The Red Hat newlib C Math Library

libm 1.16.0
December 2007

Steve Chamberlain
Roland Pesch

Red Hat Support
Jeff Johnston

Red Hat Support
sac@cygnus.com
pesch@cygnus.com
jjohnstn@redhat.com

Copyright (©) 1992, 1993, 1994-2004 Red Hat, Inc.

‘libm’ includes software developed at SunPro, a Sun Microsystems, Inc. business. Permis-
sion to use, copy, modify, and distribute this software is freely granted, provided that this
notice is preserved.

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the
conditions for verbatim copying, subject to the terms of the GNU General Public License,
which includes the provision that the entire resulting derived work is distributed under the
terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions.

Chapter 1: Mathematical Functions (‘math.h’) 1

1 Mathematical Functions (‘math.h’)

This chapter groups a wide variety of mathematical functions. The corresponding definitions
and declarations are in ‘math.h’. Two definitions from ‘math.h’ are of particular interest.

1. The representation of infinity as a double is defined as HUGE_VAL; this number is
returned on overflow by many functions.

2. The structure exception is used when you write customized error handlers for the
mathematical functions. You can customize error handling for most of these functions
by defining your own version of matherr; see the section on matherr for details.

Since the error handling code calls fputs, the mathematical subroutines require stubs or
minimal implementations for the same list of OS subroutines as fputs: close, fstat,
isatty, lseek, read, sbrk, write. See Section “System Calls” in The Red Hat newlib C
Library, for a discussion and for sample minimal implementations of these support subrou-
tines.

Alternative declarations of the mathematical functions, which exploit specific machine capa-
bilities to operate faster—but generally have less error checking and may reflect additional
limitations on some machines—are available when you include ‘fastmath.h’ instead of
‘math.h’.

2 The Red Hat newlib C Math Library

1.1 Version of library

There are four different versions of the math library routines: IEEE, POSIX, X/Open, or
SVID. The version may be selected at runtime by setting the global variable _LIB_VERSION,
defined in ‘math.h’. It may be set to one of the following constants defined in ‘math.h’:
IEEE, _POSIX_, _XOPEN_, or _SVID_. The _LIB_VERSION variable is not specific to any
thread, and changing it will affect all threads.

The versions of the library differ only in how errors are handled.

In IEEE mode, the matherr function is never called, no warning messages are printed, and

errno is never set.

In POSIX mode, errno is set correctly, but the matherr function is never called and no

warning messages are printed.

In X/Open mode, errno is set correctly, and matherr is called, but warning message are

not printed.

In SVID mode, functions which overflow return 3.40282346638528860e+38, the maximum

single-precision floating-point value, rather than infinity. Also, errno is set correctly,

matherr is called, and, if matherr returns 0, warning messages are printed for some er-

rors. For example, by default ‘log(-1.0)’ writes this message on standard error output:
log: DOMAIN error

The library is set to X/Open mode by default.

Chapter 1: Mathematical Functions (‘math.h’) 3

1.2 acos, acosf—arc cosine
Synopsis
#include <math.h>

double acos(double x);
float acosf(float x);

Description

acos computes the inverse cosine (arc cosine) of the input value. Arguments to acos must
be in the range —1 to 1.

acosf is identical to acos, except that it performs its calculations on floats.

Returns
acos and acosf return values in radians, in the range of 0 to .

If x is not between —1 and 1, the returned value is NaN (not a number) the global variable
errno is set to EDOM, and a DOMAIN error message is sent as standard error output.

You can modify error handling for these functions using matherr.

4 The Red Hat newlib C Math Library

1.3 acosh, acoshf—inverse hyperbolic cosine

Synopsis
#include <math.h>

double acosh(double x);
float acoshf(float x);

Description
acosh calculates the inverse hyperbolic cosine of x. acosh is defined as

ln(a: + Va2 — 1)

x must be a number greater than or equal to 1.

acoshf is identical, other than taking and returning floats.

Returns
acosh and acoshf return the calculated value. If x less than 1, the return value is NaN
and errno is set to EDOM.

You can change the error-handling behavior with the non-ANSI matherr function.

Portability
Neither acosh nor acoshf are ANSI C. They are not recommended for portable programs.

Chapter 1: Mathematical Functions (‘math.h’) 5

1.4 asin, asinf—arc sine

Synopsis
#include <math.h>

double asin(double x);
float asinf(float x);

Description

asin computes the inverse sine (arc sine) of the argument x. Arguments to asin must be
in the range —1 to 1.

asinf is identical to asin, other than taking and returning floats.

You can modify error handling for these routines using matherr.

Returns
asin returns values in radians, in the range of —7/2 to 7/2.

If x is not in the range —1 to 1, asin and asinf return NaN (not a number), set the global
variable errno to EDOM, and issue a DOMAIN error message.

You can change this error treatment using matherr.

6 The Red Hat newlib C Math Library

1.5 asinh, asinhf—inverse hyperbolic sine

Synopsis
#include <math.h>

double asinh(double x);
float asinhf(float x);

Description
asinh calculates the inverse hyperbolic sine of x. asinh is defined as

sign(x) x ln(]az| +v1+ x2>
asinhf is identical, other than taking and returning floats.

Returns
asinh and asinhf return the calculated value.

Portability
Neither asinh nor asinhf are ANSI C.

Chapter 1: Mathematical Functions (‘math.h’)

1.6 atan, atanf—arc tangent

Synopsis
#include <math.h>

double atan(double x);
float atanf(float x);

Description

atan computes the inverse tangent (arc tangent) of the input value.

atanf is identical to atan, save that it operates on floats.

Returns
atan returns a value in radians, in the range of —m/2 to 7/2.

Portability
atan is ANSI C. atanf is an extension.

8 The Red Hat newlib C Math Library

1.7 atan2, atan2f—arc tangent of y/x
Synopsis
#include <math.h>

double atan2(double y,double x);
float atan2f(float y,float x);

Description

atan2 computes the inverse tangent (arc tangent) of y/x. atan2 produces the correct result
even for angles near m/2 or —m/2 (that is, when x is near 0).

atan2f is identical to atan2, save that it takes and returns float.

Returns
atan2 and atan2f return a value in radians, in the range of —7 to 7.

You can modify error handling for these functions using matherr.

Portability
atan?2 is ANSI C. atan2f is an extension.

Chapter 1: Mathematical Functions (‘math.h’) 9

1.8 atanh, atanhf—inverse hyperbolic tangent

Synopsis
#include <math.h>

double atanh(double x);
float atanhf(float x);

Description
atanh calculates the inverse hyperbolic tangent of x.

atanhf is identical, other than taking and returning float values.

Returns
atanh and atanhf return the calculated value.

If |x| is greater than 1, the global errno is set to EDOM and the result is a NaN. A DOMAIN
error is reported.

If |z| is 1, the global errno is set to EDOM; and the result is infinity with the same sign as
x. A SING error is reported.

You can modify the error handling for these routines using matherr.

Portability
Neither atanh nor atanhf are ANSI C.

10 The Red Hat newlib C Math Library

1.9 jN, jNf, yN, yNf—DBessel functions

Synopsis
#include <math.h>
double jO(double x);
float jOf(float x);
double ji(double x);
float jif(float x);
double jn(int n, double x);
float jnf(int n, float x);
double yO(double x);
float yOf(float x);
double yi1(double x);
float y1f(float x);
double yn(int n, double x);
float ynf(int n, float x);

Description
The Bessel functions are a family of functions that solve the differential equation

2
.362% —{—x% + (@ —pY)y =0

These functions have many applications in engineering and physics.

jn calculates the Bessel function of the first kind of order n. jO and j1 are special cases for

order 0 and order 1 respectively.

Similarly, yn calculates the Bessel function of the second kind of order n, and y0 and y1 are

special cases for order 0 and 1.

jnf, jof, jif, ynf, yOf, and y1f perform the same calculations, but on float rather than

double values.

Returns
The value of each Bessel function at x is returned.

Portability
None of the Bessel functions are in ANSI C.

Chapter 1: Mathematical Functions (‘math.h’)

1.10 cbrt, cbrtf—-cube root
Synopsis
#include <math.h>

double cbrt(double x);
float cbrtf(float x);

Description
cbrt computes the cube root of the argument.

Returns
The cube root is returned.

Portability
cbrt is in System V release 4. cbrtf is an extension.

11

12 The Red Hat newlib C Math Library

1.11 copysign, copysignf—sign of y, magnitude of x

Synopsis
#include <math.h>

double copysign (double x, double y);
float copysignf (float x, float y);

Description
copysign constructs a number with the magnitude (absolute value) of its first argument,
x, and the sign of its second argument, y.

copysignf does the same thing; the two functions differ only in the type of their arguments
and result.

Returns
copysign returns a double with the magnitude of x and the sign of y. copysignf returns
a float with the magnitude of x and the sign of y.

Portability
copysign is not required by either ANSI C or the System V Interface Definition (Issue 2).

Chapter 1: Mathematical Functions (‘math.h’) 13

1.12 cosh, coshf—hyperbolic cosine
Synopsis
#include <math.h>

double cosh(double x);
float coshf(float x)

Description

cosh computes the hyperbolic cosine of the argument x. cosh(x) is defined as

(" +e7)
2

Angles are specified in radians. coshf is identical, save that it takes and returns float.

Returns
The computed value is returned. When the correct value would create an overflow, cosh
returns the value HUGE_VAL with the appropriate sign, and the global value errno is set to
ERANGE.

You can modify error handling for these functions using the function matherr.

Portability
cosh is ANSI. coshf is an extension.

14 The Red Hat newlib C Math Library

1.13 erf, erff, erfc, erfcf—error function
Synopsis

#include <math.h>

double erf (double x);

float erff(float x);

double erfc(double x);
float erfcf(float x);

Description

erf calculates an approximation to the “error function”, which estimates the probability
that an observation will fall within x standard deviations of the mean (assuming a normal
distribution). The error function is defined as

2 T
— X e " dt
=

erfc calculates the complementary probability; that is, erfc(x) is 1 - erf(x). erfc is
computed directly, so that you can use it to avoid the loss of precision that would result
from subtracting large probabilities (on large x) from 1.

erff and erfcf differ from erf and erfc only in the argument and result types.

Returns
For positive arguments, erf and all its variants return a probability—a number between 0
and 1.

Portability
None of the variants of erf are ANSI C.

Chapter 1: Mathematical Functions (‘math.h’) 15

1.14 exp, expf—exponential

Synopsis
#include <math.h>

double exp(double x);
float expf(float x);

Description
exp and expf calculate the exponential of x, that is, e” (where e is the base of the natural
system of logarithms, approximately 2.71828).

You can use the (non-ANSI) function matherr to specify error handling for these functions.

Returns

On success, exp and expf return the calculated value. If the result underflows, the returned
value is 0. If the result overflows, the returned value is HUGE_VAL. In either case, errno is
set to ERANGE.

Portability
exp is ANSI C. expf is an extension.

16 The Red Hat newlib C Math Library

1.15 expml, expmlf—exponential minus 1
Synopsis
#include <math.h>

double expml(double x);
float expmif(float x);

Description

expml and expmlf calculate the exponential of x and subtract 1, that is, e* — 1 (where e is
the base of the natural system of logarithms, approximately 2.71828). The result is accurate
even for small values of x, where using exp (x)-1 would lose many significant digits.

Returns
e raised to the power x, minus 1.

Portability
Neither expml nor expmlf is required by ANSI C or by the System V Interface Definition
(Issue 2).

Chapter 1: Mathematical Functions (‘math.h’) 17

1.16 fabs, fabsf—absolute value (magnitude)
Synopsis
#include <math.h>

double fabs(double x);
float fabsf(float x);

Description
fabs and fabsf calculate |z|, the absolute value (magnitude) of the argument x, by direct
manipulation of the bit representation of x.

Returns
The calculated value is returned. No errors are detected.

Portability
fabs is ANSI. fabsf is an extension.

18 The Red Hat newlib C Math Library

1.17 floor, floorf, ceil, ceilf—Hfoor and ceiling

Synopsis
#include <math.h>
double floor(double x);
float floorf(float x);
double ceil(double x);
float ceilf(float x);

Description
floor and floorf find [z], the nearest integer less than or equal to x. ceil and ceilf
find [z], the nearest integer greater than or equal to x.

Returns
floor and ceil return the integer result as a double. floorf and ceilf return the integer
result as a float.

Portability
floor and ceil are ANSI. floorf and ceilf are extensions.

Chapter 1: Mathematical Functions (‘math.h’) 19

1.18 fmod, fmodf—floating-point remainder (modulo)

Synopsis
#include <math.h>

double fmod(double x, double y)
float fmodf (float x, float y)

Description
The fmod and fmodf functions compute the floating-point remainder of x/y (x modulo y).

Returns
The fmod function returns the value x — i x y, for the largest integer i such that, if y is
nonzero, the result has the same sign as x and magnitude less than the magnitude of y.

fmod (x,0) returns NaN, and sets errno to EDOM.

You can modify error treatment for these functions using matherr.

Portability
fmod is ANSI C. fmodf is an extension.

20 The Red Hat newlib C Math Library

1.19 frexp, frexpf—split floating-point number
Synopsis
#include <math.h>

double frexp(double val, int *exp);
float frexpf(float val, int *exp);

Description

All nonzero, normal numbers can be described as m p. frexp represents the double
val as a mantissa m and a power of two p. The resulting mantissa will always be greater
than or equal to 0.5, and less than 1.0 (as long as val is nonzero). The power of two will
be stored in *exp.

* 2**

m and p are calculated so that val = m x 2P.

frexpf is identical, other than taking and returning floats rather than doubles.

Returns
frexp returns the mantissa m. If val is 0, infinity, or Nan, frexp will set *exp to 0 and
return val.

Portability
frexp is ANSI. frexpf is an extension.

Chapter 1: Mathematical Functions (‘math.h’) 21

1.20 gamma, gammaf, 1gamma, lgammaf, gamma_r,
Synopsis
#include <math.h>
double gamma(double x);
float gammaf (float x);
double lgamma(double x);
float lgammaf(float x);
double gamma_r(double x, int *signgamp) ;
float gammaf_r(float x, int *signgamp);
double lgamma_r(double x, int *signgamp);
float lgammaf_r(float x, int *signgamp);

Description

gamma calculates In(I'(z)), the natural logarithm of the gamma function of x. The gamma
function (exp(gamma(x))) is a generalization of factorial, and retains the property that
I'(N) = N x I'(N — 1). Accordingly, the results of the gamma function itself grow very
quickly. gamma is defined as In(I'(z)) rather than simply I'(x) to extend the useful range
of results representable.

The sign of the result is returned in the global variable signgam, which is declared in math.h.
gammaf performs the same calculation as gamma, but uses and returns float values.

lgamma and lgammaf are alternate names for gamma and gammaf. The use of 1gamma instead
of gamma is a reminder that these functions compute the log of the gamma function, rather
than the gamma function itself.

The functions gamma_r, gammaf_r, lgamma_r, and lgammaf_r are just like gamma, gammaf,
lgamma, and lgammaf, respectively, but take an additional argument. This additional ar-
gument is a pointer to an integer. This additional argument is used to return the sign of
the result, and the global variable signgam is not used. These functions may be used for
reentrant calls (but they will still set the global variable errno if an error occurs).

Returns
Normally, the computed result is returned.

When x is a nonpositive integer, gamma returns HUGE_VAL and errno is set to EDOM. If the
result overflows, gamma returns HUGE_VAL and errno is set to ERANGE.

You can modify this error treatment using matherr.

Portability
Neither gamma nor gammaf is ANSI C.

22 The Red Hat newlib C Math Library

1.21 hypot, hypotf—distance from origin
Synopsis
#include <math.h>

double hypot(double x, double y);
float hypotf(float x, float y);

Description

hypot calculates the Euclidean distance /22 + y? between the origin (0,0) and a point
represented by the Cartesian coordinates (x,y). hypotf differs only in the type of its
arguments and result.

Returns
Normally, the distance value is returned. On overflow, hypot returns HUGE_VAL and sets
errno to ERANGE.

You can change the error treatment with matherr.

Portability
hypot and hypotf are not ANSI C.

Chapter 1: Mathematical Functions (‘math.h’) 23

1.22 ilogb, ilogbf—get exponent of floating-point number

Synopsis
#include <math.h>

int ilogb(double val);
int ilogbf (float val);

Description

All nonzero, normal numbers can be described as m * 2**p. ilogb and ilogbf examine
the argument val, and return p. The functions frexp and frexpf are similar to ilogb and
ilogbf, but also return m.

Returns

ilogb and ilogbf return the power of two used to form the floating-point argument. If val
is 0, they return - INT_MAX (INT_MAX is defined in limits.h). If val is infinite, or NaN, they
return INT_MAX.

Portability
Neither ilogb nor ilogbf is required by ANSI C or by the System V Interface Definition
(Issue 2).

24 The Red Hat newlib C Math Library

1.23 infinity, infinityf—representation of infinity
Synopsis
#include <math.h>

double infinity(void);
float infinityf(void);

Description
infinity and infinityf return the special number IEEE infinity in double- and single-
precision arithmetic respectively.

Chapter 1: Mathematical Functions (‘math.h’) 25

1.24 isnan, isnanf, isinf, isinff, finite, finitef—test for
exceptional numbers
Synopsis
#include <ieeefp.h>
int isnan(double arg);
int isinf(double arg);
int finite(double arg);
int isnanf(float arg);
int isinff(float arg);
int finitef(float arg);

Description
These functions provide information on the floating-point argument supplied.

There are five major number formats:
Zero A number which contains all zero bits.

subnormal
A number with a zero exponent but a nonzero fraction.

normal A number with an exponent and a fraction.
infinity A number with an all 1’s exponent and a zero fraction.
NAN A number with an all 1’s exponent and a nonzero fraction.

isnan returns 1 if the argument is a nan. isinf returns 1 if the argument is infinity. finite
returns 1 if the argument is zero, subnormal or normal. The isnanf, isinff and finitef
functions perform the same operations as their isnan, isinf and finite counterparts, but
on single-precision floating-point numbers.

It should be noted that the C99 standard dictates that isnan and isinf are macros that
operate on multiple types of floating-point. The SUSv2 standard declares isnan as a func-
tion taking double. Newlib has decided to declare them both as macros in math.h and as
functions in ieeefp.h.

26 The Red Hat newlib C Math Library

1.25 1ldexp, ldexpf—Iload exponent

Synopsis
#include <math.h>
double ldexp(double val, int exp);
float ldexpf(float val, int exp);

Description
ldexp calculates the value val x 2¢°P. ldexpf is identical, save that it takes and returns
float rather than double values.

Returns
ldexp returns the calculated value.

Underflow and overflow both set errno to ERANGE. On underflow, 1dexp and ldexpf return
0.0. On overflow, 1dexp returns plus or minus HUGE_VAL.

Portability
ldexp is ANSI. 1dexpf is an extension.

Chapter 1: Mathematical Functions (‘math.h’) 27

1.26 log, logf—mnatural logarithms

Synopsis
#include <math.h>

double log(double x);
float logf(float x);

Description

Return the natural logarithm of x, that is, its logarithm base e (where e is the base of the
natural system of logarithms, 2.71828...). log and logf are identical save for the return
and argument types.

You can use the (non-ANSI) function matherr to specify error handling for these functions.

Returns

Normally, returns the calculated value. When x is zero, the returned value is ~HUGE_VAL
and errno is set to ERANGE. When x is negative, the returned value is NaN (not a number)
and errno is set to EDOM. You can control the error behavior via matherr.

Portability
log is ANSI. logf is an extension.

28 The Red Hat newlib C Math Library

1.27 logl0, logl0Of—Dbase 10 logarithms
Synopsis
#include <math.h>

double loglO(double x);
float loglOf (float x);

Description
log10 returns the base 10 logarithm of x. It is implemented as log(x) / 1log(10).

logl0f is identical, save that it takes and returns float values.

Returns
log10 and logl0f return the calculated value.

See the description of log for information on errors.

Portability
log10 is ANSI C. logl0f is an extension.

Chapter 1: Mathematical Functions (‘math.h’) 29

1.28 loglp, loglpf—Ilog of 1 + x
Synopsis
#include <math.h>

double loglp(double x);
float loglpf(float x);

Description
loglp calculates In(1 + z), the natural logarithm of 1+x. You can use loglp rather than
‘log(1+x)’ for greater precision when x is very small.

loglpf calculates the same thing, but accepts and returns float values rather than double.

Returns
loglp returns a double, the natural log of 1+x. loglpf returns a float, the natural log
of 1+x.

Portability
Neither loglp nor loglpf is required by ANSI C or by the System V Interface Definition
(Issue 2).

30 The Red Hat newlib C Math Library

1.29 matherr—modifiable math error handler
Synopsis

#include <math.h>
int matherr(struct exception *e);

Description

matherr is called whenever a math library function generates an error. You can replace
matherr by your own subroutine to customize error treatment. The customized matherr
must return O if it fails to resolve the error, and non-zero if the error is resolved.

When matherr returns a nonzero value, no error message is printed and the value of errno
is not modified. You can accomplish either or both of these things in your own matherr
using the information passed in the structure *e.

This is the exception structure (defined in ‘math.h’):

struct exception {

int type;

char *name;

double argl, arg2, retval;
int err;

};

The members of the exception structure have the following meanings:

type The type of mathematical error that occured; macros encoding error types are
also defined in ‘math.h’.

name a pointer to a null-terminated string holding the name of the math library
function where the error occurred.

argl, arg2

The arguments which caused the error.
retval The error return value (what the calling function will return).
err If set to be non-zero, this is the new value assigned to errno.

The error types defined in ‘math.h’ represent possible mathematical errors as follows:
DOMAIN An argument was not in the domain of the function; e.g. log(-1.0).

SING The requested calculation would result in a singularity; e.g. pow(0.0,-2.0)
OVERFLOW A calculation would produce a result too large to represent; e.g. exp(1000.0).

UNDERFLOW
A calculation would produce a result too small to represent; e.g. exp(-1000.0).
TLOSS Total loss of precision. The result would have no significant digits; e.g.
sin(10e70).
PLOSS Partial loss of precision.
Returns

The library definition for matherr returns O in all cases.

Chapter 1: Mathematical Functions (‘math.h’) 31

You can change the calling function’s result from a customized matherr by modifying e-
>retval, which propagates backs to the caller.

If matherr returns O (indicating that it was not able to resolve the error) the caller sets
errno to an appropriate value, and prints an error message.

Portability
matherr is not ANSI C.

32 The Red Hat newlib C Math Library

1.30 modf, modff—split fractional and integer parts

Synopsis
#include <math.h>
double modf (double val, double *ipart);
float modff (float val, float *ipart);

Description

modf splits the double val apart into an integer part and a fractional part, returning the
fractional part and storing the integer part in *ipart. No rounding whatsoever is done;
the sum of the integer and fractional parts is guaranteed to be exactly equal to val. That
is, if realpart = modf(val, &intpart); then ‘realpart+intpart’ is the same as val. modff
is identical, save that it takes and returns float rather than double values.

Returns
The fractional part is returned. Each result has the same sign as the supplied argument
val.

Portability
modf is ANSI C. modff is an extension.

Chapter 1: Mathematical Functions (‘math.h’) 33

1.31 nan, nanf—representation of “Not a Number”

Synopsis
#include <math.h>

double nan(const char *);
float nanf(const char *);

Description
nan and nanf return an IEEE NaN (Not a Number) in double- and single-precision arith-
metic respectively. The argument is currently disregarded.

34 The Red Hat newlib C Math Library

1.32 nextafter, nextafterf—get next number
Synopsis
#include <math.h>

double nextafter(double val, double dir);
float nextafterf(float val, float dir);

Description

nextafter returns the double-precision floating-point number closest to val in the direction
toward dir. nextafterf performs the same operation in single precision. For example,
nextafter(0.0,1.0) returns the smallest positive number which is representable in double
precision.

Returns
Returns the next closest number to val in the direction toward dir.

Portability
Neither nextafter nor nextafterf is required by ANSI C or by the System V Interface
Definition (Issue 2).

Chapter 1: Mathematical Functions (‘math.h’) 35

1.33 pow, powf—=x to the power y
Synopsis
#include <math.h>

double pow(double x, double y);
float powf(float x, float y);

Description
pow and powf calculate x raised to the exponent y. (That is, z¥.)

Returns

On success, pow and powf return the value calculated.

When the argument values would produce overflow, pow returns HUGE_VAL and set errno
to ERANGE. If the argument x passed to pow or powf is a negative noninteger, and y is also
not an integer, then errno is set to EDOM. If x and y are both 0, then pow and powf return
1.

You can modify error handling for these functions using matherr.

Portability
pow is ANSI C. powf is an extension.

36 The Red Hat newlib C Math Library

1.34 remainder, remainderf—round and remainder

Synopsis
#include <math.h>

double remainder(double x, double y);
float remainderf(float x, float y);

Description
remainder and remainderf find the remainder of x/y; this value is in the range -y /2 ..

+y /2.

Returns
remainder returns the integer result as a double.

Portability
remainder is a System V release 4. remainderf is an extension.

Chapter 1: Mathematical Functions (‘math.h’) 37

1.35 scalbn, scalbnf—scale by power of two
Synopsis
#include <math.h>

double scalbn(double x, int y);
float scalbnf(float x, int y);

Description

scalbn and scalbnf scale x by n, returning x times 2 to the power n. The result is computed
by manipulating the exponent, rather than by actually performing an exponentiation or
multiplication.

Returns
x times 2 to the power n.

Portability
Neither scalbn nor scalbnf is required by ANSI C or by the System V Interface Definition
(Issue 2).

38 The Red Hat newlib C Math Library

1.36 sqrt, sqrtf—ypositive square root
Synopsis
#include <math.h>

double sqrt(double x);
float sqrtf(float x);

Description
sqrt computes the positive square root of the argument. You can modify error handling
for this function with matherr.

Returns
On success, the square root is returned. If x is real and positive, then the result is positive.
If x is real and negative, the global value errno is set to EDOM (domain error).

Portability
sqrt is ANSI C. sqrtf is an extension.

Chapter 1: Mathematical Functions (‘math.h’) 39

1.37 sin, sinf, cos, cosf—sine or cosine
Synopsis

#include <math.h>

double sin(double x);

float sinf(float x);

double cos(double x);
float cosf(float x);

Description
sin and cos compute (respectively) the sine and cosine of the argument x. Angles are
specified in radians.

sinf and cosf are identical, save that they take and return float values.

Returns
The sine or cosine of x is returned.

Portability
sin and cos are ANSI C. sinf and cosf are extensions.

40 The Red Hat newlib C Math Library

1.38 sinh, sinhf—hyperbolic sine
Synopsis
#include <math.h>

double sinh(double x);
float sinhf(float x);

Description
sinh computes the hyperbolic sine of the argument x. Angles are specified in radians.
sinh(x) is defined as

€T —T

c" — e

2

sinhf is identical, save that it takes and returns float values.

Returns
The hyperbolic sine of x is returned.

When the correct result is too large to be representable (an overflow), sinh returns HUGE_
VAL with the appropriate sign, and sets the global value errno to ERANGE.

You can modify error handling for these functions with matherr.

Portability
sinh is ANSI C. sinhf is an extension.

Chapter 1: Mathematical Functions (‘math.h’)

1.39 tan, tanf—tangent

Synopsis
#include <math.h>

double tan(double x);
float tanf(float x);

Description
tan computes the tangent of the argument x. Angles are specified in radians.

tanf is identical, save that it takes and returns float values.

Returns
The tangent of x is returned.

Portability
tan is ANSI. tanf is an extension.

41

42 The Red Hat newlib C Math Library

1.40 tanh, tanhf—hyperbolic tangent
Synopsis
#include <math.h>

double tanh(double x);
float tanhf(float x);

Description

tanh computes the hyperbolic tangent of the argument x. Angles are specified in radians.

tanh(x) is defined as
sinh(x)/cosh(x)

tanhf is identical, save that it takes and returns float values.

Returns
The hyperbolic tangent of x is returned.

Portability
tanh is ANSI C. tanhf is an extension.

Chapter 2: Reentrancy Properties of 1ibm 43

2 Reentrancy Properties of 1ibm

When a libm function detects an exceptional case, errno may be set, the matherr function
may be called, and a error message may be written to the standard error stream. This
behavior may not be reentrant.

With reentrant C libraries like the Red Hat newlib C library, errno is a macro which
expands to the per-thread error value. This makes it thread safe.

When the user provides his own matherr function it must be reentrant for the math library
as a whole to be reentrant.

In normal debugged programs, there are usually no math subroutine errors—and therefore
no assignments to errno and no matherr calls; in that situation, the math functions behave
reentrantly.

Library Index

Library Index

COPYSIgN ..ot
copysignf........

45
GAMMA_T .\ttt ettt et e 21
gammaf 21
gammaf _r............ 21
H
hypot 22
hypotf ... 22
I
ilogb .o 23
ilogbf ... 23
infinity.... 24
infinityf... ... 24
isinf oo 25
isinff ... 25
ISMAI 25
isnanf ... 25
JO 10
FOF 10
Fl 10
FLE 10
2 10
Jnf . 10
L
LdeXp oo 26
Idexpf ..o 26
1GAMMA . . v v vvve ettt 21
lgamma_T.......ooiiiiiiiiiiii 21
lgammaf 21
lgammaf _T.........oooiiiiiiiiiiiii 21
1O 27
1oglO ..o 28
ToglOf ..o 28
1ogIp oo 29
loglpf oo 29
logf oo 27
M
matherr........ 30
matherr and reentrancy 43
modf ... 32
modff ... 32
N
0= o 33

46

nant ... 33
nextafter......... 34
nextafterf......... 34
OSstubs ... 1
P

POW . ettt e e e e 35
powf L. 35
TEENETANCY « e 43
remainder........... ..t 36
remainderf....... 36
scalbn ... 37
scalbnf 37
<5 39

The Red Hat newlib C Math Library

sinf ... 39
sinh ... 40
sinhf 40
SATL .o 38
SQrtf . 38
SEUDS .. 1
support subroutines.............. ... i 1
system calls 1
T

B 41
tanf ... 41
tanh ... 42
tanhf ... 42
Y

YO . 10
yOf . 10
2 10
2 10
2.2 T 10

Library Index

The body of this manual is set in
cmrl0 at 10.95pt,
with headings in cmb10 at 10.95pt

and examples in cmtt10 at 10.95pt.

emitil0 at 10.95pt and
cmsl10 at 10.95pt
are used for emphasis.

47

Table of Contents

1 Mathematical Functions (‘math.h’) 1
1.1 Version of library....... ..o 2
1.2 acos, acosf—arc CoSINE. ... 3
1.3 acosh, acoshf—inverse hyperbolic cosine....................... 4
1.4 asin,asinf—arcsine.......... ..o 5)
1.5 asinh, asinhf—inverse hyperbolic sine......................... 6
1.6 atan, atanf—arctangent i i, 7
1.7 atan2, atan2f—arc tangent of y/X....... i 8
1.8 atanh, atanhf—inverse hyperbolic tangent 9
1.9 jN, jNf, yN, yNf—Bessel functions.................. 10
1.10 cbrt, cbrtf——cuberoot......... .. 11
1.11 copysign, copysignf—sign of y, magnitude of x............. 12
1.12 cosh, coshf—hyperbolic cosine 13
1.13 erf, erff, erfc, erfcf—error function....................... 14
1.14 exp, expf—exponential i 15
1.15 expml, expmlf—exponential minus 1......................... 16
1.16 fabs, fabsf-—absolute value (magnitude) 17
1.17 floor, floorf, ceil, ceilf—floor and ceiling................ 18
1.18 fmod, fmodf—floating-point remainder (modulo) 19
1.19 frexp, frexpf—split floating-point number 20
1.20 gamma, gammaf, 1gamma, lgammaf, gamma_r,................... 21
1.21 hypot, hypotf—distance from origin......................... 22
1.22 ilogb, ilogbf—get exponent of floating-point number 23
1.23 infinity, infinityf —representation of infinity 24
1.24 isnan, isnanf, isinf, isinff, finite, finitef—test for

exceptional numbers 25
1.25 1dexp, ldexpf—Iload exponent................c..cooiiiiii... 26
1.26 log, logf—matural logarithms............. 27
1.27 1ogl0, logl0f—base 10 logarithms 28
1.28 loglp, loglpf—logof 1 + x ... 29
1.29 matherr—modifiable math error handler..................... 30
1.30 modf, modff—split fractional and integer parts............... 32
1.31 nan, nanf—representation of “Not a Number” 33
1.32 nextafter, nextafterf—get next number................... 34
1.33 pow, powf—x tothe power y........l 35
1.34 remainder, remainderf—round and remainder............... 36
1.35 scalbn, scalbnf—scale by power of two 37
1.36 sqrt, sqrtf—positive square root............ ... il 38
1.37 sin, sinf, cos, cosf—sineorcosine 39
1.38 sinh, sinhf—hyperbolic sine 40
1.39 tan, tanf—tangent i 41
1.40 tanh, tanhf—hyperbolic tangent............... 42

ii The Red Hat newlib C Math Library

2 Reentrancy Properties of 1libm................ 43

Library Index.................. 45

	Mathematical Functions (math.h)
	Version of library
	acos, acosf---arc cosine
	acosh, acoshf---inverse hyperbolic cosine
	asin, asinf---arc sine
	asinh, asinhf---inverse hyperbolic sine
	atan, atanf---arc tangent
	atan2, atan2f---arc tangent of y/x
	atanh, atanhf---inverse hyperbolic tangent
	jN, jNf, yN, yNf---Bessel functions
	cbrt, cbrtf---cube root
	copysign, copysignf---sign of y, magnitude of x
	cosh, coshf---hyperbolic cosine
	erf, erff, erfc, erfcf---error function
	exp, expf---exponential
	expm1, expm1f---exponential minus 1
	fabs, fabsf---absolute value (magnitude)
	floor, floorf, ceil, ceilf---floor and ceiling
	fmod, fmodf---floating-point remainder (modulo)
	frexp, frexpf---split floating-point number
	gamma, gammaf, lgamma, lgammaf, gamma_r,
	hypot, hypotf---distance from origin
	ilogb, ilogbf---get exponent of floating-point number
	infinity, infinityf---representation of infinity
	isnan, isnanf, isinf, isinff, finite, finitef---test for exceptional numbers
	ldexp, ldexpf---load exponent
	log, logf---natural logarithms
	log10, log10f---base 10 logarithms
	log1p, log1pf---log of 1 + x
	matherr---modifiable math error handler
	modf, modff---split fractional and integer parts
	nan, nanf---representation of ``Not a Number''
	nextafter, nextafterf---get next number
	pow, powf---x to the power y
	remainder, remainderf---round and remainder
	scalbn, scalbnf---scale by power of two
	sqrt, sqrtf---positive square root
	sin, sinf, cos, cosf---sine or cosine
	sinh, sinhf---hyperbolic sine
	tan, tanf---tangent
	tanh, tanhf---hyperbolic tangent

	Reentrancy Properties of libm
	Library Index

