value);
}

502 | Chapter 10: java.lang and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.lang.Thread

Thread
java.lang

Java 1.0

runnable

This class encapsulates all information about a single thread of control running on the
Java interpreter. To create a thread, you must either pass a Runnable object (i.e., an
object that implements the Runnable interface by defining a run() method) to the Thread
constructor or subclass Thread so that it defines its own run() method. The run() method
of the Thread or of the specified Runnable object is the body of the thread. It begins
executing when the start() method of the Thread object is called. The thread runs until
the run() method returns. isAlive() returns true if a thread has been started, and the run()
method has not yet exited.

The static methods of this class operate on the currently running thread. currentThread()
returns the Thread object of the currently running code. sleep() makes the current thread
stop for a specified amount of time. yield() makes the current thread give up control to
any other threads of equal priority that are waiting to run. holdsLock() tests whether the
current thread holds a lock (through a synchronized method or statement) on the speci-
fied object; this Java 1.4 method is often useful with an assert statement.

The instance methods may be called by one thread to operate on a different thread.
checkAccess() checks whether the running thread has permission to modify a Thread object
and throws a SecurityException if it does not. join() waits for a thread to die. interrupt() wakes
up a waiting or sleeping thread (with an InterruptedException) or sets an interrupted flag on
a nonsleeping thread. A thread can test its own interrupted flag with the static
interrupted() method or can test the flag of another thread with isInterrupted(). Calling
interrupted() implicitly clears the interrupted flag, but calling isInterrupted() does not.
Methods related to sleep() and interrupt() are the wait() and notify() methods defined by the
Object class. Calling wait() causes the current thread to block until the object’s notify()
method is called by another thread.

setName() sets the name of a thread, which is purely optional. setPriority() sets the priority
of the thread. Higher priority threads run before lower priority threads. Java does not
specify what happens to multiple threads of equal priority; some systems perform
time-slicing and share the CPU between such threads. On other systems, one
compute-bound thread that does not call yield() may starve another thread of the same
priority. setDaemon() sets a boolean flag that specifies whether this thread is a daemon or
not. The Java VM keeps running as long as at least one nondaemon thread is running.
Call getThreadGroup() to obtain the ThreadGroup of which a thread is part. In Java 1.2 and
later, use setContextClassLoader() to specify the ClassLoader to be used to load any classes
required by the thread.

suspend(), resume(), and stop() suspend, resume, and stop a given thread, respectively, but
all three methods are deprecated because they are inherently unsafe and can cause
deadlock. If a thread must be stoppable, have it periodically check a flag and exit if the
flag is set.

In Java 1.4 and later, the four-argument Thread() constructor allows you to specify the
“stack size” parameter for the thread. Typically, larger stack sizes allow threads to
recurse more deeply before running out of stack space. Smaller stack sizes reduce the
fixed per-thread memory requirements and may allow more threads to exist concur-
rently. The meaning of this argument is implementation dependent, and
implementations may even ignore it.

Java 5.0 adds important new features to this class. getId() returns a unique long identi-
fier for the thread. getState() returns the state of the thread as an enumerated constant of
type Thread.State. Thread.UncaughtExceptionHandler defines an API for handling exceptions that

Chapter 10: java.lang and Subpackages | 503

java.lang.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.lang.Thread

cause the run() method of the thread to exit. Register a handler of this type with
setUncaughtExceptionHandler() or register a default handler with the static methods
setDefaultUncaughtExceptionHandler(). Obtain a snapshot of a thread’s current stack trace with
getStackTrace(). This returns an array of StackTraceElement objects: the first element of the
array is the most recent method invocation and the last element is the least recent. The
static getAllStackTraces() returns stack traces for all running threads (the traces may be
obtained at different times for different threads).

public class Thread implements Runnable {
// Public Constructors

public Thread();
public Thread(String name);
public Thread(Runnable target);
public Thread(Runnable target, String name);
public Thread(ThreadGroup group, String name);
public Thread(ThreadGroup group, Runnable target);
public Thread(ThreadGroup group, Runnable target, String name);

1.4 public Thread(ThreadGroup group, Runnable target, String name, long stackSize);
// Public Constants

public static final int MAX_PRIORITY; =10
public static final int MIN_PRIORITY; =1
public static final int NORM_PRIORITY; =5

// Nested Types
5.0 public enum State;
5.0 public interface UncaughtExceptionHandler;
// Public Class Methods

public static int activeCount();
public static Thread currentThread(); native
public static void dumpStack();
public static int enumerate(Thread[] tarray);

5.0 public static java.util.Map<Thread,StackTraceElement[]> getAllStackTraces();
5.0 public static Thread.UncaughtExceptionHandler getDefaultUncaughtExceptionHandler();
1.4 public static boolean holdsLock(Object obj); native

public static boolean interrupted();
5.0 public static void setDefaultUncaughtExceptionHandler(Thread.UncaughtExceptionHandler eh);

public static void sleep(long millis) throws InterruptedException; native
public static void sleep(long millis, int nanos) throws InterruptedException;
public static void yield(); native

// Public Instance Methods
public final void checkAccess();

1.2 public ClassLoader getContextClassLoader();
5.0 public long getId(); default:7

public final String getName(); default:"Thread-0"
public final int getPriority(); default:5

5.0 public StackTraceElement[] getStackTrace();
5.0 public Thread.State getState();

public final ThreadGroup getThreadGroup();
5.0 public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler(); default:ThreadGroup

public void interrupt();
public final boolean isAlive(); native default:false
public final boolean isDaemon(); default:false

Object Thread Runnable

504 | Chapter 10: java.lang and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.lang.Thread.State

Passed To Runtime.{addShutdownHook(), removeShutdownHook()}, SecurityManager.checkAccess(),
Thread.UncaughtExceptionHandler.uncaughtException(), ThreadGroup.{enumerate(), uncaughtException()},
java.util.concurrent.ThreadPoolExecutor.beforeExecute(), java.util.concurrent.TimeUnit.timedJoin(),
java.util.concurrent.locks.AbstractQueuedSynchronizer.isQueued(), java.util.concurrent.locks.LockSupport.unpark(),
java.util.concurrent.locks.ReentrantLock.hasQueuedThread(),
java.util.concurrent.locks.ReentrantReadWriteLock.hasQueuedThread()

Returned By java.util.concurrent.ThreadFactory.newThread(),
java.util.concurrent.locks.AbstractQueuedSynchronizer.getFirstQueuedThread(),
java.util.concurrent.locks.ReentrantLock.getOwner(),
java.util.concurrent.locks.ReentrantReadWriteLock.getOwner()

Thread.State
java.lang

Java 5.0

serializable comparable enum

This enumerated type defines the possible states of a thread. Call the getState() method
of a Thread object to obtain one of the enumerated constants defined here. A NEW thread
has not been started yet, and a TERMINATED thread has exited. A BLOCKED thread is waiting
to enter a synchronized method or block. A WAITING thread is waiting in Object.wait(),
Thread.join(), or a similar method. A TIMED_WAITING thread is waiting but is subject to a
timeout, such as in Thread.sleep() or the timed versions of Object.wait() and Thread.join().
Finally, a thread that has been started and has not yet exited and is not blocked or
waiting is RUNNABLE. This does not mean that the operating system is currently running
it or that it is even making any forward progress, but that it is at least available to run
when the operating system gives it the CPU.

public boolean isInterrupted(); default:false
public final void join() throws InterruptedException;
public final void join(long millis) throws InterruptedException; synchronized
public final void join(long millis, int nanos) throws InterruptedException; synchronized

1.2 public void setContextClassLoader(ClassLoader cl);
public final void setDaemon(boolean on);
public final void setName(String name);
public final void setPriority(int newPriority);

5.0 public void setUncaughtExceptionHandler(Thread.UncaughtExceptionHandler eh);
public void start(); synchronized

// Methods Implementing Runnable
public void run();

// Public Methods Overriding Object
public String toString();

// Deprecated Public Methods
public int countStackFrames(); native
public void destroy();
public final void resume();
public final void stop();
public final void stop(Throwable obj); synchronized
public final void suspend();
}

public enum Thread.State {
// Enumerated Constants

NEW,
RUNNABLE,
BLOCKED,
WAITING,

Chapter 10: java.lang and Subpackages | 505

java.lang.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.lang.ThreadGroup

Returned By Thread.getState(), java.lang.management.ThreadInfo.getThreadState()

Thread.UncaughtExceptionHandler
java.lang

Java 5.0

This interface defines a handler to be invoked when a thread throws an exception that
remains uncaught. When this happens, the uncaughtException() method of the registered
handler is invoked with the Thread object that threw the exception and the Throwable
exception object as arguments. The handler is run by the thread that received the
exception, and that thread will exit as soon as the handler exits. If uncaughtException()
itself throws an exception, that exception will be ignored.

An object that implements this interface may be registered for a Thread with the
setUncaughtExceptionHandler() method. A default UncaughtExceptionHandler may be registered with
the static method Thread.setDefaultUncaughtExceptionHandler(). If no handler or default handler
is registered, the uncaughtException() method of the containing ThreadGroup is used instead.

Implementations ThreadGroup

Passed To Thread.{setDefaultUncaughtExceptionHandler(), setUncaughtExceptionHandler()}

Returned By Thread.{getDefaultUncaughtExceptionHandler(), getUncaughtExceptionHandler()}

ThreadDeath
java.lang

Java 1.0

serializable error

Signals that a thread should terminate. This error is thrown in a thread when the
Thread.stop() method is called for that thread. This is an unusual Error type that simply
causes a thread to be terminated, but does not print an error message or cause the inter-
preter to exit. You can catch ThreadDeath errors to do any necessary cleanup for a thread,
but if you do, you must rethrow the error so that the thread actually terminates.

ThreadGroup
java.lang

Java 1.0

This class represents a group of threads and allows that group to be manipulated as a
whole. A ThreadGroup can contain Thread objects, as well as other child ThreadGroup objects. All

TIMED_WAITING,
TERMINATED;

// Public Class Methods
public static Thread.State valueOf(String name);
public static final Thread.State[] values();

}

public interface Thread.UncaughtExceptionHandler {
// Public Instance Methods

void uncaughtException(Thread t, Throwable e);
}

public class ThreadDeath extends Error {
// Public Constructors

public ThreadDeath();
}

Object Throwable Error ThreadDeath

Serializable

506 | Chapter 10: java.lang and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.lang.ThreadGroup

ThreadGroup objects are created as children of some other ThreadGroup, and thus there is a
parent/child hierarchy of ThreadGroup objects. Use getParent() to obtain the parent ThreadGroup,
and use activeCount(), activeGroupCount(), and the various enumerate() methods to list the child
Thread and ThreadGroup objects. Most applications can simply rely on the default system
thread group. System-level code and applications such as servers that need to create a
large number of threads may find it convenient to create their own ThreadGroup objects,
however.

interrupt() interrupts all threads in the group at once. setMaxPriority() specifies the
maximum priority any thread in the group can have. checkAccess() checks whether the
calling thread has permission to modify the given thread group. The method throws a
SecurityException if the current thread does not have access. uncaughtException() contains the
code that is run when a thread terminates because of an uncaught exception or error.
You can customize this method by subclassing ThreadGroup.

Passed To SecurityManager.checkAccess(), Thread.Thread()

Returned By SecurityManager.getThreadGroup(), Thread.getThreadGroup()

public class ThreadGroup implements Thread.UncaughtExceptionHandler {
// Public Constructors

public ThreadGroup(String name);
public ThreadGroup(ThreadGroup parent, String name);

// Public Instance Methods
public int activeCount();
public int activeGroupCount();
public final void checkAccess();
public final void destroy();
public int enumerate(ThreadGroup[] list);
public int enumerate(Thread[] list);
public int enumerate(Thread[] list, boolean recurse);
public int enumerate(ThreadGroup[] list, boolean recurse);
public final int getMaxPriority();
public final String getName();
public final ThreadGroup getParent();

1.2 public final void interrupt();
public final boolean isDaemon();

1.1 public boolean isDestroyed(); synchronized
public void list();
public final boolean parentOf(ThreadGroup g);
public final void setDaemon(boolean daemon);
public final void setMaxPriority(int pri);
public void uncaughtException(Thread t, Throwable e); Implements:Thread.UncaughtExceptionHandler

// Methods Implementing Thread.UncaughtExceptionHandler
public void uncaughtException(Thread t, Throwable e);

// Public Methods Overriding Object
public String toString();

// Deprecated Public Methods
1.1#public boolean allowThreadSuspension(boolean b);
public final void resume();
public final void stop();
public final void suspend();
}

Object ThreadGroup Thread.UncaughtExceptionHandler

Chapter 10: java.lang and Subpackages | 507

java.lang.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.lang.Throwable

ThreadLocal<T>
java.lang

Java 1.2

This class provides a convenient way to create thread-local variables. When you
declare a static field in a class, there is only one value for that field, shared by all
objects of the class. When you declare a nonstatic instance field in a class, every object
of the class has its own separate copy of that variable. ThreadLocal provides an option
between these two extremes. If you declare a static field to hold a ThreadLocal object, that
ThreadLocal holds a different value for each thread. Objects running in the same thread
see the same value when they call the get() method of the ThreadLocal object. Objects
running in different threads obtain different values from get(), however.

In Java 5.0, this class has been made generic and the type variable T represents the type
of the object referenced by this ThreadLocal.

The set() method sets the value held by the ThreadLocal object for the currently running
thread. get() returns the value held for the currently running thread. Note that there is no
way to obtain the value of the ThreadLocal object for any thread other than the one that
calls get(). To understand the ThreadLocal class, you may find it helpful to think of a Thread-
Local object as a hashtable or java.util.Map that maps from Thread objects to arbitrary values.
Calling set() creates an association between the current Thread (Thread.currentThread()) and the
specified value. Calling get() first looks up the current thread, then uses the hashtable to
look up the value associated with that current thread.

If a thread calls get() for the first time without having first called set() to establish a
thread-local value, get() calls the protected initialValue() method to obtain the initial value
to return. The default implementation of initialValue() simply returns null, but subclasses
can override this if they desire.

See also InheritableThreadLocal, which allows thread-local values to be inherited from
parent threads by child threads.

Subclasses InheritableThreadLocal

Throwable
java.lang

Java 1.0

serializable

This is the root class of the Java exception and error hierarchy. All exceptions and
errors are subclasses of Throwable. The getMessage() method retrieves any error message
associated with the exception or error. The default implemenation of getLocalizedMessage()
simply calls getMessage(), but subclasses may override this method to return an error
message that has been localized for the default locale.

It is often the case that an Exception or Error is generated as a direct result of some other
exception or error, perhaps one thrown by a lower-level API. As of Java 1.4 and
later, all Throwable objects may have a “cause” which specifies the Throwable that caused

public class ThreadLocal<T> {
// Public Constructors

public ThreadLocal();
// Public Instance Methods

public T get();
5.0 public void remove();

public void set(T value);
// Protected Instance Methods

protected T initialValue(); constant
}

508 | Chapter 10: java.lang and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.lang.TypeNotPresentException

this one. If there is a cause, pass it to the Throwable() constructor, or to the initCause()
method. When you catch a Throwable object, you can obtain the Throwable that caused
it, if any, with getCause().

Every Throwable object has information about the execution stack associated with it.
This information is initialized when the Throwable object is created. If the object will be
thrown somewhere other than where it was created, or if it caught and will be re-
thrown, you can use fillInStackTrace() to capture the current execution stack before
throwing it. printStackTrace() prints a textual representation of the stack to the specified
PrintWriter, PrintStream, or to the System.err stream. In Java 1.4, you can also obtain this
information with getStackTrace() which returns an array of StackTraceElement objects
describing the execution stack.

Subclasses Error, Exception

Passed To Too many methods to list.

Returned By java.io.WriteAbortedException.getCause(), ClassNotFoundException.{getCause(), getException()},
ExceptionInInitializerError.{getCause(), getException()}, java.lang.reflect.InvocationTargetException.{getCause(),
getTargetException()}, java.lang.reflect.UndeclaredThrowableException.{getCause(), getUndeclaredThrowable()},
java.security.PrivilegedActionException.getCause(), java.util.logging.LogRecord.getThrown(),
javax.xml.transform.TransformerException.{getCause(), getException(), initCause()},
javax.xml.xpath.XPathException.getCause()

Thrown By Object.finalize(), java.lang.reflect.InvocationHandler.invoke()

TypeNotPresentException
java.lang

Java 5.0

serializable unchecked

This unchecked exception signals that a class file associated with a java.lang.reflect.Type
could not be found. It typically results when a class depends on a type that has
changed or been removed and indicates version skew that requires recompilation or
code refactoring. This is essentially the generic type version of ClassNotFoundException.

public class Throwable implements Serializable {
// Public Constructors

public Throwable();
public Throwable(String message);

1.4 public Throwable(Throwable cause);
1.4 public Throwable(String message, Throwable cause);
// Public Instance Methods

public Throwable fillInStackTrace(); native synchronized
1.4 public Throwable getCause(); default:null
1.1 public String getLocalizedMessage(); default:null

public String getMessage(); default:null
1.4 public StackTraceElement[] getStackTrace();
1.4 public Throwable initCause(Throwable cause); synchronized

public void printStackTrace();
public void printStackTrace(java.io.PrintStream s);

1.1 public void printStackTrace(java.io.PrintWriter s);
1.4 public void setStackTrace(StackTraceElement[] stackTrace);
// Public Methods Overriding Object

public String toString();
}

Object Throwable Serializable

Chapter 10: java.lang and Subpackages | 509

java.lang.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.lang.UnsupportedClassVersionError

UnknownError
java.lang

Java 1.0

serializable error

Signals that an unknown error has occurred at the level of the Java Virtual Machine.

UnsatisfiedLinkError
java.lang

Java 1.0

serializable error

Signals that Java cannot satisfy all the links in a class that it has loaded.

UnsupportedClassVersionError
java.lang

Java 1.2

serializable error

Every Java class file contains a version number that specifies the version of the class file
format. This error is thrown when the Java Virtual Machine attempts to read a class
file with a version number it does not support.

public class TypeNotPresentException extends RuntimeException {
// Public Constructors

public TypeNotPresentException(String typeName, Throwable cause);
// Public Instance Methods

public String typeName();
}

public class UnknownError extends VirtualMachineError {
// Public Constructors

public UnknownError();
public UnknownError(String s);

}

public class UnsatisfiedLinkError extends LinkageError {
// Public Constructors

public UnsatisfiedLinkError();
public UnsatisfiedLinkError(String s);

}

public class UnsupportedClassVersionError extends ClassFormatError {
// Public Constructors

public UnsupportedClassVersionError();
public UnsupportedClassVersionError(String s);

}

Object Throwable Exception RuntimeException TypeNotPresentException

Serializable

Object Throwable Error VirtualMachineError UnknownError

Serializable

Object Throwable Error LinkageError UnsatisfiedLinkError

Serializable

Object Throwable Error LinkageError ClassFormatError UnsupportedClassVersionError

Serializable

510 | Chapter 10: java.lang and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.lang.UnsupportedOperationException

UnsupportedOperationException
java.lang

Java 1.2

serializable unchecked

Signals that a method you have called is not supported, and its implementation does
not do anything (except throw this exception). This exception is used most often by
the Java collection framework of java.util. Immutable or unmodifiable collections throw
this exception when a modification method, such as add() or delete(), is called.

Subclasses java.nio.ReadOnlyBufferException

VerifyError
java.lang

Java 1.0

serializable error

Signals that a class has not passed the byte-code verification procedures.

VirtualMachineError
java.lang

Java 1.0

serializable error

An abstract error type that serves as superclass for a group of errors related to the Java
Virtual Machine. See InternalError, UnknownError, OutOfMemoryError, and StackOverflowError.

Subclasses InternalError, OutOfMemoryError, StackOverflowError, UnknownError

public class UnsupportedOperationException extends RuntimeException {
// Public Constructors

public UnsupportedOperationException();
5.0 public UnsupportedOperationException(Throwable cause);

public UnsupportedOperationException(String message);
5.0 public UnsupportedOperationException(String message, Throwable cause);
}

public class VerifyError extends LinkageError {
// Public Constructors

public VerifyError();
public VerifyError(String s);

}

public abstract class VirtualMachineError extends Error {
// Public Constructors

public VirtualMachineError();
public VirtualMachineError(String s);

}

Object Throwable Exception RuntimeException UnsupportedOperationException

Serializable

Object Throwable Error LinkageError VerifyError

Serializable

Object Throwable Error VirtualMachineError

Serializable

Chapter 10: java.lang and Subpackages | 511

java.lang.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.lang.annotation.Annotation

Void
java.lang

Java 1.1

The Void class cannot be instantiated and serves merely as a placeholder for its static
TYPE field, which is a Class object constant that represents the void type.

Package java.lang.annotation Java 5.0

This package defines the framework for annotations. It includes the base Annotation
interface that all annotation types extend, meta-annotation types, their associated
enumerated types, and exception and error classes related to annotations. The most
important members of this package are the meta-annotation types: Documented, Inherited,
Retention, and Target.

Interfaces
public interface Annotation;

Enumerated Types
public enum ElementType;
public enum RetentionPolicy;

Annotation Types
public @interface Documented;
public @interface Inherited;
public @interface Retention;
public @interface Target;

Exceptions
public class AnnotationTypeMismatchException extends RuntimeException;
public class IncompleteAnnotationException extends RuntimeException;

Errors
public class AnnotationFormatError extends Error;

Annotation
java.lang.annotation

Java 5.0

A type declared with the @interface syntax is an annotation type that implicitly extends
this interface. Note that the Annotation interface is not itself an annotation type. Further-
more, if you define an interface (rather than an @interface) that explicitly extends Annotation,
the result is not an annotation type either. The only way to define an annotation type
is with an @interface definition. When an annotation is queried with the
java.lang.reflect.AnnotatedElement API, the object returned implements this interface as well as
the interface defined by the specific annotation type.

public final class Void {
// No Constructor
// Public Constants

public static final Class<Void> TYPE;
}

512 | Chapter 10: java.lang and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.lang.annotation.AnnotationFormatError

This interface defines the annotationType() method, which returns the Class of the annota-
tion type for any annotation object. It also includes the equals() and hashCode() methods
of Object to require an implementation to compare annotations by the values of their
members rather than simply by using = =. Finally, Annotation also overrides the toString()
method to require implementations to provide some meaningful string representation
of an annotation. The format of the returned string is not specified, but you can expect
implementations to produce a string using a syntax similar to that used to encode
annotations in Java source code.

Implementations Deprecated, Override, SuppressWarnings, Documented, Inherited, Retention, Target

Returned By Too many methods to list.

AnnotationFormatError
java.lang.annotation

Java 5.0

serializable error

An error of this type indicates that a class file includes a malformed annotation.

AnnotationTypeMismatchException
java.lang.annotation

Java 5.0

serializable unchecked

An exception of this type indicates version skew in an annotation type. It occurs when
the Java VM attempts to read an annotation from a class file and discovers that the
type of an annotation member has changed since the class file (and the annotation it
contains) was compiled.

public interface Annotation {
// Public Instance Methods

Class<? extends java.lang.annotation.Annotation> annotationType();
boolean equals(Object obj);
int hashCode();
String toString();

}

public class AnnotationFormatError extends Error {
// Public Constructors

public AnnotationFormatError(Throwable cause);
public AnnotationFormatError(String message);
public AnnotationFormatError(String message, Throwable cause);

}

public class AnnotationTypeMismatchException extends RuntimeException {
// Public Constructors

public AnnotationTypeMismatchException(java.lang.reflect.Method element, String foundType);
// Public Instance Methods

public java.lang.reflect.Method element();
public String foundType();

}

Object Throwable Error AnnotationFormatError

Serializable

Object Throwable Exception RuntimeException AnnotationTypeMismatchException

Serializable

Chapter 10: java.lang and Subpackages | 513

java.lang.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.lang.annotation.IncompleteAnnotationException

Documented
java.lang.annotation

Java 5.0

@Documented @Retention(RUNTIME) @Target(ANNOTATION_TYPE) annotation

A meta-annotation of this type indicates that the annotated type should be docu-
mented by Javadoc and similar documentation tools. If an annotation type is an
@Documented annotation, then the presence of an annotation of that type is part of the
public API of the annotated program element. java.lang.Deprecated is an @Documented anno-
tation type, for example, and so are each of the meta-annotation types in this package.

It is recommended that any annotation type that is @Documented should also have
runtime @Retention so that the presence of the annotation can be queried via reflection.

ElementType
java.lang.annotation

Java 5.0

serializable comparable enum

The constants declared by this enumerated type represent the types of program
elements that can be annotated. The value of an @Target annotation is an array of Element-
Type constants. Most of the constants have obvious meanings, but some require
additional explanation. TYPE represents a class, interface, enumerated type, or annota-
tion type. ANNOTATION_TYPE represents only annotation types and is used for meta-
annotations. FIELD includes enumerated constants, and PARAMETER includes both method
parameters and catch clause parameters. Note that the METHOD and CONSTRUCTOR are
distinct constants.

Returned By Target.value()

IncompleteAnnotationException
java.lang.annotation

Java 5.0

serializable unchecked

An exception of this type indicates version skew in an annotation type. It occurs when
the Java VM attempts to read an annotation from a class file and discovers that the
annotation type has added a new member since the class file was compiled. This

public @interface Documented {
}

public enum ElementType {
// Enumerated Constants

TYPE,
FIELD,
METHOD,
PARAMETER,
CONSTRUCTOR,
LOCAL_VARIABLE,
ANNOTATION_TYPE,
PACKAGE;

// Public Class Methods
public static ElementType valueOf(String name);
public static final ElementType[] values();

}

Annotation Documented

Object Enum ElementType

Comparable Serializable

514 | Chapter 10: java.lang and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.lang.annotation.Inherited

means that the annotation compiled into the class file is incomplete since it does not
define a value for all members of the annotation type. Note that this exception does
not occur if a new member with a default clause is added to the annotation type.

Inherited
java.lang.annotation

Java 5.0

@Documented @Retention(RUNTIME) @Target(ANNOTATION_TYPE) annotation

When an annotation type that has an @Inherited meta-annotation is applied to a class, that
annotation should be inherited by subclasses and descendants of the annotated class.
The inheritance is only for classes and their subclasses. If an @Inherited annotation type is
applied to a method or program element other than a class, no inheritance applies. If the
@Inherited annotation type also has runtime Retention, reflective access to the annotation
through java.lang.reflect.AnnotatedElement manages the inheritance of the annotation.

Retention
java.lang.annotation

Java 5.0

@Documented @Retention(RUNTIME) @Target(ANNOTATION_TYPE) annotation

A meta-annotation of this type specifies how long the annotated annotation type
should be retained. The value() of this annotation type is one of the three RetentionPolicy
enumerated constants. See RetentionPolicy for details. If an annotation type does not have
an @Retention meta-annotation, its default retention is RetentionPolicy.CLASS.

RetentionPolicy
java.lang.annotation

Java 5.0

serializable comparable enum

The constants declared by the enumerated type specify the possible retention values for
an @Retention meta-annotation. Annotations with SOURCE retention appear in Java source
code only and are discarded by the compiler. Annotations with CLASS retention are

public class IncompleteAnnotationException extends RuntimeException {
// Public Constructors

public IncompleteAnnotationException(Class<? extends java.lang.annotation.Annotation> annotationType,
String elementName);

// Public Instance Methods
public Class<? extends java.lang.annotation.Annotation> annotationType();
public String elementName();

}

public @interface Inherited {
}

public @interface Retention {
// Public Instance Methods

RetentionPolicy value();
}

Object Throwable Exception RuntimeException IncompleteAnnotationException

Serializable

Annotation Inherited

Annotation Retention

Chapter 10: java.lang and Subpackages | 515

java.lang.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

.Package java.lang.instrument

compiled into the class file and are visible to tools that read class files but are not loaded
by the Java VM at runtime. (This is the default retention for annotation types that do not
have an @Retention meta-annotation.) Finally, annotations with RUNTIME retention are stored
in the class file and loaded by the Java interpreter at runtime. These annotations are avail-
able for reflective access through java.lang.reflect.AnnotatedElement.

Returned By Retention.value()

Target
java.lang.annotation

Java 5.0

@Documented @Retention(RUNTIME) @Target(ANNOTATION_TYPE) annotation

A meta-annotation of this type specifies what program elements the annotated annota-
tion type can be applied to. The value() of a Target annotation is an array of ElementType
enumerated constants. See ElementType for details on the allowed values. If an annota-
tion type does not have an @Target meta-annotation, it can be applied to any program
element.

Package java.lang.instrument Java 5.0

This package defines the API for instrumenting a Java VM by transforming class files
to add profiling support, code coverage testing, or other features.

The -javaagent command-line option to the Java interpreter provides a hook for running
the premain() method of a Java instrumentation agent. An Instrumentation object passed to
the premain() method provides an entry point into this package, and methods of Instru-
mentation allow loaded classes to be redefined and ClassFileTransformer objects to be
registered for classes not yet loaded.

Interfaces
public interface ClassFileTransformer;
public interface Instrumentation;

public enum RetentionPolicy {
// Enumerated Constants

SOURCE,
CLASS,
RUNTIME;

// Public Class Methods
public static RetentionPolicy valueOf(String name);
public static final RetentionPolicy[] values();

}

public @interface Target {
// Public Instance Methods

ElementType[] value();
}

Object Enum RetentionPolicy

Comparable Serializable

Annotation Target

516 | Chapter 10: java.lang and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.lang.instrument.ClassDefinition

Classes
public final class ClassDefinition;

Exceptions
public class IllegalClassFormatException extends Exception;
public class UnmodifiableClassException extends Exception;

ClassDefinition
java.lang.instrument

Java 5.0

This class is a simple wrapper around a Class object and an array of bytes that repre-
sents a class file for that class. An array of ClassDefinition objects is passed to the
redefineClasses() method of the Instrumentation class. Class redefinitions are allowed to
change method implementations, but not the members or inheritance of a class or the
signature of the methods.

Passed To Instrumentation.redefineClasses()

ClassFileTransformer
java.lang.instrument

Java 5.0

A ClassFileTransformer registered through an Instrumentation object is offered a chance to
transform every class that is subsequently loaded or redefined. The final argument to
transform() is a byte array that contains the raw bytes of the class file (or bytes returned
by a previously invoked ClassFileTransformer). If the transform() method wishes to transform
the class, it should return the transformed bytes in a newly allocated array. The array
passed to transform() should not be modified. If the transform() method does not wish to
transform a given class, it should return null.

Passed To Instrumentation.{addTransformer(), removeTransformer()}

IllegalClassFormatException
java.lang.instrument

Java 5.0

serializable checked

A ClassFileTransformer should throw an exception of this type from its transform() method if it
believes that the class file bytes it has been passed are malformed (this could happen, for
example, if a defective ClassFileTransformer had previously transformed a valid class file).

public final class ClassDefinition {
// Public Constructors

public ClassDefinition(Class<?> theClass, byte[] theClassFile);
// Public Instance Methods

public Class<?> getDefinitionClass();
public byte[] getDefinitionClassFile();

}

public interface ClassFileTransformer {
// Public Instance Methods

byte[] transform(ClassLoader loader, String className, Class<?> classBeingRedefined,
java.security.ProtectionDomain protectionDomain, byte[] classfileBuffer)

throws IllegalClassFormatException;
}

Chapter 10: java.lang and Subpackages | 517

java.lang.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.lang.instrument.UnmodifiableClassException

Thrown By ClassFileTransformer.transform()

Instrumentation
java.lang.instrument

Java 5.0

This interface is the main entry point to the java.lang.instrument API. A Java instrumenta-
tion agent specified on the Java interpreter command line with the -javaagent argument
must be a class that defines the following method:

public static void premain(String args, Instrumentation instr)

The Java interpreter invokes the premain() method during startup before calling the
main() method of the program. Any arguments specified with the -javaagent command
line are passed in the first premain() argument, and an Instrumentation object is passed as
the second argument.

The most powerful feature of the Instrumentation object is the ability to register ClassFile-
Transformer objects to augment or rewrite the byte code of Java class files as they are
loaded into the interpreter. If isRedefineClassesSupported() returns true, you can also rede-
fine already-loaded classes on the fly with redefineClasses().

getAllLoadedClasses() returns an array of all classes loaded into the VM, and getInitiatedClasses()
returns an array of classes loaded by a specified ClassLoader. getObjectSize() returns an imple-
mentation-specific approximation of the amount of memory required by a specified object.

UnmodifiableClassException
java.lang.instrument

Java 5.0

serializable checked

An exception of this type is thrown from Instrumentation.redefineClasses() if a requested redef-
inition cannot be performed. This might occur, for example, if the redefinition
attempts to add or remove members from the class.

public class IllegalClassFormatException extends Exception {
// Public Constructors

public IllegalClassFormatException();
public IllegalClassFormatException(String s);

}

public interface Instrumentation {
// Public Instance Methods

void addTransformer(ClassFileTransformer transformer);
Class[] getAllLoadedClasses();
Class[] getInitiatedClasses(ClassLoader loader);
long getObjectSize(Object objectToSize);
boolean isRedefineClassesSupported();
void redefineClasses(ClassDefinition[] definitions) throws ClassNotFoundException, UnmodifiableClassException;
boolean removeTransformer(ClassFileTransformer transformer);

}

public class UnmodifiableClassException extends Exception {
// Public Constructors

Object Throwable Exception IllegalClassFormatException

Serializable

Object Throwable Exception UnmodifiableClassException

Serializable

518 | Chapter 10: java.lang and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

.Package java.lang.management

Thrown By Instrumentation.redefineClasses()

Package java.lang.management Java 5.0

This package defines “management bean” or “MXBean” interfaces for managing and
monitoring a running Java virtual machine. It relies on the JMX API of the javax.management
package, which is not covered in this book. ManagementFactory is the main entry point to this
API; it defines static factory methods for obtaining instances of the various management
bean interfaces. These instances can then be queried for specific information about the
Java VM. The jconsole tool shipped with the Java 5.0 JDK demonstrates the capabilites of
this package.

Interfaces
public interface ClassLoadingMXBean;
public interface CompilationMXBean;
public interface GarbageCollectorMXBean extends MemoryManagerMXBean;
public interface MemoryManagerMXBean;
public interface MemoryMXBean;
public interface MemoryPoolMXBean;
public interface OperatingSystemMXBean;
public interface RuntimeMXBean;
public interface ThreadMXBean;

Enumerated Types
public enum MemoryType;

Classes
public class ManagementFactory;
public final class ManagementPermission extends java.security.BasicPermission;
public class MemoryNotificationInfo;
public class MemoryUsage;
public class ThreadInfo;

ClassLoadingMXBean
java.lang.management

Java 5.0

This MXBean interface defines methods for determining how many classes are
currently loaded in the Java VM, how many have ever been loaded, and how many
have ever been unloaded. The setVerbose() method turns verbose class loading output
from the VM on or off.

public UnmodifiableClassException();
public UnmodifiableClassException(String s);

}

public interface ClassLoadingMXBean {
// Public Instance Methods

int getLoadedClassCount();
long getTotalLoadedClassCount();
long getUnloadedClassCount();
boolean isVerbose();
void setVerbose(boolean value);

}

Chapter 10: java.lang and Subpackages | 519

java.lang.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.lang.management.ManagementFactory

Returned By ManagementFactory.getClassLoadingMXBean()

CompilationMXBean
java.lang.management

Java 5.0

This MXBean interface defines methods for querying the just-in-time compiler of the
Java virtual machine. getName() returns an identifying name for the compiler. If the
implementation tracks compilation time, getTotalCompilationTime() returns the approxi-
mate total compilation time in milliseconds.

Returned By ManagementFactory.getCompilationMXBean()

GarbageCollectorMXBean
java.lang.management

Java 5.0

This MXBean interface allows monitoring of the number of garbage collections that
have occurred and the approximate time they consumed in milliseconds. The methods
return -1 to indicate that the garbage collector does not maintain those statistics. Note
that VM implementations commonly have more than one garbage collector and use
different collection strategies for new objects and old objects. Note also that this is a
subinterface of MemoryManagerMXBean.

ManagementFactory
java.lang.management

Java 5.0

This class provides the main entry point into the java.lang.management API. The static
factory methods provide a convenient way to obtain instances of the various MXBean
interfaces for the currently running Java virtual machine. The returned instances can
then be queried to monitor memory usage, class loading, and other details of virtual
machine performance.

To obtain an MXBean for a Java virtual machine running in another process, use the
newPlatformMXBeanProxy() method, specifying a javax.management.MBeanServerConnection as well as
the name and type of the desired MXBean. The constant fields of this class define the
names of the available beans. Note that the javax.management package is beyond the
scope of this quick reference.

public interface CompilationMXBean {
// Public Instance Methods

String getName();
long getTotalCompilationTime();
boolean isCompilationTimeMonitoringSupported();

}

public interface GarbageCollectorMXBean extends MemoryManagerMXBean {
// Public Instance Methods

long getCollectionCount();
long getCollectionTime();

}

public class ManagementFactory {
// No Constructor
// Public Constants

public static final String CLASS_LOADING_MXBEAN_NAME; ="java.lang:type=ClassLoading"

MemoryManagerMXBean GarbageCollectorMXBean

520 | Chapter 10: java.lang and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.lang.management.ManagementPermission

ManagementPermission
java.lang.management

Java 5.0

serializable permission

This java.security.Permission subclass governs access to the Java VM monitoring and
management capabilities of this package. The two defined targets for this permission
are control, which grants permission to manage the VM, and monitor, which grants
permission to monitor VM state. Fine-grained control over individual MXBeans is not
supported.

MemoryManagerMXBean
java.lang.management

Java 5.0

This MXBean interface allows monitoring of a single memory manager (such as a
garbage collector) in a Java VM. A VM implementation typically has more than one
memory manager, and the ManagementFactory method getMemoryManagerMXBeans() returns a
List of objects of this type. Some or all of the objects in the returned list will also imple-
ment the GarbageCollectorMXBean subinterface.

Each memory manager may manage one or more memory pools, and
getMemoryPoolNames() returns the names of these pools. See also
ManagementFactory.getMemoryPoolMXBeans() and MemoryPoolMXBean.

public static final String COMPILATION_MXBEAN_NAME; ="java.lang:type=Compilation"
public static final String GARBAGE_COLLECTOR_MXBEAN_DOMAIN_TYPE; ="java.lang:type=GarbageCollector"
public static final String MEMORY_MANAGER_MXBEAN_DOMAIN_TYPE; ="java.lang:type=MemoryManager"
public static final String MEMORY_MXBEAN_NAME; ="java.lang:type=Memory"
public static final String MEMORY_POOL_MXBEAN_DOMAIN_TYPE; ="java.lang:type=MemoryPool"
public static final String OPERATING_SYSTEM_MXBEAN_NAME; ="java.lang:type=OperatingSystem"
public static final String RUNTIME_MXBEAN_NAME; ="java.lang:type=Runtime"
public static final String THREAD_MXBEAN_NAME; ="java.lang:type=Threading"

// Public Class Methods
public static ClassLoadingMXBean getClassLoadingMXBean();
public static CompilationMXBean getCompilationMXBean();
public static java.util.List<GarbageCollectorMXBean> getGarbageCollectorMXBeans();
public static java.util.List<MemoryManagerMXBean> getMemoryManagerMXBeans();
public static MemoryMXBean getMemoryMXBean();
public static java.util.List<MemoryPoolMXBean> getMemoryPoolMXBeans();
public static OperatingSystemMXBean getOperatingSystemMXBean();
public static javax.management.MBeanServer getPlatformMBeanServer(); synchronized
public static RuntimeMXBean getRuntimeMXBean();
public static ThreadMXBean getThreadMXBean();
public static <T> T newPlatformMXBeanProxy(javax.management.MBeanServerConnection connection,

String mxbeanName, Class<T> mxbeanInterface)
throws java.io.IOException;

}

public final class ManagementPermission extends java.security.BasicPermission {
// Public Constructors

public ManagementPermission(String name);
public ManagementPermission(String name, String actions) throws IllegalArgumentException;

}

Object Permission BasicPermission ManagementPermission

Guard Serializable Serializable

Chapter 10: java.lang and Subpackages | 521

java.lang.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.lang.management.MemoryNotificationInfo

Implementations GarbageCollectorMXBean

MemoryMXBean
java.lang.management

Java 5.0

This MXBean interface allows monitoring of current memory usage information for
heap memory (allocated objects) and nonheap memory (loaded classes and libraries).
It also allows the garbage collector to be explicitly invoked and verbose garbage-
collection related output to be turned on or off.

See MemoryUsage for details on how memory usage information is returned. See also
MemoryPoolMXBean for a way to obtain both current and peak memory usage for indi-
vidual memory pools.

Returned By ManagementFactory.getMemoryMXBean()

MemoryNotificationInfo
java.lang.management

Java 5.0

This class holds information about memory usage in a given memory pool and is
generated when that usage crosses a threshold specified by a MemoryPoolMXBean. Use the
from() method to construct a MemoryNotificationInfo object from the user data of a
javax.management.Notification object. Notifications and the javax.management package are
beyond the scope of this book.

public interface MemoryManagerMXBean {
// Public Instance Methods

String[] getMemoryPoolNames();
String getName();
boolean isValid();

}

public interface MemoryMXBean {
// Public Instance Methods

void gc();
MemoryUsage getHeapMemoryUsage();
MemoryUsage getNonHeapMemoryUsage();
int getObjectPendingFinalizationCount();
boolean isVerbose();
void setVerbose(boolean value);

}

public class MemoryNotificationInfo {
// Public Constructors

public MemoryNotificationInfo(String poolName, MemoryUsage usage, long count);
// Public Constants

public static final String MEMORY_COLLECTION_THRESHOLD_EXCEEDED;
="java.management.memory.collection.threshold.exceeded"

public static final String MEMORY_THRESHOLD_EXCEEDED; ="java.management.memory.threshold.exceeded"
// Public Class Methods

public static MemoryNotificationInfo from(javax.management.openmbean.CompositeData cd);
// Public Instance Methods

public long getCount();
public String getPoolName();
public MemoryUsage getUsage();

}

522 | Chapter 10: java.lang and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.lang.management.MemoryPoolMXBean

MemoryPoolMXBean
java.lang.management

Java 5.0

This MXBean interface allows monitoring of the current and peak memory usage for a
single memory pool. Typical Java VM implementations segregate garbage-collected
heap memory into two or more memory pools based on the age of the objects. Obtain
a List of MemoryPoolMXBean instances with ManagementFactory.getMemoryPoolMXBeans(). getName()
and getType() return the name and type of each pool. getUsage() and getPeakUsage() return
the current and peak memory usage for the pool in the form of a MemoryUsage object.

If isUsageThresholdSupported() returns true, you can use setUsageThreshold() to define a memory
usage threshold. The MemoryPoolMXBean then keeps track of threshold crossings and
issues notifications through the javax.management.NotificationEmitter API. You can register a
javax.management.NotificationListener to receive these notifications. (Note that the
javax.management package is not covered in this book.) Use setCollectionUsageThreshold()
instead to receive notifications when memory usage exceeds a specified threshold
after a garbage collection pass.

MemoryType
java.lang.management

Java 5.0

serializable comparable enum

The constants defined by this enumerated type define the type of a memory pool as
either heap or nonheap memory. See MemoryPoolMXBean.getType().

public interface MemoryPoolMXBean {
// Public Instance Methods

MemoryUsage getCollectionUsage();
long getCollectionUsageThreshold();
long getCollectionUsageThresholdCount();
String[] getMemoryManagerNames();
String getName();
MemoryUsage getPeakUsage();
MemoryType getType();
MemoryUsage getUsage();
long getUsageThreshold();
long getUsageThresholdCount();
boolean isCollectionUsageThresholdExceeded();
boolean isCollectionUsageThresholdSupported();
boolean isUsageThresholdExceeded();
boolean isUsageThresholdSupported();
boolean isValid();
void resetPeakUsage();
void setCollectionUsageThreshold(long threhsold);
void setUsageThreshold(long threshold);

}

public enum MemoryType {
// Enumerated Constants

HEAP,
NON_HEAP;

Object Enum MemoryType

Comparable Serializable

Chapter 10: java.lang and Subpackages | 523

java.lang.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.lang.management.OperatingSystemMXBean

Returned By MemoryPoolMXBean.getType()

MemoryUsage
java.lang.management

Java 5.0

A MemoryUsage object represents a snapshot of memory usage for a specified type or pool
of memory. Memory usage is measured as four long values, each of which represents a
number of bytes. getInit() returns the initial amount of memory that the Java VM
requests from the operating system. getUsed() returns the actual number of bytes used.
getCommitted() returns the number of bytes that the operating system has committed to
the Java VM for this pool. These bytes may not all be in use, but they are not available
to other processes running on the system. getMax() returns the maximum amount of
memory that the Java VM requests for this pool. getMax() returns -1 if there is no defined
maximum value.

Passed To MemoryNotificationInfo.MemoryNotificationInfo()

Returned By MemoryMXBean.{getHeapMemoryUsage(), getNonHeapMemoryUsage()},
MemoryNotificationInfo.getUsage(), MemoryPoolMXBean.{getCollectionUsage(), getPeakUsage(), getUsage()}

OperatingSystemMXBean
java.lang.management

Java 5.0

This MXBean interface allows queries of the operating system name, version, and CPU
architecture as well as the number of available CPUs.

Returned By ManagementFactory.getOperatingSystemMXBean()

// Public Class Methods
public static MemoryType valueOf(String name);
public static final MemoryType[] values();

// Public Methods Overriding Enum
public String toString();

}

public class MemoryUsage {
// Public Constructors

public MemoryUsage(long init, long used, long committed, long max);
// Public Class Methods

public static MemoryUsage from(javax.management.openmbean.CompositeData cd);
// Public Instance Methods

public long getCommitted();
public long getInit();
public long getMax();
public long getUsed();

// Public Methods Overriding Object
public String toString();

}

public interface OperatingSystemMXBean {
// Public Instance Methods

String getArch();
int getAvailableProcessors();
String getName();
String getVersion();

}

524 | Chapter 10: java.lang and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.lang.management.RuntimeMXBean

RuntimeMXBean
java.lang.management

Java 5.0

This MXBean interface provides access to the runtime configuration of the Java virtual
machine, including system properties, command-line arguments, class path, virtual
machine vendor and version, and so on. getUptime() returns the uptime of the virtual
machine in milliseconds.

Returned By ManagementFactory.getRuntimeMXBean()

ThreadInfo
java.lang.management

Java 5.0

This class represents information about a thread from a ThreadMXBean. Some information,
such as thread name, id, state, and stack trace are also available through the java.lang.Thread
object. Other more useful information includes the object upon which a thread is
waiting and the owner of the lock that the thread is trying to acquire. If ThreadMXBean indi-
cates that thread contention monitoring is supported and enabled, the ThreadInfo methods
getBlockedCount() and getBlockedTime() return the number of times the thread has blocked or
waited and the amount of time it has spent in the blocked and waiting states.

public interface RuntimeMXBean {
// Public Instance Methods

String getBootClassPath();
String getClassPath();
java.util.List<String> getInputArguments();
String getLibraryPath();
String getManagementSpecVersion();
String getName();
String getSpecName();
String getSpecVendor();
String getSpecVersion();
long getStartTime();
java.util.Map<String,String> getSystemProperties();
long getUptime();
String getVmName();
String getVmVendor();
String getVmVersion();
boolean isBootClassPathSupported();

}

public class ThreadInfo {
// No Constructor
// Public Class Methods

public static ThreadInfo from(javax.management.openmbean.CompositeData cd);
// Public Instance Methods

public long getBlockedCount();
public long getBlockedTime();
public String getLockName();
public long getLockOwnerId();
public String getLockOwnerName();
public StackTraceElement[] getStackTrace();
public long getThreadId();
public String getThreadName();
public Thread.State getThreadState();

Chapter 10: java.lang and Subpackages | 525

java.lang.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.lang.management.ThreadMXBean

Returned By ThreadMXBean.getThreadInfo()

ThreadMXBean
java.lang.management

Java 5.0

This MXBean interface allows monitoring of thread usage in a Java VM. A number of
methods, such as getThreadCount() and getPeakThreadCount(), return information about all
running threads. Other methods return information about individual threads. Threads
are identified by their thread id, which is a long integer. getAllThreadIds() returns all ids as
an array of long. Complete information, including stack trace, about a thread or set of
threads can be obtained with the getThreadInfo() methods, which return ThreadInfo objects.

If isThreadCpuTimeSupported() returns true, you can enable thread timing with
setThreadCpuTimeEnabled() and query the runtime of a specific thread with getThreadCpuTime()
and getThreadUserTime(). The values returned by these methods are measured in
nanoseconds.

One of the potentially most useful methods of this interface is
findMonitorDeadlockedThreads(). It looks for cycles of threads that are deadlocked waiting to
lock objects whose locks are held by other threads in the cycle.

public long getWaitedCount();
public long getWaitedTime();
public boolean isInNative();
public boolean isSuspended();

// Public Methods Overriding Object
public String toString();

}

public interface ThreadMXBean {
// Public Instance Methods

long[] findMonitorDeadlockedThreads();
long[] getAllThreadIds();
long getCurrentThreadCpuTime();
long getCurrentThreadUserTime();
int getDaemonThreadCount();
int getPeakThreadCount();
int getThreadCount();
long getThreadCpuTime(long id);
ThreadInfo getThreadInfo(long id);
ThreadInfo[] getThreadInfo(long[] ids);
ThreadInfo[] getThreadInfo(long[] ids, int maxDepth);
ThreadInfo getThreadInfo(long id, int maxDepth);
long getThreadUserTime(long id);
long getTotalStartedThreadCount();
boolean isCurrentThreadCpuTimeSupported();
boolean isThreadContentionMonitoringEnabled();
boolean isThreadContentionMonitoringSupported();
boolean isThreadCpuTimeEnabled();
boolean isThreadCpuTimeSupported();
void resetPeakThreadCount();
void setThreadContentionMonitoringEnabled(boolean enable);
void setThreadCpuTimeEnabled(boolean enable);

}

526 | Chapter 10: java.lang and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

.Package java.lang.ref

Returned By
ManagementFactory.getThreadMXBean()

Package java.lang.ref Java 1.2

The java.lang.ref package defines classes that allow Java programs to interact with the
Java garbage collector. A Reference represents an indirect reference to an arbitrary object,
known as the referent. SoftReference, WeakReference, and PhantomReference are three concrete
subclasses of Reference that interact with the garbage collector in different ways, as
explained in the individual class descriptions that follow. ReferenceQueue represents a
linked list of Reference objects. Any Reference object may have a ReferenceQueue associated
with it. A Reference object is enqueued on its ReferenceQueue at some point after the garbage
collector determines that the referent object has become appropriately unreachable.
(The exact level of unreachability depends on the type of Reference being used.) An
application can monitor a ReferenceQueue to determine when referent objects enter a new
reachability status.

Using the mechanisms defined in this package, you can implement a cache that grows
and shrinks in size according to the amount of available system memory. Or, you can
implement a hashtable that associates auxiliary information with arbitrary objects, but
does not prevent those objects from being garbage-collected if they are otherwise
unused. The mechanisms provided by this package are low-level ones, however, and
typical applications do not use java.lang.ref directly. Instead, they rely on higher-level
utilities built on top of the package. See java.util.WeakHashMap for one example.

In Java 5.0, the classes in this package have all been made into generic types. The type
variable T represents the type of the object that is referred to.

Classes
public abstract class Reference<T>;

public class PhantomReference<T> extends Reference<T>;
public class SoftReference<T> extends Reference<T>;
public class WeakReference<T> extends Reference<T>;

public class ReferenceQueue<T>;

PhantomReference<T>
java.lang.ref

Java 1.2

This class represents a reference to an object that does not prevent the referent object
from being finalized by the garbage collector. When (or at some point after) the
garbage collector determines that there are no more hard (direct) references to the
referent object, that there are no SoftReference or WeakReference objects that refer to the
referent, and that the referent has been finalized, it enqueues the PhantomReference object
on the ReferenceQueue specified when the PhantomReference was created. This serves as noti-
fication that the object has been finalized and provides one last opportunity for any
required cleanup code to be run.

To prevent a PhantomReference object from resurrecting its referent object, its get() method
always returns null, both before and after the PhantomReference is enqueued. Nevertheless,
a PhantomReference is not automatically cleared when it is enqueued, so when you remove
a PhantomReference from a ReferenceQueue, you must call its clear() method or allow the Phan-
tomReference object itself to be garbage-collected.

Chapter 10: java.lang and Subpackages | 527

java.lang.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.lang.ref.ReferenceQueue<T>

This class provides a more flexible mechanism for object cleanup than the finalize()
method does. Note that in order to take advantage of it, it is necessary to subclass Phan-
tomReference and define a method to perform the desired cleanup. Furthermore, since the
get() method of a PhantomReference always returns null, such a subclass must also store
whatever data is required for the cleanup operation.

Reference<T>
java.lang.ref

Java 1.2

This abstract class represents some type of indirect reference to a referent. get() returns
the referent if the reference has not been explicitly cleared by the clear() method or
implicitly cleared by the garbage collector. There are three concrete subclasses of Refer-
ence. The garbage collector handles these subclasses differently and clears their
references under different circumstances.

Each of the subclasses of Reference defines a constructor that allows a ReferenceQueue to be
associated with the Reference object. The garbage collector places Reference objects onto
their associated ReferenceQueue objects to provide notification about the state of the
referent object. isEnqueued() tests whether a Reference has been placed on the associated
queue, and enqueue() explicitly places it on the queue. enqueue() returns false if the Reference
object does not have an associated ReferenceQueue, or if it has already been enqueued.

Subclasses PhantomReference, SoftReference, WeakReference

Returned By ReferenceQueue.{poll(), remove()}

ReferenceQueue<T>
java.lang.ref

Java 1.2

This class represents a queue (or linked list) of Reference objects that have been
enqueued because the garbage collector has determined that the referent objects to
which they refer are no longer adequately reachable. It serves as a notification
system for object-reachability changes. Use poll() to return the first Reference object on
the queue; the method returns null if the queue is empty. Use remove() to return the
first element on the queue, or, if the queue is empty, to wait for a Reference object to
be enqueued. You can create as many ReferenceQueue objects as needed. Specify a

public class PhantomReference<T> extends Reference<T> {
// Public Constructors

public PhantomReference(T referent, ReferenceQueue<? super T> q);
// Public Methods Overriding Reference

public T get(); constant
}

public abstract class Reference<T> {
// No Constructor
// Public Instance Methods

public void clear();
public boolean enqueue();
public T get();
public boolean isEnqueued();

}

Object Reference PhantomReference

528 | Chapter 10: java.lang and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.lang.ref.SoftReference<T>

ReferenceQueue for a Reference object by passing it to the SoftReference(), WeakReference(), or
PhantomReference() constructor.

A ReferenceQueue is required to use PhantomReference objects. It is optional with SoftReference
and WeakReference objects; for these classes, the get() method returns null if the referent
object is no longer adequately reachable.

Passed To PhantomReference.PhantomReference(), SoftReference.SoftReference(),
WeakReference.WeakReference()

SoftReference<T>
java.lang.ref

Java 1.2

This class represents a soft reference to an object. A SoftReference is not cleared while
there are any remaining hard (direct) references to the referent. Once the referent is no
longer in use (i.e., there are no remaining hard references to it), the garbage collector
may clear the SoftReference to the referent at any time. However, the garbage collector
does not clear a SoftReference until it determines that system memory is running low. In
particular, the Java VM never throws an OutOfMemoryError without first clearing all soft
references and reclaiming the memory of the referents. The VM may (but is not
required to) clear soft references according to a least-recently-used ordering.

If a SoftReference has an associated ReferenceQueue, the garbage collector enqueues the Soft-
Reference at some time after it clears the reference.

SoftReference is particularly useful for implementing object-caching systems that do not
have a fixed size, but grow and shrink as available memory allows.

WeakReference<T>
java.lang.ref

Java 1.2

This class refers to an object in a way that does not prevent that referent object from
being finalized and reclaimed by the garbage collector. When the garbage collector
determines that there are no more hard (direct) references to the object, and that there
are no SoftReference objects that refer to the object, it clears the WeakReference and marks
the referent object for finalization. At some point after this, it also enqueues the

public class ReferenceQueue<T> {
// Public Constructors

public ReferenceQueue();
// Public Instance Methods

public Reference<? extends T> poll();
public Reference<? extends T> remove() throws InterruptedException;
public Reference<? extends T> remove(long timeout) throws IllegalArgumentException, InterruptedException;

}

public class SoftReference<T> extends Reference<T> {
// Public Constructors

public SoftReference(T referent);
public SoftReference(T referent, ReferenceQueue<? super T> q);

// Public Methods Overriding Reference
public T get();

}

Object Reference SoftReference

Chapter 10: java.lang and Subpackages | 529

java.lang.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

.Package java.lang.reflect

WeakReference on its associated ReferenceQueue, if there is one, in order to provide notifica-
tion that the referent has been reclaimed.

WeakReference is used by java.util.WeakHashMap to implement a hashtable that does not
prevent the hashtable key object from being garbage-collected. WeakHashMap is useful
when you want to associate auxiliary information with an object but do not want to
prevent the object from being reclaimed.

Package java.lang.reflect Java 1.1

The java.lang.reflect package contains the classes and interfaces that, along with
java.lang.Class, comprise the Java Reflection API.

The Constructor, Field, and Method classes represent the constructors, fields, and methods of
a class. Because these types all represent members of a class, they each implement the
Member interface, which defines a simple set of methods that can be invoked for any
class member. These classes allow information about the class members to be
obtained, methods and constructors to be invoked, and fields to be queried and set.

Class member modifiers are represented as integers that specify a number of bit
flags. The Modifier class defines static methods that help interpret the meanings of
these flags. The Array class defines static methods for creating arrays and reading and
writing array elements.

As of Java 1.3, the Proxy class allows the dynamic creation of new Java classes that
implement a specified set of interfaces. When an interface method is invoked on an
instance of such a proxy class, the invocation is delegated to an InvocationHandler object.

There have been a number of changes to this package to support the new language
features of Java 5.0. The most important changes are support for querying the generic
signature of classes, methods, constructors, and fields. Class, Method and Constructor imple-
ment the new GenericDeclaration interface, which provides access to the TypeVariable
declarations of generic classes, methods, and constructors. In general, the package has
been modified to add new generic versions of methods like Field.getType() and
Method.getParameterTypes(). Instead of returning Class objects, the new generic methods, like
Field.getGenericType() and Method.getGenericParameterTypes(), return Type objects. The Type interface
is new in Java 5.0, and represents any kind of generic or nongeneric type. Class implements
Type, so a Type object may simply be an ordinary Class. Type is also the super-interface for
four other new interfaces: ParameterizedType, TypeVariable, WildcardType and GenericArrayType. A Type
object that is not a Class should be an instance of one of these other interfaces, repre-
senting a generic type of some sort.

Support for reflection on annotations is provided by the AnnotatedElement interface which
is implemented by Class, Package, Method, Constructor and Field. Method and Constructor also have
new getParameterAnnotations() for querying annotations on method parameters. Other,
more minor changes in Java 5.0 include the isEnumConstant() method of Field and the
isVarArgs() method of Method and Constructor.

public class WeakReference<T> extends Reference<T> {
// Public Constructors

public WeakReference(T referent);
public WeakReference(T referent, ReferenceQueue<? super T> q);

}

Object Reference WeakReference

530 | Chapter 10: java.lang and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.lang.reflect.AccessibleObject

Interfaces
public interface AnnotatedElement;
public interface GenericArrayType extends Type;
public interface GenericDeclaration;
public interface InvocationHandler;
public interface Member;
public interface ParameterizedType extends Type;
public interface Type;
public interface TypeVariable<D extends GenericDeclaration> extends Type;
public interface WildcardType extends Type;

Classes
public class AccessibleObject implements AnnotatedElement;

public final class Constructor<T> extends AccessibleObject implements GenericDeclaration, Member;
public final class Field extends AccessibleObject implements Member;
public final class Method extends AccessibleObject implements GenericDeclaration, Member;

public final class Array;
public class Modifier;
public class Proxy implements Serializable;
public final class ReflectPermission extends java.security.BasicPermission;

Exceptions
public class InvocationTargetException extends Exception;
public class MalformedParameterizedTypeException extends RuntimeException;
public class UndeclaredThrowableException extends RuntimeException;

Errors
public class GenericSignatureFormatError extends ClassFormatError;

AccessibleObject
java.lang.reflect

Java 1.2

This class is the superclass of the Method, Constructor, and Field classes; its methods provide
a mechanism for trusted applications to work with private, protected, and default visi-
bility members that would otherwise not be accessible through the Reflection API.
This class is new as of Java 1.2; in Java 1.1, the Method, Constructor, and Field classes
extended Object directly.

To use the java.lang.reflect package to access a member to which your code would not
normally have access, pass true to the setAccessible() method. If your code has an appro-
priate ReflectPermission (such as “suppressAccessChecks”), this allows access to the
member as if it were declared public. The static version of setAccessible() is a convenience
method that sets the accessible flag for an array of members but performs only a single
security check.

public class AccessibleObject implements AnnotatedElement {
// Protected Constructors

protected AccessibleObject();
// Public Class Methods

public static void setAccessible(AccessibleObject[] array, boolean flag) throws SecurityException;
// Public Instance Methods

Object AccessibleObject AnnotatedElement

Chapter 10: java.lang and Subpackages | 531

java.lang.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.lang.reflect.Array

Subclasses Constructor, Field, Method

AnnotatedElement
java.lang.reflect

Java 5.0

This interface is implemented by the classes representing program elements that can be
annotated in Java 5.0: java.lang.Class, java.lang.Package, Method, Constructor, and Field. The
methods of this interface allow you to test for the presence of a specific annotation,
query an annotation object of a specific type, or query all annotations present on an
annotated element. getDeclaredAnnotations() differs from getAnnotations() in that it does not
include inherited annotations. (See the java.lang.annotation.Inherited meta-annotation.) If no
annotations are present, getAnnotations() and getDeclaredAnnotations() return an array of
length zero rather than null. It is safe to modify the arrays returned by these methods.

See also the getParameterAnnotations() methods of Method and Constructor, which provide
access to annotations on method parameters.

Implementations Class, Package, AccessibleObject

Array
java.lang.reflect

Java 1.1

This class contains methods that allow you to set and query the values of array
elements, to determine the length of an array, and to create new instances of arrays.
Note that the Array class can manipulate only array values, not array types; Java data
types, including array types, are represented by java.lang.Class. Since the Array class repre-
sents a Java value, unlike the Field, Method, and Constructor classes, which represent class
members, the Array class is significantly different (despite some surface similarities)
from those other classes in this package. Most notably, all the methods of Array are
static and apply to all array values, not just a specific field, method, or constructor.

The get() method returns the value of the specified element of the specified array as an
Object. If the array elements are of a primitive type, the value is converted to a wrapper
object before being returned. You can also use getInt() and related methods to query
array elements and return them as specific primitive types. The set() method and its
primitive type variants perform the opposite operation. Also, the getLength() method
returns the length of the array.

public boolean isAccessible();
public void setAccessible(boolean flag) throws SecurityException;

// Methods Implementing AnnotatedElement
5.0 public <T extends java.lang.annotation.Annotation> T getAnnotation(Class<T> annotationClass);
5.0 public java.lang.annotation.Annotation[] getAnnotations();
5.0 public java.lang.annotation.Annotation[] getDeclaredAnnotations();
5.0 public boolean isAnnotationPresent(Class<? extends java.lang.annotation.Annotation> annotationClass);
}

public interface AnnotatedElement {
// Public Instance Methods

<T extends java.lang.annotation.Annotation> T getAnnotation(Class<T> annotationType);
java.lang.annotation.Annotation[] getAnnotations();
java.lang.annotation.Annotation[] getDeclaredAnnotations();
boolean isAnnotationPresent(Class<? extends java.lang.annotation.Annotation> annotationType);

}

532 | Chapter 10: java.lang and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.lang.reflect.Array

The newInstance() methods create new arrays. One version of this method is passed the
number of elements in the array and the type of those elements. The other version of
this method creates multidimensional arrays. Besides specifying the component type of
the array, it is passed an array of numbers. The length of this array specifies the
number of dimensions for the array to be created, and the values of each of the array
elements specify the size of each dimension of the created array.

public final class Array {
// No Constructor
// Public Class Methods

public static Object get(Object array, int index)
throws IllegalArgumentException, ArrayIndexOutOfBoundsException;

native

public static boolean getBoolean(Object array, int index)
throws IllegalArgumentException, ArrayIndexOutOfBoundsException;

native

public static byte getByte(Object array, int index)
throws IllegalArgumentException, ArrayIndexOutOfBoundsException;

native

public static char getChar(Object array, int index)
throws IllegalArgumentException, ArrayIndexOutOfBoundsException;

native

public static double getDouble(Object array, int index)
throws IllegalArgumentException, ArrayIndexOutOfBoundsException;

native

public static float getFloat(Object array, int index)
throws IllegalArgumentException, ArrayIndexOutOfBoundsException;

native

public static int getInt(Object array, int index)
throws IllegalArgumentException, ArrayIndexOutOfBoundsException;

native

public static int getLength(Object array) throws IllegalArgumentException; native
public static long getLong(Object array, int index)

throws IllegalArgumentException, ArrayIndexOutOfBoundsException;
native

public static short getShort(Object array, int index)
throws IllegalArgumentException, ArrayIndexOutOfBoundsException;

native

public static Object newInstance(Class<?> componentType, int length) throws NegativeArraySizeException;
public static Object newInstance(Class<?> componentType, int[] dimensions)

throws IllegalArgumentException, NegativeArraySizeException;
public static void set(Object array, int index, Object value)

throws IllegalArgumentException, ArrayIndexOutOfBoundsException;
native

public static void setBoolean(Object array, int index, boolean z)
throws IllegalArgumentException, ArrayIndexOutOfBoundsException;

native

public static void setByte(Object array, int index, byte b)
throws IllegalArgumentException, ArrayIndexOutOfBoundsException;

native

public static void setChar(Object array, int index, char c)
throws IllegalArgumentException, ArrayIndexOutOfBoundsException;

native

public static void setDouble(Object array, int index, double d)
throws IllegalArgumentException, ArrayIndexOutOfBoundsException;

native

public static void setFloat(Object array, int index, float f)
throws IllegalArgumentException, ArrayIndexOutOfBoundsException;

native

public static void setInt(Object array, int index, int i)
throws IllegalArgumentException, ArrayIndexOutOfBoundsException;

native

public static void setLong(Object array, int index, long l)
throws IllegalArgumentException, ArrayIndexOutOfBoundsException;

native

public static void setShort(Object array, int index, short s)
throws IllegalArgumentException, ArrayIndexOutOfBoundsException;

native

}

Chapter 10: java.lang and Subpackages | 533

java.lang.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.lang.reflect.Constructor<T>

Constructor<T>
java.lang.reflect

Java 1.1

This class represents a constructor method of a class. Instances of Constructor are
obtained by calling getConstructor() and related methods of java.lang.Class. Constructor imple-
ments the Member interface, so you can use the methods of that interface to obtain the
constructor name, modifiers, and declaring class. In addition, getParameterTypes() and
getExceptionTypes() also return important information about the represented constructor.

In addition to these methods that return information about the constructor, the
newInstance() method allows the constructor to be invoked with an array of arguments in
order to create a new instance of the class that declares the constructor. If any of the
arguments to the constructor are of primitive types, they must be converted to their
corresponding wrapper object types to be passed to newInstance(). If the constructor
causes an exception, the Throwable object it throws is wrapped within the InvocationTargetEx-
ception that is thrown by newInstance(). Note that newInstance() is much more useful than the
newInstance() method of java.lang.Class because it can pass arguments to the constructor.

Constructor has been modified in Java 5.0 to support generics, annotations, and varargs.
The changes are the same as the Java 5.0 changes to the Method class. Additionally,
Constructor has been made a generic type in Java 5.0. The type variable T represents the type
that the constructor constructs, and is used as the return type of the newInstance() method.

Returned By Class.{getConstructor(), getConstructors(), getDeclaredConstructor(), getDeclaredConstructors(),
getEnclosingConstructor()}

public final class Constructor<T> extends AccessibleObject implements GenericDeclaration, Member {
// No Constructor
// Public Instance Methods

public Class<?>[] getExceptionTypes();
5.0 public Type[] getGenericExceptionTypes();
5.0 public Type[] getGenericParameterTypes();
5.0 public java.lang.annotation.Annotation[][] getParameterAnnotations();

public Class<?>[] getParameterTypes();
5.0 public boolean isVarArgs();

public T newInstance(Object ... initargs)
throws InstantiationException, IllegalAccessException, IllegalArgumentException, InvocationTargetException;

5.0 public String toGenericString();
// Methods Implementing GenericDeclaration
5.0 public TypeVariable<Constructor<T>>[] getTypeParameters();
// Methods Implementing Member

public Class<T> getDeclaringClass();
public int getModifiers();
public String getName();

5.0 public boolean isSynthetic();
// Public Methods Overriding AccessibleObject
5.0 public <T extends java.lang.annotation.Annotation> T getAnnotation(Class<T> annotationClass);
5.0 public java.lang.annotation.Annotation[] getDeclaredAnnotations();
// Public Methods Overriding Object

public boolean equals(Object obj);
public int hashCode();
public String toString();

}

Object AccessibleObject Constructor

AnnotatedElement GenericDeclaration Member

534 | Chapter 10: java.lang and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.lang.reflect.Field

Field
java.lang.reflect

Java 1.1

This class represents a field of a class. Instances of Field are obtained by calling the
getField() and related methods of java.lang.Class. Field implements the Member interface, so
once you have obtained a Field object, you can use getName(), getModifiers(), and
getDeclaringClass() to determine the name, modifiers, and class of the field. Additionally,
getType() returns the type of the field.

The set() method sets the value of the represented field for a specified object. (If the
represented field is static, no object need be specified, of course.) If the field is of a prim-
itive type, its value can be specified using a wrapper object of type Boolean, Integer, and so
on, or it can be set using the setBoolean(), setInt(), and related methods. Similarly, the get()
method queries the value of the represented field for a specified object and returns the
field value as an Object. Various other methods query the field value and return it as
various primitive types.

In Java 5.0, Field implements AnnotatedElement to support reflection on field annotations.
The new getGenericType() method supports reflection on the generic type of fields, and
isEnumConstant() supports fields of enum types.

public final class Field extends AccessibleObject implements Member {
// No Constructor
// Public Instance Methods

public Object get(Object obj) throws IllegalArgumentException, IllegalAccessException;
public boolean getBoolean(Object obj) throws IllegalArgumentException, IllegalAccessException;
public byte getByte(Object obj) throws IllegalArgumentException, IllegalAccessException;
public char getChar(Object obj) throws IllegalArgumentException, IllegalAccessException;
public double getDouble(Object obj) throws IllegalArgumentException, IllegalAccessException;
public float getFloat(Object obj) throws IllegalArgumentException, IllegalAccessException;

5.0 public Type getGenericType();
public int getInt(Object obj) throws IllegalArgumentException, IllegalAccessException;
public long getLong(Object obj) throws IllegalArgumentException, IllegalAccessException;
public short getShort(Object obj) throws IllegalArgumentException, IllegalAccessException;
public Class<?> getType();

5.0 public boolean isEnumConstant();
public void set(Object obj, Object value) throws IllegalArgumentException, IllegalAccessException;
public void setBoolean(Object obj, boolean z) throws IllegalArgumentException, IllegalAccessException;
public void setByte(Object obj, byte b) throws IllegalArgumentException, IllegalAccessException;
public void setChar(Object obj, char c) throws IllegalArgumentException, IllegalAccessException;
public void setDouble(Object obj, double d) throws IllegalArgumentException, IllegalAccessException;
public void setFloat(Object obj, float f) throws IllegalArgumentException, IllegalAccessException;
public void setInt(Object obj, int i) throws IllegalArgumentException, IllegalAccessException;
public void setLong(Object obj, long l) throws IllegalArgumentException, IllegalAccessException;
public void setShort(Object obj, short s) throws IllegalArgumentException, IllegalAccessException;

5.0 public String toGenericString();
// Methods Implementing Member

public Class<?> getDeclaringClass();
public int getModifiers();
public String getName();

5.0 public boolean isSynthetic();

Object AccessibleObject Field

AnnotatedElement Member

Chapter 10: java.lang and Subpackages | 535

java.lang.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.lang.reflect.GenericSignatureFormatError

Returned By Class.{getDeclaredField(), getDeclaredFields(), getField(), getFields()}

GenericArrayType
java.lang.reflect

Java 5.0

This interface extends Type and represents a one-dimensional array of some element
Type. Note that in the case of multidimensional arrays, the Type returned by
getGenericComponentType() is itself a GenericArrayType.

GenericDeclaration
java.lang.reflect

Java 5.0

This interface is implemented by the classes that represent program elements that can
be made generic: java.lang.Class as well as Method and Constructor. It provides access to the
type variables declared by the generic type, method, or constructor. getTypeParameters()
never returns null: if there are no declared type variables, it returns a zero-length array.

Implementations Class, Constructor, Method

Returned By TypeVariable.getGenericDeclaration()

GenericSignatureFormatError
java.lang.reflect

Java 5.0

serializable error

An error of this type is thrown if the Java interpreter tries to load a class file that
contains malformed generic signature information.

// Public Methods Overriding AccessibleObject
5.0 public <T extends java.lang.annotation.Annotation> T getAnnotation(Class<T> annotationClass);
5.0 public java.lang.annotation.Annotation[] getDeclaredAnnotations();
// Public Methods Overriding Object

public boolean equals(Object obj);
public int hashCode();
public String toString();

}

public interface GenericArrayType extends Type {
// Public Instance Methods

Type getGenericComponentType();
}

public interface GenericDeclaration {
// Public Instance Methods

TypeVariable<?>[] getTypeParameters();
}

public class GenericSignatureFormatError extends ClassFormatError {
// Public Constructors

public GenericSignatureFormatError();
}

Type GenericArrayType

Object Throwable Error LinkageError ClassFormatError GenericSignatureFormatError

Serializable

536 | Chapter 10: java.lang and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.lang.reflect.InvocationHandler

InvocationHandler
java.lang.reflect

Java 1.3

This interface defines a single invoke() method that is called whenever a method is
invoked on a dynamically created Proxy object. Every Proxy object has an associated Invo-
cationHandler object that is specified when the Proxy is instantiated. All method
invocations on the proxy object are translated into calls to the invoke() method of the
InvocationHandler.

The first argument to invoke() is the Proxy object through which the method was invoked.
The second argument is a Method object that represents the method that was invoked.
Call the getDeclaringClass() method of this Method object to determine the interface in which
the method was declared. This may be a superinterface of one of the specified inter-
faces or even java.lang.Object when the method invoked is toString(), hashCode(), or one of the
other Object methods. The third argument to invoke() is the array of method arguments.
Any primitive type arguments are wrapped in their corresponding object wrappers
(e.g., Boolean, Integer, Double).

The value returned by invoke() becomes the return value of the proxy object method
invocation and must be of an appropriate type. If the proxy object method returns a
primitive type, invoke() should return an instance of the corresponding wrapper class.
invoke() can throw any unchecked (i.e., runtime) exceptions or any checked exceptions
declared by the proxy object method. If invoke() throws a checked exception that is not
declared by the proxy object, that exception is wrapped within an unchecked Unde-
claredThrowableException that is thrown in its place.

Passed To java.lang.reflect.Proxy.{newProxyInstance(), Proxy()}

Returned By java.lang.reflect.Proxy.getInvocationHandler()

Type Of java.lang.reflect.Proxy.h

InvocationTargetException
java.lang.reflect

Java 1.1

serializable checked

An object of this class is thrown by Method.invoke() and Constructor.newInstance() when an
exception is thrown by the method or constructor invoked through those methods.
The InvocationTargetException class serves as a wrapper around the object that was thrown;
that object can be retrieved with the getTargetException() method. In Java 1.4 and later, all
exceptions can be “chained” in this way, and getTargetException() is superseded by the
more general getCause() method.

public interface InvocationHandler {
// Public Instance Methods

Object invoke(Object proxy, Method method, Object[] args) throws Throwable;
}

public class InvocationTargetException extends Exception {
// Public Constructors

public InvocationTargetException(Throwable target);
public InvocationTargetException(Throwable target, String s);

// Protected Constructors
protected InvocationTargetException();

Object Throwable Exception InvocationTargetException

Serializable

Chapter 10: java.lang and Subpackages | 537

java.lang.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.lang.reflect.Method

Thrown By Constructor.newInstance(), Method.invoke()

MalformedParameterizedTypeException
java.lang.reflect

Java 5.0

serializable unchecked

An exception of this type is thrown during reflection if the generic type information
contained in a class file is syntactically correct but semantically wrong. An example
would be if the number of type parameters in a ParameterizedType differs from the number
of type variables declared by the generic type. See also GenericSignatureFormatError. Although
this type is not an Error, it does indicate a malformed class file and should not arise in
common practice.

Member
java.lang.reflect

Java 1.1

This interface defines the methods shared by all members (fields, methods, and
constructors) of a class. getName() returns the name of the member, getModifiers() returns
its modifiers, and getDeclaringClass() returns the Class object that represents the class of
which the member is a part. isSynthetic() returns true if the member is one that does not
appear in the source code but was introduced by the compiler.

Implementations Constructor, Field, Method

Method
java.lang.reflect

Java 1.1

This class represents a method. Instances of Method are obtained by calling the
getMethod() and related methods of java.lang.Class. Method implements the Member interface,
so you can use the methods of that interface to obtain the method name, modifiers,
and declaring class. In addition, getReturnType(), getParameterTypes(), and getExceptionTypes()
also return important information about the represented method.

// Public Instance Methods
public Throwable getTargetException();

// Public Methods Overriding Throwable
1.4 public Throwable getCause();
}

public class MalformedParameterizedTypeException extends RuntimeException {
// Public Constructors

public MalformedParameterizedTypeException();
}

public interface Member {
// Public Constants

public static final int DECLARED; =1
public static final int PUBLIC; =0

// Public Instance Methods
Class getDeclaringClass();
int getModifiers();
String getName();

5.0 boolean isSynthetic();
}

Object Throwable Exception RuntimeException MalformedParameterizedTypeException

Serializable

538 | Chapter 10: java.lang and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.lang.reflect.Method

Perhaps most importantly, the invoke() method allows the method represented by the
Method object to be invoked with a specified array of argument values. If any of the
arguments are of primitive types, they must be converted to their corresponding
wrapper object types in order to be passed to invoke(). If the represented method is an
instance method (i.e., if it is not static), the instance on which it should be invoked must
also be passed to invoke(). The return value of the represented method is returned by
invoke(). If the return value is a primitive value, it is first converted to the corresponding
wrapper type. If the invoked method causes an exception, the Throwable object it throws
is wrapped within the InvocationTargetException that is thrown by invoke().

In Java 5.0, Method implements GenericDeclaration to support reflection on the type vari-
ables defined by generic methods and AnnotatedElement to support reflection on method
annotations. Additionally, getParameterAnnotations() supports reflection on method param-
eter annotations. The new methods getGenericReturnType(), getGenericParameterTypes(), and
getGenericExceptionTypes() support reflection on generic method signatures. Finally, the new
isVarArgs() method returns true if the method was declared using Java 5.0 varargs syntax.

Passed To java.lang.annotation.AnnotationTypeMismatchException.AnnotationTypeMismatchException(),
InvocationHandler.invoke()

public final class Method extends AccessibleObject implements GenericDeclaration, Member {
// No Constructor
// Public Instance Methods
5.0 public Object getDefaultValue();

public Class<?>[] getExceptionTypes();
5.0 public Type[] getGenericExceptionTypes();
5.0 public Type[] getGenericParameterTypes();
5.0 public Type getGenericReturnType();
5.0 public java.lang.annotation.Annotation[][] getParameterAnnotations();

public Class<?>[] getParameterTypes();
public Class<?> getReturnType();
public Object invoke(Object obj, Object... args)

throws IllegalAccessException, IllegalArgumentException, InvocationTargetException;
5.0 public boolean isBridge();
5.0 public boolean isVarArgs();
5.0 public String toGenericString();
// Methods Implementing GenericDeclaration
5.0 public TypeVariable<Method>[] getTypeParameters();
// Methods Implementing Member

public Class<?> getDeclaringClass();
public int getModifiers();
public String getName();

5.0 public boolean isSynthetic();
// Public Methods Overriding AccessibleObject
5.0 public <T extends java.lang.annotation.Annotation> T getAnnotation(Class<T> annotationClass);
5.0 public java.lang.annotation.Annotation[] getDeclaredAnnotations();
// Public Methods Overriding Object

public boolean equals(Object obj);
public int hashCode();
public String toString();

}

Object AccessibleObject Method

AnnotatedElement GenericDeclaration Member

Chapter 10: java.lang and Subpackages | 539

java.lang.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.lang.reflect.ParameterizedType

Returned By Class.{getDeclaredMethod(), getDeclaredMethods(), getEnclosingMethod(), getMethod(),
getMethods()}, java.lang.annotation.AnnotationTypeMismatchException.element()

Modifier
java.lang.reflect

Java 1.1

This class defines a number of constants and static methods that can interpret the
integer values returned by the getModifiers() methods of the Field, Method, and Constructor
classes. The isPublic(), isAbstract(), and related methods return true if the modifier value
includes the specified modifier; otherwise, they return false. The constants defined by
this class specify the various bit flags used in the modifiers value. You can use these
constants to test for modifiers if you want to perform your own boolean algebra.

ParameterizedType
java.lang.reflect

Java 5.0

This subinterface of Type represents a parameterized type. getRawType() returns the base
type that has been parameterized. getActualTypeArguments() returns the type parameters as
a Type[]. Note that these parameters may themselves be ParameterizedType objects.
getOwnerType() is used with parameterized types that are also nested types: it returns the
generic type of the containing type.

public class Modifier {
// Public Constructors

public Modifier();
// Public Constants

public static final int ABSTRACT; =1024
public static final int FINAL; =16
public static final int INTERFACE; =512
public static final int NATIVE; =256
public static final int PRIVATE; =2
public static final int PROTECTED; =4
public static final int PUBLIC; =1
public static final int STATIC; =8

1.2 public static final int STRICT; =2048
public static final int SYNCHRONIZED; =32
public static final int TRANSIENT; =128
public static final int VOLATILE; =64

// Public Class Methods
public static boolean isAbstract(int mod);
public static boolean isFinal(int mod);
public static boolean isInterface(int mod);
public static boolean isNative(int mod);
public static boolean isPrivate(int mod);
public static boolean isProtected(int mod);
public static boolean isPublic(int mod);
public static boolean isStatic(int mod);

1.2 public static boolean isStrict(int mod);
public static boolean isSynchronized(int mod);
public static boolean isTransient(int mod);
public static boolean isVolatile(int mod);
public static String toString(int mod);

}

540 | Chapter 10: java.lang and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.lang.reflect.Proxy

Proxy
java.lang.reflect

Java 1.3

serializable

This class defines a simple but powerful API for dynamically generating a proxy class.
A proxy class implements a specified list of interfaces and delegates invocations of the
methods defined by those interfaces to a separate invocation handler object.

The static getProxyClass() method dynamically creates a new Class object that implements
each of the interfaces specified in the supplied Class[] array. The newly created class is
defined in the context of the specified ClassLoader. The Class returned by getProxyClass() is a
subclass of Proxy. Every class that is dynamically generated by getProxyClass() has a single
public constructor, which expects a single argument of type InvocationHandler. You can
create an instance of the dynamic proxy class by using the Constructor class to invoke this
constructor. Or, more simply, you can combine the call to getProxyClass() with the
constructor call by calling the static newProxyInstance() method, which both defines and
instantiates a proxy class.

Every instance of a dynamic proxy class has an associated InvocationHandler object. All
method calls made on a proxy class are translated into calls to the invoke() method of
this InvocationHandler object, which can handle the call in any way it sees fit. The static
getInvocationHandler() method returns the InvocationHandler object for a given proxy object.
The static isProxyClass() method returns true if a specified Class object is a dynamically
generated proxy class.

ReflectPermission
java.lang.reflect

Java 1.2

serializable permission

This class is a java.security.Permission that governs access to private, protected, and default-
visibility methods, constructors, and fields through the Java Reflection API. In Java 1.2,
the only defined name, or target, for ReflectPermission is “suppressAccessChecks”. This
permission is required to call the setAccessible() method of AccessibleObject. Unlike some Permis-
sion subclasses, ReflectPermission does not use a list of actions. See also AccessibleObject.

public interface ParameterizedType extends Type {
// Public Instance Methods

Type[] getActualTypeArguments();
Type getOwnerType();
Type getRawType();

}

public class Proxy implements Serializable {
// Protected Constructors

protected Proxy(InvocationHandler h);
// Public Class Methods

public static InvocationHandler getInvocationHandler(Object proxy) throws IllegalArgumentException;
public static Class<?> getProxyClass(ClassLoader loader, Class<?> ... interfaces) throws IllegalArgumentException;
public static boolean isProxyClass(Class<?> cl);
public static Object newProxyInstance(ClassLoader loader, Class<?>[] interfaces, InvocationHandler h)

throws IllegalArgumentException;
// Protected Instance Fields

protected InvocationHandler h;
}

Type ParameterizedType

Object Proxy Serializable

Chapter 10: java.lang and Subpackages | 541

java.lang.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.lang.reflect.TypeVariable<D extends GenericDeclaration>

System administrators configuring security policies should be familiar with this class,
but application programmers should never need to use it directly.

Type
java.lang.reflect

Java 5.0

This interface has no members but is implemented or extended by any type that
represents a generic or nongeneric type. java.lang.Class implements this interface. Type is
also extended by four interfaces that represent four specific kinds of generic types:
ParameterizedType, TypeVariable, WildcardType, and GenericArrayType.

Implementations Class, GenericArrayType, ParameterizedType, TypeVariable, WildcardType

Returned By Class.{getGenericInterfaces(), getGenericSuperclass()}, Constructor.{getGenericExceptionTypes(),
getGenericParameterTypes()}, Field.getGenericType(), GenericArrayType.getGenericComponentType(),
Method.{getGenericExceptionTypes(), getGenericParameterTypes(), getGenericReturnType()},
ParameterizedType.{getActualTypeArguments(), getOwnerType(), getRawType()}, TypeVariable.getBounds(),
WildcardType.{getLowerBounds(), getUpperBounds()}

TypeVariable<D extends GenericDeclaration>
java.lang.reflect

Java 5.0

This interface extends Type and represents the generic type represented by a type vari-
able. getName() returns the name of the type variable, as it was declared in Java source
code. getBounds() returns an array of Type objects that serve as the upper bounds for the
variable. The returned array is never empty: if the type variable has no bounds
declared, the single element of the array is Object.class. The getGenericDeclaration() method
returns the Class, Method, or Constructor that declared this type variable (each of these
classes implements the GenericDeclaration interface). Note that TypeVariable is itself a generic
type and is parameterized with the kind of GenericDeclaration that declared the variable.

Returned By Class.getTypeParameters(), Constructor.getTypeParameters(),
GenericDeclaration.getTypeParameters(), Method.getTypeParameters()

public final class ReflectPermission extends java.security.BasicPermission {
// Public Constructors

public ReflectPermission(String name);
public ReflectPermission(String name, String actions);

}

public interface Type {
}

public interface TypeVariable<D extends GenericDeclaration> extends Type {
// Public Instance Methods

Type[] getBounds();
D getGenericDeclaration();
String getName();

}

Object Permission BasicPermission ReflectPermission

Guard Serializable Serializable

Type TypeVariable

542 | Chapter 10: java.lang and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.lang.reflect.UndeclaredThrowableException

UndeclaredThrowableException
java.lang.reflect

Java 1.3

serializable unchecked

Thrown by a method of a Proxy object if the invoke() method of the proxy’s InvocationHan-
dler throws a checked exception not declared by the original method. This class serves
as an unchecked exception wrapper around the checked exception. Use
getUndeclaredThrowable() to obtain the checked exception thrown by invoke(). In Java 1.4
and later, all exceptions can be “chained” in this way, and getUndeclaredThrowable() is
superseded by the more general getCause() method.

WildcardType
java.lang.reflect

Java 5.0

This interface extends Type and represents a generic type declared with a bounded or
unbounded wildcard. getUpperBounds() returns the upper bounds of the wildcard. The
returned array always includes at least one element. If no upper bound is declared,
Object.class is the implicit upper bound. getLowerBounds() returns the lower bounds of the
wildcard. If no lower bound is declared, this method returns an empty array.

public class UndeclaredThrowableException extends RuntimeException {
// Public Constructors

public UndeclaredThrowableException(Throwable undeclaredThrowable);
public UndeclaredThrowableException(Throwable undeclaredThrowable, String s);

// Public Instance Methods
public Throwable getUndeclaredThrowable();

// Public Methods Overriding Throwable
1.4 public Throwable getCause();
}

public interface WildcardType extends Type {
// Public Instance Methods

Type[] getLowerBounds();
Type[] getUpperBounds();

}

Object Throwable Exception RuntimeException UndeclaredThrowableException

Serializable

Type WildcardType

543

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Chapter 11java.math

11
java.math

Package java.math Java 1.1

The java.math package contains the BigInteger class for arbitrary-precision integer arith-
metic, which is useful for cryptography. It also contains the BigDecimal class for arbitrary
precision decimal floating-point arithmetic, which is useful for financial applications
that need to be careful about rounding errors. The BigDecimal class is greatly enhanced in
Java 5.0 and is accompanied by the new types MathContext and RoundingMode.

Enumerated Types
public enum RoundingMode;

Classes
public class BigDecimal extends Number implements Comparable<BigDecimal>;
public class BigInteger extends Number implements Comparable<BigInteger>;
public final class MathContext implements Serializable;

BigDecimal
java.math

Java 1.1

serializable comparable

This subclass of java.lang.Number represents a floating-point number of arbitrary size and
precision. Because it uses a decimal rather than binary floating-point representation, it is
not subject to the rounding errors that the float and double types are. This makes BigDecimal
well-suited to financial and similar applications.

BigDecimal provides add(), subtract(), multiply(), and divide() methods to support basic arith-
metic. In Java 5.0, this class has been expanded to define many more methods, including
pow() for exponentiation. Many of the new methods use a MathContext to specify the
desired precision of the result and the RoundingMode to be used to achieve that precision.

BigDecimal extends Number and implements the Comparable interface. The compareTo() method
compares the value of two BigDecimal objects and returns –1, 0, or 1 to indicate the result
of the comparison. Use this method in place of the <, <=, >, and >= operators that
you’d use with float and double values.

544 | Chapter 11: java.math

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.math.BigDecimal

A BigDecimal object is represented as an integer of arbitrary size and an integer scale that
specifies the number of decimal places in the value. When working with BigDecimal
values, you can explicitly specify the precision (i.e., the number of decimal places) you
are interested in. Also, whenever a BigDecimal method can discard precision (e.g., in a
division operation), you are required to specify what sort of rounding should be
performed on the digit to the left of the discarded digit or digits. The eight constants
defined by this class specify the available rounding modes. In Java 5.0, however, the
preferred way to specify a rounding mode is with the enumerated type RoundingMode.

public class BigDecimal extends Number implements Comparable<BigDecimal> {
// Public Constructors

public BigDecimal(BigInteger val);
5.0 public BigDecimal(int val);
5.0 public BigDecimal(long val);

public BigDecimal(String val);
5.0 public BigDecimal(char[] in);

public BigDecimal(double val);
5.0 public BigDecimal(long val, MathContext mc);
5.0 public BigDecimal(int val, MathContext mc);
5.0 public BigDecimal(double val, MathContext mc);
5.0 public BigDecimal(String val, MathContext mc);
5.0 public BigDecimal(char[] in, MathContext mc);

public BigDecimal(BigInteger unscaledVal, int scale);
5.0 public BigDecimal(BigInteger val, MathContext mc);
5.0 public BigDecimal(BigInteger unscaledVal, int scale, MathContext mc);
5.0 public BigDecimal(char[] in, int offset, int len);
5.0 public BigDecimal(char[] in, int offset, int len, MathContext mc);
// Public Constants
5.0 public static final BigDecimal ONE;

public static final int ROUND_CEILING; =2
public static final int ROUND_DOWN; =1
public static final int ROUND_FLOOR; =3
public static final int ROUND_HALF_DOWN; =5
public static final int ROUND_HALF_EVEN; =6
public static final int ROUND_HALF_UP; =4
public static final int ROUND_UNNECESSARY; =7
public static final int ROUND_UP; =0

5.0 public static final BigDecimal TEN;
5.0 public static final BigDecimal ZERO;
// Public Class Methods

public static BigDecimal valueOf(long val);
5.0 public static BigDecimal valueOf(double val);

public static BigDecimal valueOf(long unscaledVal, int scale);
// Public Instance Methods

public BigDecimal abs();
5.0 public BigDecimal abs(MathContext mc);

public BigDecimal add(BigDecimal augend);
5.0 public BigDecimal add(BigDecimal augend, MathContext mc);
5.0 public byte byteValueExact();

public int compareTo(BigDecimal val); Implements:Comparable

Object Number BigDecimal

Serializable Comparable

Chapter 11: java.math | 545

java.m
ath

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.math.BigDecimal

5.0 public BigDecimal divide(BigDecimal divisor);
public BigDecimal divide(BigDecimal divisor, int roundingMode);

5.0 public BigDecimal divide(BigDecimal divisor, RoundingMode roundingMode);
5.0 public BigDecimal divide(BigDecimal divisor, MathContext mc);

public BigDecimal divide(BigDecimal divisor, int scale, int roundingMode);
5.0 public BigDecimal divide(BigDecimal divisor, int scale, RoundingMode roundingMode);
5.0 public BigDecimal[] divideAndRemainder(BigDecimal divisor);
5.0 public BigDecimal[] divideAndRemainder(BigDecimal divisor, MathContext mc);
5.0 public BigDecimal divideToIntegralValue(BigDecimal divisor);
5.0 public BigDecimal divideToIntegralValue(BigDecimal divisor, MathContext mc);
5.0 public int intValueExact();
5.0 public long longValueExact();

public BigDecimal max(BigDecimal val);
public BigDecimal min(BigDecimal val);
public BigDecimal movePointLeft(int n);
public BigDecimal movePointRight(int n);
public BigDecimal multiply(BigDecimal multiplicand);

5.0 public BigDecimal multiply(BigDecimal multiplicand, MathContext mc);
public BigDecimal negate();

5.0 public BigDecimal negate(MathContext mc);
5.0 public BigDecimal plus();
5.0 public BigDecimal plus(MathContext mc);
5.0 public BigDecimal pow(int n);
5.0 public BigDecimal pow(int n, MathContext mc);
5.0 public int precision();
5.0 public BigDecimal remainder(BigDecimal divisor);
5.0 public BigDecimal remainder(BigDecimal divisor, MathContext mc);
5.0 public BigDecimal round(MathContext mc);

public int scale();
5.0 public BigDecimal scaleByPowerOfTen(int n);

public BigDecimal setScale(int newScale);
public BigDecimal setScale(int newScale, int roundingMode);

5.0 public BigDecimal setScale(int newScale, RoundingMode roundingMode);
5.0 public short shortValueExact();

public int signum();
5.0 public BigDecimal stripTrailingZeros();

public BigDecimal subtract(BigDecimal subtrahend);
5.0 public BigDecimal subtract(BigDecimal subtrahend, MathContext mc);

public BigInteger toBigInteger();
5.0 public BigInteger toBigIntegerExact();
5.0 public String toEngineeringString();
5.0 public String toPlainString();
5.0 public BigDecimal ulp();
1.2 public BigInteger unscaledValue();
// Methods Implementing Comparable

public int compareTo(BigDecimal val);
// Public Methods Overriding Number

public double doubleValue();
public float floatValue();
public int intValue();
public long longValue();

// Public Methods Overriding Object
public boolean equals(Object x);

546 | Chapter 11: java.math

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.math.BigInteger

Passed To javax.xml.datatype.DatatypeFactory.{newDuration(), newXMLGregorianCalendar(),
newXMLGregorianCalendarTime()}, javax.xml.datatype.Duration.multiply(),
javax.xml.datatype.XMLGregorianCalendar.{setFractionalSecond(), setTime()}

Returned By java.util.Scanner.nextBigDecimal(),
javax.xml.datatype.XMLGregorianCalendar.getFractionalSecond()

BigInteger
java.math

Java 1.1

serializable comparable

This subclass of java.lang.Number represents integers that can be arbitrarily large (i.e., inte-
gers that are not limited to the 64 bits available with the long data type). BigInteger
defines methods that duplicate the functionality of the standard Java arithmetic and
bit-manipulation operators. The compareTo() method compares two BigInteger objects and
returns –1, 0, or 1 to indicate the result of the comparison. The gcd(), modPow(),
modInverse(), and isProbablePrime() methods perform advanced operations and are used
primarily in cryptographic and related algorithms.

public int hashCode();
public String toString();

}

public class BigInteger extends Number implements Comparable<BigInteger> {
// Public Constructors

public BigInteger(byte[] val);
public BigInteger(String val);
public BigInteger(String val, int radix);
public BigInteger(int signum, byte[] magnitude);
public BigInteger(int numBits, java.util.Random rnd);
public BigInteger(int bitLength, int certainty, java.util.Random rnd);

// Public Constants
1.2 public static final BigInteger ONE;
5.0 public static final BigInteger TEN;
1.2 public static final BigInteger ZERO;
// Public Class Methods
1.4 public static BigInteger probablePrime(int bitLength, java.util.Random rnd);

public static BigInteger valueOf(long val);
// Public Instance Methods

public BigInteger abs();
public BigInteger add(BigInteger val);
public BigInteger and(BigInteger val);
public BigInteger andNot(BigInteger val);
public int bitCount();
public int bitLength();
public BigInteger clearBit(int n);
public int compareTo(BigInteger val); Implements:Comparable
public BigInteger divide(BigInteger val);
public BigInteger[] divideAndRemainder(BigInteger val);
public BigInteger flipBit(int n);
public BigInteger gcd(BigInteger val);
public int getLowestSetBit();

Object Number BigInteger

Serializable Comparable

Chapter 11: java.math | 547

java.m
ath

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.math.MathContext

Passed To Too many methods to list.

Returned By Too many methods to list.

Type Of java.security.spec.RSAKeyGenParameterSpec.{F0, F4}

MathContext
java.math

Java 5.0

serializable

This simple class represents a precision (number of significant digits) and a Rounding-
Mode to be used in BigDecimal arithmetic. The constants are predefined MathContext objects
that can be used to select unlimited precision arithmetic or to select specific operating
modes that match decimal floating-point modes defined by the IEEE 754R standard.

public boolean isProbablePrime(int certainty);
public BigInteger max(BigInteger val);
public BigInteger min(BigInteger val);
public BigInteger mod(BigInteger m);
public BigInteger modInverse(BigInteger m);
public BigInteger modPow(BigInteger exponent, BigInteger m);
public BigInteger multiply(BigInteger val);
public BigInteger negate();

5.0 public BigInteger nextProbablePrime();
public BigInteger not();
public BigInteger or(BigInteger val);
public BigInteger pow(int exponent);
public BigInteger remainder(BigInteger val);
public BigInteger setBit(int n);
public BigInteger shiftLeft(int n);
public BigInteger shiftRight(int n);
public int signum();
public BigInteger subtract(BigInteger val);
public boolean testBit(int n);
public byte[] toByteArray();
public String toString(int radix);
public BigInteger xor(BigInteger val);

// Methods Implementing Comparable
public int compareTo(BigInteger val);

// Public Methods Overriding Number
public double doubleValue();
public float floatValue();
public int intValue();
public long longValue();

// Public Methods Overriding Object
public boolean equals(Object x);
public int hashCode();
public String toString();

}

public final class MathContext implements Serializable {
// Public Constructors

public MathContext(int setPrecision);
public MathContext(String val);
public MathContext(int setPrecision, RoundingMode setRoundingMode);

Object MathContext Serializable

548 | Chapter 11: java.math

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.math.RoundingMode

Passed To Too many methods to list.

RoundingMode
java.math

Java 5.0

serializable comparable enum

The constants defined by this enumerated type represent possible ways of rounding
numbers. UP and DOWN specify rounding away from zero or toward zero. CEILING and FLOOR
represent rounding toward positive infinity and negative infinity. HALF_UP, HALF_DOWN, and
HALF_EVEN all round toward the nearest value and differ only in what they do when two
values are equidistant. In this case, they round up, down, or to the “even” neighbor.
UNNECESSARY is a special rounding mode that serves as an assertion that an arithmetic oper-
ation will have an exact result and that rounding is not needed. If this assertion
fails—that is, if the operation does require rounding—an ArithmeticException is thrown.

Passed To BigDecimal.{divide(), setScale()}, MathContext.MathContext()

Returned By MathContext.getRoundingMode()

// Public Constants
public static final MathContext DECIMAL128;
public static final MathContext DECIMAL32;
public static final MathContext DECIMAL64;
public static final MathContext UNLIMITED;

// Public Instance Methods
public int getPrecision();
public RoundingMode getRoundingMode();

// Public Methods Overriding Object
public boolean equals(Object x);
public int hashCode();
public String toString();

}

public enum RoundingMode {
// Enumerated Constants

UP,
DOWN,
CEILING,
FLOOR,
HALF_UP,
HALF_DOWN,
HALF_EVEN,
UNNECESSARY;

// Public Class Methods
public static RoundingMode valueOf(int rm);
public static RoundingMode valueOf(String name);
public static final RoundingMode[] values();

}

Object Enum RoundingMode

Comparable Serializable

549

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Chapter 12java.net

12
java.net

Package java.net Java 1.0

The java.net package provides a powerful and flexible infrastructure for networking.
This introduction describes the most commonly used classes in brief. Note that as of
Java 1.4, the New I/O API of java.nio and java.nio.channels can be used for high-perfor-
mance nonblocking networking. See also the javax.net.ssl package for classes for secure
networking using SSL.

The URL class represents an Internet uniform resource locator (URL). It provides a very
simple interface to networking: the object referred to by the URL can be downloaded
with a single call, or streams may be opened to read from or write to the object. At a
slightly more complex level, a URLConnection object can be obtained from a given URL
object. The URLConnection class provides additional methods that allow you to work with
URLs in more sophisticated ways. Java 1.4 introduced the URI class; it provides a
powerful API for manipulating URI and URL strings but does not have any networking
capabilities itself. Java 5.0 defines APIs for defining and registering cache, cookie, and
proxy handlers to be used by built-in protocol handlers when network resources are
requested through the URL class. See RequestCache, CookieHandler, ProxySelector, and Proxy.

If you want to do more than simply download an object referenced by a URL, you can
do your own networking with the Socket class. This class allows you to connect to a
specified port on a specified Internet host and read and write data using the InputStream
and OutputStream classes of the java.io package. If you want to implement a server to
accept connections from clients, you can use the related ServerSocket class. Both Socket
and ServerSocket use the InetAddress address class, which represents an Internet address.
Added in Java 1.4, Inet4Address and Inet6Address are subclasses that represent the addresses
used by version 4 and version 6 of the IP protocol. Java 1.4 also introduced the Socket-
Address class as a high-level representation of a network address that is not tied to a
specific networking protocol. An IP-specific InetSocketAddress subclass encapsulates an
InetAddress and a port number.

550 | Chapter 12: java.net

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

The java.net package allows you to do low-level networking with DatagramPacket objects,
which may be sent and received over the network through a DatagramSocket object.
MulticastSocket extends DatagramSocket to support multicast networking.

Interfaces
public interface ContentHandlerFactory;
public interface DatagramSocketImplFactory;
public interface FileNameMap;
public interface SocketImplFactory;
public interface SocketOptions;
public interface URLStreamHandlerFactory;

Enumerated Types
public enum Authenticator.RequestorType;
public enum Proxy.Type;

Classes
public abstract class Authenticator;
public abstract class CacheRequest;
public abstract class CacheResponse;

public abstract class SecureCacheResponse extends CacheResponse;
public abstract class ContentHandler;
public abstract class CookieHandler;
public final class DatagramPacket;
public class DatagramSocket;

public class MulticastSocket extends DatagramSocket;
public abstract class DatagramSocketImpl implements SocketOptions;
public class InetAddress implements Serializable;

public final class Inet4Address extends InetAddress;
public final class Inet6Address extends InetAddress;

public final class NetPermission extends java.security.BasicPermission;
public final class NetworkInterface;
public final class PasswordAuthentication;
public class Proxy;
public abstract class ProxySelector;
public abstract class ResponseCache;
public class ServerSocket;
public class Socket;
public abstract class SocketAddress implements Serializable;

public class InetSocketAddress extends SocketAddress;
public abstract class SocketImpl implements SocketOptions;
public final class SocketPermission extends java.security.Permission implements Serializable;
public final class URI implements Comparable<URI>, Serializable;
public final class URL implements Serializable;
public class URLClassLoader extends java.security.SecureClassLoader;
public abstract class URLConnection;

public abstract class HttpURLConnection extends URLConnection;
public abstract class JarURLConnection extends URLConnection;

public class URLDecoder;
public class URLEncoder;
public abstract class URLStreamHandler;

Chapter 12: java.net | 551

java.net

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.net.Authenticator

Exceptions
public class HttpRetryException extends java.io.IOException;
public class MalformedURLException extends java.io.IOException;
public class ProtocolException extends java.io.IOException;
public class SocketException extends java.io.IOException;

public class BindException extends SocketException;
public class ConnectException extends SocketException;
public class NoRouteToHostException extends SocketException;
public class PortUnreachableException extends SocketException;

public class SocketTimeoutException extends java.io.InterruptedIOException;
public class UnknownHostException extends java.io.IOException;
public class UnknownServiceException extends java.io.IOException;
public class URISyntaxException extends Exception;

Authenticator
java.net

Java 1.2

This abstract class defines a customizable mechanism for requesting and performing
password authentication when required in URL-based networking. The static setDefault()
method establishes the systemwide Authenticator. An Authenticator implementation can
obtain the required authentication information from the user however it wants (e.g.,
through a text- or a GUI-based interface). setDefault() can be called only once; subse-
quent calls are ignored. Calling setDefault() requires an appropriate NetPermission.

When an application or the Java runtime system requires password authentication (to
read the contents of a specified URL, for example), it calls the static
requestPasswordAuthentication() method, passing arguments that specify the host and port for
which the password is required and a prompt that may be displayed to the user. This
method looks up the default Authenticator for the system and calls its
getPasswordAuthentication() method. Calling requestPasswordAuthentication() requires an appro-
priate NetPermission.

Authenticator is an abstract class; its default implementation of getPasswordAuthentication()
always returns null. To create an Authenticator, you must override this method so that it
prompts the user to enter a username and password and returns that information in
the form of a PasswordAuthentication object. Your implementation of getPasswordAuthentication()
may call the various getRequesting() methods to find out who is requesting the password
and what the recommended user prompt is. Java 1.4 added a version of the static
requestPasswordAuthentication() method that allows specification of the requesting host-
name. A corresponding getRequestingHost() instance method was also added.

Java 5.0 adds yet another version of requestPasswordAuthentication(), and corresponding
methods to query the URL that requires the password and the RequestorType of the request.
RequestorType is a nested enum type that specifies whether the request comes from an
HTTP server or a proxy server.

public abstract class Authenticator {
// Public Constructors

public Authenticator();
// Nested Types
5.0 public enum RequestorType;
// Public Class Methods

public static PasswordAuthentication requestPasswordAuthentication(InetAddress addr, int port, String protocol,
String prompt, String scheme);

552 | Chapter 12: java.net

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.net.Authenticator.RequestorType

Authenticator.RequestorType
java.net

Java 5.0

serializable comparable enum

The constants defined by this enumerated type specify whether an authentication
request comes from an HTTP origin server or a proxy server.

Passed To Authenticator.requestPasswordAuthentication()

Returned By Authenticator.getRequestorType()

BindException
java.net

Java 1.1

serializable checked

Signals that a socket cannot be bound to a local address and port. This often means
that the port is already in use.

1.4 public static PasswordAuthentication requestPasswordAuthentication(String host, InetAddress addr, int port,
String protocol, String prompt, String scheme);

5.0 public static PasswordAuthentication requestPasswordAuthentication(String host, InetAddress addr, int port,
String protocol, String prompt, String scheme,
URL url, Authenticator.RequestorType reqType);

public static void setDefault(Authenticator a); synchronized
// Protected Instance Methods

protected PasswordAuthentication getPasswordAuthentication(); constant
1.4 protected final String getRequestingHost();

protected final int getRequestingPort();
protected final String getRequestingPrompt();
protected final String getRequestingProtocol();
protected final String getRequestingScheme();
protected final InetAddress getRequestingSite();

5.0 protected URL getRequestingURL();
5.0 protected Authenticator.RequestorType getRequestorType();
}

public enum Authenticator.RequestorType {
// Enumerated Constants

PROXY,
SERVER;

// Public Class Methods
public static Authenticator.RequestorType valueOf(String name);
public static final Authenticator.RequestorType[] values();

}

public class BindException extends SocketException {
// Public Constructors

public BindException();
public BindException(String msg);

}

Object Throwable Exception IOException SocketException BindException

Serializable

Chapter 12: java.net | 553

java.net

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.net.ConnectException

CacheRequest
java.net

Java 5.0

When a URLStreamHandler reads a network resource, it should call the put() method of the
currently installed ResponseCache, if there is one. If the cache wants to save a local copy of
the resource, it will return a CacheRequest object to the URLStreamHandler. The handler
should then write the resource to the OutputStream returned by the getBody() method.

See also CacheResponse. This class is used by the implementors of URLStreamHandler, not by
casual users of the java.net package.

Returned By ResponseCache.put()

CacheResponse
java.net

Java 5.0

If a ResponseCache holds a local copy of a network resource, it returns a CacheResponse object
from the ResponseCache.get() method. The resource can then be read from the java.io.Input-
Stream returned by getBody(). The protocol response headers are available in the form of
java.util.Map from getHeaders().

See also SecureCacheResponse and CacheRequest. Note that this class is intended for use in
URLStreamHandler implementations, not by casual users of the java.net package.

Subclasses SecureCacheResponse

Returned By ResponseCache.get()

ConnectException
java.net

Java 1.1

serializable checked

Signals that a socket cannot be connected to a remote address and port. This means
that the remote host can be reached, but is not responding, perhaps because there is
no process on that host that is listening on the specified port.

public abstract class CacheRequest {
// Public Constructors

public CacheRequest();
// Public Instance Methods

public abstract void abort();
public abstract java.io.OutputStream getBody() throws java.io.IOException;

}

public abstract class CacheResponse {
// Public Constructors

public CacheResponse();
// Public Instance Methods

public abstract java.io.InputStream getBody() throws java.io.IOException;
public abstract java.util.Map<String,java.util.List<String>> getHeaders() throws java.io.IOException;

}

public class ConnectException extends SocketException {
// Public Constructors

public ConnectException();
public ConnectException(String msg);

}

Object Throwable Exception IOException SocketException ConnectException

Serializable

554 | Chapter 12: java.net

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.net.ContentHandler

ContentHandler
java.net

Java 1.0

This abstract class defines a method that reads data from a URLConnection and returns an
object that represents that data. Each subclass that implements this method is respon-
sible for handling a different type of content (i.e., a different MIME type). Applications
never create ContentHandler objects directly; they are created, when necessary, by the
registered ContentHandlerFactory object. Applications should also never call ContentHandler
methods directly; they should call URL.getContent() or URLConnection.getContent() instead. You
need to subclass ContentHandler only if you are writing a web browser or similar applica-
tion that needs to parse and understand some new content type.

Returned By ContentHandlerFactory.createContentHandler()

ContentHandlerFactory
java.net

Java 1.0

This interface defines a method that creates and returns an appropriate ContentHandler
object for a specified MIME type. A systemwide ContentHandlerFactory interface may be
specified using the URLConnection.setContentHandlerFactory() method. Normal applications
never need to use or implement this interface.

Passed To URLConnection.setContentHandlerFactory()

CookieHandler
java.net

Java 5.0

This abstract class defines an API to be implemented by an application that wants to
manage HTTP cookies for networking done via the URL class. Install an implementa-
tion of this class with the setDefault() method. The default HTTP protocol handler uses
getDefault() to obtain the CookieHandler implementation. The protocol handler then calls
get() when it wants the CookieHandler to copy cookie values into HTTP request headers
and calls put() when it wants the CookieHandler to read a set of response headers and store
the cookies they contain.

This class is intended to be subclassed by advanced users of the package; it is not
intended for casual users.

public abstract class ContentHandler {
// Public Constructors

public ContentHandler();
// Public Instance Methods

public abstract Object getContent(URLConnection urlc) throws java.io.IOException;
1.3 public Object getContent(URLConnection urlc, Class[] classes) throws java.io.IOException;
}

public interface ContentHandlerFactory {
// Public Instance Methods

java.net.ContentHandler createContentHandler(String mimetype);
}

public abstract class CookieHandler {
// Public Constructors

public CookieHandler();
// Public Class Methods

public static CookieHandler getDefault(); synchronized

Chapter 12: java.net | 555

java.net

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.net.DatagramSocket

DatagramPacket
java.net

Java 1.0

This class implements a packet of data that may be sent or received over the network
through a DatagramSocket. Create a DatagramPacket to be sent over the network with one of
the consructor methods that includes a network address. Create a DatagramPacket into
which data can be received using one of the constructors that does not include a
network address argument. The receive() method of DatagramSocket waits for data and
stores it in a DatagramPacket created in this way. The contents and sender of a received
packet can be queried with the DatagramPacket instance methods.

New constructors and methods were added to this class in Java 1.4 to support the Sock-
etAddress abstraction of a network address.

Passed To DatagramSocket.{receive(), send()}, DatagramSocketImpl.{peekData(), receive(), send()},
MulticastSocket.send()

DatagramSocket
java.net

Java 1.0

This class defines a socket that can receive and send unreliable datagram packets over
the network using the UDP protocol. A datagram is a very low-level networking inter-
face: it is simply an array of bytes sent over the network. A datagram does not

public static void setDefault(CookieHandler cHandler); synchronized
// Public Instance Methods

public abstract java.util.Map<String,java.util.List<String>>
get(URI uri, java.util.Map<String,java.util.List<String>> requestHeaders)
throws java.io.IOException;

public abstract void put(URI uri, java.util.Map<String,java.util.List<String>> responseHeaders)
throws java.io.IOException;

}

public final class DatagramPacket {
// Public Constructors

public DatagramPacket(byte[] buf, int length);
1.4 public DatagramPacket(byte[] buf, int length, SocketAddress address) throws SocketException;
1.2 public DatagramPacket(byte[] buf, int offset, int length);

public DatagramPacket(byte[] buf, int length, InetAddress address, int port);
1.4 public DatagramPacket(byte[] buf, int offset, int length, SocketAddress address) throws SocketException;
1.2 public DatagramPacket(byte[] buf, int offset, int length, InetAddress address, int port);
// Public Instance Methods

public InetAddress getAddress(); synchronized
public byte[] getData(); synchronized
public int getLength(); synchronized

1.2 public int getOffset(); synchronized
public int getPort(); synchronized

1.4 public SocketAddress getSocketAddress(); synchronized
1.1 public void setAddress(InetAddress iaddr); synchronized
1.1 public void setData(byte[] buf); synchronized
1.2 public void setData(byte[] buf, int offset, int length); synchronized
1.1 public void setLength(int length); synchronized
1.1 public void setPort(int iport); synchronized
1.4 public void setSocketAddress(SocketAddress address); synchronized
}

556 | Chapter 12: java.net

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.net.DatagramSocket

implement any kind of stream-based communication protocol, and there is no connec-
tion established between the sender and the receiver. Datagram packets are called
unreliable because the protocol does not make any attempt to ensure they arrive or to
resend them if they don’t. Thus, packets sent through a DatagramSocket are not guaran-
teed to arrive in the order sent or even to arrive at all. On the other hand, this low-
overhead protocol makes datagram transmission very fast. See Socket and URL for higher-
level interfaces to networking. This class was introduced in Java 1.0, and was
enhanced in Java 1.4 to allow local and remote addresses to be specified using the
protocol-independent SocketAddress class.

send() sends a DatagramPacket through the socket. The packet must contain the destina-
tion address to which it should be sent. receive() waits for data to arrive at the socket
and stores it, along with the address of the sender, in the specified DatagramPacket. close()
closes the socket and frees the local port for reuse. Once close() has been called, the Data-
gramSocket should not be used again, except to call the isClosed() method which returns
true if the socket has been closed.

Each time a packet is sent or received, the system must perform a security check to
ensure that the calling code has permission to send data to or receive data from the
specified host. In Java 1.2 and later, if you are sending multiple packets to or receiving
multiple packets from a single host, use connect() to specify the host with which you are
communicating. This causes the security check to be done a single time, but does not
allow the socket to communicate with any other host until disconnect() is called. Use
getRemoteSocketAddress() or getInetAddress() and getPort() to obtain the network address, if any,
that the socket is connected to. Use isConnected() to determine if the socket is currently
connected in this way.

By default, a DatagramSocket sends data through a local address assigned by the system. If
desired, however, you can bind the socket to a specified local address. Do this by using
one of the constructors other than the no-arg constructor. Or, bind the DatagramSocket to
a local SocketAddress with the bind() method. You can determine whether a Datagram-
Socket is bound with isBound(), and you can obtain the local address of the socket with
getLocalSocketAddress() or with getLocalAddress() and getLocalPort().

This class defines a number of get/set method pairs for setting and querying a variety
of “socket options” for datagram transmission. setSoTimeout() specifies the number of
milliseconds that receive() waits for a packet to arrive before throwing an InterruptedIOExcep-
tion. Specify 0 milliseconds to wait forever. setSendBufferSize() and setReceiveBufferSize() set
hints as to the underlying size of the networking buffers. setBroadcast(), setReuseAddress(),
and setTrafficClass() set more complex socket options; use of these options requires a
sophisticated understanding of low-level network protocols, and an explaination of
them is beyond the scope of this reference.

In Java 1.4 and later, getChannel() returns a java.nio.channels.DatagramChannel associated with
this DatagramSocket. Sockets created with one of the DatagramSocket() constructors always
return null from this method. getChannel() only returns a useful value for sockets that
were created by and belong to a DatagramChannel.

public class DatagramSocket {
// Public Constructors

public DatagramSocket() throws SocketException;
1.4 public DatagramSocket(SocketAddress bindaddr) throws SocketException;

public DatagramSocket(int port) throws SocketException;
1.1 public DatagramSocket(int port, InetAddress laddr) throws SocketException;
// Protected Constructors

Chapter 12: java.net | 557

java.net

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.net.DatagramSocketImpl

Subclasses MulticastSocket

Returned By java.nio.channels.DatagramChannel.socket()

DatagramSocketImpl
java.net

Java 1.1

This abstract class defines the methods necessary to implement communication
through datagram and multicast sockets. System programmers may create subclasses
of this class when they need to implement datagram or multicast sockets in a
nonstandard network environment, such as behind a firewall or on a network that uses
a nonstandard transport protocol. Normal applications never need to use or subclass
this class.

1.4 publicprotected DatagramSocket(DatagramSocketImpl impl);
// Public Class Methods
1.3 public static void setDatagramSocketImplFactory(DatagramSocketImplFactory fac)

throws java.io.IOException;
synchronized

// Public Instance Methods
1.4 public void bind(SocketAddress addr) throws SocketException; synchronized

public void close();
1.4 public void connect(SocketAddress addr) throws SocketException;
1.2 public void connect(InetAddress address, int port);
1.2 public void disconnect();
1.4 public boolean getBroadcast() throws SocketException; synchronized default:true
1.4 public java.nio.channels.DatagramChannel getChannel(); constant default:null
1.2 public InetAddress getInetAddress(); default:null
1.1 public InetAddress getLocalAddress(); default:Inet4Address

public int getLocalPort(); default:32777
1.4 public SocketAddress getLocalSocketAddress(); default:InetSocketAddress
1.2 public int getPort(); default:-1
1.2 public int getReceiveBufferSize() throws SocketException; synchronized default:32767
1.4 public SocketAddress getRemoteSocketAddress(); default:null
1.4 public boolean getReuseAddress() throws SocketException; synchronized default:false
1.2 public int getSendBufferSize() throws SocketException; synchronized default:32767
1.1 public int getSoTimeout() throws SocketException; synchronized default:0
1.4 public int getTrafficClass() throws SocketException; synchronized default:0
1.4 public boolean isBound(); default:true
1.4 public boolean isClosed(); default:false
1.4 public boolean isConnected(); default:false

public void receive(DatagramPacket p) throws java.io.IOException; synchronized
public void send(DatagramPacket p) throws java.io.IOException;

1.4 public void setBroadcast(boolean on) throws SocketException; synchronized
1.2 public void setReceiveBufferSize(int size) throws SocketException; synchronized
1.4 public void setReuseAddress(boolean on) throws SocketException; synchronized
1.2 public void setSendBufferSize(int size) throws SocketException; synchronized
1.1 public void setSoTimeout(int timeout) throws SocketException; synchronized
1.4 public void setTrafficClass(int tc) throws SocketException; synchronized
}

public abstract class DatagramSocketImpl implements SocketOptions {
// Public Constructors

public DatagramSocketImpl();

Object DatagramSocketImpl SocketOptions

558 | Chapter 12: java.net

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.net.DatagramSocketImplFactory

Passed To DatagramSocket.DatagramSocket()

Returned By DatagramSocketImplFactory.createDatagramSocketImpl()

DatagramSocketImplFactory
java.net

Java 1.3

This interface defines a method that creates DatagramSocketImpl objects. You can register
an instance of this factory interface with the static setDatagramSocketImplFactory() method of
DatagramSocket. Application-level code never needs to use or implement this interface.

Passed To DatagramSocket.setDatagramSocketImplFactory()

FileNameMap
java.net

Java 1.1

This interface defines a single method that is called to obtain the MIME type of a file
based on the name of the file. The fileNameMap field of the URLConnection class refers to an
object that implements this interface. The filename-to-file-type map it implements is
used by the static URLConnection.guessContentTypeFromName() method.

// Protected Instance Methods
protected abstract void bind(int lport, InetAddress laddr) throws SocketException;
protected abstract void close();

1.4 protected void connect(InetAddress address, int port) throws SocketException; empty
protected abstract void create() throws SocketException;

1.4 protected void disconnect(); empty
protected java.io.FileDescriptor getFileDescriptor();
protected int getLocalPort();

1.2 protected abstract int getTimeToLive() throws java.io.IOException;
protected abstract void join(InetAddress inetaddr) throws java.io.IOException;

1.4 protected abstract void joinGroup(SocketAddress mcastaddr, NetworkInterface netIf) throws java.io.IOException;
protected abstract void leave(InetAddress inetaddr) throws java.io.IOException;

1.4 protected abstract void leaveGroup(SocketAddress mcastaddr, NetworkInterface netIf) throws java.io.IOException;
protected abstract int peek(InetAddress i) throws java.io.IOException;

1.4 protected abstract int peekData(DatagramPacket p) throws java.io.IOException;
protected abstract void receive(DatagramPacket p) throws java.io.IOException;
protected abstract void send(DatagramPacket p) throws java.io.IOException;

1.2 protected abstract void setTimeToLive(int ttl) throws java.io.IOException;
// Protected Instance Fields

protected java.io.FileDescriptor fd;
protected int localPort;

// Deprecated Protected Methods
protected abstract byte getTTL() throws java.io.IOException;
protected abstract void setTTL(byte ttl) throws java.io.IOException;
}

public interface DatagramSocketImplFactory {
// Public Instance Methods

DatagramSocketImpl createDatagramSocketImpl();
}

public interface FileNameMap {
// Public Instance Methods

String getContentTypeFor(String fileName);
}

Chapter 12: java.net | 559

java.net

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.net.HttpURLConnection

Passed To URLConnection.setFileNameMap()

Returned By URLConnection.getFileNameMap()

HttpRetryException
java.net

Java 5.0

serializable checked

An exception of this type is thrown when an HTTP request needs to be retried (due to a
server redirect or authentication request, for example) but the protocol handler cannot
automatically retry it because the HttpURLConnection has been placed in streaming mode. (See
the setFixedLengthStreamingMode() and setChunkedStreamingMode() methods of HttpURLConnection.)
The methods of the exception provide details about how the request should be retried.

HttpURLConnection
java.net

Java 1.1

This class is a specialization of URLConnection. An instance of this class is returned when
the openConnection() method is called for a URL object that uses the HTTP protocol. The
many constants defined by this class are the status codes returned by HTTP servers.
setRequestMethod() specifies what kind of HTTP request is made. The contents of this
request must be sent through the OutputStream returned by the getOutputStream() method of
the superclass. Once an HTTP request has been sent, getResponseCode() returns the HTTP
server’s response code as an integer, and getResponseMessage() returns the server’s
response message. The disconnect() method closes the connection. The static
setFollowRedirects() specifies whether URL connections that use the HTTP protocol should
automatically follow redirect responses sent by HTTP servers. In order to successfully
use this class, you need to understand the details of the HTTP protocol.

public class HttpRetryException extends java.io.IOException {
// Public Constructors

public HttpRetryException(String detail, int code);
public HttpRetryException(String detail, int code, String location);

// Public Instance Methods
public String getLocation();
public String getReason();
public int responseCode();

}

public abstract class HttpURLConnection extends URLConnection {
// Protected Constructors

protected HttpURLConnection(URL u);
// Public Constants

public static final int HTTP_ACCEPTED; =202
public static final int HTTP_BAD_GATEWAY; =502
public static final int HTTP_BAD_METHOD; =405
public static final int HTTP_BAD_REQUEST; =400
public static final int HTTP_CLIENT_TIMEOUT; =408
public static final int HTTP_CONFLICT; =409
public static final int HTTP_CREATED; =201
public static final int HTTP_ENTITY_TOO_LARGE; =413

Object Throwable Exception IOException HttpRetryException

Serializable

Object URLConnection HttpURLConnection

560 | Chapter 12: java.net

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.net.HttpURLConnection

public static final int HTTP_FORBIDDEN; =403
public static final int HTTP_GATEWAY_TIMEOUT; =504
public static final int HTTP_GONE; =410
public static final int HTTP_INTERNAL_ERROR; =500
public static final int HTTP_LENGTH_REQUIRED; =411
public static final int HTTP_MOVED_PERM; =301
public static final int HTTP_MOVED_TEMP; =302
public static final int HTTP_MULT_CHOICE; =300
public static final int HTTP_NO_CONTENT; =204
public static final int HTTP_NOT_ACCEPTABLE; =406
public static final int HTTP_NOT_AUTHORITATIVE; =203
public static final int HTTP_NOT_FOUND; =404

1.3 public static final int HTTP_NOT_IMPLEMENTED; =501
public static final int HTTP_NOT_MODIFIED; =304
public static final int HTTP_OK; =200
public static final int HTTP_PARTIAL; =206
public static final int HTTP_PAYMENT_REQUIRED; =402
public static final int HTTP_PRECON_FAILED; =412
public static final int HTTP_PROXY_AUTH; =407
public static final int HTTP_REQ_TOO_LONG; =414
public static final int HTTP_RESET; =205
public static final int HTTP_SEE_OTHER; =303
public static final int HTTP_UNAUTHORIZED; =401
public static final int HTTP_UNAVAILABLE; =503
public static final int HTTP_UNSUPPORTED_TYPE; =415
public static final int HTTP_USE_PROXY; =305
public static final int HTTP_VERSION; =505

// Public Class Methods
public static boolean getFollowRedirects();
public static void setFollowRedirects(boolean set);

// Public Instance Methods
public abstract void disconnect();

1.2 public java.io.InputStream getErrorStream(); constant
1.3 public boolean getInstanceFollowRedirects();

public String getRequestMethod();
public int getResponseCode() throws java.io.IOException;
public String getResponseMessage() throws java.io.IOException;

5.0 public void setChunkedStreamingMode(int chunklen);
5.0 public void setFixedLengthStreamingMode(int contentLength);
1.3 public void setInstanceFollowRedirects(boolean followRedirects);

public void setRequestMethod(String method) throws ProtocolException;
public abstract boolean usingProxy();

// Public Methods Overriding URLConnection
1.4 public String getHeaderField(int n); constant
1.3 public long getHeaderFieldDate(String name, long Default);
1.4 public String getHeaderFieldKey(int n); constant
1.2 public java.security.Permission getPermission() throws java.io.IOException;
// Protected Instance Fields
5.0 protected int chunkLength;
5.0 protected int fixedContentLength;
1.3 protected boolean instanceFollowRedirects;

protected String method;
protected int responseCode;
protected String responseMessage;

Chapter 12: java.net | 561

java.net

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.net.Inet6Address

Subclasses javax.net.ssl.HttpsURLConnection

Inet4Address
java.net

Java 1.4

serializable

Inet4Address implements methods defined by its superclass to make them specific to IPv4
(Internet Protocol version 4) internet addresses. Inet4Address does not have a constructor.
Create instances with the static methods of InetAddress, which return instances of
Inet4Address or Inet6Address as appropriate.

Inet6Address
java.net

Java 1.4

serializable

Inet6Address implements methods defined by its superclass to make them specific to IPv6
(Internet Protocol version 6) internet addresses. See RFC 2373 for complete details
about internet addresses of this type. Inet6Address does not have a constructor. Create
instances with the static methods of InetAddress, which return instances of Inet4Address or
Inet6Address as appropriate. In Java 5.0, you can also use the getByAddress() factory methods
of this class directly.

// Deprecated Public Fields
public static final int HTTP_SERVER_ERROR; =500
}

public final class Inet4Address extends InetAddress {
// No Constructor
// Public Methods Overriding InetAddress

public boolean equals(Object obj);
public byte[] getAddress();
public String getHostAddress();
public int hashCode();
public boolean isAnyLocalAddress();
public boolean isLinkLocalAddress();
public boolean isLoopbackAddress();
public boolean isMCGlobal();
public boolean isMCLinkLocal();
public boolean isMCNodeLocal(); constant
public boolean isMCOrgLocal();
public boolean isMCSiteLocal();
public boolean isMulticastAddress();
public boolean isSiteLocalAddress();

}

public final class Inet6Address extends InetAddress {
// No Constructor
// Public Class Methods
5.0 public static Inet6Address getByAddress(String host, byte[] addr, NetworkInterface nif) throws UnknownHostException;
5.0 public static Inet6Address getByAddress(String host, byte[] addr, int scope_id) throws UnknownHostException;

Object InetAddress Inet4Address

Serializable

Object InetAddress Inet6Address

Serializable

562 | Chapter 12: java.net

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.net.InetAddress

InetAddress
java.net

Java 1.0

serializable

This class represents an Internet Protocol (IP) address. The class does not have a public
constructor but instead supports static factory methods for obtaining InetAddress objects.
getLocalHost() returns the InetAddress of the local computer. getByName() returns the InetAddress
of a host specified by name. getAllByName() returns an array of InetAddress objects that repre-
sents all the available addresses for a host specified by name. getByAddress() returns an
InetAddress that represents the IP address defined by the specified array of bytes.

Once you have obtained an InetAddress object, its instance methods provide various sorts
of information about it. Two of the most important are getHostName(), which returns the
hostname, and getAddress(), which returns the IP address as an array of bytes, with the
highest-order byte as the first element of the array. getHostAddress() returns the IP address
formatted as a string rather than as an array of bytes. The various methods whose
names begin with “is” determine whether the address falls into any of the named cate-
gories. The “isMC” methods are all related to multicast addresses.

This class was originally defined in Java 1.0, but many of its methods were added in
Java 1.4. Java 1.4 also defined two subclasses, Inet4Address and Inet6Address representing
IPv4 and IPv6 (version 4 and version 6) addresses. Java 5.0 adds isReachable() for testing
whether the address describes a reachable (and responsive) host.

// Public Instance Methods
5.0 public NetworkInterface getScopedInterface();
5.0 public int getScopeId();

public boolean isIPv4CompatibleAddress();
// Public Methods Overriding InetAddress

public boolean equals(Object obj);
public byte[] getAddress();
public String getHostAddress();
public int hashCode();
public boolean isAnyLocalAddress();
public boolean isLinkLocalAddress();
public boolean isLoopbackAddress();
public boolean isMCGlobal();
public boolean isMCLinkLocal();
public boolean isMCNodeLocal();
public boolean isMCOrgLocal();
public boolean isMCSiteLocal();
public boolean isMulticastAddress();
public boolean isSiteLocalAddress();

}

public class InetAddress implements Serializable {
// No Constructor
// Public Class Methods

public static InetAddress[] getAllByName(String host) throws UnknownHostException;
1.4 public static InetAddress getByAddress(byte[] addr) throws UnknownHostException;
1.4 public static InetAddress getByAddress(String host, byte[] addr) throws UnknownHostException;

public static InetAddress getByName(String host) throws UnknownHostException;
public static InetAddress getLocalHost() throws UnknownHostException;

// Public Instance Methods
public byte[] getAddress(); constant

Object InetAddress Serializable

Chapter 12: java.net | 563

java.net

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.net.InetSocketAddress

Subclasses Inet4Address, Inet6Address

Passed To Too many methods to list.

Returned By Authenticator.getRequestingSite(), DatagramPacket.getAddress(),
DatagramSocket.{getInetAddress(), getLocalAddress()}, InetSocketAddress.getAddress(),
MulticastSocket.getInterface(), ServerSocket.getInetAddress(), Socket.{getInetAddress(), getLocalAddress()},
SocketImpl.getInetAddress(), URLStreamHandler.getHostAddress(),
javax.security.auth.kerberos.KerberosTicket.getClientAddresses()

Type Of SocketImpl.address

InetSocketAddress
java.net

Java 1.4

serializable

InetSocketAddress represents an the combination of an IP (Internet Protocol) address and a
port number. The constructors allow you to specify the IP address as an InetAddress or as
a hostname, and they also allow you to omit the IP address, in which case the wild-
card address is used (this is useful for server sockets).

1.4 public String getCanonicalHostName();
public String getHostAddress(); constant
public String getHostName();

1.4 public boolean isAnyLocalAddress(); constant
1.4 public boolean isLinkLocalAddress(); constant
1.4 public boolean isLoopbackAddress(); constant
1.4 public boolean isMCGlobal(); constant
1.4 public boolean isMCLinkLocal(); constant
1.4 public boolean isMCNodeLocal(); constant
1.4 public boolean isMCOrgLocal(); constant
1.4 public boolean isMCSiteLocal(); constant
1.1 public boolean isMulticastAddress(); constant
5.0 public boolean isReachable(int timeout) throws java.io.IOException;
5.0 public boolean isReachable(NetworkInterface netif, int ttl, int timeout) throws java.io.IOException;
1.4 public boolean isSiteLocalAddress(); constant
// Public Methods Overriding Object

public boolean equals(Object obj); constant
public int hashCode(); constant
public String toString();

}

public class InetSocketAddress extends SocketAddress {
// Public Constructors

public InetSocketAddress(int port);
public InetSocketAddress(InetAddress addr, int port);
public InetSocketAddress(String hostname, int port);

// Public Class Methods
5.0 public static InetSocketAddress createUnresolved(String host, int port);
// Public Instance Methods

public final InetAddress getAddress();
public final String getHostName();
public final int getPort();
public final boolean isUnresolved();

Object SocketAddress InetSocketAddress

Serializable

564 | Chapter 12: java.net

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.net.JarURLConnection

JarURLConnection
java.net

Java 1.2

This class is a specialized URLConnection that represents a connection to a jar: URL. A jar:
URL is a compound URL that includes the URL of a JAR archive and, optionally, a
reference to a file or directory within the JAR archive. The jar: URL syntax uses the !
character to separate the pathname of the JAR archive from the filename within the
JAR archive. Note that a jar: URL contains a subprotocol that specifies the protocol
that retrieves the JAR file itself. For example:

jar:http://my.jar.com/my.jar!/ // The whole archive
jar:file:/usr/java/lib/my.jar!/com/jar/ // A directory of the archive
jar:ftp://ftp.jar.com/pub/my.jar!/com/jar/Jar.class // A file in the archive

To obtain a JarURLConnection, define a URL object for a jar: URL, open a connection to it
with openConnection(), and cast the returned URLConnection object to a JarURLConnection. The
various methods defined by JarURLConnection allow you to read the manifest file of the
JAR archive and look up attributes from that manifest for the archive as a whole or for
individual entries in the archive. These methods make use of various classes from the
java.util.jar package.

MalformedURLException
java.net

Java 1.0

serializable checked

Signals that an unparseable URL specification has been passed to a method.

// Public Methods Overriding Object
public final boolean equals(Object obj);
public final int hashCode();
public String toString();

}

public abstract class JarURLConnection extends URLConnection {
// Protected Constructors

protected JarURLConnection(URL url) throws MalformedURLException;
// Public Instance Methods

public java.util.jar.Attributes getAttributes() throws java.io.IOException;
public java.security.cert.Certificate[] getCertificates() throws java.io.IOException;
public String getEntryName();
public java.util.jar.JarEntry getJarEntry() throws java.io.IOException;
public abstract java.util.jar.JarFile getJarFile() throws java.io.IOException;
public URL getJarFileURL();
public java.util.jar.Attributes getMainAttributes() throws java.io.IOException;
public java.util.jar.Manifest getManifest() throws java.io.IOException;

// Protected Instance Fields
protected URLConnection jarFileURLConnection;

}

public class MalformedURLException extends java.io.IOException {
// Public Constructors

Object URLConnection JarURLConnection

Object Throwable Exception IOException MalformedURLException

Serializable

Chapter 12: java.net | 565

java.net

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.net.MulticastSocket

Thrown By java.io.File.toURL(), JarURLConnection.JarURLConnection(), URI.toURL(), URL.URL()

MulticastSocket
java.net

Java 1.1

This subclass of DatagramSocket can send and receive multicast UDP packets. It extends
DatagramSocket by adding joinGroup() and leaveGroup() methods to join and leave multicast
groups. You do not have to join a group to send a packet to a multicast address, but
you must join the group to receive packets sent to that address. Note that the use of a
MulticastSocket is governed by a security manager.

Use setTimeToLive() to set a time-to-live value for any packets sent through a MulticastSocket.
This constrains the number of network hops a packet can take and controls the scope
of a multicast. Use setInterface() or setNetworkInterface() to specify the InetAddress or the
NetworkInterface that outgoing multicast packets should use: this is useful for servers or
other computers that have more than one internet address or network interface.
setLoopbackMode() specifies whether a multicast packets sent through this socket should
be send back to this socket or not. This method should really be named
“setLoopbackModeDisabled()”: passing an argument of true requests (but does not
require) that the system disable loopback packets.

public MalformedURLException();
public MalformedURLException(String msg);

}

public class MulticastSocket extends DatagramSocket {
// Public Constructors

public MulticastSocket() throws java.io.IOException;
1.4 public MulticastSocket(SocketAddress bindaddr) throws java.io.IOException;

public MulticastSocket(int port) throws java.io.IOException;
// Public Instance Methods

public InetAddress getInterface() throws SocketException; default:Inet4Address
1.4 public boolean getLoopbackMode() throws SocketException; default:false
1.4 public NetworkInterface getNetworkInterface() throws SocketException;
1.2 public int getTimeToLive() throws java.io.IOException; default:1

public void joinGroup(InetAddress mcastaddr) throws java.io.IOException;
1.4 public void joinGroup(SocketAddress mcastaddr, NetworkInterface netIf) throws java.io.IOException;

public void leaveGroup(InetAddress mcastaddr) throws java.io.IOException;
1.4 public void leaveGroup(SocketAddress mcastaddr, NetworkInterface netIf) throws java.io.IOException;

public void setInterface(InetAddress inf) throws SocketException;
1.4 public void setLoopbackMode(boolean disable) throws SocketException;
1.4 public void setNetworkInterface(NetworkInterface netIf) throws SocketException;
1.2 public void setTimeToLive(int ttl) throws java.io.IOException;
// Deprecated Public Methods
public byte getTTL() throws java.io.IOException; default:1
public void send(DatagramPacket p, byte ttl) throws java.io.IOException;
public void setTTL(byte ttl) throws java.io.IOException;
}

Object DatagramSocket MulticastSocket

566 | Chapter 12: java.net

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.net.NetPermission

NetPermission
java.net

Java 1.2

serializable permission

This class is a java.security.Permission that represents various permissions required for Java’s
URL-based networking system. See also SocketPermission, which represents permissions to
perform lower-level networking operations. A NetPermission is defined solely by its name;
no actions list is required or supported. As of Java 1.2, there are three NetPermission
targets defined: “setDefaultAuthenticator” is required to call Authenticator.setDefault();
“requestPasswordAuthentication” to call Authenticator.requestPasswordAuthentication(); and
“specifyStreamHandler” to explicitly pass a URLStreamHandler object to the URL()
constructor. The target “*” is a wildcard that represents all defined NetPermission targets.

System administrators configuring security policies must be familiar with this class and
the permissions it represents. System programmers may use this class, but application
programmers never need to use it explicitly.

NetworkInterface
java.net

Java 1.4

Instances of this class represent a network interface on the local machine. getName() and
getDisplayName() return the name of the interface, and getInetAddresses() returns a
java.util.Enumeration of the internet addresses for the interface. Obtain a NetworkInterface
object with one of the static methods defined by this class. getNetworkInterfaces() returns
an enumeration of all interfaces for the local host. This class is typically only used in
advanced networking applications.

Passed To DatagramSocketImpl.{joinGroup(), leaveGroup()}, Inet6Address.getByAddress(),
InetAddress.isReachable(), MulticastSocket.{joinGroup(), leaveGroup(), setNetworkInterface()}

Returned By Inet6Address.getScopedInterface(), MulticastSocket.getNetworkInterface()

public final class NetPermission extends java.security.BasicPermission {
// Public Constructors

public NetPermission(String name);
public NetPermission(String name, String actions);

}

public final class NetworkInterface {
// No Constructor
// Public Class Methods

public static NetworkInterface getByInetAddress(InetAddress addr) throws SocketException;
public static NetworkInterface getByName(String name) throws SocketException;
public static java.util.Enumeration<NetworkInterface> getNetworkInterfaces() throws SocketException;

// Public Instance Methods
public String getDisplayName();
public java.util.Enumeration<InetAddress> getInetAddresses();
public String getName();

// Public Methods Overriding Object
public boolean equals(Object obj);
public int hashCode();
public String toString();

}

Object Permission BasicPermission NetPermission

Guard Serializable Serializable

Chapter 12: java.net | 567

java.net

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.net.PortUnreachableException

NoRouteToHostException
java.net

Java 1.1

serializable checked

This exception signals that a socket cannot be connected to a remote host because the
host cannot be contacted. Typically, this means that some link in the network between
the local machine and the remote host is down or that the host is behind a firewall.

PasswordAuthentication
java.net

Java 1.2

This simple immutable class encapsulates a username and a password. The password
is stored as a character array rather than as a String object so that the caller can erase the
contents of the array after use for increased security. Note that the PasswordAuthentication()
constructor clones the specified password character array, but getPassword() returns a
reference to the object’s internal array.

Application programmers defining an Authenticator object for their application need to
create and return a PasswordAuthentication object from the getPasswordAuthentication() method
of that object. System programmers writing URLStreamHandler implementations or other-
wise interacting with a network server that requests password authentication may
obtain a PasswordAutentication object representing the user’s name and password by calling
the static Authenticator.requestPasswordAuthentication() method.

Returned By Authenticator.{getPasswordAuthentication(), requestPasswordAuthentication()}

PortUnreachableException
java.net

Java 1.4

serializable checked

An exception of this type may be thrown by a send() or receive() call on a DatagramSocket if
the connect() method of that socket has been called, and if the connection attempt
resulted in an ICMP “port unreachable” message.

public class NoRouteToHostException extends SocketException {
// Public Constructors

public NoRouteToHostException();
public NoRouteToHostException(String msg);

}

public final class PasswordAuthentication {
// Public Constructors

public PasswordAuthentication(String userName, char[] password);
// Public Instance Methods

public char[] getPassword();
public String getUserName();

}

public class PortUnreachableException extends SocketException {
// Public Constructors

public PortUnreachableException();

Object Throwable Exception IOException SocketException NoRouteToHostException

Serializable

Object Throwable Exception IOException SocketException PortUnreachableException

Serializable

568 | Chapter 12: java.net

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.net.ProtocolException

ProtocolException
java.net

Java 1.0

serializable checked

Signals a protocol error in the Socket class.

Thrown By HttpURLConnection.setRequestMethod()

Proxy
java.net

Java 5.0

An instance of this class represents a set of proxy server settings: a network address
and a proxy server type. The NO_PROXY constant represents a Proxy.Type.DIRECT connection.
Proxy objects may be passed to the Socket() constructor or to the URL.openConnection()
method to connect through a specific proxy server. The ProxySelector class provides a way
to automate the selection of proxy servers based on requested URLs.

Passed To Socket.Socket(), URL.openConnection(), URLStreamHandler.openConnection()

Proxy.Type
java.net

Java 5.0

serializable comparable enum

The constants of this enumerated type represent a type of proxy server. DIRECT indicates a
direct, nonproxied connection. HTTP represents a proxy server that understands high-level
protocols such as HTTP or FTP. And SOCKS represents a low-level SOCKS proxy server.

public PortUnreachableException(String msg);
}

public class ProtocolException extends java.io.IOException {
// Public Constructors

public ProtocolException();
public ProtocolException(String host);

}

public class Proxy {
// Public Constructors

public Proxy(Proxy.Type type, SocketAddress sa);
// Public Constants

public static final java.net.Proxy NO_PROXY;
// Nested Types

public enum Type;
// Public Instance Methods

public SocketAddress address();
public Proxy.Type type();

// Public Methods Overriding Object
public final boolean equals(Object obj);
public final int hashCode();
public String toString();

}

public enum Proxy.Type {
// Enumerated Constants

DIRECT,
HTTP,

Object Throwable Exception IOException ProtocolException

Serializable

Chapter 12: java.net | 569

java.net

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.net.ResponseCache

Passed To java.net.Proxy.Proxy()

Returned By java.net.Proxy.type()

ProxySelector
java.net

Java 5.0

An implementation of this abstract class can be used to automatically select one or
more Proxy objects to use to connect to a specified URL. Install an implementation of this
class with the setDefault() method. URLConnection implementations use the installed Proxy-
Selector, if there is one, and call select() to obtain a list of suitable Proxy objects for the
connection. If a URLConnection cannot contact the proxy server specified in a Proxy object,
it calls the connectFailed() method to notify the ProxySelector object of the failure.

This class is intended to be implemented by advanced users of java.net and is not for
casual use.

ResponseCache
java.net

Java 5.0

This abstract class defines an API for low-level caching of network resources retrieved
through the URL and URLConnection classes. This class is intended for use by URLStreamHan-
dler implementations, not by casual users of the java.net package. Clients that wish to
enable local caching should register a ResponseCache implementation with setDefault() and
enable caching with URLConnection.setDefaultUseCaches().

The static getDefault() and setDefault() methods query and set a ResponseCache for the system.
If there is a ResponseCache installed, protocol handlers should call put() to offer a network
resource to the cache. If the cache is interested, it returns a CacheRequest object into
which the URLStreamHandler can write its data. A URLStreamHandler that wants to query the
cache should call get(). If the ResponseCache holds a cached copy of the requested
resource, it returns a CacheResponse from which the URLStreamHandler can read the resource.

SOCKS;
// Public Class Methods

public static Proxy.Type valueOf(String name);
public static final Proxy.Type[] values();

}

public abstract class ProxySelector {
// Public Constructors

public ProxySelector();
// Public Class Methods

public static ProxySelector getDefault();
public static void setDefault(ProxySelector ps);

// Public Instance Methods
public abstract void connectFailed(URI uri, SocketAddress sa, java.io.IOException ioe);
public abstract java.util.List<java.net.Proxy> select(URI uri);

}

public abstract class ResponseCache {
// Public Constructors

public ResponseCache();
// Public Class Methods

public static ResponseCache getDefault(); synchronized
public static void setDefault(ResponseCache responseCache); synchronized

570 | Chapter 12: java.net

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.net.SecureCacheResponse

SecureCacheResponse
java.net

Java 5.0

This subclass of CacheResponse represents a cached network resource that was retreived
through a secure protocol such as HTTPS. Its methods return certificates and other
details about the secure transfer. See also ResponseCache. This class is not intended for
casual users of the java.net package.

ServerSocket
java.net

Java 1.0

This class is used by servers to listen for connection requests from clients. Before you
can use a ServerSocket, it must be bound to the local network address that it is to listen
on. All of the ServerSocket() constructors except for the no-argument constructor create a
server socket and bind it to the specified local port, optionally specifying a “connec-
tion backlog” value: this is the number of client connection attempts that may be
queued up before subsequent connection attempts are rejected.

In Java 1.4 and later, the no-argument ServerSocket() constructor allows you to create an
unbound socket. Doing this allows you to bind the socket using the bind() method
which uses a SocketAddress object rather than a port number. It also allows you to call
setReuseAddress(), which is only useful when done before the socket is bound. Call isBound()
to determine whether a server socket has been bound. If it has, use getLocalSocketAddress()
or getLocalPort() and getInetAddress() to obtain the local address it is bound to.

Once a ServerSocket has been bound, you can call the accept() method to listen on the
specified port and block until the client requests a connection on the port. When this
happens, accept() accepts the connection, creating and returning a Socket the server can
use to communicate with the client. A typical server starts a new thread to handle the
communication with the client and calls accept() again to listen for another connection.

ServerSocket defines several methods for setting socket options that affect the socket’s
behavior. setSoTimeout() specifies the number of milliseconds that accept() should block
before throwing an InterruptedIOException. A value of 0 means that it should block forever.
setReceiveBufferSize() is an advanced option that suggests the desired size for the internal
receive buffer of the Socket objects returned by accept(). This is only a hint, and may be

// Public Instance Methods
public abstract CacheResponse get(URI uri, String rqstMethod, java.util.Map<String,java.util.List<String>> rqstHeaders)

throws java.io.IOException;
public abstract CacheRequest put(URI uri, URLConnection conn) throws java.io.IOException;

}

public abstract class SecureCacheResponse extends CacheResponse {
// Public Constructors

public SecureCacheResponse();
// Public Instance Methods

public abstract String getCipherSuite();
public abstract java.util.List<java.security.cert.Certificate> getLocalCertificateChain();
public abstract java.security.Principal getLocalPrincipal();
public abstract java.security.Principal getPeerPrincipal() throws javax.net.ssl.SSLPeerUnverifiedException;
public abstract java.util.List<java.security.cert.Certificate> getServerCertificateChain()

throws javax.net.ssl.SSLPeerUnverifiedException;
}

Object CacheResponse SecureCacheResponse

Chapter 12: java.net | 571

java.net

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.net.ServerSocket

ignored by the system. setReuseAddress() is another advanced option; it specifies that a
bind() operation should succeed even if the local bind address is still nominally in use
by a socket that is in the process of shutting down.

Like all sockets, a ServerSocket should be closed with the close() method when it is no
longer needed. Once closed, a ServerSocket should not be used, except to call the isClosed()
method which returns true if it has been closed.

The getChannel() method is a link between this ServerSocket class and the New I/O
java.nio.channels.ServerSocketChannel class. It returns the ServerSocketChannel associated with this
ServerSocket if there is one. Note, however, that this method always returns null for
sockets created with any of the ServerSocket() constructors. If you create a ServerSock-
etChannel object, and obtain a ServerSocket from it, however, then the getChannel() method
provides a way to link back to the parent channel.

Subclasses javax.net.ssl.SSLServerSocket

Returned By java.nio.channels.ServerSocketChannel.socket(),
javax.net.ServerSocketFactory.createServerSocket()

public class ServerSocket {
// Public Constructors
1.4 public ServerSocket() throws java.io.IOException;

public ServerSocket(int port) throws java.io.IOException;
public ServerSocket(int port, int backlog) throws java.io.IOException;

1.1 public ServerSocket(int port, int backlog, InetAddress bindAddr) throws java.io.IOException;
// Public Class Methods

public static void setSocketFactory(SocketImplFactory fac) throws java.io.IOException; synchronized
// Public Instance Methods

public Socket accept() throws java.io.IOException;
1.4 public void bind(SocketAddress endpoint) throws java.io.IOException;
1.4 public void bind(SocketAddress endpoint, int backlog) throws java.io.IOException;

public void close() throws java.io.IOException;
1.4 public java.nio.channels.ServerSocketChannel getChannel(); constant default:null

public InetAddress getInetAddress(); default:null
public int getLocalPort(); default:-1

1.4 public SocketAddress getLocalSocketAddress(); default:null
1.4 public int getReceiveBufferSize() throws SocketException; synchronized default:43690
1.4 public boolean getReuseAddress() throws SocketException; default:true
1.1 public int getSoTimeout() throws java.io.IOException; synchronized default:0
1.4 public boolean isBound(); default:false
1.4 public boolean isClosed(); default:false
5.0 public void setPerformancePreferences(int connectionTime, int latency, int bandwidth); empty
1.4 public void setReceiveBufferSize(int size) throws SocketException; synchronized
1.4 public void setReuseAddress(boolean on) throws SocketException;
1.1 public void setSoTimeout(int timeout) throws SocketException; synchronized
// Public Methods Overriding Object

public String toString();
// Protected Instance Methods
1.1 protected final void implAccept(Socket s) throws java.io.IOException;
}

572 | Chapter 12: java.net

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.net.Socket

Socket
java.net

Java 1.0

This class implements a socket for stream-based communication over the network. See
URL for a higher-level interface to networking and DatagramSocket for a lower-level
interface.

Before you can use a socket for communication, it must be bound to a local address
and connected to a remote address. Binding and connection are done automatically for
you when you call any of the Socket() constructors except the no-argument constructor.
These constructors allow you to specify either the name or the InetAddress of the
computer to connect to, and also require you to specify the port number to connect to.
Two of these constructors also allow you to specify the local InetAddress and port
number to bind the socket to. Most applications do not need to specify a local address,
and can simply use one of the two-argument versions of Socket() and can allow the
constructor to choose an ephemeral local port to bind the socket to.

The no-argument Socket() constructor is different from the others: it creates an unbound
and unconnected socket. In Java 1.4 and later, you can explicitly call bind() and connect()
to bind and connect the socket. It can be useful to do this when you want to set a
socket option (described below) that must be set before binding or connection. bind()
uses a SocketAddress object to describe the local address to bind to, and connect() uses a
SocketAddress to specify the remote address to connect to. There is also a version of
connect() that takes a timeout value in milliseconds: if the connection attempt takes
longer than the specified amount of time, connect() throws an IOException. (See ServerSocket
for a description of how to write server code that accepts socket connection requests
from client code.) Java 5.0 includes a constructor that takes a Proxy object as its sole
argument. Like the no-argument constructor, this creates an unbound and uncon-
nected socket. When you attempt to connect it, the connection will be made through
the specified Proxy.

Use isBound() and isConnected() to determine whether a Socket is bound and connected. Use
getInetAddress() and getPort() to determine the IP address and port number that the socket
is connected to. Or, in Java 1.4 and later, use getRemoteSocketAddress() to obtain the
remote address as a SocketAddress object. Similarly, use getLocalAddress() and getLocalPort() or
use getLocalSocketAddress() to find out what address a socket is bound to.

Once you have a Socket object that is bound and connected, use getInputStream() and
getOutputStream() to obtain InputStream and OutputStream objects you can use to communicate
with the remote host. You can use these streams just as you would use similar streams
for file input and output. When you are done with a Socket, use close() to close it. Once a
socket has been closed, it is not possible to call connect() again to reuse it, and you
should not call any of its methods except isClosed(). Because networking code can throw
many exceptions, it is common practice to close() a socket in the finally clause of a try/catch
statement to ensure that the socket always gets closed. Note, however, that the close()
method itself can throw an IOException, and you may need to put it in its own try block.
In Java 1.3 and later shutdownInput() and shutdownOutput() allow you to close the input and
output communication channels individually without closing the entire socket. In Java
1.4 and later, isInputShutdown() and isOutputShutdown() allow you to test for this.

The Socket class defines a number of methods that allow you to set (and query) “socket
options” that affect the low-level networking behavior of the socket. setSendBufferSize()
and setReceiveBufferSize() provide hints to the underlying networking system about what
buffer size is best to use with this socket. setSoTimeout() specifies the number of millisec-
onds a read() call on the input stream returned by getInputStream() waits for data before

Chapter 12: java.net | 573

java.net

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.net.Socket

throwing an InterruptedIOException. The default value of 0 specifies that the stream blocks
indefinitely. setSoLinger() specifies what to do when a socket is closed while there is still
data waiting to be transmitted. If lingering is turned on, the close() call blocks for up to
the specified number of seconds while attempting to transmit the remaining data.
Calling setTcpNoDelay() with an argument of true causes data to be sent through the socket
as soon as it is available, instead of waiting for the TCP packet to become more full
before sending it. In Java 1.3, use setKeepAlive() to enable or disable the periodic
exchange of control messages across an idle socket connection. The keepalive protocol
enables a client to determine if its server has crashed without closing the socket and
vice versa. In Java 1.4, pass true to setOOBInline() if you want to receive “out of band” data
sent to this socket “inline” on the input stream of the socket (by default such data is
simply discarded). This can be used to receive bytes sent with sendUrgentData(). Java 1.4
also adds setReuseAddress() which you can use before binding the socket to specify that
the socket should be allowed to bind to a port that is still nominally in use by another
socket that is in the process of shutting down. setTrafficClass() is also new in Java 1.4; it
sets the “traffic class” field for the socket, and requires an understanding of the low-
level details of the IP protocol.

The getChannel() method is a link between this Socket class and the New I/O java.nio.chan-
nels.SocketChannel class. It returns the SocketChannel associated with this Socket if there is one.
Note, however, that this method always returns null for sockets created with any of the
Socket() constructors. If you create a SocketChannel object, and obtain a Socket from it, then
the getChannel() method provides a way to link back to the parent channel.

public class Socket {
// Public Constructors
1.1 public Socket();
5.0 public Socket(java.net.Proxy proxy);

public Socket(String host, int port) throws UnknownHostException, java.io.IOException;
public Socket(InetAddress address, int port) throws java.io.IOException;

public Socket(String host, int port, boolean stream) throws java.io.IOException;
public Socket(InetAddress host, int port, boolean stream) throws java.io.IOException;
1.1 public Socket(String host, int port, InetAddress localAddr, int localPort) throws java.io.IOException;
1.1 public Socket(InetAddress address, int port, InetAddress localAddr, int localPort) throws java.io.IOException;
// Protected Constructors
1.1 protected Socket(SocketImpl impl) throws SocketException;
// Public Class Methods

public static void setSocketImplFactory(SocketImplFactory fac) throws java.io.IOException; synchronized
// Public Instance Methods
1.4 public void bind(SocketAddress bindpoint) throws java.io.IOException;

public void close() throws java.io.IOException; synchronized
1.4 public void connect(SocketAddress endpoint) throws java.io.IOException;
1.4 public void connect(SocketAddress endpoint, int timeout) throws java.io.IOException;
1.4 public java.nio.channels.SocketChannel getChannel(); constant default:null

public InetAddress getInetAddress(); default:null
public java.io.InputStream getInputStream() throws java.io.IOException;

1.3 public boolean getKeepAlive() throws SocketException; default:false
1.1 public InetAddress getLocalAddress(); default:Inet4Address

public int getLocalPort(); default:-1
1.4 public SocketAddress getLocalSocketAddress(); default:null
1.4 public boolean getOOBInline() throws SocketException; default:false

public java.io.OutputStream getOutputStream() throws java.io.IOException;
public int getPort(); default:0

1.2 public int getReceiveBufferSize() throws SocketException; synchronized default:43690

574 | Chapter 12: java.net

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.net.SocketAddress

Subclasses javax.net.ssl.SSLSocket

Passed To ServerSocket.implAccept(), javax.net.ssl.SSLSocketFactory.createSocket(),
javax.net.ssl.X509KeyManager.{chooseClientAlias(), chooseServerAlias()}

Returned By ServerSocket.accept(), java.nio.channels.SocketChannel.socket(),
javax.net.SocketFactory.createSocket(), javax.net.ssl.SSLSocketFactory.createSocket()

SocketAddress
java.net

Java 1.4

serializable

Instances of this abstract class are opaque representations of network socket addresses.
The only concrete subclass in the core Java platform is InetSocketAddress which represents
an internet address and port number. See InetSocketAddress.

Subclasses InetSocketAddress

Passed To Too many methods to list.

1.4 public SocketAddress getRemoteSocketAddress(); default:null
1.4 public boolean getReuseAddress() throws SocketException; default:false
1.2 public int getSendBufferSize() throws SocketException; synchronized default:8192
1.1 public int getSoLinger() throws SocketException; default:-1
1.1 public int getSoTimeout() throws SocketException; synchronized default:0
1.1 public boolean getTcpNoDelay() throws SocketException; default:false
1.4 public int getTrafficClass() throws SocketException; default:0
1.4 public boolean isBound(); default:false
1.4 public boolean isClosed(); default:false
1.4 public boolean isConnected(); default:false
1.4 public boolean isInputShutdown(); default:false
1.4 public boolean isOutputShutdown(); default:false
1.4 public void sendUrgentData(int data) throws java.io.IOException;
1.3 public void setKeepAlive(boolean on) throws SocketException;
1.4 public void setOOBInline(boolean on) throws SocketException;
5.0 public void setPerformancePreferences(int connectionTime, int latency, int bandwidth); empty
1.2 public void setReceiveBufferSize(int size) throws SocketException; synchronized
1.4 public void setReuseAddress(boolean on) throws SocketException;
1.2 public void setSendBufferSize(int size) throws SocketException; synchronized
1.1 public void setSoLinger(boolean on, int linger) throws SocketException;
1.1 public void setSoTimeout(int timeout) throws SocketException; synchronized
1.1 public void setTcpNoDelay(boolean on) throws SocketException;
1.4 public void setTrafficClass(int tc) throws SocketException;
1.3 public void shutdownInput() throws java.io.IOException;
1.3 public void shutdownOutput() throws java.io.IOException;
// Public Methods Overriding Object

public String toString();
}

public abstract class SocketAddress implements Serializable {
// Public Constructors

public SocketAddress();
}

Object SocketAddress Serializable

Chapter 12: java.net | 575

java.net

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.net.SocketImpl

Returned By DatagramPacket.getSocketAddress(), DatagramSocket.{getLocalSocketAddress(),
getRemoteSocketAddress()}, java.net.Proxy.address(), ServerSocket.getLocalSocketAddress(),
Socket.{getLocalSocketAddress(), getRemoteSocketAddress()}, java.nio.channels.DatagramChannel.receive()

SocketException
java.net

Java 1.0

serializable checked

Signals an exceptional condition while using a socket.

Subclasses BindException, ConnectException, NoRouteToHostException, PortUnreachableException

Thrown By Too many methods to list.

SocketImpl
java.net

Java 1.0

This abstract class defines the methods necessary to implement communication
through sockets. Different subclasses of this class may provide different implementa-
tions suitable in different environments (such as behind firewalls). These socket
implementations are used by the Socket and ServerSocket classes. Normal applications
never need to use or subclass this class.

public class SocketException extends java.io.IOException {
// Public Constructors

public SocketException();
public SocketException(String msg);

}

public abstract class SocketImpl implements SocketOptions {
// Public Constructors

public SocketImpl();
// Public Methods Overriding Object

public String toString();
// Protected Instance Methods

protected abstract void accept(SocketImpl s) throws java.io.IOException;
protected abstract int available() throws java.io.IOException;
protected abstract void bind(InetAddress host, int port) throws java.io.IOException;
protected abstract void close() throws java.io.IOException;
protected abstract void connect(String host, int port) throws java.io.IOException;
protected abstract void connect(InetAddress address, int port) throws java.io.IOException;

1.4 protected abstract void connect(SocketAddress address, int timeout) throws java.io.IOException;
protected abstract void create(boolean stream) throws java.io.IOException;
protected java.io.FileDescriptor getFileDescriptor();
protected InetAddress getInetAddress();
protected abstract java.io.InputStream getInputStream() throws java.io.IOException;
protected int getLocalPort();
protected abstract java.io.OutputStream getOutputStream() throws java.io.IOException;
protected int getPort();
protected abstract void listen(int backlog) throws java.io.IOException;

1.4 protected abstract void sendUrgentData(int data) throws java.io.IOException;
5.0 protected void setPerformancePreferences(int connectionTime, int latency, int bandwidth); empty

Object Throwable Exception IOException SocketException

Serializable

Object SocketImpl SocketOptions

576 | Chapter 12: java.net

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.net.SocketImplFactory

Passed To Socket.Socket()

Returned By SocketImplFactory.createSocketImpl()

SocketImplFactory
java.net

Java 1.0

This interface defines a method that creates SocketImpl objects. SocketImplFactory objects
may be registered to create SocketImpl objects for the Socket and ServerSocket classes. Normal
applications never need to use or implement this interface.

Passed To ServerSocket.setSocketFactory(), Socket.setSocketImplFactory()

SocketOptions
java.net

Java 1.2

This interface defines constants that represent low-level BSD Unix-style socket options
and methods that set and query the value of those options. In Java 1.2, SocketImpl and
DatagramSocketImpl implement this interface. Any custom socket implementations you
define should also provide meaningful implementations for the getOption() and setOption()
methods. Your implementation may support options other than those defined here.
Only custom socket implementations need to use this interface. All other code can use
methods defined by Socket, ServerSocket, DatagramSocket, and MulticastSocket to set specific
socket options for those socket types.

1.3 protected void shutdownInput() throws java.io.IOException;
1.3 protected void shutdownOutput() throws java.io.IOException;
1.4 protected boolean supportsUrgentData(); constant
// Protected Instance Fields

protected InetAddress address;
protected java.io.FileDescriptor fd;
protected int localport;
protected int port;

}

public interface SocketImplFactory {
// Public Instance Methods

SocketImpl createSocketImpl();
}

public interface SocketOptions {
// Public Constants

public static final int IP_MULTICAST_IF; =16
1.4 public static final int IP_MULTICAST_IF2; =31
1.4 public static final int IP_MULTICAST_LOOP; =18
1.4 public static final int IP_TOS; =3

public static final int SO_BINDADDR; =15
1.4 public static final int SO_BROADCAST; =32
1.3 public static final int SO_KEEPALIVE; =8

public static final int SO_LINGER; =128
1.4 public static final int SO_OOBINLINE; =4099

public static final int SO_RCVBUF; =4098
public static final int SO_REUSEADDR; =4
public static final int SO_SNDBUF; =4097
public static final int SO_TIMEOUT; =4102
public static final int TCP_NODELAY; =1

Chapter 12: java.net | 577

java.net

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.net.SocketPermission

Implementations DatagramSocketImpl, SocketImpl

SocketPermission
java.net

Java 1.2

serializable permission

This class is a java.security.Permission that governs all networking operations performed with
sockets. Like all permissions, a SocketPermission consists of a name, or target, and a list of
actions that may be performed on that target. The target of a SocketPermission is the host
and, optionally, the port or ports for which permission is being granted or requested. The
target consists of a hostname optionally followed by a colon and a port specification. The
host may be a DNS domain name, a numerical IP address, or the string “localhost”. If you
specify a host domain name, you may use * as a wildcard as the leftmost portion of the
hostname. The port specification, if present, must be a single port number or a range of
port numbers in the form n1-n2. If n1 is omitted, it is taken to be 0, and if n2 is omitted, it is
taken to be 65535. If no port is specified, the socket permission applies to all ports of the
specified host. Here are some legal SocketPermission targets:

java.sun.com:80
*.sun.com:1024-2000
*:1024-
localhost:-1023

In addition to a target, each SocketPermission must have a comma-separated list of actions,
which specify the operations that may be performed on the specified host(s) and
port(s). The available actions are “connect”, “accept”, “listen”, and “resolve”.
“connect” represents permission to connect to the specified target. “accept” indicates
permission to accept connections from the specified target. “listen” represents permis-
sion to listen on the specified ports for connection requests. This action is only valid
when used for ports on “localhost”. Finally, the “resolve” action indicates permission
to use the DNS name service to resolve domain names into IP addresses. This action is
required for and implied by all other actions.

System administrators configuring security policies must be familiar with this class and
understand the risks of granting the various permissions it represents. System
programmers writing new low-level networking libraries or connecting to native code
that performs networking may need to use this class. Application programmers,
however, should never need to use it directly.

// Public Instance Methods
Object getOption(int optID) throws SocketException;
void setOption(int optID, Object value) throws SocketException;

}

public final class SocketPermission extends java.security.Permission implements Serializable {
// Public Constructors

public SocketPermission(String host, String action);
// Public Methods Overriding Permission

public boolean equals(Object obj);
public String getActions();
public int hashCode();
public boolean implies(java.security.Permission p);
public java.security.PermissionCollection newPermissionCollection();

}

Object Permission SocketPermission

Guard Serializable Serializable

578 | Chapter 12: java.net

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.net.SocketTimeoutException

SocketTimeoutException
java.net

Java 1.4

serializable checked

Signals that a timeout value was exceeded for a socket read or accept operation. See
the setSoTimeout() method of Socket.

UnknownHostException
java.net

Java 1.0

serializable checked

Signals that the name of a specified host could not be resolved.

Thrown By Inet6Address.getByAddress(), InetAddress.{getAllByName(), getByAddress(), getByName(),
getLocalHost()}, Socket.Socket(), javax.net.SocketFactory.createSocket(), javax.net.ssl.SSLSocket.SSLSocket()

UnknownServiceException
java.net

Java 1.0

serializable checked

Signals an attempt to use an unsupported service of a network connection.

URI
java.net

Java 1.4

serializable comparable

The URI class is an immutable representation of a Uniform Resource Identifier or URI.
A URI is a generalization of the URLs or Uniform Resource Locators used on the
world wide web. The URI supports parsing and textual manipulation of URI strings, but
does not have any direct networking capabilities the way that the URL class does. The
advantages of the URI class over the URL class are that it provides more general facilities

public class SocketTimeoutException extends java.io.InterruptedIOException {
// Public Constructors

public SocketTimeoutException();
public SocketTimeoutException(String msg);

}

public class UnknownHostException extends java.io.IOException {
// Public Constructors

public UnknownHostException();
public UnknownHostException(String host);

}

public class UnknownServiceException extends java.io.IOException {
// Public Constructors

public UnknownServiceException();
public UnknownServiceException(String msg);

}

Object Throwable Exception IOException InterruptedIOException SocketTimeoutException

Serializable

Object Throwable Exception IOException UnknownHostException

Serializable

Object Throwable Exception IOException UnknownServiceException

Serializable

Chapter 12: java.net | 579

java.net

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.net.URI

for parsing and manipulating URLs than the URL class, that it can can represent relative
URIs which do not include a scheme (or protocol), and that it can manipulate URIs
that include unsupported or even unknown schemes.

Obtain a URI with one of the constructors, which allow a URI to be parsed from a
single string, or allow the specification of the individual components of a URI. These
constructors can throw URISyntaxException, which is a checked exception. When using
hard-coded URIs (rather than URIs based on user input) you may prefer to use the
static create() method which does not throw any checked exceptions.

Once you have created a URI, object you can use the various get methods to query the
various portions of the URI. The getRaw() methods are like the get() methods except that
they do not decode hexadecimal escape sequences of the form %xx that appear in the
URI. normalize() returns a new URI object that has “.” and unnecessary “..” sequences
removed from its path component. resolve() interprets its URI (or string) argument rela-
tive to this URI and returns the result. relativize() performs the reverse operation. It returns
a new URI which represents the same resource as the specified URI argument, but which is
relative to this URI. Finally, the toURL() method converts an absolute URI object to the equiv-
alent URL. Since the URI class provides superior textual manipulation capabilities for URLs,
it can be useful to use the URI class to resolve relative URLs (for example) and then
convert those URI objects to URL objects when they are ready for networking.

public final class URI implements Comparable<URI>, Serializable {
// Public Constructors

public URI(String str) throws URISyntaxException;
public URI(String scheme, String ssp, String fragment) throws URISyntaxException;
public URI(String scheme, String host, String path, String fragment) throws URISyntaxException;
public URI(String scheme, String authority, String path, String query, String fragment) throws URISyntaxException;
public URI(String scheme, String userInfo, String host, int port, String path, String query, String fragment)

throws URISyntaxException;
// Public Class Methods

public static URI create(String str);
// Public Instance Methods

public String getAuthority();
public String getFragment();
public String getHost();
public String getPath();
public int getPort();
public String getQuery();
public String getRawAuthority();
public String getRawFragment();
public String getRawPath();
public String getRawQuery();
public String getRawSchemeSpecificPart();
public String getRawUserInfo();
public String getScheme();
public String getSchemeSpecificPart();
public String getUserInfo();
public boolean isAbsolute();
public boolean isOpaque();
public URI normalize();
public URI parseServerAuthority() throws URISyntaxException;

Object URI

Comparable Serializable

580 | Chapter 12: java.net

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.net.URISyntaxException

Passed To java.io.File.File(), CookieHandler.{get(), put()}, ProxySelector.{connectFailed(), select()},
ResponseCache.{get(), put()}

Returned By java.io.File.toURI(), URL.toURI()

URISyntaxException
java.net

Java 1.4

serializable checked

Signals that a string could not be parsed as a valid URI. getInput() returns the string that
could not be parsed. getReason() returns an error message. getIndex() returns the character
position at which the syntax error occurred, if that information is available. getMessage()
returns a human-readable string that includes the information from each of the other
three methods.

This is a checked exception thrown by all the URI() constructors. If you are parsing a
hard-coded URI that you do not believe to contain any syntax errors, and wish to
avoid the checked exception, you can use the URI.create() factory method instead of the
one-argument version of the URI() constructor.

Thrown By URI.{parseServerAuthority(), URI()}, URL.toURI()

URL
java.net

Java 1.0

serializable

This class represents a uniform resource locator and allows the data referred to by the
URL to be downloaded. A URL can be specified as a single string or with separate
protocol, host, port, and file specifications. Relative URLs can also be specified with a
String and the URL object to which it is relative. getFile(), getHost(), getProtocol() and related

public URI relativize(URI uri);
public URI resolve(URI uri);
public URI resolve(String str);
public String toASCIIString();
public URL toURL() throws MalformedURLException;

// Methods Implementing Comparable
5.0 public int compareTo(URI that);
// Public Methods Overriding Object

public boolean equals(Object ob);
public int hashCode();
public String toString();

}

public class URISyntaxException extends Exception {
// Public Constructors

public URISyntaxException(String input, String reason);
public URISyntaxException(String input, String reason, int index);

// Public Instance Methods
public int getIndex();
public String getInput();
public String getReason();

// Public Methods Overriding Throwable
public String getMessage();

}

Object Throwable Exception URISyntaxException

Serializable

Chapter 12: java.net | 581

java.net

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.net.URL

methods return the various portions of the URL specified by a URL object. sameFile()
determines whether a URL object refers to the same file as this one. getDefaultPort() returns
the default port number for the protocol of the URL object; it may differ from the
number returned by getPort(). Use openConnection() to obtain a URLConnection object with
which you can download the content of the URL. In Java 5.0, you can explicitly
specify a Proxy object through which the connection should be opened. For simple
cases, however, the URL class defines shortcut methods that create and invoke methods
on a URLConnection internally. getContent() downloads the URL data and parses it into an
appropriate Java object (such as a string or image) if an appropriate ContentHandler can be
found. In Java 1.3 and later, you can pass an array of Class objects that specify the type
of objects that you are willing to accept as the return value of this method. If you wish
to parse the URL content yourself, call openStream() to obtain an InputStream from which
you can read the data.

public final class URL implements Serializable {
// Public Constructors

public URL(String spec) throws MalformedURLException;
public URL(URL context, String spec) throws MalformedURLException;

1.2 public URL(URL context, String spec, URLStreamHandler handler) throws MalformedURLException;
public URL(String protocol, String host, String file) throws MalformedURLException;
public URL(String protocol, String host, int port, String file) throws MalformedURLException;

1.2 public URL(String protocol, String host, int port, String file, URLStreamHandler handler) throws MalformedURLException;
// Public Class Methods

public static void setURLStreamHandlerFactory(URLStreamHandlerFactory fac);
// Public Instance Methods
1.3 public String getAuthority();

public final Object getContent() throws java.io.IOException;
1.3 public final Object getContent(Class[] classes) throws java.io.IOException;
1.4 public int getDefaultPort();

public String getFile();
public String getHost();

1.3 public String getPath();
public int getPort();
public String getProtocol();

1.3 public String getQuery();
public String getRef();

1.3 public String getUserInfo();
public URLConnection openConnection() throws java.io.IOException;

5.0 public URLConnection openConnection(java.net.Proxy proxy) throws java.io.IOException;
public final java.io.InputStream openStream() throws java.io.IOException;
public boolean sameFile(URL other);
public String toExternalForm();

5.0 public URI toURI() throws URISyntaxException;
// Public Methods Overriding Object

public boolean equals(Object obj);
public int hashCode(); synchronized
public String toString();

// Protected Instance Methods
protected void set(String protocol, String host, int port, String file, String ref);

Object URL Serializable

582 | Chapter 12: java.net

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.net.URLClassLoader

Passed To Too many methods to list.

Returned By java.io.File.toURL(), Class.getResource(), ClassLoader.{findResource(), getResource(),
getSystemResource()}, Authenticator.getRequestingURL(), JarURLConnection.getJarFileURL(), URI.toURL(),
URLClassLoader.{findResource(), getURLs()}, URLConnection.getURL(), java.security.CodeSource.getLocation()

Type Of URLConnection.url

URLClassLoader
java.net

Java 1.2

This ClassLoader provides a useful way to load untrusted Java code from a search path of
arbitrary URLs, where each URL represents a directory or JAR file to search. Use the
inherited loadClass() method to load a named class with a URLClassLoader. Classes loaded by
a URLClassLoader have whatever permissions are granted to their java.security.CodeSource by the
system java.security.Policy, plus they have one additional permission that allows the class
loader to read any resource files associated with the class. If the class is loaded from a
local file: URL that represents a directory, the class is given permission to read all files
and directories below that directory. If the class is loaded from a local file: URL that
represents a JAR file, the class is given permission to read that JAR file. If the class is
loaded from a URL that represents a resource on another host, that class is given
permission to connect to and accept network connections from that host. Note,
however, that loaded classes are not granted this additional permission if the code that
created the URLClassLoader in the first place would not have had that permission.

You can obtain a URLClassLoader by calling one of the URLClassLoader() constructors or one of
the static newInstance() methods. If you call newInstance(), the loadClass() method of the
returned URLClassLoader performs an additional check to ensure that the caller has permis-
sion to access the specified package.

1.3 protected void set(String protocol, String host, int port, String authority, String userInfo, String path, String query,
String ref);

}

public class URLClassLoader extends java.security.SecureClassLoader {
// Public Constructors

public URLClassLoader(URL[] urls);
public URLClassLoader(URL[] urls, ClassLoader parent);
public URLClassLoader(URL[] urls, ClassLoader parent, URLStreamHandlerFactory factory);

// Public Class Methods
public static URLClassLoader newInstance(URL[] urls);
public static URLClassLoader newInstance(URL[] urls, ClassLoader parent);

// Public Instance Methods
public URL[] getURLs();

// Protected Methods Overriding SecureClassLoader
protected java.security.PermissionCollection getPermissions(java.security.CodeSource codesource);

// Public Methods Overriding ClassLoader
public URL findResource(String name);
public java.util.Enumeration<URL> findResources(String name) throws java.io.IOException;

// Protected Methods Overriding ClassLoader
protected Class<?> findClass(String name) throws ClassNotFoundException;

// Protected Instance Methods
protected void addURL(URL url);
protected Package definePackage(String name, java.util.jar.Manifest man, URL url) throws IllegalArgumentException;

}

Object ClassLoader SecureClassLoader URLClassLoader

Chapter 12: java.net | 583

java.net

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.net.URLConnection

URLConnection
java.net

Java 1.0

This abstract class defines a network connection to an object specified by a URL.
URL.openConnection() returns a URLConnection instance. You should use a URLConnection object
when you want more control over the downloading of data than is available through
the simpler URL methods. connect() actually establishes the network connection. Some
methods must be called before the connection is made, and others depend on being
connected. The methods that depend on being connected call connect() themselves if no
connection exists yet, so you never need to call this method explicitly. The getContent()
methods are just like the same-named methods of the URL class: they download the
data referred to by the URL and parse it into an appropriate type of object (such as a
string or an image). In Java 1.3 and later, there is a version of getContent() that allows
you to specify the types of parsed objects that you are willing to accept by passing an
array of Class objects. If you prefer to parse the URL content yourself instead of calling
getContent(), you can call getInputStream() (and getOutputStream() if the URL protocol supports
writing) to obtain a stream through which you can read (or write) data from (or to) the
resource identified by the URL.

Before a connection is established, you may want to set request fields (such as HTTP
request headers) to refine the URL request. Use setRequestProperty() to set a new value for
a named header. In Java 1.4 and later, you can use addRequestProperty() to add a new
comma-separated item to an existing header. Java 1.4 also added getRequestProperties(), a
method that returns the current set of request properties in the form of an unmodifi-
able Map object that maps request header names to List objects that contain the string
value or values for the named header.

Once a connection has been established, there are a number of methods you can call
to obtain information from the “response headers” of the URL. getContentLength(),
getContentType(), getContentEncoding(), getExpiration(), getDate(), and getLastModified() return the
appropriate information about the object referred to by the URL, if that information
can be determined (e.g., from HTTP header fields). getHeaderField() returns an HTTP
header field specified by name or by number. getHeaderFieldInt() and getHeaderFieldDate()
return the value of a named header field parsed as an integer or a date. In Java 1.4 and
later, getHeaderFields() returns an unmodifiable Map object that maps response header
names to an unmodifiable List that contains the string value or values for the named
header.

There are a number of options you can specify to control how the URLConnection behaves.
These options are set with the various set() methods and may be queried with corre-
sponding get() methods. The options must be set before the connect() method is called.
setDoInput() and setDoOutput() allow you to specify whether you are using the URLConnection
for input and/or output (input-only by default). setAllowUserInteraction() specifies whether
user interaction (such as typing a password) is allowed during the data transfer (false by
default). setDefaultAllowUserInteraction() is a class method that allows you to change the
default value for user interaction. setUseCaches() allows you to specify whether a cached
version of the URL can be used. You can set this to false to force a URL to be reloaded.
setDefaultUseCaches() sets the default value for setUseCaches(). setIfModifiedSince() allows you to
specify that a URL should not be fetched unless it has been modified since a specified
time (if it is possible to determine its modification date). In Java 5.0 and later, you can
specify how long a URLConnection should wait while connecting or reading data with
setConnectTimeout() and setReadTimeout().

584 | Chapter 12: java.net

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.net.URLConnection

public abstract class URLConnection {
// Protected Constructors

protected URLConnection(URL url);
// Public Class Methods

public static boolean getDefaultAllowUserInteraction();
1.1 public static FileNameMap getFileNameMap(); synchronized

public static String guessContentTypeFromName(String fname);
public static String guessContentTypeFromStream(java.io.InputStream is) throws java.io.IOException;
public static void setContentHandlerFactory(ContentHandlerFactory fac); synchronized
public static void setDefaultAllowUserInteraction(boolean defaultallowuserinteraction);

1.1 public static void setFileNameMap(FileNameMap map);
// Public Instance Methods
1.4 public void addRequestProperty(String key, String value);

public abstract void connect() throws java.io.IOException;
public boolean getAllowUserInteraction();

5.0 public int getConnectTimeout();
public Object getContent() throws java.io.IOException;

1.3 public Object getContent(Class[] classes) throws java.io.IOException;
public String getContentEncoding();
public int getContentLength();
public String getContentType();
public long getDate();
public boolean getDefaultUseCaches();
public boolean getDoInput();
public boolean getDoOutput();
public long getExpiration();
public String getHeaderField(int n); constant
public String getHeaderField(String name); constant
public long getHeaderFieldDate(String name, long Default);
public int getHeaderFieldInt(String name, int Default);
public String getHeaderFieldKey(int n); constant

1.4 public java.util.Map<String,java.util.List<String>> getHeaderFields();
public long getIfModifiedSince();
public java.io.InputStream getInputStream() throws java.io.IOException;
public long getLastModified();
public java.io.OutputStream getOutputStream() throws java.io.IOException;

1.2 public java.security.Permission getPermission() throws java.io.IOException;
5.0 public int getReadTimeout();
1.4 public java.util.Map<String,java.util.List<String>> getRequestProperties();

public String getRequestProperty(String key);
public URL getURL();
public boolean getUseCaches();
public void setAllowUserInteraction(boolean allowuserinteraction);

5.0 public void setConnectTimeout(int timeout);
public void setDefaultUseCaches(boolean defaultusecaches);
public void setDoInput(boolean doinput);
public void setDoOutput(boolean dooutput);
public void setIfModifiedSince(long ifmodifiedsince);

5.0 public void setReadTimeout(int timeout);
public void setRequestProperty(String key, String value);
public void setUseCaches(boolean usecaches);

// Public Methods Overriding Object
public String toString();

Chapter 12: java.net | 585

java.net

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.net.URLEncoder

Subclasses HttpURLConnection, JarURLConnection

Passed To java.net.ContentHandler.getContent(), ResponseCache.put()

Returned By URL.openConnection(), URLStreamHandler.openConnection()

Type Of JarURLConnection.jarFileURLConnection

URLDecoder
java.net

Java 1.2

This class defines a static decode() method that reverses the encoding performed by
URLEncoder.encode(). It decodes 8-bit text with the MIME type “x-www-form-urlen-
coded”, which is a standard encoding used by web browsers to submit form contents
to CGI scripts and other server-side programs.

URLEncoder
java.net

Java 1.0

This class defines a single static method that converts a string to its URL-encoded
form. That is, spaces are converted to +, and nonalphanumeric characters other than
underscore are output as two hexadecimal digits following a percent sign. Note that
this technique works only for 8-bit characters. This method canonicalizes a URL speci-
fication so that it uses only characters from an extremely portable subset of ASCII that
can be correctly handled by computers around the world.

// Protected Instance Fields
protected boolean allowUserInteraction;
protected boolean connected;
protected boolean doInput;
protected boolean doOutput;
protected long ifModifiedSince;
protected URL url;
protected boolean useCaches;

// Deprecated Public Methods
public static String getDefaultRequestProperty(String key); constant
public static void setDefaultRequestProperty(String key, String value); empty
}

public class URLDecoder {
// Public Constructors

public URLDecoder();
// Public Class Methods
1.4 public static String decode(String s, String enc) throws java.io.UnsupportedEncodingException;
// Deprecated Public Methods
public static String decode(String s);
}

public class URLEncoder {
// No Constructor
// Public Class Methods
1.4 public static String encode(String s, String enc) throws java.io.UnsupportedEncodingException;
// Deprecated Public Methods
public static String encode(String s);
}

586

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Chapter 13java.nio.*

13
java.nio and Subpackages

This chapter documents the New I/O API defined by the java.nio package and its
subpackages. It covers:

java.nio
Defines the Buffer class and type-specific subclasses, most notably the ByteBuffer
class that is heavily used for I/O in the java.nio.channels class.

java.nio.channels
Defines the Channel abstraction for high-performance I/O, and implements
channels for file and network I/O. Also allows nonblocking I/O with the
Selector class.

java.nio.channels.spi
The service provider interface for channel and selector implementations.

java.nio.charset
Defines classes for encoding sequences of characters into bytes and decoding
sequences of bytes into characters, according to the encoding rules of a
named charset.

java.nio.charset.spi
The service provider interface for charset implementations.

Package java.nio Java 1.4

This package defines buffer classes that are fundamental to the java.nio API. See Buffer for
an overview of buffers, and see ByteBuffer (the most important of the buffer classes) for
full documentation of byte buffers. The other type-specific buffer classes are close
analogs to ByteBuffer and are documented in terms of that class. See the java.nio.channels
package for classes that perform I/O operations on buffers.

Chapter 13: java.nio and Subpackages | 587

java.nio.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.nio.Buffer

Classes
public abstract class Buffer;

public abstract class ByteBuffer extends Buffer implements Comparable<ByteBuffer>;
public abstract class MappedByteBuffer extends ByteBuffer;

public abstract class CharBuffer extends Buffer
 implements Comparable<CharBuffer>, Appendable, CharSequence, Readable;

public abstract class DoubleBuffer extends Buffer implements Comparable<DoubleBuffer>;
public abstract class FloatBuffer extends Buffer implements Comparable<FloatBuffer>;
public abstract class IntBuffer extends Buffer implements Comparable<IntBuffer>;
public abstract class LongBuffer extends Buffer implements Comparable<LongBuffer>;
public abstract class ShortBuffer extends Buffer implements Comparable<ShortBuffer>;

public final class ByteOrder;

Exceptions
public class BufferOverflowException extends RuntimeException;
public class BufferUnderflowException extends RuntimeException;
public class InvalidMarkException extends IllegalStateException;
public class ReadOnlyBufferException extends UnsupportedOperationException;

Buffer
java.nio

Java 1.4

This class is the abstract superclass of all buffer classes in the java.nio API. A buffer is a
linear (finite) sequence of prmitive values. The java.nio package defines a Buffer subclass for
each primitive type in Java except for boolean. Buffer itself defines the common, type-inde-
pendent features of all buffers. Buffer and its subclasses are intended for use by a single
thread at a time, and contain no synchronization code to make them thread-safe.

The purpose of a buffer is to store data, and buffer classes must define methods for
reading data from a buffer and writing data into a buffer. Because each Buffer subclass
stores data of a different primitive type, however, the get() and put() methods that read and
write data must be defined by each of the individual subclasses. See ByteBuffer (the most
important subclass) for documentation of these methods; all the other subclasses define
similar methods which differ only in the datatype of the values being read or written.

Each buffer has four numbers associated with it:

capacity
A buffer’s capacity is its maximum size; it can hold this many values. The capacity
is specified when a buffer is created, and may not be changed; it can be queried
with the capacity() method.

limit
A buffer’s limit is its current size, or the index of the first element that does not
contain valid data. Data cannot be read from or written into a buffer beyond the
limit. When data is being written into a buffer, the limit is usually the same as the
capacity. When data is being read from a buffer, the limit may be less than the
capacity, and indicates the amount of valid data contained in the buffer. Two
limit() methods exist: one to query a buffer’s limit, and one to set it.

position
A buffer’s position is the index of the element in the buffer at which data is being
read or written. It is used and updated by the relative get() and put() methods
defined by ByteBuffer and the other Buffer subclasses. Two position() methods exist to
query and set the current position of the buffer. A buffer’s position is always

588 | Chapter 13: java.nio and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.nio.BufferOverflowException

greater than or equal to zero and always less than or equal to the buffer’s limit.
The remaining() method returns the number of elements between the position and
the limit and hasRemaining() returns true if this number is greater than zero.

mark
A buffer’s mark is a temporarily saved position. Call mark() to set the mark to the
current position. Call reset() to restore the buffer’s position to the marked position.

Buffer defines several methods that perform important operations on a buffer:

clear()
This method does not actually clear the contents of the buffer, but it sets the posi-
tion to zero, sets the limit to the capacity, and discards any saved mark. This
prepares the buffer to have new data written into it.

flip()
This method sets the limit to the position, sets the position to zero, and discards
any saved mark. After data has been written into a buffer, this method “flips” the
purpose of the buffer and prepares it for reading.

rewind()
This method sets the position to zero and discards any saved mark. It does not
alter the limit, and can be used to restart a read operation at the beginning of
the buffer.

Buffer objects may be read-only, in which case any attempt to store data in the buffer
results in a ReadonlyBufferException. The isReadOnly() method returns true if a buffer is read-only.

Subclasses ByteBuffer, CharBuffer, DoubleBuffer, FloatBuffer, IntBuffer, LongBuffer, ShortBuffer

BufferOverflowException
java.nio

Java 1.4

serializable unchecked

Signals that a relative put() operation on a buffer could not complete because the
number of elements to write exceeds the number of remaining elements between the
buffer’s position and its limit.

public abstract class Buffer {
// No Constructor
// Public Instance Methods

public final int capacity();
public final Buffer clear(); omu
public final Buffer flip();
public final boolean hasRemaining();
public abstract boolean isReadOnly();
public final int limit();
public final Buffer limit(int newLimit);
public final Buffer mark();
public final int position();
public final Buffer position(int newPosition);
public final int remaining();
public final Buffer reset();
public final Buffer rewind();

}

Object Throwable Exception RuntimeException BufferOverflowException

Serializable

Chapter 13: java.nio and Subpackages | 589

java.nio.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.nio.ByteBuffer

BufferUnderflowException
java.nio

Java 1.4

serializable unchecked

Signals that a relative get() operation on a buffer could not complete because the
number of elements to read exceeds the number of remaining elements between the
buffer’s position and its limit.

ByteBuffer
java.nio

Java 1.4

comparable

ByteBuffer holds a sequence of bytes for use in an I/O operation. ByteBuffer is an abstract
class, so you cannot instantiate one by calling a constructor. Instead, you must use
allocate(), allocateDirect(), or wrap().

allocate() returns a ByteBuffer with the specified capacity. The position of this new buffer is
zero, and its limit is set to its capacity. allocateDirect() is like allocate() except that it
attempts to allocate a buffer that the underlying operating system can use “directly.”
Such direct buffers” may be substantially more efficient for low-level I/O operations
than normal buffers, but may also have significantly larger allocation costs.

If you have already allocated an array of bytes, you can use the wrap() method to create a
ByteBuffer that uses the byte array as its storage. In the one-argument version of wrap() you
specify only the array; the buffer capacity and limit are set to the array length, and the
position is set to zero. In the other form of wrap() you specify the array, as well as an offset
and length that specify a portion of that array. The capacity of the resulting ByteBuffer is
again set to the total array length, but its position is set to the specified offset, and its
limit is set to the offset plus length.

Once you have obtained a ByteBuffer, you can use the various get() and put() methods to
read data from it or write data into it. Several versions of these methods exist to read
and write single bytes or arrays of bytes. The single-byte methods come in two forms.
Relative get() and put() methods query or set the byte at the current position and then
increment the position. The absolute forms of the methods take an additional argue-
ment that specifies the buffer element that is to be read or written and do not affect the
buffer position. Two other relative forms of the get() method exist to read as sequence
of bytes (starting at and incrementing the buffer’s position) into a specified byte array
or a specified sub-array. These methods throw a BufferUnderflowException if there are not
enough bytes left in the buffer. Two relative forms of the put() method copy bytes from
a specified array or sub-array into the buffer (starting at and incrementing the buffer’s
position). They throw a BufferOverflowException if there is not enough room left in the
buffer to hold the bytes. One final form of the put() method transfers all the remaining
bytes from one ByteBuffer into this buffer, incrementing the positions of both buffers.

public class BufferOverflowException extends RuntimeException {
// Public Constructors

public BufferOverflowException();
}

public class BufferUnderflowException extends RuntimeException {
// Public Constructors

public BufferUnderflowException();
}

Object Throwable Exception RuntimeException BufferUnderflowException

Serializable

590 | Chapter 13: java.nio and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.nio.ByteBuffer

In addition to the get() and put() methods, ByteBuffer also defines another operation that
affect the buffer’s content. compact() discards any bytes before the buffer position, and
copies all bytes between the position and limit to the beginning of the buffer. The posi-
tion is then set to the new limit, and the limit is set to the capacity. This method
compacts a buffer by discarding elements that have already been read, and then
prepares the buffer for appending new elements to those that remain.

All Buffer subclasses, such as CharBuffer, IntBuffer and FloatBuffer have analogous methods
which are just like these get() and put() methods except that they operate on different
data types. ByteBuffer is unique among Buffer subclasses in that it has additional methods
for reading and writing values of other primitive types from and into the byte buffer.
These methods have names like getInt() and putChar(), and there are methods for all prim-
itive types except byte and boolean. Each method reads or writes a single primitive value.
Like the get() and put() methods, they come in relative and absolute variations: the rela-
tive methods start with the byte at the buffer’s position, and increment the position by
the appropriate number of bytes (two bytes for a char, four bytes for an int, eight bytes
for a double, etc.). The absolute methods take an buffer index (it is a byte index and is
not multiplied by the size of the primitive value) as an argument and do not modify the
buffer position. The encoding of multi-byte primitive values into a byte buffer can be
done most-significant byte to least-significant byte (“big-endian byte order”) or the
reverse (“little-endian byte order”). The byte order used by these primitive-type get
and put methods is specified by a ByteOrder object. The byte order for a ByteBuffer can be
queried and set with the two forms of the order() method. The default byte order for all
newly-created ByteBuffer objects is ByteOrder.BIG_ENDIAN.

Other methods that are unique to ByteBuffer() are a set of methods that allow a buffer of
bytes to be viewed as a buffer of other primitive types. asCharBuffer(), asIntBuffer() and
related methods return “view buffers” that allow the bytes between the position and
the limit of the underlying ByteBuffer to be viewed as a sequence of characters, integers,
or other primitive values. The returned buffers have position, limit, and mark values
that are independent of those of the underlying buffer. The initial position of the
returned buffer is zero, and the limit and capacity are the number of bytes between the
position and limit of the original buffer divided by the size in bytes of the relevant
primitive type (two for char and short, four for int and float, and eight for long and double).
Note that the returned view buffer is a view of the bytes between the position and limit
of the byte buffer. Subsequent changes to the position and limit of the byte buffer do
not change the size of the view buffer, but changes to the bytes themselves to change
the values that are viewed through the view buffer. View buffers use the byte ordering
that was current in the byte buffer when they were created; subsequent changes to the
byte order of the byte buffer do not affect the view buffer. If the underlying byte buffer
is direct, then the returned buffer is also direct; this is important because ByteBuffer is the
only buffer class with an allocateDirect() method.

ByteBuffer defines some additional methods, which, like the get() and put() methods have
analogs in all Buffer subclasses. duplicate() returns a new buffer that shares the content
with this one. The two buffers have independent position, limit, and mark values,
although the duplicate buffer starts off with the same values as the original buffer. The
duplicate buffer is direct if the original is direct and is read-only if the original is read-
only. The buffers share content, and content changes made to either buffer are visible
through the other. asReadOnlyBuffer() is like duplicate() except that the returned buffer is
read-only, and all of its put() and related methods throw a ReadOnlyBufferException. slice() is
also somewhat like duplicate() except the returned buffer represents only the content
between the current position and limit. The returned buffer has a position of zero, a

Chapter 13: java.nio and Subpackages | 591

java.nio.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.nio.ByteBuffer

limit and capacity equal to the number of remaining elements in this buffer, and an
undefined mark. isDirect() is a simple method that returns true if a buffer is a direct buffer
and false otherwise. If this buffer has a backing array and is not a read-only buffer (e.g.,
if it was created with the allocate() or wrap() methods) then hasArray() returns true, array()
returns the backing array, and arrayOffset() returns the offset within that array of the first
element of the buffer. If hasArray() returns false, then array() and arrayOffset() may throw an
UnsupportedOperationException or a ReadOnlyBufferException.

Finally, ByteBuffer and other Buffer subclasses override several standard object methods.
The equals() methods compares the elements between the position and limit of two
buffers and returns true only if there are the same number and have the same value.
Note that elements before the position of the buffer are not considered. The hashCode()
method is implemented to match the equals() method: the hashcode is based only upon
the elements between the position and limit of the buffer. This means that the hash-
code changes if either the contents or position of the buffer changes. This means that
instances of ByteBuffer and other Buffer subclasses are not usually useful as keys for hash-
tables or java.util.Map objects. toString() returns a string summary of the buffer, but the
precise contents of the string are unspecified. ByteBuffer and each of the other Buffer
subclasses also implement the Comparable interface and define a compareTo() method that
performs an element-by-element comparison operation on the buffer elements
between the position and the limit of the buffer.

public abstract class ByteBuffer extends Buffer implements Comparable<ByteBuffer> {
// No Constructor
// Public Class Methods

public static ByteBuffer allocate(int capacity);
public static ByteBuffer allocateDirect(int capacity);
public static ByteBuffer wrap(byte[] array);
public static ByteBuffer wrap(byte[] array, int offset, int length);

// Public Instance Methods
public final byte[] array();
public final int arrayOffset();
public abstract CharBuffer asCharBuffer();
public abstract DoubleBuffer asDoubleBuffer();
public abstract FloatBuffer asFloatBuffer();
public abstract IntBuffer asIntBuffer();
public abstract LongBuffer asLongBuffer();
public abstract ByteBuffer asReadOnlyBuffer();
public abstract ShortBuffer asShortBuffer();
public abstract ByteBuffer compact();
public abstract ByteBuffer duplicate();
public abstract byte get();
public abstract byte get(int index);
public ByteBuffer get(byte[] dst);
public ByteBuffer get(byte[] dst, int offset, int length);
public abstract char getChar();
public abstract char getChar(int index);
public abstract double getDouble();
public abstract double getDouble(int index);
public abstract float getFloat();

Object Buffer ByteBuffer

Comparable

592 | Chapter 13: java.nio and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.nio.ByteOrder

Subclasses MappedByteBuffer

Passed To Too many methods to list.

Returned By java.nio.charset.Charset.encode(), java.nio.charset.CharsetEncoder.encode()

ByteOrder
java.nio

Java 1.4

This class is a type-safe enumeration of byte orders, and is used by the ByteBuffer class.
The two constant fields define the two legal byte order values: BIG_ENDIAN byte order
means most-significant-byte first. LITTLE_ENDIAN means least-significant-byte first. The
static nativeOrder() method returns whichever of these two constants represents the
native byte order of the underlying operating system and hardware. Finally, the
toString() method returns the string “BIG_ENDIAN” or “LITTLE_ENDIAN”.

public abstract float getFloat(int index);
public abstract int getInt();
public abstract int getInt(int index);
public abstract long getLong();
public abstract long getLong(int index);
public abstract short getShort();
public abstract short getShort(int index);
public final boolean hasArray();
public abstract boolean isDirect();
public final ByteOrder order();
public final ByteBuffer order(ByteOrder bo);
public ByteBuffer put(ByteBuffer src);
public abstract ByteBuffer put(byte b);
public final ByteBuffer put(byte[] src);
public abstract ByteBuffer put(int index, byte b);
public ByteBuffer put(byte[] src, int offset, int length);
public abstract ByteBuffer putChar(char value);
public abstract ByteBuffer putChar(int index, char value);
public abstract ByteBuffer putDouble(double value);
public abstract ByteBuffer putDouble(int index, double value);
public abstract ByteBuffer putFloat(float value);
public abstract ByteBuffer putFloat(int index, float value);
public abstract ByteBuffer putInt(int value);
public abstract ByteBuffer putInt(int index, int value);
public abstract ByteBuffer putLong(long value);
public abstract ByteBuffer putLong(int index, long value);
public abstract ByteBuffer putShort(short value);
public abstract ByteBuffer putShort(int index, short value);
public abstract ByteBuffer slice();

// Methods Implementing Comparable
5.0 public int compareTo(ByteBuffer that);
// Public Methods Overriding Object

public boolean equals(Object ob);
public int hashCode();
public String toString();

}

public final class ByteOrder {
// No Constructor
// Public Constants

Chapter 13: java.nio and Subpackages | 593

java.nio.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.nio.CharBuffer

Passed To ByteBuffer.order()

Returned By ByteBuffer.order(), CharBuffer.order(), DoubleBuffer.order(), FloatBuffer.order(),
IntBuffer.order(), LongBuffer.order(), ShortBuffer.order()

CharBuffer
java.nio

Java 1.4

comparable appendable readable

CharBuffer holds a sequence of Unicode character values for use in an I/O operation.
Most of the methods of this class are directly analogous to methods defined by Byte-
Buffer except that they use char and char[] argument and return values instead of byte and
byte[] values. See ByteBuffer for details.

In addition to the ByteBuffer analogs, this class also implements the java.lang.CharSequence
interface so that it can be used with java.util.regex regular expression operations or
anywhere else a CharSequence is expected. In Java 5.0, CharBuffer adds the append() and read()
methods of the java.lang.Appendable and java.lang.Readable interfaces, making CharBuffer objects
suitable for use with the Formatter and Scanner classes of java.util.

Note that CharBuffer is an abstract class and does not defined a constructor. There are
three ways to obtain a CharBuffer:

• By calling the static allocate() method. Note that there is no allocateDirect() method as
there is for ByteBuffer.

• By calling one of the static wrap() methods to create a CharBuffer that uses the speci-
fied char array or CharSequence for its content. Note that wrapping a CharSequence
results in a read-only CharBuffer.

• By calling the asCharBuffer() method of a ByteBuffer to obtain a CharBuffer “view” of the
underlying bytes. If the underlying ByteBuffer is direct, then the CharBuffer view will
also be direct.

Note that this class holds a sequence of 16-bit Unicode characters, and does not repre-
sent text in any other encoding. Classes in the java.nio.charset package can be used to
encode a CharBuffer of Unicode characters into a ByteBuffer, or decode the bytes in a ByteBuffer
into a CharBuffer of Unicode text. Java 5.0 supports Unicode supplementary characters that
do not fit in 16 bits. See java.lang.Character for details. Note that CharBuffer does not include
any utility methods for working with int codepoints or surrogate pairs.

public static final ByteOrder BIG_ENDIAN;
public static final ByteOrder LITTLE_ENDIAN;

// Public Class Methods
public static ByteOrder nativeOrder();

// Public Methods Overriding Object
public String toString();

}

public abstract class CharBuffer extends Buffer
implements Comparable<CharBuffer>, Appendable, CharSequence, Readable {

// No Constructor
// Public Class Methods

public static CharBuffer allocate(int capacity);
public static CharBuffer wrap(char[] array);

Object Buffer CharBuffer

Appendable CharSequence Comparable Readable

594 | Chapter 13: java.nio and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.nio.DoubleBuffer

Passed To java.io.Reader.read(), Readable.read(), java.nio.charset.Charset.encode(),
java.nio.charset.CharsetDecoder.{decode(), decodeLoop(), flush(), implFlush()},
java.nio.charset.CharsetEncoder.{encode(), encodeLoop()}

Returned By ByteBuffer.asCharBuffer(), java.nio.charset.Charset.decode(),
java.nio.charset.CharsetDecoder.decode()

DoubleBuffer
java.nio

Java 1.4

comparable

DoubleBuffer holds a sequence of double values for use in an I/O operation. Most of the
methods of this class are directly analogous to methods defined by ByteBuffer except that
they use double and double[] argument and return values instead of byte and byte[] values.
See ByteBuffer for details.

public static CharBuffer wrap(CharSequence csq);
public static CharBuffer wrap(char[] array, int offset, int length);
public static CharBuffer wrap(CharSequence csq, int start, int end);

// Public Instance Methods
5.0 public CharBuffer append(char c);
5.0 public CharBuffer append(CharSequence csq);
5.0 public CharBuffer append(CharSequence csq, int start, int end);

public final char[] array();
public final int arrayOffset();
public abstract CharBuffer asReadOnlyBuffer();
public abstract CharBuffer compact();
public abstract CharBuffer duplicate();
public abstract char get();
public abstract char get(int index);
public CharBuffer get(char[] dst);
public CharBuffer get(char[] dst, int offset, int length);
public final boolean hasArray();
public abstract boolean isDirect();
public abstract ByteOrder order();
public final CharBuffer put(char[] src);
public CharBuffer put(CharBuffer src);
public final CharBuffer put(String src);
public abstract CharBuffer put(char c);
public abstract CharBuffer put(int index, char c);
public CharBuffer put(String src, int start, int end);
public CharBuffer put(char[] src, int offset, int length);
public abstract CharBuffer slice();

// Methods Implementing CharSequence
public final char charAt(int index);
public final int length();
public abstract CharSequence subSequence(int start, int end);
public String toString();

// Methods Implementing Comparable
5.0 public int compareTo(CharBuffer that);
// Methods Implementing Readable
5.0 public int read(CharBuffer target) throws java.io.IOException;
// Public Methods Overriding Object

public boolean equals(Object ob);
public int hashCode();

}

Chapter 13: java.nio and Subpackages | 595

java.nio.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.nio.FloatBuffer

DoubleBuffer is abstract and has no constructor. Create one by calling the static allocate() or
wrap() methods, which are also analogs of ByteBuffer methods. Or, create a “view” Double-
Buffer by calling the asDoubleBuffer() method of an underlying ByteBuffer.

Returned By ByteBuffer.asDoubleBuffer()

FloatBuffer
java.nio

Java 1.4

comparable

FloatBuffer holds a sequence of float values for use in an I/O operation. Most of the
methods of this class are directly analogous to methods defined by ByteBuffer except that
they use float and float[] argument and return values instead of byte and byte[] values. See
ByteBuffer for details.

FloatBuffer is abstract and has no constructor. Create one by calling the static allocate() or
wrap() methods, which are also analogs of ByteBuffer methods. Or, create a “view” Float-
Buffer by calling the asFloatBuffer() method of an underlying ByteBuffer.

public abstract class DoubleBuffer extends Buffer implements Comparable<DoubleBuffer> {
// No Constructor
// Public Class Methods

public static DoubleBuffer allocate(int capacity);
public static DoubleBuffer wrap(double[] array);
public static DoubleBuffer wrap(double[] array, int offset, int length);

// Public Instance Methods
public final double[] array();
public final int arrayOffset();
public abstract DoubleBuffer asReadOnlyBuffer();
public abstract DoubleBuffer compact();
public abstract DoubleBuffer duplicate();
public abstract double get();
public abstract double get(int index);
public DoubleBuffer get(double[] dst);
public DoubleBuffer get(double[] dst, int offset, int length);
public final boolean hasArray();
public abstract boolean isDirect();
public abstract ByteOrder order();
public DoubleBuffer put(DoubleBuffer src);
public abstract DoubleBuffer put(double d);
public final DoubleBuffer put(double[] src);
public abstract DoubleBuffer put(int index, double d);
public DoubleBuffer put(double[] src, int offset, int length);
public abstract DoubleBuffer slice();

// Methods Implementing Comparable
5.0 public int compareTo(DoubleBuffer that);
// Public Methods Overriding Object

public boolean equals(Object ob);
public int hashCode();
public String toString();

}

Object Buffer DoubleBuffer

Comparable

596 | Chapter 13: java.nio and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.nio.IntBuffer

Returned By ByteBuffer.asFloatBuffer()

IntBuffer
java.nio

Java 1.4

comparable

IntBuffer holds a sequence of int values for use in an I/O operation. Most of the methods
of this class are directly analogous to methods defined by ByteBuffer except that they use
int and int[] argument and return values instead of byte and byte[] values. See ByteBuffer for
details.

IntBuffer is abstract and has no constructor. Create one by calling the static allocate() or
wrap() methods, which are also analogs of ByteBuffer methods. Or, create a “view” IntBuffer
by calling the asIntBuffer() method of an underlying ByteBuffer.

public abstract class FloatBuffer extends Buffer implements Comparable<FloatBuffer> {
// No Constructor
// Public Class Methods

public static FloatBuffer allocate(int capacity);
public static FloatBuffer wrap(float[] array);
public static FloatBuffer wrap(float[] array, int offset, int length);

// Public Instance Methods
public final float[] array();
public final int arrayOffset();
public abstract FloatBuffer asReadOnlyBuffer();
public abstract FloatBuffer compact();
public abstract FloatBuffer duplicate();
public abstract float get();
public abstract float get(int index);
public FloatBuffer get(float[] dst);
public FloatBuffer get(float[] dst, int offset, int length);
public final boolean hasArray();
public abstract boolean isDirect();
public abstract ByteOrder order();
public FloatBuffer put(FloatBuffer src);
public abstract FloatBuffer put(float f);
public final FloatBuffer put(float[] src);
public abstract FloatBuffer put(int index, float f);
public FloatBuffer put(float[] src, int offset, int length);
public abstract FloatBuffer slice();

// Methods Implementing Comparable
5.0 public int compareTo(FloatBuffer that);
// Public Methods Overriding Object

public boolean equals(Object ob);
public int hashCode();
public String toString();

}

Object Buffer FloatBuffer

Comparable

Object Buffer IntBuffer

Comparable

Chapter 13: java.nio and Subpackages | 597

java.nio.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.nio.LongBuffer

Returned By ByteBuffer.asIntBuffer()

InvalidMarkException
java.nio

Java 1.4

serializable unchecked

Signals that a buffer’s position cannot be reset() because there is no mark defined.

LongBuffer
java.nio

Java 1.4

comparable

LongBuffer holds a sequence of long values for use in an I/O operation. Most of the
methods of this class are directly analogous to methods defined by ByteBuffer except that

public abstract class IntBuffer extends Buffer implements Comparable<IntBuffer> {
// No Constructor
// Public Class Methods

public static IntBuffer allocate(int capacity);
public static IntBuffer wrap(int[] array);
public static IntBuffer wrap(int[] array, int offset, int length);

// Public Instance Methods
public final int[] array();
public final int arrayOffset();
public abstract IntBuffer asReadOnlyBuffer();
public abstract IntBuffer compact();
public abstract IntBuffer duplicate();
public abstract int get();
public abstract int get(int index);
public IntBuffer get(int[] dst);
public IntBuffer get(int[] dst, int offset, int length);
public final boolean hasArray();
public abstract boolean isDirect();
public abstract ByteOrder order();
public IntBuffer put(IntBuffer src);
public abstract IntBuffer put(int i);
public final IntBuffer put(int[] src);
public abstract IntBuffer put(int index, int i);
public IntBuffer put(int[] src, int offset, int length);
public abstract IntBuffer slice();

// Methods Implementing Comparable
5.0 public int compareTo(IntBuffer that);
// Public Methods Overriding Object

public boolean equals(Object ob);
public int hashCode();
public String toString();

}

public class InvalidMarkException extends IllegalStateException {
// Public Constructors

public InvalidMarkException();
}

Object Throwable Exception RuntimeException IllegalStateException InvalidMarkException

Serializable

598 | Chapter 13: java.nio and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.nio.MappedByteBuffer

they use long and long[] argument and return values instead of byte and byte[] values. See
ByteBuffer for details.

LongBuffer is abstract and has no constructor. Create one by calling the static allocate() or
wrap() methods, which are also analogs of ByteBuffer methods. Or, create a “view” LongBuffer
by calling the asLongBuffer() method of an underlying ByteBuffer.

Returned By ByteBuffer.asLongBuffer()

MappedByteBuffer
java.nio

Java 1.4

comparable

This class is a ByteBuffer that represents a memory-mapped portion of a file. Create a
MappedByteBuffer by calling the map() method of a java.nio.channels.FileChannel. All MappedByteBuffer
buffers are direct buffers.

isLoaded() returns a hint as to whether the contents of the buffer are currently in primary
memory (as opposed to resident on disk). If it returns true, then operations on the
buffer will probably execute very quickly. The load() method requests (but does not

public abstract class LongBuffer extends Buffer implements Comparable<LongBuffer> {
// No Constructor
// Public Class Methods

public static LongBuffer allocate(int capacity);
public static LongBuffer wrap(long[] array);
public static LongBuffer wrap(long[] array, int offset, int length);

// Public Instance Methods
public final long[] array();
public final int arrayOffset();
public abstract LongBuffer asReadOnlyBuffer();
public abstract LongBuffer compact();
public abstract LongBuffer duplicate();
public abstract long get();
public abstract long get(int index);
public LongBuffer get(long[] dst);
public LongBuffer get(long[] dst, int offset, int length);
public final boolean hasArray();
public abstract boolean isDirect();
public abstract ByteOrder order();
public LongBuffer put(LongBuffer src);
public abstract LongBuffer put(long l);
public final LongBuffer put(long[] src);
public abstract LongBuffer put(int index, long l);
public LongBuffer put(long[] src, int offset, int length);
public abstract LongBuffer slice();

// Methods Implementing Comparable
5.0 public int compareTo(LongBuffer that);
// Public Methods Overriding Object

public boolean equals(Object ob);
public int hashCode();
public String toString();

}

Object Buffer LongBuffer

Comparable

Chapter 13: java.nio and Subpackages | 599

java.nio.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.nio.ShortBuffer

require) that the operating system load the buffer contents into primary memory. It is
not guaranteed to succeed. For buffers that are mapped in read/write mode, the force()
method outputs any changes that have been made to the buffer contents to the under-
lying file. If the file is on a local device, then it is guaranteed to be updated before force()
returns. No such guarantees can be made for mapped network files.

Note that the underlying file of a MappedByteBuffer may be shared, which means that the
contents of such a buffer can change asynchronously if the contents of the file are
modified by another thread or another process (such asynchronous changes to the
underlying file may or may not be visible through the buffer; this is a platform-depen-
dent, and should not be relied on). Furthermore, if another thread or process truncates
the file, some or all of the elements of the buffer may no longer map to any content of
the file. An attempt to read or write such an inaccesible element of the buffer will
cause an implementation-defined exception, either immediately or at some later time.

Returned By java.nio.channels.FileChannel.map()

ReadOnlyBufferException
java.nio

Java 1.4

serializable unchecked

Signals that a buffer is read-only and that its put() or compact() methods are not allowed
to modify the buffer contents.

ShortBuffer
java.nio

Java 1.4

comparable

ShortBuffer holds a sequence of short values for use in an I/O operation. Most of the
methods of this class are directly analogous to methods defined by ByteBuffer except that
they use short and short[] argument and return values instead of byte and byte[] values. See
ByteBuffer for details.

ShortBuffer is abstract and has no constructor. Create one by calling the static allocate() or
wrap() methods, which are also analogs of ByteBuffer methods. Or, create a “view” Short-
Buffer by calling the asShortBuffer() method of an underlying ByteBuffer.

public abstract class MappedByteBuffer extends ByteBuffer {
// No Constructor
// Public Instance Methods

public final MappedByteBuffer force();
public final boolean isLoaded();
public final MappedByteBuffer load();

}

public class ReadOnlyBufferException extends UnsupportedOperationException {
// Public Constructors

public ReadOnlyBufferException();
}

Object Buffer ByteBuffer MappedByteBuffer

Comparable

Object Throwable Exception RuntimeException UnsupportedOperationException ReadOnlyBufferException

Serializable

600 | Chapter 13: java.nio and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

.Package java.nio.channels

Returned By ByteBuffer.asShortBuffer()

Package java.nio.channels Java 1.4

This package is at the heart of the NIO API. A channel is a communication channel for
transferring bytes from or to a java.nio.ByteBuffer. Channels serve a similar purpose to the
InputStream and OutputStream classes of the java.io package, but are completely unrelated to
those classes, and provide important features not available with the java.io API. The
Channels class defines methods that bridge the java.io and java.nio.channels APIs, by returning
channels based on streams and streams based on channels.

The Channel interface simply defines methods for testing whether a channel is open and
for closing a channel. The other interfaces in the package extend Channel and define
read() and write() methods for reading bytes from the channel into one or more byte
buffers and for writing bytes from one or more byte buffers to the channel.

public abstract class ShortBuffer extends Buffer implements Comparable<ShortBuffer> {
// No Constructor
// Public Class Methods

public static ShortBuffer allocate(int capacity);
public static ShortBuffer wrap(short[] array);
public static ShortBuffer wrap(short[] array, int offset, int length);

// Public Instance Methods
public final short[] array();
public final int arrayOffset();
public abstract ShortBuffer asReadOnlyBuffer();
public abstract ShortBuffer compact();
public abstract ShortBuffer duplicate();
public abstract short get();
public abstract short get(int index);
public ShortBuffer get(short[] dst);
public ShortBuffer get(short[] dst, int offset, int length);
public final boolean hasArray();
public abstract boolean isDirect();
public abstract ByteOrder order();
public ShortBuffer put(ShortBuffer src);
public abstract ShortBuffer put(short s);
public final ShortBuffer put(short[] src);
public abstract ShortBuffer put(int index, short s);
public ShortBuffer put(short[] src, int offset, int length);
public abstract ShortBuffer slice();

// Methods Implementing Comparable
5.0 public int compareTo(ShortBuffer that);
// Public Methods Overriding Object

public boolean equals(Object ob);
public int hashCode();
public String toString();

}

Object Buffer ShortBuffer

Comparable

Chapter 13: java.nio and Subpackages | 601

java.nio.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

.Package java.nio.channels

The FileChannel class defines an channel-based API for reading and writing from files
(and also provides other important file functionality such as file locking and memory
mapping that is not available through the java.io package). SocketChannel, ServerSocketChannel,
and DatagramChannel are channels for communication over a network, and Pipe defines
two inner classes that use the channel abstraction for communication between threads.

The network and pipe channels are all subclasses of the SelectableChannel class, and may
be put into nonblocking mode, in which calls to read() and write() return immediately,
even if the channel is not ready for reading or writing. nonblocking IO and networking
is not possible using the stream abstraction of the java.io and java.net packages, and is
perhaps the most important new feature of the java.nio API. The Selector class is crucial to
the efficient use of nonblocking channels: it allows a program to register interested in
I/O operations on several different channels at once. A call to the select() method of a
Selector will block until one of those channels becomes ready for I/O, and will then
wake up. This technique is important for writing scalable high-performance network
servers. See Selector and SelectionKey for details.

Finally, this package allows for very fine-grained error handling by defining a large
number of exception classes, several of which may be thrown by only a single method
within the java.nio API.

Interfaces
public interface ByteChannel extends ReadableByteChannel, WritableByteChannel;
public interface Channel extends java.io.Closeable;
public interface GatheringByteChannel extends WritableByteChannel;
public interface InterruptibleChannel extends Channel;
public interface ReadableByteChannel extends Channel;
public interface ScatteringByteChannel extends ReadableByteChannel;
public interface WritableByteChannel extends Channel;

Classes
public final class Channels;
public abstract class DatagramChannel extends java.nio.channels.spi.AbstractSelectableChannel

implements ByteChannel, GatheringByteChannel, ScatteringByteChannel;
public abstract class FileChannel extends java.nio.channels.spi.AbstractInterruptibleChannel

implements ByteChannel, GatheringByteChannel, ScatteringByteChannel;
public static class FileChannel.MapMode;
public abstract class FileLock;
public abstract class Pipe;
public abstract static class Pipe.SinkChannel extends java.nio.channels.spi.AbstractSelectableChannel

implements GatheringByteChannel, WritableByteChannel;
public abstract static class Pipe.SourceChannel extends java.nio.channels.spi.AbstractSelectableChannel

implements ReadableByteChannel, ScatteringByteChannel;
public abstract class SelectableChannel extends java.nio.channels.spi.AbstractInterruptibleChannel

implements Channe l;
public abstract class SelectionKey;
public abstract class Selector;
public abstract class ServerSocketChannel extends java.nio.channels.spi.AbstractSelectableChannel;
public abstract class SocketChannel extends java.nio.channels.spi.AbstractSelectableChannel

implements ByteChannel, GatheringByteChannel, ScatteringByteChannel;

602 | Chapter 13: java.nio and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.nio.channels.AlreadyConnectedException

Exceptions
public class AlreadyConnectedException extends IllegalStateException;
public class CancelledKeyException extends IllegalStateException;
public class ClosedChannelException extends java.io.IOException;

public class AsynchronousCloseException extends ClosedChannelException;
public class ClosedByInterruptException extends AsynchronousCloseException;

public class ClosedSelectorException extends IllegalStateException;
public class ConnectionPendingException extends IllegalStateException;
public class FileLockInterruptionException extends java.io.IOException;
public class IllegalBlockingModeException extends IllegalStateException;
public class IllegalSelectorException extends IllegalArgumentException;
public class NoConnectionPendingException extends IllegalStateException;
public class NonReadableChannelException extends IllegalStateException;
public class NonWritableChannelException extends IllegalStateException;
public class NotYetBoundException extends IllegalStateException;
public class NotYetConnectedException extends IllegalStateException;
public class OverlappingFileLockException extends IllegalStateException;
public class UnresolvedAddressException extends IllegalArgumentException;
public class UnsupportedAddressTypeException extends IllegalArgumentException;

AlreadyConnectedException
java.nio.channels

Java 1.4

serializable unchecked

Thrown by a call to connect() on a SocketChannel that is already connected.

AsynchronousCloseException
java.nio.channels

Java 1.4

serializable checked

Signals the termination of a blocked I/O operation because another thread closed the
channel asynchronously. See also ClosedByInterruptException.

Subclasses ClosedByInterruptException

Thrown By java.nio.channels.spi.AbstractInterruptibleChannel.end()

public class AlreadyConnectedException extends IllegalStateException {
// Public Constructors

public AlreadyConnectedException();
}

public class AsynchronousCloseException extends ClosedChannelException {
// Public Constructors

public AsynchronousCloseException();
}

Object Throwable Exception RuntimeException IllegalStateException AlreadyConnectedException

Serializable

Object Throwable Exception IOException ClosedChannelException AsynchronousCloseException

Serializable

Chapter 13: java.nio and Subpackages | 603

java.nio.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.nio.channels.Channel

ByteChannel
java.nio.channels

Java 1.4

closeable

This interface extends ReadableByteChannel and WritableByteChannel but adds no methods or
constants of its own. It exists simply as a convience that to unify the two interfaces.

Implementations DatagramChannel, FileChannel, SocketChannel

CancelledKeyException
java.nio.channels

Java 1.4

serializable unchecked

Signals an attempt to use a SelectionKey whose cancel() method has previously been called.

Channel
java.nio.channels

Java 1.4

closeable

This interface defines a communication channel for input and output. The Channel inter-
face is a high-level generic interface which is extended by more specific interfaces, such
as ReadableByteChannel and WritableByteChannel. Channel defines only two methods: isOpen()
determines whether a channel is open, and close() closes a channel. Channels are open
when they are first created. Once closed, a channel remains closed forever, and no
further I/O operations may take place through it.

Many channel implementations are interruptible and asynchonously closeable, and
implement the InterruptibleChannel interface to advertise this fact. See InterruptibleChannel for
details.

Implementations InterruptibleChannel, ReadableByteChannel, SelectableChannel, WritableByteChannel,
java.nio.channels.spi.AbstractInterruptibleChannel

Returned By System.inheritedChannel(), java.nio.channels.spi.SelectorProvider.inheritedChannel()

public interface ByteChannel extends ReadableByteChannelWritableByteChannel {
}

public class CancelledKeyException extends IllegalStateException {
// Public Constructors

public CancelledKeyException();
}

public interface Channel extends java.io.Closeable {
// Public Instance Methods

void close() throws java.io.IOException;
boolean isOpen();

}

ByteChannel

Closeable Channel ReadableByteChannel Closeable Channel WritableByteChannel

Object Throwable Exception RuntimeException IllegalStateException CancelledKeyException

Serializable

Closeable Channel

604 | Chapter 13: java.nio and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.nio.channels.Channels

Channels
java.nio.channels

Java 1.4

This class defines static methods that provide a bridge between the byte stream and
character stream classes of the java.io package and the channel classes of java.nio.channels.
Channels is never intended to be instantiated: it serves solely as a placeholder for static
methods. These methods create byte channels based on java.io byte streams, and create
java.io byte streams based on byte channels. Note that the channel objects returned by
the newChannel() methods may not implement InterruptibleChannel, and so may not be asyn-
chonously closeable and interruptible like other channel classes in this package. Channels
also defines methods to create character streams (java.io.Reader and java.io.Writer) based on
the combination of a byte channel and a character encoding. The encoding may be
specified by charset name, or with a CharsetDecoder or CharsetEncoder (see java.nio.charset).

ClosedByInterruptException
java.nio.channels

Java 1.4

serializable checked

An exception of this type is thrown by a thread blocked in an I/O operation on a
channel when another thread calls its interrupt() method. This exception is a subclass of
AsynchronousCloseException and the channel will be closed as a side-effect of the thread
interruption.

ClosedChannelException
java.nio.channels

Java 1.4

serializable checked

Signals an attempt to perform I/O on a channel that has been closed with the close()
method, or that is closed for a particular type of I/O operation (a SocketChannel, for
example, may have its read and write halves shut down independently.) Channels may
be closed asynchronously, and threads blocking to complete an I/O operation will
throw a subclass of this exception type. See AsynchronousCloseException and
ClosedByInterruptException.

public final class Channels {
// No Constructor
// Public Class Methods

public static ReadableByteChannel newChannel(java.io.InputStream in);
public static WritableByteChannel newChannel(java.io.OutputStream out);
public static java.io.InputStream newInputStream(ReadableByteChannel ch);
public static java.io.OutputStream newOutputStream(WritableByteChannel ch);
public static java.io.Reader newReader(ReadableByteChannel ch, String csName);
public static java.io.Reader newReader(ReadableByteChannel ch, java.nio.charset.CharsetDecoder dec,

int minBufferCap);
public static java.io.Writer newWriter(WritableByteChannel ch, String csName);
public static java.io.Writer newWriter(WritableByteChannel ch, java.nio.charset.CharsetEncoder enc, int minBufferCap);

}

public class ClosedByInterruptException extends AsynchronousCloseException {
// Public Constructors

public ClosedByInterruptException();
}

Throwable Exception IOException ClosedChannelException AsynchronousCloseException ClosedByInterruptException

Serializable

Chapter 13: java.nio and Subpackages | 605

java.nio.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.nio.channels.DatagramChannel

Subclasses AsynchronousCloseException

Thrown By SelectableChannel.register(), java.nio.channels.spi.AbstractSelectableChannel.register()

ClosedSelectorException
java.nio.channels

Java 1.4

serializable unchecked

Signals an attempt to use a Selector object whose close() method has been called.

ConnectionPendingException
java.nio.channels

Java 1.4

serializable unchecked

Signals a call to the connect() method of a SocketChannel when there is already a connection
pending for that channel. See SocketChannel.isConnectionPending().

DatagramChannel
java.nio.channels

Java 1.4

closeable

This class implements a communication channel based on network datagrams.
Obtain a DatagramChannel by calling the static open() method. Call socket() to obtain the
java.net.DatagramSocket object on which the channel is based if you need to set any socket
options to control low-level networking details.

The send() method sends the remaining bytes of the specified ByteBuffer to the host and
port specified in the java.net.SocketAddress in the form of a datagram. receive() does the
opposite: it receives a datagram, stores its content into the specified buffer (discarding
any bytes that do not fit) and then returns a SocketAddress that specifies the sender of the
datagram (or returns null if the channel was in nonblocking mode and no datagram was
waiting).

public class ClosedChannelException extends java.io.IOException {
// Public Constructors

public ClosedChannelException();
}

public class ClosedSelectorException extends IllegalStateException {
// Public Constructors

public ClosedSelectorException();
}

public class ConnectionPendingException extends IllegalStateException {
// Public Constructors

public ConnectionPendingException();
}

Object Throwable Exception IOException ClosedChannelException

Serializable

Object Throwable Exception RuntimeException IllegalStateException ClosedSelectorException

Serializable

Object Throwable Exception RuntimeException IllegalStateException ConnectionPendingException

Serializable

606 | Chapter 13: java.nio and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.nio.channels.DatagramChannel

The send() and receive() methods typically perform security checks on each invocation to
see if the application has permissions to communicate with the remote host. If your appli-
cation will use a DatagramChannel to exchange datagrams with a single remote host and port,
use the connect() method to connect to a specified SocketAddress. The connect() method
performs the required security checks once and allows future communication with the
specified address without the overhead. Once a DatagramChannel is connected, you can use
the standard read() and write() methods defined by the ReadableByteChannel, WritableByteChannel,
GatheringByteChannel and ScatteringByteChannel interfaces. Like the receive() method, the read()
methods silently discard any received bytes that do not fit in the specified ByteBuffer. The
read() and write() methods throw a NotYetConnected exception if connect() has not been called.

DatagramChannel is a SelectableChannel; its validOps() method specifies that read and write oper-
ations may be selected. DatagramChannel objects are thread-safe. Read and write
operations may proceed concurrently, but the class ensures that only one thread may
read and one thread write at a time.

Returned By java.net.DatagramSocket.getChannel(),
java.nio.channels.spi.SelectorProvider.openDatagramChannel()

public abstract class DatagramChannel extends java.nio.channels.spi.AbstractSelectableChannel
implements ByteChannel, GatheringByteChannel, ScatteringByteChannel {

// Protected Constructors
protected DatagramChannel(java.nio.channels.spi.SelectorProvider provider);

// Public Class Methods
public static DatagramChannel open() throws java.io.IOException;

// Public Instance Methods
public abstract DatagramChannel connect(java.net.SocketAddress remote) throws java.io.IOException;
public abstract DatagramChannel disconnect() throws java.io.IOException;
public abstract boolean isConnected();
public abstract java.net.SocketAddress receive(java.nio.ByteBuffer dst) throws java.io.IOException;
public abstract int send(java.nio.ByteBuffer src, java.net.SocketAddress target) throws java.io.IOException;
public abstract java.net.DatagramSocket socket();

// Methods Implementing GatheringByteChannel
public final long write(java.nio.ByteBuffer[] srcs) throws java.io.IOException;
public abstract long write(java.nio.ByteBuffer[] srcs, int offset, int length) throws java.io.IOException;

// Methods Implementing ReadableByteChannel
public abstract int read(java.nio.ByteBuffer dst) throws java.io.IOException;

// Methods Implementing ScatteringByteChannel
public final long read(java.nio.ByteBuffer[] dsts) throws java.io.IOException;
public abstract long read(java.nio.ByteBuffer[] dsts, int offset, int length) throws java.io.IOException;

// Methods Implementing WritableByteChannel
public abstract int write(java.nio.ByteBuffer src) throws java.io.IOException;

// Public Methods Overriding SelectableChannel
public final int validOps(); constant

}

Object AbstractInterruptibleChannel SelectableChannel AbstractSelectableChannel DatagramChannel

Channel InterruptibleChannel Channel ByteChannel GatheringByteChannel ScatteringByteChannel

Closeable Channel Closeable ReadableByteChannel WritableByteChannel WritableByteChannel ReadableByteChannel

Closeable Channel Channel Channel Channel

Closeable Closeable Closeable Closeable

Chapter 13: java.nio and Subpackages | 607

java.nio.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.nio.channels.FileChannel

FileChannel
java.nio.channels

Java 1.4

closeable

This class implements a communication channel for efficiently reading and and
writing files. It implements the standard read() and write() methods of the Readable-
ByteChannel, WritableByteChannel, GatheringByteChannel and ScatteringByteChannel methods. In
addition, however, FileChannel provides methods for: random-access to the file, efficient
transfer of bytes between the file and another channel, file locking, memory mapping,
querying and setting the file size and forcing buffered updates to be written to disk.
These important features are described in further detail below. Note that since file
operations do not typically block for extended periods the way network operations
can, FileChannel does not subclass SelectableChannel (it is the only channel class that does
not) and cannot be used with Selector objects.

FileChannel has no public constructor and no static factory methods. To obtain a FileChannel,
first create a FileInputStream, FileOutputStream, or RandomAccessFile object (see the java.io package)
and then call the getChannel() method of that object. If you use a FileInputStream, the resulting
channel will allow reading but not writing, and if you use a FileOutputStream, the channel
will allow writing but not reading. If you obtain a FileChannel from a RandomAccessFile, then
the channel will allow reading, or both reading and writing, depending on the mode argu-
ment to the RandomAccessFile constructor.

A FileChannel has a position or file pointer that specifies the current point in the file. You
can set or query the file position with two methods, both of which share the name
position(). The position of a FileChannel and of the stream or RandomAccessFile from which it is
derived are always the same: changing the position of the channel changes the position
of the stream, and vice versa. The initial position of a FileChannel is the position of the
stream or RandomAccessFile when the getChannel() method was called. If you create a FileChannel
from a FileOutputStream that was opened in append mode, then any output to the channel
always occurs at the end of the file, and sets the file position to the end end of the file.

Once you have a FileChannel object, you can use the standard read() and write() methods
defined by the various channel interfaces. In addition to updating the buffer position
as they read and write bytes, these methods also update the file position to or from
which those bytes are written or read. These standard read() methods return the
number of bytes actually read, and return -1 if there are no bytes left in the file to read.
The write() methods enlarge the file if they write past the current end-of-file.

FileChannel also defines position-independent read() and write() methods that take a file
position as an explicit argument: they read or write starting at that position of the file,
and although they update the position of the ByteBuffer, they do not update the file posi-
tion of the FileChannel. If the specified position is past the end-of-file, the read() method
does not read any bytes and returns -1, and the write() method enlarges the file, leaving
any bytes between the old end-of-file and the specified position undefined.

It is common to read bytes from a FileChannel and then immediately write them out to
some other channel (such as a SocketChannel: think of a web server, for example), or to read
bytes from a channel and immediately write them to a FileChannel (consider an FTP client).
FileChannel provides two methods, transferTo() and transferFrom() that do this very efficiently,
without the need for a temporary ByteBuffer. transferTo() reads up to the specified number of
bytes starting at the specified location from this FileChannel and writes them to the speci-
fied channel. It does not alter the file position of the FileChannel, and it returns the number
of bytes actually transferred. transferFrom() does the reverse: it reads up to the specified
number of available bytes from the specified channel, and writes them to this FileChannel at
the specified location, without altering the file position of this channel, and returns the

608 | Chapter 13: java.nio and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.nio.channels.FileChannel

actual number of bytes transferred. For both methods, if the destination or source
channel is a FileChannel itself, then the file position of that channel is updated.

The size() method returns the size (in bytes) of the underlying file. truncate() reduces the file
size to the specified value, discarding any file content that exceeds that size. If the speci-
fied size is greater than or equal to the current file size, the file is unchanged. If the file
position is greater than the new size of the file, it the position is changed to the new size.

Use the force() method to force any buffered modifications to the file to be written to
the underlying storage device. If the file resides on a local device, (as opposed to a
network filesystem, for example) then force() guarantees that any changes to the file
made since the channel was opened or since a previous call to force() will have been
written to the device. The argument to this method is a hint as to whether file meta-
data (such as last modification time) is to be forced out in addition to file content. If
this argument is true, the system will force content and meta-data. If false, the system
may omit updates to meta-data. Note that force() is only required to output change
made directly through the FileChannel. File updates made through a MappedByteBuffer
returned by the map() method (described below)y should be forced out with the force()
method of MappedByteBuffer.

FileChannel defines two blocking lock() and two nonblocking tryLock() methods for locking a
file or a region of a file against concurrent access by another program. (These methods
are not suitable for preventing concurrent access to a file by two threads within the
same Java virtual machine.) The no-argument versions of these methods attempt to
acquire an exclusive lock on the entire file. The three-argument versions of the
methods attempt to lock a specified region of the file, and may acquire shared locks in
addition to exclusive locks. (A shared lock prevents any other process from acquiring
an exclusive lock, but does not prevent other shared locks: typically, you acquire a
shared lock when reading a file that should not be concurrently updated, and acquire
an exclusive lock before writing file content to ensure that no one else is trying to read
it at the same time.) The tryLock() methods return a FileLock object, or null if there was
already a conflicting lock on the file. The lock() methods block if there is already a
conflicting lock and never return null. See FileLock for more information about locks. The
FileChannel file locking mechanism uses whatever locking capability is provided by the
underlying platform. Some operating systems enforce file locking: if one process holds
a lock, other processes are prevented by the operating system from accessing the file.
Other operating systems merely prevent other processes from acquiring a conflicting
lock: in this case, successful file locking requires the cooperation of all processes. Some
operating systems do not support shared locks: on these systems an exclusive lock is
returned even when a shared lock is requested.

The map() method returns a MappedByteBuffer that represents the specified region of the
file. File contents can be read directly from the buffer, and (if the mapping is done in
read/write mode) bytes placed in the buffer will be written to the file. The mapping
represented by a MappedByteBuffer remains valid until the buffer is garbage collected; the
buffer continues to function even if the FileChannel from which it was created is closed.
File mappings can be done in three different modes which specify whether bytes can
be written into the buffer and what happens when this is done. See FileChannel.MapMode
for a description of the three modes.

The map() method relies on the memory-mapping facilities provided by the under-
lying operating system. This means that a number of details may vary from
implementation to implementation. In particular, it is not specified whether changes
to the underlying file made after the call to map() are visible through the MappedByte-
Buffer. Using a mapped file is typically more efficient that an unmapped file only
when the file is a large one.

Chapter 13: java.nio and Subpackages | 609

java.nio.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.nio.channels.FileChannel.MapMode

Passed To FileLock.FileLock()

Returned By java.io.FileInputStream.getChannel(), java.io.FileOutputStream.getChannel(),
java.io.RandomAccessFile.getChannel(), FileLock.channel()

FileChannel.MapMode
java.nio.channels

Java 1.4

This class defines three constants that define the legal values of the mode argument to
the map() method of the FileChannel class. The constants and their meanings are the
following:

public abstract class FileChannel extends java.nio.channels.spi.AbstractInterruptibleChannel
implements ByteChannel, GatheringByteChannel, ScatteringByteChannel {

// Protected Constructors
protected FileChannel();

// Nested Types
public static class MapMode;

// Public Instance Methods
public abstract void force(boolean metaData) throws java.io.IOException;
public final FileLock lock() throws java.io.IOException;
public abstract FileLock lock(long position, long size, boolean shared) throws java.io.IOException;
public abstract java.nio.MappedByteBuffer map(FileChannel.MapMode mode, long position, long size)

throws java.io.IOException;
public abstract long position() throws java.io.IOException;
public abstract FileChannel position(long newPosition) throws java.io.IOException;
public abstract int read(java.nio.ByteBuffer dst, long position) throws java.io.IOException;
public abstract long size() throws java.io.IOException;
public abstract long transferFrom(ReadableByteChannel src, long position, long count) throws java.io.IOException;
public abstract long transferTo(long position, long count, WritableByteChannel target) throws java.io.IOException;
public abstract FileChannel truncate(long size) throws java.io.IOException;
public final FileLock tryLock() throws java.io.IOException;
public abstract FileLock tryLock(long position, long size, boolean shared) throws java.io.IOException;
public abstract int write(java.nio.ByteBuffer src, long position) throws java.io.IOException;

// Methods Implementing GatheringByteChannel
public final long write(java.nio.ByteBuffer[] srcs) throws java.io.IOException;
public abstract long write(java.nio.ByteBuffer[] srcs, int offset, int length) throws java.io.IOException;

// Methods Implementing ReadableByteChannel
public abstract int read(java.nio.ByteBuffer dst) throws java.io.IOException;

// Methods Implementing ScatteringByteChannel
public final long read(java.nio.ByteBuffer[] dsts) throws java.io.IOException;
public abstract long read(java.nio.ByteBuffer[] dsts, int offset, int length) throws java.io.IOException;

// Methods Implementing WritableByteChannel
public abstract int write(java.nio.ByteBuffer src) throws java.io.IOException;

}

Object AbstractInterruptibleChannel FileChannel

Channel InterruptibleChannel ByteChannel GatheringByteChannel ScatteringByteChannel

Closeable Channel ReadableByteChannel WritableByteChannel WritableByteChannel ReadableByteChannel

Closeable Channel Channel Channel Channel

Closeable Closeable Closeable Closeable

610 | Chapter 13: java.nio and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.nio.channels.FileLock

READ_ONLY
The memory mapping is read-only. The contents of the MappedByteBuffer returned by
the map() method may be read but may not be modified.

READ_WRITE
The memory mapping is bidirectional: The contents of the returned buffer can be
modified, and any modifications will (eventually) be written to the underlying file.
The FileChannel must have been created from a java.io.RandomAccessFile opened in read/
write mode.

PRIVATE
The returned buffer may be modified, but any such changes are private to the
buffer, and are never written to the underlying file. This mapping mode is also
known as “copy-on-write.”

Passed To FileChannel.map()

FileLock
java.nio.channels

Java 1.4

A FileLock object is returned by the lock() and tryLock() methods of FileChannel and represents
a lock on a file or a region of a file. See FileChannel for more information on file locking
with those methods. When a lock is no longer required, it should be released with the
release() method. A lock will also be released if the channel is closed, or when the virtual
machine terminates. isValid() returns true if the lock has not yet been released, and
returns false if it has been released.

The channel(), position(), size() and isShared() methods return basic information about the
lock: the FileChannel that was locked, the region of the file that was locked, and whether
the lock is shared or exclusive. If the entire file is locked, then the size() method returns
a value (Long.MAX_VALUE) that is much greater than the actual file size. If the underlying
operating system does not support shared locks, then isShared() may return false even if
a shared lock was requested. overlaps() is a convenience method that returns true if the
position and size of this lock overlap the specified position and size.

public static class FileChannel.MapMode {
// No Constructor
// Public Constants

public static final FileChannel.MapMode PRIVATE;
public static final FileChannel.MapMode READ_ONLY;
public static final FileChannel.MapMode READ_WRITE;

// Public Methods Overriding Object
public String toString();

}

public abstract class FileLock {
// Protected Constructors

protected FileLock(FileChannel channel, long position, long size, boolean shared);
// Public Instance Methods

public final FileChannel channel();
public final boolean isShared();
public abstract boolean isValid();
public final boolean overlaps(long position, long size);
public final long position();
public abstract void release() throws java.io.IOException;
public final long size();

Chapter 13: java.nio and Subpackages | 611

java.nio.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.nio.channels.IllegalBlockingModeException

Returned By FileChannel.{lock(), tryLock()}

FileLockInterruptionException
java.nio.channels

Java 1.4

serializable checked

Signals that the interrupt() method of a thread blocked waiting to acquire a file lock was
called. See FileChannel.lock().

GatheringByteChannel
java.nio.channels

Java 1.4

closeable

This interface extends WritableByteChannel and adds two additional write() methods that
can “gather” bytes from one or more buffers and write them out to the channel. These
methods are passed an array of ByteBuffer objects, and, optionally, an offset and length
that define the relevant sub-array to be used. The write() method attempts to write all
the remaining bytes from all the specified buffers (in the order in which they appear in
the buffer array) to the channel. The return value of the method is the number of bytes
actually written. See WritableByteChannel for a discussion of exceptions and thread-safety
that apply to these write() methods as well.

Implementations DatagramChannel, FileChannel, Pipe.SinkChannel, SocketChannel

IllegalBlockingModeException
java.nio.channels

Java 1.4

serializable unchecked

Signals an attempt to use a channel in the wrong blocking mode. An exception of this
type is thrown by SelectableChannel.register() if the channel is not in nonblocking mode.

// Public Methods Overriding Object
public final String toString();

}

public class FileLockInterruptionException extends java.io.IOException {
// Public Constructors

public FileLockInterruptionException();
}

public interface GatheringByteChannel extends WritableByteChannel {
// Public Instance Methods

long write(java.nio.ByteBuffer[] srcs) throws java.io.IOException;
long write(java.nio.ByteBuffer[] srcs, int offset, int length) throws java.io.IOException;

}

public class IllegalBlockingModeException extends IllegalStateException {
// Public Constructors

public IllegalBlockingModeException();
}

Object Throwable Exception IOException FileLockInterruptionException

Serializable

Closeable Channel WritableByteChannel GatheringByteChannel

Object Throwable Exception RuntimeException IllegalStateException IllegalBlockingModeException

Serializable

612 | Chapter 13: java.nio and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.nio.channels.IllegalSelectorException

IllegalSelectorException
java.nio.channels

Java 1.4

serializable unchecked

Signals an attempt to register a SelectableChannel with a Selector when the channel and the
selector were not created by the same java.nio.channels.spi.SelectorProvider.

InterruptibleChannel
java.nio.channels

Java 1.4

closeable

Channels that implement this marker interface have two important properties that are
relevant to multithreaded programs: they are asynchonously closeable and interrupt-
ible. When the close() method of an InterruptibleChannel is called, any other thread that is
blocked waiting for an I/O operation to complete on that channel will stop blocking
and receive an AsynchronousCloseException. Furthermore, if a thread is blocked waiting for an
I/O operation to complete on an InterruptibleChannel, then another thread may call the
interrupt() method of the blocked thread. This causes the interrupt status of the blocked
thread to be set and causes the thread to wake up and receive an ClosedByInterruptException
(a subclass of AsynchronousCloseException). As the name of this interrupt implies, the channel
that the thread was blocked on is closed as a side-effect of the thread interruption.
There is no way to interrupt a blocked thread without closing the channel upon which
it is blocked. This ability to interrupt a blocked thread is particularly noteworthy
because it has never worked reliably with the older java.io API.

All the concrete channel implementations that are part of this package implement Inter-
ruptibleChannel. Note, however, that methods such as Channels.newChannel() may return
channel objects that are not interruptible. You can use the instanceof to determine
whether an unknown channel object implements this interface.

Implementations java.nio.channels.spi.AbstractInterruptibleChannel

NoConnectionPendingException
java.nio.channels

Java 1.4

serializable unchecked

Signals that SocketChannel.finishConnect() was called without a previous call to
SocketChannel.connect().

public class IllegalSelectorException extends IllegalArgumentException {
// Public Constructors

public IllegalSelectorException();
}

public interface InterruptibleChannel extends Channel {
// Public Instance Methods

void close() throws java.io.IOException;
}

Object Throwable Exception RuntimeException IllegalArgumentException IllegalSelectorException

Serializable

Closeable Channel InterruptibleChannel

Object Throwable Exception RuntimeException IllegalStateException NoConnectionPendingException

Serializable

Chapter 13: java.nio and Subpackages | 613

java.nio.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.nio.channels.NotYetConnectedException

NonReadableChannelException
java.nio.channels

Java 1.4

serializable unchecked

Signals a call to the read() method of a readable channel that is not open for reading,
such as a FileChannel created from a FileOutputStream.

NonWritableChannelException
java.nio.channels

Java 1.4

serializable unchecked

Signal a call to a write() method of a writable channel that is not open for writing, such
as a FileChannel created from a FileInputStream.

NotYetBoundException
java.nio.channels

Java 1.4

serializable unchecked

Signals a call to ServerSocketChannel.accept() before the underlying server socket has been
bound to a local port. Call socket().bind() to bind the java.net.ServerSocket that underlies the
ServerSocketChannel.

NotYetConnectedException
java.nio.channels

Java 1.4

serializable unchecked

Signals an attempt to read() or write() on a SocketChannel that is not yet connected to a
remote host. See SocketChannel.connect().

public class NoConnectionPendingException extends IllegalStateException {
// Public Constructors

public NoConnectionPendingException();
}

public class NonReadableChannelException extends IllegalStateException {
// Public Constructors

public NonReadableChannelException();
}

public class NonWritableChannelException extends IllegalStateException {
// Public Constructors

public NonWritableChannelException();
}

public class NotYetBoundException extends IllegalStateException {
// Public Constructors

public NotYetBoundException();
}

Object Throwable Exception RuntimeException IllegalStateException NonReadableChannelException

Serializable

Object Throwable Exception RuntimeException IllegalStateException NonWritableChannelException

Serializable

Object Throwable Exception RuntimeException IllegalStateException NotYetBoundException

Serializable

614 | Chapter 13: java.nio and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.nio.channels.OverlappingFileLockException

OverlappingFileLockException
java.nio.channels

Java 1.4

serializable unchecked

This exception is thrown by the lock() and tryLock() methods of FileChannel if the requested
lock region overlaps a file lock that is already held by some thread in this JVM, or if
there is already a thread in this JVM waiting to lock an overlapping region of the same
file. The FileChannel file locking mechanism is designed to lock files against concurrent
access by two separate processes. Two threads within the same JVM should not
attempt to acquire a lock on overlapping regions of the same file, and any attempt to
do so causes an exception of this type to be thrown.

Pipe
java.nio.channels

Java 1.4

A pipe is an abstraction that allows the one-way transfer of bytes from one thread to
another. A pipe has a “read end” and a “write end” which are represented by objects
that implement the ReadableByteChannel and WritableByteChannel interfaces. Create a new pipe
with the static Pipe.open() method. Call the sink() method to obtain the Pipe.SinkChannel
object that represents the write end of the pipe, and call the source() method to obtain
the Pipe.SourceChannel object that represents the read end of the pipe.

Programmers familiar with Unix-style pipes may find the names and return values of
the sink() and source() methods confusing. A Unix pipe is an interprocess communica-
tion mechanism that is tied to two specific processes, one of which is a source of bytes
and one of which is a destination, or sink, for those bytes. With this conceptual model
of a pipe, you would expect the source to obtain the channel it writes to with the
source() method and the sink to obtain the channel it reads from with the sink() method.

This Pipe class is not a Unix-style pipe, however. While it can be used for communica-
tion between two threads, the ends of the pipe are not tied to those threads, and there
need not be a single source thread and a single sink thread. Therefore, in the Pipe API it
is the pipe itself that serves as the source and the sink of bytes: bytes are read from the
source end of the pipe, and are written to the sink end.

public class NotYetConnectedException extends IllegalStateException {
// Public Constructors

public NotYetConnectedException();
}

public class OverlappingFileLockException extends IllegalStateException {
// Public Constructors

public OverlappingFileLockException();
}

public abstract class Pipe {
// Protected Constructors

protected Pipe();
// Nested Types

Object Throwable Exception RuntimeException IllegalStateException NotYetConnectedException

Serializable

Object Throwable Exception RuntimeException IllegalStateException OverlappingFileLockException

Serializable

Chapter 13: java.nio and Subpackages | 615

java.nio.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.nio.channels.Pipe.SourceChannel

Returned By java.nio.channels.spi.SelectorProvider.openPipe()

Pipe.SinkChannel
java.nio.channels

Java 1.4

closeable

This public inner class is represents the write end of a pipe. Bytes written to a
Pipe.SinkChannel become available on the corresponding Pipe.SourceChannel of the pipe.
Obtain a Pipe.SinkChannel by creating a Pipe object with Pipe.open() and then calling the sink()
method of that object. See also the containing Pipe class.

Pipe.SinkChannel implements WritableByteChannel and GatheringByteChannel and defines the write()
methods of those interfaces. This class subclasses SelectableChannel, so that it can be
used with a Selector. It overrides the abstract validOps() method of SelectableChannel to
return SelectionKey.OP_WRITE, but defines no new methods of its own.

Returned By Pipe.sink()

Pipe.SourceChannel
java.nio.channels

Java 1.4

closeable

This public inner class is represents the read end of a pipe. Bytes that are written to the
corresponding write end of the pipe (see Pipe.SinkChannel) become available for reading
through this channel. Obtain a Pipe.SourceChannel by creating a Pipe object with Pipe.open()
and then calling the source() method of that object. See also the containing Pipe class.

Pipe.SourceChannel implements ReadableByteChannel and ScatteringByteChannel and defines the
read() methods of those interfaces. This class subclasses SelectableChannel, so that it can
be used with a Selector. It overrides the abstract validOps() method of SelectableChannel to
return SelectionKey.OP_READ, but defines no new methods of its own.

public abstract static class SinkChannel extends java.nio.channels.spi.AbstractSelectableChannel
implements GatheringByteChannel, WritableByteChannel;

public abstract static class SourceChannel extends java.nio.channels.spi.AbstractSelectableChannel
implements ReadableByteChannel, ScatteringByteChannel;

// Public Class Methods
public static Pipe open() throws java.io.IOException;

// Public Instance Methods
public abstract Pipe.SinkChannel sink();
public abstract Pipe.SourceChannel source();

}

public abstract static class Pipe.SinkChannel extends java.nio.channels.spi.AbstractSelectableChannel
implements GatheringByteChannel, WritableByteChannel {

// Protected Constructors
protected SinkChannel(java.nio.channels.spi.SelectorProvider provider);

// Public Methods Overriding SelectableChannel
public final int validOps(); constant

}

public abstract static class Pipe.SourceChannel extends java.nio.channels.spi.AbstractSelectableChannel
implements ReadableByteChannel, ScatteringByteChannel {

// Protected Constructors
protected SourceChannel(java.nio.channels.spi.SelectorProvider provider);

// Public Methods Overriding SelectableChannel
public final int validOps(); constant

}

616 | Chapter 13: java.nio and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.nio.channels.ReadableByteChannel

Returned By Pipe.source()

ReadableByteChannel
java.nio.channels

Java 1.4

closeable

This subinterface of Channel defines a single key read() method which reads bytes from the
channel and stores them in the specified ByteBuffer, updating the buffer position as it does
so. read() attempts to read as many bytes as will fit in the specified buffer, (see
Buffer.remaining()) but may read fewer than this. If the channel is a nonblocking channel, for
example, the read() will return immediately, even if there are no bytes available to be read.
read() returns the number of bytes actually read (which may be zero in the nonblocking
case), or returns -1 if there are no more bytes to be read in the channel (if, for example,
the end of a file has been reached, or the other end of a socket has been closed.)

read() is declared to throw an IOException. More specifically, it may throw a ClosedChannelEx-
ception if the channel is closed. If the channel is closed asynchronously, or if a blocked
thread is interrupted, the read() method may terminate with an AsynchronousCloseException or
a ClosedByInterruptException. read() may also throw an unchecked NonReadableChannelException if it
is called on a channel that was not opened or configured to allow reading.

ReadableByteChannel implementations are required to be thread-safe: only one thread may
perform a read operation on a channel at a time. If a read operation is in progress, then
any call to read() will block until the in-progress operation completes. Some channel
implementations may allow read and write operations to proceed concurrently, but
none will allow two read operations to proceed at the same time.

Implementations ByteChannel, Pipe.SourceChannel, ScatteringByteChannel

Passed To Channels.{newInputStream(), newReader()}, FileChannel.transferFrom(), java.util.Scanner.Scanner()

Returned By Channels.newChannel()

ScatteringByteChannel
java.nio.channels

Java 1.4

closeable

This interface extends ReadableByteChannel and adds two additional read() methods that
read bytes for a channel and “scatter” them to an array (or subarray) of buffers. These
methods are passed an array of ByteBuffer objects, and, optionally, an offset and length
that define the region of the array to be used. The read() method attempts to read
enough bytes from the channel to fill each of the specified buffers in the order in which
they appear in the buffer array (the “scattering” process is actually much more orderly
and linear than the name implies). The return value of the method is the number of
bytes actually read, which may be different than the sum of the remaining bytes in the
buffers. See ReadableByteChannel for a discussion of exceptions and thread-safety that
apply to these read() methods as well.

public interface ReadableByteChannel extends Channel {
// Public Instance Methods

int read(java.nio.ByteBuffer dst) throws java.io.IOException;
}

public interface ScatteringByteChannel extends ReadableByteChannel {
// Public Instance Methods

Closeable Channel ReadableByteChannel

Closeable Channel ReadableByteChannel ScatteringByteChannel

Chapter 13: java.nio and Subpackages | 617

java.nio.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.nio.channels.SelectableChannel

Implementations DatagramChannel, FileChannel, Pipe.SourceChannel, SocketChannel

SelectableChannel
java.nio.channels

Java 1.4

closeable

This abstract class defines the API for channels that can be used with a Selector object to
allow a thread to block while waiting for activity on any of a group of channels. All
channel classes in the java.nio.channels package except for FileChannel are subclasses of
SelectableChannel.

A selectable channel may only be registered with a Selector if it is nonblocking, so this
class defines the configureBlocking() method. Pass false to this method to put a channel into
nonblocking mode, or pass true to make calls to its read() and/or write() methods block.
Use isBlocking() to determine the current blocking mode of a selectable channel.

Register a SelectableChannel with a Selector by calling the register() method of the channel (not
of the selector). There are two versions of this method: both take a Selector object and a
bitmask that specifies the set of channel operations that are to be “selected” on that
channel. (see SelectionKey for the constants that can be OR-ed together to form this
bitmask). Both methods return a SelectionKey object that represents the registration of the
channel with the selector. One version of the register() method also takes an arbitrary
object argument which serves as an “attachment” to the SelectionKey and allows you to
associate arbitrary data with it. The validOps() method returns a bitmask that specifies
the set of operations that a particular channel object allows to be selected. The bitmask
passed to register() may only contain bits that are set in this validOps() value.

Note that SelectableChannel does not define a deregister() method. Instead, to remove a
channel from the set of channels being monitored by a Selector, you must call the cancel()
method of the SelectionKey returned by register().

Call isRegistered() to determine whether a SelectableChannel is registered with any Selector.
(Note that a single channel may be registered with more than one Selector.) If you did
not keep track of the SelectionKey returned by a call to register(), you can query it with the
keyFor() method.

See Selector and SelectionKey for further details on multiplexing selectable channels.

long read(java.nio.ByteBuffer[] dsts) throws java.io.IOException;
long read(java.nio.ByteBuffer[] dsts, int offset, int length) throws java.io.IOException;

}

public abstract class SelectableChannel extends java.nio.channels.spi.AbstractInterruptibleChannel implements Channel {
// Protected Constructors

protected SelectableChannel();
// Public Instance Methods

public abstract Object blockingLock();
public abstract SelectableChannel configureBlocking(boolean block) throws java.io.IOException;
public abstract boolean isBlocking();
public abstract boolean isRegistered();
public abstract SelectionKey keyFor(Selector sel);
public abstract java.nio.channels.spi.SelectorProvider provider();
public final SelectionKey register(Selector sel, int ops) throws ClosedChannelException;
public abstract SelectionKey register(Selector sel, int ops, Object att) throws ClosedChannelException;
public abstract int validOps();

}

Object AbstractInterruptibleChannel SelectableChannel

Closeable Channel Closeable Channel InterruptibleChannel Closeable Channel

618 | Chapter 13: java.nio and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.nio.channels.SelectionKey

Subclasses java.nio.channels.spi.AbstractSelectableChannel

Returned By SelectionKey.channel(), java.nio.channels.spi.AbstractSelectableChannel.configureBlocking()

SelectionKey
java.nio.channels

Java 1.4

A SelectionKey represents the registration of a SelectableChannel with a Selector, and serves to
identify a selected channel and the operations that are ready to be performed on that
channel. After a call to the select() method of a selector, the selectedKeys() method of the
selector returns a Set of SelectionKey objects to identify the channel or channels that are
ready for reading, for writing, or for another operation.

Create a SelectionKey by passing a Selector object to the register() method of a SelectableChannel.
The channel() and selector() methods of the returned SelectionKey return the SelectableChannel
and Selector objects associated with that key.

When you no longer wish the channel to be registered with the selector, call the cancel()
method of the SelectionKey. isValid() determines whether a SelectionKey is still “valid"--it
returns true unless the cancel() method has been called, the channel has been closed or
the selector has been closed.

The main purpose of a SelectionKey is to hold the “interest set” of channel operations that
the selector should monitor for the channel, and also the “ready set” of operations that
the selector has determined are ready to proceed on the channel. Both sets are repre-
sented as integer bitmasks (not java.util.Set objects) formed by OR-ing together any of
the OP_ constants defined by this class. Those constants are the following:

OP_READ
In the interest set, this bit specifies an interest in read operations. In the ready set,
this bit specifies that the channel has bytes available for reading, has reached the
end-of-stream, has been remotely closed, or that an error has occurred.

OP_WRITE
In the interest set, this bit specifies an interest in write operations. In the ready
set, this bit specifies that the channel is ready to have bytes written, or has been
closed, or that an error has occurred.

OP_CONNECT
In the interest set, this bit specifies an interest in socket connection operations. In
the ready set, it indicates that a socket channel is ready to connect, or that an
error has occurred.

OP_ACCEPT
In the interest set, this bit specifies an interest in server socket accept operations.
In the ready set, it indicates that a server socket channel is ready to accept a
connection or that an error has occurred.

The no-argument version of the interestOps() method allows you to query the interest set.
The inital value of the interest set the bitmask that was passed to the register() method of
the channel. It can be changed, however, by passing a new bitmask to the one-argument
version of interestOps(). (Note that the same method name is used to both query and set
the interest set.) The current state of the ready set can be queried with readyOps(). You can
also use the convenience methods isReadable(), isWritable() isConnectable() and isAcceptable() to
test whether individual operation bits are set in the ready set bitmask. There is no way to
explicitly set the state of the ready set--each call to select() method updates the ready set
for you. Note, however, that you must remove a SelectionKey object from the Set returned
by Selector.selectedKeys() for the bits of the ready set to be cleared at the start of the next

Chapter 13: java.nio and Subpackages | 619

java.nio.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.nio.channels.Selector

selection operation. If you never remove the SelectionKey from the set of selected keys, the
Selector assumes that none of the I/O readyness conditions represented by the ready set
have been handled yet, and leaves their bits set.

Use attach() to associate an arbitrary object with a SelectionKey, and call attachment() to
query that object. This ability to associate data with a selection key is often useful
when using a Selector with multiple channels: it can provide the context necessary to
process a SelectionKey that has been selected.

Subclasses java.nio.channels.spi.AbstractSelectionKey

Returned By SelectableChannel.{keyFor(), register()},
java.nio.channels.spi.AbstractSelectableChannel.{keyFor(), register()},
java.nio.channels.spi.AbstractSelector.register()

Selector
java.nio.channels

Java 1.4

A Selector is an object that monitors multiple nonblocking SelectableChannel objects and
(after blocking if necessary) “selects” the channel that is (or the channels that are)
ready for I/O. Create a new Selector with the static open() method. Next register the chan-
nels that it is to monitor: a channel is registered by passing the Selector to the register()
method of the channel (register() is defined by the abstract SelectableChannel class). In addi-
tion to the Selector you must also pass a bitmask that specifies which I/O operations
(reading, writing, connecting, and accepting) that the Selector is to monitor for that
channel. Each call to this register() method returns a SelectionKey object. (The SelectionKey
class also defines the constants that are used to form the bitmask of I/O operations.)
Note that before a SelectableChannel can be registered, it must be in nonblocking mode,
which can be accomplished with the configureBlocking() method of SelectableChannel.

Once the channels are registered with the Selector, call select() to block until one or more
of the channels is ready for I/O. One version of select() takes a timeout value and

public abstract class SelectionKey {
// Protected Constructors

protected SelectionKey();
// Public Constants

public static final int OP_ACCEPT; =16
public static final int OP_CONNECT; =8
public static final int OP_READ; =1
public static final int OP_WRITE; =4

// Public Instance Methods
public final Object attach(Object ob);
public final Object attachment();
public abstract void cancel();
public abstract SelectableChannel channel();
public abstract int interestOps();
public abstract SelectionKey interestOps(int ops);
public final boolean isAcceptable();
public final boolean isConnectable();
public final boolean isReadable();
public abstract boolean isValid();
public final boolean isWritable();
public abstract int readyOps();
public abstract Selector selector();

}

620 | Chapter 13: java.nio and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.nio.channels.Selector

returns if the specified number of milliseconds elapses without any channels becoming
ready for I/O. These methods also return if any of the channels is closed, if an error
occurs on any channel, if the wakeup() method of the Selector is called, or if the interrupt()
method of the blocked thread is called. There is also a selectNow() method which is like
select() except that it does not block: it simply polls each of the channels and deter-
mines which have become ready for I/O. The return value of selectNow() and of both
select() methods is the number of channels ready for I/O. It is possible for this return
value to be zero.

The select() and selectNow() methods returns the number of channels that are ready for I/O;
they do not return the channels themselves. To obtain this information, you must call
the selectedKeys() method, which returns a java.util.Set containing SelectionKey objects. After
calling select() and selectedKeys(), applications typically obtain a java.util.Iterator for the Set and
use it to loop through the SelectionKey objects that represent the channels that are ready for
I/O. Use the channel() method of the SelectionKey to determine which channel is ready, and
call readyOps(), isReadable(), isWritable() or related methods of the SelectionKey to determine what
kind of I/O operation is ready on the channel. SelectionKey objects remain in the
selectedKeys() set until explicitly removed, so after performing the I/O operation for a given
SelectionKey, you should remove that key from the Set returned by selectedKeys() (use the
remove() method of the Set of its Iterator).

In addition to the selectedKeys() method, Selector also defines a keys() method, which also
returns a Set of SelectionKey objects. This set represents the complete set of channels that
are being monitored by the Selector and may not be modified, except by closing the
channel or deregistring the channel by calling the cancel() method of the associated Selec-
tionKey. Cancelled keys are removed from the keys() set on the next call to select() or
selectNow().

Call wakeup() to cause another thread blocked in a call to select() to wake up and return
immediately. If wakeup() is called but no thread is currently blocked in a select() call, then
the next call to select() or selectNow() will return immediately.

When a Selector object is no longer needed, close it by calling close(). If any thread is
blocked in a select() call, it will return immediately as if wakeup() had been called. After
calling close(), you should not call any other methods of a Selector. isOpen() returns true if a
Selector is still open, and returns false if it has been closed.

The Selector class is thread-safe. Note, however, that the Set object returnd by selectedKeys()
is not: it should be used by only one thread at a time.

public abstract class Selector {
// Protected Constructors

protected Selector();
// Public Class Methods

public static Selector open() throws java.io.IOException;
// Public Instance Methods

public abstract void close() throws java.io.IOException;
public abstract boolean isOpen();
public abstract java.util.Set<SelectionKey> keys();
public abstract java.nio.channels.spi.SelectorProvider provider();
public abstract int select() throws java.io.IOException;
public abstract int select(long timeout) throws java.io.IOException;
public abstract java.util.Set<SelectionKey> selectedKeys();
public abstract int selectNow() throws java.io.IOException;
public abstract Selector wakeup();

}

Chapter 13: java.nio and Subpackages | 621

java.nio.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.nio.channels.ServerSocketChannel

Subclasses java.nio.channels.spi.AbstractSelector

Passed To SelectableChannel.{keyFor(), register()}, java.nio.channels.spi.AbstractSelectableChannel.{keyFor(),
register()}

Returned By SelectionKey.selector()

ServerSocketChannel
java.nio.channels

Java 1.4

closeable

This class is the java.nio version of java.net.ServerSocket. It is a selectable channel that can be
used by servers to accept connections from clients. Unlike other channel classes in this
package, this class cannot be used for reading or writing bytes: it does not implement
any of the ByteChannel interfaces, and exists only to accept and establish connections
with clients, not to communicate with those clients. ServerSocketChannel differs from
java.net.ServerSocket in two important ways: it can put into nonblocking mode and used
with a Selector, and its accept() method returns a SocketChannel rather than a Socket, so that
communication with the client whose connection was just accepted can be done using
the java.nio APIs.

Create a new ServerSocketChannel with the static open() method. Next, call socket() to obtain
the associated ServerSocket object, and use its bind() method to bind the server socket to a
specific port on the local host. You can also call any other ServerSocket methods to
configure other socket options at this point.

To accept a new connection through this ServerSocketChannel, simply call accept(). If the
channel is in blocking mode, this method will block until a client connects, and will
then return a SocketChannel that is connected to the client. In nonblocking mode, (see the
inherited configureBlocking() method) accept() returns a SocketChannel only if there is a client
currently waiting to connect, and otherwise immediately returns null. To be notified
when a client is waiting to connect, use the inherited register() method to register
nonblocking a ServerSocketChannel with a Selector and specify an interest in accept opera-
tions with the SelectionKey.OP_ACCEPT constant. See Selector and SelectionKey for further details.

Note that the SocketChannel object returned by the accept() method is always in
nonblocking mode, regardless of the blocking mode of the ServerSocketChannel.

ServerSocketChannel is thread-safe; only one thread may call the accept() method at a time.
When a ServerSocketChannel is no longer required, close it with the inherited close() method.

public abstract class ServerSocketChannel extends java.nio.channels.spi.AbstractSelectableChannel {
// Protected Constructors

protected ServerSocketChannel(java.nio.channels.spi.SelectorProvider provider);
// Public Class Methods

public static ServerSocketChannel open() throws java.io.IOException;
// Public Instance Methods

public abstract SocketChannel accept() throws java.io.IOException;
public abstract java.net.ServerSocket socket();

// Public Methods Overriding SelectableChannel

Object AbstractInterruptibleChannel SelectableChannel AbstractSelectableChannel ServerSocketChannel

Channel InterruptibleChannel Channel

Closeable Channel Closeable

Closeable

622 | Chapter 13: java.nio and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.nio.channels.SocketChannel

Returned By java.net.ServerSocket.getChannel(),
java.nio.channels.spi.SelectorProvider.openServerSocketChannel()

SocketChannel
java.nio.channels

Java 1.4

closeable

This class is a channel for communicating over a java.net.Socket. It implements Readable-
ByteChannel and WriteableByteChannel as well as GatheringByteChannel and ScatteringByteChannel. It is a
subclass of SelectableChannel and can be used with a Selector.

Create a new SocketChannel with one of the static open() methods. The no-argument
version of open() creates a new SocketChannel but does not connect it to a remote host. The
other version of open() opens a new channel and connects it to the specified java.net.Sock-
etAddress. If you create an unconnected socket, you can explictly connect it with the
connect() method. The main reason to open the channel and connect to the remote host
in separate steps is if you want to do a nonblocking connect. To do this, first put the
channel into nonblocking mode with the inherited configureBlocking() method. Then, call
connect(): it will return immediately, without waiting for the connection to be estab-
lished. Then register the channel with a Selector specifying that you are interested in
SelectionKey.OP_CONNECT operations. When you are notified that your channel is ready to
connect (see Selector and SelectionKey for details) simply call the nonblocking finishConnect()
method to complete the connection. isConnected() returns true once a connection is estab-
lished, and false otherwise. isConnectionPending() returns true if connect() has been called in
blocking mode and has not yet returned, or if connect() has been called in nonblocking
mode, but finishConnect() has not been called yet.

Once you have opened and connected a SocketChannel, you can read and write bytes to it
with the various read() and write() methods. SocketChannel is thread-safe: read and write
operations may proceed concurrently, but SocketChannel will not allow more than one
read operation and more than one write operation to proceed at the same time. If you
place a SocketChannel into nonblocking mode, you can register it with a Selector using the
SelectionKey constants OP_READ and OP_WRITE, to have the Selector tell you when the channel
is ready for reading or writing.

The socket() method returns the java.net.Socket that is associated with the SocketChannel. You
can use this Socket object to configure socket options, bind the socket to a specific local
address, close the socket, or shutdown its input or output sides. See java.net.Socket. Note
that although all SocketChannel objects have associated Socket objects, the reverse is not
true: you cannot obtain a SocketChannel from a Socket unless the Socket was created along
with the SocketChannel by a call to SocketChannel.open().

When you are done with a SocketChannel, close it with the close() method. You can also
independently shut down the read and write portions of the channel with
socket().shutdownInput() and socket().shutdownOutput(). When the input is shut down, any
future reads (and any blocked read operation) will return -1 to indicate that the end-of-
stream has been reached. When the output is shut down, any future writes throw a
ClosedChannelException, and any write operation that was blocked at the time of shut down
throws a AsynchronousCloseException.

public final int validOps();
}

Chapter 13: java.nio and Subpackages | 623

java.nio.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.nio.channels.UnresolvedAddressException

Returned By java.net.Socket.getChannel(), ServerSocketChannel.accept(),
java.nio.channels.spi.SelectorProvider.openSocketChannel()

UnresolvedAddressException
java.nio.channels

Java 1.4

serializable unchecked

Signals the use of a java.net.SocketAddress that could not be resolved: for example a
java.net.InetSocketAddress that contains an unknown hostname.

public abstract class SocketChannel extends java.nio.channels.spi.AbstractSelectableChannel
implements ByteChannel, GatheringByteChannel, ScatteringByteChannel {

// Protected Constructors
protected SocketChannel(java.nio.channels.spi.SelectorProvider provider);

// Public Class Methods
public static SocketChannel open() throws java.io.IOException;
public static SocketChannel open(java.net.SocketAddress remote) throws java.io.IOException;

// Public Instance Methods
public abstract boolean connect(java.net.SocketAddress remote) throws java.io.IOException;
public abstract boolean finishConnect() throws java.io.IOException;
public abstract boolean isConnected();
public abstract boolean isConnectionPending();
public abstract java.net.Socket socket();

// Methods Implementing GatheringByteChannel
public final long write(java.nio.ByteBuffer[] srcs) throws java.io.IOException;
public abstract long write(java.nio.ByteBuffer[] srcs, int offset, int length) throws java.io.IOException;

// Methods Implementing ReadableByteChannel
public abstract int read(java.nio.ByteBuffer dst) throws java.io.IOException;

// Methods Implementing ScatteringByteChannel
public final long read(java.nio.ByteBuffer[] dsts) throws java.io.IOException;
public abstract long read(java.nio.ByteBuffer[] dsts, int offset, int length) throws java.io.IOException;

// Methods Implementing WritableByteChannel
public abstract int write(java.nio.ByteBuffer src) throws java.io.IOException;

// Public Methods Overriding SelectableChannel
public final int validOps();

}

public class UnresolvedAddressException extends IllegalArgumentException {
// Public Constructors

public UnresolvedAddressException();
}

Object AbstractInterruptibleChannel SelectableChannel AbstractSelectableChannel SocketChannel

Channel InterruptibleChannel Channel ByteChannel GatheringByteChannel ScatteringByteChannel

Closeable Channel Closeable ReadableByteChannel WritableByteChannel WritableByteChannel ReadableByteChannel

Closeable Channel Channel Channel Channel

Closeable Closeable Closeable Closeable

Object Throwable Exception RuntimeException IllegalArgumentException UnresolvedAddressException

Serializable

624 | Chapter 13: java.nio and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.nio.channels.UnsupportedAddressTypeException

UnsupportedAddressTypeException
java.nio.channels

Java 1.4

serializable unchecked

Signals the use of a java.net.SocketAddress subclass that is unknown to or not supported by
the implementation. It is safe to assume that addresses of the type java.net.InetSocket-
Address are universally supported.

WritableByteChannel
java.nio.channels

Java 1.4

closeable

This subinterface of Channel defines a single key write() method which writes bytes from a
specified ByteBuffer (updating the buffer position as it goes) to the channel. If possible, it
writes all remaining bytes in the buffer (see Buffer.remaining()). This is not always possible
(with nonblocking channels, for example) so the write() method returns the number of
bytes that it was actually able to write to the channel.

write() is declared to throw an IOException. More specifically, it may throw a ClosedChannel-
Exception if the channel is closed. If the channel is closed asynchronously, or if a blocked
thread is interrupted, the write() method may terminate with an AsynchronousCloseException
or a ClosedByInterruptException. write() may also throw an unchecked NonWritableChannelException
if it is called on a channel (such as a FileChannel) that was not opened or configured to
allow writing.

WritableByteChannel implementations are required to be thread-safe: only one thread may
perform a write operation on a channel at a time. If a write operation is in progress,
then any call to write() will block until the in-progress operation completes. Some
channel implementations may allow read and write operations to proceed concur-
rently; some may not.

Implementations ByteChannel, GatheringByteChannel, Pipe.SinkChannel

Passed To Channels.{newOutputStream(), newWriter()}, FileChannel.transferTo()

Returned By Channels.newChannel()

Package java.nio.channels.spi Java 1.4

This package defines four classes that are used by implementors of channels and
selector classes of java.nio.channels. It also defines the SelectorProvider class which allows a
custom implementation of channels and selectors to be specified for use instead of the
default implementation. Application programmers should never need to use this

public class UnsupportedAddressTypeException extends IllegalArgumentException {
// Public Constructors

public UnsupportedAddressTypeException();
}

public interface WritableByteChannel extends Channel {
// Public Instance Methods

int write(java.nio.ByteBuffer src) throws java.io.IOException;
}

Object Throwable Exception RuntimeException IllegalArgumentException UnsupportedAddressTypeException

Serializable

Closeable Channel WritableByteChannel

Chapter 13: java.nio and Subpackages | 625

java.nio.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.nio.channels.spi.AbstractSelectableChannel

package, except in rare circumstances to explicitly install a SelectionProvider implementa-
tion with the SelectionProvider.provider() method.

Classes
public abstract class AbstractInterruptibleChannel
 implements java.nio.channels.Channel, java.nio.channels.InterruptibleChannel;
public abstract class AbstractSelectableChannel extends java.nio.channels.SelectableChannel;
public abstract class AbstractSelectionKey extends java.nio.channels.SelectionKey;
public abstract class AbstractSelector extends java.nio.channels.Selector;
public abstract class SelectorProvider;

AbstractInterruptibleChannel
java.nio.channels.spi

Java 1.4

closeable

This class exists as a convenience for implementors of new Channel classes. Applica-
tion programmers should never need to subclass or use it.

Subclasses java.nio.channels.FileChannel, java.nio.channels.SelectableChannel

AbstractSelectableChannel
java.nio.channels.spi

Java 1.4

closeable

This class exists as a convenience for implementors of new selectable channel classes: it
defines common methods of SelectableChannel in terms of protected methods whose names
begin with impl. Application programmers should never need to use or subclass this class.

public abstract class AbstractInterruptibleChannel
implements java.nio.channels.Channel, java.nio.channels.InterruptibleChannel {

// Protected Constructors
protected AbstractInterruptibleChannel();

// Methods Implementing Channel
public final void close() throws java.io.IOException;
public final boolean isOpen();

// Protected Instance Methods
protected final void begin();
protected final void end(boolean completed) throws java.nio.channels.AsynchronousCloseException;
protected abstract void implCloseChannel() throws java.io.IOException;

}

public abstract class AbstractSelectableChannel extends java.nio.channels.SelectableChannel {
// Protected Constructors

protected AbstractSelectableChannel(SelectorProvider provider);
// Public Methods Overriding SelectableChannel

public final Object blockingLock();
public final java.nio.channels.SelectableChannel configureBlocking(boolean block) throws java.io.IOException;

Object AbstractInterruptibleChannel

Closeable Channel Closeable Channel InterruptibleChannel

Object AbstractInterruptibleChannel SelectableChannel AbstractSelectableChannel

Channel InterruptibleChannel Channel

Closeable Channel Closeable

Closeable

626 | Chapter 13: java.nio and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.nio.channels.spi.AbstractSelectionKey

Subclasses java.nio.channels.DatagramChannel, java.nio.channels.Pipe.SinkChannel,
java.nio.channels.Pipe.SourceChannel, java.nio.channels.ServerSocketChannel, java.nio.channels.SocketChannel

Passed To AbstractSelector.register()

AbstractSelectionKey
java.nio.channels.spi

Java 1.4

This class exists as a convenience for implementors of new SelectionKey classes. Applica-
tion programmers should never need to use or subclass this class.

Passed To AbstractSelector.deregister()

AbstractSelector
java.nio.channels.spi

Java 1.4

This class exists as a convenience for implementors of new Selector classes. Application
programmers should never need to use or subclass this class.

public final boolean isBlocking();
public final boolean isRegistered();
public final java.nio.channels.SelectionKey keyFor(java.nio.channels.Selector sel);
public final SelectorProvider provider();
public final java.nio.channels.SelectionKey register(java.nio.channels.Selector sel, int ops, Object att)

throws java.nio.channels.ClosedChannelException;
// Protected Methods Overriding AbstractInterruptibleChannel

protected final void implCloseChannel() throws java.io.IOException;
// Protected Instance Methods

protected abstract void implCloseSelectableChannel() throws java.io.IOException;
protected abstract void implConfigureBlocking(boolean block) throws java.io.IOException;

}

public abstract class AbstractSelectionKey extends java.nio.channels.SelectionKey {
// Protected Constructors

protected AbstractSelectionKey();
// Public Methods Overriding SelectionKey

public final void cancel();
public final boolean isValid();

}

public abstract class AbstractSelector extends java.nio.channels.Selector {
// Protected Constructors

protected AbstractSelector(SelectorProvider provider);
// Public Methods Overriding Selector

public final void close() throws java.io.IOException;
public final boolean isOpen();
public final SelectorProvider provider();

// Protected Instance Methods
protected final void begin();
protected final java.util.Set<java.nio.channels.SelectionKey> cancelledKeys();
protected final void deregister(AbstractSelectionKey key);
protected final void end();

Object SelectionKey AbstractSelectionKey

Object Selector AbstractSelector

Chapter 13: java.nio and Subpackages | 627

java.nio.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

.Package java.nio.charset

Returned By SelectorProvider.openSelector()

SelectorProvider
java.nio.channels.spi

Java 1.4

This class is the central service-provider class for the channels and selectors of the
java.nio.channels API. A concrete subclass of SelectorProvider implements factory methods that
return open socket channels, server socket channels, datagram channels, pipes (with
their two internal channels) and Selector objects. There is one default SelectorProvider object
per JVM: this object can be obtained with the static SelectorProvider.provider() method.

You can specify a custom SelectorProvider implementation by setting its class name as the
value of the system property java.nio.channels.spi.SelectorProvider. Or, you can put the class
name in a file named META-INF/services/java.nio.channels.spi.SelectorProvider, in
your application’s JAR file. The provider() method first looks for the system property,
then looks for the JAR file entry. If it finds neither, it instantiates the implementation’s
default SelectorProvider.

Applications are not required to use the default SelectorProvider exclusively. It is legal to
instantiate other SelectorProvider objects and explictly invoke their open() methods to
create channels in that way.

Passed To java.nio.channels.DatagramChannel.DatagramChannel(),
java.nio.channels.Pipe.SinkChannel.SinkChannel(), java.nio.channels.Pipe.SourceChannel.SourceChannel(),
java.nio.channels.ServerSocketChannel.ServerSocketChannel(), java.nio.channels.SocketChannel.SocketChannel(),
AbstractSelectableChannel.AbstractSelectableChannel(), AbstractSelector.AbstractSelector()

Returned By java.nio.channels.SelectableChannel.provider(), java.nio.channels.Selector.provider(),
AbstractSelectableChannel.provider(), AbstractSelector.provider()

Package java.nio.charset Java 1.4

This package contains classes that represent character sets or encodings, and defines
methods that encode characters into bytes and decode bytes into characters. The key class
is Charset, and you can obtain a Charset object for a named character encoding with the static
forName() method. Charset defines encode() and decode() convenience methods, but for full
control over the encoding and decoding process, you can also obtain a CharsetEncoder or
CharsetDecoder object from the Charset.

protected abstract void implCloseSelector() throws java.io.IOException;
protected abstract java.nio.channels.SelectionKey register(AbstractSelectableChannel ch, int ops, Object att);

}

public abstract class SelectorProvider {
// Protected Constructors

protected SelectorProvider();
// Public Class Methods

public static SelectorProvider provider();
// Public Instance Methods
5.0 public java.nio.channels.Channel inheritedChannel() throws java.io.IOException; constant

public abstract java.nio.channels.DatagramChannel openDatagramChannel() throws java.io.IOException;
public abstract java.nio.channels.Pipe openPipe() throws java.io.IOException;
public abstract AbstractSelector openSelector() throws java.io.IOException;
public abstract java.nio.channels.ServerSocketChannel openServerSocketChannel() throws java.io.IOException;
public abstract java.nio.channels.SocketChannel openSocketChannel() throws java.io.IOException;

}

628 | Chapter 13: java.nio and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.nio.charset.CharacterCodingException

The Java platform has had a character encoding and decoding facility since Java 1.1,
and defines a number of classes and methods that perform character encoding or
decoding. Some of these classes and methods are specified to use the default charset
for the locale; others take the name of a charset as a method or constructor argument.
See, for example, the String(), java.io.InputStreamReader() and java.io.OutputStreamWriter() construc-
tors. In Java 1.4, the java.nio.charset package defines a public API to the character
encoding and decoding facility and allows applications to work with it explicitly. Most
applications will not have to do this, however, and can simply continue to rely on the
default charset, or can continue to supply charset names where needed. Even applica-
tions that use the java.nio.channels package can avoid explicit character encoding and
decoding by passing the name of a desired charset to the newReader() and newWriter()
methods of java.nio.channels.Channels.

Classes
public abstract class Charset implements Comparable<Charset>;
public abstract class CharsetDecoder;
public abstract class CharsetEncoder;
public class CoderResult;
public class CodingErrorAction;

Exceptions
public class CharacterCodingException extends java.io.IOException;

public class MalformedInputException extends CharacterCodingException;
public class UnmappableCharacterException extends CharacterCodingException;

public class IllegalCharsetNameException extends IllegalArgumentException;
public class UnsupportedCharsetException extends IllegalArgumentException;

Errors
public class CoderMalfunctionError extends Error;

CharacterCodingException
java.nio.charset

Java 1.4

serializable checked

Signals a problem encoding or decoding characters or bytes. This is a generic super-
class for more-specific exception types. Note that the one-argument versions of
CharsetEncoder.encode() and CharsetDecoder.decode() may throw an exception of this type, but
that the three-argument versions of the same method instead report encoding prob-
lems through their CoderResult return value. Note also that the encode() and decode()
convenience methods of Charset do not throw this exception because they specify that
malformed input and unmappable characters or bytes should be replaced. (See
CodingErrorAction.)

Subclasses MalformedInputException, UnmappableCharacterException

Thrown By CharsetDecoder.decode(), CharsetEncoder.encode(), CoderResult.throwException()

public class CharacterCodingException extends java.io.IOException {
// Public Constructors

public CharacterCodingException();
}

Object Throwable Exception IOException CharacterCodingException

Serializable

Chapter 13: java.nio and Subpackages | 629

java.nio.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.nio.charset.Charset

Charset
java.nio.charset

Java 1.4

comparable

A Charset represents a character set or encoding. Each Charset has a cannonical name,
returned by name(), and a set of aliases, returned by aliases(). You can look up a Charset by
name or alias with the static Charset.forName() method, which throws an UnsupportedCharset-
Exception if the named charset is not installed on the system. In Java 5.0, you can obtain
the default Charset used by the Java VM with the static defaultCharset() method. Check
whether a charset specified by name or alias is supported with the static isSupported().
Obtain the complete set of installed charsets with availableCharsets() which returns a sorted
map from canonical names to Charset objects. Note that charset names are not case-
sensitive, and you can use any capitialization for charset names you pass to isSupported()
and forName(). Note that there are a number of classes and methods in the Java platform
that specify charsets by name rather than by Charset object. See, for example, java.io.Input-
StreamReader, java.io.OutputStreamWriter, String.getBytes(), and java.nio.channels.Channels.newWriter().
When working with classes and methods such as these, there is no need to use a Charset
object.

All implementations of Java are required to support at least the following 6 charsets:

Once you have obtained a Charset with forName() or availableCharsets(), you can use the
encode() method to encode a String or CharBuffer of text into a ByteBuffer, or you can use the
decode() method to convert the bytes in a ByteBuffer into characters in a CharBuffer. These
convenience methods create a new CharsetEncoder or CharsetDecoder, specify that malformed
input or unmappable characters or bytes should be replaced with the default replace-
ment string or bytes, and then invoke the encode() or decode() method of the encoder or
decoder. For full control over the encoding and decoding process, you may prefer to
obtain your own CharsetEncoder or CharsetDecoder object with newEncoder() or newDecoder(). See
CharsetDecoder for details.

Instead of using a Charset, CharsetEncoder, or CharsetDecoder directly, you may also pass an
encoder or decoder to the static methods of java.nio.channels.Channels to obtain a java.io.Reader
or java.io.Writer that you can use to read or write characters from or to a byte-oriented
Channel.

Note that not all Charset objects support encoding (“auto-detect” charsets can deter-
mine the source charset when decoding, but have no way to encode). Use canEncode() to
determine whether a given Charset can encode.

Charset also defines, implements, or overrides various other methods. displayName()
returns a localized name for the charset, or returns the cannonical name if there is no
localization. toString() returns an implementation-dependent textual representation of
the charset. The equals() method compares two charsets by comparing their canonical

Canonical name Description

US-ASCII seven-bit ASCII

ISO-8859-1 The 8-bit superset of ASCII which includes the characters used in most Western-European
languages. Also known as ISO-LATIN-1.

UTF-8 An 8-bit encoding of Unicode characters that is compatible with US-ASCII.

UTF-16BE A 16-bit encoding of Unicode characters, using big-endian byte order.

UTF-16LE A 16-bit encoding of Unicode characters, using little-endian byte order.

UTF-16 A 16-bit encoding of Unicode characters, with byte order specified by a byte order mark char-
acter. Assumes big-endian when decoding if there is no byte order mark. Encodes using big-
endian byte order and outputs an appropriate byte order mark.

630 | Chapter 13: java.nio and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.nio.charset.CharsetDecoder

names. Charset implements Comparable, and its compareTo() method orders charsets by their
canonical name. contains() returns true if a specified charset is “contained in” this charset.
That is, if every character that can be represented in the specified charset can also be
represented in this charset. Note that those representations need not be the same,
however. isRegistered() returns true if the charset is registered with the IANA charset
registry (see http://www.iana.org/assignments/character-sets.)

Passed To java.io.InputStreamReader.InputStreamReader(), java.io.OutputStreamWriter.OutputStreamWriter(),
CharsetDecoder.CharsetDecoder(), CharsetEncoder.CharsetEncoder()

Returned By CharsetDecoder.{charset(), detectedCharset()}, CharsetEncoder.charset(),
java.nio.charset.spi.CharsetProvider.charsetForName()

CharsetDecoder
java.nio.charset

Java 1.4

A CharsetDecoder is a “decoding engine” that converts a sequence of bytes into a sequence
of characters based on the encoding of some charset. Obtain a CharsetDecoder from the
Charset that represents the charset to be decoded. If you have a complete sequence of
bytes to be decoded in a ByteBuffer you can pass that buffer to the one-argument version
of decode(). This convenience method decodes the bytes and stores the resulting charac-
ters into a newly allocated CharBuffer, resetting and flushing the decoder as necessary. It
throws an exception if there are problems with the bytes to be decoded.

public abstract class Charset implements Comparable<Charset> {
// Protected Constructors

protected Charset(String canonicalName, String[] aliases);
// Public Class Methods

public static java.util.SortedMap<String,Charset> availableCharsets();
5.0 public static Charset defaultCharset();

public static Charset forName(String charsetName);
public static boolean isSupported(String charsetName);

// Public Instance Methods
public final java.util.Set<String> aliases();
public boolean canEncode(); constant
public abstract boolean contains(Charset cs);
public final java.nio.CharBuffer decode(java.nio.ByteBuffer bb);
public String displayName();
public String displayName(java.util.Locale locale);
public final java.nio.ByteBuffer encode(java.nio.CharBuffer cb);
public final java.nio.ByteBuffer encode(String str);
public final boolean isRegistered();
public final String name();
public abstract CharsetDecoder newDecoder();
public abstract CharsetEncoder newEncoder();

// Methods Implementing Comparable
5.0 public final int compareTo(Charset that);
// Public Methods Overriding Object

public final boolean equals(Object ob);
public final int hashCode();
public final String toString();

}

Object Charset Comparable

Chapter 13: java.nio and Subpackages | 631

java.nio.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.nio.charset.CharsetDecoder

Typically, however, the three-argument version of decode() is used in a multistep
decoding process:

1. Call the reset() method, unless this is the first time the CharsetDecoder has been used.

2. Call the three-argument version of decode() one or more times. The third argument
should be true on, and only on, the last invocation of the method. The first argu-
ment to decode() is a ByteBuffer that contains bytes to be decoded. The second
argument is a CharBuffer into which the resulting characters are stored. The return
value of the method is a CoderResult object that specifies the state of the ongoing the
decoding operation. The possible CoderResult return values are detailed below. In a
typical case, however, decode() returns after it has decoded all of the bytes in the
input buffer. In this case, you would then typically fill the input buffer with more
bytes to be decoded, and read characters from the output buffer, calling its
compact() method to make room for more. If an unexpected problem arises in the
CharsetDecoder implementation, decode() throws a CoderMalfunctionError.

3. Pass the output CharBuffer to the flush() method to allow any remaining characters to
be output.

The decode() method returns a CoderResult that indicates the state of the decoding opera-
tion. If the return value is CoderResult.UNDERFLOW, then it means that decode() returned
because all bytes from the input buffer have been read, and more input is required. If
the return value is CoderResult.OVERFLOW, then it means that decode() returned because the
output CharBuffer is full, and no more characters can be decoded into it. Otherwise, the
reurn value is a CoderResult whose isError() method returns true. There are two basic types
of decoding errors. If isMalformed() returns true then the input included bytes that are not
legal for the charset. These bytes start at the position of the input buffer, and continue
for length() bytes. Otherwise, if isUnmappable() returns true, then the input bytes include a
character for which there is no representation in Unicode. The relevant bytes start at
the position of the input buffer and continue for length() bytes.

By default a CharsetDecoder reports all malformed input and unmappable character errors
by returning a CoderResult object as described above. This behavior can be altered,
however, by passing a CodingErrorAction to onMalformedInput() and onUnmappableCharacter().
(Query the current action for these types of errors with malformedInputAction() and
unmappableCharacterAction().) CodingErrorAction defines three constants that represent the three
possible actions. The default action is REPORT. The action IGNORE tells the CharsetDecoder to
ignore (i.e. skip) malformed input and unmappable charaters. The REPLACE action tells
the CharsetDecoder to replace malformed input and unmappable characters with the
replacement string. This replacement string can be set with replaceWith(), and can be
queried with replacement().

averageCharsPerByte() and maxCharsPerByte() return the average and maximum number of
characters that are produced by this decoder per decoded byte. These values can be
used to help you choose the size of the CharBuffer to allocate for decoding.

CharsetDecoder is not a thread-safe class. Only one thread should use an instance at a
time.

CharsetDecoder is an abstract class. Implementors defining new charsets will need to
subclass CharsetDecoder and define the abstract decodeLoop() method, which is invoked by
decode().

public abstract class CharsetDecoder {
// Protected Constructors

protected CharsetDecoder(Charset cs, float averageCharsPerByte, float maxCharsPerByte);

632 | Chapter 13: java.nio and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.nio.charset.CharsetEncoder

Passed To java.io.InputStreamReader.InputStreamReader(), java.nio.channels.Channels.newReader()

Returned By Charset.newDecoder()

CharsetEncoder
java.nio.charset

Java 1.4

A CharsetEncoder is an “encoding engine” that converts a sequence of characters into a
sequence of bytes using some character encoding. Obtain a CharsetEncoder with the
newEncoder() method of the Charset that represents the desired encoding.

A CharsetEncoder works like a CharsetDecoder in reverse. Use the encode() method to encode
characters read from a CharBuffer into bytes stored in a ByteBuffer. Please see CharsetDecoder,
which is documented in detail.

// Public Instance Methods
public final float averageCharsPerByte();
public final Charset charset();
public final java.nio.CharBuffer decode(java.nio.ByteBuffer in) throws CharacterCodingException;
public final CoderResult decode(java.nio.ByteBuffer in, java.nio.CharBuffer out, boolean endOfInput);
public Charset detectedCharset();
public final CoderResult flush(java.nio.CharBuffer out);
public boolean isAutoDetecting(); constant
public boolean isCharsetDetected();
public CodingErrorAction malformedInputAction();
public final float maxCharsPerByte();
public final CharsetDecoder onMalformedInput(CodingErrorAction newAction);
public final CharsetDecoder onUnmappableCharacter(CodingErrorAction newAction);
public final String replacement();
public final CharsetDecoder replaceWith(String newReplacement);
public final CharsetDecoder reset();
public CodingErrorAction unmappableCharacterAction();

// Protected Instance Methods
protected abstract CoderResult decodeLoop(java.nio.ByteBuffer in, java.nio.CharBuffer out);
protected CoderResult implFlush(java.nio.CharBuffer out);
protected void implOnMalformedInput(CodingErrorAction newAction); empty
protected void implOnUnmappableCharacter(CodingErrorAction newAction); empty
protected void implReplaceWith(String newReplacement); empty
protected void implReset(); empty

}

public abstract class CharsetEncoder {
// Protected Constructors

protected CharsetEncoder(Charset cs, float averageBytesPerChar, float maxBytesPerChar);
protected CharsetEncoder(Charset cs, float averageBytesPerChar, float maxBytesPerChar, byte[] replacement);

// Public Instance Methods
public final float averageBytesPerChar();
public boolean canEncode(CharSequence cs);
public boolean canEncode(char c);
public final Charset charset();
public final java.nio.ByteBuffer encode(java.nio.CharBuffer in) throws CharacterCodingException;
public final CoderResult encode(java.nio.CharBuffer in, java.nio.ByteBuffer out, boolean endOfInput);
public final CoderResult flush(java.nio.ByteBuffer out);
public boolean isLegalReplacement(byte[] repl);
public CodingErrorAction malformedInputAction();
public final float maxBytesPerChar();

Chapter 13: java.nio and Subpackages | 633

java.nio.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.nio.charset.CoderResult

Passed To java.io.OutputStreamWriter.OutputStreamWriter(), java.nio.channels.Channels.newWriter()

Returned By Charset.newEncoder()

CoderMalfunctionError
java.nio.charset

Java 1.4

serializable error

Signals a malfunction--typically an unknown and unrecoverable error--in a Charset-
Encoder or CharsetDecoder. An error of this type is thrown by the encode() and decode()
methods when the protected encodeLoop() or decodeLoop() methods upon which they are
implemented throws an exception of an unexpected type.

CoderResult
java.nio.charset

Java 1.4

A CoderResult object specifies the results of a call to CharsetDecoder.decode() or
CharsetEncoder.encode(). There are four possible reasons why a call to the decode() or encode()
would return:

• If all the bytes have been decoded or all the characters have been encoded, and
the input buffer is empty, then the return value is the constant object CoderRe-
sult.UNDERFLOW, indicating that coding stopped because there was no more data to
code. Calling the isUnderflow() method on the returned object returns true and calling
isError() returns false. This is a normal return value.

• If there is more data to be coded, but there is no more room in the output buffer to
store the coded data, then the return value is the constant object CoderResult.OVERFLOW.
Calling isOverflow() on the returned object returns true, and calling isError() returns false.
This is a normal return value.

• If the input data was malformed, containing characters or bytes that are not legal
for the charset, and the CharsetEncoder or CharsetDecoder has not specified that malformed
input should be ignored or replaced, then the returned value is a CoderResult object

public final CharsetEncoder onMalformedInput(CodingErrorAction newAction);
public final CharsetEncoder onUnmappableCharacter(CodingErrorAction newAction);
public final byte[] replacement();
public final CharsetEncoder replaceWith(byte[] newReplacement);
public final CharsetEncoder reset();
public CodingErrorAction unmappableCharacterAction();

// Protected Instance Methods
protected abstract CoderResult encodeLoop(java.nio.CharBuffer in, java.nio.ByteBuffer out);
protected CoderResult implFlush(java.nio.ByteBuffer out);
protected void implOnMalformedInput(CodingErrorAction newAction); empty
protected void implOnUnmappableCharacter(CodingErrorAction newAction); empty
protected void implReplaceWith(byte[] newReplacement); empty
protected void implReset(); empty

}

public class CoderMalfunctionError extends Error {
// Public Constructors

public CoderMalfunctionError(Exception cause);
}

Object Throwable Error CoderMalfunctionError

Serializable

634 | Chapter 13: java.nio and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.nio.charset.CodingErrorAction

whose isError() and isMalformed() methods both return true. The position of the input
buffer is at the first malformed character or byte, and the length() method of the
returned object specifies how many characters or bytes are malformed.

• If the input was well-formed, but contains characters or bytes that are “unmap-
pable"--that cannot be encoded or decoded in the specified charset--and if the
CharsetEncoder or CharsetDecoder has not specified that unmappable characters should
be ignored or replaced, then the returned value is a CoderResult object whose isError()
and isUnmappable() methods both return true. The input buffer is positioned at the
first unmappable character or byte, and the length() method of the CoderResult speci-
fies the number of unmappable characters or bytes.

Returned By CharsetDecoder.{decode(), decodeLoop(), flush(), implFlush()}, CharsetEncoder.{encode(),
encodeLoop(), flush(), implFlush()}

CodingErrorAction
java.nio.charset

Java 1.4

This class is a typesafe enumeration that defines three constants that serve as the legal
argument values to the onMalformedInput() and onUnmappableCharacter() methods of CharsetDe-
coder and CharsetEncoder. These constants specify how malformed input and unmappable
error conditions should be handled. The values are:

CodingErrorAction.REPORT
Specifies that the error should be reported. This is done by returning a CoderResult
object from the three-argument version of decode() or encode() or by throwing a
MalformedInputException or UnmappableCharacterException from the one-argument version of
decode() or encode(). This is the default action for both error types for both CharsetDe-
coder and CharsetEncoder.

CodingErrorAction.IGNORE
Specifies that the malformed input or unmappable input character should simply
be skipped, with no output.

public class CoderResult {
// No Constructor
// Public Constants

public static final CoderResult OVERFLOW;
public static final CoderResult UNDERFLOW;

// Public Class Methods
public static CoderResult malformedForLength(int length);
public static CoderResult unmappableForLength(int length);

// Public Instance Methods
public boolean isError();
public boolean isMalformed();
public boolean isOverflow();
public boolean isUnderflow();
public boolean isUnmappable();
public int length();
public void throwException() throws CharacterCodingException;

// Public Methods Overriding Object
public String toString();

}

Chapter 13: java.nio and Subpackages | 635

java.nio.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.nio.charset.MalformedInputException

CodingErrorAction.REPLACE
Specifies that the malformed input or unmappable character should be skipped and
the replacement string or replacement bytes should be appended to the output.

See CharsetDecoder for more information.

Passed To CharsetDecoder.{implOnMalformedInput(), implOnUnmappableCharacter(), onMalformedInput(),
onUnmappableCharacter()}, CharsetEncoder.{implOnMalformedInput(), implOnUnmappableCharacter(),
onMalformedInput(), onUnmappableCharacter()}

Returned By CharsetDecoder.{malformedInputAction(), unmappableCharacterAction()},
CharsetEncoder.{malformedInputAction(), unmappableCharacterAction()}

IllegalCharsetNameException
java.nio.charset

Java 1.4

serializable unchecked

Signals that a charset name (for example one passed to Charset.forName() or
Charset.isSupported()) is not legal. Charset names may contain only the characters A–Z (in
upper- and lowercase), the digits 0–9, and hyphens, underscores, colons, and periods.
They must begin with a letter or a digit, not with a punctuation character.

MalformedInputException
java.nio.charset

Java 1.4

serializable checked

Signals that input to the CharsetDecoder.decode() or CharsetEncoder.encode() method was
malformed.

public class CodingErrorAction {
// No Constructor
// Public Constants

public static final CodingErrorAction IGNORE;
public static final CodingErrorAction REPLACE;
public static final CodingErrorAction REPORT;

// Public Methods Overriding Object
public String toString();

}

public class IllegalCharsetNameException extends IllegalArgumentException {
// Public Constructors

public IllegalCharsetNameException(String charsetName);
// Public Instance Methods

public String getCharsetName();
}

public class MalformedInputException extends CharacterCodingException {
// Public Constructors

public MalformedInputException(int inputLength);
// Public Instance Methods

public int getInputLength();

Object Throwable Exception RuntimeException IllegalArgumentException IllegalCharsetNameException

Serializable

Object Throwable Exception IOException CharacterCodingException MalformedInputException

Serializable

636 | Chapter 13: java.nio and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.nio.charset.UnmappableCharacterException

UnmappableCharacterException
java.nio.charset

Java 1.4

serializable checked

Signals that input to the CharsetDecoder.decode() or CharsetEncoder.encode() method contained a
character or byte sequence that is not mappable in the specified charset.

UnsupportedCharsetException
java.nio.charset

Java 1.4

serializable unchecked

Signals that the requested charset is not supported on the current platform. This
exception is thrown by Charset.forName() when no Charset object can be obtained for the
named charset. See also Charset.isSupported().

Package java.nio.charset.spi Java 1.4

This package defines a “provider” class for system developers who are defining new
Charset implementations and want to make them available to the system. Application
programmers never need to us this package or the class it defines.

Classes
public abstract class CharsetProvider;

CharsetProvider
java.nio.charset.spi

Java 1.4

System programmers developing new Charset implementations should implement this
class to make those charsets available to the system. charsetForName() should return a

// Public Methods Overriding Throwable
public String getMessage();

}

public class UnmappableCharacterException extends CharacterCodingException {
// Public Constructors

public UnmappableCharacterException(int inputLength);
// Public Instance Methods

public int getInputLength();
// Public Methods Overriding Throwable

public String getMessage();
}

public class UnsupportedCharsetException extends IllegalArgumentException {
// Public Constructors

public UnsupportedCharsetException(String charsetName);
// Public Instance Methods

public String getCharsetName();
}

Object Throwable Exception IOException CharacterCodingException UnmappableCharacterException

Serializable

Object Throwable Exception RuntimeException IllegalArgumentException UnsupportedCharsetException

Serializable

Chapter 13: java.nio and Subpackages | 637

java.nio.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.nio.charset.spi.CharsetProvider

Charset instance for the given name. charsets() should return a java.util.Iterator that allows the
caller to iterate through the set of Charset objects defined by the provider.

A CharsetProvider and its associated Charset implementations should be packaged in a
JAR file and made available to the system in the jre/lib/ext/ extensions directory (or
some other extensions location.) The JAR file should contain a file named META-
INF/services/java.nio.charset.spi.CharsetProvider which contains the class name of
the CharsetProvider implementation.

public abstract class CharsetProvider {
// Protected Constructors

protected CharsetProvider();
// Public Instance Methods

public abstract java.nio.charset.Charset charsetForName(String charsetName);
public abstract java.util.Iterator<java.nio.charset.Charset> charsets();

}

638

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Chapter 14java.security.*

14
java.security and Subpackages

This chapter documents the java.security package and its subpackages. Those pack-
ages are:

java.security
This large packages contains much of Java’s security infrastructure, including
a group of classes that provide access control through policies and permis-
sions, and another group that provides authentication-related services such as
digital signatures.

java.security.cert
This package defines classes and interfaces for working with public key certif-
icates, certificate revocation lists (CRLs) and, in Java 1.4 and later, certificate
chains (or certificate paths). It defines classes that should work with any type
of certificate, and type-specific subclasses for X.509 certificates and CRLs.

java.security.interfaces
This package defines interfaces for algorithm-specific types of cryptographic
keys. Providers that support those algorithms must implement these
interfaces.

java.security.spec
This package defines classes that define a transparent, portable representa-
tion of algorithm-specific objects such as cryptographic keys. Instances of
these classes can be used with any security provider.

The java.security.acl package is part of the Java platform, but has been superseded by
access-control classes in java.security. It is not documented here.

Package java.security Java 1.1

The java.security package contains the classes and interfaces that implement the Java secu-
rity architecture. These classes can be divided into two broad categories. First, there are

Chapter 14: java.security and Subpackages | 639

java.security.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

.Package java.security

classes that implement access control and prevent untrusted code from performing sensi-
tive operations. Second, there are authentication classes that implement message digests
and digital signatures and can authenticate Java classes and other objects.

The central access control class is AccessController; it uses the currently installed Policy
object to decide whether a given class has Permission to access a given system resource.
The Permissions and ProtectionDomain classes are also important pieces of the Java access
control architecture.

The key classes for authentication are MessageDigest and Signature; they compute and verify
cryptographic message digests and digital signatures. These classes use public-key
cryptography techniques and rely on the PublicKey and PrivateKey interfaces. They also rely
on an infrastructure of related classes, such as SecureRandom for producing crypto-
graphic-strength pseudorandom numbers, KeyPairGenerator for generating pairs of public
and private keys, and KeyStore for managing a collection of keys and certificates. (This
package defines a Certificate interface, but it is deprecated; see the java.security.cert package
for the preferred Certificate class.)

The CodeSource class unites the authentication classes with the access control classes. It
represents the source of a Java class as a URL and a set of java.security.cert.Certificate objects
that contain the digital signatures of the code. The AccessController and Policy classes look
at the CodeSource of a class when making access control decisions.

All the cryptographic-authentication features of this package are provider-based,
which means they are implemented by security provider modules that can be plugged
easily into any Java 1.2 (or later) installation. Thus, in addition to defining a security
API, this package also defines a service provider interface (SPI). Various classes with
names that end in Spi are part of this SPI. Security provider implementations must
subclass these Spi classes, but applications never need to use them. Each security
provider is represented by a Provider class, and the Security class allows new providers to
be dynamically installed.

The java.security package contains several useful utility classes. For example, DigestInput-
Stream and DigestOutputStream make it easy to compute message digests. GuardedObject provides
customizable access control for an individual object. SignedObject protects the integrity of
an arbitrary Java object by attaching a digital signature, making it easy to detect any
tampering with the object. Although the java.security package contains cryptographic
classes for authentication, it does not contain classes for encryption or decryption.
Instead, this functionality is part of the Java Cryptography Extension or JCE which
defines the javax.crypto package and its subpackages. The JCE is part of the core platform
in Java 1.4 and later, and is available as a standard extension to Java 1.2 and Java 1.3.

Interfaces
public interface Certificate;
public interface DomainCombiner;
public interface Guard;
public interface Key extends Serializable;
public interface KeyStore.Entry;
public interface KeyStore.LoadStoreParameter;
public interface KeyStore.ProtectionParameter;
public interface Principal;
public interface PrivateKey extends Key;
public interface PrivilegedAction<T>;
public interface PrivilegedExceptionAction<T>;
public interface PublicKey extends Key;

640 | Chapter 14: java.security and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

.Package java.security

Enumerated Types
public enum KeyRep.Type;

Collections
public abstract class Provider extends java.util.Properties;

public abstract class AuthProvider extends Provider;

Other Classes
public final class AccessControlContext;
public final class AccessController;
public class AlgorithmParameterGenerator;
public abstract class AlgorithmParameterGeneratorSpi;
public class AlgorithmParameters;
public abstract class AlgorithmParametersSpi;
public final class CodeSigner implements Serializable;
public class CodeSource implements Serializable;
public class DigestInputStream extends java.io.FilterInputStream;
public class DigestOutputStream extends java.io.FilterOutputStream;
public class GuardedObject implements Serializable;
public abstract class Identity implements Principal, Serializable;

public abstract class IdentityScope extends Identity;
public abstract class Signer extends Identity;

public class KeyFactory;
public abstract class KeyFactorySpi;
public final class KeyPair implements Serializable;
public abstract class KeyPairGeneratorSpi;

public abstract class KeyPairGenerator extends KeyPairGeneratorSpi;
public class KeyRep implements Serializable;
public class KeyStore;
public abstract static class KeyStore.Builder;
public static class KeyStore.CallbackHandlerProtection implements KeyStore.ProtectionParameter;
public static class KeyStore.PasswordProtection
 implements javax.security.auth.Destroyable, KeyStore.ProtectionParameter;
public static final class KeyStore.PrivateKeyEntry implements KeyStore.Entry;
public static final class KeyStore.SecretKeyEntry implements KeyStore.Entry;
public static final class KeyStore.TrustedCertificateEntry implements KeyStore.Entry;
public abstract class KeyStoreSpi;
public abstract class MessageDigestSpi;

public abstract class MessageDigest extends MessageDigestSpi;
public abstract class Permission implements Guard, Serializable;

public final class AllPermission extends Permission;
public abstract class BasicPermission extends Permission implements Serializable;

public final class SecurityPermission extends BasicPermission;
public final class UnresolvedPermission extends Permission implements Serializable;

public abstract class PermissionCollection implements Serializable;
public final class Permissions extends PermissionCollection implements Serializable;

public abstract class Policy;
public class ProtectionDomain;
public static class Provider.Service;
public class SecureClassLoader extends ClassLoader;
public class SecureRandom extends java.util.Random;
public abstract class SecureRandomSpi implements Serializable;
public final class Security;

Chapter 14: java.security and Subpackages | 641

java.security.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.security.AccessControlContext

public abstract class SignatureSpi;
public abstract class Signature extends SignatureSpi;

public final class SignedObject implements Serializable;
public final class Timestamp implements Serializable;

Exceptions
public class AccessControlException extends SecurityException;
public class GeneralSecurityException extends Exception;

public class DigestException extends GeneralSecurityException;
public class InvalidAlgorithmParameterException extends GeneralSecurityException;
public class KeyException extends GeneralSecurityException;

public class InvalidKeyException extends KeyException;
public class KeyManagementException extends KeyException;

public class KeyStoreException extends GeneralSecurityException;
public class NoSuchAlgorithmException extends GeneralSecurityException;
public class NoSuchProviderException extends GeneralSecurityException;
public class SignatureException extends GeneralSecurityException;
public class UnrecoverableEntryException extends GeneralSecurityException;
public class UnrecoverableKeyException extends GeneralSecurityException;

public class InvalidParameterException extends IllegalArgumentException;
public class PrivilegedActionException extends Exception;
public class ProviderException extends RuntimeException;

AccessControlContext
java.security

Java 1.2

This class encapsulates the state of a call stack. The checkPermission() method can make
access-control decisions based on the saved state of the call stack. Access-control
checks are usually performed by the AccessController.checkPermission() method, which checks
that the current call stack has the required permissions. Sometimes, however, it is
necessary to make access-control decisions based on a previous state of the call stack.
Call AccessController.getContext() to create an AccessControlContext for a particular call stack. In
Java 1.3, this class has constructors that specify a custom context in the form of an
array of ProtectionDomain objects and that associate a DomainCombiner object with an existing
AccessControlContext. This class is used only by system-level code; typical applications
rarely need to use it.

Passed To AccessController.doPrivileged(), javax.security.auth.Subject.{doAsPrivileged(), getSubject()}

Returned By AccessController.getContext()

public final class AccessControlContext {
// Public Constructors

public AccessControlContext(ProtectionDomain[] context);
1.3 public AccessControlContext(AccessControlContext acc, DomainCombiner combiner);
// Public Instance Methods

public void checkPermission(Permission perm) throws AccessControlException;
1.3 public DomainCombiner getDomainCombiner();
// Public Methods Overriding Object

public boolean equals(Object obj);
public int hashCode();

}

642 | Chapter 14: java.security and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.security.AccessControlException

AccessControlException
java.security

Java 1.2

serializable unchecked

Thrown by AccessController to signal that an access request has been denied. getPermission()
returns the Permission object, if any, that was involved in the denied request.

Thrown By AccessControlContext.checkPermission(), AccessController.checkPermission()

AccessController
java.security

Java 1.2

The static methods of this class implement the default access-control mechanism as of
Java 1.2. checkPermission() traverses the call stack of the current thread and checks whether
all classes in the call stack have the requested permission. If so, checkPermission() returns,
and the operation can proceed. If not, checkPermission() throws an AccessControlException. As of
Java 1.2, the checkPermission() method of the default java.lang.SecurityManager calls
AccessController.checkPermission(). System-level code that needs to perform an access check
should invoke the SecurityManager method rather than calling the AccessController method
directly. Unless you are writing system-level code that must control access to system
resources, you never need to use this class or the SecurityManager.checkPermission() method.

The various doPrivileged() methods run blocks of privileged code encapsulated in a
PrivilegedAction or PrivilegedExceptionAction object. When checkPermission() is traversing the call
stack of a thread, it stops if it reaches a privileged block that was executed with
doPrivileged(). This means that privileged code can run with a full set of privileges, even if
it was invoked by untrusted or lower-privileged code. See PrivilegedAction for more details.

The getContext() method returns an AccessControlContext that represents the current security
context of the caller. Such a context might be saved and passed to a future call
(perhaps a call made from a different thread). Use the two-argument version of
doPrivileged() to force permission checks to check the AccessControlContext as well.

public class AccessControlException extends SecurityException {
// Public Constructors

public AccessControlException(String s);
public AccessControlException(String s, Permission p);

// Public Instance Methods
public Permission getPermission();

}

public final class AccessController {
// No Constructor
// Public Class Methods

public static void checkPermission(Permission perm) throws AccessControlException;
public static <T> T doPrivileged(PrivilegedExceptionAction<T> action) throws PrivilegedActionException; naopdtive
public static <T> T doPrivileged(PrivilegedAction<T> action); native
public static <T> T doPrivileged(PrivilegedExceptionAction<T> action, AccessControlContext context)

throws PrivilegedActionException;
native

public static <T> T doPrivileged(PrivilegedAction<T> action, AccessControlContext context); native
public static AccessControlContext getContext();

}

Object Throwable Exception RuntimeException SecurityException AccessControlException

Serializable

Chapter 14: java.security and Subpackages | 643

java.security.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.security.AlgorithmParameterGeneratorSpi

AlgorithmParameterGenerator
java.security

Java 1.2

This class defines a generic API for generating parameters for a cryptographic algo-
rithm, typically a Signature or a javax.crypto.Cipher. Create an AlgorithmParameterGenerator by
calling one of the static getInstance() factory methods and specifying the name of the
algorithm and, optionally, the name or Provider object of the desired provider. The
default “SUN” provider supports the “DSA” algorithm. The “SunJCE” provider
shipped with the JCE supports “DiffieHellman”. Once you have obtained a generator,
initialize it by calling the init() method and specifying an algorithm-independent param-
eter size (in bits) or an algorithm-dependent AlgorithmParameterSpec object. You may also
specify a SecureRandom source of randomness when you call init(). Once you have created
and initialized the AlgorithmParameterGenerator, call generateParameters() to generate an Algorithm-
Parameters object.

AlgorithmParameterGeneratorSpi
java.security

Java 1.2

This abstract class defines the service-provider interface for algorithm-parameter
generation. A security provider must implement a concrete subclass of this class for
each algorithm it supports. Applications never need to use or subclass this class.

Passed To AlgorithmParameterGenerator.AlgorithmParameterGenerator()

public class AlgorithmParameterGenerator {
// Protected Constructors

protected AlgorithmParameterGenerator(AlgorithmParameterGeneratorSpi paramGenSpi, Provider provider,
String algorithm);

// Public Class Methods
public static AlgorithmParameterGenerator getInstance(String algorithm) throws NoSuchAlgorithmException;

1.4 public static AlgorithmParameterGenerator getInstance(String algorithm, Provider provider)
throws NoSuchAlgorithmException;

public static AlgorithmParameterGenerator getInstance(String algorithm, String provider)
throws NoSuchAlgorithmException, NoSuchProviderException;

// Public Instance Methods
public final AlgorithmParameters generateParameters();
public final String getAlgorithm();
public final Provider getProvider();
public final void init(java.security.spec.AlgorithmParameterSpec genParamSpec)

throws InvalidAlgorithmParameterException;
public final void init(int size);
public final void init(java.security.spec.AlgorithmParameterSpec genParamSpec, SecureRandom random)

throws InvalidAlgorithmParameterException;
public final void init(int size, SecureRandom random);

}

public abstract class AlgorithmParameterGeneratorSpi {
// Public Constructors

public AlgorithmParameterGeneratorSpi();
// Protected Instance Methods

protected abstract AlgorithmParameters engineGenerateParameters();
protected abstract void engineInit(java.security.spec.AlgorithmParameterSpec genParamSpec, SecureRandom random)

throws InvalidAlgorithmParameterException;
protected abstract void engineInit(int size, SecureRandom random);

}

644 | Chapter 14: java.security and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.security.AlgorithmParameters

AlgorithmParameters
java.security

Java 1.2

This class is a generic, opaque representation of the parameters used by some crypto-
graphic algorithm. You can create an instance of the class with one of the static
getInstance() factory methods, specifying the desired algorithm and, optionally, the
desired provider. The default “SUN” provider supports the “DSA” algorithm. The
“SunJCE” provider shipped with the JCE supports “DES”, “DESede”, “PBE”, “Blow-
fish”, and “DiffieHellman”. Once you have obtained an AlgorithmParameters object,
initialize it by passing an algorithm-specific java.security.spec.AlgorithmParameterSpec object or
the encoded parameter values as a byte array to the init() method. You can also create
an AlgorithmParameters object with an AlgorithmParameterGenerator. getEncoded() returns the
initialized algorithm parameters as a byte array, using either the algorithm-specific
default encoding or the named encoding format you specified.

Passed To javax.crypto.Cipher.init(), javax.crypto.CipherSpi.engineInit(),
javax.crypto.EncryptedPrivateKeyInfo.EncryptedPrivateKeyInfo(), javax.crypto.ExemptionMechanism.init(),
javax.crypto.ExemptionMechanismSpi.engineInit()

Returned By AlgorithmParameterGenerator.generateParameters(),
AlgorithmParameterGeneratorSpi.engineGenerateParameters(), Signature.getParameters(),
SignatureSpi.engineGetParameters(), javax.crypto.Cipher.getParameters(),
javax.crypto.CipherSpi.engineGetParameters(), javax.crypto.EncryptedPrivateKeyInfo.getAlgParameters()

AlgorithmParametersSpi
java.security

Java 1.2

This abstract class defines the service-provider interface for AlgorithmParameters. A secu-
rity provider must implement a concrete subclass of this class for each cryptographic
algorithm it supports. Applications never need to use or subclass this class.

public class AlgorithmParameters {
// Protected Constructors

protected AlgorithmParameters(AlgorithmParametersSpi paramSpi, Provider provider, String algorithm);
// Public Class Methods

public static AlgorithmParameters getInstance(String algorithm) throws NoSuchAlgorithmException;
public static AlgorithmParameters getInstance(String algorithm, String provider)

throws NoSuchAlgorithmException, NoSuchProviderException;
1.4 public static AlgorithmParameters getInstance(String algorithm, Provider provider)

throws NoSuchAlgorithmException;
// Public Instance Methods

public final String getAlgorithm();
public final byte[] getEncoded() throws java.io.IOException;
public final byte[] getEncoded(String format) throws java.io.IOException;
public final <T extends java.security.spec.AlgorithmParameterSpec> T getParameterSpec(Class<T> paramSpec)

throws java.security.spec.InvalidParameterSpecException;
public final Provider getProvider();
public final void init(java.security.spec.AlgorithmParameterSpec paramSpec)

throws java.security.spec.InvalidParameterSpecException;
public final void init(byte[] params) throws java.io.IOException;
public final void init(byte[] params, String format) throws java.io.IOException;

// Public Methods Overriding Object
public final String toString();

}

Chapter 14: java.security and Subpackages | 645

java.security.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.security.AuthProvider

Passed To AlgorithmParameters.AlgorithmParameters()

AllPermission
java.security

Java 1.2

serializable permission

This class is a Permission subclass whose implies() method always returns true. This means
that code that has been granted AllPermission is granted all other possible permissions.
This class exists to provide a convenient way to grant all permissions to completely
trusted code. It should be used with care. Applications typically do not need to work
directly with Permission objects.

AuthProvider
java.security

Java 5.0

cloneable serializable collection

This subclass of Provider defines methods that allow users to “log in” before using the
provider’s services. An implementation of the login() method should use the supplied
javax.security.auth.callback.CallbackHandler class to request the user’s password or other authen-
tication credentials. If no callback handler is passed to login(), it should use the one
registered with setCallbackHandler() or a default.

public abstract class AlgorithmParametersSpi {
// Public Constructors

public AlgorithmParametersSpi();
// Protected Instance Methods

protected abstract byte[] engineGetEncoded() throws java.io.IOException;
protected abstract byte[] engineGetEncoded(String format) throws java.io.IOException;
protected abstract <T extends java.security.spec.AlgorithmParameterSpec>

T engineGetParameterSpec(Class<T> paramSpec)
throws java.security.spec.InvalidParameterSpecException;

protected abstract void engineInit(java.security.spec.AlgorithmParameterSpec paramSpec)
throws java.security.spec.InvalidParameterSpecException;

protected abstract void engineInit(byte[] params) throws java.io.IOException;
protected abstract void engineInit(byte[] params, String format) throws java.io.IOException;
protected abstract String engineToString();

}

public final class AllPermission extends Permission {
// Public Constructors

public AllPermission();
public AllPermission(String name, String actions);

// Public Methods Overriding Permission
public boolean equals(Object obj);
public String getActions(); default:"<all actions>”
public int hashCode(); constant
public boolean implies(Permission p); constant
public PermissionCollection newPermissionCollection();

}

Object Permission AllPermission

Guard Serializable

Object Dictionary Hashtable Properties Provider AuthProvider

Cloneable Map Serializable

646 | Chapter 14: java.security and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.security.BasicPermission

BasicPermission
java.security

Java 1.2

serializable permission

This Permission class is the abstract superclass for a number of simple permission types.
BasicPermission is typically subclassed to implement named permissions that have a name,
or target, string, but do not support actions. The implies() method of BasicPermission
defines a simple wildcarding capability. The target “*” implies permission for any
target. The target “x.*” implies permission for any target that begins with “x.”. Appli-
cations typically do not need to work directly with Permission objects.

Subclasses java.io.SerializablePermission, RuntimePermission,
java.lang.management.ManagementPermission, java.lang.reflect.ReflectPermission, java.net.NetPermission,
SecurityPermission, java.util.PropertyPermission, java.util.logging.LoggingPermission,
javax.net.ssl.SSLPermission, javax.security.auth.AuthPermission, javax.security.auth.kerberos.DelegationPermission

Certificate
java.security

Java 1.1; Deprecated in 1.2

@Deprecated

This interface was used in Java 1.1 to represent an identity certificate. It has been
deprecated as of Java 1.2 in favor of the java.security.cert package (see Chapter 19). See
also java.security.cert.Certificate.

public abstract class AuthProvider extends Provider {
// Protected Constructors

protected AuthProvider(String name, double version, String info);
// Public Instance Methods

public abstract void login(javax.security.auth.Subject subject, javax.security.auth.callback.CallbackHandler handler)
throws javax.security.auth.login.LoginException;

public abstract void logout() throws javax.security.auth.login.LoginException;
public abstract void setCallbackHandler(javax.security.auth.callback.CallbackHandler handler);

}

public abstract class BasicPermission extends Permission implements Serializable {
// Public Constructors

public BasicPermission(String name);
public BasicPermission(String name, String actions);

// Public Methods Overriding Permission
public boolean equals(Object obj);
public String getActions();
public int hashCode();
public boolean implies(Permission p);
public PermissionCollection newPermissionCollection();

}

public interface Certificate {
// Public Instance Methods

void decode(java.io.InputStream stream) throws KeyException, java.io.IOException;
void encode(java.io.OutputStream stream) throws KeyException, java.io.IOException;
String getFormat();
Principal getGuarantor();
Principal getPrincipal();

Object Permission BasicPermission

Guard Serializable Serializable

Chapter 14: java.security and Subpackages | 647

java.security.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.security.CodeSource

Passed To Identity.{addCertificate(), removeCertificate()}

Returned By Identity.certificates()

CodeSigner
java.security

Java 5.0

serializable

This class encapsulates the certificate path of a code signer and a signed timestamp.
Instances are immutable. See CodeSource and java.util.jar.JarEntry.

Passed To CodeSource.CodeSource()

Returned By CodeSource.getCodeSigners(), java.util.jar.JarEntry.getCodeSigners()

CodeSource
java.security

Java 1.2

serializable

This class represents the source of a Java class, as defined by the URL from which the
class was loaded and the set of digital signatures attached to the class. A CodeSource
object is created by specifying a java.net.URL and an array of java.security.cert.Certificate objects.
In Java 5.0, the class has been generalized to accept an array of CodeSigner objects
instead of Certificate objects. Only applications that create custom ClassLoader objects
should ever need to use or subclass this class.

When a CodeSource represents a specific piece of Java code, it includes a fully qualified
URL and the actual set of certificates used to sign the code. When a CodeSource object
defines a ProtectionDomain, however, the URL may include wildcards, and the array of
certificates is a minimum required set of signatures. The implies() method of such a Code-
Source tests whether a particular Java class comes from a matching URL and has the
required set of signatures.

PublicKey getPublicKey();
String toString(boolean detailed);

}

public final class CodeSigner implements Serializable {
// Public Constructors

public CodeSigner(java.security.cert.CertPath signerCertPath, Timestamp timestamp);
// Public Instance Methods

public java.security.cert.CertPath getSignerCertPath();
public Timestamp getTimestamp();

// Public Methods Overriding Object
public boolean equals(Object obj);
public int hashCode();
public String toString();

}

public class CodeSource implements Serializable {
// Public Constructors
5.0 public CodeSource(java.net.URL url, CodeSigner[] signers);

public CodeSource(java.net.URL url, java.security.cert.Certificate[] certs);
// Public Instance Methods

public final java.security.cert.Certificate[] getCertificates();

Object CodeSigner Serializable

Object CodeSource Serializable

648 | Chapter 14: java.security and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.security.DigestException

Passed To java.net.URLClassLoader.getPermissions(), java.security.Policy.getPermissions(),
ProtectionDomain.ProtectionDomain(), SecureClassLoader.{defineClass(), getPermissions()},
javax.security.auth.Policy.getPermissions()

Returned By ProtectionDomain.getCodeSource()

DigestException
java.security

Java 1.1

serializable checked

Signals a problem creating a message digest.

Thrown By MessageDigest.digest(), MessageDigestSpi.engineDigest()

DigestInputStream
java.security

Java 1.1

closeable

This class is a byte input stream with an associated MessageDigest object. When bytes are
read with any of the read() methods, those bytes are automatically passed to the update()
method of the MessageDigest. When you have finished reading bytes, you can call the
digest() method of the MessageDigest to obtain a message digest. If you want to compute a
digest just for some of the bytes read from the stream, use on() to turn the digesting
function on and off. Digesting is on by default; call on(false) to turn it off. See also
DigestOutputStream and MessageDigest.

5.0 public final CodeSigner[] getCodeSigners();
public final java.net.URL getLocation();
public boolean implies(CodeSource codesource);

// Public Methods Overriding Object
public boolean equals(Object obj);
public int hashCode();
public String toString();

}

public class DigestException extends GeneralSecurityException {
// Public Constructors

public DigestException();
5.0 public DigestException(Throwable cause);

public DigestException(String msg);
5.0 public DigestException(String message, Throwable cause);
}

public class DigestInputStream extends java.io.FilterInputStream {
// Public Constructors

public DigestInputStream(java.io.InputStream stream, MessageDigest digest);
// Public Instance Methods

public MessageDigest getMessageDigest();
public void on(boolean on);
public void setMessageDigest(MessageDigest digest);

// Public Methods Overriding FilterInputStream

Object Throwable Exception GeneralSecurityException DigestException

Serializable

Object InputStream FilterInputStream DigestInputStream

Closeable

Chapter 14: java.security and Subpackages | 649

java.security.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.security.DomainCombiner

DigestOutputStream
java.security

Java 1.1

closeable flushable

This class is a byte output stream with an associated MessageDigest object. When bytes
are written to the stream with any of the write() methods, those bytes are automatically
passed to the update() method of the MessageDigest. When you have finished writing bytes,
you can call the digest() method of the MessageDigest to obtain a message digest. If you
want to compute a digest just for some of the bytes written to the stream, use on() to
turn the digesting function on and off. Digesting is on by default; call on(false) to turn it
off. See also DigestInputStream and MessageDigest.

DomainCombiner
java.security

Java 1.3

This interface defines a single combine() method that combines two arrays of Protection-
Domain objects into a single equivalent (and perhaps optimized) array. You can associate
a DomainCombiner with an existing AccessControlContext by calling the two-argument
AccessControlContext() constructor. Then, when the checkPermission() method of the AccessControl-
Context is called or when the AccessControlContext is passed to a doPrivileged() method of
AccessController, the specified DomainCombiner merges the protection domains of the current
stack frame with the protection domains encapsulated in the AccessControlContext. This
class is used only by system-level code; typical applications rarely need to use it.

public int read() throws java.io.IOException;
public int read(byte[] b, int off, int len) throws java.io.IOException;

// Public Methods Overriding Object
public String toString();

// Protected Instance Fields
protected MessageDigest digest;

}

public class DigestOutputStream extends java.io.FilterOutputStream {
// Public Constructors

public DigestOutputStream(java.io.OutputStream stream, MessageDigest digest);
// Public Instance Methods

public MessageDigest getMessageDigest();
public void on(boolean on);
public void setMessageDigest(MessageDigest digest);

// Public Methods Overriding FilterOutputStream
public void write(int b) throws java.io.IOException;
public void write(byte[] b, int off, int len) throws java.io.IOException;

// Public Methods Overriding Object
public String toString();

// Protected Instance Fields
protected MessageDigest digest;

}

public interface DomainCombiner {
// Public Instance Methods

ProtectionDomain[] combine(ProtectionDomain[] currentDomains, ProtectionDomain[] assignedDomains);
}

Object OutputStream FilterOutputStream DigestOutputStream

Closeable Flushable

650 | Chapter 14: java.security and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.security.GeneralSecurityException

Implementations javax.security.auth.SubjectDomainCombiner

Passed To AccessControlContext.AccessControlContext()

Returned By AccessControlContext.getDomainCombiner()

GeneralSecurityException
java.security

Java 1.2

serializable checked

This class is the superclass of most of the exceptions defined by the java.security package.

Subclasses Too many classes to list.

Guard
java.security

Java 1.2

This interface guards access to an object. The checkGuard() method is passed an object to
which access has been requested. If access should be granted, checkGuard() should return
silently. Otherwise, if access is denied, checkGuard() should throw a java.lang.SecurityException.
The Guard object is used primarily by the GuardedObject class. Note that all Permission objects
implement the Guard interface.

Implementations Permission

Passed To GuardedObject.GuardedObject()

GuardedObject
java.security

Java 1.2

serializable

This class uses a Guard object to guard against unauthorized access to an arbitrary
encapsulated object. Create a GuardedObject by specifying an object and a Guard for it. The
getObject() method calls the checkGuard() method of the Guard to determine whether access
to the object should be allowed. If access is allowed, getObject() returns the encapsu-
lated object. Otherwise, it throws a java.lang.SecurityException.

The Guard object used by a GuardedObject is often a Permission. In this case, access to the
guarded object is granted only if the calling code is granted the specified permission by
the current security policy.

public class GeneralSecurityException extends Exception {
// Public Constructors

public GeneralSecurityException();
5.0 public GeneralSecurityException(Throwable cause);

public GeneralSecurityException(String msg);
5.0 public GeneralSecurityException(String message, Throwable cause);
}

public interface Guard {
// Public Instance Methods

void checkGuard(Object object) throws SecurityException;
}

Object Throwable Exception GeneralSecurityException

Serializable

Object GuardedObject Serializable

Chapter 14: java.security and Subpackages | 651

java.security.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.security.Identity

Identity
java.security

Java 1.1; Deprecated in 1.2

@Deprecated serializable

This deprecated class was used in Java 1.1 to represent an entity or Principal with an
associated PublicKey object. In Java 1.1, the public key for a named entity could be
retrieved from the system keystore with a line like the following:

IdentityScope.getSystemScope().getIdentity(name).getPublicKey()

As of Java 1.2, the Identity class and the related IdentityScope and Signer classes have been
deprecated in favor of KeyStore and java.security.cert.Certificate.

Subclasses IdentityScope, Signer

Passed To IdentityScope.{addIdentity(), removeIdentity()}

Returned By IdentityScope.getIdentity()

public class GuardedObject implements Serializable {
// Public Constructors

public GuardedObject(Object object, Guard guard);
// Public Instance Methods

public Object getObject() throws SecurityException;
}

public abstract class Identity implements Principal, Serializable {
// Public Constructors

public Identity(String name);
public Identity(String name, IdentityScope scope) throws KeyManagementException;

// Protected Constructors
protected Identity();

// Public Instance Methods
public void addCertificate(java.security.Certificate certificate) throws KeyManagementException;
public java.security.Certificate[] certificates();
public String getInfo();
public PublicKey getPublicKey();
public final IdentityScope getScope();
public void removeCertificate(java.security.Certificate certificate) throws KeyManagementException;
public void setInfo(String info);
public void setPublicKey(PublicKey key) throws KeyManagementException;
public String toString(boolean detailed);

// Methods Implementing Principal
public final boolean equals(Object identity);
public final String getName();
public int hashCode();
public String toString();

// Protected Instance Methods
protected boolean identityEquals(Identity identity);

}

Object Identity

Principal Serializable

652 | Chapter 14: java.security and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.security.IdentityScope

IdentityScope
java.security

Java 1.1; Deprecated in 1.2

@Deprecated serializable

This deprecated class was used in Java 1.1 to represent a group of Identity and Signer
objects and their associated PublicKey and PrivateKey objects. As of Java 1.2, it has been
replaced by the KeyStore class.

Passed To Identity.Identity(), Signer.Signer()

Returned By Identity.getScope()

InvalidAlgorithmParameterException
java.security

Java 1.2

serializable checked

Signals that one or more algorithm parameters (usually specified by a
java.security.spec.AlgorithmParameterSpec object) are not valid.

Thrown By Too many methods to list.

public abstract class IdentityScope extends Identity {
// Public Constructors

public IdentityScope(String name);
public IdentityScope(String name, IdentityScope scope) throws KeyManagementException;

// Protected Constructors
protected IdentityScope();

// Public Class Methods
public static IdentityScope getSystemScope();

// Protected Class Methods
protected static void setSystemScope(IdentityScope scope);

// Public Instance Methods
public abstract void addIdentity(Identity identity) throws KeyManagementException;
public abstract Identity getIdentity(String name);
public Identity getIdentity(Principal principal);
public abstract Identity getIdentity(PublicKey key);
public abstract java.util.Enumeration<Identity> identities();
public abstract void removeIdentity(Identity identity) throws KeyManagementException;
public abstract int size();

// Public Methods Overriding Identity
public String toString();

}

public class InvalidAlgorithmParameterException extends GeneralSecurityException {
// Public Constructors

public InvalidAlgorithmParameterException();
5.0 public InvalidAlgorithmParameterException(Throwable cause);

public InvalidAlgorithmParameterException(String msg);
5.0 public InvalidAlgorithmParameterException(String message, Throwable cause);
}

Object Identity IdentityScope

Principal Serializable

Object Throwable Exception GeneralSecurityException InvalidAlgorithmParameterException

Serializable

Chapter 14: java.security and Subpackages | 653

java.security.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.security.Key

InvalidKeyException
java.security

Java 1.1

serializable checked

Signals that a Key is not valid.

Thrown By Too many methods to list.

InvalidParameterException
java.security

Java 1.1

serializable unchecked

This subclass of java.lang.IllegalArgumentException signals that a parameter passed to a secu-
rity method is not valid. This exception type is not widely used.

Thrown By Signature.{getParameter(), setParameter()}, SignatureSpi.{engineGetParameter(),
engineSetParameter()}, Signer.setKeyPair(), java.security.interfaces.DSAKeyPairGenerator.initialize()

Key
java.security

Java 1.1

serializable

This interface defines the high-level characteristics of all cryptographic keys.
getAlgorithm() returns the name of the cryptographic algorithm (such as RSA) used with
the key. getFormat() return the name of the external encoding (such as X.509) used with
the key. getEncoded() returns the key as an array of bytes, encoded using the format spec-
ified by getFormat().

public class InvalidKeyException extends KeyException {
// Public Constructors

public InvalidKeyException();
5.0 public InvalidKeyException(Throwable cause);

public InvalidKeyException(String msg);
5.0 public InvalidKeyException(String message, Throwable cause);
}

public class InvalidParameterException extends IllegalArgumentException {
// Public Constructors

public InvalidParameterException();
public InvalidParameterException(String msg);

}

public interface Key extends Serializable {
// Public Constants
1.2 public static final long serialVersionUID; =6603384152749567654
// Public Instance Methods

String getAlgorithm();
byte[] getEncoded();
String getFormat();

}

Object Throwable Exception GeneralSecurityException KeyException InvalidKeyException

Serializable

Object Throwable Exception RuntimeException IllegalArgumentException InvalidParameterException

Serializable

Serializable Key

654 | Chapter 14: java.security and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.security.KeyException

Implementations PrivateKey, PublicKey, javax.crypto.SecretKey

Passed To Too many methods to list.

Returned By KeyFactory.translateKey(), KeyFactorySpi.engineTranslateKey(), KeyStore.getKey(),
KeyStoreSpi.engineGetKey(), javax.crypto.Cipher.unwrap(), javax.crypto.CipherSpi.engineUnwrap(),
javax.crypto.KeyAgreement.doPhase(), javax.crypto.KeyAgreementSpi.engineDoPhase()

KeyException
java.security

Java 1.1

serializable checked

Signals that something is wrong with a key. See also the subclasses InvalidKeyException and
KeyManagementException.

Subclasses InvalidKeyException, KeyManagementException

Thrown By java.security.Certificate.{decode(), encode()}, Signer.setKeyPair()

KeyFactory
java.security

Java 1.2

This class translates asymmetric cryptographic keys between the two representations
used by the Java Security API. java.security.Key is the opaque, algorithm-independent
representation of a key used by most of the Security API. java.security.spec.KeySpec is a
marker interface implemented by transparent, algorithm-specific representations of
keys. KeyFactory is used with public and private keys; see javax.crypto.SecretKeyFactory if you
are working with symmetric or secret keys.

To convert a Key to a KeySpec or vice versa, create a KeyFactory by calling one of the static
getInstance() factory methods specifying the name of the key algorithm (e.g., DSA or
RSA) and optionally specifying the name or Provider object for the desired provider.
Then, use generatePublic() or generatePrivate() to create a PublicKey or PrivateKey object from a
corresponding KeySpec. Or use getKeySpec() to obtain a KeySpec for a given Key. Because
there can be more than one KeySpec implementation used by a particular cryptographic
algorithm, you must also specify the Class of the KeySpec you desire.

If you do not need to transport keys portably between applications and/or systems,
you can use a KeyStore to store and retrieve keys and certificates, avoiding KeySpec and
KeyFactory altogether.

public class KeyException extends GeneralSecurityException {
// Public Constructors

public KeyException();
5.0 public KeyException(Throwable cause);

public KeyException(String msg);
5.0 public KeyException(String message, Throwable cause);
}

public class KeyFactory {
// Protected Constructors

protected KeyFactory(KeyFactorySpi keyFacSpi, Provider provider, String algorithm);
// Public Class Methods

public static KeyFactory getInstance(String algorithm) throws NoSuchAlgorithmException;

Object Throwable Exception GeneralSecurityException KeyException

Serializable

Chapter 14: java.security and Subpackages | 655

java.security.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.security.KeyManagementException

KeyFactorySpi
java.security

Java 1.2

This abstract class defines the service-provider interface for KeyFactory. A security
provider must implement a concrete subclass of this class for each cryptographic algo-
rithm it supports. Applications never need to use or subclass this class.

Passed To KeyFactory.KeyFactory()

KeyManagementException
java.security

Java 1.1

serializable checked

Signals an exception in a key management operation. In Java 1.2, this exception is only
thrown by deprecated methods.

public static KeyFactory getInstance(String algorithm, String provider)
throws NoSuchAlgorithmException, NoSuchProviderException;

1.4 public static KeyFactory getInstance(String algorithm, Provider provider) throws NoSuchAlgorithmException;
// Public Instance Methods

public final PrivateKey generatePrivate(java.security.spec.KeySpec keySpec)
throws java.security.spec.InvalidKeySpecException;

public final PublicKey generatePublic(java.security.spec.KeySpec keySpec)
throws java.security.spec.InvalidKeySpecException;

public final String getAlgorithm();
public final <T extends java.security.spec.KeySpec> T getKeySpec(Key key, Class<T> keySpec)

throws java.security.spec.InvalidKeySpecException;
public final Provider getProvider();
public final Key translateKey(Key key) throws InvalidKeyException;

}

public abstract class KeyFactorySpi {
// Public Constructors

public KeyFactorySpi();
// Protected Instance Methods

protected abstract PrivateKey engineGeneratePrivate(java.security.spec.KeySpec keySpec)
throws java.security.spec.InvalidKeySpecException;

protected abstract PublicKey engineGeneratePublic(java.security.spec.KeySpec keySpec)
throws java.security.spec.InvalidKeySpecException;

protected abstract <T extends java.security.spec.KeySpec> T engineGetKeySpec(Key key, Class<T> keySpec)
throws java.security.spec.InvalidKeySpecException;

protected abstract Key engineTranslateKey(Key key) throws InvalidKeyException;
}

public class KeyManagementException extends KeyException {
// Public Constructors

public KeyManagementException();
5.0 public KeyManagementException(Throwable cause);

public KeyManagementException(String msg);
5.0 public KeyManagementException(String message, Throwable cause);
}

Object Throwable Exception GeneralSecurityException KeyException KeyManagementException

Serializable

656 | Chapter 14: java.security and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.security.KeyPair

Thrown By Identity.{addCertificate(), Identity(), removeCertificate(), setPublicKey()},
IdentityScope.{addIdentity(), IdentityScope(), removeIdentity()}, Signer.Signer(), javax.net.ssl.SSLContext.init(),
javax.net.ssl.SSLContextSpi.engineInit()

KeyPair
java.security

Java 1.1

serializable

This class is a simple container for a PublicKey and a PrivateKey object. Because a KeyPair
contains an unprotected private key, it must be used with as much caution as a
PrivateKey object.

Passed To Signer.setKeyPair()

Returned By KeyPairGenerator.{generateKeyPair(), genKeyPair()}, KeyPairGeneratorSpi.generateKeyPair()

KeyPairGenerator
java.security

Java 1.1

This class generates a public/private key pair for a specified cryptographic algorithm.
To create a KeyPairGenerator, call one of the static getInstance() methods, specifying the
name of the algorithm and, optionally, the name or Provider object of the security
provider to use. The default “SUN” provider shipped with Java 1.2 supports only the
“DSA” algorithm. The “SunJCE” provider of the Java Cryptography Extension (JCE)
additionally supports the “DiffieHellman” algorithm.

Once you have created a KeyPairGenerator, initialize it by calling initialize(). You can perform
an algorithm-independent initialization by simply specifying the desired key size in bits.
Alternatively, you can do an algorithm-dependent initialization by providing an appro-
priate AlgorithmParameterSpec object for the key-generation algorithm. In either case, you
may optionally provide your own source of randomness in the guise of a SecureRandom
object. Once you have created and initialized a KeyPairGenerator, call genKeyPair() to create a
KeyPair object. Remember that the KeyPair contains a PrivateKey that must be kept private.

For historical reasons, KeyPairGenerator extends KeyPairGeneratorSpi. Applications should not
use any methods inherited from that class.

public final class KeyPair implements Serializable {
// Public Constructors

public KeyPair(PublicKey publicKey, PrivateKey privateKey);
// Public Instance Methods

public PrivateKey getPrivate();
public PublicKey getPublic();

}

public abstract class KeyPairGenerator extends KeyPairGeneratorSpi {
// Protected Constructors

protected KeyPairGenerator(String algorithm);
// Public Class Methods

public static KeyPairGenerator getInstance(String algorithm) throws NoSuchAlgorithmException;
1.4 public static KeyPairGenerator getInstance(String algorithm, Provider provider) throws NoSuchAlgorithmException;

public static KeyPairGenerator getInstance(String algorithm, String provider)
throws NoSuchAlgorithmException, NoSuchProviderException;

Object KeyPair Serializable

Object KeyPairGeneratorSpi KeyPairGenerator

Chapter 14: java.security and Subpackages | 657

java.security.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.security.KeyRep.Type

KeyPairGeneratorSpi
java.security

Java 1.2

This abstract class defines the service-provider interface for KeyPairGenerator. A security
provider must implement a concrete subclass of this class for each cryptographic algo-
rithm for which it can generate key pairs. Applications never need to use or subclass
this class.

Subclasses KeyPairGenerator

KeyRep
java.security

Java 5.0

serializable

This class defines a serialized representation for Key implementations and is typically
used only by security providers, not users of the java.security package.

KeyRep.Type
java.security

Java 5.0

serializable comparable enum

The constants defined by this enumerated type represent the general types of crypto-
graphic keys: public keys, private keys, and secret keys.

// Public Instance Methods
1.2 public final KeyPair genKeyPair();

public String getAlgorithm();
1.2 public final Provider getProvider();
1.2 public void initialize(java.security.spec.AlgorithmParameterSpec params) throws InvalidAlgorithmParameterException;

public void initialize(int keysize);
// Public Methods Overriding KeyPairGeneratorSpi

public KeyPair generateKeyPair(); constant
1.2 public void initialize(java.security.spec.AlgorithmParameterSpec params, SecureRandom random)

throws InvalidAlgorithmParameterException; empty
public void initialize(int keysize, SecureRandom random); empty

}

public abstract class KeyPairGeneratorSpi {
// Public Constructors

public KeyPairGeneratorSpi();
// Public Instance Methods

public abstract KeyPair generateKeyPair();
public void initialize(java.security.spec.AlgorithmParameterSpec params, SecureRandom random)

throws InvalidAlgorithmParameterException;
public abstract void initialize(int keysize, SecureRandom random);

}

public class KeyRep implements Serializable {
// Public Constructors

public KeyRep(KeyRep.Type type, String algorithm, String format, byte[] encoded);
// Nested Types

public enum Type;
// Protected Instance Methods

protected Object readResolve() throws java.io.ObjectStreamException;
}

Object KeyRep Serializable

658 | Chapter 14: java.security and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.security.KeyStore

Passed To KeyRep.KeyRep()

KeyStore
java.security

Java 1.2

This class represents a mapping of names, or aliases, to Key and java.security.cert.Certificate
objects. Obtain a KeyStore object by calling one of the static getInstance() methods, speci-
fying the desired key store type and, optionally, the desired provider. Use “JKS” to
specify the “Java Key Store” type defined by Sun. Because of U.S. export regulations,
this default KeyStore supports only weak encryption of private keys. If you have the Java
Cryptography Extension installed, use the type “JCEKS” and provider “SunJCE” to
obtain a KeyStore implementation that offers much stronger password-based encryption
of keys. Once you have created a KeyStore, use load() to read its contents from a stream,
supplying an optional password that verifies the integrity of the stream data. Keystores
are typically read from a file named .keystore in the user’s home directory.

The KeyStore API has been substantially enhanced in Java 5.0. We describe pre-5.0
methods first, and then cover Java 5.0 enhancements below. A KeyStore may contain
both public and private key entries. A public key entry is represented by a Certificate
object. Use getCertificate() to look up a named public key certificate and setCertificateEntry()
to add a new public key certificate to the keystore. A private key entry in the keystore
contains both a password-protected Key and an array of Certificate objects that represent
the certificate chain for the public key that corresponds to the private key. Use getKey()
and getCertificateChain() to look up the key and certificate chain. Use setKeyEntry() to create a
new private key entry. You must provide a password when reading or writing a private
key from the keystore; this password encrypts the key data, and each private key entry
should have a different password. If you are using the JCE, you may also store
javax.crypto.SecretKey objects in a KeyStore. Secret keys are stored like private keys, except
that they do not have a certificate chain associated with them. To delete an entry from
a KeyStore, use deleteEntry(). If you modify the contents of a KeyStore, use store() to save the
keystore to a specified stream. You may specify a password that is used to validate the
integrity of the data, but it is not used to encrypt the keystore.

In Java 5.0 the KeyStore.Entry interface defines a keystore entry. Implementations include
the nested types PrivateKeyEntry, SecretKeyEntry, and TrustedCertificateEntry. You can get or set an
entry of any type with the new methods getEntry() and setEntry(). These methods accept a
KeyStore.ProtectionParameter object, such as a password represented as a KeyStore.Password-
Protection object. Java 5.0 also defines new load() and store() methods that specify a
password indirectly through a KeyStore.LoadStoreParameter.

public enum KeyRep.Type {
// Enumerated Constants

SECRET,
PUBLIC,
PRIVATE;

// Public Class Methods
public static KeyRep.Type valueOf(String name);
public static final KeyRep.Type[] values();

}

public class KeyStore {
// Protected Constructors

protected KeyStore(KeyStoreSpi keyStoreSpi, Provider provider, String type);
// Nested Types

Chapter 14: java.security and Subpackages | 659

java.security.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.security.KeyStore

Passed To KeyStore.Builder.newInstance(), java.security.cert.PKIXBuilderParameters.PKIXBuilderParameters(),
java.security.cert.PKIXParameters.PKIXParameters(), javax.net.ssl.KeyManagerFactory.init(),
javax.net.ssl.KeyManagerFactorySpi.engineInit(), javax.net.ssl.TrustManagerFactory.init(),
javax.net.ssl.TrustManagerFactorySpi.engineInit()

Returned By KeyStore.Builder.getKeyStore()

5.0 public abstract static class Builder;
5.0 public static class CallbackHandlerProtection implements KeyStore.ProtectionParameter;
5.0 public interface Entry;
5.0 public interface LoadStoreParameter;
5.0 public static class PasswordProtection implements javax.security.auth.Destroyable, KeyStore.ProtectionParameter;
5.0 public static final class PrivateKeyEntry implements KeyStore.Entry;
5.0 public interface ProtectionParameter;
5.0 public static final class SecretKeyEntry implements KeyStore.Entry;
5.0 public static final class TrustedCertificateEntry implements KeyStore.Entry;
// Public Class Methods

public static final String getDefaultType();
public static KeyStore getInstance(String type) throws KeyStoreException;
public static KeyStore getInstance(String type, String provider) throws KeyStoreException, NoSuchProviderException;

1.4 public static KeyStore getInstance(String type, Provider provider) throws KeyStoreException;
// Public Instance Methods

public final java.util.Enumeration<String> aliases() throws KeyStoreException;
public final boolean containsAlias(String alias) throws KeyStoreException;
public final void deleteEntry(String alias) throws KeyStoreException;

5.0 public final boolean entryInstanceOf(String alias, Class<? extends KeyStore.Entry> entryClass)
throws KeyStoreException;

public final java.security.cert.Certificate getCertificate(String alias) throws KeyStoreException;
public final String getCertificateAlias(java.security.cert.Certificate cert) throws KeyStoreException;
public final java.security.cert.Certificate[] getCertificateChain(String alias) throws KeyStoreException;
public final java.util.Date getCreationDate(String alias) throws KeyStoreException;

5.0 public final KeyStore.Entry getEntry(String alias, KeyStore.ProtectionParameter protParam)
throws NoSuchAlgorithmException, UnrecoverableEntryException, KeyStoreException;

public final Key getKey(String alias, char[] password)
throws KeyStoreException, NoSuchAlgorithmException, UnrecoverableKeyException;

public final Provider getProvider();
public final String getType();
public final boolean isCertificateEntry(String alias) throws KeyStoreException;
public final boolean isKeyEntry(String alias) throws KeyStoreException;

5.0 public final void load(KeyStore.LoadStoreParameter param)
throws java.io.IOException, NoSuchAlgorithmException, java.security.cert.CertificateException;

public final void load(java.io.InputStream stream, char[] password)
throws java.io.IOException, NoSuchAlgorithmException, java.security.cert.CertificateException;

public final void setCertificateEntry(String alias, java.security.cert.Certificate cert) throws KeyStoreException;
5.0 public final void setEntry(String alias, KeyStore.Entry entry, KeyStore.ProtectionParameter protParam)

throws KeyStoreException;
public final void setKeyEntry(String alias, byte[] key, java.security.cert.Certificate[] chain) throws KeyStoreException;
public final void setKeyEntry(String alias, Key key, char[] password, java.security.cert.Certificate[] chain)

throws KeyStoreException;
public final int size() throws KeyStoreException;

5.0 public final void store(KeyStore.LoadStoreParameter param)
throws KeyStoreException, java.io.IOException, NoSuchAlgorithmException, java.security.cert.CertificateException;

public final void store(java.io.OutputStream stream, char[] password)
throws KeyStoreException, java.io.IOException, NoSuchAlgorithmException, java.security.cert.CertificateException;

}

660 | Chapter 14: java.security and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.security.KeyStore.Builder

KeyStore.Builder
java.security

Java 5.0

An instance of this class encapsulates the parameters necessary to obtain a KeyStore
object at some later time. This class is useful when you want to defer the initialization
of a KeyStore (which may require the user to enter a password) until it is needed. See the
javax.net.ssl.KeyStoreBuilderParameters class, for example.

Passed To javax.net.ssl.KeyStoreBuilderParameters.KeyStoreBuilderParameters()

KeyStore.CallbackHandlerProtection
java.security

Java 5.0

This class is a KeyStore.ProtectionParameter implementation that wraps a javax.security.auth.call-
back.CallbackHandler for prompting the user for a password or other authentication
credentials.

KeyStore.Entry
java.security

Java 5.0

This marker interface represents an entry in a KeyStore.

Implementations KeyStore.PrivateKeyEntry, KeyStore.SecretKeyEntry, KeyStore.TrustedCertificateEntry

Passed To KeyStore.setEntry(), KeyStoreSpi.engineSetEntry()

Returned By KeyStore.getEntry(), KeyStoreSpi.engineGetEntry()

KeyStore.LoadStoreParameter
java.security

Java 5.0

This interface represents an object passed to the load() or store() methods of KeyStore. An
implementation must be able to return a KeyStore.ProtectionParameter.

public abstract static class KeyStore.Builder {
// Protected Constructors

protected Builder();
// Public Class Methods

public static KeyStore.Builder newInstance(KeyStore keyStore, KeyStore.ProtectionParameter protectionParameter);
public static KeyStore.Builder newInstance(String type, Provider provider, KeyStore.ProtectionParameter protection);
public static KeyStore.Builder newInstance(String type, Provider provider, java.io.File file,

KeyStore.ProtectionParameter protection);
// Public Instance Methods

public abstract KeyStore getKeyStore() throws KeyStoreException;
public abstract KeyStore.ProtectionParameter getProtectionParameter(String alias) throws KeyStoreException;

}

public static class KeyStore.CallbackHandlerProtection implements KeyStore.ProtectionParameter {
// Public Constructors

public CallbackHandlerProtection(javax.security.auth.callback.CallbackHandler handler);
// Public Instance Methods

public javax.security.auth.callback.CallbackHandler getCallbackHandler();
}

public interface KeyStore.Entry {
}

Chapter 14: java.security and Subpackages | 661

java.security.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.security.KeyStore.ProtectionParameter

Passed To KeyStore.{load(), store()}, KeyStoreSpi.{engineLoad(), engineStore()}

KeyStore.PasswordProtection
java.security

Java 5.0

This class is a KeyStore.ProtectionParameter implementation that wraps a password specified
as a char[]. Note that getPassword() returns a reference to the internal array, not a clone of
it. The destroy() method zeros out this array.

KeyStore.PrivateKeyEntry
java.security

Java 5.0

This KeyStore.Entry implementation represents a private key. getPrivateKey() returns the key.
getCertificateChain() returns the certificate chain of the corresponding public key. The first
element of the returned array is the certificate of the ultimate certificate authority
(CA). This “end entity” certificate is also available through the getCertificate() method.

KeyStore.ProtectionParameter
java.security

Java 5.0

This marker interface should be implemented by classes that provide some form of
protection for the entries in a KeyStore.

Implementations KeyStore.CallbackHandlerProtection, KeyStore.PasswordProtection

public interface KeyStore.LoadStoreParameter {
// Public Instance Methods

KeyStore.ProtectionParameter getProtectionParameter();
}

public static class KeyStore.PasswordProtection
 implements javax.security.auth.Destroyable, KeyStore.ProtectionParameter {

// Public Constructors
public PasswordProtection(char[] password);

// Public Instance Methods
public char[] getPassword(); synchronized

// Methods Implementing Destroyable
public void destroy() throws javax.security.auth.DestroyFailedException; synchronized
public boolean isDestroyed(); synchronized

}

public static final class KeyStore.PrivateKeyEntry implements KeyStore.Entry {
// Public Constructors

public PrivateKeyEntry(PrivateKey privateKey, java.security.cert.Certificate[] chain);
// Public Instance Methods

public java.security.cert.Certificate getCertificate();
public java.security.cert.Certificate[] getCertificateChain();
public PrivateKey getPrivateKey();

// Public Methods Overriding Object
public String toString();

}

public interface KeyStore.ProtectionParameter {
}

662 | Chapter 14: java.security and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.security.KeyStore.SecretKeyEntry

Passed To KeyStore.{getEntry(), setEntry()}, KeyStore.Builder.newInstance(), KeyStoreSpi.{engineGetEntry(),
engineSetEntry()}

Returned By KeyStore.Builder.getProtectionParameter(),
KeyStore.LoadStoreParameter.getProtectionParameter()

KeyStore.SecretKeyEntry
java.security

Java 5.0

This KeyStore.Entry implementation represents a secret key. getSecretKey() returns the key as
a javax.crypto.SecretKey.

KeyStore.TrustedCertificateEntry
java.security

Java 5.0

This implementation of KeyStore.Entry represents a certificate that contains and certifies a
public key. getTrustedCertificate() returns the certificate.

KeyStoreException
java.security

Java 1.2

serializable checked

Signals a problem with a KeyStore.

Thrown By Too many methods to list.

public static final class KeyStore.SecretKeyEntry implements KeyStore.Entry {
// Public Constructors

public SecretKeyEntry(javax.crypto.SecretKey secretKey);
// Public Instance Methods

public javax.crypto.SecretKey getSecretKey();
// Public Methods Overriding Object

public String toString();
}

public static final class KeyStore.TrustedCertificateEntry implements KeyStore.Entry {
// Public Constructors

public TrustedCertificateEntry(java.security.cert.Certificate trustedCert);
// Public Instance Methods

public java.security.cert.Certificate getTrustedCertificate();
// Public Methods Overriding Object

public String toString();
}

public class KeyStoreException extends GeneralSecurityException {
// Public Constructors

public KeyStoreException();
5.0 public KeyStoreException(Throwable cause);

public KeyStoreException(String msg);
5.0 public KeyStoreException(String message, Throwable cause);
}

Object Throwable Exception GeneralSecurityException KeyStoreException

Serializable

Chapter 14: java.security and Subpackages | 663

java.security.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.security.MessageDigest

KeyStoreSpi
java.security

Java 1.2

This abstract class defines the service-provider interface for KeyStore. A security provider
must implement a concrete subclass of this class for each KeyStore type it supports.
Applications never need to use or subclass this class.

Passed To KeyStore.KeyStore()

MessageDigest
java.security

Java 1.1

This class computes a message digest (also known as a cryptographic checksum) for an
arbitrary sequence of bytes. Obtain a MessageDigest object by calling one of the static
getInstance() factory methods and specifying the desired algorithm (e.g., SHA or MD5)
and, optionally, the desired provider. Next, specify the data to be digested by calling
any of the update() methods one or more times. Prior to Java 5.0, you must pass a byte[]
to update(). In Java 5.0 and later, however, you can also use a java.nio.ByteBuffer. This facili-
tates the computation of message digests when using the New I/O API.

public abstract class KeyStoreSpi {
// Public Constructors

public KeyStoreSpi();
// Public Instance Methods

public abstract java.util.Enumeration<String> engineAliases();
public abstract boolean engineContainsAlias(String alias);
public abstract void engineDeleteEntry(String alias) throws KeyStoreException;

5.0 public boolean engineEntryInstanceOf(String alias, Class<? extends KeyStore.Entry> entryClass);
public abstract java.security.cert.Certificate engineGetCertificate(String alias);
public abstract String engineGetCertificateAlias(java.security.cert.Certificate cert);
public abstract java.security.cert.Certificate[] engineGetCertificateChain(String alias);
public abstract java.util.Date engineGetCreationDate(String alias);

5.0 public KeyStore.Entry engineGetEntry(String alias, KeyStore.ProtectionParameter protParam)
throws KeyStoreException, NoSuchAlgorithmException, UnrecoverableEntryException;

public abstract Key engineGetKey(String alias, char[] password)
throws NoSuchAlgorithmException, UnrecoverableKeyException;

public abstract boolean engineIsCertificateEntry(String alias);
public abstract boolean engineIsKeyEntry(String alias);

5.0 public void engineLoad(KeyStore.LoadStoreParameter param)
throws java.io.IOException, NoSuchAlgorithmException, java.security.cert.CertificateException;

public abstract void engineLoad(java.io.InputStream stream, char[] password)
throws java.io.IOException, NoSuchAlgorithmException, java.security.cert.CertificateException;

public abstract void engineSetCertificateEntry(String alias, java.security.cert.Certificate cert)
throws KeyStoreException;

5.0 public void engineSetEntry(String alias, KeyStore.Entry entry, KeyStore.ProtectionParameter protParam)
throws KeyStoreException;

public abstract void engineSetKeyEntry(String alias, byte[] key, java.security.cert.Certificate[] chain)
throws KeyStoreException;

public abstract void engineSetKeyEntry(String alias, Key key, char[] password, java.security.cert.Certificate[] chain)
throws KeyStoreException;

public abstract int engineSize();
5.0 public void engineStore(KeyStore.LoadStoreParameter param)

throws java.io.IOException, NoSuchAlgorithmException, java.security.cert.CertificateException;
public abstract void engineStore(java.io.OutputStream stream, char[] password)

throws java.io.IOException, NoSuchAlgorithmException, java.security.cert.CertificateException;
}

664 | Chapter 14: java.security and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.security.MessageDigestSpi

After you pass data to update(), call digest(), which computes the message digest and
returns it as an array of bytes. If you have only one array of bytes to be digested, you
can pass it directly to digest() and skip the update() step. When you call digest(), the
MessageDigest() object is reset and is then ready to compute a new digest. You can also
explicitly reset a MessageDigest without computing the digest by calling reset(). To
compute a digest for part of a message without resetting the MessageDigest, clone the
MessageDigest and call digest() on the cloned copy. Note that not all implementations are
cloneable, so the clone() method may throw an exception.

The MessageDigest class is often used in conjunction with DigestInputStream and DigestOutput-
Stream, which automate the update() calls for you.

Passed To DigestInputStream.{DigestInputStream(), setMessageDigest()},
DigestOutputStream.{DigestOutputStream(), setMessageDigest()}

Returned By DigestInputStream.getMessageDigest(), DigestOutputStream.getMessageDigest()

Type Of DigestInputStream.digest, DigestOutputStream.digest

MessageDigestSpi
java.security

Java 1.2

This abstract class defines the service-provider interface for MessageDigest. A security
provider must implement a concrete subclass of this class for each message-digest algo-
rithm it supports. Applications never need to use or subclass this class.

public abstract class MessageDigest extends MessageDigestSpi {
// Protected Constructors

protected MessageDigest(String algorithm);
// Public Class Methods

public static MessageDigest getInstance(String algorithm) throws NoSuchAlgorithmException;
public static MessageDigest getInstance(String algorithm, String provider)

throws NoSuchAlgorithmException, NoSuchProviderException;
1.4 public static MessageDigest getInstance(String algorithm, Provider provider)

throws NoSuchAlgorithmException;
public static boolean isEqual(byte[] digesta, byte[] digestb);

// Public Instance Methods
public byte[] digest();
public byte[] digest(byte[] input);

1.2 public int digest(byte[] buf, int offset, int len) throws DigestException;
public final String getAlgorithm();

1.2 public final int getDigestLength();
1.2 public final Provider getProvider();

public void reset();
public void update(byte input);
public void update(byte[] input);

5.0 public final void update(java.nio.ByteBuffer input);
public void update(byte[] input, int offset, int len);

// Public Methods Overriding MessageDigestSpi
public Object clone() throws CloneNotSupportedException;

// Public Methods Overriding Object
public String toString();

}

Object MessageDigestSpi MessageDigest

Chapter 14: java.security and Subpackages | 665

java.security.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.security.NoSuchProviderException

Subclasses MessageDigest

NoSuchAlgorithmException
java.security

Java 1.1

serializable checked

Signals that a requested cryptographic algorithm is not available. Thrown by
getInstance() factory methods throughout the java.security package.

Thrown By Too many methods to list.

NoSuchProviderException
java.security

Java 1.1

serializable checked

Signals that a requested cryptographic service provider is not available. Thrown by
getInstance() factory methods throughout the java.security package.

Thrown By Too many methods to list.

public abstract class MessageDigestSpi {
// Public Constructors

public MessageDigestSpi();
// Public Methods Overriding Object

public Object clone() throws CloneNotSupportedException;
// Protected Instance Methods

protected abstract byte[] engineDigest();
protected int engineDigest(byte[] buf, int offset, int len) throws DigestException;
protected int engineGetDigestLength(); constant
protected abstract void engineReset();
protected abstract void engineUpdate(byte input);

5.0 protected void engineUpdate(java.nio.ByteBuffer input);
protected abstract void engineUpdate(byte[] input, int offset, int len);

}

public class NoSuchAlgorithmException extends GeneralSecurityException {
// Public Constructors

public NoSuchAlgorithmException();
5.0 public NoSuchAlgorithmException(Throwable cause);

public NoSuchAlgorithmException(String msg);
5.0 public NoSuchAlgorithmException(String message, Throwable cause);
}

public class NoSuchProviderException extends GeneralSecurityException {
// Public Constructors

public NoSuchProviderException();
public NoSuchProviderException(String msg);

}

Object Throwable Exception GeneralSecurityException NoSuchAlgorithmException

Serializable

Object Throwable Exception GeneralSecurityException NoSuchProviderException

Serializable

666 | Chapter 14: java.security and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.security.Permission

Permission
java.security

Java 1.2

serializable permission

This abstract class represents a system resource, such as a file in the filesystem, or a
system capability, such as the ability to accept network connections. Concrete
subclasses of Permission, such as java.io.FilePermission and java.net.SocketPermission, represent
specific types of resources. Permission objects are used by system code that is requesting
access to a resource. They are also used by Policy objects that grant access to resources.
The AccessController.checkPermission() method considers the source of the currently running
Java code, determines the set of permissions that are granted to that code by the
current Policy, and then checks to see whether a specified Permission object is included in
that set. As of Java 1.2, this is the fundamental Java access-control mechanism.

Each permission has a name (sometimes called the target) and, optionally, a comma-
separated list of actions. For example, the name of a FilePermission is the name of the file or
directory for which permission is being granted. The actions associated with this permis-
sion might be “read”; “write”; or “read,write”. The interpretation of the name and action
strings is entirely up to the implementation of Permission. A number of implementations
support the use of wildcards; for example, a FilePermission can have a name of “/tmp/*”,
which represents access to any files in a /tmp directory. Permission objects must be
immutable, so an implementation must never define a setName() or setActions() method.

One of the most important abstract methods defined by Permission is implies(). This
method must return true if this Permission implies another Permission. For example, if an
application requests a FilePermission with name “/tmp/test” and action “read”, and the
current security Policy grants a FilePermission with name “/tmp/*” and actions “read,write”,
the request is granted because the requested permission is implied by the granted one.

In general, only system-level code needs to work directly with Permission and its concrete
subclasses. System administrators who are configuring security policies need to under-
stand the various Permission subclasses. Applications that want to extend the Java access-
control mechanism to provide customized access control to their own resources
should subclass Permission to define custom permission types.

public abstract class Permission implements Guard, Serializable {
// Public Constructors

public Permission(String name);
// Public Instance Methods

public abstract String getActions();
public final String getName();
public abstract boolean implies(Permission permission);
public PermissionCollection newPermissionCollection(); constant

// Methods Implementing Guard
public void checkGuard(Object object) throws SecurityException;

// Public Methods Overriding Object
public abstract boolean equals(Object obj);
public abstract int hashCode();
public String toString();

}

Object Permission

Guard Serializable

Chapter 14: java.security and Subpackages | 667

java.security.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.security.Permissions

Subclasses java.io.FilePermission, java.net.SocketPermission, AllPermission, BasicPermission,
UnresolvedPermission, javax.security.auth.PrivateCredentialPermission,
javax.security.auth.kerberos.ServicePermission

Passed To Too many methods to list.

Returned By java.net.HttpURLConnection.getPermission(), java.net.URLConnection.getPermission(),
AccessControlException.getPermission()

PermissionCollection
java.security

Java 1.2

serializable

This class is used by Permissions to store a collection of Permission objects that are all the same
type. Like the Permission class itself, PermissionCollection defines an implies() method that can
determine whether a requested Permission is implied by any of the Permission objects in the
collection. Some Permission types may require a custom PermissionCollection type in order to
correctly implement the implies() method. In this case, the Permission subclass should over-
ride newPermissionCollection() to return a Permission of the appropriate type. PermissionCollection is
used by system code that manages security policies. Applications rarely need to use it.

Subclasses Permissions

Passed To ProtectionDomain.ProtectionDomain()

Returned By Too many methods to list.

Permissions
java.security

Java 1.2

serializable

This class stores an arbitrary collection of Permission objects. When Permission objects are
added with the add() method, they are grouped into an internal set of PermissionCollection
objects that contain only a single type of Permission. Use the elements() method to obtain
an Enumeration of the Permission objects in the collection. Use implies() to determine if a
specified Permission is implied by any of the Permission objects in the collection. Permissions is
used by system code that manages security policies. Applications rarely need to use it.

public abstract class PermissionCollection implements Serializable {
// Public Constructors

public PermissionCollection();
// Public Instance Methods

public abstract void add(Permission permission);
public abstract java.util.Enumeration<Permission> elements();
public abstract boolean implies(Permission permission);
public boolean isReadOnly();
public void setReadOnly();

// Public Methods Overriding Object
public String toString();

}

public final class Permissions extends PermissionCollection implements Serializable {
// Public Constructors

public Permissions();
// Public Methods Overriding PermissionCollection

Object PermissionCollection Serializable

Object PermissionCollection Permissions

Serializable Serializable

668 | Chapter 14: java.security and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.security.Policy

Policy
java.security

Java 1.2

This class represents a security policy that determines the permissions granted to code
based on its source and signers, and, in Java 1.4 and later, based on the user on whose
behalf that code is running. There is only a single Policy in effect at any one time. Obtain
the system policy by calling the static getPolicy() method. Code that has appropriate
permissions can specify a new system policy by calling setPolicy(). The refresh() method is a
request to a Policy object to update its state (for example, by rereading its configuration
file). The Policy class is used primarily by system-level code. Applications should not need
to use this class unless they implement some kind of custom access-control mechanism.

Prior to Java 1.4, this class provides a mapping from CodeSource objects to Permission-
Collection objects. getPermissions() is the central Policy method; it evaluates the Policy for a
given CodeSource and returns an appropriate PermissionCollection representing the static set of
permissions available to code from that source.

As of Java 1.4, you can use a ProtectionDomain object to encapsulate a CodeSource and a set
of users on whose behalf the code is running. In this release, there is a new
getPermissions() method that returns a PermissionsCollection appropriate for the specified
ProtectionDomain. In addition, there is a new implies() method that dynamically queries the
Policy to see if the specified permission is granted to the specific ProtectionDomain.

Principal
java.security

Java 1.1

This interface represents any entity that may serve as a principal in a cryptographic
transaction of any kind. A Principal may represent an individual, a computer, or an orga-
nization, for example.

public void add(Permission permission);
public java.util.Enumeration<Permission> elements();
public boolean implies(Permission permission);

}

public abstract class Policy {
// Public Constructors

public Policy();
// Public Class Methods

public static java.security.Policy getPolicy();
public static void setPolicy(java.security.Policy p);

// Public Instance Methods
public abstract PermissionCollection getPermissions(CodeSource codesource);

1.4 public PermissionCollection getPermissions(ProtectionDomain domain);
1.4 public boolean implies(ProtectionDomain domain, Permission permission);

public abstract void refresh();
}

public interface Principal {
// Public Instance Methods

boolean equals(Object another);
String getName();
int hashCode();
String toString();

}

Chapter 14: java.security and Subpackages | 669

java.security.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.security.PrivilegedAction<T>

Implementations Identity, javax.security.auth.kerberos.KerberosPrincipal,
javax.security.auth.x500.X500Principal

Passed To IdentityScope.getIdentity(), ProtectionDomain.ProtectionDomain(),
javax.net.ssl.X509ExtendedKeyManager.{chooseEngineClientAlias(), chooseEngineServerAlias()},
javax.net.ssl.X509KeyManager.{chooseClientAlias(), chooseServerAlias(), getClientAliases(), getServerAliases()}

Returned By java.net.SecureCacheResponse.{getLocalPrincipal(), getPeerPrincipal()},
java.security.Certificate.{getGuarantor(), getPrincipal()}, ProtectionDomain.getPrincipals(),
java.security.cert.X509Certificate.{getIssuerDN(), getSubjectDN()}, java.security.cert.X509CRL.getIssuerDN(),
javax.net.ssl.HandshakeCompletedEvent.{getLocalPrincipal(), getPeerPrincipal()},
javax.net.ssl.HttpsURLConnection.{getLocalPrincipal(), getPeerPrincipal()},
javax.net.ssl.SSLSession.{getLocalPrincipal(), getPeerPrincipal()}

PrivateKey
java.security

Java 1.1

serializable

This interface represents a private cryptographic key. It extends the Key interface, but
does not add any new methods. The interface exists in order to create a strong distinc-
tion between private and public keys. See also PublicKey.

Implementations java.security.interfaces.DSAPrivateKey, java.security.interfaces.ECPrivateKey,
java.security.interfaces.RSAPrivateKey, javax.crypto.interfaces.DHPrivateKey

Passed To KeyPair.KeyPair(), KeyStore.PrivateKeyEntry.PrivateKeyEntry(), Signature.initSign(),
SignatureSpi.engineInitSign(), SignedObject.SignedObject(),
javax.security.auth.x500.X500PrivateCredential.X500PrivateCredential()

Returned By KeyFactory.generatePrivate(), KeyFactorySpi.engineGeneratePrivate(), KeyPair.getPrivate(),
KeyStore.PrivateKeyEntry.getPrivateKey(), Signer.getPrivateKey(), javax.net.ssl.X509KeyManager.getPrivateKey(),
javax.security.auth.x500.X500PrivateCredential.getPrivateKey()

PrivilegedAction<T>
java.security

Java 1.2

This interface defines a block of code (the run() method) that is to be executed as privi-
leged code by the AccessController.doPrivileged() method. In Java 5.0 this interface is generic
and the type variable T represents the return type of the run() method. When privileged
code is run with the doPrivileged() method, the AccessController looks only at the permissions
of the immediate caller, not the permissions of the entire call stack. The immediate
caller is typically fully trusted system code that has a full set of permissions, and there-
fore the privileged code runs with that full set of permissions, even if the system code
is invoked by untrusted code with no permissions whatsoever.

Privileged code is typically required only when you are writing a trusted system library
(such as a Java extension package) that must read local files or perform other restricted
actions, even when called by untrusted code. For example, a class that must call
System.loadLibrary() to load native methods should make the call to loadLibrary() within the
run() method of a PrivilegedAction. If your privileged code may throw a checked exception,
implement it in the run() method of a PrivilegedExceptionAction instead.

public interface PrivateKey extends Key {
// Public Constants
1.2 public static final long serialVersionUID; =6034044314589513430
}

Serializable Key PrivateKey

670 | Chapter 14: java.security and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.security.PrivilegedActionException

Be very careful when implementing this interface. To minimize the possibility of secu-
rity holes, keep the body of the run() method as short as possible.

Passed To AccessController.doPrivileged(), java.util.concurrent.Executors.callable(),
javax.security.auth.Subject.{doAs(), doAsPrivileged()}

PrivilegedActionException
java.security

Java 1.2

serializable checked

This exception class is a wrapper around an arbitrary Exception thrown by a Privileged-
ExceptionAction executed by the AccessController.doPrivileged() method. Use getException() to obtain
the wrapped Exception object. Or, in Java 1.4 and later, use the more general getCause()
method.

Thrown By AccessController.doPrivileged(), javax.security.auth.Subject.{doAs(), doAsPrivileged()}

PrivilegedExceptionAction<T>
java.security

Java 1.2

This interface is like PrivilegedAction, except that its run() method may throw an excep-
tion. See PrivilegedAction for details.

Passed To AccessController.doPrivileged(), java.util.concurrent.Executors.callable(),
javax.security.auth.Subject.{doAs(), doAsPrivileged()}

ProtectionDomain
java.security

Java 1.2

This class represents a “protection domain”: the set of permissions associated with
code based on its source, and optionally, the identities of the users on whose behalf
the code is running. Use the getProtectionDomain() of a Class object to obtain the Protection-
Domain that the class is part of.

public interface PrivilegedAction<T> {
// Public Instance Methods

T run();
}

public class PrivilegedActionException extends Exception {
// Public Constructors

public PrivilegedActionException(Exception exception);
// Public Instance Methods

public Exception getException();
// Public Methods Overriding Throwable
1.4 public Throwable getCause();
1.3 public String toString();
}

public interface PrivilegedExceptionAction<T> {
// Public Instance Methods

T run() throws Exception;
}

Object Throwable Exception PrivilegedActionException

Serializable

Chapter 14: java.security and Subpackages | 671

java.security.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.security.Provider

Prior to Java 1.4, a ProtectionDomain simply associates a CodeSource with the PermissionCollection
granted to code from that source by a Policy. The set of permissions is static, and the
implies() method checks to see whether the specified Permission is implied by any of the
permissions granted to this ProtectionDomain.

In Java 1.4 and later, a ProtectionDomain can also be created with the four-argument
constructor which associates a PermissionCollection with a ClassLoader and an array of Principal
objects in addition to a CodeSource. A ProtectionDomain of this sort represents permisssions
granted to code loaded from a specified source, through a specified class loader, and
running under the auspices of one or more specified principals. When a ProtectionDomain
is instantiated with this four-argument constructor, the PermissionCollection is not static,
and the implies() method calls the implies() method of the current Policy object before
checking the specified collection of permissions. This allows security policies to be
updated (for example to add new permissions for specific users) without having to
restart long-running programs such as servers.

Passed To ClassLoader.defineClass(), java.lang.instrument.ClassFileTransformer.transform(),
AccessControlContext.AccessControlContext(), DomainCombiner.combine(), java.security.Policy.{getPermissions(),
implies()}, javax.security.auth.SubjectDomainCombiner.combine()

Returned By Class.getProtectionDomain(), DomainCombiner.combine(),
javax.security.auth.SubjectDomainCombiner.combine()

Provider
java.security

Java 1.1

cloneable serializable collection

This class represents a security provider. It specifies class names for implementations
of one or more algorithms for message digests, digital signatures, key generation, key
conversion, key management, secure random number generation, certificate conver-
sion, and algorithm parameter management. The getName(), getVersion(), and getInfo()
methods return information about the provider. Provider inherits from Properties and
maintains a mapping of property names to property values. These name/value pairs
specify the capabilities of the Provider implementation. Each property name has the
form:

service_type.algorithm_name

The corresponding property value is the name of the class that implements the named
algorithm. For example, say a Provider defines properties named “Signature.DSA”,
“MessageDigest.MD5”, and “KeyStore.JKS”. The values of these properties are the
class names of SignatureSpi, MessageDigestSpi, and KeyStoreSpi implementations. Other proper-

public class ProtectionDomain {
// Public Constructors

public ProtectionDomain(CodeSource codesource, PermissionCollection permissions);
1.4 public ProtectionDomain(CodeSource codesource, PermissionCollection permissions, ClassLoader classloader,

Principal[] principals);
// Public Instance Methods
1.4 public final ClassLoader getClassLoader();

public final CodeSource getCodeSource();
public final PermissionCollection getPermissions();

1.4 public final Principal[] getPrincipals();
public boolean implies(Permission permission);

// Public Methods Overriding Object
public String toString();

}

672 | Chapter 14: java.security and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.security.Provider

ties defined by a Provider are used to provide aliases for algorithm names. For example,
the property Alg.Alias.MessageDigest.SHA1 might have the value “SHA”, meaning that the
algorithm name “SHA1” is an alias for “SHA”.

In Java 5.0, the individual services provided by a Provider are described by the nested
Service class, and various methods for querying and setting the Service objects of a Provider
are available.

Security providers are installed in an implementation-dependent way. For Sun’s imple-
mentation, the ${java.home}/lib/security/java.security file specifies the class names of all
installed Provider implementations. An application can also install its own custom Provider
with the addProvider() and insertProviderAt() methods of the Security class. Most applications
do not need to use the Provider class directly. Typically, only security-provider imple-
mentors need to use the Provider class. Some applications may explicitly specify the
name of a desired Provider when calling a static getInstance() factory method, however.
Only applications with the most demanding cryptographic needs require custom
providers.

Subclasses AuthProvider

Passed To Too many methods to list.

Returned By Too many methods to list.

public abstract class Provider extends java.util.Properties {
// Protected Constructors

protected Provider(String name, double version, String info);
// Nested Types
5.0 public static class Service;
// Public Instance Methods

public String getInfo();
public String getName();

5.0 public Provider.Service getService(String type, String algorithm); synchronized
5.0 public java.util.Set<Provider.Service> getServices(); synchronized

public double getVersion();
// Public Methods Overriding Properties
1.2 public void load(java.io.InputStream inStream) throws java.io.IOException; synchronized
// Public Methods Overriding Hashtable
1.2 public void clear(); synchronized
1.2 public java.util.Set<java.util.Map.Entry<Object,Object>> entrySet(); synchronized
1.2 public java.util.Set<Object> keySet();
1.2 public Object put(Object key, Object value); synchronized
1.2 public void putAll(java.util.Map<?,?> t); synchronized
1.2 public Object remove(Object key); synchronized

public String toString();
1.2 public java.util.Collection<Object> values();
// Protected Instance Methods
5.0 protected void putService(Provider.Service s); synchronized
5.0 protected void removeService(Provider.Service s); synchronized
}

Object Dictionary Hashtable Properties Provider

Cloneable Map Serializable

Chapter 14: java.security and Subpackages | 673

java.security.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.security.PublicKey

Provider.Service
java.security

Java 5.0

This nested class represents a single service (such as a hash algorithm) provided by a
security Provider. The various methods return information about the service, including
the name of the implementing class.

Passed To Provider.{putService(), removeService()}

Returned By Provider.getService()

ProviderException
java.security

Java 1.1

serializable unchecked

Signals that an exception has occurred inside a cryptographic service provider. Note
that ProviderException extends RuntimeException and is therefore an unchecked exception that
may be thrown from any method without being declared.

PublicKey
java.security

Java 1.1

serializable

This interface represents a public cryptographic key. It extends the Key interface, but
does not add any new methods. The interface exists in order to create a strong distinc-
tion between public and private keys. See also PrivateKey.

public static class Provider.Service {
// Public Constructors

public Service(Provider provider, String type, String algorithm, String className, java.util.List<String> aliases,
java.util.Map<String,String> attributes);

// Public Instance Methods
public final String getAlgorithm();
public final String getAttribute(String name);
public final String getClassName();
public final Provider getProvider();
public final String getType();
public Object newInstance(Object constructorParameter) throws NoSuchAlgorithmException;
public boolean supportsParameter(Object parameter);

// Public Methods Overriding Object
public String toString();

}

public class ProviderException extends RuntimeException {
// Public Constructors

public ProviderException();
5.0 public ProviderException(Throwable cause);

public ProviderException(String s);
5.0 public ProviderException(String message, Throwable cause);
}

Object Throwable Exception RuntimeException ProviderException

Serializable

Serializable Key PublicKey

674 | Chapter 14: java.security and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.security.SecureClassLoader

Implementations java.security.interfaces.DSAPublicKey, java.security.interfaces.ECPublicKey,
java.security.interfaces.RSAPublicKey, javax.crypto.interfaces.DHPublicKey

Passed To Identity.setPublicKey(), IdentityScope.getIdentity(), KeyPair.KeyPair(), Signature.initVerify(),
SignatureSpi.engineInitVerify(), SignedObject.verify(), java.security.cert.Certificate.verify(),
java.security.cert.PKIXCertPathBuilderResult.PKIXCertPathBuilderResult(),
java.security.cert.PKIXCertPathValidatorResult.PKIXCertPathValidatorResult(),
java.security.cert.TrustAnchor.TrustAnchor(), java.security.cert.X509CertSelector.setSubjectPublicKey(),
java.security.cert.X509CRL.verify()

Returned By java.security.Certificate.getPublicKey(), Identity.getPublicKey(), KeyFactory.generatePublic(),
KeyFactorySpi.engineGeneratePublic(), KeyPair.getPublic(), java.security.cert.Certificate.getPublicKey(),
java.security.cert.PKIXCertPathValidatorResult.getPublicKey(), java.security.cert.TrustAnchor.getCAPublicKey(),
java.security.cert.X509CertSelector.getSubjectPublicKey()

SecureClassLoader
java.security

Java 1.2

This class adds protected methods to those defined by ClassLoader. The defineClass()
method is passed the bytes of a class file as a byte[] or, in Java 5.0, as a ByteBuffer and a
CodeSource object that represents the source of that class. It calls the getPermissions()
method to obtain a PermissionCollection for that CodeSource and then uses the CodeSource and
PermissionCollection to create a ProtectionDomain, which is passed to the defineClass() method of
its superclass.

The default implementation of the getPermissions() method uses the default Policy to deter-
mine the appropriate set of permissions for a given code source. The value of
SecureClassLoader is that subclasses can use its defineClass() method to load classes without
having to work explicitly with the ProtectionDomain and Policy classes. A subclass of Secure-
ClassLoader can define its own security policy by overriding getPermissions(). In Java 1.2 and
later, any application that implements a custom class loader should do so by extending
SecureClassLoader, instead of subclassing ClassLoader directly. Most applications can use
java.net.URLClassLoader, however, and never have to subclass this class.

Subclasses java.net.URLClassLoader

public interface PublicKey extends Key {
// Public Constants
1.2 public static final long serialVersionUID; =7187392471159151072
}

public class SecureClassLoader extends ClassLoader {
// Protected Constructors

protected SecureClassLoader();
protected SecureClassLoader(ClassLoader parent);

// Protected Instance Methods
5.0 protected final Class<?> defineClass(String name, java.nio.ByteBuffer b, CodeSource cs);

protected final Class<?> defineClass(String name, byte[] b, int off, int len, CodeSource cs);
protected PermissionCollection getPermissions(CodeSource codesource);

}

Object ClassLoader SecureClassLoader

Chapter 14: java.security and Subpackages | 675

java.security.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.security.SecureRandom

SecureRandom
java.security

Java 1.1

serializable

This class generates cryptographic-quality pseudorandom bytes. Although SecureRandom
defines public constructors, the preferred technique for obtaining a SecureRandom object
is to call one of the static getInstance() factory methods, specifying the desired pseudo-
random number-generation algorithm, and, optionally, the desired provider of that
algorithm. Sun’s implementation of Java ships with an algorithm named
“SHA1PRNG” in the “SUN” provider.

Once you have obtained a SecureRandom object, call nextBytes() to fill an array with
pseudorandom bytes. You can also call any of the methods defined by the Random
superclass to obtain random numbers. The first time one of these methods is called,
the SecureRandom() method uses its generateSeed() method to seed itself. If you have a
source of random or very high-quality pseudorandom bytes, you may provide your
own seed by calling setSeed(). Repeated calls to setSeed() augment the existing seed
instead of replacing it. You can also call generateSeed() to generate seeds for use with
other pseudorandom generators. generateSeed() may use a different algorithm than
nextBytes() and may produce higher-quality randomness, usually at the expense of
increased computation time.

Passed To Too many methods to list.

Type Of SignatureSpi.appRandom

public class SecureRandom extends java.util.Random {
// Public Constructors

public SecureRandom();
public SecureRandom(byte[] seed);

// Protected Constructors
1.2 protected SecureRandom(SecureRandomSpi secureRandomSpi, Provider provider);
// Public Class Methods
1.2 public static SecureRandom getInstance(String algorithm) throws NoSuchAlgorithmException;
1.2 public static SecureRandom getInstance(String algorithm, String provider)

throws NoSuchAlgorithmException, NoSuchProviderException;
1.4 public static SecureRandom getInstance(String algorithm, Provider provider) throws NoSuchAlgorithmException;

public static byte[] getSeed(int numBytes);
// Public Instance Methods
1.2 public byte[] generateSeed(int numBytes);
5.0 public String getAlgorithm(); default:"NativePRNG"
1.2 public final Provider getProvider();

public void setSeed(byte[] seed); synchronized
// Public Methods Overriding Random

public void nextBytes(byte[] bytes); synchronized
public void setSeed(long seed);

// Protected Methods Overriding Random
protected final int next(int numBits);

}

Object Random SecureRandom

Serializable

676 | Chapter 14: java.security and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.security.SecureRandomSpi

SecureRandomSpi
java.security

Java 1.2

serializable

This abstract class defines the service-provider interface for SecureRandom. A security
provider must implement a concrete subclass of this class for each pseudorandom
number-generation algorithm it supports. Applications never need to use or subclass
this class.

Passed To SecureRandom.SecureRandom()

Security
java.security

Java 1.1

This class defines static methods both for managing the list of installed security providers
and for reading and setting the values of various properties used by the Java security
system. It is essentially an interface to the ${java.home}/lib/security/java.security proper-
ties file that is included in Sun’s implementation of Java. Use getProperty() and setProperty()
to query or set the value of security properties whose default values are stored in that file.

One of the important features of the java.security properties file is that it specifies a set
of security provider implementations and a preference order in which they are to be
used. getProviders() returns an array of Provider objects, in the order they are specified in
the file. In Java 1.3 and later, versions of this method exist that only return providers
that implement the algorithm or algorithms specified in a String or Map object. You can
also look up a single named Provider object by name with getProvider(). Note that a
provider name is the string returned by getName() method of the Provider class, not the
classname of the Provider.

You can alter the set of providers installed by default from the java.security file. Use
addProvider() to add a new Provider object to the list, placing it at the end of the list, with a
lower preference than all other providers. Use insertProviderAt() to insert a provider into
the list at a specified position. Note that provider preference positions are 1-based.
Specify a position of 1 to make the provider the most preferred one. Finally, use
removeProvider() to remove a named provider.

In Java 1.4 and later, the getAlgorithms method returns a Set that includes the names of all
supported algorithms (from any installed provider) for the specified “service”. A
service name specifies the category of security service you are querying. It is a case-
insensitive value that has the same name as one of the key service classes from this
package or security-related packages—for example, “Signature”, “MessageDigest”,
and “KeyStore” (from this package) or “Cipher” (from the javax.crypto package).

public abstract class SecureRandomSpi implements Serializable {
// Public Constructors

public SecureRandomSpi();
// Protected Instance Methods

protected abstract byte[] engineGenerateSeed(int numBytes);
protected abstract void engineNextBytes(byte[] bytes);
protected abstract void engineSetSeed(byte[] seed);

}

public final class Security {
// No Constructor
// Public Class Methods

Object SecureRandomSpi Serializable

Chapter 14: java.security and Subpackages | 677

java.security.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.security.Signature

SecurityPermission
java.security

Java 1.2

serializable permission

This class is a Permission subclass that represents access to various methods of the Policy,
Security, Provider, Signer, and Identity objects. SecurityPermission objects are defined by a name
only; they do not use a list of actions. Important SecurityPermission names are “getPolicy”
and “setPolicy”, which represent the ability query and set the system security policy by
invoking the Policy.getPolicy() and Policy.setPolicy() methods. Applications do not typically
need to use this class.

Signature
java.security

Java 1.1

This class computes or verifies a digital signature. Obtain a Signature object by calling
one of the static getInstance() factory methods and specifying the desired digital signa-
ture algorithm and, optionally, the desired provider of that algorithm. A digital
signature is essentially a message digest encrypted by a public-key encryption algo-
rithm. Thus, to specify a digital signature algorithm, you must specify both the digest
algorithm and the encryption algorithm. The only algorithm supported by the default
“SUN” provider is “SHA1withDSA”.

Once you have obtained a Signature object, you must initialize it before you can create or
verify a digital signature. To initialize a digital signature for creation, call initSign() and
specify the private key to be used to create the signature. To initialize a signature for
verification, call initVerify() and specify the public key of the signer. Once the Signature
object has been initialized, call update() one or more times to specify the data to be
signed or verified. Prior to Java 5.0, the data must be specified as an array of bytes. In
Java 5.0 and later, you can also pass a ByteBuffer to update(), and this facilitates the use of
the Signature class with the java.nio package.

public static int addProvider(Provider provider);
1.4 public static java.util.Set<String> getAlgorithms(String serviceName);

public static String getProperty(String key);
public static Provider getProvider(String name);
public static Provider[] getProviders();

1.3 public static Provider[] getProviders(java.util.Map<String,String> filter);
1.3 public static Provider[] getProviders(String filter);

public static int insertProviderAt(Provider provider, int position); synchronized
public static void removeProvider(String name); synchronized
public static void setProperty(String key, String datum);

// Deprecated Public Methods
public static String getAlgorithmProperty(String algName, String propName);
}

public final class SecurityPermission extends BasicPermission {
// Public Constructors

public SecurityPermission(String name);
public SecurityPermission(String name, String actions);

}

Object Permission BasicPermission SecurityPermission

Guard Serializable Serializable

678 | Chapter 14: java.security and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.security.Signature

Finally, to create a digital signature, call sign(), passing a byte array into which the
signature is stored. Or, pass the bytes of the digital signature to verify(), which returns
true if the signature is valid or false otherwise. After calling either sign() or verify(), the
Signature object is reset internally and can be used to create or verify another
signature.

Passed To SignedObject.{SignedObject(), verify()}

public abstract class Signature extends SignatureSpi {
// Protected Constructors

protected Signature(String algorithm);
// Protected Constants

protected static final int SIGN; =2
protected static final int UNINITIALIZED; =0
protected static final int VERIFY; =3

// Public Class Methods
public static Signature getInstance(String algorithm) throws NoSuchAlgorithmException;

1.4 public static Signature getInstance(String algorithm, Provider provider) throws NoSuchAlgorithmException;
public static Signature getInstance(String algorithm, String provider)

throws NoSuchAlgorithmException, NoSuchProviderException;
// Public Instance Methods

public final String getAlgorithm();
1.4 public final AlgorithmParameters getParameters();
1.2 public final Provider getProvider();

public final void initSign(PrivateKey privateKey) throws InvalidKeyException;
1.2 public final void initSign(PrivateKey privateKey, SecureRandom random) throws InvalidKeyException;
1.3 public final void initVerify(java.security.cert.Certificate certificate) throws InvalidKeyException;

public final void initVerify(PublicKey publicKey) throws InvalidKeyException;
1.2 public final void setParameter(java.security.spec.AlgorithmParameterSpec params)

throws InvalidAlgorithmParameterException;
public final byte[] sign() throws SignatureException;

1.2 public final int sign(byte[] outbuf, int offset, int len) throws SignatureException;
5.0 public final void update(java.nio.ByteBuffer data) throws SignatureException;

public final void update(byte b) throws SignatureException;
public final void update(byte[] data) throws SignatureException;
public final void update(byte[] data, int off, int len) throws SignatureException;
public final boolean verify(byte[] signature) throws SignatureException;

1.4 public final boolean verify(byte[] signature, int offset, int length) throws SignatureException;
// Public Methods Overriding SignatureSpi

public Object clone() throws CloneNotSupportedException;
// Public Methods Overriding Object

public String toString();
// Protected Instance Fields

protected int state;
// Deprecated Public Methods
public final Object getParameter(String param) throws InvalidParameterException;
public final void setParameter(String param, Object value) throws InvalidParameterException;
}

Object SignatureSpi Signature

Chapter 14: java.security and Subpackages | 679

java.security.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.security.SignatureSpi

SignatureException
java.security

Java 1.1

serializable checked

Signals a problem while creating or verifying a digital signature.

Thrown By Too many methods to list.

SignatureSpi
java.security

Java 1.2

This abstract class defines the service-provider interface for Signature. A security
provider must implement a concrete subclass of this class for each digital signature
algorithm it supports. Applications never need to use or subclass this class.

Subclasses Signature

public class SignatureException extends GeneralSecurityException {
// Public Constructors

public SignatureException();
5.0 public SignatureException(Throwable cause);

public SignatureException(String msg);
5.0 public SignatureException(String message, Throwable cause);
}

public abstract class SignatureSpi {
// Public Constructors

public SignatureSpi();
// Public Methods Overriding Object

public Object clone() throws CloneNotSupportedException;
// Protected Instance Methods
1.4 protected AlgorithmParameters engineGetParameters();

protected abstract void engineInitSign(PrivateKey privateKey) throws InvalidKeyException;
protected void engineInitSign(PrivateKey privateKey, SecureRandom random) throws InvalidKeyException;
protected abstract void engineInitVerify(PublicKey publicKey) throws InvalidKeyException;
protected void engineSetParameter(java.security.spec.AlgorithmParameterSpec params)

throws InvalidAlgorithmParameterException;
protected abstract byte[] engineSign() throws SignatureException;
protected int engineSign(byte[] outbuf, int offset, int len) throws SignatureException;

5.0 protected void engineUpdate(java.nio.ByteBuffer input);
protected abstract void engineUpdate(byte b) throws SignatureException;
protected abstract void engineUpdate(byte[] b, int off, int len) throws SignatureException;
protected abstract boolean engineVerify(byte[] sigBytes) throws SignatureException;

1.4 protected boolean engineVerify(byte[] sigBytes, int offset, int length) throws SignatureException;
// Protected Instance Fields

protected SecureRandom appRandom;
// Deprecated Protected Methods
protected abstract Object engineGetParameter(String param) throws InvalidParameterException;
protected abstract void engineSetParameter(String param, Object value) throws InvalidParameterException;
}

Object Throwable Exception GeneralSecurityException SignatureException

Serializable

680 | Chapter 14: java.security and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.security.SignedObject

SignedObject
java.security

Java 1.2

serializable

This class applies a digital signature to any serializable Java object. Create a SignedObject
by specifying the object to be signed, the PrivateKey to use for the signature, and the Signa-
ture object to create the signature. The SignedObject() constructor serializes the specified
object into an array of bytes and creates a digital signature for those bytes.

After creation, a SignedObject is itself typically serialized for storage or transmission to
another Java thread or process. Once the SignedObject is reconstituted, the integrity of the
object it contains can be verified by calling verify() and supplying the PublicKey of the signer
and a Signature that performs the verification. Whether or not verification is performed or
is successful, getObject() can be called to deserialize and return the wrapped object.

Signer
java.security

Java 1.1; Deprecated in 1.2

@Deprecated serializable

This deprecated class was used in Java 1.1 to represent an entity or Principal that has
an associated PrivateKey that enables it to create digital signatures. As of Java 1.2, this
class and the related Identity and IdentityScope classes have been replaced by KeyStore and
java.security.cert.Certificate. See also Identity.

public final class SignedObject implements Serializable {
// Public Constructors

public SignedObject(Serializable object, PrivateKey signingKey, Signature signingEngine)
throws java.io.IOException, InvalidKeyException, SignatureException;

// Public Instance Methods
public String getAlgorithm();
public Object getObject() throws java.io.IOException, ClassNotFoundException;
public byte[] getSignature();
public boolean verify(PublicKey verificationKey, Signature verificationEngine)

throws InvalidKeyException, SignatureException;
}

public abstract class Signer extends Identity {
// Public Constructors

public Signer(String name);
public Signer(String name, IdentityScope scope) throws KeyManagementException;

// Protected Constructors
protected Signer();

// Public Instance Methods
public PrivateKey getPrivateKey();
public final void setKeyPair(KeyPair pair) throws InvalidParameterException, KeyException;

// Public Methods Overriding Identity
public String toString();

}

Object SignedObject Serializable

Object Identity Signer

Principal Serializable

Chapter 14: java.security and Subpackages | 681

java.security.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.security.UnrecoverableKeyException

Timestamp
java.security

Java 5.0

serializable

An instance of this class is an immutable signed timestamp. getTimestamp() returns the
timestamp as a java.util.Date. getSignerCertPath() returns the certificate path of the Time-
stamping Authority (TSA) that signed the object. Timestamp objects are used by the
CodeSigner class.

Passed To CodeSigner.CodeSigner()

Returned By CodeSigner.getTimestamp()

UnrecoverableEntryException
java.security

Java 5.0

serializable checked

An exception of this type is thrown if a KeyStore.Entry cannot be recovered from a KeyStore.

Thrown By KeyStore.getEntry(), KeyStoreSpi.engineGetEntry()

UnrecoverableKeyException
java.security

Java 1.2

serializable checked

This exception is thrown if a Key cannot be retrieved from a KeyStore. This commonly
occurs when an incorrect password is used.

public final class Timestamp implements Serializable {
// Public Constructors

public Timestamp(java.util.Date timestamp, java.security.cert.CertPath signerCertPath);
// Public Instance Methods

public java.security.cert.CertPath getSignerCertPath();
public java.util.Date getTimestamp();

// Public Methods Overriding Object
public boolean equals(Object obj);
public int hashCode();
public String toString();

}

public class UnrecoverableEntryException extends GeneralSecurityException {
// Public Constructors

public UnrecoverableEntryException();
public UnrecoverableEntryException(String msg);

}

public class UnrecoverableKeyException extends GeneralSecurityException {
// Public Constructors

public UnrecoverableKeyException();
public UnrecoverableKeyException(String msg);

}

Object Timestamp Serializable

Object Throwable Exception GeneralSecurityException UnrecoverableEntryException

Serializable

Object Throwable Exception GeneralSecurityException UnrecoverableKeyException

Serializable

682 | Chapter 14: java.security and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.security.UnresolvedPermission

Thrown By KeyStore.getKey(), KeyStoreSpi.engineGetKey(), javax.net.ssl.KeyManagerFactory.init(),
javax.net.ssl.KeyManagerFactorySpi.engineInit()

UnresolvedPermission
java.security

Java 1.2

serializable permission

This class is used internally to provide a mechanism for delayed resolution of permis-
sions (such as those whose implementation is in an external JAR file that has not been
loaded yet). An UnresolvedPermission holds a representation of a Permission object that can
later be used to create the actual Permission object. Java 5.0 adds methods to obtain
details about the unresolved permission. Applications never need to use this class.

Package java.security.cert Java 1.2

The java.security.cert package contains classes for working with identity certificates, certif-
icate chains (also known as certification paths) and certificate revocation lists (CRLs).
It defines generic Certificate and CRL classes and also X509Certificate and X509CRL classes that
provide full support for standard X.509 certificates and CRLs. The CertPath class repre-
sents a certificate chain, and CertPathValidator provides the ability to validate a certificate
chain. The CertificateFactory class serves as a certificate parser, providing the ability to
convert a stream of bytes (or the base64 encoding of those bytes) into a Certificate, a Cert-
Path or a CRL object. In addition to the algorithm-independent API of CertificateFactory, this
package also defines low-level algorithm-specific classes for working with certificate
chains using the PKIX standards.

This package replaces the deprecated java.security.Certificate interface, and it also replaces
the deprecated javax.security.cert package used by early versions of the JAAS API before
javax.security.auth and its subpackages were added to the core Java platform.

Interfaces
public interface CertPathBuilderResult extends Cloneable;
public interface CertPathParameters extends Cloneable;

public final class UnresolvedPermission extends Permission implements Serializable {
// Public Constructors

public UnresolvedPermission(String type, String name, String actions, java.security.cert.Certificate[] certs);
// Public Instance Methods
5.0 public String getUnresolvedActions();
5.0 public java.security.cert.Certificate[] getUnresolvedCerts();
5.0 public String getUnresolvedName();
5.0 public String getUnresolvedType();
// Public Methods Overriding Permission

public boolean equals(Object obj);
public String getActions();
public int hashCode();
public boolean implies(Permission p); constant
public PermissionCollection newPermissionCollection();
public String toString();

}

Object Permission UnresolvedPermission

Guard Serializable Serializable

Chapter 14: java.security and Subpackages | 683

java.security.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

.Package java.security.cert

public interface CertPathValidatorResult extends Cloneable;
public interface CertSelector extends Cloneable;
public interface CertStoreParameters extends Cloneable;
public interface CRLSelector extends Cloneable;
public interface PolicyNode;
public interface X509Extension;

Classes
public abstract class Certificate implements Serializable;

public abstract class X509Certificate extends Certificate implements X509Extension;
public class CertificateFactory;
public abstract class CertificateFactorySpi;
public abstract class CertPath implements Serializable;
public class CertPathBuilder;
public abstract class CertPathBuilderSpi;
public class CertPathValidator;
public abstract class CertPathValidatorSpi;
public class CertStore;
public abstract class CertStoreSpi;
public class CollectionCertStoreParameters implements CertStoreParameters;
public abstract class CRL;

public abstract class X509CRL extends CRL implements X509Extension;
public class LDAPCertStoreParameters implements CertStoreParameters;
public abstract class PKIXCertPathChecker implements Cloneable;
public class PKIXCertPathValidatorResult implements CertPathValidatorResult;

public class PKIXCertPathBuilderResult extends PKIXCertPathValidatorResult implements CertPathBuilderResult;
public class PKIXParameters implements CertPathParameters;

public class PKIXBuilderParameters extends PKIXParameters;
public class PolicyQualifierInfo;
public class TrustAnchor;
public class X509CertSelector implements CertSelector;
public abstract class X509CRLEntry implements X509Extension;
public class X509CRLSelector implements CRLSelector;

Protected Nested Types
protected static class Certificate.CertificateRep implements Serializable;
protected static class CertPath.CertPathRep implements Serializable;

Exceptions
public class CertificateException extends java.security.GeneralSecurityException;

public class CertificateEncodingException extends CertificateException;
public class CertificateExpiredException extends CertificateException;
public class CertificateNotYetValidException extends CertificateException;
public class CertificateParsingException extends CertificateException;

public class CertPathBuilderException extends java.security.GeneralSecurityException;
public class CertPathValidatorException extends java.security.GeneralSecurityException;
public class CertStoreException extends java.security.GeneralSecurityException;
public class CRLException extends java.security.GeneralSecurityException;

684 | Chapter 14: java.security and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.security.cert.Certificate

Certificate
java.security.cert

Java 1.2

serializable

This abstract class represents an public-key (or identity) certificate. A certificate is an
object that contains the name of an entity and a public key for that entity. Certificates
are issued by, and bear the digital signature of, a (presumably trusted) third party,
typically a certificate authority (CA). By issuing and signing the certificate, the CA is
certifying that, based on their research, the entity named on the certificate really is
who they say they are and that the public key in the certificate really does belong to
that entity. Sometimes the signer of a certificate is not a trusted CA, and the certificate
is accompanied by the signer’s certificate which may be signed by a CA, or by another
untrusted intermediary who provides his or her own certificate. A “chain” of such
certificates is known as a “certification path”. See CertPath for further details.

Use a CertificateFactory to parse a stream of bytes into a Certificate object; getEncoded() reverses
this process. Use verify() to verify the digital signature of the entity that issued the certif-
icate. If the signature cannot be verified, the certificate should not be trusted. Call
getPublicKey() to obtain the java.security.PublicKey of the subject of the certificate. Note that
this class does not define a method for obtaining the Principal that is associated with the
PublicKey. That functionality is dependent on the type of the certificate. See
X509Certificate.getSubjectDN(), for example.

Do not confuse this class with the java.security.Certificate interface that was defined in
Java 1.1 and has been deprecated in Java 1.2.

Subclasses X509Certificate

Passed To Too many methods to list.

Returned By Too many methods to list.

public abstract class Certificate implements Serializable {
// Protected Constructors

protected Certificate(String type);
// Nested Types
1.3 protected static class CertificateRep implements Serializable;
// Public Instance Methods

public abstract byte[] getEncoded() throws CertificateEncodingException;
public abstract java.security.PublicKey getPublicKey();
public final String getType();
public abstract void verify(java.security.PublicKey key)

throws CertificateException, java.security.NoSuchAlgorithmException, java.security.InvalidKeyException,
java.security.NoSuchProviderException, java.security.SignatureException;

public abstract void verify(java.security.PublicKey key, String sigProvider)
throws CertificateException, java.security.NoSuchAlgorithmException, java.security.InvalidKeyException,
java.security.NoSuchProviderException, java.security.SignatureException ;

// Public Methods Overriding Object
public boolean equals(Object other);
public int hashCode();
public abstract String toString();

// Protected Instance Methods
1.3 protected Object writeReplace() throws java.io.ObjectStreamException;
}

Object Certificate Serializable

Chapter 14: java.security and Subpackages | 685

java.security.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.security.cert.CertificateException

Certificate.CertificateRep
java.security.cert

Java 1.3

serializable

This protected inner class provides an alternate representation of a certificate that can
be used for serialization purposes by the writeReplace() method of some Certificate imple-
mentations. Applications do not typically need this class.

CertificateEncodingException
java.security.cert

Java 1.2

serializable checked

Signals an error while attempting to encode a certificate.

Thrown By java.security.cert.Certificate.getEncoded(), CertPath.getEncoded(),
X509Certificate.getTBSCertificate()

CertificateException
java.security.cert

Java 1.2

serializable checked

This class is the superclass of several more specific exception types that may be thrown
when working with certificates.

Subclasses CertificateEncodingException, CertificateExpiredException, CertificateNotYetValidException,
CertificateParsingException

Thrown By Too many methods to list.

protected static class Certificate.CertificateRep implements Serializable {
// Protected Constructors

protected CertificateRep(String type, byte[] data);
// Protected Instance Methods

protected Object readResolve() throws java.io.ObjectStreamException;
}

public class CertificateEncodingException extends CertificateException {
// Public Constructors

public CertificateEncodingException();
5.0 public CertificateEncodingException(Throwable cause);

public CertificateEncodingException(String message);
5.0 public CertificateEncodingException(String message, Throwable cause);
}

public class CertificateException extends java.security.GeneralSecurityException {
// Public Constructors

public CertificateException();
5.0 public CertificateException(Throwable cause);

public CertificateException(String msg);
5.0 public CertificateException(String message, Throwable cause);
}

Object Throwable Exception GeneralSecurityException CertificateException CertificateEncodingException

Serializable

Object Throwable Exception GeneralSecurityException CertificateException

Serializable

686 | Chapter 14: java.security and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.security.cert.CertificateExpiredException

CertificateExpiredException
java.security.cert

Java 1.2

serializable checked

Signals that a certificate has expired or will have expired by a specified date.

Thrown By X509Certificate.checkValidity()

CertificateFactory
java.security.cert

Java 1.2

This class defines methods for parsing certificates, certificate chains (certification
paths) and certificate revocation lists (CRLs) from byte streams. Obtain a CertificateFac-
tory by calling one of the static getInstance() factory methods and specifying the type of
certificate or CRL to be parsed, and, optionally, the desired service provider to
perform the parsing. The default “SUN” provider defines only a single “X.509” certifi-
cate type, so you typically obtain a CertificateFactory with this code:

CertificateFactory certFactory = CertificateFactory.getInstance("X.509");

Once you have obtained a CertificateFactory for the desired type of certificate, call
generateCertificate() to parse a Certificate from a specified byte stream, or call
generateCertificates() to parse a group of unrelated certificates (i.e. certificates that do not
form a certificate chain) from a stream and return them as a Collection of Certificate objects.
Similarly, call generateCRL() to parse a single CRL object from a stream, and call
generateCRLs() to parse a Collection of CRL objects from the stream. These CertificateFactory
methods read to the end of the specified stream. If the stream supports mark() and
reset(), however, the CertificateFactory resets the stream to the position after the end of the
last certificate or CRL read. If you specified a certificate type of “X.509”, the Certificate
and CRL objects returned by a CertificateFactory can be cast safely to X509Certificate and X509CRL.
A certificate factory for X.509 certificates can parse certificates encoded in binary or
printable hexadecimal form. If the certificate is in hexadecimal form, it must begin
with the string “-----BEGIN CERTIFICATE-----” and end with the string “-----END
CERTIFICATE-----”.

The generateCertPath() methods return a CertPath object representing a certificate chain.
These methods can create a CertPath object from a List of Certificate object, or by reading the
chained certificates from a stream. Specify the encoding of the certificate chain by
passing the name of the encoding standard to generateCertPath(). The default “SUN”
provider supports the “PKCS7” and the “PkiPath” encodings. getCertPathEncoding() returns
an Iterator of the encodings supported by the current provider. The first encoding returned
by the iterator is the default used when no encoding is explicitly specified.

public class CertificateExpiredException extends CertificateException {
// Public Constructors

public CertificateExpiredException();
public CertificateExpiredException(String message);

}

public class CertificateFactory {
// Protected Constructors

protected CertificateFactory(CertificateFactorySpi certFacSpi, java.security.Provider provider, String type);
// Public Class Methods

public static final CertificateFactory getInstance(String type) throws CertificateException;

Object Throwable Exception GeneralSecurityException CertificateException CertificateExpiredException

Serializable

Chapter 14: java.security and Subpackages | 687

java.security.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.security.cert.CertificateNotYetValidException

CertificateFactorySpi
java.security.cert

Java 1.2

This abstract class defines the service provider interface, or SPI, for the CertificateFactory
class. A security provider must implement this class for each type of certificate it
wishes to support. Applications never need to use or subclass this class.

Passed To CertificateFactory.CertificateFactory()

CertificateNotYetValidException
java.security.cert

Java 1.2

serializable checked

Signals that a certificate is not yet valid or will not yet be valid on a specified date.

1.4 public static final CertificateFactory getInstance(String type, java.security.Provider provider) throws CertificateException;
public static final CertificateFactory getInstance(String type, String provider)

throws CertificateException, java.security.NoSuchProviderException;
// Public Instance Methods

public final java.security.cert.Certificate generateCertificate(java.io.InputStream inStream) throws CertificateException;
public final java.util.Collection<? extends java.security.cert.Certificate>

generateCertificates(java.io.InputStream inStream)
throws CertificateException;

1.4 public final CertPath generateCertPath(java.util.List<? extends java.security.cert.Certificate> certificates)
throws CertificateException;

1.4 public final CertPath generateCertPath(java.io.InputStream inStream) throws CertificateException;
1.4 public final CertPath generateCertPath(java.io.InputStream inStream, String encoding) throws CertificateException;

public final CRL generateCRL(java.io.InputStream inStream) throws CRLException;
public final java.util.Collection<? extends CRL> generateCRLs(java.io.InputStream inStream) throws CRLException;

1.4 public final java.util.Iterator<String> getCertPathEncodings();
public final java.security.Provider getProvider();
public final String getType();

}

public abstract class CertificateFactorySpi {
// Public Constructors

public CertificateFactorySpi();
// Public Instance Methods

public abstract java.security.cert.Certificate engineGenerateCertificate(java.io.InputStream inStream)
throws CertificateException;

public abstract java.util.Collection<? extends java.security.cert.Certificate>
engineGenerateCertificates(java.io.InputStream inStream) throws CertificateException;

1.4 public CertPath engineGenerateCertPath(java.util.List<? extends java.security.cert.Certificate> certificates)
throws CertificateException;

1.4 public CertPath engineGenerateCertPath(java.io.InputStream inStream) throws CertificateException;
1.4 public CertPath engineGenerateCertPath(java.io.InputStream inStream, String encoding) throws CertificateException;

public abstract CRL engineGenerateCRL(java.io.InputStream inStream) throws CRLException;
public abstract java.util.Collection<? extends CRL> engineGenerateCRLs(java.io.InputStream inStream)

throws CRLException;
1.4 public java.util.Iterator<String> engineGetCertPathEncodings();
}

Object Throwable Exception GeneralSecurityException CertificateException CertificateNotYetValidException

Serializable

688 | Chapter 14: java.security and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.security.cert.CertificateParsingException

Thrown By X509Certificate.checkValidity()

CertificateParsingException
java.security.cert

Java 1.2

serializable checked

Signals an error or other problem while parsing a certificate.

Thrown By X509Certificate.{getExtendedKeyUsage(), getIssuerAlternativeNames(),
getSubjectAlternativeNames()}

CertPath
java.security.cert

Java 1.4

serializable

A CertPath is a immutable sequence or chain of certificates that establishes a “certifica-
tion path” from an unknown “end entity” to a known and trusted Certificate
Authority or “trust anchor”. Use a CertPathValidator to validate a certificate chain and
establish trust in the public key presented in the certificate of the end entity.

getType() returns the type of the certificates in the CertPath. For X.509 certificate chains (the
only type supported by the default “SUN” provider) this method returns “X.509”.
getCertificates() returns a java.util.List object that contains the Certificate objects that comprise the
chain. For X.509 chains, the list contains X509Certificate objects. Also, for X.509 certificate
paths, the List returned by getCertificates() starts with the certificate of of the end entity, and
ends with a certificate signed by the trust anchor. The signer of any certificate but the last
must be the subject of the next certificate in the List. If the end entity presents a certificate
that is directly signed by a trust anchor (which is a not uncommon occurrence) then the
List returned by getCertificates() consists of only that single certificate. Note that the list of
certificates does not include the certificate of the trust anchor. The public keys of trusted
CAs must be known by the system in advance. In Sun’s JDK implementation, the public-
key certificates of trusted CAs are stored in the file jre/lib/security/cacerts.

CertPath objects can be created with a CertificateFactory, or at a lower level with a CertPath-
Builder object. A CertificateFactory can parse or decode a CertPath object from a binary stream.
The getEncoded() methods reverse the process and encode a CertPath into an array of bytes.
getEncodings() returns the encodings supported for a CertPath. The first returned encoding
name is the default one, but you can use any supported encoding by using the one-
argument version of getEncoded(). The default “SUN” provider supports encodings
named “PKCS7” and “PkiPath”.

public class CertificateNotYetValidException extends CertificateException {
// Public Constructors

public CertificateNotYetValidException();
public CertificateNotYetValidException(String message);

}

public class CertificateParsingException extends CertificateException {
// Public Constructors

public CertificateParsingException();
5.0 public CertificateParsingException(Throwable cause);

public CertificateParsingException(String message);
5.0 public CertificateParsingException(String message, Throwable cause);
}

Object Throwable Exception GeneralSecurityException CertificateException CertificateParsingException

Serializable

Chapter 14: java.security and Subpackages | 689

java.security.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.security.cert.CertPathBuilder

CertPath objects are immutable as is the List object returned by getCertificates() and the Certifi-
cate objects contained in the list. Furthermore, all CertPath methods are threadsafe.

Passed To java.security.CodeSigner.CodeSigner(), java.security.Timestamp.Timestamp(),
CertPathValidator.validate(), CertPathValidatorException.CertPathValidatorException(),
CertPathValidatorSpi.engineValidate(), PKIXCertPathBuilderResult.PKIXCertPathBuilderResult()

Returned By java.security.CodeSigner.getSignerCertPath(), java.security.Timestamp.getSignerCertPath(),
CertificateFactory.generateCertPath(), CertificateFactorySpi.engineGenerateCertPath(),
CertPathBuilderResult.getCertPath(), CertPathValidatorException.getCertPath(),
PKIXCertPathBuilderResult.getCertPath()

CertPath.CertPathRep
java.security.cert

Java 1.4

serializable

This protected inner class defines an implementation-independent representation of a
CertPath for serialization purposes. Applications never need to use this class.

CertPathBuilder
java.security.cert

Java 1.4

CertPathBuilder attempts to build a certification path from a specified certificate to a trust
anchor. Unlike the CertificateFactory.generateCertPath() method, which might be used by a
server to parse a certificate chain presented to it by a client, this class is used to create a
new certificate chain, and might be used by a client that needs to send a certificate
chain to a server. The CertPathBuilder API is provider-based, and is algorithm indepen-
dent, although the use of any algorithms other than the “PKIX” standards (which work

public abstract class CertPath implements Serializable {
// Protected Constructors

protected CertPath(String type);
// Nested Types

protected static class CertPathRep implements Serializable;
// Public Instance Methods

public abstract java.util.List<? extends java.security.cert.Certificate> getCertificates();
public abstract byte[] getEncoded() throws CertificateEncodingException;
public abstract byte[] getEncoded(String encoding) throws CertificateEncodingException;
public abstract java.util.Iterator<String> getEncodings();
public String getType();

// Public Methods Overriding Object
public boolean equals(Object other);
public int hashCode();
public String toString();

// Protected Instance Methods
protected Object writeReplace() throws java.io.ObjectStreamException;

}

protected static class CertPath.CertPathRep implements Serializable {
// Protected Constructors

protected CertPathRep(String type, byte[] data);
// Protected Instance Methods

protected Object readResolve() throws java.io.ObjectStreamException;
}

Object CertPath Serializable

690 | Chapter 14: java.security and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.security.cert.CertPathBuilderException

with X.509 certificate chains) require appropriate external implementations of CertPath-
Parameters and CertPathBuilderResult.

Obtain a CertPathBuilder object by calling one of the static getInstance() methods, speci-
fying the desired algorithm and, optionally, the desired provider. The “PKIX”
algorithm is the only one supported by the default “SUN” provider, and is the only
one that has the required algorithm-specific classes defined by this package. Once
you have a CertPathBuilder, you create a CertPath object by passing a CertPathParameters object
to the build() method. CertPathParameters is a marker interfaces that defines no method of
its own, so you must use an algorithm-specific implementation such as PKIXBuilder-
Parameters to supply the information required to build a CertPath. The build() method
returns a CertPathBuilderResult object. Use the getCertPath() method of this returned object
to obtain the CertPath that was built. The algorithm-specific implementation PKIXCert-
PathBuilderResult has additional methods that return further algorithm-specific results.

CertPathBuilderException
java.security.cert

Java 1.4

serializable checked

Signal a problem while building a certification path with CertPathBuilder.

Thrown By CertPathBuilder.build(), CertPathBuilderSpi.engineBuild()

CertPathBuilderResult
java.security.cert

Java 1.4

cloneable

An object of this type is returned by the build() method of a CertPathBuilder. The getCertPath()
method returns the CertPath object that was built; this method will never return null. The

public class CertPathBuilder {
// Protected Constructors

protected CertPathBuilder(CertPathBuilderSpi builderSpi, java.security.Provider provider, String algorithm);
// Public Class Methods

public static final String getDefaultType();
public static CertPathBuilder getInstance(String algorithm) throws java.security.NoSuchAlgorithmException;
public static CertPathBuilder getInstance(String algorithm, String provider)

throws java.security.NoSuchAlgorithmException, java.security.NoSuchProviderException;
public static CertPathBuilder getInstance(String algorithm, java.security.Provider provider)

throws java.security.NoSuchAlgorithmException;
// Public Instance Methods

public final CertPathBuilderResult build(CertPathParameters params)
throws CertPathBuilderException, java.security.InvalidAlgorithmParameterException;

public final String getAlgorithm();
public final java.security.Provider getProvider();

}

public class CertPathBuilderException extends java.security.GeneralSecurityException {
// Public Constructors

public CertPathBuilderException();
public CertPathBuilderException(Throwable cause);
public CertPathBuilderException(String msg);
public CertPathBuilderException(String msg, Throwable cause);

}

Object Throwable Exception GeneralSecurityException CertPathBuilderException

Serializable

Chapter 14: java.security and Subpackages | 691

java.security.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.security.cert.CertPathParameters

algorithm-specific PKIXCertPathBuilderResult implementation defines other methods to
return additional information about the path that was built.

Implementations PKIXCertPathBuilderResult

Returned By CertPathBuilder.build(), CertPathBuilderSpi.engineBuild()

CertPathBuilderSpi
java.security.cert

Java 1.4

This abstract class defines the Service Provider Interface for the CertPathBuilder. Security
providers must implement this interface, but applications never need to use it.

Passed To CertPathBuilder.CertPathBuilder()

CertPathParameters
java.security.cert

Java 1.4

cloneable

CertPathParamters is a marker interface for objects that hold parameters (such as the set of
trust anchors) for validating or building a certification path with CertPathValidator and Cert-
PathBuilder. It defines no methods of its own, but requires that all implementations
include a working clone() method. You must use an algorithm-specific implementation
of this interface, such as PKIXParameters or PKIXBuilderParameters when validating or building a
CertPath, and it is rarely useful to work with this interface directly.

Implementations PKIXParameters

Passed To CertPathBuilder.build(), CertPathBuilderSpi.engineBuild(), CertPathValidator.validate(),
CertPathValidatorSpi.engineValidate(),
javax.net.ssl.CertPathTrustManagerParameters.CertPathTrustManagerParameters()

Returned By javax.net.ssl.CertPathTrustManagerParameters.getParameters()

public interface CertPathBuilderResult extends Cloneable {
// Public Instance Methods

Object clone();
CertPath getCertPath();

}

public abstract class CertPathBuilderSpi {
// Public Constructors

public CertPathBuilderSpi();
// Public Instance Methods

public abstract CertPathBuilderResult engineBuild(CertPathParameters params)
throws CertPathBuilderException, java.security.InvalidAlgorithmParameterException;

}

public interface CertPathParameters extends Cloneable {
// Public Instance Methods

Object clone();
}

Cloneable CertPathBuilderResult

Cloneable CertPathParameters

692 | Chapter 14: java.security and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.security.cert.CertPathValidator

CertPathValidator
java.security.cert

Java 1.4

This class validates certificate chains, establishing a chain of trust from the end entity
to a trust anchor, and thereby establishing the validity of the public key presented in
the end entity’s certificate. The CertPathValidator is provider-based and algorithm-
independent. To obtain a CertPathValidator instance, call one of the static getInstance()
methods specifying the name of the desired validation algorithm and, optionally, the
provider to use. The “PKIX” algorithm for validating X.509 certificates is the only one
supported by the default “SUN” provider.

Once you have a CertPathValidator object, you can use it to validate certificate chains by
passing the CertPath object to be validated to the validate() method along with a CertPath-
Parameters object that specifies valid trust anchors and other validation parameters.
CertPathParameters is simply a marker interface, and you must use an application-specific
implementation such as PKIXParameters. If validation fails, the validate() method throws a
CertPathValidatorException which may include the index in the chain of the certificate that
failed to validate. Otherwise, if validation is successful, the validate() method returns a
CertPathValidatorResult. If you are interested in the details of the validation (such as the
trust anchor that was used or the public key of the end entity), you may cast this
returned value to an algorithm-specific subtype such as PKIXCertPathValidatorResult and use
its methods to find out more about the result.

CertPathValidatorException
java.security.cert

Java 1.4

serializable checked

Signals a problem while validating a certificate chain with a CertPathValidator. getCertPath()
returns the CertPath object that was being validated, and getIndex() returns the index
within the path of the certificate that caused the exception (or -1 if that information is
not available).

public class CertPathValidator {
// Protected Constructors

protected CertPathValidator(CertPathValidatorSpi validatorSpi, java.security.Provider provider, String algorithm);
// Public Class Methods

public static final String getDefaultType();
public static CertPathValidator getInstance(String algorithm) throws java.security.NoSuchAlgorithmException;
public static CertPathValidator getInstance(String algorithm, String provider)

throws java.security.NoSuchAlgorithmException, java.security.NoSuchProviderException;
public static CertPathValidator getInstance(String algorithm, java.security.Provider provider)

throws java.security.NoSuchAlgorithmException;
// Public Instance Methods

public final String getAlgorithm();
public final java.security.Provider getProvider();
public final CertPathValidatorResult validate(CertPath certPath, CertPathParameters params)

throws CertPathValidatorException, java.security.InvalidAlgorithmParameterException;
}

public class CertPathValidatorException extends java.security.GeneralSecurityException {
// Public Constructors

public CertPathValidatorException();
public CertPathValidatorException(Throwable cause);

Object Throwable Exception GeneralSecurityException CertPathValidatorException

Serializable

Chapter 14: java.security and Subpackages | 693

java.security.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.security.cert.CertSelector

Thrown By CertPathValidator.validate(), CertPathValidatorSpi.engineValidate(), PKIXCertPathChecker.{check(),
init()}

CertPathValidatorResult
java.security.cert

Java 1.4

cloneable

This marker interface defines the type of the object returned by the validate() method of
a CertPathValidator, but does not define any of the contents of that object, other to specify
that it must be Cloneable. If you want any details about the results of validating a CertPath,
you must cast the return value of validate() to an algorithm-specific types implementa-
tion of this interface, such as PKIXCertPathValidatorResult.

Implementations PKIXCertPathValidatorResult

Returned By CertPathValidator.validate(), CertPathValidatorSpi.engineValidate()

CertPathValidatorSpi
java.security.cert

Java 1.4

This abstract class defines the Service Provider Interface for the CertPathValidator class.
Security providers must implement this interface, but applications never need to use it.

Passed To CertPathValidator.CertPathValidator()

CertSelector
java.security.cert

Java 1.4

cloneable

This interface defines an API for determining whether a Certificate meets some criteria.
Implementations are used to specify critera by which a certificate or certificates should
be selected from a CertStore object. The match() method should examine the Certificate it is
passed and return true if it “matches” based on whatever criteria the implementation
defines. See X509CertSelector for an implementation that works with X.509 certificates. See
CRLSelector for a similar interface for use when selecting CRL objects from a CertStore.

public CertPathValidatorException(String msg);
public CertPathValidatorException(String msg, Throwable cause);
public CertPathValidatorException(String msg, Throwable cause, CertPath certPath, int index);

// Public Instance Methods
public CertPath getCertPath(); default:null
public int getIndex(); default:-1

}

public interface CertPathValidatorResult extends Cloneable {
// Public Instance Methods

Object clone();
}

public abstract class CertPathValidatorSpi {
// Public Constructors

public CertPathValidatorSpi();
// Public Instance Methods

public abstract CertPathValidatorResult engineValidate(CertPath certPath, CertPathParameters params)
throws CertPathValidatorException, java.security.InvalidAlgorithmParameterException;

}

Cloneable CertPathValidatorResult

694 | Chapter 14: java.security and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.security.cert.CertStore

Implementations X509CertSelector

Passed To CertStore.getCertificates(), CertStoreSpi.engineGetCertificates(),
PKIXBuilderParameters.PKIXBuilderParameters(), PKIXParameters.setTargetCertConstraints()

Returned By PKIXParameters.getTargetCertConstraints()

CertStore
java.security.cert

Java 1.4

A CertStore object is a repository for Certificate and CRL objects. You may query a CertStore for
a java.util.Collection of Certificate or CRL objects that match specified criteria by passing a Cert-
Selector or CRLSelector to getCertificates() or getCRLs(). A CertStore is conceptually similar to a
java.security.KeyStore, but there are significant differences in how the two classes are
intended to be used. A KeyStore is designed to store a relatively small local collection of
private keys and trusted certificates. A CertStore, however, may represent a large public
database (in the form of an LDAP server, for examle) of untrusted certificates.

Obtain a CertStore object by calling a getInstance() method and specifying the name of the
desired CertStore type and a CertStoreParameters object that is specific to that type. Option-
ally, you may also specify the desired provider of your CertStore object. The default
“SUN” provider defines two CertStore types, named “LDAP” and “Collection”, which
you should use with LDAPCertStoreParameters and CollectionCertStoreParameters objects, respec-
tively. The “LDAP” type obtains certificates and CRLs from a network LDAP server,
and the “Collection” type obtains them from a a specified Collection object.

The CertStore class may be directly useful to applications that want to query a LDAP server
for certificates. It is also used by PKIXParameters.addCertStore() and PKIXParameters.setCertStores() to
specify a source of certificates to by used by the CertPathBuilder and CertPathValidator classes.

All public methods of CertStore are threadsafe.

public interface CertSelector extends Cloneable {
// Public Instance Methods

Object clone();
boolean match(java.security.cert.Certificate cert);

}

public class CertStore {
// Protected Constructors

protected CertStore(CertStoreSpi storeSpi, java.security.Provider provider, String type, CertStoreParameters params);
// Public Class Methods

public static final String getDefaultType();
public static CertStore getInstance(String type, CertStoreParameters params)

throws java.security.InvalidAlgorithmParameterException, java.security.NoSuchAlgorithmException;
public static CertStore getInstance(String type, CertStoreParameters params, String provider)

throws java.security.InvalidAlgorithmParameterException, java.security.NoSuchAlgorithmException,
java.security.NoSuchProviderException;

public static CertStore getInstance(String type, CertStoreParameters params, java.security.Provider provider)
throws java.security.NoSuchAlgorithmException, java.security.InvalidAlgorithmParameterException;

// Public Instance Methods
public final java.util.Collection<? extends java.security.cert.Certificate> getCertificates(CertSelector selector)

throws CertStoreException;
public final CertStoreParameters getCertStoreParameters();
public final java.util.Collection<? extends CRL> getCRLs(CRLSelector selector) throws CertStoreException;

Cloneable CertSelector

Chapter 14: java.security and Subpackages | 695

java.security.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.security.cert.CertStoreSpi

Passed To PKIXParameters.addCertStore()

CertStoreException
java.security.cert

Java 1.4

serializable checked

Signals a problem while querying a CertStore for certificates or CRLs.

Thrown By CertStore.{getCertificates(), getCRLs()}, CertStoreSpi.{engineGetCertificates(), engineGetCRLs()}

CertStoreParameters
java.security.cert

Java 1.4

cloneable

This marker interface defines the type, but not the content, of the parameters object
that is passed to the CertStore.getInstance() methods. It does not define any methods of its
own and simply requires that all implementing classes be cloneable. Use one of the
concrete implementations of this class for CertStore objects of type “LDAP” and
“Collection”.

Implementations CollectionCertStoreParameters, LDAPCertStoreParameters

Passed To CertStore.{CertStore(), getInstance()}, CertStoreSpi.CertStoreSpi()

Returned By CertStore.getCertStoreParameters()

CertStoreSpi
java.security.cert

Java 1.4

This abstract class defines the Service Provider Interface for the CertStore class. Security
providers must implement this interface, but applications never need to use it.

public final java.security.Provider getProvider();
public final String getType();

}

public class CertStoreException extends java.security.GeneralSecurityException {
// Public Constructors

public CertStoreException();
public CertStoreException(Throwable cause);
public CertStoreException(String msg);
public CertStoreException(String msg, Throwable cause);

}

public interface CertStoreParameters extends Cloneable {
// Public Instance Methods

Object clone();
}

public abstract class CertStoreSpi {
// Public Constructors

public CertStoreSpi(CertStoreParameters params) throws java.security.InvalidAlgorithmParameterException;
// Public Instance Methods

public abstract java.util.Collection<? extends java.security.cert.Certificate> engineGetCertificates(CertSelector selector)
throws CertStoreException;

Object Throwable Exception GeneralSecurityException CertStoreException

Serializable

Cloneable CertStoreParameters

696 | Chapter 14: java.security and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.security.cert.CollectionCertStoreParameters

Passed To CertStore.CertStore()

CollectionCertStoreParameters
java.security.cert

Java 1.4

cloneable

This concrete implementation of CertStoreParameters is used when creating a CertStore object
of type “Collection”. Pass the Collection of Certificate and CRL objects to be searched by the
CertStore to the constructor method.

CRL
java.security.cert

Java 1.2

This abstract class represents a certificate revocation list (CRL). A CRL is an object
issued by a certificate authority (or other certificate signer) that lists certificates that
have been revoked, meaning that they are now invalid and should be rejected. Use a
CertificateFactory to parse a CRL from a byte stream. Use the isRevoked() method to test
whether a specified Certificate is listed on the CRL. Note that type-specific CRL subclasses,
such as X509CRL, may provide access to substantially more information about the revo-
cation list.

Subclasses X509CRL

Passed To CRLSelector.match(), X509CRLSelector.match()

Returned By CertificateFactory.generateCRL(), CertificateFactorySpi.engineGenerateCRL()

public abstract java.util.Collection<? extends CRL> engineGetCRLs(CRLSelector selector) throws CertStoreException;
}

public class CollectionCertStoreParameters implements CertStoreParameters {
// Public Constructors

public CollectionCertStoreParameters();
public CollectionCertStoreParameters(java.util.Collection<?> collection);

// Public Instance Methods
public java.util.Collection<?> getCollection();

// Methods Implementing CertStoreParameters
public Object clone();

// Public Methods Overriding Object
public String toString();

}

public abstract class CRL {
// Protected Constructors

protected CRL(String type);
// Public Instance Methods

public final String getType();
public abstract boolean isRevoked(java.security.cert.Certificate cert);

// Public Methods Overriding Object
public abstract String toString();

}

Object CollectionCertStoreParameters

Cloneable CertStoreParameters

Chapter 14: java.security and Subpackages | 697

java.security.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.security.cert.LDAPCertStoreParameters

CRLException
java.security.cert

Java 1.2

serializable checked

Signals an error or other problem while working with a CRL.

Thrown By CertificateFactory.{generateCRL(), generateCRLs()}, CertificateFactorySpi.{engineGenerateCRL(),
engineGenerateCRLs()}, X509CRL.{getEncoded(), getTBSCertList(), verify()}, X509CRLEntry.getEncoded()

CRLSelector
java.security.cert

Java 1.4

cloneable

This interface defines an API for determining whether a CRL object meets some criteria.
Implementations are used to specify critera by which a CRL objects should be selected
from a CertStore. The match() method should examine the CRL it is passed and return true if
it “matches” based on whatever criteria the implementation defines. See X509CRLSelector
for an implementation that works with X.509 certificates. See CertSelector for a similar
interface for use when selecting Certificate objects from a CertStore.

Implementations X509CRLSelector

Passed To CertStore.getCRLs(), CertStoreSpi.engineGetCRLs()

LDAPCertStoreParameters
java.security.cert

Java 1.4

cloneable

This concrete implementation of CertStoreParameters is used when creating a CertStore object
of type “LDAP”. It specifies the hostname of the LDAP server to connect to and,
optionally, the port to connect on.

public class CRLException extends java.security.GeneralSecurityException {
// Public Constructors

public CRLException();
5.0 public CRLException(Throwable cause);

public CRLException(String message);
5.0 public CRLException(String message, Throwable cause);
}

public interface CRLSelector extends Cloneable {
// Public Instance Methods

Object clone();
boolean match(CRL crl);

}

public class LDAPCertStoreParameters implements CertStoreParameters {
// Public Constructors

public LDAPCertStoreParameters();
public LDAPCertStoreParameters(String serverName);
public LDAPCertStoreParameters(String serverName, int port);

Object Throwable Exception GeneralSecurityException CRLException

Serializable

Cloneable CRLSelector

Object LDAPCertStoreParameters

Cloneable CertStoreParameters

698 | Chapter 14: java.security and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.security.cert.PKIXBuilderParameters

PKIXBuilderParameters
java.security.cert

Java 1.4

cloneable

Instances of this class are used to specify parameters to the build() method of a Cert-
PathBuilder object. These parameters must include the two mandatory ones passed to the
constructors. The first is a source of trust anchors, which may be supplied as a Set of
TrustAnchor objects or as a java.security.KeyStore object. The second required parameter is a
CertSelector object (typically an X509CertSelector) that specifies the selection criteria for the
certificate that is to have the certification path built. In addition to these parameters
that are passed to the constructor, this class also inherits a number of methods for
setting other parameters, and defines setMaxPathLength() for specifying the maximum
length of the certificate chain that is built.

PKIXCertPathBuilderResult
java.security.cert

Java 1.4

cloneable

An instance of this class is retured by the build() method of a CertPathBuilder created for the
“PKIX” algorithm. getCertPath() returns the CertPath object that was built, and methods
inherited from the superclass return additional information such as the public key of
the subject of the certificate chain and the trust anchor that terminates the chain.

// Public Instance Methods
public int getPort(); default:389
public String getServerName(); default:"localhost"

// Methods Implementing CertStoreParameters
public Object clone();

// Public Methods Overriding Object
public String toString();

}

public class PKIXBuilderParameters extends PKIXParameters {
// Public Constructors

public PKIXBuilderParameters(java.security.KeyStore keystore, CertSelector targetConstraints)
throws java.security.KeyStoreException, java.security.InvalidAlgorithmParameterException;

public PKIXBuilderParameters(java.util.Set<TrustAnchor> trustAnchors, CertSelector targetConstraints)
throws java.security.InvalidAlgorithmParameterException;

// Public Instance Methods
public int getMaxPathLength();
public void setMaxPathLength(int maxPathLength);

// Public Methods Overriding PKIXParameters
public String toString();

}

public class PKIXCertPathBuilderResult extends PKIXCertPathValidatorResult implements CertPathBuilderResult {
// Public Constructors

public PKIXCertPathBuilderResult(CertPath certPath, TrustAnchor trustAnchor, PolicyNode policyTree,
java.security.PublicKey subjectPublicKey);

// Methods Implementing CertPathBuilderResult

Object PKIXParameters PKIXBuilderParameters

Cloneable CertPathParameters

Object PKIXCertPathValidatorResult PKIXCertPathBuilderResult

Cloneable CertPathValidatorResult Cloneable CertPathBuilderResult

Chapter 14: java.security and Subpackages | 699

java.security.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.security.cert.PKIXCertPathValidatorResult

PKIXCertPathChecker
java.security.cert

Java 1.4

cloneable

This abstract class defines an extension mechanism for the PKIX certification path
building and validation algorithms. Most applications will never need to use this class.
You may pass one or more PKIXCertPathChecker objects to the setCertPathCheckers() or
addCertPathChecker() methods of the PKIXParameters or PKIXBuilderParameters object that is passed
to the build() or validate() methods of a CertPathBuilder or CertPathValidator. The check() method
of all PKIXCertPathChecker objects registered in this way will be invoked for each certificate
considered in the building or validation algorithms. check() should throw a CertPath-
ValidatorException if a certificate does not the implemented test. The init() method is
invoked to tell the checker to reset its internal state and to notify it of the direction in
which certificates will be presented. Checkers are not required to support the forward
direction, and should return false from isForwardCheckingSupported() if they do not.

Passed To PKIXParameters.addCertPathChecker()

PKIXCertPathValidatorResult
java.security.cert

Java 1.4

cloneable

An instance of this class is returned upon successful validation by the validate() method
of a CertPathValidator created for the “PKIX” algorithm. getPublicKey() returns the validated
public key of the subject of the certificate chain. getTrustAnchor() returns the TrustAnchor
that anchors the chain.

public CertPath getCertPath();
// Public Methods Overriding PKIXCertPathValidatorResult

public String toString();
}

public abstract class PKIXCertPathChecker implements Cloneable {
// Protected Constructors

protected PKIXCertPathChecker();
// Public Instance Methods

public abstract void check(java.security.cert.Certificate cert, java.util.Collection<String> unresolvedCritExts)
throws CertPathValidatorException;

public abstract java.util.Set<String> getSupportedExtensions();
public abstract void init(boolean forward) throws CertPathValidatorException;
public abstract boolean isForwardCheckingSupported();

// Public Methods Overriding Object
public Object clone();

}

public class PKIXCertPathValidatorResult implements CertPathValidatorResult {
// Public Constructors

public PKIXCertPathValidatorResult(TrustAnchor trustAnchor, PolicyNode policyTree,
java.security.PublicKey subjectPublicKey);

// Public Instance Methods
public PolicyNode getPolicyTree();

Object PKIXCertPathChecker Cloneable

Object PKIXCertPathValidatorResult

Cloneable CertPathValidatorResult

700 | Chapter 14: java.security and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.security.cert.PKIXParameters

Subclasses PKIXCertPathBuilderResult

PKIXParameters
java.security.cert

Java 1.4

cloneable

This implementation of CertPathParameters defines parameters that are passed to the
validate() method of a PKIX CertPathValidator and defines a subset of the parameters that are
passed to the build() method of a PKIX CertPathBuilder. A full understanding of this class
requires a detailed discussion of the PKIX certification path building and validation
algorithms, which is beyond the scope of this book. However, some of the more
important parameters are described here.

When you create a PKIXParameters object, you must specify which trust anchors are to be
used. You can do this by passing a Set of TrustAnchor objects to the constructor, or by
passing a KeyStore containing trust anchor keys to the constructor. Once a PKIXParameters
object is created, you can modify the set of TrustAnchor objects with setTrustAnchors().
Specify a Set of CertStore objects to be searched for certificates with setCertStores() or add a
single CertStore to the set with addCertStore(). If certificate validity is to be checked for
some date and time other than the current time, use setDate() to specify this date.

public java.security.PublicKey getPublicKey();
public TrustAnchor getTrustAnchor();

// Methods Implementing CertPathValidatorResult
public Object clone();

// Public Methods Overriding Object
public String toString();

}

public class PKIXParameters implements CertPathParameters {
// Public Constructors

public PKIXParameters(java.security.KeyStore keystore)
throws java.security.KeyStoreException, java.security.InvalidAlgorithmParameterException;

public PKIXParameters(java.util.Set<TrustAnchor> trustAnchors)
throws java.security.InvalidAlgorithmParameterException;

// Public Instance Methods
public void addCertPathChecker(PKIXCertPathChecker checker);
public void addCertStore(CertStore store);
public java.util.List<PKIXCertPathChecker> getCertPathCheckers();
public java.util.List<CertStore> getCertStores();
public java.util.Date getDate();
public java.util.Set<String> getInitialPolicies();
public boolean getPolicyQualifiersRejected();
public String getSigProvider();
public CertSelector getTargetCertConstraints();
public java.util.Set<TrustAnchor> getTrustAnchors();
public boolean isAnyPolicyInhibited();
public boolean isExplicitPolicyRequired();
public boolean isPolicyMappingInhibited();
public boolean isRevocationEnabled();
public void setAnyPolicyInhibited(boolean val);
public void setCertPathCheckers(java.util.List<PKIXCertPathChecker> checkers);

Object PKIXParameters

Cloneable CertPathParameters

Chapter 14: java.security and Subpackages | 701

java.security.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.security.cert.PolicyQualifierInfo

Subclasses PKIXBuilderParameters

PolicyNode
java.security.cert

Java 1.4

This class represents a node in the policy tree created by the PKIX certification path
validation algorithm. A discussion of X.509 policy extensions and their use in the PKIX
certification path algorithms is beyond the scope of this reference.

Passed To PKIXCertPathBuilderResult.PKIXCertPathBuilderResult(),
PKIXCertPathValidatorResult.PKIXCertPathValidatorResult()

Returned By PKIXCertPathValidatorResult.getPolicyTree()

PolicyQualifierInfo
java.security.cert

Java 1.4

This class is a low-level representation of a policy qualifier information from a X.509
certificate extension. A discussion of X.509 policy extensions and their use in the PKIX
certification path algorithms is beyond the scope of this reference.

public void setCertStores(java.util.List<CertStore> stores);
public void setDate(java.util.Date date);
public void setExplicitPolicyRequired(boolean val);
public void setInitialPolicies(java.util.Set<String> initialPolicies);
public void setPolicyMappingInhibited(boolean val);
public void setPolicyQualifiersRejected(boolean qualifiersRejected);
public void setRevocationEnabled(boolean val);
public void setSigProvider(String sigProvider);
public void setTargetCertConstraints(CertSelector selector);
public void setTrustAnchors(java.util.Set<TrustAnchor> trustAnchors)

throws java.security.InvalidAlgorithmParameterException;
// Methods Implementing CertPathParameters

public Object clone();
// Public Methods Overriding Object

public String toString();
}

public interface PolicyNode {
// Public Instance Methods

java.util.Iterator<? extends PolicyNode> getChildren();
int getDepth();
java.util.Set<String> getExpectedPolicies();
PolicyNode getParent();
java.util.Set<? extends PolicyQualifierInfo> getPolicyQualifiers();
String getValidPolicy();
boolean isCritical();

}

public class PolicyQualifierInfo {
// Public Constructors

public PolicyQualifierInfo(byte[] encoded) throws java.io.IOException;
// Public Instance Methods

public final byte[] getEncoded();
public final byte[] getPolicyQualifier();
public final String getPolicyQualifierId();

702 | Chapter 14: java.security and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.security.cert.TrustAnchor

TrustAnchor
java.security.cert

Java 1.4

A TrustAnchor represents a certificate authority that is trusted to “anchor” a certificate
chain. A TrustAnchor object includes the X.500 distinguished name of the CA and the
public key of the CA. You may specify the name and key explictly or by passing an
X509Certificate to the TrustAnchor() constructor. If you do not pass a certificate, you can
specify the CA name as a String or as an X500Principal object from the javax.security.auth.x500
package. All forms of the TrustAnchor() constructor also allow you to specify a byte array
containing a binary representation of a “Name Constraints” extension. The format and
meaning of such name constraints is beyond the scope of this reference, and most
applications can simply specify null for this constructor argument.

Passed To PKIXCertPathBuilderResult.PKIXCertPathBuilderResult(),
PKIXCertPathValidatorResult.PKIXCertPathValidatorResult()

Returned By PKIXCertPathValidatorResult.getTrustAnchor()

X509Certificate
java.security.cert

Java 1.2

serializable

This class represents an X.509 certificate. Its various methods provide complete access to
the contents of the certificate. A full understanding of this class requires detailed knowl-
edge of the X.509 standard which is beyond the scope of this reference. Some of the
more important methods are described here, however. getSubjectDN() returns the Principal to
whom this certificate applies, and the inherited getPublicKey() method returns the PublicKey
that the certificate associates with that Principal. getIssuerDN() returns a Principal that repre-
sents the issuer of the certificate, and if you know the public key for that Principal, you can
pass it to the verify() method to check the digital signature of the issuer and ensure that
the certificate is not forged. checkValidity() checks whether the certificate has expired or has
not yet gone into effect. Note that verify() and getPublicKey() are inherited from Certificate.

Obtain an X509Certificate object by creating a CertificateFactory for certificate type “X.509”
and then using generateCertificate() to parse an X.509 certificate from a stream of bytes.
Finally, cast the Certificate returned by this method to an X509Certificate.

// Public Methods Overriding Object
public String toString();

}

public class TrustAnchor {
// Public Constructors

public TrustAnchor(X509Certificate trustedCert, byte[] nameConstraints);
5.0 public TrustAnchor(javax.security.auth.x500.X500Principal caPrincipal, java.security.PublicKey pubKey,

byte[] nameConstraints);
public TrustAnchor(String caName, java.security.PublicKey pubKey, byte[] nameConstraints);

// Public Instance Methods
5.0 public final javax.security.auth.x500.X500Principal getCA();

public final String getCAName();
public final java.security.PublicKey getCAPublicKey();
public final byte[] getNameConstraints();
public final X509Certificate getTrustedCert();

// Public Methods Overriding Object
public String toString();

}

Chapter 14: java.security and Subpackages | 703

java.security.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.security.cert.X509CertSelector

Passed To TrustAnchor.TrustAnchor(), X509CertSelector.setCertificate(), X509CRL.getRevokedCertificate(),
X509CRLSelector.setCertificateChecking(), javax.net.ssl.X509TrustManager.{checkClientTrusted(),
checkServerTrusted()}, javax.security.auth.x500.X500PrivateCredential.X500PrivateCredential()

Returned By TrustAnchor.getTrustedCert(), X509CertSelector.getCertificate(),
X509CRLSelector.getCertificateChecking(), javax.net.ssl.X509KeyManager.getCertificateChain(),
javax.net.ssl.X509TrustManager.getAcceptedIssuers(),
javax.security.auth.x500.X500PrivateCredential.getCertificate()

X509CertSelector
java.security.cert

Java 1.4

cloneable

This class is a CertSelector for X.509 certificates. Its various set methods allow you to
specify values for various certificate fields and extensions. The match() method will only
return true for certificates that have the specified values for those fields and extensions.
A full understanding of this class requires detailed knowledge of the X.509 standard
which is beyond the scope of this reference. Some of the more important methods are
described here, however.

When you want to match exactly one specific certificate, simply pass the desired
X509Certificate to setCertificate(). Constrain the subject of the certificate with setSubject(),
setSubjectAlternativeNames(), of addSubjectAlternativeName(). Constrain the issuer of the certifi-
cate with setIssuer(). Constrain the public key of the certificate with setPublicKey().

public abstract class X509Certificate extends java.security.cert.Certificate implements X509Extension {
// Protected Constructors

protected X509Certificate();
// Public Instance Methods

public abstract void checkValidity() throws CertificateExpiredException, CertificateNotYetValidException;
public abstract void checkValidity(java.util.Date date)

throws CertificateExpiredException, CertificateNotYetValidException;
public abstract int getBasicConstraints();

1.4 public java.util.List<String> getExtendedKeyUsage() throws CertificateParsingException;
1.4 public java.util.Collection<java.util.List<?>> getIssuerAlternativeNames() throws CertificateParsingException;

public abstract java.security.Principal getIssuerDN();
public abstract boolean[] getIssuerUniqueID();

1.4 public javax.security.auth.x500.X500Principal getIssuerX500Principal();
public abstract boolean[] getKeyUsage();
public abstract java.util.Date getNotAfter();
public abstract java.util.Date getNotBefore();
public abstract java.math.BigInteger getSerialNumber();
public abstract String getSigAlgName();
public abstract String getSigAlgOID();
public abstract byte[] getSigAlgParams();
public abstract byte[] getSignature();

1.4 public java.util.Collection<java.util.List<?>> getSubjectAlternativeNames() throws CertificateParsingException;
public abstract java.security.Principal getSubjectDN();
public abstract boolean[] getSubjectUniqueID();

1.4 public javax.security.auth.x500.X500Principal getSubjectX500Principal();
public abstract byte[] getTBSCertificate() throws CertificateEncodingException;
public abstract int getVersion();

}

Object Certificate X509Certificate

Serializable X509Extension

704 | Chapter 14: java.security and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.security.cert.X509CertSelector

Constrain the certificate to be valid on a given date with setCertificateValid(). And specify a
specific issuer’s serial number for the certificate with setSerialNumber().

Java 5.0 adds methods for identifying certificate subjects and issuers with javax.secu-
rity.auth.x500.X500Principal objects instead of with strings.

public class X509CertSelector implements CertSelector {
// Public Constructors

public X509CertSelector();
// Public Instance Methods

public void addPathToName(int type, String name) throws java.io.IOException;
public void addPathToName(int type, byte[] name) throws java.io.IOException;
public void addSubjectAlternativeName(int type, byte[] name) throws java.io.IOException;
public void addSubjectAlternativeName(int type, String name) throws java.io.IOException;
public byte[] getAuthorityKeyIdentifier(); default:null
public int getBasicConstraints(); default:-1
public X509Certificate getCertificate(); default:null
public java.util.Date getCertificateValid(); default:null
public java.util.Set<String> getExtendedKeyUsage(); default:null

5.0 public javax.security.auth.x500.X500Principal getIssuer(); default:null
public byte[] getIssuerAsBytes() throws java.io.IOException; default:null
public String getIssuerAsString(); default:null
public boolean[] getKeyUsage(); default:null
public boolean getMatchAllSubjectAltNames(); default:true
public byte[] getNameConstraints(); default:null
public java.util.Collection<java.util.List<?>> getPathToNames(); default:null
public java.util.Set<String> getPolicy(); default:null
public java.util.Date getPrivateKeyValid(); default:null
public java.math.BigInteger getSerialNumber(); default:null

5.0 public javax.security.auth.x500.X500Principal getSubject(); default:null
public java.util.Collection<java.util.List<?>> getSubjectAlternativeNames(); default:null
public byte[] getSubjectAsBytes() throws java.io.IOException; default:null
public String getSubjectAsString(); default:null
public byte[] getSubjectKeyIdentifier(); default:null
public java.security.PublicKey getSubjectPublicKey(); default:null
public String getSubjectPublicKeyAlgID(); default:null
public void setAuthorityKeyIdentifier(byte[] authorityKeyID);
public void setBasicConstraints(int minMaxPathLen);
public void setCertificate(X509Certificate cert);
public void setCertificateValid(java.util.Date certValid);
public void setExtendedKeyUsage(java.util.Set<String> keyPurposeSet) throws java.io.IOException;

5.0 public void setIssuer(javax.security.auth.x500.X500Principal issuer);
public void setIssuer(byte[] issuerDN) throws java.io.IOException;
public void setIssuer(String issuerDN) throws java.io.IOException;
public void setKeyUsage(boolean[] keyUsage);
public void setMatchAllSubjectAltNames(boolean matchAllNames);
public void setNameConstraints(byte[] bytes) throws java.io.IOException;
public void setPathToNames(java.util.Collection<java.util.List<?>> names) throws java.io.IOException;
public void setPolicy(java.util.Set<String> certPolicySet) throws java.io.IOException;
public void setPrivateKeyValid(java.util.Date privateKeyValid);
public void setSerialNumber(java.math.BigInteger serial);

Object X509CertSelector

Cloneable CertSelector

Chapter 14: java.security and Subpackages | 705

java.security.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.security.cert.X509CRL

X509CRL
java.security.cert

Java 1.2

This class represents an X.509 CRL, which consists primarily of a set of X509CRLEntry
objects. The various methods of this class provide access to the full details of the CRL,
and require a complete understanding of the X.509 standard, which is beyond the
scope of this reference. Use verify() to check the digital signature of the CRL to ensure
that it does indeed originate from the the source it specifies. Use the inherited isRevoked()
method to determine whether a given certificate has been revoked. If you are curious
about the revocation date for a revoked certificate, obtain the X509CRLEntry for that certif-
icate by calling getRevokedCertificate(). Call getThisUpdate() to obtain the date this CRL was
issued. Use getNextUpdate() to find if the CRL has been superseded by a newer version.
Use getRevokedCertificates() to obtain a Set of all X509CRLEntry objects from this CRL.

Obtain an X509CRL object by creating a CertificateFactory for certificate type “X.509” and
then using the generateCRL() to parse an X.509 CRL from a stream of bytes. Finally, cast
the CRL returned by this method to an X509CRL.

public void setSubject(String subjectDN) throws java.io.IOException;
5.0 public void setSubject(javax.security.auth.x500.X500Principal subject);

public void setSubject(byte[] subjectDN) throws java.io.IOException;
public void setSubjectAlternativeNames(java.util.Collection<java.util.List<?>> names) throws java.io.IOException;
public void setSubjectKeyIdentifier(byte[] subjectKeyID);
public void setSubjectPublicKey(byte[] key) throws java.io.IOException;
public void setSubjectPublicKey(java.security.PublicKey key);
public void setSubjectPublicKeyAlgID(String oid) throws java.io.IOException;

// Methods Implementing CertSelector
public Object clone();
public boolean match(java.security.cert.Certificate cert);

// Public Methods Overriding Object
public String toString();

}

public abstract class X509CRL extends CRL implements X509Extension {
// Protected Constructors

protected X509CRL();
// Public Instance Methods

public abstract byte[] getEncoded() throws CRLException;
public abstract java.security.Principal getIssuerDN();

1.4 public javax.security.auth.x500.X500Principal getIssuerX500Principal();
public abstract java.util.Date getNextUpdate();

5.0 public X509CRLEntry getRevokedCertificate(X509Certificate certificate);
public abstract X509CRLEntry getRevokedCertificate(java.math.BigInteger serialNumber);
public abstract java.util.Set<? extends X509CRLEntry> getRevokedCertificates();
public abstract String getSigAlgName();
public abstract String getSigAlgOID();
public abstract byte[] getSigAlgParams();
public abstract byte[] getSignature();
public abstract byte[] getTBSCertList() throws CRLException;
public abstract java.util.Date getThisUpdate();
public abstract int getVersion();

Object CRL X509CRL

X509Extension

706 | Chapter 14: java.security and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.security.cert.X509CRLEntry

X509CRLEntry
java.security.cert

Java 1.2

This class represents a single entry in an X509CRL. It contains the serial number and revo-
cation date for a revoked certificate.

Returned By X509CRL.getRevokedCertificate()

X509CRLSelector
java.security.cert

Java 1.4

cloneable

This class is a CRLSelector implementation for X.509 CRLs. The various set methods allow
you to specify criteria that the match() method will use to accept or reject CRL objects.
Use addIssuerName() to specify the distinguished name of an acceptable issuer for the
CRL, or use setIssuerNames() or setIssuers() to specify a Collection of valid issuers. Use
setDateAndTime() to specify a Date for which the CRL must be valid. Use setMinCRLNumber()
and setMaxCRLNumber() to set bounds on the sequence number of the CRL. If you are
selecting a CRL in order to check for revocation of a particular X509Certificate, pass that
certificate to setCertificateChecking(). This method does not actually constrain the returned
CRL objects, but it may help a CertStore optimize its search for a relevant CRL.

public abstract void verify(java.security.PublicKey key)
throws CRLException, java.security.NoSuchAlgorithmException, java.security.InvalidKeyException,
java.security.NoSuchProviderException, java.security.SignatureException;

public abstract void verify(java.security.PublicKey key, String sigProvider)
throws CRLException, java.security.NoSuchAlgorithmException, java.security.InvalidKeyException,
java.security.NoSuchProviderException, java.security.SignatureException;

// Public Methods Overriding Object
public boolean equals(Object other);
public int hashCode();

}

public abstract class X509CRLEntry implements X509Extension {
// Public Constructors

public X509CRLEntry();
// Public Instance Methods
5.0 public javax.security.auth.x500.X500Principal getCertificateIssuer(); constant

public abstract byte[] getEncoded() throws CRLException;
public abstract java.util.Date getRevocationDate();
public abstract java.math.BigInteger getSerialNumber();
public abstract boolean hasExtensions();

// Public Methods Overriding Object
public boolean equals(Object other);
public int hashCode();
public abstract String toString();

}

public class X509CRLSelector implements CRLSelector {
// Public Constructors

public X509CRLSelector();

Object X509CRLEntry X509Extension

Object X509CRLSelector

Cloneable CRLSelector

Chapter 14: java.security and Subpackages | 707

java.security.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

.Package java.security.interfaces

X509Extension
java.security.cert

Java 1.2

This interface defines methods for handling a set of extensions to X.509 certificates
and CRLs. Each extension has a name, or OID (object identifier), that identifies the
type of the extension. An extension may be marked critical or noncritical. Noncritical
extensions whose OIDs are not recognized can safely be ignored. However, if a critical
exception is not recognized, the Certificate or CRL should be rejected. Each extension in
the set has a byte array of data as its value. The interpretation of these bytes depends
on the OID of the extension, of course. Specific extensions are defined by the X.509
and related standards and their details are beyond the scope of this reference.

Implementations X509Certificate, X509CRL, X509CRLEntry

Package java.security.interfaces Java 1.1

As its name implies, the java.security.interfaces package contains only interfaces. These inter-
faces define methods that provide algorithm-specific information (such as key values and
initialization parameter values) about DSA, RSA, and EC public and private keys. If you
are using the RSA algorithm, for example, and working with a java.security.PublicKey object,
you can cast that PublicKey to an RSAPublicKey object and use the RSA-specific methods
defined by RSAPublicKey to query the key value directly.

// Public Instance Methods
5.0 public void addIssuer(javax.security.auth.x500.X500Principal issuer);

public void addIssuerName(String name) throws java.io.IOException;
public void addIssuerName(byte[] name) throws java.io.IOException;
public X509Certificate getCertificateChecking(); default:null
public java.util.Date getDateAndTime(); default:null
public java.util.Collection<Object> getIssuerNames(); default:null

5.0 public java.util.Collection<javax.security.auth.x500.X500Principal> getIssuers(); default:null
public java.math.BigInteger getMaxCRL(); default:null
public java.math.BigInteger getMinCRL(); default:null
public void setCertificateChecking(X509Certificate cert);
public void setDateAndTime(java.util.Date dateAndTime);
public void setIssuerNames(java.util.Collection<?> names) throws java.io.IOException;

5.0 public void setIssuers(java.util.Collection<javax.security.auth.x500.X500Principal> issuers);
public void setMaxCRLNumber(java.math.BigInteger maxCRL);
public void setMinCRLNumber(java.math.BigInteger minCRL);

// Methods Implementing CRLSelector
public Object clone();
public boolean match(CRL crl);

// Public Methods Overriding Object
public String toString();

}

public interface X509Extension {
// Public Instance Methods

java.util.Set<String> getCriticalExtensionOIDs();
byte[] getExtensionValue(String oid);
java.util.Set<String> getNonCriticalExtensionOIDs();
boolean hasUnsupportedCriticalExtension();

}

708 | Chapter 14: java.security and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.security.interfaces.DSAKey

The java.security.interfaces package was introduced in Java 1.1. As of Java 1.2, the
java.security.spec package is the preferred way for obtaining algorithm-specific informa-
tion about keys and algorithm parameters. This package remains useful in Java 1.2
and later, however, for identifying the type of a given PublicKey or PrivateKey object.

The interfaces in this package are typically of interest only to programmers who are
implementing a security provider or who want to implement cryptographic algorithms
themselves. Use of this package typically requires some familiarity with the mathe-
matics underlying DSA and RSA public-key cryptography.

Interfaces
public interface DSAKey;
public interface DSAKeyPairGenerator;
public interface DSAParams;
public interface DSAPrivateKey extends DSAKey, java.security.PrivateKey;
public interface DSAPublicKey extends DSAKey, java.security.PublicKey;
public interface ECKey;
public interface ECPrivateKey extends ECKey, java.security.PrivateKey;
public interface ECPublicKey extends ECKey, java.security.PublicKey;
public interface RSAKey;
public interface RSAMultiPrimePrivateCrtKey extends RSAPrivateKey;
public interface RSAPrivateCrtKey extends RSAPrivateKey;
public interface RSAPrivateKey extends java.security.PrivateKey, RSAKey;
public interface RSAPublicKey extends java.security.PublicKey, RSAKey;

DSAKey
java.security.interfaces

Java 1.1

This interface defines a method that must be implemented by both public and private
DSA keys.

Implementations DSAPrivateKey, DSAPublicKey

DSAKeyPairGenerator
java.security.interfaces

Java 1.1

This interface defines algorithm-specific KeyPairGenerator initialization methods for DSA
keys. To generate a pair of DSA keys, use the static getInstance() factory method of
java.security.KeyPairGenerator and specify “DSA” as the desired algorithm name. If you wish
to perform DSA-specific initialization, cast the returned KeyPairGenerator to a DSAKeyPairGen-
erator and call one of the initialize() methods defined by this interface. Finally, generate
the keys by calling generateKeyPair() on the KeyPairGenerator.

public interface DSAKey {
// Public Instance Methods

DSAParams getParams();
}

public interface DSAKeyPairGenerator {
// Public Instance Methods

void initialize(DSAParams params, java.security.SecureRandom random)
throws java.security.InvalidParameterException;

void initialize(int modlen, boolean genParams, java.security.SecureRandom random)
throws java.security.InvalidParameterException;

}

Chapter 14: java.security and Subpackages | 709

java.security.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.security.interfaces.DSAPublicKey

DSAParams
java.security.interfaces

Java 1.1

This interface defines methods for obtaining the DSA parameters g, p, and q. These
methods are useful only if you wish to perform cryptographic computation yourself.
Using these methods requires a detailed understanding of the mathematics underlying
DSA public-key cryptography.

Implementations java.security.spec.DSAParameterSpec

Passed To DSAKeyPairGenerator.initialize()

Returned By DSAKey.getParams()

DSAPrivateKey
java.security.interfaces

Java 1.1

serializable

This interface represents a DSA private key and provides direct access to the under-
lying key value. If you are working with a private key you know is a DSA key, you can
cast the PrivateKey to a DSAPrivateKey.

DSAPublicKey
java.security.interfaces

Java 1.1

serializable

This interface represents a DSA public key and provides direct access to the under-
lying key value. If you are working with a public key you know is a DSA key, you can
cast the PublicKey to a DSAPublicKey.

public interface DSAParams {
// Public Instance Methods

java.math.BigInteger getG();
java.math.BigInteger getP();
java.math.BigInteger getQ();

}

public interface DSAPrivateKey extends DSAKeyjava.security.PrivateKey {
// Public Constants
1.2 public static final long serialVersionUID; =7776497482533790279
// Public Instance Methods

java.math.BigInteger getX();
}

public interface DSAPublicKey extends DSAKeyjava.security.PublicKey {
// Public Constants
1.2 public static final long serialVersionUID; =1234526332779022332
// Public Instance Methods

java.math.BigInteger getY();
}

DSAPrivateKey

DSAKey Serializable Key PrivateKey

DSAPublicKey

DSAKey Serializable Key PublicKey

710 | Chapter 14: java.security and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.security.interfaces.ECKey

ECKey
java.security.interfaces

Java 5.0

This interface defines the API that must be implemented by all elliptic curve keys.

Implementations ECPrivateKey, ECPublicKey

ECPrivateKey
java.security.interfaces

Java 5.0

serializable

This interface defines an API that must be implemented by all elliptic curve private
keys.

ECPublicKey
java.security.interfaces

Java 5.0

serializable

This interface defines an API that must be implemented by all elliptic curve public keys.

RSAKey
java.security.interfaces

Java 1.3

This is a superinterface for RSAPublicKey and RSAPrivateKey; it defines a method shared by
both classes. Prior to Java 1.3, the getModulus() method was defined independently by
RSAPublicKey and RSAPrivateKey.

Implementations RSAPrivateKey, RSAPublicKey

public interface ECKey {
// Public Instance Methods

java.security.spec.ECParameterSpec getParams();
}

public interface ECPrivateKey extends ECKeyjava.security.PrivateKey {
// Public Constants

public static final long serialVersionUID; =-7896394956925609184
// Public Instance Methods

java.math.BigInteger getS();
}

public interface ECPublicKey extends ECKeyjava.security.PublicKey {
// Public Constants

public static final long serialVersionUID; =-3314988629879632826
// Public Instance Methods

java.security.spec.ECPoint getW();
}

public interface RSAKey {
// Public Instance Methods

java.math.BigInteger getModulus();
}

ECPrivateKey

ECKey Serializable Key PrivateKey

ECPublicKey

ECKey Serializable Key PublicKey

Chapter 14: java.security and Subpackages | 711

java.security.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.security.interfaces.RSAPrivateCrtKey

RSAMultiPrimePrivateCrtKey
java.security.interfaces

Java 1.4

serializable

This interface extends RSAPrivateKey and provides a decomposition of the private key into
the various numbers used to create it. This interface is very similar to RSAPrivateCrtKey,
except that it is used to represent RSA private keys that are based on more than two
prime factors, and implements the addition getOtherPrimeInfo() method to return informa-
tion about these additional prime numbers.

RSAPrivateCrtKey
java.security.interfaces

Java 1.2

serializable

This interface extends RSAPrivateKey and provides a decomposition (based on the Chinese
remainder theorem) of the private-key value into the various pieces that comprise it.
This interface is useful only if you plan to implement your own cryptographic algo-
rithms. To use this interface, you must have a detailed understanding of the
mathematics underlying RSA public-key cryptography. Given a java.security.PrivateKey
object, you can use the instanceof operator to determine whether you can safely cast it to
an RSAPrivateCrtKey.

public interface RSAMultiPrimePrivateCrtKey extends RSAPrivateKey {
// Public Constants
5.0 public static final long serialVersionUID; =618058533534628008
// Public Instance Methods

java.math.BigInteger getCrtCoefficient();
java.security.spec.RSAOtherPrimeInfo[] getOtherPrimeInfo();
java.math.BigInteger getPrimeExponentP();
java.math.BigInteger getPrimeExponentQ();
java.math.BigInteger getPrimeP();
java.math.BigInteger getPrimeQ();
java.math.BigInteger getPublicExponent();

}

public interface RSAPrivateCrtKey extends RSAPrivateKey {
// Public Constants
5.0 public static final long serialVersionUID; =-5682214253527700368
// Public Instance Methods

java.math.BigInteger getCrtCoefficient();
java.math.BigInteger getPrimeExponentP();
java.math.BigInteger getPrimeExponentQ();
java.math.BigInteger getPrimeP();
java.math.BigInteger getPrimeQ();
java.math.BigInteger getPublicExponent();

}

RSAPrivateKey RSAMultiPrimePrivateCrtKey

Serializable Key PrivateKey RSAKey

RSAPrivateKey RSAPrivateCrtKey

Serializable Key PrivateKey RSAKey

712 | Chapter 14: java.security and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.security.interfaces.RSAPrivateKey

RSAPrivateKey
java.security.interfaces

Java 1.2

serializable

This interface represents an RSA private key and provides direct access to the under-
lying key values. If you are working with a private key you know is an RSA key, you
can cast the PrivateKey to an RSAPrivateKey.

Implementations RSAMultiPrimePrivateCrtKey, RSAPrivateCrtKey

RSAPublicKey
java.security.interfaces

Java 1.2

serializable

This interface represents an RSA public key and provides direct access to the under-
lying key values. If you are working with a public key you know is an RSA key, you
can cast the PublicKey to an RSAPublicKey.

Package java.security.spec Java 1.2

The java.security.spec package contains classes that define transparent representations for
DSA, RSA, and EC public and private keys and for X.509 and PKCS#8 encodings of
those keys. It also defines a transparent representation for DSA algorithm parameters.
The classes in this package are used in conjunction with java.security.KeyFactory and java.secu-
rity.AlgorithmParameters for converting opaque Key and AlgorithmParameters objects to and from
transparent representations.

This package is not frequently used. To make use of it, you must be somewhat familiar
with the mathematics that underlies DSA and RSA public-key encryption and the
encoding standards that specify how keys are encoded as byte streams.

Interfaces
public interface AlgorithmParameterSpec;
public interface ECField;
public interface KeySpec;

public interface RSAPrivateKey extends java.security.PrivateKeyRSAKey {
// Public Constants
5.0 public static final long serialVersionUID; =5187144804936595022
// Public Instance Methods

java.math.BigInteger getPrivateExponent();
}

public interface RSAPublicKey extends java.security.PublicKeyRSAKey {
// Public Constants
5.0 public static final long serialVersionUID; =-8727434096241101194
// Public Instance Methods

java.math.BigInteger getPublicExponent();
}

RSAPrivateKey

Serializable Key PrivateKey RSAKey

RSAPublicKey

Serializable Key PublicKey RSAKey

Chapter 14: java.security and Subpackages | 713

java.security.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.security.spec.DSAParameterSpec

Classes
public class DSAParameterSpec implements AlgorithmParameterSpec, java.security.interfaces.DSAParams;
public class DSAPrivateKeySpec implements KeySpec;
public class DSAPublicKeySpec implements KeySpec;
public class ECFieldF2m implements ECField;
public class ECFieldFp implements ECField;
public class ECGenParameterSpec implements AlgorithmParameterSpec;
public class ECParameterSpec implements AlgorithmParameterSpec;
public class ECPoint;
public class ECPrivateKeySpec implements KeySpec;
public class ECPublicKeySpec implements KeySpec;
public class EllipticCurve;
public abstract class EncodedKeySpec implements KeySpec;

public class PKCS8EncodedKeySpec extends EncodedKeySpec;
public class X509EncodedKeySpec extends EncodedKeySpec;

public class MGF1ParameterSpec implements AlgorithmParameterSpec;
public class PSSParameterSpec implements AlgorithmParameterSpec;
public class RSAKeyGenParameterSpec implements AlgorithmParameterSpec;
public class RSAOtherPrimeInfo;
public class RSAPrivateKeySpec implements KeySpec;

public class RSAMultiPrimePrivateCrtKeySpec extends RSAPrivateKeySpec;
public class RSAPrivateCrtKeySpec extends RSAPrivateKeySpec;

public class RSAPublicKeySpec implements KeySpec;

Exceptions
public class InvalidKeySpecException extends java.security.GeneralSecurityException;
public class InvalidParameterSpecException extends java.security.GeneralSecurityException;

AlgorithmParameterSpec
java.security.spec

Java 1.2

This interface defines no methods; it marks classes that define a transparent represen-
tation of cryptographic parameters. You can use an AlgorithmParameterSpec object to
initialize an opaque java.security.AlgorithmParameters object.

Implementations DSAParameterSpec, ECGenParameterSpec, ECParameterSpec, MGF1ParameterSpec,
PSSParameterSpec, RSAKeyGenParameterSpec, javax.crypto.spec.DHGenParameterSpec,
javax.crypto.spec.DHParameterSpec, javax.crypto.spec.IvParameterSpec, javax.crypto.spec.OAEPParameterSpec,
javax.crypto.spec.PBEParameterSpec, javax.crypto.spec.RC2ParameterSpec, javax.crypto.spec.RC5ParameterSpec

Passed To Too many methods to list.

Returned By java.security.AlgorithmParameters.getParameterSpec(),
java.security.AlgorithmParametersSpi.engineGetParameterSpec(), PSSParameterSpec.getMGFParameters(),
javax.crypto.Cipher.getMaxAllowedParameterSpec(), javax.crypto.spec.OAEPParameterSpec.getMGFParameters()

DSAParameterSpec
java.security.spec

Java 1.2

This class represents algorithm parameters used with DSA public-key cryptography.

public interface AlgorithmParameterSpec {
}

714 | Chapter 14: java.security and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.security.spec.DSAPrivateKeySpec

DSAPrivateKeySpec
java.security.spec

Java 1.2

This class is a transparent representation of a DSA private key.

DSAPublicKeySpec
java.security.spec

Java 1.2

This class is a transparent representation of a DSA public key.

ECField
java.security.spec

Java 5.0

This interface represents a “finite field” for elliptic curve cryptography.

public class DSAParameterSpec implements AlgorithmParameterSpec, java.security.interfaces.DSAParams {
// Public Constructors

public DSAParameterSpec(java.math.BigInteger p, java.math.BigInteger q, java.math.BigInteger g);
// Methods Implementing DSAParams

public java.math.BigInteger getG();
public java.math.BigInteger getP();
public java.math.BigInteger getQ();

}

public class DSAPrivateKeySpec implements KeySpec {
// Public Constructors

public DSAPrivateKeySpec(java.math.BigInteger x, java.math.BigInteger p, java.math.BigInteger q,
java.math.BigInteger g);

// Public Instance Methods
public java.math.BigInteger getG();
public java.math.BigInteger getP();
public java.math.BigInteger getQ();
public java.math.BigInteger getX();

}

public class DSAPublicKeySpec implements KeySpec {
// Public Constructors

public DSAPublicKeySpec(java.math.BigInteger y, java.math.BigInteger p, java.math.BigInteger q, java.math.BigInteger g);
// Public Instance Methods

public java.math.BigInteger getG();
public java.math.BigInteger getP();
public java.math.BigInteger getQ();
public java.math.BigInteger getY();

}

public interface ECField {
// Public Instance Methods

int getFieldSize();
}

Object DSAParameterSpec

AlgorithmParameterSpec DSAParams

Object DSAPrivateKeySpec KeySpec

Object DSAPublicKeySpec KeySpec

Chapter 14: java.security and Subpackages | 715

java.security.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.security.spec.ECGenParameterSpec

Implementations ECFieldF2m, ECFieldFp

Passed To EllipticCurve.EllipticCurve()

Returned By EllipticCurve.getField()

ECFieldF2m
java.security.spec

Java 5.0

This class defines an immutable representation of a “characteristic 2 finite field” for
elliptic curve cryptography.

ECFieldFp
java.security.spec

Java 5.0

This class defines an immutable representation of a “prime finite field” for elliptic
curve cryptography.

ECGenParameterSpec
java.security.spec

Java 5.0

This class specifies parameters for generating elliptic curve domain parameters.

public class ECFieldF2m implements ECField {
// Public Constructors

public ECFieldF2m(int m);
public ECFieldF2m(int m, int[] ks);
public ECFieldF2m(int m, java.math.BigInteger rp);

// Public Instance Methods
public int getM();
public int[] getMidTermsOfReductionPolynomial();
public java.math.BigInteger getReductionPolynomial();

// Methods Implementing ECField
public int getFieldSize();

// Public Methods Overriding Object
public boolean equals(Object obj);
public int hashCode();

}

public class ECFieldFp implements ECField {
// Public Constructors

public ECFieldFp(java.math.BigInteger p);
// Public Instance Methods

public java.math.BigInteger getP();
// Methods Implementing ECField

public int getFieldSize();
// Public Methods Overriding Object

public boolean equals(Object obj);
public int hashCode();

}

Object ECFieldF2m ECField

Object ECFieldFp ECField

Object ECGenParameterSpec AlgorithmParameterSpec

716 | Chapter 14: java.security and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.security.spec.ECParameterSpec

ECParameterSpec
java.security.spec

Java 5.0

This class defines an immutable representation for a set of parameters for elliptic curve
cryptography.

Passed To ECPrivateKeySpec.ECPrivateKeySpec(), ECPublicKeySpec.ECPublicKeySpec()

Returned By java.security.interfaces.ECKey.getParams(), ECPrivateKeySpec.getParams(),
ECPublicKeySpec.getParams()

ECPoint
java.security.spec

Java 5.0

This class defines an immutable representation of a point on an elliptic curve, using
affine coordinates.

Passed To ECParameterSpec.ECParameterSpec(), ECPublicKeySpec.ECPublicKeySpec()

Returned By java.security.interfaces.ECPublicKey.getW(), ECParameterSpec.getGenerator(),
ECPublicKeySpec.getW()

public class ECGenParameterSpec implements AlgorithmParameterSpec {
// Public Constructors

public ECGenParameterSpec(String stdName);
// Public Instance Methods

public String getName();
}

public class ECParameterSpec implements AlgorithmParameterSpec {
// Public Constructors

public ECParameterSpec(EllipticCurve curve, ECPoint g, java.math.BigInteger n, int h);
// Public Instance Methods

public int getCofactor();
public EllipticCurve getCurve();
public ECPoint getGenerator();
public java.math.BigInteger getOrder();

}

public class ECPoint {
// Public Constructors

public ECPoint(java.math.BigInteger x, java.math.BigInteger y);
// Public Constants

public static final ECPoint POINT_INFINITY;
// Public Instance Methods

public java.math.BigInteger getAffineX();
public java.math.BigInteger getAffineY();

// Public Methods Overriding Object
public boolean equals(Object obj);
public int hashCode();

}

Object ECParameterSpec AlgorithmParameterSpec

Chapter 14: java.security and Subpackages | 717

java.security.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.security.spec.EllipticCurve

ECPrivateKeySpec
java.security.spec

Java 5.0

This class is an immutable representation of a private key for elliptic curve
cryptography.

ECPublicKeySpec
java.security.spec

Java 5.0

This class is an immutable representation of a public key for elliptic curve
cryptography.

EllipticCurve
java.security.spec

Java 5.0

This class is an immutable representation of an elliptic curve. See ECParameterSpec.

Passed To ECParameterSpec.ECParameterSpec()

Returned By ECParameterSpec.getCurve()

public class ECPrivateKeySpec implements KeySpec {
// Public Constructors

public ECPrivateKeySpec(java.math.BigInteger s, ECParameterSpec params);
// Public Instance Methods

public ECParameterSpec getParams();
public java.math.BigInteger getS();

}

public class ECPublicKeySpec implements KeySpec {
// Public Constructors

public ECPublicKeySpec(ECPoint w, ECParameterSpec params);
// Public Instance Methods

public ECParameterSpec getParams();
public ECPoint getW();

}

public class EllipticCurve {
// Public Constructors

public EllipticCurve(ECField field, java.math.BigInteger a, java.math.BigInteger b);
public EllipticCurve(ECField field, java.math.BigInteger a, java.math.BigInteger b, byte[] seed);

// Public Instance Methods
public java.math.BigInteger getA();
public java.math.BigInteger getB();
public ECField getField();
public byte[] getSeed();

// Public Methods Overriding Object
public boolean equals(Object obj);
public int hashCode();

}

Object ECPrivateKeySpec KeySpec

Object ECPublicKeySpec KeySpec

718 | Chapter 14: java.security and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.security.spec.EncodedKeySpec

EncodedKeySpec
java.security.spec

Java 1.2

This abstract class represents a public or private key in an encoded format. It serves as
the superclass for encoding-specific classes.

Subclasses PKCS8EncodedKeySpec, X509EncodedKeySpec

InvalidKeySpecException
java.security.spec

Java 1.2

serializable checked

Signals a problem with a KeySpec.

Thrown By java.security.KeyFactory.{generatePrivate(), generatePublic(), getKeySpec()},
java.security.KeyFactorySpi.{engineGeneratePrivate(), engineGeneratePublic(), engineGetKeySpec()},
javax.crypto.EncryptedPrivateKeyInfo.getKeySpec(), javax.crypto.SecretKeyFactory.{generateSecret(),
getKeySpec()}, javax.crypto.SecretKeyFactorySpi.{engineGenerateSecret(), engineGetKeySpec()}

InvalidParameterSpecException
java.security.spec

Java 1.2

serializable checked

Signals a problem with an AlgorithmParameterSpec.

Thrown By java.security.AlgorithmParameters.{getParameterSpec(), init()},
java.security.AlgorithmParametersSpi.{engineGetParameterSpec(), engineInit()}

public abstract class EncodedKeySpec implements KeySpec {
// Public Constructors

public EncodedKeySpec(byte[] encodedKey);
// Public Instance Methods

public byte[] getEncoded();
public abstract String getFormat();

}

public class InvalidKeySpecException extends java.security.GeneralSecurityException {
// Public Constructors

public InvalidKeySpecException();
5.0 public InvalidKeySpecException(Throwable cause);

public InvalidKeySpecException(String msg);
5.0 public InvalidKeySpecException(String message, Throwable cause);
}

public class InvalidParameterSpecException extends java.security.GeneralSecurityException {
// Public Constructors

public InvalidParameterSpecException();
public InvalidParameterSpecException(String msg);

}

Object EncodedKeySpec KeySpec

Object Throwable Exception GeneralSecurityException InvalidKeySpecException

Serializable

Object Throwable Exception GeneralSecurityException InvalidParameterSpecException

Serializable

Chapter 14: java.security and Subpackages | 719

java.security.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.security.spec.PKCS8EncodedKeySpec

KeySpec
java.security.spec

Java 1.2

This interface defines no methods; it marks classes that define a transparent represen-
tation of a cryptographic key. Use a java.security.KeyFactory to convert a KeySpec to and from
an opaque java.security.Key.

Implementations DSAPrivateKeySpec, DSAPublicKeySpec, ECPrivateKeySpec, ECPublicKeySpec,
EncodedKeySpec, RSAPrivateKeySpec, RSAPublicKeySpec, javax.crypto.spec.DESedeKeySpec,
javax.crypto.spec.DESKeySpec, javax.crypto.spec.DHPrivateKeySpec, javax.crypto.spec.DHPublicKeySpec,
javax.crypto.spec.PBEKeySpec, javax.crypto.spec.SecretKeySpec

Passed To java.security.KeyFactory.{generatePrivate(), generatePublic()},
java.security.KeyFactorySpi.{engineGeneratePrivate(), engineGeneratePublic()},
javax.crypto.SecretKeyFactory.generateSecret(), javax.crypto.SecretKeyFactorySpi.engineGenerateSecret()

Returned By java.security.KeyFactory.getKeySpec(), java.security.KeyFactorySpi.engineGetKeySpec(),
javax.crypto.SecretKeyFactory.getKeySpec(), javax.crypto.SecretKeyFactorySpi.engineGetKeySpec()

MGF1ParameterSpec
java.security.spec

Java 5.0

This class represents parameters for “mask generation function” MGF1 of the OAEP
Padding and RSA-PSS signature scheme, defined in the PKCS #1 standard, version 2.1.
The constants represent predefined instances of the class, whose digest algorithm
matches the constant name.

PKCS8EncodedKeySpec
java.security.spec

Java 1.2

This class represents a private key, encoded according to the PKCS#8 standard.

public interface KeySpec {
}

public class MGF1ParameterSpec implements AlgorithmParameterSpec {
// Public Constructors

public MGF1ParameterSpec(String mdName);
// Public Constants

public static final MGF1ParameterSpec SHA1;
public static final MGF1ParameterSpec SHA256;
public static final MGF1ParameterSpec SHA384;
public static final MGF1ParameterSpec SHA512;

// Public Instance Methods
public String getDigestAlgorithm();

}

public class PKCS8EncodedKeySpec extends EncodedKeySpec {
// Public Constructors

public PKCS8EncodedKeySpec(byte[] encodedKey);
// Public Methods Overriding EncodedKeySpec

Object MGF1ParameterSpec AlgorithmParameterSpec

Object EncodedKeySpec PKCS8EncodedKeySpec

KeySpec

720 | Chapter 14: java.security and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.security.spec.PSSParameterSpec

Returned By javax.crypto.EncryptedPrivateKeyInfo.getKeySpec()

PSSParameterSpec
java.security.spec

Java 1.4

This class represents algorithm parameters used with the RSA PSS encoding scheme,
which is defined by version 2.1 of the RSA standard PKCS#1. This class has been
substantially enhanced in Java 5.0.

RSAKeyGenParameterSpec
java.security.spec

Java 1.3

This class represents parameters that generate public/private key pairs for RSA
cryptography.

public byte[] getEncoded();
public final String getFormat();

}

public class PSSParameterSpec implements AlgorithmParameterSpec {
// Public Constructors

public PSSParameterSpec(int saltLen);
5.0 public PSSParameterSpec(String mdName, String mgfName, AlgorithmParameterSpec mgfSpec, int saltLen,

int trailerField);
// Public Constants
5.0 public static final PSSParameterSpec DEFAULT;
// Public Instance Methods
5.0 public String getDigestAlgorithm();
5.0 public String getMGFAlgorithm();
5.0 public AlgorithmParameterSpec getMGFParameters();

public int getSaltLength();
5.0 public int getTrailerField();
}

public class RSAKeyGenParameterSpec implements AlgorithmParameterSpec {
// Public Constructors

public RSAKeyGenParameterSpec(int keysize, java.math.BigInteger publicExponent);
// Public Constants

public static final java.math.BigInteger F0;
public static final java.math.BigInteger F4;

// Public Instance Methods
public int getKeysize();
public java.math.BigInteger getPublicExponent();

}

Object PSSParameterSpec AlgorithmParameterSpec

Object RSAKeyGenParameterSpec AlgorithmParameterSpec

Chapter 14: java.security and Subpackages | 721

java.security.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.security.spec.RSAPrivateCrtKeySpec

RSAMultiPrimePrivateCrtKeySpec
java.security.spec

Java 1.4

This class is a transparent representation of a multi-prime RSA private key. It is very
similar to RSAPrivateCrtKeySpec, but adds an additional method for obtaining information
about the other primes associated with the key.

RSAOtherPrimeInfo
java.security.spec

Java 1.4

This class represents the (prime, exponent, coefficient) triplet that constitues an
“OtherPrimeInfo” structure that is used with RSA multi-prime private keys, as defined
in version 2.1 of the PKCS#1 standard.

Passed To RSAMultiPrimePrivateCrtKeySpec.RSAMultiPrimePrivateCrtKeySpec()

Returned By java.security.interfaces.RSAMultiPrimePrivateCrtKey.getOtherPrimeInfo(),
RSAMultiPrimePrivateCrtKeySpec.getOtherPrimeInfo()

RSAPrivateCrtKeySpec
java.security.spec

Java 1.2

This class is a transparent representation of an RSA private key including, for conve-
nience, the Chinese remainder theorem values associated with the key.

public class RSAMultiPrimePrivateCrtKeySpec extends RSAPrivateKeySpec {
// Public Constructors

public RSAMultiPrimePrivateCrtKeySpec(java.math.BigInteger modulus, java.math.BigInteger publicExponent,
java.math.BigInteger privateExponent, java.math.BigInteger primeP,
java.math.BigInteger primeQ, java.math.BigInteger primeExponentP ,
java.math.BigInteger primeExponentQ, java.math.BigInteger crtCoefficient,
RSAOtherPrimeInfo[] otherPrimeInfo);

// Public Instance Methods
public java.math.BigInteger getCrtCoefficient();
public RSAOtherPrimeInfo[] getOtherPrimeInfo();
public java.math.BigInteger getPrimeExponentP();
public java.math.BigInteger getPrimeExponentQ();
public java.math.BigInteger getPrimeP();
public java.math.BigInteger getPrimeQ();
public java.math.BigInteger getPublicExponent();

}

public class RSAOtherPrimeInfo {
// Public Constructors

public RSAOtherPrimeInfo(java.math.BigInteger prime, java.math.BigInteger primeExponent,
java.math.BigInteger crtCoefficient);

// Public Instance Methods
public final java.math.BigInteger getCrtCoefficient();
public final java.math.BigInteger getExponent();
public final java.math.BigInteger getPrime();

}

Object RSAPrivateKeySpec RSAMultiPrimePrivateCrtKeySpec

KeySpec

722 | Chapter 14: java.security and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.security.spec.RSAPrivateKeySpec

RSAPrivateKeySpec
java.security.spec

Java 1.2

This class is a transparent representation of an RSA private key.

Subclasses RSAMultiPrimePrivateCrtKeySpec, RSAPrivateCrtKeySpec

RSAPublicKeySpec
java.security.spec

Java 1.2

This class is a transparent representation of an RSA public key.

X509EncodedKeySpec
java.security.spec

Java 1.2

This class represents a public or private key encoded according to the X.509 standard.

public class RSAPrivateCrtKeySpec extends RSAPrivateKeySpec {
// Public Constructors

public RSAPrivateCrtKeySpec(java.math.BigInteger modulus, java.math.BigInteger publicExponent,
java.math.BigInteger privateExponent, java.math.BigInteger primeP,
java.math.BigInteger primeQ, java.math.BigInteger primeExponentP,
java.math.BigInteger primeExponentQ, java.math.BigInteger crtCoefficient);

// Public Instance Methods
public java.math.BigInteger getCrtCoefficient();
public java.math.BigInteger getPrimeExponentP();
public java.math.BigInteger getPrimeExponentQ();
public java.math.BigInteger getPrimeP();
public java.math.BigInteger getPrimeQ();
public java.math.BigInteger getPublicExponent();

}

public class RSAPrivateKeySpec implements KeySpec {
// Public Constructors

public RSAPrivateKeySpec(java.math.BigInteger modulus, java.math.BigInteger privateExponent);
// Public Instance Methods

public java.math.BigInteger getModulus();
public java.math.BigInteger getPrivateExponent();

}

public class RSAPublicKeySpec implements KeySpec {
// Public Constructors

public RSAPublicKeySpec(java.math.BigInteger modulus, java.math.BigInteger publicExponent);
// Public Instance Methods

public java.math.BigInteger getModulus();
public java.math.BigInteger getPublicExponent();

}

Object RSAPrivateKeySpec RSAPrivateCrtKeySpec

KeySpec

Object RSAPrivateKeySpec KeySpec

Object RSAPublicKeySpec KeySpec

Chapter 14: java.security and Subpackages | 723

java.security.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.security.spec.X509EncodedKeySpec

public class X509EncodedKeySpec extends EncodedKeySpec {
// Public Constructors

public X509EncodedKeySpec(byte[] encodedKey);
// Public Methods Overriding EncodedKeySpec

public byte[] getEncoded();
public final String getFormat();

}

Object EncodedKeySpec X509EncodedKeySpec

KeySpec

724

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Chapter 15java.text

15
java.text

Package java.text Java 1.1

The java.text package consists of classes and interfaces that are useful for writing inter-
nationalized programs that handle local customs, such as date and time formatting
and string alphabetization, correctly.

The NumberFormat class formats numbers, monetary quantities, and percentages as
appropriate for the default or specified locale. DateFormat formats dates and times in a
locale-specific way. The concrete DecimalFormat and SimpleDateFormat subclasses of these
classes can be used for customized number, date, and time formatting. MessageFormat
allows substitution of dynamic values, including formatted numbers and dates, into
static message strings. ChoiceFormat formats a number using an enumerated set of string
values. See the Format superclass for a general description of formatting and parsing
strings with these classes. Collator compares strings according to the customary sorting
order for a locale. BreakIterator scans text to find word, line, and sentence boundaries
following locale-specific rules. The Bidi class of Java 1.4 implements the Unicode “bidi-
rectional” algorithm for working with languages such as Arabic and Hebrew that
display text right-to-left but display numbers left-to-right.

Interfaces
public interface AttributedCharacterIterator extends CharacterIterator;
public interface CharacterIterator extends Cloneable;

Classes
public class Annotation;
public static class AttributedCharacterIterator.Attribute implements Serializable;

public static class Format.Field extends AttributedCharacterIterator.Attribute;
public static class DateFormat.Field extends Format.Field;
public static class MessageFormat.Field extends Format.Field;
public static class NumberFormat.Field extends Format.Field;

public class AttributedString;

Chapter 15: java.text | 725

java.text

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.text.AttributedCharacterIterator

public final class Bidi;
public abstract class BreakIterator implements Cloneable;
public final class CollationElementIterator;
public final class CollationKey implements Comparable<CollationKey>;
public abstract class Collator implements java.util.Comparator<Object>, Cloneable;

public class RuleBasedCollator extends Collator;
public class DateFormatSymbols implements Cloneable, Serializable;
public final class DecimalFormatSymbols implements Cloneable, Serializable;
public class FieldPosition;
public abstract class Format implements Cloneable, Serializable;

public abstract class DateFormat extends Format;
public class SimpleDateFormat extends DateFormat;

public class MessageFormat extends Format;
public abstract class NumberFormat extends Format;

public class ChoiceFormat extends NumberFormat;
public class DecimalFormat extends NumberFormat;

public class ParsePosition;
public final class StringCharacterIterator implements CharacterIterator;

Exceptions
public class ParseException extends Exception;

Annotation
java.text

Java 1.2

This class is a wrapper for a the value of a text attribute that represents an annotation.
Annotations differ from other types of text attributes in two ways. First, annotations
are linked to the text they are applied to, so changing the text invalidates or corrupts
the meaning of the annotation. Second, annotations cannot be merged with adjacent
annotations, even if they have the same value. Putting an annotation value in an Annota-
tion wrapper serves to indicate these special characteristics. Note that two of the
attribute keys defined by AttributedCharaterIterator.Attribute, READING and INPUT_METHOD_SEGMENT,
must be used with Annotation objects.

AttributedCharacterIterator
java.text

Java 1.2

cloneable

This interface extends CharacterIterator for working with text that is marked up with
attributes in some way. It defines an inner class, AttributedCharaterIterator.Attribute, that
represents attribute keys. AttributedCharacterIterator defines methods for querying the
attribute keys, values, and runs for the text being iterated over. getAllAttributeKeys()
returns the Set of all attribute keys that appear anywhere in the text. getAttributes()
returns a Map that contains the attribute keys and values that apply to the current char-
acter. getAttribute() returns the value associated with the specified attribute key for the
current character.

public class Annotation {
// Public Constructors

public Annotation(Object value);
// Public Instance Methods

public Object getValue();
// Public Methods Overriding Object

public String toString();
}

726 | Chapter 15: java.text

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.text.AttributedCharacterIterator.Attribute

getRunStart() and getRunLimit() return the index of the first and last characters in a run. A
run is a string of adjacent characters for which an attribute has the same value or is
undefined (i.e., has a value of null). A run can also be defined for a set of attributes, in
which case it is a set of adjacent characters for which all attributes in the set hold a
constant value (which may include null). Programs that process or display attributed
text must usually work with it one run at a time. The no-argument versions of
getRunStart() and getRunLimit() return the start and end of the run that includes the current
character and all attributes that are applied to the current character. The other
versions of these methods return the start and end of the run of the specified attribute
or set of attributes that includes the current character.

The AttributedString class provides a simple way to define short strings of attributed text
and obtain an AttributedCharacterIterator over them. Most applications that process attrib-
uted text are working with attributed text from specialized data sources, stored in
some specialized data format, so they need to define a custom implementation of
AttributedCharacterIterator.

Passed To AttributedString.AttributedString(), Bidi.Bidi()

Returned By AttributedString.getIterator(), DecimalFormat.formatToCharacterIterator(),
Format.formatToCharacterIterator(), MessageFormat.formatToCharacterIterator(),
SimpleDateFormat.formatToCharacterIterator()

AttributedCharacterIterator.Attribute
java.text

Java 1.2

serializable

This class defines the types of the attribute keys used with AttributedCharacterIterator and Attrib-
utedString. It defines several constant Attribute keys that are commonly used with
multilingual text and input methods. The LANGUAGE key represents the language of the
underlying text. The value of this key should be a Locale object. The READING key represents
arbitrary reading information associated with text. The value must be an Annotation object.
The INPUT_METHOD_SEGMENT key serves to define text segments (usually words) that an input
method operates on. The value of this attribute should be an Annotation object that contains
null. Other classes may subclass this class and define other attribute keys that are useful in
other circumstances or problem domains. See, for example, java.awt.font.TextAttribute in Java
Foundation Classes in a Nutshell (O’Reilly).

public interface AttributedCharacterIterator extends CharacterIterator {
// Nested Types

public static class Attribute implements Serializable;
// Public Instance Methods

java.util.Set<AttributedCharacterIterator.Attribute> getAllAttributeKeys();
Object getAttribute(AttributedCharacterIterator.Attribute attribute);
java.util.Map<AttributedCharacterIterator.Attribute,Object> getAttributes();
int getRunLimit();
int getRunLimit(java.util.Set<? extends AttributedCharacterIterator.Attribute> attributes);
int getRunLimit(AttributedCharacterIterator.Attribute attribute);
int getRunStart();
int getRunStart(AttributedCharacterIterator.Attribute attribute);
int getRunStart(java.util.Set<? extends AttributedCharacterIterator.Attribute> attributes);

}

Cloneable CharacterIterator AttributedCharacterIterator

Chapter 15: java.text | 727

java.text

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.text.AttributedString

Subclasses Format.Field

Passed To AttributedCharacterIterator.{getAttribute(), getRunLimit(), getRunStart()},
AttributedString.{addAttribute(), AttributedString(), getIterator()}

AttributedString
java.text

Java 1.2

This class represents text and associated attributes. An AttributedString can be defined in
terms of an underlying AttributedCharacterIterator or an underlying String. Additional
attributes can be specified with the addAttribute() and addAttributes() methods. getIterator()
returns an AttributedCharacterIterator over the AttributedString or over a specified portion of the
string. Note that two of the getIterator() methods take an array of Attribute keys as an argu-
ment. These methods return an AttributedCharacterIterator that ignores all attributes that are
not in the specified array. If the array argument is null, however, the returned iterator
contains all attributes.

public static class AttributedCharacterIterator.Attribute implements Serializable {
// Protected Constructors

protected Attribute(String name);
// Public Constants

public static final AttributedCharacterIterator.Attribute INPUT_METHOD_SEGMENT;
public static final AttributedCharacterIterator.Attribute LANGUAGE;
public static final AttributedCharacterIterator.Attribute READING;

// Public Methods Overriding Object
public final boolean equals(Object obj);
public final int hashCode();
public String toString();

// Protected Instance Methods
protected String getName();
protected Object readResolve() throws java.io.InvalidObjectException;

}

public class AttributedString {
// Public Constructors

public AttributedString(String text);
public AttributedString(AttributedCharacterIterator text);
public AttributedString(String text, java.util.Map<? extends AttributedCharacterIterator.Attribute,?> attributes);
public AttributedString(AttributedCharacterIterator text, int beginIndex, int endIndex);
public AttributedString(AttributedCharacterIterator text, int beginIndex, int endIndex,

AttributedCharacterIterator.Attribute[] attributes);
// Public Instance Methods

public void addAttribute(AttributedCharacterIterator.Attribute attribute, Object value);
public void addAttribute(AttributedCharacterIterator.Attribute attribute, Object value, int beginIndex, int endIndex);
public void addAttributes(java.util.Map<? extends AttributedCharacterIterator.Attribute,?> attributes, int beginIndex,

int endIndex);
public AttributedCharacterIterator getIterator();
public AttributedCharacterIterator getIterator(AttributedCharacterIterator.Attribute[] attributes);
public AttributedCharacterIterator getIterator(AttributedCharacterIterator.Attribute[] attributes, int beginIndex,

int endIndex);
}

728 | Chapter 15: java.text

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.text.Bidi

Bidi
java.text

Java 1.4

The Bidi class implements the “Unicode Version 3.0 Bidirectional Algorithm” for
working with Arabic and Hebrew text in which letters run right-to-left and numbers
run left-to-right. It is named after the first four letters of “bidirectional.” A full descrip-
tion of the bidirectional text handling and the bidirectional algorithim is beyond the
scope of this book, but the simplest use case for this class is outlined here. Create a Bidi
object by passing an AttributedCharacterIterator or a String and one of the DIRECTION constants
(to indicate the base direction of the text) to the Bidi() constructor. Or use createLineBidi()
to return a substring of an existing Bidi object (this is usually done when formatting a
paragraph of text to fit on individual lines).

Once you have a Bidi object, use isLeftToRight() and isRightToLeft() to determine whether all
the text has the same direction. If both of these methods return false (which is the same
as isMixed() returning true) then you cannot treat the text as a single run of uni-direc-
tional text. In this case, you must break it into two or more runs of unidirectional text.
getRunCount() returns the number of distinct runs of text. For each such numbered run,
getRunStart() returns the index of the first character of the run, and getRunLimit() returns
the index of the first character past the end of the run. getRunLevel() returns the level of
the text, which is an integer that represents the direction and nesting level of the text.
Even levels represent left-to-right text, and odd levels represent right-to-left text. The
level divided by two is the nesting level of the text. For example, left-to-right text
embedded within right-to-left text has a level of 2.

public final class Bidi {
// Public Constructors

public Bidi(AttributedCharacterIterator paragraph);
public Bidi(String paragraph, int flags);
public Bidi(char[] text, int textStart, byte[] embeddings, int embStart, int paragraphLength, int flags);

// Public Constants
public static final int DIRECTION_DEFAULT_LEFT_TO_RIGHT; =-2
public static final int DIRECTION_DEFAULT_RIGHT_TO_LEFT; =-1
public static final int DIRECTION_LEFT_TO_RIGHT; =0
public static final int DIRECTION_RIGHT_TO_LEFT; =1

// Public Class Methods
public static void reorderVisually(byte[] levels, int levelStart, Object[] objects, int objectStart, int count);
public static boolean requiresBidi(char[] text, int start, int limit);

// Public Instance Methods
public boolean baseIsLeftToRight();
public Bidi createLineBidi(int lineStart, int lineLimit);
public int getBaseLevel();
public int getLength();
public int getLevelAt(int offset);
public int getRunCount();
public int getRunLevel(int run);
public int getRunLimit(int run);
public int getRunStart(int run);
public boolean isLeftToRight();
public boolean isMixed();
public boolean isRightToLeft();

// Public Methods Overriding Object
public String toString();

}

Chapter 15: java.text | 729

java.text

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.text.BreakIterator

BreakIterator
java.text

Java 1.1

cloneable

This class determines character, word, sentence, and line breaks in a block of text in a
way that is independent of locale and text encoding. As an abstract class, BreakIterator
cannot be instantiated directly. Instead, you must use one of the class methods
getCharacterInstance(), getWordInstance(), getSentenceInstance(), or getLineInstance() to return an
instance of a nonabstract subclass of BreakIterator. These various factory methods return
a BreakIterator object that is configured to locate the requested boundary types and is
localized to work for the optionally specified locale.

Once you have obtained an appropriate BreakIterator object, use setText() to specify the
text in which to locate boundaries. To locate boundaries in a Java String object, simply
specify the string. To locate boundaries in text that uses some other encoding, you
must specify a CharacterIterator object for that text so that the BreakIterator object can locate
the individual characters of the text. Having set the text to be searched, you can deter-
mine the character positions of characters, words, sentences, or line breaks with the
first(), last(), next(), previous(), current(), and following() methods, which perform the obvious
functions. Note that these methods do not return text itself, but merely the position of
the appropriate word, sentence, or line break.

public abstract class BreakIterator implements Cloneable {
// Protected Constructors

protected BreakIterator();
// Public Constants

public static final int DONE; =-1
// Public Class Methods

public static java.util.Locale[] getAvailableLocales(); synchronized
public static BreakIterator getCharacterInstance();
public static BreakIterator getCharacterInstance(java.util.Locale where);
public static BreakIterator getLineInstance();
public static BreakIterator getLineInstance(java.util.Locale where);
public static BreakIterator getSentenceInstance();
public static BreakIterator getSentenceInstance(java.util.Locale where);
public static BreakIterator getWordInstance();
public static BreakIterator getWordInstance(java.util.Locale where);

// Protected Class Methods
5.0 protected static int getInt(byte[] buf, int offset);
5.0 protected static long getLong(byte[] buf, int offset);
5.0 protected static short getShort(byte[] buf, int offset);
// Public Instance Methods

public abstract int current();
public abstract int first();
public abstract int following(int offset);
public abstract CharacterIterator getText();

1.2 public boolean isBoundary(int offset);
public abstract int last();
public abstract int next();
public abstract int next(int n);

1.2 public int preceding(int offset);
public abstract int previous();
public void setText(String newText);

Object BreakIterator Cloneable

730 | Chapter 15: java.text

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.text.CharacterIterator

CharacterIterator
java.text

Java 1.1

cloneable

This interface defines an API for portably iterating through the characters that make
up a string of text, regardless of the encoding of that text. Such an API is necessary
because the number of bytes per character is different for different encodings, and
some encodings even use variable-width characters within the same string of text. In
addition to allowing iteration, a class that implements the CharacterIterator interface for
non-Unicode text also performs translation of characters from their native encoding to
standard Java Unicode characters.

CharacterIterator is similar to java.util.Enumeration, but is somewhat more complex than that
interface. The first() and last() methods return the first and last characters in the text,
and the next() and prev() methods allow you to loop forward or backwards through the
characters of the text. These methods return the DONE constant when they go beyond
the first or last character in the text; a test for this constant can be used to terminate a
loop. The CharacterIterator interface also allows random access to the characters in a string
of text. The getBeginIndex() and getEndIndex() methods return the character positions for the
start and end of the string, and setIndex() sets the current position. getIndex() returns the
index of the current position, and current() returns the character at that position.

Implementations AttributedCharacterIterator, StringCharacterIterator

Passed To BreakIterator.setText(), CollationElementIterator.setText(),
RuleBasedCollator.getCollationElementIterator()

Returned By BreakIterator.getText()

ChoiceFormat
java.text

Java 1.1

cloneable serializable

This class is a subclass of Format that converts a number to a String in a way reminiscent
of a switch statement or an enumerated type. Each ChoiceFormat object has an array of

public abstract void setText(CharacterIterator newText);
// Public Methods Overriding Object

public Object clone();
}

public interface CharacterIterator extends Cloneable {
// Public Constants

public static final char DONE; = \uFFFF
// Public Instance Methods

Object clone();
char current();
char first();
int getBeginIndex();
int getEndIndex();
int getIndex();
char last();
char next();
char previous();
char setIndex(int position);

}

Cloneable CharacterIterator

Chapter 15: java.text | 731

java.text

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.text.CollationElementIterator

doubles known as its limits and an array of strings known as its formats. When the
format() method is called to format a number x, the ChoiceFormat finds an index i such that:

limits[i] <= x < limits[i+1]

If x is less than the first element of the array, the first element is used, and if it is greater
than the last, the last element is used. Once the index i has been determined, it is used
as the index into the array of strings, and the indexed string is returned as the result of
the format() method.

A ChoiceFormat object may also be created by encoding its limits and formats into a single
string known as its pattern. A typical pattern looks like the one below, used to return the
singular or plural form of a word based on the numeric value passed to the format()
method:

ChoiceFormat cf = new ChoiceFormat("0#errors|1#error|2#errors");

A ChoiceFormat object created in this way returns the string “errors” when it formats the
number 0 or any number greater than or equal to 2. It returns “error” when it formats
the number 1. In the syntax shown here, note the pound sign (#) used to separate the
limit number from the string that corresponds to that case and the vertical bar (|) used
to separate the individual cases. You can use the applyPattern() method to change the
pattern used by a ChoiceFormat object; use toPattern() to query the pattern it uses.

CollationElementIterator
java.text

Java 1.1

A CollationElementIterator object is returned by the getCollationElementIterator() method of the
RuleBasedCollator object. The purpose of this class is to allow a program to iterate (with
the next() method) through the characters of a string, returning ordering values for

public class ChoiceFormat extends NumberFormat {
// Public Constructors

public ChoiceFormat(String newPattern);
public ChoiceFormat(double[] limits, String[] formats);

// Public Class Methods
public static final double nextDouble(double d);
public static double nextDouble(double d, boolean positive);
public static final double previousDouble(double d);

// Public Instance Methods
public void applyPattern(String newPattern);
public Object[] getFormats();
public double[] getLimits();
public void setChoices(double[] limits, String[] formats);
public String toPattern();

// Public Methods Overriding NumberFormat
public Object clone();
public boolean equals(Object obj);
public StringBuffer format(long number, StringBuffer toAppendTo, FieldPosition status);
public StringBuffer format(double number, StringBuffer toAppendTo, FieldPosition status);
public int hashCode();
public Number parse(String text, ParsePosition status);

}

Object Format NumberFormat ChoiceFormat

Cloneable Serializable

732 | Chapter 15: java.text

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.text.CollationKey

each of the collation keys in the string. Note that collation keys are not exactly the
same as characters. In the traditional Spanish collation order, for example, the two-
character sequence “ch” is treated as a single collation key that comes alphabetically
between the letters “c” and “d.” The value returned by the next() method is the colla-
tion order of the next collation key in the string. This numeric value can be directly
compared to the value returned by next() for other CollationElementIterator objects. The
value returned by next() can also be decomposed into primary, secondary, and tertiary
ordering values with the static methods of this class. This class is used by RuleBased-
Collator to implement its compare() method and to create CollationKey objects. Few
applications ever need to use it directly.

Returned By RuleBasedCollator.getCollationElementIterator()

CollationKey
java.text

Java 1.1

comparable

CollationKey objects compare strings more quickly than is possible with Collation.compare().
Objects of this class are returned by Collation.getCollationKey(). To compare two CollationKey
objects, invoke the compareTo() method of key A, passing the key B as an argument
(both CollationKey objects must be created through the same Collation object). The return
value of this method is less than zero if the key A is collated before the key B, equal to
zero if they are equivalent for the purposes of collation, or greater than zero if the
key A is collated after the key B. Use getSourceString() to obtain the string represented by
a CollationKey.

public final class CollationElementIterator {
// No Constructor
// Public Constants

public static final int NULLORDER; =-1
// Public Class Methods

public static final int primaryOrder(int order);
public static final short secondaryOrder(int order);
public static final short tertiaryOrder(int order);

// Public Instance Methods
1.2 public int getMaxExpansion(int order);
1.2 public int getOffset();

public int next();
1.2 public int previous();

public void reset();
1.2 public void setOffset(int newOffset);
1.2 public void setText(String source);
1.2 public void setText(CharacterIterator source);
}

public final class CollationKey implements Comparable<CollationKey> {
// No Constructor
// Public Instance Methods

public int compareTo(CollationKey target); Implements:Comparable
public String getSourceString();
public byte[] toByteArray();

// Methods Implementing Comparable
public int compareTo(CollationKey target);

Object CollationKey Comparable

Chapter 15: java.text | 733

java.text

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.text.Collator

Returned By Collator.getCollationKey(), RuleBasedCollator.getCollationKey()

Collator
java.text

Java 1.1

cloneable

This class compares, orders, and sorts strings in a way appropriate for the default
locale or some other specified locale. Because it is an abstract class, it cannot be
instantiated directly. Instead, you must use the static getInstance() method to obtain an
instance of a Collator subclass that is appropriate for the default or specified locale.
You can use getAvailableLocales() to determine whether a Collator object is available for a
desired locale.

Once an appropriate Collator object has been obtained, you can use the compare()
method to compare strings. The possible return values of this method are –1, 0, and
1, which indicate, respectively, that the first string is collated before the second, that
the two are equivalent for collation purposes, and that the first string is collated after
the second. The equals() method is a convenient shortcut for testing two strings for
collation equivalence.

When sorting an array of strings, each string in the array is typically compared more
than once. Using the compare() method in this case is inefficient. A more efficient
method for comparing strings multiple times is to use getCollationKey() for each string to
create CollationKey objects. These objects can then be compared to each other more
quickly than the strings themselves can be compared.

You can customize the way the Collator object performs comparisons by calling
setStrength(). If you pass the constant PRIMARY to this method, the comparison looks only
at primary differences in the strings; it compares letters but ignores accents and case
differences. If you pass the constant SECONDARY, it ignores case differences but does not
ignore accents. And if you pass TERTIARY (the default), the Collator object takes both
accents and case differences into account in its comparison.

// Public Methods Overriding Object
public boolean equals(Object target);
public int hashCode();

}

public abstract class Collator implements java.util.Comparator<Object>, Cloneable {
// Protected Constructors

protected Collator();
// Public Constants

public static final int CANONICAL_DECOMPOSITION; =1
public static final int FULL_DECOMPOSITION; =2
public static final int IDENTICAL; =3
public static final int NO_DECOMPOSITION; =0
public static final int PRIMARY; =0
public static final int SECONDARY; =1
public static final int TERTIARY; =2

// Public Class Methods
public static java.util.Locale[] getAvailableLocales(); synchronized
public static Collator getInstance(); synchronized
public static Collator getInstance(java.util.Locale desiredLocale); synchronized

Object Collator

Cloneable Comparator

734 | Chapter 15: java.text

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.text.DateFormat

Subclasses RuleBasedCollator

DateFormat
java.text

Java 1.1

cloneable serializable

This class formats and parses dates and times in a locale-specific way. As an abstract
class, it cannot be instantiated directly, but it provides a number of static methods that
return instances of a concrete subclass you can use to format dates in a variety of ways.
The getDateInstance() methods return a DateFormat object suitable for formatting dates in
either the default locale or a specified locale. A formatting style may also optionally be
specified; the constants FULL, LONG, MEDIUM, SHORT, and DEFAULT specify this style. Simi-
larly, the getTimeInstance() methods return a DateFormat object that formats and parses
times, and the getDateTimeInstance() methods return a DateFormat object that formats both
dates and times. These methods also optionally take a format style constant and a
Locale. Finally, getInstance() returns a default DateFormat object that formats both dates and
times in the SHORT format.

Once you have created a DateFormat object, you can use the setCalendar() and setTimeZone()
methods if you want to format the date using a calendar or time zone other than the
default. The various format() methods convert java.util.Date objects to strings using what-
ever format is encapsulated in the DateFormat object. The parse() and parseObject() methods
perform the reverse operation; they parse a string formatted according to the rules of
the DateFormat object and convert it into to a Date object. The DEFAULT, FULL, MEDIUM, LONG,
and SHORT constants specify how verbose or compact the formatted date or time should
be. The remaining constants, which all end with _FIELD, specify various fields of
formatted dates and times and are used with the FieldPosition object that is optionally
passed to format().

// Public Instance Methods
public abstract int compare(String source, String target);
public boolean equals(Object that); Implements:Comparator
public boolean equals(String source, String target);
public abstract CollationKey getCollationKey(String source);
public int getDecomposition(); synchronized
public int getStrength(); synchronized
public void setDecomposition(int decompositionMode); synchronized
public void setStrength(int newStrength); synchronized

// Methods Implementing Comparator
1.2 public int compare(Object o1, Object o2);

public boolean equals(Object that);
// Public Methods Overriding Object

public Object clone();
public abstract int hashCode();

}

public abstract class DateFormat extends Format {
// Protected Constructors

protected DateFormat();
// Public Constants

public static final int AM_PM_FIELD; =14
public static final int DATE_FIELD; =3

Object Format DateFormat

Cloneable Serializable

Chapter 15: java.text | 735

java.text

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.text.DateFormat

public static final int DAY_OF_WEEK_FIELD; =9
public static final int DAY_OF_WEEK_IN_MONTH_FIELD; =11
public static final int DAY_OF_YEAR_FIELD; =10
public static final int DEFAULT; =2
public static final int ERA_FIELD; =0
public static final int FULL; =0
public static final int HOUR0_FIELD; =16
public static final int HOUR1_FIELD; =15
public static final int HOUR_OF_DAY0_FIELD; =5
public static final int HOUR_OF_DAY1_FIELD; =4
public static final int LONG; =1
public static final int MEDIUM; =2
public static final int MILLISECOND_FIELD; =8
public static final int MINUTE_FIELD; =6
public static final int MONTH_FIELD; =2
public static final int SECOND_FIELD; =7
public static final int SHORT; =3
public static final int TIMEZONE_FIELD; =17
public static final int WEEK_OF_MONTH_FIELD; =13
public static final int WEEK_OF_YEAR_FIELD; =12
public static final int YEAR_FIELD; =1

// Nested Types
1.4 public static class Field extends Format.Field;
// Public Class Methods

public static java.util.Locale[] getAvailableLocales();
public static final DateFormat getDateInstance();
public static final DateFormat getDateInstance(int style);
public static final DateFormat getDateInstance(int style, java.util.Locale aLocale);
public static final DateFormat getDateTimeInstance();
public static final DateFormat getDateTimeInstance(int dateStyle, int timeStyle);
public static final DateFormat getDateTimeInstance(int dateStyle, int timeStyle, java.util.Locale aLocale);
public static final DateFormat getInstance();
public static final DateFormat getTimeInstance();
public static final DateFormat getTimeInstance(int style);
public static final DateFormat getTimeInstance(int style, java.util.Locale aLocale);

// Public Instance Methods
public final String format(java.util.Date date);
public abstract StringBuffer format(java.util.Date date, StringBuffer toAppendTo, FieldPosition fieldPosition);
public java.util.Calendar getCalendar();
public NumberFormat getNumberFormat();
public java.util.TimeZone getTimeZone();
public boolean isLenient();
public java.util.Date parse(String source) throws ParseException;
public abstract java.util.Date parse(String source, ParsePosition pos);
public void setCalendar(java.util.Calendar newCalendar);
public void setLenient(boolean lenient);
public void setNumberFormat(NumberFormat newNumberFormat);
public void setTimeZone(java.util.TimeZone zone);

// Public Methods Overriding Format
public Object clone();
public final StringBuffer format(Object obj, StringBuffer toAppendTo, FieldPosition fieldPosition);
public Object parseObject(String source, ParsePosition pos);

// Public Methods Overriding Object

736 | Chapter 15: java.text

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.text.DateFormat.Field

Subclasses SimpleDateFormat

DateFormat.Field
java.text

Java 1.4

serializable

This class defines a typesafe enumeration of AttributedCharacterIterator.Attribute objects that
may be used by the AttributedCharacterIterator returned by the formatToCharacterIterator() inher-
ited from Format, or that may be used when creating a FieldPosition object with which to
obtain the bounds of a specific date field in formatted output. Note that the constants
defined by this class correspond closely to the integer constants defined by
java.util.Calendar, and that this class defines methods for converting between the two sets
of constants.

public boolean equals(Object obj);
public int hashCode();

// Protected Instance Fields
protected java.util.Calendar calendar;
protected NumberFormat numberFormat;

}

public static class DateFormat.Field extends Format.Field {
// Protected Constructors

protected Field(String name, int calendarField);
// Public Constants

public static final DateFormat.Field AM_PM;
public static final DateFormat.Field DAY_OF_MONTH;
public static final DateFormat.Field DAY_OF_WEEK;
public static final DateFormat.Field DAY_OF_WEEK_IN_MONTH;
public static final DateFormat.Field DAY_OF_YEAR;
public static final DateFormat.Field ERA;
public static final DateFormat.Field HOUR0;
public static final DateFormat.Field HOUR1;
public static final DateFormat.Field HOUR_OF_DAY0;
public static final DateFormat.Field HOUR_OF_DAY1;
public static final DateFormat.Field MILLISECOND;
public static final DateFormat.Field MINUTE;
public static final DateFormat.Field MONTH;
public static final DateFormat.Field SECOND;
public static final DateFormat.Field TIME_ZONE;
public static final DateFormat.Field WEEK_OF_MONTH;
public static final DateFormat.Field WEEK_OF_YEAR;
public static final DateFormat.Field YEAR;

// Public Class Methods
public static DateFormat.Field ofCalendarField(int);

// Public Instance Methods
public int getCalendarField();

// Protected Methods Overriding AttributedCharacterIterator.Attribute
protected Object readResolve() throws java.io.InvalidObjectException;

}

Chapter 15: java.text | 737

java.text

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.text.DecimalFormat

DateFormatSymbols
java.text

Java 1.1

cloneable serializable

This class defines accessor methods for the various pieces of data, such as names of
months and days, used by SimpleDateFormat to format and parse dates and times. You do
not typically need to use this class unless you are formatting dates for an unsupported
locale or in some highly customized way.

Passed To SimpleDateFormat.{setDateFormatSymbols(), SimpleDateFormat()}

Returned By SimpleDateFormat.getDateFormatSymbols()

DecimalFormat
java.text

Java 1.1

cloneable serializable

This is the concrete Format class used by NumberFormat for all locales that use base 10
numbers. Most applications do not need to use this class directly; they can use the
static methods of NumberFormat to obtain a default NumberFormat object for a desired locale
and then perform minor locale-independent customizations on that object.

Applications that require highly customized number formatting and parsing may
create custom DecimalFormat objects by passing a suitable pattern to the DecimalFormat()
constructor method. The applyPattern() method can change this pattern. A pattern
consists of a string of characters from the table below. For example:

"$#,##0.00;($#,##0.00)"

public class DateFormatSymbols implements Cloneable, Serializable {
// Public Constructors

public DateFormatSymbols();
public DateFormatSymbols(java.util.Locale locale);

// Public Instance Methods
public String[] getAmPmStrings();
public String[] getEras();
public String getLocalPatternChars();
public String[] getMonths();
public String[] getShortMonths();
public String[] getShortWeekdays();
public String[] getWeekdays();
public String[][] getZoneStrings();
public void setAmPmStrings(String[] newAmpms);
public void setEras(String[] newEras);
public void setLocalPatternChars(String newLocalPatternChars);
public void setMonths(String[] newMonths);
public void setShortMonths(String[] newShortMonths);
public void setShortWeekdays(String[] newShortWeekdays);
public void setWeekdays(String[] newWeekdays);
public void setZoneStrings(String[][] newZoneStrings);

// Public Methods Overriding Object
public Object clone();
public boolean equals(Object obj);
public int hashCode();

}

Object DateFormatSymbols

Cloneable Serializable

738 | Chapter 15: java.text

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.text.DecimalFormat

A DecimalFormatSymbols object can be specified optionally when creating a DecimalFormat
object. If one is not specified, a DecimalFormatSymbols object suitable for the default locale
is used.

In Java 5.0, DecimalFormat can return java.math.BigDecimal values from its parse() method. Call
setParseBigDecimal() to enable this feature. This is useful when working with very large
numbers, very precise numbers, or financial applications that use BigDecimal to avoid
rounding errors.

Character Meaning

A digit; zeros show as absent.

0 A digit; zeros show as 0.

. The locale-specific decimal separator.

, The locale-specific grouping separator (comma).

- The locale-specific negative prefix.

% Shows value as a percentage.

; Separates positive number format (on left) from optiona negative number format (on right).

' Quotes a reserved character, so it appears literally in the output (apostrophe).

other Appears literally in output.

public class DecimalFormat extends NumberFormat {
// Public Constructors

public DecimalFormat();
public DecimalFormat(String pattern);
public DecimalFormat(String pattern, DecimalFormatSymbols symbols);

// Public Instance Methods
public void applyLocalizedPattern(String pattern);
public void applyPattern(String pattern);
public DecimalFormatSymbols getDecimalFormatSymbols();
public int getGroupingSize(); default:3
public int getMultiplier(); default:1
public String getNegativePrefix(); default:"-"
public String getNegativeSuffix(); default:""
public String getPositivePrefix(); default:""
public String getPositiveSuffix(); default:""
public boolean isDecimalSeparatorAlwaysShown(); default:false

5.0 public boolean isParseBigDecimal(); default:false
public void setDecimalFormatSymbols(DecimalFormatSymbols newSymbols);
public void setDecimalSeparatorAlwaysShown(boolean newValue);
public void setGroupingSize(int newValue);
public void setMultiplier(int newValue);
public void setNegativePrefix(String newValue);
public void setNegativeSuffix(String newValue);

5.0 public void setParseBigDecimal(boolean newValue);
public void setPositivePrefix(String newValue);
public void setPositiveSuffix(String newValue);
public String toLocalizedPattern();
public String toPattern();

Object Format NumberFormat DecimalFormat

Cloneable Serializable

Chapter 15: java.text | 739

java.text

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.text.DecimalFormatSymbols

DecimalFormatSymbols
java.text

Java 1.1

cloneable serializable

This class defines the various characters and strings, such as the decimal point, percent
sign, and thousands separator, used by DecimalFormat when formatting numbers. You do
not typically use this class directly unless you are formatting dates for an unsupported
locale or in some highly customized way.

// Public Methods Overriding NumberFormat
public Object clone();
public boolean equals(Object obj);

5.0 public final StringBuffer format(Object number, StringBuffer toAppendTo, FieldPosition pos);
public StringBuffer format(double number, StringBuffer result, FieldPosition fieldPosition);
public StringBuffer format(long number, StringBuffer result, FieldPosition fieldPosition);

1.4 public java.util.Currency getCurrency();
5.0 public int getMaximumFractionDigits(); default:3
5.0 public int getMaximumIntegerDigits(); default:2147483647
5.0 public int getMinimumFractionDigits(); default:0
5.0 public int getMinimumIntegerDigits(); default:1

public int hashCode();
public Number parse(String text, ParsePosition pos);

1.4 public void setCurrency(java.util.Currency currency);
1.2 public void setMaximumFractionDigits(int newValue);
1.2 public void setMaximumIntegerDigits(int newValue);
1.2 public void setMinimumFractionDigits(int newValue);
1.2 public void setMinimumIntegerDigits(int newValue);
// Public Methods Overriding Format
1.4 public AttributedCharacterIterator formatToCharacterIterator(Object obj);
}

public final class DecimalFormatSymbols implements Cloneable, Serializable {
// Public Constructors

public DecimalFormatSymbols();
public DecimalFormatSymbols(java.util.Locale locale);

// Public Instance Methods
1.4 public java.util.Currency getCurrency();
1.2 public String getCurrencySymbol(); default:"$"

public char getDecimalSeparator(); default:.
public char getDigit(); default:#
public char getGroupingSeparator(); default:,
public String getInfinity(); default:"\u221E“

1.2 public String getInternationalCurrencySymbol(); default:"USD“
public char getMinusSign(); default:-

1.2 public char getMonetaryDecimalSeparator(); default:.
public String getNaN(); default:"\uFFFD"
public char getPatternSeparator(); default:;
public char getPercent(); default:%
public char getPerMill(); default:\u2030
public char getZeroDigit(); default:0

1.4 public void setCurrency(java.util.Currency currency);

Object DecimalFormatSymbols

Cloneable Serializable

740 | Chapter 15: java.text

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.text.FieldPosition

Passed To DecimalFormat.{DecimalFormat(), setDecimalFormatSymbols()}

Returned By DecimalFormat.getDecimalFormatSymbols()

FieldPosition
java.text

Java 1.1

FieldPosition objects are optionally passed to the format() methods of the Format class and its
subclasses to return information about the start and end positions of a specific part or
“field” of the formatted string. This kind of information is often useful for aligning
formatted strings in columns—for example, aligning the decimal points in a column of
numbers.

The field of interest is specified when the FieldPosition() constructor is called. The
NumberFormat and DateFormat classes define integer various constants (which end with
the string _FIELD) that can be used here. In Java 1.4 and later you can also construct a
FieldPosition by specifying the Format.Field object that identifies the field. (For constant
Field instances, see DateFormat.Field, MessageFormat.Field and NumberFormat.Field.)

After a FieldPosition has been created and passed to a format() method, use getBeginIndex()
and getEndIndex() methods of this class to obtain the starting and ending character posi-
tions of the desired field of the formatted string.

1.2 public void setCurrencySymbol(String currency);
public void setDecimalSeparator(char decimalSeparator);
public void setDigit(char digit);
public void setGroupingSeparator(char groupingSeparator);
public void setInfinity(String infinity);

1.2 public void setInternationalCurrencySymbol(String currencyCode);
public void setMinusSign(char minusSign);

1.2 public void setMonetaryDecimalSeparator(char sep);
public void setNaN(String NaN);
public void setPatternSeparator(char patternSeparator);
public void setPercent(char percent);
public void setPerMill(char perMill);
public void setZeroDigit(char zeroDigit);

// Public Methods Overriding Object
public Object clone();
public boolean equals(Object obj);
public int hashCode();

}

public class FieldPosition {
// Public Constructors
1.4 public FieldPosition(Format.Field attribute);

public FieldPosition(int field);
1.4 public FieldPosition(Format.Field attribute, int fieldID);
// Public Instance Methods

public int getBeginIndex();
public int getEndIndex();
public int getField();

1.4 public Format.Field getFieldAttribute();
1.2 public void setBeginIndex(int bi);
1.2 public void setEndIndex(int ei);
// Public Methods Overriding Object
1.2 public boolean equals(Object obj);

Chapter 15: java.text | 741

java.text

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.text.Format

Passed To ChoiceFormat.format(), DateFormat.format(), DecimalFormat.format(), Format.format(),
MessageFormat.format(), NumberFormat.format(), SimpleDateFormat.format()

Format
java.text

Java 1.1

cloneable serializable

This abstract class is the base class for all number, date, and string formatting classes
in the java.text package. It defines the key formatting and parsing methods that are
implemented by all subclasses. format() converts an object to a string using the format-
ting rules encapsulated by the Format subclass and optionally appends the resulting
string to an existing StringBuffer. parseObject() performs the reverse operation; it parses a
formatted string and returns the corresponding object. Status information for these
two operations is returned in FieldPosition and ParsePosition objects.

Java 1.4 defined a variant on the format() method. formatToCharacterIterator() performs the
same formating operation as format() but returns the result as an AtttributedCharacterIterator
which uses attributes to identify the various parts (such the integer part, the decimal
separtator, and the fractional part of a formatted number) of the formatted string. The
attribute keys are all instances of the Format.Field inner class. Each of the Format subclasses
define a Field subclass that defines a set of Field constants, (such as Number-
Format.Field.DECIMAL_SEPARATOR) for use by the character iterator returned by this method.
See ChoiceFormat, DateFormat, MessageFormat, and NumberFormat for subclasses that perform
specific types of formatting.

Subclasses DateFormat, MessageFormat, NumberFormat

Passed To MessageFormat.{setFormat(), setFormatByArgumentIndex(), setFormats(),
setFormatsByArgumentIndex()}

Returned By MessageFormat.{getFormats(), getFormatsByArgumentIndex()}

1.2 public int hashCode();
1.2 public String toString();
}

public abstract class Format implements Cloneable, Serializable {
// Public Constructors

public Format();
// Nested Types
1.4 public static class Field extends AttributedCharacterIterator.Attribute;
// Public Instance Methods

public final String format(Object obj);
public abstract StringBuffer format(Object obj, StringBuffer toAppendTo, FieldPosition pos);

1.4 public AttributedCharacterIterator formatToCharacterIterator(Object obj);
public Object parseObject(String source) throws ParseException;
public abstract Object parseObject(String source, ParsePosition pos);

// Public Methods Overriding Object
public Object clone();

}

Object Format

Cloneable Serializable

742 | Chapter 15: java.text

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.text.Format.Field

Format.Field
java.text

Java 1.4

serializable

This inner class extends AttributedCharacterIterator.Attribute and serves as the common super-
class for DateFormat.Field, MessageFormat.Field, and NumberFormat.Field. See those specific
subclasses for details.

Subclasses DateFormat.Field, MessageFormat.Field, NumberFormat.Field

Passed To FieldPosition.FieldPosition()

Returned By FieldPosition.getFieldAttribute()

MessageFormat
java.text

Java 1.1

cloneable serializable

This class formats and substitutes objects into specified positions in a message string
(also known as the pattern string). It provides the closest Java equivalent to the printf()
function of the C programming language. If a message is to be displayed only a single
time, the simplest way to use the MessageFormat class is through the static format() method.
This method is passed a message or pattern string and an array of argument objects to
be formatted and substituted into the string. If the message is to be displayed several
times, it makes more sense to create a MessageFormat object, supplying the pattern string,
and then call the format() instance method of this object, supplying the array of objects
to be formatted into the message.

The message or pattern string used by the MessageFormat contains digits enclosed in curly
braces to indicate where each argument should be substituted. The sequence “{0}” indi-
cates that the first object should be converted to a string (if necessary) and inserted at
that point, while the sequence “{3}” indicates that the fourth object should be inserted.
If the object to be inserted is not a string, MessageFormat checks to see if it is a Date or a
subclass of Number. If so, it uses a default DateFormat or NumberFormat object to convert the
value to a string. If not, it simply invokes the object’s toString() method to convert it.

A digit within curly braces in a pattern string may be followed optionally by a comma,
and one of the words “date”, “time”, “number”, or “choice”, to indicate that the
corresponding argument should be formatted as a date, time, number, or choice before
being substituted into the pattern string. Any of these keywords can additionally be
followed by a comma and additional pattern information to be used in formatting the
date, time, number, or choice. (See SimpleDateFormat, DecimalFormat, and ChoiceFormat for
more information.)

You can pass a Locale to the constructor or call setLocale() to specify a nondefault locale
that the MessageFormat should use when obtaining DateFormat and NumberFormat objects to
format dates, time, and numbers inserted into the pattern. You can change the Format
object used at a particular position in the pattern with the setFormat() method, or change
all Format objects with setFormats(). Both of these methods depend on the order of in
which arguments are displayed in the pattern string. The pattern string is often subject
to localization and the arguments may appear in different orders in different localiza-
tions of the pattern. Therefore, in Java 1.4 and later it is usually more convenient to
use the “ByArgumentIndex” versions of the setFormat(), setFormats() methods, and
getFormats() methods.

public static class Format.Field extends AttributedCharacterIterator.Attribute {
// Protected Constructors

protected Field(String name);
}

Chapter 15: java.text | 743

java.text

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.text.MessageFormat.Field

You can set a new pattern for the MessageFormat object by calling applyPattern(), and you
can obtain a string that represents the current formatting pattern by calling toPattern().
MessageFormat also supports a parse() method that can parse an array of objects out of a
specified string, according to the specified pattern.

MessageFormat.Field
java.text

Java 1.4

serializable

This class defines an ARGUMENT AttributedCharacterIterator.Attribute constant that is be used by
the AttributedCharacterIterator returned by MessageFormat.formatToCharacterIterator() to identify
portions of the formatted message that are derived from the arguments passed to
formatToCharacterIterator(). The value associated with this ARGUMENT attribute will be an Integer
specifying the argument number.

public class MessageFormat extends Format {
// Public Constructors

public MessageFormat(String pattern);
1.4 public MessageFormat(String pattern, java.util.Locale locale);
// Nested Types
1.4 public static class Field extends Format.Field;
// Public Class Methods

public static String format(String pattern, Object... arguments);
// Public Instance Methods

public void applyPattern(String pattern);
public final StringBuffer format(Object[] arguments, StringBuffer result, FieldPosition pos);
public Format[] getFormats();

1.4 public Format[] getFormatsByArgumentIndex();
public java.util.Locale getLocale();
public Object[] parse(String source) throws ParseException;
public Object[] parse(String source, ParsePosition pos);
public void setFormat(int formatElementIndex, Format newFormat);

1.4 public void setFormatByArgumentIndex(int argumentIndex, Format newFormat);
public void setFormats(Format[] newFormats);

1.4 public void setFormatsByArgumentIndex(Format[] newFormats);
public void setLocale(java.util.Locale locale);
public String toPattern();

// Public Methods Overriding Format
public Object clone();
public final StringBuffer format(Object arguments, StringBuffer result, FieldPosition pos);

1.4 public AttributedCharacterIterator formatToCharacterIterator(Object arguments);
public Object parseObject(String source, ParsePosition pos);

// Public Methods Overriding Object
public boolean equals(Object obj);
public int hashCode();

}

public static class MessageFormat.Field extends Format.Field {
// Protected Constructors

protected Field(String name);
// Public Constants

Object Format MessageFormat

Cloneable Serializable

744 | Chapter 15: java.text

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.text.NumberFormat

NumberFormat
java.text

Java 1.1

cloneable serializable

This class formats and parses numbers in a locale-specific way. As an abstract class, it
cannot be instantiated directly, but it provides a number of static methods that return
instances of a concrete subclass you can use for formatting. The getInstance() method
returns a NumberFormat object suitable for normal formatting of numbers in either the
default locale or in a specified locale. getIntegerInstance(), getCurrencyInstance(), and
getPercentInstance() return NumberFormat objects for formatting numbers that are integers, or
represent monetary amounts or percentages. These methods return a NumberFormat suit-
able for the default locale, or for the specified Locale object. getAvailableLocales() returns an
array of locales for which NumberFormat objects are available. In Java 1.4 and later, use
setCurrency() to provide a java.util.Currency object for use when formating monetary values.
Note that the NumberFormat class is not intended for the display of very large or very
small numbers that require exponential notation, and it may not gracefully handle infi-
nite or NaN (not-a-number) values.

Once you have created a suitable NumberFormat object, you can customize its locale-
independent behavior with setMaximumFractionDigits(), setGroupingUsed(), and similar set
methods. In order to customize the locale-dependent behavior, you can use instanceof to
test if the NumberFormat object is an instance of DecimalFormat, and, if so, cast it to that type.
The DecimalFormat class provides complete control over number formatting. Note,
however, that a NumberFormat customized in this way may no longer be appropriate for
the desired locale.

After creating and customizing a NumberFormat object, you can use the various format()
methods to convert numbers to strings or string buffers, and you can use the parse() or
parseObject() methods to convert strings to numbers. You can also use the
formatToCharacterIterator() method inherited from Format (and overridden by DecimalFormat) in
place of format(). The constants defined by this class are to be used by the FieldPosition object.

public static final MessageFormat.Field ARGUMENT;
// Protected Methods Overriding AttributedCharacterIterator.Attribute

protected Object readResolve() throws java.io.InvalidObjectException;
}

public abstract class NumberFormat extends Format {
// Public Constructors

public NumberFormat();
// Public Constants

public static final int FRACTION_FIELD; =1
public static final int INTEGER_FIELD; =0

// Nested Types
1.4 public static class Field extends Format.Field;
// Public Class Methods

public static java.util.Locale[] getAvailableLocales();
public static final NumberFormat getCurrencyInstance();
public static NumberFormat getCurrencyInstance(java.util.Locale inLocale);
public static final NumberFormat getInstance();
public static NumberFormat getInstance(java.util.Locale inLocale);

1.4 public static final NumberFormat getIntegerInstance();

Object Format NumberFormat

Cloneable Serializable

Chapter 15: java.text | 745

java.text

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.text.NumberFormat.Field

Subclasses ChoiceFormat, DecimalFormat

Passed To DateFormat.setNumberFormat()

Returned By DateFormat.getNumberFormat()

Type Of DateFormat.numberFormat

NumberFormat.Field
java.text

Java 1.4

serializable

This class defines a typesafe enumeration of AttributedCharacterIterator.Attribute objects that
may be used by the AttributedCharacterIterator returned by formatToCharacterIterator() method
inherited from the Format class, or that may be used when creating a FieldPosition object to
pass to format() in order to obtain the bounds of a specific number field (such as the
decimal point for aligning numbers) in formatted output.

1.4 public static NumberFormat getIntegerInstance(java.util.Locale inLocale);
public static final NumberFormat getNumberInstance();
public static NumberFormat getNumberInstance(java.util.Locale inLocale);
public static final NumberFormat getPercentInstance();
public static NumberFormat getPercentInstance(java.util.Locale inLocale);

// Public Instance Methods
public final String format(long number);
public final String format(double number);
public abstract StringBuffer format(long number, StringBuffer toAppendTo, FieldPosition pos);
public abstract StringBuffer format(double number, StringBuffer toAppendTo, FieldPosition pos);

1.4 public java.util.Currency getCurrency();
public int getMaximumFractionDigits();
public int getMaximumIntegerDigits();
public int getMinimumFractionDigits();
public int getMinimumIntegerDigits();
public boolean isGroupingUsed();
public boolean isParseIntegerOnly();
public Number parse(String source) throws ParseException;
public abstract Number parse(String source, ParsePosition parsePosition);

1.4 public void setCurrency(java.util.Currency currency);
public void setGroupingUsed(boolean newValue);
public void setMaximumFractionDigits(int newValue);
public void setMaximumIntegerDigits(int newValue);
public void setMinimumFractionDigits(int newValue);
public void setMinimumIntegerDigits(int newValue);
public void setParseIntegerOnly(boolean value);

// Public Methods Overriding Format
public Object clone();
public StringBuffer format(Object number, StringBuffer toAppendTo, FieldPosition pos);
public final Object parseObject(String source, ParsePosition pos);

// Public Methods Overriding Object
public boolean equals(Object obj);
public int hashCode();

}

public static class NumberFormat.Field extends Format.Field {
// Protected Constructors

protected Field(String name);
// Public Constants

746 | Chapter 15: java.text

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.text.ParseException

ParseException
java.text

Java 1.1

serializable checked

Signals that a string has an incorrect format and cannot be parsed. It is typically
thrown by the parse() or parseObject() methods of Format and its subclasses, but is also
thrown by certain methods in the java.text package that are passed patterns or other
rules in string form. The getErrorOffset() method of this class returns the character posi-
tion at which the parsing error occurred in the offending string.

Thrown By DateFormat.parse(), Format.parseObject(), MessageFormat.parse(), NumberFormat.parse(),
RuleBasedCollator.RuleBasedCollator()

ParsePosition
java.text

Java 1.1

ParsePosition objects are passed to the parse() and parseObject() methods of Format and its
subclasses. The ParsePosition class represents the position in a string at which parsing
should begin or at which parsing stopped. Before calling a parse() method, you can
specify the starting position of parsing by passing the desired index to the ParsePosition()
constructor or by calling the setIndex() of an existing ParsePosition object. When parse()
returns, you can determine where parsing ended by calling getIndex(). When parsing
multiple objects or values from a string, a single ParsePosition object can be used
sequentially.

public static final NumberFormat.Field CURRENCY;
public static final NumberFormat.Field DECIMAL_SEPARATOR;
public static final NumberFormat.Field EXPONENT;
public static final NumberFormat.Field EXPONENT_SIGN;
public static final NumberFormat.Field EXPONENT_SYMBOL;
public static final NumberFormat.Field FRACTION;
public static final NumberFormat.Field GROUPING_SEPARATOR;
public static final NumberFormat.Field INTEGER;
public static final NumberFormat.Field PERCENT;
public static final NumberFormat.Field PERMILLE;
public static final NumberFormat.Field SIGN;

// Protected Methods Overriding AttributedCharacterIterator.Attribute
protected Object readResolve() throws java.io.InvalidObjectException;

}

public class ParseException extends Exception {
// Public Constructors

public ParseException(String s, int errorOffset);
// Public Instance Methods

public int getErrorOffset();
}

public class ParsePosition {
// Public Constructors

public ParsePosition(int index);
// Public Instance Methods
1.2 public int getErrorIndex();

Object Throwable Exception ParseException

Serializable

Chapter 15: java.text | 747

java.text

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.text.SimpleDateFormat

Passed To ChoiceFormat.parse(), DateFormat.{parse(), parseObject()}, DecimalFormat.parse(),
Format.parseObject(), MessageFormat.{parse(), parseObject()}, NumberFormat.{parse(), parseObject()},
SimpleDateFormat.parse()

RuleBasedCollator
java.text

Java 1.1

cloneable

This class is a concrete subclass of the abstract Collator class. It performs collations using
a table of rules that are specified in textual form. Most applications do not use this
class directly; instead they call Collator.getInstance() to obtain a Collator object (typically a
RuleBasedCollator object) that implements the default collation order for a specified or
default locale. You should need to use this class only if you are collating strings for a
locale that is not supported by default or if you need to implement a highly custom-
ized collation order.

SimpleDateFormat
java.text

Java 1.1

cloneable serializable

This is the concrete Format subclass used by DateFormat to handle the formatting and
parsing of dates. Most applications should not use this class directly; instead, they
should obtain a localized DateFormat object by calling one of the static methods of
DateFormat.

SimpleDateFormat formats dates and times according to a pattern, which specifies the posi-
tions of the various fields of the date, and a DateFormatSymbols object, which specifies
important auxiliary data, such as the names of months. Applications that require highly
customized date or time formatting can create a custom SimpleDateFormat object by speci-

public int getIndex();
1.2 public void setErrorIndex(int ei);

public void setIndex(int index);
// Public Methods Overriding Object
1.2 public boolean equals(Object obj);
1.2 public int hashCode();
1.2 public String toString();
}

public class RuleBasedCollator extends Collator {
// Public Constructors

public RuleBasedCollator(String rules) throws ParseException;
// Public Instance Methods
1.2 public CollationElementIterator getCollationElementIterator(CharacterIterator source);

public CollationElementIterator getCollationElementIterator(String source);
public String getRules();

// Public Methods Overriding Collator
public Object clone();
public int compare(String source, String target); synchronized
public boolean equals(Object obj);
public CollationKey getCollationKey(String source); synchronized
public int hashCode();

}

Object Collator RuleBasedCollator

Cloneable Comparator

748 | Chapter 15: java.text

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.text.SimpleDateFormat

fying the desired pattern. This creates a SimpleDateFormat object that uses the DateFormatSymbols
object for the default locale. You may also specify an locale explicitly, to use the DateFormat-
Symbols object for that locale. You can even provide an explicit DateFormatSymbols object of
your own if you need to format dates and times for an unsupported locale.

You can use the applyPattern() method of a SimpleDateFormat to change the formatting
pattern used by the object. The syntax of this pattern is described in the following
table. Any characters in the format string that do not appear in this table appear liter-
ally in the formatted date.

Field Full form Short form

Year yyyy (4 digits) yy (2 digits)

Month MMM (name) MM (2 digits), M (1 or 2 digits)

Day of week EEEE EE

Day of month dd (2 digits) d (1 or 2 digits)

Hour (1–12) hh (2 digits) h (1 or 2 digits)

Hour (0–23) HH (2 digits) H (1 or 2 digits)

Hour (0–11) KK K

Hour (1–24) kk k

Minute mm

Second ss

Millisecond SSS

AM/PM a

Time zone zzzz zz

Day of week in month F (e.g., 3rd Thursday)

Day in year DDD (3 digits) D (1, 2, or 3 digits)

Week in year ww

Era (e.g., BC/AD) G

public class SimpleDateFormat extends DateFormat {
// Public Constructors

public SimpleDateFormat();
public SimpleDateFormat(String pattern);
public SimpleDateFormat(String pattern, java.util.Locale locale);
public SimpleDateFormat(String pattern, DateFormatSymbols formatSymbols);

// Public Instance Methods
public void applyLocalizedPattern(String pattern);
public void applyPattern(String pattern);

1.2 public java.util.Date get2DigitYearStart();
public DateFormatSymbols getDateFormatSymbols();

1.2 public void set2DigitYearStart(java.util.Date startDate);
public void setDateFormatSymbols(DateFormatSymbols newFormatSymbols);
public String toLocalizedPattern();
public String toPattern();

// Public Methods Overriding DateFormat
public Object clone();

Object Format DateFormat SimpleDateFormat

Cloneable Serializable

Chapter 15: java.text | 749

java.text

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.text.StringCharacterIterator

StringCharacterIterator
java.text

Java 1.1

cloneable

This class is a trivial implementation of the CharacterIterator interface that works for text
stored in Java String objects. See CharacterIterator for details.

public boolean equals(Object obj);
public StringBuffer format(java.util.Date date, StringBuffer toAppendTo, FieldPosition pos);
public int hashCode();
public java.util.Date parse(String text, ParsePosition pos);

// Public Methods Overriding Format
1.4 public AttributedCharacterIterator formatToCharacterIterator(Object obj);
}

public final class StringCharacterIterator implements CharacterIterator {
// Public Constructors

public StringCharacterIterator(String text);
public StringCharacterIterator(String text, int pos);
public StringCharacterIterator(String text, int begin, int end, int pos);

// Public Instance Methods
1.2 public void setText(String text);
// Methods Implementing CharacterIterator

public Object clone();
public char current();
public char first();
public int getBeginIndex();
public int getEndIndex();
public int getIndex();
public char last();
public char next();
public char previous();
public char setIndex(int p);

// Public Methods Overriding Object
public boolean equals(Object obj);
public int hashCode();

}

Object StringCharacterIterator

Cloneable CharacterIterator

750

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Chapter 16java.util.*

16
java.util and Subpackages

This chapter documents the java.util package, and each of its subpackages. Those
packages are:

java.util
This package defines many important and commonly used utility classes, the
most important of which are the various Collection, Set, List, and Map implementa-
tions. In Java 5.0 the collection classes and interfaces have been converted
into generic types.

java.util.concurrent
This package includes utilities for concurrent programming, including
threadsafe collection classes, threadpool implementations, and synchronizer
utilities.

java.util.concurrent.atomic
This package includes classes that define atomic operations on primitive
values or object references.

java.util.concurrent.locks
This package contains low-level lock and condition utilities.

java.util.jar
This package defines classes for reading and writing JAR (Java ARchive) files.
They are based on the classes of the java.util.zip package.

java.util.logging
This package defines a powerful and flexible logging API for Java
applications.

java.util.prefs
This package allows applications to set and query persistent values for user-
specific preferences or system-wide configuration parameters.

Chapter 16: java.util and Subpackages | 751

java.util.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

.Package java.util

java.util.regex
This package defines an API for textual pattern matching using regular
expressions.

java.util.zip
This package defines classes for reading and writing ZIP files and for
compressing and uncompressing data using the “gzip” format.

Package java.util Java 1.0

The java.util package defines a number of useful classes, primarily collections classes
that are useful for working with groups of objects. This package should not be consid-
ered merely a utility package that is separate from the rest of the language; it is an
integral and frequently used part of the Java platform.

The most important classes in java.util are the collections classes. Prior to Java 1.2, these
were Vector, a growable list of objects, and Hashtable, a mapping between arbitrary key
and value objects. Java 1.2 adds an entire collections framework consisting of the Collec-
tion, Map, Set, List, SortedMap, and SortedSet interfaces and the classes that implement them.
Other important classes and interfaces of the collections framework are Comparator, Collec-
tions, Arrays, Iterator, and ListIterator. Java 1.4 extends the Collections framework with the
addition of new Map and Set implementations, and a new RandomAccess marker interface
used by List implementations. Java 5.0 adds a Queue collection interface and implemen-
tations. It also adds EnumSet and EnumMap which efficiently implement the Set and Map
interfaces for use with enumerated types. Most importantly, Java 5.0 modifies all
collection interfaces and classes to be generic types, which enable type-safe collections
such as List<String>. BitSet is a related class that is not actually part of the Collections
framework (and is not even a set). It provides a very compact representation of an arbi-
trary-size array or list of boolean values or bits. Its API was substantially enhanced in
Java 1.4.

The other classes of the package are also quite useful. Date, Calendar, and TimeZone work
with dates and times. Currency represents a national currency. Locale represents the
language and related text formatting conventions of a country, region, or culture.
ResourceBundle and its subclasses represent a bundle of localized resources that are read in
by an internationalized program at runtime. Random generates and returns pseudo-
random numbers in a variety of forms. StringTokenizer is a simple parser that breaks a
string into tokens. In Java 1.3 and later, Timer and TimerTask provide a powerful API for
scheduling code to be run by a background thread, once or repetitively, at a specified
time in the future. In Java 5.0, the Formatter class enables poweful formatted text output
in the style of the C programming language’s printf() function. The Java 5.0 Scanner class
is a text tokenizer or scanner that can also parse numbers and match tokens based on
regular expressions.

Interfaces
public interface Collection<E> extends Iterable<E>;
public interface Comparator<T>;
public interface Enumeration<E>;
public interface EventListener;
public interface Formattable;
public interface Iterator<E>;
public interface List<E> extends Collection<E>;

752 | Chapter 16: java.util and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

.Package java.util

public interface ListIterator<E> extends Iterator<E>;
public interface Map<K, V>;
public interface Map.Entry<K, V>;
public interface Observer;
public interface Queue<E> extends Collection<E>;
public interface RandomAccess;
public interface Set<E> extends Collection<E>;
public interface SortedMap<K, V> extends Map<K, V>;
public interface SortedSet<E> extends Set<E>;

Enumerated Types
public enum Formatter.BigDecimalLayoutForm;

Collections
public abstract class AbstractCollection<E> implements Collection<E>;

public abstract class AbstractList<E> extends AbstractCollection<E> implements List<E>;
public abstract class AbstractSequentialList<E> extends AbstractList<E>;

public class LinkedList<E> extends AbstractSequentialList<E>
implements List<E>, Queue<E>, Cloneable, Serializable;

public class ArrayList<E> extends AbstractList<E> implements List<E>, RandomAccess, Cloneable, Serializable;
public class Vector<E> extends AbstractList<E> implements List<E>, RandomAccess, Cloneable, Serializable;

public class Stack<E> extends Vector<E>;
public abstract class AbstractQueue<E> extends AbstractCollection<E> implements Queue<E>;

public class PriorityQueue<E> extends AbstractQueue<E> implements Serializable;
public abstract class AbstractSet<E> extends AbstractCollection<E> implements Set<E>;

public abstract class EnumSet<E extends Enum<E>> extends AbstractSet<E> implements Cloneable, Serializable;
public class HashSet<E> extends AbstractSet<E> implements Set<E>, Cloneable, Serializable;

public class LinkedHashSet<E> extends HashSet<E> implements Set<E>, Cloneable, Serializable;
public class TreeSet<E> extends AbstractSet<E> implements SortedSet<E>, Cloneable, Serializable;

public abstract class AbstractMap<K, V> implements Map<K, V>;
public class EnumMap<K extends Enum<K>, V> extends AbstractMap<K, V> implements Serializable, Cloneable;
public class HashMap<K, V> extends AbstractMap<K, V> implements Map<K, V>, Cloneable, Serializable;

public class LinkedHashMap<K, V> extends HashMap<K, V> implements Map<K, V>;
public class IdentityHashMap<K, V> extends AbstractMap<K, V> implements Map<K, V>, Serializable, Cloneable;
public class TreeMap<K, V> extends AbstractMap<K, V> implements SortedMap<K, V>, Cloneable, Serializable;
public class WeakHashMap<K, V> extends AbstractMap<K, V> implements Map<K, V>;

public class Hashtable<K, V> extends Dictionary<K, V> implements Map<K, V>, Cloneable, Serializable;
public class Properties extends Hashtable<Object, Object>;

Events
public class EventObject implements Serializable;

Other Classes
public class Arrays;
public class BitSet implements Cloneable, Serializable;
public abstract class Calendar implements Serializable, Cloneable, Comparable<Calendar>;

public class GregorianCalendar extends Calendar;
public class Collections;
public final class Currency implements Serializable;
public class Date implements Serializable, Cloneable, Comparable<Date>;
public abstract class Dictionary<K, V>;
public abstract class EventListenerProxy implements EventListener;

Chapter 16: java.util and Subpackages | 753

java.util.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.AbstractCollection<E>

public class FormattableFlags;
public final class Formatter implements java.io.Closeable, java.io.Flushable;
public final class Locale implements Cloneable, Serializable;
public class Observable;
public final class PropertyPermission extends java.security.BasicPermission;
public class Random implements Serializable;
public abstract class ResourceBundle;

public abstract class ListResourceBundle extends ResourceBundle;
public class PropertyResourceBundle extends ResourceBundle;

public final class Scanner implements Iterator<String>;
public class StringTokenizer implements Enumeration<Object>;
public class Timer;
public abstract class TimerTask implements Runnable;
public abstract class TimeZone implements Cloneable, Serializable;

public class SimpleTimeZone extends TimeZone;
public final class UUID implements Serializable, Comparable<UUID>;

Exceptions
public class ConcurrentModificationException extends RuntimeException;
public class EmptyStackException extends RuntimeException;
public class FormatterClosedException extends IllegalStateException;
public class IllegalFormatException extends IllegalArgumentException;

public class DuplicateFormatFlagsException extends IllegalFormatException;
public class FormatFlagsConversionMismatchException extends IllegalFormatException;
public class IllegalFormatCodePointException extends IllegalFormatException;
public class IllegalFormatConversionException extends IllegalFormatException;
public class IllegalFormatFlagsException extends IllegalFormatException;
public class IllegalFormatPrecisionException extends IllegalFormatException;
public class IllegalFormatWidthException extends IllegalFormatException;
public class MissingFormatArgumentException extends IllegalFormatException;
public class MissingFormatWidthException extends IllegalFormatException;
public class UnknownFormatConversionException extends IllegalFormatException;
public class UnknownFormatFlagsException extends IllegalFormatException;

public class InvalidPropertiesFormatException extends java.io.IOException;
public class MissingResourceException extends RuntimeException;
public class NoSuchElementException extends RuntimeException;

public class InputMismatchException extends NoSuchElementException;
public class TooManyListenersException extends Exception;

AbstractCollection<E>
java.util

Java 1.2

collection

This abstract class is a partial implementation of Collection that makes it easy to define
custom Collection implementations. To create an unmodifiable collection, simply over-
ride size() and iterator(). The Iterator object returned by iterator() has to support only the
hasNext() and next() methods. To define a modifiable collection, you must additionally
override the add() method of AbstractCollection and make sure the Iterator returned by iterator()
supports the remove() method. Some subclasses may choose to override other methods
to tune performance. In addition, it is conventional that all subclasses provide two
constructors: one that takes no arguments and one that accepts a Collection argument
that specifies the initial contents of the collection.

754 | Chapter 16: java.util and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.AbstractList<E>

Note that if you subclass AbstractCollection directly, you are implementing a bag—an unor-
dered collection that allows duplicate elements. If your add() method rejects duplicate
elements, you should subclass AbstractSet instead. See also AbstractList.

Subclasses AbstractList, AbstractQueue, AbstractSet

AbstractList<E>
java.util

Java 1.2

collection

This abstract class is a partial implementation of the List interface that makes it easy to
define custom List implementations based on random-access list elements (such as
objects stored in an array). If you want to base a List implementation on a sequential-
access data model (such as a linked list), subclass AbstractSequentialList instead.

To create an unmodifiable List, simply subclass AbstractList and override the (inherited)
size() and get() methods. To create a modifiable list, you must also override set() and,
optionally, add() and remove(). These three methods are optional, so unless you override
them, they simply throw an UnsupportedOperationException. All other methods of the List
interface are implemented in terms of size(), get(), set(), add(), and remove(). In some cases,
you may want to override these other methods to improve performance. By conven-
tion, all List implementations should define two constructors: one that accepts no
arguments and another that accepts a Collection of initial elements for the list.

public abstract class AbstractCollection<E> implements Collection<E> {
// Protected Constructors

protected AbstractCollection();
// Methods Implementing Collection

public boolean add(E o);
public boolean addAll(Collection<? extends E> c);
public void clear();
public boolean contains(Object o);
public boolean containsAll(Collection<?> c);
public boolean isEmpty();
public abstract Iterator<E> iterator();
public boolean remove(Object o);
public boolean removeAll(Collection<?> c);
public boolean retainAll(Collection<?> c);
public abstract int size();
public Object[] toArray();
public <T> T[] toArray(T[] a);

// Public Methods Overriding Object
public String toString();

}

public abstract class AbstractList<E> extends AbstractCollection<E> implements List<E> {
// Protected Constructors

protected AbstractList();
// Methods Implementing List

Object AbstractCollection

Iterable Collection

Object AbstractCollection AbstractList

Iterable Collection Iterable Collection List

Chapter 16: java.util and Subpackages | 755

java.util.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.AbstractMap<K,V>

Subclasses AbstractSequentialList, ArrayList, Vector

AbstractMap<K,V>
java.util

Java 1.2

collection

This abstract class is a partial implementation of the Map interface that makes it easy to
define simple custom Map implementations. To define an unmodifiable map, subclass
AbstractMap and override the entrySet() method so that it returns a set of Map.Entry objects.
(Note that you must also implement Map.Entry, of course.) The returned set should not
support add() or remove(), and its iterator should not support remove(). In order to define a
modifiable Map, you must additionally override the put() method and provide support
for the remove() method of the iterator returned by entrySet().iterator(). In addition, it is
conventional that all Map implementations define two constructors: one that accepts no
arguments and another that accepts a Map of initial mappings.

AbstractMap defines all Map methods in terms of its entrySet() and put() methods and the
remove() method of the entry set iterator. Note, however, that the implementation is
based on a linear search of the Set returned by entrySet() and is not efficient when the Map
contains more than a handful of entries. Some subclasses may want to override addi-
tional AbstractMap methods to improve performance. HashMap and TreeMap use different
algorithms are are substantially more efficient.

public boolean add(E o);
public void add(int index, E element);
public boolean addAll(int index, Collection<? extends E> c);
public void clear();
public boolean equals(Object o);
public abstract E get(int index);
public int hashCode();
public int indexOf(Object o);
public Iterator<E> iterator();
public int lastIndexOf(Object o);
public ListIterator<E> listIterator();
public ListIterator<E> listIterator(int index);
public E remove(int index);
public E set(int index, E element);
public List<E> subList(int fromIndex, int toIndex);

// Protected Instance Methods
protected void removeRange(int fromIndex, int toIndex);

// Protected Instance Fields
protected transient int modCount;

}

public abstract class AbstractMap<K,V> implements Map<K,V> {
// Protected Constructors

protected AbstractMap();
// Methods Implementing Map

public void clear();
public boolean containsKey(Object key);
public boolean containsValue(Object value);
public abstract Set<Map.Entry<K,V>> entrySet();
public boolean equals(Object o);
public V get(Object key);

Object AbstractMap Map

756 | Chapter 16: java.util and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.AbstractQueue<E>

Subclasses EnumMap, HashMap, IdentityHashMap, TreeMap, WeakHashMap,
java.util.concurrent.ConcurrentHashMap

AbstractQueue<E>
java.util

Java 5.0

collection

This abstract class provides a framework for simple Queue implementations. A concrete
subclass must implement offer(), peek(), and poll() and must also implement the inherited
size() and iterator() methods of the Collection interface. The Iterator returned by iterator() must
support the remove() operation.

Subclasses PriorityQueue, java.util.concurrent.ArrayBlockingQueue,
java.util.concurrent.ConcurrentLinkedQueue, java.util.concurrent.DelayQueue,
java.util.concurrent.LinkedBlockingQueue, java.util.concurrent.PriorityBlockingQueue,
java.util.concurrent.SynchronousQueue

AbstractSequentialList<E>
java.util

Java 1.2

collection

This abstract class is a partial implementation of the List interface that makes it easy to
define List implementations based on a sequential-access data model, as is the case with
the LinkedList subclass. To implement a List based on an array or other random-access
model, subclass AbstractList instead.

To implement an unmodifiable list, subclass this class and override the size() and
listIterator() methods. listIterator() must return a ListIterator that defines the hasNext(),

public int hashCode();
public boolean isEmpty();
public Set<K> keySet();
public V put(K key, V value);
public void putAll(Map<? extends K,? extends V> t);
public V remove(Object key);
public int size();
public Collection<V> values();

// Public Methods Overriding Object
public String toString();

// Protected Methods Overriding Object
1.4 protected Object clone() throws CloneNotSupportedException;
}

public abstract class AbstractQueue<E> extends AbstractCollection<E> implements Queue<E> {
// Protected Constructors

protected AbstractQueue();
// Methods Implementing Collection

public boolean add(E o);
public boolean addAll(Collection<? extends E> c);
public void clear();

// Methods Implementing Queue
public E element();
public E remove();

}

Object AbstractCollection AbstractQueue

Iterable Collection Iterable Collection Queue

Chapter 16: java.util and Subpackages | 757

java.util.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.AbstractSet<E>

hasPrevious(), next(), previous(), and index() methods. If you want to allow the list to be modi-
fied, the ListIterator should also support the set() method and, optionally, the add() and
remove() methods. AbstractSequentialList implements all other List methods in terms of these
methods. Some subclasses may want to override additional methods to improve
performance. In addition, it is conventional that all List implementations define two
constructors: one that accepts no arguments and another that accepts a Collection of
initial elements for the list.

Subclasses LinkedList

AbstractSet<E>
java.util

Java 1.2

collection

This abstract class is a partial implementation of the Set interface that makes it easy to
create custom Set implementations. Since Set defines the same methods as Collection, you
can subclass AbstractSet exactly as you would subclass AbstractCollection. See AbstractCollection
for details. Note, however, that when subclassing AbstractSet, you should be sure that
your add() method and your constructors do not allow duplicate elements to be added
to the set. See also AbstractList.

Subclasses EnumSet, HashSet, TreeSet, java.util.concurrent.CopyOnWriteArraySet

public abstract class AbstractSequentialList<E> extends AbstractList<E> {
// Protected Constructors

protected AbstractSequentialList();
// Public Methods Overriding AbstractList

public void add(int index, E element);
public boolean addAll(int index, Collection<? extends E> c);
public E get(int index);
public Iterator<E> iterator();
public abstract ListIterator<E> listIterator(int index);
public E remove(int index);
public E set(int index, E element);

}

public abstract class AbstractSet<E> extends AbstractCollection<E> implements Set<E> {
// Protected Constructors

protected AbstractSet();
// Methods Implementing Set

public boolean equals(Object o);
public int hashCode();

1.3 public boolean removeAll(Collection<?> c);
}

Object AbstractCollection AbstractList AbstractSequentialList

Iterable Collection Iterable Collection List

Object AbstractCollection AbstractSet

Iterable Collection Iterable Collection Set

758 | Chapter 16: java.util and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.ArrayList<E>

ArrayList<E>
java.util

Java 1.2

cloneable serializable collection

This class is a List implementation based on an array (that is recreated as necessary as
the list grows or shrinks). ArrayList implements all optional List and Collection methods and
allows list elements of any type (including null). Because ArrayList is based on an array,
the get() and set() methods are very efficient. (This is not the case for the LinkedList imple-
mentation, for example.) ArrayList is a general-purpose implementation of List and is
quite commonly used. ArrayList is very much like the Vector class, except that its methods
are not synchronized. If you are using an ArrayList in a multithreaded environment, you
should explicitly synchronize any modifications to the list, or wrap the list with
Collections.synchronizedList(). See List and Collection for details on the methods of ArrayList. See
also LinkedList.

An ArrayList has a capacity, which is the number of elements in the internal array that
contains the elements of the list. When the number of elements exceeds the capacity, a
new array, with a larger capacity, must be created. In addition to the List and Collection
methods, ArrayList defines a couple of methods that help you manage this capacity. If
you know in advance how many elements an ArrayList will contain, you can call
ensureCapacity(), which can increase efficiency by avoiding incremental reallocation of the
internal array. You can also pass an initial capacity value to the ArrayList() constructor.
Finally, if an ArrayList has reached its final size and will not change in the future, you can
call trimToSize() to reallocate the internal array with a capacity that matches the list size
exactly. When the ArrayList will have a long lifetime, this can be a useful technique to
reduce memory usage.

public class ArrayList<E> extends AbstractList<E> implements List<E>, RandomAccess, Cloneable, Serializable {
// Public Constructors

public ArrayList();
public ArrayList(int initialCapacity);
public ArrayList(Collection<? extends E> c);

// Public Instance Methods
public void ensureCapacity(int minCapacity);
public void trimToSize();

// Methods Implementing List
public boolean add(E o);
public void add(int index, E element);
public boolean addAll(Collection<? extends E> c);
public boolean addAll(int index, Collection<? extends E> c);
public void clear();
public boolean contains(Object elem);
public E get(int index);
public int indexOf(Object elem);
public boolean isEmpty(); default:true
public int lastIndexOf(Object elem);

5.0 public boolean remove(Object o);
public E remove(int index);

Object AbstractCollection AbstractList ArrayList

Collection List Cloneable List RandomAccess Serializable

Iterable Collection Collection

Iterable Iterable

Chapter 16: java.util and Subpackages | 759

java.util.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.Arrays

Returned By Collections.list()

Arrays
java.util

Java 1.2

This class defines static methods for sorting, searching, and performing other useful
operations on arrays. It also defines the asList() method, which returns a List wrapper
around a specified array of objects. Any changes made to the List are also made to the
underlying array. This is a powerful method that allows any array of objects to be
manipulated in any of the ways a List can be manipulated. It provides a link between
arrays and the Java collections framework.

The various sort() methods sort an array (or a specified portion of an array) in place.
Variants of the method are defined for arrays of each primitive type and for arrays of
Object. For arrays of primitive types, the sorting is done according to the natural
ordering of the type. For arrays of objects, the sorting is done according to the speci-
fied Comparator, or, if the array contains only java.lang.Comparable objects, according to the
ordering defined by that interface. When sorting an array of objects, a stable sorting
algorithm is used so that the relative ordering of equal objects is not disturbed. (This
allows repeated sorts to order objects by key and subkey, for example.)

The binarySearch() methods perform an efficient search (in logarithmic time) of a sorted
array for a specified value. If a match is found in the array, binarySearch() returns the
index of the match. If no match is found, the method returns a negative number. For a
negative return value r, the index –(r+1) specifies the array index at which the specified
value can be inserted to maintain the sorted order of the array. When the array to be
searched is an array of objects, the elements of the array must all implement
java.lang.Comparable, or you must provide a Comparator object to compare them.

The equals() methods test whether two arrays are equal. Two arrays of primitive type are
equal if they contain the same number of elements and if corresponding pairs of
elements are equal according to the == operator. Two arrays of objects are equal if
they contain the same number of elements and if corresponding pairs of elements are
equal according to the equals() method defined by those objects. The fill() methods fill an
array or a specified range of an array with the specified value.

Java 5.0 adds hashCode() methods that compute a hashcode for the contents of the array.
These methods are compatible with the equals() methods: equal() arrays will always have
the same hashCode(). Java 5.0 also adds deepEquals() and deepHashCode() methods that handle
multi-dimensional arrays. Finally, the Java 5.0 toString() and deepToString() methods
convert arrays to strings. The returned strings are a comma-separated list of elements
enclosed in square brackets.

public E set(int index, E element);
public int size();
public Object[] toArray();
public <T> T[] toArray(T[] a);

// Protected Methods Overriding AbstractList
protected void removeRange(int fromIndex, int toIndex);

// Public Methods Overriding Object
public Object clone();

}

public class Arrays {
// No Constructor
// Public Class Methods

760 | Chapter 16: java.util and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.Arrays

public static <T> List<T> asList(T ... a);
public static int binarySearch(char[] a, char key);
public static int binarySearch(short[] a, short key);
public static int binarySearch(long[] a, long key);
public static int binarySearch(int[] a, int key);
public static int binarySearch(float[] a, float key);
public static int binarySearch(Object[] a, Object key);
public static int binarySearch(byte[] a, byte key);
public static int binarySearch(double[] a, double key);
public static <T> int binarySearch(T[] a, T key, Comparator<? super T> c);

5.0 public static boolean deepEquals(Object[] a1, Object[] a2);
5.0 public static int deepHashCode(Object[] a);
5.0 public static String deepToString(Object[] a);

public static boolean equals(boolean[] a, boolean[] a2);
public static boolean equals(long[] a, long[] a2);
public static boolean equals(float[] a, float[] a2);
public static boolean equals(double[] a, double[] a2);
public static boolean equals(char[] a, char[] a2);
public static boolean equals(byte[] a, byte[] a2);
public static boolean equals(int[] a, int[] a2);
public static boolean equals(short[] a, short[] a2);
public static boolean equals(Object[] a, Object[] a2);
public static void fill(char[] a, char val);
public static void fill(short[] a, short val);
public static void fill(byte[] a, byte val);
public static void fill(int[] a, int val);
public static void fill(double[] a, double val);
public static void fill(boolean[] a, boolean val);
public static void fill(Object[] a, Object val);
public static void fill(float[] a, float val);
public static void fill(long[] a, long val);
public static void fill(int[] a, int fromIndex, int toIndex, int val);
public static void fill(double[] a, int fromIndex, int toIndex, double val);
public static void fill(short[] a, int fromIndex, int toIndex, short val);
public static void fill(char[] a, int fromIndex, int toIndex, char val);
public static void fill(float[] a, int fromIndex, int toIndex, float val);
public static void fill(byte[] a, int fromIndex, int toIndex, byte val);
public static void fill(boolean[] a, int fromIndex, int toIndex, boolean val);
public static void fill(Object[] a, int fromIndex, int toIndex, Object val);
public static void fill(long[] a, int fromIndex, int toIndex, long val);

5.0 public static int hashCode(short[] a);
5.0 public static int hashCode(char[] a);
5.0 public static int hashCode(long[] a);
5.0 public static int hashCode(int[] a);
5.0 public static int hashCode(byte[] a);
5.0 public static int hashCode(double[] a);
5.0 public static int hashCode(Object[] a);
5.0 public static int hashCode(boolean[] a);
5.0 public static int hashCode(float[] a);

public static void sort(Object[] a);
public static void sort(short[] a);
public static void sort(float[] a);
public static void sort(double[] a);
public static void sort(long[] a);

Chapter 16: java.util and Subpackages | 761

java.util.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.BitSet

BitSet
java.util

Java 1.0

cloneable serializable

This class implements an array or list of boolean values storing them using a very compact
representation that requires only about one bit per value stored. It implements methods
for setting, querying, and flipping the values stored at any given position within the list,
for counting the number of true values stored in the list, and for finding the next true or
false value in the list. It also defines a number of methods that perform bitwise boolean
operations on two BitSet objects. Despite its name, BitSet does not implement the Set inter-
face, and does not even have the behavior associated with a set; it is a list or vector for
boolean values, but is not related to the List interface or Vector class. This class was intro-
duced in Java 1.0, but was substantially enhanced in Java 1.4; note that many of the
methods described below are only available in Java 1.4 and later.

Create a BitSet with the BitSet() constructor. You may optionally specify a size (the
number of bits) for the BitSet, but this merely provides an optimization since a BitSet will
grow as needed to accomodate any number of boolean values. BitSet does not define a
precise notion of the size of a “set.” The size() method returns the number of boolean
values that can be stored before more internal storage needs to be allocated. The
length() method returns one more than the highest index of a set bit (i.e., a true value).
This means that a BitSet that contains all false values will have a length() of zero. If your
code needs to remember the index of the highest value stored in a BitSet, regardless of
whether that value was true or false, then you should maintain that length information
separately from the BitSet.

Set values in a BitSet with the set() method. There are four versions of this method. Two
set the value at a specific index, and two set values for a range of indexes. Two of the
set() methods do not take a value argument to set: they “set” the specified bit or range
of bites, which means they store the value true. The other two methods take a boolean
argument, allowing you to set the specified value or range of values to true (a set bit) or

public static void sort(byte[] a);
public static void sort(char[] a);
public static void sort(int[] a);
public static <T> void sort(T[] a, Comparator<? super T> c);
public static void sort(short[] a, int fromIndex, int toIndex);
public static void sort(int[] a, int fromIndex, int toIndex);
public static void sort(char[] a, int fromIndex, int toIndex);
public static void sort(long[] a, int fromIndex, int toIndex);
public static void sort(float[] a, int fromIndex, int toIndex);
public static void sort(double[] a, int fromIndex, int toIndex);
public static void sort(byte[] a, int fromIndex, int toIndex);
public static void sort(Object[] a, int fromIndex, int toIndex);
public static <T> void sort(T[] a, int fromIndex, int toIndex, Comparator<? super T> c);

5.0 public static String toString(float[] a);
5.0 public static String toString(boolean[] a);
5.0 public static String toString(Object[] a);
5.0 public static String toString(double[] a);
5.0 public static String toString(int[] a);
5.0 public static String toString(long[] a);
5.0 public static String toString(short[] a);
5.0 public static String toString(byte[] a);
5.0 public static String toString(char[] a);
}

762 | Chapter 16: java.util and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.BitSet

false (a clear bit). There are also two clear() methods that “clear” (or set to false) the value
at the specified index or range of indexes. The flip() methods flip, or toggle (change true
to false and false to true), the value or values at the specified index or range. The set(),
clear(), and flip() methods, as well as all other BitSet methods that operate on a range of
values specify the range with two index values. They define the range as the values
starting from, and including, the value stored at the first specified index up to, but not
including, the value stored at the second specified index. (A number of methods of
String and related classes follow the same convention for specifying a range of
characters.)

To test the value stored at a specified location, use get(), which returns true if the speci-
fied bit is set, or false if it is not set. There is also a get() method that specifies a range of
bits, and returns their state in the form of a BitSet: this get() method is analogous to the
substring() method of a String. Because a BitSet does not define a maximum index, it is legal
to pass any non-negative value to get(). If the index you specify is greater than or equal
to the value returned by length(), then the returned value will always be false.

cardinality() returns the number of true values (or of set bits) stored in a BitSet. isEmpty()
returns true if a BitSet has no true values stored in it (in this case, both length() and
cardinality() return 0). nextSetBit() returns the first index at or after the specified index at
which a true value is stored (or at which the bit is set). You can use this method in a
loop to iterate through the indexes of true values. nextClearBit() is similar, but searches the
BitSet for false values (clear bits) intead. The intersects() method returns true if the target
BitSet and the argument BitSet intersect: that is if there is at least one index at which both
BitSet objects have a true value.

BitSet defines several methods that perform bitwise Boolean operations. These methods
combine the BitSet on which they are invoked (called the “target” BitSet below) with the
BitSet passed as an argument, and store the result in the target BitSet. If you want to
perform a Boolean operation without altering the original BitSet, you should first make
a copy of the original with the clone() method and invoke the method on the copy. The
and() method preforms a bitwise Boolean AND operation, much like the & does when
applied to integer arguments. A value in the target BitSet will be true only if it was origi-
nally true and the value at the same index of argument BitSet is also true. For all false
values in the argument BitSet, and() sets the corresponding value in the target BitSet to
false, leaving other values unchanged. The andNot() method combines a Boolean AND
operation with a Boolean NOT operation on the argument BitSet (it does not alter the
contents of that argument BitSet, hoever). The result is that for all true values in the argu-
ment BitSet, the corresponding values in the target BitSet are set to false.

The or() method performs a bitwise Boolean OR operation like the | operator: a value
in the BitSet will be set to true if its original value was true or the corresponding value in
the argument BitSet was true. For all true values in the argument BitSet, the or() method
sets the corresponding value in the target BitSet to true, leaving the other values
unchanged. The xor() method performs an “exclusive OR” operation: sets a value in the
target BitSet to true if it was originally true or if the corresponding value in the argument
BitSet was true. If both values were false, or if both values were true, however, it sets the
value to false.

Finally, the toString() method returns a String representation of a BitSet that consists of a
list within curly braces of the indexes at which true values are stored.

The BitSet class is not threadsafe.

Chapter 16: java.util and Subpackages | 763

java.util.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.Calendar

Calendar
java.util

Java 1.1

cloneable serializable comparable

This abstract class defines methods that perform date and time arithmetic. It also
includes methods that convert dates and times to and from the machine-usable milli-
second format used by the Date class and units such as minutes, hours, days, weeks,
months, and years that are more useful to humans. As an abstract class, Calendar cannot
be directly instantiated. Instead, it provides static getInstance() methods that return
instances of a Calendar subclass suitable for use in a specified or default locale with a
specified or default time zone. See also Date, DateFormat, and TimeZone.

Calendar defines a number of useful constants. Some of these are values that represent days
of the week and months of the year. Other constants, such as HOUR and DAY_OF_WEEK,
represent various fields of date and time information. These field constants are passed to
a number of Calendar methods, such as get() and set(), in order to indicate what particular
date or time field is desired.

public class BitSet implements Cloneable, Serializable {
// Public Constructors

public BitSet();
public BitSet(int nbits);

// Public Instance Methods
public void and(BitSet set);

1.2 public void andNot(BitSet set);
1.4 public int cardinality();
1.4 public void clear();

public void clear(int bitIndex);
1.4 public void clear(int fromIndex, int toIndex);
1.4 public void flip(int bitIndex);
1.4 public void flip(int fromIndex, int toIndex);

public boolean get(int bitIndex);
1.4 public BitSet get(int fromIndex, int toIndex);
1.4 public boolean intersects(BitSet set);
1.4 public boolean isEmpty(); default:true
1.2 public int length();
1.4 public int nextClearBit(int fromIndex);
1.4 public int nextSetBit(int fromIndex);

public void or(BitSet set);
public void set(int bitIndex);

1.4 public void set(int bitIndex, boolean value);
1.4 public void set(int fromIndex, int toIndex);
1.4 public void set(int fromIndex, int toIndex, boolean value);

public int size();
public void xor(BitSet set);

// Public Methods Overriding Object
public Object clone();
public boolean equals(Object obj);
public int hashCode();
public String toString();

}

Object BitSet

Cloneable Serializable

764 | Chapter 16: java.util and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.Calendar

setTime() and the various set() methods set the date represented by a Calendar object. The
add() method adds (or subtracts) values to a calendar field, incrementing the next larger
field when the field being set rolls over. roll() does the same, without modifying
anything but the specified field. before() and after() compare two Calendar objects. Many of
the methods of the Calendar class are replacements for methods of Date that have been
deprecated as of Java 1.1. While the Calendar class converts a time value to its various
hour, day, month, and other fields, it is not intended to present those fields in a form
suitable for display to the end user. That function is performed by the java.text.DateFormat
class, which handles internationalization issues.

Calendar implements Comparable in Java 5.0, but not in earlier releases.

public abstract class Calendar implements Serializable, Cloneable, Comparable<Calendar> {
// Protected Constructors

protected Calendar();
protected Calendar(TimeZone zone, Locale aLocale);

// Public Constants
public static final int AM; =0
public static final int AM_PM; =9
public static final int APRIL; =3
public static final int AUGUST; =7
public static final int DATE; =5
public static final int DAY_OF_MONTH; =5
public static final int DAY_OF_WEEK; =7
public static final int DAY_OF_WEEK_IN_MONTH; =8
public static final int DAY_OF_YEAR; =6
public static final int DECEMBER; =11
public static final int DST_OFFSET; =16
public static final int ERA; =0
public static final int FEBRUARY; =1
public static final int FIELD_COUNT; =17
public static final int FRIDAY; =6
public static final int HOUR; =10
public static final int HOUR_OF_DAY; =11
public static final int JANUARY; =0
public static final int JULY; =6
public static final int JUNE; =5
public static final int MARCH; =2
public static final int MAY; =4
public static final int MILLISECOND; =14
public static final int MINUTE; =12
public static final int MONDAY; =2
public static final int MONTH; =2
public static final int NOVEMBER; =10
public static final int OCTOBER; =9
public static final int PM; =1
public static final int SATURDAY; =7
public static final int SECOND; =13
public static final int SEPTEMBER; =8
public static final int SUNDAY; =1
public static final int THURSDAY; =5

Object Calendar

Cloneable Comparable Serializable

Chapter 16: java.util and Subpackages | 765

java.util.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.Calendar

public static final int TUESDAY; =3
public static final int UNDECIMBER; =12
public static final int WEDNESDAY; =4
public static final int WEEK_OF_MONTH; =4
public static final int WEEK_OF_YEAR; =3
public static final int YEAR; =1
public static final int ZONE_OFFSET; =15

// Public Class Methods
public static Locale[] getAvailableLocales(); synchronized
public static Calendar getInstance();
public static Calendar getInstance(Locale aLocale);
public static Calendar getInstance(TimeZone zone);
public static Calendar getInstance(TimeZone zone, Locale aLocale);

// Public Instance Methods
public abstract void add(int field, int amount);
public boolean after(Object when);
public boolean before(Object when);
public final void clear();
public final void clear(int field);
public int get(int field);

1.2 public int getActualMaximum(int field);
1.2 public int getActualMinimum(int field);

public int getFirstDayOfWeek();
public abstract int getGreatestMinimum(int field);
public abstract int getLeastMaximum(int field);
public abstract int getMaximum(int field);
public int getMinimalDaysInFirstWeek();
public abstract int getMinimum(int field);
public final Date getTime();
public long getTimeInMillis();
public TimeZone getTimeZone();
public boolean isLenient();
public final boolean isSet(int field);

1.2 public void roll(int field, int amount);
public abstract void roll(int field, boolean up);
public void set(int field, int value);
public final void set(int year, int month, int date);
public final void set(int year, int month, int date, int hourOfDay, int minute);
public final void set(int year, int month, int date, int hourOfDay, int minute, int second);
public void setFirstDayOfWeek(int value);
public void setLenient(boolean lenient);
public void setMinimalDaysInFirstWeek(int value);
public final void setTime(Date date);
public void setTimeInMillis(long millis);
public void setTimeZone(TimeZone value);

// Methods Implementing Comparable
5.0 public int compareTo(Calendar anotherCalendar);
// Public Methods Overriding Object

public Object clone();
public boolean equals(Object obj);

1.2 public int hashCode();
public String toString();

766 | Chapter 16: java.util and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.Collection<E>

Subclasses GregorianCalendar

Passed To java.text.DateFormat.setCalendar(), javax.xml.datatype.Duration.{addTo(), getTimeInMillis(),
normalizeWith()}

Returned By java.text.DateFormat.getCalendar()

Type Of java.text.DateFormat.calendar

Collection<E>
java.util

Java 1.2

collection

This interface represents a group, or collection, of objects. In Java 5.0 this is a
generic interface and the type variable E represents the type of the objects in the
collection. The objects may or may not be ordered, and the collection may or may
not contain duplicate objects. Collection is not often implemented directly. Instead,
most collection classes implement one of the more specific subinterfaces: Set, an
unordered collection that does not allow duplicates, or List, an ordered collection
that does allow duplicates.

The Collection type provides a general way to refer to any set, list, or other collection of
objects; it defines generic methods that work with any collection. contains() and
containsAll() test whether the Collection contains a specified object or all the objects in a
given collection. isEmpty() returns true if the Collection has no elements, or false otherwise.
size() returns the number of elements in the Collection. iterator() returns an Iterator object that
allows you to iterate through the objects in the collection. toArray() returns the objects in
the Collection in a new array of type Object. Another version of toArray() takes an array as an
argument and stores all elements of the Collection (which must all be compatible with the
array) into that array. If the array is not big enough, the method allocates a new, larger
array of the same type. If the array is too big, the method stores null into the first empty
element of the array. This version of toArray() returns the array that was passed in or the
new array, if one was allocated.

The previous methods all query or extract the contents of a collection. The Collection
interface also defines methods for modifying the contents of the collection. add() and
addAll() add an object or a collection of objects to a Collection. remove() and removeAll()
remove an object or collection. retainAll() is a variant that removes all objects except
those in a specified Collection. clear() removes all objects from the collection. All these
modification methods except clear() return true if the collection was modified as a
result of the call. An interface cannot specify constructors, but it is conventional that
all implementations of Collection provide at least two standard constructors: one that
takes no arguments and creates an empty collection, and a copy constructor that
accepts a Collection object that specifies the initial contents of the new Collection.

// Protected Instance Methods
protected void complete();
protected abstract void computeFields();
protected abstract void computeTime();
protected final int internalGet(int field);

// Protected Instance Fields
protected boolean areFieldsSet;
protected int[] fields;
protected boolean[] isSet;
protected boolean isTimeSet;
protected long time;

}

Chapter 16: java.util and Subpackages | 767

java.util.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.Collections

Implementations of Collection and its subinterfaces are not required to support all opera-
tions defined by the Collection interface. All modification methods listed above are
optional; an implementation (such as an immutable Set implementation) that does not
support them simply throws java.lang.UnsupportedOperationException for these methods.
Furthermore, implementations are free to impose restrictions on the types of objects
that can be members of a collection. Some implementations might require elements to
be of a particular type, for example, and others might not allow null as an element.

See also Set, List, Map, and Collections.

Implementations AbstractCollection, List, Queue, Set

Passed To Too many methods to list.

Returned By Too many methods to list.

Collections
java.util

Java 1.2

This class defines static methods and constants that are useful for working with collec-
tions and maps. One of the most commonly used methods is sort(), which sorts a List in
place (the list cannot be immutable, of course). The sorting algorithm is stable, which
means that equal elements retain the same relative order. One version of sort() uses a
specified Comparator to perform the sort; the other relies on the natural ordering of the
list elements and requires all the elements to implement java.lang.Comparable. reverseOrder()
returns a Comparator object that reverses the order of another Comparator or that reverse the
natural ordering of Comparable objects.

A related method is binarySearch(). It efficiently (in logarithmic time) searches a sorted List
for a specified object and returns the index at which a matching object is found. If no
match is found, it returns a negative number. For a negative return value r, the value
–(r+1) specifies the index at which the specified object can be inserted into the list to
maintain the sorted order of the list. As with sort(), binarySearch() can be passed a Comparator
that defines the order of the sorted list. If no Comparator is specified, the list elements must

public interface Collection<E> extends Iterable<E> {
// Public Instance Methods

boolean add(E o);
boolean addAll(Collection<? extends E> c);
void clear();
boolean contains(Object o);
boolean containsAll(Collection<?> c);
boolean equals(Object o);
int hashCode();
boolean isEmpty();
Iterator<E> iterator();
boolean remove(Object o);
boolean removeAll(Collection<?> c);
boolean retainAll(Collection<?> c);
int size();
Object[] toArray();
<T> T[] toArray(T[] a);

}

Iterable Collection

768 | Chapter 16: java.util and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.Collections

all implement Comparable, and the list is assumed to be sorted according to the natural
ordering defined by this interface.

See Arrays for methods that perform sorting and searching operations on arrays instead
of collections.

The various methods whose names begin with synchronized return a threadsafe collec-
tion object wrapped around the specified collection. Vector and Hashtable are the only two
collection objects threadsafe by default. Use these methods to obtain a synchronized
wrapper object if you are using any other type of Collection or Map in a multithreaded
environment where more than one thread can modify it.

The various methods whose names begin with unmodifiable function like synchronized
methods. They return a Collection or Map object wrapped around the specified collection.
The returned object is unmodifiable, however, so its add(), remove(), set(), put(), etc.
methods all throw java.lang.UnsupportedOperationException. In Java 5.0, the “checked”
methods return wrapped collections that enforce a specified element type for the
collection, so that it is not possible to add an element of the wrong type.

In addition to the “synchronized”, “unmodifiable”, and “checked” methods, Collections
defines a number of other methods that return special-purpose collections or maps:
singleton() returns an unmodifiable set that contains only the specified object.
singletonList() and singletonMap() return an immutable list and an immutable map, respec-
tively, each of which contains only a single entry. The Collections class also defines
related constants, EMPTY_LIST, EMPTY_SET, and EMPTY_MAP, which are immutable List, Set,
and Map objects that contain no elements or mappings. In Java 5.0, the emptySet(),
emptyList(), and emptyMap() methods are preferred alternatives to these constants, because
they are generic methods and return correctly parameterized empty collections. nCopies()
creates a new immutable List that contains a specified number of copies of a specified
object. list() returns a List object that represents the elements of the specified Enumeration
object. enumeration() does the reverse: it returns an Enumeration for a Collection, which is
useful when working with code that uses the old Enumeration interface instead of the
newer Iterator interface.

The Collections class also defines methods that mutate a collection. These methods throw
an UnsupportedOperationException if the target collection is does not allow mutation. copy()
copies elements of a source list into a destination list. fill() replaces all elements of the
specified list with the specified object. swap() swaps the elements at two specified
indexes of a List. replaceAll() replaces all elements in a List that are equal to (using the
equals() method) with another object, and returns true if any replacements were done.
reverse() reverses the order of the elements in a list. rotate() “rotates” a list, adding the
specified number to the index of each element, and wrapping elements from the end of
the list back to the front of the list. (Specifying a negative rotation rotates the list in the
other direction.) shuffle() randomizes the order of elements in a list, using either an
internal source of randomness or the Random pseudorandom number generator you
provide. In Java 5.0, the addAll() method adds the specified elements to the specified
collection. This method is a varargs method and allows elements to be specified in an
array or listed individually in the argument list.

Finally, Collections defines methods (in addition to the binarySearch() methods described
above) that search the elements of a collection: min() and max() methods search an unor-
dered Collection for the minimum and maximum elements, according either to a
specified Comparator or to the natural order defined by the Comparable elements them-
selves. indexOfSubList() and lastIndexOfSubList() search a specified list forward or backward for

Chapter 16: java.util and Subpackages | 769

java.util.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.Collections

a subsequence of elements that match (using equals()) the elements the a second speci-
fied list. They return the start index of any such matching sublist, or return -1 if no
match was found. These methods are like the indexOf() and lastIndexOf() methods of String,
and do not require the List to be sorted, as the binarySearch() methods do. In Java 5.0,
frequency() returns the number of occurences of a specified element in a specified collec-
tion, and disjoint() determines whether two collections are entirely disjoint—whether
they have no elements in common.

public class Collections {
// No Constructor
// Public Constants

public static final List EMPTY_LIST;
1.3 public static final Map EMPTY_MAP;

public static final Set EMPTY_SET;
// Public Class Methods
5.0 public static <T> boolean addAll(Collection<? super T> c, T ... a);

public static <T> int binarySearch(List<? extends Comparable<? super T>> list, T key);
public static <T> int binarySearch(List<? extends T> list, T key, Comparator<? super T> c);

5.0 public static <E> Collection<E> checkedCollection(Collection<E> c, Class<E> type);
5.0 public static <E> List<E> checkedList(List<E> list, Class<E> type);
5.0 public static <K,V> Map<K,V> checkedMap(Map<K,V> m, Class<K> keyType, Class<V> valueType);
5.0 public static <E> Set<E> checkedSet(Set<E> s, Class<E> type);
5.0 public static <K,V> SortedMap<K,V> checkedSortedMap(SortedMap<K,V> m, Class<K> keyType,

Class<V> valueType);
5.0 public static <E> SortedSet<E> checkedSortedSet(SortedSet<E> s, Class<E> type);

public static <T> void copy(List<? super T> dest, List<? extends T> src);
5.0 public static boolean disjoint(Collection<?> c1, Collection<?> c2);
5.0 public static final <T> List<T> emptyList();
5.0 public static final <K,V> Map<K,V> emptyMap();
5.0 public static final <T> Set<T> emptySet();

public static <T> Enumeration<T> enumeration(Collection<T> c);
public static <T> void fill(List<? super T> list, T obj);

5.0 public static int frequency(Collection<?> c, Object o);
1.4 public static int indexOfSubList(List<?> source, List<?> target);
1.4 public static int lastIndexOfSubList(List<?> source, List<?> target);
1.4 public static <T> ArrayList<T> list(Enumeration<T> e);

public static <T extends Object&Comparable<? super T>> T max(Collection<? extends T> coll);
public static <T> T max(Collection<? extends T> coll, Comparator<? super T> comp);
public static <T extends Object&Comparable<? super T>> T min(Collection<? extends T> coll);
public static <T> T min(Collection<? extends T> coll, Comparator<? super T> comp);
public static <T> List<T> nCopies(int n, T o);

1.4 public static <T> boolean replaceAll(List<T> list, T oldVal, T newVal);
public static void reverse(List<?> list);
public static <T> Comparator<T> reverseOrder();

5.0 public static <T> Comparator<T> reverseOrder(Comparator<T> cmp);
1.4 public static void rotate(List<?> list, int distance);

public static void shuffle(List<?> list);
public static void shuffle(List<?> list, Random rnd);
public static <T> Set<T> singleton(T o);

1.3 public static <T> List<T> singletonList(T o);
1.3 public static <K,V> Map<K,V> singletonMap(K key, V value);

public static <T extends Comparable<? super T>> void sort(List<T> list);
public static <T> void sort(List<T> list, Comparator<? super T> c);

770 | Chapter 16: java.util and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.Comparator<T>

Comparator<T>
java.util

Java 1.2

This interface defines a compare() method that specifies a total ordering for a set of objects,
allowing those objects to be sorted. The Comparator is used when the objects to be ordered
do not have a natural ordering defined by the Comparable interface, or when you want to
order them using something other than their natural ordering. Comparator has been made
generic in Java 5.0 and the type variable T represents the type of objects being compared.

The compare() method is passed two objects. If the first argument is less than the second
argument or should be placed before the second argument in a sorted list, compare()
should return a negative integer. If the first argument is greater than the second argu-
ment or should be placed after the second argument in a sorted list, compare() should
return a positive integer. If the two objects are equivalent or if their relative position in
a sorted list does not matter, compare() should return 0. Comparator implementations may
assume that both Object arguments are of appropriate types and cast them as desired. If
either argument is not of the expected type, the compare() method throws a
ClassCastException.

Note that the magnitude of the numbers returned by compare() does not matter, only
whether they are less than, equal to, or greater than zero. In most cases, you should
implement a Comparator so that compare(o1,o2) returns 0 if and only if o1.equals(o2) returns
true. This is particularly important when using a Comparator to impose an ordering on a
TreeSet or a TreeMap.

See Collections and Arrays for various methods that use Comparator objects for sorting and
searching. See also the related java.lang.Comparable interface.

Implementations java.text.Collator

Passed To Arrays.{binarySearch(), sort()}, Collections.{binarySearch(), max(), min(), reverseOrder(), sort()},
PriorityQueue.PriorityQueue(), TreeMap.TreeMap(), TreeSet.TreeSet(),
java.util.concurrent.PriorityBlockingQueue.PriorityBlockingQueue()

1.4 public static void swap(List<?> list, int i, int j);
public static <T> Collection<T> synchronizedCollection(Collection<T> c);
public static <T> List<T> synchronizedList(List<T> list);
public static <K,V> Map<K,V> synchronizedMap(Map<K,V> m);
public static <T> Set<T> synchronizedSet(Set<T> s);
public static <K,V> SortedMap<K,V> synchronizedSortedMap(SortedMap<K,V> m);
public static <T> SortedSet<T> synchronizedSortedSet(SortedSet<T> s);
public static <T> Collection<T> unmodifiableCollection(Collection<? extends T> c);
public static <T> List<T> unmodifiableList(List<? extends T> list);
public static <K,V> Map<K,V> unmodifiableMap(Map<? extends K,? extends V> m);
public static <T> Set<T> unmodifiableSet(Set<? extends T> s);
public static <K,V> SortedMap<K,V> unmodifiableSortedMap(SortedMap<K,? extends V> m);
public static <T> SortedSet<T> unmodifiableSortedSet(SortedSet<T> s);

}

public interface Comparator<T> {
// Public Instance Methods

int compare(T o1, T o2);
boolean equals(Object obj);

}

Chapter 16: java.util and Subpackages | 771

java.util.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.Currency

Returned By Collections.reverseOrder(), PriorityQueue.comparator(), SortedMap.comparator(),
SortedSet.comparator(), TreeMap.comparator(), TreeSet.comparator(),
java.util.concurrent.PriorityBlockingQueue.comparator()

Type Of String.CASE_INSENSITIVE_ORDER

ConcurrentModificationException
java.util

Java 1.2

serializable unchecked

Signals that a modification has been made to a data structure at the same time some
other operation is in progress and that, as a result, the correctness of the ongoing oper-
ation cannot be guaranteed. It is typically thrown by an Iterator or ListIterator object to
stop an iteration if it detects that the underlying collection has been modified while the
iteration is in progress.

Currency
java.util

Java 1.4

serializable

Instances of this class represent a currency. Obtain a Currency object by passing a
“currency code” such as “USD” for U.S. Dollars or “EUR” for Euros to getInstance().
Once you have a Currency object, use getSymbol() to obtain the currency symbol (which is
often different from the currency code) for the default locale or for a specified Locale.
The symbol for a USD would be “$” in a U.S locale, but might be “US$” in other
locales, for example. If no symbol is known, this method returns the currency code.

Use getDefaultFractionDigits() to determine how many fractional digits are conventionally
used with the currency. This method returns 2 for the U.S. Dollar and other curren-
cies that are divided into hundredths, but returns 3 for the Jordanian Dinar (JOD) and
other currencies which are traditionally divided into thousandths, and returns 0 for the
Japanese Yen (JPY) and other currencies that have a small unit value and are not
usually divided into fractional parts at all. Currency codes are standardized by the ISO
4217 standard. For a complete list of currencies and currency codes see the website of
the “maintenance agency” for this standard: http://www.iso.org/iso/en/prods-services/
popstds/currencycodeslist.html.

public class ConcurrentModificationException extends RuntimeException {
// Public Constructors

public ConcurrentModificationException();
public ConcurrentModificationException(String message);

}

public final class Currency implements Serializable {
// No Constructor
// Public Class Methods

public static Currency getInstance(String currencyCode);
public static Currency getInstance(Locale locale);

// Public Instance Methods
public String getCurrencyCode();
public int getDefaultFractionDigits();

Object Throwable Exception RuntimeException ConcurrentModificationException

Serializable

Object Currency Serializable

772 | Chapter 16: java.util and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.Date

Passed To java.text.DecimalFormat.setCurrency(), java.text.DecimalFormatSymbols.setCurrency(),
java.text.NumberFormat.setCurrency()

Returned By java.text.DecimalFormat.getCurrency(), java.text.DecimalFormatSymbols.getCurrency(),
java.text.NumberFormat.getCurrency()

Date
java.util

Java 1.0

cloneable serializable comparable

This class represents dates and times and lets you work with them in a system-inde-
pendent way. You can create a Date by specifying the number of milliseconds from the
epoch (midnight GMT, January 1st, 1970) or the year, month, date, and, optionally,
the hour, minute, and second. Years are specified as the number of years since 1900. If
you call the Date constructor with no arguments, the Date is initialized to the current
time and date. The instance methods of the class allow you to get and set the various
date and time fields, to compare dates and times, and to convert dates to and from
string representations. As of Java 1.1, many of the date methods have been deprecated
in favor of the methods of the Calendar class.

public String getSymbol();
public String getSymbol(Locale locale);

// Public Methods Overriding Object
public String toString();

}

public class Date implements Serializable, Cloneable, Comparable<Date> {
// Public Constructors

public Date();
public Date(long date);

public Date(String s);
public Date(int year, int month, int date);
public Date(int year, int month, int date, int hrs, int min);
public Date(int year, int month, int date, int hrs, int min, int sec);
// Public Instance Methods

public boolean after(Date when);
public boolean before(Date when);
public long getTime(); default:1101702237486
public void setTime(long time);

// Methods Implementing Comparable
1.2 public int compareTo(Date anotherDate);
// Public Methods Overriding Object
1.2 public Object clone();

public boolean equals(Object obj);
public int hashCode();
public String toString();

// Deprecated Public Methods
public int getDate(); default:28
public int getDay(); default:0
public int getHours(); default:20
public int getMinutes(); default:23

Object Date

Cloneable Comparable Serializable

Chapter 16: java.util and Subpackages | 773

java.util.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.DuplicateFormatFlagsException

Passed To Too many methods to list.

Returned By Too many methods to list.

Dictionary<K,V>
java.util

Java 1.0

This abstract class is the superclass of Hashtable. Other hashtable-like data structures
might also extend this class. See Hashtable for more information. As of Java 1.2, the Map
interface replaces the functionality of this class.

Subclasses Hashtable

DuplicateFormatFlagsException
java.util

Java 5.0

serializable unchecked

An IllegalFormatException of this type is thrown by a Formatter when the format string
contains duplicate format flags for the same conversion specifier.

public int getMonth(); default:10
public int getSeconds(); default:57
public int getTimezoneOffset(); default:480
public int getYear(); default:104
public static long parse(String s);
public void setDate(int date);
public void setHours(int hours);
public void setMinutes(int minutes);
public void setMonth(int month);
public void setSeconds(int seconds);
public void setYear(int year);
public String toGMTString();
public String toLocaleString();
public static long UTC(int year, int month, int date, int hrs, int min, int sec);
}

public abstract class Dictionary<K,V> {
// Public Constructors

public Dictionary();
// Public Instance Methods

public abstract Enumeration<V> elements();
public abstract V get(Object key);
public abstract boolean isEmpty();
public abstract Enumeration<K> keys();
public abstract V put(K key, V value);
public abstract V remove(Object key);
public abstract int size();

}

public class DuplicateFormatFlagsException extends IllegalFormatException {
// Public Constructors

public DuplicateFormatFlagsException(String f);

Throwable Exception RuntimeException IllegalArgumentException IllegalFormatException DuplicateFormatFlagsException

Serializable

774 | Chapter 16: java.util and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.EmptyStackException

EmptyStackException
java.util

Java 1.0

serializable unchecked

Signals that a Stack object is empty.

Enumeration<E>
java.util

Java 1.0

This interface defines the methods necessary to enumerate, or iterate, through a set of
values, such as the set of values contained in a hashtable. This interface is superseded
in Java 1.2 by the Iterator inteface. In Java 5.0 this interface has been made generic and
defines the type variable E to represent the type of the objects being enumerated.

An Enumeration is usually not instantiated directly, but instead is created by the object
that is to have its values enumerated. A number of classes, such as Vector and Hashtable,
have methods that return Enumeration objects.

To use an Enumeration object, you use its two methods in a loop. hasMoreElements() returns
true if there are more values to be enumerated and can determine whether a loop
should continue. Within a loop, a call to nextElement() returns a value from the enumera-
tion. An Enumeration makes no guarantees about the order in which the values are
returned. The values in an Enumeration can be iterated through only once; there is no way
to reset it to the beginning.

Implementations StringTokenizer

Passed To java.io.SequenceInputStream.SequenceInputStream(), Collections.list()

Returned By Too many methods to list.

EnumMap<K extends Enum<K>,V>
java.util

Java 5.0

cloneable serializable collection

This class is a Map implementation for use with enumerated types. The key type K must
be an enumerated type, and all keys must be enumerated constants defined by that
type. null keys are not permitted. The value type V is unrestricted and null values are
permitted.

// Public Instance Methods
public String getFlags();

// Public Methods Overriding Throwable
public String getMessage();

}

public class EmptyStackException extends RuntimeException {
// Public Constructors

public EmptyStackException();
}

public interface Enumeration<E> {
// Public Instance Methods

boolean hasMoreElements();
E nextElement();

}

Object Throwable Exception RuntimeException EmptyStackException

Serializable

Chapter 16: java.util and Subpackages | 775

java.util.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.EnumSet<E extends Enum<E>>

The EnumMap implementation is based on an array of elements of type V. The length of
this array is the same as the number of constants defined by the enumerated type K. All
Map operations execute in constant time. The iterators of the keySet(), entrySet(), and
values() collections iterate their elements in the ordinal order of the enumerated
constants. EnumMap is not threadsafe, but its iterators are based on a snapshot of the
underlying array and never throw ConcurrentModificationException.

EnumSet<E extends Enum<E>>
java.util

Java 5.0

cloneable serializable collection

This Set implementation is specialized for use with enumerated constants. The element
type E must be an enumerated type, and null is not allowed as a member of the set.

EnumSet does not define a constructor. Instead, it defines various static factory methods
for creating sets. Use one of the of() methods for creating an EnumSet and initializing its
elements. For efficiency, versions of this method that accept one through five argu-
ments are defined. If you pass more than five arguments, the varargs version will be
invoked. The allOf() and noneOf() methods define full and empty sets but require the Class
of the enumerated type since they do not have any other arguments to define the
element type. complementOf() returns an EnumSet that contains all enumerated constants
not contained by the specified EnumSet. The range() factory creates a set that includes the
two specified values and any enumerated constants that fall between them in the
enumerated type declaration. (Note that this definition of a range includes both
endpoints and differs from most Java methods, in which the second argument speci-
fies the first value past the end of the range.)

The EnumSet implementation is based on a bit vector that includes one bit for each
constant defined by the enumerated type E. Because of this compact and efficient
representation, basic Set operations occur in constant time, and the Iterator returns

public class EnumMap<K extends Enum<K>,V> extends AbstractMap<K,V> implements Serializable, Cloneable {
// Public Constructors

public EnumMap(EnumMap<K,? extends V> m);
public EnumMap(Class<K> keyType);
public EnumMap(Map<K,? extends V> m);

// Public Instance Methods
public EnumMap<K,V> clone();
public V put(K key, V value);

// Public Methods Overriding AbstractMap
public void clear();
public boolean containsKey(Object key);
public boolean containsValue(Object value);
public Set<Map.Entry<K,V>> entrySet();
public boolean equals(Object o);
public V get(Object key);
public Set<K> keySet();
public void putAll(Map<? extends K,? extends V> m);
public V remove(Object key);
public int size();
public Collection<V> values();

}

Object AbstractMap EnumMap

Map Cloneable Serializable

776 | Chapter 16: java.util and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.EventListener

enumerated constants in the order in which they are declared in the type E. EnumSet is
not threadsafe, but the Iterator uses a copy of the internal bit vector and never throws
ConcurrentModificationException.

EventListener
java.util

Java 1.1

event listener

EventListener is a base interface for the event model that is used by AWT and Swing in
Java 1.1 and later. This interface defines no methods or constants; it serves simply as a
tag that identifies objects that act as event listeners. The event listener interfaces in the
java.awt.event, java.beans, and javax.swing.event packages extend this interface.

Implementations EventListenerProxy, java.util.prefs.NodeChangeListener,
java.util.prefs.PreferenceChangeListener, javax.net.ssl.HandshakeCompletedListener,
javax.net.ssl.SSLSessionBindingListener

Passed To EventListenerProxy.EventListenerProxy()

Returned By EventListenerProxy.getListener()

EventListenerProxy
java.util

Java 1.4

This abstract class serves as the superclass for event listener proxy objects. Subclasses
of this class implement an event listener interface and serve as a wrapper around an
event listener of that type, defining methods that provide additional information about
the listener. See java.beans.PropertyChangeListenerProxy for an explanation of how event
listener proxy objects are used.

public abstract class EnumSet<E extends Enum<E>> extends AbstractSet<E> implements Cloneable, Serializable {
// No Constructor
// Public Class Methods

public static <E extends Enum<E>> EnumSet<E> allOf(Class<E> elementType);
public static <E extends Enum<E>> EnumSet<E> complementOf(EnumSet<E> s);
public static <E extends Enum<E>> EnumSet<E> copyOf(EnumSet<E> s);
public static <E extends Enum<E>> EnumSet<E> copyOf(Collection<E> c);
public static <E extends Enum<E>> EnumSet<E> noneOf(Class<E> elementType);
public static <E extends Enum<E>> EnumSet<E> of(E e);
public static <E extends Enum<E>> EnumSet<E> of(E first, E ... rest);
public static <E extends Enum<E>> EnumSet<E> of(E e1, E e2);
public static <E extends Enum<E>> EnumSet<E> of(E e1, E e2, E e3);
public static <E extends Enum<E>> EnumSet<E> of(E e1, E e2, E e3, E e4);
public static <E extends Enum<E>> EnumSet<E> of(E e1, E e2, E e3, E e4, E e5);
public static <E extends Enum<E>> EnumSet<E> range(E from, E to);

// Public Instance Methods
public EnumSet<E> clone();

}

public interface EventListener {
}

Object AbstractCollection AbstractSet EnumSet

Iterable Collection Iterable Collection Set Cloneable Serializable

Object EventListenerProxy EventListener

Chapter 16: java.util and Subpackages | 777

java.util.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.FormatFlagsConversionMismatchException

EventObject
java.util

Java 1.1

serializable event

EventObject serves as the superclass for all event objects used by the event model intro-
duced in Java 1.1 for AWT and JavaBeans and also used by Swing in Java 1.2. This
class defines a generic type of event; it is extended by the more specific event classes in
the java.awt, java.awt.event, java.beans, and javax.swing.event packages. The only common
feature shared by all events is a source object, which is the object that, in some way,
generated the event. The source object is passed to the EventObject() constructor and is
returned by the getSource() method.

Subclasses java.util.prefs.NodeChangeEvent, java.util.prefs.PreferenceChangeEvent,
javax.net.ssl.HandshakeCompletedEvent, javax.net.ssl.SSLSessionBindingEvent

FormatFlagsConversionMismatchException
java.util

Java 5.0

serializable unchecked

An IllegalFormatException of this type is thrown by a Formatter when a conversion specifier
and a format flag specified with it are incompatible.

public abstract class EventListenerProxy implements EventListener {
// Public Constructors

public EventListenerProxy(EventListener listener);
// Public Instance Methods

public EventListener getListener();
}

public class EventObject implements Serializable {
// Public Constructors

public EventObject(Object source);
// Public Instance Methods

public Object getSource();
// Public Methods Overriding Object

public String toString();
// Protected Instance Fields

protected transient Object source;
}

public class FormatFlagsConversionMismatchException extends IllegalFormatException {
// Public Constructors

public FormatFlagsConversionMismatchException(String f, char c);
// Public Instance Methods

public char getConversion();
public String getFlags();

// Public Methods Overriding Throwable
public String getMessage();

}

Object EventObject Serializable

Throwable Exception RuntimeException IllegalArgumentException IllegalFormatException FormatFlagsConversionMismatchException

Serializable

778 | Chapter 16: java.util and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.Formattable

Formattable
java.util

Java 5.0

This interface should be implemented by classes that want to interact with the Formatter
class more intimately than is possible with the toString method. When a Formattable object
is the argument for a %s or %S conversion, its formatTo() method is invoked rather than
its toString() method. formatTo() is responsible for formatting a textual representation of
the object to the specified formatter, subject to the constraints imposed by the flags, width,
and precision arguments.

The flags argument is a bitmask of zero or more FormattableFlags constants. Each flag
provides information about the format specification that resulted in the invocation of
formatTo(). FormattableFlags.ALTERNATE indicates that the # flag was used and that the Format-
table should format itself using some alternate form. The interpretation of the alternate
form is entirely up to the Formattable implementation. LEFT_JUSTIFY means that the - flag
was used and that the Formattable should pad its output on the right, instead of on the
left. UPPERCASE indicates that the %S conversion was used instead of %s and the Formattable
should output uppercase characters instead of lowercase.

The width and precision arguments specify the width and precision specified along with
the %s format specifier, or -1 if no width and precision are specified. The Formattable
object should treat these values the same way that Formatter does. The text to be output
should first be truncated to fit within precision characters and then padded on the left (or
right if the LEFT_JUSTIFY flag is set) with spaces for a total length of width characters. Note
that a Formattable implementation may fulfill the obligations imposed by the LEFT_JUSTIFY
and UPPERCASE flags and the width and precision arguments by constructing a suitable
format string to pass back to the specified Formatter.

If a Formattable implementation wants to perform locale-specific formatting, it can query
the Locale of the Formatter with the locale() method. Note, however, that the returned value
is the locale specified when the Formatter was created, not the Locale, if any, passed to the
format() method. There is no way for a Formattable object to access that Locale.

FormattableFlags
java.util

Java 5.0

This class defines three constants representing flags that may be passed as a bitmask to
the Formattable.formatTo() method. See Formattable for the interpretation of these flags.

public interface Formattable {
// Public Instance Methods

void formatTo(java.util.Formatter formatter, int flags, int width, int precision);
}

public class FormattableFlags {
// No Constructor
// Public Constants

public static final int ALTERNATE; =4
public static final int LEFT_JUSTIFY; =1
public static final int UPPERCASE; =2

}

Chapter 16: java.util and Subpackages | 779

java.util.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.Formatter

Formatter
java.util

Java 5.0

closeable flushable

The Formatter class is a utility for formatting text in the style of the printf() method of the
C programming language. Every Formatter has an associated java.lang.Appendable object
(such as a StringBuilder or PrintWriter) that is specified when the Formatter is created. format() is
a varargs method that expects a “format string” argument followed by some number of
Object arguments. The format string uses a grammar, described in detail later in the
entry, to specify how the arguments that follow are to be converted to strings. After
the arguments are converted, they are substituted into the format string, and the
resulting text is appended to the Appendable. A variant of the format() method accepts a
Locale object that can affect the argument conversions.

For ease of use, a Formatter never throws a java.io.IOException, even when the underlying
Appendable throws one. When using a Formatter with a stream-based Appendable object that
may throw an IOException, you can use the ioException() method to obtain the most recently
thrown exception, or null if no exception has been thrown by the Appendable.

Formatter implements the Closeable and Flushable interfaces of the java.io package, and its
close() and flush() methods call the corresponding methods on its Appendable object, if that
object itself implements Closeable or Flushable. When a Formatter sends its output to a
stream or similar Appendable, remember to call close() when you are done with it. It is
always safe to call close() even if the underlying Appendable is not Closeable. Note that once
a Formatter has been closed, no other method except ioException() may be called.

locale() returns the Locale passed to the Formatter() constructor or null. out() returns the
Appendable that this Formatter sends its output to. toString() returns the result of calling
toString() on that Appendable. This is useful when the Appendable is a StringBuilder, for
example, as it is when the no-argument version of the Formatter() constructor is used.
If the Appendable is a stream class, however, the toString() method is not typically useful.

Note that the Java 5.0 API provides a number of convenience methods that use the
Formatter class, and in many cases it is unnecessary to create a Formatter object explicitly.
See the static String.format() method and the format() and printf() methods of java.io.PrintWriter
and java.io.PrintStream.

If you do need to create a Formatter object explicitly, you can choose from a number of
constructors. The most general case is to pass the desired Appendable or the desired Locale
and Appendable objects to the constructor. The no-argument constructor is a conve-
nience that creates a StringBuilder to append to. Obtain this StringBuilder with out() or obtain
its contents as a String with toString(). If you specify a single Locale argument, the resulting
Formatter uses the specified locale with a StringBuilder.

You can use a Formatter to write formatted output to a file by specifying either the File
object or filename as a String. Variants of these constructors allow you to specify the
name of the charset to use for character-to-byte conversion and also a Locale. Note that
these methods overwrite existing files rather than appending to them. Other construc-
tors create an Appendable object for you based on the java.io.OutputStream or java.io.PrintStream
you specify. In the OutputStream case, you may optionally specify the charset to use or the
charset and a Locale.

The Format String and Format Specifiers
The API for Formatter and Formatter-based convenience methods is relatively simple. The
power of these formatting methods lies in the format string that is the first argument
(or second argument if a Locale is specified) to the various format() and printf() methods.

780 | Chapter 16: java.util and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.Formatter

The format string may contain any amount of regular text, which is printed or
appended literally to the destination Appendable object. This plain text may be inter-
spersed with format specifiers which specify how a subsequent argument is to be
formatted as a string. In contrast to the simple API, the grammar for these format spec-
ifiers is surprisingly complex. Experienced C programmers will find that the grammar
is largely compatible with the printf() format string grammar of the standard C library.

Each format specifier begins with a percent sign and ends with a one- or two-character
conversion type that specifies most of the details of the conversion and formatting. In
between these two are optional flags that provide additional details about how the
formatting should be done. The general syntax of a format specifier is as follows.
Square brackets indicate optional items:

%[argument][flags][width][.precision]type

Note that the percent sign and the type are the only two required portions of a format
specifier. We begin, therefore, with a listing of conversion types (see Table 16-1). A
discussion of argument, flags, width, and precision follows. In the table of conversion types
below, if uppercase and lowercase variants of the type specifier are listed together, the
uppercase variant produces the same output as the lowercase variant except that all
lowercase letters are converted to uppercase. Note that format() never throws NullPointer-
Exception because of null arguments following the format string. A null argument is
formatted as “null” or “NULL” for all conversion characters except %b and %B, which
produce “false” or “FALSE”.

Table 16-1. Formatter conversion types

Conversion Description

Simple conversions

%% Outputs a single percent sign.This is simply an escape sequence used to embed percent signs literally
in the output string. This conversion does not use an argument.

%n Outputs the platform-specific line separator. This conversion represents the value returned by
System.getProperty(“line.separator”). This conversion does not use an argument.

%s, %S Formats and outputs the argument as a string, optionally converting it to uppercase for the %S
conversion. The argument may be of any type. If the argument implements Formattable, its
formatTo() method is called to perform the formatting. Otherwise, its toString() method is called to
convert it to a string. If the argument is null, the output string is “null” or “NULL”.

%c, %C Outputs the argument as a single character. The argument type must be Byte, Short, Character, or
Integer. The argument value must represent a valid Unicode code point. (See
Character.isValidCodePoint().)

%b, %B Outputs the argument value as the string “true” or “false” (or “TRUE” or “FALSE”). The argument may
be of any type and any value. If it is a Boolean argument, the output reflects the argument value.
Otherwise, if the argument is null, the output is “false” or “FALSE”. For any other value, the output is
“true” or “TRUE”. Note that this differs from normal Java conversions in which boolean values are not
convertible to or from any other type.

%h, %H Outputs the hexadecimal representation of the hashcode for the argument. Arguments of any type
and value are allowed. This conversion type is useful mainly for debugging.

Numeric Conversions

%d Formats the argument as a base-10 integer. The argument must be a Byte, Short, Integer, Long, or
BigInteger.

%o Formats the argument as a base-8 octal integer. The allowed argument types are the same as for %d.
For any argument type other than BigInteger, the value is treated as unsigned.

%x, %X Formats the argument as a base-16 hexadecimal integer. The allowed argument types and values are
the same as for %d. For any argument type other than BigInteger, the value is treated as unsigned.

Chapter 16: java.util and Subpackages | 781

java.util.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.Formatter

%e, %E Formats the argument as a base-10 floating-point number, using exponential notation. The output
consists of a single digit, a locale-specific decimal point, and the number of fractional digits specified
by the precision of the format specifier, or six fractional digits if no precision is specified. These digits
are followed by the letter e or E and the exponent of the number.
The argument must be a Float, Double, or BigDecimal. The values NaN and Infinity are formatted as
“NaN” and “Infinity” or their uppercase equivalents.

%f Formats the argument as a floating-point number in base-10, without using exponential notation. If
the number is large, this may produce quite a few digits. Because exponential notation is never used,
the output will never include a letter, and there is no uppercase variant of this conversion. Legal argu-
ment types and special-case values are as for %e.

%g, %G Formats the argument as a base-10 floating-point number, displaying no more than the number of
significant digits specified by the precision of the format specifier, or no more than 6 significant digits
if no precision is specified. If the value has more than the allowed number of significant digits, it is
printed using exponential notation (see %e) to limit the display to the specified number of digits.
Otherwise, all digits of the value are printed explicitly as they would be with the %f conversion type.
Legal argument types and special case values are as for %e.

%a, %A Formats the argument in hexadecimal floating-point format. Legal argument types and special case
values are as for %e.

Dates and Times

%t, %T All date and time format types are two-letter codes beginning with %t or %T. The specific format
types are listed below, in alphabetical order, using %t as the prefix. For uppercase, use %T instead.
Upper- and lowercase variants of the second letter of a time or date format type are sometimes
completely unrelated. Other times, the lowercase conversion produces an abbreviation of the value
produced by the uppercase conversion.
The argument for a date or time conversion must be a Date, Calendar, or Long. In the case of Long, the
value is interpreted as milliseconds since the epoch, as in System currentTimeMillis().

%tA The locale-specific full name of the day of the week.

%ta The locale-specific abbreviation of the day of the week.

%tB The locale-specific name of the month. See %tm.

%tb The locale-specific abbreviation for the month.

%tC The century: the year divided by 100, with leading zeros if necessary to produce a value from 00 to 99

%tc The complete date and time. Equivalent to “%ta %tb %td %tT %tZ %tY”.

%tD The date in a short numeric form used in the US locale. Equivalent to “%tm/%td/%ty”.

%td The day of the month, as a two-digit number between 01 and 31. See %te.

%tE The date expressed as milliseconds since Midnight UTC on January 1st, 1970.

%te The day of the month as a one- or two-digit number without leading zeros between 1 and 31.
See %td.

%tF The numeric date in ISO8601 format: %tY-%tm-%td.

%tH Hour of the day using a 24-hour clock, formatted as two digits between 00 and 23. See %tI.

%th The abbreviated month name. Same as %tb.

%tI Hour of the day using a 12-hour clock, formatted as two digits between 01 and 12. See %tH and %tP.

%tj The day of the year as three digits with leading zeros if necessary: 001-366

%tk Hour of the day on a 24-hour clock using one or two digits without a leading zero: 0-23. See %tl.

%tL Milliseconds within the second, expressed as three digits with leading zeros: 000-999.

%tl Hour of the day on a 12-hour clock using one or two digits without a leading zero: 1-12.

%tM Minute within the hour as two digits with a leading zero if necessary: 00-59.

Table 16-1. Formatter conversion types (continued)

Conversion Description

782 | Chapter 16: java.util and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.Formatter

Argument Specifier
Every format specifier in a format string except for %% and %n requires an argument
that contains the value to format. These arguments follow the format string in the call
to format() or printf(). By default, a format specifier uses the next unused argument. In the
following printf() call, the first and second %s format specifiers format the second and
third arguments, respectively:

out.printf("Name: %s %s%n", first, last);

If a format specifier includes the character < after the %, it specifies that the argument
of the previous format specifier should be reused. This allows the same object (such as
a date) to be formatted more than once (yielding a formatted date and time, for
example):

out.printf("Date: %tD%nTime: %<tr%n", System.currentTimeMillis());

It is an error to use < in the first format specifier of a format string.

Argument numbers may also be specified absolutely. If the % sign is followed by one or
more digits and a $ sign, those digits specify an argument number. For example %1$d
specifies that the first argument following the format string should be formatted as an
integer. Absolute argument numbers are particularly useful for localization since the
different translations of a message may need to interpolate the arguments in a different
order. The following example includes a format string that might be used in a locale
where a person’s family name is typically printed (in uppercase) before the given name.
Note that the arguments are not passed in the same order that they are formatted.

String name = String.format("%2$S, %1$s", firstname, lastname);

Neither absolute argument indexing with a number and $ character or relative argu-
ment indexing with < affect the order in which arguments are interpolated for format
specifiers that use neither $ or <. The first format specifier that has neither an absolute

%tm The month of the year as a two-digit number between 01 and 12, or between 01 and 13 for lunar
calendars. See %tB and %tb.

%tN Nanosecond within the second, expressed as nine digits with leading zeros if necessary. Note that
platforms are not required to able to resolve times with nanosecond precision.

%tP The locale-specific morning or afternoon indicator (such as “am” or “pm”) used with 12-hour clocks.
%tP uses lowercase and %TP uses uppercase.

%tp Like %tP but uses uppercase for both %tp and %Tp variants.

%tR The hour and minute on a 24-hour clock. Equivalent to “%tH:%tM”.

%tr The hour, minute, and second on a 12-hour clock. Equivalent to “%tI:%tM:%tS %tP” except that the
am/pm indicator %tP may be in a different locale-dependent position.

%tS Seconds within the minute, as two digits with a leading zero if necessary. The range is normally 00-59,
but a value of 60 is allowed for leap seconds.

%ts Seconds since the beginning of the epoch. See %tE.

%tT The time in hours, minutes, and seconds using 24-hour format. Equivalent to “%tH:%tM:%tS”.

%tY The year, using at least four digits, formatted with leading zeros, if necessary.

%ty The last two digits of the year, 00-99

%tZ An abbreviation for the time zone.

%tz The time zone as numeric offset from GMT.

Table 16-1. Formatter conversion types (continued)

Conversion Description

Chapter 16: java.util and Subpackages | 783

java.util.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.Formatter

or relative argument specification uses the first argument following the format string,
regardless of what has come before. The code above could be rewritten like this, for
example:

String name = String.format("%2$S, %s", firstname, lastname);

Flags
Following the optional argument specifier, a format specifier may include one or more
flag characters. The defined flags, their effects, and the format types for which they are
legal are specified in Table 16-2:

Width
The width portion of a format specifier is one or more digits that specify the minimum
number of characters to be produced. If the formatted value is narrower than the spec-
ified width, (by default) it is padded on the left with spaces, producing a right-justified
value. The - and 0 flags can be used to specify left-justification or padding with zeros
instead.

A width may be specified with any format type except %n.

Table 16-2. Formatter flags

Flag Description

- A hyphen specifies that the formatted value should be left-justified within the specified width. This flag
can be used with any conversion type except %n as long as the conversion specifier also includes a width
(see below). When a width is specified without this flag, the formatted string is padded on the left to
produce right-justified output.

The # flag specifies that output should appear in an “alternate form” that depends on the type being
formatted. For %o conversions, this flag specifies that the output should include a leading 0. For %x and
%X conversions, it specifies that output should include a leading 0x or 0X. For the %s and %S conver-
sions, the # flag may be used if the argument implements Formattable. In this case, the flag is passed on
to the formatTo() method of the argument, and it is up to that formatTo() method to produce its output
in some alternate form.

+ This flag specifies that numeric output should always include a sign: a value that is nonnegative will
have “+” added in front of it. This flag may be used with any numeric conversion that may yield a signed
result. This includes %d, %e, %f, %g, %a, and their uppercase variants. It also includes %o, %x, and %X
conversions applied to BigInteger arguments.

The space character is a (hard-to-read) flag that specifies that non-negative values should be prefixed
with a space. This flag may be used with the same conversion and argument types as the + flag, and is
useful when aligning positive and negative numbers in a column

(This flag specifies that negative numbers should be enclosed in parentheses, as is commonly done in
financial statements, for example. This flag may be used with the same format and argument types as
the + flag, except that it may not be used with %a conversions.

0 The digit zero, used as a flag, specifies that numeric values should be padded on the left (after the sign
character, if any) with zeros. This flag may be used only if a width is specified, and may not be used in
conjunction with the - flag.

, This flag specifies that numbers should be formatted using the locale-specific grouping separator. In the
US locale, for example, a comma would appear every three digits to separate the number into thou-
sands, millions, and so on. This flag may be used with %d, %e, %E, %f, %g, and %G conversions only.

784 | Chapter 16: java.util and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.Formatter

Precision
The precision portion of a format specifier is one or more digits following a decimal
point. The meaning of this number depends on which format type it is used with:

• For %e, %E, and %f, the precision specifies the number of digits to appear after the
decimal point. Zeros are appended on the right, if necessary. The default preci-
sion is 6.

• For %g and %G format types, the precision specifies the total number of significant
digits to be displayed. As a corollary, it specifies the largest and smallest values
that can be displayed without resorting to exponential notation. The default
precision is 6. If a precision of 0 is specified, it is treated as a precision of 1.

• For %s, %h and %b format types, and their uppercase variants, the precision speci-
fies the maximum number of characters to be output. If no precision is specified,
there is no maximum. If the formatted output would exceed the precision of charac-
ters, it is truncated. If precision is smaller than width, the formatted value is first
truncated as necessary and then padded within the specified width.

• Specifying a precision for any other conversion type causes an exception at
runtime.

public final class Formatter implements java.io.Closeable, java.io.Flushable {
// Public Constructors

public Formatter();
public Formatter(java.io.PrintStream ps);
public Formatter(java.io.OutputStream os);
public Formatter(java.io.File file) throws java.io.FileNotFoundException;
public Formatter(String fileName) throws java.io.FileNotFoundException;
public Formatter(Locale l);
public Formatter(Appendable a);
public Formatter(java.io.OutputStream os, String csn)

throws java.io.UnsupportedEncodingException;
public Formatter(java.io.File file, String csn)

throws java.io.FileNotFoundException, java.io.UnsupportedEncodingException;
public Formatter(Appendable a, Locale l);
public Formatter(String fileName, String csn)

throws java.io.FileNotFoundException, java.io.UnsupportedEncodingException;
public Formatter(String fileName, String csn, Locale l)

throws java.io.FileNotFoundException, java.io.UnsupportedEncodingException;
public Formatter(java.io.File file, String csn, Locale l)

throws java.io.FileNotFoundException, java.io.UnsupportedEncodingException;
public Formatter(java.io.OutputStream os, String csn, Locale l) throws java.io.UnsupportedEncodingException;

// Nested Types
public enum BigDecimalLayoutForm;

// Public Instance Methods
public java.util.Formatter format(String format, Object... args);
public java.util.Formatter format(Locale l, String format, Object... args);
public java.io.IOException ioException();
public Locale locale();
public Appendable out();

Object Formatter

Closeable Flushable

Chapter 16: java.util and Subpackages | 785

java.util.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.GregorianCalendar

Passed To Formattable.formatTo()

Formatter.BigDecimalLayoutForm
java.util

Java 5.0

serializable comparable enum

This enumerated type is intended for internal use by the Formatter class, but was inad-
vertently declared public. This type serves no useful purpose and should not be used. It
will likely be removed in a future release.

FormatterClosedException
java.util

Java 5.0

serializable unchecked

An exception of this type is thrown when an attempt is made to use a Formatter whose
close() method has been called.

GregorianCalendar
java.util

Java 1.1

cloneable serializable comparable

This concrete subclass of Calendar implements the standard solar calendar with years
numbered from the birth of Christ that is used is most locales throughout the world.
You do not typically use this class directly, but instead obtain a Calendar object suitable
for the default locale by calling Calendar.getInstance(). See Calendar for details on working
with Calendar objects. There is a discontinuity in the Gregorian calendar that represents
the historical switch from the Julian calendar to the Gregorian calendar. By default,
GregorianCalendar assumes that this switch occurs on October 15, 1582. Most programs
need not be concerned with the switch.

// Methods Implementing Closeable
public void close();

// Methods Implementing Flushable
public void flush();

// Public Methods Overriding Object
public String toString();

}

public enum Formatter.BigDecimalLayoutForm {
// Enumerated Constants

SCIENTIFIC,
DECIMAL_FLOAT;

// Public Class Methods
public static Formatter.BigDecimalLayoutForm valueOf(String name);
public static final Formatter.BigDecimalLayoutForm[] values();

}

public class FormatterClosedException extends IllegalStateException {
// Public Constructors

public FormatterClosedException();
}

Object Throwable Exception RuntimeException IllegalStateException FormatterClosedException

Serializable

Object Calendar GregorianCalendar

Cloneable Comparable Serializable

786 | Chapter 16: java.util and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.HashMap<K,V>

Passed To javax.xml.datatype.DatatypeFactory.newXMLGregorianCalendar()

Returned By javax.xml.datatype.XMLGregorianCalendar.toGregorianCalendar()

HashMap<K,V>
java.util

Java 1.2

cloneable serializable collection

This class implements the Map interface using an internal hashtable. It supports all
optional Map methods, allows key and value objects of any types, and allows null to be
used as a key or a value. Because HashMap is based on a hashtable data structure, the
get() and put() methods are very efficient. HashMap is much like the Hashtable class, except
that the HashMap methods are not synchronized (and are therefore faster), and HashMap
allows null to be used as a key or a value. If you are working in a multithreaded envi-
ronment, or if compatibility with previous versions of Java is a concern, use Hashtable.
Otherwise, use HashMap.

If you know in advance approximately how many mappings a HashMap will contain, you
can improve efficiency by specifying initialCapacity when you call the HashMap()
constructor. The initialCapacity argument times the loadFactor argument should be greater

public class GregorianCalendar extends Calendar {
// Public Constructors

public GregorianCalendar();
public GregorianCalendar(Locale aLocale);
public GregorianCalendar(TimeZone zone);
public GregorianCalendar(TimeZone zone, Locale aLocale);
public GregorianCalendar(int year, int month, int dayOfMonth);
public GregorianCalendar(int year, int month, int dayOfMonth, int hourOfDay, int minute);
public GregorianCalendar(int year, int month, int dayOfMonth, int hourOfDay, int minute, int second);

// Public Constants
public static final int AD; =1
public static final int BC; =0

// Public Instance Methods
public final Date getGregorianChange();
public boolean isLeapYear(int year);
public void setGregorianChange(Date date);

// Public Methods Overriding Calendar
public void add(int field, int amount);

5.0 public Object clone();
public boolean equals(Object obj);

1.2 public int getActualMaximum(int field);
1.2 public int getActualMinimum(int field);

public int getGreatestMinimum(int field);
public int getLeastMaximum(int field);
public int getMaximum(int field);
public int getMinimum(int field);

5.0 public TimeZone getTimeZone();
public int hashCode();
public void roll(int field, boolean up);

1.2 public void roll(int field, int amount);
5.0 public void setTimeZone(TimeZone zone);
// Protected Methods Overriding Calendar

protected void computeFields();
protected void computeTime();

}

Chapter 16: java.util and Subpackages | 787

java.util.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.HashSet<E>

than the number of mappings the HashMap will contain. A good value for loadFactor is
0.75; this is also the default value. See Map for details on the methods of HashMap. See
also TreeMap and HashSet.

Subclasses LinkedHashMap

HashSet<E>
java.util

Java 1.2

cloneable serializable collection

This class implements Set using an internal hashtable. It supports all optional Set and
Collection methods and allows any type of object or null to be a member of the set.
Because HashSet is based on a hashtable, the basic add(), remove(), and contains() methods
are all quite efficient. HashSet makes no guarantee about the order in which the set
elements are enumerated by the Iterator returned by iterator(). The methods of HashSet are
not synchronized. If you are using it in a multithreaded environment, you must explicitly
synchronize all code that modifies the set or obtain a synchronized wrapper for it by
calling Collections.synchronizedSet().

If you know in advance approximately how many mappings a HashSet will contain, you
can improve efficiency by specifying initialCapacity when you call the HashSet() constructor.
The initialCapacity argument times the loadFactor argument should be greater than the
number of mappings the HashSet will contain. A good value for loadFactor is 0.75; this is
also the default value. See Set and Collection for details on the methods of HashSet. See also
TreeSet and HashMap.

public class HashMap<K,V> extends AbstractMap<K,V> implements Map<K,V>, Cloneable, Serializable {
// Public Constructors

public HashMap();
public HashMap(int initialCapacity);
public HashMap(Map<? extends K,? extends V> m);
public HashMap(int initialCapacity, float loadFactor);

// Methods Implementing Map
public void clear();
public boolean containsKey(Object key);
public boolean containsValue(Object value);
public Set<Map.Entry<K,V>> entrySet();
public V get(Object key);
public boolean isEmpty(); default:true
public Set<K> keySet();
public V put(K key, V value);
public void putAll(Map<? extends K,? extends V> m);
public V remove(Object key);
public int size();
public Collection<V> values();

// Public Methods Overriding AbstractMap
public Object clone();

}

Object AbstractMap HashMap

Map Cloneable Map Serializable

788 | Chapter 16: java.util and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.Hashtable<K,V>

Subclasses LinkedHashSet

Hashtable<K,V>
java.util

Java 1.0

cloneable serializable collection

This class implements a hashtable data structure, which maps key objects to value
objects and allows the efficient lookup of the value associated with a given key. In Java
1.2 and later Hashtable has been modified to impement the Map interface. The HashMap
class is typically preferred over this one, although the synchronized methods of this class
are useful in multi-threaded applications. (But see java.util.concurrent.ConcurrentHashMap.) In
Java 5.0 this class has been made generic along with the Map interface. The type vari-
able K represents the type of the hashtable keys and the type variable V represents the
type of the hashtable values.

put() associates a value with a key in a Hashtable. get() retrieves a value for a specified key.
remove() deletes a key/value association. keys() and elements() return Enumeration objects that
allow you to iterate through the complete set of keys and values stored in the table.
Objects used as keys in a Hashtable must have valid equals() and hashCode() methods (the
versions inherited from Object are okay). null is not legal as a key or value in a Hashtable.

public class HashSet<E> extends AbstractSet<E> implements Set<E>, Cloneable, Serializable {
// Public Constructors

public HashSet();
public HashSet(Collection<? extends E> c);
public HashSet(int initialCapacity);
public HashSet(int initialCapacity, float loadFactor);

// Methods Implementing Set
public boolean add(E o);
public void clear();
public boolean contains(Object o);
public boolean isEmpty(); default:true
public Iterator<E> iterator();
public boolean remove(Object o);
public int size();

// Public Methods Overriding Object
public Object clone();

}

public class Hashtable<K,V> extends Dictionary<K,V> implements Map<K,V>, Cloneable, Serializable {
// Public Constructors

public Hashtable();
1.2 public Hashtable(Map<? extends K,? extends V> t);

public Hashtable(int initialCapacity);
public Hashtable(int initialCapacity, float loadFactor);

Object AbstractCollection AbstractSet HashSet

Collection Set Cloneable Serializable Set

Iterable Collection Collection

Iterable Iterable

Object Dictionary Hashtable

Cloneable Map Serializable

Chapter 16: java.util and Subpackages | 789

java.util.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.IdentityHashMap<K,V>

Subclasses Properties

IdentityHashMap<K,V>
java.util

Java 1.4

cloneable serializable collection

This Map implementation has a API that is very similar to HashMap, and uses an internal
hashtable, like HashMap does. However, it behaves differently from HashMap in one very
important way. When testing two keys to see if they are equal, HashMap, LinkedHashMap
and TreeMap use the equals() method to determine whether the two objects are indistin-
guishable in terms of their content or state. IdentityHashMap is different: it uses the ==
operator to determine whether the two key objects are identical--whether they are
exactly the same object. This one difference in how key equality is tested has profound
ramifications for the behavior of the Map. In most cases, the equality testing of a
HashMap, LinkedHashMap or TreeMap is the appropriate behavior, and you should use one of
those classes. For certain purposes, however, the identity testing of IdentityHashMap is
what is required.

// Public Instance Methods
public void clear(); Implements:Map synchronized
public boolean contains(Object value); synchronized
public boolean containsKey(Object key); Implements:Map synchronized
public V get(Object key); Implements:Map synchronized
public boolean isEmpty(); Implements:Map synchronized default:true
public V put(K key, V value); Implements:Map synchronized
public V remove(Object key); Implements:Map synchronized
public int size(); Implements:Map synchronized

// Methods Implementing Map
public void clear(); synchronized
public boolean containsKey(Object key); synchronized

1.2 public boolean containsValue(Object value);
1.2 public Set<Map.Entry<K,V>> entrySet();
1.2 public boolean equals(Object o); synchronized

public V get(Object key); synchronized
1.2 public int hashCode(); synchronized

public boolean isEmpty(); synchronized default:true
1.2 public Set<K> keySet();

public V put(K key, V value); synchronized
1.2 public void putAll(Map<? extends K,? extends V> t); synchronized

public V remove(Object key); synchronized
public int size(); synchronized

1.2 public Collection<V> values();
// Public Methods Overriding Dictionary

public Enumeration<V> elements(); synchronized
public Enumeration<K> keys(); synchronized

// Public Methods Overriding Object
public Object clone(); synchronized
public String toString(); synchronized

// Protected Instance Methods
protected void rehash();

}

Object AbstractMap IdentityHashMap

Map Cloneable Map Serializable

790 | Chapter 16: java.util and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.IllegalFormatCodePointException

IllegalFormatCodePointException
java.util

Java 5.0

serializable unchecked

An IllegalFormatException of this type is thrown by a Formatter when an int used to represent a
Unicode character is out of range.

IllegalFormatConversionException
java.util

Java 5.0

serializable unchecked

An IllegalFormatException of this type is thrown by a Formatter when the type of the format() or
printf() argument does not match the type required by the corresponding conversion
specifier in the format string.

public class IdentityHashMap<K,V> extends AbstractMap<K,V> implements Map<K,V>, Serializable, Cloneable {
// Public Constructors

public IdentityHashMap();
public IdentityHashMap(int expectedMaxSize);
public IdentityHashMap(Map<? extends K,? extends V> m);

// Methods Implementing Map
public void clear();
public boolean containsKey(Object key);
public boolean containsValue(Object value);
public Set<Map.Entry<K,V>> entrySet();
public boolean equals(Object o);
public V get(Object key);
public int hashCode();
public boolean isEmpty(); default:true
public Set<K> keySet();
public V put(K key, V value);
public void putAll(Map<? extends K,? extends V> t);
public V remove(Object key);
public int size();
public Collection<V> values();

// Public Methods Overriding AbstractMap
public Object clone();

}

public class IllegalFormatCodePointException extends IllegalFormatException {
// Public Constructors

public IllegalFormatCodePointException(int c);
// Public Instance Methods

public int getCodePoint();
// Public Methods Overriding Throwable

public String getMessage();
}

Throwable Exception RuntimeException IllegalArgumentException IllegalFormatException IllegalFormatCodePointException

Serializable

Throwable Exception RuntimeException IllegalArgumentException IllegalFormatException IllegalFormatConversionException

Serializable

Chapter 16: java.util and Subpackages | 791

java.util.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.IllegalFormatPrecisionException

IllegalFormatException
java.util

Java 5.0

serializable unchecked

An exception of this type is thrown by a Formatter when there is problem with the
format string. This package defines many subclasses of this exception type to describe
particular format string problems.

Subclasses DuplicateFormatFlagsException, FormatFlagsConversionMismatchException,
IllegalFormatCodePointException, IllegalFormatConversionException, IllegalFormatFlagsException,
IllegalFormatPrecisionException, IllegalFormatWidthException, MissingFormatArgumentException,
MissingFormatWidthException, UnknownFormatConversionException, UnknownFormatFlagsException

IllegalFormatFlagsException
java.util

Java 5.0

serializable unchecked

An IllegalFormatException of this type is thrown by a Formatter when a format string contains
an illegal combination of flags.

IllegalFormatPrecisionException
java.util

Java 5.0

serializable unchecked

An IllegalFormatException of this type is thrown by a Formatter when the precision of a format
string is illegal.

public class IllegalFormatConversionException extends IllegalFormatException {
// Public Constructors

public IllegalFormatConversionException(char c, Class<?> arg);
// Public Instance Methods

public Class<?> getArgumentClass();
public char getConversion();

// Public Methods Overriding Throwable
public String getMessage();

}

public class IllegalFormatException extends IllegalArgumentException {
// No Constructor
}

public class IllegalFormatFlagsException extends IllegalFormatException {
// Public Constructors

public IllegalFormatFlagsException(String f);
// Public Instance Methods

public String getFlags();
// Public Methods Overriding Throwable

public String getMessage();
}

Object Throwable Exception RuntimeException IllegalArgumentException IllegalFormatException

Serializable

Throwable Exception RuntimeException IllegalArgumentException IllegalFormatException IllegalFormatFlagsException

Serializable

792 | Chapter 16: java.util and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.IllegalFormatWidthException

IllegalFormatWidthException
java.util

Java 5.0

serializable unchecked

An IllegalFormatException of this type is thrown by a Formatter when the width of a format
string is illegal.

InputMismatchException
java.util

Java 5.0

serializable unchecked

An exception of this type is thrown by a Scanner that is not of the expected type or is out
of range. Note that the Scanner implements the Iterator interface, and this exception is a
subclass of NoSuchElementException, which is thrown by Iterator.next() when no more elements
are available.

InvalidPropertiesFormatException
java.util

Java 5.0

serializable checked

An exception of this type is thrown by Properties.loadFromXML() if the specified input stream
does not contain appropriate XML.

public class IllegalFormatPrecisionException extends IllegalFormatException {
// Public Constructors

public IllegalFormatPrecisionException(int p);
// Public Instance Methods

public int getPrecision();
// Public Methods Overriding Throwable

public String getMessage();
}

public class IllegalFormatWidthException extends IllegalFormatException {
// Public Constructors

public IllegalFormatWidthException(int w);
// Public Instance Methods

public int getWidth();
// Public Methods Overriding Throwable

public String getMessage();
}

public class InputMismatchException extends NoSuchElementException {
// Public Constructors

public InputMismatchException();
public InputMismatchException(String s);

}

Throwable Exception RuntimeException IllegalArgumentException IllegalFormatException IllegalFormatPrecisionException

Serializable

Throwable Exception RuntimeException IllegalArgumentException IllegalFormatException IllegalFormatWidthException

Serializable

Object Throwable Exception RuntimeException NoSuchElementException InputMismatchException

Serializable

Chapter 16: java.util and Subpackages | 793

java.util.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.LinkedHashMap<K,V>

Thrown By Properties.loadFromXML()

Iterator<E>
java.util

Java 1.2

This interface defines methods for iterating, or enumerating, the elements of a collec-
tion. It has been made generic in Java 5.0 and the type variable E represents the type of
the elements in the collection. The hasNext() method returns true if there are more
elements to be enumerated or false if all elements have already been returned. The next()
method returns the next element. These two methods make it easy to loop through an
iterator with code such as the following:

for(Iterator i = c.iterator(); i.hasNext();)
 processObject(i.next());

In Java 5.0, collections and other classes that can return an Iterator implement the
java.lang.Iterable interface, which allows them to be iterated much more simply with the
for/in looping statement.

The Iterator interface is much like the Enumeration interface. In Java 1.2, Iterator is preferred
over Enumeration because it provides a well-defined way to safely remove elements from a
collection while the iteration is in progress. The remove() method removes the object
most recently returned by next() from the collection that is being iterated through.
Note, however, that support for remove() is optional; if an Iterator does not support
remove(), it throws a java.lang.UnsupportedOperationException when you call it. While you are
iterating through a collection, you are allowed to modify the collection only by calling
the remove() method of the Iterator. If the collection is modified in any other way while an
iteration is ongoing, the Iterator may fail to operate correctly, or it may throw a
ConcurrentModificationException.

Implementations ListIterator, Scanner

Returned By Too many methods to list.

LinkedHashMap<K,V>
java.util

Java 1.4

cloneable serializable collection

This class is a Map implementation based on a hashtable, just like its superclass HashMap.
It defines no new public methods, and can be used exactly as HashMap is used. What is
unique about this Map is that in addition to the hashtable data structure, it also uses a

public class InvalidPropertiesFormatException extends java.io.IOException {
// Public Constructors

public InvalidPropertiesFormatException(String message);
public InvalidPropertiesFormatException(Throwable cause);

}

public interface Iterator<E> {
// Public Instance Methods

boolean hasNext();
E next();
void remove();

}

Object Throwable Exception IOException InvalidPropertiesFormatException

Serializable

794 | Chapter 16: java.util and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.LinkedHashMap<K,V>

doubly-linked list to connect the keys of the Map into an internal list which defines a
predictable iteration order.

You can iterate through the keys or values of a LinkedHashMap by calling entrySet(), keySet(),
or values() and then obtaining an Iterator for the returned collection, just as you would for
a HashMap. When you do this, however, the keys and/or values are returned in a well-
defined order rather than the essentially random order provided by a HashMap. The
default ordering for LinkedHashMap is the insertion order of the key: the first key inserted
into the Map is enumerated first (as is the value associated with it), and the last entry
inserted is enumerated last. Note that this order is not affect by re-insertions. That is, if
a LinkedHashMap contains a mapping from a key k to a value v1, and you call the put()
method to map from k to a new value v2, this does not change the insertion order, or
the iteration order of the key k. The iteration order of a value in the map is the itera-
tion order of the key with which it is associated.

Insertion order is the default iteration order for this class, but if you instantiate a
LinkedHashMap with the three-argument constructor, and pass true for the third argument,
then the iteration order will be based on access order: the first key returned by an iter-
ator is the one that was least-recently used in a get() or put() operation. The last key
returned is the one that has been most-recently used. As with insertion order, the
values() collection is iterated in the order defined by the keys with which those values
are associated.

“Access ordering” is particularly useful for implementing “LRU” caches from which
the Least-Recently Used elements are periodically purged. To facilitate this use,
LinkedHashMap defines the protected removeEldestEntry() method. Each time the put() method
is called (or for each mapping added by putAll()) the LinkedHashMap calls removeEldestEntry()
and passes the least-recently used (or first inserted if insertion order is being used)
Map.Entry object. If the method returns true, then that entry will be removed from the
map. In LinkedHashMap, removeEldestEntry() always returns false, and old entries are never
automatically removed, but you can override this behavior in a subclass. The decision
to remove an old entry might be based on the content of the entry itself, or might more
simply be based on the size() of the LinkedHashMap. Note that removeEldestEntry() need simply
return true or false; it should not remove the entry itself.

public class LinkedHashMap<K,V> extends HashMap<K,V> implements Map<K,V> {
// Public Constructors

public LinkedHashMap();
public LinkedHashMap(int initialCapacity);
public LinkedHashMap(Map<? extends K,? extends V> m);
public LinkedHashMap(int initialCapacity, float loadFactor);
public LinkedHashMap(int initialCapacity, float loadFactor, boolean accessOrder);

// Methods Implementing Map
public void clear();
public boolean containsValue(Object value);
public V get(Object key);

// Protected Instance Methods
protected boolean removeEldestEntry(Map.Entry<K,V> eldest); constant

}

Object AbstractMap HashMap LinkedHashMap

Map Cloneable Map Serializable Map

Chapter 16: java.util and Subpackages | 795

java.util.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.LinkedList<E>

LinkedHashSet<E>
java.util

Java 1.4

cloneable serializable collection

This subclass of HashSet is a Set implementation based on a hashtable. It defines no new
methods and is used just like a HashSet is used. What is unique about a LinkedHashSet is
that in addition to the hashtable data structure, it also uses a doubly-linked list to
connect the elements of the set into an internal list in the order in which they were
inserted. This means that the Iterator returned by the inherited iterator() method always
enumerates the elements of the set in the order which they were inserted. By contrast,
the elements of a HashSet are enumerated in an order that is essentially random. Note
that the iteration order is not affected by reinsertion of set elements. That is, if you
attempt to add an element that already exists in the set, the iteration order of the set is
not modified. If you delete an element and then reinsert it, the insertion order, and
therefore the iteration order, does change.

LinkedList<E>
java.util

Java 1.2

cloneable serializable collection

This class implements the List interface in terms of a doubly linked list. In Java 5.0, it
also implements the Queue interface and uses its list as a first-in, first-out (FIFO) queue.
LinkedList is a generic type, and the type variable E represents the type of the elements of
the list. LinkedList supports all optional methods of List, Queue and Collection and allows list
elements of any type, including null (in this it differs from most Queue implementations,
which prohibit null elements).

Because LinkedList is implemented with a linked list data structure, the get() and set()
methods are substantially less efficient than the same methods for an ArrayList. However,
a LinkedList may be more efficient when the add() and remove() methods are used
frequently. The methods of LinkedList are not synchronized. If you are using a LinkedList in a
multithreaded environment, you must explicitly synchronize any code that modifies
the list or obtain a synchronized wrapper object with Collections.synchronizedList().

In addition to the methods defined by the List interface, LinkedList defines methods to get
the first and last elements of the list, to add an element to the beginning or end of the
list, and to remove the first or last element of the list. These convenient and efficient
methods make LinkedList well-suited for use as a stack or queue. See List and Collection for
details on the methods of LinkedList. See also ArrayList.

public class LinkedHashSet<E> extends HashSet<E> implements Set<E>, Cloneable, Serializable {
// Public Constructors

public LinkedHashSet();
public LinkedHashSet(Collection<? extends E> c);
public LinkedHashSet(int initialCapacity);
public LinkedHashSet(int initialCapacity, float loadFactor);

}

Object AbstractCollection AbstractSet HashSet LinkedHashSet

Collection Set Cloneable Serializable Set Cloneable Serializable Set

Iterable Collection Collection Collection

Iterable Iterable Iterable

796 | Chapter 16: java.util and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.List<E>

List<E>
java.util

Java 1.2

collection

This interface represents an ordered collection of objects. In Java 5.0 List is a generic
interface and the type variable E represents the type of the objects in the list. Each
element in a List has an index, or position, in the list, and elements can be inserted,
queried, and removed by index. The first element of a List has an index of 0. The last
element in a list has index size()-1.

public class LinkedList<E> extends AbstractSequentialList<E>
 implements List<E>, Queue<E>, Cloneable, Serializable {

// Public Constructors
public LinkedList();
public LinkedList(Collection<? extends E> c);

// Public Instance Methods
public void addFirst(E o);
public void addLast(E o);
public E getFirst();
public E getLast();
public E removeFirst();
public E removeLast();

// Methods Implementing List
public boolean add(E o);
public void add(int index, E element);
public boolean addAll(Collection<? extends E> c);
public boolean addAll(int index, Collection<? extends E> c);
public void clear();
public boolean contains(Object o);
public E get(int index);
public int indexOf(Object o);
public int lastIndexOf(Object o);
public ListIterator<E> listIterator(int index);
public boolean remove(Object o);
public E remove(int index);
public E set(int index, E element);
public int size();
public Object[] toArray();
public <T> T[] toArray(T[] a);

// Methods Implementing Queue
5.0 public E element();
5.0 public boolean offer(E o);
5.0 public E peek();
5.0 public E poll();
5.0 public E remove();
// Public Methods Overriding Object

public Object clone();
}

Object AbstractCollection AbstractList AbstractSequentialList LinkedList

Collection List Cloneable List Queue Serializable

Iterable Collection Collection Collection

Iterable Iterable Iterable

Chapter 16: java.util and Subpackages | 797

java.util.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.List<E>

In addition to the methods defined by the superinterface, Collection, List defines a number
of methods for working with its indexed elements. get() and set() query and set the
object at a particular index, respectively. Versions of add() and addAll() that take an index
argument insert an object or Collection of objects at a specified index. The versions of
add() and addAll() that do not take an index argument insert an object or collection of
objects at the end of the list. List defines a version of remove() that removes the object at a
specified index.

The iterator() method is just like the iterator() method of Collection, except that the Iterator it
returns is guaranteed to enumerate the elements of the List in order. listIterator() returns a
ListIterator object, which is more powerful than a regular Iterator and allows the list to be
modified while iteration proceeds. listIterator() can take an index argument to specify
where in the list iteration should begin.

indexOf() and lastIndexOf() perform linear searches from the beginning and end, respec-
tively, of the list, searching for a specified object. Each method returns the index of the
first matching object it finds, or –1 if it does not find a match. Finally, subList() returns a
List that contains only a specified contiguous range of list elements. The returned list is
simply a view into the original list, so changes in the original List are visible in the
returned List. This subList() method is particularly useful if you want to sort, search,
clear(), or otherwise manipulate only a partial range of a larger list.

An interface cannot specify constructors, but it is conventional that all implementa-
tions of List provide at least two standard constructors: one that takes no arguments
and creates an empty list, and a copy constructor that accepts an arbitrary Collection
object that specifies the initial contents of the new List.

As with Collection, List methods that change the contents of the list are optional, and imple-
mentations that do not support them simply throw java.lang.UnsupportedOperationException.
Different implementations of List may have significantly different efficiency characteristics.
For example, the get() and set() methods of an ArrayList are much more efficient than those of
a LinkedList. On the other hand, the add() and remove() methods of a LinkedList can be more effi-
cient than those of an ArrayList. See also Collection, Set, Map, ArrayList, and LinkedList.

public interface List<E> extends Collection<E> {
// Public Instance Methods

boolean add(E o);
void add(int index, E element);
boolean addAll(Collection<? extends E> c);
boolean addAll(int index, Collection<? extends E> c);
void clear();
boolean contains(Object o);
boolean containsAll(Collection<?> c);
boolean equals(Object o);
E get(int index);
int hashCode();
int indexOf(Object o);
boolean isEmpty();
Iterator<E> iterator();
int lastIndexOf(Object o);
ListIterator<E> listIterator();
ListIterator<E> listIterator(int index);
boolean remove(Object o);

Iterable Collection List

798 | Chapter 16: java.util and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.ListIterator<E>

Implementations AbstractList, ArrayList, LinkedList, Vector, java.util.concurrent.CopyOnWriteArrayList

Passed To Too many methods to list.

Returned By Too many methods to list.

Type Of Collections.EMPTY_LIST

ListIterator<E>
java.util

Java 1.2

This interface is an extension of Iterator for use with ordered collections, or lists. It
defines methods to iterate forward and backward through a list, to determine the
list index of the elements being iterated, and, for mutable lists, to safely insert,
delete, and edit elements in the list while the iteration is in progress. For some lists,
notably LinkedList, using an iterator to enumerate the list’s elements may be substan-
tially more efficient than looping through the list by index and calling get()
repeatedly.

Like the Iterator interface, ListIterator has been made generic in Java 5.0. The type variable
E represents the type of the elements on the list.

hasNext() and next() are the most commonly used methods of ListIterator; they iterate
forward through the list. See Iterator for details. In addition to these two methods,
however, ListIterator also defines hasPrevious() and previous() that allow you to iterate back-
ward through the list. previous() returns the previous element on the list or throws a
NoSuchElementException if there is no previous element. hasPrevious() returns true if a subse-
quent call to previous() returns an object. nextIndex() and previousIndex() return the index of
the object that would be returned by a subsequent call to next() or previous(). If next() or
previous() throw a NoSuchElementException, nextIndex() returns the size of the list, and
previousIndex() returns –1.

ListIterator defines three optionally supported methods that provide a safe way to
modify the contents of the underlying list while the iteration is in progress. add()
inserts a new object into the list, immediately before the object that would be
returned by a subsequent call to next(). Calling add() does not affect the value that is
returned by next(), however. If you call previous() immediately after calling add(), the
method returns the object you just added. remove() deletes from the list the object
most recently returned by next() or previous(). You can only call remove() once per call to
next() or previous(). If you have called add(), you must call next() or previous() again before
calling remove(). set() replaces the object most recently returned by next() or previous()
with the specified object. If you have called add() or remove(), you must call next() or
previous() again before calling set(). Remember that support for the add(), remove(), and
set() methods is optional. Iterators for immutable lists never support them, of course.
An unsupported method throws a java.lang.UnsupportedOperationException when called. Also,

E remove(int index);
boolean removeAll(Collection<?> c);
boolean retainAll(Collection<?> c);
E set(int index, E element);
int size();
List<E> subList(int fromIndex, int toIndex);
Object[] toArray();
<T> T[] toArray(T[] a);

}

Chapter 16: java.util and Subpackages | 799

java.util.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.Locale

when an iterator is in use, all modifications should be made through the iterator
rather than to the list itself. If the underlying list is modified while an iteration is
ongoing, the ListIterator may fail to operate correctly or may throw a
ConcurrentModificationException.

Returned By AbstractList.listIterator(), AbstractSequentialList.listIterator(), LinkedList.listIterator(),
List.listIterator(), java.util.concurrent.CopyOnWriteArrayList.listIterator()

ListResourceBundle
java.util

Java 1.1

This abstract class provides a simple way to define a ResourceBundle. You may find it
easier to subclass ListResourceBundle than to subclass ResourceBundle directly. ListResourceBundle
provides implementations for the abstract handleGetObject() and getKeys() methods defined
by ResourceBundle and adds its own abstract getContents() method a subclass must override.
getContents() returns an Object[][]—an array of arrays of objects. This array can have any
number of elements. Each element of this array must itself be an array with two
elements: the first element of each subarray should be a String that specifies the name of
a resource, and the corresponding second element should be the value of that
resource; this value can be an Object of any desired type. See also ResourceBundle and
PropertyResourceBundle.

Locale
java.util

Java 1.1

cloneable serializable

The Locale class represents a locale: a political, geographical, or cultural region that
typically has a distinct language and distinct customs and conventions for such things
as formatting dates, times, and numbers. The Locale class defines a number of constants

public interface ListIterator<E> extends Iterator<E> {
// Public Instance Methods

void add(E o);
boolean hasNext();
boolean hasPrevious();
E next();
int nextIndex();
E previous();
int previousIndex();
void remove();
void set(E o);

}

public abstract class ListResourceBundle extends ResourceBundle {
// Public Constructors

public ListResourceBundle();
// Public Methods Overriding ResourceBundle

public Enumeration<String> getKeys();
public final Object handleGetObject(String key);

// Protected Instance Methods
protected abstract Object[][] getContents();

}

Iterator ListIterator

Object ResourceBundle ListResourceBundle

800 | Chapter 16: java.util and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.Locale

that represent commonly used locales. Locale also defines a static getDefault() method that
returns the default Locale object, which represents a locale value inherited from the host
system. getAvailableLocales() returns the list of all locales supported by the underlying
system. If none of these methods for obtaining a Locale object are suitable, you can
explicitly create your own Locale object. To do this, you must specify a language code
and optionally a country code and variant string. getISOCountries() and getISOLanguages()
return the list of supported country codes and language codes.

The Locale class does not implement any internationalization behavior itself; it
merely serves as a locale identifier for those classes that can localize their behavior.
Given a Locale object, you can invoke the various getDisplay methods to obtain a
description of the locale suitable for display to a user. These methods may them-
selves take a Locale argument, so the names of languages and countries can be
localized as appropriate.

public final class Locale implements Cloneable, Serializable {
// Public Constructors
1.4 public Locale(String language);

public Locale(String language, String country);
public Locale(String language, String country, String variant);

// Public Constants
public static final Locale CANADA;
public static final Locale CANADA_FRENCH;
public static final Locale CHINA;
public static final Locale CHINESE;
public static final Locale ENGLISH;
public static final Locale FRANCE;
public static final Locale FRENCH;
public static final Locale GERMAN;
public static final Locale GERMANY;
public static final Locale ITALIAN;
public static final Locale ITALY;
public static final Locale JAPAN;
public static final Locale JAPANESE;
public static final Locale KOREA;
public static final Locale KOREAN;
public static final Locale PRC;
public static final Locale SIMPLIFIED_CHINESE;
public static final Locale TAIWAN;
public static final Locale TRADITIONAL_CHINESE;
public static final Locale UK;
public static final Locale US;

// Public Class Methods
1.2 public static Locale[] getAvailableLocales();

public static Locale getDefault();
1.2 public static String[] getISOCountries();
1.2 public static String[] getISOLanguages();

public static void setDefault(Locale newLocale); synchronized
// Public Instance Methods

public String getCountry();

Object Locale

Cloneable Serializable

Chapter 16: java.util and Subpackages | 801

java.util.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.Map<K,V>

Passed To Too many methods to list.

Returned By java.text.BreakIterator.getAvailableLocales(), java.text.Collator.getAvailableLocales(),
java.text.DateFormat.getAvailableLocales(), java.text.MessageFormat.getLocale(),
java.text.NumberFormat.getAvailableLocales(), Calendar.getAvailableLocales(), java.util.Formatter.locale(),
ResourceBundle.getLocale(), Scanner.locale(), javax.security.auth.callback.LanguageCallback.getLocale()

Map<K,V>
java.util

Java 1.2

collection

This interface represents a collection of mappings, or associations, between key objects
and value objects. Hashtables and associative arrays are examples of maps. In Java 5.0
this interface has been made generic. The type variable K represents the type of the keys
held by the map and the type variable V represents the type of the values associated
with those keys.

The set of key objects in a Map must not have any duplicates; the collection of value
objects is under no such constraint. The key objects should usually be immutable
objects, or, if they are not, care should be taken that they do not change while in use in
a Map. As of Java 1.2, the Map interface replaces the abstract Dictionary class. Although a
Map is not a Collection, the Map interface is still considered an integral part, along with Set,
List, and others, of the Java collections framework.

You can add a key/value association to a Map with the put() method. Use putAll() to copy
all mappings from one Map to another. Call get() to look up the value object associated
with a specified key object. Use remove() to delete the mapping between a specified key
and its value, or use clear() to delete all mappings from a Map. size() returns the number
of mappings in a Map, and isEmpty() tests whether the Map contains no mappings.
containsKey() tests whether a Map contains the specified key object, and containsValue() tests
whether it contains the specified value. (For most implementations, containsValue() is a
much more expensive operation than containsKey(), however.) keySet() returns a Set of all
key objects in the Map. values() returns a Collection (not a Set, since it may contain dupli-
cates) of all value objects in the map. entrySet() returns a Set of all mappings in a Map. The
elements of this returned Set are Map.Entry objects. The collections returned by values(),
keySet(), and entrySet() are based on the Map itself, so changes to the Map are reflected in
the collections.

public final String getDisplayCountry();
public String getDisplayCountry(Locale inLocale);
public final String getDisplayLanguage();
public String getDisplayLanguage(Locale inLocale);
public final String getDisplayName();
public String getDisplayName(Locale inLocale);
public final String getDisplayVariant();
public String getDisplayVariant(Locale inLocale);
public String getISO3Country() throws MissingResourceException;
public String getISO3Language() throws MissingResourceException;
public String getLanguage();
public String getVariant();

// Public Methods Overriding Object
public Object clone();
public boolean equals(Object obj);
public int hashCode();
public final String toString();

}

802 | Chapter 16: java.util and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.Map.Entry<K,V>

An interface cannot specify constructors, but it is conventional that all implementa-
tions of Map provide at least two standard constructors: one that takes no arguments
and creates an empty map, and a copy constructor that accepts a Map object that speci-
fies the initial contents of the new Map.

Implementations are required to support all methods that query the contents of a Map,
but support for methods that modify the contents of a Map is optional. If an implementa-
tion does not support a particular method, the implementation of that method simply
throws a java.lang.UnsupportedOperationException. See also Collection, Set, List, HashMap, Hashtable,
WeakHashMap, SortedMap, and TreeMap.

Implementations AbstractMap, HashMap, Hashtable, IdentityHashMap, LinkedHashMap, SortedMap,
WeakHashMap, java.util.concurrent.ConcurrentMap, java.util.jar.Attributes

Passed To Too many methods to list.

Returned By Too many methods to list.

Type Of Collections.EMPTY_MAP, java.util.jar.Attributes.map

Map.Entry<K,V>
java.util

Java 1.2

This interface represents a single mapping, or association, between a key object and a
value object in a Map. Like Map itself, Map.Entry has been made generic in Java 5.0 and
defines the same type variables that Map does.

The entrySet() method of a Map returns a Set of Map.Entry objects that represent the set of
mappings in the map. Use the iterator() method of that Set to enumerate these Map.Entry
objects. Use getKey() and getValue() to obtain the key and value objects for the entry. Use
the optionally supported setValue() method to change the value of an entry. This method
throws a java.lang.UnsupportedOperationException if it is not supported by the implementation.

public interface Map<K,V> {
// Nested Types

public interface Entry<K,V>;
// Public Instance Methods

void clear();
boolean containsKey(Object key);
boolean containsValue(Object value);
Set<Map.Entry<K,V>> entrySet();
boolean equals(Object o);
V get(Object key);
int hashCode();
boolean isEmpty();
Set<K> keySet();
V put(K key, V value);
void putAll(Map<? extends K,? extends V> t);
V remove(Object key);
int size();
Collection<V> values();

}

public interface Map.Entry<K,V> {
// Public Instance Methods

boolean equals(Object o);
K getKey();
V getValue();

Chapter 16: java.util and Subpackages | 803

java.util.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.MissingResourceException

Passed To LinkedHashMap.removeEldestEntry()

MissingFormatArgumentException
java.util

Java 5.0

serializable unchecked

An IllegalFormatException of this type is thrown by a Formatter when a format() or printf()
method does not have enough arguments to match the number conversion specifiers
in the format string.

MissingFormatWidthException
java.util

Java 5.0

serializable unchecked

An IllegalFormatException of this type is thrown by a Formatter when a format conversion
requires a field width, but the width is omitted.

MissingResourceException
java.util

Java 1.1

serializable unchecked

Signals that no ResourceBundle can be located for the desired locale or that a named
resource cannot be found within a given ResourceBundle. getClassName() returns the name of
the ResourceBundle class in question, and getKey() returns the name of the resource that
cannot be located.

int hashCode();
V setValue(V value);

}

public class MissingFormatArgumentException extends IllegalFormatException {
// Public Constructors

public MissingFormatArgumentException(String s);
// Public Instance Methods

public String getFormatSpecifier();
// Public Methods Overriding Throwable

public String getMessage();
}

public class MissingFormatWidthException extends IllegalFormatException {
// Public Constructors

public MissingFormatWidthException(String s);
// Public Instance Methods

public String getFormatSpecifier();
// Public Methods Overriding Throwable

public String getMessage();
}

Throwable Exception RuntimeException IllegalArgumentException IllegalFormatException MissingFormatArgumentException

Serializable

Throwable Exception RuntimeException IllegalArgumentException IllegalFormatException MissingFormatWidthException

Serializable

Object Throwable Exception RuntimeException MissingResourceException

Serializable

804 | Chapter 16: java.util and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.NoSuchElementException

Thrown By Locale.{getISO3Country(), getISO3Language()}

NoSuchElementException
java.util

Java 1.0

serializable unchecked

Signals that there are no elements in an object (such as a Vector) or that there are no
more elements in an object (such as an Enumeration).

Subclasses InputMismatchException

Observable
java.util

Java 1.0

This class is the superclass for classes that want to provide notifications of state
changes to interested Observer objects. Register an Observer to be notified by passing it to
the addObserver() method of an Observable, and de-register it by passing it to the
deleteObserver() method. You can delete all observers registered for an Observable with
deleteObservers(), and can find out how many observers have been added with
countObservers(). Note that there is not a method to enumerate the particular Observer
objects that have been added.

An Observable subclass should call the protected method setChanged() when its state has
changed in some way. This sets a “state changed” flag. After an operation or series of
operations that may have caused the state to change, the Observable subclass should call
notifyObservers(), optionally passing an arbitrary Object argument. If the state changed flag
is set, this notifyObservers() calls the update() method of each registered Observer (in some
arbitrary order), passing the Observable object, and the optional argument, if any. Once
the update() method of each Observable has been called, notifyObservers() calls clearChanged() to
clear the state changed flag. If notifyObservers() is called when the state changed flag is not
set, it does not do anything. You can use hasChanged() to query the current state of the
changed flag.

The Observable class and Observer interface are not commonly used. Most applications
prefer the event-based notification model defined by the JavaBeans component frame-
work and by the EventObject class and EventListener interface of this package.

public class MissingResourceException extends RuntimeException {
// Public Constructors

public MissingResourceException(String s, String className, String key);
// Public Instance Methods

public String getClassName();
public String getKey();

}

public class NoSuchElementException extends RuntimeException {
// Public Constructors

public NoSuchElementException();
public NoSuchElementException(String s);

}

public class Observable {
// Public Constructors

public Observable();

Object Throwable Exception RuntimeException NoSuchElementException

Serializable

Chapter 16: java.util and Subpackages | 805

java.util.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.PriorityQueue<E>

Passed To Observer.update()

Observer
java.util

Java 1.0

This interface defines the update() method required for an object to observe subclasses
of Observable. An Observer registers interest in an Observable object by calling the addObserver()
method of Observable. Observer objects that have been registered in this way have their
update() methods invoked by the Observable when that object has changed.

This interface is conceptually similar to, but less commonly used than, the EventListener
interface and its various event-specific subinterfaces.

Passed To Observable.{addObserver(), deleteObserver()}

PriorityQueue<E>
java.util

Java 5.0

serializable collection

This class is a Queue implementation that orders its elements according to a specified
Comparator or orders Comparable elements according to their compareTo() methods. The head
of the queue (the element removed by remove() and poll()) is the smallest element on the
queue according to this ordering. The Iterator return by the iterator() method is not guar-
anteed to iterate the elements in their sorted order.

PriorityQueue is unbounded and prohibits null elements. It is not threadsafe.

// Public Instance Methods
public void addObserver(Observer o); synchronized
public int countObservers(); synchronized
public void deleteObserver(Observer o); synchronized
public void deleteObservers(); synchronized
public boolean hasChanged(); synchronized
public void notifyObservers();
public void notifyObservers(Object arg);

// Protected Instance Methods
protected void clearChanged(); synchronized
protected void setChanged(); synchronized

}

public interface Observer {
// Public Instance Methods

void update(Observable o, Object arg);
}

public class PriorityQueue<E> extends AbstractQueue<E> implements Serializable {
// Public Constructors

public PriorityQueue();
public PriorityQueue(int initialCapacity);
public PriorityQueue(SortedSet<? extends E> c);
public PriorityQueue(PriorityQueue<? extends E> c);
public PriorityQueue(Collection<? extends E> c);
public PriorityQueue(int initialCapacity, Comparator<? super E> comparator);

// Public Instance Methods

Object AbstractCollection AbstractQueue PriorityQueue

Iterable Collection Iterable Collection Queue Serializable

806 | Chapter 16: java.util and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.Properties

Properties
java.util

Java 1.0

cloneable serializable collection

This class is an extension of Hashtable that allows key/value pairs to be read from and
written to a stream. The Properties class implements the system properties list, which
supports user customization by allowing programs to look up the values of named
resources. Because the load() and store() methods provide an easy way to read and write
properties from and to a text stream, this class provides a convenient way to imple-
ment an application configuration file.

When you create a Properties object, you may specify another Properties object that contains
default values. Keys (property names) and values are associated in a Properties object with
the Hashtable method put(). Values are looked up with getProperty(); if this method does not
find the key in the current Properties object, it looks in the default Properties object that was
passed to the constructor method. A default value can also be specified, in case the key is
not found at all. Use setProperty() to add a property name/value pair to the Properties object.
This Java 1.2 method is preferred over the inherited put() method because it enforces the
constraint that property names and values be strings.

propertyNames() returns an enumeration of all property names (keys) stored in the Prop-
erties object and (recursively) all property names stored in the default Properties object
associated with it. list() prints the properties stored in a Properties object, which can be
useful for debugging. store() writes a Properties object to a stream, writing one prop-
erty per line, in name=value format. As of Java 1.2, store() is preferred over the
deprecated save() method, which writes properties in the same way but suppresses
any I/O exceptions that may be thrown in the process. The second argument to
both store() and save() is a comment that is written out at the beginning of the prop-
erty file. Finally, load() reads key/value pairs from a stream and stores them in a
Properties object. It is suitable for reading both properties written with store() and
hand-edited properties files. In Java 5.0, storeToXML() and loadFromXML() are alternatives
that write and read properties files using a simple XML grammar.

public Comparator<? super E> comparator();
// Methods Implementing Collection

public Iterator<E> iterator();
public boolean remove(Object o);
public int size();

// Methods Implementing Queue
public boolean offer(E o);
public E peek();
public E poll();

// Public Methods Overriding AbstractQueue
public boolean add(E o);
public void clear();

}

public class Properties extends Hashtable<Object,Object> {
// Public Constructors

public Properties();
public Properties(Properties defaults);

// Public Instance Methods

Object Dictionary Hashtable Properties

Cloneable Map Serializable

Chapter 16: java.util and Subpackages | 807

java.util.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.PropertyPermission

Subclasses java.security.Provider

Passed To System.setProperties(), javax.xml.transform.Transformer.setOutputProperties()

Returned By System.getProperties(), javax.xml.transform.Templates.getOutputProperties(),
javax.xml.transform.Transformer.getOutputProperties()

PropertyPermission
java.util

Java 1.2

serializable permission

This class is a java.security.Permission that governs read and write access to system properties
with System.getProperty() and System.setProperty(). A PropertyPermission object has a name, or
target, and a comma-separated list of actions. The name of the permission is the name of
the property of interest. The action string can be “read” for getProperty() access, “write” for
setProperty() access, or “read,write” for both types of access. PropertyPermission extends
java.security.BasicPermission, so the name of the property supports simple wildcards. The name
“*” represents any property name. If a name ends with “.*”, it represents any property
names that share the specified prefix. For example, the name “java.*” represents
“java.version”, “java.vendor”, “java.vendor.url”, and all other properties that begin with
“java”.

Granting access to system properties is not overtly dangerous, but caution is still
necessary. Some properties, such as “user.home”, reveal details about the host system
that malicious code can use to mount an attack. Programmers writing system-level
code and system administrators configuring security policies may need to use this
class, but applications never need to use it.

public String getProperty(String key);
public String getProperty(String key, String defaultValue);

1.1 public void list(java.io.PrintWriter out);
public void list(java.io.PrintStream out);
public void load(java.io.InputStream inStream) throws java.io.IOException; synchronized

5.0 public void loadFromXML(java.io.InputStream in)
throws java.io.IOException, InvalidPropertiesFormatException;

synchronized

public Enumeration<?> propertyNames();
1.2 public Object setProperty(String key, String value); synchronized
1.2 public void store(java.io.OutputStream out, String comments) throws java.io.IOException; synchronized
5.0 public void storeToXML(java.io.OutputStream os, String comment) throws java.io.IOException; synchronized
5.0 public void storeToXML(java.io.OutputStream os, String comment, String encoding)

throws java.io.IOException;
synchronized

// Protected Instance Fields
protected Properties defaults;

// Deprecated Public Methods
public void save(java.io.OutputStream out, String comments); synchronized
}

public final class PropertyPermission extends java.security.BasicPermission {
// Public Constructors

public PropertyPermission(String name, String actions);
// Public Methods Overriding BasicPermission

public boolean equals(Object obj);
public String getActions();

Object Permission BasicPermission PropertyPermission

Guard Serializable Serializable

808 | Chapter 16: java.util and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.PropertyResourceBundle

PropertyResourceBundle
java.util

Java 1.1

This class is a concrete subclass of ResourceBundle. It reads a Properties file from a specified
InputStream and implements the ResourceBundle API for looking up named resources from
the resulting Properties object. A Properties file contains lines of the form:

name=value

Each such line defines a named property with the specified String value. Although you
can instantiate a PropertyResourceBundle yourself, it is more common to simply define a Prop-
erties file and then allow ResourceBundle.getBundle() to look up that file and return the
necessary PropertyResourceBundle object. See also Properties and ResourceBundle.

Queue<E>
java.util

Java 5.0

collection

A Queue<E> is an ordered Collection of elements of type E. Unlike List, the Queue interface
does not permit indexed access to its elements: elements may be inserted at the tail of
the queue and may be removed from the head of the queue, but the elements in
between may not be accessed by their position. Unlike Set, Queue implementations do
not prohibit duplicate elements.

Queues may be manipulated through the methods of the Collection interface, including
iteration via the iterator() method and the Iterator object it returns. It is more common to
manipulate queues through the more specialized methods defined by the Queue inter-
face, however. Place an element at the tail of the queue with offer(). If the queue is
already full, offer() returns false. Remove an element from the head of the queue with
remove() or poll(). These methods differ only in the case of an empty queue: remove()
throws an unchecked NoSuchElementException and poll() returns null. (Most queue implemen-
tations prohibit null elements for this reason, but LinkedList is an exception.) Query the
element at the head of a queue without removing it with element() or peek(). If the queue
is empty, element() throws NoSuchElementException and peek() returns null.

Most Queue implementations order their elements in first-in, first-out (FIFO) order.
Other implementations may provide other orderings. A queue Iterator is not required to
traverse the queue’s elements in order. A Queue implementation with a fixed size is a
bounded queue. When a bounded queue is full, it is not possible to insert a new
element until an element is first removed. Unlike the List and Set interfaces, the Queue
interface does not require implementations to override the equals() method, and Queue
implementations typically do not override it.

public int hashCode();
public boolean implies(java.security.Permission p);
public java.security.PermissionCollection newPermissionCollection();

}

public class PropertyResourceBundle extends ResourceBundle {
// Public Constructors

public PropertyResourceBundle(java.io.InputStream stream) throws java.io.IOException;
// Public Methods Overriding ResourceBundle

public Enumeration<String> getKeys();
public Object handleGetObject(String key);

}

Object ResourceBundle PropertyResourceBundle

Chapter 16: java.util and Subpackages | 809

java.util.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.Random

In Java 5.0, the LinkedList class has been retrofitted to implement Queue as well as List.
PriorityQueue is a Queue implementation that orders elements based on the Comparable or
Comparator interfaces. AbstractQueue is an abstract implementation that offers partial
support for simple Queue implementations. The java.util.concurrent package defines a
BlockingQueue interface that extends this implementation and includes Queue and Blocking-
Queue implementations that are useful in multithreaded programming.

Implementations AbstractQueue, LinkedList, java.util.concurrent.BlockingQueue,
java.util.concurrent.ConcurrentLinkedQueue

Random
java.util

Java 1.0

serializable

This class implements a pseudorandom number generator suitable for games and similar
applications. If you need a cryptographic-strength source of pseudorandomness, see
java.security.SecureRandom. nextDouble() and nextFloat() return a value between 0.0 and 1.0.
nextLong() and the no-argument version of nextInt() return long and int values distributed
across the range of those data types. As of Java 1.2, if you pass an argument to nextInt(), it
returns a value between zero (inclusive) and the specified number (exclusive).
nextGaussian() returns pseudorandom floating-point values with a Gaussian distribution;
the mean of the values is 0.0 and the standard deviation is 1.0. nextBoolean() returns a
pseudorandom boolean value, and nextBytes() fills in the specified byte array with pseudo-
random bytes. You can use the setSeed() method or the optional constructor argument to
initialize the pseudorandom number generator with some variable seed value other than
the current time (the default) or with a constant to ensure a repeatable sequence of
pseudorandomness.

public interface Queue<E> extends Collection<E> {
// Public Instance Methods

E element();
boolean offer(E o);
E peek();
E poll();
E remove();

}

public class Random implements Serializable {
// Public Constructors

public Random();
public Random(long seed);

// Public Instance Methods
1.2 public boolean nextBoolean();
1.1 public void nextBytes(byte[] bytes);

public double nextDouble();
public float nextFloat();
public double nextGaussian(); synchronized
public int nextInt();

1.2 public int nextInt(int n);
public long nextLong();
public void setSeed(long seed); synchronized

Iterable Collection Queue

Object Random Serializable

810 | Chapter 16: java.util and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.RandomAccess

Subclasses java.security.SecureRandom

Passed To java.math.BigInteger.{BigInteger(), probablePrime()}, Collections.shuffle()

RandomAccess
java.util

Java 1.4

This marker interface is implemented by List implementations to advertise that they
provide efficient (usually constant time) random access to all list elements. ArrayList and
Vector implement this interface, but LinkedList does not. Classes that manipulate generic
List objects may want to test for this interface with instanceof and use different algo-
rithms for lists that provide efficient random access than they use for lists that are most
efficiently accessed sequentially.

Implementations ArrayList, Vector, java.util.concurrent.CopyOnWriteArrayList

ResourceBundle
java.util

Java 1.1

This abstract class allows subclasses to define sets of localized resources that can then
be dynamically loaded as needed by internationalized programs. Such resources may
include user-visible text and images that appear in an application, as well as more
complex things such as Menu objects. Use getBundle() to load a ResourceBundle subclass that
is appropriate for the default or specified locale. Use getObject(), getString(), and
getStringArray() to look up a named resource in a bundle. To define a bundle, provide
implementations of handleGetObject() and getKeys(). It is often easier, however, to subclass
ListResourceBundle or provide a Properties file that is used by PropertyResourceBundle. The name of
any localized ResourceBundle class you define should include the locale language code,
and, optionally, the locale country code.

// Protected Instance Methods
1.1 protected int next(int bits);
}

public interface RandomAccess {
}

public abstract class ResourceBundle {
// Public Constructors

public ResourceBundle();
// Public Class Methods

public static final ResourceBundle getBundle(String baseName);
public static final ResourceBundle getBundle(String baseName, Locale locale);

1.2 public static ResourceBundle getBundle(String baseName, Locale locale, ClassLoader loader);
// Public Instance Methods

public abstract Enumeration<String> getKeys();
1.2 public Locale getLocale();

public final Object getObject(String key);
public final String getString(String key);
public final String[] getStringArray(String key);

// Protected Instance Methods
protected abstract Object handleGetObject(String key);
protected void setParent(ResourceBundle parent);

// Protected Instance Fields
protected ResourceBundle parent;

}

Chapter 16: java.util and Subpackages | 811

java.util.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.Scanner

Subclasses ListResourceBundle, PropertyResourceBundle

Passed To java.util.logging.LogRecord.setResourceBundle()

Returned By java.util.logging.Logger.getResourceBundle(), java.util.logging.LogRecord.getResourceBundle()

Scanner
java.util

Java 5.0

This class is a text scanner or tokenizer. It can read input from any Readable object, and
convenience constructors can read text from a specified string, file, byte stream, or
byte channel. The constructors for files, byte streams, and byte channels optionally
allow you to specify the name of the charset to use for byte-to-character conversions.

After creating a Scanner, you can configure it. useDelimiter() specifies a regular expression
(as a java.util.regex.Pattern or a String) that represents the token delimiter. The default delim-
iter is any run of whitespace. useLocale() specifies the Locale to use for scanning numbers:
this may affect things like the character expected for decimal points and the thou-
sands separator. useRadix() specifies the radix, or base, in which numbers should be
parsed. Any value between 2 and 36 is allowed. These configuration methods may be
called at any time and are not required to be called before scanning begins.

Scanner implements the Iterable<String> interface, and you can use the hasNext() and next()
methods of this interface to break the input into a series of String tokens separated by
whitespace or by the delimiter specified with useDelimiter(). In addition to these Iterable
methods, however, Scanner defines a number of nextX and hasNextX methods for various
numeric types X. nextLine() returns the next line of input. Two variants of the next()
method accept a regular expression as an argument and return the next chunk of text
matching a specified regular expression. The corresponding hasNext() methods accept a
regular expression and return true if the input matches it.

The skip() method ignores delimiters and skips text matching the specified regular expres-
sion. findInLine() looks ahead for text matching the specified regular expression in the
current line. If a match is found, the Scanner advances past that text and returns it. Other-
wise, the Scanner returns null without advancing. findWithinHorizon() is similar but looks for a
match within the specified number of characters (a horizon of 0 specifies an unlimited
number).

The next() methods and its nextX variants throw a NoSuchElementException if there is no more
input text. They throw an InputMismatchException (a subclass of NoSuchElementException) if the
next token cannot be parsed as the specified type or does not match the specified
pattern. The Readable object that the Scanner reads text from may throw a java.io.IOException,
but, for ease of use, the Scanner never propagates this exception. If an IOException occurs,
the Scanner assumes that no more input is available from the Readable. Call ioException() to
obtain the most recent IOException, if any, thrown by the Readable.

The close() method checks whether the Readable object implements the Closeable interface
and, if so, calls the close() method on that object. Once close() has been called, any
attempt to read tokens from the Scanner results in an IllegalStateException.

See also StringTokenizer and java.io.StreamTokenizer.

public final class Scanner implements Iterator<String> {
// Public Constructors

public Scanner(Readable source);
public Scanner(java.nio.channels.ReadableByteChannel source);
public Scanner(java.io.InputStream source);

Object Scanner Iterator

812 | Chapter 16: java.util and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.Scanner

public Scanner(java.io.File source) throws java.io.FileNotFoundException;
public Scanner(String source);
public Scanner(java.nio.channels.ReadableByteChannel source, String charsetName);
public Scanner(java.io.InputStream source, String charsetName);
public Scanner(java.io.File source, String charsetName) throws java.io.FileNotFoundException;

// Public Instance Methods
public void close();
public java.util.regex.Pattern delimiter();
public String findInLine(String pattern);
public String findInLine(java.util.regex.Pattern pattern);
public String findWithinHorizon(java.util.regex.Pattern pattern, int horizon);
public String findWithinHorizon(String pattern, int horizon);
public boolean hasNext(java.util.regex.Pattern pattern);
public boolean hasNext(String pattern);
public boolean hasNextBigDecimal();
public boolean hasNextBigInteger();
public boolean hasNextBigInteger(int radix);
public boolean hasNextBoolean();
public boolean hasNextByte();
public boolean hasNextByte(int radix);
public boolean hasNextDouble();
public boolean hasNextFloat();
public boolean hasNextInt();
public boolean hasNextInt(int radix);
public boolean hasNextLine();
public boolean hasNextLong();
public boolean hasNextLong(int radix);
public boolean hasNextShort();
public boolean hasNextShort(int radix);
public java.io.IOException ioException();
public Locale locale();
public java.util.regex.MatchResult match();
public String next(String pattern);
public String next(java.util.regex.Pattern pattern);
public java.math.BigDecimal nextBigDecimal();
public java.math.BigInteger nextBigInteger();
public java.math.BigInteger nextBigInteger(int radix);
public boolean nextBoolean();
public byte nextByte();
public byte nextByte(int radix);
public double nextDouble();
public float nextFloat();
public int nextInt();
public int nextInt(int radix);
public String nextLine();
public long nextLong();
public long nextLong(int radix);
public short nextShort();
public short nextShort(int radix);
public int radix();
public Scanner skip(java.util.regex.Pattern pattern);
public Scanner skip(String pattern);
public Scanner useDelimiter(java.util.regex.Pattern pattern);

Chapter 16: java.util and Subpackages | 813

java.util.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.Set<E>

Set<E>
java.util

Java 1.2

collection

This interface represents an unordered Collection of objects that contains no duplicate
elements. That is, a Set cannot contain two elements e1 and e2 where e1.equals(e2), and it
can contain at most one null element. The Set interface defines the same methods as its
superinterface, Collection. It constrains the add() and addAll() methods from adding dupli-
cate elements to the Set. In Java 5.0 Set is a generic interface and the type variable E
represents the type of the objects in the set.

An interface cannot specify constructors, but it is conventional that all implementa-
tions of Set provide at least two standard constructors: one that takes no arguments
and creates an empty set, and a copy constructor that accepts a Collection object that
specifies the initial contents of the new Set. This copy constructor must ensure that
duplicate elements are not added to the Set, of course.

As with Collection, the Set methods that modify the contents of the set are optional, and imple-
mentations that do not support the methods throw java.lang.UnsupportedOperationException. See
also Collection, List, Map, SortedSet, HashSet, and TreeSet.

Implementations AbstractSet, HashSet, LinkedHashSet, SortedSet

Passed To java.security.cert.PKIXBuilderParameters.PKIXBuilderParameters(),
java.security.cert.PKIXParameters.{PKIXParameters(), setInitialPolicies(), setTrustAnchors()},
java.security.cert.X509CertSelector.{setExtendedKeyUsage(), setPolicy()},

public Scanner useDelimiter(String pattern);
public Scanner useLocale(Locale locale);
public Scanner useRadix(int radix);

// Methods Implementing Iterator
public boolean hasNext();
public String next();
public void remove();

// Public Methods Overriding Object
public String toString();

}

public interface Set<E> extends Collection<E> {
// Public Instance Methods

boolean add(E o);
boolean addAll(Collection<? extends E> c);
void clear();
boolean contains(Object o);
boolean containsAll(Collection<?> c);
boolean equals(Object o);
int hashCode();
boolean isEmpty();
Iterator<E> iterator();
boolean remove(Object o);
boolean removeAll(Collection<?> c);
boolean retainAll(Collection<?> c);
int size();
Object[] toArray();
<T> T[] toArray(T[] a);

}

Iterable Collection Set

814 | Chapter 16: java.util and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.SimpleTimeZone

java.text.AttributedCharacterIterator.{getRunLimit(), getRunStart()}, Collections.{checkedSet(), synchronizedSet(),
unmodifiableSet()}, javax.security.auth.Subject.Subject()

Returned By Too many methods to list.

Type Of Collections.EMPTY_SET

SimpleTimeZone
java.util

Java 1.1

cloneable serializable

This concrete subclass of TimeZone is a simple implementation of that abstract class that
is suitable for use in locales that use the Gregorian calendar. Programs do not normally
need to instantiate this class directly; instead, they use one of the static factory
methods of TimeZone to obtain a suitable TimeZone subclass. The only reason to instan-
tiate this class directly is if you need to support a time zone with nonstandard daylight-
savings-time rules. In that case, you can call setStartRule() and setEndRule() to specify the
starting and ending dates of daylight-savings time for the time zone.

public class SimpleTimeZone extends TimeZone {
// Public Constructors

public SimpleTimeZone(int rawOffset, String ID);
public SimpleTimeZone(int rawOffset, String ID, int startMonth, int startDay, int startDayOfWeek, int startTime,

int endMonth, int endDay, int endDayOfWeek, int endTime);
1.2 public SimpleTimeZone(int rawOffset, String ID, int startMonth, int startDay, int startDayOfWeek, int startTime,

int endMonth, int endDay, int endDayOfWeek, int endTime, int dstSavings);
1.4 public SimpleTimeZone(int rawOffset, String ID, int startMonth, int startDay, int startDayOfWeek, int startTime,

int startTimeMode, int endMonth, int endDay, int endDayOfWeek, int endTime,
int endTimeMode, int dstSavings);

// Public Constants
1.4 public static final int STANDARD_TIME; =1
1.4 public static final int UTC_TIME; =2
1.4 public static final int WALL_TIME; =0
// Public Instance Methods
1.2 public void setDSTSavings(int millisSavedDuringDST);
1.2 public void setEndRule(int endMonth, int endDay, int endTime);

public void setEndRule(int endMonth, int endDay, int endDayOfWeek, int endTime);
1.2 public void setEndRule(int endMonth, int endDay, int endDayOfWeek, int endTime, boolean after);
1.2 public void setStartRule(int startMonth, int startDay, int startTime);

public void setStartRule(int startMonth, int startDay, int startDayOfWeek, int startTime);
1.2 public void setStartRule(int startMonth, int startDay, int startDayOfWeek, int startTime, boolean after);

public void setStartYear(int year);
// Public Methods Overriding TimeZone

public Object clone();
1.2 public int getDSTSavings();
1.4 public int getOffset(long date);

public int getOffset(int era, int year, int month, int day, int dayOfWeek, int millis);
public int getRawOffset();

1.2 public boolean hasSameRules(TimeZone other);
public boolean inDaylightTime(Date date);
public void setRawOffset(int offsetMillis);
public boolean useDaylightTime();

Object TimeZone SimpleTimeZone

Cloneable Serializable

Chapter 16: java.util and Subpackages | 815

java.util.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.SortedSet<E>

SortedMap<K,V>
java.util

Java 1.2

collection

This interface represents a Map object that keeps its set of key objects in sorted order.
As with Map, it is conventional that all implementations of this interface define a no-
argument constructor to create an empty map and a copy constructor that accepts a
Map object that specifies the initial contents of the SortedMap. Furthermore, when
creating a SortedMap, there should be a way to specify a Comparator object to sort the key
objects of the map. If no Comparator is specified, all key objects must implement the
java.lang.Comparable interface so they can be sorted in their natural order. See also Map,
TreeMap, and SortedSet.

The inherited keySet(), values(), and entrySet() methods return collections that can be iter-
ated in the sorted order. firstKey() and lastKey() return the lowest and highest key values in
the SortedMap. subMap() returns a SortedMap that contains only mappings for keys from (and
including) the first specified key up to (but not including) the second specified key.
headMap() returns a SortedMap that contains mappings whose keys are less than (but not
equal to) the specified key. tailMap() returns a SortedMap that contains mappings whose
keys are greater than or equal to the specified key. subMap(), headMap(), and tailMap()
return SortedMap objects that are simply views of the original SortedMap; any changes in
the original map are reflected in the returned map and vice versa.

Implementations TreeMap

Passed To Collections.{checkedSortedMap(), synchronizedSortedMap(), unmodifiableSortedMap()},
TreeMap.TreeMap()

Returned By java.nio.charset.Charset.availableCharsets(), Collections.{checkedSortedMap(),
synchronizedSortedMap(), unmodifiableSortedMap()}, TreeMap.{headMap(), subMap(), tailMap()},
java.util.jar.Pack200.Packer.properties(), java.util.jar.Pack200.Unpacker.properties()

SortedSet<E>
java.util

Java 1.2

collection

This interface is a Set that sorts its elements and guarantees that its iterator() method
returns an Iterator that enumerates the elements of the set in sorted order. As with the
Set interface, it is conventional for all implementations of SortedSet to provide a no-
argument constructor that creates an empty set and a copy constructor that expects

// Public Methods Overriding Object
public boolean equals(Object obj);
public int hashCode(); synchronized
public String toString();

}

public interface SortedMap<K,V> extends Map<K,V> {
// Public Instance Methods

Comparator<? super K> comparator();
K firstKey();
SortedMap<K,V> headMap(K toKey);
K lastKey();
SortedMap<K,V> subMap(K fromKey, K toKey);
SortedMap<K,V> tailMap(K fromKey);

}

Map SortedMap

816 | Chapter 16: java.util and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.Stack<E>

a Collection object specifying the initial (unsorted) contents of the set. Furthermore,
when creating a SortedSet, there should be a way to specify a Comparator object that
compares and sorts the elements of the set. If no Comparator is specified, the elements
of the set must all implement java.lang.Comparable so they can be sorted in their natural
order. See also Set, TreeSet, and SortedMap.

SortedSet defines a few methods in addition to those it inherits from the Set interface.
first() and last() return the lowest and highest objects in the set. headSet() returns all
elements from the beginning of the set up to (but not including) the specified element.
tailSet() returns all elements between (and including) the specified element and the end
of the set. subSet() returns all elements of the set from (and including) the first specified
element up to (but excluding) the second specified element. Note that all three
methods return a SortedSet that is implemented as a view onto the original SortedSet.
Changes in the original set are visible through the returned set and vice versa.

Implementations TreeSet

Passed To Collections.{checkedSortedSet(), synchronizedSortedSet(), unmodifiableSortedSet()},
PriorityQueue.PriorityQueue(), TreeSet.TreeSet()

Returned By Collections.{checkedSortedSet(), synchronizedSortedSet(), unmodifiableSortedSet()},
TreeSet.{headSet(), subSet(), tailSet()}

Stack<E>
java.util

Java 1.0

cloneable serializable collection

This class implements a last-in-first-out (LIFO) stack of objects. push() puts an object
on the top of the stack. pop() removes and returns the top object from the stack. peek()
returns the top object without removing it. In Java 1.2, you can instead use a LinkedList
as a stack.

public interface SortedSet<E> extends Set<E> {
// Public Instance Methods

Comparator<? super E> comparator();
E first();
SortedSet<E> headSet(E toElement);
E last();
SortedSet<E> subSet(E fromElement, E toElement);
SortedSet<E> tailSet(E fromElement);

}

public class Stack<E> extends Vector<E> {
// Public Constructors

public Stack();
// Public Instance Methods

public boolean empty();
public E peek(); synchronized
public E pop(); synchronized

Iterable Collection Set SortedSet

Object AbstractCollection AbstractList Vector Stack

Collection List Cloneable List RandomAccess Serializable

Iterable Collection Collection

Iterable Iterable

Chapter 16: java.util and Subpackages | 817

java.util.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.Timer

StringTokenizer
java.util

Java 1.0

When a StringTokenizer is instantiated with a String, it breaks the string up into tokens
separated by any of the characters in the specified string of delimiters. (For example,
words separated by space and tab characters are tokens.) The hasMoreTokens() and
nextToken() methods obtain the tokens in order. countTokens() returns the number of tokens
in the string. StringTokenizer implements the Enumeration interface, so you may also access
the tokens with the familiar hasMoreElements() and nextElement() methods. When you create
a StringTokenizer, you can specify a string of delimiter characters to use for the entire
string, or you can rely on the default whitespace delimiters. You can also specify
whether the delimiters themselves should be returned as tokens. Finally, you can
optionally specify a new string of delimiter characters when you call nextToken().

Timer
java.util

Java 1.3

This class implements a timer: its methods allow you to schedule one or more
runnable TimerTask objects to be executed (once or repetitively) by a background thread
at a specified time in the future. You can create a timer with the Timer() constructor.
The no-argument version of this constructor creates a regular non-daemon back-
ground thread, which means that the Java VM will not terminate while the timer
thread is running. Pass true to the constructor if you want the background thread to be
a daemon thread. In Java 5.0 you can also specify the name of the background thread
when creating a Timer.

Once you have created a Timer, you can schedule TimerTask objects to be run in the future
with the various schedule() and scheduleAtFixedRate() methods. To schedule a task for a
single execution, use one of the two-argument schedule() methods and specify the
desired execution time either as a number of milliseconds in the future or as an abso-
lute Date. If the number of milliseconds is 0, or if the Date object represents a time
already passed, the task is scheduled for immediate execution.

public E push(E item);
public int search(Object o); synchronized

}

public class StringTokenizer implements Enumeration<Object> {
// Public Constructors

public StringTokenizer(String str);
public StringTokenizer(String str, String delim);
public StringTokenizer(String str, String delim, boolean returnDelims);

// Public Instance Methods
public int countTokens();
public boolean hasMoreTokens();
public String nextToken();
public String nextToken(String delim);

// Methods Implementing Enumeration
public boolean hasMoreElements();
public Object nextElement();

}

Object StringTokenizer Enumeration

818 | Chapter 16: java.util and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.TimerTask

To schedule a repeating task, use one of the three-argument versions of schedule() or
scheduleAtFixedRate(). These methods are passed an argument that specifies the time
(either as a number of milliseconds or as a Date object) of the first execution of the task
and another argument, period, that specifies the number of milliseconds between
repeated executions of the task. The schedule() methods schedule the task for fixed-
interval execution. That is, each execution is scheduled for period milliseconds after the
previous execution ends. Use schedule() for tasks such as animation, where it is impor-
tant to have a relatively constant interval between executions. The scheduleAtFixedRate()
methods, on the other hand, schedule tasks for fixed-rate execution. That is, each
repetition of the task is scheduled for period milliseconds after the previous execution
begins. Use scheduleAtFixedRate() for tasks, such as updating a clock display, that must
occur at specific absolute times rather than at fixed intervals.

A single Timer object can comfortably schedule many TimerTask objects. Note, however,
that all tasks scheduled by a single Timer share a single thread. If you are scheduling
many rapidly repeating tasks, or if some tasks take a long time to execute, other tasks
may have their scheduled executions delayed.

When you are done with a Timer, call cancel() to stop its associated thread from running.
This is particularly important when you are using a timer whose associated thread is not a
daemon thread, because otherwise the timer thread can prevent the Java VM from
exiting. To cancel the execution of a particular task, use the cancel() method of TimerTask.

TimerTask
java.util

Java 1.3

runnable

This abstract Runnable class represents a task that is scheduled with a Timer object for
one-time or repeated execution in the future. You can define a task by subclassing
TimerTask and implementing the abstract run() method. Schedule the task for future
execution by passing an instance of your subclass to one of the schedule() or
scheduleAtFixedRate() methods of Timer. The Timer object will then invoke the run() method at
the scheduled time or times.

Call cancel() to cancel the one-time or repeated execution of a TimerTask(). This method
returns true if a pending execution was actually canceled. It returns false if the task has
already been canceled, was never scheduled, or was scheduled for one-time execution
and has already been executed. scheduledExecutionTime() returns the time in milliseconds at
which the most recent execution of the TimerTask was scheduled to occur. When the

public class Timer {
// Public Constructors

public Timer();
public Timer(boolean isDaemon);

5.0 public Timer(String name);
5.0 public Timer(String name, boolean isDaemon);
// Public Instance Methods

public void cancel();
5.0 public int purge();

public void schedule(TimerTask task, long delay);
public void schedule(TimerTask task, Date time);
public void schedule(TimerTask task, long delay, long period);
public void schedule(TimerTask task, Date firstTime, long period);
public void scheduleAtFixedRate(TimerTask task, long delay, long period);
public void scheduleAtFixedRate(TimerTask task, Date firstTime, long period);

}

Chapter 16: java.util and Subpackages | 819

java.util.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.TimeZone

host system is heavily loaded, the run() method may not be invoked exactly when
scheduled. Some tasks may choose to do nothing if they are not invoked on time. The
run() method can compare the return values of scheduledExecutionTime() and
System.currentTimeMillis() to determine whether the current invocation is sufficiently timely.

Passed To Timer.{schedule(), scheduleAtFixedRate()}

TimeZone
java.util

Java 1.1

cloneable serializable

The TimeZone class represents a time zone; it is used with the Calendar and DateFormat
classes. As an abstract class, TimeZone cannot be directly instantiated. Instead, you
should call the static getDefault() method to obtain a TimeZone object that represents the
time zone inherited from the host operating system. Or you can call the static
getTimeZone() method with the name of the desired zone. You can obtain a list of the
supported time-zone names by calling the static getAvailableIDs() method.

Once you have a TimeZone object, you can call inDaylightTime() to determine whether, for a
given Date, daylight-savings time is in effect for that time zone. Call getID() to obtain the
name of the time zone. Call getOffset() for a given date to determine the number of milli-
seconds to add to GMT to convert to the time zone.

public abstract class TimerTask implements Runnable {
// Protected Constructors

protected TimerTask();
// Public Instance Methods

public boolean cancel();
public long scheduledExecutionTime();

// Methods Implementing Runnable
public abstract void run();

}

public abstract class TimeZone implements Cloneable, Serializable {
// Public Constructors

public TimeZone();
// Public Constants
1.2 public static final int LONG; =1
1.2 public static final int SHORT; =0
// Public Class Methods

public static String[] getAvailableIDs(); synchronized
public static String[] getAvailableIDs(int rawOffset); synchronized
public static TimeZone getDefault(); synchronized
public static TimeZone getTimeZone(String ID); synchronized
public static void setDefault(TimeZone zone); synchronized

// Public Instance Methods
1.2 public final String getDisplayName();
1.2 public final String getDisplayName(Locale locale);
1.2 public final String getDisplayName(boolean daylight, int style);
1.2 public String getDisplayName(boolean daylight, int style, Locale locale);

Object TimerTask Runnable

Object TimeZone

Cloneable Serializable

820 | Chapter 16: java.util and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.TooManyListenersException

Subclasses SimpleTimeZone

Passed To java.text.DateFormat.setTimeZone(), Calendar.{Calendar(), getInstance(), setTimeZone()},
GregorianCalendar.{GregorianCalendar(), setTimeZone()}, SimpleTimeZone.hasSameRules(),
javax.xml.datatype.XMLGregorianCalendar.toGregorianCalendar()

Returned By java.text.DateFormat.getTimeZone(), Calendar.getTimeZone(),
GregorianCalendar.getTimeZone(), javax.xml.datatype.XMLGregorianCalendar.getTimeZone()

TooManyListenersException
java.util

Java 1.1

serializable checked

Signals that an AWT component, JavaBeans component, or Swing component can
have only one EventListener object registered for some specific type of event. That is, it
signals that a particular event is a unicast event rather than a multicast event. This
exception type serves a formal purpose in the Java event model; its presence in the
throws clause of an EventListener registration method (even if the method never actually
throws the exception) signals that an event is a unicast event.

TreeMap<K,V>
java.util

Java 1.2

cloneable serializable collection

This class implements the SortedMap interface using an internal Red-Black tree data
structure and guarantees that the keys and values of the mapping can be enumerated
in ascending order of keys. TreeMap supports all optional Map methods. The objects used
as keys in a TreeMap must all be mutually Comparable, or an appropriate Comparator must be
provided when the TreeMap is created. Because TreeMap is based on a binary tree data
structure, the get(), put(), remove(), and containsKey() methods operate in relatively efficient
logarithmic time. If you do not need the sorting capability of TreeMap, however, use
HashMap instead, as it is even more efficient. See Map and SortedMap for details on the
methods of TreeMap. See also the related TreeSet class.

1.4 public int getDSTSavings();
public String getID();

1.4 public int getOffset(long date);
public abstract int getOffset(int era, int year, int month, int day, int dayOfWeek, int milliseconds);
public abstract int getRawOffset();

1.2 public boolean hasSameRules(TimeZone other);
public abstract boolean inDaylightTime(Date date);
public void setID(String ID);
public abstract void setRawOffset(int offsetMillis);
public abstract boolean useDaylightTime();

// Public Methods Overriding Object
public Object clone();

}

public class TooManyListenersException extends Exception {
// Public Constructors

public TooManyListenersException();
public TooManyListenersException(String s);

}

Object Throwable Exception TooManyListenersException

Serializable

Chapter 16: java.util and Subpackages | 821

java.util.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.TreeSet<E>

In order for a TreeMap to work correctly, the comparison method from the Comparable or
Comparator interface must be consistent with the equals() method. That is, the equals()
method must compare two objects as equal if and only if the comparison method also
indicates those two objects are equal.

The methods of TreeMap are not synchronized. If you are working in a multithreaded envi-
ronment, you must explicitly synchronize all code that modifies the TreeMap, or obtain a
synchronized wrapper with Collections.synchronizedMap().

TreeSet<E>
java.util

Java 1.2

cloneable serializable collection

This class implements SortedSet, provides support for all optional methods, and guaran-
tees that the elements of the set can be enumerated in ascending order. In order to be
sorted, the elements of the set must all be mutually Comparable objects, or they must all
be compatible with a Comparator object that is specified when the TreeSet is created. TreeSet
is implemented on top of a TreeMap, so its add(), remove(), and contains() methods all
operate in relatively efficient logarithmic time. If you do not need the sorting capa-
bility of TreeSet, however, use HashSet instead, as it is significantly more efficient. See Set,
SortedSet, and Collection for details on the methods of TreeSet.

In order for a TreeSet to operate correctly, the Comparable or Comparator comparison method
must be consistent with the equals() method. That is, the equals() method must compare

public class TreeMap<K,V> extends AbstractMap<K,V> implements SortedMap<K,V>, Cloneable, Serializable {
// Public Constructors

public TreeMap();
public TreeMap(Comparator<? super K> c);
public TreeMap(SortedMap<K,? extends V> m);
public TreeMap(Map<? extends K,? extends V> m);

// Methods Implementing Map
public void clear();
public boolean containsKey(Object key);
public boolean containsValue(Object value);
public Set<Map.Entry<K,V>> entrySet();
public V get(Object key);
public Set<K> keySet();
public V put(K key, V value);
public void putAll(Map<? extends K,? extends V> map);
public V remove(Object key);
public int size();
public Collection<V> values();

// Methods Implementing SortedMap
public Comparator<? super K> comparator();
public K firstKey();
public SortedMap<K,V> headMap(K toKey);
public K lastKey();
public SortedMap<K,V> subMap(K fromKey, K toKey);
public SortedMap<K,V> tailMap(K fromKey);

// Public Methods Overriding AbstractMap
public Object clone();

}

Object AbstractMap TreeMap

Map Cloneable Serializable Map SortedMap

822 | Chapter 16: java.util and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.UnknownFormatConversionException

two objects as equal if and only if the comparison method also indicates those two
objects are equal.

The methods of TreeSet are not synchronized. If you are working in a multithreaded envi-
ronment, you must explicitly synchronize code that modifies the contents of the set, or
obtain a synchronized wrapper with Collections.synchronizedSet().

UnknownFormatConversionException
java.util

Java 5.0

serializable unchecked

An IllegalFormatException of this type is thrown by a Formatter when an unknown conversion
specifier is included in a format string.

public class TreeSet<E> extends AbstractSet<E> implements SortedSet<E>, Cloneable, Serializable {
// Public Constructors

public TreeSet();
public TreeSet(Comparator<? super E> c);
public TreeSet(SortedSet<E> s);
public TreeSet(Collection<? extends E> c);

// Methods Implementing Set
public boolean add(E o);
public boolean addAll(Collection<? extends E> c);
public void clear();
public boolean contains(Object o);
public boolean isEmpty(); default:true
public Iterator<E> iterator();
public boolean remove(Object o);
public int size();

// Methods Implementing SortedSet
public Comparator<? super E> comparator();
public E first();
public SortedSet<E> headSet(E toElement);
public E last();
public SortedSet<E> subSet(E fromElement, E toElement);
public SortedSet<E> tailSet(E fromElement);

// Public Methods Overriding Object
public Object clone();

}

public class UnknownFormatConversionException extends IllegalFormatException {
// Public Constructors

public UnknownFormatConversionException(String s);
// Public Instance Methods

public String getConversion();

Object AbstractCollection AbstractSet TreeSet

Collection Set Cloneable Serializable SortedSet

Iterable Collection Set

Iterable Collection

Iterable

Throwable Exception RuntimeException IllegalArgumentException IllegalFormatException UnknownFormatConversionException

Serializable

Chapter 16: java.util and Subpackages | 823

java.util.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.UUID

UnknownFormatFlagsException
java.util

Java 5.0

serializable unchecked

An IllegalFormatException of this type is thrown by a Formatter when unknown flags are speci-
fied in a format string.

UUID
java.util

Java 5.0

serializable comparable

This class is an immutable representation of 128-bit Universal Unique Identifier, or
UUID, which serves as an identifier that is (with very high probability) globally unique.
Create a UUID based on random bits with the randomUUID() factory method. Create a
UUID based on the MD5 hash code of an array of bytes with the nameUUIDFromBytes()
factory method. Or create a UUID by parsing a string with the fromString() factory method.
The standard string format of a UUID is 32 hexadecimal digits, broken into five hyphen-
separated groups of 8, 4, 4, 4, and 12 digits. For example:

7cbf3e1a-d521-40ac-87f1-e28b17530f60

Both lowercase and uppercase hex digits are allowed. The toString() method converts a
UUID object to a string using this standard format. You can also create a UUID object
by explicitly passing the 128 bits in the form of two long values to the UUID()
constructor, but this option should be used only if you are intimately familiar with the
relevant UUID standards.

The toString() and equals() methods define the most common operations on a UUID. The
UUID class implements the Comparable interface and defines an ordering for UUID objects.
Note, however, that the ordering does not represent any meaningful property, such as
generation order, of the underlying bits.

Various accessor methods provide details about the bits of a UUID, but these details are
rarely useful. getLeastSignificantBits() and getMostSignificantBits() return the bits of a UUID as
two long values. version() and variant() return the version and variant of the UUID, which
specify the type (random, name-based, time-based) and bit layout of the UUID.
timestamp(), clockSequence(), and node() return values only for time-based UUIDs that have a
version() of 1. Note that the UUID class does not provide a factory method for creating a
time-based UUID.

// Public Methods Overriding Throwable
public String getMessage();

}

public class UnknownFormatFlagsException extends IllegalFormatException {
// Public Constructors

public UnknownFormatFlagsException(String f);
// Public Instance Methods

public String getFlags();
// Public Methods Overriding Throwable

public String getMessage();
}

Throwable Exception RuntimeException IllegalArgumentException IllegalFormatException UnknownFormatFlagsException

Serializable

Object UUID

Comparable Serializable

824 | Chapter 16: java.util and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.Vector<E>

Vector<E>
java.util

Java 1.0

cloneable serializable collection

This class implements an ordered collection—essentially an array—of objects that can
grow or shrink as necessary. In Java 1.2, Vector has been modified to implement the List
interface. Unless the synchronized methods of the Vector class are actually needed, ArrayList is
preferred in Java 1.2 and later. In Java 5.0 this class has been made generic. The type
variable E represents the type of the elements of the vector.

Vector is useful when you need to keep track of a number of objects, but do not know in
advance how many there will be. Use setElementAt() to set the object at a given index of a
Vector. Use elementAt() to retrieve the object stored at a specified index. Call add() to
append an object to the end of the Vector or to insert an object at any specified posi-
tion. Use removeElementAt() to delete the element at a specified index or removeElement() to
remove a specified object from the vector. size() returns the number of objects currently
in the Vector. elements() returns an Enumeration that allows you to iterate through those
objects. capacity() is not the same as size(); it returns the maximum number of objects a
Vector can hold before its internal storage must be resized. Vector automatically resizes its
internal storage for you, but if you know in advance how many objects a Vector will
contain, you can increase its efficiency by pre-allocating this many elements with
ensureCapacity().

public final class UUID implements Serializable, Comparable<UUID> {
// Public Constructors

public UUID(long mostSigBits, long leastSigBits);
// Public Class Methods

public static UUID fromString(String name);
public static UUID nameUUIDFromBytes(byte[] name);
public static UUID randomUUID();

// Public Instance Methods
public int clockSequence();
public long getLeastSignificantBits();
public long getMostSignificantBits();
public long node();
public long timestamp();
public int variant();
public int version();

// Methods Implementing Comparable
public int compareTo(UUID val);

// Public Methods Overriding Object
public boolean equals(Object obj);
public int hashCode();
public String toString();

}

Object AbstractCollection AbstractList Vector

Collection List Cloneable List RandomAccess Serializable

Iterable Collection Collection

Iterable Iterable

Chapter 16: java.util and Subpackages | 825

java.util.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.Vector<E>

public class Vector<E> extends AbstractList<E> implements List<E>, RandomAccess, Cloneable, Serializable {
// Public Constructors

public Vector();
1.2 public Vector(Collection<? extends E> c);

public Vector(int initialCapacity);
public Vector(int initialCapacity, int capacityIncrement);

// Public Instance Methods
public void addElement(E obj); synchronized
public int capacity(); synchronized
public boolean contains(Object elem); Implements:List
public void copyInto(Object[] anArray); synchronized
public E elementAt(int index); synchronized
public Enumeration<E> elements();
public void ensureCapacity(int minCapacity); synchronized
public E firstElement(); synchronized
public int indexOf(Object elem); Implements:List
public int indexOf(Object elem, int index); synchronized
public void insertElementAt(E obj, int index); synchronized
public boolean isEmpty(); Implements:List synchronized default:true
public E lastElement(); synchronized
public int lastIndexOf(Object elem); Implements:List synchronized
public int lastIndexOf(Object elem, int index); synchronized
public void removeAllElements(); synchronized
public boolean removeElement(Object obj); synchronized
public void removeElementAt(int index); synchronized
public void setElementAt(E obj, int index); synchronized
public void setSize(int newSize); synchronized
public int size(); Implements:List synchronized
public void trimToSize(); synchronized

// Methods Implementing List
1.2 public boolean add(E o); synchronized
1.2 public void add(int index, E element);
1.2 public boolean addAll(Collection<? extends E> c); synchronized
1.2 public boolean addAll(int index, Collection<? extends E> c); synchronized
1.2 public void clear();

public boolean contains(Object elem);
1.2 public boolean containsAll(Collection<?> c); synchronized
1.2 public boolean equals(Object o); synchronized
1.2 public E get(int index); synchronized
1.2 public int hashCode(); synchronized

public int indexOf(Object elem);
public boolean isEmpty(); synchronized default:true
public int lastIndexOf(Object elem); synchronized

1.2 public boolean remove(Object o);
1.2 public E remove(int index); synchronized
1.2 public boolean removeAll(Collection<?> c); synchronized
1.2 public boolean retainAll(Collection<?> c); synchronized
1.2 public E set(int index, E element); synchronized

public int size(); synchronized
1.2 public List<E> subList(int fromIndex, int toIndex); synchronized
1.2 public Object[] toArray(); synchronized
1.2 public <T> T[] toArray(T[] a); synchronized

826 | Chapter 16: java.util and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.WeakHashMap<K,V>

Subclasses Stack

WeakHashMap<K,V>
java.util

Java 1.2

collection

This class implements Map using an internal hashtable. It is similar in features and
performance to HashMap, except that it uses the capabilities of the java.lang.ref package, so
that the key-to-value mappings it maintains do not prevent the key objects from being
reclaimed by the garbage collector. When there are no more references to a key object
except for the weak reference maintained by the WeakHashMap, the garbage collector
reclaims the object, and the WeakHashMap deletes the mapping between the reclaimed
key and its associated value. If there are no references to the value object except for the
one maintained by the WeakHashMap, the value object also becomes available for garbage
collection. Thus, you can use a WeakHashMap to associate an auxiliary value with an
object without preventing either the object (the key) or the auxiliary value from being
reclaimed. See HashMap for a discussion of the implementation features of this class. See
Map for a description of the methods it defines.

WeakHashMap is primarily useful with objects whose equals() methods use the == operator
for comparison. It is less useful with key objects of type String, for example, because
there can be multiple String objects that are equal to one another and, even if the orig-
inal key value has been reclaimed by the garbage collector, it is always possible to pass
a String with the same value to the get() method.

// Protected Methods Overriding AbstractList
1.2 protected void removeRange(int fromIndex, int toIndex); synchronized
// Public Methods Overriding AbstractCollection

public String toString(); synchronized
// Public Methods Overriding Object

public Object clone(); synchronized
// Protected Instance Fields

protected int capacityIncrement;
protected int elementCount;
protected Object[] elementData;

}

public class WeakHashMap<K,V> extends AbstractMap<K,V> implements Map<K,V> {
// Public Constructors

public WeakHashMap();
public WeakHashMap(int initialCapacity);

1.3 public WeakHashMap(Map<? extends K,? extends V> t);
public WeakHashMap(int initialCapacity, float loadFactor);

// Methods Implementing Map
public void clear();
public boolean containsKey(Object key);

1.4 public boolean containsValue(Object value);
public Set<Map.Entry<K,V>> entrySet();
public V get(Object key);
public boolean isEmpty(); default:true

1.4 public Set<K> keySet();
public V put(K key, V value);

Object AbstractMap WeakHashMap

Map Map

Chapter 16: java.util and Subpackages | 827

java.util.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

.Package java.util.concurrent

Package java.util.concurrent Java 5.0

This package includes a number of powerful utilities for multithreaded programming.
Most of these utilities fall into three main categories:

Collections
This package extends the Java Collections Framework, adding the threadsafe
classes ConcurrentHashMap, CopyOnWriteArrayList, CopyOnWriteArraySet, and ConcurrentLinkedQueue.
These classes achieve threadsafety without relying exclusively on synchronized
methods, greatly increasing the number of threads that can safely use them
concurrently. ConcurrentHashMap implements the ConcurrentMap interface, which adds
important atomic methods to the base java.util.Map interface.

In addition to these Map, List, Set, and Queue implementations, this package also
defines the BlockingQueue interface. Blocking queues are important in many
concurrent algorithms, and this package provides a variety of useful implemen-
tations: ArrayBlockingQueue, DelayQueue, LinkedBlockingQueue, PriorityBlockingQueue, and
SynchronousQueue.

Asynchronous Execution with Thread Pools
java.util.concurrent provides a robust framework for asynchronous execution of tasks
defined by the existing java.lang.Runnable interface or the new Callable interface. The
Executor, ExecutorService, and ScheduledExecutorService interfaces define methods for
executing (or scheduling for future execution) Runnable and Callable tasks. The Future
interface represents the future result of the asynchronous execution of a task.
ThreadPoolExecutor and ScheduledThreadPoolExecutor are executor implementations based
on highly configurable thread pools. The Executors class provides convenient
factory methods for obtaining instances of these thread pool implementations.

Synchronizers
A number of classes in this package are useful for synchronizing two or more
concurrent threads. See CountDownLatch, CyclicBarrier, Exchanger, and Semaphore.

Interfaces
public interface BlockingQueue<E> extends java.util.Queue<E>;
public interface Callable<V>;
public interface CompletionService<V>;
public interface ConcurrentMap<K, V> extends java.util.Map<K, V>;
public interface Delayed extends Comparable<Delayed>;
public interface Executor;
public interface ExecutorService extends Executor;
public interface Future<V>;
public interface RejectedExecutionHandler;
public interface ScheduledExecutorService extends ExecutorService;
public interface ScheduledFuture<V> extends Delayed, Future<V>;
public interface ThreadFactory;

1.4 public void putAll(Map<? extends K,? extends V> m);
public V remove(Object key);
public int size();

1.4 public Collection<V> values();
}

828 | Chapter 16: java.util and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.concurrent.AbstractExecutorService

Enumerated Types
public enum TimeUnit;

Collections
public class ArrayBlockingQueue<E> extends java.util.AbstractQueue<E> implements BlockingQueue<E>, Serializable;
public class ConcurrentHashMap<K, V> extends java.util.AbstractMap<K, V>
 implements ConcurrentMap<K, V>
 Serializable;
public class ConcurrentLinkedQueue<E> extends java.util.AbstractQueue<E> implements java.util.Queue<E>, Serializable;
public class CopyOnWriteArrayList<E> implements java.util.List<E>, java.util.RandomAccess, Cloneable, Serializable;
public class CopyOnWriteArraySet<E> extends java.util.AbstractSet<E> implements Serializable;
public class DelayQueue<E extends Delayed> extends java.util.AbstractQueue<E> implements BlockingQueue<E>;
public class LinkedBlockingQueue<E> extends java.util.AbstractQueue<E> implements BlockingQueue<E>, Serializable;
public class PriorityBlockingQueue<E> extends java.util.AbstractQueue<E> implements BlockingQueue<E>, Serializable;
public class SynchronousQueue<E> extends java.util.AbstractQueue<E> implements BlockingQueue<E>, Serializable;

Other Classes
public abstract class AbstractExecutorService implements ExecutorService;

public class ThreadPoolExecutor extends AbstractExecutorService;
public class ScheduledThreadPoolExecutor extends ThreadPoolExecutor implements ScheduledExecutorService;

public class CountDownLatch;
public class CyclicBarrier;
public class Exchanger<V>;
public class ExecutorCompletionService<V> implements CompletionService<V>;
public class Executors;
public class FutureTask<V> implements Future<V>, Runnable;
public class Semaphore implements Serializable;
public static class ThreadPoolExecutor.AbortPolicy implements RejectedExecutionHandler;
public static class ThreadPoolExecutor.CallerRunsPolicy implements RejectedExecutionHandler;
public static class ThreadPoolExecutor.DiscardOldestPolicy implements RejectedExecutionHandler;
public static class ThreadPoolExecutor.DiscardPolicy implements RejectedExecutionHandler;

Exceptions
public class BrokenBarrierException extends Exception;
public class CancellationException extends IllegalStateException;
public class ExecutionException extends Exception;
public class RejectedExecutionException extends RuntimeException;
public class TimeoutException extends Exception;

AbstractExecutorService
java.util.concurrent

Java 5.0

This abstract class implements the submit(), invokeAll(), and invokeAny() methods of the
ExecutorService interface. It does not implement the ExecutorService shutdown methods or the
crucial execute() method for asynchronous execution of Runnable tasks.

The methods implemented by AbstractExecutorService wrap the submitted Callable or Runnable
task in a FutureTask object. FutureTask implements Runnable and Future, which are first passed to
the abstract execute() method to be run asynchronously and then returned to the caller.

See ThreadPoolExecutor for a concrete implementation, and see Executors for convenient
ExecutorService factory methods.

Chapter 16: java.util and Subpackages | 829

java.util.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.concurrent.ArrayBlockingQueue<E>

Subclasses ThreadPoolExecutor

ArrayBlockingQueue<E>
java.util.concurrent

Java 5.0

serializable collection

This BlockingQueue implementation uses an array to store queue elements. The internal
array has a fixed size that is specified when the queue is created, which means that
this is a bounded queue and the put() method blocks when the queue has no more
room. ArrayBlockingQueue orders its elements on a first-in, first-out (FIFO) basis. As with
all BlockingQueue implementations, null elements are prohibited.

If you pass true as the second argument to the ArrayBlockingQueue constructor, the queue
enforces a fairness policy for blocked threads: threads blocked in put() or take() are
themselves queued in FIFO order, and the thread that has been waiting the longest is
served first. This prevents thread starvation but may decrease overall throughput for
the ArrayBlockingQueue.

public abstract class AbstractExecutorService implements ExecutorService {
// Public Constructors

public AbstractExecutorService();
// Methods Implementing ExecutorService

public <T> java.util.List<Future<T>> invokeAll(java.util.Collection<Callable<T>> tasks)
throws InterruptedException;

public <T> java.util.List<Future<T>> invokeAll(java.util.Collection<Callable<T>> tasks, long timeout, TimeUnit unit)
throws InterruptedException;

public <T> T invokeAny(java.util.Collection<Callable<T>> tasks) throws InterruptedException, ExecutionException;
public <T> T invokeAny(java.util.Collection<Callable<T>> tasks, long timeout, TimeUnit unit)

throws InterruptedException, ExecutionException, TimeoutException;
public Future<?> submit(Runnable task);
public <T> Future<T> submit(Callable<T> task);
public <T> Future<T> submit(Runnable task, T result);

}

public class ArrayBlockingQueue<E> extends java.util.AbstractQueue<E> implements BlockingQueue<E>, Serializable {
// Public Constructors

public ArrayBlockingQueue(int capacity);
public ArrayBlockingQueue(int capacity, boolean fair);
public ArrayBlockingQueue(int capacity, boolean fair, java.util.Collection<? extends E> c);

// Methods Implementing BlockingQueue
public int drainTo(java.util.Collection<? super E> c);
public int drainTo(java.util.Collection<? super E> c, int maxElements);
public boolean offer(E o);
public boolean offer(E o, long timeout, TimeUnit unit) throws InterruptedException;

Object AbstractExecutorService

Executor ExecutorService

Object AbstractCollection AbstractQueue ArrayBlockingQueue

Collection Queue BlockingQueue Serializable

Iterable Collection Queue

Iterable Collection

Iterable

830 | Chapter 16: java.util and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.concurrent.BlockingQueue<E>

BlockingQueue<E>
java.util.concurrent

Java 5.0

collection

This interface extends the java.util.Queue interface of the Java Collections Framework and
adds blocking put() and take() methods. Blocking queues are useful in many concurrent
algorithms in which a producer thread puts objects onto a queue and a consumer
thread removes them for some kind of processing. The producer thread must block if a
bounded queue fills up, and the consumer thread must block if no objects are avail-
able on the queue.

In addition to put() and take() methods that block indefinitely, BlockingQueue also defines
timed versions of the Queue methods offer() and poll() that wait up to the specified time.
The timeout is specified as both a long and a TimeUnit constant.

drainTo() removes all available elements from a BlockingQueue, adds them to the specified
collection, and returns the number of elements removed from the queue. drainTo() does
not block. A variant on this method puts an upper bound on the number of elements
removed from the queue.

remainingCapacity() returns the number of elements that can be added to the queue before it
becomes full or returns Integer.MAX_VALUE if the BlockingQueue is not a bounded queue. For
bounded queues, this method provides a hint as to whether a call to put() will block.

BlockingQueue implementations are not allowed to accept null elements. The BlockingQueue
interface refines the Collection.add() and Queue.offer() contracts to indicate that these
methods throw NullPointerException if passed a null value.

public E poll(long timeout, TimeUnit unit) throws InterruptedException;
public void put(E o) throws InterruptedException;
public int remainingCapacity();
public E take() throws InterruptedException;

// Methods Implementing Collection
public void clear();
public boolean contains(Object o);
public java.util.Iterator<E> iterator();
public boolean remove(Object o);
public int size();
public Object[] toArray();
public <T> T[] toArray(T[] a);

// Methods Implementing Queue
public E peek();
public E poll();

// Public Methods Overriding AbstractCollection
public String toString();

}

public interface BlockingQueue<E> extends java.util.Queue<E> {
// Public Instance Methods

boolean add(E o);
int drainTo(java.util.Collection<? super E> c);
int drainTo(java.util.Collection<? super E> c, int maxElements);
boolean offer(E o);
boolean offer(E o, long timeout, TimeUnit unit) throws InterruptedException;
E poll(long timeout, TimeUnit unit) throws InterruptedException;

Iterable Collection Queue BlockingQueue

Chapter 16: java.util and Subpackages | 831

java.util.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.concurrent.Callable<V>

Implementations ArrayBlockingQueue, DelayQueue, LinkedBlockingQueue, PriorityBlockingQueue,
SynchronousQueue

Passed To ExecutorCompletionService.ExecutorCompletionService(), ThreadPoolExecutor.ThreadPoolExecutor()

Returned By ScheduledThreadPoolExecutor.getQueue(), ThreadPoolExecutor.getQueue()

BrokenBarrierException
java.util.concurrent

Java 5.0

serializable checked

An exception of this type is thrown when a thread calls CyclicBarrier.await() on a broken
barrier, or when the barrier is broken while a thread is waiting. A CyclicBarrier enters a
broken state when one of the waiting threads is interrupted or times out.

Thrown By CyclicBarrier.await()

Callable<V>
java.util.concurrent

Java 5.0

This interface is a generalized form of the java.lang.Runnable interface. Unlike the run()
method of Runnable, the call() method of Callable can return a value and throw an Exception.
Callable is a generic type, and the type variable V represents the return type of the call()
method.

An ExecutorService accepts Callable objects for asynchronous execution and returns a Future
object representing the future result of the call() method.

Passed To AbstractExecutorService.submit(), CompletionService.submit(), ExecutorCompletionService.submit(),
Executors.{privilegedCallable(), privilegedCallableUsingCurrentClassLoader()}, ExecutorService.submit(),
FutureTask.FutureTask(), ScheduledExecutorService.schedule(), ScheduledThreadPoolExecutor.{schedule(),
submit()}

Returned By Executors.{callable(), privilegedCallable(), privilegedCallableUsingCurrentClassLoader()}

void put(E o) throws InterruptedException;
int remainingCapacity();
E take() throws InterruptedException;

}

public class BrokenBarrierException extends Exception {
// Public Constructors

public BrokenBarrierException();
public BrokenBarrierException(String message);

}

public interface Callable<V> {
// Public Instance Methods

V call() throws Exception;
}

Object Throwable Exception BrokenBarrierException

Serializable

832 | Chapter 16: java.util and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.concurrent.CancellationException

CancellationException
java.util.concurrent

Java 5.0

serializable unchecked

An exception of this type is thrown to indicate that the result of a computation cannot
be retrieved because the computation was canceled. The get() method of the Future inter-
face may throw a CancellationException, for example.

CompletionService<V>
java.util.concurrent

Java 5.0

This interface combines the features of an ExecutorService with the features of a Blocking-
Queue. A producer thread may submit Callable or Runnable tasks for asynchronous
execution. As each submitted task completes, its result, in the form of a Future object,
becomes available to be removed from the queue by a consumer thread that calls poll()
or take().

This generic type declares a type variable V, which represents the result type of all tasks
on the queue.

Implementations ExecutorCompletionService

ConcurrentHashMap<K,V>
java.util.concurrent

Java 5.0

serializable collection

This class is a threadsafe implementation of the java.util.Map interface, and of the atomic
operations added by the ConcurrentMap interface. This class is intended as a drop-in
replacement for java.util.Hashtable. It is more efficient than that class, however, because it
provides threadsafety without using synchronized methods that lock the entire data struc-
ture. ConcurrentHashMap allows any number of concurrent read operations without
locking. Locking is required for updates to a ConcurrentHashMap, but the internal data
structure is segmented so that only the segment being updated is locked, and reads
and writes can proceed concurrently in other segments. You can specify the number of
internal segments with the concurrencyLevel argument to the constructor. The default is 16.
Set this to the approximate number of updater threads you expect to access the data
structure. Like Hashtable, ConcurrentHashMap does not allow null keys or values. (Note that
this differs from the behavior of java.util.HashMap.)

public class CancellationException extends IllegalStateException {
// Public Constructors

public CancellationException();
public CancellationException(String message);

}

public interface CompletionService<V> {
// Public Instance Methods

Future<V> poll();
Future<V> poll(long timeout, TimeUnit unit) throws InterruptedException;
Future<V> submit(Callable<V> task);
Future<V> submit(Runnable task, V result);
Future<V> take() throws InterruptedException;

}

Object Throwable Exception RuntimeException IllegalStateException CancellationException

Serializable

Chapter 16: java.util and Subpackages | 833

java.util.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.concurrent.ConcurrentLinkedQueue<E>

ConcurrentLinkedQueue<E>
java.util.concurrent

Java 5.0

serializable collection

This class is a threadsafe implementation of the java.util.Queue interface (but not of the
BlockingQueue interface). It provides threadsafety without using synchronized methods that
would lock the entire data structure. ConcurrentLinkedQueue is unbounded and orders its
elements on a first-in, first-out (FIFO) basis. null elements are not allowed. This imple-
mentation uses a linked-list data structure internally. Note that the size() method must
traverse the internal data structure and is therefore a relatively expensive operation for
this class.

public class ConcurrentHashMap<K,V> extends java.util.AbstractMap<K,V>
 implements ConcurrentMap<K,V>, Serializable {

// Public Constructors
public ConcurrentHashMap();
public ConcurrentHashMap(java.util.Map<? extends K,? extends V> t);
public ConcurrentHashMap(int initialCapacity);
public ConcurrentHashMap(int initialCapacity, float loadFactor, int concurrencyLevel);

// Public Instance Methods
public boolean contains(Object value);
public java.util.Enumeration<V> elements();
public java.util.Enumeration<K> keys();

// Methods Implementing ConcurrentMap
public V putIfAbsent(K key, V value);
public boolean remove(Object key, Object value);
public V replace(K key, V value);
public boolean replace(K key, V oldValue, V newValue);

// Methods Implementing Map
public void clear();
public boolean containsKey(Object key);
public boolean containsValue(Object value);
public java.util.Set<java.util.Map.Entry<K,V>> entrySet();
public V get(Object key);
public boolean isEmpty(); default:true
public java.util.Set<K> keySet();
public V put(K key, V value);
public void putAll(java.util.Map<? extends K,? extends V> t);
public V remove(Object key);
public int size();
public java.util.Collection<V> values();

}

Object AbstractMap ConcurrentHashMap

Map Map ConcurrentMap Serializable

Object AbstractCollection AbstractQueue ConcurrentLinkedQueue

Collection Queue Queue Serializable

Iterable Collection Collection

Iterable Iterable

834 | Chapter 16: java.util and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.concurrent.ConcurrentMap<K,V>

ConcurrentMap<K,V>
java.util.concurrent

Java 5.0

collection

This interface extends the java.util.Map interface to add four important atomic methods.
As with the Map interface, the type variables K and V represent the types of the mapped
keys and values.

putIfAbsent() atomically tests whether a key is already defined in the map, and if not,
maps it to the specified value. remove() atomically removes the specified key from the
map, but only if it is mapped to the specified value. It returns true if it modified the
map. There are two versions of the atomic replace() method. The first checks whether
the specified value is already mapped to a value. If so, it replaces the existing mapping
with the specified value and returns true. Otherwise, it returns false. The three-argu-
ment version of replace() maps the specified key to the specified new value, but only if
the key is currently mapped to the specified old value. It returns true if the replacement
was made and false otherwise.

Implementations ConcurrentHashMap

CopyOnWriteArrayList<E>
java.util.concurrent

Java 5.0

cloneable serializable collection

This class is a threadsafe java.util.List implementation based on an array. Any number of
read operations may proceed concurrently. All update methods are synchronized and
make a completely new copy of the internal array, so this class is best suited to appli-

public class ConcurrentLinkedQueue<E> extends java.util.AbstractQueue<E>
 implements java.util.Queue<E>, Serializable {

// Public Constructors
public ConcurrentLinkedQueue();
public ConcurrentLinkedQueue(java.util.Collection<? extends E> c);

// Methods Implementing Collection
public boolean add(E o);
public boolean contains(Object o);
public boolean isEmpty(); default:true
public java.util.Iterator<E> iterator();
public boolean remove(Object o);
public int size();
public Object[] toArray();
public <T> T[] toArray(T[] a);

// Methods Implementing Queue
public boolean offer(E o);
public E peek();
public E poll();

}

public interface ConcurrentMap<K,V> extends java.util.Map<K,V> {
// Public Instance Methods

V putIfAbsent(K key, V value);
boolean remove(Object key, Object value);
V replace(K key, V value);
boolean replace(K key, V oldValue, V newValue);

}

Map ConcurrentMap

Chapter 16: java.util and Subpackages | 835

java.util.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.concurrent.CopyOnWriteArrayList<E>

cations in which reads greatly outnumber updates. The Iterator of a CopyOnWriteArrayList
operates on the copy of the array that was current when the iterator() method was
called: it does not see any updates that occur after the call to iterator() and is guaranteed
never to throw ConcurrentModificationException. Update methods of the Iterator and ListIterator
interfaces are not supported and throw UnsupportedOperationException.

CopyOnWriteArrayList defines a few useful methods beyond those specified by the List inter-
face. addIfAbsent() atomically adds an element to the list, but only if the list does not
already contain that element. addAllAbsent() adds all elements of a collection that are not
already in the list. Two new indexOf() and lastIndexOf() methods are defined that specify a
starting index for the search. These provide a convenient alternative to using a subList()
view when searching for repeated matches in a list.

public class CopyOnWriteArrayList<E> implements java.util.List<E>, java.util.RandomAccess, Cloneable, Serializable {
// Public Constructors

public CopyOnWriteArrayList();
public CopyOnWriteArrayList(java.util.Collection<? extends E> c);
public CopyOnWriteArrayList(E[] toCopyIn);

// Public Instance Methods
public int addAllAbsent(java.util.Collection<? extends E> c); synchronized
public boolean addIfAbsent(E element); synchronized
public int indexOf(E elem, int index);
public int lastIndexOf(E elem, int index);

// Methods Implementing List
public boolean add(E element); synchronized
public void add(int index, E element); synchronized
public boolean addAll(java.util.Collection<? extends E> c); synchronized
public boolean addAll(int index, java.util.Collection<? extends E> c); synchronized
public void clear(); synchronized
public boolean contains(Object elem);
public boolean containsAll(java.util.Collection<?> c);
public boolean equals(Object o);
public E get(int index);
public int hashCode();
public int indexOf(Object elem);
public boolean isEmpty(); default:true
public java.util.Iterator<E> iterator();
public int lastIndexOf(Object elem);
public java.util.ListIterator<E> listIterator();
public java.util.ListIterator<E> listIterator(int index);
public boolean remove(Object o); synchronized
public E remove(int index); synchronized
public boolean removeAll(java.util.Collection<?> c); synchronized
public boolean retainAll(java.util.Collection<?> c); synchronized
public E set(int index, E element); synchronized
public int size();
public java.util.List<E> subList(int fromIndex, int toIndex); synchronized
public Object[] toArray();
public <T> T[] toArray(T[] a);

Object CopyOnWriteArrayList

Cloneable Iterable Collection List RandomAccess Serializable

836 | Chapter 16: java.util and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.concurrent.CopyOnWriteArraySet<E>

CopyOnWriteArraySet<E>
java.util.concurrent

Java 5.0

serializable collection

This class is a threadsafe java.util.Set implementation based on the CopyOnWriteArrayList class.
Because the data structure is array-based, the contains() method is O(n); this means that
this class is suitable only for relatively small sets. Because the data structure uses copy-
on-write, the class is best suited to cases where read operations and traversals greatly
outnumber update operations. Iteration over the members of the set is efficient, and
the Iterator returned by iterator() never throws ConcurrentModificationException. The remove()
method of the iterator throws UnsupportedOperationException. See also CopyOnWriteArrayList.

CountDownLatch
java.util.concurrent

Java 5.0

This class synchronizes threads. All threads that call await() block until the countDown()
method is invoked a specified number of times. The required number of calls is speci-
fied when the CountDownLatch is created. Once countDown() has been called the required
number of times, all threads blocked in await() are allowed to resume, and any subse-
quent calls to await() do not block. getCount() returns the number of calls to countDown()
that must still be made before the threads blocked in await() can resume. Note that
there is no way to reset the count. Once a CountDownLatch has “latched,” it remains in
that state forever. Create a new CountDownLatch if you need to synchronize another group
of threads. Contrast this class with CyclicBarrier.

// Public Methods Overriding Object
public Object clone();
public String toString();

}

public class CopyOnWriteArraySet<E> extends java.util.AbstractSet<E> implements Serializable {
// Public Constructors

public CopyOnWriteArraySet();
public CopyOnWriteArraySet(java.util.Collection<? extends E> c);

// Methods Implementing Set
public boolean add(E o);
public boolean addAll(java.util.Collection<? extends E> c);
public void clear();
public boolean contains(Object o);
public boolean containsAll(java.util.Collection<?> c);
public boolean isEmpty(); default:true
public java.util.Iterator<E> iterator();
public boolean remove(Object o);
public boolean retainAll(java.util.Collection<?> c);
public int size();
public Object[] toArray();
public <T> T[] toArray(T[] a);

// Public Methods Overriding AbstractSet
public boolean removeAll(java.util.Collection<?> c);

}

Object AbstractCollection AbstractSet CopyOnWriteArraySet

Iterable Collection Iterable Collection Set Serializable

Chapter 16: java.util and Subpackages | 837

java.util.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.concurrent.CyclicBarrier

CyclicBarrier
java.util.concurrent

Java 5.0

This class synchronizes a group of n threads, where n is specified to the CyclicBarrier()
constructor. Threads call the await() method, which blocks until n threads are waiting.
In the simple case, all n threads are then allowed to proceed, and the CyclicBarrier resets
itself until it has another n threads blocked in await().

More complex behavior is possible if you pass a Runnable object to the CyclicBarrier
constructor. This Runnable is a “barrier action” and when the last of the n threads
invokes await(), that method uses the thread to invoke the run() method of the Runnable.
This Runnable is typically used to perform some sort of coordinating action on the
blocked threads. When the run() method returns, the CyclicBarrier allows all blocked
threads to resume.

When threads resume from await(), the return value of await() is an integer that repre-
sents the order in which they called await(). This is useful if you want to be able to
distinguish between otherwise identical worker threads. For example, you might
have the thread that arrived first perform some special action while the remaining
threads resume.

If any thread times out or is interrupted while blocked in await(), the CyclicBarrier is said to
be “broken,” and all waiting threads (and any threads that subsequently call await())
wake up with a BrokenBarrierException. Waiting threads also receive a BrokenBarrierException if
the CyclicBarrier is reset(). The reset() method is the only way to restore a broken barrier to
its initial state. This is difficult to coordinate properly, however, unless one controller
thread is coded differently from the other threads at the barrier.

public class CountDownLatch {
// Public Constructors

public CountDownLatch(int count);
// Public Instance Methods

public void await() throws InterruptedException;
public boolean await(long timeout, TimeUnit unit) throws InterruptedException;
public void countDown();
public long getCount();

// Public Methods Overriding Object
public String toString();

}

public class CyclicBarrier {
// Public Constructors

public CyclicBarrier(int parties);
public CyclicBarrier(int parties, Runnable barrierAction);

// Public Instance Methods
public int await() throws InterruptedException, BrokenBarrierException;
public int await(long timeout, TimeUnit unit) throws InterruptedException, BrokenBarrierException, TimeoutException;
public int getNumberWaiting();
public int getParties();
public boolean isBroken();
public void reset();

}

838 | Chapter 16: java.util and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.concurrent.Delayed

Delayed
java.util.concurrent

Java 5.0

comparable

An object that implements this interface has an associated delay. Typically, it is some
kind of task, such as a Callable, that has been scheduled to execute at some future time.
getDelay() returns the remaining time, measured in the specified TimeUnit. If no time
remains, getDelay() should return zero or a negative value. See ScheduledFuture and
DelayQueue.

Implementations ScheduledFuture

Passed To DelayQueue.{add(), offer(), put()}

Returned By DelayQueue.{peek(), poll(), take()}

DelayQueue<E extends Delayed>
java.util.concurrent

Java 5.0

collection

This BlockingQueue implementation restricts its elements to instances of some class E that
implements the Delay interface. null elements are not allowed. Elements on the queue are
ordered by the amount of delay remaining. The element whose getDelay() method
returns the smallest value is the first to be removed from the queue. No element may
be removed, however, until its getDelay() method returns zero or a negative number.

public interface Delayed extends Comparable<Delayed> {
// Public Instance Methods

long getDelay(TimeUnit unit);
}

public class DelayQueue<E extends Delayed> extends java.util.AbstractQueue<E> implements BlockingQueue<E> {
// Public Constructors

public DelayQueue();
public DelayQueue(java.util.Collection<? extends E> c);

// Public Instance Methods
public E peek();
public E poll();

// Methods Implementing BlockingQueue
public boolean add(E o);
public int drainTo(java.util.Collection<? super E> c);
public int drainTo(java.util.Collection<? super E> c, int maxElements);
public boolean offer(E o);
public boolean offer(E o, long timeout, TimeUnit unit);
public E poll(long timeout, TimeUnit unit) throws InterruptedException;
public void put(E o);
public int remainingCapacity();
public E take() throws InterruptedException;

Comparable Delayed

Object AbstractCollection AbstractQueue DelayQueue

Collection Queue BlockingQueue

Iterable Collection Queue

Iterable Collection

Iterable

Chapter 16: java.util and Subpackages | 839

java.util.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.concurrent.ExecutionException

Exchanger<V>
java.util.concurrent

Java 5.0

This class allows two threads to rendezvous and exchange data. This is a generic type,
and the type variable V represents the type of data to be exchanged. Each thread
should call exchange() and pass the value of type V that it wants to exchange. The first
thread to call exchange() blocks until the second thread calls it. At that point, both
threads resume. Both threads receive as their return value the object of type V passed
by the other thread. Note that this class also defines a timed version of exchange() that
throws a TimeoutException if no exchange occurs within the specified timeout interval.
Unlike a CountDownLatch, which is a one-shot latch, and CyclicBarrier which can be “broken,”
an Exchanger may be reused for any number of exchanges.

ExecutionException
java.util.concurrent

Java 5.0

serializable checked

An exception of this type is like a checked wrapper around an arbitrary exception
thrown while executing a task. The get() method of a Future object, for example, throws
an ExecutionException if the call() method of a Callable throws an exception. ExecutionException
may also be thrown by ExecutorService.invokeAny(). Use the Throwable.getCause() method to
obtain the exception object that the ExecutionException wraps.

Thrown By AbstractExecutorService.invokeAny(), ExecutorService.invokeAny(), Future.get(), FutureTask.get()

// Methods Implementing Collection
public void clear();
public java.util.Iterator<E> iterator();
public boolean remove(Object o);
public int size();
public Object[] toArray();
public <T> T[] toArray(T[] array);

}

public class Exchanger<V> {
// Public Constructors

public Exchanger();
// Public Instance Methods

public V exchange(V x) throws InterruptedException;
public V exchange(V x, long timeout, TimeUnit unit) throws InterruptedException, TimeoutException;

}

public class ExecutionException extends Exception {
// Public Constructors

public ExecutionException(Throwable cause);
public ExecutionException(String message, Throwable cause);

// Protected Constructors
protected ExecutionException();
protected ExecutionException(String message);

}

Object Throwable Exception ExecutionException

Serializable

840 | Chapter 16: java.util and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.concurrent.Executor

Executor
java.util.concurrent

Java 5.0

This interface defines a mechanism for executing Runnable tasks. A variety of implemen-
tations are possible for the execute() method. An implementation might simply
synchronously invoke the run() method of the specified Runnable. Another implementa-
tion might create and start a new thread for each Runnable object it is passed. Another
might select an existing thread from a thread pool to run the Runnable or queue the
Runnable for future execution when a thread becomes available.

ExecutorService extends this interface with methods to execute Callable tasks and methods
for canceling tasks. ThreadPoolExecutor is an ExecutorService implementation that creates a
configurable thread pool. Finally, the Executors class defines a number of factory
methods for easily obtaining ExecutorService instances.

Implementations ExecutorService

Passed To ExecutorCompletionService.ExecutorCompletionService()

ExecutorCompletionService<V>
java.util.concurrent

Java 5.0

This class implements the CompletionService interface, which uses an Executor object passed
to its constructor for executing the tasks passed to its submit() method. As these tasks
complete, their result (or exception) is placed, in the form of a Future object, on an
internal queue and becomes available for removal with the blocking take() method or
the nonblocking or timed poll() methods.

This class is useful when you want to execute a number of tasks concurrently and
want to process their results in whatever order they complete. See Executors for a source
of Executor objects to use with this class.

Executors
java.util.concurrent

Java 5.0

This utility class defines static factory methods for creating ExecutorService and Scheduled-
ExecutorService objects. Each of the factory methods has a variant that allows you to
explicitly specify a ThreadFactory. newSingleThreadExecutor() returns an ExecutorService that uses a
single thread and an unbounded queue of waiting tasks. newFixedThreadPool() returns an

public interface Executor {
// Public Instance Methods

void execute(Runnable command);
}

public class ExecutorCompletionService<V> implements CompletionService<V> {
// Public Constructors

public ExecutorCompletionService(Executor executor);
public ExecutorCompletionService(Executor executor, BlockingQueue<Future<V>> completionQueue);

// Methods Implementing CompletionService
public Future<V> poll();
public Future<V> poll(long timeout, TimeUnit unit) throws InterruptedException;
public Future<V> submit(Callable<V> task);
public Future<V> submit(Runnable task, V result);
public Future<V> take() throws InterruptedException;

}

Object ExecutorCompletionService CompletionService

Chapter 16: java.util and Subpackages | 841

java.util.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.concurrent.Executors

ExecutorService that uses a thread pool with the specified number of threads and an
unbounded queue. newCachedThreadPool() returns an ExecutorService that does not queue tasks
but instead creates as many threads as are needed. When a task terminates, its thread
is cached for reuse. Cached threads are allowed to terminate if they remain unused for
60 seconds.

newSingleThreadScheduledExecutor() returns a ScheduledExecutorService that uses a single thread for
running tasks. newScheduledThreadPool() returns a ScheduledExecutorService that uses a thread
pool of the specified size.

The factory methods of this class typically return instances of ThreadPoolExecutor and Sched-
uledThreadPoolExecutor. If the returned objects are cast to these implementing types, they can
be configured (to change the thread pool size, for example). If you want to prevent this
from happening, use the unconfigurableExecutorService() and unconfigurableScheduledExecutorService()
methods to obtain wrapper objects that implement only the ExecutorService and ScheduledExec-
utorService methods and do not permit configuration.

Other methods of this class include callable(), which returns a Callable object wrapped
around a Runnable and an optional result, and defaultThreadFactory(), which returns a basic
ThreadFactory object. Executors also define methods related to access control and the
Java security system. A variant of the callable() method wraps a Callable around a
java.security.PrivilegedAction. privilegedCallable() is intended to be invoked from within a
PrivilegedAction being run with AccessController.doPrivileged(). When passed a Callable in this
way, it returns a new Callable that can be used later to invoke the original callable in a
privileged access control context, granting it permissions that it would not other-
wise have.

public class Executors {
// No Constructor
// Public Class Methods

public static Callable<Object> callable(java.security.PrivilegedAction action);
public static Callable<Object> callable(Runnable task);
public static Callable<Object> callable(java.security.PrivilegedExceptionAction action);
public static <T> Callable<T> callable(Runnable task, T result);
public static ThreadFactory defaultThreadFactory();
public static ExecutorService newCachedThreadPool();
public static ExecutorService newCachedThreadPool(ThreadFactory threadFactory);
public static ExecutorService newFixedThreadPool(int nThreads);
public static ExecutorService newFixedThreadPool(int nThreads, ThreadFactory threadFactory);
public static ScheduledExecutorService newScheduledThreadPool(int corePoolSize);
public static ScheduledExecutorService newScheduledThreadPool(int corePoolSize, ThreadFactory threadFactory);
public static ExecutorService newSingleThreadExecutor();
public static ExecutorService newSingleThreadExecutor(ThreadFactory threadFactory);
public static ScheduledExecutorService newSingleThreadScheduledExecutor();
public static ScheduledExecutorService newSingleThreadScheduledExecutor(ThreadFactory threadFactory);
public static <T> Callable<T> privilegedCallable(Callable<T> callable);
public static <T> Callable<T> privilegedCallableUsingCurrentClassLoader(Callable<T> callable);
public static ThreadFactory privilegedThreadFactory();
public static ExecutorService unconfigurableExecutorService(ExecutorService executor);
public static ScheduledExecutorService unconfigurableScheduledExecutorService(ScheduledExecutorService executor);

}

842 | Chapter 16: java.util and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.concurrent.ExecutorService

ExecutorService
java.util.concurrent

Java 5.0

This interface extends Executor to add methods to obtain a Future result of the asynchro-
nous execution of a Callable task. It also adds methods for graceful termination or
shutdown of an ExecutorService. ThreadPoolExecutor is a useful and highly configurable imple-
mentation of this interface. An easy way to obtain instances of this class is through the
factory methods of the Executors utility class. Note that ExecutorService is not a generic type; it
does not declare any type variables. It does have a number of generic methods, however,
that use the type variable T to represent the result type of Callable and Future objects.

The submit() method allows you to submit a Callable<T> object to an ExecutorService for
execution. Typical ExecutorService implementations invoke the call() method of the Callable
on another thread, and the return value (of type T) of the method is therefore not avail-
able when the call to submit() returns. submit() therefore returns a Future<T> object: the
promise of a return value of type T at some point in the future. See the Future interface
for further details.

Two variants on the submit() method accept a java.lang.Runnable task instead of a Callable
task. The run() method of a Runnable has no return value, so the two-argument version of
submit() accepts a dummy return value of type T and returns a Future<T> that makes this
dummy value available when the Runnable has completed running. The other Runnable
variant of the submit() method takes no return value and returns a Future<?> value. The
get() method of this Future object returns null when the Runnable is done.

Other ExecutorService methods execute Callable objects synchronously. invokeAll() is passed a
java.util.Collection of Callable<T> tasks. It executes them and blocks until all have completed,
or until an optionally specified timeout has elapsed. invokeAll() returns the results of the
tasks as a List of Future<T> objects. Note that a Callable<T> task can complete either by
returning a result of type T or by throwing an exception.

invokeAny() is also passed a Collection of Callable<T> objects. It blocks until any one of these
Callable tasks has returned a value of type T and returns that value. Tasks that terminate
by throwing an exception are ignored. If all tasks throw an exception, invokeAny() throws
an ExecutionException. Before invokeAny() returns, it cancels the execution of any still-running
Callable tasks. Like invokeAll(), invokeAny() has a variant with a timeout value.

ExecutorService defines several methods for gracefully shutting down the service. shutdown()
puts the ExecutorService into a special state in which no new tasks may be submitted for
execution, but all currently running tasks continue running. isShutdown() returns true if
the ExecutorService has entered this state. awaitTermination() blocks until all executing tasks in
an ExecutorService that was shut down are completed (or until a specified timeout
elapses). Once this has occurred, the isTerminated() method returns true. The shutdownNow()
method shuts down an ExecutorService more abruptly: it attempts to abort all currently
executing tasks (typically via Thread.interrupt()) and returns a List of the tasks that have not
yet started executing.

public interface ExecutorService extends Executor {
// Public Instance Methods

boolean awaitTermination(long timeout, TimeUnit unit) throws InterruptedException;
<T> java.util.List<Future<T>> invokeAll(java.util.Collection<Callable<T>> tasks) throws InterruptedException;
<T> java.util.List<Future<T>> invokeAll(java.util.Collection<Callable<T>> tasks, long timeout, TimeUnit unit)

throws InterruptedException;
<T> T invokeAny(java.util.Collection<Callable<T>> tasks) throws InterruptedException, ExecutionException;

Executor ExecutorService

Chapter 16: java.util and Subpackages | 843

java.util.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.concurrent.Future<V>

Implementations AbstractExecutorService, ScheduledExecutorService

Passed To Executors.unconfigurableExecutorService()

Returned By Executors.{newCachedThreadPool(), newFixedThreadPool(), newSingleThreadExecutor(),
unconfigurableExecutorService()}

Future<V>
java.util.concurrent

Java 5.0

This interface represents the result of a computation that may not be available until
some time in the future. Future is a generic type, with a type variable V. V represents the
type of the future value to be returned by the get() method. A Future<V> value is typi-
cally obtained by submitting a Callable<V> to an ExecutorService for asynchronous
execution.

The key method of the Future interface is get(). It returns the result (of type V) of the
computation, blocking, if necessary, until that result is ready. get() throws a Cancellation-
Exception if the computation is canceled with the cancel() method before it completes. If
the computation throws an exception of its own (as the Callable.call() method can), get()
throws an ExecutionException wrapped around that exception. Additionally, the timed
version of the get() method throws a TimeoutException if the timeout elapses before the
computation completes.

As noted above, the computation represented by a Future object can be canceled by
calling its cancel() method. This method returns true if the computation was canceled
successfully, and false otherwise. If you pass false to cancel(), any computation that has
started running is allowed to complete. In this case, only computations that have not
yet started can be canceled. If you pass true to the cancel() method, running computa-
tions are interrupted with Thread.interrupt(). Note, however, that interrupting a thread
does not guarantee that it will stop running.

isCancelled() returns true if a Future was canceled before it completed (either by returning a
value or throwing an exception). isDone() returns true if the computation represented by
a Future is finished running. This may be because it returned a value, threw an excep-
tion, or was canceled. If isDone() returns true, the get() method does not block.

<T> T invokeAny(java.util.Collection<Callable<T>> tasks, long timeout, TimeUnit unit)
throws InterruptedException, ExecutionException, TimeoutException;

boolean isShutdown();
boolean isTerminated();
void shutdown();
java.util.List<Runnable> shutdownNow();
<T> Future<T> submit(Callable<T> task);
Future<?> submit(Runnable task);
<T> Future<T> submit(Runnable task, T result);

}

public interface Future<V> {
// Public Instance Methods

boolean cancel(boolean mayInterruptIfRunning);
V get() throws InterruptedException, ExecutionException;
V get(long timeout, TimeUnit unit) throws InterruptedException, ExecutionException, TimeoutException;
boolean isCancelled();
boolean isDone();

}

844 | Chapter 16: java.util and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.concurrent.FutureTask<V>

Implementations FutureTask, ScheduledFuture

Returned By Too many methods to list.

FutureTask<V>
java.util.concurrent

Java 5.0

runnable

This class is a Runnable wrapper around a Callable object (or around another Runnable).
FutureTask is a generic type and the type variable V represents the return type of the
wrapped Callable object. AbstractExecutorService uses FutureTask to convert Callable objects passed
to the submit() method into Runnable objects it can pass to the execute() method.

FutureTask also implements the Future interface, which means that the get() method waits
for the run() method to complete and provides access to the result (or exception) of the
Callable’s execution.

The protected methods set() and setException() are invoked when the Callable returns a
value or throws an exception. done() is invoked when the Callable completes or is
canceled. Subclasses can override any of these methods to insert hooks for notifica-
tion, logging, and so on.

LinkedBlockingQueue<E>
java.util.concurrent

Java 5.0

serializable collection

This threadsafe class implements the BlockingQueue interface based on a linked-list data
structure. It orders elements on a first-in, first-out (FIFO) basis. You may specify a
maximum queue capacity, creating a bounded queue. The default capacity is
Integer.MAX_VALUE, which is effectively unbounded. null elements are not permitted.

public class FutureTask<V> implements Future<V>, Runnable {
// Public Constructors

public FutureTask(Callable<V> callable);
public FutureTask(Runnable runnable, V result);

// Methods Implementing Future
public boolean cancel(boolean mayInterruptIfRunning);
public V get() throws InterruptedException, ExecutionException;
public V get(long timeout, TimeUnit unit) throws InterruptedException, ExecutionException, TimeoutException;
public boolean isCancelled();
public boolean isDone();

// Methods Implementing Runnable
public void run();

// Protected Instance Methods
protected void done(); empty
protected boolean runAndReset();
protected void set(V v);
protected void setException(Throwable t);

}

Object FutureTask

Future Runnable

Chapter 16: java.util and Subpackages | 845

java.util.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.concurrent.PriorityBlockingQueue<E>

PriorityBlockingQueue<E>
java.util.concurrent

Java 5.0

serializable collection

This threadsafe class implements the BlockingQueue interface. It is an unbounded queue
that orders its elements according to a Comparator, or, for Comparable elements, according
to their compareTo() method. The head of the queue (the next element to be removed) is
always the smallest element. Note that the Iterator returned by the iterator() method is not
guaranteed to return elements in this order. See also java.util.PriorityQueue.

public class LinkedBlockingQueue<E> extends java.util.AbstractQueue<E>
implements BlockingQueue<E>, Serializable {

// Public Constructors
public LinkedBlockingQueue();
public LinkedBlockingQueue(int capacity);
public LinkedBlockingQueue(java.util.Collection<? extends E> c);

// Methods Implementing BlockingQueue
public int drainTo(java.util.Collection<? super E> c);
public int drainTo(java.util.Collection<? super E> c, int maxElements);
public boolean offer(E o);
public boolean offer(E o, long timeout, TimeUnit unit) throws InterruptedException;
public E poll(long timeout, TimeUnit unit) throws InterruptedException;
public void put(E o) throws InterruptedException;
public int remainingCapacity();
public E take() throws InterruptedException;

// Methods Implementing Collection
public void clear();
public java.util.Iterator<E> iterator();
public boolean remove(Object o);
public int size();
public Object[] toArray();
public <T> T[] toArray(T[] a);

// Methods Implementing Queue
public E peek();
public E poll();

// Public Methods Overriding AbstractCollection
public String toString();

}

Object AbstractCollection AbstractQueue LinkedBlockingQueue

Collection Queue BlockingQueue Serializable

Iterable Collection Queue

Iterable Collection

Iterable

Object AbstractCollection AbstractQueue PriorityBlockingQueue

Collection Queue BlockingQueue Serializable

Iterable Collection Queue

Iterable Collection

Iterable

846 | Chapter 16: java.util and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.concurrent.RejectedExecutionException

RejectedExecutionException
java.util.concurrent

Java 5.0

serializable unchecked

An exception of this type is thrown by an Executor when it cannot accept a task for
execution. When a ThreadPoolExecutor cannot accept a task, it attempts to invoke a Rejected-
ExecutionHandler. ThreadPoolExecutor defines several nested implementations of that handler
interface that can handle the rejected task without throwing an exception of this type.

public class PriorityBlockingQueue<E> extends java.util.AbstractQueue<E>
 implements BlockingQueue<E>, Serializable {

// Public Constructors
public PriorityBlockingQueue();
public PriorityBlockingQueue(int initialCapacity);
public PriorityBlockingQueue(java.util.Collection<? extends E> c);
public PriorityBlockingQueue(int initialCapacity, java.util.Comparator<? super E> comparator);

// Public Instance Methods
public java.util.Comparator<? super E> comparator();

// Methods Implementing BlockingQueue
public boolean add(E o);
public int drainTo(java.util.Collection<? super E> c);
public int drainTo(java.util.Collection<? super E> c, int maxElements);
public boolean offer(E o);
public boolean offer(E o, long timeout, TimeUnit unit);
public E poll(long timeout, TimeUnit unit) throws InterruptedException;
public void put(E o);
public int remainingCapacity();
public E take() throws InterruptedException;

// Methods Implementing Collection
public void clear();
public boolean contains(Object o);
public java.util.Iterator<E> iterator();
public boolean remove(Object o);
public int size();
public Object[] toArray();
public <T> T[] toArray(T[] a);

// Methods Implementing Queue
public E peek();
public E poll();

// Public Methods Overriding AbstractCollection
public String toString();

}

public class RejectedExecutionException extends RuntimeException {
// Public Constructors

public RejectedExecutionException();
public RejectedExecutionException(Throwable cause);
public RejectedExecutionException(String message);
public RejectedExecutionException(String message, Throwable cause);

}

Object Throwable Exception RuntimeException RejectedExecutionException

Serializable

Chapter 16: java.util and Subpackages | 847

java.util.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.concurrent.ScheduledExecutorService

RejectedExecutionHandler
java.util.concurrent

Java 5.0

This interface defines an API for a handler method invoked by a ThreadPoolExecutor when
its execute() method cannot accept any more Runnable objects. This can occur when both
the thread pool and the queue of waiting tasks is full, or when the ThreadPoolExecutor has
been shut down. Register an instance of this class with the setRejectedExecutionHandler()
method of ThreadPoolExecutor. ThreadPoolExecutor includes several predefined implementa-
tions of this interface as static member classes. If the rejectedExecution() method cannot
arrange for the Runnable to be run and does not wish to simply discard that task, it
should throw a RejectedExecutionException which propagates up to the caller that submitted
the task for execution.

Implementations ThreadPoolExecutor.AbortPolicy, ThreadPoolExecutor.CallerRunsPolicy,
ThreadPoolExecutor.DiscardOldestPolicy, ThreadPoolExecutor.DiscardPolicy

Passed To ScheduledThreadPoolExecutor.ScheduledThreadPoolExecutor(),
ThreadPoolExecutor.{setRejectedExecutionHandler(), ThreadPoolExecutor()}

Returned By ThreadPoolExecutor.getRejectedExecutionHandler()

ScheduledExecutorService
java.util.concurrent

Java 5.0

This interface extends Executor and ExecutorService to add methods for scheduling Callable or
Runnable tasks for future execution on a one-time basis or a repeating basis. The schedule()
methods schedule a Callable or a Runnable task for one-time execution after a specified
delay. The delay is specified by a long plus a TimeUnit. When a Callable<V> is scheduled,
the result is a ScheduledFuture<V>. This is like a Future<V> object but also implements the
Delay interface so you can call getDelay() to find out how much time remains before
execution begins. If you schedule() a Runnable object, the result is a ScheduledFuture<?>. Since
a Runnable has no return value, the get() method of this ScheduledFuture returns null, but the
cancel(), getDelay(), and isDone() methods remain useful.

ScheduledExecutorService provides two alternatives for scheduling Runnable tasks for repeated
execution. (See also java.util.Timer, which has similar methods.) scheduleAtFixedRate() begins
the first execution of the Runnable after initialDelay time units, and begins subsequent
executions at multiples of period time units after that. This means that the Runnable runs
at a fixed rate, regardless of how long each execution takes. scheduleWithFixedDelay() also
begins the first execution after initialDelay time units. But it waits for this first execution
(and all subsequent executions) to complete before scheduling the next execution for
delay time units in the future. Both methods return a ScheduledFuture object that you can
use to cancel() the repeated execution of tasks. If the task is not canceled, the Scheduled-
ExecutorService runs it repeatedly until the service is shut down (see ExecutorService) or the
Runnable throws an exception.

public interface RejectedExecutionHandler {
// Public Instance Methods

void rejectedExecution(Runnable r, ThreadPoolExecutor executor);
}

public interface ScheduledExecutorService extends ExecutorService {
// Public Instance Methods

<V> ScheduledFuture<V> schedule(Callable<V> callable, long delay, TimeUnit unit);

Executor ExecutorService ScheduledExecutorService

848 | Chapter 16: java.util and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.concurrent.ScheduledFuture<V>

Implementations ScheduledThreadPoolExecutor

Passed To Executors.unconfigurableScheduledExecutorService()

Returned By Executors.{newScheduledThreadPool(), newSingleThreadScheduledExecutor(),
unconfigurableScheduledExecutorService()}

ScheduledFuture<V>
java.util.concurrent

Java 5.0

comparable

This interface extends Future and Delayed and adds no methods of its own. A Scheduled-
Future represents a computation and the future result of that computation just as Future
does, but it adds a getDelay() method that returns the amount of time until the computa-
tion begins. See ScheduledExecutorService.

Returned By ScheduledExecutorService.{schedule(), scheduleAtFixedRate(), scheduleWithFixedDelay()},
ScheduledThreadPoolExecutor.{schedule(), scheduleAtFixedRate(), scheduleWithFixedDelay()}

ScheduledThreadPoolExecutor
java.util.concurrent

Java 5.0

This class extends ThreadPoolExecutor to implement the methods of the ScheduledExecutor-
Service interface to allow tasks to be submitted for execution once or repeatedly at some
scheduled time in the future. Instances of this class are usually obtained through the
static factory methods of the Executors utility class. You can also explicitly create one
with the ScheduledThreadPoolExecutors() constructor. ScheduledThreadPoolExecutor always creates
its own unbounded work queue, which means that you cannot pass a queue to the
constructor. Also, there is no need to specify a maximumPoolSize since this configuration
parameter is irrelevant with unbounded queues.

Note that tasks submitted to a ScheduledThreadPoolExecutor are not guaranteed to run at the
scheduled time. That is the time at which they first become eligible to run. If all threads
are busy with other tasks, however, eligible tasks may get queued up to run later.

This class provides functionality similar to java.util.Timer but adds multithreaded capa-
bility and the ability to work with Callable and Future objects.

ScheduledFuture<?> schedule(Runnable command, long delay, TimeUnit unit);
ScheduledFuture<?> scheduleAtFixedRate(Runnable command, long initialDelay, long period, TimeUnit unit);
ScheduledFuture<?> scheduleWithFixedDelay(Runnable command, long initialDelay, long delay, TimeUnit unit);

}

public interface ScheduledFuture<V> extends DelayedFuture<V> {
}

public class ScheduledThreadPoolExecutor extends ThreadPoolExecutor implements ScheduledExecutorService {
// Public Constructors

public ScheduledThreadPoolExecutor(int corePoolSize);
public ScheduledThreadPoolExecutor(int corePoolSize, ThreadFactory threadFactory);
public ScheduledThreadPoolExecutor(int corePoolSize, RejectedExecutionHandler handler);

ScheduledFuture

Comparable Delayed Future

Object AbstractExecutorService ThreadPoolExecutor ScheduledThreadPoolExecutor

Executor ExecutorService Executor ExecutorService ScheduledExecutorService

Chapter 16: java.util and Subpackages | 849

java.util.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.concurrent.Semaphore

Semaphore
java.util.concurrent

Java 5.0

serializable

This class implements semaphores, a classic thread synchronization primitive that can be
used to implement mutual exclusion and wait/notify-style thread synchronization. A
Semaphore maintains some fixed number (specified when the Semaphore() constructor is
called) of permits. The acquire() method blocks until a permit is available, then decrements
the number of available permits and returns. The release() method does the reverse: it
increments the number of permits, possibly unblocking a thread waiting in acquire().

If you pass true as the second argument to the Semaphore() constructor, the semaphore
treats waiting threads fairly by placing them on a FIFO queue in the order they called
acquire() and granting permits to the threads in this order. This prevents thread starvation.

public ScheduledThreadPoolExecutor(int corePoolSize, ThreadFactory threadFactory,
 RejectedExecutionHandler handler);

// Public Instance Methods
public boolean getContinueExistingPeriodicTasksAfterShutdownPolicy();
public boolean getExecuteExistingDelayedTasksAfterShutdownPolicy();
public void setContinueExistingPeriodicTasksAfterShutdownPolicy(boolean value);
public void setExecuteExistingDelayedTasksAfterShutdownPolicy(boolean value);

// Methods Implementing Executor
public void execute(Runnable command);

// Methods Implementing ExecutorService
public void shutdown();
public java.util.List<Runnable> shutdownNow();
public Future<?> submit(Runnable task);
public <T> Future<T> submit(Callable<T> task);
public <T> Future<T> submit(Runnable task, T result);

// Methods Implementing ScheduledExecutorService
public <V> ScheduledFuture<V> schedule(Callable<V> callable, long delay, TimeUnit unit);
public ScheduledFuture<?> schedule(Runnable command, long delay, TimeUnit unit);
public ScheduledFuture<?> scheduleAtFixedRate(Runnable command, long initialDelay, long period, TimeUnit unit);
public ScheduledFuture<?> scheduleWithFixedDelay(Runnable command, long initialDelay, long delay,

TimeUnit unit);
// Public Methods Overriding ThreadPoolExecutor

public BlockingQueue<Runnable> getQueue();
public boolean remove(Runnable task);

}

public class Semaphore implements Serializable {
// Public Constructors

public Semaphore(int permits);
public Semaphore(int permits, boolean fair);

// Public Instance Methods
public void acquire() throws InterruptedException;
public void acquire(int permits) throws InterruptedException;
public void acquireUninterruptibly();
public void acquireUninterruptibly(int permits);
public int availablePermits();
public int drainPermits();
public final int getQueueLength();

Object Semaphore Serializable

850 | Chapter 16: java.util and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.concurrent.SynchronousQueue<E>

SynchronousQueue<E>
java.util.concurrent

Java 5.0

serializable collection

This BlockingQueue implementation is the degenerate case of a bounded queue with a
capacity of zero. Every call to put() blocks until a corresponding call to take(), and vice
versa. You can think of this as an Exchanger that does only a one-way exchange.

The size() and remainingCapacity() methods always return 0. The peek() method always returns
null. The iterator() method returns an Iterator for which the hasNext() method returns false.

public final boolean hasQueuedThreads();
public boolean isFair();
public void release();
public void release(int permits);
public boolean tryAcquire();
public boolean tryAcquire(int permits);
public boolean tryAcquire(long timeout, TimeUnit unit) throws InterruptedException;
public boolean tryAcquire(int permits, long timeout, TimeUnit unit) throws InterruptedException;

// Public Methods Overriding Object
public String toString();

// Protected Instance Methods
protected java.util.Collection<Thread> getQueuedThreads();
protected void reducePermits(int reduction);

}

public class SynchronousQueue<E> extends java.util.AbstractQueue<E> implements BlockingQueue<E>, Serializable {
// Public Constructors

public SynchronousQueue();
public SynchronousQueue(boolean fair);

// Methods Implementing BlockingQueue
public int drainTo(java.util.Collection<? super E> c);
public int drainTo(java.util.Collection<? super E> c, int maxElements);
public boolean offer(E o);
public boolean offer(E o, long timeout, TimeUnit unit) throws InterruptedException;
public E poll(long timeout, TimeUnit unit) throws InterruptedException;
public void put(E o) throws InterruptedException;
public int remainingCapacity(); constant
public E take() throws InterruptedException;

// Methods Implementing Collection
public void clear(); empty
public boolean contains(Object o); constant
public boolean containsAll(java.util.Collection<?> c);
public boolean isEmpty(); constant default:true
public java.util.Iterator<E> iterator();
public boolean remove(Object o); constant
public boolean removeAll(java.util.Collection<?> c); constant
public boolean retainAll(java.util.Collection<?> c); constant

Object AbstractCollection AbstractQueue SynchronousQueue

Collection Queue BlockingQueue Serializable

Iterable Collection Queue

Iterable Collection

Iterable

Chapter 16: java.util and Subpackages | 851

java.util.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.concurrent.ThreadPoolExecutor

ThreadFactory
java.util.concurrent

Java 5.0

An instance of this interface is an object that creates Thread objects to run Runnable objects.
You might define a ThreadFactory if you want to set the priority, name, or ThreadGroup of the
threads used by a ThreadPoolExecutor, for example. A number of the factory methods of the
Executors utility class rely on ThreadPoolExecutor and accept a ThreadFactory argument.

Passed To Executors.{newCachedThreadPool(), newFixedThreadPool(), newScheduledThreadPool(),
newSingleThreadExecutor(), newSingleThreadScheduledExecutor()},
ScheduledThreadPoolExecutor.ScheduledThreadPoolExecutor(), ThreadPoolExecutor.{setThreadFactory(),
ThreadPoolExecutor()}

Returned By Executors.{defaultThreadFactory(), privilegedThreadFactory()},
ThreadPoolExecutor.getThreadFactory()

ThreadPoolExecutor
java.util.concurrent

Java 5.0

This class implements the ExecutorService interface to execute tasks using a highly config-
urable thread pool. The easiest way to instantiate this class is through the static factory
methods of the Executors class. If you want a more highly configured thread pool, you
can instantiate it directly.

Four configuration parameters must be passed to every ThreadPoolExecutor() constructor;
two others are optional. Many of these parameters may also be queried and adjusted
after the executor has been created through various ThreadPoolExecutor accessor methods.
The most important configuration parameters specify the size of the thread pool, and
the queue that the executor uses to hold tasks that it cannot currently run. corePoolSize is
the number of threads that the pool should hold under normal usage. As tasks are
submitted to the ThreadPoolExecutor, a new thread is created for each task until the total
number of threads reaches this size.

If corePoolSize threads have already been created, newly submitted tasks are placed on the
work queue. As these core threads finish the tasks they are executing, they take() a new
task from the work queue. You must specify the workQueue when you call the
ThreadPoolExecutor() constructor. It may be any BlockingQueue object and the behavior of the
thread pool depends strongly on the behavior of the queue you specify. Options
include an unbounded LinkedBlockingQueue, a bounded ArrayBlockingQueue with a capacity of
your choosing, or even a SynchronousQueue which has a capacity of zero and cannot actu-
ally accept a task unless a thread is already waiting to execute it.

If the work queue becomes empty, it is inefficient to leave all the core threads sitting
idly waiting for work. Threads are terminated if they are idle for more than the “keep
alive” time. You specify this time with the keepAliveTime parameter and a TimeUnit constant.

public int size(); constant
public Object[] toArray();
public <T> T[] toArray(T[] a);

// Methods Implementing Queue
public E peek(); constant
public E poll();

}

public interface ThreadFactory {
// Public Instance Methods

Thread newThread(Runnable r);
}

852 | Chapter 16: java.util and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.concurrent.ThreadPoolExecutor

If the work queue fills up, the maximumPoolSize parameter comes into play. ThreadPool-
Executor prefers to maintain corePoolSize threads but allows this number to grow up to
maximumPoolSize. A new thread is created only when the workQueue is full. If you specify an
unbounded work queue, maximumPoolSize is irrelevant because the queue never fills up. If
on the other hand you specify a SynchronousQueue (which is always full), if none of the
existing threads are waiting for a new task, a new thread is always created (up to the
maximumPoolSize limit).

If a ThreadPoolExecutor has already created the maximum number of threads and its work
queue is full, it must reject any newly submitted tasks. The default behavior is to throw a
RejectedExecutionException. You can alter this behavior by specifying a RejectedExecutionHandler
object to the ThreadPoolExecutor() constructor or with the setRejectedExecutionHandler() method.
The four inner classes of this class are implementations of four handlers that address this
case. See their individual entries for details.

The final way that you can customize a ThreadPoolExecutor is to pass ThreadFactory to the
constructor or to the setThreadFactory() method. If you do not specify a factory, the
ThreadPoolExecutor obtains one with Executors.defaultThreadFactory().

public class ThreadPoolExecutor extends AbstractExecutorService {
// Public Constructors

public ThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit,
BlockingQueue<Runnable> workQueue);

public ThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit,
BlockingQueue<Runnable> workQueue, ThreadFactory threadFactory);

public ThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit,
BlockingQueue<Runnable> workQueue, RejectedExecutionHandler handler);

public ThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit,
BlockingQueue<Runnable> workQueue, ThreadFactory threadFactory,
RejectedExecutionHandler handler);

// Nested Types
public static class AbortPolicy implements RejectedExecutionHandler;
public static class CallerRunsPolicy implements RejectedExecutionHandler;
public static class DiscardOldestPolicy implements RejectedExecutionHandler;
public static class DiscardPolicy implements RejectedExecutionHandler;

// Public Instance Methods
public int getActiveCount();
public long getCompletedTaskCount();
public int getCorePoolSize();
public long getKeepAliveTime(TimeUnit unit);
public int getLargestPoolSize();
public int getMaximumPoolSize();
public int getPoolSize();
public BlockingQueue<Runnable> getQueue();
public RejectedExecutionHandler getRejectedExecutionHandler();
public long getTaskCount();
public ThreadFactory getThreadFactory();
public boolean isTerminating();
public int prestartAllCoreThreads();
public boolean prestartCoreThread();

Object AbstractExecutorService ThreadPoolExecutor

Executor ExecutorService

Chapter 16: java.util and Subpackages | 853

java.util.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.concurrent.ThreadPoolExecutor.CallerRunsPolicy

Subclasses ScheduledThreadPoolExecutor

Passed To RejectedExecutionHandler.rejectedExecution(), ThreadPoolExecutor.AbortPolicy.rejectedExecution(),
ThreadPoolExecutor.CallerRunsPolicy.rejectedExecution(),
ThreadPoolExecutor.DiscardOldestPolicy.rejectedExecution(), ThreadPoolExecutor.DiscardPolicy.rejectedExecution()

ThreadPoolExecutor.AbortPolicy
java.util.concurrent

Java 5.0

This RejectedExecutionHandler implementation simply throws a RejectedExecutionException.

ThreadPoolExecutor.CallerRunsPolicy
java.util.concurrent

Java 5.0

This RejectedExecutionHandler implementation runs the rejected Runnable object directly in the
calling thread, causing that thread to block until the Runnable completes. If the ThreadPool-
Executor has been shut down, the Runnable is simply discarded instead of being run.

public void purge();
public boolean remove(Runnable task);
public void setCorePoolSize(int corePoolSize);
public void setKeepAliveTime(long time, TimeUnit unit);
public void setMaximumPoolSize(int maximumPoolSize);
public void setRejectedExecutionHandler(RejectedExecutionHandler handler);
public void setThreadFactory(ThreadFactory threadFactory);

// Methods Implementing Executor
public void execute(Runnable command);

// Methods Implementing ExecutorService
public boolean awaitTermination(long timeout, TimeUnit unit) throws InterruptedException;
public boolean isShutdown();
public boolean isTerminated();
public void shutdown();
public java.util.List<Runnable> shutdownNow();

// Protected Methods Overriding Object
protected void finalize();

// Protected Instance Methods
protected void afterExecute(Runnable r, Throwable t); empty
protected void beforeExecute(Thread t, Runnable r); empty
protected void terminated(); empty

}

public static class ThreadPoolExecutor.AbortPolicy implements RejectedExecutionHandler {
// Public Constructors

public AbortPolicy();
// Methods Implementing RejectedExecutionHandler

public void rejectedExecution(Runnable r, ThreadPoolExecutor e);
}

public static class ThreadPoolExecutor.CallerRunsPolicy implements RejectedExecutionHandler {
// Public Constructors

public CallerRunsPolicy();
// Methods Implementing RejectedExecutionHandler

public void rejectedExecution(Runnable r, ThreadPoolExecutor e);
}

854 | Chapter 16: java.util and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.concurrent.ThreadPoolExecutor.DiscardOldestPolicy

ThreadPoolExecutor.DiscardOldestPolicy
java.util.concurrent

Java 5.0

This RejectedExecutionHandler implementation discards the rejected Runnable if the Thread-
PoolExecutor has been shut down. Otherwise, it discards the oldest pending task that
has not run and tries again to execute() the rejected task.

ThreadPoolExecutor.DiscardPolicy
java.util.concurrent

Java 5.0

This RejectedExecutionHandler implementation silently discards the rejected Runnable.

TimeoutException
java.util.concurrent

Java 5.0

serializable checked

An exception of this type is thrown by timed methods to indicate that the specified
timeout has elapsed. Other timed methods are able to indicate their timeout status in a
boolean or other return value.

Thrown By AbstractExecutorService.invokeAny(), CyclicBarrier.await(), Exchanger.exchange(),
ExecutorService.invokeAny(), Future.get(), FutureTask.get()

TimeUnit
java.util.concurrent

Java 5.0

serializable comparable enum

The constants defined by this enumerated type represent granularities of time.
Timeout and delay specifications throughout the java.util.concurrent package are specified
by a long value and TimeUnit constant that specifies the interpretation of that value.

TimeUnit defines conversion methods that convert values expressed in one unit to values
in another unit. More interestingly, it defines convenient alternatives to Thread.sleep(),
Thread.join(), and Object.wait().

public static class ThreadPoolExecutor.DiscardOldestPolicy implements RejectedExecutionHandler {
// Public Constructors

public DiscardOldestPolicy();
// Methods Implementing RejectedExecutionHandler

public void rejectedExecution(Runnable r, ThreadPoolExecutor e);
}

public static class ThreadPoolExecutor.DiscardPolicy implements RejectedExecutionHandler {
// Public Constructors

public DiscardPolicy();
// Methods Implementing RejectedExecutionHandler

public void rejectedExecution(Runnable r, ThreadPoolExecutor e); empty
}

public class TimeoutException extends Exception {
// Public Constructors

public TimeoutException();
public TimeoutException(String message);

}

Object Throwable Exception TimeoutException

Serializable

Chapter 16: java.util and Subpackages | 855

java.util.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

.Package java.util.concurrent.atomic

Passed To Too many methods to list.

Package java.util.concurrent.atomic Java 5.0

This package includes classes that provide atomic operations on boolean, integer, and
reference values. Instances of the classes defined here have the properties of volatile
fields but also add atomic operations like the canonical compareAndSet(), which verifies
that the field holds an expected value, and, if it does, sets it to a new value. The classes
also define a weakCompareAndSet() method that may be more efficient than compareAndSet()
but may also fail to set the value even when the field holds the expected value.

The “Array” classes provide atomic access to arrays of values and provide volatile access
semantics for array elements, which is not possible with the volatile modifier itself. The
“FieldUpdater” classes use reflection to provide atomic operations on a named volatile
field of an existing class. The AtomicMarkableReference class and AtomicStampedReference class
maintain a reference value and an associated boolean or int value and allow the two
values to be atomically manipulated together. These classes can be useful in concur-
rent algorithms that detect concurrent updates with version numbering, for example.

Most implementations of this package rely on low-level atomic instructions in the
underlying CPU and perform atomic operations without the overhead of locking.

Classes
public class AtomicBoolean implements Serializable;
public class AtomicInteger extends Number implements Serializable;
public class AtomicIntegerArray implements Serializable;
public abstract class AtomicIntegerFieldUpdater<T>;
public class AtomicLong extends Number implements Serializable;
public class AtomicLongArray implements Serializable;
public abstract class AtomicLongFieldUpdater<T>;

public enum TimeUnit {
// Enumerated Constants

NANOSECONDS,
MICROSECONDS,
MILLISECONDS,
SECONDS;

// Public Class Methods
public static TimeUnit valueOf(String name);
public static final TimeUnit[] values();

// Public Instance Methods
public long convert(long duration, TimeUnit unit);
public void sleep(long timeout) throws InterruptedException;
public void timedJoin(Thread thread, long timeout) throws InterruptedException;
public void timedWait(Object obj, long timeout) throws InterruptedException;
public long toMicros(long duration);
public long toMillis(long duration);
public long toNanos(long duration);
public long toSeconds(long duration);

}

Object Enum TimeUnit

Comparable Serializable

856 | Chapter 16: java.util and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.concurrent.atomic.AtomicBoolean

public class AtomicMarkableReference<V>;
public class AtomicReference<V> implements Serializable;
public class AtomicReferenceArray<E> implements Serializable;
public abstract class AtomicReferenceFieldUpdater<T, V>;
public class AtomicStampedReference<V>;

AtomicBoolean
java.util.concurrent.atomic

Java 5.0

serializable

This threadsafe class holds a boolean value. In addition to the get() and set() iterators, it
provides atomic compareAndSet(), weakCompareAndSet(), and getAndSet() operations.

AtomicInteger
java.util.concurrent.atomic

Java 5.0

serializable

This threadsafe class holds an int value. It extends java.lang.Number, but unlike the Integer
class, it is mutable. Access the int value with the get() method and the various methods
inherited from Number. You can set the value with the set() method or through various
atomic methods. In addition to the basic compareAndSet() and weakCompareAndSet() methods,
this class defines methods for atomic pre-increment, post-increment, pre-decrement
and post-decrement operations as well as generalized addAndGet() and getAndAdd()
methods. addAndGet() atomically adds the specified amount to the stored value and
returns the new value. getAndAdd() atomically returns the current value and then adds
the specified amount to it.

public class AtomicBoolean implements Serializable {
// Public Constructors

public AtomicBoolean();
public AtomicBoolean(boolean initialValue);

// Public Instance Methods
public final boolean compareAndSet(boolean expect, boolean update);
public final boolean get();
public final boolean getAndSet(boolean newValue);
public final void set(boolean newValue);
public boolean weakCompareAndSet(boolean expect, boolean update);

// Public Methods Overriding Object
public String toString();

}

public class AtomicInteger extends Number implements Serializable {
// Public Constructors

public AtomicInteger();
public AtomicInteger(int initialValue);

// Public Instance Methods
public final int addAndGet(int delta);
public final boolean compareAndSet(int expect, int update);
public final int decrementAndGet();
public final int get();
public final int getAndAdd(int delta);

Object AtomicBoolean Serializable

Object Number AtomicInteger

Serializable Serializable

Chapter 16: java.util and Subpackages | 857

java.util.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.concurrent.atomic.AtomicIntegerFieldUpdater<T>

AtomicIntegerArray
java.util.concurrent.atomic

Java 5.0

serializable

This class holds an array of int values. It provides threadsafe access to the array
elements, treating each as if it was a volatile field, and defines atomic operations on
them. The methods of this class are like those of AtomicInteger, except that each has an
additional parameter that specifies the array index. Create an AtomicIntegerArray by speci-
fying the desired array length or an actual int[] from which initial values can be copied.

AtomicIntegerFieldUpdater<T>
java.util.concurrent.atomic

Java 5.0

This class uses java.lang.reflect to provide atomic operations for named volatile int fields
within existing types. Obtain an instance of this class with the newUpdater() factory
method. Pass the name of the field (which must have been declared volatile int) to be
updated and the class that it is defined within to this factory method. The instance

public final int getAndDecrement(); default:0
public final int getAndIncrement(); default:-1
public final int getAndSet(int newValue);
public final int incrementAndGet();
public final void set(int newValue);
public final boolean weakCompareAndSet(int expect, int update);

// Public Methods Overriding Number
public double doubleValue();
public float floatValue();
public int intValue();
public long longValue();

// Public Methods Overriding Object
public String toString();

}

public class AtomicIntegerArray implements Serializable {
// Public Constructors

public AtomicIntegerArray(int[] array);
public AtomicIntegerArray(int length);

// Public Instance Methods
public final int addAndGet(int i, int delta);
public final boolean compareAndSet(int i, int expect, int update);
public final int decrementAndGet(int i);
public final int get(int i);
public final int getAndAdd(int i, int delta);
public final int getAndDecrement(int i);
public final int getAndIncrement(int i);
public final int getAndSet(int i, int newValue);
public final int incrementAndGet(int i);
public final int length();
public final void set(int i, int newValue);
public final boolean weakCompareAndSet(int i, int expect, int update);

// Public Methods Overriding Object
public String toString();

}

Object AtomicIntegerArray Serializable

858 | Chapter 16: java.util and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.concurrent.atomic.AtomicLong

methods of the resulting AtomicIntegerFieldUpdater object are like those of the AtomicInteger
class but require you to specify the object whose field is to be manipulated. This is a
generic type, and the type variable T represents the type whose volatile int field is being
updated.

AtomicLong
java.util.concurrent.atomic

Java 5.0

serializable

This threadsafe class holds a mutable long value and defines atomic operations on that
value. It behaves just like AtomicInteger, with the substitution of long for int.

public abstract class AtomicIntegerFieldUpdater<T> {
// Protected Constructors

protected AtomicIntegerFieldUpdater();
// Public Class Methods

public static <U> AtomicIntegerFieldUpdater<U> newUpdater(Class<U> tclass, String fieldName);
// Public Instance Methods

public int addAndGet(T obj, int delta);
public abstract boolean compareAndSet(T obj, int expect, int update);
public int decrementAndGet(T obj);
public abstract int get(T obj);
public int getAndAdd(T obj, int delta);
public int getAndDecrement(T obj);
public int getAndIncrement(T obj);
public int getAndSet(T obj, int newValue);
public int incrementAndGet(T obj);
public abstract void set(T obj, int newValue);
public abstract boolean weakCompareAndSet(T obj, int expect, int update);

}

public class AtomicLong extends Number implements Serializable {
// Public Constructors

public AtomicLong();
public AtomicLong(long initialValue);

// Public Instance Methods
public final long addAndGet(long delta);
public final boolean compareAndSet(long expect, long update);
public final long decrementAndGet();
public final long get();
public final long getAndAdd(long delta);
public final long getAndDecrement(); default:0
public final long getAndIncrement(); default:-1
public final long getAndSet(long newValue);
public final long incrementAndGet();
public final void set(long newValue);
public final boolean weakCompareAndSet(long expect, long update);

// Public Methods Overriding Number
public double doubleValue();
public float floatValue();
public int intValue();
public long longValue();

Object Number AtomicLong

Serializable Serializable

Chapter 16: java.util and Subpackages | 859

java.util.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.concurrent.atomic.AtomicLongFieldUpdater<T>

AtomicLongArray
java.util.concurrent.atomic

Java 5.0

serializable

This threadsafe class provides atomic operations for an array of long values. See Atomic-
IntegerArray, which offers the equivalent operations for int arrays.

AtomicLongFieldUpdater<T>
java.util.concurrent.atomic

Java 5.0

This class uses java.lang.reflect to define atomic operations for named volatile long fields of a
specified class. See AtomicIntegerFieldUpdater, which is very similar.

// Public Methods Overriding Object
public String toString();

}

public class AtomicLongArray implements Serializable {
// Public Constructors

public AtomicLongArray(long[] array);
public AtomicLongArray(int length);

// Public Instance Methods
public long addAndGet(int i, long delta);
public final boolean compareAndSet(int i, long expect, long update);
public final long decrementAndGet(int i);
public final long get(int i);
public final long getAndAdd(int i, long delta);
public final long getAndDecrement(int i);
public final long getAndIncrement(int i);
public final long getAndSet(int i, long newValue);
public final long incrementAndGet(int i);
public final int length();
public final void set(int i, long newValue);
public final boolean weakCompareAndSet(int i, long expect, long update);

// Public Methods Overriding Object
public String toString();

}

public abstract class AtomicLongFieldUpdater<T> {
// Protected Constructors

protected AtomicLongFieldUpdater();
// Public Class Methods

public static <U> AtomicLongFieldUpdater<U> newUpdater(Class<U> tclass, String fieldName);
// Public Instance Methods

public long addAndGet(T obj, long delta);
public abstract boolean compareAndSet(T obj, long expect, long update);
public long decrementAndGet(T obj);
public abstract long get(T obj);
public long getAndAdd(T obj, long delta);
public long getAndDecrement(T obj);
public long getAndIncrement(T obj);
public long getAndSet(T obj, long newValue);
public long incrementAndGet(T obj);

Object AtomicLongArray Serializable

860 | Chapter 16: java.util and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.concurrent.atomic.AtomicMarkableReference<V>

AtomicMarkableReference<V>
java.util.concurrent.atomic

Java 5.0

This threadsafe class holds a mutable reference to an object of type V and also holds a
mutable boolean value or “mark.” It defines atomic operations and volatile access seman-
tics for the reference and the mark. The set() method unconditionally sets the reference
and mark value. The get() method queries both, returning the reference as its return
value, and storing the current value of the mark in element 0 of the specified boolean
array. The reference and mark can also be queried individually (and nonatomically) with
getReference() and isMarked().

The atomic compareAndSet() and weakCompareAndSet() methods take expected and new
values for both the reference and the mark, and neither is set to its new value unless
both match their expected values. attemptMark() atomically sets the value of the mark but
only if the reference is equal to the expected value. Like weakCompareAndSet(), this method
may fail spuriously, even if the reference does equal the expected value. Repeated invo-
cation eventually succeeds, however, as long as the expected value is correct, and other
threads are not continuously changing the reference value.

AtomicReference<V>
java.util.concurrent.atomic

Java 5.0

serializable

This threadsafe class holds a mutable reference to an object of type V, provides volatile
access semantics, and defines atomic operations for manipulating that value. get() and
set() are ordinary accessor methods for the reference. compareAndSet(), weakCompareAndSet(),
and getAndSet() perform the two named operations atomically. compareAndSet() is the
canonical atomic operation: the reference is compared to an expected value, and, if it
matches, is set to a new value. compareAndSet() returns true if it set the value or false other-
wise. weakCompareAndSet() is similar but may fail to set the reference even if it does match
the expected value (it is guaranteed to succeed eventually if the operation is repeatedly
retried, however).

public abstract void set(T obj, long newValue);
public abstract boolean weakCompareAndSet(T obj, long expect, long update);

}

public class AtomicMarkableReference<V> {
// Public Constructors

public AtomicMarkableReference(V initialRef, boolean initialMark);
// Public Instance Methods

public boolean attemptMark(V expectedReference, boolean newMark);
public boolean compareAndSet(V expectedReference, V newReference, boolean expectedMark, boolean newMark);
public V get(boolean[] markHolder);
public V getReference();
public boolean isMarked();
public void set(V newReference, boolean newMark);
public boolean weakCompareAndSet(V expectedReference, V newReference, boolean expectedMark, boolean newMark);

}

public class AtomicReference<V> implements Serializable {
// Public Constructors

public AtomicReference();
public AtomicReference(V initialValue);

Object AtomicReference Serializable

Chapter 16: java.util and Subpackages | 861

java.util.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.concurrent.atomic.AtomicReferenceFieldUpdater<T,V>

AtomicReferenceArray<E>
java.util.concurrent.atomic

Java 5.0

serializable

This threadsafe class holds an array of elements of type E. It provides volatile access
semantics for these array elements and defines atomic operations for manipulating
them. Its methods are like those of AtomicReference with the addition of a parameter that
specifies the array index of the desired element.

AtomicReferenceFieldUpdater<T,V>
java.util.concurrent.atomic

Java 5.0

This threadsafe class uses java.lang.reflect to provide atomic operations for a named volatile
field of type V within an object of type T. Its instance methods are like those of Atomic-
Reference and the static newUpdater() factory method is like that of AtomicIntegerFieldUpdater.

// Public Instance Methods
public final boolean compareAndSet(V expect, V update);
public final V get();
public final V getAndSet(V newValue);
public final void set(V newValue);
public final boolean weakCompareAndSet(V expect, V update);

// Public Methods Overriding Object
public String toString();

}

public class AtomicReferenceArray<E> implements Serializable {
// Public Constructors

public AtomicReferenceArray(E[] array);
public AtomicReferenceArray(int length);

// Public Instance Methods
public final boolean compareAndSet(int i, E expect, E update);
public final E get(int i);
public final E getAndSet(int i, E newValue);
public final int length();
public final void set(int i, E newValue);
public final boolean weakCompareAndSet(int i, E expect, E update);

// Public Methods Overriding Object
public String toString();

}

public abstract class AtomicReferenceFieldUpdater<T,V> {
// Protected Constructors

protected AtomicReferenceFieldUpdater();
// Public Class Methods

public static <U,W> AtomicReferenceFieldUpdater<U,W> newUpdater(Class<U> tclass, Class<W> vclass,
String fieldName);

// Public Instance Methods
public abstract boolean compareAndSet(T obj, V expect, V update);
public abstract V get(T obj);
public V getAndSet(T obj, V newValue);
public abstract void set(T obj, V newValue);
public abstract boolean weakCompareAndSet(T obj, V expect, V update);

}

Object AtomicReferenceArray Serializable

862 | Chapter 16: java.util and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.concurrent.atomic.AtomicStampedReference<V>

AtomicStampedReference<V>
java.util.concurrent.atomic

Java 5.0

This threadsafe class holds a mutable reference to an object of type V and also holds a
mutable int value or “stamp.” It defines atomic operations and volatile access seman-
tics for the reference and the stamp. This class works just like AtomicMarkableReference
except that an int “stamp” replaces the boolean “mark.” See AtomicMarkableReference for
further details.

Package java.util.concurrent.locks Java 5.0

This package defines Lock and associated Condition interfaces as well as concrete implemen-
tations (such as ReentrantLock) that provide an alternative to locking with synchronized blocks
and methods and to waiting with the wait(), notify(), and notifyAll() methods of Object.

Although Lock and Condition are somewhat more complex to use than the built-in
locking, waiting, and notification mechanisms of Object, they are also more flexible. Lock,
for example, does not require that locks be block-structured and enables algorithms
such as “hand-over-hand locking” for traversing linked data structures. A thread
waiting to acquire a Lock can time out or be interrupted, which is not possible with
synchronized locking. Also, more than one Condition can be associated with a given Lock,
which is simply not possible with Object-based locking and waiting.

The ReadWriteLock interface and its ReentrantReadWriteLock implementation allow multiple
concurrent readers but only a single writer thread to hold the lock.

Interfaces
public interface Condition;
public interface Lock;
public interface ReadWriteLock;

Classes
public abstract class AbstractQueuedSynchronizer implements Serializable;
public class AbstractQueuedSynchronizer.ConditionObject implements Condition, Serializable;
public class LockSupport;
public class ReentrantLock implements Lock, Serializable;
public class ReentrantReadWriteLock implements ReadWriteLock, Serializable;
public static class ReentrantReadWriteLock.ReadLock implements Lock, Serializable;
public static class ReentrantReadWriteLock.WriteLock implements Lock, Serializable;

public class AtomicStampedReference<V> {
// Public Constructors

public AtomicStampedReference(V initialRef, int initialStamp);
// Public Instance Methods

public boolean attemptStamp(V expectedReference, int newStamp);
public boolean compareAndSet(V expectedReference, V newReference, int expectedStamp, int newStamp);
public V get(int[] stampHolder);
public V getReference();
public int getStamp();
public void set(V newReference, int newStamp);
public boolean weakCompareAndSet(V expectedReference, V newReference, int expectedStamp, int newStamp);

}

Chapter 16: java.util and Subpackages | 863

java.util.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.concurrent.locks.AbstractQueuedSynchronizer.ConditionObject

AbstractQueuedSynchronizer
java.util.concurrent.locks

Java 5.0

serializable

This abstract class is a low-level utility. A concrete subclass can be used as a helper
class for implementing the Lock interface or for implementing synchronizer utilities like
the CountDownLatch class of java.util.concurrent. Subclasses must define tryAcquire(), tryRelease(),
tryAcquireShared(), tryReleaseShared(), and isHeldExclusively.

AbstractQueuedSynchronizer.ConditionObject
java.util.concurrent.locks

Java 5.0

serializable

This class implements the Condition interface and is suitable for use with an
AbstractQueuedSynchronizer.

public abstract class AbstractQueuedSynchronizer implements Serializable {
// Protected Constructors

protected AbstractQueuedSynchronizer();
// Nested Types

public class ConditionObject implements Condition, Serializable;
// Public Instance Methods

public final void acquire(int arg);
public final void acquireInterruptibly(int arg) throws InterruptedException;
public final void acquireShared(int arg);
public final void acquireSharedInterruptibly(int arg) throws InterruptedException;
public final java.util.Collection<Thread> getExclusiveQueuedThreads();
public final Thread getFirstQueuedThread();
public final java.util.Collection<Thread> getQueuedThreads();
public final int getQueueLength();
public final java.util.Collection<Thread> getSharedQueuedThreads();
public final java.util.Collection<Thread> getWaitingThreads(AbstractQueuedSynchronizer.ConditionObject condition);
public final int getWaitQueueLength(AbstractQueuedSynchronizer.ConditionObject condition);
public final boolean hasContended();
public final boolean hasQueuedThreads();
public final boolean hasWaiters(AbstractQueuedSynchronizer.ConditionObject condition);
public final boolean isQueued(Thread thread);
public final boolean owns(AbstractQueuedSynchronizer.ConditionObject condition);
public final boolean release(int arg);
public final boolean releaseShared(int arg);
public final boolean tryAcquireNanos(int arg, long nanosTimeout) throws InterruptedException;
public final boolean tryAcquireSharedNanos(int arg, long nanosTimeout) throws InterruptedException;

// Public Methods Overriding Object
public String toString();

// Protected Instance Methods
protected final boolean compareAndSetState(int expect, int update);
protected final int getState();
protected boolean isHeldExclusively();
protected final void setState(int newState);
protected boolean tryAcquire(int arg);
protected int tryAcquireShared(int arg);
protected boolean tryRelease(int arg);
protected boolean tryReleaseShared(int arg);

}

Object AbstractQueuedSynchronizer Serializable

864 | Chapter 16: java.util and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.concurrent.locks.Condition

Passed To AbstractQueuedSynchronizer.{getWaitingThreads(), getWaitQueueLength(), hasWaiters(), owns()}

Condition
java.util.concurrent.locks

Java 5.0

This interface defines an alternative to the wait(), notify(), and notifyAll() methods of
java.lang.Object. Condition objects are always associated with a corresponding Lock. Obtain a
Condition with the newCondition() method of Lock.

There are five choices for waiting. The no-argument version of await() is the simplest: it
blocks until the thread is signaled or interrupted. awaitUninterruptibly() blocks until the
thread is signaled and ignores interrupts. The other three waiting methods are timed
waits: they all wait until signaled, interrupted, or until the specified time elapses. await()
and awaitUntil() return true if they are signaled and false if a timeout occurs. awaitNanos()
specifies the timeout in nanoseconds. It returns zero or a negative number if the
timeout elapses. If it wakes up because of a signal (or because of a spurious wakeup), it
returns an estimate of the time remaining in the timeout. If it turns out that the thread
needs to continue waiting, this return value can be used as the new timeout value.

The signal() and signalAll() methods are just like the notify() and notifyAll() methods of Object.
signal() wakes up one waiting thread, and signalAll() wakes up all waiting threads.

Locking considerations apply to the use of a Condition object just as they apply to the use
of the wait() and notify() methods of Object. Before a thread can call any of the waiting or
signaling methods of a Condition, it must hold the Lock associated with the condition.
When the thread begins waiting, it automatically relinquishes the Lock, and when it
awakes because of a signal, timeout, or interrupt, it must reacquire the lock before it
can proceed. A thread is guaranteed to hold the lock when it returns from one of the
waiting methods.

Threads waiting on a Condition may wake up spuriously, just as they may when waiting
on an Object. Therefore, calls to wait on a Condition are typically written in the form of a
loop so that the desired condition is retested when the thread wakes up.

public class AbstractQueuedSynchronizer.ConditionObject implements Condition, Serializable {
// Public Constructors

public ConditionObject();
// Methods Implementing Condition

public final void await() throws InterruptedException;
public final boolean await(long time, java.util.concurrent.TimeUnit unit) throws InterruptedException;
public final long awaitNanos(long nanosTimeout) throws InterruptedException;
public final void awaitUninterruptibly();
public final boolean awaitUntil(java.util.Date deadline) throws InterruptedException;
public final void signal();
public final void signalAll();

// Protected Instance Methods
protected final java.util.Collection<Thread> getWaitingThreads();
protected final int getWaitQueueLength();
protected final boolean hasWaiters();

}

public interface Condition {
// Public Instance Methods

void await() throws InterruptedException;
boolean await(long time, java.util.concurrent.TimeUnit unit) throws InterruptedException;
long awaitNanos(long nanosTimeout) throws InterruptedException;

Chapter 16: java.util and Subpackages | 865

java.util.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.concurrent.locks.LockSupport

Implementations AbstractQueuedSynchronizer.ConditionObject

Passed To ReentrantLock.{getWaitingThreads(), getWaitQueueLength(), hasWaiters()},
ReentrantReadWriteLock.{getWaitingThreads(), getWaitQueueLength(), hasWaiters()}

Returned By Lock.newCondition(), ReentrantLock.newCondition(),
ReentrantReadWriteLock.ReadLock.newCondition(), ReentrantReadWriteLock.WriteLock.newCondition()

Lock
java.util.concurrent.locks

Java 5.0

This interface represents a flexible API for preventing thread concurrency with locking.
Lock defines four methods for acquiring a lock. The simplest method is lock() which
blocks indefinitely and uninterruptibly until the lock is acquired. This method is
similar to entering a synchronized block. lockInterruptibly() blocks until the lock is acquired or
until the thread is interrupted. The no-argument version of tryLock() acquires the lock
and returns true if the lock is currently available or returns false without blocking if the
lock is unavailable. The two-argument version of tryLock() is a timed method: it blocks
until it acquires the lock (in which case it returns true), or until the specified timeout
elapses (in which case it returns false), or until the thread is interrupted (in which case
it throws InterruptedException).

Once a Lock has been acquired, no other thread can acquire it until it is released with
the unlock() method. In order to ensure that locks are always released, even in the pres-
ence of unanticipated exceptions, it is typical to begin a try block immediately after
acquiring the lock and to call unlock() from the associated finally clause.

Obtain a Condition object associated with a Lock by calling newCondition(). See Condition for
details. See ReentrantLock for a concrete implementation of the Lock interface.

Implementations ReentrantLock, ReentrantReadWriteLock.ReadLock, ReentrantReadWriteLock.WriteLock

Returned By ReadWriteLock.{readLock(), writeLock()}, ReentrantReadWriteLock.{readLock(), writeLock()}

LockSupport
java.util.concurrent.locks

Java 5.0

This class provides a low-level alternative to the deprecated methods Thread.suspend() and
Thread.resume(). The park(), parkNanos(), and parkUntil() methods suspend, or park, the thread
until it is unparked by another thread with unpark(), or until it is interrupted by another
thread, or until the specified time elapses. parkNanos() parks the thread for the specified
number of nanoseconds. parkUntil() parks the thread until the specified time, using the

void awaitUninterruptibly();
boolean awaitUntil(java.util.Date deadline) throws InterruptedException;
void signal();
void signalAll();

}

public interface Lock {
// Public Instance Methods

void lock();
void lockInterruptibly() throws InterruptedException;
Condition newCondition();
boolean tryLock();
boolean tryLock(long time, java.util.concurrent.TimeUnit unit) throws InterruptedException;
void unlock();

}

866 | Chapter 16: java.util and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.concurrent.locks.ReadWriteLock

millisecond representation of System.currentTimeMillis(). Any call to these parking methods
may return spuriously, so it is important to call park() in a loop that can repark the
thread if it should not have resumed.

Unpark a thread with the unpark() method. Note that while the parking methods affect
the current thread, the unpark() method affects the thread you specify. If the specified
thread is not parked, the next time that thread calls one of the park() methods, it returns
immediately instead of blocking.

ReadWriteLock
java.util.concurrent.locks

Java 5.0

This interface represents a pair of Lock objects with special locking behavior that is
useful for concurrent algorithms in which reader threads frequently access a data
structure and writer threads only infrequently modify the structure. The Lock returned
by readLock() may be locked by multiple threads at the same time as long as no thread
has the writeLock() locked. See ReentrantReadWriteLock for a concrete implementation with
implementation-specific locking details.

Implementations ReentrantReadWriteLock

ReentrantLock
java.util.concurrent.locks

Java 5.0

serializable

This class implements the Lock interface and adds instrumentation methods to deter-
mine what thread currently holds the lock, to return the number of threads waiting to
acquire the lock or waiting on an associated Condition, and to test whether a specified
thread is waiting to acquire the lock.

The name of this class includes the term “reentrant” because the thread that holds the
lock can call any of the locking methods again, and they return immediately without
blocking. isHeldByCurrentThread() tests whether the current thread already holds the lock.
getHoldCount() returns the number of times that the current thread has acquired this lock.
unlock() must be called this number of times before the lock is actually relinquished.

A “fair” lock may be created by passing true to the ReentrantLock() constructor. If you do
this, the lock will always be granted to the thread that has been waiting for it the
longest.

public class LockSupport {
// No Constructor
// Public Class Methods

public static void park();
public static void parkNanos(long nanos);
public static void parkUntil(long deadline);
public static void unpark(Thread thread);

}

public interface ReadWriteLock {
// Public Instance Methods

Lock readLock();
Lock writeLock();

}

Object ReentrantLock

Lock Serializable

Chapter 16: java.util and Subpackages | 867

java.util.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.concurrent.locks.ReentrantReadWriteLock

ReentrantReadWriteLock
java.util.concurrent.locks

Java 5.0

serializable

This class implements the ReadWriteLock interface. The locks returned by the readLock() and
writeLock() methods are instances of the inner classes ReadLock and WriteLock. Reentrant-
ReadWriteLock defines a “fair mode” and includes instrumentation methods like
ReentrantLock does.

Any number of threads can acquire the read lock as long as no thread holds or is
attempting to acquire the write lock. When a thread attempts to acquire the write
lock, no new read locks are granted. When all existing readers have relinquished the
lock, the writer acquires the lock, and no reads are allowed until the writer has relin-
quished it. A thread that holds the write lock may downgrade to a read lock by
acquiring the read lock and then relinquishing the write lock.

Because the read lock is not exclusive, it cannot have a Condition associated with it. The
ReadLock.newCondition() method throws UnsupportedOperationException.

public class ReentrantLock implements Lock, Serializable {
// Public Constructors

public ReentrantLock();
public ReentrantLock(boolean fair);

// Public Instance Methods
public int getHoldCount(); default:0
public final int getQueueLength(); default:0
public int getWaitQueueLength(Condition condition);
public final boolean hasQueuedThread(Thread thread);
public final boolean hasQueuedThreads();
public boolean hasWaiters(Condition condition);
public final boolean isFair(); default:false
public boolean isHeldByCurrentThread(); default:false
public boolean isLocked(); default:false

// Methods Implementing Lock
public void lock();
public void lockInterruptibly() throws InterruptedException;
public Condition newCondition();
public boolean tryLock();
public boolean tryLock(long timeout, java.util.concurrent.TimeUnit unit) throws InterruptedException;
public void unlock();

// Public Methods Overriding Object
public String toString();

// Protected Instance Methods
protected Thread getOwner();
protected java.util.Collection<Thread> getQueuedThreads();
protected java.util.Collection<Thread> getWaitingThreads(Condition condition);

}

public class ReentrantReadWriteLock implements ReadWriteLock, Serializable {
// Public Constructors

public ReentrantReadWriteLock();
public ReentrantReadWriteLock(boolean fair);

Object ReentrantReadWriteLock

ReadWriteLock Serializable

868 | Chapter 16: java.util and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.concurrent.locks.ReentrantReadWriteLock.ReadLock

Passed To ReentrantReadWriteLock.ReadLock.ReadLock(), ReentrantReadWriteLock.WriteLock.WriteLock()

ReentrantReadWriteLock.ReadLock
java.util.concurrent.locks

Java 5.0

serializable

A Lock implementation for reader threads. Any number of threads can acquire the lock
as long as the corresponding WriteLock is not held. newCondition() throws
UnsupportedOperationException.

Returned By ReentrantReadWriteLock.readLock()

// Nested Types
public static class ReadLock implements Lock, Serializable;
public static class WriteLock implements Lock, Serializable;

// Public Instance Methods
public final int getQueueLength(); default:0
public int getReadLockCount(); default:0
public int getWaitQueueLength(Condition condition);
public int getWriteHoldCount(); default:0
public final boolean hasQueuedThread(Thread thread);
public final boolean hasQueuedThreads();
public boolean hasWaiters(Condition condition);
public final boolean isFair(); default:false
public boolean isWriteLocked(); default:false
public boolean isWriteLockedByCurrentThread(); default:false
public ReentrantReadWriteLock.ReadLock readLock();
public ReentrantReadWriteLock.WriteLock writeLock();

// Public Methods Overriding Object
public String toString();

// Protected Instance Methods
protected Thread getOwner();
protected java.util.Collection<Thread> getQueuedReaderThreads();
protected java.util.Collection<Thread> getQueuedThreads();
protected java.util.Collection<Thread> getQueuedWriterThreads();
protected java.util.Collection<Thread> getWaitingThreads(Condition condition);

}

public static class ReentrantReadWriteLock.ReadLock implements Lock, Serializable {
// Protected Constructors

protected ReadLock(ReentrantReadWriteLock lock);
// Methods Implementing Lock

public void lock();
public void lockInterruptibly() throws InterruptedException;
public Condition newCondition();
public boolean tryLock();
public boolean tryLock(long timeout, java.util.concurrent.TimeUnit unit) throws InterruptedException;
public void unlock();

// Public Methods Overriding Object
public String toString();

}

Chapter 16: java.util and Subpackages | 869

java.util.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

.Package java.util.jar

ReentrantReadWriteLock.WriteLock
java.util.concurrent.locks

Java 5.0

serializable

A Lock implementation for writer threads. This lock can be acquired only when all
holders of the corresponding ReadLock have relinquished the locks. While this lock is
held, no other thread may acquire either this lock or the corresponding ReadLock.

Returned By ReentrantReadWriteLock.writeLock()

Package java.util.jar Java 1.2

The java.util.jar package contains classes for reading and writing Java archive, or JAR,
files. A JAR file is nothing more than a ZIP file whose first entry is a specially named
manifest file that contains attributes and digital signatures for the ZIP file entries that
follow it. Many of the classes in this package are relatively simple extensions of classes
from the java.util.zip package.

The easiest way to read a JAR file is with the random-access JarFile class. This class
allows you to obtain the JarEntry that describes any named file within the JAR archive. It
also allows you to obtain an enumeration of all entries in the archive and an InputStream
for reading the bytes of a specific JarEntry. Each JarEntry describes a single entry in the
archive and allows access to the Attributes and the digital signatures associated with the
entry. The JarFile also provides access to the Manifest object for the JAR archive; this
object contains Attributes for all entries in the JAR file. Attributes is a mapping of attribute
name/value pairs, of course, and the inner class Attributes.Name defines constants for
various standard attribute names.

You can also read a JAR file with JarInputStream. This class requires to you read each
entry of the file sequentially, however. JarOutputStream allows you to write out a JAR file
sequentially. Finally, you can also read an entry within a JAR file and manifest
attributes for that entry with a java.net.JarURLConnection object.

Interfaces
public interface Pack200.Packer;
public interface Pack200.Unpacker;

Collections
public class Attributes implements java.util.Map<Object, Object>, Cloneable;

public static class ReentrantReadWriteLock.WriteLock implements Lock, Serializable {
// Protected Constructors

protected WriteLock(ReentrantReadWriteLock lock);
// Methods Implementing Lock

public void lock();
public void lockInterruptibly() throws InterruptedException;
public Condition newCondition();
public boolean tryLock();
public boolean tryLock(long timeout, java.util.concurrent.TimeUnit unit) throws InterruptedException;
public void unlock();

// Public Methods Overriding Object
public String toString();

}

870 | Chapter 16: java.util and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.jar.Attributes

Other Classes
public static class Attributes.Name;
public class JarEntry extends java.util.zip.ZipEntry;
public class JarFile extends java.util.zip.ZipFile;
public class JarInputStream extends java.util.zip.ZipInputStream;
public class JarOutputStream extends java.util.zip.ZipOutputStream;
public class Manifest implements Cloneable;
public abstract class Pack200;

Exceptions public class JarException extends java.util.zip.ZipException;

Attributes
java.util.jar

Java 1.2

cloneable collection

This class is a java.util.Map that maps the attribute names of a JAR file manifest to arbitrary
string values. The JAR manifest format specifies that attribute names can contain only
the ASCII characters A to Z (uppercase and lowercase), the digits 0 through 9, and the
hyphen and underscore characters. Thus, this class uses Attributes.Name as the type of
attribute names, in addition to the more general String class. Although you can create
your own Attributes objects, you more commonly obtain Attributes objects from a Manifest.

public class Attributes implements java.util.Map<Object,Object>, Cloneable {
// Public Constructors

public Attributes();
public Attributes(java.util.jar.Attributes attr);
public Attributes(int size);

// Nested Types
public static class Name;

// Public Instance Methods
public String getValue(String name);
public String getValue(Attributes.Name name);
public String putValue(String name, String value);

// Methods Implementing Map
public void clear();
public boolean containsKey(Object name);
public boolean containsValue(Object value);
public java.util.Set<java.util.Map.Entry<Object,Object>> entrySet();
public boolean equals(Object o);
public Object get(Object name);
public int hashCode();
public boolean isEmpty(); default:true
public java.util.Set<Object> keySet();
public Object put(Object name, Object value);
public void putAll(java.util.Map<?,?> attr);
public Object remove(Object name);
public int size();
public java.util.Collection<Object> values();

// Public Methods Overriding Object
public Object clone();

Object Attributes

Cloneable Map

Chapter 16: java.util and Subpackages | 871

java.util.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.jar.JarEntry

Returned By java.net.JarURLConnection.{getAttributes(), getMainAttributes()}, JarEntry.getAttributes(),
Manifest.{getAttributes(), getMainAttributes()}

Attributes.Name
java.util.jar

Java 1.2

This class represents the name of an attribute in an Attributes object. It defines constants
for the various standard attribute names used in JAR file manifests. Attribute names
can contain only ASCII letters, digits, and the hyphen and underscore characters. Any
other Unicode characters are illegal.

Passed To java.util.jar.Attributes.getValue()

JarEntry
java.util.jar

Java 1.2

cloneable

This class extends java.util.zip.ZipEntry; it represents a single file in a JAR archive and the
manifest attributes and digital signatures associated with that file. JarEntry objects can be
read from a JAR file with JarFile or JarInputStream, and they can be written to a JAR file
with JarOutputStream. Use getAttributes() to obtain the Attributes for the entry. Use getCertificates()
to obtain a java.security.cert.Certificate array that contains the certificate chains for all digital
signatures associated with the file. In Java 5.0, this digital signature information may
be more conveniently retrieved as an array of CodeSigner objects.

// Protected Instance Fields
protected java.util.Map<Object,Object> map;

}

public static class Attributes.Name {
// Public Constructors

public Name(String name);
// Public Constants

public static final Attributes.Name CLASS_PATH;
public static final Attributes.Name CONTENT_TYPE;

1.3 public static final Attributes.Name EXTENSION_INSTALLATION;
1.3 public static final Attributes.Name EXTENSION_LIST;
1.3 public static final Attributes.Name EXTENSION_NAME;

public static final Attributes.Name IMPLEMENTATION_TITLE;
1.3 public static final Attributes.Name IMPLEMENTATION_URL;

public static final Attributes.Name IMPLEMENTATION_VENDOR;
1.3 public static final Attributes.Name IMPLEMENTATION_VENDOR_ID;

public static final Attributes.Name IMPLEMENTATION_VERSION;
public static final Attributes.Name MAIN_CLASS;
public static final Attributes.Name MANIFEST_VERSION;
public static final Attributes.Name SEALED;
public static final Attributes.Name SIGNATURE_VERSION;
public static final Attributes.Name SPECIFICATION_TITLE;
public static final Attributes.Name SPECIFICATION_VENDOR;
public static final Attributes.Name SPECIFICATION_VERSION;

// Public Methods Overriding Object
public boolean equals(Object o);
public int hashCode();
public String toString();

}

872 | Chapter 16: java.util and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.jar.JarException

Returned By java.net.JarURLConnection.getJarEntry(), JarFile.getJarEntry(), JarInputStream.getNextJarEntry()

JarException
java.util.jar

Java 1.2

serializable checked

Signals an error while reading or writing a JAR file.

JarFile
java.util.jar

Java 1.2

This class represents a JAR file and allows the manifest, file list, and individual files to
be read from the JAR file. It extends java.util.zip.ZipFile, and its use is similar to that of its
superclass. Create a JarFile by specifying a filename or File object. If you do not want
JarFile to attempt to verify any digital signatures contained in the JarFile, pass an optional
boolean argument of false to the JarFile() constructor. As of Java 1.3, temporary JAR files
can be automatically deleted when they are closed. To take advantage of this feature,
pass ZipFile.OPEN_READ|ZipFile.OPEN_DELETE as the mode argument to the JarFile() constructor.

Once you have created a JarFile object, obtain the JAR Manifest with getManifest(). Obtain
an enumeration of the java.util.zip.ZipEntry objects in the file with entries(). Get the JarEntry for
a specified file in the JAR file with getJarEntry(). To read the contents of a specific entry in
the JAR file, obtain the JarEntry or ZipEntry object that represents that entry, pass it to
getInputStream(), and then read until the end of that stream. JarFile does not support the
creation of new JAR files or the modification of existing files.

public class JarEntry extends java.util.zip.ZipEntry {
// Public Constructors

public JarEntry(String name);
public JarEntry(java.util.zip.ZipEntry ze);
public JarEntry(JarEntry je);

// Public Instance Methods
public java.util.jar.Attributes getAttributes() throws java.io.IOException;
public java.security.cert.Certificate[] getCertificates();

5.0 public java.security.CodeSigner[] getCodeSigners();
}

public class JarException extends java.util.zip.ZipException {
// Public Constructors

public JarException();
public JarException(String s);

}

public class JarFile extends java.util.zip.ZipFile {
// Public Constructors

public JarFile(String name) throws java.io.IOException;
public JarFile(java.io.File file) throws java.io.IOException;

Object ZipEntry JarEntry

Cloneable ZipConstants

Object Throwable Exception IOException ZipException JarException

Serializable

Object ZipFile JarFile

ZipConstants

Chapter 16: java.util and Subpackages | 873

java.util.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.jar.JarInputStream

Passed To Pack200.Packer.pack()

Returned By java.net.JarURLConnection.getJarFile()

JarInputStream
java.util.jar

Java 1.2

closeable

This class allows a JAR file to be read from an input stream. It extends java.util.ZipInputStream
and is used much like that class is used. To create a JarInputStream, simply specify the Input-
Stream from which to read. If you do not want the JarInputStream to attempt to verify any
digital signatures contained in the JAR file, pass false as the second argument to the
JarInputStream() constructor. The JarInputStream() constructor first reads the JAR manifest
entry, if one exists. The manifest must be the first entry in the JAR file. getManifest() returns
the Manifest object for the JAR file.

Once you have created a JarInputStream, call getNextJarEntry() or getNextEntry() to obtain the
JarEntry or java.util.zip.ZipEntry object that describes the next entry in the JAR file. Then, call
a read() method (including the inherited versions) to read the contents of that entry.
When the stream reaches the end of file, call getNextJarEntry() again to start reading the
next entry in the file. When all entries have been read from the JAR file, getNextJarEntry()
and getNextEntry() return null.

Passed To Pack200.Packer.pack()

public JarFile(String name, boolean verify) throws java.io.IOException;
public JarFile(java.io.File file, boolean verify) throws java.io.IOException;

1.3 public JarFile(java.io.File file, boolean verify, int mode) throws java.io.IOException;
// Public Constants

public static final String MANIFEST_NAME; ="META-INF/MANIFEST.MF"
// Public Instance Methods

public JarEntry getJarEntry(String name);
public Manifest getManifest() throws java.io.IOException;

// Public Methods Overriding ZipFile
public java.util.Enumeration<JarEntry> entries();
public java.util.zip.ZipEntry getEntry(String name);
public java.io.InputStream getInputStream(java.util.zip.ZipEntry ze) throws java.io.IOException; synchronized

}

public class JarInputStream extends java.util.zip.ZipInputStream {
// Public Constructors

public JarInputStream(java.io.InputStream in) throws java.io.IOException;
public JarInputStream(java.io.InputStream in, boolean verify) throws java.io.IOException;

// Public Instance Methods
public Manifest getManifest();
public JarEntry getNextJarEntry() throws java.io.IOException;

// Public Methods Overriding ZipInputStream
public java.util.zip.ZipEntry getNextEntry() throws java.io.IOException;
public int read(byte[] b, int off, int len) throws java.io.IOException;

// Protected Methods Overriding ZipInputStream
protected java.util.zip.ZipEntry createZipEntry(String name);

}

Object InputStream FilterInputStream InflaterInputStream ZipInputStream JarInputStream

Closeable ZipConstants

874 | Chapter 16: java.util and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.jar.JarOutputStream

JarOutputStream
java.util.jar

Java 1.2

closeable flushable

This class can write a JAR file to an arbitrary OutputStream. JarOutputStream extends
java.util.zip.ZipOutputStream and is used much like that class is used. Create a JarOutputStream by
specifying the stream to write to and, optionally, the Manifest object for the JAR file. The
JarOutputStream() constructor starts by writing the contents of the Manifest object into an
appropriate JAR file entry. It is the programmer’s responsibility to ensure that the
contents of the JAR entries written subsequently match those specified in the Manifest
object. This class provides no explicit support for attaching digital signatures to entries in
the JAR file.

After creating a JarOutputStream, call putNextEntry() to specify the JarEntry or java.util.zip.ZipEntry to
be written to the stream. Then, call any of the inherited write() methods to write the
contents of the entry to the stream. When that entry is finished, call putNextEntry() again
to begin writing the next entry. When you have written all JAR file entries in this way,
call close(). Before writing any entry, you may call the inherited setMethod() and setLevel()
methods to specify how the entry should be compressed. See java.util.zip.ZipOutputStream.

Passed To Pack200.Unpacker.unpack()

Manifest
java.util.jar

Java 1.2

cloneable

This class represents the manifest entry of a JAR file. getMainAttributes() returns an
Attributes object that represents the manifest attributes that apply to the entire JAR file.
getAttributes() returns an Attributes object that represents the manifest attributes specified
for a single file in the JAR file. getEntries() returns a java.util.Map that maps the names of
entries in the JAR file to the Attributes objects associated with those entries. getEntries()
returns the Map object used internally by the Manifest. You can edit the contents of the
Manifest by adding, deleting, or editing entries in the Map. read() reads manifest entries
from an input stream, merging them into the current set of entries. write() writes the
Manifest out to the specified output stream.

public class JarOutputStream extends java.util.zip.ZipOutputStream {
// Public Constructors

public JarOutputStream(java.io.OutputStream out) throws java.io.IOException;
public JarOutputStream(java.io.OutputStream out, Manifest man) throws java.io.IOException;

// Public Methods Overriding ZipOutputStream
public void putNextEntry(java.util.zip.ZipEntry ze) throws java.io.IOException;

}

public class Manifest implements Cloneable {
// Public Constructors

public Manifest();
public Manifest(Manifest man);
public Manifest(java.io.InputStream is) throws java.io.IOException;

// Public Instance Methods
public void clear();

Object OutputStream FilterOutputStream DeflaterOutputStream ZipOutputStream JarOutputStream

Closeable Flushable ZipConstants

Object Manifest Cloneable

Chapter 16: java.util and Subpackages | 875

java.util.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.jar.Pack200.Packer

Passed To java.net.URLClassLoader.definePackage(), JarOutputStream.JarOutputStream()

Returned By java.net.JarURLConnection.getManifest(), JarFile.getManifest(), JarInputStream.getManifest()

Pack200
java.util.jar

Java 5.0

This class is a factory for creating Pack200.Packer and Pack200.Unpacker objects for
compressing JAR files to Pack200 archives and for uncompresssing those archives back
into JAR files.

Pack200.Packer
java.util.jar

Java 5.0

This interface defines the API for an object that can convert a JAR file to an output stream
in Pack200 (or gzipped Pack200) format. Obtain a Packer object with the Pack200.newPacker()
factory method. Configure the packer before using it by setting properties in the Map
returned by the properties() method. The constants defined by this class represent the
names (and in some cases values) of properties that can be set. Pack a JAR file by passing
JarFile or JarInputStream to a pack() method along with the byte output stream to which the
packed representation should be written. You can monitor the progress of the packer
engine by querying the PROGRESS property in the properties() map. The value is the comple-
tion percentage as an integer between 0 and 100 (or -1 to indicate a stall or error.) If you
want to be notified of changes to the PROGRESS property, register a java.beans.PropertyChange-
Listener with addPropertyChangeListener(). See also the pack200 command in Chapter 8.

public java.util.jar.Attributes getAttributes(String name);
public java.util.Map<String,java.util.jar.Attributes> getEntries(); default:HashMap
public java.util.jar.Attributes getMainAttributes();
public void read(java.io.InputStream is) throws java.io.IOException;
public void write(java.io.OutputStream out) throws java.io.IOException;

// Public Methods Overriding Object
public Object clone();
public boolean equals(Object o);
public int hashCode();

}

public abstract class Pack200 {
// No Constructor
// Nested Types

public interface Packer;
public interface Unpacker;

// Public Class Methods
public static Pack200.Packer newPacker(); synchronized
public static Pack200.Unpacker newUnpacker();

}

public interface Pack200.Packer {
// Public Constants

public static final String CLASS_ATTRIBUTE_PFX; ="pack.class.attribute."
public static final String CODE_ATTRIBUTE_PFX; ="pack.code.attribute."
public static final String DEFLATE_HINT; ="pack.deflate.hint"
public static final String EFFORT; ="pack.effort”
public static final String ERROR; ="error"
public static final String FALSE; ="false"

876 | Chapter 16: java.util and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.jar.Pack200.Unpacker

Returned By Pack200.newPacker()

Pack200.Unpacker
java.util.jar

Java 5.0

This interface defines an API for converting a file or stream in Pack200 (or gzipped
Pack200) format into a JAR file in the form of a JarOutputStream. Obtain an Unpacker object
with the Pack200.newUnpacker() method. Before using an unpacker, you may configure it by
setting properties in the Map returned by the properties() method. Unpack a JAR file with the
unpack() method, specifying a File or stream of packed bytes. Monitor the progress of the
unpacker by querying the PROGRESS key in the Map returned by properties(). The value should
be an Integer representing a completion percentage between 0 and 100. If you want to be
notified of changes to the PROGRESS property, register a java.beans.PropertyChangeListener with
addPropertyChangeListener(). See also the unpack200 command in Chapter 8.

Returned By Pack200.newUnpacker()

public static final String FIELD_ATTRIBUTE_PFX; ="pack.field.attribute."
public static final String KEEP; ="keep"
public static final String KEEP_FILE_ORDER; ="pack.keep.file.order"
public static final String LATEST; ="latest"
public static final String METHOD_ATTRIBUTE_PFX; ="pack.method.attribute."
public static final String MODIFICATION_TIME; ="pack.modification.time"
public static final String PASS; ="pass"
public static final String PASS_FILE_PFX; ="pack.pass.file."
public static final String PROGRESS; ="pack.progress"
public static final String SEGMENT_LIMIT; ="pack.segment.limit"
public static final String STRIP; ="strip"
public static final String TRUE; ="true"
public static final String UNKNOWN_ATTRIBUTE; ="pack.unknown.attribute"

// Event Registration Methods (by event name)
void addPropertyChangeListener(java.beans.PropertyChangeListener listener);
void removePropertyChangeListener(java.beans.PropertyChangeListener listener);

// Public Instance Methods
void pack(JarInputStream in, java.io.OutputStream out) throws java.io.IOException;
void pack(JarFile in, java.io.OutputStream out) throws java.io.IOException;
java.util.SortedMap<String,String> properties();

}

public interface Pack200.Unpacker {
// Public Constants

public static final String DEFLATE_HINT; ="unpack.deflate.hint"
public static final String FALSE; ="false"
public static final String KEEP; ="keep"
public static final String PROGRESS; ="unpack.progress"
public static final String TRUE; ="true"

// Event Registration Methods (by event name)
void addPropertyChangeListener(java.beans.PropertyChangeListener listener);
void removePropertyChangeListener(java.beans.PropertyChangeListener listener);

// Public Instance Methods
java.util.SortedMap<String,String> properties();
void unpack(java.io.InputStream in, JarOutputStream out) throws java.io.IOException;
void unpack(java.io.File in, JarOutputStream out) throws java.io.IOException;

}

Chapter 16: java.util and Subpackages | 877

java.util.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

.Package java.util.logging

Package java.util.logging Java 1.4

The java.util.logging package defines a sophisticated and highly-configurable logging
facility that Java applications can use to emit, filter, format, and output warning, diag-
nostic, tracing and debugging messages. An application generates log messages by
calling various methods of a Logger object. The content of a log message (with other
pertinant details such as the time and sequence number) is encapsulated in a LogRecord
object generated by the Logger. A Handler object represents a destination for LogRecord
objects. Concrete subclasses of Handler support destinations such as files and sockets.
Most Handler objects have an associated Formatter that converts a LogRecord object into the
actual text that is logged. The subclasses SimpleFormatter and XMLFormatter produce simple
plain-text log messages and detailed XML logs respectively.

Each log message has an associated severity level. The Level class defines a type-safe
enumeration of defined levels. Logger and Handler objects both have an associated Level,
and discard any log messages whose severity is less than that specified level. In addi-
tion to this level-based filtering, Logger and Handler objects may also have an associated
Filter object which may be implemented to filter log messages based on any desired
criteria.

Applications that desire complete control over the logs they generate can create a Logger
object, along with Handler, Formatter and Filter objects that control the destination,
content, and appearance of the log. Simpler applications need only to create a Logger
for themselves, and can leave the rest to the LogManager class. LogManager reads a system-
wide configuration file (or a configuration class) and automatically directs log
messages to a standard destination (or destinations) for the system. In Java 5.0, Logging-
MXBean defines an interface for monitoring and management of the logging facility
through the javax.management packages (which are beyond the scope of this book).

Interfaces
public interface Filter;
public interface LoggingMXBean;

Classes
public class ErrorManager;
public abstract class Formatter;

public class SimpleFormatter extends Formatter;
public class XMLFormatter extends Formatter;

public abstract class Handler;
public class MemoryHandler extends Handler;
public class StreamHandler extends Handler;

public class ConsoleHandler extends StreamHandler;
public class FileHandler extends StreamHandler;
public class SocketHandler extends StreamHandler;

public class Level implements Serializable;
public class Logger;
public final class LoggingPermission extends java.security.BasicPermission;
public class LogManager;
public class LogRecord implements Serializable;

878 | Chapter 16: java.util and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.logging.ConsoleHandler

ConsoleHandler
java.util.logging

Java 1.4

This Handler subclass formats LogRecord objects and outputs the resulting string to the
System.err output stream. When a ConsoleHandler is created, the various properties inher-
ited from Handler are initialized using system-wide defaults obtained by querying named
values with LogManager.getProperty(). The table below lists these properties, the value
passed to getProperty(), and the default value used if getProperty() returns null. See Handler for
further details.

ErrorManager
java.util.logging

Java 1.4

An important feature of the Logging API is that the logging methods called by applica-
tions never throw exceptions: it is not reasonable to expect programmers to nest all
their logging calls within try/catch blocks, and even if they did, there is no useful way for
an application to recover from an exception in the logging subsystem. Since handler
classes such as FileHandler are inherently subject to I/O exceptions, the ErrorManager
provides a way for a handler to report an exception instead of simply discarding it.

All Handler objects have an instance of ErrorManager associated with them. If an exception
occurs in the handler, it passes the exception, along with a message and one of the
error code constants defined by ErrorManager to the error() method. error() writes a message
describing the exception to System.err, but does so only the first time it is called: the
expectation is that a Handler that throws an exception once will continue to throw the
same exception with each subsequent log message, and it is not useful to flood
System.err with repeated error messages. You can of course define subclasses of Error-
Manager that override error() to provide some other reporting mechanism. If you do this,
register an instance of your custom ErrorManager by calling the setErrorManager() method of
your Handler.

Handler property LogManager property name Default

level java.util.logging.ConsoleHandler.level Level.INFO

filter java.util.logging.ConsoleHandler.filter null

formatter java.util.logging.ConsoleHandler.formatter SimpleFormatter

encoding java.util.logging.ConsoleHandler.encoding platform default

public class ConsoleHandler extends StreamHandler {
// Public Constructors

public ConsoleHandler();
// Public Methods Overriding StreamHandler

public void close();
public void publish(LogRecord record);

}

public class ErrorManager {
// Public Constructors

public ErrorManager();
// Public Constants

public static final int CLOSE_FAILURE; =3
public static final int FLUSH_FAILURE; =2

Object Handler StreamHandler ConsoleHandler

Chapter 16: java.util and Subpackages | 879

java.util.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.logging.FileHandler

Passed To Handler.setErrorManager()

Returned By Handler.getErrorManager()

FileHandler
java.util.logging

Java 1.4

This Handler subclass formats LogRecord objects and outputs the resulting strings to a file
or to a rotating set of files. Arguments passed to the FileHandler() constructor specify
which file or files are used, and how they are used. The arguments are optional, and if
they are not specified, defaults are obtained through LogManager.getProperty() as described
below. The constructor arguments are:

pattern
A string containing substitution characters that describes one or more files to use.
The substitutions performed to convert this pattern to a filename are described
below.

limit
An approximate maximum file size for the log file, or 0 for no limit. If count is set
to greater than one, then when a log file reaches this maximum, FileHandler closes it,
renames it, and then starts a new log with the original filename.

count
When limit is set to be nonzero, this arguemnt specifies the number of old log files
to retain.

append
true if the FileHandler should append to log messages already in the named file, or false
if it should overwrite the file.

The pattern argument is the most important of these: it specifies which file or files the
FileHandler will write to. FileHandler performs the following substitutions on the specified
pattern to convert it to a filename:

public static final int FORMAT_FAILURE; =5
public static final int GENERIC_FAILURE; =0
public static final int OPEN_FAILURE; =4
public static final int WRITE_FAILURE; =1

// Public Instance Methods
public void error(String msg, Exception ex, int code); synchronized

}

For Substitute

/ The directory separator character for the platform. This means that you can always use a forward slash in
your patterns, even on Windows filesystems that use backward slashes.

%% A single literal percent sign.

%h The user’s home directory: the value of the system property “user.home”.

%t The temporary directory for the system.

%u A unique number to be used to distinguish this log file from other log files with the same pattern (this may
be necessary when multiple Java programs are creating logs at the same time).

%g The “generation number” of old log files when the limit argument is nonzero and the count argument is
greater than one. FileHandler always writes log records into a file in which %g is replaced by 0. But when
that file fills up, it is closed and renamed with the 0 replaced by a 1. Older files are similarly renamed, with
their generation number being incremented. When the number of log files reaches the number specifed by
count, then the oldest file is deleted to make room for the new one.

880 | Chapter 16: java.util and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.logging.Filter

When a FileHandler is created, the LogManager.getProperty() method is used to obtain defaults
for any unspecified constructor arguments, and also to obtian initial values for the
various properties inherited from Handler. The table below lists these arguments and
properties, the value passed to getProperty(), and the default value used if getProperty()
returns null. See Handler for further details.

Filter
java.util.logging

Java 1.4

This interface defines the method that a class must implement if it wants to filter log
messages for a Logger or Handler class. isLoggable() should return true if the specified LogRecord
contains information that should be logged. It should return false if the LogRecord should
be filtered out not appear in any destination log. Note that both Logger and Handler
provide built-in filtering based on the severity level of the LogRecord. This Filter interface
exists to provide a customized filtering capability.

Passed To Handler.setFilter(), Logger.setFilter()

Returned By Handler.getFilter(), Logger.getFilter()

Property or argument LogManager property name Default

level java.util.logging.FileHandler.level Level.ALL

filter java.util.logging.FileHandler.filter null

formatter java.util.logging.FileHandler.formatter XMLFormatter

encoding java.util.logging.FileHandler.encoding platform default

pattern java.util.logging.FileHandler.pattern %h/java%u.log

limit java.util.logging.FileHandler.limit 0 (no limit)

count java.util.logging.FileHandler.count 1

append java.util.logging.FileHandler.append false

public class FileHandler extends StreamHandler {
// Public Constructors

public FileHandler() throws java.io.IOException, SecurityException;
public FileHandler(String pattern) throws java.io.IOException, SecurityException;
public FileHandler(String pattern, boolean append) throws java.io.IOException, SecurityException;
public FileHandler(String pattern, int limit, int count) throws java.io.IOException, SecurityException;
public FileHandler(String pattern, int limit, int count, boolean append) throws java.io.IOException, SecurityException;

// Public Methods Overriding StreamHandler
public void close() throws SecurityException; synchronized
public void publish(LogRecord record); synchronized

}

public interface Filter {
// Public Instance Methods

boolean isLoggable(LogRecord record);
}

Object Handler StreamHandler FileHandler

Chapter 16: java.util and Subpackages | 881

java.util.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.logging.Handler

Formatter
java.util.logging

Java 1.4

A Formatter object is used by a Handler to convert a LogRecord to a String prior to logging it.
Most applications can simply use one one of the pre-defined concrete subclasses:
SimpleFormatter or XMLFormatter. Applications requiring custom formatting of log messages
will need to subclass this class and define the format() method to perform the desired
conversion. Such subclasses may find the formatMessage() method useful: it performs
localization using java.util.ResourceBundle and formatting using the facilities of the java.text
package. getHead() and getTail() return a prefix and suffix (such as opening and closing
XML tags) for a log file.

Subclasses SimpleFormatter, XMLFormatter

Passed To Handler.setFormatter(), StreamHandler.StreamHandler()

Returned By Handler.getFormatter()

Handler
java.util.logging

Java 1.4

A Handler takes LogRecord objects from a Logger and, if their severity level is high enough,
formats and publishes them to some destination (a file or socket, for example). The
subclasses of this abstract class support various destinations, and implement destina-
tion-specific publish(), flush() and close() methods.

In addition to the destination-specific abstract methods, this class also defines concrete
methods used by most Handler subclasses. These are property getter and setter methods
to specify the severity Level of logging messages to be handled, an optional Filter, a
Formatter to convert log messages from LogRecord objects to text, a text encoding for the
output text, and an ErrorManager to handle any exceptions that arise during log output.
Subclass-specific defaults for each of these properties are typically defined as proper-
ties of LogManager and are read from a system-wide logging configuration file.

In the simplest uses of the Logging API, a Logger sends it log messages to one or more
handlers defined by the LogManager class for its “root logger”. In this case there is no
need for the application to ever instantiate or use a Handler directly. Applications that
want custom control over the destination of their logs create and configure an instance
of a Handler subclass, but never need to call its publish(), flush() or close() methods directly:
that is done by the Logger.

public abstract class Formatter {
// Protected Constructors

protected Formatter();
// Public Instance Methods

public abstract String format(LogRecord record);
public String formatMessage(LogRecord record); synchronized
public String getHead(Handler h);
public String getTail(Handler h);

}

public abstract class Handler {
// Protected Constructors

protected Handler();
// Public Instance Methods

public abstract void close() throws SecurityException;
public abstract void flush();

882 | Chapter 16: java.util and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.logging.Level

Subclasses MemoryHandler, StreamHandler

Passed To java.util.logging.Formatter.{getHead(), getTail()}, Logger.{addHandler(), removeHandler()},
MemoryHandler.MemoryHandler(), XMLFormatter.{getHead(), getTail()}

Returned By Logger.getHandlers()

Level
java.util.logging

Java 1.4

serializable

This class defines constants that represent the seven standard severity levels for log
messages plus constants that turn logging off and enable logging at any level. When
logging is enabled at one severity level, it is also enabled at all higher levels. The seven
level constants, in order from most severe to least severe are: SEVERE, WARNING, INFO,
CONFIG, FINE, FINER, and FINEST. The constant ALL enables logging of any message, regard-
less of its level. The constant OFF disables logging entirely. Note that these constants are
all Level objects, rather than integers. This provides type safety.

Application code should rarely, if ever, need to use any of the methods of this class:
instead they can simply use the constants it defines.

public String getEncoding();
public ErrorManager getErrorManager();
public Filter getFilter();
public java.util.logging.Formatter getFormatter();
public Level getLevel(); synchronized
public boolean isLoggable(LogRecord record);
public abstract void publish(LogRecord record);
public void setEncoding(String encoding) throws SecurityException, java.io.UnsupportedEncodingException;
public void setErrorManager(ErrorManager em);
public void setFilter(Filter newFilter) throws SecurityException;
public void setFormatter(java.util.logging.Formatter newFormatter) throws SecurityException;
public void setLevel(Level newLevel) throws SecurityException; synchronized

// Protected Instance Methods
protected void reportError(String msg, Exception ex, int code);

}

public class Level implements Serializable {
// Protected Constructors

protected Level(String name, int value);
protected Level(String name, int value, String resourceBundleName);

// Public Constants
public static final Level ALL;
public static final Level CONFIG;
public static final Level FINE;
public static final Level FINER;
public static final Level FINEST;
public static final Level INFO;
public static final Level OFF;
public static final Level SEVERE;
public static final Level WARNING;

// Public Class Methods
public static Level parse(String name) throws IllegalArgumentException; synchronized

Object Level Serializable

Chapter 16: java.util and Subpackages | 883

java.util.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.logging.Logger

Passed To Too many methods to list.

Returned By Handler.getLevel(), Logger.getLevel(), LogRecord.getLevel(), MemoryHandler.getPushLevel()

Logger
java.util.logging

Java 1.4

A Logger object is used to emit log messages. Logger does not have a public constructor,
but there are several ways to obtain a Logger object to use in your code:

• Typically, applications call the static getLogger() method to create or lookup a
named Logger within a hierarchy of named loggers. Loggers have dot-separated
hierarchical names, which should be based on the name of the class or package
that uses them. Loggers obtained in this way inherit their logging level, resource
bundle (for localization), and Handler objects from their ancestors in the hierarchy
and, ultimately, from the root Logger defined by the global LogManager.

• Applets that require a Logger with no security restrictions should use the static
getAnonymousLogger() method to create an unnamed Logger that is not part of the hier-
archy of named Logger objects managed by the LogManager. A Logger created by this
method has the LogManager root logger as its parent, and inherits the logging level
and handlers of that root logger.

• Finally, the static Logger.global field refers to a pre-defined Logger named “global”;
programmers may find this pre-defined Logger convenient during the early stages of
application development, but it should not be used in production code.

Once a suitable Logger has been obtained, there are a variety of methods that can be
used to create a log message:

• The log() methods log a specified message at the specified level, with optional
parameters that can be used in message localization. These methods examine the
call stack and make an attempt to determine the class and method name from
which the method is emitted. Because of code optimization and just-in-time
compilation techniques, however, they may not always be able to determine this
information.

• The logp() (“log precise”) methods are like the log() methods but allow you to
explicitly specify the name of the class and method that are emitting the log
message.

• The logrb() methods are like the logp() methods, but additionally take the name of a
resource bundle to use for localizing the message.

• entering(), exiting(), and throwing() are convenience methods for emitting log messages
that trace the execution of a program. These methods use a logging level of
Level.FINER. Note that there are variants of entering() and exiting() that allow specifica-
tion of method arguments and return values.

// Public Instance Methods
public String getLocalizedName();
public String getName();
public String getResourceBundleName();
public final int intValue();

// Public Methods Overriding Object
public boolean equals(Object ox);
public int hashCode();
public final String toString();

}

884 | Chapter 16: java.util and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.logging.Logger

• Finally, Logger defines a set of easy-to-use convenience methods for logging a
simple message at a specific logging level. These methods have the same names as
the logging levels: severe(), warning(), info(), config(), fine(), finer(), finest().

A Logger has an associated logging Level, and discards any log messages with a severity
lower than this. The severity level is initialized from the system configuration file,
which is usually the desired behavior. You can explicitly override this setting with
setLevel(). You might want to do this if you created the Logger with getAnonymousLogger() and
have read the desired logging level from a configuration file of your own. If level-based
filtering of log messages is not sufficient, you can associate a Filter with your Logger by
calling setFilter. If you do this, any log messages rejected by the Filter will be discarded.

A Logger sends its log messages to any Handler objects that have been registered with
addHandler(). Call getHandlers() to obtain an array of all registered handlers, and call
removeHandler() to de-register a handler. By default, all log messages are also sent to the
handlers of the parent logger and any other ancestor loggers. Since all named and
anonymous loggers have the LogManager root logger as a parent or ancestor, all loggers
by default send their log messages to the handlers defined in the system logging config-
uration file. See LogManager for details. If you do not want a Logger to use the handlers
of its ancestors, pass false to setUseParentHandlers().

getLogger() and getAnonymousLogger() allow you to specify the name of a java.util.ResourceBundle
for use in localizing log messages, and logrb() allows you to specify the name of a
resource bundle to use to localize a specific log message. If a resource bundle is speci-
fied for the Logger or for a specific log message, then the message argument to the
various logging methods is treated not as a literal message but instead as a localization
key for which a localized version is to be looked up in the resource bundle. As part of
the localization, any parameters, such as those specified by the param1 and params argu-
ments to the log() method are substituted into the localized message string as per
java.text.MessageFormat. (Note, however that this localization and formatting is not
performed by the Logger itself: instead, it simply stores the ResourceBundle and parame-
ters in the LogRecord. It is the Formatter associated with the output Handler object that
actually performs the localization.)

All the methods of this class are threadsafe and do not require external
synchronization.

public class Logger {
// Protected Constructors

protected Logger(String name, String resourceBundleName);
// Public Constants

public static final Logger global;
// Public Class Methods

public static Logger getAnonymousLogger(); synchronized
public static Logger getAnonymousLogger(String resourceBundleName); synchronized
public static Logger getLogger(String name); synchronized
public static Logger getLogger(String name, String resourceBundleName); synchronized

// Public Instance Methods
public void addHandler(Handler handler) throws SecurityException; synchronized
public void config(String msg);
public void entering(String sourceClass, String sourceMethod);
public void entering(String sourceClass, String sourceMethod, Object param1);
public void entering(String sourceClass, String sourceMethod, Object[] params);
public void exiting(String sourceClass, String sourceMethod);
public void exiting(String sourceClass, String sourceMethod, Object result);

Chapter 16: java.util and Subpackages | 885

java.util.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.logging.LoggingMXBean

Passed To LogManager.addLogger()

Returned By LogManager.getLogger()

LoggingMXBean
java.util.logging

Java 5.0

This interface defines the API for the javax.management “management bean” for the
logging system. Obtain an instance with the static method LogManager.getLoggingMXBean().
The methods of this class allow the monitoring of all registered loggers and their
logging level and allow management to change the logging level of any named logger.

public void fine(String msg);
public void finer(String msg);
public void finest(String msg);
public Filter getFilter();
public Handler[] getHandlers(); synchronized
public Level getLevel();
public String getName();
public Logger getParent();
public java.util.ResourceBundle getResourceBundle();
public String getResourceBundleName();
public boolean getUseParentHandlers(); synchronized
public void info(String msg);
public boolean isLoggable(Level level);
public void log(LogRecord record);
public void log(Level level, String msg);
public void log(Level level, String msg, Throwable thrown);
public void log(Level level, String msg, Object param1);
public void log(Level level, String msg, Object[] params);
public void logp(Level level, String sourceClass, String sourceMethod, String msg);
public void logp(Level level, String sourceClass, String sourceMethod, String msg, Object param1);
public void logp(Level level, String sourceClass, String sourceMethod, String msg, Object[] params);
public void logp(Level level, String sourceClass, String sourceMethod, String msg, Throwable thrown);
public void logrb(Level level, String sourceClass, String sourceMethod, String bundleName, String msg);
public void logrb(Level level, String sourceClass, String sourceMethod, String bundleName, String msg, Object param1);
public void logrb(Level level, String sourceClass, String sourceMethod, String bundleName, String msg, Throwable thrown);
public void logrb(Level level, String sourceClass, String sourceMethod, String bundleName, String msg, Object[] params);
public void removeHandler(Handler handler) throws SecurityException; synchronized
public void setFilter(Filter newFilter) throws SecurityException;
public void setLevel(Level newLevel) throws SecurityException;
public void setParent(Logger parent);
public void setUseParentHandlers(boolean useParentHandlers); synchronized
public void severe(String msg);
public void throwing(String sourceClass, String sourceMethod, Throwable thrown);
public void warning(String msg);

}

public interface LoggingMXBean {
// Public Instance Methods

String getLoggerLevel(String loggerName);
java.util.List<String> getLoggerNames();
String getParentLoggerName(String loggerName);
void setLoggerLevel(String loggerName, String levelName);

}

886 | Chapter 16: java.util and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.logging.LoggingPermission

Returned By LogManager.getLoggingMXBean()

LoggingPermission
java.util.logging

Java 1.4

serializable permission

This class is a java.security.Permission that governs the use of security-sensitive logging
methods. The single defined name (or target) for LoggingPermission is “control” which
represents permission to invoke various logging control methods such as Logger.setLevel()
and LogManager.readConfiguration(). The methods in this package that throw SecurityException
all require a LoggingPermission named “control” in order to run. Application program-
mers never need to use this class. System adminstrators configuring security policies
may need to be familiar with it.

LogManager
java.util.logging

Java 1.4

As its name implies, this class is the manager for the java.util.logging API. It has three
specific purposes: (1) to read a logging configuration file and create the default Handler
objects specified in that file; (2) to manage a set of Logger objects, arranging them into a
tree based on their heirarchical names; and (3) to create and manage the unnamed
Logger object that serves as the parent or ancestor of every other Logger. This class
handles the important behind-the-scenes details that makes the Logging API work.
Typical applications can make use of logging without ever having to use this class
explicitly. Although its API is not commonly used by application programmers, it is
still useful to understand the LogManager class, so it is described in detail here.

There is a single global instance of LogManager, which is obtained with the static
getLogManager() method. By default, this global log manager object is an instance of the
LogManager class itself. You may instead instantiate an instance of a subclass of LogManager
by specifing the full class name of the subclass as the value of the system property
java.util.logging.manager.

One of the primary purposes of the LogManager class is to read a java.util.Properties file that
specifies the default logging configuration for the system. By default, this file is named
logging.properties and is stored in the jre/lib directory of the Java installation. If you
want to run a Java application using a different logging configuration, you can edit the
default configuration file, but it is typically easier to create a new configuation file and
tell the JVM about it by setting the system property java.util.logging.config.file to the name of
your customized configuration file.

The most important purpose of the configuration file is to specify a set of Handler
objects to which all log messages are sent. This is done by setting the handlers property
in the file to a space-separated list of Handler class names. The LogManager will load the
specified classes, and instantiate each one (using the default no-arg constructor), and
then register those Handler objects on the root Logger, where they are inherited by all
other loggers. (We’ll see more about the root logger below.) Each of these Handler

public final class LoggingPermission extends java.security.BasicPermission {
// Public Constructors

public LoggingPermission(String name, String actions) throws IllegalArgumentException;
}

Object Permission BasicPermission LoggingPermission

Guard Serializable Serializable

Chapter 16: java.util and Subpackages | 887

java.util.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.logging.LogManager

objects further configures itself by reading additional properties from the configura-
tion file, as described in the documentation for each handler class.

The configuration file may also contain property name that are formed by appending
“.level” to the name of a logger. The value of any such property is taken as the name of a
logging Level for the named Logger. When the named logger is created and registered with
the LogManager (described below) its logging level is automatically set to the specified level.

An application or any custom Handler or Formatter subclass or Filter implementation can
read its own properties from the logging configuration file with the getProperty() method
of LogManager. This is a useful way to provide customizability for logging-related classes.

In addition to managing the configuration file properties, a second purpose of
LogManager is to maintain a tree of Logger objects organized into a hierarchy based on
their dot-separated hierarchical names. The addLogger() method registers a new Logger
object with the LogManager and inserts it into the tree. This method is called automati-
cally by the Logger.getLogger() factory method, however, so you never need to call it
yourself. The getLogger() method of LogManager finds and returns a named Logger object
within the tree. Use getLoggerNames() to obtain an Enumeration of the names of all regis-
tered loggers.

At the root of the tree is a root logger, created by the LogManager, and initialized with
default Handler objects specified in the logging configuration file as described above.
This root logger has no name, and you can obtain a reference to it by passing the
empty string to the getLogger() method. Except for this root logger and anonymous
loggers (see Logger.getAnonymousLogger()), all loggers have names, and they are typically
named after the package or class for which they provide logging. When a named logger
is registered with the LogManager, the LogManager examines its name and inserts it into the
tree of loggers at the appropriate place: a logger named “java.util.logging” would be
inserted as the child of a logger named “java.util”, if any such logger existed, or as a
child of a logger named “java”, or, if no logger with that name existed either, it would
be inserted as a child of the root logger named “”. When the LogManager determines the
position of a logger within the tree of loggers, it calls the setParent() method of the
newly-registered Logger to tell it who its parent is. This is important because, by default,
loggers inherit their logging level and handlers from their parent. Although the
Logger.setParent() method is public, it is intended for use only by the LogManager class.

Anonymous loggers created with Logger.getAnonymousLogger() do not have names, and are
not part of the logger tree. When they are created, however, their parent is set to the
root logger of the LogManager. For this reason, anonymous loggers inherit the default
handlers specified in the logging configuration file.

The readConfiguration() methods are used to force the LogManager to re-read the system
configuration file, or to read a new configuration file from the specified stream. Both
versions of the method generate a java.beans.PropertyChangeEvent and use it to notify any
listeners that have been registered with addPropertyChangeListener. Both methods also first
invoke the reset() method which discards the properties of the current configuration
file, removes and closes all handlers for all loggers, and sets the logging level of all
loggers to null, except for the root logger’s logging level, which it sets to Level.INFO. It is
unlikely that you would ever want to invoke reset() yourself. A number of LogManager
methods throw a SecurityException if the caller does not have appropriate permissions.
You can use checkAccess() to test whether the current calling context has the required
LoggingPermission named “control”.

All LogManager methods can be safely used by multiple threads.

888 | Chapter 16: java.util and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.logging.LogRecord

LogRecord
java.util.logging

Java 1.4

serializable

Instances of this class are used to represent log messages as they are passed between
Logger, Handler, Filter and Formatter objects. LogRecord defines a number of JavaBeans-type
property getter and setter methods. The values of the various properties encapsulate all
details of the log message. The LogRecord() constructor takes arguments for the two most
important properties: the log level and the log message (or localization key). The
constructor also initializes the millis property to the current time, the sequenceNumber
property to a unique (within the VM) value that can be used to compare the order of
two log messages, and the threadID property to a unique identifier for the current thread.
All other properties of the LogRecord are left uninitialized with their default null values.

public class LogManager {
// Protected Constructors

protected LogManager();
// Public Constants
5.0 public static final String LOGGING_MXBEAN_NAME; ="java.util.logging:type=Logging"
// Public Class Methods
5.0 public static LoggingMXBean getLoggingMXBean(); synchronized

public static LogManager getLogManager();
// Event Registration Methods (by event name)

public void addPropertyChangeListener(java.beans.PropertyChangeListener l) throws SecurityException;
public void removePropertyChangeListener(java.beans.PropertyChangeListener l) throws SecurityException;

// Public Instance Methods
public boolean addLogger(Logger logger); synchronized
public void checkAccess() throws SecurityException;
public Logger getLogger(String name); synchronized
public java.util.Enumeration<String> getLoggerNames(); synchronized
public String getProperty(String name);
public void readConfiguration() throws java.io.IOException, SecurityException;
public void readConfiguration(java.io.InputStream ins) throws java.io.IOException, SecurityException;
public void reset() throws SecurityException;

}

public class LogRecord implements Serializable {
// Public Constructors

public LogRecord(Level level, String msg);
// Public Instance Methods

public Level getLevel();
public String getLoggerName();
public String getMessage();
public long getMillis();
public Object[] getParameters();
public java.util.ResourceBundle getResourceBundle();
public String getResourceBundleName();
public long getSequenceNumber();
public String getSourceClassName();
public String getSourceMethodName();
public int getThreadID();
public Throwable getThrown();

Object LogRecord Serializable

Chapter 16: java.util and Subpackages | 889

java.util.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.logging.MemoryHandler

Passed To ConsoleHandler.publish(), FileHandler.publish(), Filter.isLoggable(),
java.util.logging.Formatter.{format(), formatMessage()}, Handler.{isLoggable(), publish()}, Logger.log(),
MemoryHandler.{isLoggable(), publish()}, SimpleFormatter.format(), SocketHandler.publish(),
StreamHandler.{isLoggable(), publish()}, XMLFormatter.format()

MemoryHandler
java.util.logging

Java 1.4

A MemoryHandler stores LogRecord objects in a fixed-sized buffer in memory. When the
buffer fills up, it discards the oldest record one each time a new record arrives. It main-
tains a reference to another Handler object, and whenever the push() method is called, or
whenver a LogRecord arrives with a level at or higher than the pushLevel threshold, it
“pushes” all of buffered LogRecord objects to that other Handler object, which typically
formats and outputs them to some appropriate destination. Because MemoryHandler never
outputs log records itself, it does not use the formatter or encoding properties inherited
from its superclass.

When you create a MemoryHandler, you can specify the target Handler object, the size of
the in-memory buffer, and the value of the pushLevel property, or you can omit these
constructor arguments and rely on system-wide defaults obtained with
LogManager.getProperty(). MemoryHandler also uses LogManager.getProperty() to obtain initial
values for the level and filter properties inherited from Handler. The table below lists
these properties, as well as the target, size, and pushLevel constructor arguments, the
value passed to getProperty(), and the default value used if getProperty() returns null. See
Handler for further details.

public void setLevel(Level level);
public void setLoggerName(String name);
public void setMessage(String message);
public void setMillis(long millis);
public void setParameters(Object[] parameters);
public void setResourceBundle(java.util.ResourceBundle bundle);
public void setResourceBundleName(String name);
public void setSequenceNumber(long seq);
public void setSourceClassName(String sourceClassName);
public void setSourceMethodName(String sourceMethodName);
public void setThreadID(int threadID);
public void setThrown(Throwable thrown);

}

Property or argument LogManager property name Default

level java.util.logging.MemoryHandler.level Level.ALL

filter java.util.logging.MemoryHandler.filter null

target java.util.logging.MemoryHandler.target no default

size java.util.logging.MemoryHandler.size 1000 log records

pushLevel java.util.logging.MemoryHandler.push Level.SEVERE

public class MemoryHandler extends Handler {
// Public Constructors

public MemoryHandler();
public MemoryHandler(Handler target, int size, Level pushLevel);

Object Handler MemoryHandler

890 | Chapter 16: java.util and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.logging.SimpleFormatter

SimpleFormatter
java.util.logging

Java 1.4

This Formatter subclass converts a LogRecord object to a human-readable log message that
is typically one or two lines long. See also XMLFormatter.

SocketHandler
java.util.logging

Java 1.4

This Handler subclass formats LogRecord objects and outputs the resulting strings to a
network socket. When you create a SocketHandler, you can pass the hostname and port of
the socket to the constructor or you can rely on system-wide defaults obtained with
LogManager.getProperty(). SocketHandler also uses LogManager.getProperty() to obtain initial values
for the properties inherited from Handler. The table below lists these properties, as well
as the host and port arguments, the value passed to getProperty(), and the default value
used if getProperty() returns null. See Handler for further details.

// Public Instance Methods
public Level getPushLevel(); synchronized
public void push(); synchronized
public void setPushLevel(Level newLevel) throws SecurityException;

// Public Methods Overriding Handler
public void close() throws SecurityException;
public void flush();
public boolean isLoggable(LogRecord record);
public void publish(LogRecord record); synchronized

}

public class SimpleFormatter extends java.util.logging.Formatter {
// Public Constructors

public SimpleFormatter();
// Public Methods Overriding Formatter

public String format(LogRecord record); synchronized
}

Handler property LogManager property name Default

level java.util.logging.SocketHandler.level Level.ALL

filter java.util.logging.SocketHandler.filter null

formatter java.util.logging.SocketHandler.formatter XMLFormatter

encoding java.util.logging.SocketHandler.encoding platform default

hostname java.util.logging.SocketHandler.host no default

port java.util.logging.SocketHandler.port no default

public class SocketHandler extends StreamHandler {
// Public Constructors

public SocketHandler() throws java.io.IOException;
public SocketHandler(String host, int port) throws java.io.IOException;

Object Formatter SimpleFormatter

Object Handler StreamHandler SocketHandler

Chapter 16: java.util and Subpackages | 891

java.util.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.logging.XMLFormatter

StreamHandler
java.util.logging

Java 1.4

This Handler subclass sends log messages to an arbitrary java.io.OutputStream. It exists
primarily to serve as the common superclass of ConsoleHandler, FileHandler, and SocketHandler.

Subclasses ConsoleHandler, FileHandler, SocketHandler

XMLFormatter
java.util.logging

Java 1.4

This Formatter subclass converts a LogRecord to an XML-formatted string. The format()
method returns a <record> element, which always contains <date>, <millis>, <sequence>,
<level> and <message> tags, and may also contain <logger>, <class>, <method>, <thread>,
<key>, <catalog>, <param>, and <exception> tags. See http://java.sun.com/dtd/logger.dtd for
the DTD of the output document.

The getHead() and getTail() methods are overridden to return opening and closing <log>
and </log> tags to surround all output <record> tags. Note however, that if an applica-
tion terminates abnormally, the logging facility may be unable to terminate the log file
with the closing <log> tag.

// Public Methods Overriding StreamHandler
public void close() throws SecurityException; synchronized
public void publish(LogRecord record); synchronized

}

public class StreamHandler extends Handler {
// Public Constructors

public StreamHandler();
public StreamHandler(java.io.OutputStream out, java.util.logging.Formatter formatter);

// Public Methods Overriding Handler
public void close() throws SecurityException; synchronized
public void flush(); synchronized
public boolean isLoggable(LogRecord record);
public void publish(LogRecord record); synchronized
public void setEncoding(String encoding) throws SecurityException, java.io.UnsupportedEncodingException;

// Protected Instance Methods
protected void setOutputStream(java.io.OutputStream out) throws SecurityException; synchronized

}

public class XMLFormatter extends java.util.logging.Formatter {
// Public Constructors

public XMLFormatter();
// Public Methods Overriding Formatter

public String format(LogRecord record);
public String getHead(Handler h);
public String getTail(Handler h);

}

Object Handler StreamHandler

Object Formatter XMLFormatter

892 | Chapter 16: java.util and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

.Package java.util.prefs

Package java.util.prefs Java 1.4

The java.util.prefs package contains classes and interfaces for managing persistant user
and system-wide preferences for Java applications and classes. Most applications will
use only the Preferences class itself. Some will also use the event objects and listener
interfaces defined by this package, and some may need to explicitly catch the types of
exceptions defined by this package. Application programmers never need to use the
PreferencesFactory interface or the AbstractPreferences class, which are intended for Preferences
implementors only.

To use the Preferences class, first use a static method to obtain an appropriate Preferences
object or objects, and then use a get() method to query a preference value or a put()
method to set a preference value. The code below shows a typical usage. See the Prefer-
ences class for details.

import java.util.prefs.Preferences;
public class TextEditor {
 // some constants that define default values for preferences
 public static final int WIDTH_DEFAULT = 80;
 public static final String DICTIONARY_DEFAULT = "";
 // Fields to be initialized from preference values
 public int width; // Screen width in columns
 public String dictionary; // Dictionary name for spell-checking
 public void initPrefs() {
 // Get Preferences objects for user and system preferences for this package
 Preferences userprefs = Preferences.userNodeForPackage(TextEditor.class);
 Preferences sysprefs = Preferences.systemNodeForPackage(TextEditor.class);
 // Look up preference values. Note that we always pass a default value
 width = userprefs.getInt("width", WIDTH_DEFAULT);
 // Look up a user preference using a system preference as the default
 dictionary = userprefs.get("dictionary",
 sysprefs.get("dictionary",
 DICTIONARY_DEFAULT));
 }
}

Interfaces
public interface NodeChangeListener extends java.util.EventListener;
public interface PreferenceChangeListener extends java.util.EventListener;
public interface PreferencesFactory;

Events
public class NodeChangeEvent extends java.util.EventObject;
public class PreferenceChangeEvent extends java.util.EventObject;

Other Classes
public abstract class Preferences;

public abstract class AbstractPreferences extends Preferences;

Exceptions
public class BackingStoreException extends Exception;
public class InvalidPreferencesFormatException extends Exception;

Chapter 16: java.util and Subpackages | 893

java.util.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.prefs.AbstractPreferences

AbstractPreferences
java.util.prefs

Java 1.4

This class implements all the abstract methods of Preferences on top of a smaller set of
abstract methods. Programmers creating a Preferences implementation (or “service
provider”) can subclass this class and need define only the nine methods whose names
end in “Spi”. Application programmers never need to use this class.

public abstract class AbstractPreferences extends Preferences {
// Protected Constructors

protected AbstractPreferences(AbstractPreferences parent, String name);
// Event Registration Methods (by event name)

public void addNodeChangeListener(NodeChangeListener ncl); Overrides:Preferences
public void removeNodeChangeListener(NodeChangeListener ncl); Overrides:Preferences
public void addPreferenceChangeListener(PreferenceChangeListener pcl); Overrides:Preferences
public void removePreferenceChangeListener(PreferenceChangeListener pcl); Overrides:Preferences

// Public Methods Overriding Preferences
public String absolutePath();
public String[] childrenNames() throws BackingStoreException;
public void clear() throws BackingStoreException;
public void exportNode(java.io.OutputStream os) throws java.io.IOException, BackingStoreException;
public void exportSubtree(java.io.OutputStream os) throws java.io.IOException, BackingStoreException;
public void flush() throws BackingStoreException;
public String get(String key, String def);
public boolean getBoolean(String key, boolean def);
public byte[] getByteArray(String key, byte[] def);
public double getDouble(String key, double def);
public float getFloat(String key, float def);
public int getInt(String key, int def);
public long getLong(String key, long def);
public boolean isUserNode();
public String[] keys() throws BackingStoreException;
public String name();
public Preferences node(String path);
public boolean nodeExists(String path) throws BackingStoreException;
public Preferences parent();
public void put(String key, String value);
public void putBoolean(String key, boolean value);
public void putByteArray(String key, byte[] value);
public void putDouble(String key, double value);
public void putFloat(String key, float value);
public void putInt(String key, int value);
public void putLong(String key, long value);
public void remove(String key);
public void removeNode() throws BackingStoreException;
public void sync() throws BackingStoreException;
public String toString();

// Protected Instance Methods
protected final AbstractPreferences[] cachedChildren();
protected abstract String[] childrenNamesSpi() throws BackingStoreException;
protected abstract AbstractPreferences childSpi(String name);
protected abstract void flushSpi() throws BackingStoreException;

Object Preferences AbstractPreferences

894 | Chapter 16: java.util and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.prefs.BackingStoreException

BackingStoreException
java.util.prefs

Java 1.4

serializable checked

Signals that a Preferences method could not complete because of an implementation-
specific problem with the preferences database. The most commonly used methods of
the Preferences class do not throw this exception, and are guaranteed to succeed even
if the implementation’s preferences data is not available. Note that although this class
inherits the Serializable interface, implementations are not actually required to be
serializable.

Thrown By Too many methods to list.

InvalidPreferencesFormatException
java.util.prefs

Java 1.4

serializable checked

Signals a syntax error in XML preference data. Note that although this class inherits
the Serializable interface, implementations are not actually required to be serializable.

Thrown By Preferences.importPreferences()

protected AbstractPreferences getChild(String nodeName) throws BackingStoreException;
protected abstract String getSpi(String key);
protected boolean isRemoved();
protected abstract String[] keysSpi() throws BackingStoreException;
protected abstract void putSpi(String key, String value);
protected abstract void removeNodeSpi() throws BackingStoreException;
protected abstract void removeSpi(String key);
protected abstract void syncSpi() throws BackingStoreException;

// Protected Instance Fields
protected final Object lock;
protected boolean newNode;

}

public class BackingStoreException extends Exception {
// Public Constructors

public BackingStoreException(Throwable cause);
public BackingStoreException(String s);

}

public class InvalidPreferencesFormatException extends Exception {
// Public Constructors

public InvalidPreferencesFormatException(String message);
public InvalidPreferencesFormatException(Throwable cause);
public InvalidPreferencesFormatException(String message, Throwable cause);

}

Object Throwable Exception BackingStoreException

Serializable

Object Throwable Exception InvalidPreferencesFormatException

Serializable

Chapter 16: java.util and Subpackages | 895

java.util.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.prefs.PreferenceChangeEvent

NodeChangeEvent
java.util.prefs

Java 1.4

serializable event

A NodeChangeEvent object is passed to the methods of any NodeChangeListener objects regis-
tered on a Preferences object when a child Preferences node is added or removed. getChild()
returns the Preferences object that was added or removed. getParent() returns the parent
Preferences node from which the child was added or removed. This parent Preferences
object is the one on which the NodeChangeListener was registered.

Although this class inherits the Serializable interface, it is not actually serializable.

Passed To NodeChangeListener.{childAdded(), childRemoved()}

NodeChangeListener
java.util.prefs

Java 1.4

event listener

This interface defines the methods that an object must implement if it wants to be
notified when a child preferences node is added to or removed from a Preferences object.
When such an addition or removal occurs, the parent Preferences object passes a Node-
ChangeEvent object to the appropriate method of any NodeChangeListener objects that have
been registered through the Preferences.addNodeChangeListener() method.

Passed To AbstractPreferences.{addNodeChangeListener(), removeNodeChangeListener()},
Preferences.{addNodeChangeListener(), removeNodeChangeListener()}

PreferenceChangeEvent
java.util.prefs

Java 1.4

serializable event

A PreferenceChangeEvent object is passed to the preferenceChange() method of any Preference-
ChangeListener objects registered on a Preferences object whenever a preferences value is
added to, removed from, or modified in that Preferences node. getNode() returns the
affected Preferences object. getKey() returns name of the modified preference. If the prefer-
ence value was added or modified, getNewValue() returns that value. If a preference was
deleted, getNewValue() returns null.

Although this class inherits the Serializable interface, it is not actually serializable.

public class NodeChangeEvent extends java.util.EventObject {
// Public Constructors

public NodeChangeEvent(Preferences parent, Preferences child);
// Public Instance Methods

public Preferences getChild();
public Preferences getParent();

}

public interface NodeChangeListener extends java.util.EventListener {
// Public Instance Methods

void childAdded(NodeChangeEvent evt);
void childRemoved(NodeChangeEvent evt);

}

Object EventObject NodeChangeEvent

Serializable

EventListener NodeChangeListener

896 | Chapter 16: java.util and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.prefs.PreferenceChangeListener

Passed To PreferenceChangeListener.preferenceChange()

PreferenceChangeListener
java.util.prefs

Java 1.4

event listener

This interface defines the method that an object must implement if it wants to be noti-
fied when a preference key/value pair is added to, removed from, or changed in a
Preferences object. After any such change, the Preferences object passes a PreferenceChangeEvent
object describing the change to the preferenceChange() method of any PreferenceChangeListener
objects that have been registered through the Preferences.addPreferenceChangeListener()
method.

Passed To AbstractPreferences.{addPreferenceChangeListener(), removePreferenceChangeListener()},
Preferences.{addPreferenceChangeListener(), removePreferenceChangeListener()}

Preferences
java.util.prefs

Java 1.4

A Preferences object represents a mapping between preference names, which are case-
sensitive strings, and corresponding preference values. get() allows you to query the
string value of a named preference, and put() allows you to set a string value for a
named preference. Although all preference values are stored as strings, various conve-
nience methods whose names begin with “get” and “put” exist to convert preference
values of type boolean byte[], double, float, int, and long to and from strings.

The remove() method allows you to delete a named preference altogether, and clear()
deletes all preference values stored in a Preferences object. The keys() method returns an
array of strings that specify the names of all preferences in the Preferences object.

Preference values are stored in some implementation-dependent back-end which may
be a file, a LDAP directory server, the Windows Registry, or any other persistant
“backing store”. Note that all the get() methods of this class require a default value to
be specified. They return this default if no value has been stored for the named prefer-
ence, or if the backing store is unavailable for any reason. The Preferences class is
completely independent of the underlying implementation, except that it enforces an

public class PreferenceChangeEvent extends java.util.EventObject {
// Public Constructors

public PreferenceChangeEvent(Preferences node, String key, String newValue);
// Public Instance Methods

public String getKey();
public String getNewValue();
public Preferences getNode();

}

public interface PreferenceChangeListener extends java.util.EventListener {
// Public Instance Methods

void preferenceChange(PreferenceChangeEvent evt);
}

Object EventObject PreferenceChangeEvent

Serializable

EventListener PreferenceChangeListener

Chapter 16: java.util and Subpackages | 897

java.util.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.prefs.Preferences

80-character limit for preference names and Preference node names (see below), and a
8192-character limit on preference value strings.

Preferences does not have a public construtor. To obtain a Preferences object for use in your
application, you must must use one of the static methods described below. Each Prefer-
ences object is a node in a hierarchy of Preferences nodes. There are two distinct
hierarchies: one stores user-specific preferences, and one stores system-wide prefer-
ences. All Preferences nodes (in either hierarchy) have a unique name and use the same
naming convention that Unix filesystems use. Applications (and classes) may store
their preferences in a Preferences node with any name, but the convention is to use a
node name that corresponds to the package name of the application or class, with all
“.” characters in the package name converted to “/” characters. For example, the pref-
erences node used by java.lang.System would be “/java/lang”.

Preferences defines static methods that you can use to obtain the Preferences objects your
application requires. Pass a Class object to systemNodeForPackage() and userNodeForPackage() to
obtain the system and user Preferences objects that are specific to the package of that
class. If you want a Preferences node specific to a single class rather than to the package,
you can pass the class name to the node() method of the package-specific node returned
by systemNodeForPackage() or userNodeForPackage(). If you want to navigate the entire tree of
preferences nodes (which most applications never need to do) call systemRoot() and
userRoot() to obtain the root node of the two hierarchies, and then use the node() method
to look up child nodes of those roots.

Various Preferences methods allow you to traverse the preferences hierarchies. parent()
returns the parent Preferences node. childrenNames() returns an array of the relative names of
all children of a Preferences node. node() returns a named Preferences object from the hier-
archy. If the specified node name begins with a slash, it is an absolute name and is
interpreted relative to the root of the hierarchy. Otherwise, it is a relative name and is
interpreted relative to the Preferences object on which node() was called. nodeExists() allows
you to test whether a named node exists. removeNode() allows you to delete an entire Prefer-
ences node from the hierarchy (useful when uninstalling an application). name() returns
the simple name of a Preferences node, relative to its parent. absoutePath() returns the full,
absolute name of the node, relative to the root of the hierarchy. Finally, isUserNode() allows
you to determine whether a Preferences object is part of the user or system hierarchies.

Many applications will simply read their preference values once at startup. Long-lived
applications or applications that want to respond dynamically to modifications to pref-
erences (such as applications that are tightly integrated with a graphical desktop) may
use addPreferenceChangeListener() to register a PreferenceChangeListener to recieve notifications of
preference changes (in the form of PreferenceChangeEvent objects). Applications that are
interested in changes to the Preferences hierarchy itself can register a NodeChangeListener.

put() and the various type-specific put...() convenience methods may return asyncho-
nously, before the new preference value is stored persistantly within the backing store.
Call flush() to force any preference changes to this Preferences node (and any of its descen-
dants in the hierarchy) to be stored persistantly. (Note that it is not necessary to call
flush() before an application terminates: all preferences will eventually be made persis-
tant.) More than one application (within more than one Java virtual machine) may set
preference values in the same Preferences node at the same time. Call sync() to ensure that
future calls to get() and its related convenience methods retrieve current preference
values set by this or other virtual machines. Note that the flush() and sync() operations
are typically much more expensive than get() and put() operations, and applications do
not often need to use them.

898 | Chapter 16: java.util and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.prefs.Preferences

Preferences implementations ensure that all the methods of this class are thread safe. If
multiple threads or multiple VMs write store the same preferences concurrently, their
values may overwrite one another, but the preference data will not be corrupted. Note
that, for simplicity, Preferences does not define any way to set multiple preferences in a
single atomic transaction. If you need to ensure atomicity for multiple preference
values, define a data format that allows you to store all the requisite values in a single
string, and set and query those values with a single call to put() or get().

The contents of a Preferences node, or of a node and all of its descendants may be
exported as an XML file with exportNode() and exportSubtree(). The static importPreferences()
method reads an exported XML file back into the preferences hierarchy. These
methods allow backups to be made of preference data, and allow preferences to be
transferred between systems or between users.

Prior to Java 1.4, application preferences were sometimes managed with the
java.util.Properties object.

public abstract class Preferences {
// Protected Constructors

protected Preferences();
// Public Constants

public static final int MAX_KEY_LENGTH; =80
public static final int MAX_NAME_LENGTH; =80
public static final int MAX_VALUE_LENGTH; =8192

// Public Class Methods
public static void importPreferences(java.io.InputStream is)

throws java.io.IOException, InvalidPreferencesFormatException;
public static Preferences systemNodeForPackage(Class<?> c);
public static Preferences systemRoot();
public static Preferences userNodeForPackage(Class<?> c);
public static Preferences userRoot();

// Event Registration Methods (by event name)
public abstract void addNodeChangeListener(NodeChangeListener ncl);
public abstract void removeNodeChangeListener(NodeChangeListener ncl);
public abstract void addPreferenceChangeListener(PreferenceChangeListener pcl);
public abstract void removePreferenceChangeListener(PreferenceChangeListener pcl);

// Public Instance Methods
public abstract String absolutePath();
public abstract String[] childrenNames() throws BackingStoreException;
public abstract void clear() throws BackingStoreException;
public abstract void exportNode(java.io.OutputStream os) throws java.io.IOException, BackingStoreException;
public abstract void exportSubtree(java.io.OutputStream os) throws java.io.IOException, BackingStoreException;
public abstract void flush() throws BackingStoreException;
public abstract String get(String key, String def);
public abstract boolean getBoolean(String key, boolean def);
public abstract byte[] getByteArray(String key, byte[] def);
public abstract double getDouble(String key, double def);
public abstract float getFloat(String key, float def);
public abstract int getInt(String key, int def);
public abstract long getLong(String key, long def);
public abstract boolean isUserNode();
public abstract String[] keys() throws BackingStoreException;
public abstract String name();
public abstract Preferences node(String pathName);
public abstract boolean nodeExists(String pathName) throws BackingStoreException;

Chapter 16: java.util and Subpackages | 899

java.util.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

.Package java.util.regex

Subclasses AbstractPreferences

Passed To NodeChangeEvent.NodeChangeEvent(), PreferenceChangeEvent.PreferenceChangeEvent()

Returned By AbstractPreferences.{node(), parent()}, NodeChangeEvent.{getChild(), getParent()},
PreferenceChangeEvent.getNode(), PreferencesFactory.{systemRoot(), userRoot()}

PreferencesFactory
java.util.prefs

Java 1.4

The PreferencesFactory interface defines the factory methods used by the static methods of
the Preferences class to obtain the root Preferences nodes for user-specific and system-wide
preferences hierarchies. Application programmers never need to use this interface.

An implementation of the preferences API for a specific back-end data store must
include an implementation of this interface that works with that data store. Sun’s
implementation of Java includes a default filesystem-based implementation, which you
can override by specifying the name of a PreferencesFactory implementation as the value of
the “java.util.prefs.PreferencesFactory” system property.

Package java.util.regex Java 1.4

This small package provides a facility for textual pattern matching with regular expres-
sions. Pattern objects represent regular expressions, which are specified using a syntax
very close to the one used by the Perl programming language. The Matcher class encap-
sulates a Pattern and a java.lang.CharSequence of text, and defines various methods for
matching the pattern to the text. In Java 5.0, the MatchResult interface represents the
result of a match. Matcher implements this interface and can be queried directly.

In addition to the pattern matching methods defined in this package, the java.lang.String
class has been augmented in Java 1.4 with a number of convenience methods for
matching strings against regular expressions that are specified in their text form as
strings, rather than in their compiled form as Pattern objects. Applications with simple
pattern matching needs can use these convenience methods and may never have to
directly use the Pattern or Matcher classes.

public abstract Preferences parent();
public abstract void put(String key, String value);
public abstract void putBoolean(String key, boolean value);
public abstract void putByteArray(String key, byte[] value);
public abstract void putDouble(String key, double value);
public abstract void putFloat(String key, float value);
public abstract void putInt(String key, int value);
public abstract void putLong(String key, long value);
public abstract void remove(String key);
public abstract void removeNode() throws BackingStoreException;
public abstract void sync() throws BackingStoreException;

// Public Methods Overriding Object
public abstract String toString();

}

public interface PreferencesFactory {
// Public Instance Methods

Preferences systemRoot();
Preferences userRoot();

}

900 | Chapter 16: java.util and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.regex.Matcher

Interfaces
public interface MatchResult;

Classes
public final class Matcher implements MatchResult;
public final class Pattern implements Serializable;

Exceptions
public class PatternSyntaxException extends IllegalArgumentException;

Matcher
java.util.regex

Java 1.4

A Matcher objects encapsulate a regular expression and a string of text (a Pattern and a
java.lang.CharSequence) and defines methods for matching the pattern to the text in several
different ways, for obtaining details about pattern matches, and for doing search-and-
replace operations on the text. Matcher has no public constructor. Obtain a Matcher by
passing the character sequence to be matched to the matcher() method of the desired
Pattern object. You can also reuse an existing Matcher object with a new character
sequence (but the same Pattern) by passing a new CharSequence to the matcher’s reset()
method. In Java 5.0, you can use a new Pattern object on the current character sequence
with the usePattern() method.

Once you have created or reset a Matcher, there are three types of comparisons you can
perform between the regular expression and the character sequence. All three compari-
sons operate on the current region of the character sequence. By default, this region is
the entire sequence. In Java 5.0, however, you can set the bound of the region with
region(). The simplest type of comparison is the matches() method. It returns true if the
pattern matches the complete region of the character sequence, and returns false other-
wise. The lookingAt() method is similar: it returns true if the pattern matches the
complete region, or if it matches some subsequence at the beginning of the region. If
the pattern does not match the start of the region, lookingAt() returns false. matches()
requires the pattern to match both the beginning and ending of the region, and
lookingAt() requires the pattern to match the beginning. The find() method, on the other
hand, has neither of these requirements: it returns true if the pattern matches any part
of the region. As will be described below, find() has some special behavior that allows it
to be used in a loop to find all matches in the text.

If matches(), lookingAt(), or find() return true, then several other Matcher methods can be used
to obtain details about the matched text. The MatchResult interface defines the start(), end()
and group() methods that return the starting position, the ending position and the text
of the match, and of any matching subexpressions within the Pattern. See MatchResult for
details. The MatchResult interface is new in Java 5.0, but Matcher implements all of its
methods in Java 1.4 as well. Calling MatchResult methods on a Matcher returns results from
the most recent match. If you want to store these results, call toMatchResult() to obtain an
indepedent, immutable MatchResult object whose methods can be queried later.

The no-argument version of find() has special behavior that makes it suitable for use in
a loop to find all matches of a pattern within a region. The first time find() is called after
a Matcher is created or after the reset() method is called, it starts it search at the begin-
ning of the string. If it finds a match, it stores the start and end position of the matched
text. If reset() is not called in the meantime, then the next call to find() searches again but
starts the search at the first character after the match: at the position returned by end().

Chapter 16: java.util and Subpackages | 901

java.util.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.regex.Matcher

(If the previous call to find() matched the empty string, then the next call begins at
end()+1 instead.) In this way, it is possible to find all matches of a pattern within a
string simply by calling find() repeatedly until it returns false indicating that no match
was found. After each repeated call to find() you can use the MatchResult methods to
obtain more information about the text that matched the pattern and any of its
subpatterns.

Matcher also defines methods that perform search-and-replace operations. replaceFirst()
searches the character sequence for the first subsequence that matches the pattern. It
then returns a string that is the character sequence with the matched text replaced
with the specified replacement string. replaceAll() is similar, but replaces all matching
subsequences within the character sequence instead of just replacing the first. The
replacement string passed to replaceFirst() and replaceAll() is not always replaced literally. If
the replacement contains a dollar sign followed by an integer that is a valid group
number, then the dollar sign and the number are replaced by the text that matched the
numbered group. If you want to include a literal dollar sign in the replacement string,
preceed it with a backslash. In Java 5.0, you can use the static quoteReplacement() method
to properly quote any special characters in a replacement string so that the string will
be interpreted literally.

replaceFirst() and replaceAll() are convenience methods that cover the most common search-
and-replace cases. However, Matcher also defines lower-level methods that you can use
to do a custom search-and-replace operation in conjunction with calls to find(), and
build up a modified string in a StringBuffer. In order to understand this search-and-
replace procedure, you must know that a Matcher maintains a “append position”, which
starts at zero when the Matcher is created, and is restored to zero by the reset() method.
The appendReplacement() method is designed to be used after a successful call to find(). It
copies all the text between the append position and the character before the start() posi-
tion for the last match into the specified string buffer. Then it appends the specified
replacement text to that string buffer (performing the same substitutions that replaceAll()
does). Finally, it sets the append position to the end() of the last match, so that a subse-
quent call to appendReplacement() starts at a new character. appendReplacement() is intended
for use after a call to find() that returns true. When find() cannot find another match and
returns false, you should complete the replacement operation by calling appendTail(): this
method copies all text between the end() position of the last match and the end of the
character sequence into the specified StringBuffer.

The reset() method has been mentioned several times. It erases any saved information
about the last match, and restores the Matcher to its initial state so that subsequent calls
to find() and appendReplacement() start at the begining of the character sequence. The one-
argument version of reset() also allows you to specify an entirely new character
sequence to match against. It is important to understand that several other Matcher
methods call reset() themselves before they perform their operation. They are: matches(),
lookingAt(), the one-argument version of find(), replaceAll(), and replaceFirst().

Prior to Java 5.0, the region of the input text that a Matcher operates on is the entire
character sequence. In Java 5.0, you can define a different region with the region()
method, which specifies the position of the first character in the region and the posi-
tion of the first character after the end of the region. regionStart() and regionEnd() return the
current value of these region bounds. By default, regions are “anchoring” which means
that the start and end of the region match the ^ and $ anchors. (See Pattern for regular
expression grammar details.) Call useAnchoringBounds() to turn anchoring bounds on or off
in Java 5.0. The bounds of a region are “opaque” by default, which means that the
Matcher will not look through the bounds in an attempt to match look-ahead or look-

902 | Chapter 16: java.util and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.regex.Matcher

behind assertions (see Pattern). In Java 5.0, you can make the bounds transparent with
useTransparentBounds(true).

Matcher is not threadsafe, and should not be used by more than one thread
concurrently.

Returned By Pattern.matcher()

public final class Matcher implements MatchResult {
// No Constructor
// Public Class Methods
5.0 public static String quoteReplacement(String s);
// Public Instance Methods

public Matcher appendReplacement(StringBuffer sb, String replacement);
public StringBuffer appendTail(StringBuffer sb);
public int end(); Implements:MatchResult
public int end(int group); Implements:MatchResult
public boolean find();
public boolean find(int start);
public String group(); Implements:MatchResult
public String group(int group); Implements:MatchResult
public int groupCount(); Implements:MatchResult

5.0 public boolean hasAnchoringBounds();
5.0 public boolean hasTransparentBounds();
5.0 public boolean hitEnd();

public boolean lookingAt();
public boolean matches();
public Pattern pattern();

5.0 public Matcher region(int start, int end);
5.0 public int regionEnd();
5.0 public int regionStart();

public String replaceAll(String replacement);
public String replaceFirst(String replacement);

5.0 public boolean requireEnd();
public Matcher reset();
public Matcher reset(CharSequence input);
public int start(); Implements:MatchResult
public int start(int group); Implements:MatchResult

5.0 public MatchResult toMatchResult();
5.0 public Matcher useAnchoringBounds(boolean b);
5.0 public Matcher usePattern(Pattern newPattern);
5.0 public Matcher useTransparentBounds(boolean b);
// Methods Implementing MatchResult

public int end();
public int end(int group);
public String group();
public String group(int group);
public int groupCount();
public int start();
public int start(int group);

// Public Methods Overriding Object
5.0 public String toString();
}

Object Matcher MatchResult

Chapter 16: java.util and Subpackages | 903

java.util.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.regex.Pattern

MatchResult
java.util.regex

Java 5.0

This interface represents the results of a regular expression matching operation
performed by a Matcher. Matcher implements this interface directly, and you can use the
methods defined here to obtain the results of the most recent match performed by a
Matcher. You can also save those most recent match results in a separate immutable
MatchResult object by calling the toMatchResult() method of the Matcher.

The no-argument versions of the start() and end() method return the index of the first
character that matched the pattern and the index of the last character that matched
plus one (the index of the first character following the matched text), respectively.
Some regular expressions can match the empty string. If this occurs, end() returns the
same value as start(). The no-argument version of group() returns the text that matched
the pattern.

If the matched Pattern includes capturing subexpressions within parentheses, the other
methods of this interface provide details about the text that matched each of those
subexpressions. Pass a group number to start(), end(), or group() to obtain the start, end,
or text that matched the specified group. groupCount() returns the number of subexpres-
sions. Groups are numbered from 1, however, so legal group numbers run from 1 to
the value returned by groupCount(). Groups are ordered from left-to-right within the
regular expression. When there are nested groups, their ordering is based on the posi-
tion of the opening left parenthesis that begins the group. Group 0 represents the
entire regular expression, so passing 0 to start(), end(), or group() is the same as calling the
no-argument version of the method.

Implementations Matcher

Returned By java.util.Scanner.match(), Matcher.toMatchResult()

Pattern
java.util.regex

Java 1.4

serializable

This class represents a regular expression. It has no public constructor: obtain a Pattern
by calling one of the static compile() methods, passing the string representation of the
regular expression, and an optional bitmask of flags that modify the behavior of the
regex. pattern() and flags() return the string form of the regular expression and the
bitmask that were passed to compile().

If you want to perform only a single match operation with a regular expression, and
don’t need to use any of the flags, you don’t have to create a Pattern object: simply pass
the string representation of the pattern and the CharSequence to be matched to the static
matches() method: the method returns true if the specified pattern matches the complete
specified text, or returns false otherwise.

public interface MatchResult {
// Public Instance Methods

int end();
int end(int group);
String group();
String group(int group);
int groupCount();
int start();
int start(int group);

}

904 | Chapter 16: java.util and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.regex.Pattern

Pattern represents a regular expression, but does not actually define any primitive
methods for matching regular expressions to text. To do that, you must create a Matcher
object that encapsulates a pattern and the text it is to be compared with. Do this by
calling the matcher() method and specifying the CharSequence you want to match against.
See Matcher for a description of what you can do with it.

The split() methods are the exception to the rule that you must obtain a Matcher in order
to be able to do anything with a Pattern (although they create and use a Matcher inter-
nally). They take a CharSequence as input, and split it into substrings, using text that
matches the regular expression as the delimiter, returning the substrings as a String[].
The two-argument version of split() takes an integer argument that specifies the
maximum number of substrings to break the input into.

Pattern defines the following flags that control various aspects of how regular expres-
sion matching is performed. The flags are the following:

CANON_EQ
The Unicode standard sometimes allows more than one way to specify the same
character. If this flag is set, characters are compared by comparing their full
canonical decompositions, so that characters will match even if expressed in
different ways. Enabling this flag typically slows down performance. Unlike all
the other flags, there is no way to temporarily enable this flag within a pattern.

CASE_INSENSITIVE
Match letters without regard to case. By default this flag only affects the compari-
sons of ASCII letters. Also set the UNICODE_CASE flag if you want to ignore the case of
all Unicode characters. You can enable this flag within a pattern with (?i).

COMMENTS
If this flag is set, then whitespace and comments within a pattern are ignored.
Comments are all characters between a # and end of line. You can enable this flag
within a pattern with (?x)

DOTALL
If this flag is set, then the . expression matches any character. If it is not set, then
it does not match line terminator characters. This is also known as “single-line
mode” and you can enable it within a pattern with (?s).

MULTILINE
If this flag is set, then the ^ and $ anchors match not only at the beginning and
end of the input string, but also at the beginning and end of any lines within that
string. Within a pattern you can enable this flag with (?m).

UNICODE_CASE
If this flag is set along with the CASE_INSENSITIVE flag, then case-insensitive compar-
ison is done for all Unicode letters, rather than just for ASCII letters. You can
enable both flags within a pattern with (?iu).

UNIX_LINES
If this flag is set, then only the newline character is considered a line terminator
for the purposes of ., ^, and $. If the flag is not set, then newlines (\n) carriage
returns (\r) and carriage return newline sequences (\r\n) are all considered line
terminators, as are the Unicode characters \u0085 (“next line”) \u2028 (“line sepa-
rator”) and \u2029 (“paragraph separator”). You can turn this flag on within a
pattern with (?d).

Although the API for the Pattern class is quite simple, the syntax for the text representa-
tion of regular expressions is fairly complex. A complete tutorial on regular

Chapter 16: java.util and Subpackages | 905

java.util.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.regex.Pattern

expressions is beyond the scope of this book. The table below, is a quick-reference for
regular expression syntax. It is very similar to the syntax used in Perl. Note that many
of the syntax elements of a regular expression include a backslash character, such as \d
to match one of the digits 0-9. Because Java strings also use the backslash character as
an escape, you must double the backslashes when expressing a regular expression as a
string literal: “\\d”. In Java 5.0, the static quote() method quotes all special characters in
a string so that you can match arbitrary text literally without worrying that punctua-
tion in that text will be interpreted specially. For complete details on regular
expressions see a book like Programming Perl by Larry Wall et. al., or Mastering
Regular Expressions by Jeffrey E. F. Friedl.

Table 16-3. Java regular expression quick reference

Syntax Matches

Single characters

x The character x, as long as x is not a punctuation character with special meaning in the regular
expression syntax.

\p The punctuation character p.

\\ The backslash character

\n Newline character \u000A.

\t Tab character \u0009.

\r Carriage return character \u000D.

\f Form feed character \u000C.

\e Escape character \u001B.

\a Bell (alert) character \u0007.

\uxxxx Unicode character with hexadecimal code xxxx.

\xxx Character with hexadecimal code xx.

\0n Character with octal code n.

\0nn Character with octal code nn.

\0nnn Character with octal code nnn, where nnn <= 377.

\cx The control character ^x.

Character classes

[...] One of the characters between the brackets. Characters may be specified literally, and the syntax
also allows the specification of character ranges, with intersection, union, and subtraction opera-
tors. See specific examples below.

[^...] Any one character not between the brackets.

[a-z0-9] Character range: a character between (inclusive) a and z or 0 and 9.

[0-9[a-fA-F]] Union of classes: same as [0-9a-fA-F]

[a-z&&[aeiou]] Intersection of classes: same as [aeiou].

[a-z&&[^aeiou]] Subtraction: the characters a through z except for the vowels.

. Any character except a line terminator. If the DOTALL flag is set, then it matches any character
including line terminators.

\d ASCII digit: [0-9].

\D Anything but an ASCII digit: [^\d].

\s ASCII whitespace: [\t\n\f\r\x0B]

\S Anything but ASCII whitespace: [^\s].

\w ASCII word character: [a-zA-Z0-9_].

906 | Chapter 16: java.util and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.regex.Pattern

\W Anything but ASCII word characters: [^\w].

\p{group} Any character in the named group. See group names below. Many of the group names are from
POSIX, which is why p is used for this character class.

\P{group} Any character not in the named group.

\p{Lower} ASCII lowercase letter: [a-z].

\p{Upper} ASCII uppercase: [A-Z].

\p{ASCII} Any ASCII character: [\x00-\x7f].

\p{Alpha} ASCII letter: [a-zA-Z].

\p{Digit} ASCII digit: [0-9].

\p{XDigit} Hexadecimal digit: [0-9a-fA-F].

\p{Alnum} ASCII letter or digit: [\p{Alpha}\p{Digit}].

\p{Punct} ASCII punctuation: one of !”#$%& ()*+,-./:;<=>?@[\]^_ {|}~].

\p{Graph} visible ASCII character: [\p{Alnum}\p{Punct}].

\p{Print} visible ASCII character: same as \p{Graph}.

\p{Blank} ASCII space or tab: [\t].

\p{Space} ASCII whitespace: [\t\n\f\r\x0b].

\p{Cntrl} ASCII control character: [\x00-\x1f\x7f].

\p{category} Any character in the named Unicode category. Category names are one or two letter codes defined
by the Unicode standard. One letter codes include L for letter, N for number, S for symbol, Z for
separator, and P for punctuation. Two letter codes represent subcategories, such as Lu for upper-
case letter, Nd for decimal digit, Sc for currency symbol, Sm for math symbol, and Zs for space
separator. See java.lang.Character for a set of constants that correspond to these subcate-
gories; however, note that the full set of one- and two-letter codes is not documented in this book.

\p{block} Any character in the named Unicode block. In Java regular expressions, block names begin with
“In”, followed by mixed-case capitalization of the Unicode block name, without spaces or under-
scores. For example: \p{InOgham} or \p{InMathematicalOperators}. See
java.lang.Character.UnicodeBlock for a list of Unicode block names.

Sequences, alternatives, groups, and references

xy Match x followed by y.

x|y Match x or y.

(...) Grouping. Group subexpression within parentheses into a single unit that can be used with *, +, ?,
|, and so on. Also “capture” the characters that match this group for use later.

(?:...) Grouping only. Group subexpression as with (), but do not capture the text that matched.

\n Match the same characters that were matched when capturing group number n was first matched.
Be careful when n is followed by another digit: the largest number that is a valid group number
will be used.

Repetitiona

x? zero or one occurrence of x; i.e., x is optional.

x* zero or more occurrences of x.

x+ one or more occurrences of x.

x{n} exactly n occurrences of x.

x{n,} n or more occurrences of x.

x{n,m} at least n, and at most m occurrences of x.

Table 16-3. Java regular expression quick reference (continued)

Syntax Matches

Chapter 16: java.util and Subpackages | 907

java.util.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.regex.Pattern

Anchorsb

^ The beginning of the input string, or if the MULTILINE flag is specified, the beginning of the string
or of any new line.

$ The end of the input string, or if the MULTILINE flag is specified, the end of the string or of line
within the string.

\b A word boundary: a position in the string between a word and a nonword character.

\B A position in the string that is not a word boundary.

\A The beginning of the input string. Like ^, but never matches the beginning of a new line, regard-
less of what flags are set.

\Z The end of the input string, ignoring any trailing line terminator.

\z The end of the input string, including any line terminator.

\G The end of the previous match.

(?=x) A positive look-ahead assertion. Require that the following characters match x, but do not include
those characters in the match.

(?!x) A negative look-ahead assertion. Require that the following characters do not match the pattern x.

(?<=x) A positive look-behind assertion. Require that the characters immediately before the position
match x, but do not include those characters in the match. x must be a pattern with a fixed number
of characters.

(?<!x) A negative look-behind assertion. Require that the characters immediately before the position do
not match x. x must be a pattern with a fixed number of characters.

Miscellaneous

(?>x) Match x independently of the rest of the expression, without considering whether the match
causes the rest of the expression to fail to match. Useful to optimize certain complex regular
expressions. A group of this form does not capture the matched text.

(?onflags-
offflags)

Don t match anything, but turn on the flags specified by onflags, and turn off the flags specified by
offflags. These two strings are combinations in any order of the following letters and correspond to
the following Pattern constants: i (CASE_INSENSITIVE), d (UNIX_LINES), m (MULTILINE),
s (DOTALL), u (UNICODE_CASE), and x (COMMENTS). Flag settings specified in this way take effect
at the point that they appear in the expression and persist until the end of the expression, or until
the end of the parenthesized group of which they are a part, or until overridden by another flag
setting expression.

(?onflags-
offflags:x)

Match x, applying the specified flags to this subexpression only. This is a noncapturing group, like
(?:...), with the addition of flags.

\Q Don’t match anything, but quote all subsequent pattern text until \E. All characters within such a
quoted section are interpreted as literal characters to match, and none (except \E) have special
meanings.

\E Don’t match anything; terminate a quote started with \Q.

#comment If the COMMENT flag is set, pattern text between a # and the end of the line is considered a
comment and is ignored.

a These repetition characters are known as “greedy quantifiers,” because they match as many occurrences of x as possible while still allowing
the rest of the regular expression to match. If you want a “reluctant quantifier” which matches as few occurrences as possible while still al-
lowing the rest of the regular expression to match, follow the quantifiers above with a question mark. For example, use *? instead of *, and
use {2,}? instead of {2,}. Or, if you follow a quantifier with a plus sign instead of a question mark, then you specify a “possessive quantifier”
which matches as many occurrences as possible, even if it means that the rest of the regular expression will not match. Possessive quantifiers
can be useful when you are sure that they will not adversely affect the rest of the match, because they can be implemented more efficiently
than regular “greedy quantifiers.”

b Anchors do not match characters but instead match the zero-width positions between characters, “anchoring” the match to a position at
which a specific condition holds.

Table 16-3. Java regular expression quick reference (continued)

Syntax Matches

908 | Chapter 16: java.util and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.regex.PatternSyntaxException

Passed To java.util.Scanner.{findInLine(), findWithinHorizon(), hasNext(), next(), skip(), useDelimiter()},
Matcher.usePattern()

Returned By java.util.Scanner.delimiter(), Matcher.pattern()

PatternSyntaxException
java.util.regex

Java 1.4

serializable unchecked

Signals a syntax error in the text representation of a regular expression. An exception
of this type may be thrown by the Pattern.compile() and Pattern.matches() methods, and also
by the String matches(), replaceFirst(), replaceAll() and split() methods which call those Pattern
methods.

getPattern() returns the text that contained the syntax error, and getIndex() returns the
approximate location of the error within that text, or -1, if the location is not known.
getDescription() returns an error message that provides further detail about the error. The
inherited getMessage() method combines the information provided by these other three
methods into a single multiline message.

public final class Pattern implements Serializable {
// No Constructor
// Public Constants

public static final int CANON_EQ; =128
public static final int CASE_INSENSITIVE; =2
public static final int COMMENTS; =4
public static final int DOTALL; =32

5.0 public static final int LITERAL; =16
public static final int MULTILINE; =8
public static final int UNICODE_CASE; =64
public static final int UNIX_LINES; =1

// Public Class Methods
public static Pattern compile(String regex);
public static Pattern compile(String regex, int flags);
public static boolean matches(String regex, CharSequence input);

5.0 public static String quote(String s);
// Public Instance Methods

public int flags();
public Matcher matcher(CharSequence input);
public String pattern();
public String[] split(CharSequence input);
public String[] split(CharSequence input, int limit);

// Public Methods Overriding Object
5.0 public String toString();
}

public class PatternSyntaxException extends IllegalArgumentException {
// Public Constructors

public PatternSyntaxException(String desc, String regex, int index);
// Public Instance Methods

public String getDescription();

Object Pattern Serializable

Object Throwable Exception RuntimeException IllegalArgumentException PatternSyntaxException

Serializable

Chapter 16: java.util and Subpackages | 909

java.util.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.zip.Adler32

Package java.util.zip Java 1.1

The java.util.zip package contains classes for data compression and decompression. The
Deflater and Inflater classes perform data compression and decompression. DeflaterOutput-
Stream and InflaterInputStream apply that functionality to byte streams; the subclasses of
these streams implement both the GZIP and ZIP compression formats. The Adler32 and
CRC32 classes implement the Checksum interface and compute the checksums required for
data compression.

Interfaces
public interface Checksum;

Classes
public class Adler32 implements Checksum;
public class CheckedInputStream extends java.io.FilterInputStream;
public class CheckedOutputStream extends java.io.FilterOutputStream;
public class CRC32 implements Checksum;
public class Deflater;
public class DeflaterOutputStream extends java.io.FilterOutputStream;

public class GZIPOutputStream extends DeflaterOutputStream;
public class ZipOutputStream extends DeflaterOutputStream implements ZipConstants;

public class Inflater;
public class InflaterInputStream extends java.io.FilterInputStream;

public class GZIPInputStream extends InflaterInputStream;
public class ZipInputStream extends InflaterInputStream implements ZipConstants;

public class ZipEntry implements Cloneable, ZipConstants;
public class ZipFile implements ZipConstants;

Exceptions
public class DataFormatException extends Exception;
public class ZipException extends java.io.IOException;

Adler32
java.util.zip

Java 1.1

This class implements the Checksum interface and computes a checksum on a stream of
data using the Adler-32 algorithm. This algorithm is significantly faster than the CRC-
32 algorithm and is almost as reliable. The CheckedInputStream and CheckedOutputStream
classes provide a higher-level interface to computing checksums on streams of data.

public int getIndex();
public String getPattern();

// Public Methods Overriding Throwable
public String getMessage();

}

public class Adler32 implements Checksum {
// Public Constructors

public Adler32();
// Public Instance Methods

Object Adler32 Checksum

910 | Chapter 16: java.util and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.zip.CheckedInputStream

CheckedInputStream
java.util.zip

Java 1.1

closeable

This class is a subclass of java.io.FilterInputStream; it allows a stream to be read and a
checksum computed on its contents at the same time. This is useful when you want to
check the integrity of a stream of data against a published checksum value. To create a
CheckedInputStream, you must specify both the stream it should read and a Checksum object,
such as CRC32, that implements the particular checksum algorithm you desire. The read()
and skip() methods are the same as those of other input streams. As bytes are read, they
are incorporated into the checksum that is being computed. The getChecksum() method
does not return the checksum value itself, but rather the Checksum object. You must call
the getValue() method of this object to obtain the checksum value.

CheckedOutputStream
java.util.zip

Java 1.1

closeable flushable

This class is a subclass of java.io.FilterOutputStream that allows data to be written to a stream
and a checksum computed on that data at the same time. To create a CheckedOutput-
Stream, you must specify both the output stream to write its data to and a Checksum
object, such as an instance of Adler32, that implements the particular checksum algo-
rithm you desire. The write() methods are similar to those of other OutputStream classes.
The getChecksum() method returns the Checksum object. You must call getValue() on this
object in order to obtain the actual checksum value.

public void update(byte[] b);
// Methods Implementing Checksum

public long getValue(); default:1
public void reset();
public void update(int b);
public void update(byte[] b, int off, int len);

}

public class CheckedInputStream extends java.io.FilterInputStream {
// Public Constructors

public CheckedInputStream(java.io.InputStream in, Checksum cksum);
// Public Instance Methods

public Checksum getChecksum();
// Public Methods Overriding FilterInputStream

public int read() throws java.io.IOException;
public int read(byte[] buf, int off, int len) throws java.io.IOException;
public long skip(long n) throws java.io.IOException;

}

public class CheckedOutputStream extends java.io.FilterOutputStream {
// Public Constructors

public CheckedOutputStream(java.io.OutputStream out, Checksum cksum);

Object InputStream FilterInputStream CheckedInputStream

Closeable

Object OutputStream FilterOutputStream CheckedOutputStream

Closeable Flushable

Chapter 16: java.util and Subpackages | 911

java.util.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.zip.CRC32

Checksum
java.util.zip

Java 1.1

This interface defines the methods required to compute a checksum on a stream of
data. The checksum is computed based on the bytes of data supplied by the update()
methods; the current value of the checksum can be obtained at any time with the
getValue() method. reset() resets the checksum to its default value; use this method before
beginning a new stream of data. The checksum value computed by a Checksum object and
returned through the getValue() method must fit into a long value. Therefore, this inter-
face is not suitable for the cryptographic checksum algorithms used in cryptography
and security. The classes CheckedInputStream and CheckedOutputStream provide a higher-level
API for computing a checksum on a stream of data. See also java.security.MessageDigest.

Implementations Adler32, CRC32

Passed To CheckedInputStream.CheckedInputStream(), CheckedOutputStream.CheckedOutputStream()

Returned By CheckedInputStream.getChecksum(), CheckedOutputStream.getChecksum()

CRC32
java.util.zip

Java 1.1

This class implements the Checksum interface and computes a checksum on a stream of
data using the CRC-32 algorithm. The CheckedInputStream and CheckedOutputStream classes
provide a higher-level interface to computing checksums on streams of data.

Type Of GZIPInputStream.crc, GZIPOutputStream.crc

// Public Instance Methods
public Checksum getChecksum();

// Public Methods Overriding FilterOutputStream
public void write(int b) throws java.io.IOException;
public void write(byte[] b, int off, int len) throws java.io.IOException;

}

public interface Checksum {
// Public Instance Methods

long getValue();
void reset();
void update(int b);
void update(byte[] b, int off, int len);

}

public class CRC32 implements Checksum {
// Public Constructors

public CRC32();
// Public Instance Methods

public void update(byte[] b);
// Methods Implementing Checksum

public long getValue(); default:0
public void reset();
public void update(int b);
public void update(byte[] b, int off, int len);

}

Object CRC32 Checksum

912 | Chapter 16: java.util and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.zip.DataFormatException

DataFormatException
java.util.zip

Java 1.1

serializable checked

Signals that invalid or corrupt data has been encountered while uncompressing data.

Thrown By Inflater.inflate()

Deflater
java.util.zip

Java 1.1

This class implements the general ZLIB data-compression algorithm used by the gzip
and PKZip compression programs. The constants defined by this class are used to
specify the compression strategy and the compression speed/strength tradeoff level
to be used. If you set the nowrap argument to the constructor to true, the ZLIB header
and checksum data are omitted from the compressed output, which is the format
both gzip and PKZip use.

The important methods of this class are setInput(), which specifies input data to be
compressed, and deflate(), which compresses the data and returns the compressed
output. The remaining methods exist so that Deflater can be used for stream-based
compression, as it is in higher-level classes, such as GZIPOutputStream and ZipOutputStream.
These stream classes are sufficient in most cases. Most applications do not need to
use Deflater directly. The Inflater class uncompresses data compressed with a Deflater
object.

public class DataFormatException extends Exception {
// Public Constructors

public DataFormatException();
public DataFormatException(String s);

}

public class Deflater {
// Public Constructors

public Deflater();
public Deflater(int level);
public Deflater(int level, boolean nowrap);

// Public Constants
public static final int BEST_COMPRESSION; =9
public static final int BEST_SPEED; =1
public static final int DEFAULT_COMPRESSION; =-1
public static final int DEFAULT_STRATEGY; =0
public static final int DEFLATED; =8
public static final int FILTERED; =1
public static final int HUFFMAN_ONLY; =2
public static final int NO_COMPRESSION; =0

// Public Instance Methods
public int deflate(byte[] b);
public int deflate(byte[] b, int off, int len); synchronized
public void end(); synchronized
public void finish(); synchronized

Object Throwable Exception DataFormatException

Serializable

Chapter 16: java.util and Subpackages | 913

java.util.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.zip.DeflaterOutputStream

Passed To DeflaterOutputStream.DeflaterOutputStream()

Type Of DeflaterOutputStream.def

DeflaterOutputStream
java.util.zip

Java 1.1

closeable flushable

This class is a subclass of java.io.FilterOutputStream; it filters a stream of data by
compressing (deflating) it and then writing the compressed data to another output
stream. To create a DeflaterOutputStream, you must specify both the stream it is to write
to and a Deflater object to perform the compression. You can set various options on
the Deflater object to specify just what type of compression is to be performed. Once a
DeflaterOutputStream is created, its write() and close() methods are the same as those of
other output streams. The InflaterInputStream class can read data written with a DeflaterOut-
putStream. A DeflaterOutputStream writes raw compressed data; applications often prefer
one of its subclasses, GZIPOutputStream or ZipOutputStream, that wraps the raw compressed
data within a standard file format.

public boolean finished(); synchronized
public int getAdler(); synchronized default:1

5.0 public long getBytesRead(); synchronized default:0
5.0 public long getBytesWritten(); synchronized default:0

public int getTotalIn(); default:0
public int getTotalOut(); default:0
public boolean needsInput();
public void reset(); synchronized
public void setDictionary(byte[] b);
public void setDictionary(byte[] b, int off, int len); synchronized
public void setInput(byte[] b);
public void setInput(byte[] b, int off, int len); synchronized
public void setLevel(int level); synchronized
public void setStrategy(int strategy); synchronized

// Protected Methods Overriding Object
protected void finalize();

}

public class DeflaterOutputStream extends java.io.FilterOutputStream {
// Public Constructors

public DeflaterOutputStream(java.io.OutputStream out);
public DeflaterOutputStream(java.io.OutputStream out, Deflater def);
public DeflaterOutputStream(java.io.OutputStream out, Deflater def, int size);

// Public Instance Methods
public void finish() throws java.io.IOException;

// Public Methods Overriding FilterOutputStream
public void close() throws java.io.IOException;
public void write(int b) throws java.io.IOException;
public void write(byte[] b, int off, int len) throws java.io.IOException;

// Protected Instance Methods
protected void deflate() throws java.io.IOException;

// Protected Instance Fields

Object OutputStream FilterOutputStream DeflaterOutputStream

Closeable Flushable

914 | Chapter 16: java.util and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.zip.GZIPInputStream

Subclasses GZIPOutputStream, ZipOutputStream

GZIPInputStream
java.util.zip

Java 1.1

closeable

This class is a subclass of InflaterInputStream that reads and uncompresses data
compressed in gzip format. To create a GZIPInputStream, simply specify the InputStream to
read compressed data from and, optionally, a buffer size for the internal decompres-
sion buffer. Once a GZIPInputStream is created, you can use the read() and close() methods as
you would with any input stream.

GZIPOutputStream
java.util.zip

Java 1.1

closeable flushable

This class is a subclass of DeflaterOutputStream that compresses and writes data using the
gzip file format. To create a GZIPOutputStream, specify the OutputStream to write to and,
optionally, a size for the internal compression buffer. Once the GZIPOutputStream is
created, you can use the write() and close() methods as you would any output stream.

protected byte[] buf;
protected Deflater def;

}

public class GZIPInputStream extends InflaterInputStream {
// Public Constructors

public GZIPInputStream(java.io.InputStream in) throws java.io.IOException;
public GZIPInputStream(java.io.InputStream in, int size) throws java.io.IOException;

// Public Constants
public static final int GZIP_MAGIC; =35615

// Public Methods Overriding InflaterInputStream
public void close() throws java.io.IOException;
public int read(byte[] buf, int off, int len) throws java.io.IOException;

// Protected Instance Fields
protected CRC32 crc;
protected boolean eos;

}

public class GZIPOutputStream extends DeflaterOutputStream {
// Public Constructors

public GZIPOutputStream(java.io.OutputStream out) throws java.io.IOException;
public GZIPOutputStream(java.io.OutputStream out, int size) throws java.io.IOException;

// Public Methods Overriding DeflaterOutputStream
public void finish() throws java.io.IOException;
public void write(byte[] buf, int off, int len) throws java.io.IOException; synchronized

// Protected Instance Fields
protected CRC32 crc;

}

Object InputStream FilterInputStream InflaterInputStream GZIPInputStream

Closeable

Object OutputStream FilterOutputStream DeflaterOutputStream GZIPOutputStream

Closeable Flushable

Chapter 16: java.util and Subpackages | 915

java.util.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.zip.InflaterInputStream

Inflater
java.util.zip

Java 1.1

This class implements the general ZLIB data-decompression algorithm used by gzip,
PKZip, and other data-compression applications. It decompresses or inflates data
compressed through the Deflater class. The important methods of this class are setInput(),
which specifies input data to be decompressed, and inflate(), which decompresses the
input data into an output buffer. A number of other methods exist so that this class
can be used for stream-based decompression, as it is in the higher-level classes, such as
GZIPInputStream and ZipInputStream. These stream-based classes are sufficient in most cases.
Most applications do not need to use Inflater directly.

Passed To InflaterInputStream.InflaterInputStream()

Type Of InflaterInputStream.inf

InflaterInputStream
java.util.zip

Java 1.1

closeable

This class is a subclass of java.io.FilterInputStream; it reads a specified stream of compressed
input data (typically one that was written with DeflaterOutputStream or a subclass) and
filters that data by uncompressing (inflating) it. To create an InflaterInputStream, specify
both the input stream to read from and an Inflater object to perform the decompression.
Once an InflaterInputStream is created, the read() and skip() methods are the same as those of
other input streams. The InflaterInputStream uncompresses raw data. Applications often
prefer one of its subclasses, GZIPInputStream or ZipInputStream, that work with compressed
data written in the standard gzip and PKZip file formats.

public class Inflater {
// Public Constructors

public Inflater();
public Inflater(boolean nowrap);

// Public Instance Methods
public void end(); synchronized
public boolean finished(); synchronized
public int getAdler(); synchronized default:1

5.0 public long getBytesRead(); synchronized default:0
5.0 public long getBytesWritten(); synchronized default:0

public int getRemaining(); synchronized default:0
public int getTotalIn(); default:0
public int getTotalOut(); default:0
public int inflate(byte[] b) throws DataFormatException;
public int inflate(byte[] b, int off, int len) throws DataFormatException; synchronized
public boolean needsDictionary(); synchronized
public boolean needsInput(); synchronized
public void reset(); synchronized
public void setDictionary(byte[] b);
public void setDictionary(byte[] b, int off, int len); synchronized
public void setInput(byte[] b);
public void setInput(byte[] b, int off, int len); synchronized

// Protected Methods Overriding Object
protected void finalize();

}

916 | Chapter 16: java.util and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.zip.ZipEntry

Subclasses GZIPInputStream, ZipInputStream

ZipEntry
java.util.zip

Java 1.1

cloneable

This class describes a single entry (typically a compressed file) stored within a ZIP file.
The various methods get and set various pieces of information about the entry. The
ZipEntry class is used by ZipFile and ZipInputStream, which read ZIP files, and by ZipOutput-
Stream, which writes ZIP files.

When you are reading a ZIP file, a ZipEntry object returned by ZipFile or ZipInputStream
contains the name, size, modification time, and other information about an entry in
the file. When writing a ZIP file, on the other hand, you must create your own ZipEntry
objects and initialize them to contain the entry name and other appropriate informa-
tion before writing the contents of the entry.

public class InflaterInputStream extends java.io.FilterInputStream {
// Public Constructors

public InflaterInputStream(java.io.InputStream in);
public InflaterInputStream(java.io.InputStream in, Inflater inf);
public InflaterInputStream(java.io.InputStream in, Inflater inf, int size);

// Public Methods Overriding FilterInputStream
1.2 public int available() throws java.io.IOException;
1.2 public void close() throws java.io.IOException;
5.0 public void mark(int readlimit); synchronized empty
5.0 public boolean markSupported(); constant

public int read() throws java.io.IOException;
public int read(byte[] b, int off, int len) throws java.io.IOException;

5.0 public void reset() throws java.io.IOException; synchronized
public long skip(long n) throws java.io.IOException;

// Protected Instance Methods
protected void fill() throws java.io.IOException;

// Protected Instance Fields
protected byte[] buf;
protected Inflater inf;
protected int len;

}

public class ZipEntry implements Cloneable, ZipConstants {
// Public Constructors

public ZipEntry(String name);
1.2 public ZipEntry(ZipEntry e);
// Public Constants

public static final int DEFLATED; =8
public static final int STORED; =0

Object InputStream FilterInputStream InflaterInputStream

Closeable

Object ZipEntry

Cloneable ZipConstants

Chapter 16: java.util and Subpackages | 917

java.util.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.zip.ZipFile

Subclasses java.util.jar.JarEntry

Passed To java.util.jar.JarEntry.JarEntry(), java.util.jar.JarFile.getInputStream(),
java.util.jar.JarOutputStream.putNextEntry(), ZipFile.getInputStream(), ZipOutputStream.putNextEntry()

Returned By java.util.jar.JarFile.getEntry(), java.util.jar.JarInputStream.{createZipEntry(), getNextEntry()},
ZipFile.getEntry(), ZipInputStream.{createZipEntry(), getNextEntry()}

ZipException
java.util.zip

Java 1.1

serializable checked

Signals that an error has occurred in reading or writing a ZIP file.

Subclasses java.util.jar.JarException

Thrown By ZipFile.ZipFile()

ZipFile
java.util.zip

Java 1.1

This class reads the contents of ZIP files. It uses a random-access file internally so that
the entries of the ZIP file do not have to be read sequentially, as they do with the
ZipInputStream class. A ZipFile object can be created by specifying the ZIP file to be read
either as a String filename or as a File object. In Java 1.3, temporary ZIP files can be

// Public Instance Methods
public String getComment();
public long getCompressedSize();
public long getCrc();
public byte[] getExtra();
public int getMethod();
public String getName();
public long getSize();
public long getTime();
public boolean isDirectory();
public void setComment(String comment);

1.2 public void setCompressedSize(long csize);
public void setCrc(long crc);
public void setExtra(byte[] extra);
public void setMethod(int method);
public void setSize(long size);
public void setTime(long time);

// Public Methods Overriding Object
1.2 public Object clone();
1.2 public int hashCode();

public String toString();
}

public class ZipException extends java.io.IOException {
// Public Constructors

public ZipException();
public ZipException(String s);

}

Object Throwable Exception IOException ZipException

Serializable

918 | Chapter 16: java.util and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.zip.ZipInputStream

marked for automatic deletion when they are closed. To take advantage of this feature,
pass ZipFile.OPEN_READ|ZipFile.OPEN_DELETE as the mode argument to the ZipFile() constructor.

Once a ZipFile is created, the getEntry() method returns a ZipEntry object for a named entry,
and the entries() method returns an Enumeration object that allows you to loop through all
the ZipEntry objects for the file. To read the contents of a specific ZipEntry within the ZIP
file, pass the ZipEntry to getInputStream(); this returns an InputStream object from which you
can read the entry’s contents.

Subclasses java.util.jar.JarFile

ZipInputStream
java.util.zip

Java 1.1

closeable

This class is a subclass of InflaterInputStream that reads the entries of a ZIP file in sequen-
tial order. Create a ZipInputStream by specifying the InputStream from which it is to read the
contents of the ZIP file. Once the ZipInputStream is created, you can use getNextEntry() to
begin reading data from the next entry in the ZIP file. This method must be called
before read() is called to begin reading the first entry. getNextEntry() returns a ZipEntry object
that describes the entry being read, or null when there are no more entries to be read
from the ZIP file.

The read() methods of ZipInputStream read until the end of the current entry and then
return –1, indicating that there is no more data to read. To continue with the next
entry in the ZIP file, you must call getNextEntry() again. Similarly, the skip() method only
skips bytes within the current entry. closeEntry() can be called to skip the remaining data
in the current entry, but it is usually easier simply to call getNextEntry() to begin the next
entry.

public class ZipFile implements ZipConstants {
// Public Constructors

public ZipFile(String name) throws java.io.IOException;
public ZipFile(java.io.File file) throws ZipException, java.io.IOException;

1.3 public ZipFile(java.io.File file, int mode) throws java.io.IOException;
// Public Constants
1.3 public static final int OPEN_DELETE; =4
1.3 public static final int OPEN_READ; =1
// Public Instance Methods

public void close() throws java.io.IOException;
public java.util.Enumeration<? extends ZipEntry> entries();
public ZipEntry getEntry(String name);
public java.io.InputStream getInputStream(ZipEntry entry) throws java.io.IOException;
public String getName();

1.2 public int size();
// Protected Methods Overriding Object
1.3 protected void finalize() throws java.io.IOException;
}

Object ZipFile ZipConstants

Object InputStream FilterInputStream InflaterInputStream ZipInputStream

Closeable ZipConstants

Chapter 16: java.util and Subpackages | 919

java.util.*

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.zip.ZipOutputStream

Subclasses java.util.jar.JarInputStream

ZipOutputStream
java.util.zip

Java 1.1

closeable flushable

This class is a subclass of DeflaterOutputStream that writes data in ZIP file format to an
output stream. Before writing any data to the ZipOutputStream, you must begin an entry
within the ZIP file with putNextEntry(). The ZipEntry object passed to this method should
specify at least a name for the entry. Once you have begun an entry with putNextEntry(),
you can write the contents of that entry with the write() methods. When you reach the
end of an entry, you can begin a new one by calling putNextEntry() again, you can close
the current entry with closeEntry(), or you can close the stream itself with close().

Before beginning an entry with putNextEntry(), you can set the compression method and
level with setMethod() and setLevel(). The constants DEFLATED and STORED are the two legal
values for setMethod(). If you use STORED, the entry is stored in the ZIP file without any
compression. If you use DEFLATED, you can also specify the compression speed/strength
tradeoff by passing a number from 1 to 9 to setLevel(), where 9 gives the strongest and
slowest level of compression. You can also use the constants Deflater.BEST_SPEED,
Deflater.BEST_COMPRESSION, and Deflater.DEFAULT_COMPRESSION with the setLevel() method.

If you are storing an entry without compression, the ZIP file format requires that you
specify, in advance, the entry size and CRC-32 checksum in the ZipEntry object for the
entry. An exception is thrown if these values are not specified or specified incorrectly.

public class ZipInputStream extends InflaterInputStream implements ZipConstants {
// Public Constructors

public ZipInputStream(java.io.InputStream in);
// Public Instance Methods

public void closeEntry() throws java.io.IOException;
public ZipEntry getNextEntry() throws java.io.IOException;

// Public Methods Overriding InflaterInputStream
1.2 public int available() throws java.io.IOException;

public void close() throws java.io.IOException;
public int read(byte[] b, int off, int len) throws java.io.IOException;
public long skip(long n) throws java.io.IOException;

// Protected Instance Methods
1.2 protected ZipEntry createZipEntry(String name);
}

public class ZipOutputStream extends DeflaterOutputStream implements ZipConstants {
// Public Constructors

public ZipOutputStream(java.io.OutputStream out);
// Public Constants

public static final int DEFLATED; =8
public static final int STORED; =0

// Public Instance Methods
public void closeEntry() throws java.io.IOException;
public void putNextEntry(ZipEntry e) throws java.io.IOException;
public void setComment(String comment);

Object OutputStream FilterOutputStream DeflaterOutputStream ZipOutputStream

Closeable Flushable ZipConstants

920 | Chapter 16: java.util and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

java.util.zip.ZipOutputStream

Subclasses java.util.jar.JarOutputStream

public void setLevel(int level);
public void setMethod(int method);

// Public Methods Overriding DeflaterOutputStream
public void close() throws java.io.IOException;
public void finish() throws java.io.IOException;
public void write(byte[] b, int off, int len) throws java.io.IOException; synchronized

}

921

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Chapter 17JCE

17
javax.crypto and Subpackages

This chapter documents the cryptographic features (including encryption and
decryption) of the javax.crypto package and its subpackages. These packages were
originally part of the Java Cryptography Extension (JCE) before being integrated
into Java 1.4, which is why they have the “javax” extension prefix. All of the
commonly-used cryptography classes are in the javax.crypto package itself. The
javax.crypto.interfaces subpackage defines algorithm-specific interfaces for certain type
of cryptographic keys. The javax.crypto.spec subpackage defines classes that provide a
transparent, portable, and provider-independent representation of cryptographic
keys and related objects.

Package javax.crypto Java 1.4

The javax.crypto package defines classes and interfaces for various cryptographic opera-
tions. The central class is Cipher, which is used to encrypt and decrypt data.
CipherInputStream and CipherOutputStream are utility classes that use a Cipher object to encrypt
or decrypt streaming data. SealedObject is another important utility class that uses a Cipher
object to encrypt an arbitrary serializable Java object.

The KeyGenerator class creates the SecretKey objects used by Cipher for encryption and
decryption. SecretKeyFactory encodes and decodes SecretKey objects. The KeyAgreement class
enables two or more parties to agree on a SecretKey in such a way that an eavesdropper
cannot determine the key. The Mac class computes a message authentication code
(MAC) that can ensure the integrity of a transmission between two parties who share a
SecretKey. A MAC is akin to a digital signature, except that it is based on a secret key
instead of a public/private key pair.

Like the java.security package, the javax.crypto package is provider-based, so that arbitrary
cryptographic implementations may be plugged into any Java installation. Various
classes in this package have names that end in Spi. These classes define a service-provider
interface and must be implemented by each cryptographic provider that wishes to
provide an implementation of a particular cryptographic service or algorithm.

922 | Chapter 17: javax.crypto and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

javax.crypto.BadPaddingException

This package was originally shipped as part of the Java Cryptography Extension (JCE),
but it has been added to the core platform in Java 1.4. A version of the JCE is still avail-
able (see http://java.sun.com/security) as a standard extension for Java 1.2 and Java 1.3.
This package is distributed with a cryptographic provider named “SunJCE” that includes
a robust set of implementations for Cipher, KeyAgreement, Mac, and other classes. This
provider is installed by the default java.security properties in Java 1.4 distributions.

A full tutorial on cryptography is beyond the scope of this chapter and of this book. In
order to use this package, you need to have a basic understanding of cryptographic
algorithms such as DES. In order to take full advantage of this package, you also need
to have a detailed understanding of things like feedback modes, padding schemes, the
Diffie-Hellman key-agreement protocol, and so on. For a good introduction to modern
cryptography in Java, see Java Cryptography by Jonathan Knudsen (O’Reilly). For
more in-depth coverage, not specific to Java, see Applied Cryptography by Bruce
Schneier (Wiley).

Interfaces
public interface SecretKey extends java.security.Key;

Classes
public class Cipher;

public class NullCipher extends Cipher;
public class CipherInputStream extends java.io.FilterInputStream;
public class CipherOutputStream extends java.io.FilterOutputStream;
public abstract class CipherSpi;
public class EncryptedPrivateKeyInfo;
public class ExemptionMechanism;
public abstract class ExemptionMechanismSpi;
public class KeyAgreement;
public abstract class KeyAgreementSpi;
public class KeyGenerator;
public abstract class KeyGeneratorSpi;
public class Mac implements Cloneable;
public abstract class MacSpi;
public class SealedObject implements Serializable;
public class SecretKeyFactory;
public abstract class SecretKeyFactorySpi;

Exceptions
public class BadPaddingException extends java.security.GeneralSecurityException;
public class ExemptionMechanismException extends java.security.GeneralSecurityException;
public class IllegalBlockSizeException extends java.security.GeneralSecurityException;
public class NoSuchPaddingException extends java.security.GeneralSecurityException;
public class ShortBufferException extends java.security.GeneralSecurityException;

BadPaddingException
javax.crypto

Java 1.4

serializable checked

Signals that input data to a Cipher is not padded correctly.

Object Throwable Exception GeneralSecurityException BadPaddingException

Serializable

Chapter 17: javax.crypto and Subpackages | 923

JCE

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

javax.crypto.Cipher

Thrown By Cipher.doFinal(), CipherSpi.engineDoFinal(), SealedObject.getObject()

Cipher
javax.crypto

Java 1.4

This class performs encryption and decryption of byte arrays. Cipher is provider-based,
so to obtain a Cipher object, you must call the static getInstance() factory method. The
arguments to getInstance() are a string that describes the type of encryption desired
and, optionally, the name of the provider whose implementation should be used. To
specify the desired type of encryption, you can simply specify the name of an encryp-
tion algorithm, such as “DES”. In Java 5.0, the “SunJCE” provider supports the
following algorithm names:

Advanced users may specify a three-part algorithm name that includes the encryption
algorithm, the algorithm operating mode, and the padding scheme. These three parts
are separated by slash characters, as in “DES/CBC/PKCS5Padding”. Finally, if you are
requesting a block cipher algorithm in a stream mode, you can specify the number of
bits to be processed at a time by following the name of the feedback mode with a
number of bits. For example: “DES/CFB8/NoPadding”. Details of supported oper-
ating modes and padding schemes are beyond the scope of this book. In Java 5.0, you
can obtain details about the services available through the SunJCE (or any other)
provider through the java.security.Provider.Services class.

Once you have obtained a Cipher object for the desired cryptographic algorithm, mode,
and padding scheme, you must initialize it by calling one of the init() methods. The first
argument to init() is one of the constants ENCRYPT_MODE or DECRYPT_MODE. The second argu-
ment is a java.security.Key object that performs the encryption or decryption. If you use
one of the symmetric (i.e., nonpublic key) encryption algorithms supported by the
“SunJCE” provider, this Key object is a SecretKey implementation. Note that some crypto-
graphic providers restrict the maximum allowed key length based on a jurisdiction
policy file. In Java 5.0 you can query the maximum allowed key length for a named
encryption algorithm with getMaxAllowedKeyLength(). You can optionally pass a java.secu-
rity.SecureRandom object to init() to provide a source of randomness. If you do not, the
Cipher implementation provides its own pseudorandom number generator.

Some cryptographic algorithms require additional initialization parameters; these can
be passed to init() as a java.security.AlgorithmParameters object or as a java.security.spec.Algorithm-
ParameterSpec object. When encrypting, you can omit these parameters, and the Cipher
implementation uses default values or generates appropriate random parameters for
you. In this case, you should call getParameters() after performing encryption to obtain
the AlgorithmParameters used to encrypt. These parameters are required in order to
decrypt, and must therefore be saved or transferred along with the encrypted data. Of

public class BadPaddingException extends java.security.GeneralSecurityException {
// Public Constructors

public BadPaddingException();
public BadPaddingException(String msg);

}

AES DES RSA

AESWrap DESede PBEWithMD5AndDES

ARCFOUR DESedeWrap PBEWithMD5AndTripleDES

Blowfish RC2 PBEWithSHA1AndRC2_40

924 | Chapter 17: javax.crypto and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

javax.crypto.Cipher

the algorithms supported by the “SunJCE” provider, the block ciphers “DES”,
“DESede”, and “Blowfish” all require an initialization vector when they are used in
“CBC”, “CFB”, “OFB”, or “PCBC” mode. You can represent an initialization vector
with a javax.crypto.spec.IvParameterSpec object and obtain the raw bytes of the initialization
vector used by a Cipher with the getIV() method. The “PBEWithMD5AndDES” algorithm
requires a salt and iteration count as parameters. These can be specified with a
javax.crypto.spec.PBEParameterSpec object.

Once you have obtained and initialized a Cipher object, you are ready to use it for
encryption or decryption. If you have only a single array of bytes to encrypt or decrypt,
pass that input array to one of the doFinal() methods. Some versions of this method
return the encrypted or decrypted bytes as the return value of the function. Other
versions store the encrypted or decrypted bytes to another byte array you specify. If
you choose to use one of these latter methods, you should first call getOutputSize() to
determine the required size of the output array. If you want to encrypt or decrypt data
from a streaming source or have more than one array of data, pass the data to one of
the update() methods, calling it as many times as necessary. Then pass the last array of
data to one of the doFinal() methods. If you are working with streaming data, consider
using the CipherInputStream and CipherOutputStream classes instead.

Java 5.0 adds versions of the update() and doFinal() that work with ByteBuffer objects, which
facilitates the use of encryption and decryption with the New I/O API of java.nio.

public class Cipher {
// Protected Constructors

protected Cipher(CipherSpi cipherSpi, java.security.Provider provider, String transformation);
// Public Constants

public static final int DECRYPT_MODE; =2
public static final int ENCRYPT_MODE; =1
public static final int PRIVATE_KEY; =2
public static final int PUBLIC_KEY; =1
public static final int SECRET_KEY; =3
public static final int UNWRAP_MODE; =4
public static final int WRAP_MODE; =3

// Public Class Methods
public static final Cipher getInstance(String transformation)

throws java.security.NoSuchAlgorithmException, NoSuchPaddingException;
public static final Cipher getInstance(String transformation, String provider)

throws java.security.NoSuchAlgorithmException, java.security.NoSuchProviderException, NoSuchPaddingException;
public static final Cipher getInstance(String transformation, java.security.Provider provider)

throws java.security.NoSuchAlgorithmException, NoSuchPaddingException;
5.0 public static final int getMaxAllowedKeyLength(String transformation)

throws java.security.NoSuchAlgorithmException;
5.0 public static final java.security.spec.AlgorithmParameterSpec getMaxAllowedParameterSpec(String transformation)

throws java.security.NoSuchAlgorithmException;
// Public Instance Methods

public final byte[] doFinal() throws IllegalBlockSizeException, BadPaddingException;
public final byte[] doFinal(byte[] input) throws IllegalBlockSizeException, BadPaddingException;
public final int doFinal(byte[] output, int outputOffset)

throws IllegalBlockSizeException, ShortBufferException, BadPaddingException;
5.0 public final int doFinal(java.nio.ByteBuffer input, java.nio.ByteBuffer output)

throws ShortBufferException, IllegalBlockSizeException, BadPaddingException;
public final byte[] doFinal(byte[] input, int inputOffset, int inputLen)

throws IllegalBlockSizeException, BadPaddingException;

Chapter 17: javax.crypto and Subpackages | 925

JCE

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

javax.crypto.CipherInputStream

Subclasses NullCipher

Passed To CipherInputStream.CipherInputStream(), CipherOutputStream.CipherOutputStream(),
EncryptedPrivateKeyInfo.getKeySpec(), SealedObject.{getObject(), SealedObject()}

CipherInputStream
javax.crypto

Java 1.4

closeable

This class is an input stream that uses a Cipher object to encrypt or decrypt the bytes it
reads from another stream. You must initialize the Cipher object before passing it to the
CipherInputStream() constructor.

public final int doFinal(byte[] input, int inputOffset, int inputLen, byte[] output)
throws ShortBufferException, IllegalBlockSizeException, BadPaddingException;

public final int doFinal(byte[] input, int inputOffset, int inputLen, byte[] output, int outputOffset)
throws ShortBufferException, IllegalBlockSizeException, BadPaddingException;

public final String getAlgorithm();
public final int getBlockSize();
public final ExemptionMechanism getExemptionMechanism();
public final byte[] getIV();
public final int getOutputSize(int inputLen);
public final java.security.AlgorithmParameters getParameters();
public final java.security.Provider getProvider();
public final void init(int opmode, java.security.cert.Certificate certificate) throws java.security.InvalidKeyException;
public final void init(int opmode, java.security.Key key) throws java.security.InvalidKeyException;
public final void init(int opmode, java.security.Key key, java.security.AlgorithmParameters params)

throws java.security.InvalidKeyException, java.security.InvalidAlgorithmParameterException;
public final void init(int opmode, java.security.cert.Certificate certificate, java.security.SecureRandom random)

throws java.security.InvalidKeyException;
public final void init(int opmode, java.security.Key key, java.security.SecureRandom random)

throws java.security.InvalidKeyException;
public final void init(int opmode, java.security.Key key, java.security.spec.AlgorithmParameterSpec params)

throws java.security.InvalidKeyException, java.security.InvalidAlgorithmParameterException;
public final void init(int opmode, java.security.Key key, java.security.spec.AlgorithmParameterSpec params,

java.security.SecureRandom random)
throws java.security.InvalidKeyException, java.security.InvalidAlgorithmParameterException;

public final void init(int opmode, java.security.Key key, java.security.AlgorithmParameters params,
java.security.SecureRandom random)

throws java.security.InvalidKeyException, java.security.InvalidAlgorithmParameterException;
public final java.security.Key unwrap(byte[] wrappedKey, String wrappedKeyAlgorithm, int wrappedKeyType)

throws java.security.InvalidKeyException, java.security.NoSuchAlgorithmException;
public final byte[] update(byte[] input);

5.0 public final int update(java.nio.ByteBuffer input, java.nio.ByteBuffer output) throws ShortBufferException;
public final byte[] update(byte[] input, int inputOffset, int inputLen);
public final int update(byte[] input, int inputOffset, int inputLen, byte[] output) throws ShortBufferException;
public final int update(byte[] input, int inputOffset, int inputLen, byte[] output, int outputOffset)

throws ShortBufferException;
public final byte[] wrap(java.security.Key key) throws IllegalBlockSizeException, java.security.InvalidKeyException;

}

Object InputStream FilterInputStream CipherInputStream

Closeable

926 | Chapter 17: javax.crypto and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

javax.crypto.CipherOutputStream

CipherOutputStream
javax.crypto

Java 1.4

closeable flushable

This class is an output stream that uses a Cipher object to encrypt or decrypt bytes
before passing them to another output stream. You must initialize the Cipher object
before passing it to the CipherOutputStream() constructor. If you are using a Cipher with any
kind of padding, you must not call flush() until you are done writing all data to the
stream; otherwise decryption fails.

CipherSpi
javax.crypto

Java 1.4

This abstract class defines the service-provider interface for Cipher. A cryptographic
provider must implement a concrete subclass of this class for each encryption algo-
rithm it supports. A provider can implement a separate class for each combination of
algorithm, mode, and padding scheme it supports or implement more general classes
and leave the mode and/or padding scheme to be specified in calls to engineSetMode() and
engineSetPadding(). Applications never need to use or subclass this class.

public class CipherInputStream extends java.io.FilterInputStream {
// Public Constructors

public CipherInputStream(java.io.InputStream is, Cipher c);
// Protected Constructors

protected CipherInputStream(java.io.InputStream is);
// Public Methods Overriding FilterInputStream

public int available() throws java.io.IOException;
public void close() throws java.io.IOException;
public boolean markSupported(); constant
public int read() throws java.io.IOException;
public int read(byte[] b) throws java.io.IOException;
public int read(byte[] b, int off, int len) throws java.io.IOException;
public long skip(long n) throws java.io.IOException;

}

public class CipherOutputStream extends java.io.FilterOutputStream {
// Public Constructors

public CipherOutputStream(java.io.OutputStream os, Cipher c);
// Protected Constructors

protected CipherOutputStream(java.io.OutputStream os);
// Public Methods Overriding FilterOutputStream

public void close() throws java.io.IOException;
public void flush() throws java.io.IOException;
public void write(int b) throws java.io.IOException;
public void write(byte[] b) throws java.io.IOException;
public void write(byte[] b, int off, int len) throws java.io.IOException;

}

public abstract class CipherSpi {
// Public Constructors

public CipherSpi();

Object OutputStream FilterOutputStream CipherOutputStream

Closeable Flushable

Chapter 17: javax.crypto and Subpackages | 927

JCE

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

javax.crypto.EncryptedPrivateKeyInfo

Passed To Cipher.Cipher()

EncryptedPrivateKeyInfo
javax.crypto

Java 1.4

This class represents an encrypted private key. getEncryptedData() returns the encrypted
bytes. getAlgName() and getAlgParameters() return the algorithm name and parameters used
to encrypt it. Pass a Cipher object to getKeySpec() to decrypt the key.

// Protected Instance Methods
5.0 protected int engineDoFinal(java.nio.ByteBuffer input, java.nio.ByteBuffer output)

throws ShortBufferException, IllegalBlockSizeException, BadPaddingException;
protected abstract byte[] engineDoFinal(byte[] input, int inputOffset, int inputLen)

throws IllegalBlockSizeException, BadPaddingException;
protected abstract int engineDoFinal(byte[] input, int inputOffset, int inputLen, byte[] output, int outputOffset)

throws ShortBufferException, IllegalBlockSizeException, BadPaddingException;
protected abstract int engineGetBlockSize();
protected abstract byte[] engineGetIV();
protected int engineGetKeySize(java.security.Key key) throws java.security.InvalidKeyException;
protected abstract int engineGetOutputSize(int inputLen);
protected abstract java.security.AlgorithmParameters engineGetParameters();
protected abstract void engineInit(int opmode, java.security.Key key, java.security.SecureRandom random)

throws java.security.InvalidKeyException;
protected abstract void engineInit(int opmode, java.security.Key key, java.security.AlgorithmParameters params,

java.security.SecureRandom random)
throws java.security.InvalidKeyException, java.security.InvalidAlgorithmParameterException;

protected abstract void engineInit(int opmode, java.security.Key key, java.security.spec.AlgorithmParameterSpec params,
java.security.SecureRandom rando m)

throws java.security.InvalidKeyException, java.security.InvalidAlgorithmParameterException;
protected abstract void engineSetMode(String mode) throws java.security.NoSuchAlgorithmException;
protected abstract void engineSetPadding(String padding) throws NoSuchPaddingException;
protected java.security.Key engineUnwrap(byte[] wrappedKey, String wrappedKeyAlgorithm, int wrappedKeyType)

throws java.security.InvalidKeyException, java.security.NoSuchAlgorithmException;
5.0 protected int engineUpdate(java.nio.ByteBuffer input, java.nio.ByteBuffer output) throws ShortBufferException;

protected abstract byte[] engineUpdate(byte[] input, int inputOffset, int inputLen);
protected abstract int engineUpdate(byte[] input, int inputOffset, int inputLen, byte[] output, int outputOffset)

throws ShortBufferException;
protected byte[] engineWrap(java.security.Key key)

throws IllegalBlockSizeException, java.security.InvalidKeyException;
}

public class EncryptedPrivateKeyInfo {
// Public Constructors

public EncryptedPrivateKeyInfo(byte[] encoded) throws java.io.IOException;
public EncryptedPrivateKeyInfo(java.security.AlgorithmParameters algParams, byte[] encryptedData)

throws java.security.NoSuchAlgorithmException;
public EncryptedPrivateKeyInfo(String algName, byte[] encryptedData)

throws java.security.NoSuchAlgorithmException;
// Public Instance Methods

public String getAlgName();
public java.security.AlgorithmParameters getAlgParameters();
public byte[] getEncoded() throws java.io.IOException;
public byte[] getEncryptedData();

5.0 public java.security.spec.PKCS8EncodedKeySpec getKeySpec(java.security.Key decryptKey)
throws java.security.NoSuchAlgorithmException, java.security.InvalidKeyException;

928 | Chapter 17: javax.crypto and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

javax.crypto.ExemptionMechanism

ExemptionMechanism
javax.crypto

Java 1.4

Some countries place legal restrictions on the use of cryptographic algorithms. In some
cases, a program may be exempt from these restrictions if it implements an “exemption
mechanism” such as key recovery, key escrow, or key weakening. This class defines a very
general API to such mechanism. This class is rarely used, and is not supported in the
default implementation provided by Sun. Using this class successfully is quite complex,
and is beyond the scope of this reference. For details, see the discussion “How to Make
Applications ‘Exempt’ from Cryptographic Restrictions” in the JCE Reference Guide
which is part of the standard bundle of documentation shipped by Sun with the JDK.

Returned By Cipher.getExemptionMechanism()

public java.security.spec.PKCS8EncodedKeySpec getKeySpec(Cipher cipher)
throws java.security.spec.InvalidKeySpecException;

5.0 public java.security.spec.PKCS8EncodedKeySpec getKeySpec(java.security.Key decryptKey,
java.security.Provider provider)
throws java.security.NoSuchAlgorithmException, java.security.InvalidKeyException;

5.0 public java.security.spec.PKCS8EncodedKeySpec getKeySpec(java.security.Key decryptKey, String providerName)
throws java.security.NoSuchProviderException, java.security.NoSuchAlgorithmException,
java.security.InvalidKeyException;

}

public class ExemptionMechanism {
// Protected Constructors

protected ExemptionMechanism(ExemptionMechanismSpi exmechSpi, java.security.Provider provider,
String mechanism);

// Public Class Methods
public static final ExemptionMechanism getInstance(String algorithm) throws java.security.NoSuchAlgorithmException;
public static final ExemptionMechanism getInstance(String algorithm, String provider)

throws java.security.NoSuchAlgorithmException, java.security.NoSuchProviderException;
public static final ExemptionMechanism getInstance(String algorithm, java.security.Provider provider)

throws java.security.NoSuchAlgorithmException;
// Public Instance Methods

public final byte[] genExemptionBlob() throws IllegalStateException, ExemptionMechanismException;
public final int genExemptionBlob(byte[] output)

throws IllegalStateException, ShortBufferException, ExemptionMechanismException;
public final int genExemptionBlob(byte[] output, int outputOffset)

throws IllegalStateException, ShortBufferException, ExemptionMechanismException;
public final String getName();
public final int getOutputSize(int inputLen) throws IllegalStateException;
public final java.security.Provider getProvider();
public final void init(java.security.Key key) throws java.security.InvalidKeyException, ExemptionMechanismException;
public final void init(java.security.Key key, java.security.spec.AlgorithmParameterSpec params)

throws java.security.InvalidKeyException, java.security.InvalidAlgorithmParameterException,
ExemptionMechanismException;

public final void init(java.security.Key key, java.security.AlgorithmParameters params)
throws java.security.InvalidKeyException, java.security.InvalidAlgorithmParameterException,
ExemptionMechanismException;

public final boolean isCryptoAllowed(java.security.Key key) throws ExemptionMechanismException;
// Protected Methods Overriding Object

protected void finalize();
}

Chapter 17: javax.crypto and Subpackages | 929

JCE

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

javax.crypto.IllegalBlockSizeException

ExemptionMechanismException
javax.crypto

Java 1.4

serializable checked

Signals a problem in one of the ExcemptionMechanism methods.

Thrown By ExemptionMechanism.{genExemptionBlob(), init(), isCryptoAllowed()},
ExemptionMechanismSpi.{engineGenExemptionBlob(), engineInit()}

ExemptionMechanismSpi
javax.crypto

Java 1.4

This abstract class defines the Service Provider Interface for ExemptionMechanism. Security
providers may implement this interface, but applications never need to use it. Note
that the default “SunJCE” provider does not provide an implementation.

Passed To ExemptionMechanism.ExemptionMechanism()

IllegalBlockSizeException
javax.crypto

Java 1.4

serializable checked

Signals that the length of data provided to a block cipher (as implemented, for
example, by Cipher and SealedObject) does not match the block size for the cipher.

public class ExemptionMechanismException extends java.security.GeneralSecurityException {
// Public Constructors

public ExemptionMechanismException();
public ExemptionMechanismException(String msg);

}

public abstract class ExemptionMechanismSpi {
// Public Constructors

public ExemptionMechanismSpi();
// Protected Instance Methods

protected abstract byte[] engineGenExemptionBlob() throws ExemptionMechanismException;
protected abstract int engineGenExemptionBlob(byte[] output, int outputOffset)

throws ShortBufferException, ExemptionMechanismException;
protected abstract int engineGetOutputSize(int inputLen);
protected abstract void engineInit(java.security.Key key)

throws java.security.InvalidKeyException, ExemptionMechanismException;
protected abstract void engineInit(java.security.Key key, java.security.AlgorithmParameters params)

throws java.security.InvalidKeyException, java.security.InvalidAlgorithmParameterException,
ExemptionMechanismException;

protected abstract void engineInit(java.security.Key key, java.security.spec.AlgorithmParameterSpec params)
throws java.security.InvalidKeyException, java.security.InvalidAlgorithmParameterException,
ExemptionMechanismException;

}

Object Throwable Exception GeneralSecurityException ExemptionMechanismException

Serializable

Object Throwable Exception GeneralSecurityException IllegalBlockSizeException

Serializable

930 | Chapter 17: javax.crypto and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

javax.crypto.KeyAgreement

Thrown By Cipher.{doFinal(), wrap()}, CipherSpi.{engineDoFinal(), engineWrap()}, SealedObject.{getObject(),
SealedObject()}

KeyAgreement
javax.crypto

Java 1.4

This class provides an API to a key-agreement protocol that allows two or more parties
to agree on a secret key without exchanging any secrets and in such a way that an
eavesdropper listening in on the communication between those parties cannot deter-
mine the secret key. The KeyAgreement class is algorithm-independent and provider-
based, so you must obtain a KeyAgreement object by calling one of the static getInstance()
factory methods and specifying the name of the desired key agreement algorithm and,
optionally, the name of the desired provider of that algorithm. The “SunJCE” provider
implements a single key-agreement algorithm named “DiffieHellman”.

To use a KeyAgreement object, each party first calls the init() method and supplies a Key
object of its own. Then, each party obtains a Key object from one of the other parties to
the agreement and calls doPhase(). Each party obtains an intermediate Key object as the
return value of doPhase(), and these keys are again exchanged and passed to doPhase().
This process typically repeats n–1 times, where n is the number of parties, but the
actual number of repetitions is algorithm-dependent. When doPhase() is called the last
time, the second argument must be true to indicate that it is the last phase of the agree-
ment. After all calls to doPhase() have been made, each party calls generateSecret() to obtain
an array of bytes or a SecretKey object for a named algorithm type. All parties obtain the
same bytes or SecretKey from this method. The KeyAgreement class is not responsible for the
transfer of Key objects between parties or for mutual authentication among the parties.
These tasks must be accomplished through some external mechanism.

The most common type of key agreement is “DiffieHellman” key agreement between
two parties. It proceeds as follows. First, both parties obtain a java.security.KeyPairGenerator
for the “DiffieHellman” algorithm and use it to generate a java.security.KeyPair of Diffie-
Hellman public and private keys. Each party passes its private key to the init() method
of its KeyAgreement object. (The init() method can be passed a java.security.spec.Algorithm-
ParameterSpec object, but the Diffie-Hellman protocol does not require any additional
parameters.) Next, the two parties exchange public keys, typically through some kind
of networking mechanism (the KeyAgreement class is not responsible for the actual
exchange of keys). Each party passes the public key of the other party to the doPhase()
method of its KeyAgreement object. There are only two parties to this agreement, so only
one phase is required, and the second argument to doPhase() is true. At this point, both
parties call generateSecret() to obtain the shared secret key.

A three-party Diffie-Hellman key agreement requires two phases and is slightly more
complicated. Let’s call the three parties Alice, Bob, and Carol. Each generates a key
pair and uses its private key to initialize its KeyAgreement object, as before. Then Alice
passes her public key to Bob, Bob passes his to Carol, and Carol passes hers to Alice.
Each party passes this public key to doPhase(). Since this is not the final doPhase(), the
second argument is false, and doPhase() returns an intermediate Key object. The three
parties exchange these intermediate keys again in the same way: Alice to Bob, Bob to

public class IllegalBlockSizeException extends java.security.GeneralSecurityException {
// Public Constructors

public IllegalBlockSizeException();
public IllegalBlockSizeException(String msg);

}

Chapter 17: javax.crypto and Subpackages | 931

JCE

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

javax.crypto.KeyAgreementSpi

Carol, and Carol to Alice. Now each party passes the intermediate key it has received
to doPhase() a second time, passing true to indicate that this is the final phase. Finally, all
three can call generateSecret() to obtain a shared key to encrypt future communication.

KeyAgreementSpi
javax.crypto

Java 1.4

This abstract class defines the service-provider interface for KeyAgreement. A crypto-
graphic provider must implement a concrete subclass of this class for each encryption
algorithm it supports. Applications never need to use or subclass this class.

public class KeyAgreement {
// Protected Constructors

protected KeyAgreement(KeyAgreementSpi keyAgreeSpi, java.security.Provider provider, String algorithm);
// Public Class Methods

public static final KeyAgreement getInstance(String algorithm) throws java.security.NoSuchAlgorithmException;
public static final KeyAgreement getInstance(String algorithm, String provider)

throws java.security.NoSuchAlgorithmException, java.security.NoSuchProviderException;
public static final KeyAgreement getInstance(String algorithm, java.security.Provider provider)

throws java.security.NoSuchAlgorithmException;
// Public Instance Methods

public final java.security.Key doPhase(java.security.Key key, boolean lastPhase)
throws java.security.InvalidKeyException, IllegalStateException;

public final byte[] generateSecret() throws IllegalStateException;
public final SecretKey generateSecret(String algorithm)

throws IllegalStateException, java.security.NoSuchAlgorithmException, java.security.InvalidKeyException;
public final int generateSecret(byte[] sharedSecret, int offset) throws IllegalStateException, ShortBufferException;
public final String getAlgorithm();
public final java.security.Provider getProvider();
public final void init(java.security.Key key) throws java.security.InvalidKeyException;
public final void init(java.security.Key key, java.security.SecureRandom random)

throws java.security.InvalidKeyException;
public final void init(java.security.Key key, java.security.spec.AlgorithmParameterSpec params)

throws java.security.InvalidKeyException, java.security.InvalidAlgorithmParameterException;
public final void init(java.security.Key key, java.security.spec.AlgorithmParameterSpec params,

java.security.SecureRandom random)
throws java.security.InvalidKeyException, java.security.InvalidAlgorithmParameterException;

}

public abstract class KeyAgreementSpi {
// Public Constructors

public KeyAgreementSpi();
// Protected Instance Methods

protected abstract java.security.Key engineDoPhase(java.security.Key key, boolean lastPhase)
throws java.security.InvalidKeyException, IllegalStateException;

protected abstract byte[] engineGenerateSecret() throws IllegalStateException;
protected abstract SecretKey engineGenerateSecret(String algorithm)

throws IllegalStateException, java.security.NoSuchAlgorithmException, java.security.InvalidKeyException;
protected abstract int engineGenerateSecret(byte[] sharedSecret, int offset)

throws IllegalStateException, ShortBufferException;
protected abstract void engineInit(java.security.Key key, java.security.SecureRandom random)

throws java.security.InvalidKeyException;

932 | Chapter 17: javax.crypto and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

javax.crypto.KeyGenerator

Passed To KeyAgreement.KeyAgreement()

KeyGenerator
javax.crypto

Java 1.4

This class provides an API for generating secret keys for symmetric cryptography. It is
similar to java.security.KeyPairGenerator, which generates public/private key pairs for asym-
metric or public-key cryptography. KeyGenerator is algorithm-independent and provider-
based, so you must obtain a KeyGenerator instance by calling one of the static getInstance()
factory methods and specifying the name of the cryptographic algorithm for which a
key is desired and, optionally, the name of the security provider whose key-generation
implementation is to be used. In Java 5.0 the “SunJCE” provider includes KeyGenerator
implementations algorithms with the following names:

Once you have obtained a KeyGenerator, you initialize it with the init() method. You can
provide a java.security.spec.AlgorithmParameterSpec object to provide algorithm-specific initial-
ization parameters or simply specify the desired size (in bits) of the key to be
generated. In either case, you can also specify a source of randomness in the form of a
SecureRandom object. If you do not specify a SecureRandom, the KeyGenerator instantiates one
of its own. None of the algorithms supported by the “SunJCE” provider require algo-
rithm-specific parameters.

After calling getInstance() to obtain a KeyGenerator and init() to initialize it, simply call
generateKey() to create a new SecretKey. Remember that the SecretKey must be kept secret.
Take precautions when storing or transmitting the key, so that it does not fall into the
wrong hands. You may want to use a java.security.KeyStore object to store the key in a pass-
word-protected form.

protected abstract void engineInit(java.security.Key key, java.security.spec.AlgorithmParameterSpec params,
java.security.SecureRandom random)
throws java.security.InvalidKeyException, java.security.InvalidAlgorithmParameterException;

}

AES DESede HmacSHA384

ARCFOUR HmacMD5 HmacSHA512

Blowfish HmacSHA1 RC2

DES HmacSHA256

public class KeyGenerator {
// Protected Constructors

protected KeyGenerator(KeyGeneratorSpi keyGenSpi, java.security.Provider provider, String algorithm);
// Public Class Methods

public static final KeyGenerator getInstance(String algorithm) throws java.security.NoSuchAlgorithmException;
public static final KeyGenerator getInstance(String algorithm, java.security.Provider provider)

throws java.security.NoSuchAlgorithmException;
public static final KeyGenerator getInstance(String algorithm, String provider)

throws java.security.NoSuchAlgorithmException, java.security.NoSuchProviderException;
// Public Instance Methods

public final SecretKey generateKey();
public final String getAlgorithm();
public final java.security.Provider getProvider();
public final void init(int keysize);
public final void init(java.security.spec.AlgorithmParameterSpec params)

throws java.security.InvalidAlgorithmParameterException;

Chapter 17: javax.crypto and Subpackages | 933

JCE

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

javax.crypto.Mac

KeyGeneratorSpi
javax.crypto

Java 1.4

This abstract class defines the service-provider interface for KeyGenerator. A crypto-
graphic provider must implement a concrete subclass of this class for each key-
generation algorithm it supports. Applications never need to use or subclass this class.

Passed To KeyGenerator.KeyGenerator()

Mac
javax.crypto

Java 1.4

cloneable

This class defines an API for computing a message authentication code (MAC) that can
check the integrity of information transmitted between two parties that share a secret
key. A MAC is similar to a digital signature, except that it is generated with a secret
key rather than with a public/private key pair. The Mac class is algorithm-independent
and provider-based. Obtain a Mac object by calling one of the static getInstance() factory
methods and specifying the name of the desired MAC algorithm and, optionally, the
name of the provider of the desired implementation. In Java 5.0 The “SunJCE”
provider implement MAC algorithms with the following names:

After obtaining a Mac object, initialize it by calling the init() method and specifying a
SecretKey and, optionally, a java.security.spec.AlgorithmParameterSpec object. The “HmacMD5”
and “HmacSHA1” algorithms can use any kind of SecretKey; they are not restricted to a
particular cryptographic algorithm. And neither algorithm requires an AlgorithmParameter-
Spec object.

After obtaining and initializing a Mac object, specify the data for which the MAC is to be
computed. If the data is contained in a single byte array, simply pass it to doFinal(). If the
data is streaming or is stored in various locations, you can supply the data in multiple
calls to update(). In Java 5.0, you can pass a ByteBuffer to update() which facilities use with the
java.nio New I/O API. End the series of update() calls with a single call to doFinal(). Note that
some versions of doFinal() return the MAC data as the function return value. Another

public final void init(java.security.SecureRandom random);
public final void init(int keysize, java.security.SecureRandom random);
public final void init(java.security.spec.AlgorithmParameterSpec params, java.security.SecureRandom random)

throws java.security.InvalidAlgorithmParameterException;
}

public abstract class KeyGeneratorSpi {
// Public Constructors

public KeyGeneratorSpi();
// Protected Instance Methods

protected abstract SecretKey engineGenerateKey();
protected abstract void engineInit(java.security.SecureRandom random);
protected abstract void engineInit(int keysize, java.security.SecureRandom random);
protected abstract void engineInit(java.security.spec.AlgorithmParameterSpec params,

java.security.SecureRandom random)
throws java.security.InvalidAlgorithmParameterException;

}

HmacMD5 HmacSHA1 HmacSHA256
HmacSHA384 HmacSHA512 HmacPBESHA1

934 | Chapter 17: javax.crypto and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

javax.crypto.MacSpi

version stores the MAC data in a byte array you supply. If you use this version of doFinal(),
be sure to call getMacLength() to instantiate an array of the correct length.

A call to doFinal() resets the internal state of a Mac object. If you want to compute a MAC
for part of your data and then proceed to compute the MAC for the full data, you
should clone() the Mac object before calling doFinal(). Note, however, that Mac implementa-
tions are not required to implement Cloneable.

MacSpi
javax.crypto

Java 1.4

This abstract class defines the service-provider interface for Mac. A cryptographic
provider must implement a concrete subclass of this class for each MAC algorithm it
supports. Applications never need to use or subclass this class.

public class Mac implements Cloneable {
// Protected Constructors

protected Mac(MacSpi macSpi, java.security.Provider provider, String algorithm);
// Public Class Methods

public static final Mac getInstance(String algorithm) throws java.security.NoSuchAlgorithmException;
public static final Mac getInstance(String algorithm, String provider)

throws java.security.NoSuchAlgorithmException, java.security.NoSuchProviderException;
public static final Mac getInstance(String algorithm, java.security.Provider provider)

throws java.security.NoSuchAlgorithmException;
// Public Instance Methods

public final byte[] doFinal() throws IllegalStateException;
public final byte[] doFinal(byte[] input) throws IllegalStateException;
public final void doFinal(byte[] output, int outOffset) throws ShortBufferException, IllegalStateException;
public final String getAlgorithm();
public final int getMacLength();
public final java.security.Provider getProvider();
public final void init(java.security.Key key) throws java.security.InvalidKeyException;
public final void init(java.security.Key key, java.security.spec.AlgorithmParameterSpec params)

throws java.security.InvalidKeyException, java.security.InvalidAlgorithmParameterException;
public final void reset();
public final void update(byte input) throws IllegalStateException;

5.0 public final void update(java.nio.ByteBuffer input);
public final void update(byte[] input) throws IllegalStateException;
public final void update(byte[] input, int offset, int len) throws IllegalStateException;

// Public Methods Overriding Object
public final Object clone() throws CloneNotSupportedException;

}

public abstract class MacSpi {
// Public Constructors

public MacSpi();
// Public Methods Overriding Object

public Object clone() throws CloneNotSupportedException;
// Protected Instance Methods

protected abstract byte[] engineDoFinal();
protected abstract int engineGetMacLength();

Object Mac Cloneable

Chapter 17: javax.crypto and Subpackages | 935

JCE

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

javax.crypto.SealedObject

Passed To Mac.Mac()

NoSuchPaddingException
javax.crypto

Java 1.4

serializable checked

Signals that no implementation of the requested padding scheme can be found.

Thrown By Cipher.getInstance(), CipherSpi.engineSetPadding()

NullCipher
javax.crypto

Java 1.4

This trivial subclass of Cipher implements an identity cipher that does not transform
plain text in any way. Unlike Cipher objects returned by Cipher.getInstance(), a NullCipher must
be created with the NullCipher() constructor.

SealedObject
javax.crypto

Java 1.4

serializable

This class is a wrapper around a serializable object. It serializes the object and encrypts
the resulting data stream, thereby protecting the confidentiality of the object. Create a
SealedObject by specifying the object to be sealed and a Cipher object to perform the
encryption. Retrieve the sealed object by calling getObject() and specifying the Cipher or
java.security.Key to use for decryption. The SealedObject keeps track of the encryption algo-
rithm and parameters so that a Key object alone can decrypt the object.

protected abstract void engineInit(java.security.Key key, java.security.spec.AlgorithmParameterSpec params)
throws java.security.InvalidKeyException, java.security.InvalidAlgorithmParameterException;

protected abstract void engineReset();
5.0 protected void engineUpdate(java.nio.ByteBuffer input);

protected abstract void engineUpdate(byte input);
protected abstract void engineUpdate(byte[] input, int offset, int len);

}

public class NoSuchPaddingException extends java.security.GeneralSecurityException {
// Public Constructors

public NoSuchPaddingException();
public NoSuchPaddingException(String msg);

}

public class NullCipher extends Cipher {
// Public Constructors

public NullCipher();
}

public class SealedObject implements Serializable {
// Public Constructors

Object Throwable Exception GeneralSecurityException NoSuchPaddingException

Serializable

Object Cipher NullCipher

Object SealedObject Serializable

936 | Chapter 17: javax.crypto and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

javax.crypto.SecretKey

SecretKey
javax.crypto

Java 1.4

serializable

This interface represents a secret key used for symmetric cryptographic algorithms that
depend on both the sender and receiver knowing the same secret. SecretKey extends the
java.security.Key interface, but does not add any new methods. The interface exists in
order to keep secret keys distinct from the public and private keys used in public-key,
or asymmetric, cryptography. See also java.security.PublicKey and java.security.PrivateKey.

A secret key is nothing more than arrays of bytes and does not require a specialized
encoding format. Therefore, an implementation of this interface should return the
format name “RAW” from getFormat() and should return the bytes of the key from
getEncoded(). (These two methods are defined by the java.security.Key interface that SecretKey
extends.)

Implementations javax.crypto.interfaces.PBEKey, javax.crypto.spec.SecretKeySpec,
javax.security.auth.kerberos.KerberosKey

Passed To java.security.KeyStore.SecretKeyEntry.SecretKeyEntry(), SecretKeyFactory.{getKeySpec(),
translateKey()}, SecretKeyFactorySpi.{engineGetKeySpec(), engineTranslateKey()}

Returned By java.security.KeyStore.SecretKeyEntry.getSecretKey(), KeyAgreement.generateSecret(),
KeyAgreementSpi.engineGenerateSecret(), KeyGenerator.generateKey(), KeyGeneratorSpi.engineGenerateKey(),
SecretKeyFactory.{generateSecret(), translateKey()}, SecretKeyFactorySpi.{engineGenerateSecret(),
engineTranslateKey()}, javax.security.auth.kerberos.KerberosTicket.getSessionKey()

SecretKeyFactory
javax.crypto

Java 1.4

This class defines an API for translating a secret key between its opaque SecretKey repre-
sentation and its transparent javax.crypto.SecretKeySpec representation. It is much like

public SealedObject(Serializable object, Cipher c) throws java.io.IOException, IllegalBlockSizeException;
// Protected Constructors

protected SealedObject(SealedObject so);
// Public Instance Methods

public final String getAlgorithm();
public final Object getObject(java.security.Key key)

throws java.io.IOException, ClassNotFoundException, java.security.NoSuchAlgorithmException,
java.security.InvalidKeyException;

public final Object getObject(Cipher c)
throws java.io.IOException, ClassNotFoundException, IllegalBlockSizeException, BadPaddingException;

public final Object getObject(java.security.Key key, String provider)
throws java.io.IOException, ClassNotFoundException, java.security.NoSuchAlgorithmException,

java.security.NoSuchProviderException, java.security.InvalidKeyException;
// Protected Instance Fields

protected byte[] encodedParams;
}

public interface SecretKey extends java.security.Key {
// Public Constants
5.0 public static final long serialVersionUID; =-4795878709595146952
}

Serializable Key SecretKey

Chapter 17: javax.crypto and Subpackages | 937

JCE

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

javax.crypto.SecretKeyFactorySpi

java.security.KeyFactory, except that it works with secret (or symmetric) keys rather than
with public and private (asymmetric) keys. SecretKeyFactory is algorithm-independent and
provider-based, so you must obtain a SecretKeyFactory object by calling one of the static
getInstance() factory methods and specifying the name of the desired secret-key algo-
rithm and, optionally, the name of the provider whose implementation is desired. In
Java 5.0, the “SunJCE” provider provides SecretKeyFactory implementations for algo-
rithms with the following names:

Once you have obtained a SecretKeyFactory, use generateSecret() to create a SecretKey from a
java.security.spec.KeySpec (or its subclass, javax.crypto.spec.SecretKeySpec). Or call getKeySpec() to
obtain a KeySpec for a Key object. Because there can be more than one suitable type of
KeySpec, getKeySpec() requires a Class object to specify the type of the KeySpec to be created.
See also DESKeySpec, DESedeKeySpec, and PBEKeySpec in the javax.crypto.spec package.

SecretKeyFactorySpi
javax.crypto

Java 1.4

This abstract class defines the service-provider interface for SecretKeyFactory. A crypto-
graphic provider must implement a concrete subclass of this class for each type of
secret key it supports. Applications never need to use or subclass this class.

DES DESede PBE
PBEWithMD5AndDES PBEWithMD5AndTripleDES PBEWithSHA1AndDESede
PBEWithSHA1AndRC2

public class SecretKeyFactory {
// Protected Constructors

protected SecretKeyFactory(SecretKeyFactorySpi keyFacSpi, java.security.Provider provider, String algorithm);
// Public Class Methods

public static final SecretKeyFactory getInstance(String algorithm) throws java.security.NoSuchAlgorithmException;
public static final SecretKeyFactory getInstance(String algorithm, java.security.Provider provider)

throws java.security.NoSuchAlgorithmException;
public static final SecretKeyFactory getInstance(String algorithm, String provider)

throws java.security.NoSuchAlgorithmException, java.security.NoSuchProviderException;
// Public Instance Methods

public final SecretKey generateSecret(java.security.spec.KeySpec keySpec)
throws java.security.spec.InvalidKeySpecException;

public final String getAlgorithm();
public final java.security.spec.KeySpec getKeySpec(SecretKey key, Class keySpec)

throws java.security.spec.InvalidKeySpecException;
public final java.security.Provider getProvider();
public final SecretKey translateKey(SecretKey key) throws java.security.InvalidKeyException;

}

public abstract class SecretKeyFactorySpi {
// Public Constructors

public SecretKeyFactorySpi();
// Protected Instance Methods

protected abstract SecretKey engineGenerateSecret(java.security.spec.KeySpec keySpec)
throws java.security.spec.InvalidKeySpecException;

protected abstract java.security.spec.KeySpec engineGetKeySpec(SecretKey key, Class keySpec)
throws java.security.spec.InvalidKeySpecException;

protected abstract SecretKey engineTranslateKey(SecretKey key) throws java.security.InvalidKeyException;
}

938 | Chapter 17: javax.crypto and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

javax.crypto.ShortBufferException

Passed To SecretKeyFactory.SecretKeyFactory()

ShortBufferException
javax.crypto

Java 1.4

serializable checked

Signals that an output buffer is too short to hold the results of an operation.

Thrown By Too many methods to list.

Package javax.crypto.interfaces Java 1.4

The interfaces in the javax.crypto.interfaces package define the public methods that must be
supported by various types of encryption keys. The “DH” interfaces respresent Diffie-
Hellman public/private key pairs used in the Diffie-Hellman key-agreement protocol.
The “PBE” iterface is for Password-Based Encryption. These interfaces are typically of
interest only to programmers who are implementing a cryptographic provider or who
want to implement cryptographic algorithms themselves. Use of this package requires
basic familiarity with the encryption algorithms and the mathematics that underlie
them. Note that the javax.crypto.spec package contains classes that provide algorithm-
specific details about encryption keys.

Interfaces
public interface DHKey;
public interface DHPrivateKey extends DHKey, java.security.PrivateKey;
public interface DHPublicKey extends DHKey, java.security.PublicKey;
public interface PBEKey extends javax.crypto.SecretKey;

DHKey
javax.crypto.interfaces

Java 1.4

This interface represents a Diffie-Hellman key. The javax.crypto.spec.DHParameterSpec
returned by getParams() specifies the parameters that generate the key; they define a key
family. See the subinterfaces DHPublicKey and DHPrivateKey for the actual key values.

Implementations DHPrivateKey, DHPublicKey

public class ShortBufferException extends java.security.GeneralSecurityException {
// Public Constructors

public ShortBufferException();
public ShortBufferException(String msg);

}

public interface DHKey {
// Public Instance Methods

javax.crypto.spec.DHParameterSpec getParams();
}

Object Throwable Exception GeneralSecurityException ShortBufferException

Serializable

Chapter 17: javax.crypto and Subpackages | 939

JCE

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

javax.crypto.interfaces.PBEKey

DHPrivateKey
javax.crypto.interfaces

Java 1.4

serializable

This interface represents a Diffie-Hellman private key. Note that it extends two inter-
faces: DHKey and java.security.PrivateKey. getX() returns the private-key value. If you are
working with a PrivateKey you know is a Diffie-Hellman key, you can cast your PrivateKey
to a DHPrivateKey.

DHPublicKey
javax.crypto.interfaces

Java 1.4

serializable

This interface represents a Diffie-Hellman public key. Note that it extends two inter-
faces: DHKey and java.security.PublicKey. getY() returns the public-key value. If you are
working with a PublicKey you know is a Diffie-Hellman key, you can cast your PublicKey to
a DHPublicKey.

PBEKey
javax.crypto.interfaces

Java 1.4

serializable

This interface represents a key for password-based encryption. If you are working with
a SecretKey that you know is a password-based key, you can cast it to a PBEKey.

public interface DHPrivateKey extends DHKeyjava.security.PrivateKey {
// Public Constants
5.0 public static final long serialVersionUID; =2211791113380396553
// Public Instance Methods

java.math.BigInteger getX();
}

public interface DHPublicKey extends DHKey, java.security.PublicKey {
// Public Constants
5.0 public static final long serialVersionUID; =-6628103563352519193
// Public Instance Methods

java.math.BigInteger getY();
}

public interface PBEKey extends javax.crypto.SecretKey {
// Public Constants
5.0 public static final long serialVersionUID; =-1430015993304333921
// Public Instance Methods

int getIterationCount();
char[] getPassword();
byte[] getSalt();

}

DHPrivateKey

DHKey Serializable Key PrivateKey

DHPublicKey

DHKey Serializable Key PublicKey

Serializable Key SecretKey PBEKey

940 | Chapter 17: javax.crypto and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

.Package javax.crypto.spec

Package javax.crypto.spec Java 1.4

The javax.crypto.spec package contains classes that define transparent java.security.spec.KeySpec
and java.security.spec.AlgorithmParameterSpec representations of secret keys, Diffie-Hellman
public and private keys, and parameters used by various cryptographic algorithms.
The classes in this package are used in conjunction with java.security.KeyFactory,
javax.crypto.SecretKeyFactory and java.security.AlgorithmParameters for converting opaque Key, and
AlgorithmParameters objects to and from transparent representations. In order to make
good use of this package, you must be familiar with the specifications of the various
cryptographic algorithms it supports and the basic mathematics that underlie those
algorithms.

Classes
public class DESedeKeySpec implements java.security.spec.KeySpec;
public class DESKeySpec implements java.security.spec.KeySpec;
public class DHGenParameterSpec implements java.security.spec.AlgorithmParameterSpec;
public class DHParameterSpec implements java.security.spec.AlgorithmParameterSpec;
public class DHPrivateKeySpec implements java.security.spec.KeySpec;
public class DHPublicKeySpec implements java.security.spec.KeySpec;
public class IvParameterSpec implements java.security.spec.AlgorithmParameterSpec;
public class OAEPParameterSpec implements java.security.spec.AlgorithmParameterSpec;
public class PBEKeySpec implements java.security.spec.KeySpec;
public class PBEParameterSpec implements java.security.spec.AlgorithmParameterSpec;
public class PSource;

public static final class PSource.PSpecified extends PSource;
public class RC2ParameterSpec implements java.security.spec.AlgorithmParameterSpec;
public class RC5ParameterSpec implements java.security.spec.AlgorithmParameterSpec;
public class SecretKeySpec implements java.security.spec.KeySpec, javax.crypto.SecretKey;

DESedeKeySpec
javax.crypto.spec

Java 1.4

This class is a transparent representation of a DESede (triple-DES) key. The key is 24
bytes long.

public class DESedeKeySpec implements java.security.spec.KeySpec {
// Public Constructors

public DESedeKeySpec(byte[] key) throws java.security.InvalidKeyException;
public DESedeKeySpec(byte[] key, int offset) throws java.security.InvalidKeyException;

// Public Constants
public static final int DES_EDE_KEY_LEN; =24

// Public Class Methods
public static boolean isParityAdjusted(byte[] key, int offset) throws java.security.InvalidKeyException;

// Public Instance Methods
public byte[] getKey();

}

Object DESedeKeySpec KeySpec

Chapter 17: javax.crypto and Subpackages | 941

JCE

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

javax.crypto.spec.DHParameterSpec

DESKeySpec
javax.crypto.spec

Java 1.4

This class is a transparent representation of a DES key. The key is eight bytes long.

DHGenParameterSpec
javax.crypto.spec

Java 1.4

This class is a transparent representation of the values needed to generate a set of
Diffie-Hellman parameters (see DHParameterSpec). An instance of this class can be passed
to the init() method of a java.security.AlgorithmParameterGenerator that computes Diffie-Hellman
parameters.

DHParameterSpec
javax.crypto.spec

Java 1.4

This class is a transparent representation of the set of parameters required by the
Diffie-Hellman key-agreement algorithm. All parties to the key agreement must share
these parameters and use them to generate a Diffie-Hellman public/private key pair.

public class DESKeySpec implements java.security.spec.KeySpec {
// Public Constructors

public DESKeySpec(byte[] key) throws java.security.InvalidKeyException;
public DESKeySpec(byte[] key, int offset) throws java.security.InvalidKeyException;

// Public Constants
public static final int DES_KEY_LEN; =8

// Public Class Methods
public static boolean isParityAdjusted(byte[] key, int offset) throws java.security.InvalidKeyException;
public static boolean isWeak(byte[] key, int offset) throws java.security.InvalidKeyException;

// Public Instance Methods
public byte[] getKey();

}

public class DHGenParameterSpec implements java.security.spec.AlgorithmParameterSpec {
// Public Constructors

public DHGenParameterSpec(int primeSize, int exponentSize);
// Public Instance Methods

public int getExponentSize();
public int getPrimeSize();

}

public class DHParameterSpec implements java.security.spec.AlgorithmParameterSpec {
// Public Constructors

public DHParameterSpec(java.math.BigInteger p, java.math.BigInteger g);
public DHParameterSpec(java.math.BigInteger p, java.math.BigInteger g, int l);

// Public Instance Methods
public java.math.BigInteger getG();

Object DESKeySpec KeySpec

Object DHGenParameterSpec AlgorithmParameterSpec

Object DHParameterSpec AlgorithmParameterSpec

942 | Chapter 17: javax.crypto and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

javax.crypto.spec.DHPrivateKeySpec

Returned By javax.crypto.interfaces.DHKey.getParams()

DHPrivateKeySpec
javax.crypto.spec

Java 1.4

This java.security.spec.KeySpec is a transparent representation of a Diffie-Hellman private
key.

DHPublicKeySpec
javax.crypto.spec

Java 1.4

This java.security.spec.KeySpec is a transparent representation of a Diffie-Hellman public key.

IvParameterSpec
javax.crypto.spec

Java 1.4

This java.security.spec.AlgorithmParameterSpec is a transparent representation of an initializa-
tion vector or IV. An IV is required for block ciphers used in feedback mode, such as
DES in CBC mode.

public int getL();
public java.math.BigInteger getP();

}

public class DHPrivateKeySpec implements java.security.spec.KeySpec {
// Public Constructors

public DHPrivateKeySpec(java.math.BigInteger x, java.math.BigInteger p, java.math.BigInteger g);
// Public Instance Methods

public java.math.BigInteger getG();
public java.math.BigInteger getP();
public java.math.BigInteger getX();

}

public class DHPublicKeySpec implements java.security.spec.KeySpec {
// Public Constructors

public DHPublicKeySpec(java.math.BigInteger y, java.math.BigInteger p, java.math.BigInteger g);
// Public Instance Methods

public java.math.BigInteger getG();
public java.math.BigInteger getP();
public java.math.BigInteger getY();

}

public class IvParameterSpec implements java.security.spec.AlgorithmParameterSpec {
// Public Constructors

public IvParameterSpec(byte[] iv);
public IvParameterSpec(byte[] iv, int offset, int len);

// Public Instance Methods
public byte[] getIV();

}

Object DHPrivateKeySpec KeySpec

Object DHPublicKeySpec KeySpec

Object IvParameterSpec AlgorithmParameterSpec

Chapter 17: javax.crypto and Subpackages | 943

JCE

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

javax.crypto.spec.PBEParameterSpec

OAEPParameterSpec
javax.crypto.spec

Java 5.0

This class specifies parameters for OAEP padding, defined by the PKCS #1 standard.

PBEKeySpec
javax.crypto.spec

Java 1.4

This class is a transparent representation of a password used in password-based
encryption (PBE). The password is stored as a char array rather than as a String, so that
the characters of the password can be overwritten when they are no longer needed (for
increased security).

PBEParameterSpec
javax.crypto.spec

Java 1.4

This class is a transparent representation of the parameters used with the password-
based encryption algorithm defined by PKCS#5.

public class OAEPParameterSpec implements java.security.spec.AlgorithmParameterSpec {
// Public Constructors

public OAEPParameterSpec(String mdName, String mgfName, java.security.spec.AlgorithmParameterSpec mgfSpec,
PSource pSrc);

// Public Constants
public static final OAEPParameterSpec DEFAULT;

// Public Instance Methods
public String getDigestAlgorithm();
public String getMGFAlgorithm();
public java.security.spec.AlgorithmParameterSpec getMGFParameters();
public PSource getPSource();

}

public class PBEKeySpec implements java.security.spec.KeySpec {
// Public Constructors

public PBEKeySpec(char[] password);
public PBEKeySpec(char[] password, byte[] salt, int iterationCount);
public PBEKeySpec(char[] password, byte[] salt, int iterationCount, int keyLength);

// Public Instance Methods
public final void clearPassword();
public final int getIterationCount();
public final int getKeyLength();
public final char[] getPassword();
public final byte[] getSalt();

}

public class PBEParameterSpec implements java.security.spec.AlgorithmParameterSpec {
// Public Constructors

public PBEParameterSpec(byte[] salt, int iterationCount);
// Public Instance Methods

Object OAEPParameterSpec AlgorithmParameterSpec

Object PBEKeySpec KeySpec

Object PBEParameterSpec AlgorithmParameterSpec

944 | Chapter 17: javax.crypto and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

javax.crypto.spec.PSource

PSource
javax.crypto.spec

Java 5.0

This class is a representation of the source of “encoding input P” in OAEP padding,
defined by the PKCS #1 standard.

Subclasses PSource.PSpecified

Passed To OAEPParameterSpec.OAEPParameterSpec()

Returned By OAEPParameterSpec.getPSource()

PSource.PSpecified
javax.crypto.spec

Java 5.0

This class extends and is nested within PSource. It explicitly specifies the bytes of
“encoding input P” for OAEP padding.

RC2ParameterSpec
javax.crypto.spec

Java 1.4

This class is a transparent representation of the parameters used by the RC2 encryp-
tion algorithm. An object of this class initializes a Cipher object that implements RC2.
Note that the “SunJCE” provider supplied by Sun does not implement RC2.

public int getIterationCount();
public byte[] getSalt();

}

public class PSource {
// Protected Constructors

protected PSource(String pSrcName);
// Nested Types

public static final class PSpecified extends PSource;
// Public Instance Methods

public String getAlgorithm();
}

public static final class PSource.PSpecified extends PSource {
// Public Constructors

public PSpecified(byte[]);
// Public Constants

public static final PSource.PSpecified DEFAULT;
// Public Instance Methods

public byte[] getValue();
}

public class RC2ParameterSpec implements java.security.spec.AlgorithmParameterSpec {
// Public Constructors

public RC2ParameterSpec(int effectiveKeyBits);
public RC2ParameterSpec(int effectiveKeyBits, byte[] iv);
public RC2ParameterSpec(int effectiveKeyBits, byte[] iv, int offset);

// Public Instance Methods
public int getEffectiveKeyBits();
public byte[] getIV();

Object RC2ParameterSpec AlgorithmParameterSpec

Chapter 17: javax.crypto and Subpackages | 945

JCE

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

javax.crypto.spec.SecretKeySpec

RC5ParameterSpec
javax.crypto.spec

Java 1.4

This class is a transparent representation of the parameters used by the RC5 encryp-
tion algorithm. An object of this class initializes a Cipher object that implements RC5.
Note that the “SunJCE” provider supplied by Sun does not implement RC5.

SecretKeySpec
javax.crypto.spec

Java 1.4

serializable

This class is a transparent and algorithm-independent representation of a secret key.
This class is useful only for encryption algorithms (such as DES and DESede) whose
secret keys can be represented as arbitrary byte arrays and do not require auxiliary
parameters. Note that SecretKeySpec implements the javax.crypto.SecretKey interface directly,
so no algorithm-specific javax.crypto.SecretKeyFactory object is required.

// Public Methods Overriding Object
public boolean equals(Object obj);
public int hashCode();

}

public class RC5ParameterSpec implements java.security.spec.AlgorithmParameterSpec {
// Public Constructors

public RC5ParameterSpec(int version, int rounds, int wordSize);
public RC5ParameterSpec(int version, int rounds, int wordSize, byte[] iv);
public RC5ParameterSpec(int version, int rounds, int wordSize, byte[] iv, int offset);

// Public Instance Methods
public byte[] getIV();
public int getRounds();
public int getVersion();
public int getWordSize();

// Public Methods Overriding Object
public boolean equals(Object obj);
public int hashCode();

}

public class SecretKeySpec implements java.security.spec.KeySpec, javax.crypto.SecretKey {
// Public Constructors

public SecretKeySpec(byte[] key, String algorithm);
public SecretKeySpec(byte[] key, int offset, int len, String algorithm);

// Methods Implementing Key
public String getAlgorithm();
public byte[] getEncoded();
public String getFormat();

// Public Methods Overriding Object
public boolean equals(Object obj);
public int hashCode();

}

Object RC5ParameterSpec AlgorithmParameterSpec

Object SecretKeySpec

KeySpec Serializable Key SecretKey

946

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Chapter 18JSSE

18
javax.net and javax.net.ssl

This chapter documents the javax.net package and, more importantly, its
subpackage javax.net.ssl. These packages were originally defined by the Java Secure
Sockets Extension (JSSE) before they were integrated into Java 1.4, which is why
they have a “javax” prefix.

javax.net is a small package that simply defines abstract factory classes for creating
network sockets and servers sockets. javax.net.ssl provides subclasses of these factory
classes that have the specific purpose of creating sockets and server sockets that
enable secure network communication through the SSL protocol and the closely-
related TLS protocol.

Package javax.net Java 1.4

This small package defines factory classes for creating sockets and server sockets. These
factory classes can be used to create regular java.net.Socket and java.net.ServerSocket objects.
More importantly, however, these factory classes can be subclassed to serve as factories
for other types of sockets such as the SSL-enabled sockets of the javax.net.ssl package.

Classes
public abstract class ServerSocketFactory;
public abstract class SocketFactory;

ServerSocketFactory
javax.net

Java 1.4

This abstract class defines a factory API for creating server socket objects. Use the static
getDefault() method to obtain a default ServerSocketFactory object that is suitable for creating
regular java.net.ServerSocket sockets. Once you have a ServerSocketFactory object, call one of the
createServerSocket() methods to create a new socket and optionally bind it to a local port and
specify the allowed backlog of queued connections. See javax.net.ssl.SSLServerSocketFactory for a
socket factory that can create secure javax.net.ssl.SSLServerSocket objects.

Chapter 18: javax.net and javax.net.ssl | 947

JSSE

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

.Package javax.net.ssl

Subclasses javax.net.ssl.SSLServerSocketFactory

Returned By javax.net.ssl.SSLServerSocketFactory.getDefault()

SocketFactory
javax.net

Java 1.4

This abstract class defines a factory API for creating socket objects. Use the static
getDefault() method to obtain a default SocketFactory object that is suitable for creating
regular java.net.Socket sockets. (This default SocketFactory is the one used by the Socket()
constructor, which usually provides an easier way to create normal sockets.) Once you
have a SocketFactory object, call one of the createSocket() methods to create a new socket
and optionally connect it to a remote host and optionally bind it to a local address and
port. See javax.net.ssl.SSLSocketFactory for a socket factory that can create secure
javax.net.ssl.SSLSocket objects.

Subclasses javax.net.ssl.SSLSocketFactory

Returned By javax.net.ssl.SSLSocketFactory.getDefault()

Package javax.net.ssl Java 1.4

This package defines an API for secure network sockets using the SSL (Secure Sockets
Layer) protocol, or the closely related TLS (Transport Layer Security) protocol. It
defines the SSLSocket and SSLServerSocket subclasses of the java.net socket and server socket

public abstract class ServerSocketFactory {
// Protected Constructors

protected ServerSocketFactory();
// Public Class Methods

public static ServerSocketFactory getDefault();
// Public Instance Methods

public java.net.ServerSocket createServerSocket() throws java.io.IOException;
public abstract java.net.ServerSocket createServerSocket(int port) throws java.io.IOException;
public abstract java.net.ServerSocket createServerSocket(int port, int backlog) throws java.io.IOException;
public abstract java.net.ServerSocket createServerSocket(int port, int backlog, java.net.InetAddress ifAddress)

throws java.io.IOException;
}

public abstract class SocketFactory {
// Protected Constructors

protected SocketFactory();
// Public Class Methods

public static SocketFactory getDefault();
// Public Instance Methods

public java.net.Socket createSocket() throws java.io.IOException;
public abstract java.net.Socket createSocket(String host, int port) throws java.io.IOException,

java.net.UnknownHostException;
public abstract java.net.Socket createSocket(java.net.InetAddress host, int port) throws java.io.IOException;
public abstract java.net.Socket createSocket(java.net.InetAddress address, int port, java.net.InetAddress localAddress,

int localPort)
throws java.io.IOException;

public abstract java.net.Socket createSocket(String host, int port, java.net.InetAddress localHost, int localPort)
throws java.io.IOException, java.net.UnknownHostException;

}

948 | Chapter 18: javax.net and javax.net.ssl

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

.Package javax.net.ssl

classes. And it defines SSLSocketFactory and SSLServerSocketFactory subclasses of the javax.net
factory classes to create those SSL-enabled sockets and server sockets. Clients that
want to perform simple SSL-enabled networking can create an SSLSocket with code like
the following:

SSLSocketFactory factory = SSLSocketFactory.getDefault();
SSLSocket securesock = (SSLSocket)factory.getSocket(hostname,
 443); // https port

Once an SSLSocket has been created, it can be used just like a normal java.net.Socket. Once a
connection is established over an SSLSocket, you can use the getSession() method to obtain
an SSLSession object that provides information about the connection. Note that despite the
name of this package and of its key classes, it supports the TLS protocol in addition to
the SSL. (The default provider in Sun’s implementation supports SSL 3.0 and TLS 1.0.)
The TLS protocol is closely related to SSL, and we’ll simply use the term SSL here.

The SSLSocket class allows you to do arbitrary networking with an SSL-enabled peer. The
most common use of SSL today is with the https: protocol on the web. The addition of
this package to the core Java platform enables support for https: URLs in the java.net.URL
class, which allows you to securely transfer data over the web without having to
directly use this package at all. When you call openConnection() on a https: URL, the
URLConnection object that is returned can be cast to an HttpsURLConnection object, which
defines some SSL-specific methods. See java.net.URL and java.net.URLConnection for more
information about networking with URLs.

Although the code shown above to create a SSLSocket is quite simple, this package is
much more complex because it exposes a lot of SSL infrastructure so that applications
with advanced networking needs can configure it as needed. Also, like all security-
related packages, this one is provider-based and algorithm-independent, which adds a
layer of complexity. If you want to explore this package beyond the two socket classes,
the two factory classes, and the HttpsURLConnection class, start with SSLContext. This class is a
factory for socket factories, and as such is the central class of the API. To customize
the way SSL networking is done, you create an SSLContext optionally specifing the
desired provider of the implementation. Next, you initialize the SSLContext by providing
a custom KeyManager as a source of authentication information to be supplied to the
remote host if required, a custom TrustManager as a verifier for the authentication infor-
mation (if any) presented by the remote host, and a custom java.security.SecureRandom
object as a source of randomness. Once the SSLContext is initialized in this way, you can
use it to create SSLSocketFactory and SSLServerSocketFactory objects that use the KeyManager and
TrustManager objects you supplied.

In Java 5.0, the SSLContext can also be used to create an SSLEngine object, which performs
transport-independent SSL encryption of outbound packets and SSL decryption of
inbound packets. This enables the use of SSL with the nonblocking networking facili-
ties of the java.nio.channels package, for example.

Interfaces
public interface HandshakeCompletedListener extends java.util.EventListener;
public interface HostnameVerifier;
public interface KeyManager;
public interface ManagerFactoryParameters;
public interface SSLSession;
public interface SSLSessionBindingListener extends java.util.EventListener;
public interface SSLSessionContext;
public interface TrustManager;

Chapter 18: javax.net and javax.net.ssl | 949

JSSE

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

javax.net.ssl.CertPathTrustManagerParameters

public interface X509KeyManager extends KeyManager;
public interface X509TrustManager extends TrustManager;

Enumerated Types
public enum SSLEngineResult.HandshakeStatus;
public enum SSLEngineResult.Status;

Events
public class HandshakeCompletedEvent extends java.util.EventObject;
public class SSLSessionBindingEvent extends java.util.EventObject;

Other Classes
public class CertPathTrustManagerParameters implements ManagerFactoryParameters;
public abstract class HttpsURLConnection extends java.net.HttpURLConnection;
public class KeyManagerFactory;
public abstract class KeyManagerFactorySpi;
public class KeyStoreBuilderParameters implements ManagerFactoryParameters;
public class SSLContext;
public abstract class SSLContextSpi;
public abstract class SSLEngine;
public class SSLEngineResult;
public final class SSLPermission extends java.security.BasicPermission;
public abstract class SSLServerSocket extends java.net.ServerSocket;
public abstract class SSLServerSocketFactory extends javax.net.ServerSocketFactory;
public abstract class SSLSocket extends java.net.Socket;
public abstract class SSLSocketFactory extends javax.net.SocketFactory;
public class TrustManagerFactory;
public abstract class TrustManagerFactorySpi;
public abstract class X509ExtendedKeyManager implements X509KeyManager;

Exceptions
public class SSLException extends java.io.IOException;

public class SSLHandshakeException extends SSLException;
public class SSLKeyException extends SSLException;
public class SSLPeerUnverifiedException extends SSLException;
public class SSLProtocolException extends SSLException;

CertPathTrustManagerParameters
javax.net.ssl

Java 5.0

This class implements the ManagerFactoryParameters interface and wraps a java.security.cert.Cert-
PathParameters object used to initialize a TrustManager based on a certificate path. See the
init() method of TrustManagerFactory.

public class CertPathTrustManagerParameters implements ManagerFactoryParameters {
// Public Constructors

public CertPathTrustManagerParameters(java.security.cert.CertPathParameters parameters);
// Public Instance Methods

public java.security.cert.CertPathParameters getParameters();
}

Object CertPathTrustManagerParameters ManagerFactoryParameters

950 | Chapter 18: javax.net and javax.net.ssl

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

javax.net.ssl.HandshakeCompletedEvent

HandshakeCompletedEvent
javax.net.ssl

Java 1.4

serializable event

An instance of this class is passed to the handshakeCompleted() method of any registered
HandshakeCompletedListener objects by an SSLSocket when that socket completes the hand-
shake phase of establishing a connection. The various methods of a
HandshakeCompletedEvent return information (such as the name of the cipher suite in use
and the certificate chain of the remote host) that was determined during that
handshake.

Note that the getPeerCertificateChain() method returns an object from the javax.security.cert
package, which is not documented in this book. The method and package exist only
for backward compatibility with earlier versions of the JSSE API, and should be
considered deprecated. Use getPeerCertificates(), which uses java.security.cert instead.

Passed To HandshakeCompletedListener.handshakeCompleted()

HandshakeCompletedListener
javax.net.ssl

Java 1.4

event listener

This interface is implemented by any class that wants to receive notifications (in the
form of a call to handshakeCompleted() method) when an SSLSocket completes the SSL hand-
shake. Register a HandshakeCompletedListener for an SSLSocket by passing it to the
addHandshakeCompletedListener() method of the socket. When the socket completes the
handshake phase of connection, it will call the handshakeCompleted() method of all regis-
tered listeners, passing in a HandshakeCompletedEvent object.

Passed To SSLSocket.{addHandshakeCompletedListener(), removeHandshakeCompletedListener()}

public class HandshakeCompletedEvent extends java.util.EventObject {
// Public Constructors

public HandshakeCompletedEvent(SSLSocket sock, SSLSession s);
// Public Instance Methods

public String getCipherSuite();
public java.security.cert.Certificate[] getLocalCertificates();

5.0 public java.security.Principal getLocalPrincipal();
public javax.security.cert.X509Certificate[] getPeerCertificateChain() throws SSLPeerUnverifiedException;
public java.security.cert.Certificate[] getPeerCertificates() throws SSLPeerUnverifiedException;

5.0 public java.security.Principal getPeerPrincipal() throws SSLPeerUnverifiedException;
public SSLSession getSession();
public SSLSocket getSocket();

}

public interface HandshakeCompletedListener extends java.util.EventListener {
// Public Instance Methods

void handshakeCompleted(HandshakeCompletedEvent event);
}

Object EventObject HandshakeCompletedEvent

Serializable

EventListener HandshakeCompletedListener

Chapter 18: javax.net and javax.net.ssl | 951

JSSE

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

javax.net.ssl.HttpsURLConnection

HostnameVerifier
javax.net.ssl

Java 1.4

An object that implements this interface may be used with an HttpsURLConnection object to
handle the case in which the hostname that appears in the URL does not match the
hostname obtained during the SSL handshake with the server. This occurs, for
example, when a website uses the secure certificate of its parent web hosting company,
for example. In this situation, the verify() method of the HostnameVerifier is called to deter-
mine whether the connection should proceed or not. verify() should return true to allow
the connection to proceed, and should return false to cause the connection to fail. The
hostname argument to verify() specifies the hostname that appeared in the URL. The session
argument specifies the SSLSession object that was established during the handshake. Call
getPeerHost() on this object to determine the hostname reported during server authenti-
cation. If no HostnameVerifier is registered with a HttpsURLConnection object, and no default
verifier is registered with the HttpsURLConnection class, then hostname mismatches will
always cause the connection to fail. In user-driven applications such as web browsers,
a HostnameVerifier can be used to ask the user whether to proceed or not.

Passed To HttpsURLConnection.{setDefaultHostnameVerifier(), setHostnameVerifier()}

Returned By HttpsURLConnection.{getDefaultHostnameVerifier(), getHostnameVerifier()}

Type Of HttpsURLConnection.hostnameVerifier

HttpsURLConnection
javax.net.ssl

Java 1.4

This class is a java.net.URLConnection for a URL that uses the https: protocol. It extends
java.net.HttpURLConnection and, in addition to inheriting the methods of its superclasses, it
defines methods for specifying the SSLSocketFactory and HostnameVerifier to use when estab-
lishing the connection. Static versions of these methods allow you to specify a default
factory and verifier objects for use with all HttpsURLConnection objects. After the connec-
tion has been established, several other methods exist to obtain information (such as
the cipher suite and the server certificates) about the connection itself.

Obtain a HttpsURLConnection object by calling the openConnection() method of a URL that uses
the https:// protocol specifier, and casting the returned value to this type. The HttpsURL-
Connection object is unconnected at this point, and you can call setHostnameVerifier() and
setSSLSocketFactory() to customize the way the connection is made. (If you do not specify a
HostnameVerifier for the instance, or a default one for the class, then hostname
mismatches will always cause the connection to fail. If you do not specify an SSLSocket-
Factory for the instance or class, then a default one will be used.) To connect, call the
inherited connect() method, and then call the inherited getContent() to retrieve the content
of the URL as an object, or use the inherited getInputStream() to obtain a java.io.InputStream
with which you can read the content of the URL.

public interface HostnameVerifier {
// Public Instance Methods

boolean verify(String hostname, SSLSession session);
}

public abstract class HttpsURLConnection extends java.net.HttpURLConnection {
// Protected Constructors

Object URLConnection HttpURLConnection HttpsURLConnection

952 | Chapter 18: javax.net and javax.net.ssl

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

javax.net.ssl.KeyManager

KeyManager
javax.net.ssl

Java 1.4

This is a marker interface to identify key manager objects. A key manager is respon-
sible for obtaining and managing authentication credentials (such as a certificate chain
and an associated private key) that the local host can use to authenticate itself to the
remote host. It is usually used on the server-side of an SSL connection, but can be used
on the client-side as well.

Use a KeyManagerFactory to obtain KeyManager objects. KeyManager objects returned by a
KeyManagerFactory can always be cast to a subinterface specific to a particular type of
authentication credentials. See X509KeyManager, for example.

Implementations X509KeyManager

Passed To SSLContext.init(), SSLContextSpi.engineInit()

Returned By KeyManagerFactory.getKeyManagers(), KeyManagerFactorySpi.engineGetKeyManagers()

KeyManagerFactory
javax.net.ssl

Java 1.4

A KeyManagerFactory is responsible for creating KeyManager objects for a specific key manage-
ment algorithm. Obtain a KeyManagerFactory object by calling one of the getInstance() methods
and specifying the desired algorithm and, optionally, the desired provider. In Java 1.4, the
“SunX509” algorithm is the only one supported by the default “SunJSSE” provider. After
calling getInstance(), you initialize the factory object with init(). For the “SunX509” algo-
rithm, you always use the two-argument version of init() passing in a KeyStore object that
contains the private keys and certificates required by X509KeyManager objects, and also speci-
fying the password used to protect the private keys in that KeyStore. Once a KeyManagerFactory
has been created and initialized, use it to create a KeyManager by calling getKeyManagers(). This
method returns an array of KeyManager objects because some key management algorithms
may handle more than one type of key. The “SunX509” algorithm manages only X509

protected HttpsURLConnection(java.net.URL url);
// Public Class Methods

public static HostnameVerifier getDefaultHostnameVerifier();
public static SSLSocketFactory getDefaultSSLSocketFactory();
public static void setDefaultHostnameVerifier(HostnameVerifier v);
public static void setDefaultSSLSocketFactory(SSLSocketFactory sf);

// Public Instance Methods
public abstract String getCipherSuite();
public HostnameVerifier getHostnameVerifier();
public abstract java.security.cert.Certificate[] getLocalCertificates();

5.0 public java.security.Principal getLocalPrincipal();
5.0 public java.security.Principal getPeerPrincipal() throws SSLPeerUnverifiedException;

public abstract java.security.cert.Certificate[] getServerCertificates() throws SSLPeerUnverifiedException;
public SSLSocketFactory getSSLSocketFactory();
public void setHostnameVerifier(HostnameVerifier v);
public void setSSLSocketFactory(SSLSocketFactory sf);

// Protected Instance Fields
protected HostnameVerifier hostnameVerifier;

}

public interface KeyManager {
}

Chapter 18: javax.net and javax.net.ssl | 953

JSSE

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

javax.net.ssl.KeyStoreBuilderParameters

keys, and always returns an array with an X509KeyManager object as its single element. This
returned array is typically passed to the init() method of an SSLContext object.

If a KeyStore and password are not passed to the init() method of the KeyManagerFactory for
the “SunX509” algorithm, then the factory uses attempts to read a KeyStore from the file
specified by the javax.net.ssl.keyStore system property using the password specified by the
javax.net.ssl.keyStorePassword. The type of the keystore is specified by javax.net.ssl.keyStoreType.

KeyManagerFactorySpi
javax.net.ssl

Java 1.4

This abstract class defines the Service Provider Interface for KeyManagerFactory. Security
providers must implement this interface, but applications never need to use it.

Passed To KeyManagerFactory.KeyManagerFactory()

KeyStoreBuilderParameters
javax.net.ssl

Java 5.0

This class implements the ManagerFactoryParameters interface and encapsulates a java.util.List
of java.security.KeyStore.Builder object for use by an X509KeyManager. See the init() method of
KeyManagerFactory.

public class KeyManagerFactory {
// Protected Constructors

protected KeyManagerFactory(KeyManagerFactorySpi factorySpi, java.security.Provider provider, String algorithm);
// Public Class Methods

public static final String getDefaultAlgorithm();
public static final KeyManagerFactory getInstance(String algorithm) throws java.security.NoSuchAlgorithmException;
public static final KeyManagerFactory getInstance(String algorithm, java.security.Provider provider)

throws java.security.NoSuchAlgorithmException;
public static final KeyManagerFactory getInstance(String algorithm, String provider)

throws java.security.NoSuchAlgorithmException, java.security.NoSuchProviderException;
// Public Instance Methods

public final String getAlgorithm();
public final KeyManager[] getKeyManagers();
public final java.security.Provider getProvider();
public final void init(ManagerFactoryParameters spec) throws java.security.InvalidAlgorithmParameterException;
public final void init(java.security.KeyStore ks, char[] password)

throws java.security.KeyStoreException, java.security.NoSuchAlgorithmException,
java.security.UnrecoverableKeyException;

}

public abstract class KeyManagerFactorySpi {
// Public Constructors

public KeyManagerFactorySpi();
// Protected Instance Methods

protected abstract KeyManager[] engineGetKeyManagers();
protected abstract void engineInit(ManagerFactoryParameters spec)

throws java.security.InvalidAlgorithmParameterException;
protected abstract void engineInit(java.security.KeyStore ks, char[] password)

throws java.security.KeyStoreException, java.security.NoSuchAlgorithmException,
java.security.UnrecoverableKeyException;

}

954 | Chapter 18: javax.net and javax.net.ssl

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

javax.net.ssl.ManagerFactoryParameters

ManagerFactoryParameters
javax.net.ssl

Java 1.4

This marker interface identifies objects that provide algorithm-specific or provider-
specific initialization parameters for KeyManagerFactory and TrustManagerFactory objects. In the
default “SunJSSE” provider shiped by Sun, the only supported type for these factory
classes is “SunX509”. Factories of these types need to be initialized with a KeyStore
object but do not require any specialized ManagerFactoryParameters object. Therefore, the
javax.net.ssl package does not define any subinterfaces of this interface, and it is never
used with the default provider. Third-party or future providers may use it, however.

Implementations CertPathTrustManagerParameters, KeyStoreBuilderParameters

Passed To KeyManagerFactory.init(), KeyManagerFactorySpi.engineInit(), TrustManagerFactory.init(),
TrustManagerFactorySpi.engineInit()

SSLContext
javax.net.ssl

Java 1.4

This class is a factory for socket and server socket factories. Although most applica-
tions do not need to use this class directly, it is the central class of the javax.net.ssl
package. Most applications use the default SSLSocketFactory and SSLServerSocketFactory objects
returned by the static getDefault() methods of those classes. Applications that want to
perform SSL networking using a security provider other than the default provider, or
that want to customize key management or trust management for the SSL connection
should use custom socket factories created from a custom SSLContext. In Java 5.0, this
class also includes createSSLEngine() factory methods for creating SSLEngine objects.

Create an SSLContext by passing the name of the desired secure socket protocol and,
optionally, the desired provider to getInstance(). The default “SunJSSE” provider
supports protocol strings “SSL”, “SSLv2”, “SSLv3”, “TLS”, and “TLSv1”. Once you
have created an SSLContext object, call its init() method to supply the KeyManager, Trust-
Manager, and SecureRandom objects it requires. If any of the init() arguments is null, a default
value will be used. Finally, obtain a SSLSocketFactory and SSLServerSocketFactory by calling
getSocketFactory() and getServerSocketFactory().

public class KeyStoreBuilderParameters implements ManagerFactoryParameters {
// Public Constructors

public KeyStoreBuilderParameters(java.util.List parameters);
public KeyStoreBuilderParameters(java.security.KeyStore.Builder builder);

// Public Instance Methods
public java.util.List getParameters();

}

public interface ManagerFactoryParameters {
}

public class SSLContext {
// Protected Constructors

protected SSLContext(SSLContextSpi contextSpi, java.security.Provider provider, String protocol);
// Public Class Methods

public static SSLContext getInstance(String protocol) throws java.security.NoSuchAlgorithmException;

Object KeyStoreBuilderParameters ManagerFactoryParameters

Chapter 18: javax.net and javax.net.ssl | 955

JSSE

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

javax.net.ssl.SSLEngine

SSLContextSpi
javax.net.ssl

Java 1.4

This abstract class defines the Service Provider Interface for SSLContext. Security
providers must implement this interface, but applications never need to use it.

Passed To SSLContext.SSLContext()

SSLEngine
javax.net.ssl

Java 5.0

This class performs SSL handshaking, encryption and decryption, but does not send or
receive messages over the network. This leaves the network transport mechanism up
to the user of this class, and enables SSL communication using the nonblocking I/O
mechanisms of the java.nio package. The price of this flexibility is that your code must
follow a relatively complex protocol to use an SSLEngine correctly.

Create an SSLEngine with SSLContext.createSSLEngine(). Next, configure it with the various
setter methods to specify authentication requirements, encryption algorithms, etc.
After creating and configuring an engine, you use it to encrypt outbound data from
one ByteBuffer to another with wrap() and to decrypt inbound data from one byte buffer
to another with unwrap(). (Note that the wrap() and unwrap() methods also come in gath-
ering and scattering variants.) Both methods return an SSLEngineResult.

public static SSLContext getInstance(String protocol, String provider)
throws java.security.NoSuchAlgorithmException, java.security.NoSuchProviderException;

public static SSLContext getInstance(String protocol, java.security.Provider provider)
throws java.security.NoSuchAlgorithmException;

// Public Instance Methods
5.0 public final SSLEngine createSSLEngine();
5.0 public final SSLEngine createSSLEngine(String peerHost, int peerPort);

public final SSLSessionContext getClientSessionContext();
public final String getProtocol();
public final java.security.Provider getProvider();
public final SSLSessionContext getServerSessionContext();
public final SSLServerSocketFactory getServerSocketFactory();
public final SSLSocketFactory getSocketFactory();
public final void init(KeyManager[] km, TrustManager[] tm, java.security.SecureRandom random)

throws java.security.KeyManagementException;
}

public abstract class SSLContextSpi {
// Public Constructors

public SSLContextSpi();
// Protected Instance Methods
5.0 protected abstract SSLEngine engineCreateSSLEngine();
5.0 protected abstract SSLEngine engineCreateSSLEngine(String host, int port);

protected abstract SSLSessionContext engineGetClientSessionContext();
protected abstract SSLSessionContext engineGetServerSessionContext();
protected abstract SSLServerSocketFactory engineGetServerSocketFactory();
protected abstract SSLSocketFactory engineGetSocketFactory();
protected abstract void engineInit(KeyManager[] km, TrustManager[] tm, java.security.SecureRandom sr)

throws java.security.KeyManagementException;
}

956 | Chapter 18: javax.net and javax.net.ssl

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

javax.net.ssl.SSLEngine

The initial call or calls to wrap() produce outbound handshaking data without consuming
any of the source bytes in the buffer you provide. Initial calls to unwrap() may consume
inbound handshaking data without producing any result bytes. Monitor the SSLEngine-
Result.HandshakeStatus value to ensure that handshaking is proceeding as needed. When
handshaking is complete, you can call getSession() to obtain the SSLSession object that
describes session details negotiated during handshaking. Remember that either peer of an
SSL connection may request a new handshake at any time; this means that you must
monitor the HandshakeStatus after every wrap() or unwrap() call in case a new handshake has
been requested. You can request a new handshake yourself with beginHandshake().

As part of the handshaking protocol, the SSLEngine typically needs to use the KeyManager
or TrustManager of the originating SSLContext object. Rather than blocking a wrap() or unwrap()
method while these operations are performed, it instead returns an SSLResult.Handshake-
Status, indicating that a task needs to be performed. When this happens, you must call
getDelegatedTask() repeatedly, calling the run() methods of the Runnable objects it returns
until it returns null to indicate that all necessary tasks have been completed. (If it
returns more than one Runnable, it is safe to run them in parallel (with a
java.util.concurrent.ExecutorCompletionService, for example). Once all such tasks have been run,
the original call to wrap() or unwrap() should be repeated.

When you are done sending outbound data, call closeOutbound(), and then call wrap() one
or more times to flush any remaining data from the engine. Call wrap() until the
returned SSLEngineResult.Status indicates that the connection has closed. Similarly, if you
are done reading inbound data, call closeInbound() and final calls to unwrap() until the
connection is closed.

It is safe for one thread to call wrap() while another thread is calling unwrap(). It is not
safe, however, for either method to be called by two threads at once.

public abstract class SSLEngine {
// Protected Constructors

protected SSLEngine();
protected SSLEngine(String peerHost, int peerPort);

// Public Instance Methods
public abstract void beginHandshake() throws SSLException;
public abstract void closeInbound() throws SSLException;
public abstract void closeOutbound();
public abstract Runnable getDelegatedTask();
public abstract String[] getEnabledCipherSuites();
public abstract String[] getEnabledProtocols();
public abstract boolean getEnableSessionCreation();
public abstract SSLEngineResult.HandshakeStatus getHandshakeStatus();
public abstract boolean getNeedClientAuth();
public String getPeerHost();
public int getPeerPort();
public abstract SSLSession getSession();
public abstract String[] getSupportedCipherSuites();
public abstract String[] getSupportedProtocols();
public abstract boolean getUseClientMode();
public abstract boolean getWantClientAuth();
public abstract boolean isInboundDone();
public abstract boolean isOutboundDone();
public abstract void setEnabledCipherSuites(String[] suites);
public abstract void setEnabledProtocols(String[] protocols);
public abstract void setEnableSessionCreation(boolean flag);

Chapter 18: javax.net and javax.net.ssl | 957

JSSE

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

javax.net.ssl.SSLEngineResult.HandshakeStatus

Passed To X509ExtendedKeyManager.{chooseEngineClientAlias(), chooseEngineServerAlias()}

Returned By SSLContext.createSSLEngine(), SSLContextSpi.engineCreateSSLEngine()

SSLEngineResult
javax.net.ssl

Java 5.0

An object of this type is returned by the wrap() and unwrap() methods of an SSLEngine. Use
the methods of this object to determine how much data was consumed and produced
and to obtain the Status of the operation and the HandshakeStatus of the connection. These
two nested enumerated types return important values. Correct operation of an SSLEngine
requires that your code respond correctly to the Status and HandshakeStatus results.

Returned By SSLEngine.{unwrap(), wrap()}

SSLEngineResult.HandshakeStatus
javax.net.ssl

Java 5.0

serializable comparable enum

The constants defined by this enumerated type specify the handshake status of the
SSLEngine and often specify the action your code must take next in order to ensure
correct operation. The values are the following:

NOT_HANDSHAKING
Handshaking is not currently in progress.

FINISHED
Handshaking just completed as a result of the wrap() or unwrap() call that generated
this value.

public abstract void setNeedClientAuth(boolean need);
public abstract void setUseClientMode(boolean mode);
public abstract void setWantClientAuth(boolean want);
public SSLEngineResult unwrap(java.nio.ByteBuffer src, java.nio.ByteBuffer dst) throws SSLException;
public SSLEngineResult unwrap(java.nio.ByteBuffer src, java.nio.ByteBuffer[] dsts) throws SSLException;
public abstract SSLEngineResult unwrap(java.nio.ByteBuffer src, java.nio.ByteBuffer[] dsts, int offset, int length)

throws SSLException;
public SSLEngineResult wrap(java.nio.ByteBuffer[] srcs, java.nio.ByteBuffer dst) throws SSLException;
public SSLEngineResult wrap(java.nio.ByteBuffer src, java.nio.ByteBuffer dst) throws SSLException;
public abstract SSLEngineResult wrap(java.nio.ByteBuffer[] srcs, int offset, int length, java.nio.ByteBuffer dst)

throws SSLException;
}

public class SSLEngineResult {
// Public Constructors

public SSLEngineResult(SSLEngineResult.Status status, SSLEngineResult.HandshakeStatus handshakeStatus,
int bytesConsumed, int bytesProduced);

// Nested Types
public enum HandshakeStatus;
public enum Status;

// Public Instance Methods
public final int bytesConsumed();
public final int bytesProduced();
public final SSLEngineResult.HandshakeStatus getHandshakeStatus();
public final SSLEngineResult.Status getStatus();

// Public Methods Overriding Object
public String toString();

}

958 | Chapter 18: javax.net and javax.net.ssl

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

javax.net.ssl.SSLEngineResult.Status

NEED_WRAP
The SSLEngine needs to send more handshake data, so a call to wrap() is necessary.

NEED_UNWRAP
The SSLEngine needs to receive more handshake data, so a call to unwrap() is
necessary.

NEED_TASK
The SSLEngine needs to perform an authentication or related task, so you must
repeatedly call getDelegatedTask() and run() any Runnable objects it returns.

Passed To SSLEngineResult.SSLEngineResult()

Returned By SSLEngine.getHandshakeStatus(), SSLEngineResult.getHandshakeStatus()

SSLEngineResult.Status
javax.net.ssl

Java 5.0

serializable comparable enum

The constants of this enumerated type indicate the status of a wrap() or unwrap()
operation:

OK
The operation completed normally.

CLOSED
The most recent call to wrap() or unwrap() completed the closing handshake and
closed the outbound or inbound connection. Or, that connection is already
closed, and so the wrap() or unwrap() call could not proceed.

BUFFER_OVERFLOW
There were not enough bytes in the destination buffer to hold the results. Drain
the buffer and try again.

BUFFER_UNDERFLOW
There were not enough incoming bytes in the source buffer to produce a complete
output packet. Fill the buffer with more bytes from the network and call unwrap()
again.

public enum SSLEngineResult.HandshakeStatus {
// Enumerated Constants

NOT_HANDSHAKING,
FINISHED,
NEED_TASK,
NEED_WRAP,
NEED_UNWRAP;

// Public Class Methods
public static SSLEngineResult.HandshakeStatus valueOf(String name);
public static final SSLEngineResult.HandshakeStatus[] values();

}

public enum SSLEngineResult.Status {
// Enumerated Constants

BUFFER_UNDERFLOW,
BUFFER_OVERFLOW,
OK,
CLOSED;

// Public Class Methods
public static SSLEngineResult.Status valueOf(String name);

Chapter 18: javax.net and javax.net.ssl | 959

JSSE

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

javax.net.ssl.SSLKeyException

Passed To SSLEngineResult.SSLEngineResult()

Returned By SSLEngineResult.getStatus()

SSLException
javax.net.ssl

Java 1.4

serializable checked

Signals an SSL-related problem. This class serves as the common superclass of more
specific SSL exception subclasses.

Subclasses SSLHandshakeException, SSLKeyException, SSLPeerUnverifiedException, SSLProtocolException

Thrown By SSLEngine.{beginHandshake(), closeInbound(), unwrap(), wrap()}

SSLHandshakeException
javax.net.ssl

Java 1.4

serializable checked

Signals that the SSL handshake failed for some reason other than failed authentication
(see SSLPeerUnverifiedException). For example, it may be thrown because the client and
server count not agree on a mutually-acceptable cipher suite. When this exception is
thrown, the SSLSocket object is no longer usable.

SSLKeyException
javax.net.ssl

Java 1.4

serializable checked

Signals a problem with the public key certificate and private key used by a server (or
client) for authentication.

public static final SSLEngineResult.Status[] values();
}

public class SSLException extends java.io.IOException {
// Public Constructors
5.0 public SSLException(Throwable cause);

public SSLException(String reason);
5.0 public SSLException(String message, Throwable cause);
}

public class SSLHandshakeException extends SSLException {
// Public Constructors

public SSLHandshakeException(String reason);
}

public class SSLKeyException extends SSLException {
// Public Constructors

Object Throwable Exception IOException SSLException

Serializable

Object Throwable Exception IOException SSLException SSLHandshakeException

Serializable

Object Throwable Exception IOException SSLException SSLKeyException

Serializable

960 | Chapter 18: javax.net and javax.net.ssl

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

javax.net.ssl.SSLPeerUnverifiedException

SSLPeerUnverifiedException
javax.net.ssl

Java 1.4

serializable checked

Signals that authentication of the remote host was not successfully completed.

Thrown By java.net.SecureCacheResponse.{getPeerPrincipal(), getServerCertificateChain()},
HandshakeCompletedEvent.{getPeerCertificateChain(), getPeerCertificates(), getPeerPrincipal()},
HttpsURLConnection.{getPeerPrincipal(), getServerCertificates()}, SSLSession.{getPeerCertificateChain(),
getPeerCertificates(), getPeerPrincipal()}

SSLPermission
javax.net.ssl

Java 1.4

serializable permission

This Permission class controls access to sensitive methods in the javax.net.ssl package. The
two defined target names are “setHostnameVerifier” and “getSSLSessionContext”.
The first is required in order to call HttpURLConnection.setHostnameVerifier() and
HttpURLConnection.setDefaultHostnameVerifier(). The second permission target is required in
order to call SSLSession.getSessionContext().

SSLProtocolException
javax.net.ssl

Java 1.4

serializable checked

Signals a problem at the SSL protocol level. An exception of this type usually indicates
that there is a bug in the SSL implementation being used locally or on the remote host.

public SSLKeyException(String reason);
}

public class SSLPeerUnverifiedException extends SSLException {
// Public Constructors

public SSLPeerUnverifiedException(String reason);
}

public final class SSLPermission extends java.security.BasicPermission {
// Public Constructors

public SSLPermission(String name);
public SSLPermission(String name, String actions);

}

public class SSLProtocolException extends SSLException {
// Public Constructors

public SSLProtocolException(String reason);
}

Object Throwable Exception IOException SSLException SSLPeerUnverifiedException

Serializable

Object Permission BasicPermission SSLPermission

Guard Serializable Serializable

Object Throwable Exception IOException SSLException SSLProtocolException

Serializable

Chapter 18: javax.net and javax.net.ssl | 961

JSSE

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

javax.net.ssl.SSLServerSocket

SSLServerSocket
javax.net.ssl

Java 1.4

This class is an SSL-enabled subclass of java.net.ServerSocket that is used to listen for and
accept connections from clients and to create SSLSocket objects for communicating with
those clients. Create an SSLServerSocket and bind it to a local port by calling one of the
inherited getServerSocket() methods of an SSLServerSocketFactory. Once a SSLServerSocket is
created, use it as you would a regular ServerSocket: call the inherited accept() method to
wait for and accept a connection from a client, returning a Socket object. With SSLServer-
Socket, the Socket returned by accept() can always be cast to an instance of SSLSocket.

SSLServerSocket defines methods for setting the enabled protocols and cipher suites, and
for querying the full set of supported protocols and suites. See SSLSocket, which has
methods with the same names, for details. If your server desires or requires authentica-
tion by its clients, call setWantClientAuth() or setNeedClientAuth(). These methods cause the
SSLSocket objects returned by accept() to be configured to request or require client
authentication.

In typical SSL networking scenarios, the client requires the server to provide authenti-
cation information. When you create an SSLServerSocket using the default
SSLServerSocketFactory, the authentication information required is an X.509 public key
certificate and the corresponding private key. The default SSLServerSocketFactory uses an
X509KeyManager to obtain this information. The default X509KeyManager attempts to read
this information from the java.security.KeyStore file specified by the system property
javax.net.ssl.keyStore. It uses the value of the the javax.net.ssl.keyStorePassword as the keystore
password, and uses the value of the javax.net.ssl.keyStoreType system property to specify the
keystore type. The key store should only contain valid keys and certificate chains that
identify the server; the X509KeyManager automatically chooses a key and certificat chain
that are appropriate for the client.

public abstract class SSLServerSocket extends java.net.ServerSocket {
// Protected Constructors

protected SSLServerSocket() throws java.io.IOException;
protected SSLServerSocket(int port) throws java.io.IOException;
protected SSLServerSocket(int port, int backlog) throws java.io.IOException;
protected SSLServerSocket(int port, int backlog, java.net.InetAddress address) throws java.io.IOException;

// Public Instance Methods
public abstract String[] getEnabledCipherSuites();
public abstract String[] getEnabledProtocols();
public abstract boolean getEnableSessionCreation();
public abstract boolean getNeedClientAuth();
public abstract String[] getSupportedCipherSuites();
public abstract String[] getSupportedProtocols();
public abstract boolean getUseClientMode();
public abstract boolean getWantClientAuth();
public abstract void setEnabledCipherSuites(String[] suites);
public abstract void setEnabledProtocols(String[] protocols);
public abstract void setEnableSessionCreation(boolean flag);
public abstract void setNeedClientAuth(boolean need);
public abstract void setUseClientMode(boolean mode);
public abstract void setWantClientAuth(boolean want);

}

Object ServerSocket SSLServerSocket

962 | Chapter 18: javax.net and javax.net.ssl

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

javax.net.ssl.SSLServerSocketFactory

SSLServerSocketFactory
javax.net.ssl

Java 1.4

This class is a javax.net.ServerSocketFactory for creating SSLServerSocket objects. Most applica-
tions use the default SSLServerSocketFactory returned by the static getDefault() method. Once
this SSLServerSocketFactory has been obtained, they use one of the inherited createServerSocket()
methods to create and optionally bind a new SSLServerSocket. The return value of the
createServerSocket() methods is a java.net.ServerSocket object, but you can safely cast this object
to a SSLServerSocket if you need to.

Applications that need to customize the SSL configuration and cannot use the default
server socket factory may obtain a custom SSLServerSocketFactory from an SSLContext, which
is essentially a factory for socket factories. See SSLContext for details.

Returned By SSLContext.getServerSocketFactory(), SSLContextSpi.engineGetServerSocketFactory()

SSLSession
javax.net.ssl

Java 1.4

A SSLSession object contains information about the SSL connection established through
an SSLSocket. Use the the getSession() method of a SSLSocket to obtain the SSLSession object for
that socket. Many of the SSLSession methods return information that was obtained
during the handshake phase of the connection. getProtocol() returns the specific version
of the SSL or TLS protocol in use. getCipherSuite() returns the name of the cipher suite
negotiated for the connection. getPeerHost() returns the name of the remote host, and
getPeerCertificates() returns the certificate chain, if any, that was received from the remote
host during authentication. In Java 5.0 and later the peer’s identity can also be queried
with getPeerPrincipal()

The invalidate() method ends the session. It does not affect any current connections, but
all future connections and any re-negotiations of existing connections will need to
establish a new SSLSession. isValid() determines whether a session is still valid.

Multiple SSL connections between two hosts may share the same SSLSession as long as
they are using the same protocol version and cipher suite. There is no way to
enumerate the SSLSocket objects that share a session, but these sockets can exchange
information by using putValue() to bind a shared object to some well-known name that
can be looked up by other sockets with getValue(). removeValue() removes such a binding,
and getValueNames() returns an array of all names that have objects bound to them in this
session. Objects bound and unbound with putValue() and removeValue() may implement
SSLSessionBindingListener to be notified when they are bound and unbound.

Note that the getPeerCertificateChain() method returns an object from the javax.security.cert
package, which is not documented in this book. The method and package exist only

public abstract class SSLServerSocketFactory extends javax.net.ServerSocketFactory {
// Protected Constructors

protected SSLServerSocketFactory();
// Public Class Methods

public static javax.net.ServerSocketFactory getDefault(); synchronized
// Public Instance Methods

public abstract String[] getDefaultCipherSuites();
public abstract String[] getSupportedCipherSuites();

}

Object ServerSocketFactory SSLServerSocketFactory

Chapter 18: javax.net and javax.net.ssl | 963

JSSE

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

javax.net.ssl.SSLSessionBindingEvent

for backward compatibility with earlier versions of the JSSE API, and should be
considered deprecated. Use getPeerCertificates(), which uses java.security.cert instead.

Passed To HandshakeCompletedEvent.HandshakeCompletedEvent(), HostnameVerifier.verify(),
SSLSessionBindingEvent.SSLSessionBindingEvent()

Returned By HandshakeCompletedEvent.getSession(), SSLEngine.getSession(),
SSLSessionBindingEvent.getSession(), SSLSessionContext.getSession(), SSLSocket.getSession()

SSLSessionBindingEvent
javax.net.ssl

Java 1.4

serializable event

An object of this type is passed to the valueBound() and valueUnbound() methods of and
object that implements SSLSessionBindingListener when that object is bound or unbound in a
SSLSession with the putValue() or removeValue() methods of SSLSession. getName() returns the
name to which the object was bound or unbound, and getSession() returns the SSLSession
object in which the binding was created or removed.

Passed To SSLSessionBindingListener.{valueBound(), valueUnbound()}

public interface SSLSession {
// Public Instance Methods
5.0 int getApplicationBufferSize();

String getCipherSuite();
long getCreationTime();
byte[] getId();
long getLastAccessedTime();
java.security.cert.Certificate[] getLocalCertificates();

5.0 java.security.Principal getLocalPrincipal();
5.0 int getPacketBufferSize();

javax.security.cert.X509Certificate[] getPeerCertificateChain() throws SSLPeerUnverifiedException;
java.security.cert.Certificate[] getPeerCertificates() throws SSLPeerUnverifiedException;
String getPeerHost();

5.0 int getPeerPort();
5.0 java.security.Principal getPeerPrincipal() throws SSLPeerUnverifiedException;

String getProtocol();
SSLSessionContext getSessionContext();
Object getValue(String name);
String[] getValueNames();
void invalidate();

5.0 boolean isValid();
void putValue(String name, Object value);
void removeValue(String name);

}

public class SSLSessionBindingEvent extends java.util.EventObject {
// Public Constructors

public SSLSessionBindingEvent(SSLSession session, String name);
// Public Instance Methods

public String getName();
public SSLSession getSession();

}

Object EventObject SSLSessionBindingEvent

Serializable

964 | Chapter 18: javax.net and javax.net.ssl

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

javax.net.ssl.SSLSessionBindingListener

SSLSessionBindingListener
javax.net.ssl

Java 1.4

event listener

This interface is implemented by an object that want to be notified when it is bound or
unbound in an SSLSession object. If the object passed to the putValue() method of a SSLSes-
sion implements this interface, then its valueBound() method will be called by putValue(),
and its valueUnbound() method will be called when that object is removed from the SSLSes-
sion with removeValue() or when it is replaced with a new object by putValue(). The
argument to both methods of this interface is a SSLSessionBindingEvent, which specifies
both the name to which the object was bound or unbound, and the SSLSession within
which it was bound or unbound.

SSLSessionContext
javax.net.ssl

Java 1.4

A SSLSessionContext groups and controls SSLSession objects. It is a low-level interface and is
not commonly used in application code. getIds() returns an Enumeration of session IDs,
and getSession() returns the SSLSession object associated with one of those IDs.
setSessionCacheSize() specifies the total number of concurrent sessions allowed in the
group, and setSessionTimeout() specifies the timeout length for those sessions. An SSLSession-
Context can serve as a cache for SSLSession objects, facilitating reuse of those objects for
multiple connections between the same two hosts.

Providers are not required to support this interface. Those that do return an imple-
menting object from the getSessionContext() method of an SSLSession object, and also return
implementing objects from the getClientSessionContext() and getServerSessionContext() methods
of an SSLContext object, providing separate control over client and server SSL
connections.

Returned By SSLContext.{getClientSessionContext(), getServerSessionContext()},
SSLContextSpi.{engineGetClientSessionContext(), engineGetServerSessionContext()},
SSLSession.getSessionContext()

SSLSocket
javax.net.ssl

Java 1.4

An SSLSocket is a “secure socket” subclass of java.net.Socket that implements the SSL or TLS
protocols, which are commonly used to authenticate a server to a client and to encrypt

public interface SSLSessionBindingListener extends java.util.EventListener {
// Public Instance Methods

void valueBound(SSLSessionBindingEvent event);
void valueUnbound(SSLSessionBindingEvent event);

}

public interface SSLSessionContext {
// Public Instance Methods

java.util.Enumeration getIds();
SSLSession getSession(byte[] sessionId);
int getSessionCacheSize();
int getSessionTimeout();
void setSessionCacheSize(int size) throws IllegalArgumentException;
void setSessionTimeout(int seconds) throws IllegalArgumentException;

}

EventListener SSLSessionBindingListener

Chapter 18: javax.net and javax.net.ssl | 965

JSSE

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

javax.net.ssl.SSLSocket

the data transferred between the two. Create a SSLSocket for connecting to a SSL-enabled
server by calling one of the createSocket() methods of a SSLSocketFactory object. See SSLSocket-
Factory for details. If you are writing server code, then you will obtain a SSLSocket for
communicating with an SSL-enabled client from the inherited accept() method of an
SSLServerSocket. See SSLServerSocket for details.

SSLSocket inherits all of the standard socket method of its superclass, and can be used for
networking just like an ordinary java.net.Socket object. In addition, however, it also
defines methods that control how the secure connection is established. These methods
may be called before the SSL “handshake” occurs. The handshake does not occur
when the socket is first created and connected, so that you can configure various SSL
parameters that control how the handshake occurs. Calling startHandshake(), getSession(), or
reading or writing data on the socket trigger a handshake, so you must configure the
socket before doing any of these things. If you want to be notified when the hand-
shake occurs, call addHandshakeCompletedListener() to register a listener object to receive the
notification.

getSupportedProtocols() returns a list of secure socket protocols that are supported by the
socket implementation. setEnabledProtocols() allows you to specify the name or names of
the supported protocols that you are willing to use for this socket. getSupportedCipherSuite()
returns the full set of cipher suites supported by the underlying security provider.
setEnabledCipherSuites() specifies a list of one or more cipher suites that you are willing to
use for the connection. Note that not all supported cipher suites are enabled by
default: only suites that provide encryption and require the server to authenticate itself
to the client are enabled. If you want to allow the server to remain anonymous, you
can use setEnabledCipherSuites() to enable a nonauthenticating suite. Specific protocols and
cipher suites are not described here because using them correctly requires a detailed
understanding of cryptography, which is beyond the scope of this reference. Most
applications can simply rely on the default set of enabled protocols and cipher suites.

If you are writing a server and have obtained an SSLSocket by accepting a connection on
an SSLServerSocket, then you may call setWantClientAuth() to request that the client authenti-
cate itself to you, and you may call setNeedClientAuth() to require that the client
authenticate itself during the handshake. Note, however, that it is usually more effi-
cient to request or require client authentication on the server socket than it is to call
these methods on each SSLSocket it creates.

The configuration methods described above must be called before the SSL handshake
occurs. Call getSession() to obtain an SSLSession object that you can query for for informa-
tion about the handshake, such as the protocol and cipher suite in use, and the
identity of the server. Note that a call to getSession() will cause the handshake to occur if
it has not already occurred, so you can call this method at any time.

public abstract class SSLSocket extends java.net.Socket {
// Protected Constructors

protected SSLSocket();
protected SSLSocket(String host, int port) throws java.io.IOException, java.net.UnknownHostException;
protected SSLSocket(java.net.InetAddress address, int port) throws java.io.IOException;
protected SSLSocket(String host, int port, java.net.InetAddress clientAddress, int clientPort)

throws java.io.IOException, java.net.UnknownHostException;
protected SSLSocket(java.net.InetAddress address, int port, java.net.InetAddress clientAddress, int clientPort)

throws java.io.IOException;

Object Socket SSLSocket

966 | Chapter 18: javax.net and javax.net.ssl

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

javax.net.ssl.SSLSocketFactory

Passed To HandshakeCompletedEvent.HandshakeCompletedEvent()

Returned By HandshakeCompletedEvent.getSocket()

SSLSocketFactory
javax.net.ssl

Java 1.4

This class is a javax.net.SocketFactory for creating SSLSocket objects. Most applications use the
default SSLSocketFactory returned by the static getDefault() method. Once this SSLSocketFactory
has been obtained, they use one of the inherited createSocket() methods to create, and
optionally connect and bind, a new SSLSocket. The return value of the createSocket()
methods is a java.net.Socket object, but you can safely cast this object to a SSLSocket if you
need to. SSLSocketFactory defines one new version of createSocket() in addition to the ones it
inherits from its superclass. This version of the method creates an SSLSocket that is
layered over an existing Socket object rather than creating a new socket entirely from
scratch.

Applications that need to customize the SSL configuration and cannot use the default
socket factory may obtain a custom SSLSocketFactory from an SSLContext, which is essen-
tially a factory for socket factories. See SSLContext for details.

// Event Registration Methods (by event name)
public abstract void addHandshakeCompletedListener(HandshakeCompletedListener listener);
public abstract void removeHandshakeCompletedListener(HandshakeCompletedListener listener);

// Public Instance Methods
public abstract String[] getEnabledCipherSuites();
public abstract String[] getEnabledProtocols();
public abstract boolean getEnableSessionCreation();
public abstract boolean getNeedClientAuth();
public abstract SSLSession getSession();
public abstract String[] getSupportedCipherSuites();
public abstract String[] getSupportedProtocols();
public abstract boolean getUseClientMode();
public abstract boolean getWantClientAuth();
public abstract void setEnabledCipherSuites(String[] suites);
public abstract void setEnabledProtocols(String[] protocols);
public abstract void setEnableSessionCreation(boolean flag);
public abstract void setNeedClientAuth(boolean need);
public abstract void setUseClientMode(boolean mode);
public abstract void setWantClientAuth(boolean want);
public abstract void startHandshake() throws java.io.IOException;

}

public abstract class SSLSocketFactory extends javax.net.SocketFactory {
// Public Constructors

public SSLSocketFactory();
// Public Class Methods

public static javax.net.SocketFactory getDefault(); synchronized
// Public Instance Methods

public abstract java.net.Socket createSocket(java.net.Socket s, String host, int port, boolean autoClose)
throws java.io.IOException;

public abstract String[] getDefaultCipherSuites();
public abstract String[] getSupportedCipherSuites();

}

Object SocketFactory SSLSocketFactory

Chapter 18: javax.net and javax.net.ssl | 967

JSSE

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

javax.net.ssl.TrustManagerFactory

Passed To HttpsURLConnection.{setDefaultSSLSocketFactory(), setSSLSocketFactory()}

Returned By HttpsURLConnection.{getDefaultSSLSocketFactory(), getSSLSocketFactory()},
SSLContext.getSocketFactory(), SSLContextSpi.engineGetSocketFactory()

TrustManager
javax.net.ssl

Java 1.4

This is a marker interface to identify trust manager objects. A trust manager is respon-
sible for examining the authentication credentials (such as a certificate chain)
presented by the remote host and deciding whether to trust those credentials and
accept them. A TrustManager is usually used an SSL client to decide whether the SSL
server is authentic, but may also be used by an SSL server when client authentication is
also required.

Use a TrustManagerFactory to obtain TrustManager objects. TrustManager objects returned by a
TrustManagerFactory can always be cast to a subinterface specific to a specific type of keys.
See X509TrustManager, for exmaple.

Implementations X509TrustManager

Passed To SSLContext.init(), SSLContextSpi.engineInit()

Returned By TrustManagerFactory.getTrustManagers(), TrustManagerFactorySpi.engineGetTrustManagers()

TrustManagerFactory
javax.net.ssl

Java 1.4

A TrustManagerFactory is responsible for creating TrustManager objects for a specific trust
management algorithm. Obtain a TrustManagerFactory object by calling one of the
getInstance() methods and specifying the desired algorithm and, optionally, the desired
provider. In Java 1.4, the “SunX509” algorithm is the only one supported by the
default “SunJSSE” provider. After calling getInstance(), you initialize the factory object
with init(). For the “SunX509” algorithm, you pass a KeyStore object to init(). This KeyStore
should contain the public keys of trusted CAs (certification authorities). Once a Trust-
ManagerFactory has been created and initialized, use it to create a TrustManager by calling
getTrustManagers(). This method returns an array of TrustManager objects because some trust
management algorithms may handle more than one type of key or certificate. The
“SunX509” algorithm manages only X.509 keys, and always returns an array with an
X509TrustManager object as its single element. This returned array is typically passed to the
init() method of an SSLContext object.

If no KeyStore is passed to the init() method of the TrustManagerFactory for the “SunX509”
algorithm, then the factory uses a KeyStore created from the file named by the system
property javax.net.ssl.trustStore if that property is defined. (It also uses the key store type
and password specified by the properties javax.net.ssl.trustStoreType and javax.net.ssl.trustStore-
Password.) Otherwise, it uses the file jre/lib/security/jssecacerts in the Java distribution, if
it exists. Otherwise it uses the file jre/lib/security/cacerts which is part of Sun’s Java
distribution. Sun ships a default cacerts file that contains certificates for several well-
known and reputable CAs. You can use the keytool program to edit the cacerts
keystore (the default password is “changeit”).

public interface TrustManager {
}

public class TrustManagerFactory {
// Protected Constructors

protected TrustManagerFactory(TrustManagerFactorySpi factorySpi, java.security.Provider provider, String algorithm);

968 | Chapter 18: javax.net and javax.net.ssl

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

javax.net.ssl.TrustManagerFactorySpi

TrustManagerFactorySpi
javax.net.ssl

Java 1.4

This abstract class defines the Service Provider Interface for TrustManagerFactory. Security
providers must implement this interface, but applications never need to use it.

Passed To TrustManagerFactory.TrustManagerFactory()

X509ExtendedKeyManager
javax.net.ssl

Java 5.0

This class implements the X509KeyManager interface and extends it with two methods.

X509KeyManager
javax.net.ssl

Java 1.4

This interface is a KeyManager for working with X.509 certificates. An X509KeyManager is
used during the SSL handshake by a peer that authenticates itself by providing an
X.509 certificate chain to the remote host. This is usually done on the server side of the

// Public Class Methods
public static final String getDefaultAlgorithm();
public static final TrustManagerFactory getInstance(String algorithm) throws java.security.NoSuchAlgorithmException;
public static final TrustManagerFactory getInstance(String algorithm, java.security.Provider provider)

throws java.security.NoSuchAlgorithmException;
public static final TrustManagerFactory getInstance(String algorithm, String provider)

throws java.security.NoSuchAlgorithmException, java.security.NoSuchProviderException;
// Public Instance Methods

public final String getAlgorithm();
public final java.security.Provider getProvider();
public final TrustManager[] getTrustManagers();
public final void init(ManagerFactoryParameters spec) throws java.security.InvalidAlgorithmParameterException;
public final void init(java.security.KeyStore ks) throws java.security.KeyStoreException;

}

public abstract class TrustManagerFactorySpi {
// Public Constructors

public TrustManagerFactorySpi();
// Protected Instance Methods

protected abstract TrustManager[] engineGetTrustManagers();
protected abstract void engineInit(ManagerFactoryParameters spec)

throws java.security.InvalidAlgorithmParameterException;
protected abstract void engineInit(java.security.KeyStore ks) throws java.security.KeyStoreException;

}

public abstract class X509ExtendedKeyManager implements X509KeyManager {
// Protected Constructors

protected X509ExtendedKeyManager();
// Public Instance Methods

public String chooseEngineClientAlias(String[] keyType, java.security.Principal[] issuers, SSLEngine engine); constant
public String chooseEngineServerAlias(String keyType, java.security.Principal[] issuers, SSLEngine engine); constant

}

Object X509ExtendedKeyManager

KeyManager X509KeyManager

Chapter 18: javax.net and javax.net.ssl | 969

JSSE

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

javax.net.ssl.X509TrustManager

SSL connection, and can be done on the client-side as well, although that is
uncommon. Obtain an X509KeyManager object either by implementing your own or from
a KeyManagerFactory created with an algorithm of “SunX509”. Applications do not call the
methods of an X509KeyManager themselves. Instead, they simply supply an appropriate
X509KeyManager object to the SSLContext object that is responsible for setting up SSL
connections. When the system needs to authenticate itself during an SSL handshake, it
calls various methods of the key manager object to obtain the information in needs.

An X509KeyManager retrieves keys and certificae chains from the KeyStore object that was
passed to the init() method of the KeyManagerFactory object from which it was created.
getPrivateKey() and getCertificateChain() return the private key and the certificate chain for a
specified alias. The other methods are called to list all aliases in the keystore or to
choose one alias from the keystore that matches the specified keytype and certificate
authority criteria. In this way, a X509KeyManager can choose a certificate chain (and it
corresponding key) based on the types of keys and the list of certificate authorities
recognized by the remote host.

Implementations X509ExtendedKeyManager

X509TrustManager
javax.net.ssl

Java 1.4

This interface is a TrustManager for working with X.509 certificates. Trust managers are
used during the handshake phase of SSL connection to determine whether the authen-
tication credentials presented by the remote host are trusted. This is usually done on
the client-side of an SSL connection, but may also be done on the server side. Obtain
an X509TrustManager either by implementing your own or from a TrustManagerFactory that was
created to use the “SunX509” algorithm. Applications do call the methods of this
interface themselves; instead, they simply provide an appropriate X509TrustManager object
to the SSLContext object that is responsible for setting up SSL connections. When the
system needs to determine whether the authentication credentials presented by the
remote host are trusted, it calls the methods of the trust manager.

public interface X509KeyManager extends KeyManager {
// Public Instance Methods

String chooseClientAlias(String[] keyType, java.security.Principal[] issuers, java.net.Socket socket);
String chooseServerAlias(String keyType, java.security.Principal[] issuers, java.net.Socket socket);
java.security.cert.X509Certificate[] getCertificateChain(String alias);
String[] getClientAliases(String keyType, java.security.Principal[] issuers);
java.security.PrivateKey getPrivateKey(String alias);
String[] getServerAliases(String keyType, java.security.Principal[] issuers);

}

public interface X509TrustManager extends TrustManager {
// Public Instance Methods

void checkClientTrusted(java.security.cert.X509Certificate[] chain, String authType)
throws java.security.cert.CertificateException;

void checkServerTrusted(java.security.cert.X509Certificate[] chain, String authType)
throws java.security.cert.CertificateException;

java.security.cert.X509Certificate[] getAcceptedIssuers();
}

KeyManager X509KeyManager

TrustManager X509TrustManager

970

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Chapter 19JAAS

19
javax.security.auth and
Subpackages

This chapter documents the javax.security.auth package and its subpackages, which,
together, form the Java Authentication and Authorization Service, or JAAS. Before
being integrated into Java 1.4, JAAS was available as a standard extension, which
is why these packages have the “javax” prefix. The individual packages are the
following:

javax.security.auth
This top-level package defines the Subject class that is central to JAAS.

javax.security.auth.callback
This package defines a callback API to enable communication (such as the
exchange of a username and password) between a low-level login module and
the end-user.

javax.security.auth.kerberos
This package contains JAAS classes related to the Kerberos network authenti-
cation protocol.

javax.security.auth.login
This package defines the LoginContext class and related classes used by applica-
tions to perform a JAAS login.

javax.security.auth.spi
This package defines the “service provider interface” for JAAS.

javax.security.auth.x500
This package includes JAAS classes related to X.500 principals.

Package javax.security.auth Java 1.4

This is the top-level package of the Java Authentication and Authorization Service (JAAS).
The key class is Subject, which represents an authenticated user, and defines static methods
that allow Java code be run as (i.e., using the permissions of) a specified Subject. The

Chapter 19: javax.security.auth and Subpackages | 971

JAAS

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

javax.security.auth.AuthPermission

remaining classes and interfaces in this package are important parts of the JAAS infra-
structure, but are not commonly used in application code. Applications do not create
Subject objects directly, but typically obtain them from a javax.security.auth.login.LoginContext
constructed with a javax.security.auth.callback.CallbackHandler.

Interfaces
public interface Destroyable;
public interface Refreshable;

Classes
public final class AuthPermission extends java.security.BasicPermission;
public abstract class Policy;
public final class PrivateCredentialPermission extends java.security.Permission;
public final class Subject implements Serializable;
public class SubjectDomainCombiner implements java.security.DomainCombiner;

Exceptions
public class DestroyFailedException extends Exception;
public class RefreshFailedException extends Exception;

AuthPermission
javax.security.auth

Java 1.4

serializable permission

This java.security.Permission class governs the use of various methods in this package and its
subpackages. The target name of the permission specifies which methods are allowed;
AuthPermission objects have no actions list. Application programmers never need to use
this class directly. System implementors may need to use it, and system administrators
who configure security policies may need to be familiar with the following table of
target names and the permissions they represent:

Target name Gives permission to

doAs Invoke Subject.doAs() methods.

doAsPrivileged Invoke Subject.doAsPriviliged() methods.

getSubject Invoke Subject.getSubject().

getSubjectFromDomainCombiner Invoke SubjectDomainCombiner.getSubject().

setReadOnly Invoke Subject.setReadOnly().

modifyPrincipals Modify the Set of principals associated with a Subject.

modifyPublicCredentials Modify the Set of public credentials associated with a Subject.

modifyPrivateCredentials Modify the Set of private credentials associated with a Subject.

refreshCredential Invoke the refresh() method of a Refreshable credential class.

destroyCredential Invoke the destroy() method of a Destroyable credential class.

createLoginContext.name Instantiate a LoginContext with the specified name. If name is * , it allows a
LoginContext of any name to be created.

getLoginConfiguration Invoke the getConfiguration() method of
javax.security.auth.login.Configuration.

setLoginConfiguration Invoke the setConfiguration() method of javax.security.auth.login.Configuration.

refreshLoginConfiguration Invoke the refresh() method of javax.security.auth.login.Configuration.

972 | Chapter 19: javax.security.auth and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

javax.security.auth.Destroyable

Destroyable
javax.security.auth

Java 1.4

Classes that encapsulate sensitive information, such as security credentials, may
implement this interface to provide an API that allows the sensitive information to
be destroyed or erased. The destroy() method erases or clears the sensitive informa-
tion. It may throw a DestroyFailedException if the information cannot be erased for any
reason. It may also throw a SecurityException if the caller does not have whatever permis-
sions are required. Once destroy() has been called on an object, the isDestroyed() method
returns true. Once an object has been destroyed, any other methods it defines may
throw an IllegalStateException.

Implementations java.security.KeyStore.PasswordProtection, javax.security.auth.kerberos.KerberosKey,
javax.security.auth.kerberos.KerberosTicket, javax.security.auth.x500.X500PrivateCredential

DestroyFailedException
javax.security.auth

Java 1.4

serializable checked

Signals that the destroy() method of a Destroyable object did not succeed.

Thrown By java.security.KeyStore.PasswordProtection.destroy(), Destroyable.destroy(),
javax.security.auth.kerberos.KerberosKey.destroy(), javax.security.auth.kerberos.KerberosTicket.destroy()

Policy
javax.security.auth

Java 1.4; Deprecated in 1.4

@Deprecated

This deprecated class represents a Subject-based security policy. Because the JAAS API
(this package and its subpackages) were introduced as an extension to the core Java plat-
form, this class was required to augment the java.security.Policy class which, prior to Java 1.4,

public final class AuthPermission extends java.security.BasicPermission {
// Public Constructors

public AuthPermission(String name);
public AuthPermission(String name, String actions);

}

public interface Destroyable {
// Public Instance Methods

void destroy() throws DestroyFailedException;
boolean isDestroyed();

}

public class DestroyFailedException extends Exception {
// Public Constructors

public DestroyFailedException();
public DestroyFailedException(String msg);

}

Object Permission BasicPermission AuthPermission

Guard Serializable Serializable

Object Throwable Exception DestroyFailedException

Serializable

Chapter 19: javax.security.auth and Subpackages | 973

JAAS

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

javax.security.auth.PrivateCredentialPermission

had no provisions for Subject-based authorization. In Java 1.4, however, java.security.Policy
has been extended to represent security policies based on code origin, code signers, and
subjects. Thus, this class is no longer required and has been deprecated.

PrivateCredentialPermission
javax.security.auth

Java 1.4

serializable permission

This Permission class protects access to private credential objects belonging to a Subject (as
specified by a set of one or more Principal objects). Application programmers rarely need
to use it. System programmers implementing new private credentials classes may need
to use it, and system administrators configuring security policy files should be familiar
with it.

The only defined action for PrivateCredentialPermssion is “read”. The target name for this
permission has a complex syntax and specifies the name of the credential class and a
list of one or more principals. Each principal is specified as the name of the Principal
class followed by the principal name in quotes. For example, a security policy file
might contain a statement like the following to allow permission to read the private
KerberosKey credentials of a KerberosPrincipal named “david”.

permission javax.security.auth.PrivateCredentialPermission
 "javax.security.auth.kerberos.KerberosKey \
 javax.security.auth.kerberos.KerberosPrincipal \"david\"",
 "read";

The target name syntax for PrivateCredentialPermission also allows the use of the “*” wild-
card in place of the credential class name or in place of the Principal class name and/or
name.

public abstract class Policy {
// Protected Constructors

protected Policy();
// Public Class Methods

public static javax.security.auth.Policy getPolicy();
public static void setPolicy(javax.security.auth.Policy policy);

// Public Instance Methods
public abstract java.security.PermissionCollection getPermissions(Subject subject, java.security.CodeSource cs);
public abstract void refresh();

}

public final class PrivateCredentialPermission extends java.security.Permission {
// Public Constructors

public PrivateCredentialPermission(String name, String actions);
// Public Instance Methods

public String getCredentialClass();
public String[][] getPrincipals();

// Public Methods Overriding Permission
public boolean equals(Object obj);
public String getActions();
public int hashCode();
public boolean implies(java.security.Permission p);

Object Permission PrivateCredentialPermission

Guard Serializable

974 | Chapter 19: javax.security.auth and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

javax.security.auth.Refreshable

Refreshable
javax.security.auth

Java 1.4

A class implements this interface if its instances that have a limited period of validity
(as some security credentials do) and need to be periodically “refreshed” in order to
remain valid. isCurrent() returns true if the object is currently valid, and false if it has
expired and needs to be refreshed. refresh() attempts to revalidate or extend the validity
of the object. It throws a RefreshFailedException if it does not succeed. (And may also throw
a SecurityException if the caller does not have the requisite permissions.)

Implementations javax.security.auth.kerberos.KerberosTicket

RefreshFailedException
javax.security.auth

Java 1.4

serializable checked

Signals that the refresh() method of a Refreshable object failed.

Thrown By Refreshable.refresh(), javax.security.auth.kerberos.KerberosTicket.refresh()

Subject
javax.security.auth

Java 1.4

serializable

The Subject class is the key abstraction of the JAAS API. It represents a person or other
entity, and consists of:

• a java.util.Set of Principal objects that specify the identity (or identities) of the Subject.

• a Set of objects that specify the public credentials, such as the public key certifi-
cates of the Subject.

• a Set of objects that specify the private credentials, such as the private keys and
Kerberos tickets of the Subject.

Subject defines methods that allow you to retreive each of these three sets, or to retreive
a subset of each set that contains only objects of a specified Class. Unless the Subject is
read-only, you can use the methods of java.util.Set to modify each of the three sets. Once
setReadOnly() has been called, however, the sets become immutable and their contents
may not be modified.

public java.security.PermissionCollection newPermissionCollection(); constant
}

public interface Refreshable {
// Public Instance Methods

boolean isCurrent();
void refresh() throws RefreshFailedException;

}

public class RefreshFailedException extends Exception {
// Public Constructors

public RefreshFailedException();
public RefreshFailedException(String msg);

}

Object Throwable Exception RefreshFailedException

Serializable

Chapter 19: javax.security.auth and Subpackages | 975

JAAS

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

javax.security.auth.Subject

Application code does not typically create Subject objects itself. Instead, it obtains a
Subject that represents the authenticated user of the application by calling the login() and
getSubject() methods of a javax.security.auth.login.LoginContext object.

Once an authenticated Subject has been obtained from a LoginContext, an application can
call the doAs() method to run code using the permissions granted to that Subject
combined with the permissions granted to the code itself. doAs() runs the code defined
in the run() method of a PrivilegedAction or PrivilegedExceptionAction object. doAsPrivileged() is a
similar method but executes the specified run() method using the Subject’s permissions
only, unconstrained by unprivileged code in the call stack.

Note that many of the methods of this class throw a SecurityException if the caller has not
been granted the requisite AuthPermission.

Passed To java.security.AuthProvider.login(), javax.security.auth.Policy.getPermissions(),
SubjectDomainCombiner.SubjectDomainCombiner(), javax.security.auth.login.LoginContext.LoginContext(),
javax.security.auth.spi.LoginModule.initialize()

Returned By SubjectDomainCombiner.getSubject(), javax.security.auth.login.LoginContext.getSubject()

public final class Subject implements Serializable {
// Public Constructors

public Subject();
public Subject(boolean readOnly, java.util.Set<? extends java.security.Principal> principals, java.util.Set<?>

pubCredentials, java.util.Set<?> privCredentials);
// Public Class Methods

public static Object doAs(Subject subject, java.security.PrivilegedExceptionAction action)
throws java.security.PrivilegedActionException;

public static Object doAs(Subject subject, java.security.PrivilegedAction action);
public static Object doAsPrivileged(Subject subject, java.security.PrivilegedExceptionAction action,

java.security.AccessControlContext acc)
throws java.security.PrivilegedActionException;

public static Object doAsPrivileged(Subject subject, java.security.PrivilegedAction action,
java.security.AccessControlContext acc);

public static Subject getSubject(java.security.AccessControlContext acc);
// Public Instance Methods

public java.util.Set<java.security.Principal> getPrincipals();
public <T extends java.security.Principal> java.util.Set<T> getPrincipals(Class<T> c);
public java.util.Set<Object> getPrivateCredentials();
public <T> java.util.Set<T> getPrivateCredentials(Class<T> c);
public java.util.Set<Object> getPublicCredentials();
public <T> java.util.Set<T> getPublicCredentials(Class<T> c);
public boolean isReadOnly(); default:false
public void setReadOnly();

// Public Methods Overriding Object
public boolean equals(Object o);
public int hashCode();
public String toString();

}

Object Subject Serializable

976 | Chapter 19: javax.security.auth and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

javax.security.auth.SubjectDomainCombiner

SubjectDomainCombiner
javax.security.auth

Java 1.4

This class implements the DomainCombiner interface. It is used to merge permissions
based on code source and code signers with permissions granted to the specified Subject.
A SubjectDomainCombiner is created by the Subject.doAs() and Subject.doAsPrivileged() methods for
use in by the AccessControlContext.

Package javax.security.auth.callback Java 1.4

This package defines a mechanism that allows the low-level code of a javax.secu-
rity.auth.spi.LoginModule to interact with the end-user of an application to obtain a
username, password, or other authentication-related information. The LoginModule sends
messages and requests for information in the form of objects that implement the Call-
back interface. An application that wants to authenticate a user provides (via a
javax.security.auth.login.LoginContext) a CallbackHandler object to convert these Callback objects into
text or GUI-based interactions with the user. An application that want to provide a
customized login interface must implement its own CallbackHandler. The CallbackHandler API
consists of only a single method, but the implementation of that method can require a
substantial amount of code. See the various Callback classes for directions on how a Call-
backHandler should handle them.

Sun’s J2SE SDK for Java 1.4 ships with two implementations of CallbackHandler, both in
the package com.sun.security.auth.callback. Although these classes are not guaranteed to exist
in all distributions, text-based applications may use the TextCallbackHandler, and GUI-
based applications may use the DialogCallbackHandler. Programmers wanting to write a
custom CallbackHandler may also find it useful to study the source code of these two
existing handlers.

Interfaces
public interface Callback;
public interface CallbackHandler;

Classes
public class ChoiceCallback implements Callback, Serializable;
public class ConfirmationCallback implements Callback, Serializable;
public class LanguageCallback implements Callback, Serializable;
public class NameCallback implements Callback, Serializable;
public class PasswordCallback implements Callback, Serializable;
public class TextInputCallback implements Callback, Serializable;

public class SubjectDomainCombiner implements java.security.DomainCombiner {
// Public Constructors

public SubjectDomainCombiner(Subject subject);
// Public Instance Methods

public Subject getSubject();
// Methods Implementing DomainCombiner

public java.security.ProtectionDomain[] combine(java.security.ProtectionDomain[] currentDomains,
java.security.ProtectionDomain[] assignedDomains);

}

Object SubjectDomainCombiner DomainCombiner

Chapter 19: javax.security.auth and Subpackages | 977

JAAS

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

javax.security.auth.callback.CallbackHandler

public class TextOutputCallback implements Callback, Serializable;

Exceptions
public class UnsupportedCallbackException extends Exception;

Callback
javax.security.auth.callback

Java 1.4

This interface defines no methods but serves as a “marker interface” to identify the type
of objects that can be passed to the handle() method of a CallbackHandler. All of the classes in
this package, with the exception of UnsupportedCallbackException implement this interface.

Implementations ChoiceCallback, ConfirmationCallback, LanguageCallback, NameCallback,
PasswordCallback, TextInputCallback, TextOutputCallback

Passed To CallbackHandler.handle(), UnsupportedCallbackException.UnsupportedCallbackException()

Returned By UnsupportedCallbackException.getCallback()

CallbackHandler
javax.security.auth.callback

Java 1.4

A CallbackHandler is responsible for communication between the end-user of an applica-
tion and the javax.security.auth.spi.LoginModule that is performing authentication of that user
on behalf of the javax.security.auth.login.LoginContext instantiated by the application. When
an application needs to authenticate a user, it creates a LoginContext and specifies a Call-
backHandler object for that context. The underlying LoginModule uses the CallbackHandler to
communicate with the end user--for example prompting them to enter a name and
password.

The LoginModule passes an array of objects that implement the Callback interface to the
handle() method of CallbackHandler. The handle() method must determine the type of Callback
object, and display the information and/or prompt for the input it represents. Different
Callback classes have different purposes and must be handled differently. NameCallback and
PasswordCallback are two of the most commonly used: they represent requests for the
user’s name and password. TextOutputCallback is also common: it represents a request to
display a message (such as “Authentication Failed”) to the user. See the descriptions of
the individual Callback classes for information on how a CallbackHandler should handle
them. CallbackHandler implementations are not required to support every type of Callback
and my throw an UnsupportedCallbackException if passed a Callback object of a type they do not
recognize or do not support.

The handle() method is passed an array of Callback objects. A CallbackHandler (such as a
typical console-based handler) may choose to handle the Callback objects one at a time,
prompting for and returning the user’s input before moving on to the next. Or (for
example in GUI-based handlers) it may choose to present all of the callbacks in a
single unified “login dialog box”. LoginModule implementations may, of course, call the
handle() method more than once. Note, finally, that if a CallbackHandler implementation has
knowledge of the user from some other source, it is allowed to handle certain call-
backs automatically, such as automatically providing the user’s name for a NameCallback.

Java installations may have a default CallbackHandler registered by setting the
auth.login.defaultCallbackHandler security property to the name of the implementing class. No
such default is defined by the default security policy that ships with Sun’s distribution

public interface Callback {
}

978 | Chapter 19: javax.security.auth and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

javax.security.auth.callback.ChoiceCallback

of Java 1.4. Sun’s Java 1.4 SDK does include CallbackHandler implementations to perform
text-based and GUI-based communication in the classes TextCallbackHandler and Dialog-
CallbackHandler in the com.sun.security.auth.callback package. Note that these are part of Sun’s
implementation, and are not part of the specification; they are not guaranteed to exist
in all releases.

Passed To java.security.AuthProvider.{login(), setCallbackHandler()},
java.security.KeyStore.CallbackHandlerProtection.CallbackHandlerProtection(),
javax.security.auth.login.LoginContext.LoginContext(), javax.security.auth.spi.LoginModule.initialize()

Returned By java.security.KeyStore.CallbackHandlerProtection.getCallbackHandler()

ChoiceCallback
javax.security.auth.callback

Java 1.4

serializable

A Callback of this type represents a request to display set of text choices and allow the
user to select one or more of them. A CallbackHandler, should display the prompt returned
by getPrompt() and also the strings returned by getChoices(). If allowMultipleSelections() is true,
then it should allow the user to select zero or more; otherwise, it should only allow the
user to select a single one. In either case, the CallbackHandler should also call
getDefaultChoice() and make the choice at the returned index the default choice. When the
user has made her selection, the CallbackHandler should pass the index of a single selec-
tion to setSelectedIndex(), or the indexes of multiple selections to setSelectedIndexes().

ConfirmationCallback
javax.security.auth.callback

Java 1.4

serializable

A Callback of this type represents a request to ask the user a yes/no or multiple-choice
question. A CallbackHandler should first call getPrompt() to obtain the text of the question. It
should also call getMessageType() to determine the message type (INFORMATION, WARNING, or
ERROR) and present the question to the user in a suitable manner based on that type.

Next, the CallbackHandler must determine the appropriate set of responses to the ques-
tion. It does this by calling getOptionType(). The return values have the following
meanings:

public interface CallbackHandler {
// Public Instance Methods

void handle(Callback[] callbacks) throws java.io.IOException, UnsupportedCallbackException;
}

public class ChoiceCallback implements Callback, Serializable {
// Public Constructors

public ChoiceCallback(String prompt, String[] choices, int defaultChoice, boolean multipleSelectionsAllowed);
// Public Instance Methods

public boolean allowMultipleSelections();
public String[] getChoices();
public int getDefaultChoice();
public String getPrompt();
public int[] getSelectedIndexes();
public void setSelectedIndex(int selection);
public void setSelectedIndexes(int[] selections);

}

Object ChoiceCallback

Callback Serializable

Chapter 19: javax.security.auth and Subpackages | 979

JAAS

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

javax.security.auth.callback.ConfirmationCallback

YES_NO_OPTION
The CallbackHandler should allow the user to respond to the question with a “yes” or
a “no” (or their localized equivalents).

YES_NO_CANCEL_OPTION
The CallbackHandler should allow “yes”, “no”, and “cancel” (or their localized equiv-
alents) responses.

OK_CANCEL_OPTION
The CallbackHandler should allow “ok” and “cancel” (or their localized equivalents)
responses.

UNSPECIFIED_OPTION
The CallbackHandler should call getOptions() and use present all strings it returns as
possible responses.

In each of these cases, the CallbackHandler should also call getDefaultOption() to determine
which response should be presented as the default response. If getOptionType() returned
UNSPECIFIED_TYPE, then getDefaultOption() returns an index into the array of options returned
by getOptions(). Otherwise getDefaultOption() returns one of the constants YES, NO, OK, or
CANCEL.

When the user has selected a response to the callback, the CallbackHandler should pass
that response to setSelectedIndex(). The response value should be one of the constants YES,
NO, OK, or CANCEL, or an index into the array of options returned by getOptions().

public class ConfirmationCallback implements Callback, Serializable {
// Public Constructors

public ConfirmationCallback(int messageType, String[] options, int defaultOption);
public ConfirmationCallback(int messageType, int optionType, int defaultOption);
public ConfirmationCallback(String prompt, int messageType, String[] options, int defaultOption);
public ConfirmationCallback(String prompt, int messageType, int optionType, int defaultOption);

// Public Constants
public static final int CANCEL; =2
public static final int ERROR; =2
public static final int INFORMATION; =0
public static final int NO; =1
public static final int OK; =3
public static final int OK_CANCEL_OPTION; =2
public static final int UNSPECIFIED_OPTION; =-1
public static final int WARNING; =1
public static final int YES; =0
public static final int YES_NO_CANCEL_OPTION; =1
public static final int YES_NO_OPTION; =0

// Public Instance Methods
public int getDefaultOption();
public int getMessageType();
public String[] getOptions();
public int getOptionType();
public String getPrompt();
public int getSelectedIndex();
public void setSelectedIndex(int selection);

}

Object ConfirmationCallback

Callback Serializable

980 | Chapter 19: javax.security.auth and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

javax.security.auth.callback.LanguageCallback

LanguageCallback
javax.security.auth.callback

Java 1.4

serializable

This Callback class represents a request for the user’s preferred language (as represented
by a Locale object), which a LoginModule can use to localize things such as prompts and
error messages in subsequent Callback objects. If a CallbackHandler already has knowledge of
the user’s preferred langauge, it is not required to prompt the user for this information
and can simply pass an appropriate Locale object to setLocale().

NameCallback
javax.security.auth.callback

Java 1.4

serializable

This Callback class represents a request for the username or other text that identifies the
user to be authenticated. An interactive CallbackHandler should call getPrompt() and
getDefaultName() and should display the returned prompt and optionally, the returned
default name to the user. When the user has entered a name (or accepted the default
name) the handler should pass the user’s input to setName().

PasswordCallback
javax.security.auth.callback

Java 1.4

serializable

This Callback class represents a request for a password. A CallbackHandler should handle it
by displaying the prompt returned by getPrompt() and then allowing the user the enter a
password. When the user has entered the password, it should pass the entered text to
setPassword(). If isEchoOn() returns true, then the Handler should display the password as the
user types it.

public class LanguageCallback implements Callback, Serializable {
// Public Constructors

public LanguageCallback();
// Public Instance Methods

public java.util.Locale getLocale(); default:null
public void setLocale(java.util.Locale locale);

}

public class NameCallback implements Callback, Serializable {
// Public Constructors

public NameCallback(String prompt);
public NameCallback(String prompt, String defaultName);

// Public Instance Methods
public String getDefaultName();
public String getName();
public String getPrompt();
public void setName(String name);

}

Object LanguageCallback

Callback Serializable

Object NameCallback

Callback Serializable

Chapter 19: javax.security.auth and Subpackages | 981

JAAS

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

javax.security.auth.callback.TextOutputCallback

TextInputCallback
javax.security.auth.callback

Java 1.4

serializable

A Callback of this type is a request to prompt the user for text input; it is essentially a
generic version of NameCallback. A CallbackHandler should call getPrompt() and should display
the returned prompt text to the user. It should then allow the user to enter text, and
provide the option of selecting the default text returned by getDefaultText(). When the
user has entered text (or selected the default text) it should pass the user’s input to
setText().

TextOutputCallback
javax.security.auth.callback

Java 1.4

serializable

A Callback of this type represents a request to display text to the user. A callback handler
should call getMessage() and display the returned string to the user. It should also call
getMessageType() and use the returned value (which is one of the constants defined by the
class) to indicate the type or severity of the information.

public class PasswordCallback implements Callback, Serializable {
// Public Constructors

public PasswordCallback(String prompt, boolean echoOn);
// Public Instance Methods

public void clearPassword();
public char[] getPassword();
public String getPrompt();
public boolean isEchoOn();
public void setPassword(char[] password);

}

public class TextInputCallback implements Callback, Serializable {
// Public Constructors

public TextInputCallback(String prompt);
public TextInputCallback(String prompt, String defaultText);

// Public Instance Methods
public String getDefaultText();
public String getPrompt();
public String getText();
public void setText(String text);

}

public class TextOutputCallback implements Callback, Serializable {
// Public Constructors

public TextOutputCallback(int messageType, String message);

Object PasswordCallback

Callback Serializable

Object TextInputCallback

Callback Serializable

Object TextOutputCallback

Callback Serializable

982 | Chapter 19: javax.security.auth and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

javax.security.auth.callback.UnsupportedCallbackException

UnsupportedCallbackException
javax.security.auth.callback

Java 1.4

serializable checked

CallbackHandler implementations may throw exceptions of this type from their handle()
method if a Callback object passed to that method is of an unrecognized or unsupported
type. Note that the offending Callback object must be passed to the constructor method.

Thrown By CallbackHandler.handle()

Package javax.security.auth.kerberos Java 1.4

This package defines classes for use with Kerberos: a secure network authentication
protocol. They are primarily of interest to system-level programmers writing Kerberos-
based javax.security.auth.spi.LoginModule implementations. Developers writing Kerberos-
enabled applications should use the org.ietf.jgss package. A full description of Kerberos is
beyond the scope of this book; so it is assumed that the reader is familar with Kerberos
authentication.

Classes
public final class DelegationPermission extends java.security.BasicPermission implements Serializable;
public class KerberosKey implements javax.security.auth.Destroyable, javax.crypto.SecretKey;
public final class KerberosPrincipal implements java.security.Principal, Serializable;
public class KerberosTicket implements javax.security.auth.Destroyable, javax.security.auth.Refreshable, Serializable;
public final class ServicePermission extends java.security.Permission implements Serializable;

DelegationPermission
javax.security.auth.kerberos

Java 1.4

serializable permission

This java.security.Permission class governs the delegation of Kerberos tickets from a
Kerberos principal to a Kerberos service for use on behalf of the original principal. The
target name of a DelegationPermission consists of the principal names of two Kerberos
services. The first specifies the service that is being delegated to, and the second speci-
fies the service that is to be used by the first on behalf of the original Kerberos
principal.

// Public Constants
public static final int ERROR; =2
public static final int INFORMATION; =0
public static final int WARNING; =1

// Public Instance Methods
public String getMessage();
public int getMessageType();

}

public class UnsupportedCallbackException extends Exception {
// Public Constructors

public UnsupportedCallbackException(Callback callback);
public UnsupportedCallbackException(Callback callback, String msg);

// Public Instance Methods
public Callback getCallback();

}

Object Throwable Exception UnsupportedCallbackException

Serializable

Chapter 19: javax.security.auth and Subpackages | 983

JAAS

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

javax.security.auth.kerberos.KerberosPrincipal

KerberosKey
javax.security.auth.kerberos

Java 1.4

serializable

This class is a javax.crypto.SecretKey implementation that represents the secret key of a
Kerberos principal. A Kerberos-based javax.security.auth.spi.LoginModule implementation
instantiates a KerberosKey object and stores it in the private credential set of the authenti-
cated Subject it creates.

KerberosPrincipal
javax.security.auth.kerberos

Java 1.4

serializable

This class represents a Kerberos principal, specified as a principal name with an
optional realm. If no realm is specified in the name, the default realm (from the
krb5.conf configuration file or from the java.security.krb5.realm system property) is used.

public final class DelegationPermission extends java.security.BasicPermission implements Serializable {
// Public Constructors

public DelegationPermission(String principals);
public DelegationPermission(String principals, String actions);

// Public Methods Overriding BasicPermission
public boolean equals(Object obj);
public int hashCode();
public boolean implies(java.security.Permission p);
public java.security.PermissionCollection newPermissionCollection();

}

public class KerberosKey implements javax.security.auth.Destroyable, javax.crypto.SecretKey {
// Public Constructors

public KerberosKey(KerberosPrincipal principal, char[] password, String algorithm);
public KerberosKey(KerberosPrincipal principal, byte[] keyBytes, int keyType, int versionNum);

// Public Instance Methods
public final int getKeyType();
public final KerberosPrincipal getPrincipal();
public final int getVersionNumber();

// Methods Implementing Destroyable
public void destroy() throws javax.security.auth.DestroyFailedException;
public boolean isDestroyed();

// Methods Implementing Key
public final String getAlgorithm();
public final byte[] getEncoded();
public final String getFormat();

// Public Methods Overriding Object
public String toString();

}

Object Permission BasicPermission DelegationPermission

Guard Serializable Serializable Serializable

Object KerberosKey

Destroyable Serializable Key SecretKey

984 | Chapter 19: javax.security.auth and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

javax.security.auth.kerberos.KerberosTicket

Passed To KerberosKey.KerberosKey(), KerberosTicket.KerberosTicket()

Returned By KerberosKey.getPrincipal(), KerberosTicket.{getClient(), getServer()}

KerberosTicket
javax.security.auth.kerberos

Java 1.4

serializable

This class represents a Kerberos ticket: a credential used to authenticate a Kerberos
principal to some Kerberos-enabled network service. A Kerberos-based javax.secu-
rity.auth.spi.LoginModule implementation will instantiate a KerberosTicket object and store it in
the private credential set of the authenticated Subject it creates.

public final class KerberosPrincipal implements java.security.Principal, Serializable {
// Public Constructors

public KerberosPrincipal(String name);
public KerberosPrincipal(String name, int nameType);

// Public Constants
public static final int KRB_NT_PRINCIPAL; =1
public static final int KRB_NT_SRV_HST; =3
public static final int KRB_NT_SRV_INST; =2
public static final int KRB_NT_SRV_XHST; =4
public static final int KRB_NT_UID; =5
public static final int KRB_NT_UNKNOWN; =0

// Public Instance Methods
public int getNameType();
public String getRealm();

// Methods Implementing Principal
public boolean equals(Object other);
public String getName();
public int hashCode();
public String toString();

}

public class KerberosTicket implements javax.security.auth.Destroyable, javax.security.auth.Refreshable, Serializable {
// Public Constructors

public KerberosTicket(byte[] asn1Encoding, KerberosPrincipal client, KerberosPrincipal server, byte[] sessionKey,
int keyType, boolean[] flags, java.util.Date authTime, java.util.Date startTime,
java.util.Date endTime, java.util.Date renewTill, java.net.InetAddress[] clientAddresses);

// Public Instance Methods
public final java.util.Date getAuthTime();
public final KerberosPrincipal getClient();
public final java.net.InetAddress[] getClientAddresses();
public final byte[] getEncoded();
public final java.util.Date getEndTime();
public final boolean[] getFlags();
public final java.util.Date getRenewTill();
public final KerberosPrincipal getServer();
public final javax.crypto.SecretKey getSessionKey();

Object KerberosPrincipal

Principal Serializable

Object KerberosTicket

Destroyable Refreshable Serializable

Chapter 19: javax.security.auth and Subpackages | 985

JAAS

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

.Package javax.security.auth.login

ServicePermission
javax.security.auth.kerberos

Java 1.4

serializable permission

This java.security.Permission class protects access to the Kerberos tickets used to access a
specified service. The target name of of a ServicePermission is the Kerberos principal name
of the service. The action for the ServicePermission is either “initiate” for clients or
“accept” for servers.

Package javax.security.auth.login Java 1.4

This package defines the LoginContext class which is one of the primary JAAS classes used
by application programmers. To authenticate a user, an application creates a LoginCon-
text object, specifying the application name (used to lookup the type of authentication
required for that application in the Configuration) and usually specifying a javax.secu-
rity.auth.callback.CallbackHandler for communication between the user and the underlying
login modules. Next, the application calls the login() method of the LoginContext to
perform the actual login. If this method returns without throwing a LoginException, then
the user was sucessfully authenticated, and the getSubject() method of LoginContext returns
a javax.security.auth.Subject representing the user. The code might look like this:

public final int getSessionKeyType();
public final java.util.Date getStartTime();
public final boolean isForwardable();
public final boolean isForwarded();
public final boolean isInitial();
public final boolean isPostdated();
public final boolean isProxiable();
public final boolean isProxy();
public final boolean isRenewable();

// Methods Implementing Destroyable
public void destroy() throws javax.security.auth.DestroyFailedException;
public boolean isDestroyed();

// Methods Implementing Refreshable
public boolean isCurrent();
public void refresh() throws javax.security.auth.RefreshFailedException;

// Public Methods Overriding Object
public String toString();

}

public final class ServicePermission extends java.security.Permission implements Serializable {
// Public Constructors

public ServicePermission(String servicePrincipal, String action);
// Public Methods Overriding Permission

public boolean equals(Object obj);
public String getActions();
public int hashCode();
public boolean implies(java.security.Permission p);
public java.security.PermissionCollection newPermissionCollection();

}

Object Permission ServicePermission

Guard Serializable Serializable

986 | Chapter 19: javax.security.auth and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

.Package javax.security.auth.login

import javax.security.auth.*;
import javax.security.auth.callback.*;
import javax.security.auth.login.*;
// Get a default GUI-based CallbackHandler
CallbackHandler h = new com.sun.security.auth.callback.DialogCallbackHandler();
// Try to create a LoginContext for use with this application
LoginContext context;
try {
 context = new LoginContext("MyAppName", h);
}
catch(LoginException e) {
 System.err.println("LoginContext configuration error: " + e.getMessage());
 System.exit(-1);
}
// Now use that context to authenticate the user
try {
 context.login();
}
catch(LoginException e) {
 System.err.println("Authentication failed: " + e.getMessage());
 System.exit(-1); // Or we could allow them to try again.
}
// If we get here, authentication was successful, so get the Subject that
// represents the authenticated user.
Subject subject = context.getSubject();

In order to make this kind of authentication work correctly, a fair bit of configuration
is required in various files in the jre/lib/security directory of the Java installation and
possibly elsewhere. In particular, a login configuration file is required to specify which
login modules are required to authenticate users for a particular application (some
applications may require more than one). A description of how to do this is beyond
the scope of this reference. See the Configuration class for a run-time representation of the
login configuration information, however.

Classes
public class AppConfigurationEntry;
public static class AppConfigurationEntry.LoginModuleControlFlag;
public abstract class Configuration;
public class LoginContext;

Exceptions
public class LoginException extends java.security.GeneralSecurityException;

public class AccountException extends LoginException;
public class AccountExpiredException extends AccountException;
public class AccountLockedException extends AccountException;
public class AccountNotFoundException extends AccountException;

public class CredentialException extends LoginException;
public class CredentialExpiredException extends CredentialException;
public class CredentialNotFoundException extends CredentialException;

public class FailedLoginException extends LoginException;

Chapter 19: javax.security.auth and Subpackages | 987

JAAS

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

javax.security.auth.login.AccountNotFoundException

AccountException
javax.security.auth.login

Java 5.0

serializable checked

A LoginException exception of this type signals a problem logging in to the specified
account. Subclasses provide more detail.

Subclasses AccountExpiredException, AccountLockedException, AccountNotFoundException

AccountExpiredException
javax.security.auth.login

Java 1.4

serializable checked

Signals that login failed because the user’s account has expired. Prior to Java 5.0, this
exception was a direct subclass of LoginException.

AccountLockedException
javax.security.auth.login

Java 5.0

serializable checked

An exception of this type indicates that the account for which login was attempted has
been “locked” or otherwise made unavailable. See also AccountExpiredException.

AccountNotFoundException
javax.security.auth.login

Java 5.0

serializable checked

An exception of this type indicates that the account specified in a login attempt does
not exist.

public class AccountException extends LoginException {
// Public Constructors

public AccountException();
public AccountException(String msg);

}

public class AccountExpiredException extends AccountException {
// Public Constructors

public AccountExpiredException();
public AccountExpiredException(String msg);

}

public class AccountLockedException extends AccountException {
// Public Constructors

public AccountLockedException();
public AccountLockedException(String msg);

}

Object Throwable Exception GeneralSecurityException LoginException AccountException

Serializable

Object Throwable Exception GeneralSecurityException LoginException AccountException AccountExpiredException

Serializable

Object Throwable Exception GeneralSecurityException LoginException AccountException AccountLockedException

Serializable

988 | Chapter 19: javax.security.auth and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

javax.security.auth.login.AppConfigurationEntry

AppConfigurationEntry
javax.security.auth.login

Java 1.4

An instance of this class represents a login module to be used for user authentication
for a particular application. It encapsulates three pieces of information: the class name
of the javax.security.auth.spi.LoginModule implementation that is to be used, a “control flag”
that specifies whether authentication by that module is required or optional, and a
java.util.Map of arbitrary string name/value pairs of options for the login module.

Returned By Configuration.getAppConfigurationEntry()

AppConfigurationEntry.LoginModuleControlFlag
javax.security.auth.login

Java 1.4

This inner class defines a “control flag” type and four specific instances of that type.
The constants defined by this class specify whether a login module is required or
optional, and have the following meanings:

REQUIRED
Authentication by this module must be successful, or the overall login process
will fail. However, even if authentication fails for this module, the LoginContext
continues to attempt authentication with any other modules in the list. (This can
server to disguise the source of the authentication failure from an attacker)

REQUSITE
Authentication by this module must be successful, or the overall login process
will fail. If authentication fails for this module, the LoginContext does not try any
further login modules.

SUFFICIENT
Authentication by this module is not required, and the overall login process can
still succeed if all REQUIRED and REQUISITE modules successfully authenticate the user.
However, if authentication by this module does succeed, the LoginContext does not
try any further login modules, but instead returns immediately.

public class AccountNotFoundException extends AccountException {
// Public Constructors

public AccountNotFoundException();
public AccountNotFoundException(String msg);

}

public class AppConfigurationEntry {
// Public Constructors

public AppConfigurationEntry(String loginModuleName, AppConfigurationEntry.LoginModuleControlFlag controlFlag,
java.util.Map<String,?> options);

// Nested Types
public static class LoginModuleControlFlag;

// Public Instance Methods
public AppConfigurationEntry.LoginModuleControlFlag getControlFlag();
public String getLoginModuleName();
public java.util.Map<String,?> getOptions();

}

Object Throwable Exception GeneralSecurityException LoginException AccountException AccountNotFoundException

Serializable

Chapter 19: javax.security.auth and Subpackages | 989

JAAS

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

javax.security.auth.login.CredentialException

OPTIONAL
Authentication by this module is not required. Whether or not it succeeds, the
LoginContext continues to with any other modules on the list.

Passed To AppConfigurationEntry.AppConfigurationEntry()

Returned By AppConfigurationEntry.getControlFlag()

Configuration
javax.security.auth.login

Java 1.4

This abstract class is a representation of the system and user login configuration files.
The static getConfiguration() method returns the global Configuration object, and the static
setConfiguration() allows that global object to be replaced with some other implementa-
tion. The instance method refresh() causes a Configuration to re-read the underlying
configuration files. getAppConfigurationEntry() is the key method: it returns an array of
AppConfigurationEntry objects that represent the set of login modules to be used for applica-
tions with the specified name. LoginContext uses this class to determine which login
modules to use to authenticate a user of the named application. Application program-
mers do not typically need to use this class themselves. See the documentation for your
Java implementation for the syntax of the underlying login configuration files.

Passed To LoginContext.LoginContext()

CredentialException
javax.security.auth.login

Java 5.0

serializable checked

An exception of this type indicates a problem with the credential (e.g., the password)
presented during the login attempt. Subclasses provide more detail.

public static class AppConfigurationEntry.LoginModuleControlFlag {
// No Constructor
// Public Constants

public static final AppConfigurationEntry.LoginModuleControlFlag OPTIONAL;
public static final AppConfigurationEntry.LoginModuleControlFlag REQUIRED;
public static final AppConfigurationEntry.LoginModuleControlFlag REQUISITE;
public static final AppConfigurationEntry.LoginModuleControlFlag SUFFICIENT;

// Public Methods Overriding Object
public String toString();

}

public abstract class Configuration {
// Protected Constructors

protected Configuration();
// Public Class Methods

public static Configuration getConfiguration(); synchronized
public static void setConfiguration(Configuration configuration);

// Public Instance Methods
public abstract AppConfigurationEntry[] getAppConfigurationEntry(String name);
public abstract void refresh();

}

Object Throwable Exception GeneralSecurityException LoginException CredentialException

Serializable

990 | Chapter 19: javax.security.auth and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

javax.security.auth.login.CredentialExpiredException

Subclasses CredentialExpiredException, CredentialNotFoundException

CredentialExpiredException
javax.security.auth.login

Java 1.4

serializable checked

Signals that a login failed because a credential (such as a password) has expired and is
no longer valid. Prior to Java 5.0, this is a direct subclass of LoginException.

CredentialNotFoundException
javax.security.auth.login

Java 5.0

serializable checked

An exception of this type indicates that a credential (such as a Kerberos ticket) neces-
sary for login could not be found. This is not the same as presenting an invalid
credential, which results in a FailedLoginException.

FailedLoginException
javax.security.auth.login

Java 1.4

serializable checked

Signals that login failed. Typically this is because an incorrect username, password, or
other information was presented. Login modules that throw this exception may
provide human-readable details through the getMessage() method.

public class CredentialException extends LoginException {
// Public Constructors

public CredentialException();
public CredentialException(String msg);

}

public class CredentialExpiredException extends CredentialException {
// Public Constructors

public CredentialExpiredException();
public CredentialExpiredException(String msg);

}

public class CredentialNotFoundException extends CredentialException {
// Public Constructors

public CredentialNotFoundException();
public CredentialNotFoundException(String msg);

}

public class FailedLoginException extends LoginException {
// Public Constructors

public FailedLoginException();
public FailedLoginException(String msg);

}

Object Throwable Exception GeneralSecurityException LoginException CredentialException CredentialExpiredException

Serializable

Throwable Exception GeneralSecurityException LoginException CredentialException CredentialNotFoundException

Serializable

Object Throwable Exception GeneralSecurityException LoginException FailedLoginException

Serializable

Chapter 19: javax.security.auth and Subpackages | 991

JAAS

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

javax.security.auth.login.LoginException

LoginContext
javax.security.auth.login

Java 1.4

This is one of the most important classes in the JAAS API for application program-
mers: it defines the login() method (and the corresponding logout() method) that allows
an application to authenticate a user. Create a LoginContext object using one of the
public constructors. The constructor expects to be passed the name of the applica-
tion, and, optionally, the javax.security.auth.Subject that is to be authenticated and a
javax.security.auth.callback.CallbackHandler that is to be used for communication between the
underlying login module (or modules) and the user. If no Subject is specified, then the
LoginContext will instantiate a new one to represent the authenticated user. If a Subject is
supplied, then the LoginContext adds new entries to its sets of principals and creden-
tials. If no CallbackHandler is specified, then the LoginContext attempts to instantiate
one using the class name specified by the auth.login.defaultCallbackHandler property in the
system’s security properties file.

Once a LoginContext is successfully created, you can authenticate a user simply by calling
the login() method, and then calling getSubject() to obtain the Subject object that represents
the authenticated user. When this Subject is no longer required, you can log them out by
calling the logout() method.

LoginException
javax.security.auth.login

Java 1.4

serializable checked

Signals that something went wrong while creating a LoginContext or during the login or
logout process. The subclasses of this class represent more specific exception types.

Subclasses AccountException, CredentialException, FailedLoginException

Thrown By java.security.AuthProvider.{login(), logout()}, LoginContext.{login(), LoginContext(), logout()},
javax.security.auth.spi.LoginModule.{abort(), commit(), login(), logout()}

public class LoginContext {
// Public Constructors

public LoginContext(String name) throws LoginException;
public LoginContext(String name, javax.security.auth.Subject subject) throws LoginException;
public LoginContext(String name, javax.security.auth.callback.CallbackHandler callbackHandler) throws LoginException;
public LoginContext(String name, javax.security.auth.Subject subject,

javax.security.auth.callback.CallbackHandler callbackHandler) throws LoginException;
5.0 public LoginContext(String name, javax.security.auth.Subject subject,

javax.security.auth.callback.CallbackHandler callbackHandler, Configuration config)
throws LoginException;

// Public Instance Methods
public javax.security.auth.Subject getSubject();
public void login() throws LoginException;
public void logout() throws LoginException;

}

public class LoginException extends java.security.GeneralSecurityException {
// Public Constructors

public LoginException();
public LoginException(String msg);

}

Object Throwable Exception GeneralSecurityException LoginException

Serializable

992 | Chapter 19: javax.security.auth and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

.Package javax.security.auth.spi

Package javax.security.auth.spi Java 1.4

This package defines the “service provider interface” for JAAS: it defines a single Login-
Module interface that must be implemented by developers of login modules.

Interfaces
public interface LoginModule;

LoginModule
javax.security.auth.spi

Java 1.4

Developers of login modules to be used with the JAAS authentication API must imple-
ment this interface. Because this interface is not typically used by application
developers, its methods are not documented here.

Package javax.security.auth.x500 Java 1.4

This package defines classes for use with authentication schemes for on X.500 princi-
pals. Instances of these classes are designed to be stored in the principals and private
credentials sets of Subject objects, and although application programmers may occasion-
ally find the X500Principal class useful, they are primarily of interest to system-level
programmers writing X.500-based javax.security.auth.spi.LoginModule implementations See
also the java.security.cert package which contains a class representing an X.509 certificate.

Classes
public final class X500Principal implements java.security.Principal, Serializable;
public final class X500PrivateCredential implements javax.security.auth.Destroyable;

X500Principal
javax.security.auth.x500

Java 1.4

serializable

This class implements the java.security.Principal interface for entities represented by X.500
distinguished names (such as “CN=David,O=davidflanagan.com,C=US”). The
constructor methods can accept the distinguished name in string form or in binary
encoded form. getName() returns the name in string form, using the format defined by
one of the three consant values. The no-argument version of getName() (the one defined
by the Principal interface) returns the distinguished name formatted as specified by RFC
2253. Finally, getEncoded() returns a binary-encoded form of the name.

public interface LoginModule {
// Public Instance Methods

boolean abort() throws javax.security.auth.login.LoginException;
boolean commit() throws javax.security.auth.login.LoginException;
void initialize(javax.security.auth.Subject subject, javax.security.auth.callback.CallbackHandler callbackHandler,

java.util.Map<String,?> sharedState, java.util.Map<String,?> options);
boolean login() throws javax.security.auth.login.LoginException;
boolean logout() throws javax.security.auth.login.LoginException;

}

Chapter 19: javax.security.auth and Subpackages | 993

JAAS

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

javax.security.auth.x500.X500PrivateCredential

Passed To java.security.cert.TrustAnchor.TrustAnchor(), java.security.cert.X509CertSelector.{setIssuer(),
setSubject()}, java.security.cert.X509CRLSelector.addIssuer()

Returned By java.security.cert.TrustAnchor.getCA(), java.security.cert.X509Certificate.{getIssuerX500Principal(),
getSubjectX500Principal()}, java.security.cert.X509CertSelector.{getIssuer(), getSubject()},
java.security.cert.X509CRL.getIssuerX500Principal(), java.security.cert.X509CRLEntry.getCertificateIssuer()

X500PrivateCredential
javax.security.auth.x500

Java 1.4

This class associates a java.security.cert.X509Certificate with a java.security.PrivateKey for that certif-
icate, and, optionally, the keystore alias used to retrieve the certificate and key from a
java.security.KeyStore. The class defines methods to retreive the certificate, key, and alias,
and also implements the methods of the javax.security.cert.Destroyable interface.

public final class X500Principal implements java.security.Principal, Serializable {
// Public Constructors

public X500Principal(java.io.InputStream is);
public X500Principal(String name);
public X500Principal(byte[] name);

// Public Constants
public static final String CANONICAL; ="CANONICAL"
public static final String RFC1779; ="RFC1779"
public static final String RFC2253; ="RFC2253"

// Public Instance Methods
public byte[] getEncoded();
public String getName(String format);

// Methods Implementing Principal
public boolean equals(Object o);
public String getName();
public int hashCode();
public String toString();

}

public final class X500PrivateCredential implements javax.security.auth.Destroyable {
// Public Constructors

public X500PrivateCredential(java.security.cert.X509Certificate cert, java.security.PrivateKey key);
public X500PrivateCredential(java.security.cert.X509Certificate cert, java.security.PrivateKey key, String alias);

// Public Instance Methods
public String getAlias();
public java.security.cert.X509Certificate getCertificate();
public java.security.PrivateKey getPrivateKey();

// Methods Implementing Destroyable
public void destroy();
public boolean isDestroyed();

}

Object X500Principal

Principal Serializable

Object X500PrivateCredential Destroyable

994

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Chapter 20JAXP

20
javax.xml and Subpackages

This chapter documents javax.xml and its subpackages:

java.xml
This simple package simply defines constants for use by its subpackages.
Added in Java 5.0.

javax.xml.datatype
This package contains Java types corresponding to types defined by XML
standards such as W3C XML Schema, XQuery, and XPath.

javax.xml.namespace
This package defines types for working with XML namespaces.

javax.xml.parsers
This package defines parser classes that serve as a wrapper around under-
lying DOM and SAX XML parsers, and also defines factory classes that are
used to obtain instances of those parser classes.

javax.xml.transform
This package defines classes and interfaces for transforming the representa-
tion and content of an XML document with XSLT. It defines Source and Result
interfaces to represent a source document and a result document. subpack-
ages provide implementations of these classes that represent documents in
different ways.

javax.xml.transform.dom
This package implements the Source and Result interfaces that represent docu-
ments as DOM document trees.

javax.xml.transform.sax
This package implements the Source and Result interfaces to represent docu-
ments as sequences of SAX parser events. It also defines other SAX-related
transformation classes.

Chapter 20: javax.xml and Subpackages | 995

JAXP

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

.Package javax.xml.datatype

javax.xml.transform.stream
This package implements the Source and Result interfaces that represent docu-
ments as streams of text.

javax.xml.validation
This package contains classes for validating XML documents against a
schema.

javax.xml.xpath
This package defines types for the evaluation of XPath expressions in the
context of an XML document.

Package javax.xml Java 5.0

This package has many important subpackages but defines only a single class
XMLConstants, which, as its name implies, provides symbolic names for constants defined
by various XML specifications.

Classes
public final class XMLConstants;

XMLConstants
javax.xml

Java 5.0

This class is a repository for constants defined by various XML standards. Most are
URIs that identify XML namespaces.

Package javax.xml.datatype Java 5.0

This package defines Java data types that correspond to certain time, date, and dura-
tion data types required by the W3C XML Schema, XQuery, and XPath standards.
This package is of primary interest to those implementing schema validators and
XPath evaluators and should not be required by applications that use schemas or
XPath expressions.

public final class XMLConstants {
// No Constructor
// Public Constants

public static final String DEFAULT_NS_PREFIX; =" "
public static final String FEATURE_SECURE_PROCESSING; ="http://javax.xml.XMLConstants/feature/secure-processing"
public static final String NULL_NS_URI; =" "
public static final String RELAXNG_NS_URI; ="http://relaxng.org/ns/structure/1.0"

public static final String W3C_XML_SCHEMA_INSTANCE_NS_URI; ="http://www.w3.org/2001/XMLSchema-instance"
public static final String W3C_XML_SCHEMA_NS_URI; ="http://www.w3.org/2001/XMLSchema"
public static final String W3C_XPATH_DATATYPE_NS_URI; ="http://www.w3.org/2003/11/xpath-datatypes"
public static final String XML_DTD_NS_URI; ="http://www.w3.org/TR/REC-xml"
public static final String XML_NS_PREFIX; ="xml"
public static final String XML_NS_URI; ="http://www.w3.org/XML/1998/namespace"
public static final String XMLNS_ATTRIBUTE; ="xmlns"
public static final String XMLNS_ATTRIBUTE_NS_URI; ="http://www.w3.org/2000/xmlns/"

}

996 | Chapter 20: javax.xml and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

javax.xml.datatype.DatatypeConfigurationException

Classes
public final class DatatypeConstants;
public static final class DatatypeConstants.Field;
public abstract class DatatypeFactory;
public abstract class Duration;
public abstract class XMLGregorianCalendar implements Cloneable;

Exceptions
public class DatatypeConfigurationException extends Exception;

DatatypeConfigurationException
javax.xml.datatype

Java 5.0

serializable checked

An exception of this type is thrown by DatatypeFactory.newInstance() to indicate a factory
configuration error.

Thrown By DatatypeFactory.newInstance()

DatatypeConstants
javax.xml.datatype

Java 5.0

This class defines constants used in this package. Most of the constants are int values,
but some are qualified names and some are instances of the DatatypeConstants.Field type.

public class DatatypeConfigurationException extends Exception {
// Public Constructors

public DatatypeConfigurationException();
public DatatypeConfigurationException(Throwable cause);
public DatatypeConfigurationException(String message);
public DatatypeConfigurationException(String message, Throwable cause);

}

public final class DatatypeConstants {
// No Constructor
// Public Constants

public static final int APRIL; =4
public static final int AUGUST; =8
public static final javax.xml.namespace.QName DATE;
public static final javax.xml.namespace.QName DATETIME;
public static final DatatypeConstants.Field DAYS;
public static final int DECEMBER; =12
public static final javax.xml.namespace.QName DURATION;
public static final javax.xml.namespace.QName DURATION_DAYTIME;
public static final javax.xml.namespace.QName DURATION_YEARMONTH;
public static final int EQUAL; =0
public static final int FEBRUARY; =2
public static final int FIELD_UNDEFINED; =-2147483648
public static final javax.xml.namespace.QName GDAY;
public static final javax.xml.namespace.QName GMONTH;
public static final javax.xml.namespace.QName GMONTHDAY;
public static final int GREATER; =1

Object Throwable Exception DatatypeConfigurationException

Serializable

Chapter 20: javax.xml and Subpackages | 997

JAXP

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

javax.xml.datatype.DatatypeFactory

DatatypeConstants.Field
javax.xml.datatype

Java 5.0

This class defines a typesafe enumeration for some of the constants in DatatypeConstants.
Note that it is a class, not a Java 5.0 enum type.

Passed To Duration.{getField(), isSet()}

Type Of DatatypeConstants.{DAYS, HOURS, MINUTES, MONTHS, SECONDS, YEARS}

DatatypeFactory
javax.xml.datatype

Java 5.0

This class defines factory methods for creating Duration and XMLGregorianCalendar objects.

public static final javax.xml.namespace.QName GYEAR;
public static final javax.xml.namespace.QName GYEARMONTH;
public static final DatatypeConstants.Field HOURS;
public static final int INDETERMINATE; =2
public static final int JANUARY; =1
public static final int JULY; =7
public static final int JUNE; =6
public static final int LESSER; =-1
public static final int MARCH; =3
public static final int MAX_TIMEZONE_OFFSET; =-840
public static final int MAY; =5
public static final int MIN_TIMEZONE_OFFSET; =840
public static final DatatypeConstants.Field MINUTES;
public static final DatatypeConstants.Field MONTHS;
public static final int NOVEMBER; =11
public static final int OCTOBER; =10
public static final DatatypeConstants.Field SECONDS;
public static final int SEPTEMBER; =9
public static final javax.xml.namespace.QName TIME;
public static final DatatypeConstants.Field YEARS;

// Nested Types
public static final class Field;

}

public static final class DatatypeConstants.Field {
// No Constructor
// Public Instance Methods

public int getId();
// Public Methods Overriding Object

public String toString();
}

public abstract class DatatypeFactory {
// Protected Constructors

protected DatatypeFactory();
// Public Constants

public static final String DATATYPEFACTORY_IMPLEMENTATION_CLASS;
="com.sun.org.apache.xerces.internal.jaxp.datatype.DatatypeFactoryImpl"

public static final String DATATYPEFACTORY_PROPERTY; ="javax.xml.datatype.DatatypeFactory"
// Public Class Methods

public static DatatypeFactory newInstance() throws DatatypeConfigurationException;

998 | Chapter 20: javax.xml and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

javax.xml.datatype.Duration

Duration
javax.xml.datatype

Java 5.0

An instance of this class represents a length of time. Create Duration objects with
DatatypeFactory.

// Public Instance Methods
public abstract Duration newDuration(String lexicalRepresentation);
public abstract Duration newDuration(long durationInMilliSeconds);
public Duration newDuration(boolean isPositive, int years, int months, int days, int hours, int minutes, int seconds);
public abstract Duration newDuration(boolean isPositive, java.math.BigInteger years, java.math.BigInteger months,

java.math.BigInteger days, java.math.BigInteger hours,
java.math.BigInteger minutes, java.math.BigDecimal seconds);

public Duration newDurationDayTime(long durationInMilliseconds);
public Duration newDurationDayTime(String lexicalRepresentation);
public Duration newDurationDayTime(boolean isPositive, int day, int hour, int minute, int second);
public Duration newDurationDayTime(boolean isPositive, java.math.BigInteger day, java.math.BigInteger hour,

java.math.BigInteger minute, java.math.BigInteger second);
public Duration newDurationYearMonth(long durationInMilliseconds);
public Duration newDurationYearMonth(String lexicalRepresentation);
public Duration newDurationYearMonth(boolean isPositive, int year, int month);
public Duration newDurationYearMonth(boolean isPositive, java.math.BigInteger year, java.math.BigInteger month);
public abstract XMLGregorianCalendar newXMLGregorianCalendar();
public abstract XMLGregorianCalendar newXMLGregorianCalendar(java.util.GregorianCalendar cal);
public abstract XMLGregorianCalendar newXMLGregorianCalendar(String lexicalRepresentation);
public XMLGregorianCalendar newXMLGregorianCalendar(int year, int month, int day, int hour, int minute, int second,

int millisecond, int timezone);
public abstract XMLGregorianCalendar newXMLGregorianCalendar(java.math.BigInteger year, int month, int day,

int hour, int minute, int second,
java.math.BigDecimal fractionalSecond,
int timezone);

public XMLGregorianCalendar newXMLGregorianCalendarDate(int year, int month, int day, int timezone);
public XMLGregorianCalendar newXMLGregorianCalendarTime(int hours, int minutes, int seconds, int timezone);
public XMLGregorianCalendar newXMLGregorianCalendarTime(int hours, int minutes, int seconds, int milliseconds,

int timezone);
public XMLGregorianCalendar newXMLGregorianCalendarTime(int hours, int minutes, int seconds,

java.math.BigDecimal fractionalSecond, int timezone);
}

public abstract class Duration {
// Public Constructors

public Duration();
// Public Instance Methods

public abstract Duration add(Duration rhs);
public abstract void addTo(java.util.Calendar calendar);
public void addTo(java.util.Date date);
public abstract int compare(Duration duration);
public int getDays();
public abstract Number getField(DatatypeConstants.Field field);
public int getHours();
public int getMinutes();
public int getMonths();
public int getSeconds();
public abstract int getSign();
public long getTimeInMillis(java.util.Date startInstant);

Chapter 20: javax.xml and Subpackages | 999

JAXP

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

javax.xml.datatype.XMLGregorianCalendar

Passed To XMLGregorianCalendar.add()

Returned By DatatypeFactory.{newDuration(), newDurationDayTime(), newDurationYearMonth()}

XMLGregorianCalendar
javax.xml.datatype

Java 5.0

cloneable

Instances of this class represent a date or time. Create XMLGregorianCalendar objects with a
DatatypeFactory.

public long getTimeInMillis(java.util.Calendar startInstant);
public javax.xml.namespace.QName getXMLSchemaType();
public int getYears();
public boolean isLongerThan(Duration duration);
public abstract boolean isSet(DatatypeConstants.Field field);
public boolean isShorterThan(Duration duration);
public Duration multiply(int factor);
public abstract Duration multiply(java.math.BigDecimal factor);
public abstract Duration negate();
public abstract Duration normalizeWith(java.util.Calendar startTimeInstant);
public Duration subtract(Duration rhs);

// Public Methods Overriding Object
public boolean equals(Object duration);
public abstract int hashCode();
public String toString();

}

public abstract class XMLGregorianCalendar implements Cloneable {
// Public Constructors

public XMLGregorianCalendar();
// Public Instance Methods

public abstract void add(Duration duration);
public abstract void clear();
public abstract int compare(XMLGregorianCalendar xmlGregorianCalendar);
public abstract int getDay();
public abstract java.math.BigInteger getEon();
public abstract java.math.BigInteger getEonAndYear();
public abstract java.math.BigDecimal getFractionalSecond();
public abstract int getHour();
public int getMillisecond();
public abstract int getMinute();
public abstract int getMonth();
public abstract int getSecond();
public abstract int getTimezone();
public abstract java.util.TimeZone getTimeZone(int defaultZoneoffset);
public abstract javax.xml.namespace.QName getXMLSchemaType();
public abstract int getYear();
public abstract boolean isValid();
public abstract XMLGregorianCalendar normalize();
public abstract void reset();
public abstract void setDay(int day);
public abstract void setFractionalSecond(java.math.BigDecimal fractional);
public abstract void setHour(int hour);

Object XMLGregorianCalendar Cloneable

1000 | Chapter 20: javax.xml and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

.Package javax.xml.namespace

Returned By DatatypeFactory.{newXMLGregorianCalendar(), newXMLGregorianCalendarDate(),
newXMLGregorianCalendarTime()}

Package javax.xml.namespace Java 5.0

This small package defines types for working with XML namespaces. NamespaceContext
represents a mapping between namespace URIs and namespace prefixes. QName repre-
sents a qualified name consisting of a local part and a namespace.

Interfaces
public interface NamespaceContext;

Classes
public class QName implements Serializable;

NamespaceContext
javax.xml.namespace

Java 5.0

This interface represents a mapping between namespace URIs and the local prefixes
that are bound to them. Use getNamepaceURI() to obtain the URI that a prefix is bound to.
Use getPrefix() to do the reverse. More than one prefix can be bound to the same URI,
and the getPrefixes() method returns an Iterator that you can use to loop through all
prefixes that have been associated with a given URI.

Passed To javax.xml.xpath.XPath.setNamespaceContext()

Returned By javax.xml.xpath.XPath.getNamespaceContext()

public abstract void setMillisecond(int millisecond);
public abstract void setMinute(int minute);
public abstract void setMonth(int month);
public abstract void setSecond(int second);
public void setTime(int hour, int minute, int second);
public void setTime(int hour, int minute, int second, int millisecond);
public void setTime(int hour, int minute, int second, java.math.BigDecimal fractional);
public abstract void setTimezone(int offset);
public abstract void setYear(int year);
public abstract void setYear(java.math.BigInteger year);
public abstract java.util.GregorianCalendar toGregorianCalendar();
public abstract java.util.GregorianCalendar toGregorianCalendar(java.util.TimeZone timezone, java.util.Locale aLocale,

XMLGregorianCalendar defaults);
public abstract String toXMLFormat();

// Public Methods Overriding Object
public abstract Object clone();
public boolean equals(Object obj);
public int hashCode();
public String toString();

}

public interface NamespaceContext {
// Public Instance Methods

String getNamespaceURI(String prefix);
String getPrefix(String namespaceURI);
java.util.Iterator getPrefixes(String namespaceURI);

}

Chapter 20: javax.xml and Subpackages | 1001

JAXP

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

.Package javax.xml.parsers

QName
javax.xml.namespace

Java 5.0

serializable

A QName represents an XML “qualified name,” such as an XML element name that has
both a local name and a namespace. getLocalPart() returns the unqualified local part of
the name. getNamespaceURI() returns the canonical URI that formally identifies the
namespace. getPrefix() returns the locally declared namespace prefix. Note that a QName
does not always have a prefix and that the prefix, if it exists, is ignored for the
purposes of the equals(), hashCode(), and toString() methods. The static valueOf() method
parses a QName from a string in the format of toString():

{namespaceURI}localPart

Passed To javax.xml.xpath.XPath.evaluate(), javax.xml.xpath.XPathExpression.evaluate(),
javax.xml.xpath.XPathFunctionResolver.resolveFunction(), javax.xml.xpath.XPathVariableResolver.resolveVariable()

Returned By javax.xml.datatype.Duration.getXMLSchemaType(),
javax.xml.datatype.XMLGregorianCalendar.getXMLSchemaType()

Type Of Too many fields to list.

Package javax.xml.parsers Java 1.4

This package defines classes that represent XML parsers and factory classes for obtaining
instances of those parser classes. DocumentBuilder is a DOM-based XML parser created from
a DocumentBuilderFactory. SAXParser is a SAX-based XML parser created from a SAXParserFactory.
In Java 5.0, you can configure either of the factory classes to create parsers that validate
against a W3C XML Schema specified with a javax.xml.validation.Schema object. Note that
this package does not include parser implementations. Instead, it is an implementation-
independent layer that supports “pluggable” XML parsers. Furthermore, this package
does not define a DOM or SAX API for working with XML documents. The DOM API is
defined in org.w3c.dom, and the SAX API is defined in org.xml.sax and its subpackages.

Classes
public abstract class DocumentBuilder;

public class QName implements Serializable {
// Public Constructors

public QName(String localPart);
public QName(String namespaceURI, String localPart);
public QName(String namespaceURI, String localPart, String prefix);

// Public Class Methods
public static QName valueOf(String qNameAsString);

// Public Instance Methods
public String getLocalPart();
public String getNamespaceURI();
public String getPrefix();

// Public Methods Overriding Object
public final boolean equals(Object objectToTest);
public final int hashCode();
public String toString();

}

Object QName Serializable

1002 | Chapter 20: javax.xml and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

javax.xml.parsers.DocumentBuilder

public abstract class DocumentBuilderFactory;
public abstract class SAXParser;
public abstract class SAXParserFactory;

Exceptions
public class ParserConfigurationException extends Exception;

Errors
public class FactoryConfigurationError extends Error;

DocumentBuilder
javax.xml.parsers

Java 1.4

This class defines a high-level API to an underlying DOM parser implementation. Obtain
a DocumentBuilder from a DocumentBuilderFactory. After obtaining a DocumentBuilder, you can
provide org.xml.sax.ErrorHandler and org.xml.sax.EntityResolver objects, if desired. (These classes
are defined by the SAX API but are useful for DOM parsers as well.) You may also want
to call isNamespaceAware(), isXIncludeAware() and isValidating() to ensure that the parser is config-
ured with the features your application requires. Finally, use one of the parse() methods to
read an XML document from a stream, file, URL, or org.xml.sax.InputSource object, parse that
document, and convert it into a org.w3c.dom.Document tree. Note that DocumentBuilder objects
are not typically threadsafe. In Java 5.0, you can call reset() to restore the parser to its
original state for reuse. Another Java 5.0 method, getSchema() returns the Schema object, if
any, registered with the DocumentBuilderFactory that created this parser.

If you want to obtain an empty Document object (so that you can build the document
tree from scratch, for example) call newDocument(). Or use getDOMImplementation() to obtain
a the org.w3c.dom.DOMImplementation object of the underlying DOM implementation from
which you can also create an empty Document.

See the org.w3c.dom package for information on what you can do with a Document object
once you have used a DocumentBuilder to create it.

Returned By DocumentBuilderFactory.newDocumentBuilder()

public abstract class DocumentBuilder {
// Protected Constructors

protected DocumentBuilder();
// Public Instance Methods

public abstract org.w3c.dom.DOMImplementation getDOMImplementation();
5.0 public javax.xml.validation.Schema getSchema();

public abstract boolean isNamespaceAware();
public abstract boolean isValidating();

5.0 public boolean isXIncludeAware();
public abstract org.w3c.dom.Document newDocument();
public org.w3c.dom.Document parse(java.io.InputStream is) throws org.xml.sax.SAXException, java.io.IOException;
public org.w3c.dom.Document parse(String uri) throws org.xml.sax.SAXException, java.io.IOException;
public abstract org.w3c.dom.Document parse(org.xml.sax.InputSource is)

throws org.xml.sax.SAXException, java.io.IOException;
public org.w3c.dom.Document parse(java.io.File f) throws org.xml.sax.SAXException, java.io.IOException;
public org.w3c.dom.Document parse(java.io.InputStream is, String systemId)

throws org.xml.sax.SAXException, java.io.IOException;
5.0 public void reset();

public abstract void setEntityResolver(org.xml.sax.EntityResolver er);
public abstract void setErrorHandler(org.xml.sax.ErrorHandler eh);

}

Chapter 20: javax.xml and Subpackages | 1003

JAXP

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

javax.xml.parsers.DocumentBuilderFactory

DocumentBuilderFactory
javax.xml.parsers

Java 1.4

A DocumentBuilderFactory is a factory class for creating DocumentBuilder objects. You can
obtain a DocumentBuilderFactory by instantiating an implementation-specific subclass
provided by a parser vendor, but it is much more common to simply call newInstance() to
obtain an instance of the factory that has been configured as the default for the system.
Once you have obtained a factory object, you can use the various set methods to
configure the properties of the DocumentBuilder objects it will create. These methods allow
you to specify whether the parsers created by the factory will:

• coalesce CDATA sections with adjacent text nodes;

• expand entity references or leave them unexpanded in the document tree;

• omit XML comments from the document tree;

• omit ignorable whitespace from the document tree;

• handle XML namespaces correctly; and

• validate XML documents against a DTD or other schema.

In Java 5.0, you can use setSchema() to specify the javax.xml.vaidation.Schema object against
which parsers should validate their documents. And you can use setXIncludeAware() to
indicate that parsers should process XInclude markup.

In addition to the various implementation-independent set methods, you can also use
setAttribute() pass an implementation-dependent named attribute to the underlying
parser implementation. Once you have configured the factory object as desired, simply
call newDocumentBuilder() to create a DocumentBuilder object with the all of the attributes you
have specified. Note that DocumentBuilderFactory objects are not typically threadsafe.

The javax.xml.parsers package allows parser implementations to be “plugged in.” This
pluggability is provided by the getInstance() method, which follows the following steps to
determine which DocumentBuilderFactory implementation to use:

• If the javax.xml.parsers.DocumentBuilderFactory system property is defined, then the class
specified by that property is used.

• Otherwise, if the jre/lib/jaxp.properties file exists in the Java distribution and
contains a definition for the javax.xml.parsers.DocumentBuilderFactory property, then the
class specified by that property is used.

• Otherwise, if any of the JAR files on the classpath includes a file named META-
INF/services/javax.xml.parsers.DocumentBuilderFactory, then the class named in
that file will be used.

• Otherwise, a default implementation provided by the Java implementation will be
used.

public abstract class DocumentBuilderFactory {
// Protected Constructors

protected DocumentBuilderFactory();
// Public Class Methods

public static DocumentBuilderFactory newInstance();
// Public Instance Methods

public abstract Object getAttribute(String name) throws IllegalArgumentException;
5.0 public abstract boolean getFeature(String name) throws ParserConfigurationException;
5.0 public javax.xml.validation.Schema getSchema();

public boolean isCoalescing();
public boolean isExpandEntityReferences();

1004 | Chapter 20: javax.xml and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

javax.xml.parsers.FactoryConfigurationError

FactoryConfigurationError
javax.xml.parsers

Java 1.4

serializable error

Signals a nonrecoverable problem instantiating a parser factory. This usually means
that a pluggable parser implementation has been incorrectly plugged in and the
getInstance() method cannot locate the specified factory implementation class.

ParserConfigurationException
javax.xml.parsers

Java 1.4

serializable checked

Signals a parser configuration problem that prevents a parser factory object from
creating a parser object.

public boolean isIgnoringComments();
public boolean isIgnoringElementContentWhitespace();
public boolean isNamespaceAware();
public boolean isValidating();

5.0 public boolean isXIncludeAware();
public abstract DocumentBuilder newDocumentBuilder() throws ParserConfigurationException;
public abstract void setAttribute(String name, Object value) throws IllegalArgumentException;
public void setCoalescing(boolean coalescing);
public void setExpandEntityReferences(boolean expandEntityRef);

5.0 public abstract void setFeature(String name, boolean value) throws ParserConfigurationException;
public void setIgnoringComments(boolean ignoreComments);
public void setIgnoringElementContentWhitespace(boolean whitespace);
public void setNamespaceAware(boolean awareness);

5.0 public void setSchema(javax.xml.validation.Schema schema);
public void setValidating(boolean validating);

5.0 public void setXIncludeAware(boolean state);
}

public class FactoryConfigurationError extends Error {
// Public Constructors

public FactoryConfigurationError();
public FactoryConfigurationError(Exception e);
public FactoryConfigurationError(String msg);
public FactoryConfigurationError(Exception e, String msg);

// Public Instance Methods
public Exception getException(); default:null

// Public Methods Overriding Throwable
public String getMessage(); default:null

}

public class ParserConfigurationException extends Exception {
// Public Constructors

public ParserConfigurationException();
public ParserConfigurationException(String msg);

}

Object Throwable Error FactoryConfigurationError

Serializable

Object Throwable Exception ParserConfigurationException

Serializable

Chapter 20: javax.xml and Subpackages | 1005

JAXP

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

javax.xml.parsers.SAXParser

Thrown By DocumentBuilderFactory.{getFeature(), newDocumentBuilder(), setFeature()},
SAXParserFactory.{getFeature(), newSAXParser(), setFeature()}

SAXParser
javax.xml.parsers

Java 1.4

The SAXParser class is a wrapper around an org.xml.sax.XMLReader class and is used to parse
XML documents using the SAX version 2 API. Obtain a SAXParser from a SAXParserFactory.
Call setProperty() if desired to set a property on the underlying parser. (See
www.saxproject.org for a description of standard SAX properties and their values.
Finally, call one of the parse() methods to parse an XML document from a stream, file,
URL, or org.xml.sax.InputSource. The SAX API is an event-driven one. A SAX parser does
not build a document tree to describe an XML document like a DOM parser does.
Instead, it describes the XML document to your application by invoking methods on
an object the application provides. This is the purpose of the org.xml.sax.helpers.DefaultH-
andler object that is passed to the parse() method: you subclass this class to implement
the methods you care about, and the parser will invoke those methods at appropriate
times. For example, when the parser encounters an XML tag in a document, it parses
the tag, and calls the startElement() method to tell you about it. And when it finds a run
of plain text, it passes that text to the characters() method. In Java 5.0, the reset() method
restores a SAXParser to its original state so that it can be reused.

Instead of using one of the parse() methods of this class, you can also call getXMLReader()
to obtain the underlying XMLReader object and work with it directly to parse the desired
document. SAXParser objects are not typically threadsafe.

Note that the getParser() method as well as the parse() methods that take an
org.xml.sax.HandlerBase object are based on the SAX version 1 API, and should be avoided.

public abstract class SAXParser {
// Protected Constructors

protected SAXParser();
// Public Instance Methods

public abstract org.xml.sax.Parser getParser() throws org.xml.sax.SAXException;
public abstract Object getProperty(String name)

throws org.xml.sax.SAXNotRecognizedException, org.xml.sax.SAXNotSupportedException;
5.0 public javax.xml.validation.Schema getSchema();

public abstract org.xml.sax.XMLReader getXMLReader() throws org.xml.sax.SAXException;
public abstract boolean isNamespaceAware();
public abstract boolean isValidating();

5.0 public boolean isXIncludeAware();
public void parse(org.xml.sax.InputSource is, org.xml.sax.HandlerBase hb)

throws org.xml.sax.SAXException, java.io.IOException;
public void parse(org.xml.sax.InputSource is, org.xml.sax.helpers.DefaultHandler dh)

throws org.xml.sax.SAXException, java.io.IOException;
public void parse(java.io.File f, org.xml.sax.helpers.DefaultHandler dh)

throws org.xml.sax.SAXException, java.io.IOException;
public void parse(java.io.InputStream is, org.xml.sax.helpers.DefaultHandler dh)

throws org.xml.sax.SAXException, java.io.IOException;
public void parse(java.io.InputStream is, org.xml.sax.HandlerBase hb)

throws org.xml.sax.SAXException, java.io.IOException;
public void parse(String uri, org.xml.sax.HandlerBase hb) throws org.xml.sax.SAXException, java.io.IOException;
public void parse(String uri, org.xml.sax.helpers.DefaultHandler dh)

throws org.xml.sax.SAXException, java.io.IOException;
public void parse(java.io.File f, org.xml.sax.HandlerBase hb) throws org.xml.sax.SAXException, java.io.IOException;

1006 | Chapter 20: javax.xml and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

javax.xml.parsers.SAXParserFactory

Returned By SAXParserFactory.newSAXParser()

SAXParserFactory
javax.xml.parsers

Java 1.4

This class is a factory for SAXParser objects. Obtain a SAXParserFactory by calling the
newInstance() method which instantiates the default SAXParserFactory subclass provided with
your Java implementation, or instantiates some other SAXParserFactory that has been
“plugged in”.

Once you have a SAXParserFactory object, you can use setValidating() and setNamespaceAware() to
specify whether the parsers it creates will be validating parsers or not and whether they
will know how to handle XML namespaces. You may also call setFeature() to set a
feature of the underlying parser implementation. See http://www.saxproject.org for the
names of standard parser features that can be enabled and disabled with this method.
In Java 5.0, call setXIncludeAware() to specify that created parsers will recognize XInclude
markup. Use setSchema() to specify a W3C XML Schema against which parsers should
validate the document.

Once you have created and configured your factory object, simply call newSAXParser() to
create a SAXParser object. Note that SAXParserFactory implementations are not typically
threadsafe.

The javax.xml.parsers package allows parser implementations to be “plugged in”. This
pluggability is provided by the getInstance() method, which follows the following steps to
determine which SAXBuilderFactory subclass to use:

• If the javax.xml.parsers.SAXParserFactory system property is defined, then the class speci-
fied by that property is used.

• Otherwise, if the jre/lib/jaxp.properties file exists in the Java distribution and
contains a definition for the javax.xml.parsers.SAXParserFactory property, then the class
specified by that property is used.

• Otherwise, if any of the JAR files on the classpath includes a file named META-
INF/services/javax.xml.parsers.SAXParserFactory, then the class named in that file
will be used.

• Otherwise, a default implementation provided by the Java platform will be used.

public void parse(java.io.InputStream is, org.xml.sax.HandlerBase hb, String systemId)
throws org.xml.sax.SAXException, java.io.IOException;

public void parse(java.io.InputStream is, org.xml.sax.helpers.DefaultHandler dh, String systemId)
throws org.xml.sax.SAXException, java.io.IOException;

5.0 public void reset();
public abstract void setProperty(String name, Object value)

throws org.xml.sax.SAXNotRecognizedException, org.xml.sax.SAXNotSupportedException;
}

public abstract class SAXParserFactory {
// Protected Constructors

protected SAXParserFactory();
// Public Class Methods

public static SAXParserFactory newInstance();
// Public Instance Methods

public abstract boolean getFeature(String name)
throws ParserConfigurationException, org.xml.sax.SAXNotRecognizedException,
org.xml.sax.SAXNotSupportedException;

Chapter 20: javax.xml and Subpackages | 1007

JAXP

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

.Package javax.xml.transform

Package javax.xml.transform Java 1.4

This package defines an high-level implementation-independent API for using an
XSLT engine or other document transformation system for transforming XML docu-
ment content, and also for transforming XML documents from one form (such as a
stream of text in a file) to anther form (such as a tree of DOM nodes). The Source inter-
face is a very generic description of a document source. Three concrete
implementations that represent documents in text form, as DOM trees, and as
sequences of SAX parser events are defined in the three subpackages of this package.
The Result interface is a similarly high-level description of what form the source docu-
ment should be transformed into. The three subpackages define three Result
implementations that represent XML documents as streams or files, as DOM trees,
and as sequnces of SAX parser events.

The TransformerFactory class represents the document transformation engine. The imple-
mentation provides a default factory that represents an XSLT engine. A TransformerFactory
can be used to produce Templates objects that represent compiled XSL stylesheets (or
other implementation-dependent forms of transformation instructions). Documents
are actually transfomed from Soruce to Result with a Transformer object, which is obtained
from a Templates object, or directly from a TransformerFactory.

Interfaces
public interface ErrorListener;
public interface Result;
public interface Source;
public interface SourceLocator;
public interface Templates;
public interface URIResolver;

Classes
public class OutputKeys;
public abstract class Transformer;
public abstract class TransformerFactory;

Exceptions
public class TransformerException extends Exception;

public class TransformerConfigurationException extends TransformerException;

5.0 public javax.xml.validation.Schema getSchema();
public boolean isNamespaceAware();
public boolean isValidating();

5.0 public boolean isXIncludeAware();
public abstract SAXParser newSAXParser() throws ParserConfigurationException, org.xml.sax.SAXException;
public abstract void setFeature(String name, boolean value)

throws ParserConfigurationException, org.xml.sax.SAXNotRecognizedException,
org.xml.sax.SAXNotSupportedException;

public void setNamespaceAware(boolean awareness);
5.0 public void setSchema(javax.xml.validation.Schema schema);

public void setValidating(boolean validating);
5.0 public void setXIncludeAware(boolean state);
}

1008 | Chapter 20: javax.xml and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

javax.xml.transform.ErrorListener

Errors
public class TransformerFactoryConfigurationError extends Error;

ErrorListener
javax.xml.transform

Java 1.4

This interface defines methods that Transformer and TransformerFactory use for reporting warn-
ings, errors, and fatal errors to an application. To use an ErrorListener, an application must
implement this interface and pass an implementing object to the setErrorListener() method
of Transformer or TransformerFactory. The argument to each method of this interface is a Trans-
formerException object, and the implementation of these methods can throw that exception
if it chooses, or it can simply log the warning or error in some way and return. A Trans-
former or TransformerFactory is not required to continue processing after reporting a
nonrecoverable error with an invocation of the fatalError() method.

If you are familiar with the SAX API for parsing XML documents, you’ll recognize that
this interface is very similar to org.xml.sax.ErrorHandler.

Passed To Transformer.setErrorListener(), TransformerFactory.setErrorListener()

Returned By Transformer.getErrorListener(), TransformerFactory.getErrorListener()

OutputKeys
javax.xml.transform

Java 1.4

This class defines string constants that hold the names of the attributes of an
<xsl:output> tag in an XSLT stylesheet. These are also legal key values for the Properties
object returned by Templates.getOutputProperties() and passed to Transformer.setOutputProperties().

Result
javax.xml.transform

Java 1.4

This interface represents, in a very general way, the result of an XML transformation.
setSystemId() specifies a the system identifier of the result as a URL. This is useful when

public interface ErrorListener {
// Public Instance Methods

void error(TransformerException exception) throws TransformerException;
void fatalError(TransformerException exception) throws TransformerException;
void warning(TransformerException exception) throws TransformerException;

}

public class OutputKeys {
// No Constructor
// Public Constants

public static final String CDATA_SECTION_ELEMENTS; ="cdata-section-elements"
public static final String DOCTYPE_PUBLIC; ="doctype-public"
public static final String DOCTYPE_SYSTEM; ="doctype-system"
public static final String ENCODING; ="encoding"
public static final String INDENT; ="indent"
public static final String MEDIA_TYPE; ="media-type"
public static final String METHOD; ="method"
public static final String OMIT_XML_DECLARATION; ="omit-xml-declaration"
public static final String STANDALONE; ="standalone"
public static final String VERSION; ="version"

}

Chapter 20: javax.xml and Subpackages | 1009

JAXP

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

javax.xml.transform.SourceLocator

the result is to be written as a file, but it can also be useful for error reporting and for
resolution of relative URLs even when the Result object does not represent a file. All
other methods related to the result are the responsibility of the concrete implementa-
tion of this interface. See the DOMResult, SAXResult and StreamResult implementations in the
three subpackages of this package.

Implementations javax.xml.transform.dom.DOMResult, javax.xml.transform.sax.SAXResult,
javax.xml.transform.stream.StreamResult

Passed To Transformer.transform(), javax.xml.transform.sax.TransformerHandler.setResult(),
javax.xml.validation.Validator.validate()

Source
javax.xml.transform

Java 1.4

This interface represents, in a very general way, the source of an XML document.
setSystemId() specifies a the system identifier of the document in the form of a URL. This
is useful for resolving relative URLs and for error reporting even when the document is
not read directly from a URL. All other methods related to the document source are
the responsibility of the concrete implementation of this interface. See the DOMSource,
SAXSource and StreamSource implementations in the three subpackages of this package.

Implementations javax.xml.transform.dom.DOMSource, javax.xml.transform.sax.SAXSource,
javax.xml.transform.stream.StreamSource

Passed To Transformer.transform(), TransformerFactory.{getAssociatedStylesheet(), newTemplates(),
newTransformer()}, javax.xml.transform.sax.SAXSource.sourceToInputSource(),
javax.xml.transform.sax.SAXTransformerFactory.{newTransformerHandler(), newXMLFilter()},
javax.xml.validation.SchemaFactory.newSchema(), javax.xml.validation.Validator.validate()

Returned By TransformerFactory.getAssociatedStylesheet(), URIResolver.resolve()

SourceLocator
javax.xml.transform

Java 1.4

This interface defines methods that return the system and public identifiers of an
XML document, and return a line number and column number within that docu-
ment. SourceLocator objects are used with TransformerException and
TransformerConfigurationException objects to specify the location in an XML file at which the
exception occurred. Note, however that system and public identifiers are not always
available for a document, and so getSystemId() and getPublicId() may return null. Also, a
Tranformer is not required to track line and column numbers precisely, or at all, so

public interface Result {
// Public Constants

public static final String PI_DISABLE_OUTPUT_ESCAPING; ="javax.xml.transform.disable-output-escaping"
public static final String PI_ENABLE_OUTPUT_ESCAPING; ="javax.xml.transform.enable-output-escaping"

// Public Instance Methods
String getSystemId();
void setSystemId(String systemId);

}

public interface Source {
// Public Instance Methods

String getSystemId();
void setSystemId(String systemId);

}

1010 | Chapter 20: javax.xml and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

javax.xml.transform.Templates

getLineNumber() and getColumnNumber() may return -1 to indicate that line and column
number information is not available. If they return a value other than -1, it should be
considered an approximation to the actual value. Note that lines and columns
within a document are numbered starting with 1, not with 0.

If you are familiar with the SAX API for parsing XML, you’ll recognize this interface as
a renamed version of org.xml.sax.Locator.

Implementations javax.xml.transform.dom.DOMLocator

Passed To TransformerConfigurationException.TransformerConfigurationException(),
TransformerException.{setLocator(), TransformerException()}

Returned By TransformerException.getLocator()

Templates
javax.xml.transform

Java 1.4

This interface represents a set of transformation instructions for transforming a Source
document into a Result document. The javax.xml.transform package is nominally indepen-
dent of type of transformation, but in practice, an object of this type always represents
the compiled form of an XSLT stylesheet. Obtain a Templates object from a Transformer-
Factory object, or with a javax.xml.transform.sax.TemplatesHandler. Once you have a Templates
object, you can use the newTransformer() method to create a Transformer object for applying
the templates to a Source to produce a Result document.

getOutputProperties() returns a java.util.Properties object that defines name/value pairs speci-
fying details about how a textual version of the Result document should be produced.
These properties are specified in an XSLT stylesheet with the <xsl:output> element. The
constants defined by the OutputKeys are legal output property names. The returned Proper-
ties object contains explicitly properties directly, and contains default values in a parent
Properties object. This means that if you query a property value with getProperty(), you’ll
get an explicitly specified value of a default value. On the other hand, if you query a
property with the get() method (inherited by Properties from its superclass) you’ll get a
property value if it was explictly specified in the stylesheet, or null if it was not speci-
fied. The returned Properties object is a clone of the internal value, so you can modify it
(before passing it to the setOutputProperties() method of a Transformer object, for example)
without affecting the Templates object.

Templates implementations are required to be threadsafe. A Templates object can be used
to create any number of Transformer objects.

Passed To javax.xml.transform.sax.SAXTransformerFactory.{newTransformerHandler(), newXMLFilter()}

Returned By TransformerFactory.newTemplates(), javax.xml.transform.sax.TemplatesHandler.getTemplates()

public interface SourceLocator {
// Public Instance Methods

int getColumnNumber();
int getLineNumber();
String getPublicId();
String getSystemId();

}

public interface Templates {
// Public Instance Methods

java.util.Properties getOutputProperties();
Transformer newTransformer() throws TransformerConfigurationException;

}

Chapter 20: javax.xml and Subpackages | 1011

JAXP

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

javax.xml.transform.Transformer

Transformer
javax.xml.transform

Java 1.4

Objects of this type are used to transform a Source document into a Result document.
Obtain a Transformer object from a TransformerFactory object, from a Templates object created
by a TransformerFactory, or from a TransformerHandler object created by a SAXTransformerFactory
(these last two types are from the javax.xml.transform.sax package).

Once you have a Transformer object, you may need to configure it before using it to trans-
form documents. setErrorListener() and setURIResolver() allow you to specify ErrorListener and
URLResolver object that the Transformer can use. setOutputProperty() and setOutputProperties() allow
you to specify name/value pairs that affect the text formatting of the Result document (if
that document is written out in text format). OutputKeys defines constants that represent
the set of standard output property names. The output properties you specify with
these methods override any output properties specified (with an <xsl:output> tag) in the
Templates object. Use setParameter() to supply values for any top-level parameters defined
(with <xsl:param> tags) in the stylesheet. Note that if the name of any such parameter is
a qualified name, then it appears in the stylesheet with a namespace prefix. You can’t
use the prefix with the setParameter() method, however, and you must instead specify the
parameter name using the URI of the namespace within curly braces followed by the
local name. If no namespace is involved, then you can just use the simple name of the
parameter with no curly braces or URIs.

Once you have created and configured a Transformer object, use the transform() method to
perform a document transformation. This method transforms the specified Source docu-
ment and creates the transformed document specified by the Result object. In Java 5.0,
you can reset() a Transformer to restore it to its original state and prepare it for reuse.

Transformer implementations are not typically threadsafe. You can reuse a Transformer
object and call transform() any number of times (just not concurrently). The output
properties and parameters you specify are not changed by calling the transform() method,
and can be reused.

Returned By Templates.newTransformer(), TransformerFactory.newTransformer(),
javax.xml.transform.sax.TransformerHandler.getTransformer()

public abstract class Transformer {
// Protected Constructors

protected Transformer();
// Public Instance Methods

public abstract void clearParameters();
public abstract ErrorListener getErrorListener();
public abstract java.util.Properties getOutputProperties();
public abstract String getOutputProperty(String name) throws IllegalArgumentException;
public abstract Object getParameter(String name);
public abstract URIResolver getURIResolver();

5.0 public void reset();
public abstract void setErrorListener(ErrorListener listener) throws IllegalArgumentException;
public abstract void setOutputProperties(java.util.Properties oformat);
public abstract void setOutputProperty(String name, String value) throws IllegalArgumentException;
public abstract void setParameter(String name, Object value);
public abstract void setURIResolver(URIResolver resolver);
public abstract void transform(Source xmlSource, Result outputTarget) throws TransformerException;

}

1012 | Chapter 20: javax.xml and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

javax.xml.transform.TransformerConfigurationException

TransformerConfigurationException
javax.xml.transform

Java 1.4

serializable checked

Signals a problem creating a Transformer object. This may occur, for exmaple, if there is a
syntax error in the XSL stylesheet that contains the transformation instructions. Use
the inherited getLocator() method to obtain a SourceLocator that describes the document
location at which the exception occurred.

Thrown By Templates.newTransformer(), TransformerFactory.{getAssociatedStylesheet(), newTemplates(),
newTransformer(), setFeature()}, javax.xml.transform.sax.SAXTransformerFactory.{newTemplatesHandler(),
newTransformerHandler(), newXMLFilter()}

TransformerException
javax.xml.transform

Java 1.4

serializable checked

Signals a problem while reading or transforming a document. Call getLocator() to obtain
a SourceLocator object that describes the document location at which the exception
occured.

public class TransformerConfigurationException extends TransformerException {
// Public Constructors

public TransformerConfigurationException();
public TransformerConfigurationException(Throwable e);
public TransformerConfigurationException(String msg);
public TransformerConfigurationException(String message, SourceLocator locator);
public TransformerConfigurationException(String msg, Throwable e);
public TransformerConfigurationException(String message, SourceLocator locator, Throwable e);

}

public class TransformerException extends Exception {
// Public Constructors

public TransformerException(String message);
public TransformerException(Throwable e);
public TransformerException(String message, Throwable e);
public TransformerException(String message, SourceLocator locator);
public TransformerException(String message, SourceLocator locator, Throwable e);

// Public Instance Methods
public Throwable getException();
public String getLocationAsString();
public SourceLocator getLocator();
public String getMessageAndLocation();
public void setLocator(SourceLocator location);

// Public Methods Overriding Throwable
public Throwable getCause();
public Throwable initCause(Throwable cause); synchronized
public void printStackTrace();
public void printStackTrace(java.io.PrintStream s);
public void printStackTrace(java.io.PrintWriter s);

}

Object Throwable Exception TransformerException TransformerConfigurationException

Serializable

Object Throwable Exception TransformerException

Serializable

Chapter 20: javax.xml and Subpackages | 1013

JAXP

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

javax.xml.transform.TransformerFactory

Subclasses TransformerConfigurationException

Passed To ErrorListener.{error(), fatalError(), warning()}

Thrown By ErrorListener.{error(), fatalError(), warning()}, Transformer.transform(), URIResolver.resolve()

TransformerFactory
javax.xml.transform

Java 1.4

An instance of this abstract class represents a document “transformation engine” such
as an XSLT processor. A TransformerFactory is used to create Transformer objects that perform
document transformations, and can also be used to process transformation instruc-
tions (such as XSLT stylesheets) into compiled Templates objects.

Obtain a TransformerFactory instance by calling the static newInstance() method. newInstance()
returns an instance of the default implementation for your Java installation, or, if the
system property javax.xml.transform.TransformerFactory is set, then it returns an instance of the
implementation class named by that property. The default TransformerFactory implementa-
tion provided with the Java distribution transforms XML documents using XSL
stylesheets.

You can configure a TransformerFactory instance by calling setErrorListener() and setURIResolver()
to specify an ErrorListener object and a URIResolver object to be used by the factory when
reading and parsing XSL stylesheets. The setAttribute() and getAttribute() methods can be
used to set and query implementation-dependent attributes of the transformation
engine. The default engine supplied by Sun does not define any attributes. The
getFeature() method is used to test whether the factory supports a given feature. For
uniqueness, feature names are expressed as URIs, and each of the Source and Result
implementations defined in the three subpackages of this package define a FEATURE
constant that specifies a URL that you can use to test whether a TransformerFactory
supports that particular Source or Result type.

Once you have obtained and configured your TransformerFactory object, you can use it in
several ways. If you call the newTransformer() method that takes no arguments, you’ll obtain
a Transformer object that transforms the format or representation of an XML document
without transforming its content. For example, you could use a Transformer created in this
way to transform a DOM tree (represented by a javax.xml.transform.dom.DOMSource object) to a
stream of XML text stored in a file named by a javax.xml.transform.stream.StreamResult.

Another way to use a TransformerFactory is to call the newTemplates() method, passing in a
Source object that represents an XSL stylesheet. This produces a Templates object, which
you can use to obtain a Transformer object that applies the stylesheet to transform docu-
ment content. Alternatively, if you do not plan to create more than one Transformer
object from the Templates object, you can combine the two steps and simply pass the
Source object representing the stylesheet to the one-argument version of newTransformer().

XML documents may include references to XSL stylesheets in the form of an xml-
stylesheet processing instruction. The getAssociatedStylesheet() method reads the XML docu-
ment represented by a Source object and returns a new Source object that represents the
stylesheet (or the concatenation of all the stylesheets) contained in that document that
match the media, title, and charset constraints defined by the other three parameters
(which may be null). If you want to process an XML document using the stylesheet that
it defines itself, use this method to obtain a Source object that you can pass to
newTransformer() to create the Transformer object that you can use to transform the document.

TransformerFactory implementations are not typically threadsafe.

1014 | Chapter 20: javax.xml and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

javax.xml.transform.TransformerFactoryConfigurationError

Subclasses javax.xml.transform.sax.SAXTransformerFactory

TransformerFactoryConfigurationError
javax.xml.transform

Java 1.4

serializable error

This error class signals a fatal problem while creating a TransformerFactory. It usually
signals a configuration problem, such as the system property javax.xml.transform.Transformer-
Factory has a value that is not a valid classname, or that the class path does not contain
the specified factory implementation class.

Thrown By TransformerFactory.newInstance()

URIResolver
javax.xml.transform

Java 1.4

This interface allows an application to tell a Transformer how to resolve the URIs that
appear in an XSLT stylesheet. If you pass a URIResolver to the setURIResolver() method of a
Transformer or TransformerFactory then when the Transformer or TransformerFactory encounters a

public abstract class TransformerFactory {
// Protected Constructors

protected TransformerFactory();
// Public Class Methods

public static TransformerFactory newInstance() throws TransformerFactoryConfigurationError;
// Public Instance Methods

public abstract Source getAssociatedStylesheet(Source source, String media, String title, String charset)
throws TransformerConfigurationException;

public abstract Object getAttribute(String name);
public abstract ErrorListener getErrorListener();
public abstract boolean getFeature(String name);
public abstract URIResolver getURIResolver();
public abstract Templates newTemplates(Source source) throws TransformerConfigurationException;
public abstract Transformer newTransformer() throws TransformerConfigurationException;
public abstract Transformer newTransformer(Source source) throws TransformerConfigurationException;
public abstract void setAttribute(String name, Object value);
public abstract void setErrorListener(ErrorListener listener);

5.0 public abstract void setFeature(String name, boolean value) throws TransformerConfigurationException;
public abstract void setURIResolver(URIResolver resolver);

}

public class TransformerFactoryConfigurationError extends Error {
// Public Constructors

public TransformerFactoryConfigurationError();
public TransformerFactoryConfigurationError(String msg);
public TransformerFactoryConfigurationError(Exception e);
public TransformerFactoryConfigurationError(Exception e, String msg);

// Public Instance Methods
public Exception getException(); default:null

// Public Methods Overriding Throwable
public String getMessage(); default:null

}

Object Throwable Error TransformerFactoryConfigurationError

Serializable

Chapter 20: javax.xml and Subpackages | 1015

JAXP

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

javax.xml.transform.dom.DOMResult

URI, it first passes that URI, along with the base URI to the resolve() method of the URIRe-
solver. If resolve() returns a Source object, then the Transformer will use that Source. If a
Transformer or TransformerFactory has no URIResolver registered, or if the resolve() method
returns null, then the tranformer or factory will attempt to resolve the URI itself.

Passed To Transformer.setURIResolver(), TransformerFactory.setURIResolver()

Returned By Transformer.getURIResolver(), TransformerFactory.getURIResolver()

Package javax.xml.transform.dom Java 1.4

This package contains Source and Result implementations that work with DOM docu-
ment trees and subtrees.

Interfaces
public interface DOMLocator extends javax.xml.transform.SourceLocator;

Classes
public class DOMResult implements javax.xml.transform.Result;
public class DOMSource implements javax.xml.transform.Source;

DOMLocator
javax.xml.transform.dom

Java 1.4

This class extends SourceLocator to define a method for retrieving a DOM Node object,
which is typically used to indicate the source of an error in the transformation process.
See SourceLocator and TransformerException.

DOMResult
javax.xml.transform.dom

Java 1.4

This class is a Result implementation that writes XML content by generating a DOM
tree to represent that content. If you pass an org.w3c.dom.Node to the constructor or to
setNode(), the DOMResult will create the result tree as a child of the specified node (which
should typically be a Document or Element node). If you do not specify a node, the DOMRe-
sult will create a new Document node when it creates the result tree. You can retrieve this
Document with getNode(). In Java 5.0, you can also pass two Node objects to the
constructor: these specify the parent node of the result tree and the child of that parent
before which the result tree should be inserted. See also setNextSibling().

public interface URIResolver {
// Public Instance Methods

Source resolve(String href, String base) throws TransformerException;
}

public interface DOMLocator extends javax.xml.transform.SourceLocator {
// Public Instance Methods

org.w3c.dom.Node getOriginatingNode();
}

SourceLocator DOMLocator

Object DOMResult Result

1016 | Chapter 20: javax.xml and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

javax.xml.transform.dom.DOMSource

DOMSource
javax.xml.transform.dom

Java 1.4

This class is a Source implementation that reads an XML document from a DOM docu-
ment tree or subtree. Pass the org.w3c.dom.Node object that represents the root of the tree
or subtree to the constructor or to setNode(). When possible, it is also useful to provide a
system id (a filename or URL) for use in error messages and for resolving relative URLs
contained in the document.

Package javax.xml.transform.sax Java 1.4

This package defines Source and Result implementations that work with SAX events. In
addition, it includes an extension to the TransformerFactory class that has additional
methods for returning TemplatesHandler and TransformerHandler objects. These objects imple-
ment SAX handler interfaces and are able to work with a SAX parser object to turn a
series of SAX parse events into a Templates object or into a Result document. SAXSource and
SAXResult adapt the org.xml.sax framework for use in the javax.xml.transform framework. By

public class DOMResult implements javax.xml.transform.Result {
// Public Constructors

public DOMResult();
public DOMResult(org.w3c.dom.Node node);

5.0 public DOMResult(org.w3c.dom.Node node, org.w3c.dom.Node nextSibling);
public DOMResult(org.w3c.dom.Node node, String systemId);

5.0 public DOMResult(org.w3c.dom.Node node, org.w3c.dom.Node nextSibling, String systemId);
// Public Constants

public static final String FEATURE; ="http://javax.xml.transform.dom.DOMResult/feature"
// Public Instance Methods
5.0 public org.w3c.dom.Node getNextSibling(); default:null

public org.w3c.dom.Node getNode(); default:null
5.0 public void setNextSibling(org.w3c.dom.Node nextSibling);

public void setNode(org.w3c.dom.Node node);
// Methods Implementing Result

public String getSystemId(); default:null
public void setSystemId(String systemId);

}

public class DOMSource implements javax.xml.transform.Source {
// Public Constructors

public DOMSource();
public DOMSource(org.w3c.dom.Node n);
public DOMSource(org.w3c.dom.Node node, String systemID);

// Public Constants
public static final String FEATURE; ="http://javax.xml.transform.dom.DOMSource/feature"

// Public Instance Methods
public org.w3c.dom.Node getNode(); default:null
public void setNode(org.w3c.dom.Node node);

// Methods Implementing Source
public String getSystemId(); default:null
public void setSystemId(String systemID);

}

Object DOMSource Source

Chapter 20: javax.xml and Subpackages | 1017

JAXP

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

javax.xml.transform.sax.SAXSource

contrast, SAXTransformerFactory, TemplatesHandler, and TransfomerHandler adapt the javax.xml.trans-
form framework for use within the org.xml.sax parsing framework.

Interfaces
public interface TemplatesHandler extends org.xml.sax.ContentHandler;
public interface TransformerHandler extends org.xml.sax.ContentHandler, org.xml.sax.DTDHandler,
org.xml.sax.ext.LexicalHandler;

Classes
public class SAXResult implements javax.xml.transform.Result;
public class SAXSource implements javax.xml.transform.Source;
public abstract class SAXTransformerFactory extends javax.xml.transform.TransformerFactory;

SAXResult
javax.xml.transform.sax

Java 1.4

This class is a Result implementation that describes the content of a transformed docu-
ment by triggering the methods of the specified ContentHandler. That is, a SAXResult acts like
a org.xml.sax.SAXReader object, invoking the methods of the specified org.xml.sax.ContentHandler
object as it parses the transformed document. You may also provide a org.xml.sax.ext.Lexi-
calHandler object whose methods will be invoked by the SAXResult by calling setLexicalHandler,
or by suppling a ContentHandler object that also implements the LexicalHandler interface.

SAXSource
javax.xml.transform.sax

Java 1.4

This class is a Source implementation that describes a document represented as a series
of SAX event method calls. A SAXSource requires an org.xml.sax.InputSource object that
describes the stream to parse, and may optionally specify the org.xml.sax.XMLReader or
org.xml.sax.XMLFilter that generates the SAX events. (If no XMLReader or XMLFilter is specified,
then the Transformer object will a default XMLReader.) Note that since an InputSource is
required, a SAXSource does not behave significantly differently than a StreamSource unless
an XMLFilter is used.

public class SAXResult implements javax.xml.transform.Result {
// Public Constructors

public SAXResult();
public SAXResult(org.xml.sax.ContentHandler handler);

// Public Constants
public static final String FEATURE; ="http://javax.xml.transform.sax.SAXResult/feature"

// Public Instance Methods
public org.xml.sax.ContentHandler getHandler(); default:null
public org.xml.sax.ext.LexicalHandler getLexicalHandler(); default:null
public void setHandler(org.xml.sax.ContentHandler handler);
public void setLexicalHandler(org.xml.sax.ext.LexicalHandler handler);

// Methods Implementing Result
public String getSystemId(); default:null
public void setSystemId(String systemId);

}

Object SAXResult Result

1018 | Chapter 20: javax.xml and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

javax.xml.transform.sax.SAXTransformerFactory

SAXSource also has one static method, sourceToInputSource() which returns a SAX InputSource
method derived from the specified Source object, or null if the specified Source cannot be
converted to an InputSource.

SAXTransformerFactory
javax.xml.transform.sax

Java 1.4

This class extends TransformerFactory to define additional factory methods that are useful
when working with documents that are represented as sequences of SAX events. Pass
the FEATURE constant to the getFeature() method of your TransformerFactory object to deter-
mine whether the newTemplatesHandler() and newTransformerHandler() methods are supported
and whether it is safe to cast your TransformerFactory object to a SAXTransformerFactory. Use the
FEATURE_XMLFILTER constant with getFeature() to determine if the newXMLFilter() methods are
also supported.

newTemplatesHandler() returns a TemplatesHandler object that you can use as an
org.xml.sax.ContentHandler object to receive SAX events generated by a SAX parser and
transform those events into a Templates object.

The newTransformerHandler() methods are similar: they return a TransformerHandler object that
can receive SAX events and representing a source document and transform them into a
Result document. The no-argument version of newTransformerHandler() creates a Transformer-
Handler that simply modifies the form of the document without applying a stylesheet to
its content. The other two versions of newTransformerHandler() use a stylesheet specified
either as a Source or Templates object.

The newXMLFilter() methods, if supported, return an org.xml.sax.XMLFilter object that can acts
as both a sink and a source of SAX events and filters those events by applying the
transformation instructions specified by the Templates or Source objects.

public class SAXSource implements javax.xml.transform.Source {
// Public Constructors

public SAXSource();
public SAXSource(org.xml.sax.InputSource inputSource);
public SAXSource(org.xml.sax.XMLReader reader, org.xml.sax.InputSource inputSource);

// Public Constants
public static final String FEATURE; ="http://javax.xml.transform.sax.SAXSource/feature"

// Public Class Methods
public static org.xml.sax.InputSource sourceToInputSource(javax.xml.transform.Source source);

// Public Instance Methods
public org.xml.sax.InputSource getInputSource(); default:null
public org.xml.sax.XMLReader getXMLReader(); default:null
public void setInputSource(org.xml.sax.InputSource inputSource);
public void setXMLReader(org.xml.sax.XMLReader reader);

// Methods Implementing Source
public String getSystemId(); default:null
public void setSystemId(String systemId);

}

public abstract class SAXTransformerFactory extends javax.xml.transform.TransformerFactory {
// Protected Constructors

protected SAXTransformerFactory();

Object SAXSource Source

Object TransformerFactory SAXTransformerFactory

Chapter 20: javax.xml and Subpackages | 1019

JAXP

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

javax.xml.transform.sax.TransformerHandler

TemplatesHandler
javax.xml.transform.sax

Java 1.4

This interface extends org.xml.sax.ContentHandler and adds a getTemplates() method. An object
that implements this interface can be used to receive method calls from some source of
SAX events and process those events (as a XSL stylesheet) into a Templates object.
Obtain a TemplatesHandler from a SAXTransformerFactory. Register it with the setContentHandler()
method of an org.xml.sax.XMLReader and invoke the parse() method of the reader. When
parse() returns, call the getTemplates() method to obtain the Templates object.

Returned By SAXTransformerFactory.newTemplatesHandler()

TransformerHandler
javax.xml.transform.sax

Java 1.4

This interface extends org.xml.sax.ContentHandler and related interfaces so that it can
consume SAX events generated by a org.xml.sax.SAXReader or org.xml.sax.SAXFilter. Create a
TransformerHandler by calling one of the newTransformerHandler() methods of a
SAXTransformerFactory.

Next, call the setResult() method to specify a Result object that describes the result docu-
ment you’d like the transformation to produce. You may also call getTransformer() to get
the Transformer object associated with this TransformerHandler if you need to set output prop-
erties or parameter values for the transformation.

Now, register the TransformerHandler with the SAXReader or SAXFilter object by calling
setContentHandler(), setDTDHandler(), and setProperty(). ‘Then you use the property name

// Public Constants
public static final String FEATURE; ="http://javax.xml.transform.sax.SAXTransformerFactory/feature"
public static final String FEATURE_XMLFILTER; ="http://javax.xml.transform.sax.SAXTransformerFactory/feature/

xmlfilter"
// Public Instance Methods

public abstract TemplatesHandler newTemplatesHandler()
throws javax.xml.transform.TransformerConfigurationException;

public abstract TransformerHandler newTransformerHandler()
throws javax.xml.transform.TransformerConfigurationException;

public abstract TransformerHandler newTransformerHandler(javax.xml.transform.Source src)
throws javax.xml.transform.TransformerConfigurationException;

public abstract TransformerHandler newTransformerHandler(javax.xml.transform.Templates templates)
throws javax.xml.transform.TransformerConfigurationException;

public abstract org.xml.sax.XMLFilter newXMLFilter(javax.xml.transform.Source src)
throws javax.xml.transform.TransformerConfigurationException;

public abstract org.xml.sax.XMLFilter newXMLFilter(javax.xml.transform.Templates templates)
throws javax.xml.transform.TransformerConfigurationException;

}

public interface TemplatesHandler extends org.xml.sax.ContentHandler {
// Public Instance Methods

String getSystemId();
javax.xml.transform.Templates getTemplates();
void setSystemId(String systemID);

}

ContentHandler TemplatesHandler

1020 | Chapter 20: javax.xml and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

.Package javax.xml.transform.stream

“http://www.xml.org/sax/properties/lexical-handler” in the call to setProperties() to
register the TransformerHandler as a org.xml.sax.ext.LexicalHandler for the parser or filter.

Finally, invoke one of the parse() methods on your XMLReader or XMLFilter object. This will
cause the reader or filter to start parsing the source document and translating it into
method calls on the TransformerHandler. The TransformerHandler will transform those calls as
specified in the Templates or Source object (if any) that was passed to the original call to
newTransformerHandler() and generate a result document as directed by the Result object that
was passed to setResult().

Returned By SAXTransformerFactory.newTransformerHandler()

Package javax.xml.transform.stream Java 1.4

This package contains Source and Result implementations that work with files and
streams.

Classes
public class StreamResult implements javax.xml.transform.Result;
public class StreamSource implements javax.xml.transform.Source;

StreamResult
javax.xml.transform.stream

Java 1.4

This class is a Result implementation that writes a textual representation of a trans-
formed document to stream or file. Because XML documents define their own
encoding, it is usually preferable to construct a StreamResult using a File or OutputStream
instead of a character-based Writer which may use a different encoding than that speci-
fied within the document.

public interface TransformerHandler
 extends org.xml.sax.ContentHandler, org.xml.sax.DTDHandler, org.xml.sax.ext.LexicalHandler {

// Public Instance Methods
String getSystemId();
javax.xml.transform.Transformer getTransformer();
void setResult(javax.xml.transform.Result result) throws IllegalArgumentException;
void setSystemId(String systemID);

}

public class StreamResult implements javax.xml.transform.Result {
// Public Constructors

public StreamResult();
public StreamResult(java.io.File f);
public StreamResult(String systemId);
public StreamResult(java.io.Writer writer);

TransformerHandler

ContentHandler DTDHandler LexicalHandler

Object StreamResult Result

Chapter 20: javax.xml and Subpackages | 1021

JAXP

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

javax.xml.transform.stream.StreamSource

StreamSource
javax.xml.transform.stream

Java 1.4

This class is a Source implementation that reads the textual format of an XML docu-
ment from a file, byte stream, or character stream. Because XML documents declare
their own encoding, it is preferable to create a StreamSource object from an InputStream
instead of from a Reader, so that the XML processor can correctly handle the declared
encoding. When creating a StreamSource from a byte stream or character stream, you
should provide the “system id” (i.e. the filename or URL) by using one of the two-
argument constructors or by caling setSystemId(). The system id is required if the XML
file to be processed includes relative URLs to be resolved.

public StreamResult(java.io.OutputStream outputStream);
// Public Constants

public static final String FEATURE; ="http://javax.xml.transform.stream.StreamResult/feature"
// Public Instance Methods

public java.io.OutputStream getOutputStream(); default:null
public java.io.Writer getWriter(); default:null
public void setOutputStream(java.io.OutputStream outputStream);
public void setSystemId(java.io.File f);
public void setWriter(java.io.Writer writer);

// Methods Implementing Result
public String getSystemId(); default:null
public void setSystemId(String systemId);

}

public class StreamSource implements javax.xml.transform.Source {
// Public Constructors

public StreamSource();
public StreamSource(java.io.InputStream inputStream);
public StreamSource(java.io.Reader reader);
public StreamSource(java.io.File f);
public StreamSource(String systemId);
public StreamSource(java.io.Reader reader, String systemId);
public StreamSource(java.io.InputStream inputStream, String systemId);

// Public Constants
public static final String FEATURE; ="http://javax.xml.transform.stream.StreamSource/feature"

// Public Instance Methods
public java.io.InputStream getInputStream(); default:null
public String getPublicId(); default:null
public java.io.Reader getReader(); default:null
public void setInputStream(java.io.InputStream inputStream);
public void setPublicId(String publicId);
public void setReader(java.io.Reader reader);
public void setSystemId(java.io.File f);

// Methods Implementing Source
public String getSystemId(); default:null
public void setSystemId(String systemId);

}

Object StreamSource Source

1022 | Chapter 20: javax.xml and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

.Package javax.xml.validation

Package javax.xml.validation Java 5.0

This package contains classes for validating XML documents against W3C XML
Schema definitions. Implementations may also support additional schema types, such
as RELAX NG. Typical usage begins with the SchemaFactory class, which parses schema
specifications into immutable Schema objects. Next, the Schema object is used to create a
Validator with which a document may be validated.

Classes
public abstract class Schema;
public abstract class SchemaFactory;
public abstract class SchemaFactoryLoader;
public abstract class TypeInfoProvider;
public abstract class Validator;
public abstract class ValidatorHandler implements org.xml.sax.ContentHandler;

Schema
javax.xml.validation

Java 5.0

A Schema is an immutable opaque parsed representation of a schema. Schema objects don’t
perform validation themselves; instead, they are factories for Validator and ValidatorHandler
objects that can be used to validate individual documents.

Passed To javax.xml.parsers.DocumentBuilderFactory.setSchema(),
javax.xml.parsers.SAXParserFactory.setSchema()

Returned By javax.xml.parsers.DocumentBuilder.getSchema(),
javax.xml.parsers.DocumentBuilderFactory.getSchema(), javax.xml.parsers.SAXParser.getSchema(),
javax.xml.parsers.SAXParserFactory.getSchema(), SchemaFactory.newSchema()

SchemaFactory
javax.xml.validation

Java 5.0

A SchemaFactory parses the textual representation of a schema into a Schema object. Obtain
a SchemaFactory with the newInstance() method, passing a string that identifies the type of
schema you want to parse. All implementations are required to support the W3C XML
Schema language, which is identified by XMLConstants.W3C_XML_SCHEMA_NS_URI. Other
schema types may also be supported, such as RELAX NG schemas, identified by
XMLConstants.RELAXNG_NS_URI.

To parse a schema, call the newSchema() method, passing the File or javax.xml.transform.Source
object that identifies the schema contents. For schemas in the W3C XML Schema
language, you may also specify an array of Source objects that contain the schema defini-
tion. If you call newSchema() with no arguments, a special Schema object is returned that
expects the document to specify the location of its own W3C XML Schema.

public abstract class Schema {
// Protected Constructors

protected Schema();
// Public Instance Methods

public abstract Validator newValidator();
public abstract ValidatorHandler newValidatorHandler();

}

Chapter 20: javax.xml and Subpackages | 1023

JAXP

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

javax.xml.validation.TypeInfoProvider

You can configure a SchemaFactory before calling newSchema() with setErrorHandler(),
setResourceResolver(), setProperty(), and setFeature().

Returned By SchemaFactoryLoader.newFactory()

SchemaFactoryLoader
javax.xml.validation

Java 5.0

This class is used by implementations of the validation API to produce a SchemaFactory
object for a specified schema type. Applications that use the javax.xml.validation package
do not need to use this class.

TypeInfoProvider
javax.xml.validation

Java 5.0

A TypeInfoProvider provides information about the type of the element or attribute
currently being processed by a ValidatorHandler. This type information is obtained by vali-
dating document content against a schema and may be useful to the ContentHandler to
which the ValidatorHandler dispatches its method calls.

public abstract class SchemaFactory {
// Protected Constructors

protected SchemaFactory();
// Public Class Methods

public static final SchemaFactory newInstance(String schemaLanguage);
// Public Instance Methods

public abstract org.xml.sax.ErrorHandler getErrorHandler();
public boolean getFeature(String name)

throws org.xml.sax.SAXNotRecognizedException, org.xml.sax.SAXNotSupportedException;
public Object getProperty(String name)

throws org.xml.sax.SAXNotRecognizedException, org.xml.sax.SAXNotSupportedException;
public abstract org.w3c.dom.ls.LSResourceResolver getResourceResolver();
public abstract boolean isSchemaLanguageSupported(String schemaLanguage);
public abstract Schema newSchema() throws org.xml.sax.SAXException;
public Schema newSchema(javax.xml.transform.Source schema) throws org.xml.sax.SAXException;
public Schema newSchema(java.io.File schema) throws org.xml.sax.SAXException;
public abstract Schema newSchema(javax.xml.transform.Source[] schemas) throws org.xml.sax.SAXException;
public Schema newSchema(java.net.URL schema) throws org.xml.sax.SAXException;
public abstract void setErrorHandler(org.xml.sax.ErrorHandler errorHandler);
public void setFeature(String name, boolean value)

throws org.xml.sax.SAXNotRecognizedException, org.xml.sax.SAXNotSupportedException;
public void setProperty(String name, Object object)

throws org.xml.sax.SAXNotRecognizedException, org.xml.sax.SAXNotSupportedException;
public abstract void setResourceResolver(org.w3c.dom.ls.LSResourceResolver resourceResolver);

}

public abstract class SchemaFactoryLoader {
// Protected Constructors

protected SchemaFactoryLoader();
// Public Instance Methods

public abstract SchemaFactory newFactory(String schemaLanguage);
}

1024 | Chapter 20: javax.xml and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

javax.xml.validation.Validator

Returned By ValidatorHandler.getTypeInfoProvider()

Validator
javax.xml.validation

Java 5.0

A Validator object validates an XML document against the Schema from which the Validator
was created. The validate() method performs validation. Specify the document to be vali-
dated with a DOMSource or SAXSource object (from the javax.xml.transform.dom or
javax.xml.transform.sax packages). The validate() method accepts any javax.xml.transform.Source
object as an argument, but SAXSource and DOMSource are the only two supported
implementations.

The document validation process can also be used to augment the source document by
adding the default values of unspecified attributes. If you want to capture this
augmented form of the document, pass a Result object to the two-argument version of
validate(). If the source is a SAXSource, the result must be a SAXResult, and if the source is a
DOMSource, the result must be a DOMResult object.

If the document is valid, the validate() method returns normally. If the document is not
valid, validate() throws an org.xml.sax.SAXException. You can alter this somewhat by passing a
custom org.xml.sax.ErrorHandler to setErrorHandler(). Validation exceptions are first passed to
the error handler methods, which may throw the exception or handle them in some
other way, such as printing a message. If the error handler does not throw an excep-
tion, the validate() method attempts to continue validation. The default error handler
ignores exceptions passed to its warn() method but throws exceptions passed to its error()
and fatalError() methods.

Before calling validate(), a Validator may also be configured with setResourceResolver(),
setFeature(), and setProperty().

public abstract class TypeInfoProvider {
// Protected Constructors

protected TypeInfoProvider();
// Public Instance Methods

public abstract org.w3c.dom.TypeInfo getAttributeTypeInfo(int index);
public abstract org.w3c.dom.TypeInfo getElementTypeInfo();
public abstract boolean isIdAttribute(int index);
public abstract boolean isSpecified(int index);

}

public abstract class Validator {
// Protected Constructors

protected Validator();
// Public Instance Methods

public abstract org.xml.sax.ErrorHandler getErrorHandler();
public boolean getFeature(String name)

throws org.xml.sax.SAXNotRecognizedException, org.xml.sax.SAXNotSupportedException;
public Object getProperty(String name)

throws org.xml.sax.SAXNotRecognizedException, org.xml.sax.SAXNotSupportedException;
public abstract org.w3c.dom.ls.LSResourceResolver getResourceResolver();
public abstract void reset();
public abstract void setErrorHandler(org.xml.sax.ErrorHandler errorHandler);
public void setFeature(String name, boolean value)

throws org.xml.sax.SAXNotRecognizedException, org.xml.sax.SAXNotSupportedException;
public void setProperty(String name, Object object)

throws org.xml.sax.SAXNotRecognizedException, org.xml.sax.SAXNotSupportedException;

Chapter 20: javax.xml and Subpackages | 1025

JAXP

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

javax.xml.validation.ValidatorHandler

Returned By Schema.newValidator()

ValidatorHandler
javax.xml.validation

Java 5.0

A ValidatorHandler is an org.xml.sax.ContentHandler that uses the streaming SAX API to validate
an XML document against the Schema from which the ValidatorHandler was derived. The
Validator class can be used to validate a SAXSource, but ValidatorHandler provides lower-level
access to the SAX API.

If the document is not valid, one of the ContentHandler methods throws a SAXException that
propagates up to your code. As with the Validator class, you can alter this by specifying a
custom org.xml.sax.ErrorHandler class.

ValidatorHandler can be used as a filter for SAX parsing events. If you pass a ContentHandler to
setContentHandler(), the ValidatorHandler augments the source document with attribute
defaults from the schema and invokes the appropriate callback methods on the
ContentHandler you supply. If you are interested in attribute and element type informa-
tion provided by the schema, your ContentHandler can use the TypeInfoProvider obtained from
the ValidatorHandler getTypeInfoProvider().

Returned By Schema.newValidatorHandler()

public abstract void setResourceResolver(org.w3c.dom.ls.LSResourceResolver resourceResolver);
public void validate(javax.xml.transform.Source source) throws org.xml.sax.SAXException, java.io.IOException;
public abstract void validate(javax.xml.transform.Source source, javax.xml.transform.Result result)

throws org.xml.sax.SAXException, java.io.IOException;
}

public abstract class ValidatorHandler implements org.xml.sax.ContentHandler {
// Protected Constructors

protected ValidatorHandler();
// Public Instance Methods

public abstract org.xml.sax.ContentHandler getContentHandler();
public abstract org.xml.sax.ErrorHandler getErrorHandler();
public boolean getFeature(String name)

throws org.xml.sax.SAXNotRecognizedException, org.xml.sax.SAXNotSupportedException;
public Object getProperty(String name)

throws org.xml.sax.SAXNotRecognizedException, org.xml.sax.SAXNotSupportedException;
public abstract org.w3c.dom.ls.LSResourceResolver getResourceResolver();
public abstract TypeInfoProvider getTypeInfoProvider();
public abstract void setContentHandler(org.xml.sax.ContentHandler receiver);
public abstract void setErrorHandler(org.xml.sax.ErrorHandler errorHandler);
public void setFeature(String name, boolean value)

throws org.xml.sax.SAXNotRecognizedException, org.xml.sax.SAXNotSupportedException;
public void setProperty(String name, Object object)

throws org.xml.sax.SAXNotRecognizedException, org.xml.sax.SAXNotSupportedException;
public abstract void setResourceResolver(org.w3c.dom.ls.LSResourceResolver resourceResolver);

}

Object ValidatorHandler ContentHandler

1026 | Chapter 20: javax.xml and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

.Package javax.xml.xpath

Package javax.xml.xpath Java 5.0

This package defines types for the evaluation of XPath expressions in the context of an
XML document. XPath is a language for describing a “path” to a node or set of nodes
within an XML document. Details of the XPath grammar are beyond the scope of this
reference.

A typical use of this package begins with the XPathFactory, an instance of which is used to
create an XPath object. After configuring the XPath object as desired, you can use it to
evaluate XPath expressions directly or to compile XPath expressions into XPathExpression
objects for later use.

Interfaces
public interface XPath;
public interface XPathExpression;
public interface XPathFunction;
public interface XPathFunctionResolver;
public interface XPathVariableResolver;

Classes
public class XPathConstants;
public abstract class XPathFactory;

Exceptions
public class XPathException extends Exception;

public class XPathExpressionException extends XPathException;
public class XPathFunctionException extends XPathExpressionException;

public class XPathFactoryConfigurationException extends XPathException;

XPath
javax.xml.xpath

Java 5.0

An XPath object is used to compile or evaluate an XPath expression. Create an XPath
object through an XPathFactory. Configuration methods of XPath allow you to specify an
XPathVariableResolver and an XPathFunctionResolver to resolve variable and function references
in XPath expressions. You may also specify the javax.xml.namespace.NamespaceContext with
which the XPath can resolve qualified names.

After creating and configuring an XPath object, you can use the compile() method to
compile an XPath expression for later evaluation, or you can use one of the evaluate()
methods to compile and evaluate an expression directly. There are four versions of
evaluate(). All expect a String containing an XPath expression as their first argument. The
second argument is the document or portion of a document to evaluate the expression
against. Two versions of evaluate() expect an org.xml.sax.InputSource for this second argu-
ment. These versions of the method first parse the document and build a DOM (or
other object model) tree. The other two versions of evaluate() expect an Object as the
second argument. The object passed should be a DOM (or other object model) object
representing the document or some portion of it. For the org.w3c.dom object model, this
might be a Document, DocumentFragment, Node, or NodeList object.

The final difference between evaluate() methods is the presence or absence of a third
argument. The two-argument versions of evaluate() return the result of the expression

Chapter 20: javax.xml and Subpackages | 1027

JAXP

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

javax.xml.xpath.XPathException

evaluation as a String. The three-argument versions expect a third argument that speci-
fies the desired return type and return an Object of an appropriate type. The valid types
are the QName objects defined in the XPathConstants class, such as XPathConstants.NODE and
XPathConstants.NODESET. With the DOM object model, evaluate() returns org.w3c.dom.Node and
org.w3c.dom.NodeList objects for these types.

Returned By XPathFactory.newXPath()

XPathConstants
javax.xml.xpath

Java 5.0

This class defines javax.xml.namespace.QName constants that represent the possible return
types of the evaluate() methods of XPath and XPathExpression. It also defines the DOM_OBJECT_
MODEL constant that can be passed to XPathFactory.newInstance() to specify that the resulting
XPathFactory should be for the org.w3c.dom object model.

XPathException
javax.xml.xpath

Java 5.0

serializable checked

This is the common superclass of all XPath-related exception types.

public interface XPath {
// Public Instance Methods

XPathExpression compile(String expression) throws XPathExpressionException;
String evaluate(String expression, Object item) throws XPathExpressionException;
String evaluate(String expression, org.xml.sax.InputSource source) throws XPathExpressionException;
Object evaluate(String expression, org.xml.sax.InputSource source, javax.xml.namespace.QName returnType)

throws XPathExpressionException;
Object evaluate(String expression, Object item, javax.xml.namespace.QName returnType)

throws XPathExpressionException;
javax.xml.namespace.NamespaceContext getNamespaceContext();
XPathFunctionResolver getXPathFunctionResolver();
XPathVariableResolver getXPathVariableResolver();
void reset();
void setNamespaceContext(javax.xml.namespace.NamespaceContext nsContext);
void setXPathFunctionResolver(XPathFunctionResolver resolver);
void setXPathVariableResolver(XPathVariableResolver resolver);

}

public class XPathConstants {
// No Constructor
// Public Constants

public static final javax.xml.namespace.QName BOOLEAN;
public static final String DOM_OBJECT_MODEL; ="http://java.sun.com/jaxp/xpath/dom"
public static final javax.xml.namespace.QName NODE;
public static final javax.xml.namespace.QName NODESET;
public static final javax.xml.namespace.QName NUMBER;
public static final javax.xml.namespace.QName STRING;

}

Object Throwable Exception XPathException

Serializable

1028 | Chapter 20: javax.xml and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

javax.xml.xpath.XPathExpression

Subclasses XPathExpressionException, XPathFactoryConfigurationException

XPathExpression
javax.xml.xpath

Java 5.0

If an XPath expression is to be evaluated more than once, it is not efficient to call the
XPath.evaluate() method repeatedly. Instead, compile the expression to an XPathExpression
using the XPath.compile() method and then evaluate it using one of the evaluate() methods
of XPathExpression. The evaluate() methods of XPathExpression behave just like the corre-
sponding methods of XPath. See XPath for details.

Returned By XPath.compile()

XPathExpressionException
javax.xml.xpath

Java 5.0

serializable checked

Exceptions of this type indicate an error while compiling or evaluating an XPath
expression. See the compile() and evaluate() methods of XPath and XPathExpression.

Subclasses XPathFunctionException

Thrown By XPath.{compile(), evaluate()}, XPathExpression.evaluate()

public class XPathException extends Exception {
// Public Constructors

public XPathException(Throwable cause);
public XPathException(String message);

// Public Methods Overriding Throwable
public Throwable getCause();
public void printStackTrace();
public void printStackTrace(java.io.PrintWriter s);
public void printStackTrace(java.io.PrintStream s);

}

public interface XPathExpression {
// Public Instance Methods

String evaluate(org.xml.sax.InputSource source) throws XPathExpressionException;
String evaluate(Object item) throws XPathExpressionException;
Object evaluate(Object item, javax.xml.namespace.QName returnType) throws XPathExpressionException;
Object evaluate(org.xml.sax.InputSource source, javax.xml.namespace.QName returnType)

throws XPathExpressionException;
}

public class XPathExpressionException extends XPathException {
// Public Constructors

public XPathExpressionException(Throwable cause);
public XPathExpressionException(String message);

}

Object Throwable Exception XPathException XPathExpressionException

Serializable

Chapter 20: javax.xml and Subpackages | 1029

JAXP

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

javax.xml.xpath.XPathFactoryConfigurationException

XPathFactory
javax.xml.xpath

Java 5.0

The XPathFactory class is a factory for creating XPath expression evaluators. Call the no-
argument version of newInstance() to obtain an XPathFactory object that creates XPath object
to work with DOM documents. The javax.xml.xpath package is nominally object-model
independent, however, and you can specify the name of a different object model by
calling the one-argument version of newInstance().

Once you have created an XPathFactory object, you can set default function and variable
resolvers with setXPathFunctionResolver() and setXPathVariableResolver(). You can configure
implementation-dependent features of an XPathFactory with setFeature(). All implementa-
tions are required to support the XMLConstants.FEATURE_SECURE_PROCESSING feature. When
this feature is set to true, external functions are not allowed in XPath expressions, and
the XPathFunctionResolver is not used.

After creating and configuring an XPathFactory object, use the newXPath() method to create
one or more XPath objects for actually evaluating XPath expressions.

XPathFactoryConfigurationException
javax.xml.xpath

Java 5.0

serializable checked

This exception is thrown by methods of XPathFactory to indicate that a specified object
model or feature is not supported.

Thrown By XPathFactory.{getFeature(), newInstance(), setFeature()}

public abstract class XPathFactory {
// Protected Constructors

protected XPathFactory();
// Public Constants

public static final String DEFAULT_OBJECT_MODEL_URI; ="http://java.sun.com/jaxp/xpath/dom"
public static final String DEFAULT_PROPERTY_NAME; ="javax.xml.xpath.XPathFactory"

// Public Class Methods
public static final XPathFactory newInstance();
public static final XPathFactory newInstance(String uri) throws XPathFactoryConfigurationException;

// Public Instance Methods
public abstract boolean getFeature(String name) throws XPathFactoryConfigurationException;
public abstract boolean isObjectModelSupported(String objectModel);
public abstract XPath newXPath();
public abstract void setFeature(String name, boolean value) throws XPathFactoryConfigurationException;
public abstract void setXPathFunctionResolver(XPathFunctionResolver resolver);
public abstract void setXPathVariableResolver(XPathVariableResolver resolver);

}

public class XPathFactoryConfigurationException extends XPathException {
// Public Constructors

public XPathFactoryConfigurationException(Throwable cause);
public XPathFactoryConfigurationException(String message);

}

Object Throwable Exception XPathException XPathFactoryConfigurationException

Serializable

1030 | Chapter 20: javax.xml and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

javax.xml.xpath.XPathFunction

XPathFunction
javax.xml.xpath

Java 5.0

This interface defines the invocation API for user-defined XPath functions. Arguments
are passed to the evaluate() method as a java.util.List and the return value should be an
Object. evaluate() may throw an XPathFunctionException. See also XPathFunctionResolver.

Returned By XPathFunctionResolver.resolveFunction()

XPathFunctionException
javax.xml.xpath

Java 5.0

serializable checked

Exceptions of this type may be thrown by user-defined XPathFunction implementations.
Note that this is a subclass of XPathExpressionException.

Thrown By XPathFunction.evaluate()

XPathFunctionResolver
javax.xml.xpath

Java 5.0

This interface defines a single method to return the XPathFunction with the specified qual-
ified name and specified arity (number of arguments). Objects that implement this
interface may be passed to the setXPathFunctionResolver() methods of XPath or XPathFactory.

Note that the function resolvers are invoked only for functions defined in an external
namespace, so they cannot be used to override the meaning of XPath’s built-in func-
tions or to add new core functions to the XPath language. Also, if the
XMLConstants.FEATURE_SECURE_PROCESSING feature has been enabled on an XPathFactory, user-
defined functions are not allowed in XPath expressions, and the XPathFunctionResolver is
never called.

Passed To XPath.setXPathFunctionResolver(), XPathFactory.setXPathFunctionResolver()

Returned By XPath.getXPathFunctionResolver()

public interface XPathFunction {
// Public Instance Methods

Object evaluate(java.util.List args) throws XPathFunctionException;
}

public class XPathFunctionException extends XPathExpressionException {
// Public Constructors

public XPathFunctionException(Throwable cause);
public XPathFunctionException(String message);

}

public interface XPathFunctionResolver {
// Public Instance Methods

XPathFunction resolveFunction(javax.xml.namespace.QName functionName, int arity);
}

Object Throwable Exception XPathException XPathExpressionException XPathFunctionException

Serializable

Chapter 20: javax.xml and Subpackages | 1031

JAXP

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

javax.xml.xpath.XPathVariableResolver

XPathVariableResolver
javax.xml.xpath

Java 5.0

This interface defines a single method to return the Object value of a variable identified
by a qualified name. The value of a named variable is allowed to change between
XPath evaluations, but implementations of this interface must ensure that no variable
changes during the evaluation of an expression. Objects that implement this interface
may be passed to the setXPathVariableResolver() methods of XPath or XPathFactory.

Passed To XPath.setXPathVariableResolver(), XPathFactory.setXPathVariableResolver()

Returned By XPath.getXPathVariableResolver()

public interface XPathVariableResolver {
// Public Instance Methods

Object resolveVariable(javax.xml.namespace.QName variableName);
}

1032

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Chapter 21DOM

21
org.w3c.dom

Package org.w3c.dom Java 1.4

This package defines the Java binding to the core and XML modules of the DOM API
defined by the World Wide Web Consortium (W3C). DOM stands for Document
Object Model, and the DOM API defines a way to represent an XML document as a tree
of nodes. Java 1.4 supports the Level 2 DOM, and Java 5.0 adds support for Level 3.

This package includes methods that allow document trees to be traversed, examined,
modified, and built from scratch. Node is the central interface of the package. All nodes
in a document tree implement this interface, and it defines the basic methods for
traversing and modifying the tree of nodes. Most of the other interfaces in the package
are extensions of Node that represent specific types of XML content. The most impor-
tant and commonly used of these subinterfaces are Document, Element, and Text. A Document
object serves as the root of the document tree and defines methods for searching the
tree for elements with a specified tag name or ID attribute. The Element interface repre-
sents an XML element or tag and has methods for manipulating the element’s
attributes. The Text interface represents a run of plain text within an Element and has
methods for querying or altering that text. NodeList and DOMImplementation do not extend
Node but are also important interfaces.

This package is an endorsed standard, which means that it is defined outside of Sun
Microsystems and the Java Community Process but has been adopted as part of the Java
platform. Full documentation is available at http://www.w3.org/TR/DOM-Level-3-Core/.
Note that Java 5.0 also adopts the bootstrap, events, and ls (load/save) subpackages. Those
subpackages are not documented in this book because they are only tangentially used by
the rest of the Java platform.

Interfaces
public interface Attr extends Node;
public interface CDATASection extends Text;
public interface CharacterData extends Node;
public interface Comment extends CharacterData;

Chapter 21: org.w3c.dom | 1033

DOM

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

org.w3c.dom.Attr

public interface Document extends Node;
public interface DocumentFragment extends Node;
public interface DocumentType extends Node;
public interface DOMConfiguration;
public interface DOMError;
public interface DOMErrorHandler;
public interface DOMImplementation;
public interface DOMImplementationList;
public interface DOMImplementationSource;
public interface DOMLocator;
public interface DOMStringList;
public interface Element extends Node;
public interface Entity extends Node;
public interface EntityReference extends Node;
public interface NamedNodeMap;
public interface NameList;
public interface Node;
public interface NodeList;
public interface Notation extends Node;
public interface ProcessingInstruction extends Node;
public interface Text extends CharacterData;
public interface TypeInfo;
public interface UserDataHandler;

Exceptions
public class DOMException extends RuntimeException;

Attr
org.w3c.dom

Java 1.4

An Attr object represents an attribute of an Element node. Attr objects are associated with
Element nodes, but are not directly part of the document tree: the getParentNode() method of
an Attr object always returns null. Use getOwnerElement() to deterine which Element an Attr is
part of. You can obtain an Attr object by calling the getAttributeNode() method of Element, or
you can obtain a NamedNodeMap of all Attr objects for an element with the getAttributes()
method of Node.

getName() returns the name of the attribute. getValue() returns the attribute value as a
string. getSpecified() returns true if the attribute was explicitly specified in the source
document through a call to setValue(), and returns false if the attribute represents a
default obtained from a DTD or other schema.

XML allows attributes to contain text and entity references. The getValue() method
returns the attribute value as a single string. If you want to know the precise composi-
tion of the attribute however, you can examine the children of the Attr node: they may
consist of Text and/or EntityReference nodes.

In most cases the easiest way to work with attributes is with the getAttribute() and
setAttribute() methods of the Element interface. These methods avoid the use of Attr nodes
altogether.

Node Attr

1034 | Chapter 21: org.w3c.dom

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

org.w3c.dom.CDATASection

Passed To Element.{removeAttributeNode(), setAttributeNode(), setAttributeNodeNS(), setIdAttributeNode()}

Returned By Document.{createAttribute(), createAttributeNS()}, Element.{getAttributeNode(),
getAttributeNodeNS(), removeAttributeNode(), setAttributeNode(), setAttributeNodeNS()}

CDATASection
org.w3c.dom

Java 1.4

This interface represents a CDATA section in an XML document. CDATASection is a
subinterface of Text and does not define any methods of its own. The content of the
CDATA section is available through the getNodeValue() method inherited from Node, or
through the getData() method inherited from CharacterData. Although CDATASection nodes can
often be treated in the same way as Text nodes, note that the Node.normalize() method does
not merge adjacent CDATA sections.

Returned By Document.createCDATASection()

CharacterData
org.w3c.dom

Java 1.4

This interface is a generic one that is extended by Text, CDATASection (which extends Text)
and Comment. Any node in a document tree that implements CharacterData also imple-
ments one of these more specific types. This interface exists simply to group the string
manipulation methods that these text-related node types all share.

The CharacterData interface defines a mutable string. getData() returns the “character data”
as a String object, and setData() allows it to be set from a String object. getLength() returns the
number of characters of character data, and substringData() returns just the specified
portion of the data as a string. The appendData(), deleteData(), insertData(), and replaceData()
methods mutate the data by appending a string to the end, deleting region, inserting a
string at the specified location, and replacing a region with a specified string.

public interface Attr extends Node {
// Public Instance Methods

String getName();
Element getOwnerElement();

5.0 TypeInfo getSchemaTypeInfo();
boolean getSpecified();
String getValue();

5.0 boolean isId();
void setValue(String value) throws DOMException;

}

public interface CDATASection extends Text {
}

public interface CharacterData extends Node {
// Public Instance Methods

void appendData(String arg) throws DOMException;
void deleteData(int offset, int count) throws DOMException;
String getData() throws DOMException;
int getLength();

Node CharacterData Text CDATASection

Node CharacterData

Chapter 21: org.w3c.dom | 1035

DOM

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

org.w3c.dom.Document

Implementations Comment, Text

Comment
org.w3c.dom

Java 1.4

A Comment node represents a comment in an XML document. The content of the
comment (i.e. the text between <!-- and -->) is available with the getData() method inher-
ited from CharacterData, or through the getNodeValue() method inherited from Node. This
content may be manipulated using the various methods inherited from CharacterData

Returned By Document.createComment()

Document
org.w3c.dom

Java 1.4

This interface represents a DOM document, and an object that implements this inter-
face serves as the root of a DOM document tree. Most of the methods defined by the
Document interface are “factory methods” that are used to create various types of
nodes that can be inserted into this document. Note that there are two versions of the
methods for creating attributes and elements. The methods with “NS” in their name
are namespace-aware and require the attribute or element name to be specified as a
combination of a namespace URI and a local name. You’ll notice that throughout the
DOM API, methods with “NS” in their names are namespace-aware. Other important
methods include the following:

getElementsByTagName() and its namespace-aware variant getElementsByTagNameNS() search the
document tree for Element nodes that have the specified tag name and return a NodeList
containing those matching nodes. The Element interface defines methods by the same
names that search only within the subtree defined by an Element.

getElementById() is a related method that searches the document tree for a single element
with the specified unique value for an ID attribute. This is useful when you use an ID
attribute to uniquely identify certain tags within an XML document. Note that this
method does not search for attributes that are named “id” or “ID”. It searches for
attributes whose XML type (as declared in the document’s DTD) is ID. Such attributes
are often named “id”, but this is not required.

An XML document must have a single root element. getDocumentElement() returns this
Element object. Note, however that this does not mean that a Document node has only one
child. It must have exactly one child that is an Element, but it can also have other chil-
dren such as Comment and ProcessingInstruction nodes. The getDoctype() method returns the
DocumentType object (or null if there isn’t one) that represents the document’s DTD.
getImplementation() returns the the DOMImplementation object that represents the DOM imple-
mentation that created this document tree.

void insertData(int offset, String arg) throws DOMException;
void replaceData(int offset, int count, String arg) throws DOMException;
void setData(String data) throws DOMException;
String substringData(int offset, int count) throws DOMException;

}

public interface Comment extends CharacterData {
}

Node CharacterData Comment

1036 | Chapter 21: org.w3c.dom

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

org.w3c.dom.DocumentFragment

Returned By javax.xml.parsers.DocumentBuilder.{newDocument(), parse()},
DOMImplementation.createDocument(), Node.getOwnerDocument()

DocumentFragment
org.w3c.dom

Java 1.4

The DocumentFragment interface represents a portion—or fragment—of a document.
More specifically, it represents one or more adjacent document nodes, and all of the
descendants of each. DocumentFragment nodes are never part of a document tree, and
getParentNode() always returns null. Although a DocumentFragment does not have a parent, it
can have children, and you can use the inherited Node methods to add child nodes (or
delete or replace them) to a DocumentFragment.

DocumentFragment nodes exhibit a special behavior that makes them quite useful: when a
request is made to insert a DocumentFragment into a document tree, it is not the Document-
Fragment node itself that is inserted, but each of the children of the DocumentFragment
instead. This makes DocumentFragment useful as a temporary placeholder for a sequence
of nodes that you wish to insert, all at once, into a document.

public interface Document extends Node {
// Public Instance Methods
5.0 Node adoptNode(Node source) throws DOMException;

Attr createAttribute(String name) throws DOMException;
Attr createAttributeNS(String namespaceURI, String qualifiedName) throws DOMException;
CDATASection createCDATASection(String data) throws DOMException;
Comment createComment(String data);
DocumentFragment createDocumentFragment();
Element createElement(String tagName) throws DOMException;
Element createElementNS(String namespaceURI, String qualifiedName) throws DOMException;
EntityReference createEntityReference(String name) throws DOMException;
ProcessingInstruction createProcessingInstruction(String target, String data) throws DOMException;
Text createTextNode(String data);
DocumentType getDoctype();
Element getDocumentElement();

5.0 String getDocumentURI();
5.0 DOMConfiguration getDomConfig();

Element getElementById(String elementId);
NodeList getElementsByTagName(String tagname);
NodeList getElementsByTagNameNS(String namespaceURI, String localName);
DOMImplementation getImplementation();

5.0 String getInputEncoding();
5.0 boolean getStrictErrorChecking();
5.0 String getXmlEncoding();
5.0 boolean getXmlStandalone();
5.0 String getXmlVersion();

Node importNode(Node importedNode, boolean deep) throws DOMException;
5.0 void normalizeDocument();
5.0 Node renameNode(Node n, String namespaceURI, String qualifiedName) throws DOMException;
5.0 void setDocumentURI(String documentURI);
5.0 void setStrictErrorChecking(boolean strictErrorChecking);
5.0 void setXmlStandalone(boolean xmlStandalone) throws DOMException;
5.0 void setXmlVersion(String xmlVersion) throws DOMException;
}

Node Document

Chapter 21: org.w3c.dom | 1037

DOM

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

org.w3c.dom.DOMConfiguration

You can create a new, empty, DocumentFragment to work with by calling the
createDocumentFragment() method of the desired Document.

Returned By Document.createDocumentFragment()

DocumentType
org.w3c.dom

Java 1.4

This interface represents the Document Type Declaration, or DTD of a document.
Because the DTD is not part of the document itself, a DocumentType object is not part of
DOM document tree, even though it extends the Node interface. If a Document has a
DTD, then you may obtain the DocumentType object that represents it by calling the
getDoctype() method of the Document object.

getName(), getPublicId(), getSystemId(), and getInternalSubset() all return strings (or null) that
contain the name, public identifier, system identifier, and internal subset of the docu-
ment type. getEntities() returns a read-only NamedNodeMap that represents the name-to-
value mapping for all internal and external general entities declared by the DTD. You
can use this NamedNodeMap to lookup an Entity object by name. Similarly, getNotations()
returns a read-only NamedNodeMap that allows you to look up a Notation object declared in
the DTD by name.

DocumentType does not provide access to the bulk of a DTD, which usually consists of
element and attribute delcarations. Future versions of the DOM API may provide more
details.

Passed To DOMImplementation.createDocument()

Returned By Document.getDoctype(), DOMImplementation.createDocumentType()

DOMConfiguration
org.w3c.dom

Java 5.0

This Level 3 interface defines methods for querying and setting the values of named
parameters. The DOMConfiguration object obtained with the Document.getDomConfig() method
allows you to specify parameters that affect the behavior of the Document.normalizeDocument()
method. You can also obtain a DOMConfiguration object from the LSParser and LSSerializer inter-
faces of the org.w3c.dom.ls package. Those configuration objects affect the way documents
are loaded and saved, but the package is beyond the scope of this book. See the DOM
specification for details on the available parameters.

public interface DocumentFragment extends Node {
}

public interface DocumentType extends Node {
// Public Instance Methods

NamedNodeMap getEntities();
String getInternalSubset();
String getName();
NamedNodeMap getNotations();
String getPublicId();
String getSystemId();

}

Node DocumentFragment

Node DocumentType

1038 | Chapter 21: org.w3c.dom

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

org.w3c.dom.DOMError

Returned By Document.getDomConfig()

DOMError
org.w3c.dom

Java 5.0

This Level 3 interface describes an error that occurs while processing a document
(such as when loading, saving, validating or normalizing it). An object that imple-
ments this interface is passed to the registered DOMErrorHandler, if any. The constants
defined by this interface represent error severity levels.

Note that this interface is unrelated to DOMException class or to the java.lang.Error and
java.lang.Exception classes.

Passed To DOMErrorHandler.handleError()

DOMErrorHandler
org.w3c.dom

Java 5.0

This Level 3 interface defines a handler for DOMError objects that represent errors while
processing an XML document. Register an object that implements this interface by setting
it as the value of the “error-handler” property through the DOMConfiguration interface.

DOMException
org.w3c.dom

Java 1.4

serializable unchecked

An instance of this class is thrown whenever an exception is raised by the DOM API.
Unlike many Java APIs, the DOM API does not define specialized subclasses to define
different categories of exceptions. Instead, a more specific exception type is specified

public interface DOMConfiguration {
// Public Instance Methods

boolean canSetParameter(String name, Object value);
Object getParameter(String name) throws DOMException;
DOMStringList getParameterNames();
void setParameter(String name, Object value) throws DOMException;

}

public interface DOMError {
// Public Constants

public static final short SEVERITY_ERROR; =2
public static final short SEVERITY_FATAL_ERROR; =3
public static final short SEVERITY_WARNING; =1

// Public Instance Methods
org.w3c.dom.DOMLocator getLocation();
String getMessage();
Object getRelatedData();
Object getRelatedException();
short getSeverity();
String getType();

}

public interface DOMErrorHandler {
// Public Instance Methods

boolean handleError(DOMError error);
}

Chapter 21: org.w3c.dom | 1039

DOM

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

org.w3c.dom.DOMException

by the public field code. The value of this field will be one of the constants defined by
this class, which have the following meanings:

 INDEX_SIZE_ERR
Indicates an out-of-bounds error for an array or string index.

 DOMSTRING_SIZE_ERR
Indicates that a requested text is too big to fit into a String object. Exceptions of
this type are intended for DOM implementations for other languages and should
not occur in Java.

 HIERARCHY_REQUEST_ERR
Indicates that an attempt was made to place a node somewhere illegal in the
document tree hierarchy.

 WRONG_DOCUMENT_ERR
Indicates an attempt to use a node with a document that is different than the
document that created the node.

 INVALID_CHARACTER_ERR
Indicates that an illegal character is used (in an element name, for example) .

 NO_DATA_ALLOWED_ERR
Not currently used.

 NO_MODIFICATION_ALLOWED_ERR
Indicates that an attempt was made to modify a node that is read-only and does
not allow modifications. Entity, EntityReference, and Notation nodes, and all of
their descendants are read-only.

 NOT_FOUND_ERR
Indicates that a node was not found where it was expected.

 NOT_SUPPORTED_ERR
Indicates that a method or property is not supported in the current DOM
implementation.

 INUSE_ATTRIBUTE_ERR
Indicates that an attempt was made to associate an Attr with an Element when
that Attr node was already associated with a different Element node.

 INVALID_STATE_ERR
Indicates an attempt to use an object that is not yet, or is no longer, in a state that
allows such use.

 SYNTAX_ERR
Indicates that a specified string contains a syntax error. Exceptions of this type are
not raised by the core module of the DOM API described here.

 INVALID_MODIFICATION_ERR
Exceptions of this type are not raised by the core module of the DOM API
described here.

 NAMESPACE_ERR
Indicates an error involving element or attribute namespaces.

 INVALID_ACCESS_ERR
Indicates an attempt to access an object in a way that is not supported by the
implementation.

1040 | Chapter 21: org.w3c.dom

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

org.w3c.dom.DOMImplementation

Thrown By Too many methods to list.

DOMImplementation
org.w3c.dom

Java 1.4

This interface defines methods that are global to an implementation of the DOM
rather than specific to a particular Document object. Obtain a reference to the
DOMImplementation object that represents your implementation by calling the
getImplementation() method of any Document object. createDocument() returns a new, empty
Document object which you can populate with nodes that you create using the create
methods defined by the Document interface.

hasFeature() allows you to test whether your DOM implementation supports a specified
version of a named feature, or module, of the DOM standard. This method should
return true when you pass the feature name “core” and the version “1.0”, or when you
pass the feature names “core” or “xml” and the version “2.0”. The DOM standard
includes a number of optional modules, but the Java platform has not adopted the
subpackages of this package that define the API for those optional modules, and there-
fore the DOM implementation bundled with a Java implementation is not likely to
support those modules.

The javax.xml.parsers.DocumentBuilder class provides another way to obtain the
DOMImplementation object by calling its getDOMImplementation() method. It also defines a
shortcut newDocument() method for creating empty Document objects to populate.

public class DOMException extends RuntimeException {
// Public Constructors

public DOMException(short code, String message);
// Public Constants

public static final short DOMSTRING_SIZE_ERR; =2
public static final short HIERARCHY_REQUEST_ERR; =3
public static final short INDEX_SIZE_ERR; =1
public static final short INUSE_ATTRIBUTE_ERR; =10
public static final short INVALID_ACCESS_ERR; =15
public static final short INVALID_CHARACTER_ERR; =5
public static final short INVALID_MODIFICATION_ERR; =13
public static final short INVALID_STATE_ERR; =11
public static final short NAMESPACE_ERR; =14
public static final short NO_DATA_ALLOWED_ERR; =6
public static final short NO_MODIFICATION_ALLOWED_ERR; =7
public static final short NOT_FOUND_ERR; =8
public static final short NOT_SUPPORTED_ERR; =9
public static final short SYNTAX_ERR; =12

5.0 public static final short TYPE_MISMATCH_ERR; =17
5.0 public static final short VALIDATION_ERR; =16

public static final short WRONG_DOCUMENT_ERR; =4
// Public Instance Fields

public short code;
}

public interface DOMImplementation {
// Public Instance Methods

Object Throwable Exception RuntimeException DOMException

Serializable

Chapter 21: org.w3c.dom | 1041

DOM

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

org.w3c.dom.DOMLocator

Returned By javax.xml.parsers.DocumentBuilder.getDOMImplementation(), Document.getImplementation(),
DOMImplementationList.item(), DOMImplementationSource.getDOMImplementation()

DOMImplementationList
org.w3c.dom

Java 5.0

This Level 3 interface represents a fixed-size, read-only list (or array) of DOMImplementa-
tion objects. getLength() returns the list length, and item() returns the DOMImplementation at
the specified index.

Returned By DOMImplementationSource.getDOMImplementationList()

DOMImplementationSource
org.w3c.dom

Java 5.0

This Level 3 interface is designed for use by DOM implementors. It is also used in the
org.w3c.dom.bootstrap package, which is beyond the scope of this book.

DOMLocator
org.w3c.dom

Java 5.0

This Level 3 interface represents the location at which a DOMError occurred. The
methods return the location of the error as measured by various metrics (byte offset,
line and column number, etc.) and return -1 or null if location information is not
available.

Returned By DOMError.getLocation()

Document createDocument(String namespaceURI, String qualifiedName, DocumentType doctype)
throws DOMException;

DocumentType createDocumentType(String qualifiedName, String publicId, String systemId) throws DOMException;
5.0 Object getFeature(String feature, String version);

boolean hasFeature(String feature, String version);
}

public interface DOMImplementationList {
// Public Instance Methods

int getLength();
DOMImplementation item(int index);

}

public interface DOMImplementationSource {
// Public Instance Methods

DOMImplementation getDOMImplementation(String features);
DOMImplementationList getDOMImplementationList(String features);

}

public interface DOMLocator {
// Public Instance Methods

int getByteOffset();
int getColumnNumber();
int getLineNumber();
Node getRelatedNode();
String getUri();
int getUtf16Offset();

}

1042 | Chapter 21: org.w3c.dom

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

org.w3c.dom.DOMStringList

DOMStringList
org.w3c.dom

Java 5.0

This Level 3 interface represents a fixed-size, read-only list of strings. getLength() returns
the length of the list, and item() returns the String at the specified index. contains() tests
whether the specified String is contained in the list. An object of this type is returned by
DOMConfiguration.getParameterNames().

Returned By DOMConfiguration.getParameterNames()

Element
org.w3c.dom

Java 1.4

This interface represents an element (or tag) in an XML document. getTagName() returns
the tagname of the element, including the namespace prefix if there is one. When
working with namespaces, you will probably prefer to use the namespace-aware
methods defined by the Node interface. Use getNamespaceURI() to get the namespace URI of
the element, and use getLocalName() to the local name of the element within that
namespace. You can also use getPrefix() to query the namespace prefix, or setPrefix() to
change the namespace prefix (this does not change the namespace URI).

Element defines a getElementsByTagName() method and a corresponding namespace-aware
getElementsByTagNameNS() method, which behave just like the methods of the same names
on the Document object, except that they search for named elements only within the
subtree rooted at this Element.

The remaining methods of the Element interface are for querying and setting attribute
values, testing the existence of an attribute, and removing an attribute from the Element.
There are a confusing number of methods to perform these four basic attribute opera-
tions. If an attribute-related method has “NS” in its name, then it is namespace-aware.
If it has “Node” in its name, then it works with Attr objects rather than with the simpler
string representation of the attribute value. Attributes in XML documents may contain
entity references. If your document may include entity references in attribute values,
then you may need to use the Attr interface because the expansion of such an entity
reference can result in a subtree of nodes beneath the Attr object. Whenver possible,
however, it is much easier to work with the methods that treat attribute values as plain
strings. Note also that in addition to the attribute methods defined by the Element inter-
face you can also obtain a NamedNodeMap of Attr objects with the getAttributes() method of
the Node interface.

Finally, note also that getAttribute() and related methods and hasAttribute() and related
methods return the value of or test for the existance of both explicitly specified
attributes, and also attributes for which a default value is specified in the document
DTD. If you need to determine whether an attribute was explicitly specified in the
document, obtain its Attr object, and use its getSpecified() method.

public interface DOMStringList {
// Public Instance Methods

boolean contains(String str);
int getLength();
String item(int index);

}

Node Element

Chapter 21: org.w3c.dom | 1043

DOM

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

org.w3c.dom.Entity

Returned By Attr.getOwnerElement(), Document.{createElement(), createElementNS(),
getDocumentElement(), getElementById()}

Entity
org.w3c.dom

Java 1.4

This interface represents an entity defined in an XML DTD. The name of the entity is
specified by the getNodeName() method inherited from the Node interface. The entity
content is represented by the child nodes of the Entity node. The methods defined by
this interface return the public identifier and system identifier for external entities, and
the notation name for unparsed entities. Note that Entity nodes and their children are
not part of the document tree (and the getParentNode() method of an Entity always returns
null). Instead a document may contain one or more references to an entity: see the Entity-
Reference interface.

Entities are defined in the DTD (document type definition) of a document, either as
part of an external DTD file, or as part of an “internal subset” that defines local enti-
ties that are specific to the current document. The DocumentType interface has a getEntities()
method that returns a NamedNodeMap mapping entity names to Entity nodes. This is the
only way to obtain an Entity object: because they are part of the DTD, Entity nodes never
appear within the document tree itself. Entity nodes and all descendants of an Entity node
are read-only and cannot be edited or modified in any way.

public interface Element extends Node {
// Public Instance Methods

String getAttribute(String name);
Attr getAttributeNode(String name);
Attr getAttributeNodeNS(String namespaceURI, String localName) throws DOMException;
String getAttributeNS(String namespaceURI, String localName) throws DOMException;
NodeList getElementsByTagName(String name);
NodeList getElementsByTagNameNS(String namespaceURI, String localName) throws DOMException;

5.0 TypeInfo getSchemaTypeInfo();
String getTagName();
boolean hasAttribute(String name);
boolean hasAttributeNS(String namespaceURI, String localName) throws DOMException;
void removeAttribute(String name) throws DOMException;
Attr removeAttributeNode(Attr oldAttr) throws DOMException;
void removeAttributeNS(String namespaceURI, String localName) throws DOMException;
void setAttribute(String name, String value) throws DOMException;
Attr setAttributeNode(Attr newAttr) throws DOMException;
Attr setAttributeNodeNS(Attr newAttr) throws DOMException;
void setAttributeNS(String namespaceURI, String qualifiedName, String value) throws DOMException;

5.0 void setIdAttribute(String name, boolean isId) throws DOMException;
5.0 void setIdAttributeNode(Attr idAttr, boolean isId) throws DOMException;
5.0 void setIdAttributeNS(String namespaceURI, String localName, boolean isId) throws DOMException;
}

public interface Entity extends Node {
// Public Instance Methods
5.0 String getInputEncoding();

String getNotationName();
String getPublicId();
String getSystemId();

Node Entity

1044 | Chapter 21: org.w3c.dom

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

org.w3c.dom.EntityReference

EntityReference
org.w3c.dom

Java 1.4

This interface represents a reference from an XML document to an entity defined in
the document’s DTD. Character entities and predefined entities such as < are always
expanded in XML documents and do not create EntityReference nodes. Note also that
some XML parsers expand all entity references. Documents created by such parsers do
not contain EntityReference nodes.

This interface defines no methods of its own. The getNodeName() method of the Node
interface provides the name of the referenced entity. The getEntities() method of the Docu-
mentType interface provides a way to look up the Entity object associated with that name.
Note however, that the DocumentType may not contain an Entity with the specified name
(because, for example, nonvalidating XML parsers are not required to parse the
external subset of the DTD.) In this case, the EntityReference is a reference to a named
entity whose content is not known, and it has no children. On the other hand, if the
DocumentType does contain an Entity node with the specified name, then the child nodes of
the EntityReference are a copy of the child nodes of the Entity, and represent the expansion
of the entity. (The children of an EntityReference may not be an exact copy of the children
of an Entity if the entity’s expansion includes namespace prefixes that are not bound to
namespace URIs.)

Like Entity nodes, EntityReference nodes and their descendants are read-only and cannot be
edited or modified.

Returned By Document.createEntityReference()

NamedNodeMap
org.w3c.dom

Java 1.4

The NamedNodeMap interface defines a collection of nodes that may be looked up by
name or by namespace URI and local name. It is unrelated to the java.util.Map interface.
Use getNamedItem() to look for and return a node whose getNodeName() method returns the
specified value. Use getNamedItemNS() to look for and return a node whose
getNamespaceURI() and getLocalName() methods return the specified values. A NamedNodeMap is
a mapping from names to nodes, and does not order the nodes in any particular way.
Nevertheless, it does impose an arbitrary ordering on the nodes and allow them to be
looked up by index. Use getLength() to find out how many nodes are contained in the
NamedNodeMap, and use item() to obtain the Node object at a specified index.

If a NamedNodeMap is not read-only, you can use removeNamedItem() and removeNamedItemNS()
to remove a named node from the map, and you can use setNamedItem() and
setNamedItemNS() to add a node to the map, mapping to it from its name or its namespace
URI and local name.

NamedNodeMap objects are “live,” which means that they immediately reflect any changes
to the document tree. For example, if you obtain a NamedNodeMap that represents the

5.0 String getXmlEncoding();
5.0 String getXmlVersion();
}

public interface EntityReference extends Node {
}

Node EntityReference

Chapter 21: org.w3c.dom | 1045

DOM

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

org.w3c.dom.Node

attributes of an element, and then add a new attribute to that element, the new
attribute is automatically available through the NamedNodeMap: you do not need to
obtain a new NamedNodeMap to get the modified set of attributes.

NamedNodeMap is returned only by relatively obscure methods of the DOM API. The
most notable use is as the return value of the getAttributes() method of Node. It is usually
easier to work with attributes through the methods of the Element interface, however.
Two methods of DocumentType also return read-only NamedNodeMap objects.

Returned By DocumentType.{getEntities(), getNotations()}, Node.getAttributes()

NameList
org.w3c.dom

Java 5.0

This Level 3 interface represnts a fixed-size, read-only list of element or attribute
names and their namespace URI. getLength() returns the length of the list. getName() and
getNamespaceURI() return the name and namespace at the specified index. contains() and
containsNS() test for membership in the list.

This interface is unused within the org.w3c.dom package.

Node
org.w3c.dom

Java 1.4

All objects in a DOM document tree (including the Document object itself) implement the
Node interface, which provides basic methods for traversing and manipulating the tree.

getParentNode() and getChildNodes() allow you to traverse up and down the document tree.
You can enumerate the children of a given node by looping through the elements of
the NodeList returned by getChildNodes(), or by using getFirstChild() and getNextSibling() (or
getLastChild() and getPreviousSibling() to loop backwards). It is sometimes useful to call
hasChildNodes() to determine whether a node has children or not. getOwnerDocument() returns
the Document node of which the node is a descendant or with which it is associated. It
provides a quick way to jump to the root of the document tree.

public interface NamedNodeMap {
// Public Instance Methods

int getLength();
Node getNamedItem(String name);
Node getNamedItemNS(String namespaceURI, String localName) throws DOMException;
Node item(int index);
Node removeNamedItem(String name) throws DOMException;
Node removeNamedItemNS(String namespaceURI, String localName) throws DOMException;
Node setNamedItem(Node arg) throws DOMException;
Node setNamedItemNS(Node arg) throws DOMException;

}

public interface NameList {
// Public Instance Methods

boolean contains(String str);
boolean containsNS(String namespaceURI, String name);
int getLength();
String getName(int index);
String getNamespaceURI(int index);

}

1046 | Chapter 21: org.w3c.dom

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

org.w3c.dom.Node

Several methods allow you to add children to a tree or alter the list of children.
appendChild() adds a new child node at the end of this nodes list of children. insertChild()
inserts a node into this nodes list of children, placing it immediately before a specified
child node. removeChild() removes the specified node from this node’s list of children.
replaceChild() replaces one child node of this node with another node. For all of these
methods, if the node to be appended or inserted is already part of the document tree, it
is first removed from its current parent. Use cloneNode() to produce a copy of this node.
Pass true if you want all descendants of this node to be cloned as well.

Every object in a document tree implements the Node interface, but also implements a
more specialized subinterface, such as Element or Text. The getNodeType() method provides an
easy way to determine which subinterface a node implements: the return value is one of
the _NODE constants defined by this class. You might use the return value of getNodeType() in
a switch statement, for exmaple, to determine how to process a node of unknown type.

getNodeName() and getNodeValue() provide additional information about a node, but the
interpretation of the strings they return depends on the node type as shown in the
table below. Note that subinterfaces typically define specialized methods (such as the
getTagName() method of Element and the getData() method of Text) for obtaining this same
information. Note also that unless a node is read-only, you can use setNodeValue() to alter
the value associated with the node.

In documents that use namespaces, the getNodeName() method of a Element or Attr node
returns the qualified node name, which may include a namespace prefix. In docu-
ments that use namespaces, you may prefer to use the namespace-aware methods
getNamespaceURI(), getLocalName() and getPrefix().

Element nodes may have a list of attributes, and the Element interface defines a number of
methods for working with these attributes. In addition, however, Node defines the
hasAttributes() method to determine if a node has any attributes. If it does, they can be
retrieved with getAttributes().

Text content in an XML document is represented by Text nodes, which have methods
for manipulating that textual content. The Node interface defines a normalize() method
which has the specialized purpose of normalizing all descendants of a node by deleting
empty Text nodes and coalescing adjacent Text nodes into a single combined node.
Document trees usually start off in this normalized form, but modifications to the tree
may result in non-normalized documents.

Node type Node name Node value

ELEMENT_NODE The element s tag name null

ATTRIBUTE_NODE The attribute name The attribute value

TEXT_NODE #text The text of the node

CDATA_SECTION_NODE #cdata-section The text of the node

ENTITY_REFERENCE_NODE The name of the referenced entity null

ENTITY_NODE The entity name null

PROCESSING_INSTRUCTION_NODE The target of the PI The remainder of the PI

COMMENT_NODE #comment The text of the comment

DOCUMENT_NODE #document null

DOCUMENT_TYPE_NODE The document type name null

DOCUMENT_FRAGMENT_NODE #document-fragment null

NOTATION_NODE The notation name null

Chapter 21: org.w3c.dom | 1047

DOM

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

org.w3c.dom.Node

Most of the other interfaces in this package extend Node. Document, Element and Text are the
most commonly used.

public interface Node {
// Public Constants

public static final short ATTRIBUTE_NODE; =2
public static final short CDATA_SECTION_NODE; =4
public static final short COMMENT_NODE; =8
public static final short DOCUMENT_FRAGMENT_NODE; =11
public static final short DOCUMENT_NODE; =9

5.0 public static final short DOCUMENT_POSITION_CONTAINED_BY; =16
5.0 public static final short DOCUMENT_POSITION_CONTAINS; =8
5.0 public static final short DOCUMENT_POSITION_DISCONNECTED; =1
5.0 public static final short DOCUMENT_POSITION_FOLLOWING; =4
5.0 public static final short DOCUMENT_POSITION_IMPLEMENTATION_SPECIFIC; =32
5.0 public static final short DOCUMENT_POSITION_PRECEDING; =2

public static final short DOCUMENT_TYPE_NODE; =10
public static final short ELEMENT_NODE; =1
public static final short ENTITY_NODE; =6
public static final short ENTITY_REFERENCE_NODE; =5
public static final short NOTATION_NODE; =12
public static final short PROCESSING_INSTRUCTION_NODE; =7
public static final short TEXT_NODE; =3

// Public Instance Methods
Node appendChild(Node newChild) throws DOMException;
Node cloneNode(boolean deep);

5.0 short compareDocumentPosition(Node other) throws DOMException;
NamedNodeMap getAttributes();

5.0 String getBaseURI();
NodeList getChildNodes();

5.0 Object getFeature(String feature, String version);
Node getFirstChild();
Node getLastChild();
String getLocalName();
String getNamespaceURI();
Node getNextSibling();
String getNodeName();
short getNodeType();
String getNodeValue() throws DOMException;
Document getOwnerDocument();
Node getParentNode();
String getPrefix();
Node getPreviousSibling();

5.0 String getTextContent() throws DOMException;
5.0 Object getUserData(String key);

boolean hasAttributes();
boolean hasChildNodes();
Node insertBefore(Node newChild, Node refChild) throws DOMException;

5.0 boolean isDefaultNamespace(String namespaceURI);
5.0 boolean isEqualNode(Node arg);
5.0 boolean isSameNode(Node other);

boolean isSupported(String feature, String version);
5.0 String lookupNamespaceURI(String prefix);
5.0 String lookupPrefix(String namespaceURI);

1048 | Chapter 21: org.w3c.dom

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

org.w3c.dom.NodeList

Implementations Attr, CharacterData, Document, DocumentFragment, DocumentType, Element, Entity,
EntityReference, Notation, ProcessingInstruction

Passed To Too many methods to list.

Returned By Too many methods to list.

NodeList
org.w3c.dom

Java 1.4

This interface represents a read-only ordered collection of nodes that can be interated
through. getLength() returns the number of nodes in the list, and item() returns the Node at
a specified index in the list (the index of the first node is 0). The elements of a NodeList
are always valid Node objects: a NodeList never contains null elements.

Note that NodeList objects are “live"—they are not static but immediately reflect changes
to the document tree. For example, if you have a NodeList that represents the children of
a specific node, and you then delete one of those children, the child will be removed
from your NodeList. Be careful when looping through the elements of a NodeList if the
body of your loop makes changes to the document tree (such as deleting nodes) that
may affect the contents of the NodeList!

Returned By Document.{getElementsByTagName(), getElementsByTagNameNS()},
Element.{getElementsByTagName(), getElementsByTagNameNS()}, Node.getChildNodes()

Notation
org.w3c.dom

Java 1.4

This interface represents a notation declared in the DTD of an XML document. In
XML notations are used to specify the format of an unparsed entity or to formally
declare a processing instruction target.

The getNodeName() method of the Node interface returns the name of the notation.
getSystemId() and getPublicId() return the system identifier and the public identifier speci-
fied in the notation declaration. The getNotations() method of the DocumentType interface
returns a NamedNodeMap of Notation objects declared in the DTD and provides a way to
look up Notation objects by notation name.

Because notations appear in the DTD and not the document itself, Notation nodes are
never part of the document tree, and the getParentNode() method always returns null. Simi-
larly, since XML notation declarations never have any content, a Notation node never
has children and getChildNodes() always returns null. Notation objects are read-only and
cannot be modified in any way.

void normalize();
Node removeChild(Node oldChild) throws DOMException;
Node replaceChild(Node newChild, Node oldChild) throws DOMException;
void setNodeValue(String nodeValue) throws DOMException;
void setPrefix(String prefix) throws DOMException;

5.0 void setTextContent(String textContent) throws DOMException;
5.0 Object setUserData(String key, Object data, UserDataHandler handler);
}

public interface NodeList {
// Public Instance Methods

int getLength();
Node item(int index);

}

Chapter 21: org.w3c.dom | 1049

DOM

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

org.w3c.dom.Text

ProcessingInstruction
org.w3c.dom

Java 1.4

This interface represents an XML processing instruction (or PI) which specifies an
arbitrary string of data to a named target processor. The getTarget() and getData() methods
return the target and data portions of a PI, and these values can also be obtained using
the getNodeName() and getNodeValue() methods of the Node interface. You can alter the data
portion of a PI with setData() or with the setNodeValue() method of Node. ProcessingInstruction
nodes never have children.

Returned By Document.createProcessingInstruction()

Text
org.w3c.dom

Java 1.4

A Text node represents a run of plain text that does not contain any XML markup. Plain
text appears within XML elements and attributes, and Text nodes typically appear as
children of Element and Attr nodes. Text nodes inherit from CharacterData, and the textual
content of a Text node is available through the getData() method inherited from Character-
Data or through the getNodeValue() method inherited from Node.

Text nodes may be manipulated using any of the methods inherited from CharacterData.
The Text interface defines one method of its own: splitText() splits a Text node at the speci-
fied character position. The method changes the original node so that it contains only
the text up to the specified position. Then it creates a new Text node that contains the
text from the specified position on and inserts that new node into the document tree
immediately after the original one. The Node.normalize() method reverses this process by
deleting emty Text nodes and merging adjacent Text nodes into a single node.

Text nodes never have children.

public interface Notation extends Node {
// Public Instance Methods

String getPublicId();
String getSystemId();

}

public interface ProcessingInstruction extends Node {
// Public Instance Methods

String getData();
String getTarget();
void setData(String data) throws DOMException;

}

public interface Text extends CharacterData {
// Public Instance Methods
5.0 String getWholeText();
5.0 boolean isElementContentWhitespace();

Node Notation

Node ProcessingInstruction

Node CharacterData Text

1050 | Chapter 21: org.w3c.dom

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

org.w3c.dom.TypeInfo

Implementations CDATASection

Returned By Document.createTextNode()

TypeInfo
org.w3c.dom

Java 5.0

This Level 3 interface represents information about the type of an Element or Attr node.
Obtain a TypeInfo object by calling the getSchemaTypeInfo() method of an Element or Attr. Note
that TypeInfo information is only available if the document has been validated against a
W3C XML Schema.

The methods of TypeInfo return the name and namespace of the element or attribute
type. isDerivedFrom() determines if the type is a derivative of another named type. The
constants defined by the interface specify different derivation techniques for types.

See also java.xml.validation.TypeInfoProvider.

Returned By javax.xml.validation.TypeInfoProvider.{getAttributeTypeInfo(), getElementTypeInfo()},
Attr.getSchemaTypeInfo(), Element.getSchemaTypeInfo()

UserDataHandler
org.w3c.dom

Java 5.0

This Level 3 interface defines a handler that is invoked when a node on which user-
specified data has been registered is adopted, cloned, deleted, imported or renamed.
Register an object that implements this interface in the call to Node.setUserData().

Passed To Node.setUserData()

5.0 Text replaceWholeText(String content) throws DOMException;
Text splitText(int offset) throws DOMException;

}

public interface TypeInfo {
// Public Constants

public static final int DERIVATION_EXTENSION; =2
public static final int DERIVATION_LIST; =8
public static final int DERIVATION_RESTRICTION; =1
public static final int DERIVATION_UNION; =4

// Public Instance Methods
String getTypeName();
String getTypeNamespace();
boolean isDerivedFrom(String typeNamespaceArg, String typeNameArg, int derivationMethod);

}

public interface UserDataHandler {
// Public Constants

public static final short NODE_ADOPTED; =5
public static final short NODE_CLONED; =1
public static final short NODE_DELETED; =3
public static final short NODE_IMPORTED; =2
public static final short NODE_RENAMED; =4

// Public Instance Methods
void handle(short operation, String key, Object data, Node src, Node dst);

}

1051

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Chapter 22SAX

22
org.xml.sax and Subpackages

This chapter documents the org.xml.sax package and its subpackages. org.xml.sax
defines the Simplified API for XML, or SAX, a de facto standard for parsing
XML documents. The org.xml.sax.ext package defines optional extensions to the
SAX API, and the org.xml.sax.helpers package defines helper classes that are often
useful with SAX.

These packages were added in Java 1.4 as “endorsed standards.” This means that
they are part of the Java platform, but are not defined by Sun, which is why they
have the “org.xml” prefix.

Package org.xml.sax Java 1.4

This is the core package for SAX (Simple API for XML) parsing of XML documents.
SAX is an “event-driven” API: a SAX parser reads an XML document and generates a
stream of “SAX events” to describe the content of the document. These “events” are
actually method calls made on one or more handler objects that the application has
registered with the parser. The XMLReader interface defines the API that must be imple-
mented by a SAX parser. ContentHandler, ErrorHandler, EntityResolver, and DTDHandler are
interfaces that define handler objects. An application registers objects that implement
one or more of these interfaces with the XMLReader.

This package defines both the SAX1 and SAX2 interfaces. The AttributesList, DocumentHandler
and Parser interfaces, as well as the HandlerBase class are part of the SAX1 API and are now
deprecated in favor of Attributes, ContentHandler, XMLReader, and org.xml.sax.helpers.DefaultHandler.

Interfaces
public interface AttributeList;
public interface Attributes;
public interface ContentHandler;
public interface DocumentHandler;
public interface DTDHandler;
public interface EntityResolver;

1052 | Chapter 22: org.xml.sax and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

org.xml.sax.AttributeList

public interface ErrorHandler;
public interface Locator;
public interface Parser;
public interface XMLFilter extends XMLReader;
public interface XMLReader;

Classes
public class HandlerBase implements DocumentHandler, DTDHandler, EntityResolver, ErrorHandler;
public class InputSource;

Exceptions
public class SAXException extends Exception;

public class SAXNotRecognizedException extends SAXException;
public class SAXNotSupportedException extends SAXException;
public class SAXParseException extends SAXException;

AttributeList
org.xml.sax

Java 1.4; Deprecated in 1.4

This interface is part of the SAX1 API and has been deprecated in favor of the SAX2
Attributes interface, which supports XML namespaces.

Implementations org.xml.sax.helpers.AttributeListImpl

Passed To DocumentHandler.startElement(), HandlerBase.startElement(),
org.xml.sax.helpers.AttributeListImpl.{AttributeListImpl(), setAttributeList()},
org.xml.sax.helpers.ParserAdapter.startElement()

Attributes
org.xml.sax

Java 1.4

This interface represents a list of attributes of an XML element and includes informa-
tion about the attribute names, types, and values. If the SAX parser has read a DTD or
schema for the document, this list of attributes will include attributes that are not
explicitly specified in the document but which have a default value specified in the
DTD or schema.

The most commonly used method is getValue() which returns the value of a named
attribute (there is also a version of this method that returns the value of a numbered
attribute; it is discussed later). If the SAX parser is not processing namespaces, you can
use the one-argument version of getValue(). Otherwise, use the two argument version to
specify the URI that uniquely identifies the namespace, and the “local name” of the
desired attribute within that namespace . The getType() methods are similar, except that
they return the type of the named attribute, rather than its value. Note that getType() can

public interface AttributeList {
// Public Instance Methods

int getLength();
String getName(int i);
String getType(String name);
String getType(int i);
String getValue(String name);
String getValue(int i);

}

Chapter 22: org.xml.sax and Subpackages | 1053

SAX

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

org.xml.sax.ContentHandler

only return useful information if the parser has read a DTD or schema for the docu-
ment and knows the type of each attribute.

In XML documents the attributes of a tag can appear in any order. Attributes objects
make no attempt to preserve the document source order of the tags. Nevertheless, it
does impose an ordering on the attributes so that you can loop through them.
getLength() returns the number of elements in the list. There are versions of getValue() and
getType() that return the value and type of the attribute at a specified position in the list.
You can also query the name of the attribute at a specified position, although the way
you do this depends on whether the parser handles namespaces or not. If it does not
process namespaces, use getQName() to get the name at a specified position. Otherwise,
use getURI() and getLocalName() to obtain the URI and local name pair for the numbered
attribute. Note that getQName() may return the empty string when namespace processing
is on, and getLocalName() may return the empty string if namespace processing is off.

Implementations org.xml.sax.ext.Attributes2, org.xml.sax.helpers.AttributesImpl

Passed To org.xml.sax.ContentHandler.startElement(), org.xml.sax.ext.Attributes2Impl.{Attributes2Impl(),
setAttributes()}, org.xml.sax.helpers.AttributesImpl.{AttributesImpl(), setAttributes()},
org.xml.sax.helpers.DefaultHandler.startElement(), org.xml.sax.helpers.XMLFilterImpl.startElement(),
org.xml.sax.helpers.XMLReaderAdapter.startElement()

ContentHandler
org.xml.sax

Java 1.4

This interface is the key one for XML parsing with the SAX API. An XMLReader tells your
application about the content of the XML document it is parsing by invoking the
various methods of the ContentHandler interface. In order to parse documents with SAX,
you must implement this interface to define methods that take whatever actions are
necessary when they are invoked by the parser. Because this interface is so critical to
the SAX API, the methods are explained individually below:

setDocumentLocator()
The parser usually calls this method (but is not required to do so) before calling
any others to pass a Locator object to the ContentHandler. Locator defines methods that
return the current line and column number of the document being parsed, and if
the parser supplies a Locator object, it guarantees that its methods will return valid
values during any other ContentHandler invocations that follow. A ContentHandler can
call the methods of this object when printing error messages, for example.

public interface Attributes {
// Public Instance Methods

int getIndex(String qName);
int getIndex(String uri, String localName);
int getLength();
String getLocalName(int index);
String getQName(int index);
String getType(String qName);
String getType(int index);
String getType(String uri, String localName);
String getURI(int index);
String getValue(String qName);
String getValue(int index);
String getValue(String uri, String localName);

}

1054 | Chapter 22: org.xml.sax and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

org.xml.sax.ContentHandler

startDocument(), endDocument()
The parser calls these methods once, at the beginning and end of parsing.
startDocument() is the first method called except for the optional setDocumentLocator()
call, and endDocument() is always the last method call on a ContentHandler.

startElement(), endElement()
The parser calls these methods for each start tag and end tag it encounters. Both
are passed three arguments describing the name of the tag: if the parser is doing
namespace processing, then the first two arguments of both methods return the
URI that uniquely identifies the namespace, and the local name of the tag within
that namespace. If the parser is not doing namespace parsing, then the third argu-
ment provides the full name of the tag. In addition to these tag name arguments,
startElement() is also passed an Attributes object that describes the attributes of the tag.

characters()
This method is invoked to tell the application that the parser has found a string of
text in the XML document. The text is contained within the specified character
array, at the specified start position, and continuing for the specified number of
characters.

ignorableWhitespace()
This method is like characters(), but parsers may use it to tell the application about
“ignorable whitespace” in XML element content.

processingInstruction()
The parser calls this method to tell the application that it has encountered an
XML Processing Instruction (or PI) with the specified target and data strings.

skippedEntity()
If the XML parser does encounters an entity in the document, but does not
expand and parse its content, then it tells the application about it by passing the
name of the entity to this method.

startPrefixMapping(), endPrefixMapping()
These methods to tell the application about a namespace mapping from the speci-
fied prefix to the specified namespace URI.

DTDHandler is another interface like ContentHandler. An application can implement this inter-
face to receive notification of DTD-related events from the parser. Similarly, the
org.xml.sax.ext package defines two “extension” interfaces that can be used (if the parser
supports these extensions) to obtain even more information about the document (such
as comments and CDATA sections) and about the DTD (including the full set of
element, attribute and entity declarations). The org.xml.sax.helpers.DefaultHandler class is a
useful one. It implements ContentHandler and three other interfaces that are commonly
used with the XMLReader class and provides empty implementations of all their methods.
Applications can subclass DefaultHandler only need to override the methods they care
about. This is usually more convenient that implementing the interfaces directly.

public interface ContentHandler {
// Public Instance Methods

void characters(char[] ch, int start, int length) throws SAXException;
void endDocument() throws SAXException;
void endElement(String uri, String localName, String qName) throws SAXException;
void endPrefixMapping(String prefix) throws SAXException;
void ignorableWhitespace(char[] ch, int start, int length) throws SAXException;
void processingInstruction(String target, String data) throws SAXException;
void setDocumentLocator(Locator locator);

Chapter 22: org.xml.sax and Subpackages | 1055

SAX

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

org.xml.sax.DTDHandler

Implementations javax.xml.transform.sax.TemplatesHandler, javax.xml.transform.sax.TransformerHandler,
javax.xml.validation.ValidatorHandler, org.xml.sax.helpers.DefaultHandler, org.xml.sax.helpers.XMLFilterImpl,
org.xml.sax.helpers.XMLReaderAdapter

Passed To javax.xml.transform.sax.SAXResult.{SAXResult(), setHandler()},
javax.xml.validation.ValidatorHandler.setContentHandler(), XMLReader.setContentHandler(),
org.xml.sax.helpers.ParserAdapter.setContentHandler(), org.xml.sax.helpers.XMLFilterImpl.setContentHandler()

Returned By javax.xml.transform.sax.SAXResult.getHandler(),
javax.xml.validation.ValidatorHandler.getContentHandler(), XMLReader.getContentHandler(),
org.xml.sax.helpers.ParserAdapter.getContentHandler(), org.xml.sax.helpers.XMLFilterImpl.getContentHandler()

DocumentHandler
org.xml.sax

Java 1.4; Deprecated in 1.4

This interface is part of the SAX1 API and has been deprecated in favor of the SAX2
ContentHandler interface, which supports XML namespaces.

Implementations HandlerBase, org.xml.sax.helpers.ParserAdapter

Passed To Parser.setDocumentHandler(), org.xml.sax.helpers.XMLReaderAdapter.setDocumentHandler()

DTDHandler
org.xml.sax

Java 1.4

This interface defines methods that an application can implement in order to receive
notification from a XMLReader about notation and unparsed entity declarations in the
DTD of an XML document. Notations and unparsed entities are two of the most
obscure features of XML, and they (and this interface) are not frequently used. To use
a DTDHandler, define a class that implements the interface, (or simply subclass the helper
class org.xml.sax.helpers.DefaultHandler) and pass an instance of that class to the setDTDHandler()
method of an XMLReader. Then, if the parser encounters any notation or unparsed entity
declarations in the DTD of the document, it will invoke the notationDecl() or
unparsedEntityDecl() method that you have supplied. Unparsed entities can appear later in
a document as the value of an attribute, so if your application cares about them, it
should somehow make a note of the entity name and system id for use later.

void skippedEntity(String name) throws SAXException;
void startDocument() throws SAXException;
void startElement(String uri, String localName, String qName, org.xml.sax.Attributes atts) throws SAXException;
void startPrefixMapping(String prefix, String uri) throws SAXException;

}

public interface DocumentHandler {
// Public Instance Methods

void characters(char[] ch, int start, int length) throws SAXException;
void endDocument() throws SAXException;
void endElement(String name) throws SAXException;
void ignorableWhitespace(char[] ch, int start, int length) throws SAXException;
void processingInstruction(String target, String data) throws SAXException;
void setDocumentLocator(Locator locator);
void startDocument() throws SAXException;
void startElement(String name, AttributeList atts) throws SAXException;

}

1056 | Chapter 22: org.xml.sax and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

org.xml.sax.EntityResolver

Implementations javax.xml.transform.sax.TransformerHandler, HandlerBase, org.xml.sax.helpers.DefaultH-
andler, org.xml.sax.helpers.XMLFilterImpl

Passed To Parser.setDTDHandler(), XMLReader.setDTDHandler(),
org.xml.sax.helpers.ParserAdapter.setDTDHandler(), org.xml.sax.helpers.XMLFilterImpl.setDTDHandler(),
org.xml.sax.helpers.XMLReaderAdapter.setDTDHandler()

Returned By XMLReader.getDTDHandler(), org.xml.sax.helpers.ParserAdapter.getDTDHandler(),
org.xml.sax.helpers.XMLFilterImpl.getDTDHandler()

EntityResolver
org.xml.sax

Java 1.4

An application can implement this interface to help the parser resolve external entities, if
required. If you pass an EntityResolver instance to the setEntityResolver() method of an XMLReader,
then the parser will call the resolveEntity() method whenever it needs to read an external
entity. This method should use the public identifier or system identifier to return an Input-
Source that the parser can use to read the content of the external entity. If the external
entity includes a valid system identifier, then the parser can read it directly without the
need for an EntityResolver, but this interface is still useful for mapping network URLs to
locally cached copies, or for mapping public identifiers to local files, for example. The
helper class org.xml.sax.helpers.DefaultHandler includes a stub implementation of this interface,
so if you subclass DefaultHandler you can override its resolveEntity() method.

Implementations HandlerBase, org.xml.sax.ext.EntityResolver2, org.xml.sax.helpers.DefaultHandler,
org.xml.sax.helpers.XMLFilterImpl

Passed To javax.xml.parsers.DocumentBuilder.setEntityResolver(), Parser.setEntityResolver(),
XMLReader.setEntityResolver(), org.xml.sax.helpers.ParserAdapter.setEntityResolver(),
org.xml.sax.helpers.XMLFilterImpl.setEntityResolver(), org.xml.sax.helpers.XMLReaderAdapter.setEntityResolver()

Returned By XMLReader.getEntityResolver(), org.xml.sax.helpers.ParserAdapter.getEntityResolver(),
org.xml.sax.helpers.XMLFilterImpl.getEntityResolver()

ErrorHandler
org.xml.sax

Java 1.4

Before parsing an XML document, an application should provide an implementation
of this interface to the XMLReader by calling the setErrorHandler() method of the XMLReader. If
the reader needs to issue a warning or report an error or fatal error, it will call the
appropriate method of the ErrorHandler object you supplied. The error() method is used to
report recoverable errors, such as document validity problems. The parser continues
parsing after calling error(). The fatalError() method is used to report nonrecoverable
errors, such as well-formedness problems. The parser may not continue parsing after

public interface DTDHandler {
// Public Instance Methods

void notationDecl(String name, String publicId, String systemId) throws SAXException;
void unparsedEntityDecl(String name, String publicId, String systemId, String notationName) throws SAXException;

}

public interface EntityResolver {
// Public Instance Methods

InputSource resolveEntity(String publicId, String systemId) throws SAXException, java.io.IOException;
}

Chapter 22: org.xml.sax and Subpackages | 1057

SAX

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

org.xml.sax.HandlerBase

calling fatalError(). An ErrorHandler object may respond to warnings, errors, and fatal errors
however it likes, and may throw exceptions from these methods.

Instead of implementing this interface directly, you may also subclass the helper class
org.xml.sax.helpers.DefaultHandler and override the error reporting methods it provides. The
warning() and error() methods of a DefaultHandler do nothing, and the fatalError() method
throws the SAXParseException object that was passed to it.

Implementations HandlerBase, org.xml.sax.helpers.DefaultHandler, org.xml.sax.helpers.XMLFilterImpl

Passed To javax.xml.parsers.DocumentBuilder.setErrorHandler(),
javax.xml.validation.SchemaFactory.setErrorHandler(), javax.xml.validation.Validator.setErrorHandler(),
javax.xml.validation.ValidatorHandler.setErrorHandler(), Parser.setErrorHandler(), XMLReader.setErrorHandler(),
org.xml.sax.helpers.ParserAdapter.setErrorHandler(), org.xml.sax.helpers.XMLFilterImpl.setErrorHandler(),
org.xml.sax.helpers.XMLReaderAdapter.setErrorHandler()

Returned By javax.xml.validation.SchemaFactory.getErrorHandler(),
javax.xml.validation.Validator.getErrorHandler(), javax.xml.validation.ValidatorHandler.getErrorHandler(),
XMLReader.getErrorHandler(), org.xml.sax.helpers.ParserAdapter.getErrorHandler(),
org.xml.sax.helpers.XMLFilterImpl.getErrorHandler()

HandlerBase
org.xml.sax

Java 1.4; Deprecated in 1.4

This class is part of the SAX1 API and has been deprecated in favor of the SAX2
org.xml.sax.helpers.DefaultHandler class.

public interface ErrorHandler {
// Public Instance Methods

void error(SAXParseException exception) throws SAXException;
void fatalError(SAXParseException exception) throws SAXException;
void warning(SAXParseException exception) throws SAXException;

}

public class HandlerBase implements DocumentHandler, DTDHandler, EntityResolver, ErrorHandler {
// Public Constructors

public HandlerBase();
// Methods Implementing DocumentHandler

public void characters(char[] ch, int start, int length) throws SAXException; empty
public void endDocument() throws SAXException; empty
public void endElement(String name) throws SAXException; empty
public void ignorableWhitespace(char[] ch, int start, int length) throws SAXException; empty
public void processingInstruction(String target, String data) throws SAXException; empty
public void setDocumentLocator(Locator locator); empty
public void startDocument() throws SAXException; empty
public void startElement(String name, AttributeList attributes) throws SAXException; empty

// Methods Implementing DTDHandler
public void notationDecl(String name, String publicId, String systemId); empty
public void unparsedEntityDecl(String name, String publicId, String systemId, String notationName); empty

// Methods Implementing EntityResolver
public InputSource resolveEntity(String publicId, String systemId) throws SAXException; constant

Object HandlerBase

DTDHandler DocumentHandler EntityResolver ErrorHandler

1058 | Chapter 22: org.xml.sax and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

org.xml.sax.InputSource

Passed To javax.xml.parsers.SAXParser.parse()

InputSource
org.xml.sax

Java 1.4

This simple class describes a source of input for an XMLReader. An InputSource object can
be passed to the parse() method of XMLReader, and is also the return value of the
EntityResolver.resolveEntity() method.

Create an InputSource() with one of the constructor methods, specifying the system iden-
tifier (a URL) of the file to be parsed, or specifying a byte or character stream that the
parser should read the document from. In addition to calling the constructor, you may
also want to call setSystemId() to specify and/or setPublicId() to provide identifiers for the
document being parsed. Having a filename or URL is useful if an error arises, and your
ErrorHandler object needs to print an error message, for example. If you specify the docu-
ment to parse as a URL or as a byte stream, you can also call setEncoding() to specify the
character encoding of the document. The parser will use this encoding value if you
supply it, but XML documents are supposed to describe their own encoding in the
<?xml?> declaration, so the parser ought to be able to determine the encoding of the
document even if you do not call setEncoding().

This class allows you to specify more than one input source. The XMLReader will first call
getCharacterStream() and use the returned Reader if there is one. If that method returns false,
then it calls getByteStream() and uses the InputStream it returns. Finally, if no character or
byte stream is found, then the parser will call getSystemId() and will attempt to read an
XML document from the returned URL.

An XMLReader will never use any of the set() methods to modify the state of an InputSource
object.

// Methods Implementing ErrorHandler
public void error(SAXParseException e) throws SAXException; empty
public void fatalError(SAXParseException e) throws SAXException;
public void warning(SAXParseException e) throws SAXException; empty

}

public class InputSource {
// Public Constructors

public InputSource();
public InputSource(java.io.Reader characterStream);
public InputSource(java.io.InputStream byteStream);
public InputSource(String systemId);

// Public Instance Methods
public java.io.InputStream getByteStream(); default:null
public java.io.Reader getCharacterStream(); default:null
public String getEncoding(); default:null
public String getPublicId(); default:null
public String getSystemId(); default:null
public void setByteStream(java.io.InputStream byteStream);
public void setCharacterStream(java.io.Reader characterStream);
public void setEncoding(String encoding);
public void setPublicId(String publicId);
public void setSystemId(String systemId);

}

Chapter 22: org.xml.sax and Subpackages | 1059

SAX

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

org.xml.sax.Parser

Passed To javax.xml.parsers.DocumentBuilder.parse(), javax.xml.parsers.SAXParser.parse(),
javax.xml.transform.sax.SAXSource.{SAXSource(), setInputSource()}, javax.xml.xpath.XPath.evaluate(),
javax.xml.xpath.XPathExpression.evaluate(), Parser.parse(), XMLReader.parse(),
org.xml.sax.helpers.ParserAdapter.parse(), org.xml.sax.helpers.XMLFilterImpl.parse(),
org.xml.sax.helpers.XMLReaderAdapter.parse()

Returned By javax.xml.transform.sax.SAXSource.{getInputSource(), sourceToInputSource()},
EntityResolver.resolveEntity(), HandlerBase.resolveEntity(), org.xml.sax.ext.DefaultHandler2.{getExternalSubset(),
resolveEntity()}, org.xml.sax.ext.EntityResolver2.{getExternalSubset(), resolveEntity()},
org.xml.sax.helpers.DefaultHandler.resolveEntity(), org.xml.sax.helpers.XMLFilterImpl.resolveEntity()

Locator
org.xml.sax

Java 1.4

A XMLReader may pass an object that implements this interface to the application by
calling the setDocumentLocator() method of the application’s ContentHandler object before it
invokes any other methods of that ContentHandler. The ContentHandler can use methods of
this Locator object from within any of the other methods called by the parser in order to
determine what document the parser is parsing and what line number and column
number it is parsing at. This information is particularly useful when displaying error or
warning messages, for example. getSystemId() and getPublicId() return the system and
public identifiers of the document being parsed, if this information is available to the
parser, and otherwise return null. getLineNumber() and getColumnNumber() return the line
number and column number of the next character that the parser will read (line and
column numbers are numbered starting at 1, not at 0). The parser is allowed to return
an approximate value from these methods, or to return -1 if it does not track line and
column numbers.

Implementations org.xml.sax.ext.Locator2, org.xml.sax.helpers.LocatorImpl

Passed To org.xml.sax.ContentHandler.setDocumentLocator(), DocumentHandler.setDocumentLocator(),
HandlerBase.setDocumentLocator(), SAXParseException.SAXParseException(),
org.xml.sax.ext.Locator2Impl.Locator2Impl(), org.xml.sax.helpers.DefaultHandler.setDocumentLocator(),
org.xml.sax.helpers.LocatorImpl.LocatorImpl(), org.xml.sax.helpers.ParserAdapter.setDocumentLocator(),
org.xml.sax.helpers.XMLFilterImpl.setDocumentLocator(),
org.xml.sax.helpers.XMLReaderAdapter.setDocumentLocator()

Parser
org.xml.sax

Java 1.4; Deprecated in 1.4

This interface is part of the SAX1 API and has been deprecated in favor of the SAX2
XMLReader interface, which supports XML namespaces.

public interface Locator {
// Public Instance Methods

int getColumnNumber();
int getLineNumber();
String getPublicId();
String getSystemId();

}

public interface Parser {
// Public Instance Methods

void parse(InputSource source) throws SAXException, java.io.IOException;
void parse(String systemId) throws SAXException, java.io.IOException;

1060 | Chapter 22: org.xml.sax and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

org.xml.sax.SAXException

Implementations org.xml.sax.helpers.XMLReaderAdapter

Passed To org.xml.sax.helpers.ParserAdapter.ParserAdapter()

Returned By javax.xml.parsers.SAXParser.getParser(), org.xml.sax.helpers.ParserFactory.makeParser()

SAXException
org.xml.sax

Java 1.4

serializable checked

Signals a problem while parsing an XML document. This class serves as the general
superclass for more specific types of SAX exceptions. The parse() method of an XMLReader
can throw an exception of this type. The application can also throw a SAXException from
any of the handler methods (of ContentHandler and ErrorHandler for example) invoked by the
parser.

Subclasses SAXNotRecognizedException, SAXNotSupportedException, SAXParseException

Thrown By Too many methods to list.

SAXNotRecognizedException
org.xml.sax

Java 1.4

serializable checked

Signals that the parser does not recognize a feature or property name. See the setFeature()
and setProperty() methods of XMLReader.

Thrown By Too many methods to list.

void setDocumentHandler(DocumentHandler handler);
void setDTDHandler(DTDHandler handler);
void setEntityResolver(EntityResolver resolver);
void setErrorHandler(ErrorHandler handler);
void setLocale(java.util.Locale locale) throws SAXException;

}

public class SAXException extends Exception {
// Public Constructors
5.0 public SAXException();

public SAXException(String message);
public SAXException(Exception e);
public SAXException(String message, Exception e);

// Public Instance Methods
public Exception getException(); default:null

// Public Methods Overriding Throwable
public String getMessage(); default:null
public String toString();

}

public class SAXNotRecognizedException extends SAXException {
// Public Constructors
5.0 public SAXNotRecognizedException();

public SAXNotRecognizedException(String message);
}

Object Throwable Exception SAXException

Serializable

Object Throwable Exception SAXException SAXNotRecognizedException

Serializable

Chapter 22: org.xml.sax and Subpackages | 1061

SAX

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

org.xml.sax.SAXParseException

SAXNotSupportedException
org.xml.sax

Java 1.4

serializable checked

Signals that the parser does recognizes, but does not support a named feature or prop-
erty. The property or feature may be entirely unsupported, or it may be read-only, in
which case this exception will be thrown by the setFeature() or setProperty() method, but
not by the corresponding getFeature() or getProperty() method of XMLReader.

Thrown By Too many methods to list.

SAXParseException
org.xml.sax

Java 1.4

serializable checked

An exception of this type signals an XML parsing error or warning. SAXParseException
includes methods to return the system and public identifiers of the document in which
the error or warning occurred, as well as methods to return the approximate line
number and column number at which it occurred. A parser is not required to obtain or
track all of this information, and the methods may return null or -1 if the information is
not available. (See Locator for more information.)

Exceptions of this type are usually thrown by the application from the methods of the
ErrorHandler interface. The parser never throws a SAXParseException itself, but does pass an
appropriately initialized instance of this class to each of the ErrorHandler methods. It is up
to the application’s ErrorHandler object to decide whether to actually throw the excep-
tion, however.

Passed To ErrorHandler.{error(), fatalError(), warning()}, HandlerBase.{error(), fatalError(), warning()},
org.xml.sax.helpers.DefaultHandler.{error(), fatalError(), warning()}, org.xml.sax.helpers.XMLFilterImpl.{error(),
fatalError(), warning()}

public class SAXNotSupportedException extends SAXException {
// Public Constructors
5.0 public SAXNotSupportedException();

public SAXNotSupportedException(String message);
}

public class SAXParseException extends SAXException {
// Public Constructors

public SAXParseException(String message, Locator locator);
public SAXParseException(String message, Locator locator, Exception e);
public SAXParseException(String message, String publicId, String systemId, int lineNumber, int columnNumber);
public SAXParseException(String message, String publicId, String systemId, int lineNumber, int columnNumber,

Exception e);
// Public Instance Methods

public int getColumnNumber();
public int getLineNumber();
public String getPublicId();
public String getSystemId();

}

Object Throwable Exception SAXException SAXNotSupportedException

Serializable

Object Throwable Exception SAXException SAXParseException

Serializable

1062 | Chapter 22: org.xml.sax and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

org.xml.sax.XMLFilter

XMLFilter
org.xml.sax

Java 1.4

An XMLFilter extends XMLReader and behaves like an XMLReader except that instead of
parsing a document itself, it filters the SAX events provided by a “parent” XMLReader
object. Use the setParent() method to link an XMLFilter object to the XMLReader that it is to
serve as a filter for.

An XMLFilter serves as both a source of SAX events, and also as a receipient of those
events, so an implementation must implement ContentHandler and related interfaces so
that it can obtain events from the parent object, filter them, and then pass the filtered
events on to the ContentHandler object that was registered on the filter. See the helper
class org.xml.sax.helpers.XMLFilterImpl for a bare-bones implementation of an XMLFilter that
implements the XMLReader interface and the ContentHandler and related handler interfaces.
XMLFilterImpl does no filtering—it simply passes passes all of its method invocations
through. You can subclass it and override only the methods that need filtering.

Implementations org.xml.sax.helpers.XMLFilterImpl

Returned By javax.xml.transform.sax.SAXTransformerFactory.newXMLFilter()

XMLReader
org.xml.sax

Java 1.4

This interface defines the methods that must be implemented by a SAX2 XML parser.
Since it is an interface, XMLReader cannot define a constructor for creating an XMLReader. To
obtain an XMLReader, object, you can instantiate some implementation-specific class that
implements this interface. Alternatively, you can keep your code independent of any
specific parser implementation by using the SAXParserFactory and SAXParser classes of the
javax.xml.parsers package. See those classes for more details. Note that the XMLReader inter-
face has no relationship to the java.io.Reader class or any other character stream classes.

Once you have obtained an XMLReader instance, you must register handler objects on it,
so that it can invoke methods on those handlers to notify your application of the
results of its parsing. All applications should register a ContentHandler and an ErrorHandler
with setContentHandler() and setErrorHandler(). Some applications may also want to register an
EntityResolver and/or a DTDHandler. Applications can also register DeclHandler and LexicalHandler
objects from the org.xml.sax.ext package, if the parser implementation supports these
extension handler interfaces. DeclHandler and LexicalHandler objects are registered with
setProperty(), as explained below.

In addition to registering handler objects for an XMLReader, you may also want to
configure the behavior of the parser using setFeature() and setProperty(). Features and prop-
erties are both name/value pairs. For uniqueness, the names of features and properties
are expressed as URLs (the URLs usually do not have any web content associated with
them: they are merely unique identifiers). Features have boolean values, and proper-
ties have arbitrary object values. Features and properties are an extension mechanism,
allowing an application to specify implementation-specific details about how the
parser should behave. But there are also several “standard” features and properties

public interface XMLFilter extends XMLReader {
// Public Instance Methods

XMLReader getParent();
void setParent(XMLReader parent);

}

XMLReader XMLFilter

Chapter 22: org.xml.sax and Subpackages | 1063

SAX

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

org.xml.sax.XMLReader

that are supported by many (or all) SAX parsers. They are listed below. If a parser does
not recognize the name of a feature or property, the setFeature() and setProperty() methods
(as well as the corresponding getFeature() and getProperty() query methods) throw a
SAXNotRecognizedException. If the parser recognizes the name of a feature or property, but
does not support the feature or property, the methods instead throw a SAXNotSupportedEx-
ception. This exception is also thrown by the set methods when the parser allows the
feature or property to be queried but not set.

The standard features are the following. Their names are all URLs that begin with the
prefix “http://www.xml.org/sax/features/”. For brevity, this prefix has been omitted
below. Note that only two of these features must be supported by all parsers. The
others may or may not be supported in any given implementation:

namespaces
If true (the default), then the parser supports namespaces and provides the
namespace URI and localname for element and attribute names. Support for this
feature is required in all parser implementations .

namespace-prefixes
If true, then the parser provides the qualified name (or “qName”) that for element
and attribute names. A qName consists of a namespace prefix, a colon, and the
local name. The default value of this feature is false, and support for the feature is
required in all parser implementations.

validation
If true, then the parser will validate XML documents, and will read all external
entities.

external-general-entities
If true, then the parser handles external general entities. This is always true if the
validation feature is true.

external-parameter-entities
If true, then the parser handles external parameter entities. This is always true if the
validation feature is true.

lexical-handler/parameter-entities
If true, then the parser will report the begining and end of parameter entities to the
LexicalHandler extension interface.

string-interning
If true, then the parser will use the String.intern() method for all strings (element,
attribute, entity and notation names, and namespace prefixes and URIs) it
returns. If the application does the same, it can use = = equality testing for these
strings rather than using the more expensive equals() method.

The standard properties are the following. Like the features, their names are all URLs
that begin with the prefix (omitted below) “http://www.xml.org/sax/properties/”.
Note that support for all of these properties is optional.

declaration-handler
An org.xml.sax.ext.DeclHandler object to which the parser will report the contents of the
DTD.

lexical-handler
An org.xml.sax.ext.LexicalHandler object on which the parser will make method calls to
describe the lexical structure (such as comments and CDATA sections) of the
XML document.

1064 | Chapter 22: org.xml.sax and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

.Package org.xml.sax.ext

xml-string
This is a read-only property, and can only be queried from within a handler
method invoked by the parser. The value of this property is a String that contains
the document content that triggered the current handler invocation.

dom-node
An XMLReader that “parses” a DOM tree rather than the textual form of an XML
document uses the value of this property as the org.w3c.dom.Node object at which it
should begin parsing.

Finally, after you have obtained an XMLReader object, have queried and configured its
features and properties, and have set a ContentHandler, ErrorHandler, and any other required
handler objects, you are ready to parse an XML document. Do this by calling one of
the parse() methods, specifying the document to parse either as a system identifier (a
URL) or as an InputSource object (which allows the use of streams as well).

Implementations XMLFilter, org.xml.sax.helpers.ParserAdapter

Passed To javax.xml.transform.sax.SAXSource.{SAXSource(), setXMLReader()}, XMLFilter.setParent(),
org.xml.sax.helpers.XMLFilterImpl.{setParent(), XMLFilterImpl()},
org.xml.sax.helpers.XMLReaderAdapter.XMLReaderAdapter()

Returned By javax.xml.parsers.SAXParser.getXMLReader(),
javax.xml.transform.sax.SAXSource.getXMLReader(), XMLFilter.getParent(),
org.xml.sax.helpers.XMLFilterImpl.getParent(), org.xml.sax.helpers.XMLReaderFactory.createXMLReader()

Package org.xml.sax.ext Java 1.4

This package defines extensions to the basic SAX2 API. Neither SAX parsers nor SAX
applications are required to support these extensions, but when they do, the interfaces
defined here provide a standard way for the parser to provide additional information
about an XML document to the application. DeclHandler defines methods for reporting
the content of a DTD, and LexicalHandler defines methods for reporting the lexical struc-
ture of an XML document.

In Java 5.0 adopts “SAX2 Extensions 1.1” and adds three new interfaces to this
package: Attributes2, EntityResolver2, and Locator2. Each extends a similarly named interface
from the core org.xml.sax package.

public interface XMLReader {
// Public Instance Methods

org.xml.sax.ContentHandler getContentHandler();
DTDHandler getDTDHandler();
EntityResolver getEntityResolver();
ErrorHandler getErrorHandler();
boolean getFeature(String name) throws SAXNotRecognizedException, SAXNotSupportedException;
Object getProperty(String name) throws SAXNotRecognizedException, SAXNotSupportedException;
void parse(String systemId) throws java.io.IOException, SAXException;
void parse(InputSource input) throws java.io.IOException, SAXException;
void setContentHandler(org.xml.sax.ContentHandler handler);
void setDTDHandler(DTDHandler handler);
void setEntityResolver(EntityResolver resolver);
void setErrorHandler(ErrorHandler handler);
void setFeature(String name, boolean value) throws SAXNotRecognizedException, SAXNotSupportedException;
void setProperty(String name, Object value) throws SAXNotRecognizedException, SAXNotSupportedException;

}

Chapter 22: org.xml.sax and Subpackages | 1065

SAX

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

org.xml.sax.ext.Attributes2Impl

Interfaces
public interface Attributes2 extends org.xml.sax.Attributes;
public interface DeclHandler;
public interface EntityResolver2 extends org.xml.sax.EntityResolver;
public interface LexicalHandler;
public interface Locator2 extends org.xml.sax.Locator;

Classes
public class Attributes2Impl extends org.xml.sax.helpers.AttributesImpl implements Attributes2;
public class DefaultHandler2 extends org.xml.sax.helpers.DefaultHandler implements DeclHandler, EntityResolver2,
LexicalHandler;
public class Locator2Impl extends org.xml.sax.helpers.LocatorImpl implements Locator2;

Attributes2
org.xml.sax.ext

Java 5.0

This interface extends org.xml.sax.Attributes and adds methods for determining if an attribute
was declared in the DTD and whether an attribute value was explicitly specified in the
document or whether a default value from the DTD was used. If the SAX implementa-
tion supports this interface, the Attributes object passed to the startElement() method of the
ContentHandler implements this interface. You can also test for support by querying the
feature named “http://xml.org/sax/features/use-attributes2” with XMLReader.getFeature().

Implementations Attributes2Impl

Attributes2Impl
org.xml.sax.ext

Java 5.0

This extension helper class extends the org.xml.sax.helpers.AttributesImpl class to make it
implement the Attributes2 interface.

public interface Attributes2 extends org.xml.sax.Attributes {
// Public Instance Methods

boolean isDeclared(String qName);
boolean isDeclared(int index);
boolean isDeclared(String uri, String localName);
boolean isSpecified(String qName);
boolean isSpecified(int index);
boolean isSpecified(String uri, String localName);

}

public class Attributes2Impl extends org.xml.sax.helpers.AttributesImpl implements Attributes2 {
// Public Constructors

public Attributes2Impl();
public Attributes2Impl(org.xml.sax.Attributes atts);

// Public Instance Methods
public void setDeclared(int index, boolean value);
public void setSpecified(int index, boolean value);

// Methods Implementing Attributes2

Attributes Attributes2

Object AttributesImpl Attributes2Impl

Attributes Attributes Attributes2

1066 | Chapter 22: org.xml.sax and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

org.xml.sax.ext.DeclHandler

DeclHandler
org.xml.sax.ext

Java 1.4

This extension interface defines methods that a SAX parser can call to notify an applica-
tion about element, attribute, and entity declarations in a DTD. If your application
requires this information about a DTD, then pass an object that implements this inter-
face to the setProperty() method of an XMLReader, using the property name “http://
www.xml.org/sax/properties/declaration-handler”. Because this is an extension handler,
SAX parsers are not required to support it, and may throw a SAXNotRecognizedException or a
SAXNotSupportedException when you attempt to register a DeclHandler.

Implementations DefaultHandler2

DefaultHandler2
org.xml.sax.ext

Java 5.0

This class extends org.xml.sax.helpers.DefaultHandler to add no-op methods that implement
the LexicalHandler, DeclHandler, and EntityResolver2 methods. It overrides the two-argument
version of resolveEntity from the core EntityResolver interface to invoke the four-argument
version from the EntityResolver2 interface.

public boolean isDeclared(String qName);
public boolean isDeclared(int index);
public boolean isDeclared(String uri, String localName);
public boolean isSpecified(String qName);
public boolean isSpecified(int index);
public boolean isSpecified(String uri, String localName);

// Public Methods Overriding AttributesImpl
public void addAttribute(String uri, String localName, String qName, String type, String value);
public void removeAttribute(int index);
public void setAttributes(org.xml.sax.Attributes atts);

}

public interface DeclHandler {
// Public Instance Methods

void attributeDecl(String eName, String aName, String type, String mode, String value)
throws org.xml.sax.SAXException;

void elementDecl(String name, String model) throws org.xml.sax.SAXException;
void externalEntityDecl(String name, String publicId, String systemId) throws org.xml.sax.SAXException;
void internalEntityDecl(String name, String value) throws org.xml.sax.SAXException;

}

public class DefaultHandler2 extends org.xml.sax.helpers.DefaultHandler
implements DeclHandler, EntityResolver2, LexicalHandler {

// Public Constructors
public DefaultHandler2();

// Methods Implementing DeclHandler
public void attributeDecl(String eName, String aName, String type, String mode, String value)

throws org.xml.sax.SAXException; emDpty
public void elementDecl(String name, String model) throws org.xml.sax.SAXException; empty

Object DefaultHandler DefaultHandler2

ContentHandler DTDHandler EntityResolver ErrorHandler DeclHandler EntityResolver2 LexicalHandler

EntityResolver

Chapter 22: org.xml.sax and Subpackages | 1067

SAX

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

org.xml.sax.ext.LexicalHandler

EntityResolver2
org.xml.sax.ext

Java 5.0

This extension interface provides alternative entity resolver methods. If you register an
entity resolver that implements this interface, if the SAX implementation supports this
interface, and you set the feature “http://xml.org/sax/features/use-entity-resolver2” to
true, then the implementation will use the methods defined by this interface instead of
the method defined by the super-interface.

Implementations DefaultHandler2

LexicalHandler
org.xml.sax.ext

Java 1.4

This extension interface defines methods that a SAX parser can call to notify an applica-
tion about the lexical structure of an XML document. If your application requires this
kind of information (for example if it wants to create a new document that has a similar
structure to the one it reads), then pass an object that implements this interface to the
setProperty() method of an XMLReader, using the property name “http://www.xml.org/sax/
properties/lexical-handler”. Because this is an extension handler, SAX parsers are not
required to support it, and may throw a SAXNotRecognizedException or a SAXNotSupportedException
when you attempt to register a DeclHandler.

If a LexicalHandler is successfully registered on an XMLReader, then the parser will call
startDTD() and endDTD() to report the beginning and end of the document’s DTD. It will
call startCDATA() and endCDATA() to report the start and end of a CDATA section. The content

public void externalEntityDecl(String name, String publicId, String systemId) throws org.xml.sax.SAXException; empty
public void internalEntityDecl(String name, String value) throws org.xml.sax.SAXException; empty

// Methods Implementing EntityResolver
public org.xml.sax.InputSource resolveEntity(String publicId, String systemId)

throws org.xml.sax.SAXException, java.io.IOException;
// Methods Implementing EntityResolver2

public org.xml.sax.InputSource getExternalSubset(String name, String baseURI)
throws org.xml.sax.SAXException, java.io.IOException; constant

public org.xml.sax.InputSource resolveEntity(String name, String publicId, String baseURI, String systemId)
throws org.xml.sax.SAXException, java.io.IOException; constant

// Methods Implementing LexicalHandler
public void comment(char[] ch, int start, int length) throws org.xml.sax.SAXException; empty
public void endCDATA() throws org.xml.sax.SAXException; empty
public void endDTD() throws org.xml.sax.SAXException; empty
public void endEntity(String name) throws org.xml.sax.SAXException; empty
public void startCDATA() throws org.xml.sax.SAXException; empty
public void startDTD(String name, String publicId, String systemId) throws org.xml.sax.SAXException; empty
public void startEntity(String name) throws org.xml.sax.SAXException; empty

}

public interface EntityResolver2 extends org.xml.sax.EntityResolver {
// Public Instance Methods

org.xml.sax.InputSource getExternalSubset(String name, String baseURI)
throws org.xml.sax.SAXException, java.io.IOException;

org.xml.sax.InputSource resolveEntity(String name, String publicId, String baseURI, String systemId)
throws org.xml.sax.SAXException, java.io.IOException;

}

EntityResolver EntityResolver2

1068 | Chapter 22: org.xml.sax and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

org.xml.sax.ext.Locator2

of the CDATA section will be reported through the characters() method of the ContentHandler
interface. When the parser expands an entity, it first calls startEntity() to specify the name
of the entity it is about to expand, and then calls endEntity() when the entity expansion is
complete. Finally, whenever the parser encounters an XML comment, it calls the
comment() method.

Implementations javax.xml.transform.sax.TransformerHandler, DefaultHandler2

Passed To javax.xml.transform.sax.SAXResult.setLexicalHandler()

Returned By javax.xml.transform.sax.SAXResult.getLexicalHandler()

Locator2
org.xml.sax.ext

Java 5.0

This interface defines an extension to the core Locator interface. If the implementation
supports it, then the Locator object passed to ContentHandler.setDocumentLocator() will imple-
ment this interface. You can also test for support by querying the feature named
“http://xml.org/sax/features/use-locator2”.

Implementations Locator2Impl

Locator2Impl
org.xml.sax.ext

Java 5.0

This class extends the org.xml.sax.helpers.LocatorImpl class to make it implement the Locator2
interface.

public interface LexicalHandler {
// Public Instance Methods

void comment(char[] ch, int start, int length) throws org.xml.sax.SAXException;
void endCDATA() throws org.xml.sax.SAXException;
void endDTD() throws org.xml.sax.SAXException;
void endEntity(String name) throws org.xml.sax.SAXException;
void startCDATA() throws org.xml.sax.SAXException;
void startDTD(String name, String publicId, String systemId) throws org.xml.sax.SAXException;
void startEntity(String name) throws org.xml.sax.SAXException;

}

public interface Locator2 extends org.xml.sax.Locator {
// Public Instance Methods

String getEncoding();
String getXMLVersion();

}

public class Locator2Impl extends org.xml.sax.helpers.LocatorImpl implements Locator2 {
// Public Constructors

public Locator2Impl();
public Locator2Impl(org.xml.sax.Locator locator);

// Public Instance Methods
public void setEncoding(String encoding);
public void setXMLVersion(String version);

Locator Locator2

Object LocatorImpl Locator2Impl

Locator Locator Locator2

Chapter 22: org.xml.sax and Subpackages | 1069

SAX

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

org.xml.sax.helpers.AttributeListImpl

Package org.xml.sax.helpers Java 1.4

This package contains utility classes that are useful for programmers working with
SAX parsers. DefaultHandler is the most commonly used: it is a default implementation of
the four standard handler interfaces, suitable for easy subclassing by an application.
XMLReaderFactory provides a layer implementation-independence, allowing an application
to use an XMLReader implementation specified in a system property. XMLFilterImpl is a no-op
implementation of the XMLFilter interface that also implements the various handler inter-
faces necessary to connect the filter to its “parent” XMLReader. It does no filtering of its
own, but is easy to subclass to add filtering. If you need to work with legacy APIs that
expect or return SAX1 Parser objects, you can use ParserAdapter to make a Parser object
behave like a SAX2 XMLReader object, or use an XMLReaderAdapter to make an XMLReader
behave like a Parser.

Classes
public class AttributeListImpl implements org.xml.sax.AttributeList;
public class AttributesImpl implements org.xml.sax.Attributes;
public class DefaultHandler implements org.xml.sax.ContentHandler, org.xml.sax.DTDHandler, org.xml.sax.EntityResolver,
org.xml.sax.ErrorHandler;
public class LocatorImpl implements org.xml.sax.Locator;
public class NamespaceSupport;
public class ParserAdapter implements org.xml.sax.DocumentHandler, org.xml.sax.XMLReader;
public class ParserFactory;
public class XMLFilterImpl implements org.xml.sax.ContentHandler, org.xml.sax.DTDHandler, org.xml.sax.EntityResolver,
org.xml.sax.ErrorHandler, org.xml.sax.XMLFilter;
public class XMLReaderAdapter implements org.xml.sax.ContentHandler, org.xml.sax.Parser;
public final class XMLReaderFactory;

AttributeListImpl
org.xml.sax.helpers

Java 1.4; Deprecated in 1.4

This deprecated class is an implementation of the deprecated SAX1 org.xml.sax.AttributeList
interface. They have been deprecated in favor of the AttributesImpl implementation of the
SAX2 org.xml.sax.Attributes interface.

// Methods Implementing Locator2
public String getEncoding(); default:null
public String getXMLVersion(); default:null

}

public class AttributeListImpl implements org.xml.sax.AttributeList {
// Public Constructors

public AttributeListImpl();
public AttributeListImpl(org.xml.sax.AttributeList atts);

// Public Instance Methods
public void addAttribute(String name, String type, String value);
public void clear();
public void removeAttribute(String name);
public void setAttributeList(org.xml.sax.AttributeList atts);

// Methods Implementing AttributeList
public int getLength(); default:0

Object AttributeListImpl AttributeList

1070 | Chapter 22: org.xml.sax and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

org.xml.sax.helpers.AttributesImpl

AttributesImpl
org.xml.sax.helpers

Java 1.4

This utility class is a general-purpose implementation of the Attributes interface. In addi-
tion to implementing all the methods of Attributes, it also defines various set methods for
setting attribute names, values, and types, an addAttribute() method for adding a new
attribute to the end of the list, a removeAttribute() method for removing an attribute from
the list, and a clear() method for removing all attributes. Also, there is an AttributesImpl()
constructor that initializes the new AttributesImpl object with a copy of a specified Attributes
object. This class is useful for XMLFilter implementations that want to filter the attributes
of an element, or for ContentHandler implementations that need to make and save a copy
of an Attributes object for later use.

Subclasses org.xml.sax.ext.Attributes2Impl

public String getName(int i);
public String getType(int i);
public String getType(String name);
public String getValue(String name);
public String getValue(int i);

}

public class AttributesImpl implements org.xml.sax.Attributes {
// Public Constructors

public AttributesImpl();
public AttributesImpl(org.xml.sax.Attributes atts);

// Public Instance Methods
public void addAttribute(String uri, String localName, String qName, String type, String value);
public void clear();
public void removeAttribute(int index);
public void setAttribute(int index, String uri, String localName, String qName, String type, String value);
public void setAttributes(org.xml.sax.Attributes atts);
public void setLocalName(int index, String localName);
public void setQName(int index, String qName);
public void setType(int index, String type);
public void setURI(int index, String uri);
public void setValue(int index, String value);

// Methods Implementing Attributes
public int getIndex(String qName);
public int getIndex(String uri, String localName);
public int getLength(); default:0
public String getLocalName(int index);
public String getQName(int index);
public String getType(String qName);
public String getType(int index);
public String getType(String uri, String localName);
public String getURI(int index);
public String getValue(int index);
public String getValue(String qName);
public String getValue(String uri, String localName);

}

Object AttributesImpl Attributes

Chapter 22: org.xml.sax and Subpackages | 1071

SAX

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

org.xml.sax.helpers.DefaultHandler

DefaultHandler
org.xml.sax.helpers

Java 1.4

This helper class implements the four commonly-used SAX handler interfaces from the
org.xml.sax package and defines stub implementations for all of their methods. It is
usually easier to subclass DefaultHandler and override the desired methods than it is to
implement all of the interfaces (and all of their methods) from scratch. DefaultHandler
implements ContentHandler, ErrorHandler, EntityResolver and DTDHandler, so you can pass an
instance of this class, (or of a subclass you define) to the setContentHandler(), setErrorHandler(),
setEntityResolver(), and setDTDHandler() methods of an XMLReader. You can also pass an
instance of a DefaultHandler subclass directly to one of the parse() methods of a
javax.xml.parsers.SAXParser. The SAXParser will take care of calling the four relevant methods of
its internal XMLReader.

All but two of the methods of DefaultHandler have empty bodies and do nothing. The
exceptions are resolveEntity() which simply returns null to tell the parser to resolve the
entity itself, and fatalError() which throws the SAXParseException object that is passed to it.

Subclasses org.xml.sax.ext.DefaultHandler2

Passed To javax.xml.parsers.SAXParser.parse()

public class DefaultHandler
 implements org.xml.sax.ContentHandler, org.xml.sax.DTDHandler, org.xml.sax.EntityResolver,
org.xml.sax.ErrorHandler{

// Public Constructors
public DefaultHandler();

// Methods Implementing ContentHandler
public void characters(char[] ch, int start, int length) throws org.xml.sax.SAXException; empty
public void endDocument() throws org.xml.sax.SAXException; empty
public void endElement(String uri, String localName, String qName) throws org.xml.sax.SAXException; empty
public void endPrefixMapping(String prefix) throws org.xml.sax.SAXException; empty
public void ignorableWhitespace(char[] ch, int start, int length) throws org.xml.sax.SAXException; empty
public void processingInstruction(String target, String data) throws org.xml.sax.SAXException; empty
public void setDocumentLocator(org.xml.sax.Locator locator); empty
public void skippedEntity(String name) throws org.xml.sax.SAXException; empty
public void startDocument() throws org.xml.sax.SAXException; empty
public void startElement(String uri, String localName, String qName, org.xml.sax.Attributes attributes)

throws org.xml.sax.SAXException; empty
public void startPrefixMapping(String prefix, String uri) throws org.xml.sax.SAXException; empty

// Methods Implementing DTDHandler
public void notationDecl(String name, String publicId, String systemId) throws org.xml.sax.SAXException; empty
public void unparsedEntityDecl(String name, String publicId, String systemId, String notationName)

throws org.xml.sax.SAXException; empty
// Methods Implementing EntityResolver

public org.xml.sax.InputSource resolveEntity(String publicId, String systemId)
throws java.io.IOException, org.xml.sax.SAXException; constant

// Methods Implementing ErrorHandler
public void error(org.xml.sax.SAXParseException e) throws org.xml.sax.SAXException; empty
public void fatalError(org.xml.sax.SAXParseException e) throws org.xml.sax.SAXException;
public void warning(org.xml.sax.SAXParseException e) throws org.xml.sax.SAXException; empty

}

Object DefaultHandler

ContentHandler DTDHandler EntityResolver ErrorHandler

1072 | Chapter 22: org.xml.sax and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

org.xml.sax.helpers.LocatorImpl

LocatorImpl
org.xml.sax.helpers

Java 1.4

This helper class is a very simple implementation of the Locator interface. It defines a
copy constructor that create a new LocatorImpl object that copies the state of a specified
Locator object. This constructor is useful because it allows applications to copy the state
of a Locator and save it for later use.

Subclasses org.xml.sax.ext.Locator2Impl

NamespaceSupport
org.xml.sax.helpers

Java 1.4

This utility class exists to help SAX parser implementors handle XML namespaces. It is
not commonly used by SAX applications.

public class LocatorImpl implements org.xml.sax.Locator {
// Public Constructors

public LocatorImpl();
public LocatorImpl(org.xml.sax.Locator locator);

// Public Instance Methods
public void setColumnNumber(int columnNumber);
public void setLineNumber(int lineNumber);
public void setPublicId(String publicId);
public void setSystemId(String systemId);

// Methods Implementing Locator
public int getColumnNumber(); default:0
public int getLineNumber(); default:0
public String getPublicId(); default:null
public String getSystemId(); default:null

}

public class NamespaceSupport {
// Public Constructors

public NamespaceSupport();
// Public Constants
5.0 public static final String NSDECL; ="http://www.w3.org/xmlns/2000/"

public static final String XMLNS; ="http://www.w3.org/XML/1998/namespace"
// Public Instance Methods

public boolean declarePrefix(String prefix, String uri);
public java.util.Enumeration getDeclaredPrefixes();
public String getPrefix(String uri);
public java.util.Enumeration getPrefixes();
public java.util.Enumeration getPrefixes(String uri);
public String getURI(String prefix);

5.0 public boolean isNamespaceDeclUris(); default:false
public void popContext();
public String[] processName(String qName, String[] parts, boolean isAttribute);
public void pushContext();
public void reset();

5.0 public void setNamespaceDeclUris(boolean value);
}

Object LocatorImpl Locator

Chapter 22: org.xml.sax and Subpackages | 1073

SAX

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

org.xml.sax.helpers.ParserAdapter

ParserAdapter
org.xml.sax.helpers

Java 1.4

This adapter class behaves like a SAX2 XMLReader object, but gets its input from the
SAX1 Parser object that is passed to the constructor. In order to make this work, it
implements the deprecated SAX1 DocumentHandler interface so that it can receive events
from the Parser. ParserAdapter provides its own layer of namespace processing to convert a
namespace-unaware Parser into a namespace-aware XMLReader. This class is useful when
working you are working with a legacy API that supplies a SAX1 Parser object, but want
to work with that parser using the SAX2 XMLReader API: to use it, simply pass the Parser
object to the ParserAdapter() constructor and use the resulting object as you would use
any other XMLReader object.

There is not perfect congruence between the SAX1 and SAX2 APIs, and a Parser cannot
be perfectly adapted to a XMLReader. In particular, a ParserAdapter will never call the
skippedEntity() handler method because the SAX1 Parser API does not provide notification
of skipped entities. Also, it does not attempt to determine whether two namespace-
prefixed attributes of an element actually resolve to the same attribute.

See also XMLReaderAdapter, an adapter that works in the reverse direction to make a SAX2
parser behave like a SAX1 parser.

public class ParserAdapter implements org.xml.sax.DocumentHandler, org.xml.sax.XMLReader {
// Public Constructors

public ParserAdapter() throws org.xml.sax.SAXException;
public ParserAdapter(org.xml.sax.Parser parser);

// Methods Implementing DocumentHandler
public void characters(char[] ch, int start, int length) throws org.xml.sax.SAXException;
public void endDocument() throws org.xml.sax.SAXException;
public void endElement(String qName) throws org.xml.sax.SAXException;
public void ignorableWhitespace(char[] ch, int start, int length) throws org.xml.sax.SAXException;
public void processingInstruction(String target, String data) throws org.xml.sax.SAXException;
public void setDocumentLocator(org.xml.sax.Locator locator);
public void startDocument() throws org.xml.sax.SAXException;
public void startElement(String qName, org.xml.sax.AttributeList qAtts) throws org.xml.sax.SAXException;

// Methods Implementing XMLReader
public org.xml.sax.ContentHandler getContentHandler();
public org.xml.sax.DTDHandler getDTDHandler();
public org.xml.sax.EntityResolver getEntityResolver();
public org.xml.sax.ErrorHandler getErrorHandler();
public boolean getFeature(String name)

throws org.xml.sax.SAXNotRecognizedException, org.xml.sax.SAXNotSupportedException;
public Object getProperty(String name)

throws org.xml.sax.SAXNotRecognizedException, org.xml.sax.SAXNotSupportedException;
public void parse(String systemId) throws java.io.IOException, org.xml.sax.SAXException;
public void parse(org.xml.sax.InputSource input) throws java.io.IOException, org.xml.sax.SAXException;
public void setContentHandler(org.xml.sax.ContentHandler handler);
public void setDTDHandler(org.xml.sax.DTDHandler handler);
public void setEntityResolver(org.xml.sax.EntityResolver resolver);
public void setErrorHandler(org.xml.sax.ErrorHandler handler);

Object ParserAdapter

DocumentHandler XMLReader

1074 | Chapter 22: org.xml.sax and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

org.xml.sax.helpers.ParserFactory

ParserFactory
org.xml.sax.helpers

Java 1.4; Deprecated in 1.4

This deprecated SAX1 class is a factory for deprecated SAX1 Parser objects. New appli-
cations should use the SAX2 XMLReaderFactory as a factory for SAX2 XMLReader objects.

XMLFilterImpl
org.xml.sax.helpers

Java 1.4

This class is implements an XMLFilter that does no filtering. You can subclass it to over-
ride whatever methods are required to perform the type of filtering you desire.

XMLFilterImpl implements ContentHandler, ErrorHandler, EntityResolver, and DTDHandler so that it can
receive SAX events from the “parent” XMLReader object. But it also implements the
XMLFilter interface, which is an extension of XMLReader, so that it acts as an XMLReader itself,
and can send SAX events to the handler objects that are registered on it. Each of the
handler methods of this class simply invoke the corresponding method of the corre-
sponding handler that was registered on the filter. The XMLReader methods for getting
and setting features and properties simply invoke the corresponding method of the
parent XMLReader object. The parse() methods do the same thing: they pass their argu-
ment to the corresponding parse() method of the parent reader to start the parsing
process.

public void setFeature(String name, boolean value)
throws org.xml.sax.SAXNotRecognizedException, org.xml.sax.SAXNotSupportedException;

public void setProperty(String name, Object value)
throws org.xml.sax.SAXNotRecognizedException, org.xml.sax.SAXNotSupportedException;

}

public class ParserFactory {
// No Constructor
// Public Class Methods

public static org.xml.sax.Parser makeParser()
throws ClassNotFoundException, IllegalAccessException, InstantiationException, NullPointerException,
ClassCastException;

public static org.xml.sax.Parser makeParser(String className)
throws ClassNotFoundException, IllegalAccessException, InstantiationException, ClassCastException;

}

public class XMLFilterImpl
implements org.xml.sax.ContentHandler, org.xml.sax.DTDHandler, org.xml.sax.EntityResolver,
org.xml.sax.ErrorHandler, org.xml.sax.XMLFilter {

// Public Constructors
public XMLFilterImpl();
public XMLFilterImpl(org.xml.sax.XMLReader parent);

// Methods Implementing ContentHandler
public void characters(char[] ch, int start, int length) throws org.xml.sax.SAXException;
public void endDocument() throws org.xml.sax.SAXException;
public void endElement(String uri, String localName, String qName) throws org.xml.sax.SAXException;
public void endPrefixMapping(String prefix) throws org.xml.sax.SAXException;
public void ignorableWhitespace(char[] ch, int start, int length) throws org.xml.sax.SAXException;
public void processingInstruction(String target, String data) throws org.xml.sax.SAXException;

Object XMLFilterImpl

ContentHandler DTDHandler EntityResolver ErrorHandler XMLReader XMLFilter

Chapter 22: org.xml.sax and Subpackages | 1075

SAX

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

org.xml.sax.helpers.XMLReaderAdapter

XMLReaderAdapter
org.xml.sax.helpers

Java 1.4

This adapter class wraps a SAX2 XMLReader object and makes it behave like a SAX1
Parser object. It is useful when working with a legacy API that requires a deprecated
Parser object. Create an XMLReaderAdapter by passing an XMLReader to the XMLReaderAdapter()
constructor. Then use the resulting object exactly as you would use any other SAX1
Parser object. This class implements ContentHandler so that it can receive SAX events
from the XMLReader. But it also implements the Parser interface so that it can have a
SAX1 DocumentHandler registered on it. The methods of ContentHandler are implemented to
invoke the corresponding methods of the registered DocumentHandler.

public void setDocumentLocator(org.xml.sax.Locator locator);
public void skippedEntity(String name) throws org.xml.sax.SAXException;
public void startDocument() throws org.xml.sax.SAXException;
public void startElement(String uri, String localName, String qName, org.xml.sax.Attributes atts)

throws org.xml.sax.SAXException;
public void startPrefixMapping(String prefix, String uri) throws org.xml.sax.SAXException;

// Methods Implementing DTDHandler
public void notationDecl(String name, String publicId, String systemId) throws org.xml.sax.SAXException;
public void unparsedEntityDecl(String name, String publicId, String systemId, String notationName)

throws org.xml.sax.SAXException;
// Methods Implementing EntityResolver

public org.xml.sax.InputSource resolveEntity(String publicId, String systemId)
throws org.xml.sax.SAXException, java.io.IOException;

// Methods Implementing ErrorHandler
public void error(org.xml.sax.SAXParseException e) throws org.xml.sax.SAXException;
public void fatalError(org.xml.sax.SAXParseException e) throws org.xml.sax.SAXException;
public void warning(org.xml.sax.SAXParseException e) throws org.xml.sax.SAXException;

// Methods Implementing XMLFilter
public org.xml.sax.XMLReader getParent(); default:null
public void setParent(org.xml.sax.XMLReader parent);

// Methods Implementing XMLReader
public org.xml.sax.ContentHandler getContentHandler(); default:null
public org.xml.sax.DTDHandler getDTDHandler(); default:null
public org.xml.sax.EntityResolver getEntityResolver(); default:null
public org.xml.sax.ErrorHandler getErrorHandler(); default:null
public boolean getFeature(String name)

throws org.xml.sax.SAXNotRecognizedException, org.xml.sax.SAXNotSupportedException;
public Object getProperty(String name)

throws org.xml.sax.SAXNotRecognizedException, org.xml.sax.SAXNotSupportedException;
public void parse(String systemId) throws org.xml.sax.SAXException, java.io.IOException;
public void parse(org.xml.sax.InputSource input) throws org.xml.sax.SAXException, java.io.IOException;
public void setContentHandler(org.xml.sax.ContentHandler handler);
public void setDTDHandler(org.xml.sax.DTDHandler handler);
public void setEntityResolver(org.xml.sax.EntityResolver resolver);
public void setErrorHandler(org.xml.sax.ErrorHandler handler);
public void setFeature(String name, boolean value)

throws org.xml.sax.SAXNotRecognizedException, org.xml.sax.SAXNotSupportedException;
public void setProperty(String name, Object value)

throws org.xml.sax.SAXNotRecognizedException, org.xml.sax.SAXNotSupportedException;
}

1076 | Chapter 22: org.xml.sax and Subpackages

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

org.xml.sax.helpers.XMLReaderFactory

XMLReaderFactory
org.xml.sax.helpers

Java 1.4

This factory class defines two static factory methods for creating XMLReader objects. One
method takes the name of a class as its argument. It dynamically loads and instanti-
ates the class, then casts it to an XMLReader object. The second factory method takes no
arguments; it reads the system property named “org.xml.sax.driver” and uses the value
of that property as the name of the class XMLReader implementation class to load and
instantiate. An application that instantiates its SAX parser using the no-argument
method of XMLReaderFactory gains a layer of independence from the underlying parser
implementation. The end user or system administrator of the system on which the
application is deployed can change the parser implementation simply by setting a
system property. Note that the javax.xml.parsers package provides a similar, but some-
what more useful SAXParserFactory.

public class XMLReaderAdapter implements org.xml.sax.ContentHandler, org.xml.sax.Parser {
// Public Constructors

public XMLReaderAdapter() throws org.xml.sax.SAXException;
public XMLReaderAdapter(org.xml.sax.XMLReader xmlReader);

// Methods Implementing ContentHandler
public void characters(char[] ch, int start, int length) throws org.xml.sax.SAXException;
public void endDocument() throws org.xml.sax.SAXException;
public void endElement(String uri, String localName, String qName) throws org.xml.sax.SAXException;
public void endPrefixMapping(String prefix); empty
public void ignorableWhitespace(char[] ch, int start, int length) throws org.xml.sax.SAXException;
public void processingInstruction(String target, String data) throws org.xml.sax.SAXException;
public void setDocumentLocator(org.xml.sax.Locator locator);
public void skippedEntity(String name) throws org.xml.sax.SAXException; empty
public void startDocument() throws org.xml.sax.SAXException;
public void startElement(String uri, String localName, String qName, org.xml.sax.Attributes atts)

throws org.xml.sax.SAXException;
public void startPrefixMapping(String prefix, String uri); empty

// Methods Implementing Parser
public void parse(String systemId) throws java.io.IOException, org.xml.sax.SAXException;
public void parse(org.xml.sax.InputSource input) throws java.io.IOException, org.xml.sax.SAXException;
public void setDocumentHandler(org.xml.sax.DocumentHandler handler);
public void setDTDHandler(org.xml.sax.DTDHandler handler);
public void setEntityResolver(org.xml.sax.EntityResolver resolver);
public void setErrorHandler(org.xml.sax.ErrorHandler handler);
public void setLocale(java.util.Locale locale) throws org.xml.sax.SAXException;

}

public final class XMLReaderFactory {
// No Constructor
// Public Class Methods

public static org.xml.sax.XMLReader createXMLReader() throws org.xml.sax.SAXException;
public static org.xml.sax.XMLReader createXMLReader(String className) throws org.xml.sax.SAXException;

}

Object XMLReaderAdapter

ContentHandler Parser

1077

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Chapter 1Class Index

Class, Method, and Field Index

A
abort(): CacheRequest, LoginModule

AbortPolicy: java.util.concurrent.ThreadPoolEx-
ecutor

abs(): BigDecimal, BigInteger, Math, StrictMath

absolutePath(): AbstractPreferences, Prefer-
ences

ABSTRACT: Modifier

AbstractCollection: java.util

AbstractExecutorService: java.util.concurrent

AbstractInterruptibleChannel: java.nio.chan-
nels.spi

AbstractList: java.util

AbstractMap: java.util

AbstractMethodError: java.lang

AbstractPreferences: java.util.prefs

AbstractQueue: java.util

AbstractQueuedSynchronizer: java.util.concur-
rent.locks

AbstractQueuedSynchronizer.
ConditionObject: java.util.concurrent.locks

AbstractSelectableChannel: java.nio.channels.
spi

AbstractSelectionKey: java.nio.channels.spi

AbstractSelector: java.nio.channels.spi

AbstractSequentialList: java.util

AbstractSet: java.util

accept(): FileFilter, FilenameFilter, Server-
Socket, ServerSocketChannel, SocketImpl

AccessControlContext: java.security

AccessControlException: java.security

AccessController: java.security

AccessibleObject: java.lang.reflect

AccountException: javax.security.auth.login

AccountExpiredException: javax.security.auth.
login

AccountLockedException: javax.security.auth.
login

AccountNotFoundException: javax.security.
auth.login

acos(): Math, StrictMath

acquire(): AbstractQueuedSynchronizer, Sema-
phore

acquireInterruptibly(): AbstractQueuedSyn-
chronizer

acquireShared(): AbstractQueuedSynchronizer

acquireSharedInterruptibly(): Abstract-
QueuedSynchronizer

acquireUninterruptibly(): Semaphore

activeCount(): Thread, ThreadGroup

activeGroupCount(): ThreadGroup

AD: GregorianCalendar

Class, Method, and Field Index | 1078

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Class Index

add(): AbstractCollection, AbstractList, Abstract-
Queue, AbstractSequentialList, ArrayList,
BigDecimal, BigInteger, BlockingQueue,
Calendar, Collection, ConcurrentLinkedQueue,
CopyOnWriteArrayList, CopyOnWriteArraySet,
DelayQueue, Duration, GregorianCalendar,
HashSet, LinkedList, List, ListIterator, Permis-
sionCollection, Permissions, PriorityBlocking-
Queue, PriorityQueue, Set, TreeSet, Vector,
XMLGregorianCalendar

addAll(): AbstractCollection, AbstractList,
AbstractQueue, AbstractSequentialList, Array-
List, Collection, Collections, CopyOnWriteAr-
rayList, CopyOnWriteArraySet, LinkedList, List,
Set, TreeSet, Vector

addAllAbsent(): CopyOnWriteArrayList

addAndGet(): AtomicInteger, AtomicInteger-
Array, AtomicIntegerFieldUpdater, Atomi-
cLong, AtomicLongArray, AtomicLongFieldUp-
dater

addAttribute(): AttributedString, AttributeLis-
tImpl, Attributes2Impl, AttributesImpl

addAttributes(): AttributedString

addCertificate(): Identity

addCertPathChecker(): PKIXParameters

addCertStore(): PKIXParameters

addElement(): Vector

addFirst(): LinkedList

addHandler(): Logger

addHandshakeCompletedListener():
SSLSocket

addIdentity(): IdentityScope

addIfAbsent(): CopyOnWriteArrayList

addIssuer(): X509CRLSelector

addIssuerName(): X509CRLSelector

addLast(): LinkedList

addLogger(): LogManager

addNodeChangeListener(): AbstractPrefer-
ences, Preferences

addObserver(): Observable

addPathToName(): X509CertSelector

addPreferenceChangeListener(): AbstractPref-
erences, Preferences

addPropertyChangeListener(): LogManager,
Packer, Unpacker

addProvider(): Security

addRequestProperty(): URLConnection

address: SocketImpl

address(): Proxy

addShutdownHook(): Runtime

addSubjectAlternativeName():
X509CertSelector

addTo(): Duration

addTransformer(): Instrumentation

addURL(): URLClassLoader

Adler32: java.util.zip

adoptNode(): Document

AEGEAN_NUMBERS: UnicodeBlock

after(): Calendar, Date

afterExecute(): ThreadPoolExecutor

AlgorithmParameterGenerator: java.security

AlgorithmParameterGeneratorSpi: java.secu-
rity

AlgorithmParameters: java.security

AlgorithmParameterSpec: java.security.spec

AlgorithmParametersSpi: java.security

aliases(): Charset, KeyStore

ALL: Level

allocate(): ByteBuffer, CharBuffer, Double-
Buffer, FloatBuffer, IntBuffer, LongBuffer,
ShortBuffer

allocateDirect(): ByteBuffer

allOf(): EnumSet

allowMultipleSelections(): ChoiceCallback

allowThreadSuspension(): ThreadGroup

allowUserInteraction: URLConnection

AllPermission: java.security

ALPHABETIC_PRESENTATION_FORMS:
UnicodeBlock

AlreadyConnectedException: java.nio.channels

ALTERNATE: FormattableFlags

AM: Calendar

AM_PM: Calendar, Field

AM_PM_FIELD: DateFormat

and(): BigInteger, BitSet

andNot(): BigInteger, BitSet

annotateClass(): ObjectOutputStream

AnnotatedElement: java.lang.reflect

annotateProxyClass(): ObjectOutputStream

Annotation: java.lang.annotation, java.text

ANNOTATION_TYPE: ElementType

1079 | Class, Method, and Field Index

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

AnnotationFormatError: java.lang.annotation

annotationType(): Annotation, IncompleteAn-
notationException

AnnotationTypeMismatchException: java.
lang.annotation

AppConfigurationEntry: javax.security.auth.
login

AppConfigurationEntry.
LoginModuleControlFlag: javax.security.
auth.login

append(): Appendable, CharArrayWriter, Char-
Buffer, PrintStream, PrintWriter, StringBuffer,
StringBuilder, StringWriter, Writer

Appendable: java.lang

appendChild(): Node

appendCodePoint(): StringBuffer, StringBuilder

appendData(): CharacterData

appendReplacement(): Matcher

appendTail(): Matcher

applyLocalizedPattern(): DecimalFormat,
SimpleDateFormat

applyPattern(): ChoiceFormat, DecimalFormat,
MessageFormat, SimpleDateFormat

appRandom: SignatureSpi

APRIL: Calendar, DatatypeConstants

ARABIC: UnicodeBlock

ARABIC_PRESENTATION_FORMS_A: Unicode-
Block

ARABIC_PRESENTATION_FORMS_B: Unicode-
Block

areFieldsSet: Calendar

ARGUMENT: Field

ArithmeticException: java.lang

ARMENIAN: UnicodeBlock

Array: java.lang.reflect

array(): ByteBuffer, CharBuffer, DoubleBuffer,
FloatBuffer, IntBuffer, LongBuffer, ShortBuffer

ArrayBlockingQueue: java.util.concurrent

arraycopy(): System

ArrayIndexOutOfBoundsException: java.lang

ArrayList: java.util

arrayOffset(): ByteBuffer, CharBuffer, Double-
Buffer, FloatBuffer, IntBuffer, LongBuffer,
ShortBuffer

Arrays: java.util

ArrayStoreException: java.lang

ARROWS: UnicodeBlock

asCharBuffer(): ByteBuffer

asDoubleBuffer(): ByteBuffer

asFloatBuffer(): ByteBuffer

asin(): Math, StrictMath

asIntBuffer(): ByteBuffer

asList(): Arrays

asLongBuffer(): ByteBuffer

asReadOnlyBuffer(): ByteBuffer, CharBuffer,
DoubleBuffer, FloatBuffer, IntBuffer, Long-
Buffer, ShortBuffer

AssertionError: java.lang

asShortBuffer(): ByteBuffer

asSubclass(): Class

AsynchronousCloseException: java.nio.chan-
nels

atan(): Math, StrictMath

atan2(): Math, StrictMath

AtomicBoolean: java.util.concurrent.atomic

AtomicInteger: java.util.concurrent.atomic

AtomicIntegerArray: java.util.concurrent.
atomic

AtomicIntegerFieldUpdater: java.util.concur-
rent.atomic

AtomicLong: java.util.concurrent.atomic

AtomicLongArray: java.util.concurrent.atomic

AtomicLongFieldUpdater: java.util.concurrent.
atomic

AtomicMarkableReference: java.util.concur-
rent.atomic

AtomicReference: java.util.concurrent.atomic

AtomicReferenceArray: java.util.concurrent.
atomic

AtomicReferenceFieldUpdater: java.util.
concurrent.atomic

AtomicStampedReference: java.util.concur-
rent.atomic

attach(): SelectionKey

attachment(): SelectionKey

attemptMark(): AtomicMarkableReference

attemptStamp(): AtomicStampedReference

Attr: org.w3c.dom

Attribute: java.text.AttributedCharacterIterator

ATTRIBUTE_NODE: Node

Class, Method, and Field Index | 1080

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Class Index

AttributedCharacterIterator: java.text

AttributedCharacterIterator.Attribute: java.
text

attributeDecl(): DeclHandler, DefaultHandler2

AttributedString: java.text

AttributeList: org.xml.sax

AttributeListImpl: org.xml.sax.helpers

Attributes: java.util.jar, org.xml.sax

Attributes.Name: java.util.jar

Attributes2: org.xml.sax.ext

Attributes2Impl: org.xml.sax.ext

AttributesImpl: org.xml.sax.helpers

AUGUST: Calendar, DatatypeConstants

Authenticator: java.net

Authenticator.RequestorType: java.net

AuthPermission: javax.security.auth

AuthProvider: java.security

available(): BufferedInputStream, ByteArrayIn-
putStream, CipherInputStream, FileInput-

Stream, FilterInputStream, InflaterInput-
Stream, InputStream,
LineNumberInputStream, ObjectInput, Object-
InputStream, PipedInputStream, PushbackIn-
putStream, SequenceInputStream, Sock-
etImpl, StringBufferInputStream,
ZipInputStream

availableCharsets(): Charset

availablePermits(): Semaphore

availableProcessors(): Runtime

averageBytesPerChar(): CharsetEncoder

averageCharsPerByte(): CharsetDecoder

await(): Condition, ConditionObject, Count-
DownLatch, CyclicBarrier

awaitNanos(): Condition, ConditionObject

awaitTermination(): ExecutorService, Thread-
PoolExecutor

awaitUninterruptibly(): Condition, Condition-
Object

awaitUntil(): Condition, ConditionObject

B
BackingStoreException: java.util.prefs

BadPaddingException: javax.crypto

baseIsLeftToRight(): Bidi

baseWireHandle: ObjectStreamConstants

BASIC_LATIN: UnicodeBlock

BasicPermission: java.security

BC: GregorianCalendar

before(): Calendar, Date

beforeExecute(): ThreadPoolExecutor

begin(): AbstractInterruptibleChannel, Abstract-
Selector

beginHandshake(): SSLEngine

BENGALI: UnicodeBlock

BEST_COMPRESSION: Deflater

BEST_SPEED: Deflater

Bidi: java.text

BIG_ENDIAN: ByteOrder

BigDecimal: java.math

BigDecimalLayoutForm: java.util.Formatter

BigInteger: java.math

binarySearch(): Arrays, Collections

bind(): DatagramSocket, DatagramSocketImpl,
ServerSocket, Socket, SocketImpl

BindException: java.net

bitCount(): BigInteger, Integer, Long

bitLength(): BigInteger

BitSet: java.util

BLOCK_ELEMENTS: UnicodeBlock

BLOCKED: State

blockingLock(): AbstractSelectableChannel,
SelectableChannel

BlockingQueue: java.util.concurrent

BOOLEAN: XPathConstants

Boolean: java.lang

booleanValue(): Boolean

BOPOMOFO: UnicodeBlock

BOPOMOFO_EXTENDED: UnicodeBlock

BOX_DRAWING: UnicodeBlock

BRAILLE_PATTERNS: UnicodeBlock

BreakIterator: java.text

BrokenBarrierException: java.util.concurrent

1081 | Class, Method, and Field Index

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

buf: BufferedInputStream, BufferedOutput-
Stream, ByteArrayInputStream, ByteArrayOut-
putStream, CharArrayReader, CharArray-
Writer, DeflaterOutputStream,
InflaterInputStream, PushbackInputStream

Buffer: java.nio

buffer: PipedInputStream, StringBufferInput-
Stream

BUFFER_OVERFLOW: Status

BUFFER_UNDERFLOW: Status

BufferedInputStream: java.io

BufferedOutputStream: java.io

BufferedReader: java.io

BufferedWriter: java.io

BufferOverflowException: java.nio

BufferUnderflowException: java.nio

BUHID: UnicodeBlock

build(): CertPathBuilder

Builder: java.security.KeyStore

Byte: java.lang

ByteArrayInputStream: java.io

ByteArrayOutputStream: java.io

ByteBuffer: java.nio

ByteChannel: java.nio.channels

ByteOrder: java.nio

bytesConsumed(): SSLEngineResult

bytesProduced(): SSLEngineResult

bytesTransferred: InterruptedIOException

byteValue(): Byte, Double, Float, Integer, Long,
Number, Short

byteValueExact(): BigDecimal

BYZANTINE_MUSICAL_SYMBOLS: UnicodeBlock

C
cachedChildren(): AbstractPreferences

CacheRequest: java.net

CacheResponse: java.net

Calendar: java.util

calendar: DateFormat

call(): Callable

Callable: java.util.concurrent

callable(): Executors

Callback: javax.security.auth.callback

CallbackHandler: javax.security.auth.callback

CallbackHandlerProtection: java.security.
KeyStore

CallerRunsPolicy: java.util.concurrent.Thread-
PoolExecutor

CANADA: Locale

CANADA_FRENCH: Locale

CANCEL: ConfirmationCallback

cancel(): AbstractSelectionKey, Future, Future-
Task, SelectionKey, Timer, TimerTask

CancellationException: java.util.concurrent

CancelledKeyException: java.nio.channels

cancelledKeys(): AbstractSelector

canEncode(): Charset, CharsetEncoder

CANON_EQ: Pattern

CANONICAL: X500Principal

CANONICAL_DECOMPOSITION: Collator

canRead(): File

canSetParameter(): DOMConfiguration

canWrite(): File

capacity(): Buffer, StringBuffer, Vector

capacityIncrement: Vector

cardinality(): BitSet

CASE_INSENSITIVE: Pattern

CASE_INSENSITIVE_ORDER: String

cast(): Class

cbrt(): Math, StrictMath

CDATA_SECTION_ELEMENTS: OutputKeys

CDATA_SECTION_NODE: Node

CDATASection: org.w3c.dom

ceil(): Math, StrictMath

CEILING: RoundingMode

Certificate: java.security, java.security.cert

Certificate.CertificateRep: java.security.cert

CertificateEncodingException: java.security.
cert

CertificateException: java.security.cert

CertificateExpiredException: java.security.cert

CertificateFactory: java.security.cert

CertificateFactorySpi: java.security.cert

Class, Method, and Field Index | 1082

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Class Index

CertificateNotYetValidException: java.security.
cert

CertificateParsingException: java.security.cert

CertificateRep: java.security.cert.Certificate

certificates(): Identity

CertPath: java.security.cert

CertPath.CertPathRep: java.security.cert

CertPathBuilder: java.security.cert

CertPathBuilderException: java.security.cert

CertPathBuilderResult: java.security.cert

CertPathBuilderSpi: java.security.cert

CertPathParameters: java.security.cert

CertPathRep: java.security.cert.CertPath

CertPathTrustManagerParameters: javax.net.
ssl

CertPathValidator: java.security.cert

CertPathValidatorException: java.security.cert

CertPathValidatorResult: java.security.cert

CertPathValidatorSpi: java.security.cert

CertSelector: java.security.cert

CertStore: java.security.cert

CertStoreException: java.security.cert

CertStoreParameters: java.security.cert

CertStoreSpi: java.security.cert

Channel: java.nio.channels

channel(): FileLock, SelectionKey

Channels: java.nio.channels

Character: java.lang

Character.Subset: java.lang

Character.UnicodeBlock: java.lang

CharacterCodingException: java.nio.charset

CharacterData: org.w3c.dom

CharacterIterator: java.text

characters(): ContentHandler, DefaultHandler,
DocumentHandler, HandlerBase, Parser-
Adapter, XMLFilterImpl, XMLReaderAdapter

CharArrayReader: java.io

CharArrayWriter: java.io

charAt(): CharBuffer, CharSequence, String,
StringBuffer

CharBuffer: java.nio

CharConversionException: java.io

charCount(): Character

CharSequence: java.lang

Charset: java.nio.charset

charset(): CharsetDecoder, CharsetEncoder

CharsetDecoder: java.nio.charset

CharsetEncoder: java.nio.charset

charsetForName(): CharsetProvider

CharsetProvider: java.nio.charset.spi

charsets(): CharsetProvider

charValue(): Character

check(): PKIXCertPathChecker

checkAccept(): SecurityManager

checkAccess(): LogManager, SecurityManager,
Thread, ThreadGroup

checkAwtEventQueueAccess(): SecurityMan-
ager

checkClientTrusted(): X509TrustManager

checkConnect(): SecurityManager

checkCreateClassLoader(): SecurityManager

checkDelete(): SecurityManager

checkedCollection(): Collections

CheckedInputStream: java.util.zip

checkedList(): Collections

checkedMap(): Collections

CheckedOutputStream: java.util.zip

checkedSet(): Collections

checkedSortedMap(): Collections

checkedSortedSet(): Collections

checkError(): PrintStream, PrintWriter

checkExec(): SecurityManager

checkExit(): SecurityManager

checkGuard(): Guard, Permission

checkLink(): SecurityManager

checkListen(): SecurityManager

checkMemberAccess(): SecurityManager

checkMulticast(): SecurityManager

checkPackageAccess(): SecurityManager

checkPackageDefinition(): SecurityManager

checkPermission(): AccessControlContext,
AccessController, SecurityManager

checkPrintJobAccess(): SecurityManager

checkPropertiesAccess(): SecurityManager

checkPropertyAccess(): SecurityManager

checkRead(): SecurityManager

checkSecurityAccess(): SecurityManager

checkServerTrusted(): X509TrustManager

checkSetFactory(): SecurityManager

1083 | Class, Method, and Field Index

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Checksum: java.util.zip

checkSystemClipboardAccess(): SecurityMan-
ager

checkTopLevelWindow(): SecurityManager

checkValidity(): X509Certificate

checkWrite(): SecurityManager

CHEROKEE: UnicodeBlock

childAdded(): NodeChangeListener

childRemoved(): NodeChangeListener

childrenNames(): AbstractPreferences, Prefer-
ences

childrenNamesSpi(): AbstractPreferences

childSpi(): AbstractPreferences

childValue(): InheritableThreadLocal

CHINA: Locale

CHINESE: Locale

ChoiceCallback: javax.security.auth.callback

ChoiceFormat: java.text

chooseClientAlias(): X509KeyManager

chooseEngineClientAlias():
X509ExtendedKeyManager

chooseEngineServerAlias():
X509ExtendedKeyManager

chooseServerAlias(): X509KeyManager

chunkLength: HttpURLConnection

Cipher: javax.crypto

CipherInputStream: javax.crypto

CipherOutputStream: javax.crypto

CipherSpi: javax.crypto

CJK_COMPATIBILITY: UnicodeBlock

CJK_COMPATIBILITY_FORMS: UnicodeBlock

CJK_COMPATIBILITY_IDEOGRAPHS: Unicode-
Block

CJK_COMPATIBILITY_IDEOGRAPHS_
SUPPLEMENT: UnicodeBlock

CJK_RADICALS_SUPPLEMENT: UnicodeBlock

CJK_SYMBOLS_AND_PUNCTUATION: Unicode-
Block

CJK_UNIFIED_IDEOGRAPHS: UnicodeBlock

CJK_UNIFIED_IDEOGRAPHS_EXTENSION_A:
UnicodeBlock

CJK_UNIFIED_IDEOGRAPHS_EXTENSION_B:
UnicodeBlock

Class: java.lang

CLASS: RetentionPolicy

CLASS_ATTRIBUTE_PFX: Packer

CLASS_LOADING_MXBEAN_NAME: Manage-
mentFactory

CLASS_PATH: Name

ClassCastException: java.lang

ClassCircularityError: java.lang

ClassDefinition: java.lang.instrument

classDepth(): SecurityManager

ClassFileTransformer: java.lang.instrument

ClassFormatError: java.lang

ClassLoader: java.lang

classLoaderDepth(): SecurityManager

ClassLoadingMXBean: java.lang.management

classname: InvalidClassException

ClassNotFoundException: java.lang

clear(): AbstractCollection, AbstractList,
AbstractMap, AbstractPreferences, Abstract-
Queue, ArrayBlockingQueue, ArrayList,
AttributeListImpl, Attributes, AttributesImpl,
BitSet, Buffer, Calendar, Collection, Concur-
rentHashMap, CopyOnWriteArrayList, Copy-
OnWriteArraySet, DelayQueue, EnumMap,
HashMap, HashSet, Hashtable, Identity-
HashMap, LinkedBlockingQueue,
LinkedHashMap, LinkedList, List, Manifest,
Map, Preferences, PriorityBlockingQueue,
PriorityQueue, Provider, Reference, Set,
SynchronousQueue, TreeMap, TreeSet, Vector,
WeakHashMap, XMLGregorianCalendar

clearAssertionStatus(): ClassLoader

clearBit(): BigInteger

clearChanged(): Observable

clearParameters(): Transformer

clearPassword(): PasswordCallback, PBEKey-
Spec

clearProperty(): System

clockSequence(): UUID

clone(): AbstractMap, ArrayList, Attributes,
BitSet, BreakIterator, Calendar, CertPathBuild-
erResult, CertPathParameters, CertPathVali-
datorResult, CertSelector, CertStoreParame-
ters, CharacterIterator, ChoiceFormat, Collator,
CollectionCertStoreParameters, CopyOnWrite-
ArrayList, CRLSelector, Date, DateFormat,
DateFormatSymbols, DecimalFormat, Deci-
malFormatSymbols, Enum,

Class, Method, and Field Index | 1084

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Class Index

clone() cont’d: EnumMap, EnumSet, Format,
GregorianCalendar, HashMap, HashSet, Hash-
table, IdentityHashMap, LDAPCertStorePa-
rameters, LinkedList, Locale, Mac, MacSpi,
Manifest, MessageDigest, MessageDigestSpi,
MessageFormat, NumberFormat, Object,
PKIXCertPathChecker, PKIXCertPathValidator-
Result, PKIXParameters, RuleBasedCollator,
Signature, SignatureSpi, SimpleDateFormat,
SimpleTimeZone, StringCharacterIterator,
TimeZone, TreeMap, TreeSet, Vector,
X509CertSelector, X509CRLSelector,
XMLGregorianCalendar, ZipEntry

Cloneable: java.lang

cloneNode(): Node

CloneNotSupportedException: java.lang

close(): AbstractInterruptibleChannel, Abstract-
Selector, BufferedInputStream, Buffere-
dReader, BufferedWriter, ByteArrayInput-
Stream, ByteArrayOutputStream, Channel,
CharArrayReader, CharArrayWriter, CipherIn-
putStream, CipherOutputStream, Closeable,
ConsoleHandler, DatagramSocket, Datagram-
SocketImpl, DeflaterOutputStream, FileHan-
dler, FileInputStream, FileOutputStream,
FilterInputStream, FilterOutputStream, Filter-
Reader, FilterWriter, Formatter, GZIPInput-
Stream, Handler, InflaterInputStream, Input-
Stream, InputStreamReader,
InterruptibleChannel, MemoryHandler,
ObjectInput, ObjectInputStream,
ObjectOutput, ObjectOutputStream, Output-
Stream, OutputStreamWriter, PipedInput-
Stream, PipedOutputStream, PipedReader,
PipedWriter, PrintStream, PrintWriter, Push-
backInputStream, PushbackReader,
RandomAccessFile, Reader, Scanner, Selector,
SequenceInputStream, ServerSocket, Socket,
SocketHandler, SocketImpl, StreamHandler,
StringReader, StringWriter, Writer, ZipFile,
ZipInputStream, ZipOutputStream

CLOSE_FAILURE: ErrorManager

Closeable: java.io

CLOSED: Status

ClosedByInterruptException: java.nio.channels

ClosedChannelException: java.nio.channels

ClosedSelectorException: java.nio.channels

closeEntry(): ZipInputStream, ZipOutputStream

closeInbound(): SSLEngine

closeOutbound(): SSLEngine

code: DOMException

CODE_ATTRIBUTE_PFX: Packer

codePointAt(): Character, String, StringBuffer

codePointBefore(): Character, String, String-
Buffer

codePointCount(): Character, String, String-
Buffer

CoderMalfunctionError: java.nio.charset

CoderResult: java.nio.charset

CodeSigner: java.security

CodeSource: java.security

CodingErrorAction: java.nio.charset

CollationElementIterator: java.text

CollationKey: java.text

Collator: java.text

Collection: java.util

CollectionCertStoreParameters: java.security.
cert

Collections: java.util

combine(): DomainCombiner, SubjectDomain-
Combiner

COMBINING_DIACRITICAL_MARKS: Unicode-
Block

COMBINING_HALF_MARKS: UnicodeBlock

COMBINING_MARKS_FOR_SYMBOLS:
UnicodeBlock

COMBINING_SPACING_MARK: Character

command(): Compiler, ProcessBuilder

Comment: org.w3c.dom

comment(): DefaultHandler2, LexicalHandler

COMMENT_NODE: Node

commentChar(): StreamTokenizer

COMMENTS: Pattern

commit(): LoginModule

compact(): ByteBuffer, CharBuffer, Double-
Buffer, FloatBuffer, IntBuffer, LongBuffer,
ShortBuffer

Comparable: java.lang

Comparator: java.util

comparator(): PriorityBlockingQueue, Priority-
Queue, SortedMap, SortedSet, TreeMap,
TreeSet

compare(): Collator, Comparator, Double, Dura-
tion, Float, RuleBasedCollator,
XMLGregorianCalendar

1085 | Class, Method, and Field Index

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

compareAndSet(): AtomicBoolean, AtomicIn-
teger, AtomicIntegerArray, AtomicInteger-
FieldUpdater, AtomicLong, AtomicLongArray,
AtomicLongFieldUpdater, AtomicMark-
ableReference, AtomicReference, AtomicRef-
erenceArray, AtomicReferenceFieldUpdater,
AtomicStampedReference

compareAndSetState(): AbstractQueuedSyn-
chronizer

compareDocumentPosition(): Node

compareTo(): BigDecimal, BigInteger, Boolean,
Byte, ByteBuffer, Calendar, Character, Char-
Buffer, Charset, CollationKey, Comparable,
Date, Double, DoubleBuffer, Enum, File, Float,
FloatBuffer, IntBuffer, Integer, Long, Long-
Buffer, ObjectStreamField, Short, ShortBuffer,
String, URI, UUID

compareToIgnoreCase(): String

COMPILATION_MXBEAN_NAME: Management-
Factory

CompilationMXBean: java.lang.management

compile(): Pattern, XPath

compileClass(): Compiler

compileClasses(): Compiler

Compiler: java.lang

complementOf(): EnumSet

complete(): Calendar

CompletionService: java.util.concurrent

computeFields(): Calendar, GregorianCalendar

computeTime(): Calendar, GregorianCalendar

concat(): String

ConcurrentHashMap: java.util.concurrent

ConcurrentLinkedQueue: java.util.concurrent

ConcurrentMap: java.util.concurrent

ConcurrentModificationException: java.util

Condition: java.util.concurrent.locks

ConditionObject: java.util.concurrent.locks.
AbstractQueuedSynchronizer

CONFIG: Level

config(): Logger

Configuration: javax.security.auth.login

configureBlocking(): AbstractSelect-
ableChannel, SelectableChannel

ConfirmationCallback:
javax.security.auth.callback

connect(): DatagramChannel, DatagramSocket,
DatagramSocketImpl, PipedInputStream,
PipedOutputStream, PipedReader,
PipedWriter, Socket, SocketChannel, Sock-
etImpl, URLConnection

connected: URLConnection

ConnectException: java.net

connectFailed(): ProxySelector

ConnectionPendingException: java.nio.chan-
nels

CONNECTOR_PUNCTUATION: Character

ConsoleHandler: java.util.logging

constantName(): EnumConstantNotPresentEx-
ception

Constructor: java.lang.reflect

CONSTRUCTOR: ElementType

contains(): AbstractCollection, ArrayBlocking-
Queue, ArrayList, Charset, Collection, Concur-
rentHashMap, ConcurrentLinkedQueue, Copy-
OnWriteArrayList, CopyOnWriteArraySet,
DOMStringList, HashSet, Hashtable,
LinkedList, List, NameList, PriorityBlocking-
Queue, Set, String, SynchronousQueue,
TreeSet, Vector

containsAlias(): KeyStore

containsAll(): AbstractCollection, Collection,
CopyOnWriteArrayList, CopyOnWriteArraySet,
List, Set, SynchronousQueue, Vector

containsKey(): AbstractMap, Attributes, Concur-
rentHashMap, EnumMap, HashMap, Hash-
table, IdentityHashMap, Map, TreeMap,
WeakHashMap

containsNS(): NameList

containsValue(): AbstractMap, Attributes,
ConcurrentHashMap, EnumMap, HashMap,
Hashtable, IdentityHashMap, LinkedHashMap,
Map, TreeMap, WeakHashMap

CONTENT_TYPE: Name

contentEquals(): String

ContentHandler: java.net, org.xml.sax

ContentHandlerFactory: java.net

CONTROL: Character

CONTROL_PICTURES: UnicodeBlock

convert(): TimeUnit

CookieHandler: java.net

copy(): Collections

Class, Method, and Field Index | 1086

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Class Index

copyInto(): Vector

copyOf(): EnumSet

CopyOnWriteArrayList: java.util.concurrent

CopyOnWriteArraySet: java.util.concurrent

copyValueOf(): String

cos(): Math, StrictMath

cosh(): Math, StrictMath

count: BufferedInputStream, BufferedOutput-
Stream, ByteArrayInputStream, ByteArrayOut-
putStream, CharArrayReader, CharArray-
Writer, StringBufferInputStream

countDown(): CountDownLatch

CountDownLatch: java.util.concurrent

countObservers(): Observable

countStackFrames(): Thread

countTokens(): StringTokenizer

crc: GZIPInputStream, GZIPOutputStream

CRC32: java.util.zip

create(): DatagramSocketImpl, SocketImpl, URI

createAttribute(): Document

createAttributeNS(): Document

createCDATASection(): Document

createComment(): Document

createContentHandler(): ContentHandlerFac-
tory

createDatagramSocketImpl(): DatagramSock-
etImplFactory

createDocument(): DOMImplementation

createDocumentFragment(): Document

createDocumentType(): DOMImplementation

createElement(): Document

createElementNS(): Document

createEntityReference(): Document

createLineBidi(): Bidi

createNewFile(): File

createProcessingInstruction(): Document

createServerSocket(): ServerSocketFactory

createSocket(): SocketFactory, SSLSocketFac-
tory

createSocketImpl(): SocketImplFactory

createSSLEngine(): SSLContext

createTempFile(): File

createTextNode(): Document

createUnresolved(): InetSocketAddress

createURLStreamHandler(): URLStreamHan-
dlerFactory

createXMLReader(): XMLReaderFactory

createZipEntry(): JarInputStream, ZipInput-
Stream

CredentialException: javax.security.auth.login

CredentialExpiredException: javax.security.
auth.login

CredentialNotFoundException: javax.security.
auth.login

CRL: java.security.cert

CRLException: java.security.cert

CRLSelector: java.security.cert

Currency: java.util

CURRENCY: Field

CURRENCY_SYMBOL: Character

CURRENCY_SYMBOLS: UnicodeBlock

current(): BreakIterator, CharacterIterator,
StringCharacterIterator

currentClassLoader(): SecurityManager

currentLoadedClass(): SecurityManager

currentThread(): Thread

currentTimeMillis(): System

CyclicBarrier: java.util.concurrent

CYPRIOT_SYLLABARY: UnicodeBlock

CYRILLIC: UnicodeBlock

CYRILLIC_SUPPLEMENTARY: UnicodeBlock

D
DASH_PUNCTUATION: Character

DataFormatException: java.util.zip

DatagramChannel: java.nio.channels

DatagramPacket: java.net

DatagramSocket: java.net

DatagramSocketImpl: java.net

DatagramSocketImplFactory: java.net

DataInput: java.io

DataInputStream: java.io

DataOutput: java.io

DataOutputStream: java.io

DatatypeConfigurationException: javax.xml.
datatype

DatatypeConstants: javax.xml.datatype

1087 | Class, Method, and Field Index

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

DatatypeConstants.Field: javax.xml.datatype

DatatypeFactory: javax.xml.datatype

DATATYPEFACTORY_IMPLEMENTATION_
CLASS: DatatypeFactory

DATATYPEFACTORY_PROPERTY: DatatypeFac-
tory

DATE: Calendar, DatatypeConstants

Date: java.util

DATE_FIELD: DateFormat

DateFormat: java.text

DateFormat.Field: java.text

DateFormatSymbols: java.text

DATETIME: DatatypeConstants

DAY_OF_MONTH: Calendar, Field

DAY_OF_WEEK: Calendar, Field

DAY_OF_WEEK_FIELD: DateFormat

DAY_OF_WEEK_IN_MONTH: Calendar, Field

DAY_OF_WEEK_IN_MONTH_FIELD: Date-
Format

DAY_OF_YEAR: Calendar, Field

DAY_OF_YEAR_FIELD: DateFormat

DAYS: DatatypeConstants

DECEMBER: Calendar, DatatypeConstants

DECIMAL128: MathContext

DECIMAL32: MathContext

DECIMAL64: MathContext

DECIMAL_DIGIT_NUMBER: Character

DECIMAL_FLOAT: BigDecimalLayoutForm

DECIMAL_SEPARATOR: Field

DecimalFormat: java.text

DecimalFormatSymbols: java.text

DECLARED: Member

declarePrefix(): NamespaceSupport

DeclHandler: org.xml.sax.ext

decode(): Byte, Certificate, Charset, CharsetDe-
coder, Integer, Long, Short, URLDecoder

decodeLoop(): CharsetDecoder

decrementAndGet(): AtomicInteger, AtomicIn-
tegerArray, AtomicIntegerFieldUpdater,
AtomicLong, AtomicLongArray, AtomicLong-
FieldUpdater

DECRYPT_MODE: Cipher

deepEquals(): Arrays

deepHashCode(): Arrays

deepToString(): Arrays

def: DeflaterOutputStream

DEFAULT: DateFormat, OAEPParameterSpec,
PSpecified, PSSParameterSpec

DEFAULT_COMPRESSION: Deflater

DEFAULT_NS_PREFIX: XMLConstants

DEFAULT_OBJECT_MODEL_URI: XPathFactory

DEFAULT_PROPERTY_NAME: XPathFactory

DEFAULT_STRATEGY: Deflater

defaultCharset(): Charset

defaulted(): GetField

DefaultHandler: org.xml.sax.helpers

DefaultHandler2: org.xml.sax.ext

defaultReadObject(): ObjectInputStream

defaults: Properties

defaultThreadFactory(): Executors

defaultWriteObject(): ObjectOutputStream

defineClass(): ClassLoader, SecureClassLoader

definePackage(): ClassLoader, URLClassLoader

deflate(): Deflater, DeflaterOutputStream

DEFLATE_HINT: Packer, Unpacker

DEFLATED: Deflater, ZipEntry, ZipOutputStream

Deflater: java.util.zip

DeflaterOutputStream: java.util.zip

Delayed: java.util.concurrent

DelayQueue: java.util.concurrent

DelegationPermission: javax.security.auth.
kerberos

delete(): File, StringBuffer, StringBuilder

deleteCharAt(): StringBuffer, StringBuilder

deleteData(): CharacterData

deleteEntry(): KeyStore

deleteObserver(): Observable

deleteObservers(): Observable

deleteOnExit(): File

delimiter(): Scanner

Deprecated: java.lang

deregister(): AbstractSelector

DERIVATION_EXTENSION: TypeInfo

DERIVATION_LIST: TypeInfo

DERIVATION_RESTRICTION: TypeInfo

DERIVATION_UNION: TypeInfo

DES_EDE_KEY_LEN: DESedeKeySpec

DES_KEY_LEN: DESKeySpec

Class, Method, and Field Index | 1088

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Class Index

DESedeKeySpec: javax.crypto.spec

DESERET: UnicodeBlock

desiredAssertionStatus(): Class

DESKeySpec: javax.crypto.spec

destroy(): Destroyable, KerberosKey, Kerberos-
Ticket, PasswordProtection, Process, Thread,
ThreadGroup, X500PrivateCredential

Destroyable: javax.security.auth

DestroyFailedException: javax.security.auth

detail: WriteAbortedException

detectedCharset(): CharsetDecoder

DEVANAGARI: UnicodeBlock

DHGenParameterSpec: javax.crypto.spec

DHKey: javax.crypto.interfaces

DHParameterSpec: javax.crypto.spec

DHPrivateKey: javax.crypto.interfaces

DHPrivateKeySpec: javax.crypto.spec

DHPublicKey: javax.crypto.interfaces

DHPublicKeySpec: javax.crypto.spec

Dictionary: java.util

digest: DigestInputStream, DigestOutputStream

digest(): MessageDigest

DigestException: java.security

DigestInputStream: java.security

DigestOutputStream: java.security

digit(): Character

DINGBATS: UnicodeBlock

DIRECT: Type

DIRECTION_DEFAULT_LEFT_TO_RIGHT: Bidi

DIRECTION_DEFAULT_RIGHT_TO_LEFT: Bidi

DIRECTION_LEFT_TO_RIGHT: Bidi

DIRECTION_RIGHT_TO_LEFT: Bidi

DIRECTIONALITY_ARABIC_NUMBER: Character

DIRECTIONALITY_BOUNDARY_NEUTRAL: Char-
acter

DIRECTIONALITY_COMMON_NUMBER_
SEPARATOR: Character

DIRECTIONALITY_EUROPEAN_NUMBER: Char-
acter

DIRECTIONALITY_EUROPEAN_NUMBER_
SEPARATOR: Character

DIRECTIONALITY_EUROPEAN_NUMBER_
TERMINATOR: Character

DIRECTIONALITY_LEFT_TO_RIGHT: Character

DIRECTIONALITY_LEFT_TO_RIGHT_
EMBEDDING: Character

DIRECTIONALITY_LEFT_TO_RIGHT_
OVERRIDE: Character

DIRECTIONALITY_NONSPACING_MARK: Char-
acter

DIRECTIONALITY_OTHER_NEUTRALS: Character

DIRECTIONALITY_PARAGRAPH_SEPARATOR:
Character

DIRECTIONALITY_POP_DIRECTIONAL_
FORMAT: Character

DIRECTIONALITY_RIGHT_TO_LEFT: Character

DIRECTIONALITY_RIGHT_TO_LEFT_ARABIC:
Character

DIRECTIONALITY_RIGHT_TO_LEFT_
EMBEDDING: Character

DIRECTIONALITY_RIGHT_TO_LEFT_
OVERRIDE: Character

DIRECTIONALITY_SEGMENT_SEPARATOR:
Character

DIRECTIONALITY_UNDEFINED: Character

DIRECTIONALITY_WHITESPACE: Character

directory(): ProcessBuilder

disable(): Compiler

DiscardOldestPolicy: java.util.concurrent.
ThreadPoolExecutor

DiscardPolicy: java.util.concurrent.Thread-
PoolExecutor

disconnect(): DatagramChannel, Datagram-
Socket, DatagramSocketImpl, HttpURLCon-
nection

disjoint(): Collections

displayName(): Charset

divide(): BigDecimal, BigInteger

divideAndRemainder(): BigDecimal, BigInteger

divideToIntegralValue(): BigDecimal

doAs(): Subject

doAsPrivileged(): Subject

DOCTYPE_PUBLIC: OutputKeys

DOCTYPE_SYSTEM: OutputKeys

Document: org.w3c.dom

DOCUMENT_FRAGMENT_NODE: Node

DOCUMENT_NODE: Node

DOCUMENT_POSITION_CONTAINED_BY: Node

DOCUMENT_POSITION_CONTAINS: Node

1089 | Class, Method, and Field Index

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

DOCUMENT_POSITION_DISCONNECTED: Node

DOCUMENT_POSITION_FOLLOWING: Node

DOCUMENT_POSITION_IMPLEMENTATION_
SPECIFIC: Node

DOCUMENT_POSITION_PRECEDING: Node

DOCUMENT_TYPE_NODE: Node

DocumentBuilder: javax.xml.parsers

DocumentBuilderFactory: javax.xml.parsers

Documented: java.lang.annotation

DocumentFragment: org.w3c.dom

DocumentHandler: org.xml.sax

DocumentType: org.w3c.dom

doFinal(): Cipher, Mac

doInput: URLConnection

DOM_OBJECT_MODEL: XPathConstants

DomainCombiner: java.security

DOMConfiguration: org.w3c.dom

DOMError: org.w3c.dom

DOMErrorHandler: org.w3c.dom

DOMException: org.w3c.dom

DOMImplementation: org.w3c.dom

DOMImplementationList: org.w3c.dom

DOMImplementationSource: org.w3c.dom

DOMLocator: javax.xml.transform.dom, org.
w3c.dom

DOMResult: javax.xml.transform.dom

DOMSource: javax.xml.transform.dom

DOMSTRING_SIZE_ERR: DOMException

DOMStringList: org.w3c.dom

DONE: BreakIterator, CharacterIterator

done(): FutureTask

doOutput: URLConnection

doPhase(): KeyAgreement

doPrivileged(): AccessController

DOTALL: Pattern

Double: java.lang

DoubleBuffer: java.nio

doubleToLongBits(): Double

doubleToRawLongBits(): Double

doubleValue(): AtomicInteger, AtomicLong,
BigDecimal, BigInteger, Byte, Double, Float,
Integer, Long, Number, Short

DOWN: RoundingMode

drain(): ObjectOutputStream

drainPermits(): Semaphore

drainTo(): ArrayBlockingQueue, BlockingQueue,
DelayQueue, LinkedBlockingQueue, Priority-
BlockingQueue, SynchronousQueue

DSAKey: java.security.interfaces

DSAKeyPairGenerator: java.security.interfaces

DSAParameterSpec: java.security.spec

DSAParams: java.security.interfaces

DSAPrivateKey: java.security.interfaces

DSAPrivateKeySpec: java.security.spec

DSAPublicKey: java.security.interfaces

DSAPublicKeySpec: java.security.spec

DST_OFFSET: Calendar

DTDHandler: org.xml.sax

dumpStack(): Thread

duplicate(): ByteBuffer, CharBuffer, Double-
Buffer, FloatBuffer, IntBuffer, LongBuffer,
ShortBuffer

DuplicateFormatFlagsException: java.util

DURATION: DatatypeConstants

Duration: javax.xml.datatype

DURATION_DAYTIME: DatatypeConstants

DURATION_YEARMONTH: DatatypeConstants

E
E: Math, StrictMath

ECField: java.security.spec

ECFieldF2m: java.security.spec

ECFieldFp: java.security.spec

ECGenParameterSpec: java.security.spec

ECKey: java.security.interfaces

ECParameterSpec: java.security.spec

ECPoint: java.security.spec

ECPrivateKey: java.security.interfaces

ECPrivateKeySpec: java.security.spec

ECPublicKey: java.security.interfaces

ECPublicKeySpec: java.security.spec

EFFORT: Packer

Element: org.w3c.dom

Class, Method, and Field Index | 1090

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Class Index

element(): AbstractQueue, AnnotationTypeMis-
matchException, LinkedList, Queue

ELEMENT_NODE: Node

elementAt(): Vector

elementCount: Vector

elementData: Vector

elementDecl(): DeclHandler, DefaultHandler2

elementName(): IncompleteAnnotationExcep-
tion

elements(): ConcurrentHashMap, Dictionary,
Hashtable, PermissionCollection, Permissions,
Vector

ElementType: java.lang.annotation

EllipticCurve: java.security.spec

empty(): Stack

EMPTY_LIST: Collections

EMPTY_MAP: Collections

EMPTY_SET: Collections

emptyList(): Collections

emptyMap(): Collections

emptySet(): Collections

EmptyStackException: java.util

enable(): Compiler

enableReplaceObject(): ObjectOutputStream

enableResolveObject(): ObjectInputStream

ENCLOSED_ALPHANUMERICS: UnicodeBlock

ENCLOSED_CJK_LETTERS_AND_MONTHS:
UnicodeBlock

ENCLOSING_MARK: Character

encode(): Certificate, Charset, CharsetEncoder,
URLEncoder

EncodedKeySpec: java.security.spec

encodedParams: SealedObject

encodeLoop(): CharsetEncoder

ENCODING: OutputKeys

ENCRYPT_MODE: Cipher

EncryptedPrivateKeyInfo: javax.crypto

end(): AbstractInterruptibleChannel, AbstractSe-
lector, Deflater, Inflater, Matcher, MatchResult

END_PUNCTUATION: Character

endCDATA(): DefaultHandler2, LexicalHandler

endDocument(): ContentHandler, DefaultH-
andler, DocumentHandler, HandlerBase,
ParserAdapter, XMLFilterImpl, XMLReader-
Adapter

endDTD(): DefaultHandler2, LexicalHandler

endElement(): ContentHandler, DefaultH-
andler, DocumentHandler, HandlerBase,
ParserAdapter, XMLFilterImpl, XMLReader-
Adapter

endEntity(): DefaultHandler2, LexicalHandler

endPrefixMapping(): ContentHandler, Default-
Handler, XMLFilterImpl, XMLReaderAdapter

endsWith(): String

engineAliases(): KeyStoreSpi

engineBuild(): CertPathBuilderSpi

engineContainsAlias(): KeyStoreSpi

engineCreateSSLEngine(): SSLContextSpi

engineDeleteEntry(): KeyStoreSpi

engineDigest(): MessageDigestSpi

engineDoFinal(): CipherSpi, MacSpi

engineDoPhase(): KeyAgreementSpi

engineEntryInstanceOf(): KeyStoreSpi

engineGenerateCertificate(): CertificateFacto-
rySpi

engineGenerateCertificates(): CertificateFacto-
rySpi

engineGenerateCertPath(): CertificateFacto-
rySpi

engineGenerateCRL(): CertificateFactorySpi

engineGenerateCRLs(): CertificateFactorySpi

engineGenerateKey(): KeyGeneratorSpi

engineGenerateParameters(): AlgorithmPa-
rameterGeneratorSpi

engineGeneratePrivate(): KeyFactorySpi

engineGeneratePublic(): KeyFactorySpi

engineGenerateSecret(): KeyAgreementSpi,
SecretKeyFactorySpi

engineGenerateSeed(): SecureRandomSpi

engineGenExemptionBlob(): ExemptionMech-
anismSpi

engineGetBlockSize(): CipherSpi

engineGetCertificate(): KeyStoreSpi

engineGetCertificateAlias(): KeyStoreSpi

engineGetCertificateChain(): KeyStoreSpi

engineGetCertificates(): CertStoreSpi

engineGetCertPathEncodings(): CertificateFac-
torySpi

engineGetClientSessionContext(): SSLCon-
textSpi

1091 | Class, Method, and Field Index

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

engineGetCreationDate(): KeyStoreSpi

engineGetCRLs(): CertStoreSpi

engineGetDigestLength(): MessageDigestSpi

engineGetEncoded(): AlgorithmParametersSpi

engineGetEntry(): KeyStoreSpi

engineGetIV(): CipherSpi

engineGetKey(): KeyStoreSpi

engineGetKeyManagers(): KeyManagerFacto-
rySpi

engineGetKeySize(): CipherSpi

engineGetKeySpec(): KeyFactorySpi, SecretKey-
FactorySpi

engineGetMacLength(): MacSpi

engineGetOutputSize(): CipherSpi, Exemption-
MechanismSpi

engineGetParameter(): SignatureSpi

engineGetParameters(): CipherSpi, Signatu-
reSpi

engineGetParameterSpec(): AlgorithmParam-
etersSpi

engineGetServerSessionContext(): SSLCon-
textSpi

engineGetServerSocketFactory(): SSLCon-
textSpi

engineGetSocketFactory(): SSLContextSpi

engineGetTrustManagers(): TrustManagerFac-
torySpi

engineInit(): AlgorithmParameterGeneratorSpi,
AlgorithmParametersSpi, CipherSpi, Exemp-
tionMechanismSpi, KeyAgreementSpi,
KeyGeneratorSpi, KeyManagerFactorySpi,
MacSpi, SSLContextSpi, TrustManagerFacto-
rySpi

engineInitSign(): SignatureSpi

engineInitVerify(): SignatureSpi

engineIsCertificateEntry(): KeyStoreSpi

engineIsKeyEntry(): KeyStoreSpi

engineLoad(): KeyStoreSpi

engineNextBytes(): SecureRandomSpi

engineReset(): MacSpi, MessageDigestSpi

engineSetCertificateEntry(): KeyStoreSpi

engineSetEntry(): KeyStoreSpi

engineSetKeyEntry(): KeyStoreSpi

engineSetMode(): CipherSpi

engineSetPadding(): CipherSpi

engineSetParameter(): SignatureSpi

engineSetSeed(): SecureRandomSpi

engineSign(): SignatureSpi

engineSize(): KeyStoreSpi

engineStore(): KeyStoreSpi

engineToString(): AlgorithmParametersSpi

engineTranslateKey(): KeyFactorySpi, Secret-
KeyFactorySpi

engineUnwrap(): CipherSpi

engineUpdate(): CipherSpi, MacSpi, MessageDi-
gestSpi, SignatureSpi

engineValidate(): CertPathValidatorSpi

engineVerify(): SignatureSpi

engineWrap(): CipherSpi

ENGLISH: Locale

enqueue(): Reference

ensureCapacity(): ArrayList, StringBuffer, Vector

entering(): Logger

Entity: org.w3c.dom

ENTITY_NODE: Node

ENTITY_REFERENCE_NODE: Node

EntityReference: org.w3c.dom

EntityResolver: org.xml.sax

EntityResolver2: org.xml.sax.ext

entries(): JarFile, ZipFile

Entry: java.security.KeyStore, java.util.Map

entryInstanceOf(): KeyStore

entrySet(): AbstractMap, Attributes, Concur-
rentHashMap, EnumMap, HashMap, Hash-
table, IdentityHashMap, Map, Provider,
TreeMap, WeakHashMap

Enum: java.lang

EnumConstantNotPresentException: java.lang

enumerate(): Thread, ThreadGroup

Enumeration: java.util

enumeration(): Collections

EnumMap: java.util

EnumSet: java.util

enumType(): EnumConstantNotPresentExcep-
tion

environment(): ProcessBuilder

eof: OptionalDataException

Class, Method, and Field Index | 1092

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Class Index

EOFException: java.io

eolIsSignificant(): StreamTokenizer

eos: GZIPInputStream

EQUAL: DatatypeConstants

equals(): AbstractList, AbstractMap, AbstractSet,
AccessControlContext, AllPermission, Annota-
tion, Arrays, Attribute, Attributes, BasicPer-
mission, BigDecimal, BigInteger, BitSet,
Boolean, Byte, ByteBuffer, Calendar, Certifi-
cate, CertPath, Character, CharBuffer, Charset,
ChoiceFormat, CodeSigner, CodeSource, Colla-
tionKey, Collator, Collection, Comparator,
Constructor, CopyOnWriteArrayList, Date,
DateFormat, DateFormatSymbols, Decimal-
Format, DecimalFormatSymbols, Delegation-
Permission, Double, DoubleBuffer, Duration,
ECFieldF2m, ECFieldFp, ECPoint, EllipticCurve,
Entry, Enum, EnumMap, Field, FieldPosition,
File, FilePermission, Float, FloatBuffer, Grego-
rianCalendar, Hashtable, Identity, Identity-
HashMap, Inet4Address, Inet6Address,
InetAddress, InetSocketAddress, IntBuffer,
Integer, KerberosPrincipal, Level, List, Locale,
Long, LongBuffer, Manifest, Map, MathCon-
text, MessageFormat, Method, Name,
NetworkInterface, NumberFormat, Object,
ParsePosition, Permission, Principal, Private-
CredentialPermission, PropertyPermission,
Proxy, QName, RC2ParameterSpec,
RC5ParameterSpec, RuleBasedCollator,
SecretKeySpec, ServicePermission, Set, Short,
ShortBuffer, SimpleDateFormat, SimpleTime-
Zone, SocketPermission, StackTraceElement,
String, StringCharacterIterator, Subject,
Subset, Timestamp, UnresolvedPermission,
URI, URL, URLStreamHandler, UUID, Vector,
X500Principal, X509CRL, X509CRLEntry,
XMLGregorianCalendar

equalsIgnoreCase(): String

ERA: Calendar, Field

ERA_FIELD: DateFormat

err: FileDescriptor, System

Error: java.lang

ERROR: ConfirmationCallback, Packer, TextOut-
putCallback

error(): DefaultHandler, ErrorHandler, ErrorLis-
tener, ErrorManager, HandlerBase, XMLFilter-
Impl

ErrorHandler: org.xml.sax

ErrorListener: javax.xml.transform

ErrorManager: java.util.logging

ETHIOPIC: UnicodeBlock

evaluate(): XPath, XPathExpression, XPathFunc-
tion

EventListener: java.util

EventListenerProxy: java.util

EventObject: java.util

Exception: java.lang

ExceptionInInitializerError: java.lang

exchange(): Exchanger

Exchanger: java.util.concurrent

exec(): Runtime

execute(): Executor, ScheduledThreadPoolExec-
utor, ThreadPoolExecutor

ExecutionException: java.util.concurrent

Executor: java.util.concurrent

ExecutorCompletionService: java.util.concur-
rent

Executors: java.util.concurrent

ExecutorService: java.util.concurrent

ExemptionMechanism: javax.crypto

ExemptionMechanismException: javax.crypto

ExemptionMechanismSpi: javax.crypto

exists(): File

exit(): Runtime, System

exiting(): Logger

exitValue(): Process

exp(): Math, StrictMath

expm1(): Math, StrictMath

EXPONENT: Field

EXPONENT_SIGN: Field

EXPONENT_SYMBOL: Field

exportNode(): AbstractPreferences, Preferences

exportSubtree(): AbstractPreferences, Prefer-
ences

EXTENSION_INSTALLATION: Name

EXTENSION_LIST: Name

EXTENSION_NAME: Name

externalEntityDecl(): DeclHandler,
DefaultHandler2

Externalizable: java.io

1093 | Class, Method, and Field Index

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

F
F0: RSAKeyGenParameterSpec

F4: RSAKeyGenParameterSpec

FactoryConfigurationError: javax.xml.parsers

FailedLoginException: javax.security.auth.login

FALSE: Boolean, Packer, Unpacker

fatalError(): DefaultHandler, ErrorHandler,
ErrorListener, HandlerBase, XMLFilterImpl

fd: DatagramSocketImpl, SocketImpl

FEATURE: DOMResult, DOMSource, SAXResult,
SAXSource, SAXTransformerFactory, Stream-
Result, StreamSource

FEATURE_SECURE_PROCESSING: XMLConstants

FEATURE_XMLFILTER: SAXTransformerFactory

FEBRUARY: Calendar, DatatypeConstants

Field: java.lang.reflect, java.text.DateFormat,
java.text.Format, java.text.MessageFormat,
java.text.NumberFormat, javax.xml.datatype.
DatatypeConstants

FIELD: ElementType

FIELD_ATTRIBUTE_PFX: Packer

FIELD_COUNT: Calendar

FIELD_UNDEFINED: DatatypeConstants

FieldPosition: java.text

fields: Calendar

File: java.io

FileChannel: java.nio.channels

FileChannel.MapMode: java.nio.channels

FileDescriptor: java.io

FileFilter: java.io

FileHandler: java.util.logging

FileInputStream: java.io

FileLock: java.nio.channels

FileLockInterruptionException: java.nio.chan-
nels

FilenameFilter: java.io

FileNameMap: java.net

FileNotFoundException: java.io

FileOutputStream: java.io

FilePermission: java.io

FileReader: java.io

FileWriter: java.io

fill(): Arrays, Collections, InflaterInputStream

fillInStackTrace(): Throwable

Filter: java.util.logging

FILTERED: Deflater

FilterInputStream: java.io

FilterOutputStream: java.io

FilterReader: java.io

FilterWriter: java.io

FINAL: Modifier

FINAL_QUOTE_PUNCTUATION: Character

finalize(): Deflater, ExemptionMechanism,
FileInputStream, FileOutputStream, Inflater,
Object, ThreadPoolExecutor, ZipFile

find(): Matcher

findClass(): ClassLoader, URLClassLoader

findInLine(): Scanner

findLibrary(): ClassLoader

findLoadedClass(): ClassLoader

findMonitorDeadlockedThreads(): ThreadMX-
Bean

findResource(): ClassLoader, URLClassLoader

findResources(): ClassLoader, URLClassLoader

findSystemClass(): ClassLoader

findWithinHorizon(): Scanner

FINE: Level

fine(): Logger

FINER: Level

finer(): Logger

FINEST: Level

finest(): Logger

finish(): Deflater, DeflaterOutputStream,
GZIPOutputStream, ZipOutputStream

finishConnect(): SocketChannel

FINISHED: HandshakeStatus

finished(): Deflater, Inflater

first(): BreakIterator, CharacterIterator, Sort-
edSet, StringCharacterIterator, TreeSet

firstElement(): Vector

firstKey(): SortedMap, TreeMap

fixedContentLength: HttpURLConnection

flags(): Pattern

flip(): BitSet, Buffer

flipBit(): BigInteger

Float: java.lang

Class, Method, and Field Index | 1094

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Class Index

FloatBuffer: java.nio

floatToIntBits(): Float

floatToRawIntBits(): Float

floatValue(): AtomicInteger, AtomicLong,
BigDecimal, BigInteger, Byte, Double, Float,
Integer, Long, Number, Short

FLOOR: RoundingMode

floor(): Math, StrictMath

flush(): AbstractPreferences, BufferedOutput-
Stream, BufferedWriter, CharArrayWriter,
CharsetDecoder, CharsetEncoder, CipherOut-
putStream, DataOutputStream, FilterOutput-
Stream, FilterWriter, Flushable, Formatter,
Handler, MemoryHandler, ObjectOutput,
ObjectOutputStream, OutputStream, Output-
StreamWriter, PipedOutputStream,
PipedWriter, Preferences, PrintStream, Print-
Writer, StreamHandler, StringWriter, Writer

FLUSH_FAILURE: ErrorManager

Flushable: java.io

flushSpi(): AbstractPreferences

following(): BreakIterator

force(): FileChannel, MappedByteBuffer

forClass(): ObjectStreamClass

forDigit(): Character

Format: java.text

FORMAT: Character

format(): ChoiceFormat, DateFormat, Decimal-
Format, Format, Formatter, MessageFormat,
NumberFormat, PrintStream, PrintWriter,
SimpleDateFormat, SimpleFormatter, String,
XMLFormatter

Format.Field: java.text

FORMAT_FAILURE: ErrorManager

FormatFlagsConversionMismatchException:
java.util

formatMessage(): Formatter

Formattable: java.util

FormattableFlags: java.util

Formatter: java.util, java.util.logging

Formatter.BigDecimalLayoutForm: java.util

FormatterClosedException: java.util

formatTo(): Formattable

formatToCharacterIterator(): DecimalFormat,
Format, MessageFormat, SimpleDateFormat

forName(): Charset, Class, UnicodeBlock

foundType(): AnnotationTypeMismatchExcep-
tion

FRACTION: Field

FRACTION_FIELD: NumberFormat

FRANCE: Locale

freeMemory(): Runtime

FRENCH: Locale

frequency(): Collections

FRIDAY: Calendar

from(): MemoryNotificationInfo, MemoryUsage,
ThreadInfo

fromString(): UUID

FULL: DateFormat

FULL_DECOMPOSITION: Collator

Future: java.util.concurrent

FutureTask: java.util.concurrent

G
GARBAGE_COLLECTOR_MXBEAN_DOMAIN_

TYPE: ManagementFactory

GarbageCollectorMXBean: java.lang.manage-
ment

GatheringByteChannel: java.nio.channels

gc(): MemoryMXBean, Runtime, System

gcd(): BigInteger

GDAY: DatatypeConstants

GENERAL_PUNCTUATION: UnicodeBlock

GeneralSecurityException: java.security

generateCertificate(): CertificateFactory

generateCertificates(): CertificateFactory

generateCertPath(): CertificateFactory

generateCRL(): CertificateFactory

generateCRLs(): CertificateFactory

generateKey(): KeyGenerator

generateKeyPair(): KeyPairGenerator, KeyPair-
GeneratorSpi

generateParameters(): AlgorithmParameter-
Generator

1095 | Class, Method, and Field Index

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

generatePrivate(): KeyFactory

generatePublic(): KeyFactory

generateSecret(): KeyAgreement, SecretKey-
Factory

generateSeed(): SecureRandom

GENERIC_FAILURE: ErrorManager

GenericArrayType: java.lang.reflect

GenericDeclaration: java.lang.reflect

GenericSignatureFormatError: java.lang.reflect

genExemptionBlob(): ExemptionMechanism

genKeyPair(): KeyPairGenerator

GEOMETRIC_SHAPES: UnicodeBlock

GEORGIAN: UnicodeBlock

GERMAN: Locale

GERMANY: Locale

get(): AbstractList, AbstractMap, AbstractPrefer-
ences, AbstractSequentialList, Array, Array-
List, AtomicBoolean, AtomicInteger, Atomi-
cIntegerArray, AtomicIntegerFieldUpdater,
AtomicLong, AtomicLongArray, AtomicLong-
FieldUpdater, AtomicMarkableReference,
AtomicReference, AtomicReferenceArray,
AtomicReferenceFieldUpdater, AtomicS-
tampedReference, Attributes, BitSet, Byte-
Buffer, Calendar, CharBuffer, Concur-
rentHashMap, CookieHandler,
CopyOnWriteArrayList, Dictionary, Double-
Buffer, EnumMap, Field, FloatBuffer, Future,
FutureTask, GetField, HashMap, Hashtable,
IdentityHashMap, IntBuffer, LinkedHashMap,
LinkedList, List, LongBuffer, Map, Phantom-
Reference, Preferences, Reference, Response-
Cache, ShortBuffer, SoftReference, Thread-
Local, TreeMap, Vector, WeakHashMap

get2DigitYearStart(): SimpleDateFormat

getA(): EllipticCurve

getAbsoluteFile(): File

getAbsolutePath(): File

getAcceptedIssuers(): X509TrustManager

getActions(): AllPermission, BasicPermission,
FilePermission, Permission, PrivateCreden-
tialPermission, PropertyPermission, ServiceP-
ermission, SocketPermission, UnresolvedPer-
mission

getActiveCount(): ThreadPoolExecutor

getActualMaximum(): Calendar,
GregorianCalendar

getActualMinimum(): Calendar,
 GregorianCalendar

getActualTypeArguments(): Parameterized-
Type

getAddress(): DatagramPacket, Inet4Address,
Inet6Address, InetAddress, InetSocketAddress

getAdler(): Deflater, Inflater

getAffineX(): ECPoint

getAffineY(): ECPoint

getAlgName(): EncryptedPrivateKeyInfo

getAlgorithm(): AlgorithmParameterGener-
ator, AlgorithmParameters, CertPathBuilder,
CertPathValidator, Cipher, KerberosKey, Key,
KeyAgreement, KeyFactory, KeyGenerator,
KeyManagerFactory, KeyPairGenerator, Mac,
MessageDigest, PSource, SealedObject,
SecretKeyFactory, SecretKeySpec, Secure-
Random, Service, Signature, SignedObject,
TrustManagerFactory

getAlgorithmProperty(): Security

getAlgorithms(): Security

getAlgParameters(): EncryptedPrivateKeyInfo

getAlias(): X500PrivateCredential

getAllAttributeKeys(): AttributedCharacterIter-
ator

getAllByName(): InetAddress

getAllLoadedClasses(): Instrumentation

getAllowUserInteraction(): URLConnection

getAllStackTraces(): Thread

getAllThreadIds(): ThreadMXBean

getAmPmStrings(): DateFormatSymbols

getAndAdd(): AtomicInteger, AtomicInteger-
Array, AtomicIntegerFieldUpdater, Atomi-
cLong, AtomicLongArray, AtomicLongFieldUp-
dater

getAndDecrement(): AtomicInteger, AtomicIn-
tegerArray, AtomicIntegerFieldUpdater,
AtomicLong, AtomicLongArray, AtomicLong-
FieldUpdater

getAndIncrement(): AtomicInteger, AtomicIn-
tegerArray, AtomicIntegerFieldUpdater,
AtomicLong, AtomicLongArray, AtomicLong-
FieldUpdater

getAndSet(): AtomicBoolean, AtomicInteger,
AtomicIntegerArray, AtomicIntegerFieldUp-
dater, AtomicLong, AtomicLongArray, Atomi-
cLongFieldUpdater, AtomicReference, Atomi-
cReferenceArray,
AtomicReferenceFieldUpdater

Class, Method, and Field Index | 1096

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Class Index

getAnnotation(): AccessibleObject, Annotat-
edElement, Class, Constructor, Field, Method,
Package

getAnnotations(): AccessibleObject, Annotat-
edElement, Class, Package

getAnonymousLogger(): Logger

getAppConfigurationEntry(): Configuration

getApplicationBufferSize(): SSLSession

getArch(): OperatingSystemMXBean

getArgumentClass(): IllegalFormatConversion-
Exception

getAssociatedStylesheet(): TransformerFactory

getAttribute(): AttributedCharacterIterator,
DocumentBuilderFactory, Element, Service,
TransformerFactory

getAttributeNode(): Element

getAttributeNodeNS(): Element

getAttributeNS(): Element

getAttributes(): AttributedCharacterIterator,
JarEntry, JarURLConnection, Manifest, Node

getAttributeTypeInfo(): TypeInfoProvider

getAuthority(): URI, URL

getAuthorityKeyIdentifier(): X509CertSelector

getAuthTime(): KerberosTicket

getAvailableIDs(): TimeZone

getAvailableLocales(): BreakIterator, Calendar,
Collator, DateFormat, Locale, NumberFormat

getAvailableProcessors(): OperatingSystem-
MXBean

getB(): EllipticCurve

getBaseLevel(): Bidi

getBaseURI(): Node

getBasicConstraints(): X509Certificate,
X509CertSelector

getBeginIndex(): CharacterIterator, FieldPosi-
tion, StringCharacterIterator

getBlockedCount(): ThreadInfo

getBlockedTime(): ThreadInfo

getBlockSize(): Cipher

getBody(): CacheRequest, CacheResponse

getBoolean(): AbstractPreferences, Array,
Boolean, Field, Preferences

getBootClassPath(): RuntimeMXBean

getBounds(): TypeVariable

getBroadcast(): DatagramSocket

getBuffer(): StringWriter

getBundle(): ResourceBundle

getByAddress(): Inet6Address, InetAddress

getByInetAddress(): NetworkInterface

getByName(): InetAddress, NetworkInterface

getByte(): Array, Field

getByteArray(): AbstractPreferences, Prefer-
ences

getByteOffset(): DOMLocator

getBytes(): String

getBytesRead(): Deflater, Inflater

getByteStream(): InputSource

getBytesWritten(): Deflater, Inflater

getCA(): TrustAnchor

getCalendar(): DateFormat

getCalendarField(): Field

getCallback(): UnsupportedCallbackException

getCallbackHandler(): CallbackHandlerProtec-
tion

getCAName(): TrustAnchor

getCanonicalFile(): File

getCanonicalHostName(): InetAddress

getCanonicalName(): Class

getCanonicalPath(): File

getCAPublicKey(): TrustAnchor

getCause(): ClassNotFoundException, Exceptio-
nInInitializerError, InvocationTargetExcep-
tion, PrivilegedActionException, Throwable,
TransformerException, UndeclaredThrowable-
Exception, WriteAbortedException, XPathEx-
ception

getCertificate(): KeyStore, PrivateKeyEntry,
X500PrivateCredential, X509CertSelector

getCertificateAlias(): KeyStore

getCertificateChain(): KeyStore, PrivateKey-
Entry, X509KeyManager

getCertificateChecking(): X509CRLSelector

getCertificateIssuer(): X509CRLEntry

getCertificates(): CertPath, CertStore, CodeS-
ource, JarEntry, JarURLConnection

getCertificateValid(): X509CertSelector

getCertPath(): CertPathBuilderResult, CertPath-
ValidatorException, PKIXCertPathBuilderRe-
sult

getCertPathCheckers(): PKIXParameters

getCertPathEncodings(): CertificateFactory

1097 | Class, Method, and Field Index

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

getCertStoreParameters(): CertStore

getCertStores(): PKIXParameters

getChannel(): DatagramSocket, FileInput-
Stream, FileOutputStream, RandomAccess-
File, ServerSocket, Socket

getChar(): Array, ByteBuffer, Field

getCharacterInstance(): BreakIterator

getCharacterStream(): InputSource

getChars(): String, StringBuffer

getCharsetName(): IllegalCharsetNameExcep-
tion, UnsupportedCharsetException

getChecksum(): CheckedInputStream, Checked-
OutputStream

getChild(): AbstractPreferences, NodeChan-
geEvent

getChildNodes(): Node

getChildren(): PolicyNode

getChoices(): ChoiceCallback

getCipherSuite(): HandshakeCompletedEvent,
HttpsURLConnection, SecureCacheResponse,
SSLSession

getClass(): Object

getClassContext(): SecurityManager

getClasses(): Class

getClassLoader(): Class, ProtectionDomain

getClassLoadingMXBean(): ManagementFac-
tory

getClassName(): MissingResourceException,
Service, StackTraceElement

getClassPath(): RuntimeMXBean

getClient(): KerberosTicket

getClientAddresses(): KerberosTicket

getClientAliases(): X509KeyManager

getClientSessionContext(): SSLContext

getCodePoint(): IllegalFormatCodePointExcep-
tion

getCodeSigners(): CodeSource, JarEntry

getCodeSource(): ProtectionDomain

getCofactor(): ECParameterSpec

getCollationElementIterator(): RuleBasedCol-
lator

getCollationKey(): Collator, RuleBasedCollator

getCollection(): CollectionCertStoreParameters

getCollectionCount(): GarbageCollectorMXBean

getCollectionTime(): GarbageCollectorMXBean

getCollectionUsage(): MemoryPoolMXBean

getCollectionUsageThreshold(): Memory-
PoolMXBean

getCollectionUsageThresholdCount(): Memo-
ryPoolMXBean

getColumnNumber(): DOMLocator, Locator,
LocatorImpl, SAXParseException, SourceLo-
cator

getComment(): ZipEntry

getCommitted(): MemoryUsage

getCompilationMXBean(): ManagementFac-
tory

getCompletedTaskCount(): ThreadPoolExec-
utor

getComponentType(): Class

getCompressedSize(): ZipEntry

getConfiguration(): Configuration

getConnectTimeout(): URLConnection

getConstructor(): Class

getConstructors(): Class

getContent(): ContentHandler, URL, URLCon-
nection

getContentEncoding(): URLConnection

getContentHandler(): ParserAdapter, Valida-
torHandler, XMLFilterImpl, XMLReader

getContentLength(): URLConnection

getContents(): ListResourceBundle

getContentType(): URLConnection

getContentTypeFor(): FileNameMap

getContext(): AccessController

getContextClassLoader(): Thread

getContinueExistingPeriodicTasksAfterShutdo
wnPolicy(): ScheduledThreadPoolExecutor

getControlFlag(): AppConfigurationEntry

getConversion(): FormatFlagsConversionMis-
matchException, IllegalFormatConversionEx-
ception, UnknownFormatConversionException

getCorePoolSize(): ThreadPoolExecutor

getCount(): CountDownLatch, MemoryNotifica-
tionInfo

getCountry(): Locale

getCrc(): ZipEntry

getCreationDate(): KeyStore

getCreationTime(): SSLSession

getCredentialClass(): PrivateCredentialPermission

getCriticalExtensionOIDs(): X509Extension

getCRLs(): CertStore

Class, Method, and Field Index | 1098

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Class Index

getCrtCoefficient(): RSAMultiPrimePrivate-
CrtKey, RSAMultiPrimePrivateCrtKeySpec,
RSAOtherPrimeInfo, RSAPrivateCrtKey,
RSAPrivateCrtKeySpec

getCurrency(): DecimalFormat, DecimalFormat-
Symbols, NumberFormat

getCurrencyCode(): Currency

getCurrencyInstance(): NumberFormat

getCurrencySymbol(): DecimalFormatSymbols

getCurrentThreadCpuTime(): ThreadMXBean

getCurrentThreadUserTime(): ThreadMXBean

getCurve(): ECParameterSpec

getDaemonThreadCount(): ThreadMXBean

getData(): CharacterData, DatagramPacket,
ProcessingInstruction

getDate(): Date, PKIXParameters, URLConnec-
tion

getDateAndTime(): X509CRLSelector

getDateFormatSymbols(): SimpleDateFormat

getDateInstance(): DateFormat

getDateTimeInstance(): DateFormat

getDay(): Date, XMLGregorianCalendar

getDays(): Duration

getDecimalFormatSymbols(): DecimalFormat

getDecimalSeparator(): DecimalFormatSym-
bols

getDeclaredAnnotations(): AccessibleObject,
AnnotatedElement, Class, Constructor, Field,
Method, Package

getDeclaredClasses(): Class

getDeclaredConstructor(): Class

getDeclaredConstructors(): Class

getDeclaredField(): Class

getDeclaredFields(): Class

getDeclaredMethod(): Class

getDeclaredMethods(): Class

getDeclaredPrefixes(): NamespaceSupport

getDeclaringClass(): Class, Constructor, Enum,
Field, Member, Method

getDecomposition(): Collator

getDefault(): CookieHandler, Locale, ProxySe-
lector, ResponseCache, ServerSocketFactory,
SocketFactory, SSLServerSocketFactory,
SSLSocketFactory, TimeZone

getDefaultAlgorithm(): KeyManagerFactory,
TrustManagerFactory

getDefaultAllowUserInteraction(): URLCon-
nection

getDefaultChoice(): ChoiceCallback

getDefaultCipherSuites(): SSLServerSocketFac-
tory, SSLSocketFactory

getDefaultFractionDigits(): Currency

getDefaultHostnameVerifier(): HttpsURLCon-
nection

getDefaultName(): NameCallback

getDefaultOption(): ConfirmationCallback

getDefaultPort(): URL, URLStreamHandler

getDefaultRequestProperty(): URLConnection

getDefaultSSLSocketFactory(): HttpsURLCon-
nection

getDefaultText(): TextInputCallback

getDefaultType(): CertPathBuilder, CertPath-
Validator, CertStore, KeyStore

getDefaultUncaughtExceptionHandler():
Thread

getDefaultUseCaches(): URLConnection

getDefaultValue(): Method

getDefinitionClass(): ClassDefinition

getDefinitionClassFile(): ClassDefinition

getDelay(): Delayed

getDelegatedTask(): SSLEngine

getDepth(): PolicyNode

getDescription(): PatternSyntaxException

getDigestAlgorithm(): MGF1ParameterSpec,
OAEPParameterSpec, PSSParameterSpec

getDigestLength(): MessageDigest

getDigit(): DecimalFormatSymbols

getDirectionality(): Character

getDisplayCountry(): Locale

getDisplayLanguage(): Locale

getDisplayName(): Locale, NetworkInterface,
TimeZone

getDisplayVariant(): Locale

getDoctype(): Document

getDocumentElement(): Document

getDocumentURI(): Document

getDoInput(): URLConnection

getDomainCombiner(): AccessControlContext

getDomConfig(): Document

1099 | Class, Method, and Field Index

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

getDOMImplementation(): DocumentBuilder,
DOMImplementationSource

getDOMImplementationList(): DOMImple-
mentationSource

getDoOutput(): URLConnection

getDouble(): AbstractPreferences, Array, Byte-
Buffer, Field, Preferences

getDSTSavings(): SimpleTimeZone, TimeZone

getDTDHandler(): ParserAdapter, XMLFilter-
Impl, XMLReader

getEffectiveKeyBits(): RC2ParameterSpec

getElementById(): Document

getElementsByTagName(): Document,
Element

getElementsByTagNameNS(): Document,
Element

getElementTypeInfo(): TypeInfoProvider

getEnabledCipherSuites(): SSLEngine, SSLServ-
erSocket, SSLSocket

getEnabledProtocols(): SSLEngine, SSLServer-
Socket, SSLSocket

getEnableSessionCreation(): SSLEngine,
SSLServerSocket, SSLSocket

getEnclosingClass(): Class

getEnclosingConstructor(): Class

getEnclosingMethod(): Class

getEncoded(): AlgorithmParameters, Certifi-
cate, CertPath, EncodedKeySpec, Encrypt-
edPrivateKeyInfo, KerberosKey, Kerberos-
Ticket, Key, PKCS8EncodedKeySpec,
PolicyQualifierInfo, SecretKeySpec,
X500Principal, X509CRL, X509CRLEntry,
X509EncodedKeySpec

getEncoding(): Handler, InputSource, Input-
StreamReader, Locator2, Locator2Impl,
OutputStreamWriter

getEncodings(): CertPath

getEncryptedData(): EncryptedPrivateKeyInfo

getEndIndex(): CharacterIterator, FieldPosition,
StringCharacterIterator

getEndTime(): KerberosTicket

getEntities(): DocumentType

getEntityResolver(): ParserAdapter, XMLFilter-
Impl, XMLReader

getEntries(): Manifest

getEntry(): JarFile, KeyStore, ZipFile

getEntryName(): JarURLConnection

getEnumConstants(): Class

getenv(): System

getEon(): XMLGregorianCalendar

getEonAndYear(): XMLGregorianCalendar

getEras(): DateFormatSymbols

getErrorHandler(): ParserAdapter, SchemaFac-
tory, Validator, ValidatorHandler, XMLFilter-
Impl, XMLReader

getErrorIndex(): ParsePosition

getErrorListener(): Transformer, Transformer-
Factory

getErrorManager(): Handler

getErrorOffset(): ParseException

getErrorStream(): HttpURLConnection, Process

getException(): ClassNotFoundException,
ExceptionInInitializerError, FactoryConfigura-
tionError, PrivilegedActionException, SAXEx-
ception, TransformerException, Transformer-
FactoryConfigurationError

getExceptionTypes(): Constructor, Method

getExclusiveQueuedThreads(): Abstract-
QueuedSynchronizer

getExecuteExistingDelayedTasksAfterShutdow
nPolicy(): ScheduledThreadPoolExecutor

getExemptionMechanism(): Cipher

getExpectedPolicies(): PolicyNode

getExpiration(): URLConnection

getExponent(): RSAOtherPrimeInfo

getExponentSize(): DHGenParameterSpec

getExtendedKeyUsage(): X509Certificate,
X509CertSelector

getExtensionValue(): X509Extension

getExternalSubset(): DefaultHandler2,
EntityResolver2

getExtra(): ZipEntry

getFD(): FileInputStream, FileOutputStream,
RandomAccessFile

getFeature(): DocumentBuilderFactory,
DOMImplementation, Node, ParserAdapter,
SAXParserFactory, SchemaFactory, Transform-
erFactory, Validator, ValidatorHandler,
XMLFilterImpl, XMLReader, XPathFactory

GetField: java.io.ObjectInputStream

Class, Method, and Field Index | 1100

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Class Index

getField(): Class, Duration, EllipticCurve, Field-
Position, ObjectStreamClass

getFieldAttribute(): FieldPosition

getFields(): Class, ObjectStreamClass

getFieldSize(): ECField, ECFieldF2m, ECFieldFp

getFile(): URL

getFileDescriptor(): DatagramSocketImpl,
SocketImpl

getFileName(): StackTraceElement

getFileNameMap(): URLConnection

getFilePointer(): RandomAccessFile

getFilter(): Handler, Logger

getFirst(): LinkedList

getFirstChild(): Node

getFirstDayOfWeek(): Calendar

getFirstQueuedThread(): AbstractQueuedSyn-
chronizer

getFlags(): DuplicateFormatFlagsException,
FormatFlagsConversionMismatchException,
IllegalFormatFlagsException, KerberosTicket,
UnknownFormatFlagsException

getFloat(): AbstractPreferences, Array, Byte-
Buffer, Field, Preferences

getFollowRedirects(): HttpURLConnection

getFormat(): Certificate, EncodedKeySpec,
KerberosKey, Key, PKCS8EncodedKeySpec,
SecretKeySpec, X509EncodedKeySpec

getFormats(): ChoiceFormat, MessageFormat

getFormatsByArgumentIndex(): Message-
Format

getFormatSpecifier(): MissingFormatArgumen-
tException, MissingFormatWidthException

getFormatter(): Handler

getFractionalSecond(): XMLGregorianCalendar

getFragment(): URI

getG(): DHParameterSpec, DHPrivateKeySpec,
DHPublicKeySpec, DSAParameterSpec, DSAPa-
rams, DSAPrivateKeySpec, DSAPublicKeySpec

getGarbageCollectorMXBeans(): Manage-
mentFactory

getGenerator(): ECParameterSpec

getGenericComponentType(): GenericArray-
Type

getGenericDeclaration(): TypeVariable

getGenericExceptionTypes(): Constructor,
Method

getGenericInterfaces(): Class

getGenericParameterTypes(): Constructor,
Method

getGenericReturnType(): Method

getGenericSuperclass(): Class

getGenericType(): Field

getGreatestMinimum(): Calendar, Gregorian-
Calendar

getGregorianChange(): GregorianCalendar

getGroupingSeparator(): DecimalFormatSym-
bols

getGroupingSize(): DecimalFormat

getGuarantor(): Certificate

getHandler(): SAXResult

getHandlers(): Logger

getHandshakeStatus(): SSLEngine, SSLEngi-
neResult

getHead(): Formatter, XMLFormatter

getHeaderField(): HttpURLConnection, URLCon-
nection

getHeaderFieldDate(): HttpURLConnection,
URLConnection

getHeaderFieldInt(): URLConnection

getHeaderFieldKey(): HttpURLConnection,
URLConnection

getHeaderFields(): URLConnection

getHeaders(): CacheResponse

getHeapMemoryUsage(): MemoryMXBean

getHoldCount(): ReentrantLock

getHost(): URI, URL

getHostAddress(): Inet4Address, Inet6Address,
InetAddress, URLStreamHandler

getHostName(): InetAddress, InetSocketAd-
dress

getHostnameVerifier(): HttpsURLConnection

getHour(): XMLGregorianCalendar

getHours(): Date, Duration

getID(): TimeZone

getId(): Field, SSLSession, Thread

getIdentity(): IdentityScope

getIds(): SSLSessionContext

getIfModifiedSince(): URLConnection

getImplementation(): Document

1101 | Class, Method, and Field Index

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

getImplementationTitle(): Package

getImplementationVendor(): Package

getImplementationVersion(): Package

getInCheck(): SecurityManager

getIndex(): Attributes, AttributesImpl, Cert-
PathValidatorException, CharacterIterator,
ParsePosition, PatternSyntaxException,
StringCharacterIterator, URISyntaxException

getInetAddress(): DatagramSocket, Server-
Socket, Socket, SocketImpl

getInetAddresses(): NetworkInterface

getInfinity(): DecimalFormatSymbols

getInfo(): Identity, Provider

getInit(): MemoryUsage

getInitialPolicies(): PKIXParameters

getInitiatedClasses(): Instrumentation

getInput(): URISyntaxException

getInputArguments(): RuntimeMXBean

getInputEncoding(): Document, Entity

getInputLength(): MalformedInputException,
UnmappableCharacterException

getInputSource(): SAXSource

getInputStream(): JarFile, Process, Socket,
SocketImpl, StreamSource, URLConnection,
ZipFile

getInstance(): AlgorithmParameterGenerator,
AlgorithmParameters, Calendar, Certificate-
Factory, CertPathBuilder, CertPathValidator,
CertStore, Cipher, Collator, Currency, Date-
Format, ExemptionMechanism, KeyAgree-
ment, KeyFactory, KeyGenerator, KeyMan-
agerFactory, KeyPairGenerator, KeyStore, Mac,
MessageDigest, NumberFormat, SecretKey-
Factory, SecureRandom, Signature, SSLCon-
text, TrustManagerFactory

getInstanceFollowRedirects(): HttpURLCon-
nection

getInt(): AbstractPreferences, Array, BreakIter-
ator, ByteBuffer, Field, Preferences

getInteger(): Integer

getIntegerInstance(): NumberFormat

getInterface(): MulticastSocket

getInterfaces(): Class

getInternalSubset(): DocumentType

getInternationalCurrencySymbol(): Decimal-
FormatSymbols

getInvocationHandler(): Proxy

getISO3Country(): Locale

getISO3Language(): Locale

getISOCountries(): Locale

getISOLanguages(): Locale

getIssuer(): X509CertSelector

getIssuerAlternativeNames(): X509Certificate

getIssuerAsBytes(): X509CertSelector

getIssuerAsString(): X509CertSelector

getIssuerDN(): X509Certificate, X509CRL

getIssuerNames(): X509CRLSelector

getIssuers(): X509CRLSelector

getIssuerUniqueID(): X509Certificate

getIssuerX500Principal(): X509Certificate,
X509CRL

getIterationCount(): PBEKey, PBEKeySpec,
PBEParameterSpec

getIterator(): AttributedString

getIV(): Cipher, IvParameterSpec,
RC2ParameterSpec, RC5ParameterSpec

getJarEntry(): JarFile, JarURLConnection

getJarFile(): JarURLConnection

getJarFileURL(): JarURLConnection

getKeepAlive(): Socket

getKeepAliveTime(): ThreadPoolExecutor

getKey(): DESedeKeySpec, DESKeySpec, Entry,
KeyStore, MissingResourceException, Prefer-
enceChangeEvent

getKeyLength(): PBEKeySpec

getKeyManagers(): KeyManagerFactory

getKeys(): ListResourceBundle, PropertyResour-
ceBundle, ResourceBundle

getKeysize(): RSAKeyGenParameterSpec

getKeySpec(): EncryptedPrivateKeyInfo, KeyFac-
tory, SecretKeyFactory

getKeyStore(): Builder

getKeyType(): KerberosKey

getKeyUsage(): X509Certificate,
X509CertSelector

getL(): DHParameterSpec

getLanguage(): Locale

getLargestPoolSize(): ThreadPoolExecutor

getLast(): LinkedList

getLastAccessedTime(): SSLSession

Class, Method, and Field Index | 1102

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Class Index

getLastChild(): Node

getLastModified(): URLConnection

getLeastMaximum(): Calendar, GregorianCal-
endar

getLeastSignificantBits(): UUID

getLength(): Array, AttributeList, AttributeLis-
tImpl, Attributes, AttributesImpl, Bidi, Charac-
terData, DatagramPacket, DOMImplementa-
tionList, DOMStringList, NamedNodeMap,
NameList, NodeList

getLevel(): Handler, Logger, LogRecord

getLevelAt(): Bidi

getLexicalHandler(): SAXResult

getLibraryPath(): RuntimeMXBean

getLimits(): ChoiceFormat

getLineInstance(): BreakIterator

getLineNumber(): DOMLocator, LineNumberIn-
putStream, LineNumberReader, Locator, Loca-
torImpl, SAXParseException, SourceLocator,
StackTraceElement

getListener(): EventListenerProxy

getLoadedClassCount(): ClassLoadingMXBean

getLocalAddress(): DatagramSocket, Socket

getLocalCertificateChain(): SecureCacheRe-
sponse

getLocalCertificates(): HandshakeCompletedE-
vent, HttpsURLConnection, SSLSession

getLocale(): LanguageCallback, Message-
Format, ResourceBundle

getLocalHost(): InetAddress

getLocalizedInputStream(): Runtime

getLocalizedMessage(): Throwable

getLocalizedName(): Level

getLocalizedOutputStream(): Runtime

getLocalName(): Attributes, AttributesImpl,
Node

getLocalPart(): QName

getLocalPatternChars(): DateFormatSymbols

getLocalPort(): DatagramSocket, Datagram-
SocketImpl, ServerSocket, Socket, SocketImpl

getLocalPrincipal(): HandshakeCompletedE-
vent, HttpsURLConnection, SecureCacheRe-
sponse, SSLSession

getLocalSocketAddress(): DatagramSocket,
ServerSocket, Socket

getLocation(): CodeSource, DOMError, HttpRe-
tryException

getLocationAsString(): TransformerException

getLocator(): TransformerException

getLockName(): ThreadInfo

getLockOwnerId(): ThreadInfo

getLockOwnerName(): ThreadInfo

getLogger(): Logger, LogManager

getLoggerLevel(): LoggingMXBean

getLoggerName(): LogRecord

getLoggerNames(): LoggingMXBean, LogMan-
ager

getLoggingMXBean(): LogManager

getLoginModuleName(): AppConfiguration-
Entry

getLogManager(): LogManager

getLong(): AbstractPreferences, Array, BreakIt-
erator, ByteBuffer, Field, Long, Preferences

getLoopbackMode(): MulticastSocket

getLowerBounds(): WildcardType

getLowestSetBit(): BigInteger

getM(): ECFieldF2m

getMacLength(): Mac

getMainAttributes(): JarURLConnection, Mani-
fest

getManagementSpecVersion(): RuntimeMX-
Bean

getManifest(): JarFile, JarInputStream, JarURL-
Connection

getMatchAllSubjectAltNames():
X509CertSelector

getMax(): MemoryUsage

getMaxAllowedKeyLength(): Cipher

getMaxAllowedParameterSpec(): Cipher

getMaxCRL(): X509CRLSelector

getMaxExpansion(): CollationElementIterator

getMaximum(): Calendar, GregorianCalendar

getMaximumFractionDigits(): DecimalFormat,
NumberFormat

getMaximumIntegerDigits(): DecimalFormat,
NumberFormat

getMaximumPoolSize(): ThreadPoolExecutor

getMaxPathLength(): PKIXBuilderParameters

getMaxPriority(): ThreadGroup

getMemoryManagerMXBeans(): Manage-
mentFactory

getMemoryManagerNames(): Memory-
PoolMXBean

getMemoryMXBean(): ManagementFactory

1103 | Class, Method, and Field Index

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

getMemoryPoolMXBeans(): ManagementFac-
tory

getMemoryPoolNames(): MemoryManagerMX-
Bean

getMessage(): DOMError, DuplicateFormatFlag-
sException, FactoryConfigurationError,
FormatFlagsConversionMismatchException,
IllegalFormatCodePointException, IllegalFor-
matConversionException, IllegalFormatFlag-
sException, IllegalFormatPrecisionException,
IllegalFormatWidthException, InvalidClassEx-
ception, LogRecord, MalformedInputExcep-
tion, MissingFormatArgumentException, Miss-
ingFormatWidthException,
PatternSyntaxException, SAXException,
TextOutputCallback, Throwable, Transformer-
FactoryConfigurationError, UnknownFormat-
ConversionException, UnknownFormatFlag-
sException, UnmappableCharacterException,
URISyntaxException, WriteAbortedException

getMessageAndLocation(): TransformerExcep-
tion

getMessageDigest(): DigestInputStream,
DigestOutputStream

getMessageType(): ConfirmationCallback,
TextOutputCallback

getMethod(): Class, ZipEntry

getMethodName(): StackTraceElement

getMethods(): Class

getMGFAlgorithm(): OAEPParameterSpec,
PSSParameterSpec

getMGFParameters(): OAEPParameterSpec,
PSSParameterSpec

getMidTermsOfReductionPolynomial():
ECFieldF2m

getMillis(): LogRecord

getMillisecond(): XMLGregorianCalendar

getMinCRL(): X509CRLSelector

getMinimalDaysInFirstWeek(): Calendar

getMinimum(): Calendar, GregorianCalendar

getMinimumFractionDigits(): DecimalFormat,
NumberFormat

getMinimumIntegerDigits(): DecimalFormat,
NumberFormat

getMinusSign(): DecimalFormatSymbols

getMinute(): XMLGregorianCalendar

getMinutes(): Date, Duration

getModifiers(): Class, Constructor, Field,
Member, Method

getModulus(): RSAKey, RSAPrivateKeySpec,
RSAPublicKeySpec

getMonetaryDecimalSeparator(): DecimalFor-
matSymbols

getMonth(): Date, XMLGregorianCalendar

getMonths(): DateFormatSymbols, Duration

getMostSignificantBits(): UUID

getMultiplier(): DecimalFormat

getName(): Attr, Attribute, AttributeList,
AttributeListImpl, Class, CompilationMXBean,
Constructor, DocumentType, ECGenParame-
terSpec, ExemptionMechanism, Field, File,
Identity, KerberosPrincipal, Level, Logger,
Member, MemoryManagerMXBean, Memory-
PoolMXBean, Method, NameCallback,
NameList, NetworkInterface, ObjectStream-
Class, ObjectStreamField, OperatingSystem-
MXBean, Package, Permission, Principal,
Provider, RuntimeMXBean, SSLSessionBindin-
gEvent, Thread, ThreadGroup, TypeVariable,
X500Principal, ZipEntry, ZipFile

getNameConstraints(): TrustAnchor,
X509CertSelector

getNamedItem(): NamedNodeMap

getNamedItemNS(): NamedNodeMap

getNamespaceContext(): XPath

getNamespaceURI(): NameList, Namespace-
Context, Node, QName

getNameType(): KerberosPrincipal

getNaN(): DecimalFormatSymbols

getNeedClientAuth(): SSLEngine, SSLServer-
Socket, SSLSocket

getNegativePrefix(): DecimalFormat

getNegativeSuffix(): DecimalFormat

getNetworkInterface(): MulticastSocket

getNetworkInterfaces(): NetworkInterface

getNewValue(): PreferenceChangeEvent

getNextEntry(): JarInputStream, ZipInput-
Stream

getNextJarEntry(): JarInputStream

getNextSibling(): DOMResult, Node

getNextUpdate(): X509CRL

getNode(): DOMResult, DOMSource, Prefer-
enceChangeEvent

Class, Method, and Field Index | 1104

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Class Index

getNodeName(): Node

getNodeType(): Node

getNodeValue(): Node

getNonCriticalExtensionOIDs(): X509Extension

getNonHeapMemoryUsage(): MemoryMXBean

getNotAfter(): X509Certificate

getNotationName(): Entity

getNotations(): DocumentType

getNotBefore(): X509Certificate

getNumberFormat(): DateFormat

getNumberInstance(): NumberFormat

getNumberWaiting(): CyclicBarrier

getNumericValue(): Character

getObject(): GuardedObject, ResourceBundle,
SealedObject, SignedObject

getObjectPendingFinalizationCount(): Memo-
ryMXBean

getObjectSize(): Instrumentation

getObjectStreamClass(): GetField

getOffset(): CollationElementIterator, Data-
gramPacket, ObjectStreamField, SimpleTime-
Zone, TimeZone

getOOBInline(): Socket

getOperatingSystemMXBean(): Management-
Factory

getOption(): SocketOptions

getOptions(): AppConfigurationEntry, Confirma-
tionCallback

getOptionType(): ConfirmationCallback

getOrder(): ECParameterSpec

getOriginatingNode(): DOMLocator

getOtherPrimeInfo(): RSAMultiPrimePrivate-
CrtKey, RSAMultiPrimePrivateCrtKeySpec

getOutputProperties(): Templates, Transformer

getOutputProperty(): Transformer

getOutputSize(): Cipher, ExemptionMechanism

getOutputStream(): Process, Socket, Sock-
etImpl, StreamResult, URLConnection

getOwner(): ReentrantLock, ReentrantRead-
WriteLock

getOwnerDocument(): Node

getOwnerElement(): Attr

getOwnerType(): ParameterizedType

getP(): DHParameterSpec, DHPrivateKeySpec,
DHPublicKeySpec, DSAParameterSpec, DSAPa-

rams, DSAPrivateKeySpec, DSAPublicKeySpec,
ECFieldFp

getPackage(): Class, ClassLoader, Package

getPackages(): ClassLoader, Package

getPacketBufferSize(): SSLSession

getParameter(): DOMConfiguration, Signature,
Transformer

getParameterAnnotations(): Constructor,
Method

getParameterNames(): DOMConfiguration

getParameters(): CertPathTrustManagerParam-
eters, Cipher, KeyStoreBuilderParameters,
LogRecord, Signature

getParameterSpec(): AlgorithmParameters

getParameterTypes(): Constructor, Method

getParams(): DHKey, DSAKey, ECKey, ECPri-
vateKeySpec, ECPublicKeySpec

getParent(): ClassLoader, File, Logger,
NodeChangeEvent, PolicyNode, ThreadGroup,
XMLFilter, XMLFilterImpl

getParentFile(): File

getParentLoggerName(): LoggingMXBean

getParentNode(): Node

getParser(): SAXParser

getParties(): CyclicBarrier

getPassword(): PasswordAuthentication, Pass-
wordCallback, PasswordProtection, PBEKey,
PBEKeySpec

getPasswordAuthentication(): Authenticator

getPath(): File, URI, URL

getPathToNames(): X509CertSelector

getPattern(): PatternSyntaxException

getPatternSeparator(): DecimalFormatSymbols

getPeakThreadCount(): ThreadMXBean

getPeakUsage(): MemoryPoolMXBean

getPeerCertificateChain(): HandshakeComplet-
edEvent, SSLSession

getPeerCertificates(): HandshakeCompletedE-
vent, SSLSession

getPeerHost(): SSLEngine, SSLSession

getPeerPort(): SSLEngine, SSLSession

getPeerPrincipal(): HandshakeCompletedE-
vent, HttpsURLConnection, SecureCacheRe-
sponse, SSLSession

getPercent(): DecimalFormatSymbols

1105 | Class, Method, and Field Index

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

getPercentInstance(): NumberFormat

getPerMill(): DecimalFormatSymbols

getPermission(): AccessControlException,
HttpURLConnection, URLConnection

getPermissions(): Policy, ProtectionDomain,
SecureClassLoader, URLClassLoader

getPlatformMBeanServer(): ManagementFac-
tory

getPolicy(): Policy, X509CertSelector

getPolicyQualifier(): PolicyQualifierInfo

getPolicyQualifierId(): PolicyQualifierInfo

getPolicyQualifiers(): PolicyNode

getPolicyQualifiersRejected(): PKIXParameters

getPolicyTree(): PKIXCertPathValidatorResult

getPoolName(): MemoryNotificationInfo

getPoolSize(): ThreadPoolExecutor

getPort(): DatagramPacket, DatagramSocket,
InetSocketAddress, LDAPCertStoreParame-
ters, Socket, SocketImpl, URI, URL

getPositivePrefix(): DecimalFormat

getPositiveSuffix(): DecimalFormat

getPrecision(): IllegalFormatPrecisionExcep-
tion, MathContext

getPrefix(): NamespaceContext, Namespace-
Support, Node, QName

getPrefixes(): NamespaceContext, Namespace-
Support

getPreviousSibling(): Node

getPrime(): RSAOtherPrimeInfo

getPrimeExponentP(): RSAMultiPrimePrivate-
CrtKey, RSAMultiPrimePrivateCrtKeySpec,
RSAPrivateCrtKey, RSAPrivateCrtKeySpec

getPrimeExponentQ(): RSAMultiPrimePrivate-
CrtKey, RSAMultiPrimePrivateCrtKeySpec,
RSAPrivateCrtKey, RSAPrivateCrtKeySpec

getPrimeP(): RSAMultiPrimePrivateCrtKey,
RSAMultiPrimePrivateCrtKeySpec, RSAPrivate-
CrtKey, RSAPrivateCrtKeySpec

getPrimeQ(): RSAMultiPrimePrivateCrtKey,
RSAMultiPrimePrivateCrtKeySpec, RSAPrivate-
CrtKey, RSAPrivateCrtKeySpec

getPrimeSize(): DHGenParameterSpec

getPrincipal(): Certificate, KerberosKey

getPrincipals(): PrivateCredentialPermission,
ProtectionDomain, Subject

getPriority(): Thread

getPrivate(): KeyPair

getPrivateCredentials(): Subject

getPrivateExponent(): RSAPrivateKey, RSAPri-
vateKeySpec

getPrivateKey(): PrivateKeyEntry, Signer,
X500PrivateCredential, X509KeyManager

getPrivateKeyValid(): X509CertSelector

getPrompt(): ChoiceCallback, ConfirmationCall-
back, NameCallback, PasswordCallback,
TextInputCallback

getProperties(): System

getProperty(): LogManager, ParserAdapter,
Properties, SAXParser, SchemaFactory, Secu-
rity, System, Validator, ValidatorHandler,
XMLFilterImpl, XMLReader

getProtectionDomain(): Class

getProtectionParameter(): Builder, Load-
StoreParameter

getProtocol(): SSLContext, SSLSession, URL

getProvider(): AlgorithmParameterGenerator,
AlgorithmParameters, CertificateFactory, Cert-
PathBuilder, CertPathValidator, CertStore,
Cipher, ExemptionMechanism, KeyAgree-
ment, KeyFactory, KeyGenerator, KeyMan-
agerFactory, KeyPairGenerator, KeyStore, Mac,
MessageDigest, SecretKeyFactory, Secure-
Random, Security, Service, Signature, SSLCon-
text, TrustManagerFactory

getProviders(): Security

getProxyClass(): Proxy

getPSource(): OAEPParameterSpec

getPublic(): KeyPair

getPublicCredentials(): Subject

getPublicExponent(): RSAKeyGenParameter-
Spec, RSAMultiPrimePrivateCrtKey, RSAMul-
tiPrimePrivateCrtKeySpec, RSAPrivateCrtKey,
RSAPrivateCrtKeySpec, RSAPublicKey,
RSAPublicKeySpec

getPublicId(): DocumentType, Entity, Input-
Source, Locator, LocatorImpl, Notation,
SAXParseException, SourceLocator, Stream-
Source

getPublicKey(): Certificate, Identity, PKIXCert-
PathValidatorResult

getPushLevel(): MemoryHandler

getQ(): DSAParameterSpec, DSAParams, DSAPri-
vateKeySpec, DSAPublicKeySpec

Class, Method, and Field Index | 1106

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Class Index

getQName(): Attributes, AttributesImpl

getQuery(): URI, URL

getQueue(): ScheduledThreadPoolExecutor,
ThreadPoolExecutor

getQueuedReaderThreads(): ReentrantRead-
WriteLock

getQueuedThreads(): AbstractQueuedSynchro-
nizer, ReentrantLock, ReentrantReadWrite-
Lock, Semaphore

getQueuedWriterThreads(): ReentrantRead-
WriteLock

getQueueLength(): AbstractQueuedSynchro-
nizer, ReentrantLock, ReentrantReadWrite-
Lock, Semaphore

getRawAuthority(): URI

getRawFragment(): URI

getRawOffset(): SimpleTimeZone, TimeZone

getRawPath(): URI

getRawQuery(): URI

getRawSchemeSpecificPart(): URI

getRawType(): ParameterizedType

getRawUserInfo(): URI

getReader(): StreamSource

getReadLockCount(): ReentrantReadWriteLock

getReadTimeout(): URLConnection

getRealm(): KerberosPrincipal

getReason(): HttpRetryException, URISyntaxEx-
ception

getReceiveBufferSize(): DatagramSocket, Serv-
erSocket, Socket

getReductionPolynomial(): ECFieldF2m

getRef(): URL

getReference(): AtomicMarkableReference,
AtomicStampedReference

getRejectedExecutionHandler(): Thread-
PoolExecutor

getRelatedData(): DOMError

getRelatedException(): DOMError

getRelatedNode(): DOMLocator

getRemaining(): Inflater

getRemoteSocketAddress(): DatagramSocket,
Socket

getRenewTill(): KerberosTicket

getRequestingHost(): Authenticator

getRequestingPort(): Authenticator

getRequestingPrompt(): Authenticator

getRequestingProtocol(): Authenticator

getRequestingScheme(): Authenticator

getRequestingSite(): Authenticator

getRequestingURL(): Authenticator

getRequestMethod(): HttpURLConnection

getRequestorType(): Authenticator

getRequestProperties(): URLConnection

getRequestProperty(): URLConnection

getResource(): Class, ClassLoader

getResourceAsStream(): Class, ClassLoader

getResourceBundle(): Logger, LogRecord

getResourceBundleName(): Level, Logger,
LogRecord

getResourceResolver(): SchemaFactory, Vali-
dator, ValidatorHandler

getResources(): ClassLoader

getResponseCode(): HttpURLConnection

getResponseMessage(): HttpURLConnection

getReturnType(): Method

getReuseAddress(): DatagramSocket, Server-
Socket, Socket

getRevocationDate(): X509CRLEntry

getRevokedCertificate(): X509CRL

getRevokedCertificates(): X509CRL

getRoundingMode(): MathContext

getRounds(): RC5ParameterSpec

getRules(): RuleBasedCollator

getRunCount(): Bidi

getRunLevel(): Bidi

getRunLimit(): AttributedCharacterIterator, Bidi

getRunStart(): AttributedCharacterIterator, Bidi

getRuntime(): Runtime

getRuntimeMXBean(): ManagementFactory

getS(): ECPrivateKey, ECPrivateKeySpec

getSalt(): PBEKey, PBEKeySpec, PBEParameter-
Spec

getSaltLength(): PSSParameterSpec

getSchema(): DocumentBuilder, Document-
BuilderFactory, SAXParser, SAXParserFactory

getSchemaTypeInfo(): Attr, Element

getScheme(): URI

getSchemeSpecificPart(): URI

getScope(): Identity

1107 | Class, Method, and Field Index

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

getScopedInterface(): Inet6Address

getScopeId(): Inet6Address

getSecond(): XMLGregorianCalendar

getSeconds(): Date, Duration

getSecretKey(): SecretKeyEntry

getSecurityContext(): SecurityManager

getSecurityManager(): System

getSeed(): EllipticCurve, SecureRandom

getSelectedIndex(): ConfirmationCallback

getSelectedIndexes(): ChoiceCallback

getSendBufferSize(): DatagramSocket, Socket

getSentenceInstance(): BreakIterator

getSequenceNumber(): LogRecord

getSerialNumber(): X509Certificate,
X509CertSelector, X509CRLEntry

getSerialVersionUID(): ObjectStreamClass

getServer(): KerberosTicket

getServerAliases(): X509KeyManager

getServerCertificateChain(): SecureCacheRe-
sponse

getServerCertificates(): HttpsURLConnection

getServerName(): LDAPCertStoreParameters

getServerSessionContext(): SSLContext

getServerSocketFactory(): SSLContext

getService(): Provider

getServices(): Provider

getSession(): HandshakeCompletedEvent,
SSLEngine, SSLSessionBindingEvent, SSLSes-
sionContext, SSLSocket

getSessionCacheSize(): SSLSessionContext

getSessionContext(): SSLSession

getSessionKey(): KerberosTicket

getSessionKeyType(): KerberosTicket

getSessionTimeout(): SSLSessionContext

getSeverity(): DOMError

getSharedQueuedThreads(): Abstract-
QueuedSynchronizer

getShort(): Array, BreakIterator, ByteBuffer,
Field

getShortMonths(): DateFormatSymbols

getShortWeekdays(): DateFormatSymbols

getSigAlgName(): X509Certificate, X509CRL

getSigAlgOID(): X509Certificate, X509CRL

getSigAlgParams(): X509Certificate, X509CRL

getSign(): Duration

getSignature(): SignedObject, X509Certificate,
X509CRL

getSignerCertPath(): CodeSigner, Timestamp

getSigners(): Class

getSigProvider(): PKIXParameters

getSimpleName(): Class

getSize(): ZipEntry

getSocket(): HandshakeCompletedEvent

getSocketAddress(): DatagramPacket

getSocketFactory(): SSLContext

getSoLinger(): Socket

getSoTimeout(): DatagramSocket, Server-
Socket, Socket

getSource(): EventObject

getSourceClassName(): LogRecord

getSourceMethodName(): LogRecord

getSourceString(): CollationKey

getSpecificationTitle(): Package

getSpecificationVendor(): Package

getSpecificationVersion(): Package

getSpecified(): Attr

getSpecName(): RuntimeMXBean

getSpecVendor(): RuntimeMXBean

getSpecVersion(): RuntimeMXBean

getSpi(): AbstractPreferences

getSSLSocketFactory(): HttpsURLConnection

getStackTrace(): Thread, ThreadInfo, Throwable

getStamp(): AtomicStampedReference

getStartTime(): KerberosTicket, RuntimeMX-
Bean

getState(): AbstractQueuedSynchronizer,
Thread

getStatus(): SSLEngineResult

getStrength(): Collator

getStrictErrorChecking(): Document

getString(): ResourceBundle

getStringArray(): ResourceBundle

getSubject(): LoginContext, Subject, SubjectDo-
mainCombiner, X509CertSelector

getSubjectAlternativeNames():
X509Certificate, X509CertSelector

getSubjectAsBytes(): X509CertSelector

getSubjectAsString(): X509CertSelector

getSubjectDN(): X509Certificate

Class, Method, and Field Index | 1108

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Class Index

getSubjectKeyIdentifier(): X509CertSelector

getSubjectPublicKey(): X509CertSelector

getSubjectPublicKeyAlgID(): X509CertSelector

getSubjectUniqueID(): X509Certificate

getSubjectX500Principal(): X509Certificate

getSuperclass(): Class

getSupportedCipherSuites(): SSLEngine,
SSLServerSocket, SSLServerSocketFactory,
SSLSocket, SSLSocketFactory

getSupportedExtensions(): PKIXCertPath-
Checker

getSupportedProtocols(): SSLEngine, SSLServ-
erSocket, SSLSocket

getSymbol(): Currency

getSystemClassLoader(): ClassLoader

getSystemId(): DocumentType, DOMResult,
DOMSource, Entity, InputSource, Locator,
LocatorImpl, Notation, Result, SAXParseExcep-
tion, SAXResult, SAXSource, Source, SourceLo-
cator, StreamResult, StreamSource, Template-
sHandler, TransformerHandler

getSystemProperties(): RuntimeMXBean

getSystemResource(): ClassLoader

getSystemResourceAsStream(): ClassLoader

getSystemResources(): ClassLoader

getSystemScope(): IdentityScope

getTagName(): Element

getTail(): Formatter, XMLFormatter

getTarget(): ProcessingInstruction

getTargetCertConstraints(): PKIXParameters

getTargetException(): InvocationTargetExcep-
tion

getTaskCount(): ThreadPoolExecutor

getTBSCertificate(): X509Certificate

getTBSCertList(): X509CRL

getTcpNoDelay(): Socket

getTemplates(): TemplatesHandler

getText(): BreakIterator, TextInputCallback

getTextContent(): Node

getThisUpdate(): X509CRL

getThreadCount(): ThreadMXBean

getThreadCpuTime(): ThreadMXBean

getThreadFactory(): ThreadPoolExecutor

getThreadGroup(): SecurityManager, Thread

getThreadId(): ThreadInfo

getThreadID(): LogRecord

getThreadInfo(): ThreadMXBean

getThreadMXBean(): ManagementFactory

getThreadName(): ThreadInfo

getThreadState(): ThreadInfo

getThreadUserTime(): ThreadMXBean

getThrown(): LogRecord

getTime(): Calendar, Date, ZipEntry

getTimeInMillis(): Calendar, Duration

getTimeInstance(): DateFormat

getTimestamp(): CodeSigner, Timestamp

getTimeToLive(): DatagramSocketImpl, Multi-
castSocket

getTimeZone(): Calendar, DateFormat, Gregori-
anCalendar, TimeZone, XMLGregorianCal-
endar

getTimezone(): XMLGregorianCalendar

getTimezoneOffset(): Date

getTotalCompilationTime(): CompilationMX-
Bean

getTotalIn(): Deflater, Inflater

getTotalLoadedClassCount(): ClassLoadingMX-
Bean

getTotalOut(): Deflater, Inflater

getTotalStartedThreadCount(): ThreadMXBean

getTrafficClass(): DatagramSocket, Socket

getTrailerField(): PSSParameterSpec

getTransformer(): TransformerHandler

getTrustAnchor(): PKIXCertPathValidatorResult

getTrustAnchors(): PKIXParameters

getTrustedCert(): TrustAnchor

getTrustedCertificate(): TrustedCertificateEntry

getTrustManagers(): TrustManagerFactory

getTTL(): DatagramSocketImpl, MulticastSocket

getType(): AttributeList, AttributeListImpl,
Attributes, AttributesImpl, Certificate, Certifi-
cateFactory, CertPath, CertStore, Character,
CRL, DOMError, Field, KeyStore, Memory-
PoolMXBean, ObjectStreamField, Service

getTypeCode(): ObjectStreamField

getTypeInfoProvider(): ValidatorHandler

getTypeName(): TypeInfo

getTypeNamespace(): TypeInfo

1109 | Class, Method, and Field Index

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

getTypeParameters(): Class, Constructor,
GenericDeclaration, Method

getTypeString(): ObjectStreamField

getUncaughtExceptionHandler(): Thread

getUndeclaredThrowable(): UndeclaredThrow-
ableException

getUnloadedClassCount(): ClassLoadingMX-
Bean

getUnresolvedActions(): UnresolvedPermission

getUnresolvedCerts(): UnresolvedPermission

getUnresolvedName(): UnresolvedPermission

getUnresolvedType(): UnresolvedPermission

getUpperBounds(): WildcardType

getUptime(): RuntimeMXBean

getURI(): Attributes, AttributesImpl,
NamespaceSupport

getUri(): DOMLocator

getURIResolver(): Transformer, Transformer-
Factory

getURL(): URLConnection

getURLs(): URLClassLoader

getUsage(): MemoryNotificationInfo, Memory-
PoolMXBean

getUsageThreshold(): MemoryPoolMXBean

getUsageThresholdCount(): MemoryPoolMX-
Bean

getUseCaches(): URLConnection

getUseClientMode(): SSLEngine, SSLServer-
Socket, SSLSocket

getUsed(): MemoryUsage

getUseParentHandlers(): Logger

getUserData(): Node

getUserInfo(): URI, URL

getUserName(): PasswordAuthentication

getUtf16Offset(): DOMLocator

getValidPolicy(): PolicyNode

getValue(): Adler32, Annotation, Attr,
AttributeList, AttributeListImpl, Attributes,
AttributesImpl, Checksum, CRC32, Entry,
PSpecified, SSLSession

getValueNames(): SSLSession

getVariant(): Locale

getVersion(): OperatingSystemMXBean,
Provider, RC5ParameterSpec, X509Certificate,
X509CRL

getVersionNumber(): KerberosKey

getVmName(): RuntimeMXBean

getVmVendor(): RuntimeMXBean

getVmVersion(): RuntimeMXBean

getW(): ECPublicKey, ECPublicKeySpec

getWaitedCount(): ThreadInfo

getWaitedTime(): ThreadInfo

getWaitingThreads(): AbstractQueuedSynchro-
nizer, ConditionObject, ReentrantLock, Reen-
trantReadWriteLock

getWaitQueueLength(): AbstractQueuedSyn-
chronizer, ConditionObject, ReentrantLock,
ReentrantReadWriteLock

getWantClientAuth(): SSLEngine, SSLServer-
Socket, SSLSocket

getWeekdays(): DateFormatSymbols

getWholeText(): Text

getWidth(): IllegalFormatWidthException

getWordInstance(): BreakIterator

getWordSize(): RC5ParameterSpec

getWriteHoldCount(): ReentrantReadWriteLock

getWriter(): StreamResult

getX(): DHPrivateKey, DHPrivateKeySpec,
DSAPrivateKey, DSAPrivateKeySpec

getXmlEncoding(): Document, Entity

getXMLReader(): SAXParser, SAXSource

getXMLSchemaType(): Duration, XMLGregori-
anCalendar

getXmlStandalone(): Document

getXmlVersion(): Document, Entity

getXMLVersion(): Locator2, Locator2Impl

getXPathFunctionResolver(): XPath

getXPathVariableResolver(): XPath

getY(): DHPublicKey, DHPublicKeySpec, DSAPub-
licKey, DSAPublicKeySpec

getYear(): Date, XMLGregorianCalendar

getYears(): Duration

getZeroDigit(): DecimalFormatSymbols

getZoneStrings(): DateFormatSymbols

global: Logger

GMONTH: DatatypeConstants

GMONTHDAY: DatatypeConstants

GOTHIC: UnicodeBlock

GREATER: DatatypeConstants

GREEK: UnicodeBlock

Class, Method, and Field Index | 1110

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Class Index

GREEK_EXTENDED: UnicodeBlock

GregorianCalendar: java.util

group(): Matcher, MatchResult

groupCount(): Matcher, MatchResult

GROUPING_SEPARATOR: Field

Guard: java.security

GuardedObject: java.security

guessContentTypeFromName(): URLConnec-
tion

guessContentTypeFromStream(): URLConnec-
tion

GUJARATI: UnicodeBlock

GURMUKHI: UnicodeBlock

GYEAR: DatatypeConstants

GYEARMONTH: DatatypeConstants

GZIP_MAGIC: GZIPInputStream

GZIPInputStream: java.util.zip

GZIPOutputStream: java.util.zip

H
h: Proxy

HALF_DOWN: RoundingMode

HALF_EVEN: RoundingMode

HALF_UP: RoundingMode

HALFWIDTH_AND_FULLWIDTH_FORMS:
UnicodeBlock

halt(): Runtime

handle(): CallbackHandler, UserDataHandler

handleError(): DOMErrorHandler

handleGetObject(): ListResourceBundle, Proper-
tyResourceBundle, ResourceBundle

Handler: java.util.logging

HandlerBase: org.xml.sax

handshakeCompleted(): HandshakeComplet-
edListener

HandshakeCompletedEvent: javax.net.ssl

HandshakeCompletedListener: javax.net.ssl

HandshakeStatus: javax.net.ssl.SSLEngineResult

HANGUL_COMPATIBILITY_JAMO: UnicodeBlock

HANGUL_JAMO: UnicodeBlock

HANGUL_SYLLABLES: UnicodeBlock

HANUNOO: UnicodeBlock

hasAnchoringBounds(): Matcher

hasArray(): ByteBuffer, CharBuffer, Double-
Buffer, FloatBuffer, IntBuffer, LongBuffer,
ShortBuffer

hasAttribute(): Element

hasAttributeNS(): Element

hasAttributes(): Node

hasChanged(): Observable

hasChildNodes(): Node

hasContended(): AbstractQueuedSynchronizer

hasExtensions(): X509CRLEntry

hasFeature(): DOMImplementation

hashCode(): AbstractList, AbstractMap,
AbstractSet, AccessControlContext, AllPermis-
sion, Annotation, Arrays, Attribute, Attributes,
BasicPermission, BigDecimal, BigInteger,
BitSet, Boolean, Byte, ByteBuffer, Calendar,
Certificate, CertPath, Character, CharBuffer,
Charset, ChoiceFormat, CodeSigner, CodeS-
ource, CollationKey, Collator, Collection,
Constructor, CopyOnWriteArrayList, Date,
DateFormat, DateFormatSymbols, Decimal-
Format, DecimalFormatSymbols, Delegation-
Permission, Double, DoubleBuffer, Duration,
ECFieldF2m, ECFieldFp, ECPoint, EllipticCurve,
Entry, Enum, Field, FieldPosition, File, FilePer-
mission, Float, FloatBuffer, GregorianCal-
endar, Hashtable, Identity, IdentityHashMap,
Inet4Address, Inet6Address, InetAddress,
InetSocketAddress, IntBuffer, Integer,
KerberosPrincipal, Level, List, Locale, Long,
LongBuffer, Manifest, Map, MathContext,
MessageFormat, Method, Name,
NetworkInterface, NumberFormat, Object,
Package, ParsePosition, Permission, Principal,
PrivateCredentialPermission, PropertyPermis-
sion, Proxy, QName, RC2ParameterSpec,
RC5ParameterSpec, RuleBasedCollator,
SecretKeySpec, ServicePermission, Set, Short,
ShortBuffer, SimpleDateFormat, SimpleTime-
Zone, SocketPermission, StackTraceElement,
String, StringCharacterIterator, Subject,
Subset, Timestamp, UnresolvedPermission,
URI, URL, URLStreamHandler, UUID, Vector,
X500Principal, X509CRL, X509CRLEntry,
XMLGregorianCalendar, ZipEntry

HashMap: java.util

HashSet: java.util

Hashtable: java.util

1111 | Class, Method, and Field Index

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

hasMoreElements(): Enumeration, StringTo-
kenizer

hasMoreTokens(): StringTokenizer

hasNext(): Iterator, ListIterator, Scanner

hasNextBigDecimal(): Scanner

hasNextBigInteger(): Scanner

hasNextBoolean(): Scanner

hasNextByte(): Scanner

hasNextDouble(): Scanner

hasNextFloat(): Scanner

hasNextInt(): Scanner

hasNextLine(): Scanner

hasNextLong(): Scanner

hasNextShort(): Scanner

hasPrevious(): ListIterator

hasQueuedThread(): ReentrantLock, Reentrant-
ReadWriteLock

hasQueuedThreads(): AbstractQueuedSynchro-
nizer, ReentrantLock, ReentrantReadWrite-
Lock, Semaphore

hasRemaining(): Buffer

hasSameRules(): SimpleTimeZone, TimeZone

hasTransparentBounds(): Matcher

hasUnsupportedCriticalExtension():
X509Extension

hasWaiters(): AbstractQueuedSynchronizer,
ConditionObject, ReentrantLock, Reentrant-
ReadWriteLock

headMap(): SortedMap, TreeMap

headSet(): SortedSet, TreeSet

HEAP: MemoryType

HEBREW: UnicodeBlock

HIERARCHY_REQUEST_ERR: DOMException

HIGH_PRIVATE_USE_SURROGATES: Unicode-
Block

HIGH_SURROGATES: UnicodeBlock

highestOneBit(): Integer, Long

HIRAGANA: UnicodeBlock

hitEnd(): Matcher

holdsLock(): Thread

hostnameVerifier: HttpsURLConnection

HostnameVerifier: javax.net.ssl

hostsEqual(): URLStreamHandler

HOUR: Calendar

HOUR0: Field

HOUR0_FIELD: DateFormat

HOUR1: Field

HOUR1_FIELD: DateFormat

HOUR_OF_DAY: Calendar

HOUR_OF_DAY0: Field

HOUR_OF_DAY0_FIELD: DateFormat

HOUR_OF_DAY1: Field

HOUR_OF_DAY1_FIELD: DateFormat

HOURS: DatatypeConstants

HTTP: Type

HTTP_ACCEPTED: HttpURLConnection

HTTP_BAD_GATEWAY: HttpURLConnection

HTTP_BAD_METHOD: HttpURLConnection

HTTP_BAD_REQUEST: HttpURLConnection

HTTP_CLIENT_TIMEOUT: HttpURLConnection

HTTP_CONFLICT: HttpURLConnection

HTTP_CREATED: HttpURLConnection

HTTP_ENTITY_TOO_LARGE: HttpURLConnection

HTTP_FORBIDDEN: HttpURLConnection

HTTP_GATEWAY_TIMEOUT: HttpURLConnection
HTTP_GONE: HttpURLConnection

HTTP_INTERNAL_ERROR: HttpURLConnection

HTTP_LENGTH_REQUIRED: HttpURLConnection

HTTP_MOVED_PERM: HttpURLConnection

HTTP_MOVED_TEMP: HttpURLConnection

HTTP_MULT_CHOICE: HttpURLConnection

HTTP_NO_CONTENT: HttpURLConnection

HTTP_NOT_ACCEPTABLE: HttpURLConnection

HTTP_NOT_AUTHORITATIVE: HttpURLConnection

HTTP_NOT_FOUND: HttpURLConnection

HTTP_NOT_IMPLEMENTED: HttpURLConnection

HTTP_NOT_MODIFIED: HttpURLConnection

HTTP_OK: HttpURLConnection

HTTP_PARTIAL: HttpURLConnection

HTTP_PAYMENT_REQUIRED: HttpURLConnection

HTTP_PRECON_FAILED: HttpURLConnection

HTTP_PROXY_AUTH: HttpURLConnection

HTTP_REQ_TOO_LONG: HttpURLConnection

HTTP_RESET: HttpURLConnection

HTTP_SEE_OTHER: HttpURLConnection

HTTP_SERVER_ERROR: HttpURLConnection

HTTP_UNAUTHORIZED: HttpURLConnection

Class, Method, and Field Index | 1112

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Class Index

HTTP_UNAVAILABLE: HttpURLConnection

HTTP_UNSUPPORTED_TYPE: HttpURLConnection

HTTP_USE_PROXY: HttpURLConnection

HTTP_VERSION: HttpURLConnection

HttpRetryException: java.net

HttpsURLConnection: javax.net.ssl

HttpURLConnection: java.net

HUFFMAN_ONLY: Deflater

hypot(): Math, StrictMath

I
IDENTICAL: Collator

identities(): IdentityScope

Identity: java.security

identityEquals(): Identity

identityHashCode(): System

IdentityHashMap: java.util

IdentityScope: java.security

IDEOGRAPHIC_DESCRIPTION_CHARACTERS:
UnicodeBlock

IEEEremainder(): Math, StrictMath

ifModifiedSince: URLConnection

ignorableWhitespace(): ContentHandler,
DefaultHandler, DocumentHandler, Handler-
Base, ParserAdapter, XMLFilterImpl,
XMLReaderAdapter

IGNORE: CodingErrorAction

IllegalAccessError: java.lang

IllegalAccessException: java.lang

IllegalArgumentException: java.lang

IllegalBlockingModeException: java.nio.chan-
nels

IllegalBlockSizeException: javax.crypto

IllegalCharsetNameException: java.nio.charset

IllegalClassFormatException: java.lang.instru-
ment

IllegalFormatCodePointException: java.util

IllegalFormatConversionException: java.util

IllegalFormatException: java.util

IllegalFormatFlagsException: java.util

IllegalFormatPrecisionException: java.util

IllegalFormatWidthException: java.util

IllegalMonitorStateException: java.lang

IllegalSelectorException: java.nio.channels

IllegalStateException: java.lang

IllegalThreadStateException: java.lang

implAccept(): ServerSocket

implCloseChannel(): AbstractInterrupt-
ibleChannel, AbstractSelectableChannel

implCloseSelectableChannel(): AbstractSelect-
ableChannel

implCloseSelector(): AbstractSelector

implConfigureBlocking(): AbstractSelect-
ableChannel

IMPLEMENTATION_TITLE: Name

IMPLEMENTATION_URL: Name

IMPLEMENTATION_VENDOR: Name

IMPLEMENTATION_VENDOR_ID: Name

IMPLEMENTATION_VERSION: Name

implFlush(): CharsetDecoder, CharsetEncoder

implies(): AllPermission, BasicPermission, Code-
Source, DelegationPermission, FilePermis-
sion, Permission, PermissionCollection,
Permissions, Policy, PrivateCredentialPermis-
sion, PropertyPermission, ProtectionDomain,
ServicePermission, SocketPermission, Unre-
solvedPermission

implOnMalformedInput(): CharsetDecoder,
CharsetEncoder

implOnUnmappableCharacter(): CharsetDe-
coder, CharsetEncoder

implReplaceWith(): CharsetDecoder, CharsetEn-
coder

implReset(): CharsetDecoder, CharsetEncoder

importNode(): Document

importPreferences(): Preferences

in: FileDescriptor, FilterInputStream, Filter-
Reader, PipedInputStream, System

inCheck: SecurityManager

inClass(): SecurityManager

inClassLoader(): SecurityManager

IncompatibleClassChangeError: java.lang

IncompleteAnnotationException: java.lang.
annotation

1113 | Class, Method, and Field Index

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

incrementAndGet(): AtomicInteger, AtomicIn-
tegerArray, AtomicIntegerFieldUpdater,
AtomicLong, AtomicLongArray, AtomicLong-
FieldUpdater

inDaylightTime(): SimpleTimeZone, TimeZone

INDENT: OutputKeys

INDETERMINATE: DatatypeConstants

INDEX_SIZE_ERR: DOMException

indexOf(): AbstractList, ArrayList, CopyOnWrite-
ArrayList, LinkedList, List, String, String-
Buffer, StringBuilder, Vector

indexOfSubList(): Collections

IndexOutOfBoundsException: java.lang

Inet4Address: java.net

Inet6Address: java.net

InetAddress: java.net

InetSocketAddress: java.net

inf: InflaterInputStream

inflate(): Inflater

Inflater: java.util.zip

InflaterInputStream: java.util.zip

INFO: Level

info(): Logger

INFORMATION: ConfirmationCallback, TextOut-
putCallback

InheritableThreadLocal: java.lang

Inherited: java.lang.annotation

inheritedChannel(): SelectorProvider, System

init(): AlgorithmParameterGenerator, Algorith-
mParameters, Cipher, ExemptionMechanism,
KeyAgreement, KeyGenerator, KeyManager-
Factory, Mac, PKIXCertPathChecker, SSLCon-
text, TrustManagerFactory

initCause(): Throwable, TransformerException

INITIAL_QUOTE_PUNCTUATION: Character

initialize(): DSAKeyPairGenerator, KeyPairGen-
erator, KeyPairGeneratorSpi, LoginModule

initialValue(): ThreadLocal

initSign(): Signature

initVerify(): Signature

INPUT_METHOD_SEGMENT: Attribute

InputMismatchException: java.util

InputSource: org.xml.sax

InputStream: java.io

InputStreamReader: java.io

insert(): StringBuffer, StringBuilder

insertBefore(): Node

insertData(): CharacterData

insertElementAt(): Vector

insertProviderAt(): Security

instanceFollowRedirects: HttpURLConnection

InstantiationError: java.lang

InstantiationException: java.lang

Instrumentation: java.lang.instrument

intBitsToFloat(): Float

IntBuffer: java.nio

INTEGER: Field

Integer: java.lang

INTEGER_FIELD: NumberFormat

interestOps(): SelectionKey

INTERFACE: Modifier

intern(): String

internalEntityDecl(): DeclHandler,
DefaultHandler2

InternalError: java.lang

internalGet(): Calendar

interrupt(): Thread, ThreadGroup

interrupted(): Thread

InterruptedException: java.lang

InterruptedIOException: java.io

InterruptibleChannel: java.nio.channels

intersects(): BitSet

intValue(): AtomicInteger, AtomicLong, BigDec-
imal, BigInteger, Byte, Double, Float, Integer,
Level, Long, Number, Short

intValueExact(): BigDecimal

INUSE_ATTRIBUTE_ERR: DOMException

INVALID_ACCESS_ERR: DOMException

INVALID_CHARACTER_ERR: DOMException

INVALID_MODIFICATION_ERR: DOMException

INVALID_STATE_ERR: DOMException

InvalidAlgorithmParameterException: java.
security

invalidate(): SSLSession

InvalidClassException: java.io

InvalidKeyException: java.security

InvalidKeySpecException: java.security.spec

InvalidMarkException: java.nio

InvalidObjectException: java.io

Class, Method, and Field Index | 1114

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Class Index

InvalidParameterException: java.security

InvalidParameterSpecException: java.security.
spec

InvalidPreferencesFormatException: java.util.
prefs

InvalidPropertiesFormatException: java.util

InvocationHandler: java.lang.reflect

InvocationTargetException: java.lang.reflect

invoke(): InvocationHandler, Method

invokeAll(): AbstractExecutorService, Execu-
torService

invokeAny(): AbstractExecutorService, Execu-
torService

IOException: java.io

ioException(): Formatter, Scanner

IP_MULTICAST_IF: SocketOptions

IP_MULTICAST_IF2: SocketOptions

IP_MULTICAST_LOOP: SocketOptions

IP_TOS: SocketOptions

IPA_EXTENSIONS: UnicodeBlock

isAbsolute(): File, URI

isAbstract(): Modifier

isAcceptable(): SelectionKey

isAccessible(): AccessibleObject

isAlive(): Thread

isAnnotation(): Class

isAnnotationPresent(): AccessibleObject, Anno-
tatedElement, Class, Package

isAnonymousClass(): Class

isAnyLocalAddress(): Inet4Address,
Inet6Address, InetAddress

isAnyPolicyInhibited(): PKIXParameters

isArray(): Class

isAssignableFrom(): Class

isAutoDetecting(): CharsetDecoder

isBlocking(): AbstractSelectableChannel, Select-
ableChannel

isBootClassPathSupported(): RuntimeMXBean

isBound(): DatagramSocket, ServerSocket,
Socket

isBoundary(): BreakIterator

isBridge(): Method

isBroken(): CyclicBarrier

isCancelled(): Future, FutureTask

isCertificateEntry(): KeyStore

isCharsetDetected(): CharsetDecoder

isClosed(): DatagramSocket, ServerSocket,
Socket

isCoalescing(): DocumentBuilderFactory

isCollectionUsageThresholdExceeded():
MemoryPoolMXBean

isCollectionUsageThresholdSupported():
MemoryPoolMXBean

isCompatibleWith(): Package

isCompilationTimeMonitoringSupported():
CompilationMXBean

isConnectable(): SelectionKey

isConnected(): DatagramChannel, Datagram-
Socket, Socket, SocketChannel

isConnectionPending(): SocketChannel

isCritical(): PolicyNode

isCryptoAllowed(): ExemptionMechanism

isCurrent(): KerberosTicket, Refreshable

isCurrentThreadCpuTimeSupported(): Thread-
MXBean

isDaemon(): Thread, ThreadGroup

isDecimalSeparatorAlwaysShown(): Decimal-
Format

isDeclared(): Attributes2, Attributes2Impl

isDefaultNamespace(): Node

isDefined(): Character

isDerivedFrom(): TypeInfo

isDestroyed(): Destroyable, KerberosKey,
KerberosTicket, PasswordProtection, Thread-
Group, X500PrivateCredential

isDigit(): Character

isDirect(): ByteBuffer, CharBuffer, DoubleBuffer,
FloatBuffer, IntBuffer, LongBuffer, ShortBuffer

isDirectory(): File, ZipEntry

isDone(): Future, FutureTask

isEchoOn(): PasswordCallback

isElementContentWhitespace(): Text

isEmpty(): AbstractCollection, AbstractMap,
ArrayList, Attributes, BitSet, Collection,
ConcurrentHashMap, ConcurrentLinked-
Queue, CopyOnWriteArrayList, CopyOnWrite-
ArraySet, Dictionary, HashMap, HashSet,
Hashtable, IdentityHashMap, List, Map, Set,
SynchronousQueue, TreeSet, Vector,
WeakHashMap

1115 | Class, Method, and Field Index

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

isEnqueued(): Reference

isEnum(): Class

isEnumConstant(): Field

isEqual(): MessageDigest

isEqualNode(): Node

isError(): CoderResult

isExpandEntityReferences(): DocumentBuild-
erFactory

isExplicitPolicyRequired(): PKIXParameters

isFair(): ReentrantLock, ReentrantReadWrite-
Lock, Semaphore

isFile(): File

isFinal(): Modifier

isForwardable(): KerberosTicket

isForwardCheckingSupported(): PKIXCertPath-
Checker

isForwarded(): KerberosTicket

isGroupingUsed(): NumberFormat

isHeldByCurrentThread(): ReentrantLock

isHeldExclusively(): AbstractQueuedSynchro-
nizer

isHidden(): File

isHighSurrogate(): Character

isId(): Attr

isIdAttribute(): TypeInfoProvider

isIdentifierIgnorable(): Character

isIgnoringComments(): DocumentBuilderFac-
tory

isIgnoringElementContentWhitespace():
DocumentBuilderFactory

isInboundDone(): SSLEngine

isInfinite(): Double, Float

isInitial(): KerberosTicket

isInNative(): ThreadInfo

isInputShutdown(): Socket

isInstance(): Class

isInterface(): Class, Modifier

isInterrupted(): Thread

isIPv4CompatibleAddress(): Inet6Address

isISOControl(): Character

isJavaIdentifierPart(): Character

isJavaIdentifierStart(): Character

isJavaLetter(): Character

isJavaLetterOrDigit(): Character

isKeyEntry(): KeyStore

isLeapYear(): GregorianCalendar

isLeftToRight(): Bidi

isLegalReplacement(): CharsetEncoder

isLenient(): Calendar, DateFormat

isLetter(): Character

isLetterOrDigit(): Character

isLinkLocalAddress(): Inet4Address,
Inet6Address, InetAddress

isLoaded(): MappedByteBuffer

isLocalClass(): Class

isLocked(): ReentrantLock

isLoggable(): Filter, Handler, Logger, Memory-
Handler, StreamHandler

isLongerThan(): Duration

isLoopbackAddress(): Inet4Address,
Inet6Address, InetAddress

isLowerCase(): Character

isLowSurrogate(): Character

isMalformed(): CoderResult

isMarked(): AtomicMarkableReference

isMCGlobal(): Inet4Address, Inet6Address,
InetAddress

isMCLinkLocal(): Inet4Address, Inet6Address,
InetAddress

isMCNodeLocal(): Inet4Address, Inet6Address,
InetAddress

isMCOrgLocal(): Inet4Address, Inet6Address,
InetAddress

isMCSiteLocal(): Inet4Address, Inet6Address,
InetAddress

isMemberClass(): Class

isMirrored(): Character

isMixed(): Bidi

isMulticastAddress(): Inet4Address,
Inet6Address, InetAddress

isNamespaceAware(): DocumentBuilder, Docu-
mentBuilderFactory, SAXParser,
SAXParserFactory

isNamespaceDeclUris(): NamespaceSupport

isNaN(): Double, Float

isNative(): Modifier

isNativeMethod(): StackTraceElement

isObjectModelSupported(): XPathFactory

isOpaque(): URI

Class, Method, and Field Index | 1116

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Class Index

isOpen(): AbstractInterruptibleChannel,
AbstractSelector, Channel, Selector

isOutboundDone(): SSLEngine

isOutputShutdown(): Socket

isOverflow(): CoderResult

isParityAdjusted(): DESedeKeySpec, DESKey-
Spec

isParseBigDecimal(): DecimalFormat

isParseIntegerOnly(): NumberFormat

isPolicyMappingInhibited(): PKIXParameters

isPostdated(): KerberosTicket

isPrimitive(): Class, ObjectStreamField

isPrivate(): Modifier

isProbablePrime(): BigInteger

isProtected(): Modifier

isProxiable(): KerberosTicket

isProxy(): KerberosTicket

isProxyClass(): Proxy

isPublic(): Modifier

isQueued(): AbstractQueuedSynchronizer

isReachable(): InetAddress

isReadable(): SelectionKey

isReadOnly(): Buffer, PermissionCollection,
Subject

isRedefineClassesSupported(): Instrumenta-
tion

isRegistered(): AbstractSelectableChannel,
Charset, SelectableChannel

isRemoved(): AbstractPreferences

isRenewable(): KerberosTicket

isRevocationEnabled(): PKIXParameters

isRevoked(): CRL

isRightToLeft(): Bidi

isSameNode(): Node

isSchemaLanguageSupported(): SchemaFac-
tory

isSealed(): Package

isSet: Calendar

isSet(): Calendar, Duration

isShared(): FileLock

isShorterThan(): Duration

isShutdown(): ExecutorService, ThreadPoolEx-
ecutor

isSiteLocalAddress(): Inet4Address,
Inet6Address, InetAddress

isSpace(): Character

isSpaceChar(): Character

isSpecified(): Attributes2, Attributes2Impl,
TypeInfoProvider

isStatic(): Modifier

isStrict(): Modifier

isSupplementaryCodePoint(): Character

isSupported(): Charset, Node

isSurrogatePair(): Character

isSuspended(): ThreadInfo

isSynchronized(): Modifier

isSynthetic(): Class, Constructor, Field, Member,
Method

isTerminated(): ExecutorService, ThreadPoolEx-
ecutor

isTerminating(): ThreadPoolExecutor

isThreadContentionMonitoringEnabled():
ThreadMXBean

isThreadContentionMonitoringSupported():
ThreadMXBean

isThreadCpuTimeEnabled(): ThreadMXBean

isThreadCpuTimeSupported(): ThreadMXBean

isTimeSet: Calendar

isTitleCase(): Character

isTransient(): Modifier

isUnderflow(): CoderResult

isUnicodeIdentifierPart(): Character

isUnicodeIdentifierStart(): Character

isUnmappable(): CoderResult

isUnresolved(): InetSocketAddress

isUnshared(): ObjectStreamField

isUpperCase(): Character

isUsageThresholdExceeded(): MemoryPoolMX-
Bean

isUsageThresholdSupported(): Memory-
PoolMXBean

isUserNode(): AbstractPreferences, Preferences

isValid(): AbstractSelectionKey, FileLock, Memo-
ryManagerMXBean, MemoryPoolMXBean,
SelectionKey, SSLSession, XMLGregorianCal-
endar

isValidating(): DocumentBuilder, Document-
BuilderFactory, SAXParser, SAXParserFactory

1117 | Class, Method, and Field Index

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

isValidCodePoint(): Character

isVarArgs(): Constructor, Method

isVerbose(): ClassLoadingMXBean, MemoryMX-
Bean

isVolatile(): Modifier

isWeak(): DESKeySpec

isWhitespace(): Character

isWritable(): SelectionKey

isWriteLocked(): ReentrantReadWriteLock

isWriteLockedByCurrentThread(): Reentrant-
ReadWriteLock

isXIncludeAware(): DocumentBuilder, Docu-
mentBuilderFactory, SAXParser,
SAXParserFactory

ITALIAN: Locale

ITALY: Locale

item(): DOMImplementationList, DOMString-
List, NamedNodeMap, NodeList

Iterable: java.lang

Iterator: java.util

iterator(): AbstractCollection, AbstractList,
AbstractSequentialList, ArrayBlockingQueue,
Collection, ConcurrentLinkedQueue, CopyOn-
WriteArrayList, CopyOnWriteArraySet, Delay-
Queue, HashSet, Iterable, LinkedBlocking-
Queue, List, PriorityBlockingQueue,
PriorityQueue, Set, SynchronousQueue,
TreeSet

IvParameterSpec: javax.crypto.spec

J
JANUARY: Calendar, DatatypeConstants

JAPAN: Locale

JAPANESE: Locale

JarEntry: java.util.jar

JarException: java.util.jar

JarFile: java.util.jar

jarFileURLConnection: JarURLConnection

JarInputStream: java.util.jar

JarOutputStream: java.util.jar

JarURLConnection: java.net

join(): DatagramSocketImpl, Thread

joinGroup(): DatagramSocketImpl, Multicast-
Socket

JULY: Calendar, DatatypeConstants

JUNE: Calendar, DatatypeConstants

K
KANBUN: UnicodeBlock

KANGXI_RADICALS: UnicodeBlock

KANNADA: UnicodeBlock

KATAKANA: UnicodeBlock

KATAKANA_PHONETIC_EXTENSIONS: Unicode-
Block

KEEP: Packer, Unpacker

KEEP_FILE_ORDER: Packer

KerberosKey: javax.security.auth.kerberos

KerberosPrincipal: javax.security.auth.kerberos

KerberosTicket: javax.security.auth.kerberos

Key: java.security

KeyAgreement: javax.crypto

KeyAgreementSpi: javax.crypto

KeyException: java.security

KeyFactory: java.security

KeyFactorySpi: java.security

keyFor(): AbstractSelectableChannel, Select-
ableChannel

KeyGenerator: javax.crypto

KeyGeneratorSpi: javax.crypto

KeyManagementException: java.security

KeyManager: javax.net.ssl

KeyManagerFactory: javax.net.ssl

KeyManagerFactorySpi: javax.net.ssl

KeyPair: java.security

KeyPairGenerator: java.security

KeyPairGeneratorSpi: java.security

KeyRep: java.security

KeyRep.Type: java.security

Class, Method, and Field Index | 1118

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Class Index

keys(): AbstractPreferences, Concur-
rentHashMap, Dictionary, Hashtable, Prefer-
ences, Selector

keySet(): AbstractMap, Attributes, Concur-
rentHashMap, EnumMap, HashMap, Hash-
table, IdentityHashMap, Map, Provider,
TreeMap, WeakHashMap

KeySpec: java.security.spec

keysSpi(): AbstractPreferences

KeyStore: java.security

KeyStore.Builder: java.security

KeyStore.CallbackHandlerProtection: java.
security

KeyStore.Entry: java.security

KeyStore.LoadStoreParameter: java.security

KeyStore.PasswordProtection: java.security

KeyStore.PrivateKeyEntry: java.security

KeyStore.ProtectionParameter: java.security

KeyStore.SecretKeyEntry: java.security

KeyStore.TrustedCertificateEntry: java.security

KeyStoreBuilderParameters: javax.net.ssl

KeyStoreException: java.security

KeyStoreSpi: java.security

KHMER: UnicodeBlock

KHMER_SYMBOLS: UnicodeBlock

KOREA: Locale

KOREAN: Locale

KRB_NT_PRINCIPAL: KerberosPrincipal

KRB_NT_SRV_HST: KerberosPrincipal

KRB_NT_SRV_INST: KerberosPrincipal

KRB_NT_SRV_XHST: KerberosPrincipal

KRB_NT_UID: KerberosPrincipal

KRB_NT_UNKNOWN: KerberosPrincipal

L
LANGUAGE: Attribute

LanguageCallback: javax.security.auth.callback

LAO: UnicodeBlock

last(): BreakIterator, CharacterIterator, Sort-
edSet, StringCharacterIterator, TreeSet

lastElement(): Vector

lastIndexOf(): AbstractList, ArrayList, CopyOn-
WriteArrayList, LinkedList, List, String, String-
Buffer, StringBuilder, Vector

lastIndexOfSubList(): Collections

lastKey(): SortedMap, TreeMap

lastModified(): File

LATEST: Packer

LATIN_1_SUPPLEMENT: UnicodeBlock

LATIN_EXTENDED_A: UnicodeBlock

LATIN_EXTENDED_ADDITIONAL: UnicodeBlock

LATIN_EXTENDED_B: UnicodeBlock

LDAPCertStoreParameters: java.security.cert

leave(): DatagramSocketImpl

leaveGroup(): DatagramSocketImpl, Multicast-
Socket

LEFT_JUSTIFY: FormattableFlags

len: InflaterInputStream

length: OptionalDataException

length(): AtomicIntegerArray, AtomicLon-
gArray, AtomicReferenceArray, BitSet, Char-
Buffer, CharSequence, CoderResult, File,
RandomAccessFile, String, StringBuffer

LESSER: DatatypeConstants

LETTER_NUMBER: Character

LETTERLIKE_SYMBOLS: UnicodeBlock

Level: java.util.logging

LexicalHandler: org.xml.sax.ext

LIMBU: UnicodeBlock

limit(): Buffer

LINE_SEPARATOR: Character

LINEAR_B_IDEOGRAMS: UnicodeBlock

LINEAR_B_SYLLABARY: UnicodeBlock

lineno(): StreamTokenizer

LineNumberInputStream: java.io

LineNumberReader: java.io

LinkageError: java.lang

LinkedBlockingQueue: java.util.concurrent

LinkedHashMap: java.util

LinkedHashSet: java.util

LinkedList: java.util

List: java.util

list(): Collections, File, Properties, ThreadGroup

listen(): SocketImpl

1119 | Class, Method, and Field Index

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

listFiles(): File

ListIterator: java.util

listIterator(): AbstractList, AbstractSequential-
List, CopyOnWriteArrayList, LinkedList, List

ListResourceBundle: java.util

listRoots(): File

LITERAL: Pattern

LITTLE_ENDIAN: ByteOrder

load(): KeyStore, MappedByteBuffer, Properties,
Provider, Runtime, System

loadClass(): ClassLoader

loadFromXML(): Properties

loadLibrary(): Runtime, System

LoadStoreParameter: java.security.KeyStore

LOCAL_VARIABLE: ElementType

Locale: java.util

locale(): Formatter, Scanner

localPort: DatagramSocketImpl

localport: SocketImpl

Locator: org.xml.sax

Locator2: org.xml.sax.ext

Locator2Impl: org.xml.sax.ext

LocatorImpl: org.xml.sax.helpers

Lock: java.util.concurrent.locks

lock: AbstractPreferences, Reader, Writer

lock(): FileChannel, Lock, ReadLock, Reentrant-
Lock, WriteLock

lockInterruptibly(): Lock, ReadLock, Reentrant-
Lock, WriteLock

LockSupport: java.util.concurrent.locks

log(): Logger, Math, StrictMath

log10(): Math, StrictMath

log1p(): Math, StrictMath

Logger: java.util.logging

LOGGING_MXBEAN_NAME: LogManager

LoggingMXBean: java.util.logging

LoggingPermission: java.util.logging

login(): AuthProvider, LoginContext, Login-
Module

LoginContext: javax.security.auth.login

LoginException: javax.security.auth.login

LoginModule: javax.security.auth.spi

LoginModuleControlFlag: javax.security.auth.
login.AppConfigurationEntry

LogManager: java.util.logging

logout(): AuthProvider, LoginContext, Login-
Module

logp(): Logger

logrb(): Logger

LogRecord: java.util.logging

Long: java.lang

LONG: DateFormat, TimeZone

longBitsToDouble(): Double

LongBuffer: java.nio

longValue(): AtomicInteger, AtomicLong,
BigDecimal, BigInteger, Byte, Double, Float,
Integer, Long, Number, Short

longValueExact(): BigDecimal

lookingAt(): Matcher

lookup(): ObjectStreamClass

lookupNamespaceURI(): Node

lookupPrefix(): Node

LOW_SURROGATES: UnicodeBlock

LOWERCASE_LETTER: Character

lowerCaseMode(): StreamTokenizer

lowestOneBit(): Integer, Long

M
Mac: javax.crypto

MacSpi: javax.crypto

MAIN_CLASS: Name

makeParser(): ParserFactory

MALAYALAM: UnicodeBlock

malformedForLength(): CoderResult

malformedInputAction(): CharsetDecoder,
CharsetEncoder

MalformedInputException: java.nio.charset

MalformedParameterizedTypeException: java.
lang.reflect

MalformedURLException: java.net

ManagementFactory: java.lang.management

ManagementPermission: java.lang.manage-
ment

ManagerFactoryParameters: javax.net.ssl

Class, Method, and Field Index | 1120

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Class Index

Manifest: java.util.jar

MANIFEST_NAME: JarFile

MANIFEST_VERSION: Name

map: Attributes

Map: java.util

map(): FileChannel

Map.Entry: java.util

mapLibraryName(): System

MapMode: java.nio.channels.FileChannel

MappedByteBuffer: java.nio

MARCH: Calendar, DatatypeConstants

mark: ByteArrayInputStream

mark(): Buffer, BufferedInputStream, Buffere-
dReader, ByteArrayInputStream, CharAr-
rayReader, FilterInputStream, FilterReader,
InflaterInputStream, InputStream, LineNum-
berInputStream, LineNumberReader, Push-
backInputStream, PushbackReader, Reader,
StringReader

markedPos: CharArrayReader

marklimit: BufferedInputStream

markpos: BufferedInputStream

markSupported(): BufferedInputStream, Buff-
eredReader, ByteArrayInputStream, CharAr-
rayReader, CipherInputStream, FilterInput-
Stream, FilterReader, InflaterInputStream,
InputStream, PushbackInputStream, Push-
backReader, Reader, StringReader

match(): CertSelector, CRLSelector, Scanner,
X509CertSelector, X509CRLSelector

Matcher: java.util.regex

matcher(): Pattern

matches(): Matcher, Pattern, String

MatchResult: java.util.regex

Math: java.lang

MATH_SYMBOL: Character

MathContext: java.math

MATHEMATICAL_ALPHANUMERIC_SYMBOLS:
UnicodeBlock

MATHEMATICAL_OPERATORS: UnicodeBlock

max(): BigDecimal, BigInteger, Collections,
Math, StrictMath

MAX_CODE_POINT: Character

MAX_HIGH_SURROGATE: Character

MAX_KEY_LENGTH: Preferences

MAX_LOW_SURROGATE: Character

MAX_NAME_LENGTH: Preferences

MAX_PRIORITY: Thread

MAX_RADIX: Character

MAX_SURROGATE: Character

MAX_TIMEZONE_OFFSET: DatatypeConstants

MAX_VALUE: Byte, Character, Double, Float,
Integer, Long, Short

MAX_VALUE_LENGTH: Preferences

maxBytesPerChar(): CharsetEncoder

maxCharsPerByte(): CharsetDecoder

maxMemory(): Runtime

MAY: Calendar, DatatypeConstants

MEDIA_TYPE: OutputKeys

MEDIUM: DateFormat

Member: java.lang.reflect

MEMORY_COLLECTION_THRESHOLD_
EXCEEDED: MemoryNotificationInfo

MEMORY_MANAGER_MXBEAN_DOMAIN_
TYPE: ManagementFactory

MEMORY_MXBEAN_NAME: ManagementFac-
tory

MEMORY_POOL_MXBEAN_DOMAIN_TYPE:
ManagementFactory

MEMORY_THRESHOLD_EXCEEDED: MemoryNo-
tificationInfo

MemoryHandler: java.util.logging

MemoryManagerMXBean: java.lang.manage-
ment

MemoryMXBean: java.lang.management

MemoryNotificationInfo: java.lang.manage-
ment

MemoryPoolMXBean: java.lang.management

MemoryType: java.lang.management

MemoryUsage: java.lang.management

MessageDigest: java.security

MessageDigestSpi: java.security

MessageFormat: java.text

MessageFormat.Field: java.text

method: HttpURLConnection

METHOD: ElementType, OutputKeys

Method: java.lang.reflect

METHOD_ATTRIBUTE_PFX: Packer

MGF1ParameterSpec: java.security.spec

1121 | Class, Method, and Field Index

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

MICROSECONDS: TimeUnit

MILLISECOND: Calendar, Field

MILLISECOND_FIELD: DateFormat

MILLISECONDS: TimeUnit

min(): BigDecimal, BigInteger, Collections,
Math, StrictMath

MIN_CODE_POINT: Character

MIN_HIGH_SURROGATE: Character

MIN_LOW_SURROGATE: Character

MIN_PRIORITY: Thread

MIN_RADIX: Character

MIN_SUPPLEMENTARY_CODE_POINT: Char-
acter

MIN_SURROGATE: Character

MIN_TIMEZONE_OFFSET: DatatypeConstants

MIN_VALUE: Byte, Character, Double, Float,
Integer, Long, Short

MINUTE: Calendar, Field

MINUTE_FIELD: DateFormat

MINUTES: DatatypeConstants

MISCELLANEOUS_MATHEMATICAL_SYMBOLS_
A: UnicodeBlock

MISCELLANEOUS_MATHEMATICAL_SYMBOLS_
B: UnicodeBlock

MISCELLANEOUS_SYMBOLS: UnicodeBlock

MISCELLANEOUS_SYMBOLS_AND_ARROWS:
UnicodeBlock

MISCELLANEOUS_TECHNICAL: UnicodeBlock

MissingFormatArgumentException: java.util

MissingFormatWidthException: java.util

MissingResourceException: java.util

mkdir(): File

mkdirs(): File

mod(): BigInteger

modCount: AbstractList

MODIFICATION_TIME: Packer

Modifier: java.lang.reflect

MODIFIER_LETTER: Character

MODIFIER_SYMBOL: Character

modInverse(): BigInteger

modPow(): BigInteger

MONDAY: Calendar

MONGOLIAN: UnicodeBlock

MONTH: Calendar, Field

MONTH_FIELD: DateFormat

MONTHS: DatatypeConstants

movePointLeft(): BigDecimal

movePointRight(): BigDecimal

MulticastSocket: java.net

MULTILINE: Pattern

multiply(): BigDecimal, BigInteger, Duration

MUSICAL_SYMBOLS: UnicodeBlock

MYANMAR: UnicodeBlock

N
Name: java.util.jar.Attributes

name(): AbstractPreferences, Charset, Enum,
Preferences

NameCallback: javax.security.auth.callback

NamedNodeMap: org.w3c.dom

NameList: org.w3c.dom

NAMESPACE_ERR: DOMException

NamespaceContext: javax.xml.namespace

NamespaceSupport: org.xml.sax.helpers

nameUUIDFromBytes(): UUID

NaN: Double, Float

NANOSECONDS: TimeUnit

nanoTime(): System

NATIVE: Modifier

nativeOrder(): ByteOrder

nCopies(): Collections

NEED_TASK: HandshakeStatus

NEED_UNWRAP: HandshakeStatus

NEED_WRAP: HandshakeStatus

needsDictionary(): Inflater

needsInput(): Deflater, Inflater

negate(): BigDecimal, BigInteger, Duration

NEGATIVE_INFINITY: Double, Float

NegativeArraySizeException: java.lang

NetPermission: java.net

NetworkInterface: java.net

NEW: State

newCachedThreadPool(): Executors

Class, Method, and Field Index | 1122

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Class Index

newChannel(): Channels

newCondition(): Lock, ReadLock, Reentrant-
Lock, WriteLock

newDecoder(): Charset

newDocument(): DocumentBuilder

newDocumentBuilder(): DocumentBuilderFac-
tory

newDuration(): DatatypeFactory

newDurationDayTime(): DatatypeFactory

newDurationYearMonth(): DatatypeFactory

newEncoder(): Charset

newFactory(): SchemaFactoryLoader

newFixedThreadPool(): Executors

newInputStream(): Channels

newInstance(): Array, Builder, Class,
Constructor, DatatypeFactory, Document-
BuilderFactory, SAXParserFactory, SchemaFac-
tory, Service, TransformerFactory, URLClass-
Loader, XPathFactory

newLine(): BufferedWriter

newNode: AbstractPreferences

newOutputStream(): Channels

newPacker(): Pack200

newPermissionCollection(): AllPermission,
BasicPermission, DelegationPermission, FileP-
ermission, Permission, PrivateCredentialPer-
mission, PropertyPermission, ServicePermis-
sion, SocketPermission, UnresolvedPermission

newPlatformMXBeanProxy(): Management-
Factory

newProxyInstance(): Proxy

newReader(): Channels

newSAXParser(): SAXParserFactory

newScheduledThreadPool(): Executors

newSchema(): SchemaFactory

newSingleThreadExecutor(): Executors

newSingleThreadScheduledExecutor(): Execu-
tors

newTemplates(): TransformerFactory

newTemplatesHandler(): SAXTransformerFac-
tory

newThread(): ThreadFactory

newTransformer(): Templates, TransformerFac-
tory

newTransformerHandler(): SAXTransformer-
Factory

newUnpacker(): Pack200

newUpdater(): AtomicIntegerFieldUpdater,
AtomicLongFieldUpdater, AtomicReference-
FieldUpdater

newValidator(): Schema

newValidatorHandler(): Schema

newWriter(): Channels

newXMLFilter(): SAXTransformerFactory

newXMLGregorianCalendar(): DatatypeFactory

newXMLGregorianCalendarDate(): Datatype-
Factory

newXMLGregorianCalendarTime(): Datatype-
Factory

newXPath(): XPathFactory

next(): BreakIterator, CharacterIterator, Colla-
tionElementIterator, Iterator, ListIterator,
Random, Scanner, SecureRandom, StringChar-
acterIterator

nextBigDecimal(): Scanner

nextBigInteger(): Scanner

nextBoolean(): Random, Scanner

nextByte(): Scanner

nextBytes(): Random, SecureRandom

nextClearBit(): BitSet

nextDouble(): ChoiceFormat, Random, Scanner

nextElement(): Enumeration, StringTokenizer

nextFloat(): Random, Scanner

nextGaussian(): Random

nextIndex(): ListIterator

nextInt(): Random, Scanner

nextLine(): Scanner

nextLong(): Random, Scanner

nextProbablePrime(): BigInteger

nextSetBit(): BitSet

nextShort(): Scanner

nextToken(): StreamTokenizer, StringTokenizer

NO: ConfirmationCallback

NO_COMPRESSION: Deflater

NO_DATA_ALLOWED_ERR: DOMException

NO_DECOMPOSITION: Collator

NO_FIELDS: ObjectStreamClass

1123 | Class, Method, and Field Index

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

NO_MODIFICATION_ALLOWED_ERR: DOMEx-
ception

NO_PROXY: Proxy

NoClassDefFoundError: java.lang

NoConnectionPendingException: java.nio.
channels

Node: org.w3c.dom

NODE: XPathConstants

node(): AbstractPreferences, Preferences, UUID

NODE_ADOPTED: UserDataHandler

NODE_CLONED: UserDataHandler

NODE_DELETED: UserDataHandler

NODE_IMPORTED: UserDataHandler

NODE_RENAMED: UserDataHandler

NodeChangeEvent: java.util.prefs

NodeChangeListener: java.util.prefs

nodeExists(): AbstractPreferences, Preferences

NodeList: org.w3c.dom

NODESET: XPathConstants

NON_HEAP: MemoryType

NON_SPACING_MARK: Character

noneOf(): EnumSet

NonReadableChannelException: java.nio.chan-
nels

NonWritableChannelException: java.nio.chan-
nels

NORM_PRIORITY: Thread

normalize(): Node, URI, XMLGregorianCalendar

normalizeDocument(): Document

normalizeWith(): Duration

NoRouteToHostException: java.net

NoSuchAlgorithmException: java.security

NoSuchElementException: java.util

NoSuchFieldError: java.lang

NoSuchFieldException: java.lang

NoSuchMethodError: java.lang

NoSuchMethodException: java.lang

NoSuchPaddingException: javax.crypto

NoSuchProviderException: java.security

not(): BigInteger

NOT_FOUND_ERR: DOMException

NOT_HANDSHAKING: HandshakeStatus

NOT_SUPPORTED_ERR: DOMException

NotActiveException: java.io

Notation: org.w3c.dom

NOTATION_NODE: Node

notationDecl(): DefaultHandler, DTDHandler,
HandlerBase, XMLFilterImpl

notify(): Object

notifyAll(): Object

notifyObservers(): Observable

NotSerializableException: java.io

NotYetBoundException: java.nio.channels

NotYetConnectedException: java.nio.channels

NOVEMBER: Calendar, DatatypeConstants

NSDECL: NamespaceSupport

NULL_NS_URI: XMLConstants

NullCipher: javax.crypto

NULLORDER: CollationElementIterator

NullPointerException: java.lang

Number: java.lang

NUMBER: XPathConstants

NUMBER_FORMS: UnicodeBlock

NumberFormat: java.text

numberFormat: DateFormat

NumberFormat.Field: java.text

NumberFormatException: java.lang

numberOfLeadingZeros(): Integer, Long

numberOfTrailingZeros(): Integer, Long

nval: StreamTokenizer

O
OAEPParameterSpec: javax.crypto.spec

Object: java.lang

ObjectInput: java.io

ObjectInputStream: java.io

ObjectInputStream.GetField: java.io

ObjectInputValidation: java.io

ObjectOutput: java.io

ObjectOutputStream: java.io

ObjectOutputStream.PutField: java.io

ObjectStreamClass: java.io

Class, Method, and Field Index | 1124

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Class Index

ObjectStreamConstants: java.io

ObjectStreamException: java.io

ObjectStreamField: java.io

Observable: java.util

Observer: java.util

OCTOBER: Calendar, DatatypeConstants

of(): EnumSet, UnicodeBlock

ofCalendarField(): Field

OFF: Level

offer(): ArrayBlockingQueue, BlockingQueue,
ConcurrentLinkedQueue, DelayQueue, Linked-
BlockingQueue, LinkedList, PriorityBlocking-
Queue, PriorityQueue, Queue, Synchronous-
Queue

offsetByCodePoints(): Character, String, String-
Buffer

OGHAM: UnicodeBlock

OK: ConfirmationCallback, Status

OK_CANCEL_OPTION: ConfirmationCallback

OLD_ITALIC: UnicodeBlock

OMIT_XML_DECLARATION: OutputKeys

on(): DigestInputStream, DigestOutputStream

ONE: BigDecimal, BigInteger

onMalformedInput(): CharsetDecoder,
CharsetEncoder

onUnmappableCharacter(): CharsetDecoder,
CharsetEncoder

OP_ACCEPT: SelectionKey

OP_CONNECT: SelectionKey

OP_READ: SelectionKey

OP_WRITE: SelectionKey

open(): DatagramChannel, Pipe, Selector, Serv-
erSocketChannel, SocketChannel

OPEN_DELETE: ZipFile

OPEN_FAILURE: ErrorManager

OPEN_READ: ZipFile

openConnection(): URL, URLStreamHandler

openDatagramChannel(): SelectorProvider

openPipe(): SelectorProvider

openSelector(): SelectorProvider

openServerSocketChannel(): SelectorProvider

openSocketChannel(): SelectorProvider

openStream(): URL

OPERATING_SYSTEM_MXBEAN_NAME:
ManagementFactory

OperatingSystemMXBean: java.lang.manage-
ment

OPTICAL_CHARACTER_RECOGNITION: Unicode-
Block

OPTIONAL: LoginModuleControlFlag

OptionalDataException: java.io

or(): BigInteger, BitSet

order(): ByteBuffer, CharBuffer, DoubleBuffer,
FloatBuffer, IntBuffer, LongBuffer, ShortBuffer

ordinal(): Enum

ordinaryChar(): StreamTokenizer

ordinaryChars(): StreamTokenizer

ORIYA: UnicodeBlock

OSMANYA: UnicodeBlock

OTHER_LETTER: Character

OTHER_NUMBER: Character

OTHER_PUNCTUATION: Character

OTHER_SYMBOL: Character

out: FileDescriptor, FilterOutputStream, Filter-
Writer, PipedInputStream, PrintWriter,
System

out(): Formatter

OutOfMemoryError: java.lang

OutputKeys: javax.xml.transform

OutputStream: java.io

OutputStreamWriter: java.io

OVERFLOW: CoderResult

OverlappingFileLockException: java.nio.chan-
nels

overlaps(): FileLock

Override: java.lang

owns(): AbstractQueuedSynchronizer

P
pack(): Packer

Pack200: java.util.jar

Pack200.Packer: java.util.jar

Pack200.Unpacker: java.util.jar

PACKAGE: ElementType

Package: java.lang

1125 | Class, Method, and Field Index

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Packer: java.util.jar.Pack200

PARAGRAPH_SEPARATOR: Character

PARAMETER: ElementType

ParameterizedType: java.lang.reflect

parent: ResourceBundle

parent(): AbstractPreferences, Preferences

parentOf(): ThreadGroup

park(): LockSupport

parkNanos(): LockSupport

parkUntil(): LockSupport

parse(): ChoiceFormat, Date, DateFormat, Deci-
malFormat, DocumentBuilder, Level,
MessageFormat, NumberFormat, Parser,
ParserAdapter, SAXParser, SimpleDate-
Format, XMLFilterImpl, XMLReader, XMLRead-
erAdapter

parseBoolean(): Boolean

parseByte(): Byte

parseDouble(): Double

ParseException: java.text

parseFloat(): Float

parseInt(): Integer

parseLong(): Long

parseNumbers(): StreamTokenizer

parseObject(): DateFormat, Format, Message-
Format, NumberFormat

ParsePosition: java.text

Parser: org.xml.sax

ParserAdapter: org.xml.sax.helpers

ParserConfigurationException: javax.xml.
parsers

ParserFactory: org.xml.sax.helpers

parseServerAuthority(): URI

parseShort(): Short

parseURL(): URLStreamHandler

PASS: Packer

PASS_FILE_PFX: Packer

PasswordAuthentication: java.net

PasswordCallback: javax.security.auth.callback

PasswordProtection: java.security.KeyStore

pathSeparator: File

pathSeparatorChar: File

Pattern: java.util.regex

pattern(): Matcher, Pattern

PatternSyntaxException: java.util.regex

PBEKey: javax.crypto.interfaces

PBEKeySpec: javax.crypto.spec

PBEParameterSpec: javax.crypto.spec

peek(): ArrayBlockingQueue, ConcurrentLinked-
Queue, DatagramSocketImpl, DelayQueue,
LinkedBlockingQueue, LinkedList, Priority-
BlockingQueue, PriorityQueue, Queue, Stack,
SynchronousQueue

peekData(): DatagramSocketImpl

PERCENT: Field

PERMILLE: Field

Permission: java.security

PermissionCollection: java.security

Permissions: java.security

PhantomReference: java.lang.ref

PHONETIC_EXTENSIONS: UnicodeBlock

PI: Math, StrictMath

PI_DISABLE_OUTPUT_ESCAPING: Result

PI_ENABLE_OUTPUT_ESCAPING: Result

Pipe: java.nio.channels

Pipe.SinkChannel: java.nio.channels

Pipe.SourceChannel: java.nio.channels

PIPE_SIZE: PipedInputStream

PipedInputStream: java.io

PipedOutputStream: java.io

PipedReader: java.io

PipedWriter: java.io

PKCS8EncodedKeySpec: java.security.spec

PKIXBuilderParameters: java.security.cert

PKIXCertPathBuilderResult: java.security.cert

PKIXCertPathChecker: java.security.cert

PKIXCertPathValidatorResult: java.security.cert

PKIXParameters: java.security.cert

plus(): BigDecimal

PM: Calendar

POINT_INFINITY: ECPoint

Policy: java.security, javax.security.auth

PolicyNode: java.security.cert

PolicyQualifierInfo: java.security.cert

poll(): ArrayBlockingQueue, BlockingQueue,
CompletionService, ConcurrentLinkedQueue,
DelayQueue, ExecutorCompletionService,
LinkedBlockingQueue, LinkedList, Priority-
BlockingQueue, PriorityQueue, Queue, Refer-
enceQueue, SynchronousQueue

Class, Method, and Field Index | 1126

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Class Index

pop(): Stack

popContext(): NamespaceSupport

port: SocketImpl

PortUnreachableException: java.net

pos: BufferedInputStream, ByteArrayInput-
Stream, CharArrayReader, PushbackInput-
Stream, StringBufferInputStream

position(): Buffer, FileChannel, FileLock

POSITIVE_INFINITY: Double, Float

pow(): BigDecimal, BigInteger, Math, StrictMath

PRC: Locale

preceding(): BreakIterator

precision(): BigDecimal

preferenceChange(): PreferenceChangeListener

PreferenceChangeEvent: java.util.prefs

PreferenceChangeListener: java.util.prefs

Preferences: java.util.prefs

PreferencesFactory: java.util.prefs

prestartAllCoreThreads(): ThreadPoolExecutor

prestartCoreThread(): ThreadPoolExecutor

previous(): BreakIterator, CharacterIterator,
CollationElementIterator, ListIterator, String-
CharacterIterator

previousDouble(): ChoiceFormat

previousIndex(): ListIterator

PRIMARY: Collator

primaryOrder(): CollationElementIterator

Principal: java.security

print(): PrintStream, PrintWriter

printf(): PrintStream, PrintWriter

println(): PrintStream, PrintWriter

printStackTrace(): Throwable, TransformerEx-
ception, XPathException

PrintStream: java.io

PrintWriter: java.io

PriorityBlockingQueue: java.util.concurrent

PriorityQueue: java.util

PRIVATE: MapMode, Modifier, Type

PRIVATE_KEY: Cipher

PRIVATE_USE: Character

PRIVATE_USE_AREA: UnicodeBlock

PrivateCredentialPermission: javax.security.
auth

PrivateKey: java.security

PrivateKeyEntry: java.security.KeyStore

PrivilegedAction: java.security

PrivilegedActionException: java.security

privilegedCallable(): Executors

privilegedCallableUsingCurrentClassLoader(
): Executors

PrivilegedExceptionAction: java.security

privilegedThreadFactory(): Executors

probablePrime(): BigInteger

Process: java.lang

ProcessBuilder: java.lang

PROCESSING_INSTRUCTION_NODE: Node

ProcessingInstruction: org.w3c.dom

processingInstruction(): ContentHandler,
DefaultHandler, DocumentHandler, Handler-
Base, ParserAdapter, XMLFilterImpl,
XMLReaderAdapter

processName(): NamespaceSupport

PROGRESS: Packer, Unpacker

Properties: java.util

properties(): Packer, Unpacker

propertyNames(): Properties

PropertyPermission: java.util

PropertyResourceBundle: java.util

PROTECTED: Modifier

ProtectionDomain: java.security

ProtectionParameter: java.security.KeyStore

PROTOCOL_VERSION_1: ObjectStreamCon-
stants

PROTOCOL_VERSION_2: ObjectStreamCon-
stants

ProtocolException: java.net

Provider: java.security

provider(): AbstractSelectableChannel, Abstract-
Selector, SelectableChannel, Selector, Selec-
torProvider

Provider.Service: java.security

ProviderException: java.security

PROXY: RequestorType

Proxy: java.lang.reflect, java.net

Proxy.Type: java.net

ProxySelector: java.net

PSource: javax.crypto.spec

PSource.PSpecified: javax.crypto.spec

PSpecified: javax.crypto.spec.PSource

PSSParameterSpec: java.security.spec

1127 | Class, Method, and Field Index

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

PUBLIC: Member, Modifier, Type

PUBLIC_KEY: Cipher

PublicKey: java.security

publish(): ConsoleHandler, FileHandler, Handler,
MemoryHandler, SocketHandler, StreamHan-
dler

purge(): ThreadPoolExecutor, Timer

push(): MemoryHandler, Stack

pushBack(): StreamTokenizer

PushbackInputStream: java.io

PushbackReader: java.io

pushContext(): NamespaceSupport

put(): AbstractMap, AbstractPreferences, Array-
BlockingQueue, Attributes, BlockingQueue,
ByteBuffer, CharBuffer, ConcurrentHashMap,
CookieHandler, DelayQueue, Dictionary,
DoubleBuffer, EnumMap, FloatBuffer,
HashMap, Hashtable, IdentityHashMap,
IntBuffer, LinkedBlockingQueue, LongBuffer,
Map, Preferences, PriorityBlockingQueue,
Provider, PutField, ResponseCache, Short-
Buffer, SynchronousQueue, TreeMap,
WeakHashMap

putAll(): AbstractMap, Attributes, Concur-
rentHashMap, EnumMap, HashMap, Hash-

table, IdentityHashMap, Map, Provider,
TreeMap, WeakHashMap

putBoolean(): AbstractPreferences, Preferences

putByteArray(): AbstractPreferences, Prefer-
ences

putChar(): ByteBuffer

putDouble(): AbstractPreferences, ByteBuffer,
Preferences

PutField: java.io.ObjectOutputStream

putFields(): ObjectOutputStream

putFloat(): AbstractPreferences, ByteBuffer,
Preferences

putIfAbsent(): ConcurrentHashMap, Concur-
rentMap

putInt(): AbstractPreferences, ByteBuffer, Pref-
erences

putLong(): AbstractPreferences, ByteBuffer,
Preferences

putNextEntry(): JarOutputStream, ZipOutput-
Stream

putService(): Provider

putShort(): ByteBuffer

putSpi(): AbstractPreferences

putValue(): Attributes, SSLSession

Q
QName: javax.xml.namespace

Queue: java.util

quote(): Pattern

quoteChar(): StreamTokenizer

quoteReplacement(): Matcher

R
radix(): Scanner

Random: java.util

random(): Math, StrictMath

RandomAccess: java.util

RandomAccessFile: java.io

randomUUID(): UUID

range(): EnumSet

RC2ParameterSpec: javax.crypto.spec

RC5ParameterSpec: javax.crypto.spec

read(): BufferedInputStream, BufferedReader,
ByteArrayInputStream, CharArrayReader,
CharBuffer, CheckedInputStream, CipherIn-

putStream, DatagramChannel, DataInput-
Stream, DigestInputStream, FileChannel,
FileInputStream, FilterInputStream, Filter-
Reader, GZIPInputStream, InflaterInput-
Stream, InputStream, InputStreamReader,
JarInputStream, LineNumberInputStream,
LineNumberReader, Manifest, ObjectInput,
ObjectInputStream, PipedInputStream, Pipe-
dReader, PushbackInputStream, Pushback-
Reader, RandomAccessFile, Readable, Read-
ableByteChannel, Reader,
ScatteringByteChannel, SequenceInput-
Stream, SocketChannel, StringBufferInput-
Stream, StringReader, ZipInputStream

Class, Method, and Field Index | 1128

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Class Index

READ_ONLY: MapMode

READ_WRITE: MapMode

Readable: java.lang

ReadableByteChannel: java.nio.channels

readBoolean(): DataInput, DataInputStream,
ObjectInputStream, RandomAccessFile

readByte(): DataInput, DataInputStream,
ObjectInputStream, RandomAccessFile

readChar(): DataInput, DataInputStream,
ObjectInputStream, RandomAccessFile

readClassDescriptor(): ObjectInputStream

readConfiguration(): LogManager

readDouble(): DataInput, DataInputStream,
ObjectInputStream, RandomAccessFile

Reader: java.io

readExternal(): Externalizable

readFields(): ObjectInputStream

readFloat(): DataInput, DataInputStream,
ObjectInputStream, RandomAccessFile

readFully(): DataInput, DataInputStream,
ObjectInputStream, RandomAccessFile

READING: Attribute

readInt(): DataInput, DataInputStream, Object-
InputStream, RandomAccessFile

readLine(): BufferedReader, DataInput, DataIn-
putStream, LineNumberReader, ObjectInput-
Stream, RandomAccessFile

ReadLock: java.util.concurrent.locks.Reentrant-
ReadWriteLock

readLock(): ReadWriteLock, ReentrantRead-
WriteLock

readLong(): DataInput, DataInputStream,
ObjectInputStream, RandomAccessFile

readObject(): ObjectInput, ObjectInputStream

readObjectOverride(): ObjectInputStream

ReadOnlyBufferException: java.nio

readResolve(): Attribute, CertificateRep, Cert-
PathRep, Field, KeyRep

readShort(): DataInput, DataInputStream,
ObjectInputStream, RandomAccessFile

readStreamHeader(): ObjectInputStream

readUnshared(): ObjectInputStream

readUnsignedByte(): DataInput, DataInput-
Stream, ObjectInputStream, RandomAccess-
File

readUnsignedShort(): DataInput, DataInput-
Stream, ObjectInputStream, RandomAccess-
File

readUTF(): DataInput, DataInputStream, Object-
InputStream, RandomAccessFile

ReadWriteLock: java.util.concurrent.locks

ready(): BufferedReader, CharArrayReader,
FilterReader, InputStreamReader, Pipe-
dReader, PushbackReader, Reader, Strin-
gReader

readyOps(): SelectionKey

receive(): DatagramChannel, DatagramSocket,
DatagramSocketImpl, PipedInputStream

redefineClasses(): Instrumentation

redirectErrorStream(): ProcessBuilder

reducePermits(): Semaphore

ReentrantLock: java.util.concurrent.locks

ReentrantReadWriteLock: java.util.concurrent.
locks

ReentrantReadWriteLock.ReadLock: java.util.
concurrent.locks

ReentrantReadWriteLock.WriteLock: java.util.
concurrent.locks

Reference: java.lang.ref

ReferenceQueue: java.lang.ref

ReflectPermission: java.lang.reflect

refresh(): Configuration, KerberosTicket, Policy,
Refreshable

Refreshable: javax.security.auth

RefreshFailedException: javax.security.auth

region(): Matcher

regionEnd(): Matcher

regionMatches(): String

regionStart(): Matcher

register(): AbstractSelectableChannel, Abstract-
Selector, SelectableChannel

registerValidation(): ObjectInputStream

rehash(): Hashtable

rejectedExecution(): AbortPolicy, CallerRun-
sPolicy, DiscardOldestPolicy, DiscardPolicy,
RejectedExecutionHandler

RejectedExecutionException: java.util.concur-
rent

RejectedExecutionHandler: java.util.concurrent

relativize(): URI

1129 | Class, Method, and Field Index

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

RELAXNG_NS_URI: XMLConstants

release(): AbstractQueuedSynchronizer, File-
Lock, Semaphore

releaseShared(): AbstractQueuedSynchronizer

remainder(): BigDecimal, BigInteger

remaining(): Buffer

remainingCapacity(): ArrayBlockingQueue,
BlockingQueue, DelayQueue, LinkedBlocking-
Queue, PriorityBlockingQueue, Synchronous-
Queue

remove(): AbstractCollection, AbstractList,
AbstractMap, AbstractPreferences, Abstract-
Queue, AbstractSequentialList, ArrayBlocking-
Queue, ArrayList, Attributes, Collection,
ConcurrentHashMap, ConcurrentLinked-
Queue, ConcurrentMap, CopyOnWriteArray-
List, CopyOnWriteArraySet, DelayQueue,
Dictionary, EnumMap, HashMap, HashSet,
Hashtable, IdentityHashMap, Iterator, Linked-
BlockingQueue, LinkedList, List, ListIterator,
Map, Preferences, PriorityBlockingQueue,
PriorityQueue, Provider, Queue, Reference-
Queue, Scanner, ScheduledThreadPoolExec-
utor, Set, SynchronousQueue, ThreadLocal,
ThreadPoolExecutor, TreeMap, TreeSet,
Vector, WeakHashMap

removeAll(): AbstractCollection, AbstractSet,
Collection, CopyOnWriteArrayList, CopyOn-
WriteArraySet, List, Set, SynchronousQueue,
Vector

removeAllElements(): Vector

removeAttribute(): AttributeListImpl,
Attributes2Impl, AttributesImpl, Element

removeAttributeNode(): Element

removeAttributeNS(): Element

removeCertificate(): Identity

removeChild(): Node

removeEldestEntry(): LinkedHashMap

removeElement(): Vector

removeElementAt(): Vector

removeFirst(): LinkedList

removeHandler(): Logger

removeHandshakeCompletedListener():
SSLSocket

removeIdentity(): IdentityScope

removeLast(): LinkedList

removeNamedItem(): NamedNodeMap

removeNamedItemNS(): NamedNodeMap

removeNode(): AbstractPreferences, Prefer-
ences

removeNodeChangeListener(): AbstractPrefer-
ences, Preferences

removeNodeSpi(): AbstractPreferences

removePreferenceChangeListener(): Abstract-
Preferences, Preferences

removePropertyChangeListener(): LogMan-
ager, Packer, Unpacker

removeProvider(): Security

removeRange(): AbstractList, ArrayList, Vector

removeService(): Provider

removeShutdownHook(): Runtime

removeSpi(): AbstractPreferences

removeTransformer(): Instrumentation

removeValue(): SSLSession

renameNode(): Document

renameTo(): File

reorderVisually(): Bidi

REPLACE: CodingErrorAction

replace(): ConcurrentHashMap, ConcurrentMap,
String, StringBuffer, StringBuilder

replaceAll(): Collections, Matcher, String

replaceChild(): Node

replaceData(): CharacterData

replaceFirst(): Matcher, String

replacement(): CharsetDecoder, CharsetEncoder

replaceObject(): ObjectOutputStream

replaceWholeText(): Text

replaceWith(): CharsetDecoder, CharsetEncoder

REPORT: CodingErrorAction

reportError(): Handler

RequestorType: java.net.Authenticator

requestPasswordAuthentication(): Authenti-
cator

REQUIRED: LoginModuleControlFlag

requireEnd(): Matcher

requiresBidi(): Bidi

REQUISITE: LoginModuleControlFlag

reset(): Adler32, Buffer, BufferedInputStream,
BufferedReader, ByteArrayInputStream, Byte-
ArrayOutputStream, CharArrayReader, CharAr-
rayWriter, CharsetDecoder, CharsetEncoder,
Checksum, CollationElementIterator, CRC32

Class, Method, and Field Index | 1130

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Class Index

reset() cont’d: CyclicBarrier, Deflater, Document-
Builder, FilterInputStream, FilterReader,
Inflater, InflaterInputStream, InputStream,
LineNumberInputStream, LineNumber-
Reader, LogManager, Mac, Matcher, Message-
Digest, NamespaceSupport, ObjectOutput-
Stream, PushbackInputStream,
PushbackReader, Reader, SAXParser, String-
BufferInputStream, StringReader, Trans-
former, Validator, XMLGregorianCalendar,
XPath

resetPeakThreadCount(): ThreadMXBean

resetPeakUsage(): MemoryPoolMXBean

resetSyntax(): StreamTokenizer

resolve(): URI, URIResolver

resolveClass(): ClassLoader, ObjectInputStream

resolveEntity(): DefaultHandler,
DefaultHandler2, EntityResolver,
EntityResolver2, HandlerBase, XMLFilterImpl

resolveFunction(): XPathFunctionResolver

resolveObject(): ObjectInputStream

resolveProxyClass(): ObjectInputStream

resolveVariable(): XPathVariableResolver

ResourceBundle: java.util

ResponseCache: java.net

responseCode: HttpURLConnection

responseCode(): HttpRetryException

responseMessage: HttpURLConnection

Result: javax.xml.transform

resume(): Thread, ThreadGroup

retainAll(): AbstractCollection, Collection, Copy-
OnWriteArrayList, CopyOnWriteArraySet, List,
Set, SynchronousQueue, Vector

Retention: java.lang.annotation

RetentionPolicy: java.lang.annotation

reverse(): Collections, Integer, Long, String-
Buffer, StringBuilder

reverseBytes(): Character, Integer, Long, Short

reverseOrder(): Collections

rewind(): Buffer

RFC1779: X500Principal

RFC2253: X500Principal

rint(): Math, StrictMath

roll(): Calendar, GregorianCalendar

rotate(): Collections

rotateLeft(): Integer, Long

rotateRight(): Integer, Long

round(): BigDecimal, Math, StrictMath

ROUND_CEILING: BigDecimal

ROUND_DOWN: BigDecimal

ROUND_FLOOR: BigDecimal

ROUND_HALF_DOWN: BigDecimal

ROUND_HALF_EVEN: BigDecimal

ROUND_HALF_UP: BigDecimal

ROUND_UNNECESSARY: BigDecimal

ROUND_UP: BigDecimal

RoundingMode: java.math

RSAKey: java.security.interfaces

RSAKeyGenParameterSpec: java.security.spec

RSAMultiPrimePrivateCrtKey: java.security.
interfaces

RSAMultiPrimePrivateCrtKeySpec: java.secu-
rity.spec

RSAOtherPrimeInfo: java.security.spec

RSAPrivateCrtKey: java.security.interfaces

RSAPrivateCrtKeySpec: java.security.spec

RSAPrivateKey: java.security.interfaces

RSAPrivateKeySpec: java.security.spec

RSAPublicKey: java.security.interfaces

RSAPublicKeySpec: java.security.spec

RuleBasedCollator: java.text

run(): FutureTask, PrivilegedAction, Privilege-
dExceptionAction, Runnable, Thread, Timer-
Task

runAndReset(): FutureTask

runFinalization(): Runtime, System

runFinalizersOnExit(): Runtime, System

RUNIC: UnicodeBlock

Runnable: java.lang

RUNNABLE: State

Runtime: java.lang

RUNTIME: RetentionPolicy

RUNTIME_MXBEAN_NAME: ManagementFac-
tory

RuntimeException: java.lang

RuntimeMXBean: java.lang.management

RuntimePermission: java.lang

1131 | Class, Method, and Field Index

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

S
sameFile(): URL, URLStreamHandler

SATURDAY: Calendar

save(): Properties

SAXException: org.xml.sax

SAXNotRecognizedException: org.xml.sax

SAXNotSupportedException: org.xml.sax

SAXParseException: org.xml.sax

SAXParser: javax.xml.parsers

SAXParserFactory: javax.xml.parsers

SAXResult: javax.xml.transform.sax

SAXSource: javax.xml.transform.sax

SAXTransformerFactory: javax.xml.transform.
sax

SC_BLOCK_DATA: ObjectStreamConstants

SC_ENUM: ObjectStreamConstants

SC_EXTERNALIZABLE: ObjectStreamConstants

SC_SERIALIZABLE: ObjectStreamConstants

SC_WRITE_METHOD: ObjectStreamConstants

scale(): BigDecimal

scaleByPowerOfTen(): BigDecimal

Scanner: java.util

ScatteringByteChannel: java.nio.channels

schedule(): ScheduledExecutorService, Sched-
uledThreadPoolExecutor, Timer

scheduleAtFixedRate(): ScheduledExecutorSer-
vice, ScheduledThreadPoolExecutor, Timer

scheduledExecutionTime(): TimerTask

ScheduledExecutorService: java.util.concurrent

ScheduledFuture: java.util.concurrent

ScheduledThreadPoolExecutor: java.util.
concurrent

scheduleWithFixedDelay(): ScheduledExecu-
torService, ScheduledThreadPoolExecutor

Schema: javax.xml.validation

SchemaFactory: javax.xml.validation

SchemaFactoryLoader: javax.xml.validation

SCIENTIFIC: BigDecimalLayoutForm

SEALED: Name

SealedObject: javax.crypto

search(): Stack

SECOND: Calendar, Field

SECOND_FIELD: DateFormat

SECONDARY: Collator

secondaryOrder(): CollationElementIterator

SECONDS: DatatypeConstants, TimeUnit

SECRET: Type

SECRET_KEY: Cipher

SecretKey: javax.crypto

SecretKeyEntry: java.security.KeyStore

SecretKeyFactory: javax.crypto

SecretKeyFactorySpi: javax.crypto

SecretKeySpec: javax.crypto.spec

SecureCacheResponse: java.net

SecureClassLoader: java.security

SecureRandom: java.security

SecureRandomSpi: java.security

Security: java.security

SecurityException: java.lang

SecurityManager: java.lang

SecurityPermission: java.security

seek(): RandomAccessFile

SEGMENT_LIMIT: Packer

select(): ProxySelector, Selector

SelectableChannel: java.nio.channels

selectedKeys(): Selector

SelectionKey: java.nio.channels

selectNow(): Selector

Selector: java.nio.channels

selector(): SelectionKey

SelectorProvider: java.nio.channels.spi

Semaphore: java.util.concurrent

send(): DatagramChannel, DatagramSocket,
DatagramSocketImpl, MulticastSocket

sendUrgentData(): Socket, SocketImpl

separator: File

separatorChar: File

SEPTEMBER: Calendar, DatatypeConstants

SequenceInputStream: java.io

Serializable: java.io

SerializablePermission: java.io

Class, Method, and Field Index | 1132

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Class Index

serialVersionUID: DHPrivateKey, DHPublicKey,
DSAPrivateKey, DSAPublicKey, ECPrivateKey,
ECPublicKey, Key, PBEKey, PrivateKey,
PublicKey, RSAMultiPrimePrivateCrtKey,
RSAPrivateCrtKey, RSAPrivateKey, RSAPub-
licKey, SecretKey

SERVER: RequestorType

ServerSocket: java.net

ServerSocketChannel: java.nio.channels

ServerSocketFactory: javax.net

Service: java.security.Provider

ServicePermission: javax.security.auth.kerberos

Set: java.util

set(): AbstractList, AbstractSequentialList, Array,
ArrayList, AtomicBoolean, AtomicInteger,
AtomicIntegerArray, AtomicIntegerFieldUp-
dater, AtomicLong, AtomicLongArray, Atomi-
cLongFieldUpdater, AtomicMarkableRefer-
ence, AtomicReference,
AtomicReferenceArray, AtomicReferenceField-
Updater, AtomicStampedReference, BitSet,
Calendar, CopyOnWriteArrayList, Field,
FutureTask, LinkedList, List, ListIterator,
ThreadLocal, URL, Vector

set2DigitYearStart(): SimpleDateFormat

setAccessible(): AccessibleObject

setAddress(): DatagramPacket

setAllowUserInteraction(): URLConnection

setAmPmStrings(): DateFormatSymbols

setAnyPolicyInhibited(): PKIXParameters

setAttribute(): AttributesImpl, DocumentBuild-
erFactory, Element, TransformerFactory

setAttributeList(): AttributeListImpl

setAttributeNode(): Element

setAttributeNodeNS(): Element

setAttributeNS(): Element

setAttributes(): Attributes2Impl, AttributesImpl

setAuthorityKeyIdentifier(): X509CertSelector

setBasicConstraints(): X509CertSelector

setBeginIndex(): FieldPosition

setBit(): BigInteger

setBoolean(): Array, Field

setBroadcast(): DatagramSocket

setByte(): Array, Field

setByteStream(): InputSource

setCalendar(): DateFormat

setCallbackHandler(): AuthProvider

setCertificate(): X509CertSelector

setCertificateChecking(): X509CRLSelector

setCertificateEntry(): KeyStore

setCertificateValid(): X509CertSelector

setCertPathCheckers(): PKIXParameters

setCertStores(): PKIXParameters

setChanged(): Observable

setChar(): Array, Field

setCharacterStream(): InputSource

setCharAt(): StringBuffer

setChoices(): ChoiceFormat

setChunkedStreamingMode(): HttpURLCon-
nection

setClassAssertionStatus(): ClassLoader

setCoalescing(): DocumentBuilderFactory

setCollectionUsageThreshold(): Memory-
PoolMXBean

setColumnNumber(): LocatorImpl

setComment(): ZipEntry, ZipOutputStream

setCompressedSize(): ZipEntry

setConfiguration(): Configuration

setConnectTimeout(): URLConnection

setContentHandler(): ParserAdapter, Valida-
torHandler, XMLFilterImpl, XMLReader

setContentHandlerFactory(): URLConnection

setContextClassLoader(): Thread

setContinueExistingPeriodicTasksAfterShutdo
wnPolicy(): ScheduledThreadPoolExecutor

setCorePoolSize(): ThreadPoolExecutor

setCrc(): ZipEntry

setCurrency(): DecimalFormat, DecimalFormat-
Symbols, NumberFormat

setCurrencySymbol(): DecimalFormatSymbols

setDaemon(): Thread, ThreadGroup

setData(): CharacterData, DatagramPacket,
ProcessingInstruction

setDatagramSocketImplFactory(): Datagram-
Socket

setDate(): Date, PKIXParameters

setDateAndTime(): X509CRLSelector

setDateFormatSymbols(): SimpleDateFormat

setDay(): XMLGregorianCalendar

1133 | Class, Method, and Field Index

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

setDecimalFormatSymbols(): DecimalFormat

setDecimalSeparator(): DecimalFormatSymbols

setDecimalSeparatorAlwaysShown(): Deci-
malFormat

setDeclared(): Attributes2Impl

setDecomposition(): Collator

setDefault(): Authenticator, CookieHandler,
Locale, ProxySelector, ResponseCache, Time-
Zone

setDefaultAllowUserInteraction(): URLConnec-
tion

setDefaultAssertionStatus(): ClassLoader

setDefaultHostnameVerifier(): HttpsURLCon-
nection

setDefaultRequestProperty(): URLConnection

setDefaultSSLSocketFactory(): HttpsURLCon-
nection

setDefaultUncaughtExceptionHandler():
Thread

setDefaultUseCaches(): URLConnection

setDictionary(): Deflater, Inflater

setDigit(): DecimalFormatSymbols

setDocumentHandler(): Parser, XMLReader-
Adapter

setDocumentLocator(): ContentHandler,
DefaultHandler, DocumentHandler, Handler-
Base, ParserAdapter, XMLFilterImpl,
XMLReaderAdapter

setDocumentURI(): Document

setDoInput(): URLConnection

setDoOutput(): URLConnection

setDouble(): Array, Field

setDSTSavings(): SimpleTimeZone

setDTDHandler(): Parser, ParserAdapter,
XMLFilterImpl, XMLReader, XMLReader-
Adapter

setElementAt(): Vector

setEnabledCipherSuites(): SSLEngine, SSLServ-
erSocket, SSLSocket

setEnabledProtocols(): SSLEngine, SSLServer-
Socket, SSLSocket

setEnableSessionCreation(): SSLEngine,
SSLServerSocket, SSLSocket

setEncoding(): Handler, InputSource,
Locator2Impl, StreamHandler

setEndIndex(): FieldPosition

setEndRule(): SimpleTimeZone

setEntityResolver(): DocumentBuilder, Parser,
ParserAdapter, XMLFilterImpl, XMLReader,
XMLReaderAdapter

setEntry(): KeyStore

setEras(): DateFormatSymbols

setErr(): System

setError(): PrintStream, PrintWriter

setErrorHandler(): DocumentBuilder, Parser,
ParserAdapter, SchemaFactory, Validator,
ValidatorHandler, XMLFilterImpl, XMLReader,
XMLReaderAdapter

setErrorIndex(): ParsePosition

setErrorListener(): Transformer, Transformer-
Factory

setErrorManager(): Handler

setException(): FutureTask

setExecuteExistingDelayedTasksAfterShutdow
nPolicy(): ScheduledThreadPoolExecutor

setExpandEntityReferences(): DocumentBuild-
erFactory

setExplicitPolicyRequired(): PKIXParameters

setExtendedKeyUsage(): X509CertSelector

setExtra(): ZipEntry

setFeature(): DocumentBuilderFactory, Parser-
Adapter, SAXParserFactory, SchemaFactory,
TransformerFactory, Validator, ValidatorHan-
dler, XMLFilterImpl, XMLReader, XPathFactory

setFileNameMap(): URLConnection

setFilter(): Handler, Logger

setFirstDayOfWeek(): Calendar

setFixedLengthStreamingMode(): HttpURL-
Connection

setFloat(): Array, Field

setFollowRedirects(): HttpURLConnection

setFormat(): MessageFormat

setFormatByArgumentIndex(): Message-
Format

setFormats(): MessageFormat

setFormatsByArgumentIndex(): Message-
Format

setFormatter(): Handler

setFractionalSecond(): XMLGregorianCalendar

setGregorianChange(): GregorianCalendar

Class, Method, and Field Index | 1134

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Class Index

setGroupingSeparator(): DecimalFormatSym-
bols

setGroupingSize(): DecimalFormat

setGroupingUsed(): NumberFormat

setHandler(): SAXResult

setHostnameVerifier(): HttpsURLConnection

setHour(): XMLGregorianCalendar

setHours(): Date

setID(): TimeZone

setIdAttribute(): Element

setIdAttributeNode(): Element

setIdAttributeNS(): Element

setIfModifiedSince(): URLConnection

setIgnoringComments(): DocumentBuilderFac-
tory

setIgnoringElementContentWhitespace():
DocumentBuilderFactory

setIn(): System

setIndex(): CharacterIterator, ParsePosition,
StringCharacterIterator

setInfinity(): DecimalFormatSymbols

setInfo(): Identity

setInitialPolicies(): PKIXParameters

setInput(): Deflater, Inflater

setInputSource(): SAXSource

setInputStream(): StreamSource

setInstanceFollowRedirects(): HttpURLConnec-
tion

setInt(): Array, Field

setInterface(): MulticastSocket

setInternationalCurrencySymbol(): Decimal-
FormatSymbols

setIssuer(): X509CertSelector

setIssuerNames(): X509CRLSelector

setIssuers(): X509CRLSelector

setKeepAlive(): Socket

setKeepAliveTime(): ThreadPoolExecutor

setKeyEntry(): KeyStore

setKeyPair(): Signer

setKeyUsage(): X509CertSelector

setLastModified(): File

setLength(): DatagramPacket, RandomAccess-
File, StringBuffer

setLenient(): Calendar, DateFormat

setLevel(): Deflater, Handler, Logger,
LogRecord, ZipOutputStream

setLexicalHandler(): SAXResult

setLineNumber(): LineNumberInputStream,
LineNumberReader, LocatorImpl

setLocale(): LanguageCallback, Message-
Format, Parser, XMLReaderAdapter

setLocalName(): AttributesImpl

setLocalPatternChars(): DateFormatSymbols

setLocator(): TransformerException

setLoggerLevel(): LoggingMXBean

setLoggerName(): LogRecord

setLong(): Array, Field

setLoopbackMode(): MulticastSocket

setMatchAllSubjectAltNames():
X509CertSelector

setMaxCRLNumber(): X509CRLSelector

setMaximumFractionDigits(): DecimalFormat,
NumberFormat

setMaximumIntegerDigits(): DecimalFormat,
NumberFormat

setMaximumPoolSize(): ThreadPoolExecutor

setMaxPathLength(): PKIXBuilderParameters

setMaxPriority(): ThreadGroup

setMessage(): LogRecord

setMessageDigest(): DigestInputStream,
DigestOutputStream

setMethod(): ZipEntry, ZipOutputStream

setMillis(): LogRecord

setMillisecond(): XMLGregorianCalendar

setMinCRLNumber(): X509CRLSelector

setMinimalDaysInFirstWeek(): Calendar

setMinimumFractionDigits(): DecimalFormat,
NumberFormat

setMinimumIntegerDigits(): DecimalFormat,
NumberFormat

setMinusSign(): DecimalFormatSymbols

setMinute(): XMLGregorianCalendar

setMinutes(): Date

setMonetaryDecimalSeparator(): DecimalFor-
matSymbols

setMonth(): Date, XMLGregorianCalendar

setMonths(): DateFormatSymbols

setMultiplier(): DecimalFormat

setName(): NameCallback, Thread

1135 | Class, Method, and Field Index

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

setNameConstraints(): X509CertSelector

setNamedItem(): NamedNodeMap

setNamedItemNS(): NamedNodeMap

setNamespaceAware(): DocumentBuilderFac-
tory, SAXParserFactory

setNamespaceContext(): XPath

setNamespaceDeclUris(): NamespaceSupport

setNaN(): DecimalFormatSymbols

setNeedClientAuth(): SSLEngine, SSLServer-
Socket, SSLSocket

setNegativePrefix(): DecimalFormat

setNegativeSuffix(): DecimalFormat

setNetworkInterface(): MulticastSocket

setNextSibling(): DOMResult

setNode(): DOMResult, DOMSource

setNodeValue(): Node

setNumberFormat(): DateFormat

setOffset(): CollationElementIterator, Object-
StreamField

setOOBInline(): Socket

setOption(): SocketOptions

setOut(): System

setOutputProperties(): Transformer

setOutputProperty(): Transformer

setOutputStream(): StreamHandler, StreamRe-
sult

setPackageAssertionStatus(): ClassLoader

setParameter(): DOMConfiguration, Signature,
Transformer

setParameters(): LogRecord

setParent(): Logger, ResourceBundle, XMLFilter,
XMLFilterImpl

setParseBigDecimal(): DecimalFormat

setParseIntegerOnly(): NumberFormat

setPassword(): PasswordCallback

setPathToNames(): X509CertSelector

setPatternSeparator(): DecimalFormatSymbols

setPercent(): DecimalFormatSymbols

setPerformancePreferences(): ServerSocket,
Socket, SocketImpl

setPerMill(): DecimalFormatSymbols

setPolicy(): Policy, X509CertSelector

setPolicyMappingInhibited(): PKIXParameters

setPolicyQualifiersRejected(): PKIXParameters

setPort(): DatagramPacket

setPositivePrefix(): DecimalFormat

setPositiveSuffix(): DecimalFormat

setPrefix(): Node

setPriority(): Thread

setPrivateKeyValid(): X509CertSelector

setProperties(): System

setProperty(): ParserAdapter, Properties,
SAXParser, SchemaFactory, Security, System,
Validator, ValidatorHandler, XMLFilterImpl,
XMLReader

setPublicId(): InputSource, LocatorImpl,
StreamSource

setPublicKey(): Identity

setPushLevel(): MemoryHandler

setQName(): AttributesImpl

setRawOffset(): SimpleTimeZone, TimeZone

setReader(): StreamSource

setReadOnly(): File, PermissionCollection,
Subject

setReadTimeout(): URLConnection

setReceiveBufferSize(): DatagramSocket, Serv-
erSocket, Socket

setRejectedExecutionHandler(): ThreadPoolEx-
ecutor

setRequestMethod(): HttpURLConnection

setRequestProperty(): URLConnection

setResourceBundle(): LogRecord

setResourceBundleName(): LogRecord

setResourceResolver(): SchemaFactory, Vali-
dator, ValidatorHandler

setResult(): TransformerHandler

setReuseAddress(): DatagramSocket, Server-
Socket, Socket

setRevocationEnabled(): PKIXParameters

setScale(): BigDecimal

setSchema(): DocumentBuilderFactory,
SAXParserFactory

setSecond(): XMLGregorianCalendar

setSeconds(): Date

setSecurityManager(): System

setSeed(): Random, SecureRandom

setSelectedIndex(): ChoiceCallback, Confirma-
tionCallback

setSelectedIndexes(): ChoiceCallback

Class, Method, and Field Index | 1136

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Class Index

setSendBufferSize(): DatagramSocket, Socket

setSequenceNumber(): LogRecord

setSerialNumber(): X509CertSelector

setSessionCacheSize(): SSLSessionContext

setSessionTimeout(): SSLSessionContext

setShort(): Array, Field

setShortMonths(): DateFormatSymbols

setShortWeekdays(): DateFormatSymbols

setSigners(): ClassLoader

setSigProvider(): PKIXParameters

setSize(): Vector, ZipEntry

setSocketAddress(): DatagramPacket

setSocketFactory(): ServerSocket

setSocketImplFactory(): Socket

setSoLinger(): Socket

setSoTimeout(): DatagramSocket, Server-
Socket, Socket

setSourceClassName(): LogRecord

setSourceMethodName(): LogRecord

setSpecified(): Attributes2Impl

setSSLSocketFactory(): HttpsURLConnection

setStackTrace(): Throwable

setStartRule(): SimpleTimeZone

setStartYear(): SimpleTimeZone

setState(): AbstractQueuedSynchronizer

setStrategy(): Deflater

setStrength(): Collator

setStrictErrorChecking(): Document

setSubject(): X509CertSelector

setSubjectAlternativeNames():
X509CertSelector

setSubjectKeyIdentifier(): X509CertSelector

setSubjectPublicKey(): X509CertSelector

setSubjectPublicKeyAlgID(): X509CertSelector

setSystemId(): DOMResult, DOMSource, Input-
Source, LocatorImpl, Result, SAXResult,
SAXSource, Source, StreamResult, Stream-
Source, TemplatesHandler, TransformerHandler

setSystemScope(): IdentityScope

setTargetCertConstraints(): PKIXParameters

setTcpNoDelay(): Socket

setText(): BreakIterator, CollationElementIter-
ator, StringCharacterIterator, TextInputCall-
back

setTextContent(): Node

setThreadContentionMonitoringEnabled():
ThreadMXBean

setThreadCpuTimeEnabled(): ThreadMXBean

setThreadFactory(): ThreadPoolExecutor

setThreadID(): LogRecord

setThrown(): LogRecord

setTime(): Calendar, Date, XMLGregorianCal-
endar, ZipEntry

setTimeInMillis(): Calendar

setTimeToLive(): DatagramSocketImpl, Multi-
castSocket

setTimeZone(): Calendar, DateFormat, Gregori-
anCalendar

setTimezone(): XMLGregorianCalendar

setTrafficClass(): DatagramSocket, Socket

setTrustAnchors(): PKIXParameters

setTTL(): DatagramSocketImpl, MulticastSocket

setType(): AttributesImpl

setUncaughtExceptionHandler(): Thread

setURI(): AttributesImpl

setURIResolver(): Transformer, TransformerFac-
tory

setURL(): URLStreamHandler

setURLStreamHandlerFactory(): URL

setUsageThreshold(): MemoryPoolMXBean

setUseCaches(): URLConnection

setUseClientMode(): SSLEngine, SSLServer-
Socket, SSLSocket

setUseParentHandlers(): Logger

setUserData(): Node

setValidating(): DocumentBuilderFactory,
SAXParserFactory

setValue(): Attr, AttributesImpl, Entry

setVerbose(): ClassLoadingMXBean, Memo-
ryMXBean

setWantClientAuth(): SSLEngine, SSLServer-
Socket, SSLSocket

setWeekdays(): DateFormatSymbols

setWriter(): StreamResult

setXIncludeAware(): DocumentBuilderFactory,
SAXParserFactory

setXMLReader(): SAXSource

setXmlStandalone(): Document

setXmlVersion(): Document

1137 | Class, Method, and Field Index

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

setXMLVersion(): Locator2Impl

setXPathFunctionResolver(): XPath, XPathFac-
tory

setXPathVariableResolver(): XPath, XPathFac-
tory

setYear(): Date, XMLGregorianCalendar

setZeroDigit(): DecimalFormatSymbols

setZoneStrings(): DateFormatSymbols

SEVERE: Level

severe(): Logger

SEVERITY_ERROR: DOMError

SEVERITY_FATAL_ERROR: DOMError

SEVERITY_WARNING: DOMError

SHA1: MGF1ParameterSpec

SHA256: MGF1ParameterSpec

SHA384: MGF1ParameterSpec

SHA512: MGF1ParameterSpec

SHAVIAN: UnicodeBlock

shiftLeft(): BigInteger

shiftRight(): BigInteger

Short: java.lang

SHORT: DateFormat, TimeZone

ShortBuffer: java.nio

ShortBufferException: javax.crypto

shortValue(): Byte, Double, Float, Integer, Long,
Number, Short

shortValueExact(): BigDecimal

shuffle(): Collections

shutdown(): ExecutorService, ScheduledThread-
PoolExecutor, ThreadPoolExecutor

shutdownInput(): Socket, SocketImpl

shutdownNow(): ExecutorService, Sched-
uledThreadPoolExecutor, ThreadPoolExecutor

shutdownOutput(): Socket, SocketImpl

SIGN: Field, Signature

sign(): Signature

signal(): Condition, ConditionObject

signalAll(): Condition, ConditionObject

Signature: java.security

SIGNATURE_VERSION: Name

SignatureException: java.security

SignatureSpi: java.security

SignedObject: java.security

Signer: java.security

signum(): BigDecimal, BigInteger, Integer,
Long, Math, StrictMath

SimpleDateFormat: java.text

SimpleFormatter: java.util.logging

SimpleTimeZone: java.util

SIMPLIFIED_CHINESE: Locale

sin(): Math, StrictMath

singleton(): Collections

singletonList(): Collections

singletonMap(): Collections

sinh(): Math, StrictMath

SINHALA: UnicodeBlock

sink(): Pipe

SinkChannel: java.nio.channels.Pipe

SIZE: Byte, Character, Double, Float, Integer,
Long, Short

size(): AbstractCollection, AbstractMap, Array-
BlockingQueue, ArrayList, Attributes, BitSet,
ByteArrayOutputStream, CharArrayWriter,
Collection, ConcurrentHashMap, Concur-
rentLinkedQueue, CopyOnWriteArrayList,
CopyOnWriteArraySet, DataOutputStream,
DelayQueue, Dictionary, EnumMap,
FileChannel, FileLock, HashMap, HashSet,
Hashtable, IdentityHashMap, IdentityScope,
KeyStore, LinkedBlockingQueue, LinkedList,
List, Map, PriorityBlockingQueue, Priority-
Queue, Set, SynchronousQueue, TreeMap,
TreeSet, Vector, WeakHashMap, ZipFile

skip(): BufferedInputStream, BufferedReader,
ByteArrayInputStream, CharArrayReader,
CheckedInputStream, CipherInputStream,
FileInputStream, FilterInputStream, Filter-
Reader, InflaterInputStream, InputStream,
LineNumberInputStream, LineNumber-
Reader, ObjectInput, PushbackInputStream,
PushbackReader, Reader, Scanner, String-
BufferInputStream, StringReader, ZipInput-
Stream

skipBytes(): DataInput, DataInputStream,
ObjectInputStream, RandomAccessFile

skippedEntity(): ContentHandler, DefaultH-
andler, XMLFilterImpl, XMLReaderAdapter

slashSlashComments(): StreamTokenizer

slashStarComments(): StreamTokenizer

sleep(): Thread, TimeUnit

Class, Method, and Field Index | 1138

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Class Index

slice(): ByteBuffer, CharBuffer, DoubleBuffer,
FloatBuffer, IntBuffer, LongBuffer, ShortBuffer

SMALL_FORM_VARIANTS: UnicodeBlock

SO_BINDADDR: SocketOptions

SO_BROADCAST: SocketOptions

SO_KEEPALIVE: SocketOptions

SO_LINGER: SocketOptions

SO_OOBINLINE: SocketOptions

SO_RCVBUF: SocketOptions

SO_REUSEADDR: SocketOptions

SO_SNDBUF: SocketOptions

SO_TIMEOUT: SocketOptions

Socket: java.net

socket(): DatagramChannel, ServerSock-
etChannel, SocketChannel

SocketAddress: java.net

SocketChannel: java.nio.channels

SocketException: java.net

SocketFactory: javax.net

SocketHandler: java.util.logging

SocketImpl: java.net

SocketImplFactory: java.net

SocketOptions: java.net

SocketPermission: java.net

SocketTimeoutException: java.net

SOCKS: Type

SoftReference: java.lang.ref

sort(): Arrays, Collections

SortedMap: java.util

SortedSet: java.util

source: EventObject

Source: javax.xml.transform

SOURCE: RetentionPolicy

source(): Pipe

SourceChannel: java.nio.channels.Pipe

SourceLocator: javax.xml.transform

sourceToInputSource(): SAXSource

SPACE_SEPARATOR: Character

SPACING_MODIFIER_LETTERS: UnicodeBlock

SPECIALS: UnicodeBlock

SPECIFICATION_TITLE: Name

SPECIFICATION_VENDOR: Name

SPECIFICATION_VERSION: Name

split(): Pattern, String

splitText(): Text

sqrt(): Math, StrictMath

SSLContext: javax.net.ssl

SSLContextSpi: javax.net.ssl

SSLEngine: javax.net.ssl

SSLEngineResult: javax.net.ssl

SSLEngineResult.HandshakeStatus: javax.net.
ssl

SSLEngineResult.Status: javax.net.ssl

SSLException: javax.net.ssl

SSLHandshakeException: javax.net.ssl

SSLKeyException: javax.net.ssl

SSLPeerUnverifiedException: javax.net.ssl

SSLPermission: javax.net.ssl

SSLProtocolException: javax.net.ssl

SSLServerSocket: javax.net.ssl

SSLServerSocketFactory: javax.net.ssl

SSLSession: javax.net.ssl

SSLSessionBindingEvent: javax.net.ssl

SSLSessionBindingListener: javax.net.ssl

SSLSessionContext: javax.net.ssl

SSLSocket: javax.net.ssl

SSLSocketFactory: javax.net.ssl

Stack: java.util

StackOverflowError: java.lang

StackTraceElement: java.lang

STANDALONE: OutputKeys

STANDARD_TIME: SimpleTimeZone

start(): Matcher, MatchResult, ProcessBuilder,
Thread

START_PUNCTUATION: Character

startCDATA(): DefaultHandler2, LexicalHandler

startDocument(): ContentHandler, DefaultH-
andler, DocumentHandler, HandlerBase,
ParserAdapter, XMLFilterImpl, XMLReader-
Adapter

startDTD(): DefaultHandler2, LexicalHandler

startElement(): ContentHandler, DefaultH-
andler, DocumentHandler, HandlerBase,
ParserAdapter, XMLFilterImpl, XMLReader-
Adapter

startEntity(): DefaultHandler2, LexicalHandler

startHandshake(): SSLSocket

1139 | Class, Method, and Field Index

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

startPrefixMapping(): ContentHandler,
DefaultHandler, XMLFilterImpl, XMLReader-
Adapter

startsWith(): String

state: Signature

State: java.lang.Thread

STATIC: Modifier

Status: javax.net.ssl.SSLEngineResult

stop(): Thread, ThreadGroup

store(): KeyStore, Properties

STORED: ZipEntry, ZipOutputStream

storeToXML(): Properties

STREAM_MAGIC: ObjectStreamConstants

STREAM_VERSION: ObjectStreamConstants

StreamCorruptedException: java.io

StreamHandler: java.util.logging

StreamResult: javax.xml.transform.stream

StreamSource: javax.xml.transform.stream

StreamTokenizer: java.io

STRICT: Modifier

StrictMath: java.lang

STRING: XPathConstants

String: java.lang

StringBuffer: java.lang

StringBufferInputStream: java.io

StringBuilder: java.lang

StringCharacterIterator: java.text

StringIndexOutOfBoundsException: java.lang

StringReader: java.io

StringTokenizer: java.util

StringWriter: java.io

STRIP: Packer

stripTrailingZeros(): BigDecimal

SUBCLASS_IMPLEMENTATION_PERMISSION:
ObjectStreamConstants

Subject: javax.security.auth

SubjectDomainCombiner: javax.security.auth

subList(): AbstractList, CopyOnWriteArrayList,
List, Vector

subMap(): SortedMap, TreeMap

submit(): AbstractExecutorService, Completion-
Service, ExecutorCompletionService, Execu-
torService, ScheduledThreadPoolExecutor

subSequence(): CharBuffer, CharSequence,
String, StringBuffer

Subset: java.lang.Character

subSet(): SortedSet, TreeSet

SUBSTITUTION_PERMISSION: ObjectStream-
Constants

substring(): String, StringBuffer

substringData(): CharacterData

subtract(): BigDecimal, BigInteger, Duration

SUFFICIENT: LoginModuleControlFlag

SUNDAY: Calendar

SUPERSCRIPTS_AND_SUBSCRIPTS: Unicode-
Block

SUPPLEMENTAL_ARROWS_A: UnicodeBlock

SUPPLEMENTAL_ARROWS_B: UnicodeBlock

SUPPLEMENTAL_MATHEMATICAL_
OPERATORS: UnicodeBlock

SUPPLEMENTARY_PRIVATE_USE_AREA_A:
UnicodeBlock

SUPPLEMENTARY_PRIVATE_USE_AREA_B:
UnicodeBlock

supportsParameter(): Service

supportsUrgentData(): SocketImpl

SuppressWarnings: java.lang

SURROGATE: Character

SURROGATES_AREA: UnicodeBlock

suspend(): Thread, ThreadGroup

sval: StreamTokenizer

swap(): Collections

sync(): AbstractPreferences, FileDescriptor, Pref-
erences

SyncFailedException: java.io

SYNCHRONIZED: Modifier

synchronizedCollection(): Collections

synchronizedList(): Collections

synchronizedMap(): Collections

synchronizedSet(): Collections

synchronizedSortedMap(): Collections

synchronizedSortedSet(): Collections

SynchronousQueue: java.util.concurrent

syncSpi(): AbstractPreferences

SYNTAX_ERR: DOMException

SYRIAC: UnicodeBlock

System: java.lang

systemNodeForPackage(): Preferences

systemRoot(): Preferences, PreferencesFactory

Class, Method, and Field Index | 1140

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Class Index

T
TAGALOG: UnicodeBlock

TAGBANWA: UnicodeBlock

TAGS: UnicodeBlock

TAI_LE: UnicodeBlock

TAI_XUAN_JING_SYMBOLS: UnicodeBlock

tailMap(): SortedMap, TreeMap

tailSet(): SortedSet, TreeSet

TAIWAN: Locale

take(): ArrayBlockingQueue, BlockingQueue,
CompletionService, DelayQueue, Executor-
CompletionService, LinkedBlockingQueue,
PriorityBlockingQueue, SynchronousQueue

TAMIL: UnicodeBlock

tan(): Math, StrictMath

tanh(): Math, StrictMath

Target: java.lang.annotation

TC_ARRAY: ObjectStreamConstants

TC_BASE: ObjectStreamConstants

TC_BLOCKDATA: ObjectStreamConstants

TC_BLOCKDATALONG: ObjectStreamConstants

TC_CLASS: ObjectStreamConstants

TC_CLASSDESC: ObjectStreamConstants

TC_ENDBLOCKDATA: ObjectStreamConstants

TC_ENUM: ObjectStreamConstants

TC_EXCEPTION: ObjectStreamConstants

TC_LONGSTRING: ObjectStreamConstants

TC_MAX: ObjectStreamConstants

TC_NULL: ObjectStreamConstants

TC_OBJECT: ObjectStreamConstants

TC_PROXYCLASSDESC: ObjectStreamConstants

TC_REFERENCE: ObjectStreamConstants

TC_RESET: ObjectStreamConstants

TC_STRING: ObjectStreamConstants

TCP_NODELAY: SocketOptions

TELUGU: UnicodeBlock

Templates: javax.xml.transform

TemplatesHandler: javax.xml.transform.sax

TEN: BigDecimal, BigInteger

TERMINATED: State

terminated(): ThreadPoolExecutor

TERTIARY: Collator

tertiaryOrder(): CollationElementIterator

testBit(): BigInteger

Text: org.w3c.dom

TEXT_NODE: Node

TextInputCallback: javax.security.auth.callback

TextOutputCallback: javax.security.auth.call-
back

THAANA: UnicodeBlock

THAI: UnicodeBlock

Thread: java.lang

Thread.State: java.lang

Thread.UncaughtExceptionHandler: java.lang

THREAD_MXBEAN_NAME: ManagementFactory

ThreadDeath: java.lang

ThreadFactory: java.util.concurrent

ThreadGroup: java.lang

ThreadInfo: java.lang.management

ThreadLocal: java.lang

ThreadMXBean: java.lang.management

ThreadPoolExecutor: java.util.concurrent

ThreadPoolExecutor.AbortPolicy: java.util.
concurrent

ThreadPoolExecutor.CallerRunsPolicy: java.
util.concurrent

ThreadPoolExecutor.DiscardOldestPolicy: java.
util.concurrent

ThreadPoolExecutor.DiscardPolicy: java.util.
concurrent

Throwable: java.lang

throwException(): CoderResult

throwing(): Logger

THURSDAY: Calendar

TIBETAN: UnicodeBlock

time: Calendar

TIME: DatatypeConstants

TIME_ZONE: Field

TIMED_WAITING: State

timedJoin(): TimeUnit

timedWait(): TimeUnit

TimeoutException: java.util.concurrent

Timer: java.util

TimerTask: java.util

Timestamp: java.security

timestamp(): UUID

1141 | Class, Method, and Field Index

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

TimeUnit: java.util.concurrent

TimeZone: java.util

TIMEZONE_FIELD: DateFormat

TITLECASE_LETTER: Character

toArray(): AbstractCollection, ArrayBlocking-
Queue, ArrayList, Collection, Concur-
rentLinkedQueue, CopyOnWriteArrayList,
CopyOnWriteArraySet, DelayQueue, Linked-
BlockingQueue, LinkedList, List, PriorityBlock-
ingQueue, Set, SynchronousQueue, Vector

toASCIIString(): URI

toBigInteger(): BigDecimal

toBigIntegerExact(): BigDecimal

toBinaryString(): Integer, Long

toByteArray(): BigInteger, ByteArrayOutput-
Stream, CollationKey

toCharArray(): CharArrayWriter, String

toChars(): Character

toCodePoint(): Character

toDegrees(): Math, StrictMath

toEngineeringString(): BigDecimal

toExternalForm(): URL, URLStreamHandler

toGenericString(): Constructor, Field, Method

toGMTString(): Date

toGregorianCalendar(): XMLGregorianCalendar

toHexString(): Double, Float, Integer, Long

toLocaleString(): Date

toLocalizedPattern(): DecimalFormat, Simple-
DateFormat

toLowerCase(): Character, String

toMatchResult(): Matcher

toMicros(): TimeUnit

toMillis(): TimeUnit

toNanos(): TimeUnit

toOctalString(): Integer, Long

TooManyListenersException: java.util

toPattern(): ChoiceFormat, DecimalFormat,
MessageFormat, SimpleDateFormat

toPlainString(): BigDecimal

toRadians(): Math, StrictMath

toSeconds(): TimeUnit

toString(): AbstractCollection, AbstractMap,
AbstractPreferences, AbstractQueuedSynchro-
nizer, AlgorithmParameters, Annotation,
ArrayBlockingQueue, Arrays, AtomicBoolean,

AtomicInteger, AtomicIntegerArray, Atomi-
cLong, AtomicLongArray, AtomicReference,
AtomicReferenceArray, Attribute, Bidi,
BigDecimal, BigInteger, BitSet, Boolean, Byte,
ByteArrayOutputStream, ByteBuffer, Byte-
Order, Calendar, Certificate, CertPath, Char-
acter, CharArrayWriter, CharBuffer, CharSe-
quence, Charset, Class, CoderResult,
CodeSigner, CodeSource, CodingErrorAction,
CollectionCertStoreParameters, Constructor,
CopyOnWriteArrayList, CountDownLatch, CRL,
Currency, Date, DigestInputStream,
DigestOutputStream, Double, DoubleBuffer,
Duration, Enum, EventObject, Field, FieldPosi-
tion, File, FileLock, Float, FloatBuffer,
Formatter, Hashtable, Identity, IdentityScope,
InetAddress, InetSocketAddress, IntBuffer,
Integer, KerberosKey, KerberosPrincipal,
KerberosTicket, LDAPCertStoreParameters,
Level, LinkedBlockingQueue, Locale, Login-
ModuleControlFlag, Long, LongBuffer,
MapMode, Matcher, MathContext, Memory-
Type, MemoryUsage, MessageDigest, Method,
Modifier, Name, NetworkInterface, Object,
ObjectStreamClass, ObjectStreamField,
Package, ParsePosition, Pattern, Permission,
PermissionCollection, PKIXBuilderParameters,
PKIXCertPathBuilderResult, PKIXCertPathVali-
datorResult, PKIXParameters, PolicyQualifier-
Info, Preferences, Principal, PriorityBlocking-
Queue, PrivateKeyEntry,
PrivilegedActionException, ProtectionDo-
main, Provider, Proxy, QName, ReadLock,
ReentrantLock, ReentrantReadWriteLock,
SAXException, Scanner, SecretKeyEntry,
Semaphore, ServerSocket, Service, Short,
ShortBuffer, Signature, Signer, SimpleTime-
Zone, Socket, SocketImpl, SSLEngineResult,
StackTraceElement, StreamTokenizer, String,
StringBuffer, StringBuilder, StringWriter,
Subject, Subset, Thread, ThreadGroup,
ThreadInfo, Throwable, Timestamp, TrustAn-
chor, TrustedCertificateEntry, UnresolvedPer-
mission, URI, URL, URLConnection, UUID,
Vector, WriteLock, X500Principal,
X509CertSelector, X509CRLEntry,
X509CRLSelector, XMLGregorianCalendar,
ZipEntry

totalMemory(): Runtime

toTitleCase(): Character

toUpperCase(): Character, String

Class, Method, and Field Index | 1142

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Class Index

toURI(): File, URL

toURL(): File, URI

toXMLFormat(): XMLGregorianCalendar

traceInstructions(): Runtime

traceMethodCalls(): Runtime

TRADITIONAL_CHINESE: Locale

transferFrom(): FileChannel

transferTo(): FileChannel

transform(): ClassFileTransformer, Transformer

Transformer: javax.xml.transform

TransformerConfigurationException: javax.
xml.transform

TransformerException: javax.xml.transform

TransformerFactory: javax.xml.transform

TransformerFactoryConfigurationError: javax.
xml.transform

TransformerHandler: javax.xml.transform.sax

TRANSIENT: Modifier

translateKey(): KeyFactory, SecretKeyFactory

TreeMap: java.util

TreeSet: java.util

trim(): String

trimToSize(): ArrayList, StringBuffer, Vector

TRUE: Boolean, Packer, Unpacker

truncate(): FileChannel

TrustAnchor: java.security.cert

TrustedCertificateEntry: java.security.KeyStore

TrustManager: javax.net.ssl

TrustManagerFactory: javax.net.ssl

TrustManagerFactorySpi: javax.net.ssl

tryAcquire(): AbstractQueuedSynchronizer,
Semaphore

tryAcquireNanos(): AbstractQueuedSynchro-
nizer

tryAcquireShared(): AbstractQueuedSynchro-
nizer

tryAcquireSharedNanos(): AbstractQueuedSyn-
chronizer

tryLock(): FileChannel, Lock, ReadLock, Reen-
trantLock, WriteLock

tryRelease(): AbstractQueuedSynchronizer

tryReleaseShared(): AbstractQueuedSynchro-
nizer

TT_EOF: StreamTokenizer

TT_EOL: StreamTokenizer

TT_NUMBER: StreamTokenizer

TT_WORD: StreamTokenizer

ttype: StreamTokenizer

TUESDAY: Calendar

TYPE: Boolean, Byte, Character, Double,
ElementType, Float, Integer, Long, Short, Void

Type: java.lang.reflect, java.net.Proxy, java.secu-
rity.KeyRep

type(): Proxy

TYPE_MISMATCH_ERR: DOMException

TypeInfo: org.w3c.dom

TypeInfoProvider: javax.xml.validation

typeName(): TypeNotPresentException

TypeNotPresentException: java.lang

TypeVariable: java.lang.reflect

U
UGARITIC: UnicodeBlock

UK: Locale

ulp(): BigDecimal, Math, StrictMath

UNASSIGNED: Character

uncaughtException(): ThreadGroup, Uncaugh-
tExceptionHandler

UncaughtExceptionHandler: java.lang.Thread

unconfigurableExecutorService(): Executors

unconfigurableScheduledExecutorService():
Executors

UNDECIMBER: Calendar

UndeclaredThrowableException: java.lang.
reflect

UNDERFLOW: CoderResult

UNICODE_CASE: Pattern

UnicodeBlock: java.lang.Character

UNIFIED_CANADIAN_ABORIGINAL_
SYLLABICS: UnicodeBlock

UNINITIALIZED: Signature

UNIX_LINES: Pattern

UNKNOWN_ATTRIBUTE: Packer

UnknownError: java.lang

1143 | Class, Method, and Field Index

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

UnknownFormatConversionException:
java.util

UnknownFormatFlagsException: java.util

UnknownHostException: java.net

UnknownServiceException: java.net

UNLIMITED: MathContext

unlock(): Lock, ReadLock, ReentrantLock, Write-
Lock

unmappableCharacterAction(): CharsetDe-
coder, CharsetEncoder

UnmappableCharacterException: java.nio.
charset

unmappableForLength(): CoderResult

UnmodifiableClassException: java.lang.instru-
ment

unmodifiableCollection(): Collections

unmodifiableList(): Collections

unmodifiableMap(): Collections

unmodifiableSet(): Collections

unmodifiableSortedMap(): Collections

unmodifiableSortedSet(): Collections

UNNECESSARY: RoundingMode

unpack(): Unpacker

Unpacker: java.util.jar.Pack200

unpark(): LockSupport

unparsedEntityDecl(): DefaultHandler,
DTDHandler, HandlerBase, XMLFilterImpl

unread(): PushbackInputStream, Pushback-
Reader

UnrecoverableEntryException: java.security

UnrecoverableKeyException: java.security

UnresolvedAddressException: java.nio.chan-
nels

UnresolvedPermission: java.security

UnsatisfiedLinkError: java.lang

unscaledValue(): BigDecimal

UNSPECIFIED_OPTION: ConfirmationCallback

UnsupportedAddressTypeException: java.nio.
channels

UnsupportedCallbackException: javax.security.
auth.callback

UnsupportedCharsetException: java.nio.
charset

UnsupportedClassVersionError: java.lang

UnsupportedEncodingException: java.io

UnsupportedOperationException: java.lang

unwrap(): Cipher, SSLEngine

UNWRAP_MODE: Cipher

UP: RoundingMode

update(): Adler32, Checksum, Cipher, CRC32,
Mac, MessageDigest, Observer, Signature

UPPERCASE: FormattableFlags

UPPERCASE_LETTER: Character

URI: java.net

URIResolver: javax.xml.transform

URISyntaxException: java.net

URL: java.net

url: URLConnection

URLClassLoader: java.net

URLConnection: java.net

URLDecoder: java.net

URLEncoder: java.net

URLStreamHandler: java.net

URLStreamHandlerFactory: java.net

US: Locale

useAnchoringBounds(): Matcher

useCaches: URLConnection

useDaylightTime(): SimpleTimeZone, TimeZone

useDelimiter(): Scanner

useLocale(): Scanner

usePattern(): Matcher

useProtocolVersion(): ObjectOutputStream

useRadix(): Scanner

UserDataHandler: org.w3c.dom

userNodeForPackage(): Preferences

userRoot(): Preferences, PreferencesFactory

useTransparentBounds(): Matcher

usingProxy(): HttpURLConnection

UTC(): Date

UTC_TIME: SimpleTimeZone

UTFDataFormatException: java.io

UUID: java.util

Class, Method, and Field Index | 1144

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Class Index

V
valid(): FileDescriptor

validate(): CertPathValidator, Validator

validateObject(): ObjectInputValidation

VALIDATION_ERR: DOMException

Validator: javax.xml.validation

ValidatorHandler: javax.xml.validation

validOps(): DatagramChannel, Select-
ableChannel, ServerSocketChannel,
SinkChannel, SocketChannel, SourceChannel

value(): Retention, SuppressWarnings, Target

valueBound(): SSLSessionBindingListener

valueOf(): BigDecimal, BigDecimalLayoutForm,
BigInteger, Boolean, Byte, Character, Double,
ElementType, Enum, Float, HandshakeStatus,
Integer, Long, MemoryType, QName, Request-
orType, RetentionPolicy, RoundingMode,
Short, State, Status, String, TimeUnit, Type

values(): AbstractMap, Attributes, BigDecimal-
LayoutForm, ConcurrentHashMap, Element-
Type, EnumMap, HandshakeStatus, HashMap,

Hashtable, IdentityHashMap, Map, Memory-
Type, Provider, RequestorType, Retention-
Policy, RoundingMode, State, Status, Time-
Unit, TreeMap, Type, WeakHashMap

valueUnbound(): SSLSessionBindingListener

variant(): UUID

VARIATION_SELECTORS: UnicodeBlock

VARIATION_SELECTORS_SUPPLEMENT:
UnicodeBlock

Vector: java.util

VERIFY: Signature

verify(): Certificate, HostnameVerifier, Signa-
ture, SignedObject, X509CRL

VerifyError: java.lang

VERSION: OutputKeys

version(): UUID

VirtualMachineError: java.lang

Void: java.lang

VOLATILE: Modifier

W
W3C_XML_SCHEMA_INSTANCE_NS_URI:

XMLConstants

W3C_XML_SCHEMA_NS_URI: XMLConstants

W3C_XPATH_DATATYPE_NS_URI: XMLCon-
stants

wait(): Object

waitFor(): Process

WAITING: State

wakeup(): Selector

WALL_TIME: SimpleTimeZone

WARNING: ConfirmationCallback, Level,
TextOutputCallback

warning(): DefaultHandler, ErrorHandler, ErrorL-
istener, HandlerBase, Logger, XMLFilterImpl

weakCompareAndSet(): AtomicBoolean, Atom-
icInteger, AtomicIntegerArray, AtomicInteger-
FieldUpdater, AtomicLong, AtomicLongArray,
AtomicLongFieldUpdater, AtomicMark-
ableReference, AtomicReference, AtomicRef-
erenceArray, AtomicReferenceFieldUpdater,
AtomicStampedReference

WeakHashMap: java.util

WeakReference: java.lang.ref

WEDNESDAY: Calendar

WEEK_OF_MONTH: Calendar, Field

WEEK_OF_MONTH_FIELD: DateFormat

WEEK_OF_YEAR: Calendar, Field

WEEK_OF_YEAR_FIELD: DateFormat

whitespaceChars(): StreamTokenizer

WildcardType: java.lang.reflect

wordChars(): StreamTokenizer

wrap(): ByteBuffer, CharBuffer, Cipher, Double-
Buffer, FloatBuffer, IntBuffer, LongBuffer,
ShortBuffer, SSLEngine

WRAP_MODE: Cipher

WritableByteChannel: java.nio.channels

write(): BufferedOutputStream, BufferedWriter,
ByteArrayOutputStream, CharArrayWriter,
CheckedOutputStream, CipherOutputStream,
DatagramChannel, DataOutput, DataOutput-
Stream, DeflaterOutputStream, DigestOutput-
Stream, FileChannel, FileOutputStream, Filter-
OutputStream, FilterWriter

1145 | Class, Method, and Field Index

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

write() cont’d: GatheringByteChannel, GZIPOut-
putStream, Manifest, ObjectOutput,
ObjectOutputStream, OutputStream, Output-
StreamWriter, PipedOutputStream,
PipedWriter, PrintStream, PrintWriter,
PutField, RandomAccessFile, SocketChannel,
StringWriter, WritableByteChannel, Writer,
ZipOutputStream

WRITE_FAILURE: ErrorManager

WriteAbortedException: java.io

writeBoolean(): DataOutput, DataOutput-
Stream, ObjectOutputStream, RandomAccess-
File

writeByte(): DataOutput, DataOutputStream,
ObjectOutputStream, RandomAccessFile

writeBytes(): DataOutput, DataOutputStream,
ObjectOutputStream, RandomAccessFile

writeChar(): DataOutput, DataOutputStream,
ObjectOutputStream, RandomAccessFile

writeChars(): DataOutput, DataOutputStream,
ObjectOutputStream, RandomAccessFile

writeClassDescriptor(): ObjectOutputStream

writeDouble(): DataOutput, DataOutput-
Stream, ObjectOutputStream, RandomAccess-
File

writeExternal(): Externalizable

writeFields(): ObjectOutputStream

writeFloat(): DataOutput, DataOutputStream,
ObjectOutputStream, RandomAccessFile

writeInt(): DataOutput, DataOutputStream,
ObjectOutputStream, RandomAccessFile

WriteLock: java.util.concurrent.locks.Reentrant-
ReadWriteLock

writeLock(): ReadWriteLock, ReentrantRead-
WriteLock

writeLong(): DataOutput, DataOutputStream,
ObjectOutputStream, RandomAccessFile

writeObject(): ObjectOutput, ObjectOutput-
Stream

writeObjectOverride(): ObjectOutputStream

Writer: java.io

writeReplace(): Certificate, CertPath

writeShort(): DataOutput, DataOutputStream,
ObjectOutputStream, RandomAccessFile

writeStreamHeader(): ObjectOutputStream

writeTo(): ByteArrayOutputStream, CharArray-
Writer

writeUnshared(): ObjectOutputStream

writeUTF(): DataOutput, DataOutputStream,
ObjectOutputStream, RandomAccessFile

written: DataOutputStream

WRONG_DOCUMENT_ERR: DOMException

X
X500Principal: javax.security.auth.x500

X500PrivateCredential: javax.security.auth.
x500

X509Certificate: java.security.cert

X509CertSelector: java.security.cert

X509CRL: java.security.cert

X509CRLEntry: java.security.cert

X509CRLSelector: java.security.cert

X509EncodedKeySpec: java.security.spec

X509ExtendedKeyManager: javax.net.ssl

X509Extension: java.security.cert

X509KeyManager: javax.net.ssl

X509TrustManager: javax.net.ssl

XML_DTD_NS_URI: XMLConstants

XML_NS_PREFIX: XMLConstants

XML_NS_URI: XMLConstants

XMLConstants: javax.xml

XMLFilter: org.xml.sax

XMLFilterImpl: org.xml.sax.helpers

XMLFormatter: java.util.logging

XMLGregorianCalendar: javax.xml.datatype

XMLNS: NamespaceSupport

Class, Method, and Field Index | 1146

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Class Index

XMLNS_ATTRIBUTE: XMLConstants

XMLNS_ATTRIBUTE_NS_URI: XMLConstants

XMLReader: org.xml.sax

XMLReaderAdapter: org.xml.sax.helpers

XMLReaderFactory: org.xml.sax.helpers

xor(): BigInteger, BitSet

XPath: javax.xml.xpath

XPathConstants: javax.xml.xpath

XPathException: javax.xml.xpath

XPathExpression: javax.xml.xpath

XPathExpressionException: javax.xml.xpath

XPathFactory: javax.xml.xpath

XPathFactoryConfigurationException: javax.
xml.xpath

XPathFunction: javax.xml.xpath

XPathFunctionException: javax.xml.xpath

XPathFunctionResolver: javax.xml.xpath

XPathVariableResolver: javax.xml.xpath

Y
YEAR: Calendar, Field

YEAR_FIELD: DateFormat

YEARS: DatatypeConstants

YES: ConfirmationCallback

YES_NO_CANCEL_OPTION: ConfirmationCall-
back

YES_NO_OPTION: ConfirmationCallback

YI_RADICALS: UnicodeBlock

YI_SYLLABLES: UnicodeBlock

yield(): Thread

YIJING_HEXAGRAM_SYMBOLS: UnicodeBlock

Z
ZERO: BigDecimal, BigInteger

ZipEntry: java.util.zip

ZipException: java.util.zip

ZipFile: java.util.zip

ZipInputStream: java.util.zip

ZipOutputStream: java.util.zip

ZONE_OFFSET: Calendar

1147

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Chapter 24

24
Index

Symbols
& (ampersand)

&= (bitwise AND assignment)
operator, 29, 39

& (bitwise AND) operator, 29, 37
& (boolean AND) operator, 29, 36
&& (conditional AND) operator, 29,

35
< > (angle brackets)

< and > relational operators, string
comparison and, 208

< and > separator characters
(tokens), 21

> (greater than) operator, 14, 29, 35
>= (greater than or equal)

operator, 29, 35
<<= (left shift assignment)

operator, 29
<< (left shift) operator, 29, 38
< (less than) operator, 29, 35
<= (less than or equal) operator, 29,

35
<<= (signed left shift assignment)

operator, 39
>>= (signed right shift assignment)

operator, 29, 39
>> (signed right shift) operator, 29,

38
>>>= (unsigned right shift

assignment) operator, 29, 39

>>> (unsigned right shift)
operator, 29, 38

generics, use in, 159
* (asterisk)

*= (multiplication assignment)
operator, 29, 39

dereference operator (C/C++), 82
in doc comments, 313
multiplication operator, 14, 29, 33

@ (at sign)
filenames beginning with, Java

compiler and, 338
filenames preceded by

javadoc program, 342
in doc comments, 313
separator character (tokens), 21

\ (backslash)
character escapes in regular

expressions, 213
escaping in char literals, 23

[] (brackets)
array access operator, 29, 31, 41
index operator, 75, 78

in multidimensional arrays, 80
separator characters (tokens), 21

^ (caret)
^= (bitwise XOR assignment)

operator, 29, 39
bitwise XOR operator, 29, 38
boolean XOR operator, 29, 37

1148 | Index

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

: (colon)
assertion expressions, separating, 60
conditional operands,

separating, 31, 40
in statement labels, 43
separator character (tokens), 21
superclass, indicating in C++, 115

, (comma)
separating list of expressions, 76
separating variable names and

initializers, 44
separator character (tokens), 21

{ } (curly braces)
anonymous class formatting, 154
enclosing body of loop, 14
enclosing statement blocks, 44
in classes, 9
inline doc comment tags, 316
method body, enclosing, 11, 12
nested if statements, use with, 45
nesting arrays within arrays, 81
separator characters (tokens), 21

-> (dereference) operator, C/C++, 82
$ (dollar sign)

in identifiers, 20, 309
in regular expressions, 213

. (dot)
dot operator in Java and C/C++, 82
object member access operator, 29,

41, 73
separator character (tokens), 21

... (ellipsis) in variable-length argument
lists, 69

= (equal sign)
= (assignment) operator, 11, 29, 39

combining with arithmetic,
bitwise, and shift
operators, 39

== (equals) operator, 29, 35, 132
comparing enum values, 180
comparing hashtable key

objects, 225
comparing objects, 85
string comparisons, 208, 493

! (exclamation point)
! (boolean NOT) operator, 29, 36
!! (jdb shorthand) command, 354
!= (not equals) operator, 29, 35
jar: URL syntax, 564

- (minus sign)
-- (decrement) operator, 29, 34
-= (subtract assignment)

operator, 29, 39
- (subtraction) operator, 14, 29, 31,

33
- (unary negation) operator, 29, 31,

33
integer literals and, 24

() (parentheses)
cast operator, 29
conditional operands, using with, 40
in expressions, order of evaluation

and, 32
in method names, 10
in method parameters, 10
method invocation operator, 29, 41

side effects, 32
operator precedence, overriding

with, 30
separator characters (tokens), 21
subexpressions within regular

expressions, 213
% (percent sign)

%= (modulo assignment)
operator, 29, 39

% (modulo) operator, 29, 33
in format specifiers, 780

+ (plus sign)
+= (add assignment) operator, 29,

39
concatenating strings with, 33

+ (addition) operator, 29, 32
++ (increment) operator, 29, 34

side effects, 32
+ (string concatenation)

operator, 29, 33
+ (unary plus) operator, 29
string concatenation operator, 208
URL encoding, 585

? (question mark)
?: (conditional) operator, 29, 39

operand number and type, 31
return type, 31

jdb help command, 354
wildcards

type parameters, 167
" (quotes, double)

escaping in char literals, 23
in string literals, 73
string literals, 24

Index | 1149

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

' (quotes, single)
escape characters in char literals, 23,

73
; (semicolon), 8

ending do loops, 49
ending Java statements, 11

compound statements and, 14
for empty statements, 43
separator character (tokens), 21

/ (slash)
/** */, in doc comments, 20, 312
/* */, in multiline comments, 9, 19
/ (division) operator, 29, 33

/= (divide assignment)
operator, 29, 39

//, in single line comments, 8, 19
~ (tilde), bitwise complement

operator, 29, 37
_ (underscore), identifier names and, 20
| (vertical bar)

|= (bitwise OR assignment)
operator, 29, 39

| (bitwise OR) operator, 29, 37
| (boolean OR) operator, 29, 37
|| (conditional OR) operator, 29, 36

Numbers
0- and 1-based arrays, 78
0 (zero)

division by, 33
negative and positive zero, 26
represented by float and double

types, 26

A
<A> (hyperlink) tag, avoiding in doc

comments, 313
AbortPolicy class, 853
absolute filenames, 397
abstract classes, 128–130

collections, 238
InstantiationError, 471
InstantiationException, 471
interfaces vs., 135, 138

abstract methods, 128–130
AbstractMethodError, 443
dynamic method lookup, 130
interfaces, 135

abstract modifier, 156
in class definitions, 100

enumerated types and, 190
methods, 67

AbstractCollection class, 753
AbstractExecutorService class, 828
AbstractInterruptibleChannel class, 625
AbstractList class, 238, 754
AbstractMap class, 755
AbstractPreferences class, 893
AbstractQueuedSynchronizer class, 863
AbstractQueuedSynchronizer.

ConditionObject, 864
AbstractSelectableChannel class, 626
AbstractSelectionKey class, 626
AbstractSelector class, 627
AbstractSequentialList class, 756
AbstractSet class, 757
AbstractStringBuilder class, 443
accept()

FileFilter interface, 400
FilenameFilter interface, 401
ServerSocket class, 570
ServerSocketChannel class, 272, 621

access control, 124–127, 299, 301–304
class members, 125
classes, 125, 638
digitally signed classes, 302
to files, 402
for packages, 124
IllegalAccessError, 468
inheritance and, 126
java.security package, 288
packages for, 204
permissions and policies, 303
policies described in system, user,

and java.security.policy policy
files, 306

sandbox, 301
trusted vs. untrusted code, changes in

Java 1.2, 303
access modifiers, 124

class members, 99
(see also private modifier; protected

modifier; public modifier)
AccessControlContext class, 641
AccessControlException, 642
AccessController class, 303, 639, 642

checkPermission(), 304
AccessibleObject class, 530

setAccessible(), 540
accessor methods, 127–128

bean properties, 321, 322–323

1150 | Index

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

AccountException class, 987
AccountExpiredException, 987
AccountLockedException, 987
AccountNotFoundException, 987
acquire() (Semaphore), 249
action names, permissions, 306
activeCount() (ThreadGroup), 506
activeGroupCount(), 506
adapter classes, 152
add(), 757

AbstractCollection class, 753
AbstractList class, 754
BigDecimal class, 543
Collection interface, 227, 766
HashSet class, 787
LinkedList class, 795
List interface, 229, 797
ListIterator interface, 798
Permissions class, 667
Queue interface, 234
Set interface, 227, 813
TreeSet class, 821
Vector class, 824

add and remove methods for event
listeners, 321

addAll()
Collection interface, 766
List interface, 229, 797
Map interface, 233
Set interface, 227

addAllAbsent()
CopyOnWriteArrayList, 835

addAttribute() (AttributedString), 727
addAttributes() (AttributedString), 727
addCertPathChecker(), 699
addCertStore(), 700
addIfAbsent()

CopyOnWriteArrayList, 835
addition operator (+), 32
additive operators, associativity of, 30
addObserver() (Observable), 805
addPreferenceChangeListener(), 295
addPropertyChangeListener(), 323
addProvider() (Security), 672, 676
addShutdownHook() (Runtime), 114,

297
addVetoableChangeListener, 323
Adler32 class, 910
after(), 222

agents, 203, 296, 336
instrumentation, 517
support for, in java.lang.

instrument, 439
AlgorithmParameterGenerator

class, 643
AlgorithmParameterGeneratorSpi

class, 643
AlgorithmParameters class, 644
AlgorithmParameterSpec interface, 713
AlgorithmParametersSpi class, 644
algorithms, cryptographic

digital signature algorithm for
certificate, 365

RC2 encryption algorithm, 944
RC5 encryption algorithm, 945
specifying for keys, 365

aliases() (Charset), 629
aliases for certificates and keys, 362
allAll() (Set), 813
allocate()

ByteBuffer class, 589
CharBuffer class, 593
DoubleBuffer class, 595
FloatBuffer class, 596
IntBuffer class, 597
ShortBuffer class, 600

allocateDirect() (ByteBuffer), 589
allocating/deallocating memory (see

garbage collection; memory)
AllPermission class, 645
AlreadyConnectedException, 602
AND operator (see &, under Symbols)
animation, threads for, 241
annotations, xviii, 159, 191–202,

511–515
AnnotatedElement interface, 198,

456, 531
Annotation class, 725
Annotation interface, 199, 511
annotation types, 159, 440, 441, 511

defined, 192
defining, 199
Deprecated, 194, 462
Documented, 513
Inherited, 514
local scope and, 148
nonstatic member classes

and, 145
Override, 194, 481
Retention, 514

Index | 1151

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

annotations, annotation types
(continued)

SuppressWarnings, 195, 499
Target, 515

AnnotationFormatError, 512
AnnotationTypeMismatchException,

512
apt processing tool, 326
Class class methods, 456
concepts and terminology, 192
Constructor class support for, 533
ElementType, 513
Field class support of, 534
IncompleteAnnotationException, 51

3
java.lang.annotation package, 203,

439
meta-annotations, 201
Method class, support for, 538
@Override, 71, 131
reflection on, 198, 529
RetentionPolicy, 514
standard, 194–196

@Deprecated, 194
@Override, 194
@SuppressWarnings, 195

@SuppressWarnings, 164
syntax, 196–198

defaults and, 198
member types and values, 197
targets, 197

treated as modifiers, 66
annotationType(), 512
anonymous array literals, 77
anonymous classes, 141, 151–154

features of, 153
implementation of, 155
implementing adapter classes

with, 152
indentation and formatting, 154
restrictions on, 153
subclasses of enumerated types, 187
syntax for defining and

instantiating, 153
when to use, 153

APIs (application programming
interfaces), 135

core Java APIs, 1
extensions, 1
platforms and operating systems, 2

apostrophe (see ', under Symbols)

AppConfigurationEntry class, 988
LoginModuleControlFlag, 988

append() (StringBuffer), 496
Appendable interface, 207, 386, 440,

444
formatting text for, 211
implemented by PrintStream, 424

applets, 10
access control restrictions, 303
java.applet package, 204
security and, 299
security restrictions on, 301

application classes, default search path
for, 351

application programmers, security
for, 304

applyPattern()
ChoiceFormat class, 731
DecimalFormat class, 737
MessageFormat class, 743
SimpleDateFormat class, 748

apt (annotation processing) tool, 326
Arabic text, 728
arbitrary-precision integers, 204
arguments, method, 12, 64

IllegalArgumentsException, 468
testing for legal values with assert

statement, 63
variable-length argument lists, 69, 97
(see also variable-length argument

lists)
arithmetic

BigDecimal class, 543
precision, 547

integer arithmetic in Java, 25
java.math package, 204

arithmetic operators, 32
combining with assignment (=)

operator, 39
listed, 29
return type, 31

ArithmeticException, 445
array access operator ([]), 29, 31, 41
ArrayBlockingQueue, 251, 829
arraycopy() (System), 79, 224, 500
ArrayList class, 231, 758
arrays, 12, 74–81, 224

accessing array elements, 78
Array class, 529, 531
array types, 75

widening conversions, 75

1152 | Index

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

arrays (continued)
ArrayIndexOutOfBoundsException,

57, 78, 322, 445
Arrays class, 224, 759

equals(), 85
ArrayStoreException, 76, 445
as operand type, 31
AtomicIntegerArray, 857
bounds, 78
of bytes, 255

ByteArrayInputStream class, 390
ByteArrayOutputStream

class, 391
reading from and writing to, 385

of characters, 391
comparing for equality, 85
conversion rules, 87
converting collections to and

from, 237
converting to strings, 34
copying, 79
creating and initializing, 76

initializers, 76
creating with new operator, 41
generic methods and, 175
GenericArrayType, 535
indexed properties, JavaBeans, 322
instanceof operator, using with, 40
iterating, 78
locks on, 56
multidimensional, 80

rectangular arrays, 81
NegativeArraySizeException, 477
as objects, 225
ObjectStreamField objects, 316
of parameterized type, 166
streaming data to and from, 257
of strings, 10
utility methods, 79

asCharBuffer() (ByteBuffer), 593
ASCII

7-bit character set, 18
native2ascii tool, 366

asDoubleBuffer() (ByteBuffer), 595
asFloatBuffer() (ByteBuffer), 596
asIntBuffer() (ByteBuffer), 597
asList() (Arrays), 759
asLongBuffer() (ByteBuffer), 598
assertions, 60–64

AssertionError class, 60, 445

classes loaded through
ClassLoader, 459

compiling, 61
disabling, 61
enabling, 61
errors in, 64
options for Java interpreter, 334
side effects, 63
using, 62

asShortBuffer() (ByteBuffer), 600
assignment in expression statements, 42
assignment operators, 11, 29, 39

combining with arithmetic, bitwise,
and shift operators, 39

return type, 31
right-to-left associativity, 30
side effects, 32

associativity, operator, 28, 30
order of evaluation and, 32

asterisk (*) (see *, under Symbols)
AsynchronousCloseException, 602
atomic operations, 252, 750, 855–862

createNewFile() (File), 398
AtomicBoolean class, 856
AtomicInteger class, 252, 856
AtomicIntegerArray class, 857
AtomicIntegerFieldUpdater class, 857
AtomicLong class, 858
AtomicLongArray class, 859
AtomicLongFieldUpdater class, 859
AtomicMarkableReference class, 860
AtomicReference class, 860
AtomicReferenceArray class, 861
AtomicReferenceFieldUpdater

class, 861
AtomicStampedReference class, 862
Attr interface (DOM), 1033
Attribute class, 726
AttributedCharacterIterator

interface, 725
AttributedString class, 726, 727
AttributeList interface (SAX), 1052
AttributeListImpl class (SAX), 1069
Attributes class, 870

Name class, 871
attributes (DOM Element node), 1033
Attributes interface (SAX), 1052
Attributes2 interface (SAX), 1065
Attributes2Impl interface (SAX), 1065
AttributesImpl class (SAX), 1070

Index | 1153

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

authentication, 301, 970–993
Authenticator.RequestorType, 552
classes, 288

implementing with, 638
MAC (message authentication

code), 921, 933, 934
messages transmitted with secret

key, 933
packages for, 204
PasswordAuthentication class, 567
SSL client, 965

Authenticator class, 551
@author javadoc tag, 314
AuthPermission class, 971
AuthProvider class, 645
autoboxing and unboxing

conversions, xvii, 69, 88, 89,
159

automatic imports, 91
available() (InputStream), 407
availableCharsets() (Charset), 629
await()

Condition class, 248
CountDownLatch class, 249
CyclicBarrier class, 250

AWT programming (java.awt.peer), 310

B
\b (escape sequence for backspace), 23
BackingStoreException, 894
BadPaddingException, 922
bag (unordered collection), 754
BasicPermission class, 646
before(), 222
Bidi class, 728
Bidirectional Algorithm (Unicode), 728
BigDecimal class, 218, 543–546
BIG_ENDIAN byte order, 592
BigInteger class, 219, 546

implementing Callable, 243
binary data in files, reading from

arbitrary locations, 253
binary files, reading, 255
binary numbers, 37

Integer type conversions, 472
Long type conversions, 474

binary operators, 31, 33
binarySearch()

Arrays class, 79, 224, 759
Collections class, 237, 767

bind()
DatagramSocket class, 556
ServerSocket class, 570
Socket class, 572

BindException, 552
bitCount() (Integer), 472
bitfields (C language), 96
BitSet class, 761
bitwise operators, 29, 37

boolean operators as, 36
combining with assignment

operator, 39
return type, 31

blank lines in Java programs, 13
Bloch, Joshua, 133, 190
BLOCKED thread, 239, 504
blocking queues

ArrayBlockingQueue, 829
defined, 234
LinkedBlockingQueue, 844
PriorityBlockingQueue, 845

blocking threads, waking, 250
BlockingQueue interface, 225, 248, 830
body (class definitions), 99
boolean operators, 35

listed, 29
return type, 31

boolean type, 14, 22
Boolean class, 439, 446
conversion to other primitive

types, 28
get methods and, 128
operator return values, 31, 34

bound properties, 321, 322
bounded wildcards, 168, 178, 542

in generic methods, 172
in generic types, 171

bounds for type variables, 170
boxing and unboxing conversions, xvii,

69, 88, 159
break statements, 54

labels, use of, 43
switch statements, stopping, 47

BreakIterator class, 729
breakpoints for jdb debugger, 354, 356
BrokenBarrierException, 831
BufferedInputStream class, 386, 388
BufferedOutputStream class, 386, 388
BufferedReader class, 386, 389
BufferedWriter class, 390
BufferOverflowException, 588

1154 | Index

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

buffers, 386, 586
basic operations, 264
Buffer class, 587
byte order, 592
byte, views as other primitive

types, 590
ByteBuffer class, 264, 267, 589–592
channels, using with, 265
CharBuffer, 207, 267, 593–594
DoubleBuffer, 595
FloatBuffer, 595
IntBuffer class, 596
InvalidMarkException, 597
LongBuffer, 598
MappedByteBuffer, 599
networking, size of, 556
pushback, 427, 428
ReadOnlyBufferException, 599
ShortBuffer, 600
size, setting for sockets, 570, 572
StringBuffer class, 495–497

using with StringWriter, 435
BufferUnderflowException, 589
bugs

implementation-specific, portability
and, 311

security-related, 5
build() (CertPathBuilder), 689, 698
by reference, 158
byte code, 6

displaying for methods with javap
tool, 350

verification of, 300
byte streams, 254

ByteArrayInputStream class
class, 390

ByteArrayOutputStream class, 391
CharConversionException, 393
FileInputStream class, 400
FileOutputStream class, 401
InputStream class, 407
java.io classes, 385
PrintStream class, 424

implementing Appendable, 386
reading, 255, 394
(see also input/output)

byte type, 22, 24
Byte class, 217, 439, 447
conversion to other primitive

types, 28
unsigned values, 394

ByteArrayInputStream class, 257, 385,
390

ByteArrayOutputStream class, 257, 385,
391

ByteBuffer class, 264, 267, 589–592
ByteChannel interface, 266, 603
byte-code verification, 510
byte-code-to-native code JIT

compilers, 462
ByteOrder class, 592
bytes

buffers of, converting to buffers of
characters, 263

CharConversionException, 393
converting characters to, 421
converting objects to, 286
converting to characters, 403
input/output, filtering, 385
raw, reading from a stream, 386
transferring from FileChannel to

another channel, 269

C
C and C++

array bounds, 78
boolean type, Java differences, 22
C++ features not found in Java, 157
comments, recognition by

StreamTokenizer, 433
differences between C and

Java, 95–97
extends keyword (Java) vs. :, 115
finalization methods in Java vs.

C++, 113
Java native methods, implementing

in C, 348
memory allocation, 86

reclaiming, 111
multiple inheritance, interfaces as

alternative to, 135
object-oriented programming in

C++, 98
performance, Java vs., 6
reference types, 82
unsigned keyword, 24
variable declarations, 76
virtual functions in C++, 122, 129
void methods, 66

CA (certificate authority), 683
CacheRequest class, 553
CacheResponse class, 553

Index | 1155

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

caching
ResponseCache class, 569
SecureCacheResponse class, 570
SSL sessions, 964
URLs, 583

Calendar class, 221, 222, 763
GregorianCalendar class, 785

calendar (XMLGregorianCalendar
class), 999

call(), 243
Callable interface, 243, 831

scheduling Callable objects, 244
CallbackHandlerProtection

(KeyStore), 660
callbacks, 976–982

Callback interface, 977
CallbackHandler class, 991
CallbackHandler interface, 977
ChoiceCallback class, 978
ConfirmationCallback class, 978
javax.security.auth.callback, 970
LanguageCallback class, 980
NameCallback class, 980
PasswordCallback class, 980
TextInputCallback class, 981
TextOutputCallback class, 981
UnsupportedCallbackException, 98

2
CallerRunsPolicy class, 853
calling methods, 10
cancel()

Timer class, 818
TimerTask class, 819

CanceledKeyException, 603
CancellationException, 832
canonical filenames, 397
canRead() (File), 397
canWrite() (File), 397
capacity()

ArrayList class, 758
Vector class, 824

capacity (buffers), 587
carriage return (\r), 23
case

capitalization, Java naming
conventions, 308

case-insensitive pattern
matching, 214

characters, 448
charset names, 629

conversions in strings, 492
ignoring in string comparisons, 208,

492
case labels (switch statements), 47

for enumerated types, 181
restrictions on, 48

case-sensitivity in Java, 8, 19
casts, 27

() (cast) operator, 29, 41
ClassCastException, 457
hidden superclass field,

accessing, 119
narrowing conversions, reference

types, 87
objects to Object instance, 158
super and this, using, 123
(see also type conversions)

catch clause, 59
annotations on parameters, 198

catching errors in assertions, 64
catching exceptions, 56

jdb debugger, 354
try/catch/finally statement, 58–60

cbrt() (Math), 476
CDATASection interface (DOM), 1034
certificate authority (CA), 683
certificate revocation lists (see CRLs)
Certificate.CertificateRep class, 684
CertificateException, 685
CertificateExpiredException, 685
CertificateFactory class, 686
CertificateFactorySpi class, 687
CertificateNotYetValidException, 687
CertificateParsingException, 687
certificates

Certificate class, 683
Certificate interface, 639, 646, 651,

680
CertPathTrustManagerParameters

class, 949
creating self-signed for public key

associated with alias, 364
displaying contents with

keytool, 364
in keystore file, 329
java.security.cert package, 682–707
management by keytool, 362–366
public key, associated with JAR

file, 328
storing in keystore, 362

1156 | Index

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

certificates (continued)
TrustedCertificateEntry

(KeyStore), 662
X.500, distinguished name, 364
X509Certificate, private key for, 993

CertPath class, 688
CertPathBuilder, 689
CertPathBuilderException, 690
CertPathBuilderResult, 690
CertPathBuilderSpi, 691
CertPath.CertPathRep, 689
CertPathParameters, 691
CertPathValidator, 691
CertPathValidatorException, 692
CertPathValidatorResult, 693
CertPathValidatorSpi, 693
CertSelector, 693
CertStore class, 694
CertStoreException, 695
CertStoreParameters interface, 695
CertStoreSpi class, 695
chaining

certificates, 688
constructors, 117
finalizers, 118
methods

buffers, 265
overridden methods, 123

channel() (FileLock), 610
channels, 204, 263

avoiding explicit character encoding/
decoding, 628

basic operations, 265
ByteChannel interface, 266
Channel interface, 601, 603
Channels class, 604

charset encoder/decoder, 630
DatagramChannel, 272, 556
FileChannel object, obtaining, 400,

401, 429
files, reading and writing, 268–270,

607
inheritedChannel(), 501
interrupted threads and, 250
java.nio.channels package, 600–625
nonblocking, 273–276
ReadableByteChannel and

WritableByteChannel, 266
server-side networking, 272
ServerSocketChannel, 272, 571
service provider interface, 625–628

SocketChannel, 573
client-side networking with, 271

streams and, 601
char literals, quoting in Java code, 73
char type, 22

char values vs., 71
Character class, 21, 448–451

new methods in Java 5.0, 448
static methods for working with

characters, 23
conversion to other primitive

types, 28
escape characters in char literals, 23
surrogate pair, Unicode

supplementary characters, 448
character encoding

internationalization features, 6
locale- and platform-dependent, 407
native2ascii tool, 366
OutputStreamWriter class, 421
Unicode (see Unicode)
UnsupportedEncoding-

Exception, 436
(see also charsets)

character sets (see charsets)
character streams, 254

CharConversionException, 393
filtering input streams, 405
input and output, 386
InputStreamReader class, 407
LineNumberReader class, 410
output, implementing Appendable

interface, 386, 440
OutputStreamWriter class, 421
PipedReader class, 423
PipedWriter class, 424
PrintWriter class, 426
PushbackReader class, 428
Readable interface,

implementing, 386
Reader (input stream

superclass), 430
reading with BufferedReader, 389
streaming data to and from

arrays, 257
StringReader class, 435
superclass of output streams

(Writer), 437
writing with BufferedWriter, 390
(see also input/output; streams)

Index | 1157

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

CharacterCodingException, 629
CharacterData interface (DOM), 1034
characters, 205–217

char data type, 22
Character class, 206, 439, 448–451

new methods in Java 5.0, 448
Subset class, 451
UnicodeBlock class, 452–454

CharacterIterator interface, 730
conventions for Java names, 309
converting between byte buffers and

character buffers, 263
converting to bytes, 403
encoding into and decoding from

bytes, 586
handling by StreamTokenizer, 433
in identifiers, 20
pattern matching with regular

expressions, 212
reading and writing streams of, 254
string, CharSequence and CharBuffer

interfaces, 207
testing for different categories

of, 448
translating to bytes, 421

CharArrayReader class, 257, 391
CharArrayWriter class, 257, 392
charAt()

CharSequence interface, 455
String class, 491
StringBuffer class, 496

CharBuffer class, 265, 267, 593–594
CharSequence interface, 207, 265, 455,

492
contentEquals(), 208

charsets, 267, 586, 628–637
Charset class, 267, 629
CharsetDecoder class, 267
CharsetEncoder class, 267
CharsetProvider, 637
conversions, 421
decoding engine, 631
encoding and decoding text with

EUC-JP (for Japanese text), 267
encoding engine, 633
java.nio.charset package, 204
required support by Java

implementations, 629
Unicode, 18

charValue() (Character), 448

checkAccess()
Thread class, 502
ThreadGroup class, 506

checked exceptions, 68
methods throwing, 66

CheckedInputStream class, 910
checkedList() and checkedMap()

(Collections), 165
CheckedOutputStream class, 911
checkError(), 426
checkGuard() (Guard), 650
checkPermission()

AccessControlContext class, 641
AccessController class, 304, 642
SecurityManager class, 487

checkRead() (SecurityManager), 302,
303

Checksum interface, 911
checksums, 255

(see also message digests)
checkValidity() (X509Certificate), 702
Chinese ideographs, 23
ChoiceCallback class, 978
ChoiceFormat class, 730
Cipher class, 291, 921, 923–925

NullCipher class, 935
cipher suites, SSL connections, 950

client/server disagreement on, 959
obtaining name of, 962
setting, 961
supported, getting full set of, 965

CipherInputStream class, 292, 925
CipherOutputStream class, 292, 926
CipherSpi class, 926
circular dependency, 458
class body, 99

access to members, 125, 126
anonymous classes, 152, 154
enumerated types, 185

value-specific, 186–189
Class class, 74, 283–285, 455–457

dynamic class loading, 285
dynamic instantiation with

newInstance(), 72
getMethod(), 537
new methods, Java 5.0, 456

class fields, 102
default initialization, 109
initializing, 109

static initializers, using, 110

1158 | Index

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

class fields (continued)
superclass, hiding, 119
System.out.println(), 106

class files, 94
verification of, 300

class hierarchy, 87, 116
containment hierarchy vs., 147
omitting tree diagram in javadoc

documentation, 346
class loading statistics (jstat), 361
class members

access control, 124–127
access rules, 126
constructors and

initializers, 106–111
hiding fields and methods, 124

class methods, 102
choosing between class and instance

methods, 105
example of, 103
interfaces and, 135
listing all for specified class with jdb

debugger, 355
overriding not allowed, 120
static modifier, 67
synchronized, 56
System.out.println()), 106

ClassCastException, 87
ClassDefinition class, 516
classes, 2, 5, 17, 71, 203

abstract, 128–130, 156
collections, 238
rules for, 129

access to, 125
anonymous, 141, 151–154
assertions, 61, 459
bean (JavaBeans), 321
byte-code verification, error, 510
Class (see Class class)
ClassCastException, 457, 770
ClassCircularityError, 458
ClassDefinition, 516
ClassFormatError, 458
ClassLoader class, 458

enabling/disabling assertions, 62
ClassNotFoundException, 460
code source, 647
constructors, fields, and

methods, 529
converting to strings, 34

core, Java language, 203
creating dynamically, with

Proxy, 286
defined, 98
defining, 9, 72, 99

modifiers, 99
NoClassDefFoundError, 477
static initializers, 110

defining object types, 98
deprecated (@deprecated javadoc

tag), 315
digital signatures for, 302
disassembler tool (javap), 349–351
documentation by javadoc, display

of, 346
dynamic loading, 285
enumerated types, 179
extending, 114–116
final, 116
garbage collection, disabling for, 336
hiding (and encapsulating) data

in, 124
IllegalAccessError, 468
IllegalAccessException, 468
IllegalClassFormatException, 516
implementing interfaces, 136
IncompatibleClassChangeError, 470
inner (see nested types)
InvalidClassException, 408
Java platform, 1
javap display, including or excluding

from, 350
LinkageError, 474
loading, 338

dynamically, with Class, 285
SecureClassLoader, 674
URLClassLoader, 582

local, 141, 147–151
members of, 9

class fields, 102
static and instance, 100

modifiers, 156
names, simple and fully qualified, 89
naming and capitalization

conventions, 308
online documentation, 20
package, specifying for, 90
permission, summary of, 306
proxy, 540

Index | 1159

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

public
in Java files, 94
preventing insertion of public

constructor, 118
reference index, 1077–1146
references to, in @see javadoc

tag, 318
reflection and dynamic

loading, 283–286
structs vs., 96
system, code portability and, 311
undocumented, portability and, 310
UnsatisfiedLinkError, 509
UnsupportedClassVersionError, 509
version number, 370

ClassFileTransformer interface, 516
“Classic VM”, 333
ClassLoadingMXBean interface, 518
classpaths

application classes, specifying for
javap, 351

java, 333, 338
javac compiler, 342
javadoc program, 348
javah tool, 348
javap, for classes named on

command line, 350
jdb debugger, 357
serialver tool, 370

clear()
Buffer class, 588
Collection interface, 227, 766
List interface, 797
Map interface, 801
PhantomReference class, 526
Reference class, 527

clearAssertionStatus(), 459
clearProperty() (System), 500
client applications, 261

-client option (HotSpot VM), 332
client-side networking, nonblocking I/

O, 275
Clock class, 241
clone(), 75, 79, 460, 464, 691

Mac class, 934
MessageDigest class, 663
Object class, 84, 134

Cloneable interface, 79, 134, 460
arrays, 75
implemented by collections and

maps, 227

CloneNotSupportedException, 79, 84,
461, 464

close()
OutputStream class, 420
Channel interface, 603
CharArrayWriter class, 392
Closeable interface, 386, 393
DatagramSocket class, 556
FileInputStream class, 400
FileOutputStream class, 401
InputStream class, 407
JarOutputStream class, 874
PrintWriter class, 426
Reader class, 430
Selector class, 605
ServerSocket class, 571
Socket class, 572
SocketChannel class, 623
StringWriter class, 435
Writer class, 437

Closeable interface, 386, 393
ClosedByInterruptException, 604
ClosedByInterruptException class, 250
ClosedChannelException, 604
ClosedSelectorException, 605
closeEntry() (ZipInputStream), 919
closeInbound(), 956
closeOutbound(), 956
code

critical sections, 56
formatting and indenting, 19

code blocks, synchronized, 245
code libraries, reading into the

system, 501
codePointAt()

Character class, 448
String class, 493

codePointBefore() (Character), 448
codePointCount()

Character class, 448
String class, 493

codepoints, 23
illegal format exception, 790

CoderMalfunctionError, 633
CoderResult class, 634
CodeSigner class, 647
CodeSource class, 639, 647
CodingErrorAction class, 635
CollationElementIterator class, 731
CollationKey class, 732

1160 | Index

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Collator class, 209, 733
RuleBasedCollator class, 747

CollectionCertStoreParameters, 696
collections, 225–238

abstract classes to implement
common collections, 238

AbstractCollection class, 753
AbstractList class, 754
AbstractMap class, 755
of certificates, 694
CertStoreParameters, 696
changes in Java 5.0, 751
classes in java.util package, 751, 752
Collection interface, 225, 766, 795

add() and addAll(), 227
Collections class, 767

special-case collections, 236
utility methods, 237
wrapper methods, 236

Collections Framework, 225
generics in Java 5.0, 225

converting to and from arrays, 237
for/in loop, 52
Hashtables class, 293
immutable or unmodifiable,

error, 510
implementing Cloneable or

Serializable, 227
List interface, 229
Map interface, 231–234
packages for, 204
Permission objects, 667
primitive values, boxing and

unboxing conversions, 88
queues, 234–235
RandomAccess interface, 225
runtime type safety, 165
Set interface, 227
typesafe (see generic types)

combination assignment operators, 39
combine() (DomainCombiner), 649
command() (ProcessBuilder), 482
command-line tools

enabling assertions, 61
Java interpreter, -classpath

option, 94
javac compiler, 8

Comment interface (DOM), 1035
commentChar(), 433
comments, 9, 19

doc, 312–320

single-line, enclosed with //, 8
StreamTokenizer and, 433

compact(), 266
ByteBuffer class, 590

Comparable interface, 133, 176–178,
461

implementation by enumerated
types, 180

Comparator interface, 770
compare()

Collator class, 733
Comparator interface, 770
Double class, 463

compareTo()
BigDecimal class, 543
BigInteger class, 546
ByteBuffer class, 591
Character class, 448
Charset class, 630
CollationKey class, 732
Comparable interface, 133, 461
Date class, 222
Double class, 463
Enum class, 464
enumerated types, 180
String class, 209, 492

compareToIgnoreCase(), 208, 492
comparing

hashtable key objects, 225
strings, 208

comparison operators, 34
listed, 29
precedence, boolean vs., 36
return type, 31

compilation units, 18
compile()

Pattern class, 214
XPath class, 1026

compileClass(), 462
compileClasses(), 462
Compiler class, 462
compiler (javac), 8, 338–342
compiling

assertions, 61
Java program (example), 7
varargs methods, 69

CompletionService interface, 832
compound statements, 14, 43
compression, 255

JAR files, 330
java.util.zip package, 909–920

Index | 1161

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Pack200, 875–877
pack200 tool, 366
unpack200 tool, 371
ZIP files and gzip format, 751

computed goto or jump table, 46
com.sun.javadoc package, 342
concat() (String), 493
concatenating data from multiple input

streams, 431
concatenating strings, 208, 496

+ and += operators, 33
string literals, 74

concrete subclass, 129
concurrency, 238–252

atomic operations, 252, 750,
855–862

blocking queues, 251
BlockingQueue interface, 225, 234,

830
implementations, 251

ConcurrentHashMap class, 233
CopyOnWriteArrayList, 231
CopyOnWriteArraySet, 228
exclusion and locks, 245–247

deadlock, 247
Lock objects, 246

java.util.concurrent package, xviii,
204, 750, 827–855

locks, 750, 862–869
Condition objects, 248

running and scheduling
tasks, 241–245

ExecutionException, 244
Executor interface, 242
ExecutorService, 243
Future object, 244
ScheduledExecutorService, 244
ThreadPoolExecutor, 243
Timer and TimerTask, 242

synchronizer utilities, 249
TimeUnit class, 241

ConcurrentHashMap class, 233, 832
ConcurrentLinkedQueue class, 235,

833
ConcurrentMap interface, 233, 834
ConcurrentModificationException, 771,

793, 798
Condition interface, 864
Condition objects, 248
conditional AND operator (&&), 29, 35
conditional operator (?:), 29, 31, 39

return type, 31

conditional OR operator (||), 29, 36
ConditionObject class, 864
Configuration class, 989
configuration files

logging, 212
Properties class, using for, 293

configureBlocking()
SelectableChannel class, 617
SocketChannel class, 622

ConfirmationCallback class, 978
connect()

DatagramChannel class, 606
DatagramSocket class, 556, 567
PipedInputStream class, 422
PipedOutputStream class, 422
PipedReader class, 423
Socket class, 572
SocketChannel class, 602, 622

ConnectException, 553
ConnectionPendingException, 605
console

displaying text on, 255
input, reading, 254

ConsoleHandler class, 878
constants

defined by an enumerated type, 456
ElementType, 513
enum, 179
EnumConstantNotPresentException,

465
HttpURLConnection, 559
in interface definitions, 135

inheritance of, 139
Java object serialization, 418
Modifier class, 539
naming conventions, 102, 309
RetentionPolicy, 514
RoundingMode, 548
separator characters defined by File

class, 397
static and final

in anonymous classes, 153
in local classes, 148

static member import
declarations, 93

Thread.State, 239
TimeUnit class, 241
XML, 995

DatatypeConstants, 996
(see also enumerated types)

constrained properties, 321, 323
Constructor class, 72

1162 | Index

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

constructors, 66, 106–111
anonymous classes and, 152
chaining, default constructor

and, 117
class, 529
Constructor class, 533

changes in Java 5.0, 533
defined, 107
defining, 107

multiple, 108
naming, declaring, and

writing, 107
enumerated types, 180, 185, 190
field initialization code in, 109
how they work, 107
interfaces and, 135
invoking from another

constructor, 108
local classes, enclosing instance

passed to, 149
member classes, 146
references to, in @see javadoc

tag, 319
subclass, 116
superclass, 116

containing classes
associating instance with local

class, 148
instance, specifying for member

class, 146
containment hierarchy, 147
contains()

HashSet class, 787
Collection interface, 766
CopyOnWriteArraySet, 836
Set interface, 227
TreeSet class, 821

containsAll() (Collection), 766
containsKey()

Map interface, 232, 801
TreeMap class, 820

containsValue() (Map), 801
contentEquals()

CharSequence interface, 208
String class, 492

ContentHandler interface, 277, 554,
1053–1055

ContentHandlerFactory interface, 554
continue statements, 54

for and while loops, 60
labels, use of, 43

control flags (login module), 988
conversion types, Formatter, 779–782
conversions, type (see type conversions)
CookieHandler class, 554
copy() (Collections), 768
copy constructor, 134
CopyOnWriteArrayList class, 231, 834
CopyOnWriteArraySet class, 836
core Java APIs, 1
corrupted streams, 433
cosh() (Math), 476
CountDownLatch class, 249, 836
counters for loops, incrementing, 34, 48
covariant returns, xvii, 70, 120, 159

AbstractStringBuilder class, 443
CRC32 class, 912
create() (URI), 579
createNewFile() (File), 398
createServerSocket(), 962
createSocket()

SocketFactory class, 947
SSLSocketFactory class, 966

createSSLEngine() (SSLContext), 955
createTempFile() (File), 398
CredentialException, 989
CredentialExpiredException, 990
CredentialNotFoundException, 990
credentials

destroying or erasing, 972
KerberosKey, 983
KerberosTicket, 984
PrivateCredentialPermission, 973
refreshing, 974

critical sections, 56
CRLs (certificate revocation lists), 682,

686
CRL class, 696
CRLException, 696
CRLSelector, 697
X509CRL class, 705
X509CRLEntry, 706
X509CRLSelector, 706

cross-references in doc comments, 318
cryptographic checksums (see message

digests)
cryptographic-strength random

numbers, 218
cryptography, 290–292, 301, 921–945

algorithms, parameters for, 644
arbitrary-precision integers,

using, 543

Index | 1163

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

BigInteger methods used for
algorithms, 546

DSA, RSA, and EC public and private
keys, 707–723

encrypted objects, 292
encrypting/decrypting streams, 292
encryption and decryption with

Cipher, 291
Java Cryptography Extension

(JCE), 639
javax.crypto package, 921–938
javax.crypto.interfaces

package, 938–939
javax.crypto.spec package, 939–945
keys, invalid, 653
keytool program, 362–366
private key, 669
PublicKey interface, 673
public/private key, 639

in digital signatures, 289
key management, 362–366
keystore file for certificates, 329

resources for further reading, 922
secret keys, 290
service provider, not available, 665
symmetric-key, 290

cube root of a number, 476
currency formats, 744
currency symbols (Unicode), in

identifiers, 20
currentThread() (Thread), 502
currentTimeMillis() (System), 221, 500
CyclicBarrier class, 250, 837

D
daemon, specifying thread as, 502
data

accessor methods, 127–128
compressing and writing to file, 255
encapsulation of, 99
hiding and encapsulating, 123–128

access control, 124–127
streaming (see input/output; streams)

data types, 11
array, 75
buffer classes for, 264
classes as, 71
conditional operands, 40
conversions (see type conversions)
declaring for variables, 43

element type (arrays), 74
equality, testing, 35
fields, initializing, 109
getSimpleName(), 456
interfaces as, 137
literals (Class class), 74
method returns, 65
nested, 140–156
operand, 31
parameterized, 52
primitive, 21–27

floating-point, 25
integer types, 24
wrapper classes for, 217
(see also primitive data types)

reference, 22, 81–89
reflection and dynamic

loading, 283–286
return, for operators, 31
specifying when added to API

(@since doc comment), 315
strings, 73, 205

escape sequences, string
literals, 24

in switch statements, 46
switch statement with case labels, 48
Type interface, 541
vs. values represented by, 71
XML, 994, 995–1000

DataFormatException, 912
DatagramChannel class, 272, 605
DatagramPacket class, 262, 555
datagrams, 262

defined, 555
DatagramSocket class, 262, 555

channel associated with, 556
DatagramSocketImpl class, 557
DatagramSocketImplFactory

interface, 558
DataInput interface, 393
DataInputStream class, 386, 394
DataOutput interface, 395
DataOutputStream class, 386, 395
DatatypeConfigurationException, 996
DatatypeConstants class, 996
DatatypeConstants.Field class, 997
DatatypeFactory class, 997

newInstance(), 996
Date class, 772
DateFormatSymbols class, 737

1164 | Index

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

dates and times, 221–223
Calendar class, 222
certificate validity checks, 700
classes in java.util package, 751
Date class, 221, 222, 772
Duration class, 998
formatting, 223, 741

DateFormat class, 223
DateFormat.Field, 736
locale-specific, 737

formatting and parsing, 747
locale-specific formats, 734
milliseconds and nanoseconds, 221
period of validity (in days) for

certificates, 366
System class, 500
Timestamp class, 680
TimeZone class, 819
XMLGregorianCalendar class, 999

deadlock (thread synchronization), 247,
525

debugger for Java classes (jdb), 353–357
debugging

assertions, enabling for, 60
HTTP clients, 261
Java interpreter options for, 336
java_g (debugging version of Java

interpreter), 333
logging, using for, 211
remote (jsadebugd tool), 359

decimal numbers
BigDecimal class, 543–546
floating-point modes defined by IEEE

754R standard, 547
fractions, representing, 219
Short type conversions, 488
specifying decimal places, 544

DecimalFormat class, 737–739
DecimalFormatSymbols class, 739
declarations

class fields, 102
constructors, 107
exceptions, 68
field, 101

variable vs., 109
for/in loop variables, 51
GenericDeclaration interface, 535
methods, 10
package, 90
variables, 11, 76

local variables, 43
placement of, 14

DeclHandler interface (SAX), 1066
decode()

Charset class, 629, 630
CharsetDecoder class, 629, 631, 634
CoderMalfunctionError, 633
Integer class, 472
Short class, 488
URLDecoder class, 585

decodeLoop(), 633
decoding byte sequences into character

strings, 267
decrement expression statements, 42
decrement operator (--), 29, 34

return type, 31
decryption (see cryptography)
deep copy, 85
deepEquals() (Arrays), 79
deepHashCode() (Arrays), 79
deepToString() (Arrays), 79
default constructor, 118
default: label, 47

enumerated types, 182
defaultCharset(), 629
defaulted() (GetField), 414
DefaultHandler class (SAX), 277, 1071
DefaultHandler2 interface (SAX), 1066
defineClass() (SecureClassLoader), 674
definePackage() (ClassLoader), 459
defining

classes, 9, 72
simple (Circle class

example), 100
static initializers, 110

constructors, multiple, 108
interfaces, 135
Java programs, 94
local classes, 147
methods, 10
packages, 90
system classes, portability and, 311

deflate() (Deflater), 912
Deflater class, 912
DeflaterOutputStream class, 913
Delay interface, 244
Delayed interface, 837
DelayQueue class, 251, 838
DelegationPermission class, 982
delete()

File class, 398, 402
StringBuffer class, 496

delete permission, 402
deleteCharAt() (StringBuffer), 496

Index | 1165

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

deleteEntry() (KeyStore), 658
deleteOnExit() (File), 398
deleting temporary files, 113
@Deprecated annotations, 194, 440,

462
deprecated features, omitting from

javadoc documentation, 345
@deprecated javadoc tags, 194, 315

package.html file, 319
dereference operators (* and ->), C and

C++, 82
DESedeKeySpec class, 940
deserializing objects (see serialization)
DESKeySpec class, 940
destroy()

Destroyable interface, 972
KeyStore.PasswordProtection, 661
Process class, 482

Destroyable interface, 972, 993
DestroyFailedException, 972
destroying objects, 111–114
DHGenParameterSpec class, 941
DHKey interface, 938
DHParameterSpec class, 941
DHPrivateKey interface, 938
DHPrivateKeySpec class, 941
DHPublicKey interface, 939
DHPublicKeySpec class, 942
Dictionary class, 773
Diffie-Hellman key-agreement

algorithm, 930
public/private key pairs, 938, 939
three-party agreement, 930

digest() (MessageDigest), 648, 664
DigestException, 648
DigestInputStream class, 256, 639, 648
DigestOutputStream class, 639, 649
digit() (Character), 448
digital signatures, 289, 301, 302

algorithm that signs a certificate, 365
jarsigner tool, 328
Signature class, 677
SignatureException, 678
SignatureSpi class, 679
SignedObject class, 290, 679
Signer class, 680

direct buffers, 589, 591
MappedByteBuffer, 599

directionality of a character, 448

directories, 252
creating, renaming, and

deleting, 398
listing contents of, 397, 400
names of, platform-

independent, 397
naming, portability and, 311
(see also files)

directory() (ProcessBuilder), 483
DiscardOldestPolicy class, 854
DiscardPolicy class, 854
disconnect()

DatagramSocket class, 556
HttpURLConnection class, 559

displaying output, 12
displaying text on the console, 255
distinguished name

CRL issuer, 706
X.500 certificate, 364

distributed computing packages, 204
divide() (BigDecimal), 543
division by zero, 25, 33
division operator (/), 33
do statements, 49

continue, using, 55
doAs() (Subject), 975
doAsPrivileged() (Subject), 975
doc comments, 20, 312–320

cross-references, 318
defined, 312
images in, 313
in javadoc program output, 342
overview, use by javadoc, 346
for packages, 319
spaces in, 313
structure of, 313
tags

custom, 347
inline, within HTML text, 316
listing of, 314–318

doclet API (javadoc), 342
{@docRoot} javadoc tag, 317
Document interface (DOM), 1035
Document Type Definition

(DTD), 1037
documentation

doc comments, 312–320
cross references, 318
doc-comment tags, 314–318
structure of, 313

1166 | Index

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

documentation (continued)
javadoc program, 342–348

locale, 345
undocumented classes, portability

and, 310
DocumentBuilder class, 1002
DocumentBuilderFactory class, 1003
@Documented annotations, 202, 462,

513
DocumentFragment interface, 1036
DocumentHandler interface

(SAX), 1055
DocumentType interface (DOM), 1037
DOM (Document Object Model), 276

documentation, 1032
DocumentBuilder class, 1002
javax.xml.transform.dom

package, 994, 1015–1016
org.w3c.dom package, 1032–1050
parser for XML, 204, 278
tree representation of XML

documents, 280
validation of source

documents, 1024
domain names, using in package

naming, 90
DomainCombiner interface, 649, 975
DOMConfiguration interface, 1037
DOMError interface, 1038
DOMErrorHandler interface, 1038
DOMException class, 1038
DOMImplementation interface, 1040
DOMImplementationList

interface, 1041
DOMImplementationSource

interface, 1041
DOMLocator interface, 1015, 1041
DOMResult class, 1015
DOMSource class, 282, 1016
DOMStringList interface, 1042
double type, 12, 14, 22, 25, 462

conversion to other primitive
types, 28

Double class, 26, 217
DoubleBuffer class, 595
doubleToLongBits(), 463
doubleToRawBits(), 463
do/while statements, 49
drainTo() (Queue), 235
DSA encryption algorithm, 365

DSA, RSA and EC public and private
keys, 707, 712

DSAKey interface, 708
DSAKeyPairGenerator interface, 708
DSAParameterSpec interface, 714
DSAParams interface, 709
DSAPrivateKey interface, 709
DSAPrivateKeySpec interface, 714
DSAPublicKey interface, 709
DSAPublicKeySpec interface, 714
DTD (Document Type

Definition), 1037
DTDHandler interface (SAX), 277, 1055
duplicate() (ByteBuffer), 590
Duration class, 998
dynamic class creation, 286
dynamic class instantiation, 72
dynamic class loading, 285

security risks, 299
dynamic method lookup, 121, 122

abstract methods, 130

E
ECPublicKey interface, 710
ECPublicKeySpec class, 717
editors, text, 8
Effective Java Programming Language

Guide, 133, 190
element() (Queue), 235
Element interface (DOM), 279, 1042
element type, 74
elementAt() (Vector), 824
elements()

Hashtable class, 788
Permissions class, 667
Vector class, 824

elements of an array, 12, 74
accessing, 78

ellipsis (...), in variable-length argument
lists, 69

elliptic curve public keys, 710
EllipticCurve class, 717
else clause (if/else statements), 45
else if clause, 45
emacs text editor, 8
empty collections, 237, 768
empty interfaces, 139
empty statements, 43
emptyMap(), 231
EmptyStackException, 774

Index | 1167

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

encapsulation of data, 99, 123–128
access control, 124–127

inheritance and, 126
enclosing classes (see containing classes)
encode()

Charset class, 629, 630
CharsetDecoder class, 634
CharsetEncoder class, 267, 633
CoderMalfunctionError, 633

EncodedKeySpec interface, 718
encodeLoop(), 633
encoding and decoding text, 267
encoding/decoding data

CertPath encodings, 688
charsets, 586, 628–637

Unicode, 18
encoding of a certificate chain, 686
javadoc output, 343
tool for, 366
Unicode strings to/from bytes, 204
URLDecoder class, 585
URLEncoder class, 585
(see also charsets)

EncryptedPrivateKeyInfo class, 927
encryption/decryption of data (see

cryptography; SSL)
end users, security for, 305
endorsed standards, 89
endsWith() (String), 492
enforcing method preconditions, 63
engineSetMode() (CipherSpi), 926
engineSetPadding() (CipherSpi), 926
enhanced for statement (see for/in

statements)
enqueue() (Reference), 527
ensureCapacity()

ArrayList class, 758
Vector class, 825

enterprise packages of Java, 204
Entity interface (DOM), 1043
EntityReference interface (DOM), 1044
EntityResolver interface (SAX), 277,

1056
EntityResolver2 interface (SAX), 1067
entries(), 918

JarFile class, 872
entry in a keystore, 660

private key, 661
Entry interface (Map), 231, 232, 802

entrySet()
AbstractMap class, 755
Map interface, 801, 802
SortedMap interface, 815

Enum class, 178
enum constants, 179
enum keyword, 179
EnumConstantNotPresentException, 4

65
enumerate() (ThreadGroup), 505
enumerated types, 159, 178–191, 225

annotations and, 198, 511
as classes, 179
Class methods supporting, 456
DatatypeConstants.Field, 997
DateFormat.Field, 736
defined, 179
ElementType, 513
Enum class, 181, 440, 464
enum syntax, advanced, 185–190

class body, 185
implementing an interface, 186
restrictions on enum types, 189
value-specific class

bodies, 186–189
EnumMap, 182, 751
EnumSet, 183–185, 751
features of, 179
fields of, 534
Formatter.

BigDecimalLayoutForm, 785
java.net package, 550
KeyRep.Type, 657
local scope and, 148
MemoryType, 522
nonstatic member classes and, 145
NumberFormat.Field, 745
Proxy.Type class, 568
RetentionPolicy, 514
RoundingMode class, 548
SSLEngineResult.

HandshakeStatus, 957
SSLEngineResult.Status, 958
static member import

declarations, 93
switch statement and, 181
Thread.State, 239, 504
TimeUnit, 221, 241, 854
typesafe enum pattern, 190

enumerated values, 179

1168 | Index

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

enumeration implemented with
anonymous class, 151

Enumeration interface, 774
Iterator interface vs., 793

EnumMap class, 182, 225, 233, 751
enums (see enumerated types)
EnumSet class, 183–185, 225, 228, 751

factory methods for initializing
enumerated values, 184

restrictions on, 227
environment() (ProcessBuilder), 483
environment variables

CLASSPATH, 94
java, 338
javac compiler, 342
javadoc, 348

platform-dependent, 501
EOFException, 57, 396
eolIsSignificant(), 433
epoch, 221
equality operators, 29, 35

comparing objects with ==, 85
return type, 31

equals(), 85, 821, 822, 826
Annotation interface, 512
Arrays class, 79, 224, 759
ByteBuffer class, 591
Charset class, 630
Collection interface, 226
Comparator class, 461
Date class, 222
Enum class, 464
enumerated types, 180
Hashtable class, 788
Object class, 132, 480
String class, 209, 492, 493
string comparison, 208

equalsIgnoreCase() (String), 492
error() (Validator), 1024
Error class, 57, 465

unchecked exceptions, 68
error messages, 58
error streams, system, 399, 500
ErrorHandler interface (SAX), 277,

1056
ErrorListener interface, 1008
ErrorManager class, 878
errors, 15

assertion, 60
in assertions, 64
DOMErrorHandler, 1038

java.lang.annotation package, 511
PrintWriter class, 426
(see also exceptions)

escape sequences
in char literals, 23
in regular expressions, 213
in string and char literals, 73
in string literals, 24
for Unicode characters, 19

EUC-JP charset (Japanese text), 267
evaluate() (XPath), 1026
evaluating expressions, 28

operator associativity and, 30
order of, 32

EventListener interface, 321
EventObject class, 321
events

Event class, 324
EventListener interface, 324, 776
EventObject class, 324, 777
JavaBeans model, 321

conventions for, 324
listeners for, registering, 323
PropertyChangeEvent class, 321

@exception javadoc tag, 315
exceptions, 15

bean property accessor
methods, 322

catching and handling with jdb
debugger, 354

causing run() method of a thread to
exit, 502

checked, declaring, 68
classes, 57
Exception class, 57, 466
ExceptionInInitializerError, 466
finalizer methods, 113
handlers for, 57
handling with try/catch/finally

statement, 58–60
indexed property accessor

methods, 322
parameterized, 175
subclasses of Error, 57
subclasses of Exception, 57
subclasses of RuntimeException, 68
thread, 240
Throwable interface, 440, 507
throwing, 56, 66
uncaught, in threads, 505
unchecked, 68

Index | 1169

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Exchanger class, 249, 839
exclamation point (see !, under Symbols)
exclusive locks, 270, 608
Exclusive OR (see XOR operator)
exec() (Runtime), 310, 402, 484
executable JAR files, running programs

from, 332
execute permission, 402
ExecutionException, 244, 839
Executor interface, 242, 839
ExecutorCompletionService class, 840
Executors class, 244, 840
ExecutorService interface, 243, 841
ExemptionMechanism class, 928
ExemptionMechanismException, 929
ExemptionMechanismSpi class, 929
exists() (File), 397
exit()

Runtime class, 484
System class, 59, 500

exitValue() (Process), 482
exponential notation, 25
exponentiation functions, 217
expression statements, 42
expressions, 13, 14, 18

addition, combining with string
concatenation, 33

anonymous class definitions as, 151
assertion, 60, 61

side effects of, 63
comma-separated list, 76
evaluating in loops, 14, 48

continue statement and, 55
initializing and updating loop

variables, 50
jdb syntax, 353
operators and, 28–41

() (parentheses), use of, 30
operator precedence, 30
order of evaluation, 32
summary of Java

operators, 28–29
(see also operators)

extcheck utility, 327
extending a class, 99, 114–116

enumerated types and, 181
top-level class extending member

class, 146
extending interfaces, 136
extensions, 1

standard, portability and, 311

external processes, communicating
with, 295

Externalizable interface, 316, 397

F
\f (form feed), 23
factorials, computing (example

program), 7–16
FactoryConfigurationError, 1004
FailedLoginException, 990
false values (boolean), 22
fatalError() (Validator), 1024
feature (doc comment cross-

references), 318
fields

accessible to local classes, 149
atomic operations on (without

locking), 252
class, 100, 529

hiding, 124
initializing, 106

DateFormat.Field class, 736
declaration syntax, 101
defaults and initializers, 109–111
deprecated (@deprecated javadoc

tag), 315
deserializing, 412
enumerated types, 185

initializers, 190
Field class, 534

getGenericType(), 529
DatatypeConstants, 997

FieldPosition class, 740
Format.Field class, 742
inheritance in subclassing, 115
inherited, initializing, 116
instance, 100, 103

inheritance of, 126
MessageFormat.Field, 743
named fields read by

ObjectInputStream, 413
naming and capitalization

conventions, 309
NoSuchFieldError, 477
NoSuchFieldException, 478
NumberFormat.Field, 745
ObjectStreamField class, 419
PutField class, 416
reference index, 1077–1146
references to, in @see javadoc

tag, 319

1170 | Index

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

fields (continued)
serialPersistentFields, 316
static, final, in interfaces, 135
static modifier, 157
superclass, hiding, 119

method overriding vs., 121
System.out.println(), 106
transient, 157
volatile, 157

File class, 252, 397–399
enhancement in Java 1.2, 253
list(), 152

file compression (see compression)
file pointer, 270
file: protocol, 258
file separators, 326
file structure, 93
FileChannel class, 268–270, 607

file locks, exclusive and shared, 270
MapMode class, 610
memory mapping a file, 269
random access to file contents, 270

FileDescriptor class, 399
sync(), 436

FileFilter interface, 400
FileHandler class, 879
FileInputStream class, 252, 385, 400

SecurityManager and, 302
FileLock class, 610

OverlappingFileLockException, 614
FileLockInterruptedException, 611
FilenameFilter interface, 152, 385, 401
filenames, 9

hardcoded, portability and, 311
FileNotFoundException, 401
FileOutputStream class, 385, 401
FilePermission class, 402
FileReader class, 403
files, 252

associated with unused objects,
closing or deleting, 113

binary, reading, 255
class, 94
compressed, reading, 256
compressing data, 255
FileNameMap interface, 558
FileNotFoundException, 68
filtering a list of, 400
filtering filenames, 401
handle to open file, 399
I/O, 268–270

nonstream classes, java.io, 385
not found, 401
permission to access, 402
RandomAccessFile class, 429
reading binary data from arbitrary

locations in, 253
reading bytes from specified file, 400
reading text from, 403
reading to and writing from, 385
text, reading, 254
transforming to URIs, 397
writing data to specified file, 401
writing text to, using FileWriter, 403
ZipFile class, 918

FileWriter class, 403
fill()

Arrays class, 224, 759
Collections class, 768

Filter interface, 880
filtering

character input streams, 405
input and output streams, 386

FilterInputStream class, 385, 404
CheckedInputStream class, 910

FilterOutputStream class, 385, 404
FilterReader class, 254, 405
FilterWriter class, 406
final modifier, 156

abstract modifier and, 129
class fields, 102
classes, 100, 116
enumerated types and, 181, 190
fields, 101
for/in loop variables, 51
in variable declarations, 44
in local method definitions, 148
local classes and, 149
method lookup, 122
methods, 67

finalize(), 113, 480
finalizing objects, 111–114

finalizers, 113
chaining, 118

finally clause, 59
findClass() (ClassLoader), 459
findMonitorDeadlockedThreads(), 525
first()

CharacterIterator interface, 730
SortedSet interface, 816

first-in, first-out (FIFO) queues, 234

Index | 1171

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

firstKey()
SortedMap interface, 815
TreeMap class, 233

flags
format, illegal combination of, 791
format, mismatch with conversion

specifier, 777
format specifier, 783
FormattableFlags class, 778
login module, 988

flip(), 266
Buffer class, 588

FloatBuffer class, 595
floating-point types, 25, 204

arbitrary-precision decimal
arithmetic, 218, 543

BigDecimal class, 218
comparing two operands of different

types, 35
conversions, 27
decimal precision, IEEE 754R

standard, 547
division, 33
double, 12, 22
Double class, 26, 439, 462
float, 22, 25

conversions, 28
Float class, 26, 217, 439, 467
formatting numbers, 220
Math class methods, 476
modulo (%) operator and, 33
strictfp methods, 67
strictfp modifier, 157
wrapper classes, 26

floatValue(), 467
flow control statements, 13, 42

return statement, 13, 15
flush()

BufferedOutputStream class, 388
CharArrayWriter class, 392
CipherOutputStream class, 926
DataOutputStream class, 396
Flushable interface, 386, 406
OutputStream class, 420
PrintWriter class, 426
StringWriter class, 435
Writer class, 437

Flushable interface, 386, 406
for each statement (see for/in

statements)

for statements
continue statement, starting new

iteration, 55
continue statement used in, 60
empty loop body, 43
initializing, testing, and updating

variables, 49
iterating arrays, 78

force() (FileChannel), 608
forClass() (ObjectStreamClass), 417
forDigit() (Character), 448
for/in statements, xvii, 50–54, 159

example, 52
Iterable and Iterator interfaces, 52
Iterable interface, 225, 473

iterator(), 440
iterating arrays, 79
limitations of, 53
syntax of, 51

form feed (\f), 23
format(), 69, 386, 424, 426

Format class, 741
Formatter class, xviii, 211
formatting numbers, 220
MissingFormatArgumentException,

803
NumberFormat class, 744
PrintStream and PrintWriter

classes, 211
String class, 211, 223

Format class, 741
format specifiers, 780
Format.Field class, 742
FormatFlagsConversionMismatch-

Exception, 777
Formattable interface, 211, 778
FormattableFlags class, 778
Formatter class, xviii, 69, 211, 223, 386,

440, 751, 779–785
argument specifier, 782
conversion exception, 790
flags, 783

illegal combination, 791
format string and format

specifiers, 779–782
IllegalFormatException, 791
logging, 881
missing format arguments, 803
precision, format specifier, 784

exception, 791
printf() and format(), 312

1172 | Index

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Formatter class (continued)
SimpleFormatter, 890
unknown conversion specifier, 822
unknown format flags, 823
width, format specifier, 783

illegal, 792
missing, 803

XMLFormatter, 891
Formatter.BigDecimalLayoutForm, 785
FormatterClosedException, 785
formatToCharacterIterator(), 741, 743
forName()

Charset class, 636
Class class, 455, 458
UnicodeBlock class, 452

forward references, 96
fractions, decimal representation of, 219
freeMemory(), 484
from() (MemoryNotificationInfo), 521
ftp: protocol, 258
fully qualified class names, 89, 332

importing types, 90
functions, 17

mathematical, 217
XPath, 1030

Future interface, 244, 843
CancellationException, 832
ScheduledFuture, 848

FutureTask class, 844

G
garbage collection, 86, 96, 111

disabling for classes, 336
finalize() method, 480
incremental, interpreter option

for, 336
jdb debugger, 355
OutOfMemoryError, 480
printing message upon

occurrence, 337
statistics on (jstat), 361
system, 500
WeakHashMap class, 826
(see also references)

GarbageCollectorMXBean
interface, 519

GatheringByteChannel, 266, 611, 615
gc(), 484
gcd() (BigInteger), 546
GeneralSecurityException, 650
generateCertificate(), 686, 702

generateCertificates(), 686
generateCertPath(), 686
generateCRL(), 686, 705
generateKey() (KeyGenerator), 932
generateKeyPair(), 708
generateParameters(), 643
generatePrivate(), 654
generatePublic(), 654
generateSecret()

KeyAgreement class, 930
SecretKeyFactory class, 937

generateSeed() (SecureRandom), 675
generic types, xviii, 160–178, 526–529

annotation types and, 200
arrays of parameterized type, 166
bounded wildcards in parameterized

types, 168
case study, Comparable and

Enum, 176–178
Class class, 455
collection interfaces and classes, 751
compile-time type safety, 165
Constructor class, 533
covariant returns, 70
Enum class, 464
Exchanger, 249, 839
Field class, support of, 534
FutureTask, 844
generic methods, 65
GenericDeclaration, 535
generics, defined, 159
GenericSignatureFormatError, 535
InheritableThreadLocal class, 471
interfaces extending Type, 541
MalformedParameterizedType-

Exception, 537
Method class, support for, 538
parameterized type hierarchy, 164
parameterized types vs., 160
PhantomReference class, 526
PrivilegedAction, 669
raw types and unchecked

warnings, 163
Reference class, 527
ReferenceQueue class, 527
Reflection API, changes in, 529
runtime type safety, 165
SoftReference class, 528
ThreadLocal class, 507
type parameter wildcards, 166–169
typesafe collections, 160–163

Index | 1173

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

TypeVariable interface, 541
understanding, 163
WeakReference class, 528
writing, 169–172

type variable bounds, 170
wildcards, 171

writing generic methods, 172–176
arrays and, 175
invoking methods, 173
parameterized exceptions, 175

GenericArrayType interface, 535
GenericDeclaration interface, 529, 535
generics (see generic types)
genKeyPair() (KeyPairGenerator), 656
get(), 252

AbstractList class, 754
Array class, 531
ArrayList class, 758
Buffer class, 587
ByteBuffer class, 589
Calendar class, 763
Future class, 244
GetField class, 414
HashMap class, 786
Hashtable class, 788
LinkedList class, 795
List interface, 229, 797
Map interface, 231, 801
PhantomReference class, 526
Reference class, 527
ReferenceQueue class, 528
ThreadLocal class, 507
TreeMap class, 820
WeakHashMap class, 826

get and set accessor methods
data accessor methods, 128
JavaBean properties, 321–323

getAbsoluteFile() (File), 397
getAbsolutePath() (File), 397
getActualTypeArguments(), 539
getAddress() (InetAddress), 562
getAlgorithm() (Key), 653
getAllAttributeKeys(), 725
getAllByName() (InetAddress), 562
getAllLoadedClasses()

(Instrumentation), 517
getAllStackTraces(), 503
getAllThreadIds(), 525
getAnnotation(), 199, 456
getAnnotations(), 531

getAttribute()
AttributedCharacterIterator, 725
TransformerFactory class, 1013

getAttributes()
AttributedCharacterIterator

interface, 725
JarEntry class, 871
Manifest class, 874

getBeginIndex() (FieldPosition), 740
getBlockedCount() (ThreadInfo), 524
getBlockedTime() (ThreadInfo), 524
getBody()

CacheRequest class, 553
CacheResponse class, 553

getBounds() (TypeVariable), 541
getBuffer() (StringWriter), 435
getByAddress() (Inet6Address), 561
getByName() (InetAdress), 562
getCanonicalFile() (File), 397
getCanonicalPath() (File), 397
getCause() (Throwable), 437, 466
getCertificate() (KeyStore), 658
getCertificateChain() (KeyStore), 658
getCertificates()

CertPath class, 688
JarEntry class, 871

getCertPathEncoding(), 686
getChannel(), 268, 400, 401, 429, 556

ServerSocket class, 571
Socket class, 573

getChars(), 493
StringBuffer class, 496

getCipherSuite() (SSLSession), 962
getClass()

Class class, 455
Object class, 479

getClassName(), 489
getClientSessionContext(), 964
getCollationElementIterator(), 731
getCollationKey(), 732
getColumnNumber(), 1010
getCommitted() (MemoryUsage), 523
getConstructor() (Class), 533
getContent()

URL class, 554, 581
URLConnection class, 554

getContentEncoding(), 583
getContentLength(), 583
getContentType(), 583
getContext() (AccessController), 641,

642

1174 | Index

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

getDate() (URLConnection), 583
getDateInstance() (DateFormat), 734
getDeclaredAnnotations(), 531
getDeclaringClass()

Enum class, 464
Field class, 534
Member interface, 537
Method class, 536

getDefault()
CookieHandler class, 554
ResponseCache class, 569
ServerSocketFactory class, 946
SocketFactory class, 947
SSLServerSocketFactory class, 962

getDefaultPort() (URL), 581
getDefaultText(), 981
getDelay() (ScheduledFuture), 244
getDelegatedTask() (Runnable), 956
getDirectionality() (Character), 448
getDisplayName(), 566
getEnclosingClass(), 456
getEnclosingConstructor(), 456
getEnclosingMethod(), 456
getEncoded()

AlgorithmParameters class, 644
Certificate class, 683
CertPath, 688
Key interface, 653

getEncoding(), 407, 421
getEncodings() (CertPath), 688
getEndIndex() (FieldPosition), 740
getEntries() (Manifest), 874
getEntry()

KeyStore class, 658
ZipFile class, 918

getEnumConstants(), 456
getenv() (System), 310, 501
getErrorStream() (Process), 482
getException(), 466

PrivilegedActionException, 670
getExceptionTypes() (Method), 537
getExpiration(), 583
getFD(), 399
getField()

Class class, 534
ObjectStreamClass, 417

GetField class, 413
getFields() (ObjectStreamClass), 417
getFile() (URL), 580
getFormat()

Key interface, 653
SecretKey interface, 936

getGenericComponentType(), 535
getGenericDeclaration(), 541
getGenericExceptionTypes(), 538
getGenericParameterTypes(), 538
getGenericReturnType(), 538
getGenericType() (Field), 534
getHeaderField(), 583
getHeaderFieldDate(), 583
getHeaderFieldInt(), 583
getHeaderFields(), 583
getHeaders(), 553
getHost() (URL), 580
getHostAddress() (InetAddress), 562
getHostName() (InetAddress), 562
getId() (Thread), 502
getID() (TimeZone), 819
getIds(), 964
getInetAddress()

DatagramSocket class, 556
ServerSocket class, 570
Socket class, 572

getInetAddresses(), 566
getInfo() (Provider), 671
getInit() (MemoryUsage), 523
getInitiatedClasses()

(Instrumentation), 517
getInputStream()

JarFile class, 872
Process class, 482
Socket class, 572
ZipFile class, 918

getInstance()
AlgorithmParameterGenerator, 643
Calendar class, 785
CertificateFactory class, 686
CertStore class, 694
Cipher class, 923
Collator class, 733, 747
KeyAgreement class, 930
KeyGenerator class, 932
KeyManagerFactory class, 952
KeyPairGenerator class, 656, 708
KeyStore class, 658
Mac class, 933
MessageDigest class, 663
NumberFormat class, 744
SecretKeyFactory class, 936
SecureRandom class, 675
Signature class, 677

getInt() (Array), 531
getInteger() (Integer), 472
getInterfaces() (Class), 455

Index | 1175

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

getInvocationHandler() (Proxy), 540
getIterator() (AttributedString), 727
getIV() (Cipher), 923
getJarEntry() (JarFile), 872
getKey()

Entry interface, 802
KeyStore class, 658

getKeyManagers(), 952
getKeySpec()

KeyFactory class, 654
SecretKeyFactory class, 937

getLineNumber()
LineNumberReader class, 410
SourceLocator, 1010

getLocalAddress()
DatagramSocket class, 556
Socket class, 572

getLocalHost() (InetAddress), 562
getLocalPart() (QName), 1001
getLocalPort()

DatagramSocket class, 556
ServerSocket class, 570
Socket class, 572

getLocalSocketAddress()
DatagramSocket class, 556
ServerSocket class, 570
Socket class, 572

getLocation(), 71
getLogger() (Logger), 212
getLong() (Long), 474
getLowerBounds()

(WildcardType), 542
getMacLength() (Mac), 933
getMainAttributes() (Manifest), 874
getManifest()

JarFile class, 872
JarInputStream class, 873

getMax() (MemoryUsage), 523
getMaxAllowedKeyLength(), 923
getMemoryPoolNames(), 521
getMessage(), 58, 408

TextOutputCallback, 981
Throwable interface, 507
WriteAbortedException, 437

getMessageType()
(CallbackHandler), 978

getMethod() (Class), 537
getMethodName(), 489
getModifiers(), 539

Field class, 534
Member interface, 537

getModulus() (RSAKey), 710
getName()

Class class, 455
CompilationMXBean interface, 519
Field class, 534
File class, 397
Member interface, 537
MemoryPoolMXBean, 522
NetworkInterface class, 566
Provider class, 671
TypeVariable interface, 541

getNamespaceURI() (QName), 1001
getNetworkInterfaces(), 566
getNextEntry(), 873
getNextJarEntry(), 873
getNextUpdate() (X509CRL), 705
getNumericValue() (Character), 448
getObject()

GuardedObject class, 650
SealedObject class, 935
SignedObject class, 679

getObjectSize() (Instrumentation), 517
getObjectStreamClass() (GetField), 414
getOffset() (TimeZone), 819
getOption() (SocketOptions), 576
getOutputProperties(), 1010
getOutputSize() (Cipher), 924
getOutputStream(), 559

Process class, 482
Socket class, 572

getOwnerType()
(ParameterizedType), 539

getPackage()
ClassLoader class, 459
Package class, 481

getPackages() (Package), 481
getParameterAnnotations(), 198, 538
getParameters() (Cipher), 923
getParameterTypes() (Method), 537
getParams() (DHKey), 938
getParent()

File class, 397
ThreadGroup class, 506

getParentFile() (File), 397
getPassword()

KeyStore.PasswordProtection, 661
PasswordAuthentication, 567

getPasswordAuthentication(), 551, 567
getPath() (File), 397
getPeakUsage(), 522
getPeerCertificateChain(), 950

1176 | Index

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

getPeerCertificates(), 950, 962
getPeerHost(), 951, 962
getPermissions()

Policy class, 668
SecureClassLoader class, 674

getPolicy() (Policy), 668, 677
getPort()

DatagramSocket class, 556
Socket class, 572
URL class, 581

getPrefix() (QName), 1001
getPrivateKey(), 661
getPrompt()

CallbackHandler class, 978
NameCallback class, 980
TextInputCallback class, 981

getProperties() (System), 500
getProperty()

Properties class, 806
System class, 293, 500, 807

getProtectionDomain() (Class), 671
getProtocol()

SSLSession class, 962
URL class, 580

getProvider() (Security), 676
getProviders() (Security), 676
getProxyClass() (Proxy), 540
getPublicId() (SourceLocator), 1010
getPublicKey()

Certificate class, 683
X509Certificate class, 702

getRaw() (URI), 579
getRawType()

(ParameterizedType), 539
getRemoteSocketAddress(), 572
getRequesting(), 551
getResource() (ClassLoader), 458
getResourceAsStream(), 458
getResources() (ClassLoader), 458
getResponseCode(), 559
getResponseMessage(), 559
getReturnType() (Method), 537
getRevokedCertificate(), 705
getRunLimit(), 726
getRunStart(), 726
getRuntime(), 484
getSecretKey(), 662
getSecurityManager() (System), 501
getSerialVersionUID(), 417
getServerSessionContext(), 964
getServerSocket(), 961

getServerSocketFactory(), 954
getSimpleName() (Class), 456
getSocketFactory(), 954
getSource() (EventObject), 777
getSpecificationVersion(), 481
getStackTrace()

Thread class, 503
Throwable interface, 489

getState() (Thread), 502, 504
getSubject() (LoginContext), 974, 985,

991
getSubjectDN() (X509Certificate), 683,

702
getSuperclass() (Class), 455
getSupportedCipherSuite(), 965
getSupportedProtocols(), 965
getSystemId() (SourceLocator), 1010
getTargetException(), 536
getThisUpdate() (X509CRL), 705
getThreadCPUTime(), 525
getThreadGroup() (Thread), 502
getThreadInfo(), 525
getThreadUserTime(), 525
getTime(), 222
getTimestamp() (Timestamp), 680
getTrustAnchor(), 699
getTrustedCertificate(), 662
getType()

CertPath class, 688
Character class, 448
Field class, 534
MemoryPoolMXBean, 522

getTypeParameters(), 535
getUndeclaredThrowable(), 542
getUpperBounds()

(WildcardType), 542
getUptime() (RuntimeMXBean), 524
getUsage(), 522
getUsed() (MemoryUsage), 523
getValue()

Entry interface, 802
SSLSocket, 962

getVersion() (Provider), 671
getX() (DHPrivateKey), 938
getXMLReader() (SAXParser), 1005
getY() (DHPublicKey), 939
global method or function, class

methods as, 103
global variables

C language vs. Java, 96
public class fields as, 102

Index | 1177

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

GMT (Greenwich Mean Time), 221
goto statement, 96
graphical Java process monitor, 352
graphics

applet access control restrictions on
facilities, 302

packages for, 204
greater than operator (>), 14, 35
greater than or equal operator (>=), 35
green threads, 333, 335
Greenwich Mean Time (GMT), 221
Gregorian calendar, 222
GregorianCalendar class, 785
group of threads (ThreadGroup

class), 505
groups (multicast), joining and

leaving, 565
Guard interface, 650
GuardedObject class, 639, 650
GUI (graphical user interface)

applet access to, restrictions, 302
packages for, 204

gzip compression, 751
pack200 tool, 366
unpacking files with unpack200, 371

GZIPInputStream class, 914
GZIPOutputStream class, 915

H
Han (Chinese) ideographs, 23
hand-held devices

Java 2 Platform, Micro Edition
(J2ME), 4

Java interpreter for, 2
handle() (CallbackHandler), 977, 982
handle to an open file or socket, 399
Handler class, 881
HandlerBase interface (SAX), 1057
handlers for exceptions, 56

try/catch/finally statements, 58–60
handshake, SSL connections, 965

status of the SSLEngine, 957
handshakeCompleted(), 950
HandshakeCompletedEvent class, 950
HandshakeCompletedListener

interface, 950
hardcoded filenames, code portability

and, 311
hashCode()

Annotation interface, 512
Enum class, 464

enumerated types, 180
Hashtable class, 788
Object class, 133, 480

HashMap class, 225, 233, 786
HashSet class, 228, 787
hashtables

causing memory leaks, 112
Hashtable class, 233, 788

Properties subclass, 293
maps and sets based on, 225
WeakHashMap class, 529

hasNext(), 756
Iterator class, 753
Iterator interface, 52, 793
ListIterator interface, 798

hasPrevious() (ListIterator), 756, 798
header and source files (C), 348
header files for use with JNI, 349
headMap() (SortedMap), 234, 815
headSet() (SortedSet), 816
heap

memory allocation for, 336
memory usage information, 521

Hebrew text, 728
help

javadoc-generated
documentation, 344

javap tool, 350
hexadecimal numbers, 24

Integer type conversions, 472
Long type conversions, 474
Short type conversions, 488
URL encoding, 585

hiding data, 123–128
access control, 124–127

inheritance and, 126
superclass fields, 119

class fields, 119
method overriding vs., 121

hierarchy, class, 87
containment hierarchy vs., 147
parameterized types, 164
superclasses, Object class and, 116

highestOneBit() (Integer), 472
holdsLock() (Thread), 63, 502
HostnameVerifier class, 951
hosts

IP addresses, 562
NoRouteToHostException, 567
reachability of, testing, 263, 562
UnknownHostException, 578

1178 | Index

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

HotSpot VM
client and server versions, 332
performance tuning options, 335

HTML tags in doc comments, 312, 313
<A> (hyperlinks) tag, avoiding, 313
<PRE> tag, 313

http: protocol, 258
HTTP server, 261
HttpRetryException, 559
https: protocol, 258
https: URLs, 948
HttpsURLConnection class, 948, 951

hostname verifier, 951
HttpURLConnection class, 559
hyperbolic trigonometric functions, 476
hyperlinks or cross-references in doc

comments, 313

I
IANA charset registry, 630
identical objects, 85
identifiers

assert, 61
class version, 417
defined, 20
method names, 66
SSLSession, 964
thread, 502
TimeZone, 819
UUID (Universal Unique

Identifier), 823
identity certificates (see certificates)
Identity class, 651
identityHashCode() (System), 464, 501
IdentityHashMap class, 225, 233, 789
IdentityScope class, 652
IEEE 754-1985 standard for floating-

point types, 25
if statements, 13

assertions in, 62
if/else statements, 44–46

else if clause, 45
nested, 45

IllegalAccessError, 468
IllegalAccessException, 468
IllegalArgumentException, 468
IllegalBlockingModeException, 611
IllegalBlockSizeException, 929
IllegalCharsetNameException, 635
IllegalClassFormatException, 516

IllegalFormatCodePointException, 790
IllegalFormatConversionException, 790
IllegalFormatException, 791
IllegalFormatFlagsException, 791
IllegalMonitorStateException, 469
IllegalSelectorException, 612
IllegalStateException, 469
IllegalThreadStateException, 470
images in doc comments, 313
immutability of String objects, 205
implementation

behavior specific to, portability
and, 311

bugs specific to, portability and, 311
local and anonymous class, 155
member class, 155
of methods, 65
portable Java code, conventions/rules

for, 310
static member types, 154

implements (keyword), 99, 136
implies(), 304

AllPermission class, 645
BasicPermission class, 646
CodeSource class, 647
Permission class, 666
PermissionCollection class, 667
Permissions class, 667
ProtectionDomain class, 671

import declarations, 18, 91
naming conflicts and shadowing, 91
static members, 92

import static declaration, xvii, 143, 184
importPreferences(), 295
in, out, and err variables, 399, 500
IncompatibleClassChangeError, 470
increment expression statements, 42
increment operator (++), 29, 34

return type, 31
side effects, 32

incrementing loop counter variable, 48
inDaylightTime() (TimeZone), 819
indentation, 19

anonymous class definitions, 154
in doc comments, code examples

and, 313
nested statements, 13, 45

index(), 756
index operator ([]), 75
indexed properties, 321

conventions for, 322

Index | 1179

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

indexes
array, 41, 74

too small or too large, 78
generating multiple index files,

javadoc, 347
javadoc, not generating, 345
list, 229

indexOf()
CopyOnWriteArrayList, 835
List interface, 229, 797
String class, 492
StringBuffer class, 496

indexOfSubList() (Collections), 768
IndexOutOfBoundsException, 470
Inet4Address class, 561
Inet6Address class, 561
InetAddress class, 562

isReachable(), 263, 562
InetSocketAddress class, 271, 563
infinite loops, 48

for(;;), 50
infinity

% (modulo) operator and, 33
Double, testing for, 462
positive and negative, 26

Inflater class, 915
InflaterInputStream class, 916
info() (Logger), 212
InheritableThreadLocal class, 470
inheritance

access control and, 126
{@inheritDoc} javadoc tag, 317
@Inherited meta-annotation, 202
interfaces

as alternative to multiple
inheritance, 135

constants in definitions, 139
extending interfaces, 136

scope vs., for member classes, 147
subclass from superclass, 99
subclasses and, 114–123

class hierarchy, 116
constructor chaining and the

default constructor, 117
fields and methods, 115
hiding superclass fields, 119
overriding superclass

methods, 120–123
subclass constructors, 116

@Inherited meta-annotation, 202, 514
inheritedChannel(), 501

init()
Cipher class, 923
KeyAgreement class, 930
KeyGenerator class, 932
KeyManagerFactory class, 953
Mac class, 933
PKIXCertPathChecker class, 699

initialization vectors (Cipher), 923, 942
initialize() (KeyPairGenerator), 656,

708
initializers, 106–111

array, 76
multidimensional arrays, 81

defining a constructor, 107
defining multiple constructors, 108
enumerated types, 190
ExceptionInInitializerError, 466
field, 109–111
IllegalAccessException, 468
in variable declarations, 43
inherited fields, 116
instance, 111
invoking one constructor from

another, 108
static, 110, 157

initializing loop variables, 49
initialValue() (ThreadLocal), 507
initSign() (Signature), 677
initVerify() (Signature), 677
inline tags (doc comment), 316
inner classes (see nested types)
InputMismatchException, 792
input/output, 203

appendability of text buffers and
output streams, 207

binary file, reading, 255
character stream classes, 386
checksums for streams, 910
Closeable interface, 386, 393
compressed files, reading, 256
compressing data, 255
console input, reading, 254
displaying output, 12
encrypting and decrypting

streams, 292
files and directories, 252–254
files, working with, 268
filtering bytes, 385
Flushable interface, 386, 406
GZIPInputStream class, 914
GZIPOutputStream class, 915

1180 | Index

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

input/output (continued)
in, out, and err streams, system, 500
InflaterInputStream class, 916
input values, checking validity of, 13
JAR files, reading and writing, 330,

873
Java program communicating with

external process, 295
java.io package, 203, 254–258,

385–438
keytool program, 365
message digests, 639, 648
message digests, computing, 256
New I/O API (see New I/O API
nonstream classes, 385
processes, 482
profiling output, printing to standard

output, 337
reading lines from a text file, 254
serializing/deserializing objects, 286
streaming data to and from

arrays, 257
text file, reading lines from, 254
thread blocking during I/O

operations, 250
thread communication with

pipes, 257
writing text to a file, 255
XML, transformation classes for, 280
ZipInputStream class, 919
ZipOutputStream class, 919

InputSource class (SAX), 1058
InputStream class, 385, 407

read(), 385
InputStreamReader class, 407
insert() (StringBuffer), 496
insertProviderAt() (Security), 672, 676
instance fields, 103

default initialization of, 109
interfaces and, 135
superclass, hiding, 119

instance initializers, 111
substituting for constructors, 153

instance members, 100
enumerated types, ordinal(), 180
inheritance of, 126

instance methods, 100, 104–106
choosing between class and instance

methods, 105
how they work, 104
interfaces, 135

overriding superclass
methods, 120–123

synchronized, 56
System.out.println(), 106

instanceof operator, 29, 40, 133
marker interfaces, identifying

with, 139
instances, class

comparing with Comparable.
compareTo(), 133

creating dynamically, 72
enumerated types, 180

instantiating a class, 98
InstantiationError, 471
InstantiationException, 471
instrumentation, xviii, 203, 296–298,

515–518
ClassDefinition class, 516
ClassFileTransformer interface, 516
IllegalClassFormatException, 516
Instrumentation interface, 517
Java interpreter options, 336
java.lang.instrument package, 439
UnmodifiableClassException, 517

int type, 22, 24
32-bit int values, 25
bitwise and shift operator results, 37
conversion to other primitive

types, 28
Integer class, 472

new methods in Java 5.0, 472
IntBuffer class, 596
integers

% (modulo) operator and, 33
arbitrary-precision arithmetic, 204,

543
BigInteger class, 218, 546
converting floating-point values to,

using casts, 27
converting strings to, 25
int data type, 11
Integer class, 11, 25, 217, 439, 472

new methods, Java 5.0, 472
integer literals, 24
integer types, 24

array access ([]) operator and, 31
wrapper classes, 25

interest set of channel operations, 618
interestOps() (SelectionKey), 619
@interface annotation, 199

Index | 1181

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

interfaces, 135–140
abstract classes vs., 138
abstract modifier in

declarations, 156
as static member types, 140
classes implementing, definitions

of, 99
as data types, 137
defined, 99
defining, 135
defining object types, 98
deprecated (@deprecated javadoc

tag), 315
dynamic proxies, implementing

with, 286
extending, 136
implemented by enumerated

types, 181, 186
implementing, 136–138

multiple, 137
InstantiationError, 471
InstantiationException, 471
local scope and, 148
marker, 139
member classes, inability to define

as, 145
modifiers, 156
naming and capitalization

conventions, 309
network, 566
references to, in @see javadoc

tag, 318
intern() (String), 209, 493
InternalError, 473
internationalization, 6, 751

applications, package for, 204
comparing strings, 209
date and time formatting, 223
InputStreamReader, byte-to-

character conversions, 407
java.text package, 724–749
LanguageCallback class, 980
Locale class, 799
locale, specifying for

documentation, 345
OutputStreamWriter class, 421

Internet domain names, using in
package naming, 90

interpreted mode (JVM), 336
interpreter (see Java interpreter; JVM)

interrupt()
Thread class, 241, 250, 502
ThreadGroup class, 506

interrupted() (Thread), 250, 502
InterruptedException, 250, 473
InterruptedIOException, 408, 556, 572
InterruptibleChannel interface, 250,

612
InvalidAlgorithmParameterException, 6

52
invalidate() (SSLSession), 962
InvalidClassException, 408
InvalidKeyException, 653
InvalidKeySpecException, 718
InvalidMarkException, 597
InvalidObjectException, 409, 414
InvalidParameterException, 653
InvalidParameterSpecException, 718
InvalidPreferencesFormat-

Exception, 894
InvalidPropertiesFormatException, 792
InvocationHandler interface, 286, 529,

536
proxy class instances and, 540

InvocationTargetException, 536
invoke()

InvocationHandler, 536, 540, 542
Method class, 538

invoking methods, 10, 11
class methods, 102
constructors, from another

constructor, 108
in expression statements, 42
instance methods, 105
overridden, 122

IOException, 409
IP (Internet Protocol) addresses, 562

combined with a port number, 563
enumerating for network

interface, 566
IPv4 (Internet Protocol version 4)

addresses, 561
IPv6 (Internet Protocol version 6)

addresses, 561
is prefix, data accessor methods, 128
isAbsolute() (File), 397
isAbstract() (Modifier), 539
isAlive() (Thread), 502
isAnnotation() (Class), 456
isAnnotationPresent()

(AnnotatedElement), 198

1182 | Index

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

isAnonymousClass(), 456
isBound()

DatagramSocket class, 556
ServerSocket class, 570
Socket class, 572

isCancelled() (Future), 244
isCompatibleWith() (Package), 481
isConnected() (Socket), 572
isCurrent() (Refreshable), 974
isDestroyed() (Destroyable), 972
isDigit() (Character), 23, 448
isDirect() (ByteBuffer), 591
isDirectory() (File), 397
isDone() (Future), 244
isEchoOn() (Password Callback), 980
isEmpty()

Collection interface, 766
Map interface, 801

isEnqueued() (Reference), 527
isEnum() (Class), 456
isEnumConstant() (Field), 534
isError() (CoderResult), 634
isFile() (File), 397
isHidden() (File), 397
isInfinite() (Double), 462
isInputShutdown() (Socket), 572
isInterrupted() (Thread), 250, 502
isJavaIdentifierPart() (Character), 21
isJavaIdentifierStart() (Character), 21
isJavaLetter() (Character), 23
isLetter() (Character), 448
isLocalClass(), 456
isLowerCase() (Character), 23, 448
isMalformed() (CoderResult), 634
isMemberClass(), 456
isNaN()

Double class, 26, 35, 462
Float class, 26, 35

isNativeMethod()
(StackTraceElement), 490

ISO-8859-1 (Latin-1) charset, 18, 267
isOpen() (Channel), 603
isOutputShutdown() (Socket), 572
isProbablePrime() (BigInteger), 546
isProxyClass() (Proxy), 540
isPublic() (Modifier), 539
isReadOnly() (Buffer), 588
isRedefineClassesSupported()

(Instrumentation), 517
isRegistered()

Charset class, 630
SelectableChannel interface, 617

isRevoked() (CRL), 696, 705
isSealed() (Package), 481
isShared() (FileLock), 610
isSupported() (Charset), 629
isSynthetic() (Member), 537
isThreadCPUTimeSupported(), 525
isUpperCase() (Character), 448
isUsageThresholdSupported(), 522
isValid()

FileLock class, 610
SSLSession class, 962

isVarArgs() (Method), 538
isWhitespace(), 448
Iterable interface, 51, 52, 225, 440, 473
iterations, 15

arrays, 78
for/in statement, 50–54
in loops, starting new with continue

statement, 54
lists, 230
(see also statements)

iterator(), 440, 816
AbstractCollection class, 753
Iterable interface, 53
List interface, 230, 797
Set interface, 802

Iterator interface, 52, 143, 225, 793
getting Iterator objects, 473
implemented as an anonymous

class, 151
IvParameterSpec class, 942

J
J2EE (Java 2 Platform, Enterprise

Edition), 4
JAAS (Java Authentication and

Authorization Service), 204,
970–993

Japanese text (EUC-JP charset), 268
JAR (Java Archive) files

classes for reading and
writing, 869–877

compressed, unpacking with
unpack200, 371

compression, pack200 tool, 366
digital signatures, 302
extcheck utility, 327
extension, checking whether

installed, 327
java.util.jar package, 750
manifest, format of, 870

Index | 1183

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

package for, 204
retrieving, 564
running programs, 95, 332

jar tool, 329–331
command options, 330
command syntax, 330
examples, 331
files, 331
modifier options, 330

JarEntry class, 869, 871
JarException, 872
JarFile class, 869, 872
JarInputStream class, 869, 873
JarOutputStream class, 869, 874
jarsigner tool, 328
JarURLConnection class, 564, 869
Java, 1–7

benefits of, 4–6
performance, 6
strong typing in, 11
versions, 3

1.1, security and, 300
Java 2 Platform

Enterprise Edition, 4
Micro Edition, 4

Java 5.0, xvii, 159–202, 561
annotation types

Deprecated, 462
Override, 481
SuppressWarnings, 499

annotations, 191–202, 203, 511–515
Appendable interface, 207, 386, 424,

440, 444
asList() (Arrays), 237
atomic operations, 855–862
BigDecimal class, changes to, 219
boxing and unboxing

conversions, 88
changes to the Java platform, xviii
CharSequence, 496
Class class, 456
Closeable interface, 386, 393
collections wrapper methods, 236
ConcurrentHashMap class, 233
Condition object, 248
contentEquals(), 208
CopyOnWriteArrayList class, 231
CountDownLatch class, 249
cross-references in doc

comments, 318

cryptography
algorithms supported,

SunJCE, 923
Cipher class, 923
KeyGenerator algorithms, 932
MAC algorithms, 933
OAEPParameterSpec, 942
PSource, 943
PSource.PSpecified, 944
SecretKeyFactory, 937

CyclicBarrier class, 250
debugger to VM connections, 353
DOM

bootstrap, events, and ls
subpackages, 1032

Level 3, 1032
NameList interface, 1045
TypeInfo interface, 1050
UserDataHandler interface, 1050

DOMConfiguration interface, 1037
DOMError interface, 1038
DOMErrorHandler interface, 1038
DOMImplementationList

interface, 1041
DOMLocator interface, 1041
DOMStringList interface, 1042
enumerated types, 178–191

Enum class, 181, 440, 464
SSLEngineResult.

HandshakeStatus, 957
SSLEngineResult.Status, 958

executors framework, 242–244
Executor interface, 242
ExecutorService interface, 243
Future interface, 244
ScheduledExecutorService

class, 244
ThreadPoolExecutor class, 243

Flushable interface, 386, 406
format(), creating String

objects, 491
Formattable interface, 778
FormattableFlags class, 778
Formatter class, 223, 386, 440,

779–785
generic types, 160–178, 225

Class class, 455
Exchanger, 249
java.lang.ref, 526–529
PrivilegedAction, 669

inheritedChannel(), 501

1184 | Index

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Java 5.0 (continued)
instrumentation, 203, 296, 336,

515–518
Integer class, methods added, 472
Iterable interface, 225, 440, 473
java.util package, 751
java.util.concurrent package, 204,

827–855
jinfo, 357
jmap, 358
jsadebugd tool (remote

debugging), 359
jstack tool, 360
jstat tool, 360–362
jstatd daemon, 362
locks, 246
Long class, additional methods, 474
management package, 203, 518–526

JMX API, 296
Matcher class, enchancements, 215
Math class, new methods, 218, 476
math package, changes to

BigDecimal class, 543
MathContext class, 547
rounding mode, 544
RoundingMode type, 548

MissingFormatArgumentException,
803

nanoTime() (System), 500
networking

Authenticator.Requestor-
Type, 552

CacheRequest, 553
CacheResponse class, 553
CookieHandler class, 554
HttpRetryException, 559
isReachable(), InetAddress, 263,

562
ProxySelector class, 569
Proxy.Type class, 568
ResponseCache class, 569
SecureCacheResponse, 570
URLConnection, changes to, 583

printf() and format(), 210, 312, 424
formatting numbers, 220

PrintStream class, 386, 424
PrintWriter class, 386, 426
PriorityQueue class, 805
ProcessBuilder class, 295, 440, 482
Queue and BlockingQueue

interfaces, 234, 251

Queue interface, 225, 808
Readable interface, 215, 440, 483
Reflection API, changes to, 529

AnnotatedElement, 531
Constructor class, 533
Field class, 534
generic type malformed, 537
GenericArrayType, 535
GenericDeclaration, 535
GenericSignatureFormat-

Error, 535
Method class, 538
ParameterizedType, 539
Type interface, 541
TypeVariable interface, 541
WildcardType, 542

replace(), generalized versions, 492
SAX2 extensions, 1064

Attributes2, 1065
Attributes2Impl, 1065
DefaultHandler2, 1066
EntityResolver2, 1067
Locator2, 1068
Locator2Impl interface, 1068

Scanner class, 215, 440, 811–813
input mismatch, 792

security
CodeSigner class, 647
KeyRep class, 657
KeyRep.Type, 657
KeyStore class, 658
KeyStore nested classes, 660–662
Provider.Service class, 673
Timestamp class, 680
UnrecoverableEntryException,

681
Semaphore class, 249
SSLEngine class, 948, 955
StringBuilder class, 498
System class, clearProperty(), 500
System.getenv(), 310
Thread class, 502

UncaughtExceptionHandler, 505
Thread.State enumerated type, 239
time in nanoseconds (System.

nanoTime()), 221
TimeUnit class, 221, 241
Unicode supplementary

characters, 209
Character class methods, 448
String methods for, 493

Index | 1185

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Java 5.0 (continued)
UnicodeBlock class, 452
UUID class, 823
Writer class, changes to, 437
XML packages, 994–1001,

1022–1031
javax.xml, 995
javax.xml.datatype, 995–1000
javax.xml.namespace, 1000
javax.xml.validation, 277, 281
javax.xml.xpath, 277
validation, 1022–1026
XPath, 1026–1031

XPathEvaluator class, 283
Java Authentication and Authorization

Service (JAAS), 204, 970–993
java command, 95

-javaagent argument, 517
running a Java program, 95
(see also Java interpreter)

Java Cryptography Extension
(JCE), 301, 639, 922

Java Development Kit (see JDK)
Java Documentation Generator (see

javadoc program)
.java file extension, 94
Java interpreter, 2, 332–338

advanced options, 337
annotations, handling of, 191
assertion options, 334
assertions, enabling, 61
break statements, 54
classpaths, specifying for, 94
common options, 333
evaluating expressions, 14, 28
evaluation of operands, 32
garbage collection, 111
instrumentation options, 336
InternalError, 473
iterating through loops, 15
java command-line program, 8
jdb debugger, 353

connection options, 353
just-in-time (JIT) compiler,

specifying, 333
loading classes, 338
main() method, 10, 95
OutOfMemoryError, 480
performance tuning options, 335
remote monitoring and

management, 439

running programs, 94
StackOverflowError, 489
threading system, specifying, 333
versions, 332, 334

java, javax, and sun, package names
beginning with, 90

Java Keystore (JKS) type, 329, 365
Java language, 1

case sensitivity, 8
java.lang and subpackages, 439–542
modifiers, summary of, 156
new features, Java 5.0, 159–202
pass by value, 86
syntax, 17–97

arrays, 74–81
case-sensitivity and

whitespace, 19
classes and objects, 71–74
comments, 19
differences from C and

C++, 95–97
expressions and operators, 28–41
file structure, 93
identifiers, 20
literals, 21
methods, 64–71
packages and namespaces, 89–93
programs, defining and

running, 94
primitive data types, 21–27
punctuation characters

(tokens), 21
reference types, 81–89
reserved words, 20
statements, 42–64
Unicode character set, 18

Java Native Interface (JNI), 349
Java platform, 1, 2, 203–298

arrays, 224
collections, 225–238
cryptography, 290–292
dates and times, 221–223

(see also dates and times)
extensions to, package names, 89
files and directories, 252
input/output, 254–257

(see also input/output)
I/O and networking with

java.nio, 263–276
management and

instrumentation, 296–298

1186 | Index

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Java platform (continued)
Microsoft proprietary extension

of, 310
networking with java.net, 258–263
numbers and math, 217–221

(see also math; numbers)
object persistence, 286
packages (key), summary of, 203
Preferences API, 294
processes, 295
properties, 293
security, 288–290
Standard Edition, 4
text, 205–217
threads and concurrency, 238–252

(see also threads)
types, reflection, and dynamic

loading, 283–286
"Write once, run anywhere", 4
XML processing, 276–283

Java programming
conventions, 308–325

naming and capitalization, 308
conventions for JavaBeans, 320–325
example program, 7–16

analysis of, 9–16
compiling and running, 7

network-centric, 5
online tutorial, 15
portability conventions, 310–312
related book, xx

Java Runtime Environment (see JRE)
Java Secure Sockets Extension

(JSSE), 259
java.awt package, 204
java.awt.peer package, portability

and, 310
JavaBeans, xviii, 320–325

bean basics, 320
bean classes, 321
events, 324
MXBean interfaces (see management

package)
properties, 322

bound, 322
constrained, 323
indexed, 322

serialization mechanism for
components, 287

javac compiler, 8, 338–342
apt (annotation processing tool), 327

assert statements, handling, 61
classpath, 342
common options, 339
cross-compilation options, 341
javadoc and, 342
@SuppressWarnings

annotation, 499
warning options, 340
-xlint option, 195

javadoc program, 20, 342–348
classpath, 348
customizing documentation

format, 342
@deprecated tag, 194
HTML documentation,

creating, 312–320
options, 342

javah program, 348
java.io package, 203, 254–258, 385–438

(see also input/output)
javakey program, 302
java.lang package, 203, 439–542

annotation types
(standard), 194–196

primitive type wrapper classes, 217
subpackages, 439

new in Java 5.0, xviii
java.lang.annotation package (see

annotations)
java.lang.instrument package (see

instrumentation)
java.lang.management package, 439,

518–526
java.lang.ref package, 204, 526–529
java.lang.reflect package, 204, 283–286,

529–542
annotation support, 198

java.math package, 204, 218, 543–548
java.net package, 204, 258–263,

549–585
(see also networking)

java.nio package, 204, 263–276,
586–600

java.nio.channels package, 263, 265,
586, 600–625

server-side networking, 272
java.nio.channels.spi package, 586,

625–628
java.nio.charset package, 263, 267, 586,

628–637
java.nio.charset.spi package, 586

Index | 1187

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

javap tool, 349–351
java.policy file, 305
java.security package, 204, 288–290,

638–682
java.security.auth package, 204
java.security.cert package, 638,

682–707
java.security.interfaces package, 638,

707–712
java.security.manager system

property, 306
java.security.spec package, 638,

712–723
java.text package, 204, 724–749
java.util package, 204, 750, 751–827

additions in Java 5.0, 751
collections classes, 225

converted to generic types, xviii
use of type parameters, 160

Formatter class, xviii
(see also collections; generic types)

java.util.concurrent package, 827–855
(see also concurrency)

java.util.concurrent.atomic
package, 252, 855–862

java.util.concurrent.locks package, 246,
862–869

Condition object, 248
java.util.jar package, 204, 564, 869–877

(see also JAR files)
java.util.logging package, 204, 211,

877–892
java.util.prefs package, 204, 294,

892–899
java.util.regex package, 899–909
java.util.zip package, 204, 255, 909–920
javaw interpreter, 332
javaw_g interpreter, 333
javax (package names), 90
javax.crypto package, 204, 290–292,

301, 921–938
javax.crypto.interfaces

package, 938–939
javax.crypto.spec package, 939–945
javax.net package, 204, 946–947

JSSE (Java Secure Sockets
Extension), 259

javax.net.ssl package, 204, 947–969
JSSE (Java Secure Sockets

Extension), 259

javax.security.auth package, 970–976
javax.security.auth.callback

package, 970, 976–982
javax.security.auth.kerberos

package, 970, 982–985
javax.security.auth.login package, 970,

985–992
javax.security.auth.spi package, 970,

992
javax.security.auth.x500 package, 970,

992
javax.swing package, 204
javax.xml package, 995

new packages, xviii
javax.xml.datatype package, 994,

995–1000
javax.xml.namespace package, 994,

1000
javax.xml.parsers package, 204, 277,

994, 1001–1007
javax.xml.transform package, 277, 280,

994, 1007–1015
javax.xml.transform.dom package, 994,

1015–1016
javax.xml.transform.sax package, 994
javax.xml.transform.stream

package, 995, 1020–1022
javax.xml.validation package, 277, 281,

995, 1022–1026
javax.xml.xpath package, 277, 995,

1026–1031
JAXP (Java API for XML Processing)

SAX parser, 277
transforming XML documents, 280

JCE (Java Cryptography
Extension), 301, 639, 922

JCEKS keystore, 329
JCEKS (Java Cryptography Extension

Key Store), 658
jconsole tool, 352
jdb debugger, 353–357

commands, 354–357
expression syntax, 353
interpreter-to-debugger connection

options, 353
options, 353

JDK (Java Development Kit), 4, 326
javac compiler, 8
Sun Microsystems, download site, 7
(see also tools)

jinfo tool, 357

1188 | Index

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

JIT (just-in-time) compilers, 2, 462
performance improvements with, 6
querying with

CompilationMXBean, 519
specifying for Java interpreter, 333
using on frequently used

methods, 336
JKS (Java Keystore) type, 329, 365, 658
jmap tool, 358
JMX API (see management package)
join() (Thread), 239, 249, 250, 502
joinGroup() (MulticastSocket), 565
jps tool, 358
JRE (Java Runtime Environment), 4

JDK vs., 7
jsadebugd tool, 359
JSSE (Java Secure Sockets

Extension), 259
jstack tool, 360
jstat tool, 360–362

options, 360
jstatd tool, 362
jump table, 46
just-in-time compilers (see JIT

compilers)
JVM (Java Virtual Machine), 1, 2

annotations and, 191
array initialization, 77
class loaded, statistics on, 518
debugger connection options (Java 5.

0), 353
deleting files on exit, 398
instrument package (see

instrumentation)
instrumentation options, 336
jdb debugger, connecting to, 353
JIT compiler (see JIT compilers)
memory manager, monitoring, 520
monitoring and management

of, 296–298
monitoring garbage collections, 519
MXBean interfaces, obtaining, 519
performance tuning, 6, 335
permission to monitor and

manage, 520
process monitoring tool

(jconsole), 352
runtime configuration, 524
security, 300
statistics on (jstat tool), 360–362

thread type, specifying for Classic
VM, 333

thread usage, monitoring, 525
UnknownError, 509
UnsupportedEncodingException, 43

6
versions, 332, 333
VirtualMachineError, 510

JVMTI (Java Virtual Machine Tool
Interface), 336

K
keepalive, setting for sockets, 573
Kerberos authentication, 970, 982–985

DelegationPermission, 982
KerberosKey class, 983
KerberosPrincipal class, 983
KerberosTicket class, 984
ServicePermission class, 985

Key interface, 653
key-agreement algorithms, 930
KeyAgreement class, 930
KeyAgreementSpi class, 931
KeyException, 654
KeyFactory class, 654
KeyFactorySpi class, 655
KeyGenerator class, 921, 932
KeyGeneratorSpi class, 933
KeyManagementException, 655
KeyManager interface, 952
KeyManagerFactory class, 952
KeyManagerFactorySpi class, 953
KeyPair class, 656
KeyPairGenerator class, 639, 656
KeyPairGeneratorSpi class, 657
KeyRep class, 657
KeyRep.Type class, 657
keys()

Hashtable class, 788
Selector class, 620

keys, cryptographic
DES key, 940
KerberosKey, 983
Key interface, 653
management by keytool, 362–366
secret keys (symmetric),

generating, 932
SecretKey interface, 936
SSLKeyException, 959
triple-DES key (DESede), 940
(see also cryptography)

Index | 1189

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

keySet()
Map interface, 233, 801
SortedMap interface, 234, 815

KeySpec interface, 719
KeyStore class, 639, 651, 658, 680
KeyStore.Builder class, 660
KeyStoreBuilderParameters class, 953
KeyStore.CallbackHandler-

Protection, 660
KeyStore.Entry interface, 660

UnrecoverableEntryException, 681
KeyStoreException, 662
KeyStore.LoadStoreParameter, 660
KeyStore.PaswordProtection, 661
KeyStore.PrivateKeyEntry, 661
KeyStore.ProtectionParameter, 661
keystores, 329, 362

management with keytool, 362
password, changing, 364
for policy files, 369
type, specifying, 365
(see also keytool program)

KeyStore.SecretKeyEntry, 662
KeyStoreSpi class, 663
KeyStore.TrustedCertificateEntry, 662
keytool program, 290, 362–366

commands, 363
options, 364–366

key/value objects (Map), 231
keywords, 18

abstract, 129
access control, 124
assert, 60, 61
break, 54
case, 47
class, 99
enum, 179
extends, 115
final, 44
if, 13
implements, 99, 136
interface, 135
lines, 339
listing of, 20
lowercase used for, 19
modifier summary, 156
new, 72
null, 74
package, 90
private, 118
public, 118

source, 339
static, 104, 110, 140
super, 116, 119, 122, 145
switch, 47
synchronized, 56
throws, 66
vars, 339
void, 55, 65
(see also modifiers)

L
labeled statements, 43

break statements, using with, 54
continue statement, 54

LanguageCallback class, 980
languages

international, representing with
Unicode, 6

pass-by-reference, 86
pass-by-value, 86

last()
CharacterIterator interface, 730
SortedSet interface, 816

last in, first-out (LIFO) queues, 234
last modified date (URLs), 583
lastIndexOf()

CharBuffer class, 496
CopyOnWriteArrayList, 835
List interface, 797
String class, 492

lastIndexOfSubList() (Collections), 768
last-in-first-out (LIFO) stacks, 816
lastKey() (SortedMap), 233, 815
lastModified() (File), 397
latch, 249
Latin-1 character set, 18, 267

encoding changed to UTF-8, 269
escaping in char literals, 23

LDAPCertStoreParameters, 697
leaveGroup() (MulticastSocket), 565
left shift assignment operator (<<=), 29
left shift operator (<<), 29, 38
left-to-right associativity, 30
length

of arrays, 75, 76
readable sequence of characters, 207

length()
CharSequence interface, 455
CoderResult class, 634
File class, 397

1190 | Index

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

length() (continued)
String class, 491
StringBuffer, 496

less than operator (<), 35
less than or equal operator (<=), 35
Level class, 882
levels of severity, log messages, 212
lexical scope, 44, 150
LexicalHandler interface (SAX), 1067
libraries, reading into the system, 501
lib/security/java.policy file, 305
lifecycle of a thread, 239
LIFO (last-in-first-out) stacks, 816
limit (buffers), 587, 590
line breaks in text, 729
line separators, code portability

and, 311
LineNumberInputStream class

(deprecated), 410
LineNumberReader class, 410
lines, blank, 13
lines keyword, 339
@link javadoc tag, 319
{@link} javadoc tag, 313, 316, 318
LinkageError, 474
LinkedBlockingQueue class, 251, 844
LinkedHashMap class, 225, 233, 793
LinkedHashSet class, 225, 228, 795
LinkedIterator class, implemented as

anonymous class, 151
LinkedList class, 231, 795

implementing Queue, 235
{@linkplain} javadoc tag, 317, 318
links, UnsatisfiedLinkError, 509
“lint” in Java programs, 195, 340
Linux platforms

Java interpreter, 2
JDK, downloading from Sun

Microsystems, 7
list() (File), 152, 397
List class

Collection interface methods, 226
java.util.List and java.awt.List, 91
methods, generic vs. nongeneric, 166
redefined as generic, 160, 161
storing primitive values, 88

Listener interface, 324
listeners

EventListener, 776
registering

for constrained properties, 323
methods for, 323

TooManyListenersException, 820
for unicast events, 321

listFiles() (File), 397, 400
listIterator(), 230

AbstractSequentialList class, 756
List interface, 797

ListIterator interface, 225, 230, 798
ListResourceBundle class, 799
listRoots() (File), 397
lists, 225

AbstractList class, 754
AbstractSequentialList, 756
element or attribute names

(DOM), 1045
immutable List objects, 237
LinkedList class, 795
List interface, 225, 229, 796

implementations, general-
purpose, 231

random access to, 225
literals, 21, 28

null reference, 74
string, 73
type, 74

literals values, 18
LITTLE_ENDIAN byte order, 592
load()

KeyStore class, 658
MappedByteBuffer class, 599
Properties class, 806
Runtime class, 484
System class, 501

loadClass()
ClassLoader class, 458
URLClassLoader class, 582

loadLibrary()
Runtime class, 484
System class, 501

LoadStoreParameter (KeyStore), 660
local classes, 141, 147–151

defining and using (example), 147
features of, 148
implementation of, 155
local variables, lexical scoping, and

closures, 150
restrictions on, 148
scope of, 149
syntax, 149

local variables, 11
annotations, 198
declaration statements, 43

Index | 1191

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

naming and capitalization
conventions, 309

scope of, 44, 150
Locale class, 799
Locator interface (SAX), 1059
Locator2 interface (SAX), 1068
Locator2Impl interface (SAX), 1068
LocatorImpl class (SAX), 1072
locks, 245–247, 862–869

Condition objects, 248
deadlock, 247
file, 270

FileChannel methods, 608
FileLock class, 610

file locks, overlapping, 614
interrupted file locks, 611
java.util.concurrent.locks

package, 246, 750
listing waiting threads, 248
Lock interface, 865
synchronized methods, 56, 67
verifying for current thread, 63, 502

LockSupport class, 866
log10() (Math), 476
logarithmic functions, 217
Logger objects, 212, 883–885
logging, 211

garbage collection events, 337
java.util.logging package, 204, 750,

877–892
LoggingMXBean interface, 885
LoggingPermission class, 886
login()

AuthProvider class, 645
LoginContext class, 974, 985, 991

LoginModuleControlFlag class, 988
logins, 985–992

AccountException, 987
AccountExpiredException, 987
AccountLockedException, 987
AccountNotFoundException, 987
AppConfigurationEntry, 988
AppConfigurationEntry.

LoginModuleControlFlag, 988
Configuration class, 989
CredentialException, 989
CredentialExpiredException, 990
CredentialNotFoundException, 990
FailedLoginException, 990
javax.security.auth.login

package, 970

LoginContext class, 985, 991
LoginException, 991
LoginModule interface, 992

LogManager class, 886–888
logout() (LoginContext), 991
LogRecord class, 888
long type, 22, 24

64-bit long values, 25
bitwise and shift operator results, 37
conversion to other primitive

types, 28
dates and times, 221
Long class, 25, 217, 439, 474
unique identifier for threads, 502

longBitsToDouble(), 463
LongBuffer class, 598
lookup() (ObjectStreamClass), 417
loopback packets, 565
loops, 14

comparison operators, use in, 34
continue statement in, 54

for and while loops, 60
counter, incrementing, 34, 48
do vs. while, 49
empty loop body, 43
exiting with break statements, 54
infinite, 48
iterating through, 15
nested, creating and initializing

multidimensional arrays, 81
(see also statements)

lower-bounded wildcards, 178
lowerCaseMode(), 433
lunar calendars, 222

M
Mac class, 921, 933
MAC (see message authentication code)
Macintosh platforms, 2
MacSpi class, 934
main(), 10, 95, 517

java interpreter and, 332
running with jdb debugger, 356

MalformedInputException, 636
MalformedParameterizedType-

Exception, 537
MalformedURLException, 564
management package, xviii, 203,

296–298, 439, 518–526
ClassLoadingMXBean, 518
CompilationMXBean interface, 519

1192 | Index

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

management package (continued)
jconsole tool, 352
LoggingMXBean, 885

ManagementFactory class, 519
ManagementPermission class, 520
ManagerFactoryParameters

interface, 954
Manifest class, 874
manifest files, JAR, 331

creating with jar utility, 330
map() (FileChannel), 599, 608
Map interface, 162, 225, 801

ConcurrentMap interface, 834
Entry interface, 802
SortedMap interface, 815
TreeMap class, 820
WeakHashMap class, 826

mapLibraryName() (System), 501
MapMode class (FileChannel), 610
MappedByteBuffer class, 599, 608
maps, 225

defined, 231
enumerated values, 225
hashtable-based, 225
immutable Map objects, 237
implementing Cloneable or

Serializable, 227
Map interface, 231–234

implementations, 233
support for collection views, 231

memory mapping a file with
FileChannel, 269

mark(), 686
CharArrayReader class, 391
InputStream class, 407
Reader class, 430
StringReader class, 435

mark (buffers), 588, 590
InvalidMarkException, 597

marker annotations, 193
isAnnotationPresent(), using, 199

marker interfaces, 139
markSupported()

InputStream class, 407
Reader class, 430

mask generation function, 719
match()

CertSelector interface, 693
CRLSelector interface, 697
X509CRLSelector class, 706

Matcher class, 212, 900–903
enchancements in Java 5.0, 215
multiple matches with a regular

expression, 214
matches() (String), 213, 492, 493
MatchResult interface, 903
math, 217–221

java.math package, 543–548
mathematical functions, 217

Math class, 217, 440, 475
new functions in Java 5.0, 218
pseudo-random numbers, 218
static member import, 92
(see also StrictMath class)

MathContext class, 219, 547
max() (Collections), 768
MAX_VALUE constant

Float and Double classes, 26
integral type wrapper classes, 25

member classes, 143–147
containing class instance, specifying

for, 146
features of, 144
implementation, 155
local classes vs., 147
restrictions on, 145
scope vs. inheritance, 147
syntax for, 145
top-level class that extends, 146

Member interface, 537
members

annotation, 193, 197
class, 9, 99, 100, 529

access control, 124–127
access rules, 126
constructors and initializers, 106
hiding fields and methods, 124
Member interface, 537
nonstatic member classes as, 140

constructors and
initializers, 106–111

deprecated (@deprecated javadoc
tag), 315

importing static members, 92
instance, 100
modifiers, 156
specifying when added to API

(@since doc comment), 315
memory

managing with Runtime, 484
OutOfMemoryError, 480

Index | 1193

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

required by a specified object, 517
usage information for Java process or

core file, 358
memory allocation

garbage collection and, 86, 96
for the heap, 336
for javadoc tool, 344
reclaiming with garbage

collection, 111
memory leaks, 112
memory mapping a file, 269
MemoryHandler class, 889
MemoryManagerMXBean interface, 520
MemoryMXBean interface, 521
MemoryNotificationInfo class, 521
MemoryPoolMXBean interface, 522
MemoryType class, 522
MemoryUsage class, 523
message authentication code

(MAC), 921, 933
MacSpi class, 934

message digests, 256, 288, 301
DigestException, 648
DigestInputStream class, 648
DigestOutputStream class, 649
in digital signatures, 289
MessageDigest class, 639, 663
MessageDigestSpi class, 664

MessageFormat class, 69, 742
MessageFormat.Field class, 743
messages, checking for tampering, 288
meta-annotations, 193, 201

defining, 200
Documented type, 513
Inherited type, 514
Retention type, 514
Target type, 515

metadata, 193
associating with program

elements, 191
(see also annotations)

Method class
changes in Java 5.0, 538
getGenericParameterTypes(), 529

method invocation operator (()), 29, 41
side effects, 32

methods, 64–71
abstract, 128–130, 156

rules for, 129
chaining, 265

choosing between class and
instance, 105

class, 100, 102, 529
hiding, 124
listing with jdb debugger, 355

Collections, 237
covariant return types, 70
data accessor, 127–128
declaring checked exceptions, 68
defining, 10, 64–66

examples, 65
modifiers, 65
name, 66
parameters, 66
return type, 65
throws clause, 66

deprecated (@deprecated javadoc
tag), 315

displaying byte code for (javap
tool), 350

end of, 12
enforcing preconditions for, 63
enumerated types, 185
event listener interface, 324
generic, 172–176

invoking, 173
IllegalAccessError, 468
IllegalArgumentException, 468
IllegalStateException, 469
inheritance through subclassing, 115
instance, 100, 104–106

inheritance of, 126
interface, InvocationHandler, 286
invoking, 11

in expression statements, 42
InvocationHandler, 536

JavaBean, 321
main(), 10
Method class, 529, 537
modifiers, 66
naming and capitalization

conventions, 309
native, 156
NoSuchMethodError, 478
NoSuchMethodException, 478
Object class, 130–134
overloaded

references to, 319
static member imports and, 93

1194 | Index

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

methods (continued)
overloading, 66, 96, 97

defining multiple constructors for
a class, 108

@Override annotation, 481
overriding, 120–123

dynamic method lookup, 121
final and static method

lookup, 122
invoking overridden

methods, 122
overloading vs., 120

parameters, 10, 66
reference index, 1077–1146
references to, in @see javadoc

tag, 319
side effects, 32
static, 157
synchronized, 56, 157, 245
System.out.println(), 106
in type definitions, 18
unsupported, error, 510
void, 55
(see also variable-length argument

lists)
MGF1ParameterSpec class, 719
Micro Edition, Java 2 Platform

(J2ME), 4
Microsoft

Java VM implementation, security
flaws, 300

proprietary extension of Java
platform, 311

Microsoft Windows (see Windows
platforms)

milliseconds, 221
MIME types, 554, 558
min() (Collections), 768
minus sign (-) (see -, under Symbols)
MIN_VALUE constant

Float and Double classes, 26
integral type wrapper classes, 25

MissingFormatArgumentException, 803
MissingFormatWidthException, 803
MissingResourceException, 803
mkdir() (File), 398
mkdirs() (File), 398
modification time of a file, 397
modifiers, 9

access control, 124
anonymous classes and, 153

class, 99
field, 101
final, 116
method, 65, 66
Modifier class, 529, 539
not allowed with local variable or

class declarations, 148
public, static and void, 10
summary of, 156
visibility, 126

modInverse() (BigInteger), 546
modPow() (BigInteger), 546
modulo by zero, 25
modulo operator (%), 29, 33

%= (modulo assignment)
operator, 29, 39

monitoring a running Java
interpreter, xviii

MulticastSocket class, 565
multidimensional arrays, 80

copying, shallow and deep
copies, 84

multiline comments, 9, 19
multiple inheritance (C++), 135
multiple interfaces, implementing, 137
multiplication operator (*), 14, 33
multiplication table, representing with

multidimensional array, 80
multiply() (BigDecimal), 543
multithreaded programming, 238–252
MXBean interfaces (see management

package)

N
\n (newlines), escaping, 23
name(), 464

Charset class, 629
Name class, 871
NameCallback class, 980
NamedNodeMap interface

(DOM), 1044
NameList interface (DOM), 1045
names

anonymous classes, 156
classes

fully qualified, 332
simple and fully qualified, 89

file and directory, platform-
independent, 397

FilePermission, 402
library, 501

Index | 1195

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

method, 66
package, 90

uniqueness of, 90
signer (digital signatures), 328

namespaces, 89–93, 96
importing types, 90

naming conflicts and
shadowing, 91

static members, 92
XML, xviii, 994, 1000

NamespaceContext, 1000
QName class, 1001
URIs for, 995

NamespaceSupport class (SAX), 1072
naming conflicts, 91

between superclass and containing
class, 147

naming conventions, 308
characters in names, 309
classes, 308
constants, 102
constructors, 107
fields and constants, 309
generic type variables, 169
images in doc comments, 313
interfaces, 309
local class and its enclosing

classes, 149
local variables, 309
methods, 309
packages, 308
parameters, method, 309
reference types, 308

NaN (not-a-number), 26
% (modulo) operator, returning

with, 33
Double, testing for, 462
floating point-values, testing for, 35
floating-point calculations, division

by zero, 33
represented by float and double

types, 26
nanoseconds, 221
nanoTime() (System), 221, 500
narrowing conversions, 27

covariant returns, 159
reference types, 86

native code, byte code vs., 6
native methods, 67, 156

conventions/rules for, 310
Java, implemented in C, 348

javah tool for implementing in
C, 348

printing message when called, 337
stack traces for errors or

exceptions, 490
native OS threads, 333, 335
native2ascii program, 366
nativeOrder() (ByteOrder), 592
nCopies() (Collections), 237
negation, performing with - (unary

minus) operator, 33
negative infinity, 26

Double, testing for, 462
negative integers, representing, 37
negative zero, 26
NegativeArraySizeException, 477
nested types, 140–156

anonymous classes, 141, 151–154
defining and instantiating, 153
features of, 153
indentation and formatting, 154
restrictions on, 153
when to use, 153

Class methods, Java 5.0, 456
how they work, 154–156
local classes, 141, 147–151

features of, 148
local variables, lexical scoping,

and closures, 150
restrictions on, 148
scope of, 149
syntax, 149

nonstatic member classes, 140,
143–147

features of, 144
restrictions on, 145
scope vs. inheritance, 147
syntax for, 145

static member types, 140, 141–143
NetPermission class, 566
network-centric programming, 5
networking

closing connections for unused
objects, 113

datagrams, 262
getByAddress(), Inet6Address, 561
host reachability, 263
java.net package, 258–263, 549–585

Proxy class, 568
java.nio package (see New I/O API)
javax.net package, 946–947

1196 | Index

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

networking (continued)
javax.net.ssl package, 947–969
Kerberos authentication, 982–985
packages for, 204
secure sockets (SSL), 259
servers, 261
sockets, 258

(see also sockets)
NetworkInterface class, 566
New I/O API, 204, 263–276, 586–637

buffer operations, basic, 264
channel operations, basic, 265
client-side networking, 271
encoding/decoding text with

charsets, 267
files, working with, 268–270
java.nio.channels.spi

package, 625–628
java.nio.charset package, 628–637
java.nio.charset.spi package, 637
nonblocking I/O, 273–276

SSL communication, 955
server-side networking, 272

new operator, 29, 41, 107
anonymous class formatting, 154
creating arrays, 76
creating objects, 72
defining and implementing

anonymous class, 152
member class, explicitly referring to

containing instance, 146
multidimensional arrays,

initializing, 80
NEW thread, 239, 504
newDecoder() (CharsetDecoder), 630
newEncoder() (CharsetEncoder), 630
newInstance()

Array class, 532
Class class, 72, 455
Constructor class, 72, 533
DatatypeFactory class, 996
SchemaFactory class, 1022
URLClassLoader class, 582

newlines (\n), escaping, 23
newPermissionCollection(), 667
newPlatformMXBeanProxy()

(ManagementFactory), 519
newProxyInstance() (Proxy), 540
newReader() (Channels), 628
newSAXParser(), 1006
newSchema() (SchemaFactory), 1023

newTemplates()
(TransformerFactory), 1013

newTransformer()
(TransformerFactory), 1013

newWriter() (Channels), 628
next(), 756

CharacterIterator interface, 730
Iterator class, 753
Iterator interface, 52
ListIterator interface, 798

nextBytes() (SecureRandom), 675
nextDouble(), 809
nextElement() (Enumeration), 774
nextFloat(), 809
nextIndex() (ListIterator), 798
nextInt(), 809
nextLong(), 809
nextToken() (StreamTokenizer), 433
NoClassDefFoundError, 477
NoConnectionPendingException, 613
Node interface, 279
Node objects (DOM), 1015, 1016,

1045–1048
NodeChangeEvent class, 895
NodeChangeListener interface, 895
NodeList interface (DOM), 1048
nonblocking I/O, 204, 273–276

client-side networking, 275
socket connection (example), 275
SocketChannel, 622
SSL communication using, 955

nonheap memory, usage
information, 521

nonnative (green) threads, 333, 335
NonReadableChannelException, 613
nonstatic member classes, 143–147

features of, 144
restrictions on, 145
scope vs. inheritance, 147
syntax for, 145

nonstatic members, 99
NonWritableChannelException, 613
normalize() (URI), 579
NoRouteToHostException, 567
NoSuchAlgorithmException, 665
NoSuchElementException, 798, 804
NoSuchFieldError, 477
NoSuchFieldException, 478
NoSuchMethodError, 478
NoSuchMethodException, 478
NoSuchPaddingException, 935

Index | 1197

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

NoSuchProviderException, 665
not equals operator (!=), 29, 35
NOT operator

~ (bitwise NOT), 37
! (boolean NOT), 29, 36

NotActiveException, 411
not-a-number (see NaN)
Notation interface (DOM), 1048
Notepad, 8
notify() (Object), 248, 469, 479, 502
notifyAll() (Object), 248, 479
notifying event listeners of events, 321

bound property changes, 323
constrained property changes, 324

NotSerializableException, 411
NotYetBoundException, 613
NotYetConnectedException, 614
null values, 74

case labels and, 182
collections, 227
default, reference fields, 109
LinkedList, 235

NullCipher class, 935
NullPointerException, 68, 478
numberOfTrailingZeros()

(Integer), 472
numbers, 217–221

BigInteger and BigDecimal
classes, 218

comparing (Comparator class), 770
converting from and to strings, 219
DateFormat class, 734
DecimalFormat class, 737
Enumeration class, 774
formatting, 220, 741
mathematical functions, 217
Number class, 217, 479
number type (operands), 31
NumberFormat class, 221, 724,

744–745
NumberFormatException, 479
parsing by StreamTokenizer, 433
random, 218
SimpleDateFormat class, 747

O
OAEP padding (PKCS#1

standard), 719, 943
OAEPParameterSpec class, 942

Object class, 479
class hierarchy root, 87, 116
important methods, 130–134

clone(), 84, 134
compareTo(), 133
equals(), 132
hashCode), 133
toString(), 132

notify(), 248
wait(), 239, 248

object creation operator (see new
operator)

object identifier (OID), 707
object literals, 73
object member access operator (.), 29,

41
object persistence, 286

JavaBeans, 287
serialization, 286

object serialization (see serialization)
Object... variable length argument

list, 69
ObjectInput interface, 411
ObjectInputStream class, 386, 432

enableResolveObject(), 432
readStreamHeader(), 433

ObjectInputValidation class, 414, 432
object-oriented classes

nested types
local classes, 147–151

object-oriented programming, 98–158
abstract classes and

methods, 128–130
anonymous classes, 151–154
class definitions, 99
classes, 5
creating and initializing

objects, 106–111
defining a constructor, 107
defining multiple

constructors, 108
field defaults and

initializers, 109–111
invoking one constructor from

another, 108
data hiding and

encapsulation, 123–128
access control, 124–127
data accessor methods, 127–128

definitions of terms, 98

1198 | Index

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

object-oriented programming
(continued)

destroying and finalizing
objects, 111–114

finalizers, 113
garbage collection, 111
memory leaks, 112

fields and methods, 100–106
class fields, 102
class methods, 102
field declarations, 101
instance fields, 103
instance methods, 104–106
System.out.println(), 106

interfaces, 135–140
abstract classes vs., 138
constants and, 139
implementing, 136–138
marker, 139

Java vs. C/C++, 1
modifiers, summary of, 156
nested types, 140–156

anonymous classes, 151–154
how they work, 154–156
nonstatic member

classes, 143–147
Object methods, 130–134
subclasses and inheritance, 114–123

constructor chaining and the
default constructor, 117

extending a class, 114–116
hiding superclass fields, 119
overriding superclass

methods, 120–123
subclass constructors, 116
superclasses, Object and class

hierarchy, 116
ObjectOutput interface, 415
ObjectOutputStream class, 386, 415,

432
enableReplaceObject(), 432

ObjectOutputStream.PutField
class, 416

objects, 71–74
AccessibleObject class, 530
arrays as, 225
as operand type, 31
classes vs., 71
collections of, 204

converting to and from
arrays, 237

comparing, 85
converting arrays to, 87
converting to strings, 34
copying, 83–85
creating and initializing, 72,

106–111
defining a constructor, 107
expression statements, using, 42
instance initializers, 111
invoking one constructor from

another, 108
multiple constructors, 108
new operator, using, 41

defined, 98
exception, 58
information about, obtaining with

instanceof, 139
instanceof operator, using with, 40
InvalidObjectException, 409, 414
locking, 56, 245–247
manipulating by reference, 158
NullPointerException, 478
Object class, 479
serializing/deserializing (see

serialization)
SignedObject class, 290
state of, in instance fields, 103
strings as, 73
type defined by class or interface, 98
using, 73
waiting threads, list of, 248
(see also object-oriented

programming)
ObjectStreamClass class, 417
ObjectStreamConstants interface, 418
ObjectStreamException, 419
ObjectStreamField class, 419
Observable class, 804
Observer interface, 805
octal numbers, 24

Integer type conversions, 472
Long type conversions, 474
Short type conversions, 488

of()
EnumSet class, 184
UnicodeBlock class, 452

offer() (Queue), 234
offsetByCodePoints()

Character class, 448
String class, 493

OID (object identifier), 707

Index | 1199

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

oldjava interpreter, 333
oldjavaw interpreter, 333
on()

DigestInputStream class, 648
DigestOutputStream class, 649

on-demand type imports, 91
naming conflicts and shadowing, 92

onMalformedInput(), 635
onUnmappableCharacter(), 635
OO (see object-oriented programming)
open()

connected SocketChannel,
creating, 271

DatagramChannel class, 605
Pipe class, 614
unconnected SocketChannel,

creating, 271
openConnection() (URL), 581, 948,

951
openStream() (URL), 581
operands

evaluation by Java interpreter, 32
list of, 28
number and type, 31

operating systems, 2
OperatingSystemMXBean interface, 523
operators, 14, 18, 28–41

arithmetic, 32
assignment, 39
associativity, 30
bitwise and shift, 37
boolean, 35
characters used as, 21
comparison, 34

relational operators, 35
conditional, 39
expressions, order of evaluation, 32
increment and decrement, 34
instanceof, 40
listed, 28–29
new, 72
operand number and type, 31
overloading, 158
precedence of, 30
return types, 31
side effects of, 32

combination assignment
operators, 39

special (language constructs), 40
string concatenation, 33
ternary, 31

OptionalDataException, 420

OR operator
| (bitwise OR), 29, 37
|= (bitwise OR assignment)

operator, 29
| (boolean OR), 29, 37
|| (conditional OR), 29, 36

order() (ByteBuffer), 590
order of evaluation, 32
ordinal(), 180, 464

enumerated types, 183
ordinaryChar() (StreamTokenizer), 433
ordinaryChars()

(StreamTokenizer), 433
org.ietf.jgss package, 982
org.w3c.dom package, 276, 1032–1050
org.xml.sax package, 276, 1051–1064
org.xml.sax.ext package, 1064–1069
org.xml.sax.helpers

package, 1069–1076
out of band data, receiving, 573
OutOfMemoryError, 68, 480
output (see input/output)
OutputKeys class, 1008
OutputStream class, 385, 420

write(), 386
OutputStreamWriter class, 421
OverlappingFileLockException, 614
overlaps() (FileLock), 610
overloaded methods, references to, 319
overloading

methods, 66, 97
defining multiple constructors for

class, 108
overriding vs., 120

operators, 158
overridden methods

chaining, 123
superclass of a containing class, 145

@Override annotation, 131, 194, 440,
481

overriding methods, 71, 120–123
abstract, 129
dynamic method lookup, 121
field hiding vs., 121
final and static method lookup, 122
inherited methods, 99
invoking overridden methods, 122
Object class methods, 131

overview page, javadoc
documentation, 320, 344

overview doc comment, using, 346

1200 | Index

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

P
Pack200 class, 875
pack200 tool, 366

advanced options, 368
basic options, 367

Pack200.Packer interface, 875
Pack200.Unpacker interface, 876
package access, 125

class member accessibility, 127
package annotations, 197
Package class, 481
package declarations, 18
package directive, 90
packages, 2, 17, 89–93

access to, 124
assertions enabling or disabling, 459
associated with classes, 459
declaring, 90
defined, 89
doc comments for, 319
enabling assertions in all classes and

its subpackages, 61
globally unique names, 90
importing types, 90

naming conflicts and
shadowing, 91

static members, 92
key, listing of, 203
naming and capitalization

conventions, 308
not documented in this book, 204
omitting names in javadoc

documentation, 346
references to, in @see javadoc

tag, 318
unnamed, 90
visibility, 156

packets of data, 262
loopback, 565

padding schemes (cryptography), 935
PalmOS, 2
@param javadoc tag, 314
parameterized types, 52, 160

arrays, 166
bounded wildcards in, 168
conversion to

nonparameterized, 165
exceptions and, 175
generic types vs., 160
hierarchy, 164

malformed, exception, 537
Map, 231

ParameterizedType interface, 539
parameters, 10

arguments, assigning to, 12
certification path, 691
listing for methods, 66
naming and capitalization

conventions, 309
this (keyword), for instance

methods, 104
type parameters, 163

annotation types and, 200
specifying for generic

methods, 173
wildcards, 166–169

as variables, 11
<xsl:param> tags, 1011

parameters, method
annotations, 198

parentheses (see (), under Symbols)
parse(), 746
parseByte(), 447
parseDouble(), 463
ParseException, 746
parseInt() (Integer), 11, 472
parseLong() (Long), 474
parseNumbers()

(StreamTokenizer), 433
parseObject(), 741, 746
ParsePosition class, 746
Parser interface (SAX), 1059
ParserAdapter class (SAX), 1073
ParserFactory class (SAX), 1074
parsers, 204, 1001–1007

DocumentBuilder class, 1002
DocumentBuilderFactory class, 1003
DOM (Document Object

Model), 276, 278
FactoryConfigurationError, 1004
javax.xml.parsers package, 994
ParserConfigurationError, 1004
SAX (Simple API for XML), 276
SAXParser class, 1005
SAXParserFactory, 1006

parseShort(), 488
pass by reference, 86
pass by value, 86
PasswordAuthentication class, 567
password-based encryption (PBE), 939,

943

Index | 1201

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

PasswordCallback class, 980
passwords

access control for /etc/passwd, 302,
303

authenticating, Authenticator
class, 551

expired, 990
incorrect, 990
-keypass password option,

jarsigner, 329
keystore, changing, 364
PasswordProtection (KeyStore), 661
(see also logins)

path separators, 326
pathnames, JAR archive, 564
paths (CertPath), 688
Pattern class, 213, 214, 904–908

multiple matches with a regular
expression, 214

regular expression syntax, 905–908
pattern matching with regular

expressions (see regular
expressions)

PatternSyntaxException, 214, 908
PBE (password-based encryption), 943
PBEKey interface, 939
PBEKeySpec class, 943
PBEParameterSpec class, 943
PBEWithMD5AndDES algorithm, 923
peek()

Queue interface, 234, 235
Stack class, 816

percentages, 744
performance, 6

dynamic vs. static method
lookup, 122

Java VM, 2
performance tuning options, Java

interpreter, 335
Perl 5 programming language, 213
Perl regular expressions, 212

matches, Java vs., 213
permissions, 303

AllPermission class, 645
AuthPermission class, 971
BasicPermission class, 646
checking with SecurityManager, 487
defining in policy file, 369
DelegationPermission, 982
FilePermission class, 402

guidelines for, web site
information, 305

how they work, 303
jstatd daemon, 362
LoggingPermission, 886
ManagementPermission class, 520
NetPermission class, 566
Permission class, 304, 666

subclasses for access control, 303
subclasses, summary of, 306

PermissionCollection class, 305, 667
Permissions class, 639, 667
PrivateCredentialPermission, 973
PropertyPermission class, 807
ReflectPermission class, 540
restricted, 5
RuntimePermission class, 486
SecurityPermission class, 677
SerializablePermission class, 432
ServicePermission, 985
SocketPermission class, 577
SSLPermission class, 960
UnresolvedPermission class, 681
URLClassLoader class, 582

persistence, object, 286
JavaBeans, 287
serialization, 286
serialPersistentFields, 316

PhantomReference class, 526
ping utility, 263
Pipe class, 614, 620
PipedInputStream class, 257, 385, 422
PipedOutputStream class, 257, 385, 422
PipedReader class, 257, 423
PipedWriter class, 257, 424
Pipe.SinkChannel class, 615
Pipe.SourceChannel class, 615
PKCS #1 standard, OAEP

padding, 942, 943
PKCS#5 (password-based encryption

algorithm), 943
PKCS8EncodedKeySpec interface, 719
PKIXBuilderParameters class, 698
PKIXCertPathBuilderResult class, 698
PKIXCertPathChecker class, 699
PKIXCertPathValidatorResult class, 699
PKIXParameters class, 700
platforms

defined, 2
directory separator characters, 311
line separators, differences in, 311

1202 | Index

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

pleaseStop() (example method), 241
plus sign (+) (see +, under Symbols)
Point class (example), defining, 72
pointers (C language), 82

Java references vs., 96
method, 97

policies (see security policies)
Policy class, 303, 639, 668, 972

modifying permissions to untrusted
code, 305

PolicyNode class, 701
PolicyQualifierInfo class, 701
policytool program, 303, 305, 369

defining permissions, 369
poll()

Queue interface, 234, 235
ReferenceQueue class, 527

pop(), 816
portability

conventions and rules, 310–312
Java interpreter, 2

ports, access restrictions for
applets, 301

PortUnreachableException, 567
position(), 270

FileChannel class, 607
FileLock class, 610

position (buffers), 587, 590
positive zero, 26
post-decrement operator, 29, 34
post-increment expression

statements, 42
post-increment operator, 29, 34
<PRE> tag in doc comments, 313
precedence, operator, 28, 30

! (boolean NOT) operator, 36
boolean vs. comparison

operators, 36
conditional (?:) operator, 40
order of evaluation and, 32
overriding with parentheses, 30

precision (format specifier), 784
illegal, 791

precision in BigDecimal arithmetic, 547
pre-decrement expression

statements, 42
pre-decrement operator, 29, 34
predefined classes, 2
preferences, 892–899

AbstractPreferences, 893
BackingStoreException, 894

InvalidPreferencesFormatException,
894

java.util.prefs package, 204, 750
NodeChangeEvent, 895
NodeChangeListener, 895
PreferenceChangeEvent class, 896
PreferenceChangeListener, 295, 896
Preferences class, 294, 896–899
PreferencesFactory interface, 899
user, Properties class and, 293

pre-increment operator, 29, 34
premain(), 517
preprocessor (C language), 95
prev() (CharacterIterator), 730
previous() (ListIterator), 756, 798
previousIndex() (ListIterator), 798
primary expressions, 28
prime numbers

large, randomly generated, 219
RSA private key, 721

primitive data types, 18, 21–27
array elements, returning as, 531
arrays of, conversions, 88
boolean, 22, 446
buffers for, 587
byte, 24
byte buffers viewed as other

types, 590
char, 22

Character class, 448
conversions

boxing and unboxing, 88
listing of type conversions, 27

differences between Java and C, 96
double, 462
encountered when object data is

expected, 420
equality, testing for, 35
fields, 534
float, 467
floating-point types, 25
int, 24

Integer class, 472
integer types, 24
long, 22, 25

Long class, 474
operand, 31
reading in binary format with

DataInput, 393
reading in binary format with

DataInputStream, 386, 394

Index | 1203

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

reference types vs., 82
short, 24

Short class, 488
textual representation of, 424
wrapper classes, 217, 439
writing in binary format with

DataOutput, 395
writing in binary format with

DataOutputStream, 386, 395
(see also listings under individual

type names)
Principal interface, 369, 668
principals

KerberosPrincipal, 983
X.500, 970, 992

print()
PrintStream class, 424
PrintWriter class, 426

printf(), 69, 386, 426
Formatter class, xviii, 211
formatting numbers, 220
formatting text, 210
MissingFormatArgumentException,

803
printList(), 166
println(), 12

PrintStream class, 424
PrintStream or PrintWriter, 311
PrintWriter class, 426

PrintStream class, 424
format(), 211
implementing Appendable

interface, 386
Java 5.0 enhancements, 386
printf(), 210
println(), 311

PrintWriter class, 386, 426
format(), 211
Java 5.0 enhancements, 386
printf(), 210
println(), 311

priority levels for threads, 240, 502
maximum priority in a

ThreadGroup, 506
priority queue, 234
PriorityBlockingQueue class, 251, 845
PriorityQueue class, 235, 251, 805
private keys, 289

EncryptedPrivateKeyInfo class, 927
-keypass password option,

jarsigner, 329

private modifier, 124, 156
anonymous classes and, 153
class member visibility, 127
class members, 99, 125
constructors, 118
fields, 101
local classes and, 148
member class, applying to, 144
methods, 67

abstract modifier and, 129
inheritance and, 122

static member types and, 142
PrivateCredentialPermission class, 973
private-key encryption, 639, 938

Diffie-Hellman private key, 941
DSA private key, 709
RSA private key, 711

PrivateKey interface, 669
DSA, casting to, 709
RSAPrivateCrtKey, casting to, 711

PrivateKeyEntry class (KeyStore), 661
PrivilegedAction interface, 669
PrivilegedActionException, 670
PrivilegedExceptionAction, 670
probablePrime() (BigInteger), 219
procedures (see methods)
Process class, 295, 440, 482
ProcessBuilder class, 295, 440, 482
processes, 295

graphical interface to monitoring
tools (jconsole), 352

information about (jinfo), 357
jdb connections to, 354
listing running Java processes, 358
local, providing information about

(jstatd tool), 362
spawning and executing on native

system, 310
stack traces (jstack tool), 360

ProcessingInstruction interface
(DOM), 1049

profiling
Java interpreter options, 336
printing output to standard

output, 337
programmers

application, security for, 304
benefits of using Java, 6
system, security for, 304

1204 | Index

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

programming languages
C and C++ (see C and C++)
Java (see Java language)
lexically scoped, 150
Perl, regular expressions in, 212
strongly typed, 11

programs, Java, 17
classes as fundamental unit, 9
compiling, 8
complete, portability of, 311
defining and running, 94
dynamic, extensible, 5
lexical structure, 18–21

case sensitivity and
whitespace, 19

comments, 19
identifiers, 20
literals, 21
punctuation, 21
Unicode, 18

main() method, 10
overview, 18
running, 8

propagating exceptions, 57
properties, 128

JavaBean, 321
bound properties, 322
constrained properties, 323
conventions for, 322
indexed properties, 322
specialized subtypes, 321

Properties class, 233, 293, 806
invalid properties exception, 792

PropertyPermission class, 807
PropertyResourceBundle class, 808
system, listed, 500
XML transformation output, 1010

PropertyChangeEvent class, 321
PropertyChangeListener interface, 321

adding/removing listeners, 323
PropertyChangeSupport class, 323
propertyNames(), 806
PropertyVetoException class, 321, 324
protected modifier, 124, 157

anonymous classes and, 153
class members, 99, 125, 126
fields, 101
finalizer methods, 113
local classes and, 148
member class, applying to, 144
methods, 67
Object.clone(), 134

ProtectionDomain class, 639, 670
ProtectionParameter (KeyStore), 661
protocol, serialization, 418
ProtocolException, 568
provider() (SelectorProvider), 627
Provider class, 671
ProviderException class, 673
Provider.Service class, 673
Proxy class, 286, 529, 540, 568
ProxySelector class, 569
Proxy.Type class, 568
pseudo-random numbers, 218, 639, 809

Cipher class, 923
generating with Math class, 475
SecureRandom class, 674
SecureRandomSpi, 675

PSource class, 943
PSource.PSpecified class, 944
PSSParameterSpec class, 720
public modifier, 124, 157

anonymous classes and, 153
in class definitions, 99
class fields, 102
class members, 99, 125, 126
classes, 9

in Java files, 94
constructors, 118
fields, 101
finalizer methods, 113
local classes and, 148
member class, applying to, 144
methods, 67

interface, 135
JavaBeans, 321

public-key encryption, 939
Diffie-Hellman public key, 942
DSA public key, 709
RSA public key, 712
(see also cryptography)

PublicKey interface, 673
RSA, setting to, 707
RSAPublicKey, casting to, 712

punctuation characters
escaping, 23
identifier names and, 21
representing operators, 18
as tokens, 21

push(), 816
PushbackInputStream class, 427
PushbackReader class, 428

Index | 1205

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

put(), 251
AbstractMap class, 755
Buffer class, 587
ByteBuffer class, 589
HashMap class, 786
Hashtable class, 788
Map interface, 231, 801
Properties class, 806
Queue interface, 234, 235
TreeMap class, 820

putAll() (Map), 232, 801
PutField class, 416
putFields(), 415
putIfAbsent() (ConcurrentMap), 233
putValue() (SSLSocket), 962

Q
QName class, 1001
QuadraticSequence class, 238
qualified names (QName class), 1001
queues

BlockingQueue interface, 830
example of use, 242
implementations, 251

ConcurrentLinkedQueue, 833
DelayQueue class, 838
FIFO and LIFO, 234
insertion and removal

operations, 234
LinkedBlockingQueue, 844
PriorityBlockingQueue, 845
PriorityQueue class, 805
Queue and BlockingQueue

interfaces, 234–235
BlockingQueue, 234

Queue interface, 225, 751, 808
Collection methods, 226

ReferenceQueue, 527
SynchronousQueue, 850

quick reference material, generation
of, xxii

quoteChar() (StreamTokenizer), 433

R
\r (carriage return), 23
radians, 217
radiansToDegrees() (Circle), 103
random access to file contents, 270
Random class, 218, 809

random numbers
SecureRandom class, 674
SecureRandomSpi, 675
(see also pseudo-random numbers)

RandomAccess interface, 139, 225, 810
RandomAccessFile class, 253, 268, 385,

429
raw types, 163

using wildcard (?) instead of, for
generics, 167

RC2ParameterSpec class, 944
RC5ParameterSpec class, 945
read(), 873

DataInputStream class, 394
DigestInputStream class, 648
FileChannel class, 268, 607
FileInputStream class, 400
FilterReader class, 405
InputStream class, 385, 407
Manifest class, 874
PushbackInputStream class, 427
ReadableByteChannel, 606, 616
Reader class, 430
SelectableChannel interface, 617
Socket class, 572
SocketChannel class, 622

read, write, delete, and execute
permissions, 402

Readable interface, 215, 386, 440, 483
ReadableByteChannel interface, 266,

268, 616
Reader class, 254, 386, 430

charset encoder/decoder, 630
readExternal() (Externalizable), 397
readFields() (ObjectInputStream), 414
readFully() (DataInputStream), 394
reading

byte and character streams, 254
file contents, 252
(see also input/output)

readLine()
BufferedReader class, 386
DataInputStream class (deprecated

method), 389, 394
LineNumberReader class, 410

ReadLock class, 868
readObject(), 412, 415

ObjectInputStream class, 413, 414,
420

ObjectOutputStream class, 432
read-only buffers, 588, 590

1206 | Index

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

read-only collections, 236
read-only files, 397
ReadOnlyBufferException, 599
readUnsignedByte(), 394
readUnsignedShort(), 394
ReadWriteLock interface, 866
ready() (Reader), 430
readyOps() (SelectionKey), 619
receive()

DatagramChannel class, 605
DatagramSocket class, 556, 567

rectangular arrays, 81
red-black tree, 228, 233
redefineClasses()

(Instrumentation), 517
redirectErrorStream()

(ProcessBuilder), 483
redirection of system in, out, and err

streams, 500
ReentrantLock interface, 866
ReentrantReadWriteLock class, 867
ReentrantReadWriteLock.ReadLock

class, 868
ReentrantReadWriteLock.WriteLock

class, 869
reference types, 81–89

boxing and unboxing
conversions, 88

C language pointers vs., 96
comparing objects, 85
conversions, 86–89
copying objects, 83–85
defined by Java, 99
definitions, in Java programs, 18
enumerated (see enumerated types)
equality, testing for, 35
in operands, 31
instance of operator, using with, 40
interface (see interfaces)
memory allocation and garbage

collection, 86
naming and capitalization

conventions, 308
pass by value, 86
primitive types vs., 82

references, 526–529
cross references in doc

comments, 315
cross-references in doc

comments, 318
java.lang.ref package, 439

null, 74
PhantomReference class, 526
Reference class, 527
ReferenceQueue class, 527
SoftReference class, 528
to objects

object member access (.)
operator, 41

restoring with this pointer, 114
unused, causing memory

leaks, 112
weak references, 204

WeakReference class, 528
referent, 526
reflection, 283–286
Reflection API, 529–542

annotation support, 198
applets, security restrictions on, 302
changes in Java 5.0, 529
Class class, 529

Java 5.0 methods, 456
dynamic proxies, 286
@Inherited annotation type, 202
java.lang.reflect package, 204, 439
(see also Class class)

ReflectPermission class, 540
refresh()

Policy class, 668
Refreshable interface, 974

Refreshable interface, 974
RefreshFailedException, 974
regionMatches() (String), 492
register() (SelectableChannel), 617, 618
registering event listeners, 321, 325

for constrained properties, 323
methods, conventions for, 323
unicast event, 325

registerValidation(), 412, 414
regular expressions, 212–215, 899–909

java.util.regex package, 204, 751
Matcher class, 900–903
matches, Java vs. Perl, 213
MatchResult interface, 903
multiple matches, 214
Pattern class, 904–908

regular expression
syntax, 905–908

PatternSyntaxException, 908
search-and-replace operations, 213
strings, using with, 493

RejectedExecutionException, 846

Index | 1207

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

RejectedExecutionHandler
interface, 846

relational operators, 34
relativize() (URI), 579
RELAX NG (XML schema), 281
release() (Semaphore), 249
release of Java, specified for source

files, 346
remove()

AbstractList class, 754
AbstractMap class, 755
Collection interface, 227, 766
HashSet class, 787
Hashtable class, 788
Iterator interface, 753, 793
LinkedList class, 795
List interface, 229, 797
ListIterator interface, 798
Map interface, 231, 232, 801
Queue interface, 235
ReferenceQueue class, 527
Set interface, 228
TreeMap class, 820
TreeSet class, 821

remove methods, deregistering event
listeners, 321

removeAll()
Collection class, 766
List interface, 229
Map interface, 232

removeElementAt() (Vector), 824
removePropertyChangeListener(), 323
removeProvider() (Security), 676
removeValue() (SSLSocket), 962
removeVetoableChangeListener(), 323
renameTo() (File), 398
repetitive tasks, threads for, 241
replace()

String class, 492
StringBuffer class, 495

replaceAll() (String), 213, 493
replaceFirst() (String), 213, 493
requestPasswordAuthentication()

(Authenticator), 551, 566
reserved words, 20

(see also keywords), 116
reset(), 686

ByteArrayOutputStream class, 391
CharArrayReader class, 391
CharArrayWriter class, 392
InputStream class, 407

MessageDigest class, 664
Reader class, 430
SAXParser class, 1005
StringReader class, 435
Transformer class, 1011

resetSyntax() (StreamTokenizer), 433
resolve() (URI), 579
ResourceBundle class, 810
resources associated with a class, 458
resources for further information

examples in this book, xxi
quick reference material,

generating, xxii
related books, xx

ResponseCache class, 569
Result interface, 280, 1009
results, computing, 12
resume() (Thread), 502
retainAll()

Collection interface, 227, 766
List interface, 229
Map interface, 232

@Retention annotation, 200, 202, 514
retention (of an annotation), 193
RetentionPolicy class, 202
@return javadoc tag, 315
return statements, 13, 15, 55

switch statements, stopping, 47
return types, 31

covariant, 70
method overriding and, 120

return values, 10
comparison and relational

operators, 34
methods, data types for, 65

reverse() (Collections), 768
reverseOrder() (Collections), 767
rewind() (Buffer), 588
right shift operator (>>), signed, 29, 38

>>= (signed right shift assignment)
operator, 29

right shift operator (>>>), unsigned, 29
>>>= (unsigned right shift

assignment) operator, 29
right-to-left associativity, 30
root directories, listing, 397
root directory of generated

documentation, 317
rotate() (Collections), 768
rotateLeft() (Integer), 472
rotateRight() (Integer), 472

1208 | Index

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

rounding numbers
BigDecimal class and, 543
floating-point values when

converting to integers, 27
functions for, 217

RoundingMode class, 219, 548
RSA and DSA public and private

keys, 707
RSA PSS encoding (PKCS#1

standard), 720
RSAKey interface, 710
RSAKeyGenParameterSpec, 720
RSAMultiPrimePrivateCrtKeySpec, 721
RSAOtherPrimeInfo class, 721
RSAPrivateCrtKey interface, 711
RSAPrivateCrtKeySpec interface, 722
RSAPrivateKey interface, 712
RSAPrivateKeySpec class, 722
RSA-PSS signature (PKCS#1

standard), 719
RSAPublicKey interface, 707, 712
RSAPublicKeySpec interface, 722
RuleBasedCollator class, 747
run(), 238, 440

call() vs., 243
PrivilegedAction interface, 669
PrivilegedExceptionAction, 670
Runnable interface, 484
Thread class, 238, 502
TimerTask class, 818

runFinalization() (System), 500
Runnable interface, 238, 243, 250, 440,

484
getDelegatedTask(), 956
scheduling Runnable objects, 244

RUNNABLE thread, 239, 504
running Java programs, 8, 94
Runtime class, 440, 484

addShutdownHook(), 114, 297
exec(), portability conventions and

rules, 310
runtime environment, Java, 1, 4
RuntimeException, 68, 485
RuntimeMXBean interface, 524
RuntimePermission class, 486

S
sameFile() (URL), 581
sandbox, 301

SAX (Simple API for XML), 276,
1051–1076

javax.xml.transform package, 994
javax.xml.transform.sax

package, 1017–1020
org.xml.sax package, 1051–1064
org.xml.sax.ext package, 1064–1069
org.xml.sax.helpers

package, 1069–1076
parsing XML, 277
representing XML documents as

method call sequences, 280
validation, source documents, 1024
ValidatorHandler and, 1025

SAXException, 1060
SAXNotRecognizedException, 1060
SAXNotSupportedException, 1061
SAXParseException, 1061
SAXParser class, 277, 1005
SAXParserFactory class, 1006
SAXResult class, 1017
SAXSource class, 282, 1018
SAXTransformerFactory class, 1018
Scanner class, 215, 440, 751, 811–813

InputMismatchException, 792
ScatteringByteChannel, 266, 616
schedule() (Timer), 818
scheduleAtFixedRate() (Timer), 818
scheduledExecutionTime()

(TimerTask), 819
ScheduledExecutorService, 244, 847
ScheduledFuture interface, 244, 848
ScheduledThreadPoolExecutor, 848
scheduling tasks, 751
schemas, XML, 281

Schema class, 1022
SchemaFactory class, 1022
SchemaFactoryLoader class, 1023
specifying for parser, 1006

scientific notation, 25
scope, 12, 44

inheritance vs., for member
classes, 147

local classes, 149
local variables, local classes and, 150

sealed packages, 481
SealedObject class, 292, 935
search-and-replace operations, using

regular expressions, 213

Index | 1209

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

searching
arrays, 79, 224
collections elements, 237

SecretKey interface, 290, 936
SecretKeyEntry (KeyStore), 662
SecretKeyFactory class, 936
SecretKeyFactorySpi class, 937
SecretKeySpec class, 945
Secure Hash Algorithm (SHA), 370
secure hash (see message digests)
SecureCacheResponse class, 570
SecureClassLoader class, 674
SecureRandom class, 218, 639, 674
SecureRandomSpi class, 675
security, 5, 288–292, 299–307, 638–723

access control, 299, 301–304
applets, restrictions on, 301
file access, 402
fine-tuning trust levels, policies,

and permissions, 303
sandbox, 301

for application programmers, 304
architecture, 300
authentication and

authorization, 204, 970–993
authentication and

cryptography, 301
cryptography, 290–292
digital signatures, 289

SignedObject class, 290
digitally signed classes, 302
for end users, 305
Java VM

access restrictions, 300
byte-code verification, 300

java.security package, 204, 638–682
java.security.cert package, 682–707
java.security.interfaces

package, 707–712
java.security.spec package, 712–723
message digests, 256, 288
packets, sending/receiving, 556
permissions and policies (see

permissions; security policies)
risks, 300
secure HTTP (https: protocol), 258
Secure Sockets Layer (see SSL)
SecurityException, 486
SecurityManager (see

SecurityManager class)
for system administrators, 305

for system programmers, 304
system properties, granting access

to, 807
URLClassLoader class, 582

Security class, 676
security policies, 303

default, defined by system
administrators, 305

file permissions, 402
how they work, 303
implementation by

SecurityManager, 487
jstatd permissions, 362
NetPermission class, 566
Policy class, 668, 972
policytool, 369
ReflectPermission class, 541
RuntimePermission names, 486
system, user, and java.security.policy

policy files, 306
user-defined, augmenting or

replacing system policy, 305
SecurityManager class, 301, 487

default, automatically installing, 306
delegation of access requests to

AccessController, 303
getting and setting system

SecurityManager, 501
installing, 305
restrictions on applets, 302
use by FileInputStream class, 302

SecurityPermission class, 677
@see javadoc tags, 315, 318

package.html file, 319
seek() (RandomAccessFile), 429
select()

ProxySelector class, 569
Selector class, 251, 618, 620

SelectableChannel interface, 617
selectedKeys() (Selector), 618
SelectionKey class, 618
Selector class, 273, 620

IllegalSelectorException, 612
selector classes, 204

AbstractSelectionKey class, 626
AbstractSelector class, 627

SelectorProvider class, 627
self-reflection, 283
self-signed certificate authority

certificates, 366
Semaphore class, 249, 849

1210 | Index

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

semicolon (see ; under Symbols)
send()

DatagramChannel class, 605
DatagramSocket class, 556, 567

sendUrgentData() (Socket), 573
separator characters, 326

constants defined by File class, 397
directory, 311
line separators on different

platforms, 311
separators (tokens), 21
SequenceInputStream class, 431
sequential data (see input/output;

streams)
@serial javadoc tag, 316
@serialData javadoc tag, 316
@serialField javadoc tag, 316
Serializable interface, 139, 431

arrays, 75
implemented by collections and

maps, 227
SerializablePermission class, 432
serialization, 286

deserialization methods, ObjectInput
interface, 411

deserialization methods,
ObjectInputStream, 412–413

enumerated types, 191
Externalizable interface, using, 397
JavaBeans components, 287
NotSerializableException, 411
ObjectInputStream class, 386
ObjectInputStream.GetField

class, 413
ObjectInputValidation class, 414
ObjectOutput interface, 415
ObjectOutputStream class, 386, 415
ObjectOutputStream.PutField

class, 416
ObjectStreamClass class, 417
ObjectStreamConstants

interface, 418
ObjectStreamException, 419
ObjectStreamField class, 419
OptionalDataException, 420
SealedObject class, 292, 935
@serial javadoc tag, 316
SerializablePermission class, 432
SignedObject class, 290, 679
StreamCorruptedException, 433

warnings about inadequate
documentation, 346

writing data in addition to
default, 316

(see also Serializable interface)
serialPersistentFields field, 316, 412,

415
serialver program, 370
serialVersionUID field, 417
server sockets, factory classes for, 204
server version of VM (Sun

HotSpot), 332
servers, 261

blocking I/O and, 273
communicating directly with, using

sockets, 258
NonBlockingServer class

(example), 273–276
server-side networking, 272
ServerSocket class, 261, 272, 570
ServerSocketChannel class, 621
ServerSocketFactory class, 946
Service class (Provider), 673
service provider interface, 639

algorithm-parameter generation, 643
AlgorithmParameters, 644
CertificateFactory class, 687
CertificateFactorySpi, 687
CertPathBuilderSpi, 691
CertPathValidatorSpi, 693
CertStoreSpi, 695
channel and selector

implementations, 586
channels and selectors, 625–628
charset implementations, 586
charsets, 637
CipherSpi class, 926
ExemptionMechanismSPI, 929
for JAAS, 970
javax.crypto package, 921
KeyAgreementSpi class, 931
KeyFactorySpi, 655
KeyGeneratorSpi class, 933
KeyManagerFactorySpi, 953
KeyPairGeneratorSpi, 657
KeyStoreSpi, 663
KeyStoreSpi class, 663
LoginModule, for JAAS, 992
MacSpi class, 934
message-digest algorithms, 664
SecretKeyFactorySpi class, 937

Index | 1211

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

secure random number
generation, 675

SignatureSpi, 679
SSLContextSpi, 955
TrustManagerFactorySpi, 968

ServicePermission class, 985
servlets, 10
session IDs, SSL, 964
set(), 252

AbstractList class, 754
ArrayList class, 758
Calendar class, 763
Field class, 534
LinkedList class, 795
List interface, 229
ListIterator interface, 756, 798
ThreadLocal class, 507

Set interface, 225, 813
AbstractSet class, 757
Collection interface methods, 226
SortedSet interface, 816

set prefix, data accessor methods, 128
setAccessible() (AccessibleObject), 530,

540
setAllowUserInteraction(), 583
setAttribute()

(TransformerFactory), 1013
setBroadcast(), 556
setCalendar() (DateFormat), 734
setCertificateEntry() (KeyStore), 658
setCertPathCheckers(), 699
setCertStores(), 700
setCharAt() (StringBuffer), 496
setClassAssertionStatus(), 459
setConnectTimeout(), 583
setContentHandler(), 1020
setContentHandlerFactory(), 554
setContextClassLoader() (Thread), 502
setDaemon() (Thread), 502
setDatagramSocketImplFactory(), 558
setDefault()

Authenticator class, 551, 566
CookieHandler class, 554
ProxySelector class, 569
ResponseCache class, 569

setDefaultAllowUserInteraction(), 583
setDefaultAssertionStatus(), 459
setDefaultUncaughtException-

Handler(), 503, 505
setDefaultUseCaches(), 569, 583
setDoInput() (URLConnection), 583

setDoOutput() (URLConnection), 583
setDTDHandler(), 1020
setElementAt() (Vector), 824
setEnabledProtocols() (SSLSocket), 965
setEndRule() (SimpleTimeZone), 814
setEntry() (KeyStore), 658
setErr() (System), 500
setErrorHandler(), 1023
setErrorListener()

Transformer class, 1011
TransformerFactory class, 1013

setFeature()
SAXParserFactory class, 1006
SchemaFactory class, 1023
Validator class, 1024
XPathFactory class, 1029

setGroupingUsed(), 744
setHostnameVerifier(), 951
setIfModifiedSince(), 583
setIn() (System), 500
setInput() (Deflater), 912
setInterface() (MulticastSocket), 565
setKeepAlive() (Socket), 573
setKeyEntry() (KeyStore), 658
setLastModified() (File), 397
setLevel() (ZipOutputStream), 874, 919
setLineNumber(), 410
setLocale() (MessageFormat), 742
setLoopbackMode(), 565
setMaxCRLNumber(), 706
setMaximumFractionDigits(), 744
setMaxPathLength(), 698
setMaxPriority() (ThreadGroup), 506
setMethod(), 874

ZipOutputStream class, 919
setMinCRLNumber(), 706
setName()

NameCallback class, 980
Thread class, 502

setNeedClientAuth(), 961, 965
setNetworkInterface(), 565
setNode() (DOMResult), 1015
setOOBInline() (Socket), 573
setOption() (SocketOptions), 576
setOut() (System), 500
setOutputProperties()

(Transformer), 1010
setOutputProperty()

(Transformer), 1011
setPackageAssertionStatus(), 459
setParameter() (Transformer), 1011

1212 | Index

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

setPassword(), 980
setPolicy() (Policy), 668, 677
setPriority() (Thread), 502
setProperties()

System class, 500
TransformerHandler interface, 1020

setProperty()
Properties class, 806
SAXParser class, 1005
SchemaFactory class, 1023
System class, 807
System interface, 500
TransformerHandler interface, 1020
Validator class, 1024

setReadOnly() (File), 397
setReadTimeout(), 583
setReceiveBufferSize(), 556

ServerSocket class, 570
Socket class, 572

setRequestMethod(), 559
setResourceResolver(), 1023
setReuseAddress(), 556

ServerSocket class, 570
Socket class, 573

sets, 225
defined, 227
enumerated values, 225
hashtable-based, 225
immutable Set objects, 237
Set interface, 227

implementations, listed, 228
setSchema(), 1006
setSecurityManager() (System), 501
setSeed() (SecureRandom), 675
setSendBufferSize()

DatagramSocket class, 556
Socket class, 572

setSessionCacheSize(), 964
setSessionTimeout(), 964
setSoLinger() (Socket), 573
setSoTimeout()

DatagramSocket class, 556
ServerSocket class, 570
Socket class, 572

setStartRule() (SimpleTimeZone), 814
setStrength() (Collator), 733
setTcpNoDelay() (Socket), 573
setText() (BreakIterator), 729
setThreadCPUTimeEnabled(), 525
setTime()

Calendar class, 764
Date class, 222

setTimeToLive(), 565
setTimeZone() (DateFormat), 734
setTrafficClass() (Socket), 556, 573
setTrustAnchors(), 700
setUncaughtExceptionHandler(), 503,

505
setURIResolver()

Transformer class, 1011, 1015
TransformerFactory class, 1013

setUsageThreshold(), 522
setUseCaches(), 583
setValue() (Entry), 802
setVerbose()

(CompilationMXBean), 518
setWantClientAuth(), 961, 965
setXIncludeAware(), 1006
setXPathFunctionResolver(), 1029
setXPathVariableResolver(), 1029
severe() (Logger), 212
severity levels, log messages, 211
SHA (Secure Hash Algorithm), 370
shadowing superclass fields, 145
shallow copy, 84
shared file locks, 270
shared locks, 608
shift operators, 37

<< (left shift), 38
>> (signed right shift) operator, 38
combining with assignment (=)

operator, 39
listed, 29
return type, 31

short type, 22, 24
comparing to float type with ==

operator, 35
conversion to other primitive

types, 28
Short class, 25, 217, 439, 488
unsigned values, 394

ShortBuffer class, 600
ShortBufferException, 938
shuffle() (Collections), 768
shutdownInput() (Socket), 572
shutdownOutput() (Socket), 572
side effects

expression
in assertion expressions, 63
in expression statements, 42

of operators, 32
order of evaluation and, 32

sign() (Signature), 677
signalAll() (Condition), 248

Index | 1213

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Signature class, 639, 677
signature, class definition, 99

GenericSignatureFormatError, 535
SignatureException, 678
signatures, digital (see digital signatures)
signatures, method, 64–66

generic, reflection on, 538
implicit this parameter, 105
varargs, converting, 69

SignatureSpi class, 679
signed numbers, 24
signed right shift operator (>>), 29, 38
SignedObject class, 290, 639, 679
Signer class, 680
signum()

Integer class, 472
Math class, 476

simple class names, 91
SimpleDateFormat class, 747
SimpleFormatter class, 890
SimpleTimeZone class, 814
@since javadoc tags, 315

javadoc, ignoring in doc
comments, 346

package.html file, 319
single-line comments, 19
singleton() (Collections), 237, 768
singletonList() (Collections), 237, 768
singletonMap() (Collections), 237, 768
sinh() (Math), 476
sink() (Pipe), 614
SinkChannel class (Pipe), 615
size(), 756

AbstractCollection class, 753
AbstractList class, 754
CharArrayWriter class, 392
DataOutputStream class, 396
FileChannel class, 608
FileLock class, 610
Map interface, 801
Vector class, 824

skip()
InputStream class, 407
Reader class, 430
Scanner class, 215
ZipInputStream class, 919

skipBytes() (DataInputStream), 394
slashSlashComments(), 433
slashStarComments(), 433
sleep() (Thread), 241, 250, 502

socket(), 271
DatagramChannel class, 605
SocketChannel class, 622

SocketAddress class, 271, 574
UnresolvedAddressException, 624

SocketChannel class, 271, 272
SocketHandler class, 890
sockets

BindException, 552
client-side networking with

SocketChannel, 271
ConnectException, 553
DatagramSocket class, 555
DatagramSocketImpl class, 557
DatagramSocketImplFactory, 558
factory classes for creating, 204
handle to open socket, 399
InetSocketAddress, 563
MulticastSocket class, 565
networking classes, 549
nonblocking connections, 275
ProtocolException, 568
server-side networking (New I/O

API), 272
ServerSocket class, 272, 570
ServerSocketChannel, 621
ServerSocketFactory class, 946
Socket class, 258, 272, 572–574
SocketChannel, 622
SocketChannel class, 271
SocketException, 575
SocketFactory class, 947
SocketImpl class, 575
SocketImplFactory interface, 576
SocketOptions interface, 576
SocketPermission class, 577
SocketTimeoutException, 578
SSL (Secure Sockets Layer), 947–969
unable to connect to remote

host, 567
SoftReference class, 528
Solaris operating system

Java interpreter, 2
JDK, download site (Sun), 7
thread type for Java interpreter and

Classic VM, 333
sort()

Arrays class, 79, 224, 759
Collections class, 237, 767
static member imports and, 93

1214 | Index

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

SortedMap interface, 225, 815
TreeMap implementation, 233

SortedSet interface, 225, 816
interesting methods, 228
TreeSet class, 228

sorting collections elements, 237
source() (Pipe), 614, 615
-source 1.4 (javac command-line

argument), 61
source code

CodeSource class, 647
converting to ASCII, 366

source files
C language, for Java native

methods, 348
for classes being debugged, setting

for jdb, 354, 356
path, specifying for javac

compiler, 340
release of Java, specifying for, 346
search path for (javadoc), 347
specifying for javadoc to

process, 342
Source interface, 280, 1009
source keyword, 339
SourceChannel class (Pipe), 615
SourceLocator interface, 1009
spaces in doc comments, 313
special effects, threads for, 241
SPI (see service provider interface)
split() (String), 214, 493
SSL (Secure Sockets Layer), 204, 259,

947–969
SSLContext class, 948, 954
SSLContextSpi class, 955
SSLEngine class, 948, 955
SSLEngineResult class, 957
SSLEngineResult.HandshakeStatus, 957
SSLException, 959
SSLHandshakeException, 959
SSLKeyException, 959
SSLPeerUnverifiedException, 960
SSLPermission class, 960
SSLServerSocket class, 961
SSLServerSocketFactory, 962
SSLSession class, 962
SSLSessionBindingEvent, 963
SSLSessionBindingListener, 964
SSLSessionContext, 964
SSLSocket class, 961, 964
SSLSocketFactory, 966

Stack class, 231, 816
EmptyStackException, 774

stack traces
displaying for current or specified

threads, 357
for exceptions, 57
for threads, 503
jstack tool, 360

StackOverflowError, 489
stacks

LIFO queues, 234
LinkedList, using, 795

StackTraceElement class, 489
standard extensions, 89

additional information about, 204
portability conventions and

rules, 311
standard input, 399, 500
standard output, 399, 500

profiling output, printing to, 337
start()

ProcessBuilder, 483
Thread class, 239, 502

startElement() (SAXParser), 1005
startsWith() (String), 492
state

beans, 321
instance fields, 103
threads, 502, 504
writing complete object state to

serialization stream, 316
State class, 504
statements, 11, 18, 42–64

assert, 60–64
break, 54
compound, 14, 43
continue, 54
defined by Java, summary of, 42
do/while, 49
empty, 43
expression, 42
flow-control, 13

return statement, 13
for, 49
for/in, 50–54
if/else, 44–46

else if clause, 45
nested, 45

labeled, 43
local variable declaration, 43
return, 55

Index | 1215

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

switch, 46–48
synchronized, 55
throw, 56

exception types, 57
try/catch/finally, 58–60
while, 48

static initializers, 110
static (keyword), 10
static member types, 140, 141–143

features of, 142
implementation, 154
importing, 143
restrictions on, 143

static members, 99, 100
class fields, 102
generic types, 172
import static declaration, 184
methods, 102

static modifier, 157
abstract modifier and, 129
anonymous classes and, 153
class fields, 102
class methods, 102
fields, 101
interface methods and, 135
local classes and, 148
member classes and, 140
method lookup, 122
methods, 67

statistics, JVM (jstat tool), 360–362
Status class (SSLEngineResult), 958
stop() (Thread), 241, 502
store()

KeyStore class, 658
Properties class, 806

StreamCorruptedException, 433
StreamHandler class, 891
streams

byte stream classes in java.io, 385
channels and, 601
character stream classes, 386
CipherInputStream class, 925
CipherOutputStream class, 926
class resources, 458
close() method and Closeable

interface, 386
corrupted, 433
encrypting/decrypting, 292
FileOutputStream class, 401
filtering, 404

implementing Appendable
interface, 386

in, out, and err, 399, 500
InputStream class, 407
javax.xml.transform.stream

package, 995
LineNumberInputStream class

(deprecated), 410
output, flush() and Flushable

interface, 386
OutputStream class, 420
PipedInputStream class, 422
PipedOutputStream class, 422
reading primitive data types in binary

format, 393
SequenceInputStream class, 431
WriteAbortedException, 437
writing Java primitive types in

portable binary format, 395
writing serialized objects to, 287
XML documents, 1020–1022
(see also byte streams; character

streams; input/output)
StreamTokenizer class, 433
strictfp methods, 67
strictfp modifier, 100, 157
StrictMath class, 440, 490
string concatenation operator (+), 33
string literals, 73
strings, 205–217

arrays of, 10
basic operations on, 205
CharSequence and CharBuffer

interfaces, 207
comparing, 208
concatenating, 29, 33, 208, 496
converting characters to, 448
converting numbers to/from, 219
converting other data types to, 34
converting Short values to and

from, 488
converting to a double, 463
converting to and from bytes, 447
converting to and from integers, 25,

472
converting to long or Long, 474
DOMStringList, 1042
equality comparisons, 493
escape sequences in string literals, 24
formatting, 741
instanceof operator, using with, 40

1216 | Index

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

strings (continued)
manipulation methods, implemented

in machine code, 6
pattern matching with regular

expressions, 212–215
streaming data, reading from/writing

to, 257
String class, 73, 205, 491–495

compareTo() and equals(), 209
format(), 69, 211, 223, 491
intern(), 209
matches(), 213
split(), 214
Unicode supplementary

characters, 493
StringBuffer class, 206, 495–497

methods for CharSequence
objects, 496

StringBufferInputStream class, 434
StringBuilder class, 498
StringCharacterIterator class, 749
StringIndexOutOfBoundsException,

499
StringReader class, 435
StringWriter class, 257, 435
tokenizing

Scanner class, 215
StreamTokenizer, 433
StringTokenizer, 216, 817

Unicode, converting to/from
bytes, 204

StringTokenizer class, 216
strongly typed languages, 11
structs (C language), 96
stub files for C language Java native

method implementation, 349
subclasses, 99

of abstract classes
partial implementation, 138
implementing abstract

methods, 129
concrete, 129
constructors, 116
inheritance and, 114–123

access control, 126
constructor chaining and the

default constructor, 117
hiding superclass fields, 119
overriding superclass

methods, 120–123

subclasses, inheritance and (continued)
superclasses and Object

class, 116
Thread class, 238

subinterfaces, 136
Subject class, 974, 991
SubjectDomainCombiner class, 975
subList() (List), 229, 797
subMap() (SortedMap), 234, 815
submit() (ExecutorService), 244
subroutines (see methods)
subSequence(), 492

CharSequence interface, 455
StringBuffer class, 496

subSet() (SortedSet), 816
Subset class, 451
substring(), 492

StringBuffer class, 496
subtract() (BigDecimal), 543
subtraction operator (-), 14, 33
Sun Microsystems

HotSpot VM, 332
java, javax and sun, package names

beginning with, 90
Java packages controlled by, 90
JDK download site, 7

SunJCE cryptographic provider, 922
Diffie-Hellman key-agreement

algorithm, 930
key-generation

implementations, 932
message authentication

algorithms, 933
SecretKeyFactory implementations,

supporting, 936
SunJSSE provider, 952
SunX509 algorithm, 952
super(), 116, 117

vs. super keyword, 123
super keyword, 116, 119

overridden methods, invoking, 122
superclasses, 87, 99

containing class members,
accessing, 145

fields, hiding in subclasses, 119
inheritance by subclasses of method

implementations, 157
methods, overriding, 120–123
Object, class hierarchy and, 116

superinterfaces, 136

Index | 1217

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

supplementary characters
(Unicode), 19, 23, 209

Character class methods for, 448
String methods for, 493

@SuppressWarnings annotation, 164,
195, 440, 499

surrogate pairs (Unicode
characters), 19, 23, 209, 448

suspend() (Thread), 502
swap() (Collections), 768
switch statements, 46–48

assertions in, 62
case labels, 47
data types in, 46
enumerated types and, 181
restrictions on, 48

symmetric keys, 290, 936
generating, 932

SyncFailedException, 436
synchronized methods, 245

AtomicInteger vs., 252
collections, 768

synchronized modifier, 56, 67, 157
synchronized statements, 55

verifying lock with assert
statement, 63

synchronizedList() (Collections), 758,
795

synchronizedSet() (Collections), 787,
822

synchronizer utilities, 249
AbstractQueuedSynchronizer, 863
CountDownLatch, 836
CyclicBarrier, 837

synchronizing threads, 245
deadlock, avoiding, 247
IllegalMonitorStateException, 469
Object class methods, using, 479

SynchronousQueue class, 251, 850
system administrators, security for, 305
System class, 224, 440, 499–501

arraycopy(), 79, 224
currentTimeMillis(), 221
exit(), 59
getenv(), portability and, 310
identityHashCode(), 464
nanoTime(), 221, 500

system classes
javap tool, specifying search path

for, 350
path to search for (javah), 348
portable Java code and, 311

system preferences (see preferences)
system programmers, security for, 304
system properties

access by applets, restrictions
on, 302

java.security.manager, 306
Properties class, using for, 293
read/write access control, 807

system security policy, replacing with
user-defined, 306

System.err, 424
systemNodeForPackage()

(Preferences), 294
System.out, 424
System.out.println(), 106, 255

T
tabs, 13

\t escape sequence in char literals, 23
taglet classes, classpath for, 347
tags

doc comment
custom, 347
inline, within HTML text, 316
listing of, 314–318

HTML, in doc comments, 313
tailMap() (SortedMap), 234, 815
tailSet() (SortedSet), 816
take(), 251

BlockingQueue interface, 235
tanh() (Math), 476
@Target annotation, 201, 515
target (of an annotation), 193, 197
targets for permissions, 306, 369

NetPermission, 566
SSLPermission, 960

tasks
running and scheduling, 241–245
scheduling, 751

Templates interface, 1010, 1013
TemplatesHandler interface

(SAX), 1019
temporary files

creating, 398
deleting, 113

TERMINATED thread, 239, 504
terminating lines with platform-specific

separators, 311
ternary operator (?:), 29, 31, 39

1218 | Index

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

testing
assertions as tool for, 60
loop variables, 49
method argument values with assert

statement, 63
text, 205–217

appendability of text buffers and
output streams, 207

breaks in, 729
Character class, 206
CharSequence interface, 207
encoding/decoding with charsets (see

charsets)
formatting with printf() and format(

), 210
internationalized, 204, 724–749
logging API, 211
outputting to file, 255
pattern matching with regular

expressions, 212–215
reading from a file with

FileReader, 403
reading lines from a file, 254, 386
reading with FileInputStream, 400
representations of primitive data

types, 424
String class, 205
string comparison, 208
string concatenation, 208
StringBuffer class, 206
supplementary characters, 209
tokenizing, 215

StringTokenizer, 216
writing to a file, 255, 403
writing with FileOutputStream, 401

text editors, 8
Text interface (DOM), 279, 1049
TextInputCallback class, 981
TextOutputCallback class, 981
this(), 117

calling one constructor from
another, 108

field initialization code and, 109
this (keyword), 104

accessing hidden field through
vs. invoking overridden method

with super, 123
explicit reference to containing

instance of this object, 145
invoking one constructor from

another, 108
local classes, 149

Thread class, 238, 440, 502–504
holdsLock(), 63
interrupt(), 241
interrupted(), 250
new features in Java 5.0, 502
sleep(), 241
stop() (deprecated method), 241
UncaughtExceptionHandler, 502,

505
thread groups in debugging, 356
thread safety, collections, 236
ThreadFactory interface, 851
ThreadInfo class, 524
ThreadMXBean interface, 525
ThreadPoolExecutor class, 243,

851–853
AbortPolicy, 853
CallerRunsPolicy, 853
DiscardOldestPolicy, 854
DiscardPolicy, 854

threads, 238–252
atomic variables, 252
blocking queues, 251
coordinating, 247–250

synchronizer utilities, 249
wait() and notify(), 248
waiting for another to finish, 249
waiting on a Condition, 248

creating, running, and
manipulating, 238

handling uncaught
exceptions, 240

lifecycle, 239
priority levels, 240

deadlocked, 247
exclusion and locking, 245–247

deadlock, 247
locks package, 246

IllegalThreadStateException, 470
inheritance, 470
InterruptedException, 473
interrupting, 250
monitoring usage in the JVM, 525
piped communication between, 257,

385, 422, 614
running and scheduling

tasks, 241–245
Executor interface, 242
ExecutorService interface, 243
ScheduledExecutorService, 244

safety, 768

Index | 1219

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

selecting system threading type, 333,
335

sleeping, 241
stack size, setting for interpreter, 336
stack traces, displaying with jdb, 357
suspending execution with jdb, 356
synchronized methods, 67
synchronizing, 55

CountDownLatch, 836
CyclicBarrier, 837
IllegalMonitorStateException, 46

9
Object class methods, 479
verifying lock with assert, 63

terminating, 241
Thread class (see Thread class)
ThreadDeath error, 505
ThreadGroup class, 505
ThreadInfo class, 524
ThreadLocal class, 507

Thread.State class, 239, 504
Thread.UncaughtExceptionHandler

class, 505
throw statements, 56

declaring exceptions, 68
exception types, 57
switch statements, stopping, 47

Throwable interface, 57, 440, 507
getCause(), 437
getStackTrace(), 489

throwing exceptions, 16
throws clause, 66
@throws javadoc tag, 315
ticket (Kerberos), 984
time (see dates and times)
TIMED_WAITING thread, 239, 504
TimeoutException, 854
timeouts

setting for ServerSocket, 570
SSL sessions, 964
URLConnection, 583

Timer class, 242, 817
TimerTask class, 242, 818
Timestamp class, 680
time-to-live value, packets sent through

multicast sockets, 565
TimeUnit class, 221, 241, 854
TimeZone class, 819

SimpleTimeZone class, 814
toArray() (Collection), 237, 766

toBinaryString()
Integer class, 472
Long class, 474

toByteArray(), 391
toCharArray(), 493

CharArrayWriter class, 392
toChars() (Character), 448
toCodePoint() (Character), 448
toHexString()

Integer class, 472
Long class, 474

tokenizing text, 215
Scanner class, 751
specified input stream, 433
StringTokenizer, using, 216

tokens, 18
literals and variables, 28
punctuation characters used as, 21

toLowerCase(), 492
Character class, 448

toOctalString()
Integer class, 472
Long class, 474

tools, 326–371
apt (annotation processing) tool, 326
extcheck, 327
jar, 329–331
jarsigner, 328
java, 332–338
javac, 338–342
javadoc, 342–348
javah, 348
javap (class disassembler), 349–351
jconsole, 352
jdb debugger, 353–357
jinfo, 357
jmap, 358
jps, 358
jsadebugd, 359
jstack, 360
jstat, 360–362
jstatd daemon, 362
keytool, 362–366
native2ascii tool, 366
pack200, 366
policytool, 369
serialver, 370
unpack200, 371

TooManyListenersException, 321, 820
toPattern() (ChoiceFormat), 731

1220 | Index

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

toString(), 34
Annotation interface, 512
Arrays class, 79
Byte class, 447
ByteArrayOutputStream class, 391
ByteBuffer class, 591
ByteOrder class, 592
Character class, 448
CharArrayWriter class, 392
CharSequence interface, 455
Collection interface, 226
Date class, 222, 223
Enum class, 464
enumerated types, 180
Integer class, 472
Long class, 474
Map interface, 232
MessageFormat class, 742
Object class, 132, 480
Short class, 488
StringBuffer class, 496
StringWriter class, 435
Subset class, 451

totalMemory(), 484
toUpperCase()

Character class, 23, 448
String class, 492

toURI() (File), 397
toURL() (URI), 579
traceInstructions(), 484
traceMethodCalls(), 484
traffic class for a socket, 573
transferFrom() (FileChannel), 269, 607
transferTo() (FileChannel), 269, 607
transform()

ClassFileTransformer, 516
Transformer class, 1011

transformations (see XML)
Transformer class, 280, 1011
TransformerConfiguration-

Exception, 1012
TransformerException, 1012
TransformerFactory class, 280, 1013
TransformerFactoryConfiguration-

Error, 1014
TransformerHandler interface

(SAX), 1020
transient fields, object serialization

and, 316
transient modifier, 157

fields, 101

tree representation of XML
documents, 276, 278

TreeMap class, 233, 820
trees (red-black tree structure), 228
TreeSet class, 228, 821
trigonometric functions, 217, 476
trim() (String), 493
trimToSize() (ArrayList), 758
triple-DES key, 940
truncate() (FileChannel), 608
trust anchor, 688, 699

PKIXParameters, 700
trust, fine-grained levels in Java 1.2, 303
trust manager, X509 certificates, 969
TrustAnchor class, 702
TrustedCertificateEntry (KeyStore), 662
TrustManager interface, 967
TrustManagerFactory class, 967
TrustManagerFactorySpi, 968
truth values (see boolean type)
try clause, 59
try/catch/finally statements, 58–60
tryLock() (FileChannel), 608
TSA (Timestamping Authority), 680
tutorial, Java programming, 15
twos-complement format, representing

negative numbers, 37
type conversions

() (cast) operator, 29, 41
array type widening conversions, 75
boxing and unboxing, xvii, 69, 88,

159
buffers of bytes to buffers of

characters, 263
byte to character, 393, 403, 407
character to byte, 393

OutputStreamWriter, 421
PrintWriter class, 426

collections to/from arrays, 237
converting types to strings, 34
Formatter class, 779–782
inheritance and, 115
int to string or Integer, 472
numbers to/from strings, 219
objects to byte streams, 286
primitive types, 26

listing of, 27
reference types, 86–89
Short values to and from other

types, 488
strings to and from longs, 474

Index | 1221

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

strings to char values, 493
Unicode strings to/from bytes, 204

type inference, 174
Type interface, 529, 541
type literals, 74
type parameters

access to, 535
annotation types and, 200
generic method, specification of, 173
generics, using without, 163
wildcards, using, 166–169

type safety
enumerated types, 179
runtime, 165
typesafe enum pattern, 190

type variables, 160
typedef keyword (C language), 97
TypeInfo interface (DOM), 1050
TypeInfoProvider class, 1024
types (see data types)
typesafe collections (see generic types)
TypeVariable interface, 541

U
unary operators, 29

~ (bitwise complement), 37
! (boolean NOT) operator, 36
- (negation) operator, 33
operand number and type, 31
right-to-left associativity, 30

unbounded wildcards, 542
unboxing conversions (see boxing and

unboxing conversions)
uncaught exceptions in threads, 240,

505, 506
UncaughtExceptionHandler, 505
unchecked exceptions, 68
unchecked warnings, raw types

and, 163
UndeclaredThrowableException, 536,

542
unicast events, 321

registering listener for, 325
Unicode, 6, 18

byte-to-character conversions, 403,
407

char data type, 22
characters in Java names, 309
CharBuffer class, 593
converting strings to/from bytes, 204
currency symbols in identifiers, 20

escape sequences, 19
escaping in char literals, 23
IllegalFormatCodePointException, 7

90
native2ascii tool and, 366
subsets of, 451

UnicodeBlock class, 452–454
supplementary characters, 209

Character class methods for, 448
String methods for, 493

UTF-8 encoding, 19, 267, 394
converting Latin-1 to, 270
malformed strings, 436
writing with

DataOutputStream, 396
UTFDataFormatException, 436
Version 3.0 Bidirectional

Algorithm, 728
versions, 23

union type (C language), 96
Universal Time (UTC), 221
Universal Unique Identifier

(UUID), 823
Unix

classpath, specifying, 338
emacs text editor, 8
file and path separators, 326
Java interpreter, 2
pipes, 614
root directory, 397
threads for Java interpreter and

Classic VM, 333
UnknownError, 509
UnknownFormatConversionException,

822
UnknownFormatFlagsException, 823
UnknownHostException, 578
UnknownServiceException, 578
UnmappableCharsetException, 636
unmodifiable methods (Collection), 768
UnmodifiableClassException, 517
unnamed packages, 90
unordered collection with duplicate

elements (bag), 754
unpack200 tool, 371
Unpacker interface (Pack200), 876
unread()

PushbackInputStream class, 427
PushbackReader class, 428

UnrecoverableEntryException, 681
UnrecoverableKeyException, 681

1222 | Index

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

UnresolvedAddressException, 624
UnresolvedAddressTypeException, 624
UnresolvedPermission class, 681
UnsatisfiedLinkError, 509
unsigned right shift operator (>>>), 29,

38
unsigned values, reading and returning

as int values, 394
UnsupportedCallbackException, 982
UnsupportedCharsetException, 636
UnsupportedClassVersionError, 509
UnsupportedEncodingException, 436
UnsupportedOperationException, 510,

766, 768, 793
until loops, 14
untrusted code, 299–304

access control, 299
fine-grained levels in Java 1.

2, 303
sandbox (Java 1.0), 301

application programming, use
in, 305

byte-code verification of class
files, 300

unwrap() (SSLEngine), 955, 958
update()

Checksum interface, 911
Cipher class, 924
MessageDigest class, 648, 664
Observable class, 804
Observer interface, 805
Signature class, 677

upper-bounded wildcards, 178
URIs (Uniform Resource Identifiers)

URI class, 578
URIResolver interface, 1015
URISyntaxException, 580
XML namespaces, 995

URLs (Uniform Resource Locators)
https:, 948
HttpsURLConnection, 951
HttpURLConnection class, 559
JarURLConnection, 564
javadoc-generated documents, 345
keystore file, 329
MalformedURLException, 564
URL class, 258, 549, 580

caching retrieved network
resources, 569

URLClassLoader class, 285, 582
permissions to loaded code, 305

URLConnection class, 583–585, 948
caching retrieved network

resources, 569
URLDecoder class, 585
URLEncoder class, 585
URLStreamHandler class, 569

US-ASCII charset, 267
useProtocolVersion(), 418
user preferences (see preferences)
UserDataHandler interface

(DOM), 1050
username and password,

encapsulating, 567
userNodeForPackage()

(Preferences), 294
users, security for, 305
UTC (Universal Time), 221
UTF-8 (see Unicode)
UTFDataFormatException, 436
utility classes, 750–920

packages, 204
UUID class, 823

V
validate()

CertPathValidator class, 691, 693,
699

Validator class, 282, 1024
validateObject(), 409

ObjectInputValidation class, 414
validation, XML documents, xviii, 281,

995, 1022–1026
javax.xml.validation package, 277
Schema class, 1022
SchemaFactory class, 1022
SchemaFactoryLoader class, 1023
TypeInfoProvider class, 1024
Validator class, 1024
ValidatorHandler class, 1025

validOps()
DatagramChannel class, 606
Pipe.SourceChannel class, 616
SelectableChannel class, 615

value() (Target), 515
{@value} javadoc tag, 318

cross references, 318
{@value reference} javadoc tag, 318
valueBound(), 964
valueOf()

Byte class, 447
Double class, 463

Index | 1223

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

Enum class, 464
enumerated types, 180, 191
Integer class, 472
Long class, 474
QName class, 1001
Short class, 488

values
annotation, 197
enumerated, 179

values(), 191
Map interface, 233, 801

value-specific class bodies (enumerated
types), 186–189

valueUnbound(), 964
varargs (see variable-length argument

lists)
variable-length argument lists, xvii, 69,

159
Constructor class support for, 533
differences in Java and C, 97
Method class, 538
Object... parameter, 70

variables, 11, 28
accessible to local classes, 149
assigning values to, 11
declaring

C compatibility syntax, 76
Java vs. C language, 96
placement of, 14

fields vs., 102
final modifier, 156
IllegalAccessError, 468
incrementing as side effect of ++

operator, 32
initializing, field declarations

versus, 109
local, 43

naming and capitalization, 309
local scope, local classes and, 150
loop

for/in loops, 51
initializing, testing, and

updating, 49
scope of, 12, 44
storing objects in, 72
thread-local, 507
type, 160
variable type for operands, 31
XPath, 1031

vars keyword, 339

Vector class, 225, 231, 824
verify()

Certificate class, 683
HostnameVerifier class, 951
Signature class, 677
SignedObject class, 679
X509Certificate class, 702
X509CRL class, 705

VerifyError class, 510
verifying byte code for untrusted

classes, 300
verifying digital signatures, 290

jarsigner tool, 328
@version javadoc tag, 314
versions

class or classes, displaying for, 370
Java, 3

1.2, security advances in, 5
cross-compilation, 341
(see also Java 5.0)

Java interpreter, 332, 334
package specification and

implementation, 481
specifying in @since javadoc

tag, 315
VetoableChangeListener class, 321, 323
VetoableChangeSupport class, 324
virtual functions (C++), 122
Virtual Machine, Java (see JVM)
virtual method invocation, 122
VirtualMachineError, 510
visibility

class members, 126
local classes, 148
members, working with, 530

visibility modifiers
nonstatic member classes, 144
rules for using, 126
(see also private modifier; protected

modifier; public modifier)
Void class, 511
void keyword, 10, 55, 65
volatile fields, 101, 252
volatile modifier, 157

W
W3C (World Wide Web Consortium)

DOM API (see DOM)
DOM (Document Object

Model), 276
W3C XML Schema, 281, 1022, 1050

1224 | Index

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

wait(), 239, 250
Object class, 248, 469, 479, 502

waitFor(), 482
WAITING thread, 239, 504
wakeup() (Selector), 620
waking threads, 250
warning() (Logger), 212
warnings

options for javac compiler, 340
turning off with

@SuppressWarnings, 195,
499

unchecked, raw types and, 163
weak references, package for, 204
WeakHashMap class, 233, 529, 826
WeakReference class, 528
while loops, 14, 48

continue statement, starting new
iteration, 55

continue statement used in, 60
whitespace, 19

for readability in programs, 13
whitespaceChars(), 433
widening conversions, 26

among reference types, 130
array type, 75
reference types, 86

width (format specifier), 783
illegal, 792

wildcards
bounded

in generic methods, 172
in parameterized types, 168

file permissions, 402
in generic types, 171, 178
NetPermission targets, 566
on-demand type imports, 91
type parameter, 166–169

WildcardType interface, 542
Windows platforms, 2

classpath, setting, 338
file and path separators, 326
file permission wildcards, 402
Java interpreter, 2, 332
JDK, downloading from Sun

Microsystems, 7
Notepad and WordPad text

editors, 8
root directories, 397

wordChars() (StreamTokenizer), 433
WordPad, 8

World Wide Web Consortium (see
W3C)

wrap()
ByteBuffer class, 589
CharBuffer class, 593
DoubleBuffer class, 595
FloatBuffer class, 596
IntBuffer class, 597
ShortBuffer class, 600
SSLEngine class, 955, 958

wrapper methods (collection), 236
WritableByteChannel interface, 266,

268, 615, 624
write(), 874

CharArrayWriter class, 392
DataOutputStream class, 396
DigestOutputStream class, 649
FileChannel class, 268, 607
FileOutputStream class, 401
FilterWriter class, 406
GatheringByteChannel, 615
GatheringByteChannel class, 611
Manifest class, 874
OutputStream class, 386, 420
PrintWriter class, 426
PutField class, 417
SelectableChannel interface, 617
SocketChannel class, 622
StringWriter class, 435
WritableByteChannel, 606, 615, 624
Writer class, 437

“Write once, run anywhere”, 4, 310
write permission, 402
WriteAbortedException, 437
writeExternal() (Externalizable), 316,

397
WriteLock class, 869
writeObject(), 316, 415

ObjectOutputStream class, 417, 432
Writer class, 254, 386, 437

charset encoder/decoder, 630
writeReplace() (Certificate), 684
writeTo() (CharArrayWriter), 392
writeUTF(), 396
writing byte and character streams (see

input/output)

X
X.500 certificates, distinguished

name, 364
X.500 principals, 970, 992

Index | 1225

This is the Title of the Book, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

X500Principal class, 992
X500PrivateCredential class, 993
X509Certificate class, 682, 702
X509CRL class, 682, 705
X509CRLEntry class, 706
X509CRLSelector class, 706
X509EncodedKeySpec interface, 723
X509ExtendedKeyManager class, 968
X509Extension interface, 707
X509KeyManager class, 968
X509KeyManager interface, 968
X509TrustManager interface, 969
XInclude markup, 1006
XML, 276–283, 994–1031

data types, 995–1000
DatatypeConfigurationException,

996
DatatypeConstants, 996
DatatypeConstants.Field, 997
DatatypeFactory, 997
Duration class, 998
XMLGregorianCalendar, 999

DTD (Document Type
Definition), 1037

invalid properties exception, 792
namespaces, 1000

NamespaceContext, 1000
QName class, 1001

packages, 204, 994
new, in Java 5.0, xviii

parsers, 1001–1007
parsing with DOM, 278
parsing with SAX, 277
preference names and values as XML

file, 295
transformations, 204, 277, 280,

1007–1015
DOM, 1015–1016
SAX, 1017–1020
streams, 1020–1022

validation, 281, 1022–1026
XMLConstants class, 995
XPath expressions, xviii, 283,

1026–1031
(see also DOM; SAX)

XMLDecoder class, 287
XMLEncoder class, 287
XMLFilter interface (SAX), 1062
XMLFilterImpl class (SAX), 1074
XMLFormatter class, 891

XMLReader interface (SAX), 277,
1062–1064

XMLReaderAdapter class (SAX), 1075
XMLReaderFactory class (SAX), 1076
XOR operator

^ (bitwise XOR), 29, 38
^= (bitwise XOR assignment), 29,

39
^ (boolean XOR), 29, 37

XPath, xviii, 283, 1026–1031
javax.xml.xpath package, 995
Xpath class, 1026
XPathConstants class, 1027
XPathException, 1027
XPathExpression class, 1028
XPathExpressionException, 1028
XPathFactory class, 1029
XPathFactoryConfiguration-

Exception, 1029
XPathFunction interface, 1030
XPathFunctionException, 1030
XPathFunctionResolver, 1030
XPathVariableResolver, 1031

<xsl:output> tag, 1008, 1011
<xsl:param> tags, 1011
XSLT

java.xml.transform package, 280
stylesheets, 1013

applying to XML document, 281
obtaining for XML

documents, 1013
Templates, 1010

transformation engine, 204
transforming XML documents, 277

Y
yield() (Thread), 502

Z
zero (0)

division by, 33
negative and positive zero, 26
represented by float and double

types, 26
zero extension technique, 38
ZIP files, 204, 255, 751, 909–920

JAR files vs., 869
reading, 256

About the Author

David Flanagan is a computer programmer who spends most of his time
writing about Java and JavaScript. His other books with O’Reilly include Java
Examples in a Nutshell, Java Foundation Classes in a Nutshell, and Javascript: The
Definitive Guide. David has a degree in computer science and engineering from
the Massachusetts Institute of Technology. He lives with his family in the U.S.
Pacific Northwest, between the cities of Seattle, Washington and Vancouver,
British Columbia.

Colophon

Our look is the result of reader comments, our own experimentation, and feedback
from distribution channels. Distinctive covers complement our distinctive approach
to technical topics, breathing personality and life into potentially dry subjects.

The animal on the cover of Java in a Nutshell, Fifth Edition is a Javan tiger, a
subspecies unique to the island of Java. Although this tiger once offered unrivaled
research opportunities due to its genetic isolation, these opportunities have been
permanently lost due to human encroachment on the Javan tiger’s habitat: in a
worst-case scenario for the tiger, Java developed into the most densely populated
island on earth, and awareness of the subspecies’ precarious position came too
late to secure the animals’ survival even in captivity. The last known sighting of
the tiger was in 1972, and it is now presumed extinct.

Jamie Peppard was the production editor and proofreader for Java in a Nutshell,
Fifth Edition. Sarah Sherman, Darren Kelly, and Claire Cloutier provided quality
control. Ellen Troutman Zaig wrote the index.

Edie Freedman designed the cover of this book. The cover image is a 19th-century
engraving from the Dover Pictorial Archive. Emma Colby produced the cover
layout with Adobe InDesign CS using Adobe’s ITC Garamond font.

David Futato designed the interior layout. This book was converted by Andrew
Savikas, Joe Wizda, and Ryan Grimm to FrameMaker 5.5.6 with a format conver-
sion tool created by Erik Ray, Jason McIntosh, Neil Walls, and Mike Sierra that
uses Perl and XML technologies. The text font is Linotype Birka; the heading font
is Adobe Myriad Condensed; and the code font is LucasFont’s TheSans Mono
Condensed. The illustrations that appear in the book were produced by Robert
Romano and Jessamyn Read using Macromedia FreeHand 9 and Adobe Photo-
Shop 6. Jamie Peppard wrote this colophon.

	Table of Contents
	apt� 326
	extcheck� 327
	jarsigner� 328
	jar� 329
	java� 332
	javac� 338
	javadoc� 342
	javah� 348
	javap� 349
	javaws� 351
	jconsole� 352
	jdb� 353
	jinfo� 357
	jmap� 358
	jps� 358
	jsadebugd� 359
	jstack� 359
	jstat� 360
	jstatd� 362
	keytool� 362
	native2ascii� 366
	pack200� 366
	policytool� 368
	serialver� 370
	unpack200� 370

	Preface
	Changes in the Fifth Edition
	Contents of This Book
	Related Books
	Examples Online
	Conventions Used in This Book
	Request for Comments
	How the Quick Reference Is Generated
	Acknowledgments

	I
	Chapter 1. Introduction
	What Is Java?
	The Java Programming Language
	The Java Virtual Machine
	The Java Platform
	Versions of Java

	Key Benefits of Java
	Write Once, Run Anywhere
	Security
	Network-Centric Programming
	Dynamic, Extensible Programs
	Internationalization
	Performance
	Programmer Efficiency and Time-to-Market

	An Example Program
	Compiling and Running the Program
	Analyzing the Program
	Comments
	Defining a class
	Defining a method
	Declaring a variable and parsing input
	Computing the result
	Displaying output
	The end of a method
	Blank lines
	Another method
	Checking for valid input
	An important variable
	Looping and computing the factorial
	Returning the result

	Exceptions

	Chapter 2. Java Syntax from the Ground Up
	Java Programs from the Top Down
	Lexical Structure
	The Unicode Character Set
	Case-Sensitivity and Whitespace
	Comments
	Reserved Words
	Identifiers
	Literals
	Punctuation

	Primitive Data Types
	The boolean Type
	The char Type
	Strings
	Integer Types
	Floating-Point Types
	Primitive Type Conversions

	Expressions and Operators
	Operator Summary
	Precedence
	Associativity
	Operand number and type
	Return type
	Side effects
	Order of evaluation

	Arithmetic Operators
	String Concatenation Operator
	Increment and Decrement Operators
	Comparison Operators
	Boolean Operators
	Bitwise and Shift Operators
	Assignment Operators
	The Conditional Operator
	The instanceof Operator
	Special Operators

	Statements
	Expression Statements
	Compound Statements
	The Empty Statement
	Labeled Statements
	Local Variable Declaration Statements
	The if/else Statement
	The else if clause

	The switch Statement
	The while Statement
	The do Statement
	The for Statement
	The for/in Statement
	Iterable and iterator
	What for/in cannot do

	The break Statement
	The continue Statement
	The return Statement
	The synchronized Statement
	The throw Statement
	Exception types

	The try/catch/finally Statement
	try
	catch
	finally

	The assert Statement
	Compiling assertions
	Enabling assertions
	Using assertions

	Methods
	Defining Methods
	Method Modifiers
	Declaring Checked Exceptions
	Variable-Length Argument Lists
	Covariant Return Types

	Classes and Objects Introduced
	Defining a Class
	Creating an Object
	Using an Object
	Object Literals
	String literals
	Type literals
	The null reference

	Arrays
	Array Types
	Array type widening conversions
	C compatibility syntax

	Creating and Initializing Arrays
	Array initializers

	Using Arrays
	Accessing array elements
	Array bounds
	Iterating arrays
	Copying arrays
	Array utilities

	Multidimensional Arrays

	Reference Types
	Reference vs. Primitive Types
	Copying Objects
	Comparing Objects
	Terminology: Pass by Value
	Memory Allocation and Garbage Collection
	Reference Type Conversions
	Boxing and Unboxing Conversions

	Packages and the Java Namespace
	Package Declaration
	Globally Unique Package Names
	Importing Types
	Naming conflicts and shadowing

	Importing Static Members
	Static member imports and overloaded methods

	Java File Structure
	Defining and Running Java Programs
	Differences Between C and Java

	Chapter 3. Object-Oriented Programming in Java
	Class Definition Syntax
	Fields and Methods
	Field Declaration Syntax
	Class Fields
	Class Methods
	Instance Fields
	Instance Methods
	How instance methods work
	Instance methods or class methods?

	Case Study: System.out.println(��)

	Creating and Initializing Objects
	Defining a Constructor
	Defining Multiple Constructors
	Invoking One Constructor from Another
	Field Defaults and Initializers
	Initializer blocks

	Destroying and Finalizing Objects
	Garbage Collection
	Memory Leaks in Java
	Object Finalization

	Subclasses and Inheritance
	Extending a Class
	Final classes

	Superclasses, Object, and the Class Hierarchy
	Subclass Constructors
	Constructor Chaining and the Default Constructor
	The default constructor
	Finalizer chaining?

	Hiding Superclass Fields
	Overriding Superclass Methods
	Overriding is not hiding
	Dynamic method lookup
	Final methods and static method lookup
	Invoking an overridden method

	Data Hiding and Encapsulation
	Access Control
	Access to packages
	Access to classes
	Access to members
	Access control and inheritance
	Member access summary

	Data Accessor Methods

	Abstract Classes and Methods
	Important Methods of java.lang.Object
	toString()
	equals(��)
	hashCode(��)
	Comparable.compareTo(��)
	clone()

	Interfaces
	Defining an Interface
	Extending interfaces

	Implementing an Interface
	Implementing multiple interfaces

	Interfaces vs. Abstract Classes
	Marker Interfaces
	Interfaces and Constants

	Nested Types
	Static Member Types
	Features of static member types
	Restrictions on static member types
	Syntax for static member types

	Nonstatic Member Classes
	Features of member classes
	Restrictions on member classes
	Syntax for member classes
	Scope versus inheritance

	Local Classes
	Features of local classes
	Restrictions on local classes
	Syntax for local classes
	Scope of a local class
	Local variables, lexical scoping, and closures

	Anonymous Classes
	Features of anonymous classes
	Restrictions on anonymous classes
	Syntax for anonymous classes
	When to use an anonymous class
	Anonymous class indentation and formatting

	How Nested Types Work
	Static member type implementation
	Nonstatic member class implementation
	Local and anonymous class implementation

	Modifier Summary
	C++ Features Not Found in Java

	Chapter 4. Java 5.0 Language Features
	Generic Types
	Typesafe Collections
	Understanding Generic Types
	Raw types and unchecked warnings
	The parameterized type hierarchy
	Runtime type safety
	Arrays of parameterized type

	Type Parameter Wildcards
	Bounded wildcards

	Writing Generic Types and Methods
	Type variable bounds
	Wildcards in generic types
	Generic methods
	Invoking generic methods
	Generic methods and arrays
	Parameterized exceptions

	Generics Case Study: Comparable and Enum

	Enumerated Types
	Enumerated Types Basics
	Enumerated types are classes
	Features of enumerated types

	Using Enumerated Types
	Enums and the switch statement
	EnumMap
	EnumSet

	Advanced Enum Syntax
	The class body of an enumerated type
	Implementing an interface
	Value-specific class bodies
	Restrictions on enum types

	The Typesafe Enum Pattern

	Annotations
	Annotation Concepts and Terminology
	Using Standard Annotations
	Override
	Deprecated
	SuppressWarnings

	Annotation Syntax
	Annotation member types and values
	Annotation targets
	Annotations and defaults

	Annotations and Reflection
	Defining Annotation Types
	Meta-Annotations
	Target
	Retention
	Documented
	Inherited

	Chapter 5. The Java Platform
	Java Platform Overview
	Text
	The String Class
	The Character Class
	The StringBuffer Class
	The CharSequence Interface
	The Appendable Interface
	String Concatenation
	String Comparison
	Supplementary Characters
	Formatting Text with printf() and format(��)
	Logging
	Pattern Matching with Regular Expressions
	Tokenizing Text
	StringTokenizer

	Numbers and Math
	Mathematical Functions
	Random Numbers
	Big Numbers
	Converting Numbers from and to Strings
	Formatting Numbers

	Dates and Times
	Milliseconds and Nanoseconds
	The Date Class
	The Calendar Class
	Formatting Dates and Times

	Arrays
	Collections
	The Collection Interface
	The Set Interface
	The List Interface
	The Map Interface
	The Queue and BlockingQueue Interfaces
	Collection Wrappers
	Special-Case Collections
	Converting to and from Arrays
	Collections Utility Methods
	Implementing Collections

	Threads and Concurrency
	Creating, Running, and Manipulating Threads
	Thread lifecycle
	Thread priorities
	Handling uncaught exceptions

	Making a Thread Sleep
	Running and Scheduling Tasks
	Scheduling tasks with Timer
	The Executor interface
	ExecutorService
	ScheduledExecutorService

	Exclusion and Locks
	The java.util.concurrent.locks package
	Deadlock

	Coordinating Threads
	wait(��) and notify()
	Waiting on a Condition
	Waiting for a thread to finish
	Synchronizer utilities

	Thread Interruption
	Blocking Queues
	Atomic Variables

	Files and Directories
	RandomAccessFile

	Input/Output with java.io
	Reading Console Input
	Reading Lines from a Text File
	Writing Text to a File
	Reading a Binary File
	Compressing Data
	Reading ZIP Files
	Computing Message Digests
	Streaming Data to and from Arrays
	Thread Communication with Pipes

	Networking with java.net
	Networking with the URL Class
	Working with Sockets
	Secure Sockets with SSL
	Servers
	Datagrams
	Testing the Reachability of a Host

	I/O and Networking with java.nio
	Basic Buffer Operations
	Basic Channel Operations
	Encoding and Decoding Text with Charsets
	Working with Files
	Client-Side Networking
	Server-Side Networking
	Nonblocking I/O

	XML
	Parsing XML with SAX
	Parsing XML with DOM
	Transforming XML Documents
	Validating XML Documents
	Evaluating XPath Expressions

	Types, Reflection, and Dynamic Loading
	Class Objects
	Reflecting on a Class
	Dynamic Class Loading
	Dynamic Proxies

	Object Persistence
	Serialization
	JavaBeans Persistence

	Security
	Message Digests
	Digital Signatures
	Signed Objects

	Cryptography
	Secret Keys
	Encryption and Decryption with Cipher
	Encrypting and Decrypting Streams
	Encrypted Objects

	Miscellaneous Platform Features
	Properties
	Preferences
	Processes
	Management and Instrumentation

	Chapter 6. Java Security
	Security Risks
	Java VM Security and Class File Verification
	Authentication and Cryptography
	Access Control
	Java 1.0: The Sandbox
	How the sandbox works

	Java 1.1: Digitally Signed Classes
	Java 1.2: Permissions and Policies
	How policies and permissions work

	Security for Everyone
	Security for System Programmers
	Security for Application Programmers
	Security for System Administrators
	Security for End Users

	Permission Classes

	Chapter 7. Programming and Documentation Conventions
	Naming and Capitalization Conventions
	Portability Conventions and Pure Java Rules
	Java Documentation Comments
	Structure of a Doc Comment
	Doc-Comment Tags
	Inline Doc Comment Tags
	Cross-References in Doc Comments
	Doc Comments for Packages

	JavaBeans Conventions
	Bean Basics
	Bean Classes
	Properties
	Indexed Properties
	Bound Properties
	Constrained Properties
	Events

	Chapter 8. Java Development Tools
	apt
	extcheck
	jarsigner
	jar
	java
	javac
	javadoc
	javah
	javap
	javaws
	jconsole
	jdb
	jinfo
	jmap
	jps
	jsadebugd
	jstack
	jstat
	jstatd
	keytool
	native2ascii
	pack200
	policytool
	serialver
	unpack200

	II
	How to Use This Quick Reference
	Finding a Quick-Reference Entry
	Reading a Quick-Reference Entry
	Class Name, Package Name, Availability, and Flags
	Description
	Hierarchy
	Synopsis
	Member availability and flags
	Functional grouping of members

	Cross-References
	A Note About Class Names

	Chapter 9. java.io
	Package java.io
	BufferedInputStream
	BufferedOutputStream
	BufferedReader
	BufferedWriter
	ByteArrayInputStream
	ByteArrayOutputStream
	CharArrayReader
	CharArrayWriter
	CharConversionException
	Closeable
	DataInput
	DataInputStream
	DataOutput
	DataOutputStream
	EOFException
	Externalizable
	File
	FileDescriptor
	FileFilter
	FileInputStream
	FilenameFilter
	FileNotFoundException
	FileOutputStream
	FilePermission
	FileReader
	FileWriter
	FilterInputStream
	FilterOutputStream
	FilterReader
	FilterWriter
	Flushable
	InputStream
	InputStreamReader
	InterruptedIOException
	InvalidClassException
	InvalidObjectException
	IOException
	LineNumberInputStream
	LineNumberReader
	NotActiveException
	NotSerializableException
	ObjectInput
	ObjectInputStream
	ObjectInputStream.GetField
	ObjectInputValidation
	ObjectOutput
	ObjectOutputStream
	ObjectOutputStream.PutField
	ObjectStreamClass
	ObjectStreamConstants
	ObjectStreamException
	ObjectStreamField
	OptionalDataException
	OutputStream
	OutputStreamWriter
	PipedInputStream
	PipedOutputStream
	PipedReader
	PipedWriter
	PrintStream
	PrintWriter
	PushbackInputStream
	PushbackReader
	RandomAccessFile
	Reader
	SequenceInputStream
	Serializable
	SerializablePermission
	StreamCorruptedException
	StreamTokenizer
	StringBufferInputStream
	StringReader
	StringWriter
	SyncFailedException
	UnsupportedEncodingException
	UTFDataFormatException
	WriteAbortedException
	Writer

	Chapter 10. java.lang and Subpackages
	Package java.lang
	AbstractMethodError
	AbstractStringBuilder
	Appendable
	ArithmeticException
	ArrayIndexOutOfBoundsException
	ArrayStoreException
	AssertionError
	Boolean
	Byte
	Character
	Character.Subset
	Character.UnicodeBlock
	CharSequence
	Class<T>
	ClassCastException
	ClassCircularityError
	ClassFormatError
	ClassLoader
	ClassNotFoundException
	Cloneable
	CloneNotSupportedException
	Comparable<T>
	Compiler
	Deprecated
	Double
	Enum<E extends Enum<E>>
	EnumConstantNotPresentException
	Error
	Exception
	ExceptionInInitializerError
	Float
	IllegalAccessError
	IllegalAccessException
	IllegalArgumentException
	IllegalMonitorStateException
	IllegalStateException
	IllegalThreadStateException
	IncompatibleClassChangeError
	IndexOutOfBoundsException
	InheritableThreadLocal<T>
	InstantiationError
	InstantiationException
	Integer
	InternalError
	InterruptedException
	Iterable<T>
	LinkageError
	Long
	Math
	NegativeArraySizeException
	NoClassDefFoundError
	NoSuchFieldError
	NoSuchFieldException
	NoSuchMethodError
	NoSuchMethodException
	NullPointerException
	Number
	NumberFormatException
	Object
	OutOfMemoryError
	Override
	Package
	Process
	ProcessBuilder
	Readable
	Runnable
	Runtime
	RuntimeException
	RuntimePermission
	SecurityException
	SecurityManager
	Short
	StackOverflowError
	StackTraceElement
	StrictMath
	String
	StringBuffer
	StringBuilder
	StringIndexOutOfBoundsException
	SuppressWarnings
	System
	Thread
	Thread.State
	Thread.UncaughtExceptionHandler
	ThreadDeath
	ThreadGroup
	ThreadLocal<T>
	Throwable
	TypeNotPresentException
	UnknownError
	UnsatisfiedLinkError
	UnsupportedClassVersionError
	UnsupportedOperationException
	VerifyError
	VirtualMachineError
	Void
	Package java.lang.annotation
	Annotation
	AnnotationFormatError
	AnnotationTypeMismatchException
	Documented
	ElementType
	IncompleteAnnotationException
	Inherited
	Retention
	RetentionPolicy
	Target
	Package java.lang.instrument
	ClassDefinition
	ClassFileTransformer
	IllegalClassFormatException
	Instrumentation
	UnmodifiableClassException
	Package java.lang.management
	ClassLoadingMXBean
	CompilationMXBean
	GarbageCollectorMXBean
	ManagementFactory
	ManagementPermission
	MemoryManagerMXBean
	MemoryMXBean
	MemoryNotificationInfo
	MemoryPoolMXBean
	MemoryType
	MemoryUsage
	OperatingSystemMXBean
	RuntimeMXBean
	ThreadInfo
	ThreadMXBean
	Package java.lang.ref
	PhantomReference<T>
	Reference<T>
	ReferenceQueue<T>
	SoftReference<T>
	WeakReference<T>
	Package java.lang.reflect
	AccessibleObject
	AnnotatedElement
	Array
	Constructor<T>
	Field
	GenericArrayType
	GenericDeclaration
	GenericSignatureFormatError
	InvocationHandler
	InvocationTargetException
	MalformedParameterizedTypeException
	Member
	Method
	Modifier
	ParameterizedType
	Proxy
	ReflectPermission
	Type
	TypeVariable<D extends GenericDeclaration>
	UndeclaredThrowableException
	WildcardType

	Chapter 11. java.math
	Package java.math
	BigDecimal
	BigInteger
	MathContext
	RoundingMode

	Chapter 12. java.net
	Package java.net
	Authenticator
	Authenticator.RequestorType
	BindException
	CacheRequest
	CacheResponse
	ConnectException
	ContentHandler
	ContentHandlerFactory
	CookieHandler
	DatagramPacket
	DatagramSocket
	DatagramSocketImpl
	DatagramSocketImplFactory
	FileNameMap
	HttpRetryException
	HttpURLConnection
	Inet4Address
	Inet6Address
	InetAddress
	InetSocketAddress
	JarURLConnection
	MalformedURLException
	MulticastSocket
	NetPermission
	NetworkInterface
	NoRouteToHostException
	PasswordAuthentication
	PortUnreachableException
	ProtocolException
	Proxy
	Proxy.Type
	ProxySelector
	ResponseCache
	SecureCacheResponse
	ServerSocket
	Socket
	SocketAddress
	SocketException
	SocketImpl
	SocketImplFactory
	SocketOptions
	SocketPermission
	SocketTimeoutException
	UnknownHostException
	UnknownServiceException
	URI
	URISyntaxException
	URL
	URLClassLoader
	URLConnection
	URLDecoder
	URLEncoder

	Chapter 13. java.nio and Subpackages
	Package java.nio
	Buffer
	BufferOverflowException
	BufferUnderflowException
	ByteBuffer
	ByteOrder
	CharBuffer
	DoubleBuffer
	FloatBuffer
	IntBuffer
	InvalidMarkException
	LongBuffer
	MappedByteBuffer
	ReadOnlyBufferException
	ShortBuffer
	Package java.nio.channels
	AlreadyConnectedException
	AsynchronousCloseException
	ByteChannel
	CancelledKeyException
	Channel
	Channels
	ClosedByInterruptException
	ClosedChannelException
	ClosedSelectorException
	ConnectionPendingException
	DatagramChannel
	FileChannel
	FileChannel.MapMode
	FileLock
	FileLockInterruptionException
	GatheringByteChannel
	IllegalBlockingModeException
	IllegalSelectorException
	InterruptibleChannel
	NoConnectionPendingException
	NonReadableChannelException
	NonWritableChannelException
	NotYetBoundException
	NotYetConnectedException
	OverlappingFileLockException
	Pipe
	Pipe.SinkChannel
	Pipe.SourceChannel
	ReadableByteChannel
	ScatteringByteChannel
	SelectableChannel
	SelectionKey
	Selector
	ServerSocketChannel
	SocketChannel
	UnresolvedAddressException
	UnsupportedAddressTypeException
	WritableByteChannel
	Package java.nio.channels.spi
	AbstractInterruptibleChannel
	AbstractSelectableChannel
	AbstractSelectionKey
	AbstractSelector
	SelectorProvider
	Package java.nio.charset
	CharacterCodingException
	Charset
	CharsetDecoder
	CharsetEncoder
	CoderMalfunctionError
	CoderResult
	CodingErrorAction
	IllegalCharsetNameException
	MalformedInputException
	UnmappableCharacterException
	UnsupportedCharsetException
	Package java.nio.charset.spi
	CharsetProvider

	Chapter 14. java.security and Subpackages
	Package java.security
	AccessControlContext
	AccessControlException
	AccessController
	AlgorithmParameterGenerator
	AlgorithmParameterGeneratorSpi
	AlgorithmParameters
	AlgorithmParametersSpi
	AllPermission
	AuthProvider
	BasicPermission
	Certificate
	CodeSigner
	CodeSource
	DigestException
	DigestInputStream
	DigestOutputStream
	DomainCombiner
	GeneralSecurityException
	Guard
	GuardedObject
	Identity
	IdentityScope
	InvalidAlgorithmParameterException
	InvalidKeyException
	InvalidParameterException
	Key
	KeyException
	KeyFactory
	KeyFactorySpi
	KeyManagementException
	KeyPair
	KeyPairGenerator
	KeyPairGeneratorSpi
	KeyRep
	KeyRep.Type
	KeyStore
	KeyStore.Builder
	KeyStore.CallbackHandlerProtection
	KeyStore.Entry
	KeyStore.LoadStoreParameter
	KeyStore.PasswordProtection
	KeyStore.PrivateKeyEntry
	KeyStore.ProtectionParameter
	KeyStore.SecretKeyEntry
	KeyStore.TrustedCertificateEntry
	KeyStoreException
	KeyStoreSpi
	MessageDigest
	MessageDigestSpi
	NoSuchAlgorithmException
	NoSuchProviderException
	Permission
	PermissionCollection
	Permissions
	Policy
	Principal
	PrivateKey
	PrivilegedAction<T>
	PrivilegedActionException
	PrivilegedExceptionAction<T>
	ProtectionDomain
	Provider
	Provider.Service
	ProviderException
	PublicKey
	SecureClassLoader
	SecureRandom
	SecureRandomSpi
	Security
	SecurityPermission
	Signature
	SignatureException
	SignatureSpi
	SignedObject
	Signer
	Timestamp
	UnrecoverableEntryException
	UnrecoverableKeyException
	UnresolvedPermission
	Package java.security.cert
	Certificate
	Certificate.CertificateRep
	CertificateEncodingException
	CertificateException
	CertificateExpiredException
	CertificateFactory
	CertificateFactorySpi
	CertificateNotYetValidException
	CertificateParsingException
	CertPath
	CertPath.CertPathRep
	CertPathBuilder
	CertPathBuilderException
	CertPathBuilderResult
	CertPathBuilderSpi
	CertPathParameters
	CertPathValidator
	CertPathValidatorException
	CertPathValidatorResult
	CertPathValidatorSpi
	CertSelector
	CertStore
	CertStoreException
	CertStoreParameters
	CertStoreSpi
	CollectionCertStoreParameters
	CRL
	CRLException
	CRLSelector
	LDAPCertStoreParameters
	PKIXBuilderParameters
	PKIXCertPathBuilderResult
	PKIXCertPathChecker
	PKIXCertPathValidatorResult
	PKIXParameters
	PolicyNode
	PolicyQualifierInfo
	TrustAnchor
	X509Certificate
	X509CertSelector
	X509CRL
	X509CRLEntry
	X509CRLSelector
	X509Extension
	Package java.security.interfaces
	DSAKey
	DSAKeyPairGenerator
	DSAParams
	DSAPrivateKey
	DSAPublicKey
	ECKey
	ECPrivateKey
	ECPublicKey
	RSAKey
	RSAMultiPrimePrivateCrtKey
	RSAPrivateCrtKey
	RSAPrivateKey
	RSAPublicKey
	Package java.security.spec
	AlgorithmParameterSpec
	DSAParameterSpec
	DSAPrivateKeySpec
	DSAPublicKeySpec
	ECField
	ECFieldF2m
	ECFieldFp
	ECGenParameterSpec
	ECParameterSpec
	ECPoint
	ECPrivateKeySpec
	ECPublicKeySpec
	EllipticCurve
	EncodedKeySpec
	InvalidKeySpecException
	InvalidParameterSpecException
	KeySpec
	MGF1ParameterSpec
	PKCS8EncodedKeySpec
	PSSParameterSpec
	RSAKeyGenParameterSpec
	RSAMultiPrimePrivateCrtKeySpec
	RSAOtherPrimeInfo
	RSAPrivateCrtKeySpec
	RSAPrivateKeySpec
	RSAPublicKeySpec
	X509EncodedKeySpec

	Chapter 15. java.text
	Package java.text
	Annotation
	AttributedCharacterIterator
	AttributedCharacterIterator.Attribute
	AttributedString
	Bidi
	BreakIterator
	CharacterIterator
	ChoiceFormat
	CollationElementIterator
	CollationKey
	Collator
	DateFormat
	DateFormat.Field
	DateFormatSymbols
	DecimalFormat
	DecimalFormatSymbols
	FieldPosition
	Format
	Format.Field
	MessageFormat
	MessageFormat.Field
	NumberFormat
	NumberFormat.Field
	ParseException
	ParsePosition
	RuleBasedCollator
	SimpleDateFormat
	StringCharacterIterator

	Chapter 16. java.util and Subpackages
	Package java.util
	AbstractCollection<E>
	AbstractList<E>
	AbstractMap<K,V>
	AbstractQueue<E>
	AbstractSequentialList<E>
	AbstractSet<E>
	ArrayList<E>
	Arrays
	BitSet
	Calendar
	Collection<E>
	Collections
	Comparator<T>
	ConcurrentModificationException
	Currency
	Date
	Dictionary<K,V>
	DuplicateFormatFlagsException
	EmptyStackException
	Enumeration<E>
	EnumMap<K extends Enum<K>,V>
	EnumSet<E extends Enum<E>>
	EventListener
	EventListenerProxy
	EventObject
	FormatFlagsConversionMismatchException
	Formattable
	FormattableFlags
	Formatter
	The Format String and Format Specifiers
	Argument Specifier
	Flags
	Width
	Precision
	Formatter.BigDecimalLayoutForm
	FormatterClosedException
	GregorianCalendar
	HashMap<K,V>
	HashSet<E>
	Hashtable<K,V>
	IdentityHashMap<K,V>
	IllegalFormatCodePointException
	IllegalFormatConversionException
	IllegalFormatException
	IllegalFormatFlagsException
	IllegalFormatPrecisionException
	IllegalFormatWidthException
	InputMismatchException
	InvalidPropertiesFormatException
	Iterator<E>
	LinkedHashMap<K,V>
	LinkedHashSet<E>
	LinkedList<E>
	List<E>
	ListIterator<E>
	ListResourceBundle
	Locale
	Map<K,V>
	Map.Entry<K,V>
	MissingFormatArgumentException
	MissingFormatWidthException
	MissingResourceException
	NoSuchElementException
	Observable
	Observer
	PriorityQueue<E>
	Properties
	PropertyPermission
	PropertyResourceBundle
	Queue<E>
	Random
	RandomAccess
	ResourceBundle
	Scanner
	Set<E>
	SimpleTimeZone
	SortedMap<K,V>
	SortedSet<E>
	Stack<E>
	StringTokenizer
	Timer
	TimerTask
	TimeZone
	TooManyListenersException
	TreeMap<K,V>
	TreeSet<E>
	UnknownFormatConversionException
	UnknownFormatFlagsException
	UUID
	Vector<E>
	WeakHashMap<K,V>
	Package java.util.concurrent
	AbstractExecutorService
	ArrayBlockingQueue<E>
	BlockingQueue<E>
	BrokenBarrierException
	Callable<V>
	CancellationException
	CompletionService<V>
	ConcurrentHashMap<K,V>
	ConcurrentLinkedQueue<E>
	ConcurrentMap<K,V>
	CopyOnWriteArrayList<E>
	CopyOnWriteArraySet<E>
	CountDownLatch
	CyclicBarrier
	Delayed
	DelayQueue<E extends Delayed>
	Exchanger<V>
	ExecutionException
	Executor
	ExecutorCompletionService<V>
	Executors
	ExecutorService
	Future<V>
	FutureTask<V>
	LinkedBlockingQueue<E>
	PriorityBlockingQueue<E>
	RejectedExecutionException
	RejectedExecutionHandler
	ScheduledExecutorService
	ScheduledFuture<V>
	ScheduledThreadPoolExecutor
	Semaphore
	SynchronousQueue<E>
	ThreadFactory
	ThreadPoolExecutor
	ThreadPoolExecutor.AbortPolicy
	ThreadPoolExecutor.CallerRunsPolicy
	ThreadPoolExecutor.DiscardOldestPolicy
	ThreadPoolExecutor.DiscardPolicy
	TimeoutException
	TimeUnit
	Package java.util.concurrent.atomic
	AtomicBoolean
	AtomicInteger
	AtomicIntegerArray
	AtomicIntegerFieldUpdater<T>
	AtomicLong
	AtomicLongArray
	AtomicLongFieldUpdater<T>
	AtomicMarkableReference<V>
	AtomicReference<V>
	AtomicReferenceArray<E>
	AtomicReferenceFieldUpdater<T,V>
	AtomicStampedReference<V>
	Package java.util.concurrent.locks
	AbstractQueuedSynchronizer
	AbstractQueuedSynchronizer.ConditionObject
	Condition
	Lock
	LockSupport
	ReadWriteLock
	ReentrantLock
	ReentrantReadWriteLock
	ReentrantReadWriteLock.ReadLock
	ReentrantReadWriteLock.WriteLock
	Package java.util.jar
	Attributes
	Attributes.Name
	JarEntry
	JarException
	JarFile
	JarInputStream
	JarOutputStream
	Manifest
	Pack200
	Pack200.Packer
	Pack200.Unpacker
	Package java.util.logging
	ConsoleHandler
	ErrorManager
	FileHandler
	Filter
	Formatter
	Handler
	Level
	Logger
	LoggingMXBean
	LoggingPermission
	LogManager
	LogRecord
	MemoryHandler
	SimpleFormatter
	SocketHandler
	StreamHandler
	XMLFormatter
	Package java.util.prefs
	AbstractPreferences
	BackingStoreException
	InvalidPreferencesFormatException
	NodeChangeEvent
	NodeChangeListener
	PreferenceChangeEvent
	PreferenceChangeListener
	Preferences
	PreferencesFactory
	Package java.util.regex
	Matcher
	MatchResult
	Pattern
	PatternSyntaxException
	Package java.util.zip
	Adler32
	CheckedInputStream
	CheckedOutputStream
	Checksum
	CRC32
	DataFormatException
	Deflater
	DeflaterOutputStream
	GZIPInputStream
	GZIPOutputStream
	Inflater
	InflaterInputStream
	ZipEntry
	ZipException
	ZipFile
	ZipInputStream
	ZipOutputStream

	Chapter 17. javax.crypto and Subpackages
	Package javax.crypto
	BadPaddingException
	Cipher
	CipherInputStream
	CipherOutputStream
	CipherSpi
	EncryptedPrivateKeyInfo
	ExemptionMechanism
	ExemptionMechanismException
	ExemptionMechanismSpi
	IllegalBlockSizeException
	KeyAgreement
	KeyAgreementSpi
	KeyGenerator
	KeyGeneratorSpi
	Mac
	MacSpi
	NoSuchPaddingException
	NullCipher
	SealedObject
	SecretKey
	SecretKeyFactory
	SecretKeyFactorySpi
	ShortBufferException
	Package javax.crypto.interfaces
	DHKey
	DHPrivateKey
	DHPublicKey
	PBEKey
	Package javax.crypto.spec
	DESedeKeySpec
	DESKeySpec
	DHGenParameterSpec
	DHParameterSpec
	DHPrivateKeySpec
	DHPublicKeySpec
	IvParameterSpec
	OAEPParameterSpec
	PBEKeySpec
	PBEParameterSpec
	PSource
	PSource.PSpecified
	RC2ParameterSpec
	RC5ParameterSpec
	SecretKeySpec

	Chapter 18. javax.net and javax.net.ssl
	Package javax.net
	ServerSocketFactory
	SocketFactory
	Package javax.net.ssl
	CertPathTrustManagerParameters
	HandshakeCompletedEvent
	HandshakeCompletedListener
	HostnameVerifier
	HttpsURLConnection
	KeyManager
	KeyManagerFactory
	KeyManagerFactorySpi
	KeyStoreBuilderParameters
	ManagerFactoryParameters
	SSLContext
	SSLContextSpi
	SSLEngine
	SSLEngineResult
	SSLEngineResult.HandshakeStatus
	SSLEngineResult.Status
	SSLException
	SSLHandshakeException
	SSLKeyException
	SSLPeerUnverifiedException
	SSLPermission
	SSLProtocolException
	SSLServerSocket
	SSLServerSocketFactory
	SSLSession
	SSLSessionBindingEvent
	SSLSessionBindingListener
	SSLSessionContext
	SSLSocket
	SSLSocketFactory
	TrustManager
	TrustManagerFactory
	TrustManagerFactorySpi
	X509ExtendedKeyManager
	X509KeyManager
	X509TrustManager

	Chapter 19. javax.security.auth and Subpackages
	Package javax.security.auth
	AuthPermission
	Destroyable
	DestroyFailedException
	Policy
	PrivateCredentialPermission
	Refreshable
	RefreshFailedException
	Subject
	SubjectDomainCombiner
	Package javax.security.auth.callback
	Callback
	CallbackHandler
	ChoiceCallback
	ConfirmationCallback
	LanguageCallback
	NameCallback
	PasswordCallback
	TextInputCallback
	TextOutputCallback
	UnsupportedCallbackException
	Package javax.security.auth.kerberos
	DelegationPermission
	KerberosKey
	KerberosPrincipal
	KerberosTicket
	ServicePermission
	Package javax.security.auth.login
	AccountException
	AccountExpiredException
	AccountLockedException
	AccountNotFoundException
	AppConfigurationEntry
	AppConfigurationEntry.LoginModuleControlFlag
	Configuration
	CredentialException
	CredentialExpiredException
	CredentialNotFoundException
	FailedLoginException
	LoginContext
	LoginException
	Package javax.security.auth.spi
	LoginModule
	Package javax.security.auth.x500
	X500Principal
	X500PrivateCredential

	Chapter 20. javax.xml and Subpackages
	Package javax.xml
	XMLConstants
	Package javax.xml.datatype
	DatatypeConfigurationException
	DatatypeConstants
	DatatypeConstants.Field
	DatatypeFactory
	Duration
	XMLGregorianCalendar
	Package javax.xml.namespace
	NamespaceContext
	QName
	Package javax.xml.parsers
	DocumentBuilder
	DocumentBuilderFactory
	FactoryConfigurationError
	ParserConfigurationException
	SAXParser
	SAXParserFactory
	Package javax.xml.transform
	ErrorListener
	OutputKeys
	Result
	Source
	SourceLocator
	Templates
	Transformer
	TransformerConfigurationException
	TransformerException
	TransformerFactory
	TransformerFactoryConfigurationError
	URIResolver
	Package javax.xml.transform.dom
	DOMLocator
	DOMResult
	DOMSource
	Package javax.xml.transform.sax
	SAXResult
	SAXSource
	SAXTransformerFactory
	TemplatesHandler
	TransformerHandler
	Package javax.xml.transform.stream
	StreamResult
	StreamSource
	Package javax.xml.validation
	Schema
	SchemaFactory
	SchemaFactoryLoader
	TypeInfoProvider
	Validator
	ValidatorHandler
	Package javax.xml.xpath
	XPath
	XPathConstants
	XPathException
	XPathExpression
	XPathExpressionException
	XPathFactory
	XPathFactoryConfigurationException
	XPathFunction
	XPathFunctionException
	XPathFunctionResolver
	XPathVariableResolver

	Chapter 21. org.w3c.dom
	Package org.w3c.dom
	Attr
	CDATASection
	CharacterData
	Comment
	Document
	DocumentFragment
	DocumentType
	DOMConfiguration
	DOMError
	DOMErrorHandler
	DOMException
	DOMImplementation
	DOMImplementationList
	DOMImplementationSource
	DOMLocator
	DOMStringList
	Element
	Entity
	EntityReference
	NamedNodeMap
	NameList
	Node
	NodeList
	Notation
	ProcessingInstruction
	Text
	TypeInfo
	UserDataHandler

	Chapter 22. org.xml.sax and Subpackages
	Package org.xml.sax
	AttributeList
	Attributes
	ContentHandler
	DocumentHandler
	DTDHandler
	EntityResolver
	ErrorHandler
	HandlerBase
	InputSource
	Locator
	Parser
	SAXException
	SAXNotRecognizedException
	SAXNotSupportedException
	SAXParseException
	XMLFilter
	XMLReader
	Package org.xml.sax.ext
	Attributes2
	Attributes2Impl
	DeclHandler
	DefaultHandler2
	EntityResolver2
	LexicalHandler
	Locator2
	Locator2Impl
	Package org.xml.sax.helpers
	AttributeListImpl
	AttributesImpl
	DefaultHandler
	LocatorImpl
	NamespaceSupport
	ParserAdapter
	ParserFactory
	XMLFilterImpl
	XMLReaderAdapter
	XMLReaderFactory

	Class, Method, and Field Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Index

