[image: First Edition]
Android Cookbook

Ian F. Darwin

[image: image with no caption]

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

To Dennis M. Ritchie (1941–2011), language pioneer and co-inventor of Unix, who showed us
 all where the braces go, and so much more…
Special Upgrade Offer

If you purchased this ebook directly from oreilly.com, you have the following benefits:
	DRM-free ebooks—use your ebooks across devices without restrictions or limitations

	Multiple formats—use on your laptop, tablet, or phone

	Lifetime access, with free updates

	Dropbox syncing—your files, anywhere

If you purchased this ebook from another retailer, you can upgrade your ebook to take advantage of all these benefits for just $4.99. Click here to access your ebook upgrade.
Please note that upgrade offers are not available from sample content.
Preface

Preface

Ian Darwin

Android is “the open source revolution” applied to cellular
 telephony and mobile computing. At least, part of the revolution. There
 have been many other attempts to provide open source cell phones, ranging
 from the mostly defunct Openmoko
 FreeRunner to QT Embedded, Moblin, LiMo, Debian Mobile, and Maemo
 to the recently open
 sourced Symbian OS and the
 recently defunct HP WebOS. And let’s not forget the established closed
 source stalwarts: BlackBerry OS, Apple’s iPhone, and Microsoft Windows
 Mobile (these all have developer toolkits, but their OS is not available
 as open source and often has other “click-wrap” restrictions).
“Nobody’s armchair is a good predictor of the future,” though, as
 Mike O’Dell once said. Does Android have a place in the sun
 alongside these other players? We thought it did when we set out to
 crowdsource this book, and time has proven us right: Android is definitely
 here to stay! This book is here to help the Android developer community
 share the knowledge that will make it happen. Those who contribute
 knowledge here are helping to make Android development easier for those
 who come after.
About Android

Android is a
 mobile technology platform that provides cell phones,
 tablets, and other handheld and mobile devices (even netbooks) with the
 power and portability of the Linux operating system and the reliability
 and portability of a standard high-level language and API. Android apps
 are written in the Java language, using tools such as Eclipse, compiled
 against the Android API, and translated into bytecode for the Dalvik
 VM.
Android is thus related by OS family to Openmoko, QT Embedded,
 MeeGo (the 2010 merger of Nokia’s Maemo and Intel’s MobLin: http://www.engadget.com/2010/02/15/meego-nokia-and-intel-merge-maemo-and-moblin),
 OPhone, LiMo, and other Linux-based cell phone projects. Android is also
 related by programming language to BlackBerry and Java ME phones, and to Java
 and the wider realm of Java Enterprise applications.
Android sales have continued to climb; a report from NPD states
 that first-quarter
 2010 sales of all Android devices exceeded sales of the iPhone,
 moving Android into second place (although still well behind the
 BlackBerry platform). Surely its growth was due in part to major carrier
 Verizon’s two-for-one sale, but that doesn’t account for all of
 it…

Who This Book Is From

This book was written by several dozen Android developers from the
 Android community at large. Development occurred in the open, on the
 website http://androidcookbook.com/, which I built
 to allow people to contribute, view, review, and comment on the recipes
 that would make up this book. A complete list can be found in Acknowledgments. I am deeply grateful to
 all the contributors, who have helped moved this book from a dream to
 the reality that you have in your hands (or on-screen if you are reading
 the ebook format). Thank you all!

Who This Book Is For

We assume you know the basics of the Java language. If not, see
 Recipe 1.2. We also assume you
 know the basics of the Java Standard Edition API (since this forms the
 basis of Android’s runtime libraries) as well as the basics of Android.
 The terms activity,
 intent, service, and
 content provider, while not necessarily being
 what you dream about at night, should at least be familiar to you. If
 not, see Recipe 1.6.

What’s in This Book?

Chapter 1, Getting Started, takes you
 through the steps of setting up the Android development environment and
 building several simple applications of the well-known “Hello, World”
 type pioneered by Brian Kernighan.
Chapter 2, Designing a Successful Application, covers some
 of the differences in mobile computing that will hit developers coming
 from desktop and enterprise software environments, and talks about how
 mobile design (in particular, Android design) differs from those other
 environments.
Testing is often an afterthought for some developers, so we
 discuss this early on, in Chapter 3, Testing. Not so that you’ll
 skip it, but so that you’ll read and heed. We talk about unit testing
 individual components as well as testing out your entire application in
 a well-controlled way.
Android provides a variety of mechanisms for communicating within
 an application and across applications. In Chapter 4, Inter-/Intra-Process Communication we discuss intents and broadcast
 receivers, services, AsyncTasks, and handlers.
Another communication mechanism is about allowing controlled
 access to data that is usually in an SQL database. In Chapter 5, Content Providers, we show you how to make
 an application that can be used by other applications through something
 as simple but ubiquitous (in Android) as the URL.
Chapter 6, Graphics, covers a
 range of topics related to graphics, including use of the graphical
 drawing and compositing facilities in Android as well as using desktop
 tools to develop graphical images, textures, icons, and so on that will
 be incorporated into your finished application.
Every mobile app needs a GUI, so Chapter 7, Graphical User Interface, covers the main ins and outs of GUI
 development for Android. Examples are given both in XML and, in a few
 cases, in Java-coded GUI development.
Chapter 8, GUI Alerts: Menus, Dialogs, Toasts, and
 Notifications, covers all
 the pop-up mechanisms—menus, dialogs, and toasts—and one that doesn’t
 pop up but is also for interaction outside your application’s window,
 Android’s notification mechanism.
Chapter 9, GUI: ListView, focuses on
 one of the most important GUI components in Android, the ListView.
Android is rich in multimedia capabilities. Chapter 10, Multimedia, shows how to use the most important of
 these.
Chapter 11, Data Persistence, shows how to
 save data into files, databases, and so on. And how to retrieve it
 later, of course.
Android started out as an operating system for mobile telephones.
 Chapter 12, Telephone Applications, shows how to
 control and react to the telephone device that is in most mobile devices
 nowadays.
Mobile devices are, for the most part, always-on and
 always-connected. This has a major impact on how people use them and
 think about them. Chapter 13, Networked Applications,
 shows the coding for traditional networked applications. This is
 followed by Chapter 14, Gaming and Animation, and
 Chapter 15, Social Networking.
The now-ubiquitous Global Positioning System has also had a major
 impact on how mobile applications work. Chapter 16, Location and Map Applications, discusses how to find your location, how
 to get map data from Google and OpenStreetMap, and how applications can
 be location-aware in ways that are just now being explored.
Chapter 17, Accelerometer, talks about
 the sensors built into most Android devices and how to use them.
Chapter 18, Bluetooth, talks about
 the low-energy very-local area networking that Bluetooth enables, going
 beyond connecting your Bluetooth headset to your phone.
Android devices are perhaps unique in how much control they give
 the developer. Some of these angles are explored in Chapter 19, System and Device Control. Since Android is
 Linux-based, a few of the recipes in this chapter deal with traditional
 Unix/Linux commands and facilities.
In Chapter 20, Other Programming Languages and
 Frameworks, we
 explore the use of other programming languages to write all or part of
 your Android application. Examples include C, Perl, Python, Lisp, and
 other languages.
While this edition of this book is in English, and English remains
 the number-one technical language worldwide, it is far from the only
 one. Most end users would rather have an application that has its text
 in their language and its icons in a form that is culturally correct for
 them. Chapter 21, Strings and Internationalization, goes over
 the issues of language and culture and how they relate to
 Android.
Most Android developers hope other people will use their
 applications. But this won’t happen if users can’t find the
 applications. Chapter 22, Packaging, Deploying, and Distributing/Selling Your App,
 shows how to prepare your application for distribution via the Android
 Market, and to use that as well as other markets to get your application
 out to the people who will use it.

Conventions Used in This Book

The following typographical conventions are used in this
 book:
	Italic
	Indicates new terms, URLs, email addresses, filenames, and
 file extensions.

	Constant width
	Used for program listings, as well as within paragraphs to
 refer to program elements such as variable or function names,
 databases, data types, environment variables, statements, and
 keywords.

	Constant width
 bold
	Shows commands or other text that should be typed literally by
 the user.

	Constant width italic
	Shows text that should be replaced with user-supplied values
 or by values determined by context.

Tip
This icon signifies a tip, suggestion, or general note.

Caution
This icon indicates a warning or caution.

Getting and Using the Code Examples

Contributors of each recipe have the option to provide a download
 URL for their source code. Additionally, some recipes feature an
 individual source download, listed both as a hyperlink for PDF users and
 as a QR-format barcode for downloading from the printed edition. These
 URLs are included at the end of each recipe. In each case the archive file
 is expected to contain a complete Eclipse project. The archives are also
 collected and published at the book’s GitHub site, which can be found at
 https://github.com/androidcook/Android-Cookbook-Examples.
 Each directory in the repo contains one example program’s project. As you
 will see if you visit this page, GitHub allows you to check out the source
 repository using the git clone command. As well, the
 web page offers the option to download the entire repository as a single
 (large) ZIP file as well as to browse portions of the repository in a web
 browser. Using git will allow you to receive corrections and updates, but
 the ZIP will download more quickly.
This book is here to help you get your job done. In general, you may
 use the code in this book in your programs and documentation. You do not
 need to contact us for permission unless you’re reproducing a significant
 portion of the code. For example, writing a program that uses several
 chunks of code from this book does not require permission. Selling or
 distributing a CD-ROM of examples from O’Reilly books does require
 permission. Answering a question by citing this book and quoting example
 code does not require permission. Incorporating a significant amount of
 example code from this book into your product’s documentation does require
 permission.
We appreciate, but do not require, attribution. An attribution
 usually includes the title, author, publisher, and ISBN. For example:
 “Android Cookbook, edited by Ian F. Darwin
 (O’Reilly). Copyright 2012 O’Reilly Media, Inc.,
 978-1-449-38841-6.”
If you feel your use of code examples falls outside fair use or the
 permission given above, feel free to contact us at
 permissions@oreilly.com.

Safari® Books Online

Note
Safari Books Online is an on-demand digital library that lets you
 easily search over 7,500 technology and creative reference books and
 videos to find the answers you need quickly.

With a subscription, you can read any page and watch any video from
 our library online. Read books on your cell phone and mobile devices.
 Access new titles before they are available for print, and get exclusive
 access to manuscripts in development and post feedback for the authors.
 Copy and paste code samples, organize your favorites, download chapters,
 bookmark key sections, create notes, print out pages, and benefit from
 tons of other time-saving features.
O’Reilly Media has uploaded this book to the Safari Books Online
 service. To have full digital access to this book and others on similar
 topics from O’Reilly and other publishers, sign up for free at http://my.safaribooksonline.com.

How to Contact Us

Please address comments and questions concerning this book to the
 publisher:
	O’Reilly Media, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	800-998-9938 (in the United States or Canada)
	707-829-0515 (international or local)
	707-829-0104 (fax)

We have a web page for this book, where we list errata, examples,
 and any additional information. You can access this page at:
	http://shop.oreilly.com/product/0636920010241.do

To comment or ask technical questions about this book, send email
 to:
	bookquestions@oreilly.com

For more information about our books, courses, conferences, and
 news, see our website at http://www.oreilly.com.
Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia
Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments

I would like to thank the dozens of people from the Android
 community at large who contributed so many of the recipes in this book:
 Amir Alagic, Jim Blackler, Luis Vitorio Cargnini, Rupesh Chavan, Adrian
 Cowham, Nidhin Jose Davis, Wagied Davids, David Dawes, Enrique Diaz, Marco
 Dinacci, Claudio Esperanca, Kurosh Fallahzadeh, Daniel Fowler, Jonathan
 Fuerth, Sunit Katkar, Roger Kind Kristiansen, Vladimir Kroz, Alex
 Leffelman, Ulysses Levy, Thomas Manthey, Emaad Manzoor, Keith Mendoza,
 Roberto Calvo Palomino, Federico Paolinelli, Johan Pelgrim, Catarina Reis,
 Mike Rowehl, Pratik Rupwal, Oscar Salguero, Ashwini Shahapurkar, Shraddha
 Shravagi, Rachee Singh, Saketkumar Srivastav, Corey Sunwold, Kailuo Wang,
 and Colin Wilcox.
I must also mention the many people at O’Reilly who have helped
 shape this book, including my editors Mike Loukides, Courtney Nash, and
 Meghan Blanchette; Adam Witwer and Sarah Schneider in production;
 production editor Teresa Elsey, who shepherded the whole production
 process; external copy editor Audrey Doyle, who painstakingly read every word and phrase;
 Stacie Arellano, who proofread it all again; Lucie Haskins, who added
 index terms to all those recipes; designers Karen Montgomery and David
 Futato; illustrators Robert Romano and Rebecca Demarest; and anyone whom
 I’ve neglected to mention—you know who you are!
My son Andrej Darwin helped with some administrative tasks late in
 the recipe editing phase. Thanks to all my family for their
 support.
Finally, a note of thanks to my two technical reviewers, Greg
 Ostravich and Zettie Chinfong, without whom there would be many more
 errors and omissions than the ones that doubtless remain.
To all of the above, thank you!

Chapter 1. Getting Started

1.1. Introduction: Getting Started

Ian Darwin

Discussion

The famous “Hello, World” pattern came about when Kernighan and Plaugher wanted to write a “recipe” on how
 to get started in any new programming language and environment. This
 chapter is affectionately dedicated to these fine gentlemen, and to
 everyone who has ever struggled to
 get started in a new programming paradigm.

1.2. Learning the Java Language

Ian Darwin

Problem

Android apps are written in the Java programming
 language before they are converted into Android’s own class file
 format, DEX. If you don’t know how to program in Java you will find it
 hard to write Android apps.

Solution

Lots of resources are available for learning Java. Most of them
 will teach you what you need, but will also mention some API classes
 that are not available for Android development.
 Avoid any sections in any resource that talk about
 topics listed in the lefthand column of Table 1-1.
Table 1-1. Parts of the Java API to ignore
	Java API	Android equivalent
	Swing, applets	Android’s GUI; see Chapter 7.
	Application entry point main()	See Recipe 1.6.
	J2ME/Java ME	Most of android.* replaces Java ME
 API.
	Servlets/JSP, J2EE/Java EE	Designed for server-side use.

Discussion

Here are some books and resources on Java programming:
	Java
 in a Nutshell by David Flanagan (O’Reilly) is a
 good introduction for programmers, particularly those who are coming
 from C/C++. This book has grown from an acorn to a coconut in size,
 to keep up with the growth of Java SE over its lifetime.

	Head
 First Java by Kathy Sierra and Bert Bates
 (O’Reilly). This provides a great visual-learner-oriented
 introduction to the language.

	Thinking in
 Java by Bruce Eckel (Prentice-Hall).

	Learning
 Java by Patrick Niemeyer and Jonathan Knudsen
 (O’Reilly).

	“Great Java:
 Level 1”, a video by Brett McLaughlin (O’Reilly). This
 provides a visual introduction to the language.

	Java:
 The Good Parts by Jim Waldo (O’Reilly).

	Java
 Cookbook, which I wrote and which O’Reilly
 published. This is regarded as a good second book for Java
 developers. It has entire chapters on strings, regular expressions,
 numbers, dates and time, structuring data, I/O and directories,
 internationalization, threading, and networking, all of which apply
 to Android. It also has a number of chapters that are specific to
 Swing and to some EE-based technologies.

Please understand that this list will probably never be completely
 up-to-date. You should also refer to O’Reilly’s freely downloadable
 (with registration) Android
 Development Bibliography, a compilation of all the
 books from the various publishers whose books are in the online Safari
 service. This book is also distributed without charge at relevant
 conferences where O’Reilly has a booth.

See Also

This book’s primary author maintains a list of Java resources
 online at http://www.darwinsys.com/java/.
O’Reilly has many of the best Java books around; there’s a
 complete list at http://oreilly.com/pub/topic/java.

1.3. Creating a “Hello, World” Application from the Command Line

Ian Darwin

Problem

You want to create a new Android project without using the Eclipse ADT
 plug-in.

Solution

Use the Android Development Kit (ADK) tool android with the create project argument and some additional
 arguments to configure your project.

Discussion

In addition to being the name of the platform,
 android is also the name of a command-line tool for
 creating, updating, and managing projects. You can either navigate into
 the android-sdk-xxx directory, or you can set your
 PATH variable to include its
 tools subdirectory.
Then, to create a new project, give the command android create project with
 some arguments. Example 1-1 is an example run under
 MS-DOS.
Example 1-1. Creating a new project
C:> PATH=%PATH%;"C:\Documents and Settings\Ian\My Documents\android-sdk-windows\tools"; \
 "C:\Documents and Settings\Ian\My Documents\android-sdk-windows\platform-tools"
C:> android create project --target android-7 --package com.example.foo
 --name Foo --activity FooActivity --path .\MyAndroid
Created project directory: C:\Documents and Settings\Ian\My Documents\MyAndroid
Created directory C:\Documents and Settings\Ian\My Documents\MyAndroid\src\com\example\foo
Added file C:\Documents and Settings\Ian\My
 Documents\MyAndroid\src\com\example\foo\FooActivity.java
Created directory C:\Documents and Settings\Ian\My Documents\MyAndroid\res
Created directory C:\Documents and Settings\Ian\My Documents\MyAndroid\bin
Created directory C:\Documents and Settings\Ian\My Documents\MyAndroid\libs
Created directory C:\Documents and Settings\Ian\My Documents\MyAndroid\res\values
Added file C:\Documents and Settings\Ian\My Documents\MyAndroid\res\values\strings.xml
Created directory C:\Documents and Settings\Ian\My Documents\MyAndroid\res\layout
Added file C:\Documents and Settings\Ian\My Documents\MyAndroid\res\layout\main.xml
Added file C:\Documents and Settings\Ian\My Documents\MyAndroid\AndroidManifest.xml
Added file C:\Documents and Settings\Ian\My Documents\MyAndroid\build.xml

C:>

Table 1-2 lists the arguments for the create project code.
Table 1-2. List of create project arguments
	Name	Meaning	Example
	--activity	Name of your “main class” and default name for the
 generated .apk file.	--activity HelloActivity
	--name	Name of the project and the generated
 .apk file.	--name MyProject
	--package	Name of the Java package for your classes.	--package com.example.hello
	--path	Path to create the project in (does not create a
 subdirectory under this, so don’t use
 /home/you/workspace,
 but rather
 /home/you/workspace/NewProjectName).	--path /home/ian/workspace/MyProject
 (see above for Windows
 example)
	--target	API level of the Android platform to target; use android list targets to see list of
 targets. A number is an “ID,” not an API level; for that, use
 android- with the API level you want.	--target android-10

If it cannot complete the requested operation, the android command presents a voluminous “command
 usage” message listing all the operations it can do and the arguments
 for them. If successful, the android create
 project command creates the files and directories listed in
 Table 1-3.
Table 1-3. Artifacts created by create project
	Name	Meaning
	AndroidManifest.xml	Config file that tells Android about your project
	bin	Generated binaries (compiled class files)
	build.properties	Editable properties file
	build.xml	Standard Ant build control file
	default.properties or
 project.properties (depending on tools
 version)	Stores SDK version and libraries used; maintained by
 plug-in
	gen	Generated stuff
	libs	Libraries, of course
	res	Important resource files
 (strings.xml, layouts, etc.)
	src	Source code for your application
	src/packagename/ActivityName.java	Source of “main” starting activity
	test	Copies of most of the above

It is a normal and recommended Android practice to create your user interface
 in XML using the layout file created under res/layout, but it is certainly possible to
 write all the code in Java. To keep this example self-contained, we’ll
 do it the “wrong” way for now. Use your favorite text editor to replace
 the contents of the file HelloWorld.java with the
 contents of Example 1-2.
Example 1-2. HelloWorld.java
import android.app.Activity;
import android.widget.*;

public class Hello extends Activity {

 /**
 * This method gets invoked when the activity is instantiated in
 * response to e.g., you clicked on the app's Icon in the Home Screen.
 */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 // Create a TextView for the current Activity
 TextView view = new TextView(this);
 // Make it say something
 view.setText("Hello World");
 // Put this newly created view into the Activity,
 // sort of like JFrame.getContentPane().add(view)
 setContentView(view);
 }
}

Assuming you have the Apache Software Foundation Ant Build Tool installed (and it is
 included with recent versions of the Android SDK), you can now (in a
 command-line window) change to the project directory (...MyDocuments\MyAndroid in Example 1-1) and issue the command:
ant debug
This will create an archive file named, for example,
 MyAndroid.apk (with “apk” standing for Android
 Package) in the bin directory.
If this is your first time here, you may need to create an
 Android Virtual Device (AVD), which is just a named
 configuration for the Android emulator specifying target resolution, API
 level, and so on. You can create an emulator using:
android create avd -n my_droid -t 7
For more details on creating an AVD, see Recipe 3.3.
You can then start the Android Debug Bridge (ADB) server and the emulator:
adb start-server
emulator -avd my_droid -t 5
Assuming you now have either the emulator running or your device
 plugged in and recognized via USB, you can then do:
adb -e install -r bin/MyAndroid.apk
The -e flag is for the emulator; use
 -d for a real device.
If you are handy with shell scripts or batch files, you’ll want to
 create one called, say, download, to avoid typing
 the adb invocation on every build
 cycle.
Finally you can start your app! You can use the Application list:
 tap the little icon that looks like a 5×5 row of dots, scroll to your
 application by name, and tap its icon.
You will probably find it convenient to create an icon for your
 app on the home screen of the device or emulator; this icon will survive
 multiple install -r cycles, so it’s the easiest way
 to test the running of your application.

See Also

Recipe 1.4. The blog “a
 little madness” has a more
 detailed formulation. The official Android reference site has a page on developing
 without Eclipse.

1.4. Creating a “Hello, World” Application in Eclipse

Ian Darwin

Problem

You want to use Eclipse to develop your Android application.

Solution

Install Eclipse, the
 Android SDK, and
 the ADT
 plug-in. Create your project and start writing your app. Build
 it, and test it under the emulator, from within Eclipse.

Discussion

Once you have these items installed, you are ready to
 begin:
	Eclipse
 IDE

	The Android
 SDK

	The ADT
 plug-in

If you want a more detailed exposition of installing these three
 items, please refer to Recipe 1.5.
To get started, create a new project from the File→New
 menu (see Figure 1-1).
[image: Starting to create an Eclipse project]

Figure 1-1. Starting to create an Eclipse project

Click Next. Give your new project a name, and click Next (see Figure 1-2).
[image: Setting parameters for a new Eclipse project]

Figure 1-2. Setting parameters for a new Eclipse project

Select an SDK version to target. Version 2.1 gives you almost all
 the devices in use today; version 3.x or 4.x gives you the latest
 features (see Figure 1-3). You decide.
[image: Setting SDK to target for a new Eclipse project]

Figure 1-3. Setting SDK to target for a new Eclipse project

Figure 1-4 shows the project structure
 expanded in the Project panel on the right. It also shows the extent to
 which you can use Eclipse auto-completion within Android—I added the
 gravity attribute for the label, and Eclipse is
 offering a full list of possible attribute values. I chose
 center-horizontal, so the label should be centered
 when we get the application running.
[image: Using the Eclipse editor to set gravity on a TextView]

Figure 1-4. Using the Eclipse editor to set gravity on a TextView

In fact, if you set gravity to center_vertical on the LinearLayout
 and set it to center_horizontal on the TextView, the text will be centered
 both vertically and horizontally. Example 1-3 is the
 layout file main.xml (located under
 res/layout) which achieves this.
Example 1-3. The XML layout
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:gravity="center_vertical"
 >
<TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="@string/hello"
 android:gravity="center_horizontal"
 />
</LinearLayout>

As always, Eclipse generates a compiled version whenever you save
 a source file. Also, in an Android project, it also runs an Ant build to
 create the compiled, packaged APK that is ready to run. So you only need
 to run it. Right-click on the project itself and select Run As → Android Project. (See Figure 1-5.)
[image: Running an Eclipse Android project]

Figure 1-5. Running an Eclipse Android project

This will start the Android emulator if it’s not already running. The emulator will
 start with the word Android in typewriter text,
 then switch to the fancier Android font with a moving white patch over
 blue lettering—remember the Microsoft Windows 95 startup? See Figure 1-6.
[image: The Android project starting up in the emulator]

Figure 1-6. The Android project starting up in the emulator

After a little longer, your application should start up (Figure 1-5 only shows a screenshot of the
 application itself, since the rest of the emulator view is redundant). See Figure 1-7.

See Also

Recipe 1.3
[image: The Eclipse project running in the emulator]

Figure 1-7. The Eclipse project running in the emulator

1.5. Setting Up an IDE on Windows to Develop for Android

Daniel Fowler

Problem

You want to develop your Android applications using a Windows PC, so a concise
 guide to setting up an IDE for that platform is useful.

Solution

The use of the Eclipse IDE is recommended when developing Android
 apps. Configuring Eclipse on Windows is not a single-shot install;
 several stages need to be completed. This recipe provides details on
 those stages.

Discussion

To develop applications for Android, the Eclipse Integrated
 Development Environment (IDE) for Java is recommended. An Android Development Tools (ADT) plug-in is available to
 enhance Eclipse. The ADT plug-in uses the Android Software Development Kit (SDK) which provides
 essential programs for developing Android software. To set up a
 development system you will need to download and install the
 following:
	Java Standard Edition Development Kit

	Eclipse for Java Development

	Android Software Development Kit

	Android Development Tools plug-in (from within Eclipse)

In the subsections that follow, we will cover these stages in
 detail for a PC running Windows (tested on XP, Vista, and Windows
 7).
Installing the JDK (Java Development Kit)

Go to the Java download page at http://www.oracle.com/technetwork/java/javase/downloads/index.html.
Select the Java icon to access the JDK downloads:
[image: image with no caption]

The list of JDK downloads will be shown. Click the Accept
 License Agreement radio button; otherwise, you will not be allowed to
 continue. Download and run the latest JDKs present; as of this
 writing, they are jdk-7u2-windows-i586.exe (or
 jdk-7u2-windows-x64.exe for 64-bit Windows). You
 may need to select the location of the download site. Accept any
 security warnings that appear, but only if you are downloading from
 the official Java download web page.
When the download has completed and is run you will need to go
 through the install screens, clicking Next until the JDK installer has
 finished. You should not need to change any options presented. When
 the JDK installer has completed, click the Finish button. A product
 registration web page may load; you can close this or you can choose
 to register your installation.

Installing Eclipse for Java development

The Eclipse Downloads web page is at http://www.eclipse.org/downloads/.
Windows needs to be selected in the Packages drop down; select the
 relevant Eclipse IDE for Java Developers download link (see Figure 1-8).
[image: Choosing an Eclipse download]

Figure 1-8. Choosing an Eclipse download

Download and open the ZIP file. In the file there will be an
 eclipse directory containing several files and
 subdirectories. Copy the eclipse directory and
 all its contents as it comes (Figure 1-9). The usual
 place to copy the files to is either the root of the C drive or under
 C:\Program Files. You may need to select Continue
 when Windows asks permission for the copy.
[image: Contents of the Eclipse folder]

Figure 1-9. Contents of the Eclipse folder

Make a desktop shortcut to
 eclipse.exe.
[image: image with no caption]

Run Eclipse so that it sets up a workspace; this will also check
 that both Java and Eclipse were installed correctly. When you run
 Eclipse a security warning may be displayed; select Run to continue.
 Accept the default workspace location or use a different directory.

Installing the Android SDK (software development kit)

Go to the Android Software Development Kit download page at http://developer.android.com/sdk/index.html.
Choose the latest Windows EXE package (currently
 installer_r16-windows.exe) and select Run. Accept
 the security warning only if you are downloading from the official
 Android SDK website. The Android SDK Tools installer will show some
 screens. Select the Next button on each screen; you should not need to
 change any options. Since C:\Program
 Files is a protected directory, you can either get
 permission to install there or, as some developers do, install to your
 user folder or another directory—for example,
 C:\Android\android-sdk.
When the Install button is clicked, a progress screen will
 briefly display while the Android files are copied. Click the final
 Next button and the Finish button at the end of the installation. If
 you left the Start SDK Manager checkbox ticked the SDK
 Manager will run. Otherwise, select SDK Manager from the
 Android SDK Tools program group (Start→All Programs→Android SDK Tools→SDK Manager). When the SDK Manager starts the
 Android packages available to download are checked. Then a list of all
 available packages is shown with some preselected for download. A
 Status column shows whether a package is installed or not. In Figure 1-10, you can see that the Android SDK Tools have
 just been installed and this is reflected in the Status column.
[image: Android SDK Manager, showing installed and downloadable components]

Figure 1-10. Android SDK Manager, showing installed and downloadable
 components

Check each package that needs to be installed. Multiple packages
 are available. These include SDK platform packages for each
 application programming interface (API) level, application samples for
 most API levels, Google Maps APIs, manufacturer-device-specific APIs,
 documentation, source code, and the following Google extra
 packages:
	Android Support
	Used to support later Android APIs on older devices

	AdMob Ads SDK
	For incorporating advertising into apps

	Analytics SDK
	To support analysis of customers’ purchases

	Market Billing
	Adds support for in-app purchases

	Market Licensing
	Helps protect apps from being illegally copied

	USB Driver
	For debugging on physical devices (or using a
 manufacturer’s driver)

	Webdriver
	Helps test a website’s compatibility with the Android
 browser

It is recommended that you download several SDK platforms to
 allow testing of apps against various device configurations. It is
 worth noting that older computers will struggle to run the virtual
 device emulators for the later Android APIs; therefore, develop with
 the earlier SDK platforms on such computers. If in doubt about what to
 download, either accept the initial choices and rerun the SDK Manager
 to get other packages as and when required; or check all packages to
 download everything (the download may take a while). Click the
 “Install packages” button.
The selected packages will be shown in a list; if a package has
 licensing terms that require acceptance, it is shown with a question
 mark. Highlight each package that has a question mark to read the
 licensing terms. You can accept or reject the package using the radio
 buttons. Rejected packages are marked with a red ×. Alternatively,
 click Accept All to accept everything that is available. Click the
 Install button and a progress log will show the packages being
 installed, as well as any errors that occur. On Windows a common error
 occurs when the SDK Manager is unable to access or rename directories.
 Rerun the SDK Manager as administrator and check that the directory
 does not have any read-only flags or files; see Recipe 1.12 for further details. When complete close
 the SDK Manager by clicking the × button in the top corner of the
 window.

Installing the Android Development Tools (ADT) plug-in

You install the ADT plug-in via Eclipse, but to do so you must run
 Eclipse from the administrator account. Use the shortcut created
 earlier or eclipse.exe from the
 eclipse folder. In either case, bring up the
 context menu (usually via a right-click), select “Run as
 administrator,” and accept any security warnings. When Eclipse has
 loaded open the Help menu item and select Install New
 Software….
On the Install screen enter the following address in the “Work
 with” box:
https://dl-ssl.google.com/android/eclipse/
Click the Add button. An Add Repository screen appears; in the
 Name box type something meaningful, such as “ADT plug-in” (the
 aforementioned web address will be displayed in the Location box); see
 Figure 1-11.
[image: Adding the ADT plug-in repository]

Figure 1-11. Adding the ADT plug-in repository

Click the OK button. The screen will update after briefly
 showing Pending in the Name column of the table.
Check the box next to Developer Tools. Then select the Next
 button at the bottom of the screen (see Figure 1-12).
[image: Choosing what to install]

Figure 1-12. Choosing what to install

A list of the items to be installed will be displayed. If you
 get an error message check that Eclipse has been run under the
 administrator account. Select Next again. A screen displays the
 licenses; ensure that each license has been accepted (select the “I
 accept the terms of the license agreements” radio button). Then click
 the Finish button. A security warning will need to be accepted to
 complete the installation; select OK to this warning (the address
 entered earlier is a secure address). Eclipse will ask you for a
 restart. Select the Restart Now button and Eclipse will close and
 reload. A Welcome to Android Development dialog will appear. Set the
 SDK location in the Existing Location box (since the SDK Manager will
 have already run), browse to the Android SDK folder (by default,
 C:\Program Files\Android\android-sdk), and click
 Next (see Figure 1-13).
A Google Android SDK usage monitoring question will appear;
 change the option if required and click Finish. Eclipse is now
 configured to build and debug Android apps. See Recipe 3.3 to configure an Android emulator; then
 try Recipe 1.4 as a sanity
 check. Plug a physical device into the computer and use its settings
 to turn on USB Debugging (under Development in Applications).

See Also

Recipe 1.4; Recipe 1.12; Recipe 3.3; http://developer.android.com/sdk/installing.html, http://www.eclipse.org/; http://www.oracle.com/technetwork/java/javase/downloads/index.html
[image: Connecting the newly installed SDK to the newly installed ADT plug-in]

Figure 1-13. Connecting the newly installed SDK to the newly installed ADT
 plug-in

1.6. Understanding the Android Life Cycle

Ian Darwin

Problem

Android apps do not have a “main” method; you need to learn how they get
 started and how they stop or get stopped.

Solution

The class android.Activity provides a number of well-defined life-cycle methods that
 are called when an application is started, suspended, restarted, and so
 on, as well as a method you can call to mark an activity as
 finished.

Discussion

Your Android application runs in its own Unix process, so in
 general it cannot directly affect any other running application. The
 Dalvik VM interfaces with the operating system to call you when your
 application starts, when the user switches to another application, and
 so on. There is a well-defined life cycle for Android
 applications.
An Android application has three states it can be in:
	Active, in which the app is visible to the user and is
 running

	Paused, in which the app is partly obscured and has lost the
 input focus

	Stopped, in which the app is completely hidden from
 view

Your app will be transitioned among these states by Android calling the
 following methods on the current activity at the appropriate
 time:
void onCreate(Bundle savedInstanceState)
void onStart()
void onResume()
void onRestart()
void onPause()
void onStop()
void onDestroy()
You can see the state diagram for this life cycle in Figure 1-14.
[image: Android life-cycle states]

Figure 1-14. Android life-cycle states

For an application’s first activity, onCreate()
 is how you know that the application has been started. This
 is where you normally do constructor-like work such as setting up the
 “main window” with setContentView(), adding listeners
 to buttons to do work (including starting additional activities), and so
 on. This is the one method that even the simplest Android app
 needs.
You can see the effects of the various life cycle methods by
 creating a dummy project in Eclipse and overriding all the methods with
 log “debug” statements.

1.7. Installing .apk Files onto an Emulator via the ADB

Rachee Singh

Problem

You have an application’s .apk file, and you want
 to install it on the emulator to check out the application, or because
 an application you are developing requires it.

Solution

Use the ADB command-line tool to install the
 .apk file onto the running emulator; you can also
 use this tool to install an .apk file onto a
 connected Android device.

Discussion

To install the .apk file, follow these
 steps:
	Find the location on your machine where you have installed the
 Android SDK. In the Android SDK directory, go to the
 tools directory.

	Look for an executable named adb in the
 tools directory. If it is present that is the
 location of the adb file; otherwise, there should be a
 .txt file named “adb has moved.” The contents
 of the file merely direct you to the location of the adb binary; the
 file states that adb is present in the
 platform-tools directory instead of the
 tools directory.

	Once you have located the adb program, cd
 to that location in a terminal (Linux) or command prompt
 (Windows).

	Use the command adb install location of
 the .apk you want to install. If you get
 “command not found” on Linux, try using “./adb” instead of just
 “adb”.

This should start the installation on the device that is currently
 running (either an emulator that is running on your desktop, or a
 physical Android device that is connected).
After the installation finishes, in the menu of the Android
 device/emulator you should see the icon of the application you just
 installed (see Figure 1-15).
[image: The installation command]

Figure 1-15. The installation command

1.8. Installing Apps onto an Emulator via SlideME

David Dawes

Problem

App stores are a huge element of the attraction of modern
 smartphones. Google’s Android Market is the official app store,
 but you may want to use others as well.

Solution

SlideMe LLC offers an
 alternative app store. The SlideME app store allows you to install other
 apps (perhaps you want to integrate with other apps), as well as test
 the experience of publishing and downloading your own apps on your
 emulated Android device. SlideME
 also reaches many Android users who are locked out of the Google Android
 Market, including people with unsupported devices and those who
 don’t live in a country that is supported by the Android Market.

Discussion

An alternative to the official Android Market is Slide ME, an alternative app store.
 SlideME may not have as many apps as Google’s Android Market, but it has
 some advantages, including that it works easily on an emulated Android
 device.
Go to the SlideME website
 using your emulated Android device, browse or search through the apps,
 and click on a free one. After a pause to download the file, open the
 download (the little arrow on the top left), review the license, and
 launch the .apk file you’ve downloaded to install
 the app. During the installation, you will be asked to review and accept
 the license for the software.
Once the SlideME app is installed, you can go through the catalog
 and install more apps without using the browser. This is much easier
 than using a web browser to download the apps, since the presentation is
 designed for the Android device; simply choose a category, scroll
 through it, and choose an app to install. I have had some stability
 problems using the app on my emulator—it freezes on occasion—but I was
 able to install some basic free apps, like Grocery List.
I noticed in the Android Invasion discussion forum on Linkedin.com that some Android users are disappointed
 to find that many cell phone providers do not
 include the official Android Market in their Android cell phone
 offerings, and unless you’re comfortable rooting and flashing your
 Android phone there’s no way to get it. Most consumers are not
 comfortable rooting and flashing their phones, and for them SlideME
 offers an alternative way to find free and inexpensive apps for their
 phones.

See Also

SlideME also allows you to publish your apps to its app store; see
 the Applications page on
 the SlideME website.
For information on developing apps for SlideME, see http://slideme.org/developers.

1.9. Sharing Java Classes from Another Eclipse Project

Ian Darwin

Problem

You want to use a class from another project, but you don’t want to copy and
 paste.

Solution

Add the project as a “referenced project,” and Eclipse (and DEX)
 will do the work.

Discussion

You often need to reuse classes from another project. In my
 JPSTrack GPS tracking program, the Android version borrows classes such as the file I/O
 module from the Java SE version. You surely do not want to copy and
 paste classes willy-nilly from one project into another, because this
 makes maintenance improbable.
In the simplest case, when the library project contains the source
 of the classes you want to import, all you have to do is declare the
 project containing the needed classes (the Java SE version in this case)
 as a referenced project on the build path. Select Project→Properties→Java
 Build Path, select Projects, and click Add. In Figure 1-16, I am adding the SE project
 “jpstrack” as a dependency on the Android project
 “jpstrack.android.”
[image: Making one project depend on another—using standard Eclipse]

Figure 1-16. Making one project depend on another—using standard
 Eclipse

Mobile developers who create apps for other platforms as well
 should note that this technique does not work if you also have the
 current (late 2011) BlackBerry Java plug-in installed in your Eclipse installation. This is a bug in
 the BlackBerry Java plug-in; it incorrectly flags even non-BlackBerry
 projects as depending on non-BlackBerry-library projects, and marks the
 project as having an error, which will prevent correct code generation
 and execution. Remove the buggy plug-in, or put it in its own Eclipse
 installation.
Alternatively, create a JAR file using either Ant or the Eclipse wizard. Have the
 other project refer to it as an external JAR in the classpath settings.
 Or physically copy it into the libs directory and
 refer to it from there.
A newer method that is often more reliable and is now officially
 recommended, but is only useful if both projects are Android projects,
 is to declare the library one as a library project, under Project→Properties→Android→Library
 tab, and use the Add button on the other project on the same screen to
 list the library project as a dependency on the main project (see Figure 1-17).
[image: Making one project depend on another—using ADT]

Figure 1-17. Making one project depend on another—using ADT

For command-line fans, the first method involves editing the
 .classpath file, while the second method simply creates entries in the
 project.properties file, for example:
Project target
target=android-7
android.library=false
android.library.reference.1=../wheel
Since you are probably keeping both projects under source control
 (and if these are programs you ever intend to ship, you should!),
 remember to “tag” both projects when you release the Android project—one
 of the points in favor of source control is that you are able to
 re-create exactly what you shipped.

See Also

See
 the official documentation on Library Projects.

1.10. Referencing Libraries to Implement External Functionality

Rachee Singh

Problem

You need to reference an external library in your source code.

Solution

Obtain the JAR file for the library that you require and add it to
 your project.

Discussion

As an example, you might need to use AndroidPlot, a library for plotting charts and graphs in your
 application, or OpenStreetMap, a wiki project that creates and provides free geographic data and
 mapping. If so, your application needs to reference these libraries. You
 can do this in Eclipse in a few simple steps:
	Download the JAR file corresponding to the library you wish to
 use.

	After creating your Android project in Eclipse, right-click on
 the project name and select Properties in the menu (Figure 1-18).

	From the list on the left side, select Java Build Path and
 click on the Libraries tab.

	Click the Add External JARs button.

	Provide the location where you downloaded the JAR file for the
 library you wish to use.

[image: Selecting project properties]

Figure 1-18. Selecting project properties

At this point you will see a Referenced
 Libraries directory in your project. The JARs you added will
 appear (see Figure 1-19).
An alternative approach is to create a lib
 folder in your project, physically copy the JAR files there, and add
 them individually as you did earlier, but instead clicking the Add JARs
 button. This keeps everything in one place (especially if your project
 is shared via a version control system with others who might use a
 different operating system and be unable to locate the external JARs in
 the same place). However, it does raise the burden of responsibility for
 licensing issues on the included JAR files. See Figure 1-20.
In either case, if you also build with Ant, be sure to update your
 build.xml file.
Whichever way you do it, it’s pretty easy to add libraries to your
 project.
[image: Adding libraries]

Figure 1-19. Adding libraries

[image: Adding the external JAR file]

Figure 1-20. Adding the external JAR file

1.11. Using SDK Samples to Help Avoid Head Scratching

Daniel Fowler

Problem

Sometimes it is a struggle to code up some functionality, especially when
 the documentation is sketchy or does not provide any examples.

Solution

Looking at existing working code will help. The Android SDK has
 sample programs that you can pick apart to see how they work.

Discussion

The Android SDK comes with several sample applications that can be
 useful when trying to code up some functionality. Looking through the
 sample code can be insightful. Once you have installed the Android SDK,
 several samples become available:
	Accelerometer Play

	Accessibility Service

	API Demos

	Backup and Restore

	Bluetooth Chat

	Business Card

	Contact Manager

	Cube Live Wallpaper

	Home

	Honeycomb Gallery

	JetBoy

	Lunar Lander

	Multiple Resolutions

	Near Field Communication

	Note Pad

	RenderScript

	Sample Sync Adapter

	Searchable Dictionary

	Session Initiation Protocol

	Snake

	Soft Keyboard

	Spinner

	SpinnerTest

	StackView Widget

	TicTacToeLib

	TicTacToeMain

	USB

	Wiktionary

	Wiktionary (Simplified)

	Weather List Widget

	XML Adapters

To open a sample project from Eclipse open the File menu and then
 select Android Project. See Figure 1-21.
[image: Starting a new Android project]

Figure 1-21. Starting a new Android project

On the New Android Project dialog, select the “Create project from
 existing sample” option. Click Next and select the Build Target. A list
 of available samples for the selected target is shown. If the required
 sample is not shown, go back and select another Build Target. (The
 sample may not be installed; the SDK Manager can be used to install additional samples if they were
 missed during the SDK setup.) Choose the sample to load, click Finish,
 and the sample is copied to the Workspace and built (with progress shown
 on the status bar).
[image: image with no caption]

After a short time, the sample will be ready to run and you will
 be able to browse the source code to see how it is all done.
If the samples have been moved from the SDK
 samples directory, use the “Create project from
 existing source” option on the New Android Project dialog to open the
 sample.
When the sample is first run select Android Application in the Run
 As dialog that may appear. It may also be necessary to configure an
 appropriate AVD to run the sample (see Recipe 3.3). See Figure 1-22.
[image: API demos in action]

Figure 1-22. API demos in action

See Also

The Android Developers website at http://developer.android.com/index.html; this cookbook,
 of course.
You can also search the Web for additional programs or examples.
 If you still can’t find what you need, you can seek help from Stack
 Overflow (http://www.stackoverflow.com; use
 “android” as the tag) or from the Internet Relay Chat (IRC) channel #android-dev on freenode.

1.12. Keeping the Android SDK Updated

Daniel Fowler

Problem

The SDK must be kept updated to allow app developers to work with the
 latest APIs on the evolving Android platform.

Solution

Use the Android SDK Manager program to update the existing installed SDK
 packages and to install new SDK packages. This includes third-party
 packages for device-specific functionality.

Discussion

The Android operating system (OS) is constantly evolving, and
 therefore, so is the Android SDK. The ongoing development of Android is
 driven by:
	Google’s research and development

	Phone manufacturers developing new and improved
 handsets

	Addressing security issues and possible exploits

	The need to support new devices (e.g., support for tablet
 devices was added with version 3.0)

	Support for new hardware interfaces (e.g., support for near
 field communication was added in version 2.3).

	Fixing bugs

	Improvements in functionality (e.g., a new JavaScript
 engine)

	Changes in the underlying Linux kernel

	Deprecation of redundant programming interfaces

	New uses (e.g., Google TV)

	The wider Android development community

We covered Android SDK installation elsewhere (see Recipe 1.5 or http://developer.android.com/sdk/installing.html). After
 the SDK is installed on the development machine and the programming environment is
 running smoothly, once in a while developers will need to check for
 updates to the SDK.
You can keep the SDK up-to-date by running the SDK Manager
 program. (On a Windows machine run SDK Manager.exe
 in the folder C:\Program Files\Android\android-sdk,
 or use the Start button, then select All Programs→Android SDK Tools, and click SDK Manager). You
 can also run it from within Eclipse (using the Window menu and selecting
 Android SDK Manager). See Figure 1-23. The
 Android SDK is divided into several packages. The SDK Manager
 automatically scans for updates to existing packages and will list new
 packages and those provided by device manufacturers.
[image: The Android SDK Manager]

Figure 1-23. The Android SDK Manager

Available updates will be shown in a list (as will available
 optional packages). If an update or package has licensing terms that
 require acceptance it is shown with a question mark. Highlight each
 package that has a question mark to read the licensing terms. You can
 accept or reject the package using the radio buttons. Rejected packages
 are marked with a red ×. See Figure 1-24.
[image: Choosing SDK packages]

Figure 1-24. Choosing SDK packages

Alternatively, click on Accept All to accept everything that is
 available. All packages and updates that are ready to download and
 install will be shown with a green tick. Click the Install button to
 begin the download and installation; when complete click the Close
 button. See Figure 1-25.
[image: SDK Manager Log window]

Figure 1-25. SDK Manager Log window

If the SDK Manager program has itself been updated, you will see a
 message asking you to restart the program (see Figure 1-26).
[image: SDK Manager update notice]

Figure 1-26. SDK Manager update notice

The SDK Manager is also used to download additional packages that
 are not part of the standard platform. This mechanism is used by device
 manufacturers to provide support for their own hardware. For example, LG
 Electronics provides a 3D device, and to support 3D capability in
 applications an additional package is provided. It is also used by
 Google to allow the download of optional APIs.
[image: List of installed and installable components]

Figure 1-27. List of installed and installable components

In the SDK Manager dialog, expand and tick the required packages
 in the left-hand list, and then click the Install button (see Figure 1-27). If a third-party package is not
 listed, the URL to a respository.xml file, provided
 by the package publisher, will need to be entered via the Tools
 menu.
Possible update errors on Windows

In a system this complex, there are many things that might go
 wrong. This section discusses some of these and their
 solutions.
Run SDK Manager as admin

On a Windows machine, the default location for the SDK is under the
 C:\Program Files\Android\android-sdk directory.
 This is a restricted directory and can cause the SDK installation to
 fail. A message dialog with the title “SDK Manager: failed to
 install” can appear (see Figure 1-28).
[image: SDK Manager: Failed to install]

Figure 1-28. SDK Manager: Failed to install

To overcome this error there are a few things to check:
	Unplug any Android devices (this may prevent
 adb.exe from closing).

	Browse to C:\Program
 Files\Android\Android-sdk and bring up the Properties
 for the tools folder (select the context
 menu, and then Properties). Ensure that the “Read-only (Only
 applies to files in folder)” checkbox is cleared (see Figure 1-29).

[image: Setting read-write attribute under Microsoft Windows]

Figure 1-29. Setting read-write attribute under Microsoft
 Windows

You may need to give permission to change the attributes (see
 Figure 1-30).
[image: Permission required confirmation]

Figure 1-30. Permission required confirmation

A Confirm Attribute Changes dialog will appear; ensure the
 option “Apply changes to this folder, subfolders and files” is
 selected and click OK. Then do the following:
	Restart the computer.

	Ensure that all other programs are closed, especially any
 copies of File Explorer.

	Run SDK Manager.exe under the
 administrator account. Bring up the context menu and select “Run
 as administrator. (See Figure 1-31.)

[image: Run as administrator]

Figure 1-31. Run as administrator

Close ADB before updating

A message asking you to restart ADB (the Android Debugger) may appear
 (Figure 1-32).
[image: Confirmation to restart ADB]

Figure 1-32. Confirmation to restart ADB

Ideally, it is best to run the SDK Manager without ADB
 running, and it should not be running if Windows has just been
 started. Alternatively, you can use the Windows Task Manager to stop
 adb.exe. Answer No to this prompt if ADB was
 not running; otherwise, answer Yes.

SDK Manager cannot update itself

During the SDK update installation there may be an error related
 to the SDK Manager program (see Figure 1-33).
[image: Android SDK Manager Log window]

Figure 1-33. Android SDK Manager Log window

To resolve this error ensure that all programs are closed
 (including adb.exe). Then copy SDK
 Manager.exe from C:\Program
 Files\Android\android-sdk\tools\lib to
 C:\Program Files\Android\android-sdk (or
 wherever the SDK is installed). Then run the SDK Manager again. (See
 Figure 1-32.)

Updating Eclipse

After you update the SDK and open Eclipse a warning message may appear (see Figure 1-34).
[image: Android SDK version incorrect]

Figure 1-34. Android SDK version incorrect

In Eclipse, select Help and then select Check for Updates.
 Wait for the progress dialog to finish and the Android Eclipse
 updates will be shown. Click Next twice, and accept the licensing
 terms. Then click Finish to start the download and update process. A
 warning message about unsigned content may appear. Click OK to
 accept the warning (only do so if you are updating via Eclipse).
 Restart Eclipse once the update has completed (a message to do so
 will appear).
Further information on troubleshooting the SDK Manager and
 Android Eclipse plug-in is available on the Android Developers
 website.

See Also

Recipe 1.5; Installing the
 SDK; Adding SDK
 Components; ADT Plugin for
 Eclipse

1.13. Taking a Screenshot from the Emulator/Android Device

Rachee Singh

Problem

You want to take a screenshot of an application running on an Android
 device.

Solution

Use the Device Screen Capture feature of the Dalvik Debug Monitor Server (DDMS) view in Eclipse.

Discussion

To use the Device Screen Capture feature follow these
 steps:
	Run the application in Eclipse and go to the DDMS view (Window
 menu→Open Perspective→Other→DDMS)
 or Window menu→Show View→Other→Android→Devices; the former is shown in Figure 1-36).
Note that the line that reads “Resource…does not exist”
 appears in Figure 1-35 only because another
 Eclipse project has been closed, and does not affect the steps
 listed here.
[image: Starting DDMS view]

Figure 1-35. Starting DDMS view

	In the DDMS view, select the device or emulator whose screen
 you want to capture.

	In the DDMS view, click the Screen Capture icon. See Figure 1-36.
[image: Device screen capture]

Figure 1-36. Device screen capture

	A window showing the current screen of the emulator/Android
 device will pop up. It should look like Figure 1-37. You can save the screenshot and use
 it to describe the app!
[image: The screenshot]

Figure 1-37. The screenshot

See Also

Some distributions provide alternative ways of taking screenshots.
 CyanogenMod 7.x provides a
 screenshot in the menu you get when you long-press the power button. Some HTC
 tablets with pen support offer screen grabs in the Pen menu. Ice Cream Sandwich (Android 4.0) provides a built-in
 mechanism for taking screenshots on real devices: just press the Volume
 Down control at the same time as the Power button, and the image will be
 saved to your device and can be viewed in the Gallery application.

1.14. Program: A Simple CountDownTimer Example

Wagied Davids

Problem

You want a simple countdown timer, a program that will count down a given number of seconds
 until it reaches zero.

Solution

Android comes with a built-in class for constructing CountDownTimers. It’s easy
 to use, it’s efficient, and it works (that goes without saying!).

Discussion

The steps to provide a countdown timer are as follows:
	Create a subclass of CountDownTimer. This
 class’s constructor takes two arguments,
 CountDownTimer(long millisInFuture, long
 countDownInterval). The first is the number of
 milliseconds from now when the interval should be done; at this
 point the subclass’s onFinish() method will be called. The second is the frequency in
 milliseconds of how often you want to get notified that the timer is
 still running, typically to update a progress monitor or otherwise
 communicate with the user. Your subclass’s
 onTick() method will be called with each passage of this many
 milliseconds.

	Override the onTick() and
 onFinish() methods.

	Instantiate a new instance in your Android Activity.

	Call the start() method on the new instance created!

The example Countdown Timer program consists of an XML Layout
 (shown in Example 1-4) and some Java code (shown in
 Example 1-5). When run, it should look something like
 Figure 1-38, though the times will
 probably be different.
Example 1-4. main.xml
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <Button
 android:id="@+id/button"
 android:text="Start"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content" />
 <TableLayout
 android:padding="10dip"
 android:layout_gravity="center"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content">
 <TableRow>
 <TextView
 android:id="@+id/timer"
 android:text="Time: "
 android:paddingRight="10dip"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content" />

 <TextView
 android:id="@+id/timeElapsed"
 android:text="Time elapsed: "
 android:paddingRight="10dip"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content" />
 </TableRow>
 </TableLayout>
</LinearLayout>

Example 1-5. Main.java
package com.examples;

import android.app.Activity;
import android.os.Bundle;
import android.os.CountDownTimer;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;
import android.widget.TextView;

public class Main extends Activity implements OnClickListener
 {
 private MalibuCountDownTimer countDownTimer;
 private long timeElapsed;
 private boolean timerHasStarted = false;
 private Button startB;
 private TextView text;
 private TextView timeElapsedView;

 private final long startTime = 50 * 1000;
 private final long interval = 1 * 1000;

 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 startB = (Button) this.findViewById(R.id.button);
 startB.setOnClickListener(this);

 text = (TextView) this.findViewById(R.id.timer);
 timeElapsedView = (TextView) this.findViewById(R.id.timeElapsed);
 countDownTimer = new MalibuCountDownTimer(startTime, interval);
 text.setText(text.getText() + String.valueOf(startTime));
 }

 @Override
 public void onClick(View v)
 {
 if (!timerHasStarted)
 {
 countDownTimer.start();
 timerHasStarted = true;
 startB.setText("Start");
 }
 else
 {

 countDownTimer.cancel();
 timerHasStarted = false;
 startB.setText("RESET");
 }
 }

 // CountDownTimer class
 public class MalibuCountDownTimer extends CountDownTimer
 {

 public MalibuCountDownTimer(long startTime, long interval)
 {
 super(startTime, interval);
 }

 @Override
 public void onFinish()
 {
 text.setText("Time's up!");
 timeElapsedView.setText("Time Elapsed: " +
 String.valueOf(startTime));
 }

 @Override
 public void onTick(long millisUntilFinished)
 {
 text.setText("Time remain:" + millisUntilFinished);
 timeElapsed = startTime - millisUntilFinished;
 timeElapsedView.setText("Time Elapsed: " +
 String.valueOf(timeElapsed));
 }
 }
 }

[image: Timer reset]

Figure 1-38. Timer reset

Source Download URL

The source code for this example is in the Android Cookbook repository at http://github.com/AndroidCook/Android-Cookbook-Examples,
 in the subdirectory CountDownTimerExample (see Getting and Using the Code Examples).

1.15. Program: Tipster, a Tip Calculator for the Android OS

Sunit Katkar

Problem

When you go with friends to a restaurant and wish to divide the check and tip, you can
 get into a lot of manual calculations and disagreements. Instead, you
 want to use an app that lets you simply add the tip percentage to the
 total and divide by the number of diners. Tipster is an implementation
 of this in Android, to show a complete application.

Solution

This is a simple exercise that uses the basic GUI elements in
 Android and then pieces them together with some simple calculations and
 some event-driven UI code to tie it all together. We will use the
 following GUI components:
	TableLayout
	This provides a good control over screen layout. This layout
 allows you to use the HTML Table tag paradigm
 to lay out widgets.

	TableRow
	This defines a row in the TableLayout.
 It’s like the HTML TR and TD
 tags combined.

	TextView
	This View provides a label for displaying
 static text on the screen.

	EditText
	This View provides a text field for
 entering values.

	RadioGroup
	This groups together radio buttons.

	RadioButton
	This provides a radio button.

	Button
	This is the regular button.

	View
	We will use a View to create a visual
 separator with certain height and color attributes.

Discussion

Android uses XML files for the layout of widgets. In our example
 project, the Android plug-in for Eclipse generates a
 main.xml file for the layout. This file has the
 XML-based definitions of the different widgets and their
 containers.
There is a strings.xml file which has all the
 string resources used in the application. A default
 icon.png file is provided for the application
 icon.
Then there is the R.java file which is
 automatically generated (and updated when any changes are made to
 main.xml). This file has the constants defined for
 each layout and widget. Do not edit this file manually; the plug-in does
 it for you when you make any changes to your XML files.
In our example we have Tipster.java as the
 main Java file for the Activity.
Recipe 1.4 as well as various Google tutorials
 highlight how to use the plug-in. Using the Eclipse plug-in, create an
 Android project named Tipster. The end result will be a project layout
 that looks like the one shown in Figure 1-39.
Creating the layout and placing the widgets

The end goal is to create a layout similar to the one shown in
 Figure 1-39.
For this screen layout we will use the following layouts and
 widgets:
	TableLayout
	Provides good control over screen layout. This layout allows you
 to use the HTML Table tag paradigm to lay out
 widgets.

	TableRow
	This defines a row in the TableLayout. It’s
 like the HTML TR and TD
 tags combined.

	TextView
	This View provides a label for displaying static text on the
 screen.

	EditText
	This View provides a text field for entering values.

	RadioGroup
	This groups together radio buttons.

	RadioButton
	This provides a radio button.

	Button
	This is the regular button.

	View
	We will use a View to create a visual separator with certain
 height and color attributes.

Familiarize yourself with these widgets as you will be using
 these quite a lot in applications you build. When you go to the
 Javadocs for layout and widget, look up the XML attributes. This will
 help you correlate the usage in the main.xml
 layout file and the Java code (Tipster.java and
 R.java) where these are accessed.
Also available is a visual layout editor in the Eclipse
 ADT, as well as a standalone UI tool called DroidDraw, both
 of which let you create a layout
 by dragging and dropping widgets from a palette, like any form
 designer tool. However, I recommend that you create the layout by hand
 in XML, at least in your initial stages of learning Android. Later on,
 as you learn all the nuances of the XML layout API, you can delegate
 the task to such tools.
The layout file, main.xml, has the layout
 information (see Example 1-6). A
 TableRow widget creates a single row inside the
 TableLayout. So you use as many
 TableRows as the number of rows you want. In this
 tutorial we will use eight TableRows—five for the
 widgets up to the visual separator below the buttons, and three for
 the results area below the buttons and separator.
Example 1-6. /res/layout/main.xml
<?xml version="1.0" encoding="utf-8"?>
<!-- Using table layout to have HTML table like control over layout -->
<TableLayout
 android:id="@+id/TableLayout01"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:stretchColumns="1"
 xmlns:android="http://schemas.android.com/apk/res/android">
 <!-- Row 1: Text label placed in column zero,
 text field placed in column two and allowed to
 span two columns. So a total of 4 columns in this row -->
 <TableRow>
 <TextView
 android:id="@+id/txtLbl1"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_column="0"
 android:text="@string/textLbl1"/>
 <EditText[image: 1]
 android:id="@+id/txtAmount"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:numeric="decimal"
 android:layout_column="2"
 android:layout_span="2"
 />
 </TableRow>
 <!-- Row 2: Text label placed in column zero,
 text field placed in column two and allowed to
 span two columns. So a total of 4 columns in this row -->
 <TableRow>
 <TextView
 android:id="@+id/txtLbl2"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_column="0"
 android:text="@string/textLbl2"/>
 <EditText
 android:id="@+id/txtPeople"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:numeric="integer"
 android:layout_column="2"
 android:layout_span="3"/>
 </TableRow>
 <!-- Row 3: This has just one text label placed in column zero -->
 <TableRow>
 <TextView
 android:id="@+id/txtLbl3"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/textLbl3"/>
 </TableRow>
 <!-- Row 4: RadioGroup for RadioButtons placed at column zero
 with column span of three, thus creating one radio button
 per cell of the table row. Last cell number 4 has the
 textfield to enter a custom tip percentage -->
 <TableRow>
 <RadioGroup
 android:id="@+id/RadioGroupTips"
 android:orientation="horizontal"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_column="0"
 android:layout_span="3"
 android:checkedButton="@+id/radioFifteen">
 <RadioButton android:id="@+id/radioFifteen"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/rdoTxt15"
 android:textSize="15sp" />
 <RadioButton android:id="@+id/radioTwenty"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/rdoTxt20"
 android:textSize="15sp" />
 <RadioButton android:id="@+id/radioOther"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/rdoTxtOther"
 android:textSize="15sp" />
 </RadioGroup>
 <EditText
 android:id="@+id/txtTipOther"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:numeric="decimal"/>
 </TableRow>
 <!-- Row for the Calculate and Rest buttons. The Calculate button
 is placed at column two, and Reset at column three -->
 <TableRow>
 <Button
 android:id="@+id/btnReset"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_column="2"
 android:text="@string/btnReset"/>
 <Button
 android:id="@+id/btnCalculate"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_column="3"
 android:text="@string/btnCalculate"/>
 </TableRow>

 <!-- TableLayout allows any other views to be inserted between
 the TableRow elements. So insert a blank view to create a
 line separator. This separator view is used to separate
 the area below the buttons which will display the
 calculation results -->
 <View
 android:layout_height="2px"
 android:background="#DDFFDD"
 android:layout_marginTop="5dip"
 android:layout_marginBottom="5dip"/>

 <!-- Again table row is used to place the result textviews
 at column zero and the result in textviews at column two -->
 <TableRow android:paddingBottom="10dip" android:paddingTop="5dip">
 <TextView
 android:id="@+id/txtLbl4"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_column="0"
 android:text="@string/textLbl4"/>
 <TextView
 android:id="@+id/txtTipAmount"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_column="2"
 android:layout_span="2"/>
 </TableRow>

 <TableRow android:paddingBottom="10dip" android:paddingTop="5dip">
 <TextView
 android:id="@+id/txtLbl5"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_column="0"
 android:text="@string/textLbl5"/>
 <TextView
 android:id="@+id/txtTotalToPay"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_column="2"
 android:layout_span="2"/>
 </TableRow>

 <TableRow android:paddingBottom="10dip" android:paddingTop="5dip">
 <TextView
 android:id="@+id/txtLbl6"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_column="0"
 android:text="@string/textLbl6"/>
 <TextView
 android:id="@+id/txtTipPerPerson"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_column="2"
 android:layout_span="2"/>
 </TableRow>
 <!-- End of all rows and widgets -->
</TableLayout>

TableLayout and TableRow

After examining main.xml, you can gather
 that the TableLayout and
 TableRow are straightforward to use. You create the
 TableLayout once, then insert a
 TableRow. Now you are free to insert any other
 widgets, such as TextView,
 EditView, and so on, inside this
 TableRow.
Do look at the attributes, especially android:stretchColumns,
 android:layout_column, and
 android:layout_span, which allow you to place widgets the same way you would use a
 regular HTML table. I recommend that you follow the links to these
 attributes and read up on how they work for a
 TableLayout.

Controlling input values

Controlling input values: Look at the EditText widget in the
 main.xml file at [image: 1]. This
 is the first text field for entering the “Total Amount” of the check.
 We want only numbers here. We can accept decimal numbers because real
 restaurant checks can be for dollars and cents, and not just dollars.
 So we use the android:numeric attribute with a
 value of decimal. This will allow whole values like
 10 and decimal values like 10.12, but will prevent any other type of
 entry.
This is a simple and concise way to control input values, thus
 saving us the trouble of writing validation code in the
 Tipster.java file, and ensuring that the user
 does not enter erroneous values. This XML-based constraints feature of
 Android is quite powerful and useful. You should explore all possible
 attributes that go with a particular widget to extract maximum
 benefits from this XML shorthand way of setting constraints. In a
 future release, unless I have missed it completely in this release, I
 hope that Android allows for entering ranges for the
 android:numeric attribute so that we can define
 what range of numbers we wish to accept.
Since ranges are not currently available (to the best of my
 knowledge), you will see later on that we do have to check for certain
 values like zero or empty values to ensure that our tip calculation
 arithmetic does not fail.

Examining Tipster.java

Now we will look at the Tipster.java file
 which controls our application. This is the main class that does the
 layout, the event handling, and the application logic.
The Android Eclipse plug-in creates the
 Tipster.java file in our project with the default
 code shown in Example 1-7.
Example 1-7. Code snippet 1 of
 /src/com/examples/tipcalc/Tipster.java
package com.examples.tipcalc;

import android.app.Activity;

public class Tipster extends Activity {
 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 }
}

The Tipster class extends the
 android.app.Activity class. An activity is a
 single, focused thing that the user can do. The
 Activity class takes care of creating the window
 and then laying out the UI. You have to call the setContentView(View view) method to
 put your UI in the Activity. So think of
 Activity as an outer frame that is empty, and that
 you populate with your UI.
Now look at the snippet of the Tipster.java
 class shown in Example 1-8. First we define the
 widgets as class members. Look at [image: 1]
 through [image: 2] in particular for
 reference.
Then we use the findViewById(int id) method to
 locate the widgets. The ID of each widget, defined in your
 main.xml file, is automatically defined in the
 R.java file when you clean and build the project
 in Eclipse. (If you have set up Eclipse to build automatically, the
 R.java file is instantaneously updated when you
 update main.xml.)
Each widget is derived from the View class,
 and provides special GUI features. So a TextView provides a way to put
 labels on the UI, while the EditText provides a text field. Look
 at [image: 3] through [image: 6] in Example 1-8. You can see
 how findViewById() is used to locate the
 widgets.
Example 1-8. Code snippet 2 of
 /src/com/examples/tipcalc/Tipster.java
public class Tipster extends Activity {
 // Widgets in the application
 private EditText txtAmount;[image: 1]
 private EditText txtPeople;
 private EditText txtTipOther;
 private RadioGroup rdoGroupTips;
 private Button btnCalculate;
 private Button btnReset;

 private TextView txtTipAmount;
 private TextView txtTotalToPay;
 private TextView txtTipPerPerson;[image: 2]

 // For the id of radio button selected
 private int radioCheckedId = -1;

 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 // Access the various widgets by their id in R.java
 txtAmount = (EditText) findViewById(R.id.txtAmount);[image: 3]
 //On app load, the cursor should be in the Amount field
 txtAmount.requestFocus();[image: 4]

 txtPeople = (EditText) findViewById(R.id.txtPeople);
 txtTipOther = (EditText) findViewById(R.id.txtTipOther);

 rdoGroupTips = (RadioGroup) findViewById(R.id.RadioGroupTips);

 btnCalculate = (Button) findViewById(R.id.btnCalculate);
 //On app load, the Calculate button is disabled
 btnCalculate.setEnabled(false);[image: 5]

 btnReset = (Button) findViewById(R.id.btnReset);

 txtTipAmount = (TextView) findViewById(R.id.txtTipAmount);
 txtTotalToPay = (TextView) findViewById(R.id.txtTotalToPay);
 txtTipPerPerson = (TextView) findViewById(R.id.txtTipPerPerson);[image: 6]

 // On app load, disable the Other Tip Percentage text field
 txtTipOther.setEnabled(false);[image: 7]

Addressing ease of use or usability concerns

Our application must try to be as usable as any other
 established application or web page. In short, adding usability
 features will result in a good user experience. To address these
 concerns look at Example 1-8 again.
Look at [image: 4] where we use the
 requestFocus() method of the View class. Since the
 EditText widget is derived from the
 View class, this method is applicable to it. This
 is done so that when our application loads the Total Amount text field
 will receive focus and the cursor will be placed in it. This is
 similar to popular web application login screens where the cursor is
 present in the username text field.
Now look at [image: 5] where the Calculate
 button is disabled by calling the setEnabled(boolean enabled)
 method on the Button widget. This is done so that
 the user cannot click on it before entering values in the required
 fields. If we allowed the user to click Calculate without entering
 values in the Total Amount and No. of People fields, we would have to
 write validation code to catch these conditions. This would entail
 showing an alert pop up warning the user about the empty values. This
 adds unnecessary code and user interaction. When the user sees the
 Calculate button disabled, it’s quite obvious that unless all values
 are entered, the tip cannot be calculated.
Look at [image: 7] in Example 1-8. Here the Other Tip Percentage text field is
 disabled. This is done because the “15% tip” radio button is selected
 by default when the application loads. This default selection on
 application load is done via the main.xml file.
 Look at the line of main.xml where the following
 statement selects the “15% tip” radio button:
android:checkedButton="@+id/radioFifteen"
The RadioGroup attribute
 android:checkedButton allows you to select one of the RadioButton
 widgets in the group by default.
Most users who have used popular applications on the desktop as
 well as the Web are familiar with the “disabled widgets enabled on
 certain conditions” paradigm. Adding such small conveniences always
 makes an application more usable and the user experience
 richer.

Processing UI events

Like popular Windows, Java Swing, Flex, and other UI frameworks,
 Android also provides an event model which allows you to listen to
 certain events in the UI caused by user interaction. Let’s see how we
 can use the Android event model in our application.
First let’s focus on the radio buttons in the UI. We want to
 know which radio button the user selected, as this will allow us to
 determine the tip percentage in our calculations. To “listen” to radio
 buttons, we use the static interface OnCheckedChangeListener(). This will
 notify us when the selection state of a radio button changes.
In our application, we want to enable the Other Tip Percentage
 text field only when the Other radio button is selected. When the “15%
 tip” and “20% tip” buttons are selected we want to disable this text
 field. Besides this, we want to add some more logic for the sake of
 usability. As we discussed before, we should not enable the Calculate
 button until all the required fields have valid values. In terms of
 the three radio buttons, we want to ensure that the Calculate button
 gets enabled for the following two conditions:
	The Other radio button is selected and the Other Tip
 Percentage text field has valid values.

	The “15% tip” or “20% tip” radio button is selected and the
 Total Amount and No. of People text fields have valid
 values

Look at Example 1-9, which deals with the
 radio buttons. The source code comments are quite
 self-explanatory.
Example 1-9. Code snippet 3 of
 /src/com/examples/tipcalc/Tipster.java
 /*
 * Attach an OnCheckedChangeListener to the
 * radio group to monitor radio buttons selected by user
 */
 rdoGroupTips.setOnCheckedChangeListener(new OnCheckedChangeListener() {

 @Override
 public void onCheckedChanged(RadioGroup group, int checkedId) {
 // Enable/disable Other Tip Percentage field
 if (checkedId == R.id.radioFifteen
 || checkedId == R.id.radioTwenty) {
 txtTipOther.setEnabled(false);
 /*
 * Enable the calculate button if Total Amount and No. of
 * People fields have valid values.
 */
 btnCalculate.setEnabled(txtAmount.getText().length() > 0
 && txtPeople.getText().length() > 0);
 }
 if (checkedId == R.id.radioOther) {
 // enable the Other Tip Percentage field
 txtTipOther.setEnabled(true);
 // set the focus to this field
 txtTipOther.requestFocus();
 /*
 * Enable the calculate button if Total Amount and No. of
 * People fields have valid values. Also ensure that user
 * has entered an Other Tip Percentage value before enabling
 * the Calculate button.
 */
 btnCalculate.setEnabled(txtAmount.getText().length() > 0
 && txtPeople.getText().length() > 0
 && txtTipOther.getText().length() > 0);
 }
 // To determine the tip percentage choice made by user
 radioCheckedId = checkedId;
 }
 });

Monitoring key activity in text fields

As I mentioned earlier, the Calculate button must not be enabled
 unless the text fields have valid values. So we have to ensure that
 the Calculate button will be enabled only if the Total Amount, No. of
 People, and Other Tip Percentage text fields have valid values. The
 Other Tip Percentage text field is enabled only if the Other Tip
 Percentage radio button is selected.
We do not have to worry about the type of values, that is,
 whether the user entered negative values or letters because the
 android:numeric attribute has been defined for the
 text fields, thus limiting the types of values that the user can
 enter. We have to just ensure that the values are present.
So we use the static interface
 OnKeyListener(). This will notify us when a key is pressed. The
 notification reaches us before the actual key pressed is sent to the
 EditText widget.
Look at the code in Examples 1-10 and 1-11 which deal with key events in the
 text fields. As in Example 1-9, the source code
 comments are quite self-explanatory.
Example 1-10. Code snippet 4 of
 /src/com/examples/tipcalc/Tipster.java
/*
 * Attach a KeyListener to the Tip Amount, No. of People and Other Tip
 * Percentage text fields
 */
txtAmount.setOnKeyListener(mKeyListener);
txtPeople.setOnKeyListener(mKeyListener);
txtTipOther.setOnKeyListener(mKeyListener);

Notice that we create just one listener instead of creating
 anonymous/inner listeners for each text field. I am not sure if my
 style is better or recommended, but I always write in this style if
 the listeners are going to perform some common actions. Here the
 common concern for all the text fields is that they should not be
 empty, and only when they have values should the Calculate button be
 enabled.
Example 1-11. Code snippet 5 from KeyListener.java
/*
 * KeyListener for the Total Amount, No of People and Other Tip Percentage
 * text fields. We need to apply this key listener to check for the following
 * conditions:
 *
 * 1) If the user selects Other Tip Percentage, then the Other Tip Percentage text field
 * should have a valid tip percentage entered by the user. Enable the
 * Calculate button only when the user enters a valid value.
 *
 * 2) If the user does not enter values in the Total Amount and No. of People fields,
 * we cannot perform the calculations. Hence we enable the Calculate button
 * only when the user enters valid values.
 */
private OnKeyListener mKeyListener = new OnKeyListener() {
 @Override
 public boolean onKey(View v, int keyCode, KeyEvent event) {

 switch (v.getId()) {[image: 1]
 case R.id.txtAmount:[image: 2]
 case R.id.txtPeople:[image: 3]
 btnCalculate.setEnabled(txtAmount.getText().length() > 0
 && txtPeople.getText().length() > 0);
 break;
 case R.id.txtTipOther:[image: 4]
 btnCalculate.setEnabled(txtAmount.getText().length() > 0
 && txtPeople.getText().length() > 0
 && txtTipOther.getText().length() > 0);
 break;
 }
 return false;
 }

};

At [image: 1] in Example 1-11, we examine the ID of the
 View. Remember that each widget has a unique ID as
 we define it in the main.xml file. These values
 are then defined in the generated R.java
 class.
At [image: 2] and [image: 3], if the key event occurred in the Total
 Amount or No. of People fields, we check for the value entered in the
 field. We are ensuring that the user has not left both fields
 blank.
At [image: 4] we check if the user has
 selected the Other radio button, and then we ensure that the Other
 text field is not empty. We also check once again if the Total Amount
 and No. of People fields are empty.
So the purpose of our KeyListener is now
 clear: ensure that all text fields are not empty and only then enable
 the Calculate button.

Listening to button clicks

Now we will look at the Calculate and Reset buttons. When the
 user clicks these buttons, we use the static interface
 OnClickListener() which will let us know when a button is clicked.
As we did with the text fields, we create just one listener and
 within it we detect which button was clicked. Depending on the button
 that was clicked, the calculate() or
 reset() method is called.
Example 1-12 shows how the click listener is
 added to the buttons.
Example 1-12. Code snippet 6 of
 /src/com/examples/tipcalc/Tipster.java
/* Attach listener to the Calculate and Reset buttons */
btnCalculate.setOnClickListener(mClickListener);
btnReset.setOnClickListener(mClickListener);

Example 1-13 shows how to detect which button
 is clicked by checking for the ID of the View that
 receives the click event.
Example 1-13. Code snippet 7 of
 /src/com/examples/tipcalc/Tipster.java
/**
 * ClickListener for the Calculate and Reset buttons.
 * Depending on the button clicked, the corresponding
 * method is called.
 */
private OnClickListener mClickListener = new OnClickListener() {

 @Override
 public void onClick(View v) {
 if (v.getId() == R.id.btnCalculate) {
 calculate();
 } else {
 reset();
 }
 }
};

Resetting the application

When the user clicks the Reset button, the text fields should be
 cleared, the default “15% tip” radio button should be selected, and
 any results calculated should be cleared.
Example 1-14 shows the
 reset() method.
Example 1-14. Code snippet 8 of
 /src/com/examples/tipcalc/Tipster.java
/**
 * Resets the results text views at the bottom of the screen as well as
 * resets the text fields and radio buttons.
 */
private void reset() {
 txtTipAmount.setText("");
 txtTotalToPay.setText("");
 txtTipPerPerson.setText("");
 txtAmount.setText("");
 txtPeople.setText("");
 txtTipOther.setText("");
 rdoGroupTips.clearCheck();
 rdoGroupTips.check(R.id.radioFifteen);
 // set focus on the first field
 txtAmount.requestFocus();
}

Validating the input to calculate the tip

As I said before, we are limiting what type of values the user
 can enter in the text fields. However, the user could still enter a
 value of zero in the Total Amount, No. of People, and Other Tip
 Percentage text fields, thus causing error conditions like divide by
 zero in our tip calculations.
If the user enters zero we must show an alert pop up asking the
 user to enter non-zero values. We handle this with a method called
 showErrorAlert(String errorMessage, final int
 fieldId), but we will discuss this in more detail
 later.
First, look at Example 1-15 which shows the
 calculate() method. Notice how the values entered
 by the user are parsed as double values.
Now notice [image: 1] and [image: 2] where we check for zero values. If the user
 enters zero, we show an alert pop up to warn the user. Next, look at
 [image: 3], where the Other Tip Percentage text
 field is enabled because the user selected the Other radio button.
 Here, too, we must check for the tip percentage being zero.
When the application loads, the “15% tip” radio button is
 selected by default. If the user changes the selection, we assign the
 ID of the selected radio button to the member variable
 radioCheckedId, as we saw in Example 1-9, in
 OnCheckedChangeListener.
But if the user accepts the default selection, the
 radioCheckedId will have the default value of
 –1. In short, we will never know which radio button
 was selected. Of course, we know which one is selected by default and
 could have coded the logic slightly differently, to assume 15% if
 radioCheckedId has the value –1.
 But if you refer to the API, you will see that we can call the method
 getCheckedRadioButtonId() on the RadioGroup and not on individual
 radio buttons. This is because
 OnCheckedChangeListener readily provides us with
 the ID of the radio button selected.

Showing the results

Calculating the tip is simple. If there are no validation
 errors, the boolean flag isError will be
 false. Look at [image: 4]
 through [image: 5] in Example 1-15 for the simple tip calculations. Next, the
 calculated values are set to the TextView widgets
 from [image: 6] to [image: 7].
Example 1-15. Code snippet 9 of
 /src/com/examples/tipcalc/Tipster.java
/**
 * Calculate the tip as per data entered by the user.
 */
private void calculate() {
 Double billAmount = Double.parseDouble(
 txtAmount.getText().toString());
 Double totalPeople = Double.parseDouble(
 txtPeople.getText().toString());
 Double percentage = null;
 boolean isError = false;
 if (billAmount < 1.0) {[image: 1]
 showErrorAlert("Enter a valid Total Amount.",
 txtAmount.getId());
 isError = true;
 }

 if (totalPeople < 1.0) {[image: 2]
 showErrorAlert("Enter a valid value for No. of People.",
 txtPeople.getId());
 isError = true;
 }

 /*
 * If the user never changes his radio selection, then it means
 * the default selection of 15% is in effect. But it's
 * safer to verify
 */
 if (radioCheckedId == -1) {
 radioCheckedId = rdoGroupTips.getCheckedRadioButtonId();
 }
 if (radioCheckedId == R.id.radioFifteen) {
 percentage = 15.00;
 } else if (radioCheckedId == R.id.radioTwenty) {
 percentage = 20.00;
 } else if (radioCheckedId == R.id.radioOther) {
 percentage = Double.parseDouble(
 txtTipOther.getText().toString());
 if (percentage < 1.0) {[image: 3]
 showErrorAlert("Enter a valid Tip percentage",
 txtTipOther.getId());
 isError = true;
 }
 }

 /*
 * If all fields are populated with valid values, then proceed to
 * calculate the tips
 */
 if (!isError) {
 Double tipAmount = ((billAmount * percentage) / 100);[image: 4]
 Double totalToPay = billAmount + tipAmount;
 Double perPersonPays = totalToPay / totalPeople;[image: 5]

 txtTipAmount.setText(tipAmount.toString());[image: 6]
 txtTotalToPay.setText(totalToPay.toString());
 txtTipPerPerson.setText(perPersonPays.toString());[image: 7]
 }
}

Showing the alerts

Showing the alerts Android provides the
 AlertDialog class to show alert pop ups. This lets us show a dialog with
 up to three buttons and a message.
Example 1-16 shows the
 showErrorAlert method which uses this
 AlertDialog to show the error messages. Notice that
 we pass two arguments to this method: String
 errorMessage and int fieldId. The first
 argument is the error message we want to show to the user. The
 fieldId is the ID of the field which caused the
 error condition. After the user dismisses the alert dialog, this
 fieldId will allow us to request the focus on that
 field, so the user knows which field has the error.
Example 1-16. Code snippet 10 of
 /src/com/examples/tipcalc/Tipster.java
/**
 * Shows the error message in an alert dialog
 *
 * @param errorMessage
 * String for the error message to show
 * @param fieldId
 * the Id of the field which caused the error.
 * This is required so that the focus can be
 * set on that field once the dialog is
 * dismissed.
 */
private void showErrorAlert(String errorMessage,
 final int fieldId) {
 new AlertDialog.Builder(this).setTitle("Error")
 .setMessage(errorMessage).setNeutralButton("Close",
 new DialogInterface.OnClickListener() {
 @Override
 public void onClick(DialogInterface dialog,
 int which) {
 findViewById(fieldId).requestFocus();
 }
 }).show();
}

When all this is put together, it should look like Figure 1-39.
[image: Tipster in action]

Figure 1-39. Tipster in action

Conclusion

Developing for the Android OS is not too different from
 developing for any other UI toolkit, including Microsoft Windows, X
 Windows, Java Swing, or Adobe Flex. Of course Android has its
 differences and, overall, a very good design. The XML layout paradigm
 is quite cool and useful for building complex UIs using simple XML. In
 addition, the event handling model is simple, feature-rich, and
 intuitive to use in code.

Source Download URL

You can download the source code for this example from http://www.vidyut.com/sunit/android/tipster.zip.
[image: image with no caption]

Binary Download URL

You can download the executable code for this example from http://www.vidyut.com/sunit/android/tipster.zip.
[image: image with no caption]

Chapter 2. Designing a Successful Application

2.1. Introduction: Designing a Successful Android Application

Colin Wilcox

Discussion

This chapter is about design guidelines for writing imaginative and useful
 Android applications. Several recipes describe specific aspects of
 successful design. This section will list some others.
One purpose of this chapter is to explain the benefits of
 developing native Java Android applications over other methods of
 delivering rich content on mobile devices.
Requirements of a native handset application

There are a number of key requirements for successfully delivering any mobile
 handset application, regardless of the platform onto which it will be
 deployed:
	The application should be easy to install, remove, and
 update on a device.

	It should address the user’s needs in a compelling, unique,
 and elegant way.

	It should be feature-rich while remaining usable by both
 novice and expert users.

	It should be familiar to users who have accessed the same
 information through other routes, such as a website.

	Key areas of functionality should be readily
 accessible.

	It should have a common look and feel with other native
 applications on the handset conforming to the target platform’s
 standards and style guidelines.

	An application should be stable, scalable, usable, and
 responsive.

	It should use the platform’s capabilities tastefully when it
 makes the user’s experience more compelling.

Android application design

The Android application we will design in this chapter will
 exploit the features and functions unique to the Android OS platform.
 In general, the application will be an activity-based solution
 allowing independent and controlled access to data on a
 screen-by-screen basis. This approach helps to localize potential
 errors and allows sections of the flow to be readily replaced or
 enhanced independent of the rest of the application.
Navigation will use a similar approach to that of the Apple
 iPhone solution in that all key areas of functionality will be
 accessed from a single navigation bar control. The navigation bar will
 be accessible from anywhere within the application, allowing the user
 to freely move around the application.
The Android solution will exploit features inherent to Android
 devices, supporting the devices’ touch-screen features, the hardware
 button that allows users to switch the application to the background,
 and application switching capability.
Android provides the ability to jump back into an application at
 the point where it was switched out. This will be supported, when
 possible, within this design.
The application will use only standard Android user interface
 controls to make it as portable as possible. The use of themes or
 custom controls is outside the scope of this chapter.
The application will be designed such that it interfaces to a
 thin layer of RESTful web services that provide data in a JSON format.
 This interface will be the same as the one used by the Apple iPhone,
 as well as applications written for other platforms.
The application will adopt the Android style and design
 guidelines wherever possible so that it fits in with other Android
 applications on the device.
Data that is local to each view will be saved when the view is
 exited and automatically restored with the corresponding user
 interface controls repopulated when the view is next loaded.
A number of important device characteristics should be
 considered, as discussed in the following subsections:
Screen size and density

In order to categorize devices by their screen type, Android defines two
 characteristics for each device: screen size (the physical
 dimensions of the screen) and screen density (the physical density
 of the pixels on the screen, or dpi [dots per inch]). To simplify
 all the different types of screen configurations, the Android system
 generalizes them into select groups that make them easier to
 target.
The designer should take into account the most appropriate
 choices for screen size and screen density when designing the
 application.
By default, your application is compatible with all screen
 sizes and densities, because the Android system makes the
 appropriate adjustments to your UI layout and image resources.
 However, you should create specialized layouts for certain screen
 sizes and provide specialized images for certain densities, by using
 alternative layout resources and by declaring in your manifest
 exactly which screen sizes your application supports.

Input configurations

Many devices provide a different type of user input mechanism, such as a
 hardware keyboard, a trackball, or a five-way navigation pad. If
 your application requires a particular kind of input hardware, you
 must declare it in the AndroidManifest.xml
 file, and be aware that the Android Market will not display your
 app on devices that lack this feature. However, it is rare that an
 application should require a certain input configuration.

Device features

There are many hardware and software features that may or may
 not exist on a given Android-powered device, such as a camera, a
 light sensor, Bluetooth capability, a certain version of OpenGL, or
 the fidelity of the touch screen. You should never assume that a
 certain feature is available on all Android-powered devices (other
 than the availability of the standard Android library).
The Android application will provide instances of the two
 types of menus provided by the Android framework, depending on the
 circumstances:
	Options menus contain primary functionality that applies
 globally to the current activity or starts a related activity.
 An options menu is typically invoked by a user pressing a hard
 button, often labeled Menu. An options menu is for any commands
 that are global to the current activity.

	Context menus contain secondary functionality for the currently selected
 item. A context menu is typically invoked by a user performing a
 long-press (press and hold) on an item. Like on the options
 menu, the operation can run in either the current or another
 activity.

A context menu is for any commands that apply to the current
 selection.
The commands on the context menu that appear when you
 long-press on an item should be duplicated on the activity you get
 to by a normal press on that item.
	Place the most frequently used operations first.

	Only the most important commands should appear as
 Buttons on the screen; delegate the rest to
 the menu.

The system will automatically lay out the menus and provide
 standard ways for users to access them, ensuring that the
 application will conform to the Android user interface guidelines.
 In this sense, menus are familiar and dependable ways for users to
 access functionality across all applications.
The Android application will make extensive use of Google’s
 Intent mechanism for passing data between Activity
 objects. Intents not only are used to pass data between views within
 a single application, but also allow data, or requests, to be passed
 to external modules. As such, much functionality can be adopted by
 the Android application by embedded functionality from other
 applications invoked by intent calls. This reduces the development
 process and maintains the common look and feel and functionality
 behavior across all applications.

Data feeds and feed formats

It is not a good idea to interface directly to any third-party
 data source; for example, it would be a bad idea to use a Type 3
 JDBC driver in your mobile application to talk directly to a
 database on your server. The normal approach would be to mitigate
 the data, from several sources in potentially multiple data formats,
 through middleware which then passes data to an application through
 a series of RESTful web service APIs in the form of JSON data
 streams.
Typically, data is provided in such formats as XML, SOAP, or
 some other XML-derived representation. Representations such as SOAP
 are heavyweight, and as such, transferring data from the backend
 servers in this format increases development time significantly as
 the responsibility of converting this data into something more
 manageable falls on either the handset application or an object on
 the middleware server.
Mitigating the source data through a middleware server also
 helps to break the dependency between the application and the data.
 Such a dependency has the disadvantage that if, for some reason, the
 nature of the data changes or the data cannot be retrieved, the
 application may be broken and become unusable, and such changes may
 require the application to be republished. By mitigating the data on
 a middleware server, the application will continue to work, albeit
 possibly in a limited fashion, regardless of whether the source data
 exists or not. The link between the application and the mitigated
 data will remain.

2.2. Exception Handling

Ian Darwin

Problem

Java has a well-defined exception handling mechanism, but it takes
 some time to learn to use it effectively without frustrating either
 users or tech support people.

Solution

Java offers an Exception hierarchy that provides considerable
 flexibility when used correctly. Android offers several mechanisms,
 including dialogs and toasts, for notifying the user of error
 conditions. The Android developer should become acquainted with these
 mechanisms and learn to use them effectively.

Discussion

Java has had two categories of exceptions (actually of
 Exception’s parent, Throwable)
 since Java was introduced: checked and unchecked. In Java
 Standard Edition, apparently the intention was to force the programmer
 to face the fact that, while certain things could be detected at compile
 time, others could not. For example, if you were installing a desktop
 application on a large number of PCs, it’s likely that the disk on some
 of those PCs would be near capacity, and trying to save data on them
 could fail; meanwhile, on other PCs some file the application depended
 upon would go missing, not due to programmer error but to user error,
 filesystem happenstance, gerbils chewing on the cables, or whatever. So
 the category of IOException was created as a “checked exception,” meaning that the
 programmer would have to check for it, either by having a try-catch clause
 inside the file-using method or by having a throws clause on the
 method definition. The general rule, which all well-trained Java
 developers memorize, is the following:
Throwable is the root of the throwable
 hierarchy. Exception, and all of its subclasses
 other than RuntimeException or any subclass
 thereof, is checked. All else is unchecked.

This means that Error and all of its subclasses are unchecked (see Figure 2-1). If you get a
 VMError, for example, it means there’s a bug in the
 runtime. There’s nothing you can do about this as an application
 programmer. And RuntimeException subclasses
 include things like the excessively long-named
 ArrayIndexOutOfBoundsException; this and friends are
 unchecked because it is your responsibility to catch them at development
 time, by testing for them (see Chapter 3).
[image: Throwable hierarchy]

Figure 2-1. Throwable hierarchy

Where to catch exceptions

The early (over)use of checked exceptions led a lot of early
 Java developers to write code that was sprinkled with
 try/catch blocks, partly because the use of the
 throws clause was not emphasized early enough in
 some training programs and books. As Java itself has moved more to
 enterprise work, and newer frameworks such as Hibernate and Spring
 have come along and are emphasizing the use of unchecked exceptions,
 this early problem has been corrected. It is now generally accepted
 that you want to catch exceptions as close to the user as possible.
 Code that is meant for reuse—in libraries or even in multiple
 applications—should not try to do error handling. What it can do is
 what’s called exception translation, that is, turning a technology-specific (and usually
 checked) exception into a generic, unchecked exception. Example 2-1 shows the basic pattern.
Example 2-1. Exception translation
public String readTheFile(String f) {
 BufferedReader is = null;
 try {
 is = new BufferedReader(new FileReader(f));
 String line = is.readLine();
 return line;
 } catch (FileNotFoundException fnf) {
 throw new RuntimeException("Could not open file " + f, fnf);
 } catch (IOException ex) {
 throw new RuntimeException("Could not read file " + f, ex);
 } finally {
 if (is != null) {
 try {
 is.close();
 } catch(IOException grr) {
 throw new RuntimeException("Error on close of " + f, grr);
 }
 }
 }
}

Note how the use of checked exceptions clutters even this code:
 it is virtually impossible for the is.close() to
 fail, but since you want to have it in a finally block (to ensure that it
 gets tried if the file was opened but then something went wrong), you
 have to have an additional try-catch around it. So
 checked exceptions are (more often than not) a bad thing, should be
 avoided in new APIs, and should be paved over with unchecked
 exceptions when using code that requires them.
There is an opposing view, espoused by the official Oracle
 website and others. In a comment on the website from which this book
 was produced, Al Sutton points out the following:
Checked exceptions exist to force developers to acknowledge that an error
 condition can occur and that they have thought about how they want
 to deal with it. In many cases there may be little that can be done
 beyond logging and recovery, but it is still an acknowledgment by
 the developer that they have considered what should happen with this
 type of error. The example shown ... stops callers of the method
 from differentiating between when
 a file doesn’t exist (and thus may need to be re-fetched), and when
 there is a problem reading the file (and thus the file exists but is
 unreadable), which are two different types of error
 conditions.

Android, wishing to be faithful to the Java API, has a number of
 these checked exceptions (including the ones shown in the example), so
 they should be treated the same way.

What to do with exceptions

Exceptions should almost always be reported. When I see code that catches exceptions and
 does nothing at all about them, I despair. They should, however, be
 reported only once (do not both log and translate/rethrow!). The point
 of all normal exceptions is to indicate, as the name implies, an
 exceptional condition. Since on an Android device there is no system
 administrator or console operator, exceptional conditions need to be
 reported to the user.
You should think about whether to report exceptions via a dialog
 or a toast. The exception handling situation on a mobile device is
 different from that on a desktop computer. The user may be driving a
 car or operating other machinery, interacting with people, and so on
 so you should not assume you have her full attention. Remember that a
 toast will only appear on the screen for a few seconds; blink and you
 may miss it. If the user needs to do something to correct the problem,
 you should use a dialog. I know that most examples, even in this book,
 use a toast, because it involves less coding than a dialog (by
 contrast, the BlackBerry API makes it easy:
 Dialog.alert("message");).
 Toasts simply pop up and then obliviate. Dialogs require the user to
 acknowledge an exceptional condition, and either do, or give the app
 permission to do, something that might cost money (such as turning on
 Internet access in order to run an application that needs to download
 map tiles).
Note
Use toasts to “pop up” unimportant information; use dialogs
 to display important information and to obtain
 confirmation.

2.3. Accessing Android’s Application Object as a “Singleton”

Adrian Cowham

Problem

You need to access “global” data from within your Android app.

Solution

The best solution is to subclass
 android.app.Application and treat it as a singleton
 with static accessors. Every
 Android app is guaranteed to have exactly one
 android.app.Application instance for the lifetime of
 the app. If you choose to subclass
 android.app.Application, Android will create an
 instance of your class and invoke the
 android.app.Application life-cycle methods on it.
 Because there’s nothing preventing you from creating another instance of
 your subclassed android.app.Application, it isn’t a
 genuine singleton, but it’s close enough.
Having globally accessible such objects as session handlers, web
 service gateways, or anything that your application only needs a single
 instance of, will dramatically simplify your code. Sometimes these
 objects can be implemented as singletons, and sometimes they cannot
 because they require a Context instance for proper
 initialization. In either case, it’s still valuable to add static
 accessors to your subclassed android.app.Application
 instance so that you can consolidate all globally accessible data in one
 place, have guaranteed access to a Context instance,
 and easily write “correct” singleton code without having to worry about
 synchronization.

Discussion

When writing your Android app you may find it necessary to share
 data and services across multiple activities. For example, if your app
 has session data, such as the currently logged-in user, you will likely
 want to expose this information. When developing on the Android
 platform, the pattern for solving this problem is to have your
 android.app.Application instance own all global data,
 and then treat your Application instance as a
 singleton with static accessors to the various data and services.
When writing an Android app you’re guaranteed to only have one
 instance of the android.app.Application class, so
 it’s safe (and recommended by the Google Android team) to treat it as a
 singleton. That is, you can safely add a static
 getInstance() method to your
 Application implementation. Example 2-2 provides an example.
Example 2-2. The Application implementation
public class AndroidApplication extends Application {

 private static AndroidApplication sInstance;

 private SessionHandler sessionHandler;

 public static AndroidApplication getInstance() {
 return sInstance;
 }

 public Session Handler getSessionHandler()
 return sessionHandler;
 }

 @Override
 public void onCreate() {
 super.onCreate();
 sInstance = this;
 sInstance.initializeInstance();
 }

 protected void initializeInstance() {
 // do all your initialization here
 sessionHandler = new SessionHandler(
 this.getSharedPreferences("PREFS_PRIVATE", Context.MODE_PRIVATE));
 }
}

This isn’t the classical singleton implementation, but given the
 constraints of the Android framework, this is the closest thing we have,
 it’s safe, and it works.
Using this technique in this app has simplified and cleaned up the
 implementation. Also, it has made it much easier to develop tests. Using
 this technique in conjunction with the Robolectric testing framework, you can mock out the entire
 execution environment in a straightforward fashion.
Also, don’t forget to add the application declaration to
 your AndroidManifest.xml file:
<application android:icon="@drawable/app_icon"
 android:label="@string/app_name"
 android:name="com.company.abc.AbcApplication">

See Also

http://mytensions.blogspot.com/2011/03/androids-application-object-as.html

2.4. Keeping Data When the User Rotates the Device

Ian Darwin

Problem

When the user rotates the device, Android will normally destroy and re-create
 the current activity. You want to keep some data across this cycle, but
 all the fields in your activity are lost during it.

Solution

There are several approaches. If all your data comprises primitive
 types, consists of Strings, or is
 Serializable, you can save it in
 onSaveInstanceState() in the Bundle that is passed in.
Another solution lets you return a single arbitrary object
 implement onRetainNonConfigurationInstance() in your
 activity to save some values; call getLastNonConfigurationInstance()
 near the end of your onCreate() to see if there is a
 previously saved value and, if so, assign your fields
 accordingly.

Discussion

Using onSaveInstanceState()

See Recipe 1.6.

Using onRetainNonConfigurationInstance()

The getLastNonConfigurationInstance()
 method’s return type is Object, so you can
 return any value you want from it. You might want to create a
 Map or write an inner class in which to store the
 values, but it’s often easier just to pass a reference to the current
 activity, for example, using this:
 /** Returns arbitrary single token object to keep alive across
 * the destruction and re-creation of the entire Enterprise.
 */
 @Override
 public Object onRetainNonConfigurationInstance() {
 return this;
 }
The preceding method will be called when Android destroys your
 main activity. Suppose you wanted to keep a reference to another
 object that was being updated by a
 running service, that is referred to by a field in your
 activity. There might also be a boolean to indicate whether the
 service is active. In the preceding code, we return a reference to the
 activity, from which all of its fields can be accessed (even private
 fields, of course, since the outgoing and incoming
 Activity objects are of the same class). In my
 geotracking app JPSTrack, for example, I have a
 FileSaver class which accepts data from the
 location service; I want it to keep getting the location, and saving
 it to disk, in spite of rotations, rather than having to restart it
 every time the screen rotates. Rotation is unlikely if your device is
 anchored in a car dash mount (we hope), but quite likely if a
 passenger, or a pedestrian, is taking pictures or other notes while
 geotracking.
After Android creates the new instance, it calls onCreate() to notify the new
 instance that it has been created. In onCreate()
 you typically do constructor-like actions such as initializing fields
 and assigning event listeners. Well, you still need to do those, so
 leave them alone. Near the end of onCreate(),
 however, you will add some code to get the old instance, if there is
 one, and get some of the important fields from it. The code should
 look something like Example 2-3.
Example 2-3. The onCreate method
@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 saving = false;
 paused = false;

 // lots of other initializations...

 // Now see if we just got interrupted by e.g., rotation
 Main old = (Main) getLastNonConfigurationInstance();
 if (old != null) {
 saving = old.saving;
 paused = old.paused;

 // this is the most important line: keep saving to same file!
 fileSaver = old.fileSaver;
 if (saving) {
 fileNameLabel.setText(fileSaver.getFileName());
 }
 return;
 }

 // I/O Helper
 fileSaver = new GPSFileSaver(...);
}

The fileSaver object is the big one, the one
 we want to keep running, and not re-create every time. If we don’t
 have an old instance, we create the fileSaver only
 at the very end of onCreate(), since otherwise we’d
 be creating a new one just to replace it with the old one, which is at
 least bad for performance.
When the onCreate() method finishes, we hold
 no reference to the old instance, so it should be eligible for Java
 GC.
The net result is that the activity appears to keep running
 nicely across screen rotations, despite the re-creation.
An alternative possibility is to set android:configChanges="orientation" in your
 AndroidManifest.xml, but this is a bit riskier.

See Also

Recipe 2.3

Source Download URL

You can download the source code for this example from http://projects.darwinsys.com/jpstrack.android. Note that
 you will also need the jpstrack project, from the same location.
[image: image with no caption]

2.5. Monitoring the Battery Level of an Android Device

Pratik Rupwal

Problem

You want to detect the battery level on an Android device so that you
 can notify the user when the battery level goes below a certain
 threshold, thereby avoiding unexpected surprises.

Solution

A broadcast receiver that receives the broadcast message sent when
 the battery status changes can identify the battery level and can be
 used to issue alerts to users.

Discussion

Sometimes we need to show an alert to the user when the battery level of an Android
 device goes below a certain limit. The code in Example 2-4 sets the broadcast message to be sent
 whenever the battery level changes, and creates a broadcast receiver to
 receive the broadcast message which can alert the user when the battery
 gets discharged below a certain level.
Example 2-4. The main activity
public class MainActivity extends Activity {

 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 /**This registers the receiver for a broadcast message to be sent
 when the battery level is changed*/

 this.registerReceiver(this.myBatteryReceiver,
 new IntentFilter(Intent.ACTION_BATTERY_CHANGED));

 /** Intent.ACTION_BATTERY_CHANGED can be replaced with
 * Intent.ACTION_BATTERY_LOW for broadcasting
 * a message only when battery level is low rather than sending
 * a broadcast message every time battery level changes
 */
}

 private BroadcastReceiver myBatteryReceiver =
 new BroadcastReceiver(){

 @Override
 public void onReceive(Context arg0, Intent arg1) {
 int bLevel = arg1.getIntExtra("level", 0);// the battery level in integer
 Log.i("Level", ""+bLevel);
 }
 };
}

2.6. Creating Splash Screens in Android

Rachee Singh

Problem

You want to create a splash screen that will appear while an
 application is loading.

Solution

You can construct a splash screen as an activity or as a dialog.
 Since its purpose is accomplished within a few seconds, it can be
 dismissed after a short time interval has elapsed or upon the click of a
 button in the splash screen.

Discussion

The splash screen was invented in the PC era, initially as a
 cover-up for slow GUI construction when PCs were slow. Vendors have kept
 them for branding purposes. But in the mobile world, where the longest
 app start-up time is probably less than a second, people are starting to
 recognize that splash screens have become somewhat anachronistic. At
 eHealth Innovation, we have recognized this by making the splash screen
 for our BANT application disappear after a just one second. The question
 arises whether we still need splash screens at all, or whether it’s time
 to retire the very idea of the splash screen. As with most mobile apps,
 the name and logo appear in the app launcher, and we have lots of other
 screens where the name and logo appear. Is it time to make it disappear
 altogether?
Nonetheless, for completeness, here are two methods of handling
 the application splash screen.
The first versions use an activity that is dedicated to displaying
 the splash screen. The splash screen displays for two seconds or until
 the user presses the Menu key, and then the main activity of the
 application appears. First we use a thread to wait for a fixed number of
 seconds, and then we use an intent to start the real main activity. The
 one downside to this method is that your “main” activity in your
 AndroidManifest.xml file is the splash activity,
 not your real main activity.
Example 2-5 shows the splash
 activity.
Example 2-5. The splash activity
public class SplashScreen extends Activity {
 private long ms=0;
 private long splashTime=2000;
 private boolean splashActive = true;
 private boolean paused=false;
 @Override
 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);
 setContentView(R.layout.splash);
 Thread mythread = new Thread() {
 public void run() {
 try {
 while (splashActive && ms < splashTime) {
 if(!paused)
 ms=ms+100;
 sleep(100);
 }
 } catch(Exception e) {}
 finally {
 Intent intent = new Intent(SplashScreen.this, Main.class);
 startActivity(intent);
 }
 }
 };
 mythread.start();
 }

}

Example 2-6 shows the layout of the splash
 activity, splash.xml.
Example 2-6. The splash layout
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical" android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <ImageView android:src="@drawable/background"
 android:id="@+id/image"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content" />
 <ProgressBar android:id="@+id/progressBar1"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_below="@id/image"
 android:layout_gravity="center_horizontal">
 </ProgressBar>
</LinearLayout>

One additional requirement is to put the attribute
 android:noHistory="true" on the splash activity in your
 AndroidManifest.xml file so that this activity will
 not appear in the history stack, meaning if the user uses the Back
 button from the main app he will go to the expected home screen, not
 back into your splash screen! See Figure 2-2.
[image: Splash screen]

Figure 2-2. Splash screen

Two seconds later, this activity leads to the next activity, which
 is the standard “Hello, World” Android activity, as a proxy for your
 main application’s main activity. See Figure 2-3.
[image: “Main” activity]

Figure 2-3. “Main” activity

In this second version, the splash screen displays until the Menu
 button on the Android device is not pressed, and then the main activity
 of the application appears. For this, we add a Java class that displays
 the splash screen.
We check for the pressing of the Menu key by checking the KeyCode
 and then finishing the activity (see Example 2-7).
Example 2-7. Watching for KeyCodes
public class SplashScreen extends Activity {
 private long ms=0;
 private long splashTime=2000;
 private boolean splashActive = true;
 private boolean paused=false;
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.splash);
 }

 public boolean onKeyDown(int keyCode, KeyEvent event) {
 super.onKeyDown(keyCode, event);
 if (KeyEvent.KEYCODE_MENU == keyCode) {
 Intent intent = new Intent(SplashScreen.this, Main.class);
 startActivity(intent);
 }
 if (KeyEvent.KEYCODE_BACK == keyCode) {
 finish();
 }
 return false;
 }
}

The layout of the splash activity,
 splash.xml, is unchanged from the earlier
 version.
As before, after the button press, this activity leads to the next
 activity, which represents the main activity.
The other major method involves use of a dialog, started from the
 onCreate() method in your main method. This has a
 number of advantages, including the simpler activity stack and the fact
 that you don’t need an extra activity that’s only used for the first few
 seconds. The disadvantage is that it takes a bit more code, as you can
 see in Example 2-8.
Example 2-8. The splash dialog
public class SplashDialog extends Activity {
 private Dialog splashDialog;

 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 StateSaver data = (StateSaver) getLastNonConfigurationInstance();
 if (data != null) { // "all this has happened before"
 if (data.showSplashScreen) { // and we didn't already finish
 showSplashScreen();
 }
 setContentView(R.layout.main);
 // Do any UI rebuilding here using saved state
 } else {
 showSplashScreen();
 setContentView(R.layout.main);
 // Start any heavy-duty loading here, but on its own thread
 }
 }

The full code is in the download, and a version is also listed
 on Ian Clifton’s blog (see the See Also section). The basic idea is to display
 the splash screen dialog at the beginning, but also to redisplay it if
 you get, for example, an orientation change while the splash screen is
 running, and to be careful to remove it at the correct time, if the user
 backs out or if the timer expires while the splash screen is
 running.

See Also

Ian Clifton’s Android blog post titled “Splash
 Screens Done Right” argues passionately for the dialog
 method.

Source Download URL

You can download the source code for the activity-based example
 from https://docs.google.com/leaf?id=0B_rESQKgad5LZGY1N2RjYzQtZGQxNC00Njk5LWIyM2ItNDdlN2IwZjg4MmVj&hl=en_US&authkey=COOL9NwM.
[image: image with no caption]

The source code for this example is in the Android Cookbook repository at http://github.com/AndroidCook/Android-Cookbook-Examples,
 in the subdirectory SplashDialog (see Getting and Using the Code Examples).

2.7. Designing a Conference/Camp/Hackathon/Institution App

Ian Darwin

Problem

You want to design an app for use at a conference, BarCamp, or
 hackathon, or inside a large institution such as a hospital.

Solution

Provide at least the required functions listed in the Discussion,
 and as many of the optional ones as you think make sense.

Discussion

A good app of this type needs some or most of the following
 functions, as appropriate:
	A map of the building, showing the locations of meetings, food
 service, washrooms, emergency exits, and so on. You get extra points
 if you provide a visual slider for moving up or down levels if your
 conference takes place on more than one floor or level in the
 building (think about a 3D fly-through of San Francisco’s Moscone
 Center, including the huge escalators). Remember that some people
 may know the building, but others will not. Consider having a “where
 am I” function (the user will type in the name or number of a room
 he sees; you get extra points if you offer visual matching instead
 of making the user type) as well as a “where is” function (the user
 selects from a list and the application jumps to the map view with a
 pushpin showing the desired location).

	A map of the exhibit hall (if there is a show floor, have a
 map and an easy way to find a given exhibitor). Ditto for poster
 papers if your conference features these.

	A schedule view. Highlight changes in red as they happen,
 including additions, last-minute cancellations, and room
 changes.

	A sign-up button if your conference has Birds of a Feather
 (BOF) gatherings; you might even want a “Suggest a new BOF”
 activity.

	A local area map. This could be OpenStreetMap or Google Maps,
 or maybe something more detailed than the standard map functions.
 Add folklore, points of interest, navigation shortcuts, and other
 features. Limit it to a few blocks so that you can get the details
 right. A university campus is about the right size.

	An overview map of the city. Again, this is not the Google
 map, but an artistic, neighborhood/zone view with just the
 highlights.

	Tourist attractions within an hour of the site. Your mileage
 may vary.

	A food finder. People always get tired of convention food and
 set out on foot to find something better to eat.

	A friend finder. If Google’s Latitude app were open to use by
 third-party apps, you could tie into Google’s data. If it’s a
 security conference, implement this functionality yourself.

	Private voice chat. If it’s a small security gathering,
 provide a Session Initiation Protocol (SIP) server on a well-connected host, with carefully
 controlled access; it should be possible to have almost
 walkie-talkie-like service.

	Sign-ups for impromptu group formation for trips to tourist
 attractions or any other purpose.

	Functionality to post comments to Twitter, Facebook, and
 LinkedIn.

	Note taking! Many people will have Android on large-screen
 tablets, so a “Notepad” equivalent, ideally linked to the session
 the notes are taken in, will be useful.

	A way to signal your chosen friends that you want to eat (at a
 certain time, in so many minutes, right now)
 and including the type of food or restaurant name and seeing if
 they’re also interested.

See Also

The rest of the book shows how to implement most of these
 functions.
At the time of this writing, Google Maps had recently started serving building maps; look at
 http://googleblog.blogspot.com/2011/11/new-frontier-for-google-maps-mapping.html.
 The article shows who to contact to get your building’s internal
 locations added to the map data; if appropriate, consider getting the
 venue operators to give Google their building’s data.

2.8. Using Google Analytics in an Android Application

Ashwini Shahapurkar

Problem

Often developers want to track their application in terms of features used
 by users. How can you determine which feature is most used by your app’s
 users?

Solution

You can use Google Analytics to track the app based on defined
 criteria, similar to the website tracking mechanism.

Discussion

Before we use Google Analytics in our app, we need an analytics
 account and the Google Analytics SDK.
Download the Analytics SDK from http://code.google.com/mobile/analytics/download.html.
 Unzip the SDK and add libGoogleAnalytics.jar to
 your project’s build path.
Add the following permissions in your project’s AndroidManifest.xml file:
<uses-permission android:name="android.permission.INTERNET" />
<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />
Now, sign in to your analytics account and create a website
 profile for the app. The website URL can be fake but should be
 descriptive. It is suggested that you use the reverse package name for
 this. For example, if the application package name is
 com.example.analytics.test, the website URL for this
 app can be http://test.analytics.example.com.
 After the website profile has been created, a web property ID is
 generated for that profile. Jot it down as we will be using this in our
 app. This web property ID, also known as the UA number of your tracking
 code, uniquely identifies the website profile.
Note
You must mention in your app that you are collecting anonymous
 user data in your app to track your app.

Now we are ready to track our application. Obtain the singleton
 instance of the tracker by calling the GoogleAnalyticsTracker.getInstance() method.
 Then start tracking by calling its start() method. Usually, you will want to
 track more than activities in the
 app. In such a scenario, it is a good idea to have this tracker
 instance in the OnCreate() method of
 the Application class of the app (see Example 2-9).
Example 2-9. The application implementation for tracking
public class TestApp extends Application {

/*define your web property ID obtained after profile creation for the app*/
private String webId = "UA-NNNNNNNN-Y";

/*Analytics tracker instance*/
GoogleAnalyticsTracker tracker;

@Override
 public void onCreate() {
 super.onCreate();
 //get the singleton tracker instance
 tracker = GoogleAnalyticsTracker.getInstance();
 //start tracking app with your web property ID
 tracker.start(webId,getApplicationContext());
 //your app-specific code goes here
 }

 /* This is the getter for the tracker instance. This is called in
 the activity to get a reference to the tracker instance.*/
 public GoogleAnalyticsTracker getTracker() {
 return tracker;
 }

}

You can track page views and events in the activity by calling
 the trackPageView() and
 trackEvent() methods on the tracker
 instance (see Example 2-10).
Example 2-10. The main activity with tracking
public class MainActivity extends Activity
{
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 //track the page view for the activity
 GoogleAnalyticsTracker tracker = ((TestApp)getApplication()).getTracker();
 tracker.trackPageView("/MainActivity");

 /*You can track events like button clicks*/
 findViewById(R.id.actionButton).setOnClickListener(
 new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 GoogleAnalyticsTracker tracker =
 ((TestApp)getApplication()).getTracker();
 tracker.trackEvent("Action Event",
 "Action Button", "Button clicked",0);
 tracker.dispatch();
 }
 });
 // Your stuff goes here
 }
}

Remember, your events and page views will not be sent to the
 server until you call the dispatch()
 method on the tracker. In this way, you can track all the activities and
 events inside them.

2.9. A Simple Torch/Flashlight

Saketkumar Srivastav

Problem

You want to use your smartphone as a torch/flashlight when there is a power
 failure or other no-light situation.

Solution

Turn on the camera flash LED that is present in the smartphone or
 Android device, and keep it on, to serve as a torch. In a peculiar twist
 of terminology, what is known as a torch in the
 United Kingdom is called a flashlight in North
 America (this is reflected in the names of the
 Parameter constants used in the code), even though a
 flashlight doesn’t usually flash, while a camera flash does. So, using
 the camera’s flash as a flashlight is, well, brilliant!

Discussion

To begin the application, here are the design steps:
	Access the Camera object of the
 phone.

	Access the parameters of the Camera
 object.

	Get the flash modes supported by the camera.

	Set the flashlight parameter to FLASH_MODE_TORCH when
 in the ON state and to
 FLASH_OFF when in the OFF
 state.

The code in Example 2-11 implements the
 logic required for the application.
Example 2-11. Turning an Android device into a torch/flashlight
if (context.getPackageManager().hasSystemFeature(PackageManager.FEATURE_CAMERA_FLASH)) {
 mTorch = (ToggleButton) findViewById(R.id.toggleButton1);
 mTorch.setOnCheckedChangeListener(new OnCheckedChangeListener() {

 @Override
 public void onCheckedChanged(CompoundButton buttonView,
 boolean isChecked) {

 try{
 if(cam != null){
 cam = Camera.open();
 }
 camParams = cam.getParameters();
 List<String> flashModes = camParams.getSupportedFlashModes();
 if(isChecked){
 if (flashModes.contains(Parameters.FLASH_MODE_TORCH)) {
 camParams.setFlashMode(Parameters.FLASH_MODE_TORCH);
 }else{
 showDialog(MainActivity.this, FLASH_TORCH_NOT_SUPPORTED);
 }
 }else{
 camParams.setFlashMode(Parameters.FLASH_MODE_OFF);
 }
 cam.setParameters(camParams);
 cam.startPreview();
 }catch (Exception e) {
 e.printStackTrace();
 cam.stopPreview();
 cam.release();
 }
 }
 });
 }else{
 showDialog(MainActivity.this, FLASH_NOT_SUPPORTED);
 }

The basic logic implemented in Example 2-12 is as follows:
	Check for the existence of the flash in the device.

	Get the Camera object and open it to access
 it.

	Get the parameters of the captured Camera
 object.

	Check the supported flash modes available from the current
 Camera object using getSupportedFlashModes().

	If the toggle state is ON, set the flash
 mode of the camera to FLASH_MODE_TORCH;
 otherwise, set it to FLASH_MODE_OFF.

Example 2-12. Torch error handling
public void showDialog (Context context, int dialogId){
 switch(dialogId){
 case FLASH_NOT_SUPPORTED:
 builder = new AlertDialog.Builder(context);
 builder.setMessage("Sorry, Your phone does not support Torch Mode")
 .setCancelable(false)
 .setNeutralButton("Close", new OnClickListener() {
 @Override
 public void onClick(DialogInterface dialog, int which) {
 finish();
 }
 });
 alertDialog = builder.create();
 alertDialog.show();
 break;
 case FLASH_TORCH_NOT_SUPPORTED:
 builder = new AlertDialog.Builder(context);
 builder.setMessage("Sorry, Your camera flash does not support torch feature")
 .setCancelable(false)
 .setNeutralButton("Close", new OnClickListener() {

 @Override
 public void onClick(DialogInterface dialog, int which) {
 finish();
 }
 });
 alertDialog = builder.create();
 alertDialog.show();
 }

 }

Source Download URL

You can download the source code for this example from https://github.com/SaketSrivastav/SimpleTorchLight.
[image: image with no caption]

2.10. Adapting an Android Phone Application to Be Used on a
 Tablet

Pratik Rupwal

Problem

You have developed an application for your smartphone, and you want
 a way to run it gracefully on a tablet without any significant changes
 to your code.

Solution

There are many considerations in making your application work as
 well on large-screen tablets as it does on medium- and small-screen
 phones. Some of these include screen resolution, orientation (tablets
 are more commonly used in landscape mode, except in “book reader”
 applications), and sizes of GUI components. Handling these in a portable
 fashion will help your phone-based app make the transition to
 tablets.

Discussion

If you haven’t done so already, install the Android SDK on your
 computer. Then follow these steps:
	Launch the Android SDK and AVD Manager and install the following:
	SDK Platform Android 3.0

	Android SDK Tools, revision 10

	Android SDK Platform-tools, revision 3

	Documentation for Android SDK, API 11

	Samples for SDK API 11

	Create an Android Virtual Device (AVD) for a tablet-type
 device, if you do not have (or want to use) an actual Honeycomb-
 or Ice Cream Sandwich-based tablet. Set the target to “Android
 3.0” and the skin to “WXGA” (the default skin).

	Open your manifest file and update the
 uses-sdk element to set
 android:targetSdkVersion to “11”. For example:
<manifest ... >
 <uses-sdk android:minSdkVersion="4"
 android:targetSdkVersion="11" />
 <application ... >
 ...
 <application>
</manifest>
By targeting the Android 3.0 platform, the
 system automatically applies the holographic theme to each
 activity when your application runs on an Android 3.0 device. The
 holographic theme provides a new design for widgets, such as
 buttons and text boxes, and new styles for other visual elements.
 This is the standard theme for applications built for Android 3.0,
 so your application will look and feel consistent with the system
 and other applications when it is enabled.

	Build your application against the same version of the
 Android platform you have been using previously (such as the
 version declared in your
 android:minSdkVersion), but install it on the Android 3.0 AVD. (You should
 not build against Android 3.0 unless you are using new APIs.)
 Repeat your tests to be sure that your user interface works well
 with the holographic theme.

Optional guidelines

The following guidelines are among the first things you should
 consider in moving your application to tablets:
	Landscape layout: The “normal” orientation for tablet-type devices is usually
 landscape (wide), so you should be sure that your activities
 offer a layout that’s optimized for a wide viewing area.

	Button position and size: Consider whether the position and size of the most common
 buttons in your UI make them easily accessible while holding a
 tablet with two hands. In some cases, you might need to resize
 buttons, especially if they use wrap_content
 as the width value. To enlarge the buttons, if necessary, you
 should either add extra padding to the button; specify dimension
 values with dp units; or use
 android:layout_weight when the button is in a
 linear layout. Use your best judgment of proportions for each
 screen size—you don’t want the buttons to be too big,
 either.

	Font sizes: Be sure your application uses sp units when setting font sizes.
 This alone should ensure a readable experience on tablet-style
 devices, because it is a scale-independent pixel unit, which
 will resize as appropriate for the current screen configuration.
 In some cases, however, you still might want to consider larger
 font sizes for extra-large configurations.

2.11. Setting First-Run Preferences

Ashwini Shahapurkar

Problem

You have an application that collects app usage data anonymously, so
 you are obligated to make users aware of this the first time they run
 your application.

Solution

Use shared preferences as persistent storage to store a value,
 which gets updated only once. Each time the application launches, it
 will check for this value in the preferences. If the value has been set
 (is available), it is not the first run of the application; otherwise it
 is the first run.

Discussion

You can manage the application life cycle by using the
 Application class of the Android framework. We will use shared preferences
 as persistent storage to store the first-run value.
We will store a boolean flag if it is the first
 run in the preferences. When the application is installed and used for
 the first time, there are no preferences available for it. They will be
 created for us. In that case the flag will return a value of
 true. After getting the true flag,
 we can update this flag with a value of false as we
 no longer need it to be true. See Example 2-13.
Example 2-13. First-run preferences
public class MyApp extends Application {

 SharedPreferences mPrefs;

 @Override
 public void onCreate() {
 super.onCreate();

 Context mContext = this.getApplicationContext();
 // 0 = mode private. only this app can read these preferences
 mPrefs = mContext.getSharedPreferences("myAppPrefs", 0);

 // Your app initialization code goes here
 }

 public boolean getFirstRun() {
 return mPrefs.getBoolean("firstRun", true);
 }

 public void setRunned() {
 SharedPreferences.Editor edit = mPrefs.edit();
 edit.putBoolean("firstRun", false);
 edit.commit();
 }

}

This flag from the preferences will be tested in the launcher
 activity, as shown in Example 2-14.
Example 2-14. Checking whether this is the first run of this app
 if(((MyApp) getApplication()).getFirstRun()){
 //This is the first run
 ((MyApp) getApplication()).setRunned();

 // your code for the first run goes here

 }
 else{
 // this is not the first run on this device
 }

Even if you publish updates for the app and the user installs the
 updates, these preferences will not be modified; therefore, the code
 will work for only the first run after installation. Consequent updates
 to the app will not bring the code into the picture, unless the user has
 manually uninstalled and reinstalled the app.
Note
You could use a similar technique for distributing shareware
 versions of an Android app (i.e., limit the number of trials of the
 application). In this case, you would use an integer count value in
 the preferences to indicate the number of trials. Each trial would
 update the preferences. After the desired value is reached, you
 would block the usage of the application until the user pays the
 usage fee.

2.12. Formatting the Time and Date for Display

Pratik Rupwal

Problem

You want to display the time and date in different standard
 formats.

Solution

The DateFormat class provides APIs for formatting time and date in a custom
 format. Using these APIs requires minimal effort.

Discussion

Example 2-15 adds five different
 TextViews for showing the time and date in different formats.
Example 2-15. The TextView layout
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
<TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:id="@+id/textview1"
 />
<TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:id="@+id/textview2"
 />
 <TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:id="@+id/textview3"
 />
 <TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:id="@+id/textview4"
 />
 <TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:id="@+id/textview5"
 />

</LinearLayout>

Example 2-16 obtains the current time and
 date using the java.util.Date class and then displays it in different formats (please refer to
 the comments for sample output).
Example 2-16. The date formatter activity
package com.sym.dateformatdemo;

import java.util.Calendar;
import android.app.Activity;
import android.os.Bundle;
import android.text.format.DateFormat;
import android.widget.TextView;

public class TestDateFormatterActivity extends Activity {
 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 TextView textView1 = (TextView) findViewById(R.id.textview1);
 TextView textView2 = (TextView) findViewById(R.id.textview2);
 TextView textView3 = (TextView) findViewById(R.id.textview3);
 TextView textView4 = (TextView) findViewById(R.id.textview4);
 TextView textView5 = (TextView) findViewById(R.id.textview5);

 String delegate = "MM/dd/yy hh:mm a"; // 09/21/2011 02:17 pm
 java.util.Date noteTS = Calendar.getInstance().getTime();
 textView1.setText("Found Time :: "+DateFormat.format(delegate,noteTS));

 delegate = "MMM dd, yyyy h:mm aa"; // Sep 21,2011 02:17 pm
 textView2.setText("Found Time :: "+DateFormat.format(delegate,noteTS));

 delegate = "MMMM dd, yyyy h:mmaa"; //September 21,2011 02:17pm
 textView3.setText("Found Time :: "+DateFormat.format(delegate,noteTS));

 delegate = "E, MMMM dd, yyyy h:mm:ss aa";//Wed, September 21,2011 02:17:48 pm
 textView4.setText("Found Time :: "+DateFormat.format(delegate,noteTS));

 delegate =
 "EEEE, MMMM dd, yyyy h:mm aa"; //Wednesday, September 21,2011 02:17:48 pm
 textView5.setText("Found Time :: "+DateFormat.format(delegate,noteTS));
 }
}

See Also

The classes shown in the following table, in package
 android.text.format, may be of use in this type of application.
	Name	Usage
	DateUtils	This class contains various date-related utilities for creating text
 for things like elapsed time and date ranges, strings for days
 of the week and months, and a.m./p.m. text.
	Formatter	This is a utility class to aid in formatting common values that are
 not covered by java.util.Formatter.
	Time	This class is a faster replacement for the
 java.util.Calendar and
 java.util.GregorianCalendar classes.

2.13. Controlling Input with KeyListeners

Pratik Rupwal

Problem

Your application contains a few text boxes in which you want to restrict
 users to entering only numbers; also, in some cases you want to allow
 only positive numbers, or integers, or dates.

Solution

Android provides KeyListener classes to help
 you restrict users to entering only numbers/positive
 numbers/integers/positive integers and much more.

Discussion

The Android.text.method package includes a KeyListener interface, along
 with some classes such as DigitsKeyListener and
 DateKeyListener, which implement this interface.
Example 2-17 is a sample application
 that demonstrates a few of these classes. This layout file creates
 five TextViews and five EditViews; the
 TextViews display the input type allowed for their
 respective EditTexts.
Example 2-17. Layout with TextViews and EditTexts
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >

 <TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:id="@+id/textview1"
 android:text="digits listener with signs and decimal points"
 />
 <EditText
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:id="@+id/editText1"
 />

 <TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:id="@+id/textview2"
 android:text="digits listener without signs and decimal points"
 />
 <EditText
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:id="@+id/editText2"
 />

 <TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:id="@+id/textview3"
 android:text="date listener"
 />
 <EditText
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:id="@+id/editText3"
 />

 <TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:id="@+id/textview4"
 android:text="multitap listener"
 />
 <EditText
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:id="@+id/editText4"
 />

 <TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:id="@+id/textview5"
 android:text="qwerty listener"
 />
 <EditText
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:id="@+id/editText5"
 />
</LinearLayout>

Example 2-18 is the code for the activity that
 restricts the EditText input to numbers, positive
 integers, and so on (refer to the comments for groups of keys
 allowed).
Example 2-18. The main activity
import android.app.Activity;
import android.os.Bundle;
import android.text.method.DateKeyListener;
import android.text.method.DigitsKeyListener;
import android.text.method.MultiTapKeyListener;
import android.text.method.QwertyKeyListener;
import android.text.method.TextKeyListener;
import android.widget.EditText;

public class KeyListenerDemo extends Activity {
 /** Called when the activity is first created. */
@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 //allows digits with positive/negative signs and decimal points
 EditText editText1=(EditText)findViewById(R.id.editText1);
 DigitsKeyListenerdigkl1=DigitsKeyListener.getInstance(true,true);
 editText1.setKeyListener(digkl1);

 //allows positive integer only (no decimal values allowed)
 EditText editText2=(EditText)findViewById(R.id.editText2);
 DigitsKeyListener digkl2=DigitsKeyListener.getInstance();
 editText2.setKeyListener(digkl2);

 //allows date only
 EditText editText3=(EditText)findViewById(R.id.editText3);
 DateKeyListener dtkl=new DateKeyListener();
 editText3.setKeyListener(dtkl);

 //allows multitap with 12-key keypad layout
 EditText editText4=(EditText)findViewById(R.id.editText4);
 MultiTapKeyListener multitapkl =
 new MultiTapKeyListener(TextKeyListener.Capitalize.WORDS,true);
 editText4.setKeyListener(multitapkl);

 //allows qwerty layout for typing
 EditText editText5=(EditText)findViewById(R.id.editText5);
 QwertyKeyListener qkl =
 new QwertyKeyListener(TextKeyListener.Capitalize.SENTENCES,true);
 editText5.setKeyListener(qkl);
 }
}

To use MultiTapKeyListener, your phone should support the 12-key layout and it needs to be
 activated. To activate the 12-key layout, go to Settings→Language and
 Keyboard→On-screen Keyboard Layout and then select the “Phone layout”
 options.

See Also

The following Listener types will be of use in
 writing this type of application.
	Name	Usage
	BaseKeyListener	This is an abstract base class for key listeners.
	DateTimeKeyListener	This is for entering dates and times in the same text
 field.
	MetaKeyKeyListener	This base class encapsulates the behavior for tracking the
 state of meta keys such as SHIFT, ALT, and SYM as well as the
 pseudometa state of selecting text.
	NumberKeyListener	This is for numeric text entry.
	TextKeyListener	This is the key listener for typing normal text.
	TimeKeyListener	This is for entering times in a text field.

2.14. Backing Up Android Application Data

Pratik Rupwal

Problem

When a user performs a factory reset or converts to a new
 Android-powered device, the application loses stored data or application
 settings.

Solution

Android’s Backup Manager helps to automatically restore backup
 data or application settings when the application is reinstalled.

Discussion

Android’s Backup Manager basically operates in two modes, backup and restore.
 During a backup operation, the Backup Manager
 (BackupManager class) queries your application for backup data, then hands it to
 a backup transport, which then delivers the data to cloud-based storage.
 During a restore operation, the Backup Manager retrieves the backup data
 from the backup transport and returns it to your application so that
 your application can restore the data to the device. It’s possible for
 your application to request a restore, but not necessary as Android
 performs a restore operation when your application is installed and
 backup data exists associated with the user. The primary scenario in
 which backup data is restored happens when a user resets her device or
 upgrades to a new device and her previously installed applications are
 reinstalled.
Example 2-19 shows how to implement the
 Backup Manager for your application so that you can save the current
 state of your application.
Here is a basic description of the procedure in step-by-step
 form:
	Create a BackupManagerExample project in
 Eclipse.

	Open and insert the code in Example 2-19 into the
 layout/backup_restore.xml file.

	Open the values/string.xml file and
 insert into it the code shown in Example 2-20.

	Your manifest file will look like the code shown in Example 2-21.

	The code in Example 2-22
 completes the implementation of the Backup Manager for your
 application.

Example 2-19. The backup/restore layout
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="wrap_content">

 <ScrollView
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:layout_weight="1">

 <LinearLayout
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="wrap_content">

 <TextView android:text="@string/filling_text"
 android:textSize="20dp"
 android:layout_marginTop="20dp"
 android:layout_marginBottom="10dp"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"/>

 <RadioGroup android:id="@+id/filling_group"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_marginLeft="20dp"
 android:orientation="vertical">

 <RadioButton android:id="@+id/bacon"
 android:text="@string/bacon_label"/>
 <RadioButton android:id="@+id/pastrami"
 android:text="@string/pastrami_label"/>
 <RadioButton android:id="@+id/hummus"
 android:text="@string/hummus_label"/>

 </RadioGroup>

 <TextView android:text="@string/extras_text"
 android:textSize="20dp"
 android:layout_marginTop="20dp"
 android:layout_marginBottom="10dp"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"/>

 <CheckBox android:id="@+id/mayo"
 android:text="@string/mayo_text"
 android:layout_marginLeft="20dp"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"/>

 <CheckBox android:id="@+id/tomato"
 android:text="@string/tomato_text"
 android:layout_marginLeft="20dp"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"/>

 </LinearLayout>

 </ScrollView>

</LinearLayout>

Example 2-20. Strings for the example
<resources>
 <string name="hello">Hello World, BackupManager!</string>
 <string name="app_name">BackupManager</string>
 <string name="filling_text">Choose Settings for your application:</string>
 <string name="bacon_label">Sound On</string>
 <string name="pastrami_label">Vibration On</string>
 <string name="hummus_label">Backlight On</string>
 <string name="extras_text">Extras:</string>
 <string name="mayo_text">Use Orientation?</string>
 <string name="tomato_text">Use Camera?</string>
</resources>

Example 2-21. AndroidManifest.xml
<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.sym.backupmanager"
 android:versionCode="1"
 android:versionName="1.0">
 <uses-sdk android:minSdkVersion="9" />

 <application android:label="Backup/Restore" android:icon="@drawable/icon"
 android:backupAgent="ExampleAgent"> <!-- Here you specify the backup agent-->

 <!--Some backup transports may require API keys or other metadata-->
 <meta-data android:name="com.google.android.backup.api_key"
 android:value="INSERT YOUR API KEY HERE" />

 <activity android:name=".BackupManagerExample">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity> </application>

</manifest>

Example 2-22. The backup/restore activity
package com.sym.backupmanager;

import android.app.Activity;
import android.app.backup.BackupManager;
import android.os.Bundle;
import android.util.Log;
import android.widget.CheckBox;
import android.widget.CompoundButton;
import android.widget.RadioGroup;
import java.io.File;
import java.io.IOException;
import java.io.RandomAccessFile;

public class BackupManagerExample extends Activity {
 static final String TAG = "BRActivity";

 static final Object[] sDataLock = new Object[0];

 static final String DATA_FILE_NAME = "saved_data";

 RadioGroup mFillingGroup;
 CheckBox mAddMayoCheckbox;
 CheckBox mAddTomatoCheckbox;

 File mDataFile;

 BackupManager mBackupManager;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 setContentView(R.layout.backup_restore);

 mFillingGroup = (RadioGroup) findViewById(R.id.filling_group);
 mAddMayoCheckbox = (CheckBox) findViewById(R.id.mayo);
 mAddTomatoCheckbox = (CheckBox) findViewById(R.id.tomato);

 mDataFile = new File(getFilesDir(), BackupManagerExample.DATA_FILE_NAME);

 mBackupManager = new BackupManager(this);

 populateUI();
 }

 void populateUI() {
 RandomAccessFile file;

 int whichFilling = R.id.pastrami;
 boolean addMayo = false;
 boolean addTomato = false;

 synchronized (BackupManagerExample.sDataLock) {
 boolean exists = mDataFile.exists();
 try {
 file = new RandomAccessFile(mDataFile, "rw");
 if (exists) {
 Log.v(TAG, "datafile exists");
 whichFilling = file.readInt();
 addMayo = file.readBoolean();
 addTomato = file.readBoolean();
 Log.v(TAG, " mayo=" + addMayo
 + " tomato=" + addTomato
 + " filling=" + whichFilling);
 } else {
 Log.v(TAG, "creating default datafile");
 writeDataToFileLocked(file,
 addMayo, addTomato, whichFilling);

 mBackupManager.dataChanged();
 }
 } catch (IOException ioe) {
 // Do some error handling here!
 }
 }

 mFillingGroup.check(whichFilling);
 mAddMayoCheckbox.setChecked(addMayo);
 mAddTomatoCheckbox.setChecked(addTomato);

 mFillingGroup.setOnCheckedChangeListener(
 new RadioGroup.OnCheckedChangeListener() {
 public void onCheckedChanged(RadioGroup group,
 int checkedId) {
 Log.v(TAG, "New radio item selected: " + checkedId);
 recordNewUIState();
 }
 });

 CompoundButton.OnCheckedChangeListener checkListener
 = new CompoundButton.OnCheckedChangeListener() {
 public void onCheckedChanged(CompoundButton buttonView,
 boolean isChecked) {
 Log.v(TAG, "Checkbox toggled: " + buttonView);
 recordNewUIState();
 }
 };
 mAddMayoCheckbox.setOnCheckedChangeListener(checkListener);
 mAddTomatoCheckbox.setOnCheckedChangeListener(checkListener);
 }

 void writeDataToFileLocked(RandomAccessFile file,
 boolean addMayo, boolean addTomato, int whichFilling)
 throws IOException {
 file.setLength(0L);
 file.writeInt(whichFilling);
 file.writeBoolean(addMayo);
 file.writeBoolean(addTomato);
 Log.v(TAG, "NEW STATE: mayo=" + addMayo
 + " tomato=" + addTomato
 + " filling=" + whichFilling);
 }

 void recordNewUIState() {
 boolean addMayo = mAddMayoCheckbox.isChecked();
 boolean addTomato = mAddTomatoCheckbox.isChecked();
 int whichFilling = mFillingGroup.getCheckedRadioButtonId();
 try {
 synchronized (BackupManagerExample.sDataLock) {
 RandomAccessFile file = new RandomAccessFile(mDataFile, "rw");
 writeDataToFileLocked(file, addMayo, addTomato, whichFilling);
 }
 } catch (IOException e) {
 Log.e(TAG, "Unable to record new UI state");
 }

 mBackupManager.dataChanged();
 }
}

Data backup is not guaranteed to be available on all
 Android-powered devices. However, your application is not adversely
 affected in the event that a device does not provide a backup transport.
 If you believe that users will benefit from data backup in your
 application, you can implement it as described in this document, test
 it, and then publish your application without any concern about which
 devices actually perform backups.
 When your application runs on a device that does not provide a backup
 transport, your application will operate normally, but will not receive
 callbacks from the Backup Manager to backup data.
Although you cannot know what the current transport is, you are
 always assured that your backup data cannot be read by other
 applications on the device. Only the Backup Manager and backup transport
 have access to the data you provide during a backup operation.
Warning
Because the cloud storage and transport service can differ
 among devices, Android makes no guarantees about the security of
 your data while using backup. You should always be cautious about
 using backup to store sensitive data, such as usernames and
 passwords.

Testing your backup agent

Once you’ve implemented your backup agent, you can use the bmgr command to test the backup and
 restore functionality by following these steps:
	Install your application on a suitable Android system
 image. If you are using the emulator, create and use an AVD with
 Android 2.2 (API Level 8). If you are using a device, the device
 must be running Android 2.2 or later and have the Android Market
 built in.

	Ensure that backup capability is enabled. If you are using
 the emulator, you can enable backup with the following command
 from your SDK tools/path:
adb shell bmgr enable true
If you are using a device, open the system settings,
 select Privacy, and then enable “Back up my data” and “Automatic
 restore.”

	Open your application and initialize some data.
If you’ve properly implemented backup capability in your
 application, it should request a backup each time the data
 changes. For example, each time the user changes some data, your
 app should call dataChanged(), which adds a
 backup request to the Backup Manager queue. For testing
 purposes, you can also make a request with the following
 bmgr command:
adb shell bmgr backup your.package.name

	Initiate a backup operation:
adb shell bmgr run
This forces the Backup Manager to perform all backup
 requests that are in its queue.

	Uninstall your application:
adb uninstall your.package.name

	Reinstall your application.
If your backup agent is successful, all the data you
 initialized in step 4 is restored.

2.15. Using Hints Instead of Tool Tips

Daniel Fowler

Problem

Android devices can have small screens, there may not be room for
 help text, and tool tips are not part of the platform.

Solution

Android provides the hint attribute for Views.

Discussion

Sometimes an input field needs clarification with regard to the
 value being entered. For example, a stock ordering application asking
 for item quantities may need to state the minimum order size. In desktop
 programs, with large screens and the use of a mouse, extra messages can
 be displayed in the form of tool tips (a pop-up label over a field when
 the mouse moves over it). Alternatively, long descriptive labels may be
 used. With Android devices the screen may be small and no mouse is
 generally used. The alternative here is to use the android:hint attribute on a View. This causes a “watermark” containing the
 hint text to be displayed in the input field when it is empty; this
 disappears when the user starts typing in the field. The corresponding
 function for android:hint is setHint(int resourceId). The use of a hint is
 shown in Figure 2-4.
[image: An example with hints]

Figure 2-4. An example with hints

You can set the color of the hint text with android:textColorHint, with setHintTextColor(int color) being the
 associated function.
Using these hints can also help with screen layouts when space is
 tight. It can allow labels to be removed to gain more space as the hints
 provide the necessary prompt for the user. In addition, a screen design
 can sometimes be improved by removing a label and using a hint, as shown
 in Figure 2-5.
[image: Hints and no label]

Figure 2-5. Hints and no label

The EditText definition in
 Figure 2-5 is shown in the following code
 so that you can see android:hint in use:
<EditText android:id="@+id/etQuantity"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:hint="Number of boxes of ten"
 android:textSize="18sp"/>
Hints can guide users as they are filling in app fields, though as
 with any feature overuse is possible. Hints should not be used when it
 is obvious what is required; a field with a label of “First Name” would
 not need a hint such as “Enter your first name here,” for example. Figure 2-5 shows the ordering application
 improved somewhat by removing the redundant label.

Chapter 3. Testing

3.1. Introduction: Testing

Ian Darwin

Discussion

“Test early and often” is a common cry among advocates of testing.
 As is the all-important question,
 “If you don’t have a test, how do you know your code works?”
There are many types of testing. Unit testing checks out individual components in isolation (not hitting
 the network or the database). JUnit and TestNG are the leading frameworks here. Mock objects are used where
 interaction with other components is required; there are several good
 mocking frameworks for Java.
Android provides a number of specific testing techniques, many of
 which are discussed here.
The terms NPE, ANR, and
 FC are used without further explanation in this
 chapter. NPE is a “traditional Java” acronym for Null Pointer
 Exception. ANR is an Android-specific acronym; it stands for
 Application Not Responding, the first few words of a dialog you get when your
 application is judged to be taking too long to respond to a request. FC
 stands for Force Close, which occurs when Android requests that you close a
 failed application.

3.2. Doing Test-Driven Development (TDD) in Android

Kailuo Wang

Problem

The lack of mocking support makes test-driven development in Android
 apps cumbersome.

Solution

Set up two test projects: one created using the Android tool for the
 UI-related tests, and another standard unit test project for mock
 supported tests. Extract as much of your logic as possible to the
 classes that can be unit-tested.

Discussion

In the official documentation (at http://developer.android.com), the test-related articles
 are mostly about UI tests. An Android test project needs to be created
 so that it can be instrumented and deployed and the app can be tested in
 a simulator environment. It’s very cool and necessary for testing the
 UI-related logic, but it also makes mocking very difficult. There are
 some workarounds, but they make things a bit ad hoc and potentially
 painful. If you step back and look at them from a higher level, these
 tests are more like integration tests than pure unit tests. They take
 longer to run, and they require that the entire environment be up and
 running. Without mocking, they might need to test a lot more than a unit
 of functionality. All of these limitations justify the need to make such
 tests a separate project/module from the normal unit test
 project/module. We can call this Android tool-created project/module the
 XYZ UI Test project, whose responsibility is to test only UI logic. Now
 you can set up another standard unit test project as you always do.
 Let’s call it the XYZ Unit Test project. Here you can use your favorite
 tools, including mock frameworks. Also, it’s testing only all the non-UI
 related logic which avoids all the less-than-test-friendly Android UI
 API. Now all you need to do is to extract as much logic as possible out
 of the nasty UI-dependent classes and have fun doing TDD.

See Also

http://developer.android.com/resources/tutorials/testing/helloandroid_test.html

3.3. Setting Up an Android Virtual Device (AVD) for App Testing

Daniel Fowler

Problem

Successful apps must run on a wide range of Android devices and versions, so you need to
 test them on a range of devices.

Solution

Use the Android SDK’s device emulation toolkit to configure
 combinations of devices and operating systems. Testing on various
 combinations reduces issues related to hardware differences in
 devices.

Discussion

Android devices are manufactured to cover a wide market, from low
 cost to high specification and high value. Android has also been in the
 marketplace for more than a couple of years. For these reasons, a wide
 range of devices with a wide range of hardware options and operating
 system versions are being used. A successful application will be one
 that can run on such a range of devices. An app developer will only be
 able to test on a very small range of physical devices. Fortunately, a
 developer can boost the confidence he has in his app by using an Android
 Virtual Device (AVD).
A compiled app can be tested on a physical device or on a virtual
 device. An AVD is an emulation of an Android platform on a host machine,
 usually the development machine. AVDs simplify testing for these
 reasons:
	Multiple AVD configurations can be created to test an app on
 different versions of Android.

	Different (emulated) hardware configurations can be used—for
 example, GPS or no GPS.

	An AVD is automatically launched and your compiled app is
 installed onto it when the Run button is clicked in Eclipse.

	You can test your app on many more combinations of Android
 versions and hardware versions than physical devices you
 possess.

	Testing on AVDs greatly reduces the amount of testing required
 on physical devices.

	AVDs can be used alongside a physical device.

	You don’t need to handicap your physical device to induce
 error conditions—for example, if you’re testing on a device with no
 Secure Digital (SD) card, just set up an AVD with no SD card.

	An AVD can simulate network events without the costs involved
 in using a physical device; for example, you can simulate phone
 calls or send an SMS between two AVDs.

	You can simulate GPS data from an AVD from different physical
 locations without moving from your desk.

	When app users report bugs you can try to mimic their hardware
 configurations using AVDs.

Please note that on older development machines and when emulating
 larger Android devices the performance of an AVD will be less than that
 of a physical device.
You can configure an AVD using the SDK Manager program (opened directly from the filesystem or from
 within Eclipse). It is also possible to create AVDs from the command
 line.
To create an AVD with the SDK Manager, you must first load the
 program. When using Eclipse select Window from the menu bar and then
 select Android SDK and AVD Manager, as shown in Figure 3-1.
[image: Selecting the SDK and AVD Manager]

Figure 3-1. Selecting the SDK and AVD Manager

You can also start the program directly from the filesystem. For
 example, in Windows, open C:\Program
 Files\Android\android-sdk\SDK Manager.exe. If you started the
 program directly from the filesystem, the SDK Manager will check for SDK
 updates, in which case select Cancel to go to the main window, titled
 Android SDK and AVD Manager (see Figure 3-2). If
 you opened the program from Eclipse, the main window will show without
 the check for updates to the SDK.
[image: The AVD Manager]

Figure 3-2. The AVD Manager

The lefthand side of the main window will list “Virtual Devices,”
 “Installed packages,” and “Available packages.” “Virtual Devices” should
 already be selected; if not, select it and any existing defined AVDs
 will be listed in the table on the right. If the Android SDK has just
 been installed no AVDs may be listed.
To create an AVD, select the New button. The “Create new Android
 Virtual Device (AVD)” window will load (see Figure 3-3).
[image: Creating a new AVD]

Figure 3-3. Creating a new AVD

The following fields are used to define an AVD:
	Name
	Give a name to the new Android device that is to be emulated. Make
 the name descriptive—for example, if you’re emulating a device
 with a version 2.1 operating system and medium resolution screen
 (HVGA) a name such as Android-v2.1-HVGA is better than
 AndroidDevice.

	Target
	This is the version of the Android operating system that will
 be running on the emulated device. As an example for a device
 running version 2.1 this will be set to “Android 2.1-update1 -
 API Level 7”.

	SD Card
	Here you specify the size of the device’s emulated SD card,
 or select an existing SD card image (allowing the ability to
 share SD card data among different AVD emulations). To specify a
 new SD card enter the size in megabytes (MBs) for the card.
 Remember that the bigger the number the bigger the file created
 on the host computer system to mimic the SD card. Alternatively,
 select the File option and browse to an existing SD card image
 (on a Windows machine the sdcard.img files
 will be found in the subfolders of the avd
 directory under the .android directory in
 the logged-on user’s folder).

	Snapshot
	Check the Enabled box if you want the runtime state of the
 emulated device to persist between sessions, which is useful if
 a long-running series of tests are being performed and when the
 AVD is closed you do not want to have to start the tests from
 the beginning. It also speeds up the start-up time of an
 AVD.

	Skin
	Here you select the screen size for the device; a list of common
 screen sizes is presented (e.g., HVGA, QVGA, etc.). The list
 will vary depending on the operating system version.
 Alternatively, a custom resolution can be entered.

	Hardware
	The table under the Hardware option allows the AVD to be configured
 with or without certain hardware features. To change features
 first add them to the table using the New button (a couple of
 features will be added and will default automatically based on
 the Target selected). A dialog will open to allow the selection
 of a hardware property (see Figure 3-4).

[image: Setting a hardware property]

Figure 3-4. Setting a hardware property

For example, select “GPS support” and then “OK.” Select “yes” next
 to “GPS support in the table” and change it to “no.” The AVD will not
 support GPS (see Figure 3-5).
Table 3-1 lists the AVD
 supported properties.
Table 3-1. AVD supported properties
	Name	Data type	Value	Description
	Camera support	Boolean	Yes or no	Indicates whether the AVD supports the detection of a
 camera
	Max VM application heap size	Integer	Size	The maximum size of the heap an app may allocate
 before being shut down by the system
	Abstracted LCD density	Integer	120/160/240/320	Approximate density (dots per inch) of the AVD screen; 120 is
 low density, 160 is standard or normal density, 240 is high
 density, and 320 is extra-high density
	Cache partition size	Integer megabytes	Number	Sets the size of the cache used by the browser
	SD card support	Boolean	Yes or no	Indicates support for an SD card
	Cache partition support	Boolean	Yes or no	Determines whether a browser uses a cache
	Keyboard support	Boolean	Yes or no	Controls emulation of a physical keyboard (as opposed to an
 on-screen one)
	Audio playback support	Boolean	Yes or no	Indicates support for audio playback
	Keyboard lid support	Boolean	Yes or no	Indicates whether the emulated keyboard can be opened and
 closed
	Audio recording support	Boolean	Yes or no	Indicates support for recording audio
	DPad support	Boolean	Yes or no	Indicates emulation of a directional pad
	Maximum vertical camera pixels	Integer	Pixels height	Determines the height of photos taken with the camera
	Accelerometer	Boolean	Yes or no	Indicates whether a tilt and movement device can be detected
	GPS support	Boolean	Yes or no	Indicates whether a Global Positioning System data can be
 provided
	Device RAM size	Integer	Megabytes	Determines the size of the AVD’s memory
	Touch-screen support	Boolean	Yes or no	Determines whether the AVD supports operation via the
 screen
	Proximity support	Boolean	Yes or no	Indicates support for a proximity sensor
	Battery support	Boolean	Yes or no	Indicates support for simulated battery power
	GSM modem support	Boolean	Yes or no	Determines emulation of telephony abilities
	Trackball support	Boolean	Yes or no	Indicates support for a trackball
	Maximum horizontal camera pixels	Integer	Pixel width	Determines the width of photos taken with the camera

[image: Creating an Android 2.1 AVD]

Figure 3-5. Creating an Android 2.1 AVD

When the required fields have been defined, click the Create AVD
 button to generate the AVD. The AVD will now be listed on the Android
 SDK and AVD Manager window (see Figure 3-6).
[image: Starting the new AVD]

Figure 3-6. Starting the new AVD

The AVD is ready to be launched using the Start button. It is also
 ready to be selected in a project configuration to test an App under
 development. When the Start button is selected, the Launch Options
 window is shown (see Figure 3-7).
[image: Launch options for the AVD]

Figure 3-7. Launch options for the AVD

The options at launch are:
	Scale the display to real size
	On larger computer monitors you will not normally need to
 change the AVD scale. The dpi of the Android screen is greater
 than the standard dpi on computer monitors; therefore, the AVD
 screen will appear larger than the physical device. If necessary
 this can be scaled back to save screen space. Use this option to
 get the AVD to display at an approximate real size on the computer
 monitor. The values need to be set so that the AVD screen and
 keyboard are not too small to be used.

	Wipe user data
	When the AVD is started the user data file is reset and any
 user data generated from previous runs of the AVD is lost.

	Launch from snapshot
	If Snapshot has been Enabled for an AVD, after it has been
 first launched subsequent launches are quicker. The AVD is loaded
 from a snapshot and the Android operating system does not need to
 start up again. Although when the AVD is closed the shutdown takes
 longer because the snapshot has to be written to disk.

	Save to snapshot
	When the AVD is closed the current state is saved for
 quicker launching next time; although it takes longer to close as
 the snapshot is written to disk. Once you have a snapshot you can
 uncheck this option so that closing an AVD is quick as well,
 though any changes since the last snapshot will be lost.
Use the Launch button to start the AVD. Once loaded it can
 be used like any other Android device and driven from the keyboard
 and mouse of the host computer. See Figure 3-8.
[image: The AVD in action]

Figure 3-8. The AVD in action

	Error message on Windows when launching
	When trying to launch an AVD on a Windows installation, an error beginning with
 “invalid command-line parameter” may occur (see Figure 3-9).
[image: Error on Microsoft Windows]

Figure 3-9. Error on Microsoft Windows

To fix this problem, change the path to the Android SDK
 directory so that it does not contain any spaces. The default
 installation path for the SDK is in C:\Program
 Files\Android. The space in Program
 Files needs to be removed. To do this and maintain a
 valid directory name Program Files needs to
 be converted to its Microsoft DOS format (also referred to as 8.3
 format). This is usually the first six letters in uppercase
 followed by a tilde and the number 1, that is,
 PROGRA~1. If other directories start with
 Program followed by a space, the number may
 need to be increased. To see the DOS format for the
 Program Files directory on your machine open
 a command prompt (via Start→All Programs→Accessories). Change to
 root (type cd\ and press Enter) and run
 dir/x, and the directory’s DOS name will be
 displayed next to its full name (see Figure 3-10).
[image: MS-DOS naming]

Figure 3-10. MS-DOS naming

In Eclipse, use the Windows→Preferences menu option and
 select Android; in the SDK Location field change Program Files to
 its DOS version (see Figure 3-11).
[image: Setting the Android SDK Location]

Figure 3-11. Setting the Android SDK Location

See Also

http://d.android.com/guide/developing/devices/emulator.html

3.4. Testing on a Huge Range of Devices with Cloud-based Testing

Ian Darwin

Problem

You need to test your app on a wide variety of devices.

Solution

Use one of several web-based or cloud-based app testing services.

Discussion

When Android was young, it was perhaps feasible to own one of each
 kind of device, to be able to say you had tested it on everything. I
 have half a dozen Android devices, most of them semiexpired, for this
 purpose. Yet today there are hundreds of different devices to test on,
 some with two or three different OS versions, different cell radios, and
 so on. It’s just not practical for each developer to own enough devices
 to test on everything. That leaves two choices: either set up a hundred
 different AVDs as discussed elsewhere in this chapter, or use a
 “cloud-based” or web-based testing service.
The basic idea is that these companies buy lots of devices, and
 put them in server rooms with a webcam pointed at the screen and USB
 drivers that transfer keystrokes and touch gestures from your
 web-browser-based control program to the real devices. These devices are
 in cities around the world, so you can test while online with various
 mobile service providers, get GPS coordinates from the real location,
 and so on.
Here are some of the providers in this space, listed in
 alphabetical order. Some are Android-specific while some also cover iOS,
 BlackBerry, and other devices. Listing them here does not constitute an
 endorsement of their products or services; caveat emptor!
	Bitbar TestDroid (http://bitbar.com)

	Bsquare (http://www.bsquare.com)

	Experitest (http://experitest.com)

	Jamo Solutions (http://www.jamosolutions.com)

	Perfecto Mobile (http://www.perfectomobile.com)

3.5. Creating and Using a Test Project

Adrián Santalla

Problem

You need to create and use a new test project to test your Android application.

Solution

Here’s how to create and use a test project:
	Within your IDE create a new Android project associated with
 your Android application project.

	Configure the AndroidManifest.xml file of
 your test project with the necessary lines to test your Android
 application.

	And finally, write and run your tests.

Discussion

The following subsections describe the preceding steps in more
 detail.
Step 1: Create a new Android test project within your Android
 application project

First of all, you need to create a new Android project with the main
 application project to store your tests. This should be either a
 project, if you’re using Eclipse, or a module, if you’re using
 IntelliJ. IntelliJ IDEA allows you to nest the module inside your existing
 project; Eclipse does not allow projects to overlap, hence it requires
 the Android test project to be a top-level project. This new project
 should have an explicit dependency on your main application project.
 The Eclipse Android New Project Wizard will create this and set it up correctly when you create
 the original project, if you remember to click the checkbox.
Figure 3-12 shows the
 IDEA test project structure. As you can see, the new test project lies
 within the main application project.
[image: Test project in IntelliJ IDEA]

Figure 3-12. Test project in IntelliJ IDEA

Figure 3-13 is the
 corresponding Eclipse project structure: two projects.
[image: Test project in Eclipse]

Figure 3-13. Test project in Eclipse

Step 2: Configure the AndroidManifest.xml file of the test
 project

Once you have created your new test project, you should properly set
 all the values of the project’s
 AndroidManifest.xml file. It’s necessary to set
 the package name of the main source of the application that you would
 like to test.
Imagine that you are testing an application whose package name
 is my.pkg.app. You should create a test project,
 and your AndroidManifest.xml file should look
 like the code in Example 3-1.
Example 3-1. The AndroidManifest.xml file for testing
 <?xml version="1.0" encoding="utf-8"?>

 <manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="my.pkg.app.tests"
 android:versionCode="1"
 android:versionName="1.0">

 <application>
 <uses-library android:name="android.test.runner" />
 </application>

 <instrumentation android:name="android.test.InstrumentationTestRunner"
 android:targetPackage="my.pkg.app"
 android:label="Tests for my.pkg.app"/>
 </manifest>

The package attribute of the
 manifest tag stores the package name of the test project; more importantly,
 the android:targetPackage of the instrumentation tag stores the
 package name that you would like to test.
Again, the Eclipse wizard will set this up if you create the
 main and test projects at the same time. See Figure 3-13.

Step 3: Write and run your tests

Finally, you can start to write your own tests. The Android testing API is based on the JUnit API and provides several types of test classes,
 including AndroidTestCase, component-specific
 test case, ApplicationTestCase, and
 InstrumentationTestCase.
When you create your first test case with your IDE, it is very
 useful to create a test case that inherits from
 ActivityInstrumentationTestCase2. This kind of test
 class allows you to create functional tests. Example 3-2 shows a simple functional test.
Example 3-2. A test case
public class MainTest extends ActivityInstrumentationTestCase2<Main> {

 public MainTest() {
 super("my.pkg.app", Main.class);
 }

 public void test() {
 TextView textView = (TextView) getActivity().findViewById(R.id.textView);

 assertEquals("Hello World!", textView.getText());
 }
 }

The Main class that appears in the test is
 the main activity of the main application project. The test
 constructor uses the main application package name and the class of
 the main activity. From now on, you can create test cases using the
 standard methods of the Android API to get references to the activity
 elements. In the preceding test we are testing that the main activity
 has a TextView with the text “Hello
 World!” associated with it.

See Also

 Android documentation

Source Download URL

You can download the source code for this example from https://github.com/asantalla/Hello-Android-Testing.
[image: image with no caption]

3.6. Troubleshooting Application Crashes

Ulysses Levy

Problem

Your app crashes and you are not sure why (see Figure 3-14).

Solution

Begin by viewing the log.
[image: What an app crash looks like]

Figure 3-14. What an app crash looks like

Discussion

In terms of an app crash, we can use the adb logcat command or
 the Eclipse LogCat window to view our AVD’s log. Example 3-3 shows how to find the failure
 location by looking in the stack trace using adb
 logcat.
Example 3-3. The permission denied stack trace
E/DatabaseUtils(53): Writing exception to parcel
E/DatabaseUtils(53): java.lang.SecurityException: Permission Denial: writing
 com.android.providers.settings.SettingsProvider uri content://settings/system
 from pid=430, uid=10030 requires android.permission.WRITE_SETTINGS
E/DatabaseUtils(53): at android.content.ContentProvider$Transport.
 enforceWritePermission(ContentProvider.java:294)
E/DatabaseUtils(53): at android.content.ContentProvider$Transport.
 insert(ContentProvider.java:149)
E/DatabaseUtils(53): at android.content.ContentProviderNative.
 onTransact(ContentProviderNative.java:140)
E/DatabaseUtils(53): at android.os.Binder.execTransact(Binder.java:287)
E/DatabaseUtils(53): at com.android.server.SystemServer.init1(Native Method)
E/DatabaseUtils(53): at com.android.server.SystemServer.main(SystemServer.java:497)
E/DatabaseUtils(53): at java.lang.reflect.Method.invokeNative(Native Method)
E/DatabaseUtils(53): at java.lang.reflect.Method.invoke(Method.java:521)
E/DatabaseUtils(53): at com.android.internal.os.
 ZygoteInit$MethodAndArgsCaller.run(ZygoteInit.java:860)
E/DatabaseUtils(53): at com.android.internal.os.ZygoteInit.main(ZygoteInit.java:618)
E/DatabaseUtils(53): at dalvik.system.NativeStart.main(Native Method)
D/AndroidRuntime(430): Shutting down VM
W/dalvikvm(430): threadid=3: thread exiting with uncaught exception (group=0x4001b188)
...

In Example 3-3, we have a
 permission issue. So the solution in this particular instance is to add
 the WRITE_SETTINGS
 permission to our AndroidManifest.xml file.

<manifest ... >
 <application ... />
 <uses-permission android:name="android.permission.WRITE_SETTINGS" />
</manifest>
Another fairly common error is the
 Null Pointer Exception (NPE).
Example 3-4 shows the LogCat output.
Example 3-4. LogCat output
I/ActivityManager(53): Displayed activity com.android.launcher/.Launcher:
 28640 ms (total 28640 ms)
I/ActivityManager(53): Starting activity: Intent { act=android.intent.action.MAIN
 cat=[android.intent.category.LAUNCHER] flg=0x10200000 cmp=com.aschyiel.disp/.Disp }
I/ActivityManager(53): Start proc com.aschyiel.disp for
 activity com.aschyiel.disp/.Disp: pid=214 uid=10030 gids={1015}
I/ARMAssembler(53): generated scanline__00000177:03515104_00000001_00000000 [73 ipp]
 (95 ins) at [0x47c588:0x47c704] in 2087627 ns
I/ARMAssembler(53): generated scanline__00000077:03545404_00000004_00000000 [47 ipp]
 (67 ins) at [0x47c708:0x47c814] in 1834173 ns
I/ARMAssembler(53): generated scanline__00000077:03010104_00000004_00000000 [22 ipp]
 (41 ins) at [0x47c818:0x47c8bc] in 653016 ns
D/AndroidRuntime(214): Shutting down VM
W/dalvikvm(214): threadid=3: thread exiting with uncaught exception (group=0x4001b188)
E/AndroidRuntime(214): Uncaught handler: thread main exiting due to uncaught exception
E/AndroidRuntime(214): java.lang.RuntimeException: Unable to start activity
 ComponentInfo{com.aschyiel.disp/com.aschyiel.disp.Disp}:java.lang.NullPointerException
E/AndroidRuntime(214): at android.app.ActivityThread.performLaunchActivity(
 ActivityThread.java:2496)
E/AndroidRuntime(214): at android.app.ActivityThread.handleLaunchActivity(
 ActivityThread.java:2512)
E/AndroidRuntime(214): at android.app.ActivityThread.access$2200(
 ActivityThread.java:119)
E/AndroidRuntime(214): at android.app.ActivityThread$H.handleMessage(
 ActivityThread.java:1863)
E/AndroidRuntime(214): at android.os.Handler.dispatchMessage(Handler.java:99)
E/AndroidRuntime(214): at android.os.Looper.loop(Looper.java:123)
E/AndroidRuntime(214): at android.app.ActivityThread.main(ActivityThread.java:4363)
E/AndroidRuntime(214): at java.lang.reflect.Method.invokeNative(Native Method)
E/AndroidRuntime(214): at java.lang.reflect.Method.invoke(Method.java:521)
E/AndroidRuntime(214): at com.android.internal.os.ZygoteInit$MethodAndArgsCaller.run(
 ZygoteInit.java:860)
E/AndroidRuntime(214): at com.android.internal.os.ZygoteInit.main(ZygoteInit.java:618)
E/AndroidRuntime(214): at dalvik.system.NativeStart.main(Native Method)
E/AndroidRuntime(214): Caused by: java.lang.NullPointerException
E/AndroidRuntime(214): at com.aschyiel.disp.Disp.onCreate(Disp.java:66)
E/AndroidRuntime(214): at android.app.Instrumentation.callActivityOnCreate(
 Instrumentation.java:1047)
E/AndroidRuntime(214): at android.app.ActivityThread.performLaunchActivity(
 ActivityThread.java:2459)
E/AndroidRuntime(214): ... 11 more

The example code with the error looks like this:
import ...

public class Disp extends Activity
{
 private TextView foo;
 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 ...

 foo.setText("bar");
 }
}
The preceding code fails because we forgot to use findViewById().
Here is the example code with the fix:
import ...

public class Disp extends Activity
{
 private TextView foo;
 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 ...

 foo = (TextView) findViewById(R.id.id_foo);
 foo.setText("bar");
 }
}
This code should make our error go away.

See Also

“Google
 I/O 2009‒Debugging Arts of the Ninja Masters”; http://groups.google.com/group/android-developers/browse_thread/thread/92ea776cfd42aa45

3.7. Debugging Using Log.d and LogCat

Rachee Singh

Problem

Usually the Java code compiles without errors, but sometimes a running
 application crashes, giving a “Force Close” (or similar) error
 message.

Solution

Debugging the code using LogCat messages is a useful technique for
 developers who find themselves in such a situation.

Discussion

Those who are familiar with Java programming have probably used
 System.out.println statements while debugging their
 code. Similarly, debugging an Android application can be facilitated by
 using the Log.d() method. This enables you to print
 necessary values and messages in the LogCat window. Start by importing
 the Log class:
import android.util.Log;
Then, insert the following line at places in the code where you
 wish to check the status of the application:
 Log.d("Testing", "Checkpoint 1");
Testing is the tag that appears in the “tag”
 column in the LogCat window, as shown in Figure 3-15; normally this would be defined as a
 constant in the main class to ensure consistent spelling.
 Checkpoint 1 is the message that appears in the
 Message column in the LogCat window. Log.d takes
 these two arguments. Corresponding to these, an appropriate message is
 displayed in the LogCat window. So, if you have inserted this
 Log.d statement as a checkpoint and you get the
 Checkpoint 1 message displayed in the LogCat window,
 it implies that the code works fine up to that point.
The Log.d() method does not accept variable
 arguments, so if you wish to format more than one item, use string
 concatenation or String.format (but omit the trailing %n):
 Log.d("Testing", String.format("x0 = %5.2f, x1=%5.2f", x0, x1));
[image: Debugging output]

Figure 3-15. Debugging output

3.8. Getting Bug Reports from Users Automatically with BugSense

Ian Darwin

Problem

Users don’t necessarily inform you every time your app crashes,and
 when they do, often important details are omitted. You’d like a service
 that catches every exception and reports it in detail.

Solution

Sign up with BugSense (Free or Premium edition), and add a JAR
 file and one call to your app. Then sit back and await notifications, or
 view the web dashboard for lists of errors and detail pages.

Discussion

There is no magic to the BugSense service, and it doesn’t provide
 anything that you can’t do yourself. But it’s already done for you, so
 just use it! The basic steps are:
	Create an account with BugSense Free or Premium, at http://www.bugsense.com.

	Register your app and retrieve its unique key from the
 website.

	Download and add a JAR file to your project.

	Add one call (using the app’s unique key) into your main
 activity’s onCreate() method.

	Distribute your app to users.

Steps 1 and 2 are straightforward, so we won’t discuss them
 further. The remaining steps require a little more detail, and we
 discuss them in the following subsections.
Adding the JAR file to the project

The JAR file you need is bugsense-trace.jar; you can
 download it from https://github.com/bugsense/bugsense-android/blob/master/bugsense-trace.jar?raw=true
 or from http://www.bugsense.com.
You probably know how to add JARs to your project; if not, see
 Recipe 1.10.
Because this mechanism reports errors via the Internet, the
 following should go without saying (but let me say it anyway): you
 need Internet permission to use it! Add the following code to your
 AndroidManifest.xml file:
<uses-permission android:name="android.permission.INTERNET" />

Invoking BugSense at App Start

You really only need to make one call, in your onCreate() method, typically after invoking
 setContentView().
Here, for example, is the first part of the
 onCreate() method of my JPSTrack program:
private static final String OUR_BUGSENSE_API_KEY = "";

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 // set up BugSense bug tracking
 BugSenseHandler.setup(this, OUR_BUGSENSE_API_KEY);
 ...
}
Of course, BugSenseHandler needs to be
 imported, but Eclipse will do that for you (if not, go to the Source
 menu→Organize Imports).

Distributing the App and Watching for Crash Reports

This also can only be done using the web reporting page, which
 is accessible after you log in.

See Also

Start at the BugSense
 website. For more information on what BugSense can do, see the
 Features
 page.
There is also a Google Code Project named ACRA that provides similar
 data-capturing functionality but is not so strong on the reporting side,
 at least at the time of this writing.

3.9. Using a Local Runtime Application Log for Analysis of Field Errors
 or Situations

Atul Nene

Problem

Users reported something about your app that you don’t think should
 happen, but now that the release mode app is on the market, you have no
 way to find out what’s going on in the users’ environment, and bug
 reports end up in a “cannot reproduce” scenario.

Solution

Design a built-in mechanism for your app that will give additional
 insight in such cases. You know the important events or state changes
 and resource needs of your app, and if you log them in a runtime
 application log from your app, the log becomes an additional much-needed
 resource that goes to the heart of the issue being reported and
 investigated. This simple preventive measure and mechanism goes a long
 way toward reducing low user ratings caused by unforeseen situations,
 and improves the quality of the overall user experience.
One solution is to use the standard java.util.logging package. This recipe
 provides an example RuntimeLog which uses
 java.util.logging to write to a logfile on the
 device, and gives the developer extensive control over what level of
 detail is recorded.

Discussion

You have designed, developed, and tested your application and
 released it on the Android Market, so now you think you can take a
 vacation. Not so fast! Apart from the simplest cases, one cannot take
 care of all possible scenarios during app testing, not that there is the
 luxury of time for this, and users are bound to report some unexpected
 app behavior. It doesn’t have to be a bug; it might simply be a runtime
 situation you didn’t encounter in your testing. Prepare for this in
 advance by designing a runtime application log mechanism into your
 app.
Log the most important events from your app into the log—for
 example, a state change, a resource timeout (Net access, thread wait),
 or a maxed-out retry count. It might even be worthwhile to defensively
 log an unexpected code path execution in a strange scenario, or some of
 the most important notifications that are sent to the user.
Warning
Only create log statements that will provide insight into how
 the app is working. Otherwise, the large size of the log itself may
 become a problem, and while Log.d() calls are
 ignored at runtime in signed apps, too many log statements may still
 slow down the app.

Note
You may be wondering why you can’t use LogCat or BugSense/ACRA to handle this task. These
 solutions do not suffice for the following reasons:
	The standard LogCat mechanism isn’t useful in end-user
 runtime scenarios since the user is unlikely to have the ability
 to attach a debugger to his device. Too many Log.d and
 Log.i statements in your code may negatively
 impact app performance. In fact, for this reason, you shouldn’t
 have Log.* statements compiled into the
 released app.

	ACRA/BugSense works well when the device is connected to
 the Internet. This may not always be true, and some class of
 applications may not require the Internet at all except for
 ACRA. Also, the ACRA stack trace provides only the details (in
 the stack trace) at the instant the Exception
 was thrown, while this recipe provides a longer-term view while
 the app is running.

The RuntimeLog class is shown in Example 3-5.
Example 3-5. The RuntimeLog class
// Use these built-in mechanisms
import java.util.logging.FileHandler;
import java.util.logging.Formatter;
import java.util.logging.Level;
import java.util.logging.LogRecord;
import java.util.logging.Logger;

public class RuntimeLog {
 public static final int MODE_DEBUG = 1;
 public static final int MODE_RELEASE = 2;
 public static final int ERROR = 3;
 public static final int WARNING = 4;
 public static final int INFO = 5;
 public static final int DEBUG = 6;
 public static final int VERBOSE = 7;

 // Change this to MODE_DEBUG to use for in-house debugging
 static boolean Mode = MODE_RELEASE;
 static logfileName = "/sdcard/YourAppName.log"
 static Logger logger;
 static LogRecord record;

 //initiate the log on first use of the class and
 //create your custom formatter

 static {
 try {
 FileHandler fh = new FileHandler(logfileName, true);
 fh.setFormatter(new Formatter() {
 public String format(LogRecord rec) {
 StringBuffer buf = new StringBuffer(1000);
 buf.append(new java.util.Date().getDate());
 buf.append('/');
 buf.append(new java.util.Date().getMonth());
 buf.append('/');
 buf.append((new java.util.Date().getYear())%100);
 buf.append(' ');
 buf.append(new java.util.Date().getHours());
 buf.append(':');
 buf.append(new java.util.Date().getMinutes());
 buf.append(':');
 buf.append(new java.util.Date().getSeconds());
 buf.append('\n');
 return buf.toString();
 }
 });
 logger = Logger.getLogger(logfileName);
 logger.addHandler(fh);
 }
 catch (IOException e) {
 e.printStackTrace();
 }
 }

 // the log method
 public static void log(int logLevel,String msg) {
 //don't log DEBUG and VERBOSE statements in release mode
 if (Mode == MODE_RELEASE) && (logLevel >= DEBUG))
 return;
 record=new LogRecord(Level.ALL, msg);
 record.setLoggerName(logfileName);
 try {
 switch(logLevel) {
 case ERROR:
 record.setLevel(Level.SEVERE);
 logger.log(record);
 break;
 case WARNING:
 record.setLevel(Level.WARNING);
 logger.log(record);
 break;
 case INFO:
 record.setLevel(Level.INFO);
 logger.log(record);
 break;
 //FINE and FINEST levels may not work on some API versions
 //use INFO instead
 case DEBUG:
 record.setLevel(Level.INFO);
 logger.log(record);
 break;
 case VERBOSE:
 record.setLevel(Level.INFO);
 logger.log(record);
 break;
 }
 }
 catch(Exception exception) {
 exception.printStackTrace();
 }
 }
}

There are, of course, several variations that could be
 used:
	You can use the same mechanism to uncover complex runtime
 issues while you are developing the app. To do so, set the
 Mode variable to
 MODE_DEBUG.

	For a complex app with many modules, it might be useful to add
 the module name to the log call, as an additional parameter.

	You can also extract the ClassName and
 MethodName from the LogRecord and add them to the
 log statements; however, it is not recommended that you do this for
 runtime logs.

Example 3-6 shows that basic use of
 this facility is as simple as regular Log.d
 calls.
Example 3-6. Using the RuntimeLog class
RuntimeLog.log (RuntimeLog.ERROR, "Network resource access request failed");
RuntimeLog.log (RuntimeLog.WARNING, "App changed state to STRANGE_STATE");
...

If necessary, you can ask users to retrieve the logfile(s) from
 their SD cards and send them to your support team. Even better, you
 could write code to do that at the press of a button!
Here are a few additional considerations:
	This mechanism does not have to be in an “always on” state.
 You can log based on a user-settable configuration option and enable
 it only when actual end users are trying to reproduce certain
 scenarios.

	If it is always on, use a filename with the current date
 (determined on application start-up) for the log, and delete
 previous logfiles that are older than a certain date deemed no
 longer useful. This will help keep logfile sizes in check.

See Also

The ACRA website (http://code.google.com/p/acra/);
 Recipe 3.7; Recipe 3.8

3.10. Reproducing Activity Life-Cycle Scenarios for Testing

Daniel Fowler

Problem

Apps should be resilient to the activity life cycle. Developers need to
 know how to reproduce different life-cycle scenarios.

Solution

Use logging to get a good understanding of the activity life
 cycle. Life-cycle scenarios are then easier to reproduce for app
 testing.

Discussion

Android is designed for life on the go, where a user is engaged in
 multiple tasks: taking calls, checking email, sending SMS messages,
 engaging in social networking, taking pictures, accessing the Internet,
 running apps, and more, maybe even getting some work done! As such, a
 device can have multiple apps, and hence many Activities, loaded in
 memory. The foreground app and its current activity can be interrupted
 and paused at any moment. Apps, and hence activities, that are paused
 can be removed from memory to free up space for newly started apps. An
 app has a life cycle that it cannot control as it is the Android
 operating system that starts, monitors, pauses, resumes, and destroys
 the app’s activities. Yet an activity does know what is going on,
 because as activities are instantiated, hidden, and destroyed various
 functions are called. This allows the activity to keep track of what the
 operating system is doing to the app, as we discussed in Recipe 1.6.
Because of all this, app developers become familiar with the functions invoked when
 an activity starts:
	onCreate(Bundle
 savedInstanceState){...};

	onStart(){...};

	onResume(){...};

and the functions called when an activity is paused and then
 removed from memory (destroyed):
	onPause(){...};

	onStop(){...};

	onDestroy(){..};

To see them in action, simply open the program from Recipe 1.4. Then, in the main activity
 class, override all six of the aforementioned functions, calling through
 to the superclass versions. Add a call to Log.d() to pass in the
 name of the app and the function being invoked. The code will look like
 Example 3-7.
Example 3-7. Life-cycle logging
public class Main extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 Log.d("MyAndroid", "onCreate");
 }
 @Override
 public void onStart() {
 super.onStart();
 Log.d("MyAndroid", "onStart");
 }
 @Override
 public void onResume() {
 super.onResume();
 Log.d("MyAndroid","onResume");
 }
 @Override
 public void onPause() {
 super.onPause();
 Log.d("MyAndroid","onPause");
 }
 public void onStop() {
 super.onStop();
 Log.d("MyAndroid","onStop");
 }
 public void onDestroy() {
 super.onDestroy();
 Log.d("MyAndroid","onDestroy");
 }
}

Run the program. To see the debug messages, the LogCat view needs to be displayed. This is visible by
 default in the Dalvik Debug Monitor Server (DDMS) perspective, or you can
 open it via the Window menu option. Click Window→Show View→Other, expand
 Android, and select LogCat. The LogCat view appears on the bottom
 tabs.
To open the DDMS perspective click the DDMS button in the
 top-right corner of Eclipse. It should look something like Figure 3-16.
[image: The DDMS perspective]

Figure 3-16. The DDMS perspective

The LogCat view will be on the bottom tabs. If it is not visible,
 use the Window method mentioned earlier or select Window→Reset
 Perspective. You can drag LogCat off into its own window by dragging the
 tab from Eclipse. After you start the program, you can see the three
 debug messages you added to the start-up functions (see Figure 3-17).
[image: Activity start-up messages]

Figure 3-17. Activity start-up messages

When you press the Back key, you will see the three teardown
 messages (see Figure 3-18).
[image: Activity tear-down messages]

Figure 3-18. Activity tear-down messages

To see only the messages from the app add a LogCat filter. Click
 on the green plus sign in the top right of the LogCat screen. Give the
 filter a name and enter MyAndroid in the by Log Tagtag field (see Figure 3-19).
[image: Filtering with LogCat]

Figure 3-19. Filtering with LogCat

LogCat will now show a new tab with only the messages explicitly
 sent from the app (see Figure 3-20).
[image: The filtered messages]

Figure 3-20. The filtered messages

You can clear the LogCat output by clicking the top-right icon
 that shows a page with a small red ×. It can be useful to have a clean
 sheet before performing an action to watch for more messages.
To see the functions called when a program is paused, open an
 application over the MyAndroid program. First add the function for
 onRestart(), and the debug message.
@Override
public void onRestart() {
 super.onRestart();
 Log.d("MyAndroid","onRestart");
}
Run the program, click the Home button, and then launch the
 program again from the device (or emulator).
LogCat shows the usual start-up function sequence; then, when the
 Home button is clicked, onPause() and
 onStop() run, but not onDestroy(). The program is not ending but
 effectively sleeping. When the program is run again it is not reloaded,
 so no onCreate() executes, and
 instead onRestart() is called.
Run the program again, on the device or emulator, and then go into
 Manage Applications (via Settings→Applications), select the program, and
 click the Force Close button. Then start the program again from the
 device (or emulator).
The usual start-up functions are invoked, and then the activity
 “sleeps.” No onDestroy() is seen as
 the second instance is run.
In this recipe, we discussed the following different life-cycle
 scenarios:
	Normal start-up and then finish

	Start-up, pause, and then restart (see Figure 3-21)

	Start-up, pause, forced removal from memory, and then start-up
 again (see Figure 3-22)

[image: Restarting the application]

Figure 3-21. Restarting the application

[image: Force-stop messages]

Figure 3-22. Force-stop messages

These scenarios result in different sequences of life-cycle
 functions being executed. Using these scenarios when testing ensures
 that an app performs correctly for a user. You can extend the techniques
 shown here when implementing additional overridden functions. The
 techniques also apply to using fragments in an activity and testing
 their life cycle.

See Also

Recipe 1.4; Recipe 1.6; http://developer.android.com/reference/android/app/Activity.html;
 http://developer.android.com/reference/android/util/Log.html;
 http://developer.android.com/guide/topics/fundamentals/fragments.html

3.11. Keeping Your App Snappy with StrictMode

Adrian Cowham

Problem

You want to make sure your app’s GUI is as snappy as possible.

Solution

Android has a tool called StrictMode, which they introduced in the
 Gingerbread release that will detect all cases where an “Application Not
 Responding” (ANR) error might occur. For example, it will detect and log to
 LogCat all database reads and writes that happen on the main thread
 (i.e., the GUI thread).

Discussion

I wish I could’ve used a tool like StrictMode back when I was
 doing Java Swing desktop development. Making sure our Java Swing app was
 snappy was a constant challenge—green and seasoned engineers
 would invariably perform database operations on the UI thread that would
 cause the app to hiccup. Typically, we found these hiccups when QA (or
 customers) would use the app with a larger data set than the engineers
 were testing with. Having QA find these little defects was unacceptable
 and ultimately a waste of everyone’s time (and the company’s money). We
 eventually solved the problem by investing more heavily in peer reviews,
 but having a tool like StrictMode would have been comparatively
 cheaper.
The following example code illustrates how easy it is to turn on
 StrictMode in your app:
// make sure you import StrictMode
import android.os.StrictMode;

// In your app's android.app.Application instance, add the following
// lines to the onCreate(...) method.
if (Build.VERSION.SDK_INT >= 9 && isDebug()) {
 StrictMode.enableDefaults();
}
Please note that I have intentionally omitted the
 isDebug() implementation, as this will vary among
 developers. I recommend only enabling StrictMode when your app is in
 Debug mode; it’s unwise to put your app in the Android Market with
 StrictMode running in the background and consuming resources
 unnecessarily.
StrictMode is highly configurable, allowing you to customize what
 problems to look for. For detailed information on customizing StrictMode
 policies, see http://developer.android.com/reference/android/os/StrictMode.html.

See Also

StrictMode is highly configurable, allowing you to customize what
 problems to look for. For detailed information on customizing StrictMode
 policies, see http://developer.android.com/reference/android/os/StrictMode.html.

3.12. Running the Monkey Program

Adrian Cowham

Problem

You want some good random usage testing of your application.

Solution

Use the Android Monkey command-line tool to test applications you
 are developing.

Discussion

Testing is so easy a monkey can do it, literally. Despite the lack
 of testing tools for Android, I have to admit that the Monkey is pretty
 cool. In case you’re not familiar with the Android Monkey, it’s a
 testing tool that comes with the Android SDK and simulates a monkey (or perhaps a child)
 using an Android device. Imagine a monkey sitting at a keyboard and
 flailing away—get the idea? What better way to flush out those hidden
 ANR messages?
Running the Monkey is as simple as starting the emulator (or
 connecting your development device to your development machine) and
 launching the Monkey script. I hate to admit this, but by running the
 Monkey on a daily basis, we’ve repeatedly found defects that probably
 would’ve escaped a normal QA pass and would’ve been very challenging to
 troubleshoot if found in the field—or, worse yet, caused users to stop
 using our app.
Here are a few best practices for using the Monkey in your
 development process:
	Create your own Monkey script that wraps Android’s Monkey
 script. This is to ensure that all the developers on your team are
 running the Monkey with the same parameters. If you’re a team of
 one, this helps with predictability (discussed shortly).

	Configure the Monkey so that it runs long enough to catch
 defects and not so long that it’s a productivity killer. In our
 development process, we configured the Monkey to run for a total
 of 50,000 events. This took about 40 minutes to run on a Samsung
 Galaxy Tab. Not too bad, but I would’ve liked it to be in the
 30-minute range. Obviously, faster tablets will have a higher
 throughput.

	The Monkey is random, so when we first started running it,
 every developer was getting different results and we were unable
 to reproduce defects. We then figured out that the Monkey allows
 you to set the seed for its random number generator. So, configure
 your wrapper script to set the Monkey’s seed. This will ensure
 uniformity and predictability across Monkey runs in your
 development team.

	Once you gain confidence in your app with a specific seed
 value, change it, because you’ll never know what the Monkey will
 find.

Here is a Monkey script wrapper, followed by a description of its
 arguments:
#!/bin/bash
Utility script to run monkey
#
See: http://developer.android.com/guide/developing/tools/monkey.html

rm tmp/monkey.log
adb shell monkey -p package.name.here --throttle 100 -s 43686 -v 50000 |
 tee tmp/monkey.log
	-p
 package
 name will ensure that the
 Monkey only targets the package specified.

	--throttle is the delay between
 events.

	-s is the seed value.

	-v is the VERBOSE
 option.

	50000 is the number of events the Monkey
 will simulate.

Many more configuration options are available for the Monkey; we
 deliberately chose not to mess around with what types of events the
 Monkey generates because we appreciate the pain. For example, the seed
 value we chose causes the Monkey to disable Wi-Fi about halfway through
 the run. This was really frustrating at first because we felt like we
 weren’t getting the coverage we wanted. It turns out that the Monkey did
 us a favor by disabling Wi-Fi and then relentlessly playing with our
 app. After discovering and fixing a few defects, we soon had complete
 confidence that our app operated as expected with no network
 connection.
Good monkey.

See Also

http://developer.android.com/guide/developing/tools/monkey.html

3.13. Sending Text Messages and Placing Calls Between AVDs

Johan Pelgrim

Problem

You have developed an app that needs to place or listen for calls
 or send or receive text messages and you want to test this.

Solution

Fire up two Android Virtual Devices (AVDs) and use the port number
 to send text messages and place calls.

Discussion

When you create an app that listens for incoming calls or text
 messages—similar to the one in Recipe 12.2—you can, of course, use the DDMS perspective in Eclipse to simulate placing calls or
 sending text messages, but you can also fire up another AVD!
If you look at the AVD window title you will see a number before
 your AVD’s title. This is the port number which you can use to telnet to
 your AVD’s shell (e.g., telnet localhost
 5554). Fortunately, for testing purposes this number is your
 AVD’s phone number as well. So you can use this
 number to place calls (see Figure 3-23) or to
 send text (Figure 3-24).
[image: Calling from one AVD to another]

Figure 3-23. Calling from one AVD to another

[image: Sending a text message (SMS) from one AVD to another]

Figure 3-24. Sending a text message (SMS) from one AVD to another

See Also

Recipe 12.2

Chapter 4. Inter-/Intra-Process Communication

4.1. Introduction: Inter-/Intra-Process Communication

Ian Darwin

Discussion

Android offers a unique collection of mechanisms for inter- (and intra-)
 application communication. This chapter discusses the
 following:
	Intents
	Specify what you intend to do next: either to invoke a
 particular class within your application, or to invoke whatever
 application the user has configured to process a particular
 request on a particular type of data

	Broadcast receivers
	In conjunction with intent filters, allow you to define an
 application as able to process a particular request on a
 particular type of data (i.e., the target of an intent)

	AsyncTask
	Allows you to specify long-running code that should not be on
 the “GUI thread” or “main event thread” to avoid slowing the app
 to the point that it gets ANR (“Application Not Responding”)
 errors

	Handlers
	Allow you to queue up messages from a background thread to be
 handled by another thread such as the main activity thread,
 usually to cause information to update the screen safely

4.2. Opening a Web Page, Phone Number, or Anything Else with an
 Intent

Ian Darwin

Problem

You want one application to have some entity processed by another
 application without knowing or caring what that application is.

Solution

Invoke the Intent constructor;
 then invoke startActivity on the
 constructed Intent.

Discussion

The Intent constructor takes
 two arguments: the action to take and the entity to act
 on. Think of the first as the verb and the second as the object of the
 verb. The most common action is Intent.ACTION_VIEW,
 for which the string representation is android.intent.action.VIEW. The second will
 typically be a URL or, as Android likes it less precisely (more
 generally), a URI. URIs can be created using the static
 parse() method in the URI class.
 Assuming that the string variable data contains the location we want to view,
 the code to create an Intent for it might be
 something like the following:
Intent intent = new Intent(Intent.ACTION_VIEW, Uri.parse(data));
That’s all! The beauty of Android is shown here—we don’t know or
 care if data contains a web page URL
 with http:, a phone number with tel:, or even something we’ve never seen. As
 long as there is an application registered to process this type of
 intent, Android will find it for us, after we invoke it. How do we
 invoke the intent? Remember that Android will start a new activity to
 run the intent. Assuming the code is in an activity, just call the
 inherited startIntent method, for
 example:
startActivity(intent);
If all goes well, the user will see the web browser, phone dialer,
 maps application, or whatever.
Google defines many other actions, such as
 ACTION_OPEN (which tries to open the named object).
 In some cases VIEW and OPEN will
 have the same effect, but in other cases the former may display data and
 the latter may allow the user to edit or update the data.
However, if things fail, the user will not see anything. Why not?
 We basically told Android that we don’t care whether the intent succeeds
 or fails. To get feedback, we have to call startActivityForResult:
startActivityForResult(intent, requestCode);
The requestCode is an arbitrary number used to
 keep track of multiple Intent requests; you should
 generally pick a unique number for each Intent you
 start, and keep track of these numbers to track the results later (if
 you only have one Intent whose results you care
 about, just use the number 1).
Just making this change will have no effect, however, unless we
 also override an important method in Activity, that is:
@Override
public void onActivityResult(int requestCode, int resultCode, Intent data) {
 // do something with the results...
}
It may be obvious, but it is important to note that you cannot
 know the result of an Intent until the entire
 application that was processing it is finished, which may be an
 arbitrary time later. However, the onActivityResult will eventually be
 called.
The resultCode is, of course, used to indicate
 success or failure. There are defined constants for these, notably
 Activity.RESULT_OK and
 Activity.RESULT_CANCELED. Some Intents provide their own, more
 specific result codes; for one example, see Recipe 10.9.
For information on use of the passed intent, please refer to
 recipes on passing extra data, such as Recipe 4.5.

Source Download URL

The source code for this example is in the Android Cookbook repository at http://github.com/AndroidCook/Android-Cookbook-Examples,
 in the subdirectory IntentsDemo (see Getting and Using the Code Examples).

4.3. Emailing Text from a View

Wagied Davids

Problem

You want to send an email containing text or images from a view.

Solution

Pass the data to be emailed to the mail app as a parameter using
 an intent.

Discussion

The steps for emailing text from a view are pretty
 straightforward:
	Modify the AndroidManifest.xml file to
 allow for an Internet connection so that email can be
 sent. This is shown in Example 4-1.

	Create the visual presentation layer with an Email button that
 the user clicks. The layout is shown in Example 4-2,
 and the strings used to populate it are shown in Example 4-3.

	Attach an OnClickListener to allow the
 email to be sent when the user clicks the Email
 button. The code for this is shown in Example 4-4.

Example 4-1. AndroidManifest.xml
<?xml version="1.0" encoding="utf-8"?>
<manifest
 xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.examples"
 android:versionCode="1"
 android:versionName="1.0">
 <application
 android:icon="@drawable/icon"
 android:label="@string/app_name">
 <activity
 android:name=".Main"
 android:label="@string/app_name">
 <intent-filter>
 <action
 android:name="android.intent.action.MAIN" />
 <category
 android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>

 <!-- Required Permission -->
 <uses-permission
 android:name="android.permission.INTERNET" />
 <uses-permission
 android:name="android.permission.ACCESS_NETWORK_STATE" />
 <uses-permission
 android:name="android.permission.ACCESS_COARSE_LOCATION"></uses-permission>
 <uses-permission
 android:name="android.permission.ACCESS_FINE_LOCATION"></uses-permission>
 </application>
</manifest>

Example 4-2. Main.xml
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">

 <Button
 android:id="@+id/emailButton"
 android:text="Email Text!"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content">
 </Button>

 <TextView
 android:id="@+id/text_to_email"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="@string/my_text" />

</LinearLayout>

Example 4-3. Strings.xml
<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string
 name="hello">Hello World, Main!</string>
 <string
 name="app_name">EmailAndroid</string>
 <string
 name="my_text">
 Lorem Ipsum is simply dummy text of the printing and typesetting industry. Lorem
 Ipsum has been the industry's standard dummy text ever since the 1500s, when
 an unknown printer took a galley of type and scrambled it to make a type
 specimen book. It has survived not only five centuries, but also the leap into
 electronic typesetting, remaining essentially unchanged. It was popularised in
 the 1960s with the release of Letraset sheets containing Lorem Ipsum passages,
 and more recently with desktop publishing software like Aldus PageMaker
 including versions of Lorem Ipsum.
</string>
</resources>

Example 4-4. Main.java
import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;

public class Main extends Activity implements OnClickListener
 {
 private static final String tag = "Main";
 private Button emailButton;

 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);

 // Set the View Layer
 setContentView(R.layout.main);

 // Get reference to Email Button
 this.emailButton = (Button) this.findViewById(R.id.emailButton);

 // Sets the Event Listener onClick
 this.emailButton.setOnClickListener(this);

 }

 @Override
 public void onClick(View view) {
 if (view == this.emailButton) {
 Intent emailIntent = new Intent(android.content.Intent.ACTION_SEND);
 emailIntent.setType("text/html");
 emailIntent.putExtra(android.content.Intent.EXTRA_TITLE, "My Title");
 emailIntent.putExtra(android.content.Intent.EXTRA_SUBJECT, "My Subject");

 // Obtain reference to String and pass it to Intent
 emailIntent.putExtra(android.content.Intent.EXTRA_TEXT,
 getString(R.string.my_text));
 startActivity(emailIntent);
 }
 }
 }

Source Download URL

The source code for this example is in the Android Cookbook repository at http://github.com/AndroidCook/Android-Cookbook-Examples,
 in the subdirectory EmailAndroid (see Getting and Using the Code Examples).

4.4. Sending an Email with Attachments

Marco Dinacci

Problem

You want to send an email with attachments.

Solution

Create an Intent, add extended data to specify
 the file you want to include, and start a new activity to allow the user
 to send the email.

Discussion

The easiest way to send an email is to create an Intent of type
 ACTION_SEND:
Intent intent = new Intent(Intent.ACTION_SEND);
intent.putExtra(Intent.EXTRA_SUBJECT, "Test single attachment");
intent.putExtra(Intent.EXTRA_EMAIL, new String[]{recipient_address});
intent.putExtra(Intent.EXTRA_TEXT, "Mail with an attachment");
To attach a single file, we add some extended data to our
 Intent:
intent.putExtra(Intent.EXTRA_STREAM, Uri.fromFile(new File("/path/to/file")));
intent.setType("text/plain");
The MIME type can always be set as text/plain, but you may want to be more
 specific so that applications parsing your message will work properly.
 For instance, if you’re including a JPEG image you should write image/jpeg.
To send an email with multiple attachments, the procedure is
 slightly different, as shown in Example 4-5.
Example 4-5. Multiple attachments
Intent intent = new Intent(Intent.ACTION_SEND_MULTIPLE);
intent.setType("text/plain");
intent.putExtra(Intent.EXTRA_SUBJECT, "Test multiple attachments");
intent.putExtra(Intent.EXTRA_TEXT, "Mail with multiple attachments");
intent.putExtra(Intent.EXTRA_EMAIL, new String[]{recipient_address});

ArrayList<Uri> uris = new ArrayList<Uri>();
uris.add(Uri.fromFile(new File("/path/to/first/file")));
uris.add(Uri.fromFile(new File("/path/to/second/file")));

intent.putParcelableArrayListExtra(Intent.EXTRA_STREAM, uris);

First, you need to use Intent.ACTION_SEND_MULTIPLE, which has been available since Android 1.6. Second, you need to
 create an ArrayList with the URIs of
 the files you want to attach to the mail and call putParcelableArrayListExtra.
If you are sending different types of files you may want to use
 multipart/mixed as the MIME
 type.
Finally, in both cases, you can start a new Activity with the following code:
startActivity(Intent.createChooser(intent, "Send mail"));
Using Intent.createChooser is
 optional, but it will allow the user to select his
 favorite application to send the email.

4.5. Pushing String Values Using Intent.putExtra()

Ulysses Levy

Problem

You need to pass some parameters into an activity while launching it.

Solution

A quick solution is to use Intent.putExtra() to
 push the data. Then use getIntent().getExtras().getString() to
 retrieve it.

Discussion

Example 4-6 shows the code to push the
 data.
Example 4-6. The push data
import android.content.Intent;
 ...

 Intent intent =
 new Intent(
 this,
 MyActivity.class);
 intent.putExtra("paramName", "paramValue");
 startActivity(intent);

This code might be inside the main activity.
 MyActivity.class is the second activity we want to
 launch; it must be explicitly included in your
 AndroidManifest.xml file.
 <activity android:name=".MyActivity" />
Example 4-7 shows the code to pull the
 data.
Example 4-7. The pull data
import android.os.Bundle;

 ...

 Bundle extras = getIntent().getExtras();
 if (extras != null)
 {
 String myParam = extras.getString("paramName");
 }
 else
 {
 //..oops!
 }

In this example, the code would be inside your main
 Activity.java file.
There are a few limitations to this method. For example, it can
 only pass strings. Therefore, if, for example, you need to pass an
 ArrayList to your ListActivity, a
 possible workaround is to pass a comma-separated string
 and then split it on the other side.
Alternatively, you can use SharedPreferences.

See Also

http://mylifewithandroid.blogspot.com/2007/12/playing-with-intents.html;
 http://developer.android.com/guide/appendix/faq/commontasks.html

4.6. Retrieving Data from a Subactivity Back to Your Main
 Activity

Ulysses Levy

Problem

Your main activity needs to retrieve data from a subactivity.

Solution

Use startActivityForResult(),
 onActivityResult() in the main activity, and setResult() in the subactivity.

Discussion

In this example, we return a string from a subactivity
 (MySubActivity) back to the main activity
 (MyMainActivity).
The first step is to “push” data from
 MyMainActivity via the Intent
 mechanism (see Example 4-8).
Example 4-8. The push data from the activity
public class MyMainActivity extends Activity
{
 //..for logging..
 private static final String TAG = "MainActivity";

 //..The request code is supposed to be unique?..
 public static final int MY_REQUEST_CODE = 123;

 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 ...
 }

 private void pushFxn()
 {
 Intent intent =
 new Intent(
 this,
 MySubActivity.class);

 startActivityForResult(intent, MY_REQUEST_CODE);
 }

 protected void onActivityResult(
 int requestCode,
 int resultCode,
 Intent pData)
 {
 if (requestCode == MY_REQUEST_CODE)
 {
 if (resultCode == Activity.RESULT_OK)
 {
 final String zData = pData.getExtras().getString
 (MySubActivity.EXTRA_STRING_NAME);

 //..do something with our retrieved value..

 Log.v(TAG, "Retrieved Value zData is "+zData);
 //..logcats "Retrieved Value zData is returnValueAsString"

 }
 }

 }
}

In Example 4-8, the following
 occurs:
	The main activity’s onActivityResult() gets called after
 MySubActivity.finish().

	The retrieved value is technically an Intent, and so we could use it for more
 complex data (such as a URI to a Google contact or something).
 However, in Example 4-8, we are only
 interested in a string value via Intent.getExtras().

	The requestCode
 (MY_REQUEST_CODE) is supposed to be unique, and
 might be useful later—for example, Activity.finishActivity(
 MY_REQUEST_CODE).

The second major step is to “pull” data back from
 MySubActivity to MyMainActivity
 (see Example 4-9).
Example 4-9. The pull data from the subactivity
public class MySubActivity extends Activity
{
 public static final String EXTRA_STRING_NAME = "extraStringName";

 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 ...
 }

 private void pullFxn()
 {
 Intent iData = new Intent();
 iData.putExtra(
 EXTRA_STRING_NAME,
 "returnValueAsString");

 setResult(
 android.app.Activity.RESULT_OK,
 iData);

 //..returns us to the parent "MyMainActivity"..
 finish();
 }
}

In Example 4-9, the following
 occurs:
	Once again, Intents are
 used as data (i.e., iData).

	setResult() requires a
 result code such as
 RESULT_OK.

	finish() essentially pushes
 the result from setResult().

In addition, note the following:
	Technically, the data from MySubActivity
 doesn’t get “pull”-ed until we’re back on the other side with
 MyMainActivity. So arguably it is more similar to
 a second “push.”

	We don’t have to use a public static final
 String variable for our “extra” field name, but I
 thought it was a good style.

Use case (informal)

In my app, I have a ListActivity with a
 ContextMenu (the user long-presses a selection to do something), and I
 wanted to let the MainActivity know which row the
 user had selected for the ContextMenu action (my
 app only has one action). I ended up using intent extras to pass the
 selected row’s index as a string back to the parent activity; from
 there I could just convert the index back to an int
 and use it to identify the user row selection via ArrayList.get(index). This worked
 for me; however, I am sure there is another/better way.

See Also

Recipe 4.5; ResultCode
 “gotcha”;
 startActivityForResultExample (under “Returning a
 Result from a Screen”); Activity.startActivityForResult()

4.7. Keeping a Service Running While Other Apps Are on Display

Ian Darwin

Problem

You want part of your application to continue running in the background while
 the user switches to interact with other apps.

Solution

Create a Service class to do the background work; start the service from your main
 application. Optionally provide a Notification icon to allow the user
 either to stop the running service or to resume the main
 application.

Discussion

A Service class
 (android.app.Service) runs as part of the same
 process as your main application, but has a property that allows it to
 keep running even if the user switches to another app or goes to the
 Home screen and starts up a new app.
As you know by now, Activity classes can be
 started either by an intent that matches their content provider, or by an
 intent that mentions them by class name. The same is true for services.
 This recipe focuses on starting a service directly; Recipe 4.2 covers starting a service implicitly. The example is
 taken from JPSTrack, a GPS tracking program for Android. Once you
 start tracking, you don’t want the tracking to stop if you answer the
 phone or have to look at a map(!), so we made it into a service. As
 shown in Example 4-10, the service is started by
 the main activity when you click the Start Tracking button, and is
 stopped by the Stop button. Note that this is so common that startService() and
 stopService() are built into the
 Activity class.
Example 4-10. The onCreate method
 @Override
 public void onCreate(Bundle savedInstanceState) {
 ...
 Intent theIntent = new Intent(this, TrackService.class);
 Button startButton = (Button) findViewById(R.id.startButton);
 startButton.setOnClickListener(new OnClickListener() {
 @Override
 public void onClick(View v) {
 startService(theIntent);
 Toast.makeText(Main.this, "Starting", Toast.LENGTH_LONG).show();
 }
 });
 Button stopButton = (Button) findViewById(R.id.stopButton);
 stopButton.setOnClickListener(new OnClickListener() {
 @Override
 public void onClick(View v) {
 stopService(theIntent);
 Toast.makeText(Main.this, "Stopped", Toast.LENGTH_LONG).show();
 }
 });
 ...
 }

The TrackService class directly extends
 Service, so it has to implement the abstract onBind() method. This is not
 used when the class is started directly, so it can be a stub method. You
 will typically override at least the onStartCommand()
 and onUnbind() methods, to begin and
 end some activity. Example 4-11 starts the GPS
 service sending us notifications that we save to disk, and we do want
 that to keep running, hence this Service
 class.
Example 4-11. The TrackService (GPS-using service) class
public class TrackService extends Service {
 private LocationManager mgr;
 private String preferredProvider;

 @Override
 public IBinder onBind(Intent intent) {
 return null;
 }

 @Override
 public int onStartCommand(Intent intent, int flags, int startId) {
 initGPS(); // sets up the LocationManager mgr

 if (preferredProvider != null) {
 mgr.requestLocationUpdates(preferredProvider, MIN_SECONDS * 1000,
 MIN_METRES, this);
 return START_STICKY;
 }
 return START_NOT_STICKY;
 }

 @Override
 public boolean onUnbind(Intent intent) {
 mgr.removeUpdates(this);
 return super.onUnbind(intent);
 }

You may have noticed the different return values from
 onStartCommand(). If you return START_STICKY, Android will restart
 your service if it gets terminated. If you return START_NOT_STICKY, the service
 will not be restarted automatically. These values are discussed in more
 detail in the online documentation for the Service class
 (see http://developer.android.com/reference/android/app/Service.html).
Remember to declare the Service subclass in the Application part
 of your AndroidManifest.xml:
<service android:enabled="true" android:name=".TrackService">

4.8. Sending/Receiving a Broadcast Message

Vladimir Kroz

Problem

You want to create an activity that receives a simple broadcast message sent by
 another activity.

Solution

Set up a broadcast receiver, instantiate the message receiver
 object, and create an IntentFilter. Then register
 your receiver with an activity that must receive the broadcast
 message.

Discussion

The code in Example 4-12
 sets up the broadcast receiver, instantiates the message receiver
 object, and creates the IntentFilter.
Example 4-12. Creating and registering the BroadcastReceiver
// Instantiate message receiver object. You should
// create this class by extending android.content.BroadcastReceiver
// The method onReceive() of this class will be called when broadcast is sent
MyBroadcastMessageReceiver _bcReceiver = new MyBroadcastMessageReceiver();

// Create IntentFilter
IntentFilter filter = new IntentFilter(
MyBroadcastMessageReceiver.class.getName());

// And register your receiver with your activity which must receive broadcast message
// Now whenever this type of message is generated somewhere in the system -
// _bcReceiver.onReceive() method will be called within main thread of myActivity
myActivity.registerReceiver(_bcReceiver, filter);

The code in Example 4-13 shows
 how to publish the broadcast event.
Example 4-13. Publishing the broadcast event
Intent intent = new Intent(
MyBroadcastMessageReceiver.class.getName());
intent.putExtra("some additional data", choice);
someActivity.sendBroadcast(intent);

4.9. Starting a Service After Device Reboot

Ashwini Shahapurkar

Problem

You have a service in your app and you want it to start after the phone
 reboots.

Solution

Listen to the intent for boot events and start the service when
 the event occurs.

Discussion

Whenever a platform boot is completed, an intent is broadcast with
 the android.intent.action.BOOT_COMPLETED action
 . You need to register your application to receive this
 intent. To do so, add the following code to your AndroidManifest.xml file:
<receiver android:name="ServiceManager">
 <intent-filter>
 <action android:name="android.intent.action.BOOT_COMPLETED" />
 </intent-filter>
</receiver>
For ServiceManager to be the broadcast receiver
 that receives the intent for the boot event, the
 ServiceManager class would have to be coded as shown
 in Example 4-14.
Example 4-14. The BroadcastReceiver implementation
public class ServiceManager extends BroadcastReceiver {

 Context mContext;
 private final String BOOT_ACTION = "android.intent.action.BOOT_COMPLETED";

 @Override
 public void onReceive(Context context, Intent intent) {
 //All registered broadcasts are received by this
 mContext = context;
 String action = intent.getAction();
 if (action.equalsIgnoreCase(BOOT_ACTION)) {
 //check for boot complete event & start your service
 startService();
 }

 }

 private void startService() {
 //here, you will start your service
 Intent mServiceIntent = new Intent();
 mServiceIntent.setAction("com.bootservice.test.DataService");
 mContext.startService(mServiceIntent);
 }
}

4.10. Creating a Responsive Application Using Threads

Amir Alagic

Problem

You have an application that performs long tasks, and you don’t want your
 application to appear nonresponsive while these are ongoing.

Solution

By using threads, you can create an application that is responsive
 even when it is handling time-consuming operations.

Discussion

To make your application responsive while time-consuming
 operations are running on the Android OS you have a few options. If you
 already know Java, you know you can create a class that extends
 the Thread class and overrides the
 public void run() method and then call start() method on that object to
 run the time-consuming process. If your class already extends another
 class, you can implement the Runnable interface. Another
 approach is to create your own class that extends Android’s AsyncTask class, but we will
 talk about AsyncTask in Recipe 4.11.
First we will discuss usage of the Thread
 class. Example 4-15 shows the
 networked activity implementation of this class.
Example 4-15. The networked activity implementation
public class NetworkConnection extends Activity {
 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 Thread thread = new Thread(new Runnable(){
 public void run() {
 getServerData();
 }
 });
 thread.start();
 }
}

As you can see, when we start our activity in the
 onCreate() method we create a
 thread object that is constructed with a
 Runnable object. The Runnable
 method run() will be executed after we call the
 start() method on the thread
 object. From here you can call another method or a few other methods and
 operations that are time-consuming and that would otherwise block the
 main thread and make your application look unresponsive.
Often when we are done with the thread we get results that we want
 to present to the application user. If you try to update the GUI from
 the thread that you started (not the main thread) your application will
 crash. You can read error messages and see that the problem is in fact a
 thread other than the main UI thread you tried to change UI on the main thread.
It is possible to change the UI with such data, with the help of
 a Handler class. If you need to do so,
 please refer to Recipe 4.12.
Threads created and started in this way will continue to run even
 if the user leaves your application. You can keep track of the threads
 and tell them to stop, typically by setting a “done” boolean. More
 simply, to be sure that your thread(s) stop when the user leaves your
 application, before you call the start() method on
 the thread object set the thread as a daemon
 thread:
thread.setDaemon(true);
In addition, sometimes it can be useful to name the
 thread.
You can give a name to your thread(s) when you create the
 thread object:
Thread thread = new Thread();
Thread thread = new Thread(runnable, "ThreadName1");
Or you can call the setName() method on the thread
 object:
thread.setName("ThreadName2");
These names will not be visible to the user, but will show up in
 various diagnostic logs, to help you find which thread is causing
 problems.

4.11. Using AsyncTask to Do Background Processing

Johan Pelgrim

Problem

You have to do some heavy processing, or load resources from the network, and you
 want to show the progress and results in the UI.

Solution

Use AsyncTask and ProgressDialog.

Discussion

Introduction

As explained in the Processes
 and Threads section of the Android Dev Guide, you should
 never block the UI thread, or access the Android UI toolkit from
 outside the UI thread. Bad things will happen if you do.
You can run processes in the background and update the UI inside
 the UI thread (a.k.a. the main thread) in several ways, but using the
 AsyncTask class is very convenient and in every
 Android developer should know how to do it.
The steps boil down to creating a class that extends
 AsyncTask. AsyncTask itself is
 abstract and has one abstract method, Result
 doInBackground(Params... params);. The
 AsyncTask simply creates a callable working thread in which your
 implementation of doInBackground
 runs. Result and Params are two of the types we need to
 define in our class definition. The third is the Progress type which we will talk about
 later.
In Recipe 11.15, we will
 examine a potentially long-running document-parsing task, processing
 the content of a web page, which is an XML document, and returning the
 result as a list of Datum objects.
 Typically, this is something we want to do outside the UI
 thread.
Our first implementation will do everything in the background,
 showing the user a spinner in the title bar and updating the ListView once the processing is done. This
 is the typical use case, not interfering with the user’s task at hand
 and updating the UI when you have retrieved the result.
The second implementation will use a modal
 dialog to show the processing progressing in the background. In some
 cases we want to prevent the user from doing anything else when some
 processing takes place, and this is a good way to do just that.
We will create a UI that contains three Buttons and a Listview. The first button is to start our
 first refresh process. The second is for the other refresh process and
 the third is to clear the results in the ListView (see Example 4-16).
Example 4-16. The main layout
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical" android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="horizontal" android:layout_width="fill_parent"
 android:layout_height="wrap_content">
 <Button android:text="Refresh 1" android:id="@+id/button1"
 android:layout_width="fill_parent" android:layout_height="wrap_content"
 android:layout_weight="1"></Button>
 <Button android:text="Refresh 2" android:id="@+id/button2"
 android:layout_width="fill_parent" android:layout_height="wrap_content"
 android:layout_weight="1"></Button>
 <Button android:text="Clear" android:id="@+id/button3"
 android:layout_width="fill_parent" android:layout_height="wrap_content"
 android:layout_weight="1"></Button>
 </LinearLayout>
 <ListView android:id="@+id/listView1" android:layout_height="fill_parent"
 android:layout_width="fill_parent"></ListView>
</LinearLayout>

We assign these UI elements to various fields in onCreate and add some click listeners (see
 Example 4-17).
Example 4-17. The onCreate() and onItemClick() methods
 ListView mListView;
 Button mClear;
 Button mRefresh1;
 Button mRefresh2;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 mListView = (ListView) findViewById(R.id.listView1);
 mListView.setTextFilterEnabled(true);
 mListView.setOnItemClickListener(this);

 mRefresh1 = (Button) findViewById(R.id.button1);

 mClear = (Button) findViewById(R.id.button3);
 mClear.setOnClickListener(new OnClickListener() {
 @Override
 public void onClick(View v) {
 mListView.setAdapter(null);
 }
 });

 }

 public void onItemClick(AdapterView<?> parent, View view, int position, long id) {
 Datum datum = (Datum) mListView.getItemAtPosition(position);
 Uri uri = Uri.parse("http://androidcookbook.com/Recipe.seam?recipeId=" +
 datum.getId());
 Intent intent = new Intent(Intent.ACTION_VIEW, uri);
 this.startActivity(intent);
 }

The following two subsections describe two use cases: processing
 in the background and processing in the foreground.

Use case 1: Processing in the background

First we create an inner class that extends AsyncTask:
protected class LoadRecipesTask1 extends AsyncTask<String, Void, ArrayList<Datum>> {
...
}
As you can see, we must supply three types to the class
 definition. The first is the type of the parameter we will provide
 when starting this background task, in our case a
 String, containing a URL. The second type is used
 for progress updates (we will use this later). The third type is the
 type returned by our implementation of the doInBackground method, and typically is
 something with which you can update a specific UI element (a ListView in our case).
Let’s implement the doInBackground
 method:
 @Override
 protected ArrayList<Datum> doInBackground(String... urls) {
 ArrayList<Datum> datumList = new ArrayList<Datum>();
 try {
 datumList = parse(urls[0]);
 } catch (IOException e) {
 e.printStackTrace();
 } catch (XmlPullParserException e) {
 e.printStackTrace();
 }
 return datumList;
 }
As you can see, this is pretty simple. The parse method—which
 creates a list of Datum objects—is
 described in Recipe 11.15. The
 result of the doInBackground method
 is then passed as an argument to the onPostExecute
 method in the same (inner) class. In this method we are allowed to
 update the UI elements in our layout, so we set the adapter of the
 ListView to show our result.
 @Override
 protected void onPostExecute(ArrayList<Datum> result) {
 mListView.setAdapter(new ArrayAdapter<Datum>(MainActivity.this,
 R.layout.list_item, result));
 }
Now we need a way to start this task. We do this in the mRefresh1’s onClickListener by calling the execute(Params... params) method of AsyncTask (execute(String... urls) in our case).
 mRefresh1.setOnClickListener(new OnClickListener() {

 @Override
 public void onClick(View v) {
 LoadRecipesTask1 mLoadRecipesTask = new LoadRecipesTask1();
 mLoadRecipesTask.execute(
 "http://androidcookbook.com/seam/resource/rest/recipe/list");
 }
 });
Now, when you start the app it indeed retrieves the recipes and
 fills the ListView, but the user
 has no idea that something is happening in the background. We can set
 the progress bar indeterminate window feature in this case, which
 displays a small progress animation in the top right of our app title
 bar.
To do this, we request this feature by calling the following method in onCreate: requestWindowFeature(Window.FEATURE_INDETERMINATE_PROGRESS);.
Then we can start the progress animation by calling the setProgressBarIndeterminateVisibility(Boolean
 visibility) method from within a new method in our inner
 class, the onPreExecute
 method.
 protected void onPreExecute() {
 MainActivity.this.setProgressBarIndeterminateVisibility(true);
 }
We stop the spinning progress bar in our window title by calling
 the same method from within our onPostExecute
 method, which will become:
 protected void onPostExecute(ArrayList<Datum> result) {
 mListView.setAdapter(new ArrayAdapter<Datum>(MainActivity.this,
 R.layout.list_item, result));
 MainActivity.this.setProgressBarIndeterminateVisibility(false);
 }
We’re done! Take your app for a spin (pun
 intended).
[image: image with no caption]

As you can see, this is a nifty feature for creating a better
 user experience!

Use case 2: Processing in the foreground

In this example, we show a modal dialog to the user that
 displays the progress of loading the recipes in the background. Such a
 dialog is called a ProgressDialog.
 First we add it as a field to our activity.
 ProgressDialog mProgressDialog;
Then we add the onCreateDialog method to be able to answer
 showDialog calls and create our
 dialog.
 protected Dialog onCreateDialog(int id) {
 switch (id) {
 case DIALOG_KEY: [image: 1]
 mProgressDialog = new ProgressDialog(this);
 mProgressDialog.setProgressStyle(ProgressDialog.STYLE_HORIZONTAL); [image: 2]
 mProgressDialog.setMessage("Retrieving recipes..."); [image: 3]
 mProgressDialog.setCancelable(false); [image: 4]
 return mProgressDialog;
 }
 return null;
 }
	[image: 1]
	We should handle the request and creation of all dialogs
 here. The DIALOG_KEY is an
 int constant with an arbitrary
 value (we used 0) to identify
 this dialog.

	[image: 2]
	We set the progress style to STYLE_HORIZONTAL, which shows a
 horizontal progress bar. The default is STYLE_SPINNER.

	[image: 3]
	We set our custom message, which is displayed above the
 progress bar.

	[image: 4]
	By calling setCancelable
 with argument false we simply disable the Back
 button, making this dialog modal.

Our new implementation of AsyncTask is as
 shown in Example 4-18.
Example 4-18. The AsyncTask implementation
 protected class LoadRecipesTask2 extends AsyncTask<String, Integer, ArrayList<Datum>>{

 @Override
 protected void onPreExecute() {
 mProgressDialog.show(); [image: 1]
 }

 @Override
 protected ArrayList<Datum> doInBackground(String... urls) {
 ArrayList<Datum> datumList = new ArrayList<Datum>();
 for (int i = 0; i < urls.length; i++) { [image: 2]
 try {
 datumList = parse(urls[i]);
 publishProgress((int) (((i+1) / (float) urls.length) * 100)); [image: 3]
 } catch (IOException e) {
 e.printStackTrace();
 } catch (XmlPullParserException e) {
 e.printStackTrace();
 }
 }
 return datumList;
 }

 @Override
 protected void onProgressUpdate(Integer... values) { [image: 4]
 mProgressDialog.setProgress(values[0]); [image: 5]
 }

 @Override
 protected void onPostExecute(ArrayList<Datum> result) {
 mListView.setAdapter(new ArrayAdapter<Datum>(
 MainActivity.this, R.layout.list_item, result));
 mProgressDialog.dismiss(); [image: 6]
 }
 }

We see a couple of new things here.
	[image: 1]
	Before we start our background process we show the modal
 dialog.

	[image: 2]
	In our background process we loop through all the URLs,
 expecting to receive more than one. This will give us a good
 indication of our progress.

	[image: 3]
	We can update the progress by calling publishProgress. Notice that the
 argument is of type int, which
 will be auto-boxed to the second type defined in our class
 definition, Integer.

	[image: 4]
	The call to publishProgress will result
 in a call to onProgressUpdate
 which again has arguments of type Integer. You could, of course, use
 String or something else as the
 argument type by simply changing the second type in the inner
 class definition to String and,
 of course, in the call to publishProgress.

	[image: 5]
	We use the first Integer
 to set the new progress value in our ProgressDialog.

	[image: 6]
	We dismiss the dialog, which removes it.

Now we can bind this all together by implementing our onClickListener
 for our second refresh button.
 mRefresh2.setOnClickListener(new OnClickListener() {

 @Override
 public void onClick(View v) {
 LoadRecipesTask2 mLoadRecipesTask = new LoadRecipesTask2();
 String url =
 "http://androidcookbook.com/seam/resource/rest/recipe/list";
 showDialog(DIALOG_KEY); [image: 1]
 mLoadRecipesTask.execute(url, url, url, url, url); [image: 2]
 }
 });
	[image: 1]
	We show the dialog by calling showDialog with the DIALOG_KEY argument, which will trigger
 our previously defined onCreateDialog method.

	[image: 2]
	We execute our new task with five URLs, simply to show a
 little bit of progress.

It will look something like Figure 4-1.
[image: Retrieving recipes in the background]

Figure 4-1. Retrieving recipes in the background

Conclusion

Implementing background tasks with AsyncTask is very simple and should be done
 for all long-running processes that also need to update your user
 interface.

See Also

Recipe 11.15; http://developer.android.com/guide/topics/fundamentals/processes-and-threads.html

Source Download URL

You can download the source code for this example from https://github.com/downloads/jpelgrim/androidcookbook/RecipeList.zip.
[image: image with no caption]

4.12. Sending Messages Between Threads Using an Activity Thread Queue and
 Handler

Vladimir Kroz

Problem

You need to pass information or data from a service or other
 background task to an activity. Because activities run on the UI thread,
 it is not safe to call them from a background thread. This will cause
 the Activity to be called at the handleMessage()
 method, but on the event thread so you can safely update the GUI.

Solution

You can write a nested class that extends Android’s
 Handler class; then override the handleMessage()
 method that will read messages from the thread queue. Pass this
 Handler to the worker thread, usually via the worker
 class’s constructor; in the worker thread, post messages using the
 various obtainMessage() and
 sendMessage() methods. This will cause the activity
 to be called at the handleMessage() method, but on
 the event thread so that you can safely update the GUI.

Discussion

There are many situations in which you must have a thread running
 in the background, and send information to the main activity’s UI thread. At the architectural level, you can
 take one of the following two approaches:
	Use Android’s AsyncTask class.

	Start a new thread.

Though using AsyncTask is very convenient,
 sometimes you really need to construct a worker thread by yourself. In
 such situations, you likely will need to send some information back to
 the activity thread. Keep in mind that Android doesn’t allow other
 threads to modify any content of the main UI thread. Instead, you must
 wrap the data into messages and send the messages through the message
 queue.
To do this, you must first add an instance of the
 Handler class to, for example, your
 MapActivity instance (see Example 4-19).
Example 4-19. The handler
 public class MyMap extends MapActivity {
 . . .
 public Handler _handler = new Handler() {
 @Override
 public void handleMessage(Message msg) {
 Log.d(TAG, String.format("Handler.handleMessage(): msg=%s", msg));
 // This is where the main activity thread receives messages
 // Put your handling of incoming messages posted by other threads here
 super.handleMessage(msg);
 }

 };
 . . .
 }

Now, in the worker thread, post a message to the activity’s main
 queue whenever you need to add the handler class instance to your main Activity instance (see
 Example 4-20).
Example 4-20. Posting a Runnable to the queue
 /**
 * Performs background job
 */
 class MyThreadRunner implements Runnable {
 // @Override
 public void run() {
 while (!Thread.currentThread().isInterrupted()) {
 // Dummy message -- real implementation
 // will put some meaningful data in it
 Message msg = Message.obtain();
 msg.what = 999;
 MyMap.this._handler.sendMessage(msg);
 // Dummy code to simulate delay while working with remote server
 try {
 Thread.sleep(5000);
 } catch (InterruptedException e) {
 Thread.currentThread().interrupt();
 }
 }
 }
 }

4.13. Creating an Android Epoch HTML/JavaScript Calendar

Wagied Davids

Problem

You need a custom calendar written in JavaScript, and you want it to
 understand how to interact between JavaScript and Java.

Solution

Use a WebView component to load an HTML file
 containing the Epoch calendar JavaScript component. Briefly, here are
 the steps involved:
	Download the Epoch DHTML/JavaScript calendar from http://www.javascriptkit.com/script/script2/epoch/index.shtml.

	Create an assets directory under your Android Project folder
 (e.g., TestCalendar/assets/).

	Code your main HTML file for referencing the Epoch
 calendar.

	Create an Android activity for launching the Epoch
 calendar.

Files placed in the Android assets directory are referenced as
 file:///android_asset/ (note the triple leading
 slash and the singular spelling of asset).

Discussion

To enable interaction between the JavaScript-based view layer and
 the Java-based logic layer, a Java‒JavaScript bridge interface is
 required: the MyJavaScriptInterface inner class.
 The onDayClick() function, shown in Example 4-21, shows how to call a JavaScript function
 from an Android activity—for example, webview.loadUrl("javascript:
 popup();");. The HTML/JavaScript component is shown in Example 4-21.
Example 4-21. calendarview.html
<html>
 <head>
 <title>My Epoch DHTML JavaScript Calendar</title>
 <style type="text/css">
 dateheader {
 -background-color: #3399FF;
 -webkit-border-radius: 10px;
 -moz-border-radius: 10px;
 -border-radius: 10px;
 -padding: 5px;
 }
 </style>

 <style type="text/css">
 html {height:100%;}
 body {height:100%; margin:0; padding:0;}
 #bg {position:fixed; top:0; left:0; width:100%; height:100%;}
 #content {position:relative; z-index:1;}
 </style>
 <!--[if IE 6]>
 <style type="text/css">
 html {overflow-y:hidden;}
 body {overflow-y:auto;}
 #page-background {position:absolute; z-index:-1;}
 #content {position:static;padding:10px;}
 </style>
 <![endif]-->

 <link rel="stylesheet" type="text/css" href="epoch_v106/epoch_styles.css" />
 <script type="text/javascript" src="epoch_v106/epoch_classes.js"></script>

 <script type="text/javascript">
 /*You can also place this code in a separate
 file and link to it like epoch_classes.js*/
 var my_cal;

 window.onload = function () {
 my_cal = new Epoch('epoch_basic','flat',
 document.getElementById('basic_container'));
 };

 function popup()
 {
 var weekday=new Array("Sun","Mon","Tue","Wed","Thur","Fri","Sat");
 var monthname=new Array("Jan","Feb","Mar","Apr","May","Jun",
 "Jul","Aug","Sep","Oct","Nov","Dec");
 var date = my_cal.selectedDates.length > 0 ?
 my_cal.selectedDates[0] :
 null;
 if (date != null)
 {
 var day = date.getDate();
 var dayOfWeek= date.getDay();
 var month = date.getMonth();
 var yy = date.getYear();
 var year = (yy < 1000) ? yy + 1900 : yy;

 /* Set the User selected date in HTML form */
 var dateStr= weekday[dayOfWeek] + ", " + day + " " +
 monthname[month] + " " + year;
 document.getElementById("selected_date").value= dateStr;

 /* IMPORTANT:
 * Call Android JavaScript->Java bridge setting a
 * Java-field variable
 */
 window.android.setSelectedDate(date);
 window.android.setCalendarButton(date);
 }
 }
 </script>
 </head>
 <body>
 <div id="bg"></div>
 <div id="content">
 <div class="dateheader" align="center">
 <form name="form_selected_date">
 Selected day:
 <input id="selected_date" name="selected_date" type="text"
 readonly="true">
 </form>
 </div>
 <div id="basic_container" onClick="popup()"></div>
 </div>
 </body>
</head>>

Example 4-22. CalendarView.java
import java.util.Date;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.os.Handler;
import android.util.Log;
import android.view.View;
import android.view.View.OnClickListener;
import android.webkit.JsResult;
import android.webkit.WebChromeClient;
import android.webkit.WebSettings;
import android.webkit.WebView;
import android.widget.Button;
import android.widget.ImageView;
import android.widget.Toast;

import com.pfizer.android.R;
import com.pfizer.android.utils.DateUtils;
import com.pfizer.android.view.screens.journal.CreateEntryScreen;

public class CalendarViewActivity extends Activity
 {
 private static final String tag = "CalendarViewActivity";
 private ImageView calendarToJournalButton;
 private Button calendarDateButton;
 private WebView webview;
 private Date selectedCalDate;

 private final Handler jsHandler = new Handler();

 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 Log.d(tag, "Creating View ...");
 super.onCreate(savedInstanceState);

 // Set the View Layer
 Log.d(tag, "Setting-up the View Layer");
 setContentView(R.layout.calendar_view);

 // Go to CreateJournalEntry
 calendarToJournalButton = (ImageView) this.findViewById
 (R.id.calendarToJournalButton);
 calendarToJournalButton.setOnClickListener(new OnClickListener()
 {
 @Override
 public void onClick(View v)
 {
 Log.d(tag, "Re-directing -> CreateEntryScreen ...");
 Intent intent = intent =
 new Intent(getApplicationContext(),
 CreateEntryScreen.class);
 startActivity(intent);
 }
 });

 // User-Selected Calendar Date
 calendarDateButton = (Button) this.findViewById(R.id.calendarDateButton);

 // Get access to the WebView holder
 webview = (WebView) this.findViewById(R.id.webview);

 // Get the settings
 WebSettings settings = webview.getSettings();

 // Enable JavaScript
 settings.setJavaScriptEnabled(true);

 // Enable ZoomControls visibility
 settings.setSupportZoom(true);

 // Add JavaScript Interface
 webview.addJavaScriptInterface(new MyJavaScriptInterface(), "android");

 // Set the Chrome Client
 webview.setWebChromeClient(new MyWebChromeClient());

 // Load the URL of the HTML file
 webview.loadUrl("file:///android_asset/calendarview.html");

 }

 public void setCalendarButton(Date selectedCalDate)
 {
 Log.d(tag, jsHandler.obtainMessage().toString());
 calendarDateButton.setText(
 DateUtils.convertDateToSectionHeaderFormat(
 selectedCalDate.getTime()));
 }

 /**
 *
 * @param selectedCalDate
 */
 public void setSelectedCalDate(Date selectedCalDate)
 {
 this.selectedCalDate = selectedCalDate;
 }

 /**
 *
 * @return
 */
 public Date getSelectedCalDate()
 {
 return selectedCalDate;
 }

 /**
 * JAVA->JAVASCRIPT INTERFACE
 *
 * @author wagied
 *
 */
 final class MyJavaScriptInterface
 {
 private Date jsSelectedDate;
 MyJavaScriptInterface()
 {
 // EMPTY;
 }

 public void onDayClick()
 {
 jsHandler.post(new Runnable()
 {
 public void run()
 {
 // Java telling JavaScript to do things
 webview.loadUrl("javascript: popup();");
 }
 });
 }

 /**
 * NOTE: THIS FUNCTION IS BEING SET IN JAVASCRIPT User-selected Date in
 * WebView
 *
 * @param dateStr
 */
 public void setSelectedDate(String dateStr)
 {
 Toast.makeText(getApplicationContext(), dateStr,
 Toast.LENGTH_SHORT).show();
 Log.d(tag, "User Selected Date: JavaScript -> Java : " + dateStr);

 // Set the User Selected Calendar date
 setJsSelectedDate(new Date(Date.parse(dateStr)));
 Log.d(tag, "java.util.Date Object: " +
 Date.parse(dateStr).toString());
 }
 private void setJsSelectedDate(Date userSelectedDate)
 {
 jsSelectedDate = userSelectedDate;
 }
 public Date getJsSelectedDate()
 {
 return jsSelectedDate;
 }
 }

 /**
 * Alert pop-up for debugging purposes
 *
 * @author wdavid01
 *
 */
 final class MyWebChromeClient extends WebChromeClient
 {
 @Override
 public boolean onJsAlert(WebView view, String url,
 String message, JsResult result)
 {
 Log.d(tag, message);
 result.confirm();
 return true;
 }
 }

 @Override
 public void onDestroy()
 {
 Log.d(tag, "Destroying View!");
 super.onDestroy();
 }
 }

For debugging purposes, a MyWebChromeClient is
 created—this is the final inner class extending WebChromeClient defined
 near the end of the main class—and in particular the
 onJsAlert() method is overridden.

Chapter 5. Content Providers

5.1. Introduction: Content Providers

Ian Darwin

Discussion

The content provider is one of Android’s more clever ideas. It allows totally
 unrelated applications to share data, which is usually stored in an
 SQLite database, without prior arrangement, knowing only the names of
 the tables and fields in the data.
One widely used content provider is the Android Contacts provider. The first recipe in this
 chapter shows how easy it is to make an initial selection of data (this
 is done using an intent, as you might guess, but it returns a URI, not
 the actual data). You then drill down using an SQLite cursor or
 two.
Then we have a recipe that shows you how to create your own
 content provider. Again as you might expect, “there’s an interface for
 that.”
Finally, while it’s not directly related to content providers,
 Android also offers a more general remote procedure mechanism layered on
 AIDL (the Android Interface Definition Language), and the recipe for that is at the end of this chapter
 because it’s a similar topic.

5.2. Retrieving Data from a Content Provider

Ian Darwin

Problem

You want to read from a content provider such as Contacts.

Solution

Create a PICK URI, open it in an intent
 using startActivityForResult, extract
 the URI from the returned intent, use
 Activity.getContentProvider(), and process the data using SQLite Cursor
 methods.

Discussion

This is part of the contact selection code from
 TabbyText, my SMS text message sender for WiFi-Only Honeycomb
 tablets (the rest of the code is in Recipe 11.17).
First, the main program sets up an
 OnClickListener to launch the Contacts app from a
 Find Contact button:
 b.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View arg0) {
 Uri uri = ContactsContract.Contacts.CONTENT_URI;
 System.out.println(uri);
 Intent intent = new Intent(Intent.ACTION_PICK, uri);
 startActivityForResult(intent, REQ_GET_CONTACT);
 }
 });
The URI is predefined for us; it actually has the value
 content://com.android.contacts/contacts. The constant
 REQ_GET_CONTACT is arbitrary; it’s just there to
 associate this intent start-up with the handler code, since more complex
 apps will often start more than one intent and they need to handle the
 results differently. Once this button is pressed, control passes from
 our app, out to the Contacts app. The user can then select a contact he
 wishes to SMS. The Contacts app then is backgrounded and control returns
 to our app at the onActivityResult() method, to
 indicate that the activity we started has completed and delivered a
 result.
The next bit of code shows how the
 onActivityResult() method converts the response from
 the activity into an SQLite cursor (see Example 5-1).
Example 5-1. OnActivityResult
@Override
protected void onActivityResult(int requestCode, int resultCode, Intent data) {
 if (requestCode == REQ_GET_CONTACT) {
 switch(resultCode) {
 case Activity.RESULT_OK:
 // The Contacts API is about the most complex to use.
 // First retrieve the Contact, as we only get its URI from the Intent
 Uri resultUri = data.getData(); // e.g., content://contacts/people/123
 Cursor cont = getContentResolver().query(resultUri, null, null, null, null);
 if (!cont.moveToNext()) { // expect 001 row(s)
 Toast.makeText(this, "Cursor contains no data", Toast.LENGTH_LONG).show();
 return;
 }
 ...

There are a few key things to note here. First, make sure the
 request code is the one you started, and the resultCode is
 RESULT_OK or RESULT_CANCELED (if
 not, pop up a warning dialog). Then, extract the URL for the response
 you picked—the intent data from the returned intent—and use that to
 create a query, using the inherited activity method
 getContentResolver() to get the ContentResolver and its
 query() method to make up an SQLite cursor.
We expect the user to have selected one contact, so if that’s not
 the case we error out. Otherwise, we’d go ahead and use the SQLite
 cursor to read the data. The exact formatting of the Contact database is
 a bit out of scope for this recipe, so it’s been deferred to Recipe 11.17.

5.3. Writing a Content Provider

Ashwini Shahapurkar

Problem

Often your application generates data, which can be processed and
 analyzed by another application. You want to ensure that the app is
 doing this in the safest way possible without giving direct access to
 your application’s database.

Solution

Write a custom content provider that will allow other applications
 to access data generated by your app.

Discussion

Content providers allow other applications to access the data
 generated by your app. A custom content provider requires that we build
 up the app database and provide the wrapper over it for other
 applications. To make other apps aware that a content provider is
 available, we need to declare it in AndroidManifest.xml as
 follows:
<provider android:authorities="com.example.android.contentprovider"
 android:name="MyContentProvider" />
Here the name refers to the class MyContentProvider, which extends the ContentProvider class.
 We need to override the following methods in this class:
onCreate();
delete(Uri, String, String[]);
getType(Uri);
insert(Uri, ContentValues);
query(Uri, String[], String, String[], String);
update(Uri, ContentValues, String, String[]);
Usually these are wrapper functions for SQL queries on the SQLite
 database. We parse the input parameters and perform the queries on the
 database, as shown in Example 5-2.
Example 5-2. The content provider
public class MyContentProvider extends ContentProvider {

 DatabaseHelper mDatabase;
 private static final int RECORDS = 1;
 public static final Uri CONTENT_URI = Uri
 .parse("content://com.example.android.contentprovider");

 public static final String AUTHORITY = "com.example.android.contentprovider";
 private static final UriMatcher matcher = new UriMatcher(
 UriMatcher.NO_MATCH);

 static {
 matcher.addURI(AUTHORITY, "records", RECORDS);
 }

 @Override
 public int delete(Uri uri, String selection, String[] selectionArgs) {
 // the app-specific code for deleting records from the database goes here
 return 0;
 }

 @Override
 public String getType(Uri uri) {
 int matchType = matcher.match(uri);
 switch (matchType) {
 case RECORDS:
 return ContentResolver.CURSOR_DIR_BASE_TYPE + "/records";
 default:
 throw new IllegalArgumentException("Unknown or Invalid URI " + uri);
 }
 }

 @Override
 public Uri insert(Uri uri, ContentValues values) {
 //your app specific insertion code goes here
 // it can be as simple as follows; inserting all values
 // in database and returning the record id
 long id = mDatabase.getWritableDatabase().insert(Helper.TABLE_NAME,
 null, values);
 uri = Uri.withAppendedPath(uri, "/" + id);
 return uri;
 }

 @Override
 public boolean onCreate() {
 //initialize your database constructs
 return true;
 }

 @Override
 public Cursor query(Uri uri, String[] projection, String selection,
 String[] selectionArgs, String sortOrder) {
 //build your query with SQLiteQueryBuilder
 SQLiteQueryBuilder qBuilder = new SQLiteQueryBuilder();
 qBuilder.setTables(Helper.TABLE_NAME);
 int uriType = matcher.match(uri);

 //query the database and get result in cursor
 Cursor resultCursor = qBuilder.query(mDatabase.getWritableDatabase(),
 projection, selection, selectionArgs, null, null, sortOrder,
 null);
 resultCursor.setNotificationUri(getContext().getContentResolver(), uri);
 return resultCursor;

 }

 @Override
 public int update(Uri uri, ContentValues values, String selection,
 String[] selectionArgs) {
 // to be implemented
 return 0;
 }

}

By providing a content provider, you avoid giving access to your
 database to other developers and also reduce the chances of database inconsistency.

5.4. Writing an Android Remote Service

Rupesh Chavan

Problem

You want to know how to write a remote service and access it from another
 application.

Solution

Android has provided an AIDL-based programming interface that both the client and
 the service agree upon in order to communicate with each other using
 inter-process communication (IPC).

Discussion

Inter-process communication (IPC) is a key feature of the Android
 programming model. IPC provides the following two mechanisms:
	Intent-based communication

	Remote-service-based communication

In this recipe we will be concentrating on the
 remote-service-based communication approach. This Android feature allows
 you to make method calls that look “local” but are executed in another
 process. They involve use of the Android Interface Definition Language
 (AIDL). The service has to declare a service interface in an AIDL file
 and the AIDL tool will automatically create a Java interface
 corresponding to the AIDL file. The AIDL tool also generates a stub
 class that provides an abstract implementation of the service interface
 methods. The actual service class will have to extend this stub class to
 provide the real implementation of the methods exposed through the
 interface.
The service clients will have to invoke the onBind() method on the service to
 be able to connect to the service. The onBind()
 method returns an object of the stub class to the client. Example 5-3 shows the code-related snippets.
Example 5-3. The AIDL file
 package com.demoapp.service;

 interface IMyRemoteService {
 String getMessage();
 }

If you are using Eclipse it will automatically generate the remote
 interface corresponding to your AIDL file. The remote interface will
 also provide a stub inner class that has to have an implementation
 provided by the RemoteService class. The stub class
 implementation within the service class is as shown in Example 5-4.
Example 5-4. Remote service stub
 private IMyRemoteService.Stub myRemoteServiceStub = new IMyRemoteService.Stub() {
 public int getMessage() throws RemoteException {
 return "Hello World!";
 }
 };
 // The onBind() method in the service class:
 public IBinder onBind(Intent arg0) {
 Log.d(getClass().getSimpleName(), "onBind()");
 return myRemoteServiceStub;
 }

Now, let us quickly look at the meat of the service class before
 we move on to how the client connects to this service class. My
 RemoteService class is just returning a string. Here
 are the overridden onCreate(),
 onStart(), and onDestroy()
 methods. The onCreate() method of the service will be
 called only once in a service life cycle. The
 onStart() method will be called every time the
 service is started. Note that the resources are all released in the
 onDestroy() method (see Example 5-5).
Example 5-5. onCreate() and onDestroy()
 public void onCreate() {
 super.onCreate();
 Log.d(getClass().getSimpleName(),"onCreate()");
 }
 public void onStart(Intent intent, int startId) {
 super.onStart(intent, startId);
 Log.d(getClass().getSimpleName(), "onStart()");
 }
 public void onDestroy() {
 super.onDestroy();
 Log.d(getClass().getSimpleName(),"onDestroy()");
 }

Let’s discuss the client class. Here, for simplicity, I have put
 the start, stop, bind, release, and invoke methods all in the same
 client. In reality, though, one client may start and another can bind to
 the already started service.
There are five buttons: one each for the start, stop, bind,
 release, and invoke actions. A client needs to bind to a service before
 it can invoke any method on the service. Example 5-6 shows the start method.
Example 5-6. The startService() method
 private void startService(){
 if (started) {
 Toast.makeText(RemoteServiceClient.this, "Service already started",
 Toast.LENGTH_SHORT).show();
 } else {
 Intent i = new Intent();
 i.setClassName("com.demoapp.service", "com.demoapp.service.RemoteService");
 startService(i);
 started = true;
 updateServiceStatus();
 Log.d(getClass().getSimpleName(), "startService()");
 }
 }

An explicit intent is created and the service is started with the Context.startService(i)
 method. The rest of the code updates some status on the UI. There is
 nothing specific to a remote service invocation here. It is on the
 bindService() method that we see the difference from a local service (see Example 5-7).
Example 5-7. The bindService() method
 private void bindService() {
 if(conn == null) {
 conn = new RemoteServiceConnection();
 Intent i = new Intent();
 i.setClassName("com.demoapp.service", "com.demoapp.service.RemoteService");
 bindService(i, conn, Context.BIND_AUTO_CREATE);
 updateServiceStatus();
 Log.d(getClass().getSimpleName(), "bindService()");
 } else {
 Toast.makeText(RemoteServiceClient.this,
 "Cannot bind - service already bound", Toast.LENGTH_SHORT).show();
 }
 }

Here we get a connection to the remote service through the
 RemoteServiceConnection class which implements the
 ServiceConnection interface. The connection object is required by the
 bindService() method—an intent, a connection object,
 and the type of binding are to be specified. So, how do we create a
 connection to the RemoteService? Example 5-8 shows the
 implementation.
Example 5-8. The ServiceConnection implementation
 class RemoteServiceConnection implements ServiceConnection {
 public void onServiceConnected(ComponentName className,
 IBinder boundService) {
 remoteService = IMyRemoteService.Stub.asInterface((IBinder)boundService);
 Log.d(getClass().getSimpleName(), "onServiceConnected()");
 }

 public void onServiceDisconnected(ComponentName className) {
 remoteService = null;
 updateServiceStatus();
 Log.d(getClass().getSimpleName(), "onServiceDisconnected");
 }
 };

The Context.BIND_AUTO_CREATE ensures that a service is created if one did not exist, although
 the onstart() will be called only on explicit start of the service.
Once the client is bound to the service and the service has
 already started, we can invoke any of the methods that are exposed by
 the service. Here we have only one method and that is
 getMessage(). In this example, the invocation is done
 by clicking the Invoke button. That would return the text message and
 update it below the button.
Example 5-9 shows the invoke
 method.
Example 5-9. The invokeService() method
 private void invokeService() {
 if(conn == null) {
 Toast.makeText(RemoteServiceClient.this,
 "Cannot invoke - service not bound", Toast.LENGTH_SHORT).show();
 } else {
 try {
 String message = remoteService.getCounter();
 TextView t = (TextView)findViewById(R.id.notApplicable);
 t.setText("Message: "+message);
 Log.d(getClass().getSimpleName(), "invokeService()");
 } catch (RemoteException re) {
 Log.e(getClass().getSimpleName(), "RemoteException");
 }
 }
 }

Once we use the service methods, we can release the service. This
 is done as shown in Example 5-10 (by
 clicking the Release button).
Example 5-10. The releaseService() method
 private void releaseService() {
 if(conn != null) {
 unbindService(conn);
 conn = null;
 updateServiceStatus();
 Log.d(getClass().getSimpleName(), "releaseService()");
 } else {
 Toast.makeText(RemoteServiceClient.this,
 "Cannot unbind - service not bound",
 Toast.LENGTH_SHORT).show();
 }
 }

Finally, we can stop the service by clicking the Stop button.
 After this point, no client can invoke this service. Example 5-11 shows the relevant code.
Example 5-11. The stopService() method
 private void stopService() {
 if (!started) {
 Toast.makeText(RemoteServiceClient.this, "Service not yet started",
 Toast.LENGTH_SHORT).show();
 } else {
 Intent i = new Intent();
 i.setClassName("com.demoapp.service", "com.demoapp.service.RemoteService");
 stopService(i);
 started = false;
 updateServiceStatus();
 Log.d(getClass().getSimpleName(), "stopService()");
 }
 }

Note
If the client and the service are using different package
 structures, the client has to include the AIDL file along with the
 package structure, just like the service does.

These are the basics of working with a remote service on the
 Android platform. All the best!

Chapter 6. Graphics

6.1. Introduction: Graphics

Ian Darwin

Discussion

Computer graphics are any kind of display for which there isn’t a
 GUI component: charting, displaying pictures, and so on. Android is well
 provisioned for graphics, including a full implementation of OpenGL EL,
 a subset of OpenGL intended for smaller devices.
The chapter starts with a recipe for using a custom font for
 special text effects, then some recipes on GL graphics proper, and a
 note on graphical “touch” input. From there we continue the input theme
 with various image capture techniques. Then we have some recipes on
 graphics files, and one to round out the chapter discussing “pinch to
 zoom,” using user touch input to scale graphical output.

6.2. Using a Custom Font

Ian Darwin

Problem

The range of fonts that comes with Android 2.x is amazingly minuscule—three
 variants of the “Droid” font. You want something better.

Solution

Install a TTF or OTF version of your font in
 assets/fonts (creating this directory if
 necessary). In your code, create a typeface from the “asset” and call
 the View’s setTypeface() method. You’re done!

Discussion

You can provide one or more fonts with your application. We have
 not yet discovered a documented way to install system-wide fonts. Beware
 of huge fonts, as they will be downloaded with your application,
 increasing its size.
Your custom font’s format should be TTF or OTF (TrueType
 or OpenTypeFace, a TTF extension). You need to create the
 fonts subdirectory under
 assets in your project, and install the font
 there.
While you can refer to the pre-defined fonts just using XML, you
 cannot refer to your own fonts using XML. This may change someday, but
 for now the content model of the android:typeface attribute is an
 XML enumeration containing only normal,
 sans, serif, and
 monospace—that’s it! Therefore, you have to use
 code.
There are several Typeface.create() methods,
 including:
	create(String familyName, int
 style);

	create(TypeFace family, inst style);

	createFromAsset(AssetManager mgr, String
 path);

	createFromFile(File path);

	createFromFile(String path);

You can easily see how most of these should work. The parameter
 “style” is, as in Java, one of several constants defined on the class
 representing fonts, here Typeface. Our code example
 uses the createFromAsset() method, so we don’t have
 to worry about font locations. You could probably provide a font shared
 by several locations using an absolute path into
 /sdcard using the latter two forms; remember to
 request permission in the AndroidManifest.xml file
 to read the SD card! You can create representations of the built-in
 fonts, and variations on them, using the first two forms.
The font I used is the nice Iceberg font, from SoftMaker Software GmbH. This font
 is copyrighted and I do not have permission to redistribute it, so when
 you download the project and want to run it, you will need to install a
 TrueType font file at assets/fonts/fontdemo.ttf.
 Note that if the font is invalid, Android will silently ignore
 it and use the built-in Droid font.
In this demo we provide two text areas, one using the built-in
 serif font and one using a custom font. They are defined, and various
 attributes added, in main.xml (see Example 6-1).
Example 6-1. XML layout with font specification
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
<TextView
 android:id="@+id/PlainTextView"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="@string/plain"
 android:textSize="36sp"
 android:typeface="serif"
 android:padding="10sp"
 android:gravity="center"
 />
<TextView
 android:id="@+id/FontView"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="@string/nicer"
 android:textSize="36sp"
 android:typeface="normal"
 android:padding="10sp"
 android:gravity="center"
 />
</LinearLayout>

Example 6-2 shows the source code.
Example 6-2. Setting a custom font
public class FontDemo extends Activity {

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 TextView v = (TextView) findViewById(R.id.FontView); [image: 1]
 Typeface t = Typeface.createFromAsset(getAssets(), [image: 2]
 "fonts/fontdemo.ttf");
 v.setTypeface(t, Typeface.BOLD_ITALIC); [image: 3]
 }
}

	[image: 1]
	Find the View you want to use your font
 in.

	[image: 2]
	Create a Typeface object from one of the
 Typeface class’s static
 create() methods.

	[image: 3]
	Message the Typeface into the
 View’s setTypeface
 method.

If all is well, running the app should look like Figure 6-1.
[image: Custom font]

Figure 6-1. Custom font

Source Download URL

The source code for this example is in the Android Cookbook repository at http://github.com/AndroidCook/Android-Cookbook-Examples,
 in the subdirectory FontDemo (see Getting and Using the Code Examples).

6.3. Drawing a Spinning Cube with OpenGL ES

Marco Dinacci

Problem

You want to create a basic OpenGL ES application.

Solution

Create a GLSurfaceView and a custom Renderer that will draw a
 spinning cube.

Discussion

Android supports 3D graphics via the OpenGL ES API, a flavor of
 OpenGL specifically designed for embedded devices.
The recipe is not an OpenGL tutorial; it assumes the reader
 already has basic OpenGL knowledge.
The final result will look like Figure 6-2.
[image: GL graphics sample]

Figure 6-2. GL graphics sample

First we write a new Activity
 and in the onCreate method we create
 the two fundamental objects we need to use the OpenGL API: a GLSurfaceView and a Renderer (see Example 6-3).
Example 6-3. OpenGL demo activity
public class OpenGLDemoActivity extends Activity {

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 // Go fullscreen
 requestWindowFeature(Window.FEATURE_NO_TITLE);
 getWindow().setFlags(WindowManager.LayoutParams.FLAG_FULLSCREEN,
 WindowManager.LayoutParams.FLAG_FULLSCREEN);

 GLSurfaceView view = new GLSurfaceView(this);
 view.setRenderer(new OpenGLRenderer());
 setContentView(view);
 }
}

Example 6-4 is the code for our Renderer that uses a simple Cube object we’ll describe later to display a
 spinning cube.
Example 6-4. The rendered implementation
class OpenGLRenderer implements Renderer {

 private Cube mCube = new Cube();
 private float mCubeRotation;

 @Override
 public void onSurfaceCreated(GL10 gl, EGLConfig config) {
 gl.glClearColor(0.0f, 0.0f, 0.0f, 0.5f);

 gl.glClearDepthf(1.0f);
 gl.glEnable(GL10.GL_DEPTH_TEST);
 gl.glDepthFunc(GL10.GL_LEQUAL);

 gl.glHint(GL10.GL_PERSPECTIVE_CORRECTION_HINT,
 GL10.GL_NICEST);

 }

 @Override
 public void onDrawFrame(GL10 gl) {
 gl.glClear(GL10.GL_COLOR_BUFFER_BIT | GL10.GL_DEPTH_BUFFER_BIT);
 gl.glLoadIdentity();

 gl.glTranslatef(0.0f, 0.0f, -10.0f);
 gl.glRotatef(mCubeRotation, 1.0f, 1.0f, 1.0f);

 mCube.draw(gl);

 gl.glLoadIdentity();

 mCubeRotation -= 0.15f;
 }

 @Override
 public void onSurfaceChanged(GL10 gl, int width, int height) {
 gl.glViewport(0, 0, width, height);
 gl.glMatrixMode(GL10.GL_PROJECTION);
 gl.glLoadIdentity();
 GLU.gluPerspective(gl, 45.0f, (float)width / (float)height, 0.1f, 100.0f);
 gl.glViewport(0, 0, width, height);

 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();
 }
}

Our onSurfaceChanged and
 onDrawFrame methods are basically the equivalent of the GLUT glutReshapeFunc and glutDisplayFunc. The first is called when the surface is resized—for
 instance, when the phone switches between landscape and portrait modes.
 The second is called at every frame, and that’s where we put the code to
 draw our cube (see Example 6-5).
Example 6-5. The Cube class
class Cube {

 private FloatBuffer mVertexBuffer;
 private FloatBuffer mColorBuffer;
 private ByteBuffer mIndexBuffer;

 private float vertices[] = {
 -1.0f, -1.0f, -1.0f,
 1.0f, -1.0f, -1.0f,
 1.0f, 1.0f, -1.0f,
 -1.0f, 1.0f, -1.0f,
 -1.0f, -1.0f, 1.0f,
 1.0f, -1.0f, 1.0f,
 1.0f, 1.0f, 1.0f,
 -1.0f, 1.0f, 1.0f
 };
 private float colors[] = {
 0.0f, 1.0f, 0.0f, 1.0f,
 0.0f, 1.0f, 0.0f, 1.0f,
 1.0f, 0.5f, 0.0f, 1.0f,
 1.0f, 0.5f, 0.0f, 1.0f,
 1.0f, 0.0f, 0.0f, 1.0f,
 1.0f, 0.0f, 0.0f, 1.0f,
 0.0f, 0.0f, 1.0f, 1.0f,
 1.0f, 0.0f, 1.0f, 1.0f
 };

 private byte indices[] = {
 0, 4, 5, 0, 5, 1,
 1, 5, 6, 1, 6, 2,
 2, 6, 7, 2, 7, 3,
 3, 7, 4, 3, 4, 0,
 4, 7, 6, 4, 6, 5,
 3, 0, 1, 3, 1, 2
 };

 public Cube() {
 ByteBuffer byteBuf = ByteBuffer.allocateDirect(vertices.length * 4);
 byteBuf.order(ByteOrder.nativeOrder());
 mVertexBuffer = byteBuf.asFloatBuffer();
 mVertexBuffer.put(vertices);
 mVertexBuffer.position(0);

 byteBuf = ByteBuffer.allocateDirect(colors.length * 4);
 byteBuf.order(ByteOrder.nativeOrder());
 mColorBuffer = byteBuf.asFloatBuffer();
 mColorBuffer.put(colors);
 mColorBuffer.position(0);

 mIndexBuffer = ByteBuffer.allocateDirect(indices.length);
 mIndexBuffer.put(indices);
 mIndexBuffer.position(0);
 }

 public void draw(GL10 gl) {
 gl.glFrontFace(GL10.GL_CW);

 gl.glVertexPointer(3, GL10.GL_FLOAT, 0, mVertexBuffer);
 gl.glColorPointer(4, GL10.GL_FLOAT, 0, mColorBuffer);

 gl.glEnableClientState(GL10.GL_VERTEX_ARRAY);
 gl.glEnableClientState(GL10.GL_COLOR_ARRAY);

 gl.glDrawElements(GL10.GL_TRIANGLES, 36, GL10.GL_UNSIGNED_BYTE,
 mIndexBuffer);

 gl.glDisableClientState(GL10.GL_VERTEX_ARRAY);
 gl.glDisableClientState(GL10.GL_COLOR_ARRAY);
 }
}

The Cube uses two FloatBuffer objects to store vertex and color information and a ByteBuffer to store the face indexes. In order
 for the buffers to work it is important to set their order according to
 the endianness of the platform, using the order method. Once the buffers have been
 filled with the values from the arrays, the internal cursor must be
 restored to the beginning of the data using buffer.position(0).

See Also

http://www.khronos.org/opengles

6.4. Adding Controls to the OpenGL Spinning Cube

Marco Dinacci

Problem

You want to interact with an OpenGL polygon using your device’s
 keyboard.

Solution

Create a custom GLSurfaceView and override the
 onKeyUp method to listen to the KeyEvent created from a directional pad (D-pad).

Discussion

This recipe extends on Recipe 6.3 to show how to
 control the cube using a D-pad. We’re going to increment the speed
 rotation along the x-axis and y-axis using the D-pad’s directional
 keys.
The biggest change is that we now have our custom class that
 extends the SurfaceView. We do this
 so that we can override the onKeyUp
 method and be notified when the user uses the D-pad.
The onCreate of our Activity looks like Example 6-6.
Example 6-6. The spinning cube activity
public class SpinningCubeActivity2 extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 // go fullscreen
 requestWindowFeature(Window.FEATURE_NO_TITLE);
 getWindow().setFlags(WindowManager.LayoutParams.FLAG_FULLSCREEN,
 WindowManager.LayoutParams.FLAG_FULLSCREEN);

 // create our custom view
 GLSurfaceView view = new OpenGLSurfaceView(this);
 view.setRenderer((Renderer)view);
 setContentView(view);
 }
}

Our new GLSurfaceView also
 implements the Renderer
 interface. The onSurfaceCreated and
 onSurfaceChanged methods are exactly
 the same as in the preceding recipe; most of the changes occur in
 the onDrawFrame as we
 introduce four new parameters: mXrot
 and mYrot to control the rotation of
 the cube along the x-axis and y-axis, and mXspeed and mYSpeed to store the speed of the rotation
 along the x-axis and y-axis.
Each time the user clicks on a D-pad button we alter the speed of
 the cube by modifying these parameters.
Example 6-7 shows the full code of our new
 class.
Example 6-7. The GLSurfaceView implementation
class OpenGLSurfaceView extends GLSurfaceView implements Renderer {

 private Cube mCube;
 private float mXrot;
 private float mYrot;
 private float mXspeed;
 private float mYspeed;

 public OpenGLSurfaceView(Context context) {
 super(context);

 // give focus to the GLSurfaceView
 requestFocus();
 setFocusableInTouchMode(true);

 mCube = new Cube();
 }

 @Override
 public void onDrawFrame(GL10 gl) {
 gl.glClear(GL10.GL_COLOR_BUFFER_BIT | GL10.GL_DEPTH_BUFFER_BIT);
 gl.glLoadIdentity();

 gl.glTranslatef(0.0f, 0.0f, -10.0f);

 gl.glRotatef(mXrot, 1.0f, 0.0f, 0.0f);
 gl.glRotatef(mYrot, 0.0f, 1.0f, 0.0f);

 mCube.draw(gl);

 gl.glLoadIdentity();

 mXrot += mXspeed;
 mYrot += mYspeed;
 }

 @Override
 public boolean onKeyUp(int keyCode, KeyEvent event) {
 if(keyCode == KeyEvent.KEYCODE_DPAD_LEFT)
 mYspeed -= 0.1f;
 else if(keyCode == KeyEvent.KEYCODE_DPAD_RIGHT)
 mYspeed += 0.1f;
 else if(keyCode == KeyEvent.KEYCODE_DPAD_UP)
 mXspeed -= 0.1f;
 else if(keyCode == KeyEvent.KEYCODE_DPAD_DOWN)
 mXspeed += 0.1f;

 return true;
 }

 // unchanged
 @Override
 public void onSurfaceCreated(GL10 gl, EGLConfig config) {
 gl.glClearColor(0.0f, 0.0f, 0.0f, 0.5f);

 gl.glClearDepthf(1.0f);
 gl.glEnable(GL10.GL_DEPTH_TEST);
 gl.glDepthFunc(GL10.GL_LEQUAL);

 gl.glHint(GL10.GL_PERSPECTIVE_CORRECTION_HINT,
 GL10.GL_NICEST);
 }

 // unchanged
 @Override
 public void onSurfaceChanged(GL10 gl, int width, int height) {
 gl.glViewport(0, 0, width, height);
 gl.glMatrixMode(GL10.GL_PROJECTION);
 gl.glLoadIdentity();
 GLU.gluPerspective(gl, 45.0f, (float)width / (float)height, 0.1f, 100.0f);
 gl.glViewport(0, 0, width, height);

 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();
 }
}

The Cube is inherited from the
 preceding recipe. Don’t forget to call the requestFocus() and setFocusableInTouchMode(true) in the
 constructor of the view or else the key events will not be
 received.

See Also

Recipe 6.3

Source Download URL

You can download the source code for this example from http://www.intransitione.com/intransitione.com/code/android/spinning_cube_controllable.zip.
[image: image with no caption]

6.5. Freehand Drawing Smooth Curves

Ian Darwin

Problem

You want to allow the user to draw smooth curves, such as freehand
 bezier curves, legal signatures, and so on.

Solution

Create a custom View with a carefully
 written OnTouchListener that
 handles the case where input arrives faster than your code can process
 it; save the results in an array, and draw them in onDraw().

Discussion

This code was originally written by Eric Burke of Square Inc., to capture signatures when
 people use the Square app to capture credit card purchases. To be
 legally acceptable as proof of purchase intent, the captured signatures
 have to be of good quality. Square has graciously placed this code under
 the Apache Software License 2.0, but was not able to provide it as part
 of this recipe.
I have since adapted the signature code for use in JabaGator, my very simple drawing program that I hope to
 get into the Android Market in 2012. JabaGator is a general-purpose
 drawing program for the Java desktop and for Android, but the fact that
 the name rhymes with a well-known illustration program from Adobe is, of
 course, purely coincidental.
Eric’s initial, “by the book” drawing code worked but was very
 jerky and very slow. Upon investigation, Square learned that Android’s
 graphics layer sends touch events in “batches” when it cannot deliver
 them quickly enough individually. Each MotionEvent delivered to
 onTouchEvent() may contain a number of touch coordinates, as many as were
 captured since the last onTouchEvent() call. To draw
 a smooth curve, you must get all of the points. You do this using the
 number of coordinates from the TouchEvent method
 getHistorySize(), iterating over that count, and calling
 getHistoricalX(int) and
 getHistoricalY(int) to get the point locations (see Example 6-8).
Example 6-8. Drawing all the points
// in onTouchEvent(TouchEvent):
for (int i=0; i < event.getHistorySize(); i++) {
 float historicalX = event.getHistoricalX(i);
 float historicalY = event.getHistoricalY(i);
 ... add point (historicalX, historicalY) to your path ...
}
... add point (eventX, eventY) to your path ...

This provides significant improvements, but it still is too slow
 for people to draw with—many
 non-geeks will wait for the drawing code to catch up with their finger
 if it doesn’t draw quickly enough! The problem was that a simple
 solution calls invalidate() after each line segment,
 which is correct but very slow as it forces Android to redraw the entire
 screen. The solution to this problem is to call
 invalidate() with just the region that you drew the
 line segment into, and involves a bit of arithmetic to get the region
 correct; see the expandDirtyRect()
 method in Example 6-9. The dirty-region algorithm is, in
 Eric’s own words:
	“Create a rectangle representing the dirty
 region.”

	“Set the points for the four corners to the X and Y
 coordinates from the ACTION_DOWN
 event.”

	“For ACTION_MOVE and
 ACTION_UP, expand the rectangle to encompass the
 new points. (Don’t forget the historical
 coordinates!)”

	“Pass just the dirty rectangle to
 invalidate(). Android won’t redraw the
 rest.”

This makes the drawing code responsive, and the application
 usable.
Example 6-9 shows my version of the final code. I
 have several OnTouchListeners, one
 for drawing curves, one for selecting objects, one for drawing
 rectangles, and so on. That code is not complete at present, but the
 curve drawing part works nicely.
Example 6-9. DrawingView.java
// This code is dual-licensed under Creative Commons and Apache Software License 2.0
public class DrawingView extends View {

 private static final float STROKE_WIDTH = 5f;

 /** Need to track this so the dirty region can accommodate the stroke. **/
 private static final float HALF_STROKE_WIDTH = STROKE_WIDTH / 2;

 private Paint paint = new Paint();
 private Path path = new Path();

 /**
 * Optimizes painting by invalidating the smallest possible area.
 */
 private float lastTouchX;
 private float lastTouchY;
 private final RectF dirtyRect = new RectF();

 final OnTouchListener selectionAndMoveListener = // not shown;

 final OnTouchListener drawRectangleListener = // not shown;

 final OnTouchListener drawOvalListener = // not shown;

 final OnTouchListener drawPolyLineListener = new OnTouchListener() {

 @Override
 public boolean onTouch(View v, MotionEvent event) {
 // Log.d("jabagator", "onTouch: " + event);
 float eventX = event.getX();
 float eventY = event.getY();

 switch (event.getAction()) {
 case MotionEvent.ACTION_DOWN:
 path.moveTo(eventX, eventY);
 lastTouchX = eventX;
 lastTouchY = eventY;
 // No end point yet, so don't waste cycles invalidating.
 return true;

 case MotionEvent.ACTION_MOVE:
 case MotionEvent.ACTION_UP:
 // Start tracking the dirty region.
 resetDirtyRect(eventX, eventY);

 // When the hardware tracks events faster than
 // they can be delivered to the app, the
 // event will contain a history of those skipped points.
 int historySize = event.getHistorySize();
 for (int i = 0; i < historySize; i++) {
 float historicalX = event.getHistoricalX(i);
 float historicalY = event.getHistoricalY(i);
 expandDirtyRect(historicalX, historicalY);
 path.lineTo(historicalX, historicalY);
 }

 // After replaying history, connect the line to the touch point.
 path.lineTo(eventX, eventY);
 break;

 default:
 Log.d("jabagator", "Unknown touch event " + event.toString());
 return false;
 }

 // Include half the stroke width to avoid clipping.
 invalidate(
 (int) (dirtyRect.left - HALF_STROKE_WIDTH),
 (int) (dirtyRect.top - HALF_STROKE_WIDTH),
 (int) (dirtyRect.right + HALF_STROKE_WIDTH),
 (int) (dirtyRect.bottom + HALF_STROKE_WIDTH));

 lastTouchX = eventX;
 lastTouchY = eventY;

 return true;
 }

 /**
 * Called when replaying history to ensure the dirty region
 * includes all points.
 */
 private void expandDirtyRect(float historicalX, float historicalY) {
 if (historicalX < dirtyRect.left) {
 dirtyRect.left = historicalX;
 } else if (historicalX > dirtyRect.right) {
 dirtyRect.right = historicalX;
 }
 if (historicalY < dirtyRect.top) {
 dirtyRect.top = historicalY;
 } else if (historicalY > dirtyRect.bottom) {
 dirtyRect.bottom = historicalY;
 }
 }

 /**
 * Resets the dirty region when the motion event occurs.
 */
 private void resetDirtyRect(float eventX, float eventY) {

 // The lastTouchX and lastTouchY were set when the ACTION_DOWN
 // motion event occurred.
 dirtyRect.left = Math.min(lastTouchX, eventX);
 dirtyRect.right = Math.max(lastTouchX, eventX);
 dirtyRect.top = Math.min(lastTouchY, eventY);
 dirtyRect.bottom = Math.max(lastTouchY, eventY);
 }
 };

 /** DrawingView Constructor */
 public DrawingView(Context context, AttributeSet attrs) {
 super(context, attrs);

 paint.setAntiAlias(true);
 paint.setColor(Color.WHITE);
 paint.setStyle(Paint.Style.STROKE);
 paint.setStrokeJoin(Paint.Join.ROUND);
 paint.setStrokeWidth(STROKE_WIDTH);

 setMode(MotionMode.DRAW_POLY);
 }

 public void clear() {
 path.reset();

 // Repaints the entire view.
 invalidate();
 }

 @Override
 protected void onDraw(Canvas canvas) {
 canvas.drawPath(path, paint);
 }

 /**
 * Sets the DrawingView into one of several modes, such
 * as "select" mode (e.g., for moving or resizing objects),
 * or "Draw polyline" (smooth curve), "draw rectangle", etc.
 */
 private void setMode(MotionMode motionMode) {
 switch(motionMode) {
 case SELECT_AND_MOVE:
 setOnTouchListener(selectionAndMoveListener);
 break;
 case DRAW_POLY:
 setOnTouchListener(drawPolyLineListener);
 break;
 case DRAW_RECTANGLE:
 setOnTouchListener(drawRectangleListener);
 break;
 case DRAW_OVAL:
 setOnTouchListener(drawOvalListener);
 break;
 default:
 throw new IllegalStateException("Unknown MotionMode " + motionMode);
 }
 }
}

Figure 6-3 shows JabaGator running,
 showing my attempt at legible handwriting (don’t worry, that’s not my
 legal signature).
[image: Touch drawing sample]

Figure 6-3. Touch drawing sample

This gives good drawing performance and smooth curves. The code to
 capture the curves into the drawing data model is not shown as it is
 application-specific.

See Also

You can find the original code and Eric’s description online at
 http://corner.squareup.com/2010/07/smooth-signatures.html.

Source Download URL

You can download the source code for this example from http://projects.darwinsys.com/jabagator.android-src.zip.
[image: image with no caption]

6.6. Taking a Picture Using an Intent

Ian Darwin

Problem

You want to take a picture from within your app and don’t want to write a lot
 of code.

Solution

Create an Intent for
 MediaStore.ACTION_IMAGE_CAPTURE, tailor it a little, and call
 startActivityForResult on this Intent. Provide an
 onActivityResult() callback to get notified when the user is done with the
 camera.

Discussion

Example 6-10 shows the complete camera activity
 from my JPSTrack application.
Assuming that you want to save the image with your application’s
 data (instead of in the Media Gallery location), you want to provide a
 file-based URI referring to the target location, using intent.putExtra(MediaStore.EXTRA_OUTPUT,
 uri);. Note that, according to discussions on various forum
 sites, the intent handler may give significantly different results on
 different vendors’ platforms. On the Motorola Milestone, using the
 Android 2.1 load from Telus Canada, with the code in Example 6-10, the defined directory gets a preview-scale
 image and the Media Gallery gets a copy that is one-fourth the full
 resolution (1280 × 960). Hopefully this will be cleaned up and
 standardized in version 2.2.
Example 6-10. The camera capture activity
import jpstrack.android.MainActivity;
import jpstrack.android.FileNameUtils;

public class CameraNoteActivity extends Activity {

 private File imageFile;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 // Use an Intent to get the Camera app going.
 Intent intent = new Intent(MediaStore.ACTION_IMAGE_CAPTURE);
 // Set up file to save image into.
 imageFile = new File(MainActivity.getDataDir(),
 FileNameUtils.getNextFilename("jpg"));
 Uri uri = Uri.fromFile(imageFile);
 intent.putExtra(MediaStore.EXTRA_OUTPUT, uri);
 intent.putExtra(MediaStore.EXTRA_VIDEO_QUALITY, 1);
 // And away we go!
 startActivityForResult(intent, 0);
 }

 @Override
 public void onActivityResult(int requestCode,
 int resultCode, Intent data) {
 switch(requestCode) {
 case 0: // take picture
 switch(resultCode) {
 case Activity.RESULT_OK:
 if (imageFile.exists())
 Toast.makeText(this,
 "Bitmap saved as " + imageFile.getAbsoluteFile(),
 Toast.LENGTH_LONG).show();
 else {
 AlertDialog.Builder alert =
 new AlertDialog.Builder(this);
 alert.setTitle("Error").setMessage(
 "Returned OK but image not created!").show();
 }
 break;
 case Activity.RESULT_CANCELED:
 // no blather required!
 break;
 default:
 Toast.makeText(this,
 "Unexpected resultCode: " + resultCode,
 Toast.LENGTH_LONG).show();
 }
 break;
 default:
 Toast.makeText(this,
 "UNEXPECTED ACTIVITY COMPLETION",
 Toast.LENGTH_LONG).show();
 }
 finish(); // back to main app
 }
}

See Also

Taking a pictures as shown in Recipe 6.7 requires more code but gives you more
 control over the process.

Source Download URL

You can download the source code for this example from http://www.darwinsys.com/jpstrack/.
[image: image with no caption]

6.7. Taking a Picture Using android.media.Camera

Marco Dinacci

Problem

You want to have more control of the various stages involved when taking a
 picture.

Solution

Create a SurfaceView and implement the
 callbacks fired when the user takes a picture in order to have control
 over the image capture process.

Discussion

Sometimes you may want more control over the stages involved when
 taking a picture, or you may want to access and modify the raw image
 data acquired by the camera. In these cases, using a simple Intent to take a picture is not
 enough.
We’re going to create a new Activity and customize the view to make it
 full-screen inside the onCreate
 method (Example 6-11).
Example 6-11. The take picture activity
public class TakePictureActivity extends Activity {
 private Preview mCameraView;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 // Force screen in landscape mode as showing a video in
 // portrait mode is not easily doable on all devices
 setRequestedOrientation(ActivityInfo.SCREEN_ORIENTATION_LANDSCAPE);

 // Hide window title and go fullscreen
 requestWindowFeature(Window.FEATURE_NO_TITLE);
 getWindow().addFlags(WindowManager.LayoutParams.FLAG_FULLSCREEN);

 mCameraView= new Preview(this);
 setContentView(mCameraView);
 }
}

The Preview class is the bulk
 of the recipe. It handles the Surface
 where the pixels are drawn, and the Camera object.
We define a ClickListener in
 the constructor so that the user can take a picture by just tapping once
 on the screen. Once we get the notification of the click, we take a
 picture, passing as parameters four (all optional) callbacks (see Example 6-12).
Example 6-12. The SurfaceView implementation
class Preview extends SurfaceView implements SurfaceHolder.Callback, PictureCallback {

 private SurfaceHolder mHolder;
 private Camera mCamera;
 private RawCallback mRawCallback;

 public Preview(Context context) {
 super(context);

 mHolder = getHolder();
 mHolder.addCallback(this);
 mHolder.setType(SurfaceHolder.SURFACE_TYPE_PUSH_BUFFERS);
 mRawCallback = new RawCallback();

 setOnClickListener(new OnClickListener() {

 @Override
 public void onClick(View v) {
 mCamera.takePicture(mRawCallback, mRawCallback, null,
 Preview.this);
 }
 });
 }

The Preview class implements
 the SurfaceHolder.Callback interface in order to
 be notified when the underlying surface is created, changed, and
 destroyed. We’ll use these callbacks to properly handle the Camera object (see Example 6-13).
Example 6-13. The surfaceChanged() method
 @Override
 public void surfaceChanged(SurfaceHolder holder, int format, int width,
 int height) {

 Camera.Parameters parameters = mCamera.getParameters();
 parameters.setPreviewSize(width, height);
 mCamera.setParameters(parameters);

 mCamera.startPreview();
 }

 @Override
 public void surfaceCreated(SurfaceHolder holder) {
 mCamera = Camera.open();

 configure(mCamera);

 try {
 mCamera.setPreviewDisplay(holder);
 } catch (IOException exception) {
 closeCamera();
 }
 }

 @Override
 public void surfaceDestroyed(SurfaceHolder holder) {
 closeCamera();
 }

As soon as the camera is created we call configure in order to set the parameters the
 camera will use to take a picture—things like flash mode, effects,
 picture format, picture size, scene mode and so on (Example 6-14). Since not all devices support all kinds of
 features, always ask which features are supported before setting
 them.
Example 6-14. The configure() method
 private void configure(Camera camera) {
 Camera.Parameters params = camera.getParameters();

 // Configure image format. RGB_565 is the most common format.
 List<Integer> formats = params.getSupportedPictureFormats();
 if (formats.contains(PixelFormat.RGB_565))
 params.setPictureFormat(PixelFormat.RGB_565);
 else
 params.setPictureFormat(PixelFormat.JPEG);

 // Choose the biggest picture size supported by the hardware
 List<Size> sizes = params.getSupportedPictureSizes();
 Camera.Size size = sizes.get(sizes.size()-1);
 params.setPictureSize(size.width, size.height);

 List<String> flashModes = params.getSupportedFlashModes();
 if (flashModes.size() > 0)
 params.setFlashMode(Camera.Parameters.FLASH_MODE_AUTO);

 // Action mode takes pictures of fast moving objects
 List<String> sceneModes = params.getSupportedSceneModes();
 if (sceneModes.contains(Camera.Parameters.SCENE_MODE_ACTION))
 params.setSceneMode(Camera.Parameters.SCENE_MODE_ACTION);
 else
 params.setSceneMode(Camera.Parameters.SCENE_MODE_AUTO);

 // if you choose FOCUS_MODE_AUTO remember to call autoFocus() on
 // the Camera object before taking a picture
 params.setFocusMode(Camera.Parameters.FOCUS_MODE_FIXED);

 camera.setParameters(params);
 }

When the surface is destroyed we close the camera and free its
 resources:
 private void closeCamera() {
 if (mCamera != null) {
 mCamera.stopPreview();
 mCamera.release();
 mCamera = null;
 }
 }
The jpeg callback is the last one called; this
 is where we restart the preview and save the file on disk.
 @Override
 public void onPictureTaken(byte[] jpeg, Camera camera) {
 // now that all the callbacks have been called it is safe to resume preview
 mCamera.startPreview();

 saveFile(jpeg);
 }
}
Finally, we implement the ShutterCallback and we
 again implement the PictureCallback
 to receive the uncompressed raw image data (see Example 6-15).
Example 6-15. The ShutterCallback implementation
class RawCallback implements ShutterCallback, PictureCallback {

 @Override
 public void onShutter() {
 // notify the user, normally with a sound, that the picture has
 // been taken
 }

 @Override
 public void onPictureTaken(byte[] data, Camera camera) {
 // manipulate uncompressed image data
 }
}

See Also

Recipe 6.6

6.8. Scanning a Barcode or QR Code with the Google ZXing Barcode
 Scanner

Daniel Fowler

Problem

You want your app to be able to scan a barcode or QR (Quick Response)
 Code.

Solution

Use an Intent to access the scanning functionality exposed by the Google
 ZXing barcode scanner.

Discussion

One of the great features of Android is how easy it is to tap into
 existing functionality. Scanning barcodes and QR codes is a good
 example. Google has a free scanning app that you can access via an
 Intent; thus an app can easily add
 scanning functionality, opening up new interface, communication, and
 feature possibilities.
The program in this recipe is an example of how to access the
 Google barcode scanner via an Intent. Make sure the
 Google barcode scanner is installed (https://market.android.com/details?id=com.google.zxing.client.android).
 In Example 6-16 there are three buttons to choose to
 scan either a QR code, a product barcode, or something else. There are
 two TextViews to display the type of
 barcode scanned and the data it contains.
Example 6-16. Scan program layout
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <LinearLayout android:orientation="horizontal"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content">
 <Button android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:id="@+id/butQR"
 android:text="QR Code"
 android:textSize="18sp"/>
 <Button android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:id="@+id/butProd"
 android:text="Product"
 android:textSize="18sp"/>
 <Button android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:id="@+id/butOther"
 android:text="Other"
 android:textSize="18sp"/>
 </LinearLayout>
 <TextView android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:id="@+id/tvStatus"
 android:text="Press a button to start a scan."
 android:textSize="18sp" />
 <TextView android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:id="@+id/tvResult"
 android:text="Ready"
 android:textSize="18sp"
 android:background="@android:color/white"
 android:textColor="@android:color/black"/>
</LinearLayout>

Depending on which button is pressed, the program puts the
 relevant parameters into the Intent before starting
 the ZXing activity and waiting for the result (see Example 6-17).
Example 6-17. Scan program main activity
public class Main extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 HandleClick hc = new HandleClick();
 findViewById(R.id.butQR).setOnClickListener(hc);
 findViewById(R.id.butProd).setOnClickListener(hc);
 findViewById(R.id.butOther).setOnClickListener(hc);
 }
 private class HandleClick implements OnClickListener{
 public void onClick(View arg0) {
 Intent intent = new Intent("com.google.zxing.client.android.SCAN");
 switch(arg0.getId()){
 case R.id.butQR:
 intent.putExtra("SCAN_MODE", "QR_CODE_MODE");
 break;
 case R.id.butProd:
 intent.putExtra("SCAN_MODE", "PRODUCT_MODE");
 break;
 case R.id.butOther:
 intent.putExtra("SCAN_FORMATS",
 "CODE_39,CODE_93,CODE_128,DATA_MATRIX,ITF");
 break;
 }
 startActivityForResult(intent, 0); //barcode scanner to scan for us
 }
 }
 public void onActivityResult(int requestCode, int resultCode, Intent intent) {
 if (requestCode == 0) {
 TextView tvStatus=(TextView)findViewById(R.id.tvStatus);
 TextView tvResult=(TextView)findViewById(R.id.tvResult);
 if (resultCode == RESULT_OK) {
 tvStatus.setText(intent.getStringExtra("SCAN_RESULT_FORMAT"));
 tvResult.setText(intent.getStringExtra("SCAN_RESULT"));
 } else if (resultCode == RESULT_CANCELED) {
 tvStatus.setText("Press a button to start a scan.");
 tvResult.setText("Scan cancelled.");
 }
 }
 }
}

Notice, in the table that follows, how it is possible to scan for
 a family of barcodes (using SCAN_MODE) or a specific type of barcode
 (using SCAN_FORMATS). If you know
 what type of barcode is being decoded, setting a scan format to that one
 particular type may result in faster decoding (it will not be trying to
 run through all the barcode decoding algorithms), as in intent.putExtra("SCAN_FORMATS",
 "CODE_39"). For multiple SCAN_FORMATS pass
 a comma-separated list, refer back to Example 6-17.
	SCAN_MODE	SCAN_FORMATS
	QR_CODE_MODE	QR_CODE
	PRODUCT_MODE	EAN_13
	 	EAN_8
	 	RSS_14
	 	UPC_A
	 	UPC_E
	ONE_D_MODE	As for product mode plus...
	 	CODE_39
	 	CODE_93
	 	CODE_128
	 	ITF
	DATA_MATRIX_MODE	DATA_MATRIX

The ZXing team is also working to support
 SCAN_FORMATS of CODABAR,
 RSS_EXPANDED, AZTEC, and
 PDF_417.
Now go and make that scanning inventory control or grocery list
 app you’ve been thinking of!
[image: image with no caption]

See Also

http://code.google.com/p/zxing/ and http://developer.android.com/guide/topics/intents/intents-filters.html

6.9. Using AndroidPlot to Display Charts and Graphs

Rachee Singh

Problem

You want to display data graphically in an Android application.

Solution

Use one of the many third-party graph libraries available for
 Android. In this example we will use AndroidPlot, an open source
 library, to depict a simple graph.

Discussion

If you don’t have it already, download AndroidPlot library from
 http://androidplot.com/wiki/Download
 (any version).
Now you need to create a new Android project and add the
 AndroidPlot library to the new project. To do this, create a new folder
 in the project folder and name it lib. To this
 folder add the downloaded AndroidPlot JAR file; it should be named
 Androidplot-core-0.4a-release.jar or something
 similar. (At this stage, you should have directories such as
 src, res,
 gen, and lib.)
To use the library, you must add it to the build path. In Eclipse,
 right-click the .jar file you added and select the
 Build Path–Add to Build Path option. This will show another directory
 called Referenced Libraries in the Eclipse
 project.
In our sample application, we are hardcoding some data and showing
 the plot corresponding to the data in the application. So we need to add
 an (x,y) plot to our XML layout (main.xml). Example 6-18 shows what main.xml looks
 like with an XYPlot component in a linear
 layout.
Example 6-18. The XML layout with XYPlot
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <com.androidplot.xy.XYPlot
 android:id="@+id/mySimpleXYPlot"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 title="Stats"/>
</LinearLayout>

Get a reference to the XYPlot defined in the
 XML:
 mySimpleXYPlot = (XYPlot) findViewById(R.id.mySimpleXYPlot);
Initialize two arrays of numbers for which the plot will be
 displayed:
 // Create two arrays of y-values to plot:
 Number[] series1Numbers = {1, 8, 5, 2, 7, 4};
 Number[] series2Numbers = {4, 6, 3, 8, 2, 10};
Turn the arrays into XYSeries:
 XYSeries series1 = new SimpleXYSeries(
 // SimpleXYSeries takes a List so turn our array into a List
 Arrays.asList(series1Numbers),
 // Y_VALS_ONLY means use the element index as the x value
 SimpleXYSeries.ArrayFormat.Y_VALS_ONLY,
 // Set the display title of the series
 "Series1");

Create a formatter to use for drawing a series using
 LineAndPointRenderer:
 LineAndPointFormatter series1Format = new LineAndPointFormatter(
 Color.rgb(0, 200, 0), // line color
 Color.rgb(0, 100, 0), // point color
 Color.rgb(150, 190, 150)); // fill color (optional)
Add series1 and series2 to
 the XYPlot:
 mySimpleXYPlot.addSeries(series1, series1Format);
 mySimpleXYPlot.addSeries(series2, new LineAndPointFormatter(Color.rgb(0, 0, 200),
 Color.rgb(0, 0, 100), Color.rgb(150, 150, 190)));
Make it look cleaner:
 // Reduce the number of range labels
 mySimpleXYPlot.setTicksPerRangeLabel(3);

 // By default, AndroidPlot displays developer guides to aid in laying out
 // your plot. To get rid of them call disableAllMarkup():
 mySimpleXYPlot.disableAllMarkup();

 mySimpleXYPlot.getBackgroundPaint().setAlpha(0);
 mySimpleXYPlot.getGraphWidget().getBackgroundPaint().setAlpha(0);
 mySimpleXYPlot.getGraphWidget().getGridBackgroundPaint().setAlpha(0);
Run the application! It should look like Figure 6-4.

Source Download URL

You can download the source code for this example from https://docs.google.com/leaf?id=0B_rESQKgad5LNTJjMDQ2MTktZjAzMi00ZjBkLWFhOTktZjA5OWY4YjE2MTRh&hl=en_US.
[image: image with no caption]

[image: AndroidPlot display]

Figure 6-4. AndroidPlot display

6.10. Using Inkscape to Create an Android Launcher Icon

Daniel Fowler

Problem

You want a custom launcher icon for your Android app.

Solution

Inkscape is a free and feature-rich graphics program that supports
 the ability to export to a bitmap file; you can use it to create the
 variously sized icons needed for an app.

Discussion

A graphics program is used to design the graphical resources used
 in an Android application. Inkscape is a free multiplatform graphics
 program with some very powerful features. You can use it to generate
 high-quality vector graphic images that can then be exported to any
 required resolution. This is ideal for generating Android launcher icons
 (and other graphical resources). See the Inkscape website at http://inkscape.org/ for more information on the program
 and to download the latest version.
When a project is created in Eclipse a default icon is generated
 in the res/drawable folder. This default icon is 48
 × 48 pixels. Icons are stored in the Portable Network Graphics (PNG)
 file format. Android supports different screen densities, measured in
 dots per inch (dpi). Screen densities are grouped into low density (120 dpi),
 medium density (160 dpi), high density (240 dpi), and extra-high density
 (320 dpi). The 48 × 48 pixel icon is suitable for medium-density
 screens; for all other densities, the 48 × 48 pixel icon is scaled up or
 down as required. Ideally, for best results (sharp images with no
 pixelation) a project will include an icon for all the possible screen
 densities that an app will encounter. To do this, four drawable folders
 are created under the res folder, one for each
 possible screen density; icon files of the correct size are placed into
 these directories:
	36 × 36 pixel icon in res/drawable-ldpi
 for low-density screens

	48 × 48 pixel icon in res/drawable-mdpi
 for medium-density screens

	72 × 72 pixel icon in res/drawable-hdpi
 for high-density screens

	96 × 96 pixel icon in res/drawable-xhdpi
 for extra-high-density screens

Each icon must include a border around the central image, used for
 on-screen spacing and minor image protrusions (see Figure 6-5). The recommended border is
 one-twelfth of the icon size. This means the space the actual icon image
 occupies is smaller than the icon pixel size:
	For a 36 × 36 icon, the image size is 30 × 30 pixels.

	For a 48 × 48 icon, the image size is 40 × 40 pixels.

	For a 72 × 72 icon, the image size is 60 × 60 pixels.

	For a 96 × 96 icon, the image size is 80 × 80 pixels.

[image: Icon with border]

Figure 6-5. Icon with border

When designing an icon it is better to work with images that are
 larger than the required size. A larger image is easier to work with in
 a graphics package and easily scaled down when completed. An image that
 is 576 × 576 pixels is divisible equally by all the icon sizes and is a
 reasonable size in which to design. For a vector-based graphics package,
 such as Inkscape, the image size is irrelevant; it can be scaled up and
 down without losing quality. Inkscape uses the open Scalable Vector
 Graphics (SVG) format. Image detail is only lost when the final bitmap images
 are produced from the vector image.
Those wanting to learn to design images in Inkscape can use the
 many tutorials that are available both via the Help menu and online;
 http://inkscapetutorials.wordpress.com/ is a good
 tutorial reference.
Once you have designed an image in Inkscape, you can export it to
 a PNG file for use as an app icon. In the following example the image to
 be converted to icons came from the tutorial at http://vector.tutsplus.com/tutorials/illustration/creating-a-coffee-cup-with-inkscape/.
 If you follow the tutorial, the image shown in Figure 6-6 is produced.
[image: A cup of java]

Figure 6-6. A cup of java

You can convert the image to an icon for a coffee ordering/coffee
 break timer/coffee break game or whatever coffee-related app is
 currently in the pipeline. Those who do not want to follow the tutorial
 can obtain the image from http://openclipart.org,
 a great source (more than 33,000) of free images (see Figure 6-7). Search for “coffee” and you
 will see various coffee-related images, including the one shown in Figure 6-6, uploaded by this recipe’s author.
 Click on the image, select the View SVG button, and use the browser’s
 File→Save Page As (Firefox) or
 File→Save As (Internet Explorer)
 menu.
[image: Searching for the perfect cup]

Figure 6-7. Searching for the perfect cup

The four required icon sizes are generated from the image using
 the Inkscape Export Bitmap option. The image is opened and correctly
 proportioned for the export. This can be done for any image designed or
 opened in Inkscape. Remember that images should not be overly detailed
 or have too many colors (detail is reduced during resizing), and that
 they should try to fill (or fit) a square area. Android icon guidelines
 also suggest images that are face on with minor drop shadows and a
 little top lighting; see http://developer.android.com/guide/practices/ui_guidelines/icon_design_launcher.html.
With the image open, resize the document to 576 × 576 pixels. To
 do this, use the Document Properties option under the File menu (see
 Figure 6-8). In “Custom size” set
 Width and Height to 576 and check that Units is set to “px” (for
 pixels). Ensure that the “Show page border” checkbox is ticked.
[image: The Document Properties dialog]

Figure 6-8. The Document Properties dialog

Drag two vertical and two horizontal guides from the rulers (click
 and drag from any part of the page ruler). Drag them inside each page
 border approximately one-twelfth of the width and height of the visible
 page border. The accurate position of the guides will be set using the
 guide properties. If the rulers are not visible use the View→Show/Hide→Rulers menu option to display them.
 Double-click each guide and set the following positions
 accurately:
	Guide	x	y
	Top horizontal	0	528
	Bottom horizontal	0	48
	Left vertical	48	0
	Right vertical	528	0

At this point, you should be able to easily adjust the image to
 fit within the guides. Minor protrusions into the border area are
 allowed if required for image balance. Use the menu Edit→Select All or press Ctrl-A to select the image,
 drag the image into position, and resize as appropriate to fit within
 the box outlined by the guides (Figure 6-9).
[image: Resizing in Inkscape]

Figure 6-9. Resizing in Inkscape

With the image created and correctly proportioned, you can now
 create the bitmaps for an Android project. Using Eclipse, open the
 project in which the icons are required. Select the
 res folder and create four new folders (menu option
 File→New→Folder or context menu New→Folder):
	res/drawable-ldpi

	res/drawable-mdpi

	res/drawable-hdpi

	res/drawable-xhdpi

The existing drawable folder is used as
 fallback if an icon cannot be found or for apps that can run on Android
 1.5.
Back in Inkscape, ensure that the image is not selected (click
 outside the image). Use the File→Export
 Bitmap menu option to bring up the Export Bitmap dialog (see Figure 6-10). Select Page, then under Bitmap
 Size set Width and Height to 96; you do not need to change the dpi
 setting (it will change as Width and Height are changed). Under
 Filename, browse to the project directory for the xhdpi icon
 (res/drawable-xhdpi) and enter “icon.png” for the
 filename. Click the Export button to generate the icon.
[image: The Export Bitmap dialog]

Figure 6-10. The Export Bitmap dialog

For the other three icon resolutions set Width and Height
 appropriately (72, then 48, and finally 36), and browse to the correct
 folder to export each icon. Finally, copy the icon from the
 res/drawable-mdpi folder into the
 drawable folder to replace the default icon. This
 process will have generated the variously sized icons required to
 support different device screens (see Figure 6-11).
[image: Coffee cup in various sizes]

Figure 6-11. Coffee cup in various sizes

If Eclipse was open when the icons are generated, you will need to
 refresh the open project to see the new icons in the folders; select
 File→Refresh or press F5 (see Figure 6-12).
[image: Icon placement in the project]

Figure 6-12. Icon placement in the project

You should test the application on physical and virtual devices to
 ensure that the icons appear as expected (see Figure 6-13).
[image: Icon in use]

Figure 6-13. Icon in use

The icon files do not need to be called icon.png; see Recipe 6.11 for information on
 changing the launcher icon filename.

See Also

Recipe 6.11; http://inkscape.org/; http://inkscapetutorials.wordpress.com/; http://vector.tutsplus.com/tutorials/illustration/creating-a-coffee-cup-with-inkscape/;
 http://openclipart.org; http://developer.android.com/guide/practices/ui_guidelines/icon_design_launcher.html

6.11. Creating Easy Launcher Icons from OpenClipArt.org Using
 Paint.NET

Daniel Fowler

Problem

You want to set your app apart from others and make it look more
 professional.

Solution

OpenClipArt.org is a good source of free graphics that you can
 adapt for use as an icon for your app.

Discussion

When a developer is getting ready to release his app, he must
 determine what he needs to do to get the app ready for the Android
 Market. One thing he must do is provide a good icon. The icon will
 usually be the most common graphical representation of the app that a
 user encounters. It will represent the app on the Applications screen,
 in Manage Applications, and as a shortcut if added to the Home screen. A
 good icon helps to foster a positive first impression of the app, and
 helps the app stand out in the crowd. Developers with access to a
 graphic artist, either professionally or through friends, or who are
 good artists themselves will have finer control of the graphics within
 their application. However, many developers find that creating the
 graphics in an app is a chore. This recipe shows how to generate a good
 icon quickly, though compromising the fine control provided by a
 dedicated artist.
The Open Clipart Library at http://www.openclipart.org provides more than 33,000 free
 graphics. The graphics provided are in vector format, which makes them
 great for scaling to icon size. Icons are in raster format, so once you
 have chosen a suitable graphic, you need to convert it into the Android
 icon format, which is Portable Network Graphics (PNG).
For this recipe, we will add an icon to the example “Hello, World”
 app created in Recipe 1.4.
First, find a suitable free graphic as a starting point. Go to
 http://www.openclipart.org and use the Search box.
 The search results may include graphics that do not always appear
 logical. This is because the search not only includes the name of the
 graphic, but also includes tags and descriptions, as well as partial
 words; therefore, graphics unrelated to the major search term will
 appear, as will contributions with misspellings or whose names are in a
 different language. However, this also means that occasionally an
 unexpected but suitable graphic will be found. Page through the search
 results, which are provided as thumbnails with title, contributor name,
 and date of submission, and number of downloads.
When looking for a graphic to use as an icon there are some
 pointers to keep in mind:
	There is a recommended color palette to fit in with the
 Android theme; this is only a recommendation, but it is a useful
 guide (see Figure 6-14). Avoid any color
 that is too extreme.
[image: Color palette]

Figure 6-14. Color palette

	The graphic will be scaled down dramatically, so do not choose
 one with too much detail. The search result thumbnail itself is a
 good indicator.

	Clear and simple designs with smooth lines and bright, neutral
 colors will scale well and look good on a device screen.

	Keep in mind the Android design guidelines at http://developer.android.com/guide/practices/ui_guidelines/icon_design_launcher.html;
 graphical representations should be face on, with a small drop
 shadow and top lighting.

	Icons are square, so look for an image that, if bounded by a
 square, would fill most of that square.

For the Hello, World app I used the search
 term earth (see Figure 6-15).
[image: Clip art search results]

Figure 6-15. Clip art search results

I chose the graphic titled “A simple globe” as the basis for the
 icon from the second page of search results. Click on the graphic to
 bring up its details. You can save the graphic to the local machine by
 clicking on it (or click on the View SVG button) and using the browser’s File menu. In Firefox,
 select Save Page As and select its location. In Internet Explorer,
 select “Save as…”; alternatively, both browsers support Ctrl-S. This
 will save the file as a vector file, which, as we discussed earlier, is
 not a good format for an icon. Fortunately, the image’s Open Clip Art
 page also has an option to obtain the file as a PNG file.
[image: image with no caption]

Android icons need to be provided in four different sizes so that
 Android can display the best possible icon for the device’s screen
 density. It is recommended that an app supply all the icon sizes
 required to prevent poor icons from being displayed on some devices. The
 four icon sizes are:
	36 × 36 pixels for low-density displays (120 dpi)

	48 × 48 pixels for medium-density displays (160 dpi)

	72 × 72 pixels for high-density displays (240 dpi)

	96 × 96 pixels for extra-high-density displays (320
 dpi)

There is also a border to take into consideration; the border area
 allows for spacing and image overrun and is recommended to be
 one-twelfth of the icon width (see Figure 6-16).
[image: Icon border area]

Figure 6-16. Icon border area

This means the practical image size for the icon graphic is
 smaller than the stated icon size:
	30 × 30 pixels for low density

	40 × 40 pixels for medium density

	60 × 60 pixels for high density

	80 × 80 pixels for extra-high density

On the Open Clip Art page for the required graphic, we can use the
 PNG button to obtain a PNG in the four image sizes required. In the box next to
 the PNG button type in the first image size required, 80 (for the
 extra-high-density icon; see Figure 6-17). We cannot put in the icon size,
 96, because that would not leave any border.
[image: Convert to PNG with size 80]

Figure 6-17. Convert to PNG with size 80

Click on the PNG button and then use the browser’s File menu (or
 Ctrl-S) to save the generated PNG file. Press the browser’s Back button
 to return to the image’s web page. Clear the box next to the PNG button
 and enter the size of the next icon graphic required, in this case 60
 for the high-density icon. Again click the PNG button and save the
 generated file. Do the same with the values 40 and 30 to generate the
 other two graphics.
A couple of problems may occur. Sometimes the conversion will
 still produce the previously sized graphic. If this happens, reload the
 image’s Open Clip Art page (click on the address bar, and with the
 cursor at the end of the address, press Enter; using F5 will not clear
 the problem). A graphic may also fail to convert to PNG. In Mozilla a
 message will be displayed stating that the graphic contained errors; in
 Internet Explorer a small box with an X in it will be displayed. If the
 graphic fails to convert, either select another image or download the
 SVG file and use a graphics application that supports SVG.
 Alternatively, on the image’s Open Clip Art page bring up the context
 menu on the graphic itself and save it as a full-size PNG (you can
 resize it in a graphics application and reset the transparency).
After you use the PNG button on the selected graphic, there will
 be four files, each containing the same image at four resolutions (Figure 6-18). The graphics files may not be perfectly
 square—for example, they may be 39 × 40 instead of 40 × 40—but the small
 difference does not matter.
[image: Icons of Earth in various sizes]

Figure 6-18. Icons of Earth in various sizes

You need to resize the files to the correct icon size by adding
 the empty border. You can do this in a graphics application, such as
 GIMP (http://www.gimp.org),
 Inkscape (http://www.inkscape.org),
 or Paint.NET (http://www.getpaint.net; Windows
 only). For this recipe, we will use Paint.NET.
In Paint.NET, open the first graphics file. Set the secondary
 (background) color to transparency by selecting the Window menu option,
 and then selecting Colors (or press F8); on the Colors dialog ensure
 that Secondary is selected in the drop down, and then click the More
 button to see the advanced options. Set the Transparency option in the
 bottom right of the Colors dialog to zero (see Figure 6-19).
[image: Color selection palette]

Figure 6-19. Color selection palette

Next, open the Canvas Size dialog by using the Image menu option
 and selecting Canvas Size (or press Ctrl-Shift-R). Select the “By
 absolute size” radio button but ignore the “Maintain aspect ratio”
 checkbox; if the graphic is square it can be checked, and if not it
 should be unchecked. In the “Pixel size” options set the correct Width
 and Height for the icon for the given graphic—both 36 for the 30 × 30
 graphic, both 48 for the 40 × 40 graphic, both 72 for the 60 × 60
 graphic, and both 96 for the 80 × 80 graphic. Set the Anchor option to
 Middle. Select OK.
[image: image with no caption]

Save the resized image and repeat for the other three graphics, to
 finish with four PNG icon files at sizes 36, 48, 72, and 96 (see Figure 6-18).
[image: image with no caption]

The four files now need to be copied into the project where the
 icons are to be used. In the project directories each icon is placed
 into a folder under the res folder for each dpi
 setting. If the project is in Eclipse it is likely that the
 res folder already contains the folders
 drawable-hdpi, drawable-ldpi,
 and drawable-mdpi, all with the default
 icon.
The existing icons are replaced with the newly created ones; in
 the process the folder for xhdpi is
 added; it is called drawable-xhdpi. If the app
 supports Android version 1.5, a folder simply called
 drawable containing the 48 × 48 icon is also
 required (see Figure 6-20). Table 6-1 provides a summary.
[image: Icon Folders]

Figure 6-20. Icon Folders

Table 6-1. Icon formatting summary
	Folder	Icon size	Image size	dpi	Android density	Example screen	Notes
	drawable-ldpi	36 × 36	30 × 30	120	ldpi	Small QVGA	
	drawable-mdpi	48 × 48	40 × 40	160	mdpi	Normal HVGA	Default icon in absence of anything else
	drawable-hdpi	72 × 72	60 × 60	240	hdpi	Normal WVGA800	
	drawable-xhdpi	96 × 96	80 × 80	320	xhdpi	Custom	
	drawable	48 × 48	40 × 40	160	mdpi	Normal HVGA	Default icon in absence of anything else

The icon file does not need to be called
 icon.png. As long as all the filenames in all the
 “drawable” folders are valid and the same, they can be named something
 else. For example, the icon files could be called
 globe.png. If the filename is changed from the
 default, the android:icon attribute
 in the application element in the
 manifest file will also need to change from
 icon to globe. Open the
 AndroidManifest.xml file. Locate the application element and change android:icon="@drawable/icon" to android:icon="@drawable/globe".
[image: image with no caption]

Remember to give thanks for free stuff; in this case I thank Open
 Clipart Library contributor “jhnri4.”

See Also

Recipe 1.4; http://developer.android.com/guide/practices/ui_guidelines/icon_design_launcher.html;
 http://www.openclipart.org; http://www.getpaint.net; http://www.inkscape.org; http://www.gimp.org

6.12. Using Nine Patch Files

Daniel Fowler

Problem

When designing a user interface you want to change the default
 view backgrounds to fit in with an app’s overall style. The
 backgrounds must be able to scale correctly for variously sized
 views.

Solution

Use Android’s Nine Patch files to provide support for scaling of
 backgrounds as view sizes change.

Discussion

In the following picture the word Text has a background that is a
 rounded rectangle (a black border with a gray background). The rectangle
 has then been uniformly scaled to fit in Longer Text. As a result of
 scaling, the corners and vertical edges have been distorted to give the
 rounded rectangle an unbalanced look. Compare that to the second Longer
 Text where the background has maintained its balance.
[image: image with no caption]

To correctly scale the background, selected parts of the image are
 scaled in a particular direction or not scaled at all. Which parts are
 scaled and in which direction are shown in this diagram.
[image: image with no caption]

The X indicates that corners are not scaled, the vertical edges
 are scaled vertically, the horizontal edges are scaled horizontally, and
 the central area is scaled in both directions. Hence the name Nine
 Patch:
4 corners +
2 vertical edges +
2 horizontal edges +
1 central area

9 areas (patches) in total

In the following example, the default black border and gray
 gradient background of an EditText is
 replaced with a solid turquoise background with a black border. The
 required rounded rectangle is drawn in a graphics program (such as
 GIMP, http://www.gimp.org, or
 Paint.NET, http://www.getpaint.net/). The rectangle is drawn as
 small as possible (resembling a circle) to support small views. There is
 a 1-pixel border and transparent background. A version of the rectangle
 with an orange border is drawn to support focus indication used with
 keypad navigation.
[image: image with no caption]

Android needs to know which proportion of the vertical and
 horizontal edges need to be scaled, as well as where the view content
 sits in relation to the background. These factors are determined from
 indicators drawn within the image. To apply these indicators the
 draw9patch program supplied in the Android SDK tools folder is used.
 Start the program and open the background image (drag and drop it onto
 the draw9patch dialog). The program will expand the image by one pixel
 all around. It is on this extra 1-pixel edging that indicator lines are
 drawn. Enlarge the image using the Zoom slider. In the lefthand and top
 edges, draw the indicator lines to mark which of the vertical and
 horizontal pixels can be duplicated for scaling. In the righthand and
 bottom edges, draw the indicator lines to show where content can be
 positioned.
[image: image with no caption]

The following diagram shows the right and bottom markers for
 content placement. If content does not fit in the indicated rectangle,
 the background image is stretched using the area shown by the left and
 top markers.
[image: image with no caption]

Save the marked-up file in the res/drawable
 folder for a project. Android determines if an image is scaled using
 Nine Patch scaling instead of uniform scaling via the filename; it must
 have .9 before the .png file
 extension. For example, an image file named
 turquoise.png would be named
 turquoise.9.png. To use the background image,
 reference it in a layout, android:background="@drawable/turquoise". If
 you are also using another image to indicate view focus, use a selector
 file—for example, save this XML file in the
 drawable folder as
 selector.xml:
<?xml version="1.0" encoding="utf-8"?>
 <selector xmlns:android="http://schemas.android.com/apk/res/android">
 <item android:state_focused="true"
 android:drawable="@drawable/turqfocus" />
 <item android:drawable="@drawable/turquoise" />
 </selector>
Reference this as android:background="@drawable/selector".
[image: image with no caption]

Notice that the new view background is using a little less space
 than the default (this is useful to know if a project needs a little bit
 more screen area).
Nine Patch files are not restricted to simple view backgrounds.
 This Nine Patch file is used to frame a photograph.
[image: image with no caption]

Notice how the left and top scaling indicators are split where
 detail that must not be scaled (because it would distort) is located.
[image: image with no caption]

See Also

http://developer.android.com/guide/topics/graphics/2d-graphics.html#nine-patch

6.13. Creating HTML5 Charts with Android RGraph

Wagied Davids

Problem

You need to visualize data in a chart and be able to interact with the
 plot/chart via JavaScript.

Solution

As an alternative to creating Android charts in pure Java, create
 charts using RGraph, an HTML5 JavaScript charts library.
Note
RGraph uses the HTML5 Canvas component, which is not
 accommodated in the webkit packaged with Android 1.5. RGraph works
 nicely and has been tested with Android 2.1 and later.

Discussion

To create a chart with RGraph, follow these steps:
	Create an assets directory for HTML files; Android internally
 maps it to file:///android_asset/ (note the
 triple slash and singular spelling of “asset”).

	Copy rgraphview.html (see Example 6-19) into it:
 res/assets/rgraphview.html.

	Create a JavaScript directory:
 res/assets/RGraph.

	Create the layout (Example 6-20) and the
 activity (Example 6-21) as in any other Android
 project.

Example 6-19 shows the HTML using the RGraph
 library. Figure 6-21
 shows the RGraph output.
Example 6-19. HTML using the RGraph library
<html>
<head>
<title>RGraph: HTML5 canvas graph library - pie chart</title>

 <script src="RGraph/libraries/RGraph.common.core.js" ></script>
 <script src="RGraph/libraries/RGraph.common.annotate.js" ></script>
 <script src="RGraph/libraries/RGraph.common.context.js" ></script>
 <script src="RGraph/libraries/RGraph.common.tooltips.js" ></script>
 <script src="RGraph/libraries/RGraph.common.zoom.js" ></script>
 <script src="RGraph/libraries/RGraph.common.resizing.js" ></script>
 <script src="RGraph/libraries/RGraph.pie.js" ></script>

 <script>
 window.onload = function ()
 {
 /**
 * These are not angles - these are values.
 * The appropriate angles are calculated
 */
 var pie1 = new RGraph.Pie('pie1', [41,37,16,3,3]); // Create the pie object
 pie1.Set('chart.labels', ['MSIE 7 (41%)', 'MSIE 6 (37%)',
 'Firefox (16%)', 'Safari (3%)', 'Other (3%)']);
 pie1.Set('chart.gutter', 30);
 pie1.Set('chart.title', "Browsers (tooltips, context, zoom)");
 pie1.Set('chart.shadow', false);
 pie1.Set('chart.tooltips.effect', 'contract');
 pie1.Set('chart.tooltips', [
 'Internet Explorer 7 (41%)',
 'Internet Explorer 6 (37%)',
 'Mozilla Firefox (16%)',
 'Apple Safari (3%)',
 'Other (3%)'
]
);
 pie1.Set('chart.highlight.style', '3d'); // 2d or 3d; defaults to 3d anyway

 if (!RGraph.isIE8()) {
 pie1.Set('chart.zoom.hdir', 'center');
 pie1.Set('chart.zoom.vdir', 'up');
 pie1.Set('chart.labels.sticks', true);
 pie1.Set('chart.labels.sticks.color', '#aaa');
 pie1.Set('chart.contextmenu', [['Zoom in', RGraph.Zoom]]);
 }

 pie1.Set('chart.linewidth', 5);
 pie1.Set('chart.labels.sticks', true);
 pie1.Set('chart.strokestyle', 'white');
 pie1.Draw();

 var pie2 = new RGraph.Pie('pie2', [2,29,45,17,7]); // Create the pie object
 pie2.Set('chart.gutter', 45);
 pie2.Set('chart.title', "Some data (context, annotatable)");
 pie2.Set('chart.linewidth', 1);
 pie2.Set('chart.strokestyle', '#333');
 pie2.Set('chart.shadow', true);
 pie2.Set('chart.shadow.blur', 3);
 pie2.Set('chart.shadow.offsetx', 3);
 pie2.Set('chart.shadow.offsety', 3);
 pie2.Set('chart.shadow.color', 'rgba(0,0,0,0.5)');
 pie2.Set('chart.colors', ['red', 'pink', '#6f6', 'blue', 'yellow']);
 pie2.Set('chart.contextmenu', [['Clear',
 function () {RGraph.Clear(pie2.canvas); pie2.Draw();}]]);
 pie2.Set('chart.key', ['John (2%)', 'Richard (29%)',
 'Fred (45%)', 'Brian (17%)', 'Peter (7%)']);
 pie2.Set('chart.key.background', 'white');
 pie2.Set('chart.key.shadow', true);
 pie2.Set('chart.annotatable', true);
 pie2.Set('chart.align', 'left');
 pie2.Draw();
 }
 </script>
</head>
<body>

 <div style="text-align: center">
 <canvas id="pie1" width="420" height="300">[No canvas support]</canvas>
 <canvas id="pie2" width="440" height="300">[No canvas support]</canvas>
 </div>

</body>
</html>

[image: RGraph output]

Figure 6-21. RGraph output

Example 6-20. The main.xml file
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="horizontal"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:background="#FFFFFF">

 <WebView
 android:id="@+id/webview"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 </WebView>
</LinearLayout>

Example 6-21. The main activity
import android.app.Activity;
import android.os.Bundle;
import android.webkit.WebChromeClient;
import android.webkit.WebSettings;
import android.webkit.WebView;
import android.webkit.WebViewClient;

public class Main extends Activity
 {

 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 // Obtain reference to the WebView holder
 WebView webview = (WebView) this.findViewById(R.id.webview);

 // Get the settings
 WebSettings webSettings = webview.getSettings();

 // Enable JavaScript for user interaction clicks
 webSettings.setJavaScriptEnabled(true);

 // Display Zoom Controls
 webSettings.setBuiltInZoomControls(true);
 webview.requestFocusFromTouch();

 // Set the client
 webview.setWebViewClient(new WebViewClient());
 webview.setWebChromeClient(new WebChromeClient());

 // Load the URL
 webview.loadUrl("file:///android_asset/rgraphview.html");
 }

 }

Source Download URL

The source code for this example is in the Android Cookbook repository at http://github.com/AndroidCook/Android-Cookbook-Examples,
 in the subdirectory RGraphDemo (see Getting and Using the Code Examples).

6.14. Adding a Simple Raster Animation

Daniel Fowler

Problem

You need to add an animated image to a screen.

Solution

Android has good support for user interface animation; it is easy
 to sequence images using the AnimationDrawable
 class.

Discussion

To create the animation, first the images to be sequenced are
 generated using a graphics program. Each image represents one frame of
 the animation; the images will usually be the same size, with changes
 between each frame as required.
This animation recipe will sequence some traffic light images. The
 images can be generated using the open source vector graphics program
 Inkscape (see http://inkscape.org). A copy of the
 image used is available from the Open Clipart Library (http://www.openclipart.org/);
 search for “Traffic Lights Turned Off,” select the image, click on the
 View SVG button, and save the file from your browser. Open the file in
 Inkscape.
The animation will comprise four images showing the sequence of
 traffic lights as used in the United Kingdom: red, red and yellow,
 green, yellow, and back to red. The SVG image has all the lights
 available—they are just hidden behind a translucent circle. To generate
 the first image select the circle covering the red light and delete it.
 Then from the Edit menu use Select All to highlight the whole image.
 Using the File menu, select Export Bitmap. In the Export Bitmap dialog,
 under “Bitmap size,” enter 150 in the Height box, and choose a directory
 and filename for the file to be generated—for example,
 red.png. Click the Export button to export the
 bitmap. Delete the circle covering the yellow light, click Select All
 again, and export as before to a file; for example,
 red_yellow.png. Use the Edit menu and choose Undo
 (twice) to cover the red light and yellow light, and then delete the
 circle covering the green light. Export to
 green.png. Again use undo to cover the green light
 and delete the circle covering the yellow light. Export the bitmap to
 yellow.png (see Figure 6-22).
[image: The Export Bitmap dialog]

Figure 6-22. The Export Bitmap dialog

Four files are now ready for the animation.
[image: image with no caption]

Start an Android project. Copy the four generated files into the
 res/drawable directory. An animation-list needs to be defined in the same
 directory. Create a new file in res/drawable called
 uktrafficlights.xml. In this new file add the
 following:
<?xml version="1.0" encoding="utf-8"?>
<animation-list xmlns:android="http://schemas.android.com/apk/res/android"
 android:oneshot="false">
 <item android:drawable="@drawable/red" android:duration="2000" />
 <item android:drawable="@drawable/red_yellow" android:duration="2000" />
 <item android:drawable="@drawable/green" android:duration="2000" />
 <item android:drawable="@drawable/yellow" android:duration="2000" />
</animation-list>
This lists the images to be animated in the order of the animation
 and how long each one needs to be displayed (in milliseconds). If the
 animation needs to stop after running through the images, the attribute
 android:oneshot is set to true.
In the layout file for the program an ImageView is added
 whose source is given as @drawable/uktrafficlights
 (i.e., pointing to the created file):
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <ImageView android:id="@+id/imageView1"
 android:src="@drawable/uktrafficlights"
 android:layout_height="wrap_content"
 android:layout_width="wrap_content"/>
</LinearLayout>
In the Activity class an AnimationDrawable (the Android class that performs the animation) is declared. In
 onCreate it is assigned to the
 Drawable that the ImageView
 uses. Finally, the animation is started by calling the
 AnimationDrawable start() method (there is a stop() method available to end the animation
 if required). The start method is called in onWindowFocusChanged to ensure that everything has loaded before the animation
 starts (it could easily have been started with a button or other type of
 input). Example 6-22 shows the code for the main
 activity.
Example 6-22. The main activity
public class main extends Activity {
 AnimationDrawable lightsAnimation;
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 ImageView lights = (ImageView) findViewById(R.id.imageView1);
 lightsAnimation=(AnimationDrawable) lights.getDrawable();
 }
 @Override
 public void onWindowFocusChanged(boolean hasFocus) {
 super.onWindowFocusChanged(hasFocus);
 lightsAnimation.start();
 }
}

Image animations can be useful to add interest to screens and can
 be used in games or cartoons.
[image: image with no caption]

See Also

http://inkscape.org;
 http://www.openclipart.org

6.15. Using Pinch to Zoom

Pratik Rupwal

Problem

You want to use touch capability to change the position of an image
 viewed on the screen, and use pinch-in and pinch-out movements for
 zoom-in and zoom-out operations.

Solution

Scale the image as a matrix to apply transformations to it, to
 show different visual effects.

Discussion

First, a simple ImageView is added inside a FrameLayout in
 main.xml, as shown in the following code:
<?xml version="1.0" encoding="utf-8"?>
<FrameLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent" >
<ImageView android:id="@+id/imageView"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:src="@drawable/nature"
 android:scaleType="matrix" >
</ImageView>
</FrameLayout>
Example 6-23 scales the
 ImageView as a matrix to apply transformations on
 it.
Example 6-23. Touch listener with scaling
import android.app.Activity;
import android.graphics.Bitmap;
import android.graphics.Matrix;
import android.graphics.PointF;
import android.os.Bundle;
import android.util.FloatMath;
import android.util.Log;
import android.view.MotionEvent;
import android.view.View;
import android.view.View.OnTouchListener;
import android.widget.GridView;
import android.widget.ImageView;

public class Touch extends Activity implements OnTouchListener {
private static final String TAG = "Touch";

// These matrixes will be used to move and zoom image
Matrix matrix = new Matrix();
Matrix savedMatrix = new Matrix();

// We can be in one of these 3 states
static final int NONE = 0;
static final int DRAG = 1;
static final int ZOOM = 2;
int mode = NONE;

// Remember some things for zooming
PointF start = new PointF();
PointF mid = new PointF();
float oldDist = 1f;

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 ImageView view = (ImageView) findViewById(R.id.imageView);
 view.setScaleType(ImageView.ScaleType.FIT_CENTER); // make the image fit to the center.
 view.setOnTouchListener(this);
}

public boolean onTouch(View v, MotionEvent event) {
 ImageView view = (ImageView) v;
 // make the image scalable as a matrix
 view.setScaleType(ImageView.ScaleType.MATRIX);
 float scale;

 // Handle touch events here...
 switch (event.getAction() & MotionEvent.ACTION_MASK) {

 case MotionEvent.ACTION_DOWN: //first finger down only
 savedMatrix.set(matrix);
 start.set(event.getX(), event.getY());
 Log.d(TAG, "mode=DRAG");
 mode = DRAG;
 break;
 case MotionEvent.ACTION_UP: //first finger lifted
 case MotionEvent.ACTION_POINTER_UP: //second finger lifted
 mode = NONE;
 Log.d(TAG, "mode=NONE");
 break;
 case MotionEvent.ACTION_POINTER_DOWN: //second finger down
 // calculates the distance between two points where user touched.
 oldDist = spacing(event);
 Log.d(TAG, "oldDist=" + oldDist);
 // minimal distance between both the fingers
 if (oldDist > 5f) {
 savedMatrix.set(matrix);
 // sets the mid-point of the straight line between two points where user touched.
 midPoint(mid, event);
 mode = ZOOM;
 Log.d(TAG, "mode=ZOOM");
 }
 break;

 case MotionEvent.ACTION_MOVE:
 if (mode == DRAG)
 { //movement of first finger
 matrix.set(savedMatrix);
 if (view.getLeft() >= -392)
 {
 matrix.postTranslate(event.getX() - start.x, event.getY() - start.y);
 }
 }
 else if (mode == ZOOM) { //pinch zooming
 float newDist = spacing(event);
 Log.d(TAG, "newDist=" + newDist);
 if (newDist > 5f) {
 matrix.set(savedMatrix);
 //thinking I need to play around with this value to limit it**
 scale = newDist/oldDist;
 matrix.postScale(scale, scale, mid.x, mid.y);
 }
 }
 break;
 }

 // Perform the transformation
 view.setImageMatrix(matrix);

 return true; // indicate event was handled
}

private float spacing(MotionEvent event) {
 float x = event.getX(0) - event.getX(1);
 float y = event.getY(0) - event.getY(1);
 return FloatMath.sqrt(x * x + y * y);
}

private void midPoint(PointF point, MotionEvent event) {
 float x = event.getX(0) + event.getX(1);
 float y = event.getY(0) + event.getY(1);
 point.set(x / 2, y / 2);
}
}

Chapter 7. Graphical User Interface

7.1. Introduction: GUI

Ian Darwin

Discussion

When Android was being invented, its designers faced many choices whose
 outcome would determine the success or failure of their project. Once
 they had rejected all the other smartphone operating systems, both
 closed and open source, and decided to build their own atop the Linux
 kernel, they were faced with somewhat of a blank canvas. One important
 choice was which user interface technology to deploy: Java ME, Swing,
 SWT, or none of the above.
JavaME is
 the Java Micro Edition, Sun/Oracle’s official standard API
 for cell phones and other small devices. Java ME is actually a pretty
 big success story: tens or hundreds of millions of cell phones have a
 Java Micro Edition runtime inside. And every BlackBerry made since
 around 2000, and all BlackBerry smartphone applications in the world
 (before BBX), are based on Java ME. But the Java ME GUI was regarded as
 too limiting, having been designed for the days when cell phones had
 really tiny screens.
Swing
 is the Java Standard Edition (Desktop Java, Java SE, a.k.a. JDK
 or JRE) GUI. It is based atop Java’s earlier widget toolkit (AWT). It
 can make some beautiful GUI
 music in the right hands, but is just too large and uses too
 much overhead for Android.
SWT is the GUI layer developed for use in the Eclipse IDE itself and in Eclipse
 rich clients. It is an abstraction layer, and depends on the underlying
 operating system–specific toolkit (e.g., Win32 in the Microsoft arena,
 GTK under Unix/Linux, etc.).
The final option, and the one ultimately chosen, was to go it
 alone. The Android designers thus built their own GUI toolkit designed
 specifically for smartphones. But they took many good ideas from the
 other toolkits, and learned from the mistakes that had been made along
 the way.
To learn any new GUI framework is, necessarily, a lot of work.
 Making your apps work well in the community of apps for that UI is even
 more work. Recognizing this, Google has set up the Android Design
 site, mainly aimed at Android 4 (Ice Cream Sandwich). Another
 set of guidelines that can help is the Android Patterns site,
 which is not about coding but about showing designers
 how the Android visual experience is supposed to
 work. Illustrated, crowd-sourced, and recommended!
One word of terminological warning: the term
 widget has two distinct meanings. All GUI
 controls such as buttons, labels, and the like are widgets and appear in
 the android.widget package. This package
 also contains the “layout containers” which are like a combination of
 JPanel and LayoutManager in Swing.
 Simple widgets and layouts are subclassed from View,
 so collectively they are often referred to a view. The other kind of
 widget is one that can appear on an Android Home screen; these are now
 called “app widgets” to distinguish them from the basic ones, and are in
 their own package, android.appwidget. This type
 of widget is commonly used for status displays such as news, weather,
 friends/social streams, and the like. We have one recipe on app widgets,
 at the end of this chapter. While we’ll try to use the terms
 widget and app widget
 correctly, you sometimes have to infer from the context which meaning is
 meant.
This chapter covers the main GUI elements in Android. Two
 following chapters cover the all-important ListView
 component and the “things that go bump in your device”: menus, dialogs,
 toasts, and notifications.

7.2. Understanding and Following User Interface Guidelines

Ian Darwin

Problem

Lots of developers, even good ones, are very bad at user interface
 design.

Solution

Use the user interface guidelines. But which ones?

Discussion

UI guidelines have been around almost since Xerox PARC invented
 GUIs in the 1980s and showed them to Microsoft and Apple. A given set of
 guidelines must be appropriate to the platform. General guidelines for
 mobile devices are available from several sources. Android.com publishes
 advice too.
The official Android
 UI Guidelines are probably as good a starting place as any,
 especially if you already have some background in UI design. If not,
 some of the other works discussed in this recipe may help with your
 background understanding of UI design issues.
For some thoughtful UI pattern notes, see http://android-developers.blogspot.com/2010/05/twitter-for-android-closer-look-at.html.
There is an article from Research in Motion that is somewhat
 specific to the BlackBerry platform but may be useful to any mobile
 designer: see http://na.blackberry.com/eng/developers/resources/Newsletter/2010/Featured_Story_Jan_2010.jsp?html.
One of the oldest GUI guides is Microsoft’s The Gui Guide:
 International Terminology for the Windows Interface.
 This was less about UI design than about internationalization; it came
 with a floppy disk (remember those?) containing recommended translations
 for common Microsoft Windows GUI element names into a dozen or so common
 languages. This book is rather dated today.
In the 1980s and 1990s Sun’s user interface development was
 heavily influenced by Xerox PARC, in its Unix OPEN LOOK user interface
 (long defunct) and in the “Java Look and Feel,” respectively. A classic
 but technology-specific work from this time and place is the Java Look and Feel
 Design Guidelines.
A more general work from Sun is Designing Visual
 Interfaces: Communication-Oriented Techniques by
 Muller and Sano. This is a thorough discussion of the design issues,
 mostly from a desktop perspective (Mac, Unix, Windows), but the
 principles spelled out here will be useful in dealing with
 human-computer interaction issues.
Concluding the desktop front is Microsoft’s more recent book
 About Face:
 The Essentials of Interaction Design. Now in its
 third edition, this book was originally written by Alan Cooper, known as the “Father of Visual Basic.”

7.3. Handling Configuration Changes by Decoupling the View from the
 Model

Alex Leffelman

Problem

When your device’s configuration changes (most frequently due to an
 orientation change), your Activity is destroyed and
 re-created, making state information difficult to maintain.

Solution

Decouple your user interface from your data model so that the
 destruction of your Activity doesn’t affect your state
 data.

Discussion

It’s a situation that every Android developer (except those who
 read this part of this book in time) runs into with their very first
 application: “My application works great, but when I change my phone’s
 orientation everything resets!”
By design, when a device’s configuration (read: orientation)
 changes, the Android UI framework destroys the current Activity and re-creates it for the new
 configuration. This enables the designer to optimize the layout for
 different screen orientations and sizes. However, this causes a problem
 for the developer who wishes to maintain the state of the Activity as it was before the orientation
 change destroyed the screen. Attempting to solve this problem can lead
 to many complicated solutions, some more graceful than others. But if we
 take a step back and design our application wisely, we can write
 cleaner, more robust code that makes life easier for everyone.
A graphical user interface (GUI) is exactly what its name
 describes. It is a graphical representation of an underlying data model
 that allows the user to interface with and manipulate the data. It is
 not the data model itself. Let’s talk our way
 through an example to illustrate why that is an important point to
 make.
Consider a tic-tac-toe application. A simple main Activity
 for this would most likely include at bare minimum
 a GridView (with appropriate Adapter) to display the board and a TextView to tell the user whose turn it is.
 When the user clicks a square in the grid, an appropriate X or O is
 placed in that grid cell. As new Android developers, we find it logical
 to also include a two-dimensional array containing a representation of
 the board to store its data so that we can determine if the game is
 over, and if so, who won (see Example 7-1).
Example 7-1. First version of the TicTacToe activity class
public class TicTacToeActivity extends Activity {

 private TicTacToeState[][] mBoardState;

 private GridView mBoard;
 private TextView mTurnText;

 @Override
 public void onCreate(Bundle savedInstanceState) {

 setContentView(R.layout.main);

 mBoardState = new TicTacToeState[3][3];

 mBoard = (GridView)findViewById(R.id.board);
 mTurnText = (TextView)findViewById(R.id.turn_text);

 // ... Set up Adapter, OnClickListeners, etc., for mBoard.
 }
}

This is easy enough to imagine and implement, and everything works
 great. Except that when you turn your phone sideways in the middle of an
 intense round of tic-tac-toe, you have a fresh board staring you in the
 face and your inevitable victory is postponed. As described earlier, the
 UI framework just destroyed your Activity and re-created it, calling onCreate() and resetting the board
 data.
While reading the code in Example 7-1, you might
 have said to yourself, “Hey, that Bundle
 savedInstanceState looks promising!” And you’d be right. For
 this painfully, almost criminally simple example, you could stick your
 board data into a Bundle and use it
 to reload your screen. There’s even a pair of methods, onRetainNonConfigurationInstance() and
 getLastNonConfigurationInstance(),
 that let you pass any Object you want from your old, destroyed
 Activity, to your newly created one.
 For this example you could just pass your mBoardState array to your new Activity and you’d be all set. But we’re going
 to write big, successful, amazing apps any day now, and that just
 doesn’t scale well with complicated interfaces. We can do better!
This is why separating your GUI from your data model is so handy.
 Your GUI can be destroyed, re-created, and changed, but the underlying
 data can survive unharmed through as many UI changes as you can throw at
 it. Let’s separate our game state out into a separate data class (see
 Example 7-2).
Example 7-2. The TicTacToe class divided
public class TicTacToeGame {

 private TicTacToeState[][] mBoardState;

 public TicTacToeGame() {
 mBoardState = new TicTacToeState[3][3];
 // ... Initialize
 }

 public TicTacToeState getCellState(int row, int col) {
 return mBoardState[row][col];
 }
 public void setCellState(int row, int col, TicTacToeState state) {
 mBoardState[row][col] = state;
 }

 // ... Other utility methods to determine whose turn it is, if the game is over, etc.
}

This will not only help us maintain our application state, but
 it’s generally just good object-oriented design.
Now that we have our data safely outside of the volatile Activity, how do we access it to build our
 interface? There are two common approaches: 1) declare all variables in
 TicTacToeGame as static, and access them through static
 methods; 2) design TicTacToeGame as a
 singleton, allowing access to one global instance to be used throughout
 our application.
I prefer the second option purely from a design preference
 perspective. We can turn TicTacToeGame into a singleton by making the
 constructor private and adding the
 following lines to the top of the class:
private static TicTacToeGame instance = new TicTacToeGame();
public static TicTacToeGame getInstance() {
 return instance;
};
Now all we have to do is to obtain the game data, and set our UI
 elements to appropriately display the data. It’s most useful to wrap
 this in its own function—refreshUI(),
 perhaps—so that it can be used whenever your Activity makes a change to the data. For
 example, when a user clicks a cell of the board, there need only be two
 lines of code in the listener: one call to modify the data model (via
 our TicTacToeGame singleton), and one
 call to refresh the UI.
It may be obvious, but it is worth mentioning that your data
 classes survive only as long as your application’s process is running.
 If it is killed by the user or the system, naturally the data is lost.
 That situation necessitates more persistent storage through the
 filesystem or databases and is outside the scope of this recipe.
This approach very effectively decouples your visual
 representation of the data from the data itself, and makes orientation
 changes trivial. Simply calling refreshUI() in your onCreate(Bundle) method is enough to ensure
 that whenever your Activity is
 destroyed and re-created, it can access the data model and display
 itself correctly. And as an added bonus, you’re now practicing better
 object-oriented design and will see your code base become cleaner, more
 scalable, and easier to maintain.

7.4. Creating a Button and Its Click Event Listener

Ian Darwin

Problem

You need to do something when the user presses a button.

Solution

Create a button in your layout. In onCreate(),
 find it by ViewID. Call its
 setOnClickListener(). In the
 OnClickListener implementation, check for the
 ViewID (if the listener might be used for more than
 one event source) and perform the relevant action.

Discussion

Creating a button in your layout is simple. Assuming an XML
 layout:
<Button android:id="@+id/start_button"
 android:text="@string/start_button_label"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"/>
In your activity’s onCreate()
 method, find the button by its ViewID (in this
 example, R.id.start_button). Call its
 onClickListener() method with an
 OnClickListener.
In the OnClickListener implementation, check
 for the ViewID and perform the relevant
 action:
public class Main extends Activity implements OnClickListener {
 public void onCreate() {
 startButton = findViewById(R.id.start_button);
 startButton.setOnClickListener(this);
 ...
 }

 @Override
 public void onClick(View v) {
 switch (v.getId()) {
 case R.id.start_button:
 // Start whatever it is the start button starts...
 ...
 case R.id.some_other_button:
 // etc.
 }
 }
}
Any experienced Java programmer would expect to use an anonymous
 inner class for the onClickListener,
 as has been done in AWT and Swing since Java 1.1. Due to efficiency,
 early Android documentation recommended against this, simply having the
 Activity implement OnClickListener and checking the
 ViewID (i.e., the Java 1.0 way of doing things). As
 with Swing, however, the power of devices has gotten much faster, and
 such old-style ways of doing things are becoming less popular, though
 you will still see both styles in use for some time.

7.5. Wiring Up an Event Listener in Five Different Ways

Daniel Fowler

Problem

You need to be familiar with the different ways to code event handlers,
 both to know when to use which approach and because you will come across
 the various methods in this Cookbook and elsewhere.

Solution

When writing software, very rarely is there only one way to do
 things. This is true when wiring up View events; five
 methods are shown in this recipe.

Discussion

When a View fires an event an application will not respond to it unless it is
 listening for it. To detect the event a class that implements a listener
 is instantiated and assigned to the View. Take, for
 example, the onClick event, the most
 widely used event in Android apps. Nearly every View
 that can be added to an app screen will fire the event when the user
 presses it with her finger (on touch screens) or presses the
 trackpad/trackball when the View has focus. This
 event is listened to by a class implementing the OnClickListener
 interface. The class instance is then assigned to the required
 View using the View’s setOnClickListener method. In the
 HandleClick inner class in Method 1. The Member class an Activity sets the text of a TextView (textview1) when a
 Button (button1)
 is pressed.
Method 1. The Member class

A nested class called HandleClick
 implementing OnClickListener is
 declared as a member of the Activity (main). This is
 useful when several listeners require similar processing that can be
 handled by a single class.
Example 7-3. The Member class
public class Main extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 //attach an instance of HandleClick to the Button
 findViewById(R.id.button1).setOnClickListener(new HandleClick());
 }
 private class HandleClick implements OnClickListener{
 public void onClick(View arg0) {
 Button btn = (Button)arg0; //cast view to a button
 // get a reference to the TextView
 TextView tv = (TextView) findViewById(R.id.textview1);
 // update the TextView text
 tv.setText("You pressed " + btn.getText());
 }
 }
}

Method 2. The Interface type

In Java an Interface can be used as a type. A variable is declared as an OnClickListener and assigned using new OnClickListener(){...}, while behind the
 scenes Java is creating an object (an anonymous class) that implements
 OnClickListener. This has similar
 benefits to the first method (see Example 7-4).
Example 7-4. The Interface type
public class Main extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 //use the handleClick variable to attach the event listener
 findViewById(R.id.button1).setOnClickListener(handleClick);
 }
 private OnClickListener handleClick = new OnClickListener(){
 public void onClick(View arg0) {
 Button btn = (Button)arg0;
 TextView tv = (TextView) findViewById(R.id.textview1);
 tv.setText("You pressed " + btn.getText());
 }
 };
}

Method 3. The anonymous inner class

Declaring the OnClickListener
 within the call to the setOnClickListener method is common. This
 method is useful when each listener does not have functionality that
 could be shared with other listeners. Some novice developers find this
 type of code difficult to understand. Again, behind the scenes for
 new OnClickListener(){...} Java is
 creating an object that implements the interface (see Example 7-5).
Example 7-5. The anonymous inner class
public class Main extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 findViewById(R.id.button1).setOnClickListener(new OnClickListener(){
 public void onClick(View arg0) {
 Button btn = (Button)arg0;
 TextView tv = (TextView) findViewById(R.id.textview1);
 tv.setText("You pressed " + btn.getText());
 }
 });
 }
}

Method 4. Implementation in Activity

The Activity itself can implement the
 OnClickListener. Since the
 Activity object (main) already
 exists, this saves a small amount of memory by not requiring another
 object to host the onClick method.
 It does make public a method that is unlikely to be used elsewhere.
 Implementing multiple events will make the declaration of
 main long (see Example 7-6).
Example 7-6. Implementation in Activity
public class main extends Activity implements OnClickListener{
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 findViewById(R.id.button1).setOnClickListener(this);
 }
 public void onClick(View arg0) {
 Button btn = (Button)arg0;
 TextView tv = (TextView) findViewById(R.id.textview1);
 tv.setText("You pressed " + btn.getText());
 }
}

Method 5. Attribute in View layout for OnClick events

In Android 1.6 and later (API level 4 and upward) the name of a
 method defined in the Activity can be assigned to
 the android:onClick attribute
 in a layout file (see Example 7-7).
 This can save you from having to write a lot of boilerplate
 code.
Example 7-7. Class named in manifest
public class Main extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 }
 public void HandleClick(View arg0) {
 Button btn = (Button)arg0;
 TextView tv = (TextView) findViewById(R.id.textview1);
 tv.setText("You pressed " + btn.getText());
 }
}

In the layout file the Button would be
 declared with the android:onClick
 attribute.
<Button android:id="@+id/button1"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Button 1"
 android:onClick="HandleClick"/>
The first four methods of handling events can be used with other
 event types (onLongClick, onKey, onTouch, onCreateContextMenu, onFocusChange). The fifth method, described in this subsection, only applies to
 the onClick event. The layout file
 in Example 7-8 declares an additional two buttons;
 using the android:onClick
 attribute, no additional code is required than that defined earlier;
 that is, no additional findViewById
 and setOnClickListener for each
 button is required. This should appear as in Figure 7-1.
Example 7-8. Multiple uses of android:onClick
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <TextView android:id="@+id/textview1"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Click a button."
 android:textSize="20dp"/>
 <LinearLayout android:orientation="horizontal"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content">
 <Button android:id="@+id/button1"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Button 1"
 android:onClick="HandleClick"/>
 <Button android:id="@+id/button2"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Button 2"
 android:onClick="HandleClick"/>
 <Button android:id="@+id/button3"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Button 3"
 android:onClick="HandleClick"/>
 </LinearLayout>
</LinearLayout>

[image: OnClick event from android:onClick]

Figure 7-1. OnClick event from android:onClick

Deciding which technique to use to wire up a listener will
 depend on the functionality required, how much code is reusable across
 Views and how easy the code would be to understand
 by future maintainers. Ideally the code should be succinct and easy to
 view.
One method not shown here is similar to the first method. In the
 first method it would be possible to save the listener class in a
 different class file as a public class. Then instances of that public
 class could be used by other activities, passing the activity’s
 context in via the constructor. However, activities should try to stay
 self-contained in case they are killed by Android. Sharing listeners
 across activities is against the ideals of the Android platform and
 could lead to unnecessary complexity passing references between the
 public classes.

7.6. Using CheckBoxes and RadioButtons

Blake Meike

Problem

You want to offer the user a set of choices that is more limited than a
 list.

Solution

Use CheckBoxes,
 RadioButtons, or Spinners as
 appropriate.

Discussion

These views are probably familiar to you from other user
 interfaces. They allow the user to choose from multiple options.
 Checkboxes are typically used when you want to offer multiple selections
 with a yes/no or true/false choice for each. Radio buttons are used when
 only one choice is allowed at a time.
[image: A checkbox and three radio buttons]

Figure 7-2. A checkbox and three radio buttons

Spinners are similar to combo boxes in some GUI frameworks, and
 are covered in Recipe 7.8.
 Android has adapted these familiar components to make them more useful
 in a touch-screen environment. Figure 7-2 shows the three types of
 multiple-choice views laid out on an Android application, with the
 spinner pulled down to show the options. The layout XML file that
 created the screen in the figure looks like this:
 <?xml version="1.0" encoding="utf-8"?>
 <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <CheckBox
 android:id="@+id/cbxBox1"
 android:layout_width="20dp"
 android:layout_height="20dp"
 android:checked="false"
 />
 <TextView
 android:id="@+id/txtCheckBox"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="CheckBox: Not checked"
 />
 <RadioGroup
 android:id="@+id/rgGroup1"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:orientation="vertical">
 <RadioButton android:id="@+id/RB1" android:text="Button1" />
 <RadioButton android:id="@+id/RB2" android:text="Button2" />
 <RadioButton android:id="@+id/RB3" android:text="Button3" />
 </RadioGroup>
 <TextView
 android:id="@+id/txtRadio"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="RadioGroup: Nothing picked"
 />
 <Spinner
 android:id="@+id/spnMusketeers"
 android:layout_width="250dp"
 android:layout_height="wrap_content"
 android:layout_centerHorizontal="true"
 android:layout_marginTop="2dp"
 />
 </LinearLayout>
The XML file just lists each view we want on the screen along with
 the attributes we want. A RadioGroup is really a
 ViewGroup, so it contains the appropriate RadioButton
 Views. Example 7-9 is the Java file that
 responds to user clicks.
Example 7-9. The Chooser examples
package com.oreilly.select;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import com.google.android.maps.GeoPoint;
import android.app.Activity;
import android.os.Bundle;
import android.util.Log;
import android.view.View;
import android.widget.AdapterView;
import android.widget.ArrayAdapter;
import android.widget.CheckBox;
import android.widget.RadioButton;
import android.widget.RadioGroup;
import android.widget.Spinner;
import android.widget.TextView;
import android.widget.AdapterView.OnItemSelectedListener;

public class SelectExample extends Activity {
 private CheckBox checkBox;
 private TextView txtCheckBox, txtRadio;
 private RadioButton rb1, rb2, rb3;
 private Spinner spnMusketeers;

 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 checkBox = (CheckBox) findViewById(R.id.cbxBox1);
 txtCheckBox = (TextView) findViewById(R.id.txtCheckBox);
 txtRadio = (TextView) findViewById(R.id.txtRadio);
 rb1 = (RadioButton) findViewById(R.id.RB1);
 rb2 = (RadioButton) findViewById(R.id.RB2);
 rb3 = (RadioButton) findViewById(R.id.RB3);
 spnMusketeers = (Spinner) findViewById(R.id.spnMusketeers);
 // React to events from the CheckBox
 checkBox.setOnClickListener(new CheckBox.OnClickListener() {
 public void onClick(View v){
 if (checkBox.isChecked()) {
 txtCheckBox.setText("CheckBox: Box is checked");
 }
 else
 {
 txtCheckBox.setText("CheckBox: Not checked");
 }
 }
 });
 // React to events from the RadioGroup
 rb1.setOnClickListener(new RadioGroup.OnClickListener() {
 public void onClick(View v){
 txtRadio.setText("Radio: Button 1 picked");
 }
 });
 rb2.setOnClickListener(new RadioGroup.OnClickListener() {
 public void onClick(View v){
 txtRadio.setText("Radio: Button 2 picked");
 }
 });
 rb3.setOnClickListener(new RadioGroup.OnClickListener() {
 public void onClick(View v){
 txtRadio.setText("Radio: Button 3 picked");
 }
 });
 // Set up the Spinner entries
 List<String> lsMusketeers = new ArrayList<String>();
 lsMusketeers.add("Athos");
 lsMusketeers.add("Porthos");
 lsMusketeers.add("Aramis");
 ArrayAdapter<String> aspnMusketeers =
 new ArrayAdapter<String>(this, android.R.layout.simple_spinner_item,
 lsMusketeers);
 aspnMusketeers.setDropDownViewResource
 (android.R.layout.simple_spinner_dropdown_item);
 spnMusketeers.setAdapter(aspnMusketeers);
 // Set up a callback for the spinner
 spnMusketeers.setOnItemSelectedListener(
 new OnItemSelectedListener() {
 public void onNothingSelected(AdapterView<?> arg0) { }
 public void onItemSelected(AdapterView<?> parent, View v,
 int position, long id) {
 // Code that does something when the Spinner value changes
 }
 });
 }
}

These Views work as follows:
	CheckBox
	The CheckBox View takes care of flipping
 its state back and forth and displaying the appropriate check mark
 when the state is true. All you have to do is
 to create an OnClickListener to catch click events, and you can add whatever code
 you want to react.

	RadioGroup
	As mentioned earlier, the RadioGroup View is really a
 ViewGroup that contains any number of
 RadioButton Views. The user can select only one
 of the buttons at a time, and you capture the selections by
 setting OnClickListeners for each
 RadioButton. Note that clicking on one of the
 RadioButtons does not fire a click event for
 the RadioGroup.

Taken together, these three Views let you
 provide a short set of choices and have the user select one or multiple
 choices from those offered.

7.7. Enhancing UI Design Using Image Buttons

Rachee Singh

Problem

You want to enhance your UI design, but without adding a lot of
 descriptive text.

Solution

Use an image button. This requires less effort than a text view
 with descriptive text, since an image can explain the scenario much
 better than a lot of words can.

Discussion

Making your own image buttons requires defining the
 characteristics of the button as an XML file that should be placed in
 /res/drawable. This XML specifies the three states
 of an image button:
	Pressed state

	Focused state

	Some other state

For instance:
<?xml version="1.0" encoding="utf-8"?>
<selector xmlns:android="http://schemas.android.com/apk/res/android">
 <item android:drawable="@drawable/play_pressed"
 android:state_checked="true" />
 <item android:drawable="@drawable/play" />
</selector>
So, for each of these states, the ID of an image is specified (the
 image present in /res/drawable as a
 .png file). When the button is pressed, the
 play_pressed image is displayed. There are two such
 buttons in the application: the play button and the settings button. In
 the .java file of the application,
 onClick aspect of the buttons can be taken care of.
 In this recipe, merely a toast is displayed with some appropriate text.
 Programmers can start a new activity from here or broadcast an intent
 and many other things based on their requirements.
Figure 7-3 shows the Play button not
 pressed, and Figure 7-4 shows the Play button
 pressed.
[image: Play button not pressed]

Figure 7-3. Play button not pressed

[image: Play button pressed]

Figure 7-4. Play button pressed

Source Download URL

You can download the source code for this example from https://docs.google.com/leaf?id=0B_rESQKgad5LYTVjZGMzZmItNDYzNC00YmRmLTlkMTktOTIzNTM0NzVmMDQ2&hl=en_US.
[image: image with no caption]

7.8. Offering a Drop-Down Chooser via the Spinner Class

Ian Darwin

Problem

You want to offer a drop-down choice item.

Solution

Use a Spinner object; you can pass the list of
 selections as an Adapter.

Discussion

Generally known as a combo box, the Spinner is
 the analog of the HTML SELECT or the Swing
 JComboBox. It provides a drop-down chooser whose
 values appear to float over the screen when the spinner is clicked. One
 item can be selected and the floating version will pop down, displaying
 the selection in the spinner (see Figure 7-5).
Like all standard components, the spinner can be created and
 customized in XML. In this example, the term
 context is used to indicate when a patient’s
 blood pressure reading was taken (after breakfast, after lunch, etc.), so that
 the health care practitioner can understand the value in
 context of the patient’s day. Here is an excerpt from
 res/layout/main.xml:
<Spinner android:id="@+id/contextChooser"
 android:layout_height="wrap_content"
 android:layout_width="wrap_content"
 android:prompt="@string/context_choice"/>
Ideally the list of values won’t be hardcoded but will come from a
 resource file, so as to be internationalizable. Here is the file
 res/values/contexts.xml containing the XML values
 for the list of times to choose:
[image: Spinner (drop-down) demonstration]

Figure 7-5. Spinner (drop-down) demonstration

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string name="context_choice">When Reading Taken</string>
 <string-array name="context_names">
 <item>Breakfast</item>
 <item>Lunch</item>
 <item>Dinner</item>
 <item>Snack</item>
 </string-array>
</resources>
To tie the list of strings to the Spinner at
 runtime, just locate the Spinner and set the values,
 as shown here:
Spinner contextChooser = (Spinner) findViewById(R.id.contextChooser);
ArrayAdapter<CharSequence> adapter = ArrayAdapter.createFromResource(
 this, R.array.context_names, android.R.layout.simple_spinner_item);
 adapter.setDropDownViewResource(
 android.R.layout.simple_spinner_dropdown_item);
 contextChooser.setAdapter(adapter);
That is all you need in order for the spinner to appear, and to
 allow the user to select items (see Figure 7-5). If you want to know the chosen
 value right away, you can send an instance of
 OnItemSelectedListener to the
 Spinner’s
 setOnItemSelectedListener. This interface has two callback methods,
 setItemSelected and
 setNothingSelected. Both are called with the
 Spinner (but the argument is declared as a
 ViewAdapter); the former method is called with two
 integer arguments, the list position and the identity of the selected
 item.
 contextChooser.setOnItemSelectedListener(new OnItemSelectedListener() {

 @Override
 public void onItemSelected(AdapterView<?> spinner, View arg1,
 int pos, long id) {
 Toast.makeText(SpinnerDemoActivity.this,
 "You selected " + contextChooser.getSelectedItem(),
 Toast.LENGTH_LONG).show();
 }

 @Override
 public void onNothingSelected(AdapterView<?> spinner) {
 Toast.makeText(SpinnerDemoActivity.this,
 "Nothing selected.", Toast.LENGTH_LONG).show();
 }
 });
On the other hand, you may not need the value from the
 Spinner until the user fills in multiple items and
 clicks a button. In this case, you can simply call the Spinner’s
 getSelectedItem() method, which returns the item
 placed in that position by the Adapter. Assuming you
 placed strings in the list, you can just call toString() to get back the
 given String value.

7.9. Handling Long-Press/Long-Click Events

Ian Darwin

Problem

You want to listen for long-press/long-click events and react to them,
 without having to manually check for multiple events.

Solution

In Android 3.0 and later, you can use the View class’s
 setLongClickable() and
 setOnLongClickListener() methods, and provide an
 OnLongClickListener.

Discussion

Handling long-press events was problematic before the Android
 Honeycomb release. Recipe 16.15 shows how to handle a
 long-press by collapsing multiple events into a single event. This
 method is a bit dodgy, so in version 3.0 explicit support was added; the
 View class now has
 setLongClickable(boolean) to enable/disable
 long-click support, and the corresponding
 setOnLongClickListener(OnLongClickListener) methods.
 In this example we listen for long clicks on a View,
 and respond by popping up a PopupMenu, which will be
 modal, and will appear in front of the
 ListView.
 final View myView = findViewById(R.id.myView);
 ...
 myView.setOnLongClickListener(new OnLongClickListener() {
 @Override
 public boolean onLongClick(View view) {
 PopupMenu p = new PopupMenu(Main.this, view);
 p.getMenuInflater().inflate(
 R.layout.main_popup_menu, p.getMenu());
 p.show();
 return true;
 }
 });
>
The pop-up menu will be dismissed when you click one of its items;
 the list of menu items comes from the XML file
 res/menu/main_popup_menu.xml, which just contains a
 series of item elements with the text
 for the menu items.
Note that calling setOnLongClickListener() has
 the side effect of calling
 setLongClickEnabled(true).
Note also that adding an onClickListener to a
 ListView (or other multi-item view) does not work as
 you might expect; the list items simply get dispatched as per a normal
 click. Instead, you must use the
 setOnItemLongClickListener method which takes,
 unsurprisingly, an instance of OnItemLongClickListener(), which
 will be invoked when you long-press on an item in the list.
In fact, you can even simplify this for a
 ListView by preinflating your menu and passing it to
 the Activity’s setContextMenu(view,
 menu) method.

Source Download URL

The source code for this example is in the Android Cookbook repository at http://github.com/AndroidCook/Android-Cookbook-Examples,
 in the subdirectory ListViewDemos (see Getting and Using the Code Examples).

7.10. Displaying Text Fields with TextView and EditText

Ian Darwin

Problem

You want to display text on the screen, either read-only or
 editable.

Solution

Use a TextView when you want the user to have
 read-only access to text; this includes what most other GUI API packages
 call a Label, there being no explicit
 Label class in android.widget. Use
 an EditText when you want the user to have read-write
 access to text; this includes what other packages may call a
 TextField or a TextArea.

Discussion

EditText is a direct subclass of
 TextView. Note that EditText has
 many direct and indirect subclasses, many of which are GUI controls in
 their own right, such as CheckBox,
 RadioButton, and the like. A further subclass is
 the AutoCompleteTextView which, as the
 name implies, allows for auto-completion when the user types the first
 few letters of some data item. As with the recipes in Chapter 9, there is an Adapter to provide the completable text
 items.
Placing an EditText or
 TextView is trivial using the XML layout. Assigning
 the initial values to be displayed is also simple using XML. It is
 possible to set the value directly using the following:
<TextView android:text="Welcome!"/>
However, it is preferable to use a value like
 “@+string/welcome_text” and define the string in
 strings.xml so that it can be changed and
 internationalized more readily.
Since TextView and EditText
 are used throughout this book, we do not have a sample application that
 uses them. One is provided with the Android API Examples, called LabelView, if you need
 it.

7.11. Constraining EditText Values with Attributes and the TextWatcher
 Interface

Daniel Fowler

Problem

You need to limit the range and type of values being input.

Solution

Use appropriate attributes on the EditText
 Views in the layout XML and enhance them by implementing the
 TextWatcher interface.

Discussion

When an application needs input from a user, sometimes only a
 specific type of value is required; maybe a whole number, a decimal
 number, a number between two values, or words that are capitalized. When
 defining an EditText in a layout,
 attributes such as android:inputType
 can be used to constrain what the user is able to type.
 This automatically reduces the amount of code required later on because
 there are fewer checks to perform on the data that was entered. The
 TextWatcher interface is also useful
 for restricting values. In the following example an EditText only allows a value between 0 and
 100—for example, to represent a percentage. There is no need to check
 the value because it is all done as the user types.
Here a simple layout has one EditText:
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <EditText android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:id="@+id/percent"
 android:text="0"
 android:maxLength="3"
 android:inputType="number"/>
</LinearLayout>
The EditText is given a starting value of zero
 with android:text="0", and the number of characters that can be typed has been
 limited to three with android:maxLength="3" because the largest
 number we need, 100, only has three digits. Finally, the user is
 restricted to only positive numbers with android:inputType="number".
Within Example 7-10’s
 Activity class, an inner class is used to implement
 the TextWatcher interface (the
 Activity itself could be used to
 implement the interface). The afterTextChanged()
 method is overridden and will be called when the text changes as the
 user types. In this method the value being typed is checked to see if it
 is greater than 100. If so, it is set to 100. There is no need to check
 for values less than zero because they cannot be entered, because of the
 XML attributes. The try catch is need
 for when all the numbers are deleted, in which case the test for values
 greater than 100 would cause an exception (trying to parse an empty
 string).
TextWatcher also has a beforeTextChanged()
 and onTextChanged() method to be
 overridden, but they are not used in this example.
Example 7-10. The TextWatcher implementation
class CheckPercentage implements TextWatcher{
 @Override
 public void afterTextChanged(Editable s) {
 try {
 Log.d("Percentage", "input: " + s);
 if(Integer.parseInt(s.toString())>100)
 s.replace(0, s.length(), "100");
 }
 catch(NumberFormatException nfe){}
 }
 @Override
 public void beforeTextChanged(CharSequence s, int start, int count, int after) {
 // Not used, details on text just before it changed
 // used to track in detail changes made to text, e.g. implement an undo
 }
 @Override
 public void onTextChanged(CharSequence s, int start, int before, int count) {
 // Not used, details on text at the point change made
 }
}

Finally, in the onCreate()
 method for the Activity, the class implementing
 TextWatcher is connected to the EditText using its addTextChangedListener() method:
@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 EditText percentage=(EditText) findViewById(R.id.percent);
 percentage.addTextChangedListener(new CheckPercentage());
}
Note that it is fine to change the EditText value in afterTextChanged() as its internal Editable class is passed in. However, you
 cannot change it by altering the CharSequence passed into beforeTextChanged() and onTextChanged().
Running this example, with LogCat running, should show the values
 being set, as shown in Figure 7-6.
For further details on the attributes supported by EditText see the Android documentation on the
 TextView, from which EditText is subclassed.
[image: TextWatcher in action]

Figure 7-6. TextWatcher in action

Also remember that if you change the value in the EditText, it will cause the afterTextChanged() method to be called again. Care
 must be taken to ensure that the code using a TextWatcher does not result in endless
 looping.
It is a good idea to review the attributes that Android views
 support, as defining them in the XML layout can reduce the amount of
 code to write.

See Also

http://developer.android.com/reference/android/widget/TextView.html;
 http://developer.android.com/reference/android/widget/EditText.html;
 http://developer.android.com/reference/android/text/TextWatcher.html

7.12. Implementing AutoCompleteTextView

Rachee Singh

Problem

You want to save the user from typing entire words, and instead
 auto-complete the entries based on the first few characters the user
 enters.

Solution

Use the AutoCompleteTextView widget that acts
 as a cross between an EditText and a
 Spinner, enabling auto-completion.

Discussion

This layout includes a TextView which supports
 auto-completion. Auto-completion is done using an
 AutoTextCompleteTextView widget. Example 7-11 shows the layout XML code.
Example 7-11. The auto-completion layout
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <TextView
 android:id="@+id/field"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 />
 <AutoCompleteTextView
 android:id="@+id/autocomplete"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:completionThreshold="2"/>

</LinearLayout>

The completionThreshold field in the
 AutoCompleteTextView sets the minimum number of
 characters that the user has to enter in the TextView
 so that auto-completion options corresponding to his input to show
 up.
The Activity (in which we are implementing
 auto-completion) should implement TextWatcher so that we can
 override the onTextChanged() method:
public class AutoComplete extends Activity implements TextWatcher {
We would need to override the unimplemented methods: onTextChanged,
 beforeTextChanged, and
 afterTextChanged.
We also require three fields:
	A handle onto the TextView

	A handle onto the
 AutoCompleteTextView

	A list of String items within which the
 auto-completion would happen

private TextView field;
private AutoCompleteTextView autocomplete;
String autocompleteItems [] = {"apple", "banana", "mango", "pineapple","apricot",
 "orange", "pear", "grapes"};
Our onTextChanged() method simply copies the
 current value of the text field into another text field; this is not
 mandatory, but in this demo it will show you what values are being set
 in the auto-completion component.
@Override
 public void onTextChanged(CharSequence arg0, int arg1, int arg2, int arg3) {
 field.setText(autocomplete.getText());
 }
In the onCreate method of the same activity, we
 get a handle on the TextView and the
 AutoCompleteTextView components of the layout. To the
 AutoCompleteTextView we will set a
 String adapter:
setContentView(R.layout.main);
field = (TextView) findViewById(R.id.field);
autocomplete = (AutoCompleteTextView)findViewById(R.id.autocomplete);
autocomplete.addTextChangedListener(this);
autocomplete.setAdapter(new ArrayAdapter<String>(this,
 android.R.layout.simple_dropdown_item_1line, autocompleteItems));

Source Download URL

You can download the source code for this example from https://docs.google.com/leaf?id=0B_rESQKgad5LYzVkOTdlOGUtODg5My00ZTRmLWIyNTYtMDdiMzA0NjhiNGRk&hl=en_USi.
[image: image with no caption]

7.13. Feeding AutoCompleteTextView Using an SQLite Database Query

Jonathan Fuerth

Problem

Although the Android documentation contains a complete working example of using
 AutoCompleteTextView with an
 ArrayAdapter, just substituting a SimpleCursorAdapter into the example does not
 work.

Solution

There are two extra twists to using SimpleCursorAdapter instead of
 ArrayAdapter:
	You need to tell the adapter which column to use to fill the
 text view after the user selects a completion.

	You need to tell the adapter how to requery based on the
 user’s latest input in the text field. Otherwise, it shows all rows
 returned by the cursor and the list never shrinks to include the
 items of actual interest.

Discussion

The following example code would typically be found in the
 onCreate() method of the activity that contains the
 AutoCompleteTextView. It retrieves the
 AutoCompleteTextView from its activity’s layout,
 creates a SimpleCursorAdapter, configures that
 SimpleCursorAdapter to work with the
 AutoCompleteTextView, and then assigns the adapter to
 the view.
The two important differences from the
 ArrayAdapter example in the Android Dev Guide are
 marked in Example 7-12. They are each covered by a
 short discussion following the example.
Example 7-12. The onCreate() code
final AutoCompleteTextView itemName =
 (AutoCompleteTextView) findViewById(R.id.item_name_view);

SimpleCursorAdapter itemNameAdapter = new SimpleCursorAdapter(
 this, R.layout.completion_item, itemNameCursor, fromCol, toView);

 itemNameAdapter.setStringConversionColumn([image: 1]
 itemNameCursor.getColumnIndexOrThrow(GroceryDBAdapter.ITEM_NAME_COL));

 itemNameAdapter.setFilterQueryProvider(new FilterQueryProvider() { [image: 2]

 public Cursor runQuery(CharSequence constraint) {
 String partialItemName = null;
 if (constraint != null) {
 partialItemName = constraint.toString();
 }
 return groceryDb.suggestItemCompletions(partialItemName);
 }
 });

itemName.setAdapter(itemNameAdapter);

	[image: 1]
	With ArrayAdapter, there is no need to
 specify how to convert the user’s selection into a
 String. However,
 SimpleCursorAdapter supports using one column for
 the text of the suggestion, and a different column for the text
 that’s fed into the text field after the user selects a suggestion.
 Although the most common case is to use the same text for the
 suggestion as you get in the text field after picking it, this is
 not the default. The default is to fill the
 text view with the toString() representation
 of your cursor—something like android.database.sqlite.SQLiteCursor@f00f00d0.

	[image: 2]
	With ArrayAdapter, the system takes care of
 filtering the alternatives to display only those strings that start
 with what the user has typed into the text field so far. The
 SimpleCursorAdapter is more flexible, but again,
 the default behavior is not useful. If you fail to write a
 FilterQueryProvider for your adapter, the
 AutoCompleteTextView will simply show the initial
 set of suggestions no matter what the user types. With the FilterQueryProvider, the
 suggestions work as expected.

7.14. Turning Edit Fields into Password Fields

Rachee Singh

Problem

You need to designate an EditText as a password
 field so that characters the user types will not be visible to “shoulder
 surfers.”

Solution

Android provides the password attribute on the
 EditText class, which provides the needed
 behavior.

Discussion

If your application requires the user to enter a password, the
 EditText being used should be special. It should hide
 the characters entered. This can be done by adding this property to the
 EditText in XML:
android:password="True"
Figure 7-7 shows how the password
 EditText would look.
[image: EditText with password]

Figure 7-7. EditText with password

7.15. Changing the Enter Key to “Next” on the Soft Keyboard

Jonathan Fuerth

Problem

Several apps, including the Web Browser and the Contacts apps, replace
 the Enter key on the on-screen keyboard with a Next key that gives focus
 to the next data entry view. You want to add this kind of polish to your
 own apps.

Solution

Set the appropriate Input Method Editor (IME) attribute on the views in question.

Discussion

Figure 7-8 shows a simple layout with
 three text fields (EditText views) and a Submit
 button.
[image: Three text fields and a submit button]

Figure 7-8. Three text fields and a submit button

Note the Enter key in the bottom right. Pressing it causes the
 currently focused text field to expand vertically to accommodate another
 line of text. This is not what you normally want!
Here is the code for that layout:
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
<EditText
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Field 1" />
<EditText
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Field 2" />
<EditText
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Field 3" />
<Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="center_horizontal"
 android:text="Submit" />
</LinearLayout>
Figure 7-9 shows a better version of the
 same UI, with a Next key where Enter was.
[image: Improved UI: Next key]

Figure 7-9. Improved UI: Next key

Besides being more convenient for users, this also prevents people
 from entering multiple lines of text into a field that was only intended
 to hold a single line.
Here’s how to tell Android to display a Next button on your
 keyboard. Note the android:imeOptions
 attributes on each of the three EditText views:
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
<EditText
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Field 1"
 android:imeOptions="actionNext" />
<EditText
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Field 2"
 android:imeOptions="actionNext" />
<EditText
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Field 3"
 android:imeOptions="actionDone" />
<Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="center_horizontal"
 android:text="Submit" />
</LinearLayout>
Finally, notice the actionDone
 on the third text field: the button that follows is not focusable in
 touch mode, and if it was, it wouldn’t display a keyboard anyway. As you
 might guess, actionDone puts a Done
 button where the Enter key normally goes. Pressing the Done button
 simply hides the keyboard.
There are a number of refinements you can make to the appearance
 of the software keyboard, including hints about the input type,
 suggested capitalization, and even select-all-on-focus behavior. They are all
 worth investigating. Every little touch can make your app more
 pleasurable to use.

See Also

The
 Android API documentation for TextView, especially the
 section on ImeOptions.

7.16. Processing Key-Press Events in an Activity

Rachee Singh

Problem

You want to intercept the keys pressed by the user and perform actions
 corresponding to them.

Solution

Override the onKeyDown method in an Activity.

Discussion

If the application must react differently at different key
 presses, you need to override the onKeyDown method in
 the Activity’s Java code. This method takes the
 KeyCode as an argument so that within a
 switch-case block different actions can be carried
 out (see Example 7-13).
Example 7-13. The onKeyDown method
public boolean onKeyDown(int keyCode, KeyEvent service) {
 switch(keyCode) {
 case KeyEvent.KEYCODE_HOME:
 keyType.setText("Home Key Pressed!");
 break;
 case KeyEvent.KEYCODE_DPAD_CENTER :
 keyType.setText("Center Key Pressed!");
 break;
 case KeyEvent.KEYCODE_DPAD_DOWN :
 keyType.setText("Down Key Pressed!");
 break;
 //and so on..
 }
}

Source Download URL

You can download the source code for this example from https://docs.google.com/leaf?id=0B_rESQKgad5LMDdhMDllYmYtOWE5Mi00MDU0LWE4YWEtODkwNGYwMWVkOTNl&hl=en_US.
[image: image with no caption]

7.17. Let Them See Stars: Using RatingBar

Ian Darwin

Problem

You want the user to choose from a number of identical GUI elements in a group
 to indicate a value such as a “rating” or “evaluation.”

Solution

Use the RatingBar widget; it lets you specify
 the number of stars to appear and the default rating, notifies you when
 the user changes the value, and lets you retrieve the rating.

Discussion

RatingBar provides the newly familiar “rating”
 user interface experience, where a user is asked to rank or rate
 something using star classification (the RatingBar
 doesn’t display the thing to be rated; that’s up to the rest of your
 app). RatingBar is a subclass of
 ProgressBar, extended to display a whole number of icons (“the star”) in the
 bar. Its primary properties are:
	numStars
	The number of stars to display (int)

	rating
	The user’s chosen rating (float, because of
 stepSize)

	stepSize
	The increment for selection (float, common values
 are 1.0 and 0.5, depending on how fine-grained you want the rating
 to be)

	isIndicator
	A boolean, set to true
 to make this read-only

These are normally set in the XML:
<RatingBar
 android:id="@+id/serviceBar"
 android:gravity="center"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:numStars="5"
 android:rating="3"
 android:stepSize="1.0"
 android:isIndicator='false'
 />
The RatingBar maintains its rating value
 internally. You can find out how the user has rated the item in two
 ways:
	Invoke the getRating()
 method.

	Provide a change notification listener of type
 OnRatingBarChangeListener.

The OnRatingBarChangeListener has a single method, onRatingChanged, called
 with three arguments:
	RatingBar rBar
	The event source, a reference to the particular
 RatingBar

	float fRating
	The rating that was set

	boolean fromUser
	Is true if set by a user,
 false if set programmatically

Example 7-14 simulates a customer survey; it
 creates two RatingBars, one to rate service and
 another to rate price (the XML for both is identical except for the
 android:id). In the main program, an
 OnRatingBarChangeListener is created, to display
 touchy-feely-sounding feedback for the given rating (the rating is
 converted to an int and a switch
 statement is used to generate a message for
 Toast).
Example 7-14. The RatingBar demo app
public class Main extends Activity {
 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 OnRatingBarChangeListener barChangeListener = new OnRatingBarChangeListener() {
 @Override
 public void onRatingChanged(RatingBar rBar, float fRating, boolean fromUser) {
 int rating = (int) fRating;
 String message = null;
 switch(rating) {
 case 1: message = "Sorry you're really upset with us"; break;
 case 2: message = "Sorry you're not happy"; break;
 case 3: message = "Good enough is not good enough"; break;
 case 4: message = "Thanks, we're glad you liked it."; break;
 case 5: message = "Awesome - thanks!"; break;
 }
 Toast.makeText(Main.this,
 message,
 Toast.LENGTH_LONG).show();
 }
 };
 final RatingBar sBar = (RatingBar) findViewById(R.id.serviceBar);
 sBar.setOnRatingBarChangeListener(barChangeListener);
 final RatingBar pBar = (RatingBar) findViewById(R.id.priceBar);
 pBar.setOnRatingBarChangeListener(barChangeListener);

 Button doneButton = (Button) findViewById(R.id.doneButton);
 doneButton.setOnClickListener(new OnClickListener() {

 @Override
 public void onClick(View arg0) {
 String message = String.format(
 "Final Answer: Price %.0f/%d, Service %.0f/%d%nThank you!",
 sBar.getRating(), sBar.getNumStars(),
 pBar.getRating(), pBar.getNumStars()
);
 // Thank the user
 Toast.makeText(Main.this,
 message,
 Toast.LENGTH_LONG).show();
 // And upload the numbers to a database, hopefully...

 // That's all for this Activity, hence this App.
 finish();
 }
 });
 }
}

There is more than one RatingBar, so we don’t
 save the value in the listener, because an incomplete survey is not
 useful; in the Done button action listener, we fetch both values and
 display them, and this would be the place to save them. Your mileage may
 vary: it may make more sense to save them in the
 OnRatingBarChangeListener.
If you’re not used to printf-like formatting, the String.format call
 uses %.0f to format the
 float as an int, instead of
 casting it (since we have to do nice formatting anyway). Ideally the
 format message should be from the XML strings, but it’s only a demo
 program.
The main UI is shown in Figure 7-10.
[image: Displaying a feedback rating]

Figure 7-10. Displaying a feedback rating

When the user clicks the Done button, she will see the Farewell
 message displayed on the desktop window (see Figure 7-11).
[image: Completion of the rating/survey]

Figure 7-11. Completion of the rating/survey

When you wish both to display the current “average” or similar
 measure ratings from a community and allow the user
 to enter her own rating, it is customary to display the current ratings
 read-only, and to create a pop-up dialog to enter the user’s particular
 rating. This is described on the Android
 Patterns website.

See Also

The discussion on RatingBar
 in the “Form Stuff” tutorial on Android.com; an
 MVC tutorial that also shows how to construct your own
 RatingBar-like View
 component

7.18. Making a View Shake

Ian Darwin

Problem

You want a View component to shake for a
 few seconds to catch the user’s attention.

Solution

Create an animation in the XML, then call the View object’s
 startAnimation() method, using the convenience
 routing loadAnimation() method to load the
 XML.

Discussion

The animation specification is created in XML files in the
 anim directory. In this example, we want the text
 entry field to be able to shake either left-to-right (to emulate a
 person shaking his head from side to side, meaning “no” or “I disagree”
 in many parts of the world) or up and down (a person nodding in
 agreement). So we create two animations,
 horizontal.xml and
 vertical.xml. Here is
 horizontal.xml:
<?xml version="1.0" encoding="utf-8"?>
<translate
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:fromXDelta="0"
 android:toXDelta="10"
 android:duration="1000"
 android:interpolator="@anim/cycler"
 />
The file vertical.xml is identical except it
 uses fromYDelta and
 toYDelta.
The Interpolator—the function that drives the
 animation—is contained in another file, cycler.xml,
 shown here:
<?xml version="1.0"?>
<cycleInterpolator
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:cycles="5"/>
To apply one of the two animations to a View
 component, you need a reference to it. You can, of course, use the
 common findViewById(R.id.*).
 You can also use the Activity
 method getCurrentFocus() if you are dealing with the
 current input (focus) view component; this avoids coupling to the name
 of a particular component, if you know that your animation will always
 apply to the current input object. In my code I know this is true
 because the animation start-up is done in an
 onClick() method. Alternatively, you could use the
 View that is passed into the
 onClick() method, but that would make the button
 shake, not the text field.
I won’t show the whole application, but here is the
 onClick() method that contains all the animation code
 (see Example 7-15):
Example 7-15. The animation code
@Override
public void onClick(View v) {
 String answer = answerEdit.getText().toString();
 if ("yes".equalsIgnoreCase(answer)) {
 getCurrentFocus().startAnimation(
 AnimationUtils.loadAnimation(getApplicationContext(),
 R.anim.vertical));
 return;
 }
 if ("no".equalsIgnoreCase(answer)) {
 getCurrentFocus().startAnimation(
 AnimationUtils.loadAnimation(getApplicationContext(),
 R.anim.horizontal));
 return;
 }
 Toast.makeText(this, "Try to be more definite, OK?",
 Toast.LENGTH_SHORT).show();
}

The shaking effect is convenient for drawing the user’s attention
 to an input that is incorrect, but it can easily be overdone. Use judiciously!

7.19. Providing Haptic Feedback

Adrian Cowham

Problem

You want to provide haptic feedback with your application.

Solution

Use Android’s haptic controls to provide instant physical
 feedback.

Discussion

Building confidence among users that their actions had an effect
 is a requirement for any app on any platform. The canonical example is
 displaying a progress bar to let users know their action took effect and
 it’s being processed. For touch interfaces this technique still applies,
 but the advantage of a touch interface is that developers have the
 opportunity to provide physical feedback, as users are capable of
 actually feeling the device react to their actions.
I’ve played with many apps on Android phones and tablets, and the
 thing I appreciate most is knowing that touching the screen had an
 effect. I like to know immediately that the app recognized and is
 reacting to my touch. This reaction comes in three forms: visual, audio,
 or physical. This recipe discusses how to increase user confidence in
 your app by providing instant physical feedback through the use of
 Android’s haptic controls.
Android has some stock haptic controls, but if these don’t satisfy
 your needs you can gain control of the device’s vibrator for custom feedback.
Custom control of the device’s vibrator requires
 permission. This is something you’ll have to explicitly list
 in your AndroidManifest.xml file. If
 you’re paranoid about asking for permission or if you already have a
 long list of permissions, you may want to use the stock Android haptic
 feedback options.
Note
Some devices, such as the Motorola Xoom, don’t have a vibrator;
 therefore, the examples in this recipe will compile and run, but you
 will not receive haptic feedback.

I’ll start by showing the more complicated example first, custom
 haptic feedback.
Custom haptic feedback using the device’s vibrator

Your first step is to request the necessary permission. Add the
 following line to your AndroidManifest.xml
 file:
<uses-permission android:name="android.permission.VIBRATE" />
Now define a listener to respond to touch events. It’s not shown
 in Example 7-16, but the
 CustomHapticListener class is actually a private
 nonstatic inner class of my Activity. This is
 because it needs access to the Context.getSystemService(...)
 method.
Example 7-16. The haptic feedback OnTouchListener implementation
private class CustomHapticListener implements OnTouchListener {

 // Duration in milliseconds to vibrate
 private final int durationMs;

 public CustomHapticListener(int ms) {
 durationMs = ms;
 }

 @Override
 public boolean onTouch(View v, MotionEvent event) {
 if(event.getAction() == MotionEvent.ACTION_DOWN){
 Vibrator vibe = (Vibrator) getSystemService(VIBRATOR_SERVICE);[image: 1]
 vibe.vibrate(durationMs); [image: 2]
 }
 return true;
 }
}

[image: 1] and [image: 2] are the important lines. [image: 1] gets a reference to the Vibrator service and
 [image: 2] vibrates the device. If you have not
 requested the vibrate permission, [image: 2] will
 throw an exception.
Now register the listener. In your Activity’s
 onCreate(...) method, you’ll need to get a
 reference to the GUI element you want to attach haptic feedback to and
 then register the OnTouchListener we defined
 earlier:
@Override
public void onCreate(Bundle savedInstance) {
 Button customBtn = (Button) findViewById(R.id.btn_custom);
 customBtn.setOnTouchListener(new CustomHapticListener(100));
}
That’s it; you’re in control of the haptic feedback. Now we’ll
 move on to using stock Android haptic feedback.

Stock haptic feedback events

First things first: to use stock Android haptic feedback events
 you must enable this on
 View-by-View basis. That is, you
 must explicitly enable haptic feedback for each
 View. You can enable haptic feedback declaratively
 in your layout file or programmatically in Java. To enable haptic
 feedback in your layout, simply add the
 android:hapticFeedbackEnabled="true" attribute to your View(s). Here’s an
 abbreviated example:
<button android:hapticFeedbackEnabled="true">
</button>
Here’s how you do the same thing in code:
Button keyboardTapBtn = (Button) findViewById(btnId);
keyboardTapBtn.setHapticFeedbackEnabled(true);
Now that haptic feedback has been enabled, the next step is to
 register an OnTouchListener and then perform the
 actual feedback. Example 7-17 is an example of
 registering an OnTouchListener and performing
 haptic feedback when a user touches the view.
Example 7-17. Haptic feedback demo app
// Initialize some buttons with the stock Android haptic feedback values
private void initializeButtons() {
 // initialize the buttons with the standard haptic feedback options
 initializeButton(R.id.btn_keyboardTap, HapticFeedbackConstants.KEYBOARD_TAP);[image: 1]
 initializeButton(R.id.btn_longPress, HapticFeedbackConstants.LONG_PRESS); [image: 2]
 initializeButton(R.id.btn_virtualKey, HapticFeedbackConstants.VIRTUAL_KEY); [image: 3]
}

// helper method to initialize single buttons and register an OnTouchListener
// to perform the haptic feedback
private void initializeButton(int btnId, int hapticId) {
 Button btn = (Button) findViewById(btnId);
 btn.setOnTouchListener(new HapticTouchListener(hapticId));
}

// Class to handle touch events and respond with haptic feedback
private class HapticTouchListener implements OnTouchListener {

 private final int feedbackType;

 public HapticTouchListener(int type) { feedbackType = type; }

 public int feedbackType() { return feedbackType; }

 @Override
 public boolean onTouch(View v, MotionEvent event) {
 // only perform feedback when the user touches the view, as opposed
 // to lifting a finger off the view
 if(event.getAction() == MotionEvent.ACTION_DOWN){
 // perform the feedback
 v.performHapticFeedback(feedbackType());[image: 4]
 }
 return true;
 }
}

You’ll notice on lines [image: 1] through
 [image: 3] I’m initializing three different
 buttons with three different haptic feedback constants. These are
 Android’s stock values; two of the three seem to provide exactly the
 same feedback. Example 7-17 is part of a test app I
 wrote to demonstrate haptic feedback and I could not tell the
 difference between HapticFeedbackConstants.LONG_PRESS and
 HapticFeedbackConstants.KeyboardTap. Also,
 HapticFeedbackConstants.VIRTUAL_KEY
 does not appear to provide any feedback when tested.
[image: 4] is where the haptic feedback is
 performed. All in all, providing haptic feedback is pretty simple, but
 remember that if you want control of the device’s vibrator you must
 request permission in your AndroidManifest.xml file. If
 you choose to use the stock Android haptic feedback options, make sure
 you enable haptic feedback for your views either in the layout or
 programmatically.

See Also

http://mytensions.blogspot.com/2011/03/androids-haptic-feedback.html

Source Download URL

You can download the source code for this example from https://docs.google.com/leaf?id=0BwH86cQEzwiZZjZiMThmM2EtZDk3Zi00NTViLTk0NjYtNDU2YzI5MjVmMzYw&hl=en&authkey=CJu58JcL.
[image: image with no caption]

7.20. Navigating Different Activities Within a TabView

Pratik Rupwal

Problem

You want to change from an activity within a tab view to another
 activity within the same tab.

Solution

Replace the content view of the tab by the new activity you want
 to move to.

Discussion

When a “calling” activity within a TabView
 calls another activity through an intent the TabView
 gets replaced by the view of the called activity. To show the called
 activity within the TabView we can replace the view
 of the calling activity with the view of the called activity so that the
 TabView remains stable. To achieve this we need to
 extend the calling activity from ActivityGroup rather than
 Activity.
In Example 7-18 the Calling
 activity extended from ActivityGroup has been set
 within a TabView.
Example 7-18. Replacing the activity within a tab
//'Calling' activity.
public class Calling extends ActivityGroup implements OnClickListener
{
 Button b1;
 Intent i1;
 /** Called when the activity is first created.*/
 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.calling);
 b1=(Button)findViewById(R.id.changeactivity);
 b1.setOnClickListener();
 }
 public void onClick(View view)
 {
 // This creates an intent to call the 'Called' activity
 i1=new Intent(this.getBaseContext(),Called.class);
 // calls the method to replace View.
 replaceContentView("Called", i1);
 }
 // This method is used to replace the view of 'Calling' activity by 'Called' activity.
 public void replaceContentView(String id, Intent newIntent)
 {
 // Obtain the view of 'Called' activity using its Intent 'newIntent'
 View view = getLocalActivityManager().startActivity(id,
 newIntent.addFlags(Intent.FLAG_ACTIVITY_CLEAR_TOP)) .getDecorView();
 //set the above view to the content of 'Calling' activity.
 this.setContentView(view);
 }
}

The “called activity” can also call another activity (say
 CalledSecond), as below:
//'Called activity'
public class Called extends Activity implements OnClickListener
{
 Button b1;
 Intent i1;
 Calling caller;
 /** Called when the activity is first created.*/
 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.called);
 b1=(Button)findViewById(R.id.changeactivity);
 b1.setOnClickListener();
 }
 public void onClick(View view)
 {
 // This creates an intent to call the 'CalledSecond' activity
 i1=new Intent(this.getBaseContext(),CalledSecond.class);
 /* 'CalledSecond' can be any activity, even the
 * 'Calling'(In case backward navigation is required)
 */

 // Initialize the object of the 'Calling' class.
 caller=(Calling)getParent();
 // calls the method to replace View.
 caller.replaceContentView("CalledSecond", i1);
 }
}

7.21. Creating a Custom Title Bar

Shraddha Shravagi

Problem

You cannot have any buttons or custom text in the standard title bar, the part
 that normally contains your application name at the top of your
 window.

Solution

Implement your own title bar by following these steps:
	Create an XML file for the title bar.

	Create a class that uses the title bar and implements the
 button functionality.

	Change your layout files.

	Extend your activities from the custom class that you created
 in step 2.

Discussion

Example 7-19 shows the
 maintitlebar.xml file, which has one text view and
 three image buttons, with orientation set to horizontal.
Example 7-19. The maintitlebar.xml file
 <RelativeLayout xmlns:android=
 "http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent" android:layout_height="40dp"
 android:orientation="horizontal" android:paddingLeft="5dp"
 >

 <TextView android:id="@+id/title" android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Symphony's GHealth Demo"
 />
 <View android:id="@+id/View01" android:layout_width="1dp"
 android:layout_height="500dip"
 android:background="#2B497B" android:layout_toLeftOf="@+id/facebookBtn">
 </View>
 <!-- Facebook button -->
 <ImageView android:src="@drawable/icon_facebook"
 android:layout_toLeftOf="@+id/twitterBtn" android:layout_width="28dp"
 android:layout_height="28dp" android:id="@id/facebookBtn"
 android:clickable="true" />
 <!-- Twitter button -->
 <ImageView android:src="@drawable/icon_twitter"
 android:clickable="true"
 android:layout_width="28dp" android:layout_height="28dp"
 android:id="@id/twitterBtn"
 android:layout_marginLeft="3dp" android:layout_marginRight="3dp"
 android:layout_toLeftOf="@+id/linkedinBtn" />
 <!-- Linkedin button -->
 <ImageView android:src="@drawable/icon_linkedin"
 android:layout_width="28dp"
 android:layout_height="28dp" android:clickable="true"
 android:layout_alignParentRight="true"
 android:id="@id/linkedinBtn" />
</RelativeLayout>

Example 7-20 shows the most important class: the
 window activity. As you can see in the code, first we have to request
 the custom title bar, then set the layout file, and finally set the
 title bar.
Example 7-20. The window activity
 public class CustomWindow extends Activity {
 protected TextView title;
 protected ImageView icon;
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 // Request for custom title bar
 requestWindowFeature(Window.FEATURE_CUSTOM_TITLE);
 //set to your layout file
 setContentView(R.layout.main);
 //Set the titlebar layout
 getWindow().setFeatureInt(Window.FEATURE_CUSTOM_TITLE, R.layout.maintitlebar);
 }
 public void facebookBtnClicked(View v)
 {
 // Handle the button click event
 }
 public void twitterBtnClicked(View v)
 {
 // Handle the button click event
 }
 public void linkedinBtnClicked(View v)
 {
 // Handle the button click event
 }
}

For every layout file where you want to implement the custom title
 bar use match_parent in
 layout_height and layout_width,
 like so:
 <LinearLayout android:id="@+id/LinearLayout01"
 android:layout_width="match_parent" android:layout_height="match_parent"
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical" android:background="#E5E5E5">
Once you’ve extended your activity from the custom class, here’s
 how your activity should look:
//CustomWindow will take care of loading the title bar
public class Credentials extends CustomWindow
{
//set the layout file
setContentView(R.layout.login);
}
Figure 7-12 shows how your
 activity should look.
[image: Custom title bar]

Figure 7-12. Custom title bar

You do not have to use a separate class to implement the title
 bar, but it is a good coding practice.

7.22. Formatting Numbers

Ian Darwin

Problem

You need to format numbers, because the default formatting of Double.toString()
 and friends does not give you enough control over how the results are
 displayed.

Solution

Use String.format() or one of the NumberFormat
 subclasses.

Discussion

The printf() function was included in the C programming language in the 1970s,
 and it has been used in many other languages since, including Java.
 Here’s a simple printf example in Java SE:
System.out.printf("Hello %s at %s%n", userName, time);
The preceding example could be expected to print something like
 this:
Hello Robin at Wed Jun 16 08:38:46 EDT 2010
Since we don’t use System.out in Android,
 you’ll be relieved to note that you can get the same string that would
 be printed, for putting it into a view, by using:
String msg = String.format("Hello %s at %s%n", userName, time);
If you haven’t seen printf
 before, the first argument is obviously the format code string, and any
 number of other arguments (userName and
 time) are values to be formatted. The format codes
 begin with a percent sign (%) and have at least one “type” code; Table 7-1 shows common type codes.
Table 7-1. Some common format codes
	Character	Meaning
	s	String (convert primitive values using defaults; convert
 objects by toString)
	d	Decimal integer (int,
 long)
	f	Floating point (float,
 double)
	n	Newline
	t	Time/date formats, Java-specific; see the discussion
 referred to in the “See Also” section at the end of the
 recipe

The default date formatting is pretty ugly, so we often need to
 expand on it. The printf formatting capabilities are
 actually housed in the java.util.Formatter class,
 to which reference should be made for the full details of
 its formatting language.
Unlike printf in other languages you may have
 used, all these format routines optionally allow you to refer to
 arguments by their number, by putting a number plus a dollar sign after
 the % lead-in but before the formatting code proper;
 for example, %2$3.1f means to format the second
 argument as a decimal number with three characters and one digit after
 the decimal place. This numbering can be used for two purposes: to
 change the order in which arguments print (often useful with
 internationalization), and to refer to a given argument more than once.
 The date/time format character t requires a second
 character after it, such as Y for the year,
 m for the month, and so on. Here we take the time argument and extract several fields from
 it:
msg = String.format("Hello at %1$tB %1$td, %1$tY%n", time);
This might format as July 4,
 2010.
To print numbers with a specific precision, you can use
 f with a width and a precision, such as:
msg = String.format("Latitude: %10.6f", latitude);
This might yield:
Latitude: -79.281818
While such formatting is OK for specific uses such as latitudes
 and longitudes, for general use such as currencies, it may give you too
 much control.
General formatters

Java has an entire package, java.text,
 that is full of formatting routines as general and
 flexible as anything you might imagine. As with printf, it has an involved formatting
 language, described in the online documentation page. Consider the
 presentation of numbers. In North America, the number “one thousand
 twenty-four and a quarter” is written 1,024.25; in most of Europe it
 is 1 024,25, and in some other part of the world it might be written
 1.024,25. The formatting of currencies and percentages is equally
 varied. Trying to keep track of this yourself would drive the average
 software developer around the bend rather quickly.
Fortunately, the java.text package includes
 a Locale class. Furthermore, the Java
 or Android runtime automatically sets a default
 Locale object based on the user’s environment; this
 code works the same on desktop Java as it does in Android. To provide
 formatters customized for numbers, currencies, and percentages, the
 NumberFormat class has static factory methods that
 normally return a DecimalFormat with the correct
 pattern already instantiated. A DecimalFormat
 object appropriate to the user’s locale can be obtained from the
 factory method NumberFormat.getInstance() and
 manipulated using set methods. Surprisingly, the method setMinimumIntegerDigits()
 turns out to be the easy way to generate a number format with leading
 zeros. Example 7-21 is an example.
Example 7-21. Number formatting demo
import java.text.NumberFormat;

/*
 * Format a number our way and the default way.
 */
public class NumFormat2 {
 /** A number to format */
 public static final double data[] = {
 0, 1, 22d/7, 100.2345678
 };

 public static void main(String[] av) {
 // Get a format instance
 NumberFormat form = NumberFormat.getInstance();

 // Tailor it to look like 999.99[99]
 form.setMinimumIntegerDigits(3);
 form.setMinimumFractionDigits(2);
 form.setMaximumFractionDigits(4);

 // Now print using it.
 for (int i=0; i<data.length; i++)
 System.out.println(data[i] + "\tformats as " +
 form.format(data[i]));
 }
}

This prints the contents of the array using the
 NumberFormat instance form. We show running it as a
 main program instead of in an Android application just to isolate the
 effects of the NumberFormat.
For example, $ java NumFormat2 0.0 formats as
 000.00; with argument 1.0 it
 formats as 001.00;
 3.142857142857143 formats as
 003.1429; and 100.2345678
 formats as 100.2346.
You can also construct a DecimalFormat with a particular
 pattern or change the pattern dynamically using
 applyPattern(). Table 7-2 shows some of the more
 common pattern characters.
Table 7-2. DecimalFormat pattern characters
	Character	Explanation
	#	Numeric digit (leading zeros suppressed)
	0	Numeric digit (leading zeros provided)
	.	Locale-specific decimal separator (decimal
 point)
	,	Locale-specific grouping separator (comma in
 English)
	-	Locale-specific negative indicator (minus sign)
	%	Shows the value as a percentage
	;	Separates two formats: the first for positive and the
 second for negative values
	'	Escapes one of the above characters so that it appears
 as itself
	Anything else	Appears as itself

The NumFormatTest program uses one DecimalFormat to print a number with only
 two decimal places and a second to format the number according to the
 default locale, as shown in Example 7-22.
Example 7-22. NumberFormat demo Java SE program
import java.text.DecimalFormat;
import java.text.NumberFormat;

public class NumFormatDemo {
 /** A number to format */
 public static final double intlNumber = 1024.25;
 /** Another number to format */
 public static final double ourNumber = 100.2345678;

 public static void main(String[] av) {

 NumberFormat defForm = NumberFormat.getInstance();
 NumberFormat ourForm = new DecimalFormat("##0.##");
 // toPattern() will reveal the combination of #0., etc.
 // that this particular Locale uses to format with
 System.out.println("defForm's pattern is " +
 ((DecimalFormat)defForm).toPattern());
 System.out.println(intlNumber + " formats as " +
 defForm.format(intlNumber));
 System.out.println(ourNumber + " formats as " +
 ourForm.format(ourNumber));
 System.out.println(ourNumber + " formats as " +
 defForm.format(ourNumber) + " using the default format");
 }
}

This program prints the given pattern and then formats the same
 number using several formats:
$ java NumFormatTest
defForm's pattern is #,##0.###
1024.25 formats as 1,024.25
100.2345678 formats as 100.23
100.2345678 formats as 100.235 using the default format

See Also

Chapter 10 of Java
 Cookbook by Ian F. Darwin (O’Reilly); Part VI of
 Java
 I/O by Elliotte Rusty Harold (O’Reilly)

7.23. Formatting with Correct Plurals

Ian Darwin

Problem

You’re displaying something like "Found "+ n + "
 items", but in English, “Found 1 reviews” is ungrammatical.
 You want "Found 1 review" for the case
 n==1.

Solution

For simple, English-only results, use a conditional statement. For
 better results, that can be internationalized, use a ChoiceFormat. On Android, you can use
 <plural> in an XML resources file.

Discussion

The “quick and dirty” method is to use Java’s ternary operator (cond ?
 trueval : falseval) in a string concatenation. Since in
 English, for most nouns, both zero and plurals get an
 s appended to the noun in English (“no books, one
 book, two books”), we need only test for n==1.
// FormatPlurals.java
public static void main(String argv[]) {
 report(0);
 report(1);
 report(2);
}
/** report -- using conditional operator */
public static void report(int n) {
 System.out.println("Found " + n + " item" + (n==1?"":"s"));
}
Running this on Java SE as a main program shows the following
 output:
$ java FormatPlurals
Found 0 items
Found 1 item
Found 2 items
$
The final println() statement is short
 for:
if (n==1)
 System.out.println("Found " + n + " item");
else
 System.out.println("Found " + n + " items");
This is a lot longer, in fact, so Java’s ternary conditional
 operator is worth learning.
Of course, you can’t use this arbitrarily, because English is a
 strange and somewhat idiosyncratic language. Some nouns, such as
 bus, require “es” at the end, while others, such as
 cash, are collective nouns with no plural (you can
 have two flocks of geese or two stacks of cash, but you cannot have “two
 geeses” or “two cashes”). Some nouns, such as fish,
 can be considered plural as is, although fishes is
 also a correct plural.
A better way

The ChoiceFormat class from
 java.text is ideal for handling plurals; it lets you specify singular
 and plural (or, more generally, range) variations on the noun. It is
 capable of more, but in Example 7-23 I’ll show only
 a couple of the simpler uses. I specify the values 0, 1, and 2 (or
 more), and the string values to print corresponding to each number.
 The numbers are then formatted according to the range they fall
 into.
Example 7-23. Formatting plurals using ChoiceFormat
import java.text.*;

/**
 * Format a plural correctly, using a ChoiceFormat.
 */
public class FormatPluralsChoice extends FormatPlurals {

 // ChoiceFormat to just give pluralized word
 static double[] limits = { 0, 1, 2 };
 static String[] formats = { "reviews", "review", "reviews"};
 static ChoiceFormat pluralizedFormat =
 new ChoiceFormat(limits, formats);

 // ChoiceFormat to give English text version, quantified
 static ChoiceFormat quantizedFormat = new ChoiceFormat(
 "0#no reviews|1#one review|1<many reviews");

 // Test data
 static int[] data = { -1, 0, 1, 2, 3 };

 public static void main(String[] argv) {
 System.out.println("Pluralized Format");
 for (int i : data) {
 System.out.println("Found " + i + " " +
 pluralizedFormat.format(i));
 }

 System.out.println("Quantized Format");
 for (int i : data) {
 System.out.println("Found " +
 quantizedFormat.format(i));
 }
 }
}

Either of these loops generates similar output to the basic
 version. The code using the ChoiceFormat is
 slightly longer, but more general, and lends itself better to
 internationalization. Put the string for the “quantized” form
 constructor into strings.xml and it will be part
 of your localization actions.

Best way of all (Android-only)

Create a file in
 /res/values/<somefilename>.xml containing
 something like this:
<?xml version="1.0" encoding="utf-8"?>
<resources>
<plurals name="numberOfSongsAvailable">
<item quantity="one">One item found.</item>
<item quantity="other">%d items found.</item>
</plurals>
</resources>
In your code you then use the following:
int count = getNumberOfsongsAvailable();
Resources res = getResources();
String songsFound = res.getQuantityString(R.plurals.numberOfSongsAvailable, count);
This part was suggested by Tomas Persson.

See Also

For the Android-only way, see http://developer.android.com/guide/topics/resources/string-resource.html#Plurals.

Source Download URL

You can download the source code for this example from http://javacook.darwinsys.com/javasrc/numbers/FormatPluralsChoice.javai.
[image: image with no caption]

7.24. Starting a Second Screen from the First

Daniel Fowler

Problem

New app developers need a simple example on how to open another screen, thus
 understanding how Android handles UI creation.

Solution

Building upon the “Hello, World” Eclipse example, load another
 screen from a new button to demonstrate the principles of starting a new
 UI screen.

Discussion

An Android application will interact with a user through one or
 more screens. Each screen presents information and UI elements, such as
 buttons, lists, sliders, edit boxes, and many others. The number of
 screens depends upon the required functionality of the app and the type
 of Android device. A low-cost Android phone may have a 2.5-inch display,
 an expensive phone may have a 4.5-inch display, and a tablet may have a
 7-inch or 10-inch display. An app
 may only need one screen for functionality on a tablet, two or three
 screens on a high-end phone, or four or five on a low-cost phone.
Each screen presented to the user is controlled by an Activity. The
 Activity is responsible for creating and displaying
 the screen and managing the UI elements. The Android View is the basic building block for UIs. Each
 screen element, such as a Button or
 EditText, is provided in the package
 android.widget. Screen elements are derived from View.
 They are placed onto the screen within containers derived from a
 ViewGroup—for example, a LinearLayout (ViewGroups
 are also derived from View). A variety of
 ViewGroup layouts can be used, including horizontal, vertical, table, grid,
 and others (see Figure 7-13).
The Home screens can hold special View types
 commonly referred to as widgets; these are small UI
 gadgets that can be used to provide feedback from an app to the user
 without the need for a full app to be open. These app
 widgets should not be confused with the package android.widget. The latter holds the various
 types of screen elements, while the former is the commonly used name for
 Home screen gadgets. App widgets are defined using RemoteViews which are
 also part of the android.widget
 package.
You can see the many types of Views and
 ViewGroups available in Android by opening or
 creating an Android layout resource file in Eclipse (in the project
 folder res/layout). When the resource file is open
 click on the Graphical Layout tab at the bottom of the editor. A toolbar
 of all available UI elements will be shown on the left of the editor. It
 is possible to filter by API level using the drop down toward the top
 right of the editor pane.
[image: Available views in the visual palette]

Figure 7-13. Available views in the visual palette

You can define a Fragment, which is a
 reusable piece of screen. You can also lay out a Fragment using
 ViewGroups and Views. You can then
 use the Fragment on more than one screen, thus
 defining a section of UI once when the same section needs to be used on
 several screens.
As soon as an app has more than one screen defined there will be a
 need to load the second screen from the first. In other operating
 systems a second screen is often loaded directly by the first screen.
 Due to the design of Android an app can never directly start a new
 screen; it has to ask the Android operating system to start it. This is
 because Android was designed for mobility from the start. Android needs
 full control of an app to enable efficient handling of events outside of
 the app. Such events can include those that must interrupt the user,
 such as a telephone call or low-battery condition; and those that notify
 the user, such as incoming mail or a reminder firing, causing the user
 to leave the app to deal with the notification. The user may also open
 another app. A variety of things can happen that will need Android to
 have fine control of how an app executes and responds. When Android
 starts a screen it knows what is running and their state. Android can
 dispatch messages to the activities and they can react to unexpected
 events accordingly. This is also why an app does not have a main method
 for programs as on other systems (as mentioned in Recipe 1.6). A main method is not required because
 Android itself is controlling the start-up.
To get a screen up and running in an app the following is
 required:
	The definition of the screen must be composed in a
 layout.

	An Activity must be defined in a Java class
 file to handle the screen.

	Android must be notified that the Activity
 exists, via the app’s manifest file.

	The app must tell Android when it is required to start the new
 screen.

As an example, we can add another screen to the MyAndroid app in
 Recipe 1.4. The new screen will
 also contain a simple message and will be started when a button is
 pressed on the opening screen. Open Eclipse and open the
 MyAndroid project as created in the Hello
 World recipe. First we will add three strings: one for the
 new screen’s title, one for the message on the new screen, and one for
 the caption for the button that will be used to start the new screen. In
 the project tree in the Package Explorer open the
 strings.xml file in the
 res/values folder. Add three strings, one with the
 name screen2Title with value Screen
 2, one named hello2 with the value
 Hello! Again., and one named next
 with the value Next. The
 strings.xml file will look like this:
<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string name="hello">Hello World, Main!</string>
 <string name="app_name">MyAndroid</string>
 <string name="screen2Title">Screen 2</string>
 <string name="hello2">Hello! Again.</string>
 <string name="next">Next</string>
</resources>
From the File menu (or using the context menu on the project tree)
 select New and then Android XML File. Set the
 following fields in the dialog that opens, keeping all others at their
 defaults (see Figure 7-14):
	File	secondscreen.xml
	Type of resource	Layout
	Folder	/res/layout

[image: New Android XML file, part two]

Figure 7-14. New Android XML file, part two

Select Finish.
With secondscreen.xml open either drag a
 TextView onto the screen in the Graphical Layout pane, or in the XML
 pane enter the TextView code. Set the
 TextView properties as follows:
	Layout width	fill_parent
	Layout height	wrap_content
	Text	@string/hello2
	Text size	10pt

The secondscreen.xml file should contain the
 following:
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="@string/hello2"
 android:gravity="center_horizontal"
 android:textSize="10pt"></TextView>
</LinearLayout>
Open the main.xml file in the
 res/layout folder. Either drag a Button onto the screen in the Graphical Layout or add the
 Button in the XML view. Set the
 Button properties as follows:
	Layout width	wrap_content
	Layout height	wrap_content
	Id	@+id/nextButton
	Text	@string/next

The Main.xml file should contain the
 following:
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="@string/hello"
 android:gravity="center_horizontal" />
 <Button
 android:id="@+id/nextButton"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/next" />
</LinearLayout>
From the File menu (or using the context menu on the project tree)
 select New and then Class. Set the following fields in the dialog that
 opens, keeping all others at their defaults (see Figure 7-15):
	Source folder	MyAndroid/src
	Package	com.example
	Name	Screen2

[image: Defining a new Java class]

Figure 7-15. Defining a new Java class

Select Finish.
Within the Screen2.java file we extend the
 class to be a subclass of Activity and override the
 onCreate method, the same way as in
 the Main class. We then call setContentView
 passing the new secondscreen layout. All resource
 references are accessed via a generated Java class named R, hence the reference to the new screen’s
 layout is via R.layout.secondscreen
 (the R class is generated from the files and folders under the
 res folder). With the required imports the
 Screen2.java file will look like this:
package com.example;

import android.app.Activity;
import android.os.Bundle;

public class Screen2 extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.secondscreen);
 }
}
The button needs code to tell Android of our intention to start
 the activity that contains the new screen. This can be achieved by
 passing the name of the required activity in an Intent object to the startActivity
 method when the button is pressed. The startActivity
 method is available on the Context
 object; Context has a host of useful methods that
 provide access to the environment in which the app is executing.
 Activity is a subclass of Context,
 so the startActivity method is always available within an
 Activity. By using startActivity
 Android gets the opportunity to perform any required housekeeping and
 then fire up the Activity class that was defined in
 the app.
Recipe 7.4 shows how to
 add a handler for button presses. Here, instead of getting the
 Main class to implement the onClick method, it will be done with an inner
 class.
Within onClick the code is needed to start the
 Screen2 activity. An intent declaration requires a
 context and activity (Screen2). Since
 Main is an Activity, which is
 derived from Context, we can use
 this (in this case Main.this because of the inner class for the
 onClick handler). With all the imports the
 Main.java code will be:
package com.example;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;
import android.view.View.OnClickListener;

public class Main extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 findViewById(R.id.nextButton).setOnClickListener(new OnClickListener() {
 public void onClick(View v) {
 Intent intent = new Intent(Main.this, Screen2.class);
 startActivity(intent);
 }});
 }
}
Alternatively, to make the code easier to understand, the object
 to handle the button presses can be declared separately:
public class Main extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 findViewById(R.id.nextButton).setOnClickListener(new handleButton());
 }
 class handleButton implements OnClickListener {
 public void onClick(View v) {
 Intent intent = new Intent(Main.this, Screen2.class);
 startActivity(intent);
 }
 }
}
(The handler example in Recipe 7.4 can also be adapted for this
 example.)
Finally, to register the new screen with Android an activity definition is added to the
 AndroidManifest.xml file in the project, after the
 activity declaration for Main. The activity section
 will be:
<application android:icon="@drawable/globe" android:label="@string/app_name">
 <activity android:name=".Main"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 <activity android:name=".Screen2"
 android:label="@string/screen2Title">
 </activity>
</application>
The dot in front of Main and
 Screen2 signifies that the activity is within the
 application package. If the activity was defined in another package the
 activity name would include the full package name.
When the app runs the first screen will look like Figure 7-16.
[image: First screen with Next button]

Figure 7-16. First screen with Next button

Figure 7-17 shows the screen after the
 Next button is pressed.
[image: Next app window]

Figure 7-17. Next app window

A button is not required to go back to the first screen. Android
 manages a stack of activities, as well as a Back button either on the
 device or on the bottom of the screen below the application’s
 window.

See Also

Recipe 1.4, Recipe 7.4

7.25. Creating a Loading Screen That Will Appear Between Two
 Activities

Shraddha Shravagi

Problem

You are getting a black screen before loading an activity.

Solution

Create a simple activity that shows a loading image instead of a
 black screen.

Discussion

Sometimes it takes time for an activity to fetch user-requested
 data from a database or the Internet, and then to load the data onto the
 user’s screen. In such cases, usually the screen goes black while the
 user waits for the data to load. The following scenario illustrates
 this:
ProfileList (the user selects one
 profile)→Black screen→ProfileData
Instead of showing the user a black screen while he waits for the
 data to load, you can show an image, as illustrated in the following
 scenario:
ProfileList (the user selects one
 profile)→LoadingScreenActivity→ProfileData
In this recipe we will create a simple loading screen that appears
 for 2.5 seconds while the next activity loads.
To do this, you need to start by creating a
 LoadingScreen layout file. This layout creates a
 screen which displays a “loading text” message and a progress
 bar:
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:gravity="center" android:orientation="vertical"
 android:layout_height="fill_parent" android:background="#E5E5E5">

 <TextView android:text="Please wait while your data is being loaded..."
 android:layout_width="wrap_content" android:layout_height="wrap_content"
 android:textColor="#000000">
 </TextView>
 <ProgressBar android:id="@+id/mainSpinner1" android:layout_gravity="center"
 android:layout_width="wrap_content" android:layout_height="wrap_content"
 android:indeterminate="true"
 style="?android:attr/progressBarStyleInverse">
 </ProgressBar>

</LinearLayout>
Next, create a LoadingScreen class file (see
 Example 7-24).
Example 7-24. The LoadingScreen class
public class LoadingScreenActivity extends Activity {

 //Introduce a delay
 private final int WAIT_TIME = 2500;
 @Override
 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);
 System.out.println("LoadingScreenActivity screen started");
 setContentView(R.layout.loading_screen);
 findViewById(R.id.mainSpinner1).setVisibility(View.VISIBLE);

 new Handler().postDelayed(new Runnable() {
 @Override
 public void run() {
 //Simulating a long running task
 try {
 Thread.sleep(1000);
 } catch (InterruptedException e) {
 // canthappen
 }
 System.out.println("Going to Profile Data");
 /* Create an Intent that will start the ProfileData Activity. */
 Intent mainIntent =
 new Intent(LoadingScreenActivity.this, ProfileData.class);
 LoadingScreenActivity.this.startActivity(mainIntent);
 LoadingScreenActivity.this.finish();
 }
 }, WAIT_TIME);
 }
}

This will load the next activity once WAIT_TIME
 has elapsed.
Now all you need to do is to create an intent to launch the
 loading screen activity:
protected void onListItemClick(ListView l, View v, int position, long id) {
 super.onListItemClick(l, v, position, id);

Intent intent = new Intent(ProfileList.this, LoadingScreenActivity.class);
 startActivity(intent);
}

7.26. Using SlidingDrawer to Overlap Other Components

Mike Rowehl

Problem

The SlidingDrawer component allows the user to “open” a GUI container
 holding a different set of components than is initially in a
 View. The Android 2.x Application Drawer is a good
 example of this. However, the proper layout of
 SlidingDrawer isn’t covered too well in the SDK
 documentation. You need to know how to use the control to overlay other
 components in a layout, as well as how to position elements in the
 underlying layout to avoid colliding with the drawer handle.

Solution

Place the SlidingDrawer inside a
 FrameLayout or a RelativeLayout. (Using it in a
 LinearLayout makes it difficult to get the drawer to
 overlay the rest of the controls on the screen.) To prevent the
 SlidingDrawer from overlaying data when positioning
 it over a ListView, use a spacer in the
 underlying layout to get everything to line up.

Discussion

First let’s take a look at the layout, including the
 SlidingDrawer itself. Note in Example 7-25 that there’s a spacer TextView aligned with the bottom
 of the RelativeLayout using the
 DrawerButton style. The drawer handle itself is also
 a TextView using the same style. Positioning the main
 ListView for the layout above the spacer ensures that
 none of the list items are hidden by the handle when the drawer is
 closed.
Example 7-25. SlidingDrawer layout
<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">

 <TextView style="@style/DrawerButton" android:layout_alignParentBottom="true"
 android:id="@+id/spacer" android:text="Spacer" />
 <ListView
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:id="@+id/contact_list"
 android:layout_alignParentTop="true"
 android:layout_above="@id/spacer"
 >
 </ListView>

 <SlidingDrawer android:layout_width="fill_parent"
 android:id="@+id/drawer" android:handle="@+id/drawer_button"
 android:content="@+id/drawer_content"
 android:layout_height="wrap_content" android:layout_alignParentBottom="true">
 <TextView android:id="@id/drawer_button" style="@style/DrawerButton"
 android:gravity="right|center_vertical" android:text="Handle"
 ></TextView>
 <ListView
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:id="@+id/drawer_content"
 android:background="#000000"
 >
 </ListView>
 </SlidingDrawer>
</RelativeLayout>

In Example 7-26 we extract the
 DrawerButton settings out into a style file
 (xml/styles.xml) so that we don’t have to change
 them on both the spacer and the handle item to keep them in sync.
Example 7-26. DrawerButton settings
<?xml version="1.0" encoding="utf-8"?>
<resources>
 <style name="DrawerButton" parent="@android:style/TextAppearance.Medium">
 <item name="android:layout_width">fill_parent</item>
 <item name="android:layout_height">wrap_content</item>
 <item name="android:background">#EEEEEE</item>
 <item name="android:textColor">#111111</item>
 <item name="android:gravity">right|center_vertical</item>
 <item name="android:paddingRight">3pt</item>
 <item name="android:paddingTop">2pt</item>
 <item name="android:paddingBottom">2pt</item>
 </style>
</resources>

Now the drawer should slide up over the
 ListView on the main screen without hiding any of the
 content when closed. Figure 7-18 shows
 three views: the initial view (Contacts), dragging the drawer up, and
 the drawer fully open (showing a phonetic example alphabet).
[image: SlidingDrawer in motion]

Figure 7-18. SlidingDrawer in motion

See Also

The SlidingDrawer can be activated programmatically using its open(),
 close(), toggle(), and
 animateOpen() methods. See the documentation at
 http://developer.android.com.
The animateOpen() method normally opens the
 drawer from the bottom up. You can animate it from the top down; see Recipe 7.27.

7.27. Customizing the SlidingDrawer Component to Animate/Transition from
 the Top Down

Wagied Davids

Problem

When the user drags the SlidingDrawer to open it, or
 you request that it be open by calling the open() method, it slides up from the
 bottom of the container. You want the SlidingDrawer component to instead
 animate/transition from the top down.

Solution

Use the open source org.panel package
 to create the top-down animation/transition.

Discussion

The steps are as follows:
	Include the org.panel easing interpolator
 package.

	Include as a new namespace, such as panel,
 in your Android view XML.

	Use the tag set instead of the Android SlidingDrawer
 component.

Example 7-27 shows the
 Main.xml layout file.
Example 7-27. The layout file main.xml
<?xml version="1.0" encoding="utf-8"?>
<FrameLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:panel="http://schemas.android.com/apk/res/org.panel"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">

 <LinearLayout
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <org.panel.Panel
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:id="@+id/topPanel"
 android:paddingBottom="20dip"
 panel:position="top"
 panel:animationDuration="1000"
 panel:linearFlying="true"
 panel:openedHandle="@drawable/top_switcher_expanded_background"
 panel:closedHandle="@drawable/top_switcher_collapsed_background">
 <Button
 android:id="@id/panelHandle"
 android:layout_width="fill_parent"
 android:layout_height="33dip" />
 <LinearLayout
 android:id="@id/panelContent"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content">
 <TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:gravity="center"
 android:text="From the Top -> Down"
 android:textSize="16dip"
 android:padding="4dip"
 android:textStyle="bold" />

 <ImageView
 android:src="@drawable/android_skateboard"
 android:layout_gravity="center"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content" />

 </LinearLayout>
 </org.panel.Panel>

 </LinearLayout>
</FrameLayout>

Example 7-28 shows the main activity.
Example 7-28. The main activity
import android.app.Activity;
import android.os.Bundle;

public class Test extends Activity {
 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 }
 }

Source Download URL

The source code for this example
 is in the Android Cookbook repository at http://github.com/AndroidCook/Android-Cookbook-Examples,
 in the subdirectory SlidingDrawer-TopDown (see Getting and Using the Code Examples).

7.28. Adding a Border with Rounded Corners to a Layout

Daniel Fowler

Problem

You need to put a border around an area of the screen or add interest to a
 user interface.

Solution

Define an Android shape in an XML file and assign it to a layout’s
 background attribute.

Discussion

The drawable folder, under
 res, in an Android project is not restricted to
 bitmaps (PNG or JPG files) but can also hold shapes defined in XML
 files. These shapes can then be reused in the project. A shape can be
 used to put a border around a layout. This example shows a rectangular
 border with curved corners.
A new file called customborder.xml is created
 in the drawable folder (in Eclipse, use the File
 menu and select New and then File; with the
 drawable folder selected, type in the filename and
 click Finish).
The XML defining the border shape is entered:
<?xml version="1.0" encoding="UTF-8"?>
<shape xmlns:android="http://schemas.android.com/apk/res/android"
android:shape="rectangle">
 <corners android:radius="20dp"/>
 <padding android:left="10dp" android:right="10dp"
 android:top="10dp" android:bottom="10dp"/>
 <solid android:color="#CCCCCC"/>
</shape>
The attribute android:shape
 is set to rectangle (shape files also support
 oval, line, and
 ring). Rectangle is the default value, so this
 attribute could be left out if it is a rectangle being defined. For
 detailed information on shape files, refer to the URL for the Android
 documentation on shapes, provided in the “See Also” section.
The element corners sets the
 rectangle corners to be rounded; it is possible to set a different
 radius on each corner (see the Android reference).
The padding attributes
 are used to move the contents of the
 View to which the shape is applied, to prevent the
 contents from overlapping the border.
The border color here is set to a light gray (CCCCCC hexadecimal
 RGB value).
Shapes also support gradients, but that is not being used here;
 again, see the Android resources to see how a gradient is
 defined.
The shape is applied using android:background="@drawable/customborder".
Within the layout other views can be added as normal. In this
 example a single TextView has been
 added, and the text is white (FFFFFF hexadecimal RGB). The background is
 set to blue, plus some transparency to reduce the brightness (A00000FF
 hexadecimal alpha RGB value).
Finally, the layout is offset from the screen edge by placing it
 into another layout with a small amount of padding. The full layout file
 is thus:
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:padding="5dp">
 <LinearLayout android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:background="@drawable/customborder">
 <TextView android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:text="Text View"
 android:textSize="20dp"
 android:textColor="#FFFFFF"
 android:gravity="center_horizontal"
 android:background="#A00000FF" />
 </LinearLayout>
</LinearLayout>
This produces the result shown in Figure 7-19.
[image: Curved border]

Figure 7-19. Curved border

See Also

http://developer.android.com/guide/topics/resources/drawable-resource.html#Shape

7.29. Detecting Gestures in Android

Pratik Rupwal

Problem

You want to traverse through different screens using simple gestures, such as
 flipping/scrolling the page.

Solution

Use the GestureDetector class to detect simple gestures such as tapping, scrolling,
 swiping, or flipping.

Discussion

The sample application has four views, each a different color. It
 also has two modes: SCROLL and FLIP. The application starts in FLIP
 mode. In this mode, when you perform the swipe/fling gesture in a
 left-to-right or top-to-bottom direction, the view changes back and
 forth. When a long-press is detected, the application changes to SCROLL
 mode, in which you can scroll the displayed view. While in this mode,
 you can double-tap on the screen to bring the screen back to its
 original position. When a long-press is detected again, the application
 changes to FLIP mode.
This recipe focuses on gesture detection, hence the animation
 applied is not discussed. Refer to Recipe 7.18 for an
 example of shaking a view using an animation, as well as the Android
 docs for “android.view.animation*” (see http://developer.android.com/reference/android/view/animation/package-summary.html).
Example 7-29 provides an introduction to simple
 gesture detection in Android. Our GestureDetector
 class detects gestures using the supplied MotionEvent
 class. We use this class along with the onTouchEvent.
 Inside this method we call
 GestureDetector.onTouchEvent. The
 GestureDetector class identifies the gestures or
 events that occurred and reports back to us using the
 GestureDetector.OnGestureListener callback interface.
 We create an instance of the GestureDetector class by
 passing the Context and
 GestureDetector.OnGestureListener listener. The
 double-tap event is not present in the
 GestureDetector.onGestureListener callback interface;
 this event is reported using another callback interface,
 GestureDetector.onDoubleTapListener. To use this
 callback interface we have to register for these events using
 GestureDetector.setOnDoubleTapListener. The
 MotionEvent class contains all the values
 corresponding to a movement and touch event. This class holds values
 such as the X and Y positions at which the event occurred, the timestamp
 at which the event occurred, and the mouse pointer index.
Example 7-29. Gesture detection
...
import android.view.GestureDetector;
...
import android.view.animation.OvershootInterpolator;
import android.view.animation.TranslateAnimation;

public class FlipperActivity extends Activity
 implements GestureDetector.OnGestureListener,
 GestureDetector.OnDoubleTapListener{

 final private int SWIPE_MIN_DISTANCE = 100;
 final private int SWIPE_MIN_VELOCITY = 100;

 private ViewFlipper flipper = null;
 private ArrayList<TextView> views = null;
 private GestureDetector gesturedetector = null;
 private Vibrator vibrator = null;
 int colors[] = { Color.rgb(255,128,128),
 Color.rgb(128,255,128),
 Color.rgb(128,128,255),
 Color.rgb(128,128,128) };

 private Animation animleftin = null;
 private Animation animleftout = null;

 private Animation animrightin = null;
 private Animation animrightout = null;

 private Animation animupin = null;
 private Animation animupout = null;

 private Animation animdownin = null;
 private Animation animdownout = null;

 private boolean isDragMode = false;
 private int currentview = 0;

/** Initializes the first screen and animation to be applied to the screen
after detecting the gesture */

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 flipper = new ViewFlipper(this);
 gesturedetector = new GestureDetector(this, this);
 vibrator = (Vibrator)getSystemService(VIBRATOR_SERVICE);
 gesturedetector.setOnDoubleTapListener(this);

 flipper.setInAnimation(animleftin);
 flipper.setOutAnimation(animleftout);
 flipper.setFlipInterval(3000);
 flipper.setAnimateFirstView(true);

 prepareAnimations();
 prepareViews();
 addViews();
 setViewText();

 setContentView(flipper);
 }

 private void prepareAnimations() {
 animleftin = new TranslateAnimation(
 Animation.RELATIVE_TO_PARENT, +1.0f, Animation.RELATIVE_TO_PARENT, 0.0f,
 Animation.RELATIVE_TO_PARENT, 0.0f, Animation.RELATIVE_TO_PARENT, 0.0f);

 animleftout = new TranslateAnimation(
 Animation.RELATIVE_TO_PARENT, 0.0f, Animation.RELATIVE_TO_PARENT, -1.0f,
 Animation.RELATIVE_TO_PARENT, 0.0f, Animation.RELATIVE_TO_PARENT, 0.0f);

 animrightin = new TranslateAnimation(
 Animation.RELATIVE_TO_PARENT, -1.0f, Animation.RELATIVE_TO_PARENT, 0.0f,
 Animation.RELATIVE_TO_PARENT, 0.0f, Animation.RELATIVE_TO_PARENT, 0.0f);

 animrightout = new TranslateAnimation(
 Animation.RELATIVE_TO_PARENT, 0.0f, Animation.RELATIVE_TO_PARENT, +1.0f,
 Animation.RELATIVE_TO_PARENT, 0.0f, Animation.RELATIVE_TO_PARENT, 0.0f);

 animupin = new TranslateAnimation(
 Animation.RELATIVE_TO_PARENT, 0.0f, Animation.RELATIVE_TO_PARENT, 0.0f,
 Animation.RELATIVE_TO_PARENT, +1.0f, Animation.RELATIVE_TO_PARENT, 0.0f);

 animupout = new TranslateAnimation(
 Animation.RELATIVE_TO_PARENT, 0.0f, Animation.RELATIVE_TO_PARENT, 0.0f,
 Animation.RELATIVE_TO_PARENT, 0.0f, Animation.RELATIVE_TO_PARENT, -1.0f);

 animdownin = new TranslateAnimation(
 Animation.RELATIVE_TO_PARENT, 0.0f, Animation.RELATIVE_TO_PARENT, 0.0f,
 Animation.RELATIVE_TO_PARENT, -1.0f, Animation.RELATIVE_TO_PARENT, 0.0f);

 animdownout = new TranslateAnimation(
 Animation.RELATIVE_TO_PARENT, 0.0f, Animation.RELATIVE_TO_PARENT, 0.0f,
 Animation.RELATIVE_TO_PARENT, 0.0f, Animation.RELATIVE_TO_PARENT, +1.0f);

 animleftin.setDuration(1000);
 animleftin.setInterpolator(new OvershootInterpolator());
 animleftout.setDuration(1000);
 animleftout.setInterpolator(new OvershootInterpolator());

 animrightin.setDuration(1000);
 animrightin.setInterpolator(new OvershootInterpolator());
 animrightout.setDuration(1000);
 animrightout.setInterpolator(new OvershootInterpolator());

 animupin.setDuration(1000);
 animupin.setInterpolator(new OvershootInterpolator());
 animupout.setDuration(1000);
 animupout.setInterpolator(new OvershootInterpolator());

 animdownin.setDuration(1000);
 animdownin.setInterpolator(new OvershootInterpolator());
 animdownout.setDuration(1000);
 animdownout.setInterpolator(new OvershootInterpolator());
 }

 private void prepareViews() {
 TextView view = null;

 views = new ArrayList<TextView>();

 for (int color: colors) {
 view = new TextView(this);

 view.setBackgroundColor(color);
 view.setTextColor(Color.BLACK);
 view.setGravity(
 Gravity.CENTER_HORIZONTAL | Gravity.CENTER_VERTICAL);

 views.add(view);
 }
 }

 private void addViews() {
 for (int index=0; index<views.size(); ++index) {
 flipper.addView(views.get(index),index,
 new LayoutParams(LayoutParams.FILL_PARENT,
 LayoutParams.FILL_PARENT));
 }
 }

 private void setViewText(){
 String text = getString(isDragMode ? R.string.app_info_drag :
 R.string.app_info_flip);
 for (int index=0; index<views.size(); ++index) {
 views.get(index).setText(text);
 }
 }

 /**Gets invoked when a screen touch is detected*/
 @Override
 public boolean onTouchEvent(MotionEvent event) {
 return gesturedetector.onTouchEvent(event);
 }

 /** The onDown method is called when the user first touches the screen;
 * the MotionEvent parameter represents the event that corresponds to
 * the touch event. */
 @Override
 public boolean onDown(MotionEvent e) {
 return false;
 }

 /** The onFling method is called whenever the user swipes the screen
 * in any direction, i.e., the user touches the screen and immediately
 * moves the finger in any direction. */
 @Override
 public boolean onFling(MotionEvent event1, MotionEvent event2,
 float velocityX,float velocityY) {
 if(isDragMode)
 return false;

 final float ev1x = event1.getX();
 final float ev1y = event1.getY();
 final float ev2x = event2.getX();
 final float ev2y = event2.getY();
 final float xdiff = Math.abs(ev1x - ev2x);
 final float ydiff = Math.abs(ev1y - ev2y);
 final float xvelocity = Math.abs(velocityX);
 final float yvelocity = Math.abs(velocityY);

 if(xvelocity > this.SWIPE_MIN_VELOCITY && xdiff > this.SWIPE_MIN_DISTANCE)
 {
 if(ev1x > ev2x) //Swipe Left
 {
 --currentview;

 if(currentview < 0)
 {
 currentview = views.size() - 1;
 }

 flipper.setInAnimation(animleftin);
 flipper.setOutAnimation(animleftout);
 }
 else //Swipe Right
 {
 ++currentview;

 if(currentview >= views.size())
 {
 currentview = 0;
 }

 flipper.setInAnimation(animrightin);
 flipper.setOutAnimation(animrightout);
 }

 flipper.scrollTo(0,0);
 flipper.setDisplayedChild(currentview);
 }
 else if (yvelocity > this.SWIPE_MIN_VELOCITY &&
 ydiff > this.SWIPE_MIN_DISTANCE) {
 if(ev1y > ev2y) //Swipe Up
 {
 --currentview;

 if(currentview < 0)
 {
 currentview = views.size() - 1;
 }

 flipper.setInAnimation(animupin);
 flipper.setOutAnimation(animupout);
 }
 else //Swipe Down
 {
 ++currentview;

 if(currentview >= views.size())
 {
 currentview = 0;
 }
 flipper.setInAnimation(animdownin);
 flipper.setOutAnimation(animdownout);
 }

 flipper.scrollTo(0,0);
 flipper.setDisplayedChild(currentview);
 }

 return false;
 }

 /** The onLongPress method is called when user touches the screen
 and holds it for a period of time. The MotionEvent parameter represents
 the event that corresponds to the touch event. */
 @Override
 public void onLongPress(MotionEvent e) {
 vibrator.vibrate(200);
 flipper.scrollTo(0,0);

 isDragMode = !isDragMode;

 setViewText();
 }

 /**The onScroll method is called when the user touches the screen
 and moves to another location on the screen.*/
 @Override
 public boolean onScroll(MotionEvent e1, MotionEvent e2,
 float distanceX,float distanceY) {
 if(isDragMode)
 flipper.scrollBy((int)distanceX, (int)distanceY);

 return false;
 }

 /**The onShowPress method is called when the user touches the screen
 * and has not moved yet. This event is mostly used for giving visual
 * feedback to the user to show their action.*/
 @Override
 public void onShowPress(MotionEvent e) {
 }

 /** onSingleTapUp() is called when a tap occurred, i.e., user taps the screen.*/
 @Override
 public boolean onSingleTapUp(MotionEvent e) {
 return false;
 }

 /** The onDoubleTap method is called when a double-tap event has occurred.
 * The only parameter, MotionEvent, corresponds to the double-tap
 * event that occurred. */
 @Override
 public boolean onDoubleTap(MotionEvent e) {
 flipper.scrollTo(0,0);

 return false;
 }

 /** The onDoubleTapEvent is called for all events that occurred within
 * the double-tap, i.e., down, move and up events.*/

 @Override
 public boolean onDoubleTapEvent(MotionEvent e) {
 return false;
 }

 /** The onSingleTapConfirmed method is called when a single tap
 has occurred and been confirmed, but this is not same as the
 single-tap event in the GestureDetector.onGestureListener. This
 is called when the GestureDetector detects and confirms that
 this tap does not lead to a double-tap.
 */
 @Override
 public boolean onSingleTapConfirmed(MotionEvent e) {
 return false;
 }
}

When the mode of the application changes the user is notified with
 a vibration. To use the vibrator set the following permission in your
 application’s AndroidManifest.xml file:
<uses-permission android:name="android.permission.VIBRATE"></uses-permission>
The application uses some strings, which are declared under
 res/values/string.xml:
<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string name="app_info_drag">
 GestureDetector sample.\n\nCurrent Mode:
 SCROLL\n\nDrag the view using finger.\nLong press to change
 the mode to FLIP.\nDouble tap to reposition the view to normal.</string>
 <string name="app_name">Gesture Detector Sample</string>
 <string name="app_info_flip">
 GestureDetector sample.\n\nCurrent Mode: FLIP\n\nSwipe left, right, up, down
 to change the views\nLong
 press to change to mode to SCROLL</string>
</resources>

See Also

Check the GestureOverlayView
 class for handling complex gestures in Android.

7.30. Building a UI Using Android 3.0 Fragments in Android 1.6 and
 Later

Saketkumar Srivastav

Problem

Fragments are small chunks of the UI that constitute a single activity.
 Fragments were originally only available in Android 3.0 and later. You
 want to add fragments to the UI in Android version 1.6 and later.

Solution

Use Google’s Android Compatibility package to build applications using the Fragments API in Android
 2.0 and later versions.

Discussion

A fragment can be treated as an individual portlet of a portal
 page. It is very similar to an activity in terms of its look, life
 cycle, and so on, but it is different from an activity in the sense that
 a fragment should always reside in an activity; fragments cannot exist
 independently as activities.
To create a fragment, we need to extend one of the Fragment classes. Different kinds of
 fragments are available, including ListFragment
 (ListActivity), DialogFragment
 (DialogInterface), and
 PreferenceFragment
 (PreferenceActivity).
Let’s start with the FragmentTestActivity class
 (see Example 7-30). In the
 onCreate() method we set the list adapter to hold a
 string array of magazine titles of the EFY Group. We also set the
 listener on the list items so that we can perform some action when an
 item from the list is clicked.
In the onItemClickListener() method we perform
 the main task of managing the fragment. We obtain the instance of the
 fragment passing the position of the clicked item. Now we need to
 replace the fragment element that we have in
 main.xml with the new fragment
 TestFragment, which has a meaningful UI associated
 with it. To accomplish this we get the instance of the
 FragmentTransaction class; this API allows us to add,
 remove, and replace a fragment programmatically. We replace the
 R.id.the_frag which corresponds to the
 <fragment> element of
 main.xml with the newly created fragment
 f. The setTransition() method
 signifies the kind of transition that happens with the fragment. The
 addToBackStack() method adds the fragment transaction
 to the back of the fragment stack so that when the Back button is
 pressed on the device, we go to the last transaction of the fragment and
 do not exit the application. After all the transactions have been made,
 we commit the transaction.
Now let’s set up the TestFragment class (see
 Example 7-31). We initialize the position of the
 clicked item from the list to the variable
 magznumber. As we discussed earlier, if a fragment is
 being associated with a UI the onCreateView() method is used to
 inflate the view to the fragment. Here, we create a linear layout for
 the fragment and then load it with the appropriate image of the magazine
 in an ImageView, and this
 ImageView is added to the linear layout.
Example 7-30. FragmentTestActivity.java
public class FragmentTestActivity
 extends FragmentActivity implements OnItemClickListener {

 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 ListView l = (ListView) findViewById(R.id.number_list);
 ArrayAdapter<String> magzTitles =
 new ArrayAdapter<String>(getApplicationContext(),
 android.R.layout.simple_list_item_1, new String[]{"Electronics For You",
 "Linux For You",
 "Facts For you"});
 // It would be better to move the array of titles into XML and use
 // R.array.magz_titles);
 l.setAdapter(magzTitles);
 l.setOnItemClickListener(this);
 }

 /**
 * Called when a number gets clicked
 */
 public void onItemClick(AdapterView<?> parent, View view, int position, long id) {

 Fragment f = new TestFragment(position+1);

 FragmentTransaction ft = getSupportFragmentManager().beginTransaction();
 ft.replace(R.id.the_frag, f);
 ft.setTransition(FragmentTransaction.TRANSIT_FRAGMENT_FADE);
 ft.addToBackStack(null);
 ft.commit();
 }
}

Example 7-31. TestFragment.java
public class TestFragment extends Fragment {

 private int magznumber;

 public TestFragment() {

 }

 /**
 * Constructor for being created explicitly
 */
 public TestFragment(int position) {
 this.magznumber = position;
 }

 /**
 * If we are being created with saved state, restore our state
 */
 @Override
 public void onCreate(Bundle saved) {
 super.onCreate(saved);
 if (null != saved) {
 magznumber = saved.getInt("magznumber");
 }
 }

 /**
 * Save the number of Androids to be displayed
 */
 @Override
 public void onSaveInstanceState(Bundle toSave) {
 toSave.putInt("magznumber", magznumber);
 }

 /**
 * Make a grid to view the magazines
 */
 @Override
 public View onCreateView(LayoutInflater inflater, ViewGroup container, Bundle saved) {

 Context c = getActivity().getApplicationContext();

 LinearLayout l = new LinearLayout(c);
 LayoutParams params = new LayoutParams(LayoutParams.WRAP_CONTENT,
 LayoutParams.MATCH_PARENT, 0);

 l.setLayoutParams(params);

 ImageView i = new ImageView(c);

 switch(magznumber){
 case 1:
 i.setImageResource(R.drawable.efymag);
 break;
 case 2:
 i.setImageResource(R.drawable.lfymag);
 break;
 case 3:
 i.setImageResource(R.drawable.ffymag);
 break;
 }

 l.addView(i);

 return l;
 }
}

Figure 7-20 shows the results of
 running this code.
[image: Fragments API example]

Figure 7-20. Fragments API example

See Also

See these official Android articles on the
 fragments API and on the
 compatibility package.

Source Download URL

You can download the source code for this example from https://github.com/SaketSrivastav/AndroidFragmentDemo.
[image: image with no caption]

7.31. Using the Android 3.0 Photo Gallery

Wagied Davids

Problem

You have a number of static images, and you want to display them in a photo
 gallery so that the user can act on them in some way.

Solution

Use the Android 3.0 Photo Gallery to display images that users can
 interact with.

Discussion

To use the Android 3.0 Photo Gallery follow these steps:
	Download the Android 3.x SDK either by using the SDK download
 manager or from within the Eclipse IDE by using the Android SDK
 Manager.

	Create an AVD to run the emulator.

	Create an Android project (Important: set
 Min. SDK Version to “Honeycomb”) and click Finish.

	Create a main entry point Java file—for example,
 Main.java.

	Create an ImageAdapter.java file.

	Create an XML layout file (see Example 7-32).

	Package and run the Android app.

Example 7-32. The main layout file main.xml
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:gravity="center"
 >

 <Gallery
 android:id="@+id/gallery1"
 android:layout_height="wrap_content"
 android:layout_width="match_parent"
 android:spacing="10dip"
 >
 </Gallery>
</LinearLayout>

Example 7-33 shows the code for the main
 activity.
Example 7-33. The main activity
import android.app.Activity;
import android.graphics.Bitmap;
import android.graphics.BitmapFactory;
import android.graphics.drawable.Drawable;
import android.os.Bundle;
import android.view.View;
import android.widget.AdapterView;
import android.widget.AdapterView.OnItemClickListener;
import android.widget.Gallery;
import android.widget.Toast;

public class Main extends Activity implements OnItemClickListener
 {
 private static final String tag = "Main";
 private Gallery _gallery;
 private ImageAdapter _imageAdapter;

 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 setTitle("Android Honeycomb Photo Gallery Example");

 _gallery = (Gallery) this.findViewById(R.id.gallery1);
 _imageAdapter = new ImageAdapter(this);
 _gallery.setAdapter(_imageAdapter);
 _gallery.setOnItemClickListener(this);
 }

 @Override
 public void onItemClick(AdapterView<?> arg0, View view,
 int position, long duration) {
 int resourcId = (Integer) _imageAdapter.getItem(position);
 Drawable drawable = getResources().getDrawable(resourcId);
 Bitmap bitmap = BitmapFactory.decodeResource(getResources(), resourcId);

 Toast.makeText(this,
 "Selected Image: " + getResources().getText(resourcId) + "\n" +
 "Height: " + bitmap.getHeight() + "\nWidth: " + bitmap.getWidth(),
 Toast.LENGTH_SHORT).show();
 }
 }

Example 7-34 shows the code for the ImageAdapter class.
Example 7-34. The ImageAdapter class
public class ImageAdapter extends BaseAdapter {
 private Context _context = null;
 private final int[] imageIds = { R.drawable.formula, R.drawable.hollywood,
 R.drawable.mode1, R.drawable.mode2, R.drawable.mother1, R.drawable.mother2,
 R.drawable.nights, R.drawable.ontwerpje1,R.drawable.ontwerpje2,
 R.drawable.relation1,
 R.drawable.relation2, R.drawable.renaissance, R.drawable.renaissance_zoom };
 public ImageAdapter(Context context) {
 this._context = context;
 }

 @Override
 public int getCount()
 {
 return imageIds.length;
 }

 @Override
 public Object getItem(int index)
 {
 return imageIds[index];
 }

 @Override
 public long getItemId(int index)
 {
 return index;
 }

 @Override
 public View getView(int postion, View view, ViewGroup group)
 {
 ImageView imageView = new ImageView(_context);
 imageView.setImageResource(imageIds[postion]);
 imageView.setScaleType(ScaleType.FIT_XY);
 imageView.setLayoutParams(new Gallery.LayoutParams(400, 400));
 return imageView;
 }
 }

Figure 7-21
 shows the result.
[image: Photo gallery example]

Figure 7-21. Photo gallery example

Source Download URL

The source code for this example is in the Android Cookbook repository at http://github.com/AndroidCook/Android-Cookbook-Examples,
 in the subdirectory HoneycombGallery (see Getting and Using the Code Examples).

7.32. Creating a Simple App Widget

Catarina Reis

Problem

You want to enable users to more easily interact with your
 application.

Solution

Create an Application widget, which is a simple GUI control that
 appears on the Home screen and allows users to easily interact with an
 existing application (activity and/or service).

Discussion

In this recipe we will create a widget that starts a service that
 updates its visual components. The widget, called
 CurrentMoodWidget, presents the user’s current mood
 in the form of a “smiley text” in a widget. The current mood smiley
 changes to a random mood smiley whenever the user clicks the “smiley
 image” button. Figure 7-22 shows the initial
 view, and Figure 7-23 shows the view after a
 random change.
[image: Initial mood widget]

Figure 7-22. Initial mood widget

[image: Current mood widget]

Figure 7-23. Current mood widget

1. Start by creating a new Android project (CurrentMoodWidgetProject). Use “Current Mood”
 as the application name and “oreillymedia.cookbook.android.spikes” as
 the package name. Do not create an activity. Set the minimum SDK version
 to 8 (for Android 2.2, the version that introduced App Widgets).
2. Add the text support required for the widget. Place this under
 the resources file folder (res/values/string.xml),
 according to the following name-value pairs:
	widgettext - “current mood:”

	widgetmoodtext - “:)”

3. Add the images that will appear in the widget’s button. Place
 these under the res/drawable structure
 (smile_icon.png).
[image: image with no caption]

4. Create a new layout file inside
 res/layout, under the project structure, that will
 define the widget layout (widgetlayout.xml)
 according to the following structure:
 <TextView android:text="@string/widgettext"
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_weight="0.8"
 android:layout_gravity="center_vertical"
 android:textColor="#000000"></TextView>
 <TextView android:text="@string/widgetmoodtext"
 android:id="@+id/widgetMood" android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_weight="0.3"
 android:layout_gravity="center_vertical"
 android:textColor="#000000"></TextView>
 <ImageButton android:id="@+id/widgetBtn" android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_weight="0.5" android:src="@drawable/smile_icon"
 android:layout_gravity="center_vertical"></ImageButton>
5. Provide the widget provider setup configuration by first
 creating the res/xml folder under the project
 structure and then creating an XML file
 (widgetproviderinfo.xml) with the following
 parameters:
 <appwidget-provider
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:minWidth="220dp"
 android:minHeight="72dp"
 android:updatePeriodMillis="86400000"
 android:initialLayout="@layout/widgetlayout">
 </appwidget-provider>
6. Create the service that reacts to the user interaction with the
 smiley image button (CurrentMoodService.java); see Example 7-35.
Example 7-35. Widget’s service implementation
 @Override
 public int onStartCommand(Intent intent, int flags, int startId) {
 super.onStart(intent, startId);
 updateMood(intent);
 stopSelf(startId);
 return START_STICKY;
 }

 private void updateMood(Intent intent) {
 if (intent != null){
 String requestedAction = intent.getAction();
 if (requestedAction != null && requestedAction.equals(UPDATEMOOD)){
 this.currentMood = getRandomMood();
 int widgetId = intent.getIntExtra(AppWidgetManager.EXTRA_APPWIDGET_ID, 0);
 AppWidgetManager appWidgetMan = AppWidgetManager.getInstance(this);
 RemoteViews views =
 new RemoteViews(this.getPackageName(),R.layout.widgetlayout);
 views.setTextViewText(R.id.widgetMood, currentMood);
 appWidgetMan.updateAppWidget(widgetId, views);
 }
 }
 }

7. Implement the widget provider class (CurrentMoodWidgetProvider.java); see Example 7-36.
Example 7-36. Widget provider class
 @Override
 public void onUpdate(Context context, AppWidgetManager appWidgetManager,
 int[] appWidgetIds) {
 super.onUpdate(context, appWidgetManager, appWidgetIds);

 for (int i=0; i<appWidgetIds.length; i++) {
 int appWidgetId = appWidgetIds[i];
 RemoteViews views = new RemoteViews(context.getPackageName(),
 R.layout.widgetlayout);
 Intent intent = new Intent(context, CurrentMoodService.class);
 intent.setAction(CurrentMoodService.UPDATEMOOD);
 intent.putExtra(AppWidgetManager.EXTRA_APPWIDGET_ID, appWidgetId);
 PendingIntent pendingIntent = PendingIntent.getService(context, 0, intent, 0);
 views.setOnClickPendingIntent(R.id.widgetBtn, pendingIntent);
 appWidgetManager.updateAppWidget(appWidgetId, views);
 }
 }

8. Finally, declare the service and the app widget provider in the
 manifest file (AndroidManifest.xml).
 <service android:name=".CurrentMoodService">
 </service>
 <receiver android:name=".CurrentMoodWidgetProvider">
 <intent-filter>
 <action android:name="android.appwidget.action.APPWIDGET_UPDATE" />
 </intent-filter>
 <meta-data android:name="android.appwidget.provider"
 android:resource="@xml/widgetproviderinfo" />
 </receiver>

Source Download URL

You can download the source code for this example from http://sites.google.com/site/androidsourcecode/src/CurrentMoodWidgetProject.rar.
[image: image with no caption]

Chapter 8. GUI Alerts: Menus, Dialogs, Toasts, and
 Notifications

8.1. Introduction: GUI Alerts

Ian Darwin

Discussion

User interface toolkits as diverse as Java Swing, Apple Macintosh,
 Microsoft Windows, and browser JavaScript all feature the ubiquitous
 “pop-up menu,” usually in the window-frame version and the context
 (in-window) form. Android follows this, with some variations to be
 expected due to the smaller screens used on many devices (e.g., pop-up
 or context menus cover a large portion of the screen). As well,
 frame-anchored menus appear at the bottom of the screen rather than the
 top.
Those other window systems also feature the ubiquitous “dialog,” a
 window smaller than the main screen that pops up to notify you of some
 condition or occurrence, and asks you to confirm your acceptance, or
 asks you to make one of several choices, provide some information, and
 so on.
Android provides a fairly standard dialog mechanism. But it doesn’t stop
 there. It provides a smaller, lighter “pop up” called a toast. This only
 appears on screen for a few seconds, and fades away on its own. Intended
 for passive notification of low-importance events, it is often
 incorrectly used for error notification, although I advise against this
 usage.
And it doesn’t stop there. Android also provides a “notification”
 mechanism, which allows you to put text and/or an icon in the
 notifications bar (top right of the screen in Gingerbread, bottom right
 in Honeycomb). A notification can optionally be accompanied by any
 combination of LED flashing, audio sounds, and device vibration.
Each of these interactive mechanisms is discussed in this chapter.
 The chapter proceeds in the same order as this introduction, from menus,
 to dialogs and toasts, to notifications.

8.2. Creating and Displaying a Menu

Rachee Singh

Problem

You want to show a menu when the user presses the Menu button on the
 Android device.

Solution

Implement a menu by setting it up in the XML and attaching it to
 your Activity by overriding
 onCreateOptionsMenu().

Discussion

First, create a directory named menu in the
 res directory of the project. In the
 menu directory create a
 Menu.xml file. Example 8-1 shows
 the code for Menu.xml.
Example 8-1. The menu definition
<menu xmlns:android="http://schemas.android.com/apk/res/android">
 <item android:id="@+id/icon1"
 android:title="One"
 android:icon="@drawable/first" />
 <item android:id="@+id/icon2"
 android:title="Two"
 android:icon="@drawable/second" />
 <item android:id="@+id/icon3"
 android:title="Three"
 android:icon="@drawable/three" />
 <item android:id="@+id/icon4"
 android:title="Four"
 android:icon="@drawable/four" />
</menu>

In this XML code we add a menu and to it we add as many items as
 our application requires. We can also provide an image for each menu
 item (in this example, default images have been used).
In the Java code for the Activity, override the
 onCreateOptionsMenu.
 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 MenuInflater inflater = getMenuInflater();
 inflater.inflate(R.menu.menu, menu);
 return true;
 }
Figure 8-1 shows how the menu should
 look.
[image: Custom menu]

Figure 8-1. Custom menu

8.3. Handling Choice Selection in a Menu

Rachee Singh

Problem

After creating a custom menu, you want to react when the user clicks a menu
 item.

Solution

Override the onOptionsItemSelected
 method.

Discussion

In the Java Activity we need to override
 onOptionsItemSelected. This method takes in a
 MenuItem and checks for its ID. Based on the ID of
 the item that is clicked, a switch-case can be used. Depending on the
 case selected, appropriate action can be taken. The custom menu would
 look something like Figure 8-2.
[image: Custom menu]

Figure 8-2. Custom menu

For this example, the cases just display toasts.
Here’s the source code:
@Override
 public boolean onOptionsItemSelected(MenuItem item) {
 switch (item.getItemId()) {
 case R.id.icon1:
 Toast.makeText(this, "Icon 1 Beep Bop!", Toast.LENGTH_LONG).show();
 break;
 case R.id.icon2:
 Toast.makeText(this, "Icon 2 Beep Bop!", Toast.LENGTH_LONG).show();
 break;
 case R.id.icon3:
 Toast.makeText(this, "Icon 3 Beep Bop!", Toast.LENGTH_LONG).show();
 break;
 case R.id.icon4 :
 Toast.makeText(this, "Icon 4 Beep Bop!", Toast.LENGTH_LONG).show();
 break;
 }
 return true;
 }
Figure 8-3 shows the result.

Source Download URL

You can download the source code from https://docs.google.com/leaf?id=0B_rESQKgad5LZWM0ODRiNjAtNzJhOS00MGRjLTkwMjMtMjNlOTQwZDU0OGE2&hl=en_US&authkey=CJKD4IoH.
[image: image with no caption]

[image: Menu choice confirmed]

Figure 8-3. Menu choice confirmed

8.4. Creating a Submenu

Rachee Singh

Problem

You want to display options to the user from within an existing menu.

Solution

Use a submenu implementation to provide options to the
 user.

Discussion

A submenu is a part of a menu that displays options in a
 hierarchical manner. On desktop operating systems, submenus appear to
 “cascade” down and to the side, usually the right side. Android devices
 may not have room for that, so submenus appear like dialogs in that they
 float over the main screen of the application, rather like a spinner
 (see Recipe 7.8). You can create the menus in the
 following ways:
	By inflating an XML layout

	By creating the menu items in the Java code

In this recipe we will follow the second approach, and we will
 create the menu/submenu items in the
 onCreateOptionsMenu() method.
First we add the submenu to the menu using the addSubMenu() method. In
 order to prevent conflicts with other items in the menu, we explicitly
 provide the group ID and item ID to the submenu we are creating
 (constants for the item ID and group ID are specified). Then we set an
 icon for the submenu with the setIcon method and
 an icon for the header of the submenu (see Example 8-2).
To add items to the submenu we use the add() method. As
 arguments to the method, the group ID, item ID, position of the item in
 the submenu, and text associated with each item are specified:
private static final int OPTION_1 = 0;
private static final int OPTION_2 = 1;
private int GROUP_ID = 4;
private int ITEM_ID =3;
Example 8-2. The menu listener methods
@Override
public boolean onCreateOptionsMenu(Menu menu) {

 SubMenu sub1 = menu.addSubMenu(GROUP_ID, ITEM_ID , Menu.NONE, R.string.submenu_1);
 sub1.setHeaderIcon(R.drawable.icon);
 sub1.setIcon(R.drawable.icon);

 sub1.add(GROUP_ID , OPTION_1, 0, "Submenu Option 1");
 sub1.add(GROUP_ID, OPTION_2, 1, "Submenu Option 2");

 return super.onCreateOptionsMenu(menu);
}
@Override
public boolean onOptionsItemSelected(MenuItem item) {
 switch (item.getItemId()) {
 case OPTION_1:
 Toast.makeText(this, "Submenu 1, Option 1", Toast.LENGTH_LONG).show();
 break;
 case OPTION_2:
 Toast.makeText(this, "Submenu 1, Option 2", Toast.LENGTH_LONG).show();
 break;
 }
 return true;
}

The onOptionItemSelected() method is called when an item of the menu/submenu is selected. In
 this method, using a switch-case we check for the item that is clicked
 and an appropriate message is displayed.
Figure 8-4 shows the initial menu that
 appears when you press the Menu button; Figure 8-5
 shows the submenu that appears when you click on the main menu
 item.
[image: Initial menu]

Figure 8-4. Initial menu

Source Download URL

You can download the source code for this example from https://docs.google.com/leaf?id=0B_rESQKgad5LN2I5ZmIxNjEtYzc3Zi00MjczLTk5NzEtYmZjNzRlNjM1ZTc2&hl=en_US&authkey=CN-BsekI.
[image: image with no caption]

[image: Submenu]

Figure 8-5. Submenu

8.5. Creating a Pop-up/Alert Dialog

Rachee Singh

Problem

You would like a way to prompt the user about things such as unsaved
 changes in the application through an alerting mechanism.

Solution

Use AlertDialog, a class that enables you to provides suitable options to the
 user. In the case of an “unsaved changes” scenario, the options would
 be:
	Save

	Discard Changes

	Cancel

Discussion

Through the AlertDialog class, you can provide
 the user with up to three options that can be used in any
 scenario:
	Positive reaction

	Neutral reaction

	Negative reaction

If the user has entered some data in an
 EditText and is then attempting to cancel that
 Activity, the application should prompt the user to
 either save his changes, discard them, or cancel the alert dialog, which
 should also cancel the cancellation of the Activity as well.
Here is the code that would implement this kind of
 AlertDialog along with appropriate click listeners on
 each button on the dialog:
alertDialog = new AlertDialog.Builder(this)
.setTitle(R.string.unsaved)
.setMessage(R.string.unsaved_changes_message)
.setPositiveButton(R.string.save_changes, new AlertDialog.OnClickListener() {
 public void onClick(DialogInterface dialog, int which) {
 saveInformation();
 }
 })
.setNeutralButton(R.string.discard_changes, new AlertDialog.OnClickListener() {
 public void onClick(DialogInterface dialog, int which) {
 finish();
 }
 })
.setNegativeButton(android.R.string.cancel_dialog, new AlertDialog.OnClickListener() {
 public void onClick(DialogInterface dialog, int which) {
 alertDialog.cancel();
 }
 })
 .create();
 alertDialog.show();

8.6. Using a Timepicker Widget

Pratik Rupwal

Problem

You need to ask the user to enter the time for processing some element in the
 application. Accepting time in text boxes is not graceful, and requires
 validation.

Solution

You can use the standard Timepicker widget to
 accept time from the user. It makes the app appear graceful and reduces
 the requirement of validation. The Datepicker
 works in a similar fashion for choosing dates.

Discussion

The code in Example 8-3 shows how to reveal the
 current time on the screen, and gives a button which, when clicked,
 produces the Timepicker widget through which the user
 can accept the time.
Example 8-3. The main activity
public class Main extends Activity {

private TextView mTimeDisplay;
private Button mPickTime;

private int mHour;
private int mMinute;

static final int TIME_DIALOG_ID = 0;

 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 // capture our View elements
 mTimeDisplay = (TextView) findViewById(R.id.timeDisplay);
 mPickTime = (Button) findViewById(R.id.pickTime);

 // add a click listener to the button
 mPickTime.setOnClickListener(new View.OnClickListener() {
 public void onClick(View v) {
 showDialog(TIME_DIALOG_ID);
 }
 });

 // get the current time
 final Calendar c = Calendar.getInstance();
 mHour = c.get(Calendar.HOUR_OF_DAY);
 mMinute = c.get(Calendar.MINUTE);

 // display the current date
 updateDisplay();
 }

 // The overridden method shown below gets invoked when
 //'showDialog()' is called inside the 'onClick()' method defined
 // for handling the click event of the button 'change the time'

 @Override
 protected Dialog onCreateDialog(int id) {
 switch (id) {
 case TIME_DIALOG_ID:
 return new TimePickerDialog(this,
 mTimeSetListener, mHour, mMinute, false);
 }
 return null;
 }

 // updates the time we display in the TextView
 private void updateDisplay() {
 mTimeDisplay.setText(
 new StringBuilder()
 .append(pad(mHour)).append(":")
 .append(pad(mMinute)));
 }

 // the callback received when the user "sets" the time in the dialog
 private TimePickerDialog.OnTimeSetListener mTimeSetListener =
 new TimePickerDialog.OnTimeSetListener() {
 public void onTimeSet(android.widget.TimePicker view, int hourOfDay, int minute) {
 mHour = hourOfDay;
 mMinute = minute;
 updateDisplay();
 }
 };

 private static String pad(int c)
 {
 if (c >= 10)
 return String.valueOf(c);
 else
 return "0" + String.valueOf(c);
 }
}

Figure 8-6 shows the timepicker that
 appears on the screen after the user clicks the “Change the time”
 button.
[image: Setting the time]

Figure 8-6. Setting the time

8.7. Creating an iPhone-like Wheel Picker for Selection

Wagied Davids

Problem

You want a selection UI component similar to the iPhone’s wheel picker.

Solution

Create a scroll-wheel picker with the third-party widget
 Android-Wheel, the iPhone-like WheelPicker for Android.

Discussion

You can download Android-Wheel from http://code.google.com/p/android-wheel/. Unfortunately,
 installation requires more than installing a JAR file in your
 libs directory. Because resources needed for
 drawing must be in the res directory, you can
 extract the android-wheel-xx.zip file, and copy the
 wheel/src and wheel/res
 folders into your project. Alternatively, create a new Android project
 from the wheel subdirectory (Android will
 automatically make it an Android Library project) and make your main
 project depend on that (see Recipe 1.9). Then you can add
 one or more WheelView objects to your Layout, using the full class
 name. This class and its friends are found in the
 kankan.wheel.widget package; the adapters subpackage
 provides the WheelViewAdapter interface and some
 implementations. The widget package provides two interfaces that follow
 the standard setListener pattern on the
 WheelView component: these are
 wheel.addChangingListener(OnWheelChangedListener) and
 wheel.addScrollingListener(OnWheelScrollListener).
The code in Example 8-4, from a medical app, lets
 you choose a body part and location (R or L for Right or Left). The
 choices are hardcoded here; in a real-world app they would come from an
 XML file to allow for internationalization. The app should appear as
 shown in Figure 8-7.
[image: Wheel Picker in action]

Figure 8-7. Wheel Picker in action

Example 8-4. The ScrollWheel example code
import kankan.wheel.widget.OnWheelChangedListener;
import kankan.wheel.widget.OnWheelScrollListener;
import kankan.wheel.widget.WheelView;
import kankan.wheel.widget.adapters.ArrayWheelAdapter;
import android.app.Activity;
import android.os.Bundle;
import android.util.Log;
import android.widget.EditText;
import android.widget.TextView;

public class WheelDemoActivity extends Activity {

 private final static String TAG = "WheelDemo";

 String wheelMenu1[] = new String[]{
 "Right Arm", "Left Arm", "R-Abdomen", "L-Abdomen", "Right Thigh", "Left Thigh"};
 String wheelMenu2[] = new String[]{"Upper", "Middle", "Lower"};
 String wheelMenu3[] = new String[]{"R", "L"};

 // Wheel scrolled flag
 private boolean wheelScrolled = false;

 private TextView text;
 private EditText text1;
 private EditText text2;
 private EditText text3;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.empty_layout);

 initWheel(R.id.p1, wheelMenu1);
 initWheel(R.id.p2, wheelMenu2);
 initWheel(R.id.p3, wheelMenu3);

 text1 = (EditText) this.findViewById(R.id.r1);
 text2 = (EditText) this.findViewById(R.id.r2);
 text3 = (EditText) this.findViewById(R.id.r3);
 resultText = (TextView) this.findViewById(R.id.result);
 }

 // Wheel scrolled listener
 OnWheelScrollListener scrolledListener = new OnWheelScrollListener() {
 @Override
 public void onScrollingStarted(WheelView wheel) {
 wheelScrolled = true;
 }
 @Override
 public void onScrollingFinished(WheelView wheel) {
 wheelScrolled = false;
 updateStatus();
 }
 };

 // Wheel changed listener
 private final OnWheelChangedListener changedListener = new OnWheelChangedListener() {
 @Override
 public void onChanged(WheelView wheel, int oldValue, int newValue) {
 Log.d(TAG, "onChanged, wheelScrolled = " + wheelScrolled);
 if (!wheelScrolled) {
 updateStatus();
 }
 }
 };

 /**
 * Updates entered PIN status
 */
 private void updateStatus() {
 text1.setText(wheelMenu1[getWheel(R.id.p1).getCurrentItem()]);
 text2.setText(wheelMenu2[getWheel(R.id.p2).getCurrentItem()]);
 text3.setText(wheelMenu3[getWheel(R.id.p3).getCurrentItem()]);

 resultText.setText(
 wheelMenu1[getWheel(R.id.p1).getCurrentItem()] + " - " +
 wheelMenu2[getWheel(R.id.p2).getCurrentItem()] + " - " +
 wheelMenu3[getWheel(R.id.p3).getCurrentItem()]);
 }

 /**
 * Initializes wheel
 *
 * @param id
 * the wheel widget Id
 */
 private void initWheel(int id, String[] wheelMenu1) {
 WheelView wheel = (WheelView) findViewById(id);
 wheel.setViewAdapter(new ArrayWheelAdapter<String>(this, wheelMenu1));
 wheel.setVisibleItems(2);
 wheel.setCurrentItem(0);
 wheel.addChangingListener(changedListener);
 wheel.addScrollingListener(scrolledListener);
 }

 /**
 * Returns wheel by Id
 *
 * @param id
 * the wheel Id
 * @return the wheel with passed Id
 */
 private WheelView getWheel(int id) {
 return (WheelView) findViewById(id);
 }
}

8.8. Creating a Tabbed Dialog

Rachee Singh

Problem

You want to categorize the display of information in a custom dialog.

Solution

Use a tabbed layout within a custom dialog.

Discussion

The custom dialog class implements the Dialog
 class:
 public class CustomDialog extends Dialog
The constructor of the class has to be initialized:
 public CustomDialog(final Context context) {
 super(context);

 setTitle("My First Custom Tabbed Dialog");
 setContentView(R.layout.custom_dialog_layout);
To create the two tabs, insert the Example 8-5
 code within the constructor: place tab_image1 and
 tab_image2 in /res/drawable.
 These images are placed on the tabs of the tabbed custom dialog.
Example 8-5. Constructor code to create and add the tabs
 // get our tabHost from the xml
 TabHost tabHost = (TabHost)findViewById(R.id.TabHost01);
 tabHost.setup();

 // create tab 1
 TabHost.TabSpec spec1 = tabHost.newTabSpec("tab1");
 spec1.setIndicator("Profile",
 context.getResources().getDrawable(R.drawable.tab_image1));
 spec1.setContent(R.id.TextView01);
 tabHost.addTab(spec1);
 //create tab2
 TabHost.TabSpec spec2 = tabHost.newTabSpec("tab2");
 spec2.setIndicator("Profile",
 context.getResources().getDrawable(R.drawable.tab_image2));
 spec2.setContent(R.id.TextView02);
 tabHost.addTab(spec2);

This is a simple tabbed dialog. It required the addition of just a
 few lines into the constructor’s code. To implement something like a
 list view, a list view adapter would be required. A variety of tabs can
 be inserted based on the application’s requirements.
As shown in Example 8-6, the XML code for a
 tabbed dialog would require <tabhost> tags
 enclosing the entire layout. Within these tags you would place the
 location of various parts of the tabbed dialog. You must use a frame
 layout to place the content of the different tabs. In this case, we are
 creating two tabs, both with a scroll view containing text (stored in
 Strings.xml and named
 lorem_ipsum).
Example 8-6. The custom_dialog_layout.xml file
<TabHost
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/TabHost01"
 android:layout_width="fill_parent"
 android:layout_height="500dip">

 <LinearLayout
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:padding="5dp">

 <TabWidget
 android:id="@android:id/tabs"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"/>

 <FrameLayout
 android:id="@android:id/tabcontent"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:padding="5dp">

 <ScrollView android:id="@+id/ScrollView01"
 android:layout_width="wrap_content"
 android:layout_height="200px">

 <TextView
 android:id="@+id/TextView01"
 android:text="@string/lorem_ipsum"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:gravity="center_horizontal"
 android:paddingLeft="15dip"
 android:paddingTop="15dip"
 android:paddingRight="20dip"
 android:paddingBottom="15dip"/>

 </ScrollView>

 <ScrollView android:id="@+id/ScrollView02"
 android:layout_width="wrap_content"
 android:layout_height="200px">

 <TextView
 android:id="@+id/TextView02"
 android:text="@string/lorem_ipsum"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:gravity="center_horizontal"
 android:paddingLeft="15dip"
 android:paddingTop="15dip"
 android:paddingRight="20dip"
 android:paddingBottom="15dip"/>

 </ScrollView>
 </FrameLayout>
 </LinearLayout>
</TabHost>

8.9. Creating a ProgressDialog

Rachee Singh

Problem

You want to be able to alert the user of background processing occurring in the
 application.

Solution

Show a ProgressDialog while the processing is
 being carried out.

Discussion

In this recipe we will provide a button that shows a
 ProgressDialog when clicked. In the
 ProgressDialog we set the title as “Please Wait” and
 the content as “Processing Information…”. After this we create a new
 thread and start the thread’s execution. In the run() method (which
 gets executed once the thread gets started) we call the sleep method for
 four seconds. After these four seconds expire the
 ProgressDialog is dismissed and the text in the
 TextView gets changed:
complete = (TextView) this.findViewById(R.id.complete);
complete.setText("Press the Button to start Processing");
processing = (Button)findViewById(R.id.processing);
processing.setOnClickListener(new View.OnClickListener() {

 @Override
 public void onClick(View arg0) {
 progressDialog = ProgressDialog.show(ProgressDialogExp.this,
 "Please Wait", "Processing Information..", true,false);
 Thread thread = new Thread(ProgressDialogExp.this);
 thread.start();
 }
});
We use a Handler to update the UI once thread execution finishes. We send an
 empty message to the Handler after thread execution
 completes, and then in the Handler we dismiss the
 ProgressDialog and update the text of the
 TextView.
public void run() {
 try {
 Thread.sleep(4000);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 handler.sendEmptyMessage(0);
}

private Handler handler = new Handler() {
 @Override
 public void handleMessage(Message msg) {
 progressDialog.dismiss();
 complete.setText("Processing Finished");
 }
};

Source Download URL

You can download the source code for this example from https://docs.google.com/leaf?id=0B_rESQKgad5LMTE2NDcyMDEtNGMzMS00MzI4LTgyNGUtNzliZmY4ZjhhOWE2&hl=en_US.
[image: image with no caption]

8.10. Creating a Custom Dialog with Buttons, Images, and Text

Rachee Singh

Problem

Your application requires a dialog-like structure in place of a
 full-fledged Activity to show some information. Text,
 images, and a button are required on this custom dialog.

Solution

Create a custom dialog with tabs. Since everything can be squeezed
 into a dialog in place of an entire Activity, the
 application will seem more compact.

Discussion

The CustomDialog class can directly extend
 Dialog:
public class CustomDialog extends Dialog
The following lines of code in the CustomDialog
 class’s onCreate() method add a title and get handles
 for the buttons in the dialog:
 setTitle("Dialog Title");
 setContentView(R.layout.custom_dialog_layout);
 //OnClickListeners for the buttons present in the Dialog
 Button button1 = (Button) findViewById(R.id.button1);
 Button button2 = (Button) findViewById(R.id.button2);
For the two buttons that are added,
 OnClickListeners are defined in the following lines
 of code. On being clicked, button1 dismisses the
 dialog and button2 starts a new activity:
 button1.setOnClickListener(new View.OnClickListener() {

 @Override
 public void onClick(View v) {
 dismiss(); //to dismiss the Dialog
 }
 });

 button2.setOnClickListener(new View.OnClickListener() {

 @Override
 public void onClick(View v) {
 // Fire an intent on click of this button
 Intent showQuickInfo = new Intent("com.android.oreilly.QuickInfo");
 showQuickInfo.setFlags(Intent.FLAG_ACTIVITY_NEW_TASK);
 context.startActivity(showQuickInfo);
 }
 });
Here is the XML layout of the dialog, present in
 /res/layout custom_dialog_layout. The entire code
 is enclosed in a LinearLayout. Within the
 LinearLayout, a RelativeLayout is used to position two
 buttons. Then, below the RelativeLayout, another
 RelativeLayout containing a scroll view is present.
 android_button and thumbsup
 are the names of the images in
 /res/drawable.
<LinearLayout
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:padding="5dp">

 <RelativeLayout
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:paddingBottom="10dip">
 <Button
 android:id="@+id/button1"
 android:background="@drawable/android_button"
 android:layout_height="80dip"
 android:layout_width="80dip"
 android:layout_alignParentLeft="true"
 android:layout_marginLeft="10dip"
 android:gravity="center"/>

 <Button
 android:id="@+id/button2"
 android:background="@drawable/thumbsup"
 android:layout_height="80dip"
 android:layout_width="80dip"
 android:layout_alignParentRight="true"
 android:layout_marginRight="10dip"
 android:gravity="center"/>
 </RelativeLayout>

 <RelativeLayout
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:paddingBottom="10dip">

 <ScrollView android:id="@+id/ScrollView01"
 android:layout_width="wrap_content"
 android:layout_height="200px">

 <TextView
 android:id="@+id/TextView01"
 android:text="@string/lorem"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:gravity="center_horizontal"
 android:paddingLeft="15dip"
 android:paddingTop="15dip"
 android:paddingRight="20dip"
 android:paddingBottom="15dip"/>

 </ScrollView>
 </RelativeLayout>
</LinearLayout>

8.11. Creating a Reusable About Box Class

Daniel Fowler

Problem

About boxes are common in applications; it is useful not to have to recode
 them for each new app.

Solution

Write an AboutBox class that can be installed
 into any new app.

Discussion

Whatever the operating system, whatever the program, chances are
 it has an About option. There is a Wikipedia entry for it, http://en.wikipedia.org/wiki/About_box, and it is useful
 for support:
“Hello, there is a problem with my
 application.”
“Hi, can you press About and tell me the version
 number?”
Since it is likely to be required again and again, it is worth
 having a ready-made AboutBox class that you can
 easily add to any new app that you develop. At a minimum, the About
 option should display a dialog with a title, such as About My App, the
 version name from the manifest, some descriptive text (loaded from a
 string resource), and an OK button.
The version name can be read from the PackageInfo class.
 (PackageInfo is obtained from PackageManager which itself is available from the app’s Context). Here is a method to read an app’s version name
 string:
static String VersionName(Context context) {
 try {
 return context.getPackageManager().getPackageInfo(
 context.getPackageName(),0).versionName;
 }
 catch (NameNotFoundException e) {
 return "Unknown";
 }
 }
PageInfo can throw a NameNotFoundException (for when the class is
 used to find information on other packages). The exception is unlikely
 to occur; here it is just consumed by returning an error string. (To
 return the version code, the app’s internal version number, swap
 versionName for versionCode and
 return an integer.)
With an AlertDialog.Builder and
 the setTitle(),
 setMessage(), and show() methods, you will soon have an About
 option up and running; but you can improve the About option by using the
 Android Linkify class and a
 custom layout. In the About text any web addresses (such as app help
 pages on the Web) and email addresses (useful for a support email link)
 can be made clickable. Save the layout shown in Example 8-7 into the res/layout folder
 as aboutbox.xml.
Example 8-7. The aboutbox.xml file
 <?xml version="1.0" encoding="utf-8"?>
 <ScrollView xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/aboutView"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <LinearLayout android:id="@+id/aboutLayout"
 android:orientation="horizontal"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:padding="5dp">
 <TextView android:id="@+id/aboutText"
 android:layout_width="wrap_content"
 android:layout_height="fill_parent"
 android:textColor="#FFF"/>
 </LinearLayout>
 </ScrollView>

A ScrollView is required for when the About text is long and the screens
 are small (QVGA). Another advantage of the custom layout for the About
 box text is that the look of the text can be modified (this recipe sets
 it to white with a little padding).
The AboutBox class uses a Spannable to hold the
 text which can then be passed to Linkify via the TextView in the custom layout. The layout is
 inflated, the About text is set, and then
 AlertBuilder.Builder is used to create the dialog.
 Example 8-8 shows the full code for the class.
Example 8-8. The AboutBox class
public class AboutBox {
 static String VersionName(Context context) {
 try {
 return context.getPackageManager().getPackageInfo(
 context.getPackageName(),0).versionName;
 }
 catch (NameNotFoundException e) {
 return "Unknown";
 }
 }
 public static void Show(Activity callingActivity) {
 //Use a Spannable to allow for links highlighting
 SpannableString aboutText = new SpannableString("Version " +
 VersionName(callingActivity)+ "\n\n" +
 callingActivity.getString(R.string.about));
 //Generate views to pass to AlertDialog.Builder and to set the text
 View about;
 TextView tvAbout;
 try {
 //Inflate the custom view
 LayoutInflater inflater = callingActivity.getLayoutInflater();
 about = inflater.inflate(R.layout.aboutbox,
 (ViewGroup) callingActivity.findViewById(R.id.aboutView));
 tvAbout = (TextView) about.findViewById(R.id.aboutText);
 }
 catch(InflateException e) {
 //Inflater can throw exception, unlikely but default to TextView if it occurs
 about = tvAbout = new TextView(callingActivity);
 }
 //Set the about text
 tvAbout.setText(aboutText);
 // Now Linkify the text
 Linkify.addLinks(tvAbout, Linkify.ALL);
 //Build and show the dialog
 new AlertDialog.Builder(callingActivity)
 .setTitle("About " + callingActivity.getString(R.string.app_name))
 .setCancelable(true)
 .setIcon(R.drawable.icon)
 .setPositiveButton("OK", null)
 .setView(about)
 .show(); //Builder method returns allow for method chaining
 }
 }

Notice that the app’s icon can be shown in the About box title
 using setIcon(R.drawable.icon). String resources for the app’s name and About text are
 required in the usual
 res/values/strings.xml:
 <?xml version="1.0" encoding="utf-8"?>
 <resources>
 <string name="app_name">My App</string>
 <string name="about">This is our App, please see
 http://www.example.com. Email support at support@example.com.</string>
 </resources>
Showing the About box requires only one line of code, shown here
 on a button click:
public class Main extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 findViewById(R.id.button1).setOnClickListener(new OnClickListener(){
 public void onClick(View arg0) {
 AboutBox.Show(Main.this);
 }
 });
 }
 }
The result should look like Figure 8-8.
[image: The About box in action]

Figure 8-8. The About box in action

To reuse this About box, just drop the
 aboutbox.xml file into a project’s
 res/layout folder, add a new class called
 AboutBox, and replace the class code with the
 AboutBox class code just shown. Then just call
 AboutBox.Show() from a button or menu click. Web
 addresses and email addresses highlighted in the text can be clicked and
 invoke the browser or email client, which can be very useful.

See Also

http://developer.android.com/reference/android/text/util/Linkify.html;
 http://developer.android.com/guide/topics/ui/dialogs.html

8.12. Customizing the Appearance of a Toast

Rachee Singh

Problem

You want to customize the look of toast notifications.

Solution

Define an XML layout for the toast and then inflate the view in
 Java.

Discussion

First, we will define the layout of the custom toast in an XML
 file, toast_layout.xml. It contains an ImageView and a
 TextView, as shown in Example 8-9.
Example 8-9. Toast layout in XML
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/toast_layout_root"
 android:orientation="horizontal"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:padding="10dp"
 android:background="#f0ffef"
 >
 <ImageView android:id="@+id/image"
 android:layout_width="wrap_content"
 android:layout_height="fill_parent"
 android:layout_marginRight="10dp"
 />
 <TextView android:id="@+id/text"
 android:layout_width="wrap_content"
 android:layout_height="fill_parent"
 android:textColor="#000000"
 />
</LinearLayout>

Then, in the Java code, we inflate this view using LayoutInflater. We set the
 gravity and duration of the toast. The setGravity
 method modifies the position at which the toast will be displayed. On
 the click of the customToast button, we show the
 toast (see Example 8-10).
Example 8-10. Inflating the view
 customToast = (Button)findViewById(R.id.customToast);

 LayoutInflater inflater = getLayoutInflater();
 View layout = inflater.inflate(R.layout.toast_layout,
 (ViewGroup) findViewById(R.id.toast_layout_root));

 ImageView image = (ImageView) layout.findViewById(R.id.image);
 image.setImageResource(R.drawable.icon);
 TextView text = (TextView) layout.findViewById(R.id.text);
 text.setText("Hello! This is a custom toast!");

 final Toast toast = new Toast(getApplicationContext());
 toast.setGravity(Gravity.CENTER_VERTICAL, 0, 0);
 toast.setDuration(Toast.LENGTH_LONG);
 toast.setView(layout);
 customToast.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View arg0) {
 toast.show();
 }
 });

Source Download URL

You can download the source code for this example from https://docs.google.com/leaf?id=0B_rESQKgad5LYTFjYjY4NWEtM2YzZC00NzEzLTg5ZGEtMzFhM2UxOWM2MmFk&hl=en_US.
[image: image with no caption]

8.13. Creating a Notification in the Status Bar

Ian Darwin

Problem

You want to place a notification icon in the status bar to call the user’s
 attention to an event that occurred or to remind
 her of a service that is running in the background.

Solution

Create a Notification object, and provide it with a PendingIntent that wraps a real
 Intent for what to do when the user selects the
 notification. At the same time you pass in the
 PendingIntent you also pass a title and text to be
 displayed in the notification area. You should set the
 AUTO_CANCEL flag unless you want to remove the
 notification from the status bar manually. Finally, you find and ask
 the NotificationManager to display
 (notify) your notification, associating with it an ID so that you can
 refer to it later (e.g., to remove it).

Discussion

Notifications are normally used from a running Service class to notify (hence
 the name) the user of some fact. Either an event has occurred (receipt
 of a message, loss of contact with a server, or whatever), or, you just
 want to remind the user that a long-running service is still running.
 The notification is commonly used to start an activity and is, in fact,
 the only recommended way for a background service to start an activity
 (services should never start activities directly!).
Create a Notification object; the constructor
 takes an Icon ID, the text to display briefly in the
 status bar, and the time at which the event occurred (timestamp in
 milliseconds). Before you can show the notification, you have to provide
 it with a PendingIntent for what to do when the user
 selects the notification, and ask the
 NotificationManager to display your notification.
 Example 8-11 shows the notification code.
Warning
The following code shows doing the right thing in the wrong
 place; notifications are normally shown from services. This recipe
 is just focusing on the Notification API.

Example 8-11. The notification code
public class Main extends Activity {

 private static final int NOTIFICATION_ID = 1;

 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 int icon = R.drawable.icon; // Preferably a distinct icon

 // Create the notification itself
 String noticeMeText = getString(R.string.noticeMe);
 Notification n =
 new Notification(
 icon, noticeMeText, System.currentTimeMillis());

 // And the Intent of what to do when user selects notification
 Context applicationContext = getApplicationContext();
 Intent notifyIntent = new Intent(this, NotificationTarget.class);
 PendingIntent wrappedIntent =
 PendingIntent.getActivity(this, 0,
 notifyIntent, Intent.FLAG_ACTIVITY_NEW_TASK);

 // Condition the Notification
 String title = getString(R.string.title);
 String message = getString(R.string.message);
 n.setLatestEventInfo(applicationContext, title,
 message, wrappedIntent);
 n.flags |= Notification.FLAG_AUTO_CANCEL;

 // Now invoke the Notification Service
 String notifService = Context.NOTIFICATION_SERVICE;
 NotificationManager mgr =
 (NotificationManager) getSystemService(notifService);
 mgr.notify(NOTIFICATION_ID, n);
 }
}

The following is the file strings.xml:
<resources>
 <string name="app_name">NotificationDemo</string>
 <string name="hello">Hello World, Main!</string>
 <string name="noticeMe">Lookie Here!!</string>
 <string name="title">My Notification</string>
 <string name="message">This is my message</string>
 <string name="target_name">Notification Target</string>
 <string name="thanks">Thank you for selecting the notification.</string>
</resources>
The noticeMe string appears briefly (only a few
 seconds) in the status bar. Notification text and icons appear in the
 very upper left of the screen in Gingerbread (2.x) and in the lower
 right in Honeycomb (3.x), as shown in Figure 8-9.
[image: Notification demo (Gingerbread and Honeycomb)]

Figure 8-9. Notification demo (Gingerbread and Honeycomb)

Then the main view will appear, as seen in Figure 8-10.
[image: Notification demo continued]

Figure 8-10. Notification demo continued

When the user drags the status bar down, it expands to show the
 details, which include the icons and the title and message strings (see
 Figure 8-11). You can also use a
 custom view here; see the official Android documentation, cited in See Also.
If you have auto-clear set, the notification will no longer appear
 in the status bar. If the user selects the notification box, the
 PendingIntent becomes current. Ours simply shows a
 basic Thank You notification (Figure 8-12). If the user clicks the Clear
 button, however, the Intent does not get run (even
 with auto-clear, which can leave you in a bit of a lurch).
Sounds and other irritants

If the user’s attention is needed at once, you can specify a
 sound to be played when the notification is first displayed (or, to
 really annoy the user, repeatedly). Or you can make the device
 vibrate, where supported.
The user’s default notification sound can be played as
 follows:
notification.defaults |= Notification.DEFAULT_SOUND;
Alternatively, you can provide a URI to a sound file, either on
 the SD card or in your application:
notification.sound = Uri.parse("file:///sdcard/mydata/annoy_the_user.mp3");
Note that if you both set DEFAULT_SOUND and provide a
 “sound” URI, only the default will be used.
To really annoy the user, you can make the sound play
 repeatedly; just add the flag FLAG_INSISTENT to the
 flags field.
notification.defaults |= Notification.FLAG_INSISTENT;
Invoking device vibration when your notification is displayed is
 as simple as:
notification.defaults |= Notification.DEFAULT_VIBRATE;

Lighting the LED

As a final flourish, you can make the LED flash in various colors and patterns, on
 devices with a signaling LED (on most phones it’s near the bottom of
 the physical screen or otherwise in the controls area). At a bare
 minimum, you need:
notification.ledARGB = color;
notification.defaults |= Notification.FLAGS_SHOW_LIGHTS;
The color is an integer with four bytes containing, as the name
 hints, Alpha (transparency), Red, Green, and Blue. These are similar
 to traditional web color syntax but for the transparency part. Thus
 0xff0000ff is bright blue (full opacity/no transparency; no red or
 green).
[image: Notification “pulled down”]

Figure 8-11. Notification “pulled down”

[image: Response to choosing a notification]

Figure 8-12. Response to choosing a notification

You can also specify a flashing pattern using notification.ledOnMS and notification.ledOffMS, which are the times
 in milliseconds for the LED to be on and off as it flashes. Again, if
 you set any of these values but don’t specify FLAGS_SHOW_LIGHTS, nothing will
 happen.

See Also

The official tutorial is at http://developer.android.com/guide/topics/ui/notifiers/notifications.html.

Source Download URL

The source code for this example is in the Android Cookbook repository at
 http://github.com/AndroidCook/Android-Cookbook-Examples, in the subdirectory
 NotificationDemo
 (see Getting and Using the Code Examples).

Chapter 9. GUI: ListView

9.1. Introduction: ListView

Ian Darwin

Discussion

It may seem odd to have a separate chapter for the ListView
 component. But it is, in fact, one of the most important components,
 being used in probably 80% of all Android applications. And it is very
 flexible; you can do a lot with it, but figuring out how to do it is
 sometimes not as intuitive as it could be.
In this chapter we cover topics from basic
 ListView uses through to advanced uses.
See the official doc at http://developer.android.com/reference/android/widget/ListView.html.
Another good overview of ListView can be found
 in a Google I/O 2010 presentation, which can be found on Google’s
 YouTube channel, at http://www.youtube.com/watch?v=wDBM6wVEO70; this was
 presented by Google employees Romain Guy and Adam Powell who work on the
 code for ListView itself.

9.2. Building List-Based Applications with ListView

Jim Blackler

Problem

Many mobile applications follow a similar pattern, allowing users to
 browse and interact with multiple items in a list. How can developers
 use standard Android UI classes to quickly build an app that works the
 way users will expect, providing them a list-based view onto their
 data?

Solution

Use a ListView, an extremely versatile control
 that is well suited to the screen size and control constraints of a
 mobile application, displaying information in a vertical stack of rows.
 This recipe shows how to set up a ListView, including
 rows that contain any combination of standard UI views.

Discussion

Many Android applications are based on the
 ListView control. It solves the problem of how to
 present a lot of information in a way that’s quick for the user to
 browse. It displays information in a vertical stack of rows that the
 user can scroll through. As the user reaches the results toward the end
 of the list, more results can be generated and added. This allows
 results paging in a natural and intuitive manner.
Android’s ListView helps organize your code by
 separating browsing and editing operations into separate activities. A
 ListView simply requires the user to press somewhere
 in the row, which works well on a small, finger-operated screen. When
 the row is clicked, a new Activity can be launched
 that can contain further options to manipulate the data shown in the
 row.
Another advantage of the ListView format is
 that it allows paging in an uncomplicated way. Paging is where all the
 information requested by a user cannot feasibly be shown at once. For
 instance, the user may be browsing his email inbox, which contains 2,000
 emails; it would not be feasible to download all 2,000 messages from the
 email server. Nor would it be required, as the user will probably only
 scan the first 10 or so entries.
Most web applications handle this problem by segmenting the
 results into pages, and having controls at the footer to allow the user
 to navigate through these pages. With a ListView, the
 application can retrieve an initial batch of the first results, which
 are shown to the user in a list. When the user reaches the end of the
 list, a final row is seen, containing an indeterminate progress bar. As
 this comes into view, the application can fetch the next batch of
 results in the background. When they are ready to be shown, the last
 progress bar row is replaced with rows containing the new data. The
 user’s view of the list is not interrupted, and new data is fetched
 purely on demand.
To implement a ListView in your Android
 application, you require an activity layout to host it. This should
 contain a ListView control configured to take up most
 of the screen layout. This allows other elements such as progress bars
 or extra overlaid indicators to be included in the layout.
While many Android experts recommend using the ListActivity, I
 personally do not recommend using ListActivity to host the view. It
 supplies little extra logic over a plain Activity,
 but using it restricts the form of the inheritance tree your
 application’s activities can take. For instance, it is very common that
 all activities will inherit from a single common activity, such as
 ApplicationActivity, supplying common functionality
 such as About or Help menus. This pattern won’t be possible if some
 activities are inherited from ListActivity and some
 are directly inherited from Activity.
An application controls the data added to a
 ListView by supplying a
 ListAdapter using the
 setListAdapter() method. There are 13 functions that
 a ListAdapter is expected to supply. However, if a
 BaseAdapter is used, this reduces the number of functions supplied to
 four, representing the minimum functionality that must be supplied. The
 adapter specifies the number of item rows in the list, and is expected
 to supply a View object to represent any item given
 its row number. It is also expected to return both an object and an
 object ID to represent any given row number. This is to aid advanced
 list features such as row selection (not covered in this recipe).
I suggest starting with the most versatile type of
 ListAdapter, the BaseAdapter
 (android.widget.BaseAdapter). This allows any layout
 to be specified for a row (multiple layouts can be matched to multiple
 row types). These layouts can contain any View
 elements that a layout would normally contain.
Rows are created on demand by the adapter as they come onto the
 screen. The adapter is expected to either inflate a view of the
 appropriate type, or recycle the existing view, and then customize it to
 display a row of data.
This “recycling” is a technique employed by the Android OS to
 improve performance. When new rows come onto the screen, the OS will
 pass the View of a row that has moved off the screen
 into the adapter method $. It is up to the method to
 decide whether it is appropriate to reuse that View
 to create the new row. For this to be the case the
 View has to represent the layout of the new row. One
 way to check this is to write the layout ID into the Tag of each View
 inflated with setTag(). When checking to see if
 it is appropriate to reuse a given View, use getTag() to see if the
 View was inflated with the correct type. If an
 application is able to recycle a view the scrolling appears to be
 smoother for the user because CPU time is saved inflating the
 view.
Another way to make scrolling smoother is to do as little as
 possible on the UI thread. This is the default thread that your
 $ method will be invoked on. If time-intensive
 operations need to be invoked, these can be done by creating a new
 background thread especially for the operation
 ($example). Then when the UI thread is required again
 so that controls can be updated, operations can be invoked on it with
 $. Care must be taken to ensure that the
 View to be modified has not been recycled for another
 row. This can happen if the row has moved off the screen in the time it
 took the operation to complete. This is quite feasible if the operation
 was a lengthy download operation.
Setting up a basic ListView

Use the Eclipse Android New Project Wizard to create a new
 Android project with a starting activity called
 MainActivity. In the main.xml
 layout replace the existing TextView section with the following:
<ListView android:id="@+id/ListView01"
 android:layout_width="wrap_content"
 android:layout_height="fill_parent"/>
In MainActivity.onCreate() insert the
 following snippet at the bottom of the method (see Example 9-1). This will declare a dummy anonymous class
 extending BaseAdapter, and apply an instance of it
 to the ListView. The code illustrates the methods
 that need to be supplied in order to populate the
 ListView with data.
Example 9-1. The adapter implementation
 ListView listView = (ListView) findViewById(R.id.ListView01);
 listView.setAdapter(new BaseAdapter(){

 public int getCount() {
 return 0;
 }

 public Object getItem(int position) {
 return null;
 }

 public long getItemId(int position) {
 return 0;
 }

 public View getView(int position, View convertView, ViewGroup parent) {
 return null;
 }});

By customizing the anonymous class members, you can modify the
 data shown by the control. However, before any data can be shown, a
 layout must be supplied to present the data in rows. Add a file
 list_row.xml to your project’s
 res/layout directory with the following
 content:
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="wrap_content" android:layout_height="wrap_content">
 <TextView android:text="@+id/TextView01" android:id="@+id/TextView01"
 android:layout_width="fill_parent" android:layout_height="wrap_content"/>
</LinearLayout>
In your MainActivity, add the following
 static array field containing just three strings:
static String[] words = {"one", "two", "three"};
Now customize your existing anonymous
 BaseAdapter as follows, in order to display the
 contents of the words array in the
 ListView (see Example 9-2).
Example 9-2. The adapter implementation
listView.setAdapter(new BaseAdapter(){

 public int getCount() {
 return words.length;
 }

 public Object getItem(int position) {
 return words[position];
 }

 public long getItemId(int position) {
 return position;
 }

 public View getView(int position, View convertView, ViewGroup parent) {
 LayoutInflater inflater =
 (LayoutInflater) getSystemService(LAYOUT_INFLATER_SERVICE);
 View view = inflater.inflate(R.layout.list_row, null);
 TextView textView = (TextView) view.findViewById(R.id.TextView01);
 textView.setText(words[position]);
 return view;
 }});

The getCount() method is customized to return the number of items in the list.
 Both getItem() and getItemId()
 supply the ListView with unique objects and IDs to identify the data in the
 rows. Finally, getView() creates and customizes an
 Android View to represent the row. This is the most
 complex step, so let’s break down what’s done.
 LayoutInflater inflater =
 (LayoutInflater) getSystemService(LAYOUT_INFLATER_SERVICE);
The system LayoutInflater is obtained. This
 is the service that creates views.
 View view = inflater.inflate(R.layout.list_row, null)
The new layout we created earlier is inflated.
 TextView textView = (TextView) view.findViewById(R.id.TextView01)
The TextView is located.
 textView.setText(words[position])
The TextView is customized with the
 appropriate item in the words array.
 return view;
This allows the user to view elements from the
 words array in a ListView. Other
 recipes will discuss more details on ListView usage.

9.3. Creating a “No Data” View for ListViews

Rachee Singh

Problem

When a ListView has no items to show, the screen on an Android device is blank.
 You want to show an appropriate message on the screen, indicating the
 absence of data in the ListView.

Solution

Use the “No Data” view from the XML layout.

Discussion

Often we need to use a ListView in an Android
 app. Before a user has loaded any data into the application, the list of
 data that the ListView shows is empty, generally
 resulting in a blank screen. In order to make the user feel more
 comfortable with the application, we might want to display an
 appropriate message (or even an image) stating that the list is empty.
 For this purpose, we can use a No Data view. This is a simple process
 involving the addition of a few lines of code in the XML layout of the
 activity that contains the ListView:
<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >

<ListView
 android:id="@id/android:list"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:layout_below="@id/textView1"/>
 <TextView
 android:id="@id/android:empty"adapter
 android:text = "@string/list_is_empty"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:layout_below = "@id/textView1"
 android:textSize="25sp"
 android:gravity="center_vertical|center_horizontal"/>
 </RelativeLayout>
The important line is android:id="@id/android:empty". This
 line ensures that when the list is empty, the
 TextView with this ID will be displayed on the
 screen. In this TextView the string List is
 Empty is displayed (see Figure 9-1).
[image: Empty list]

Figure 9-1. Empty list

9.4. Creating an Advanced ListView with Images and Text

Marco Dinacci

Problem

You want to write a ListView that shows an image
 next to a string.

Solution

Create an Activity that extends from
 ListActivity, prepare the XML resource files, and
 create a custom view adapter to load the resources onto the view.

Discussion

The Android documentation says that the ListView widget is easy to use. This is true
 if you just want to display a simple list of strings, but as soon as you
 want to customize your list things become more complicated.
This recipe shows you how to write a ListView that displays a static list of images
 and strings, similar to the settings list on your phone.
Figure 9-2 shows the final
 result.
[image: ListView with icons]

Figure 9-2. ListView with icons

Let’s start with the Activity
 code. First of all, we extend from ListActivity instead of Activity so that we can easily supply our
 custom adapter (see Example 9-3).
Example 9-3. The ListActivity implementation
public class AdvancedListViewActivity extends ListActivity {

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 Context ctx = getApplicationContext();
 Resources res = ctx.getResources();

 String[] options = res.getStringArray(R.array.country_names);
 TypedArray icons = res.obtainTypedArray(R.array.country_icons);

 setListAdapter(new ImageAndTextAdapter(ctx, R.layout.main_list_item, options, icons));
 }
}

In the onCreate we also create
 an array of strings, which contains the country names, and a TypedArray, which
 will contain our Drawable
 flags.
The arrays are created from an XML file. Here is the content of
 the countries.xml file:
<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string-array name="country_names">
 <item>Bhutan</item>
 <item>Colombia</item>
 <item>Italy</item>
 <item>Jamaica</item>
 <item>Kazakhstan</item>
 <item>Kenya</item>
 </string-array>
 <array name="country_icons">
 <item>@drawable/bhutan</item>
 <item>@drawable/colombia</item>
 <item>@drawable/italy</item>
 <item>@drawable/jamaica</item>
 <item>@drawable/kazakhstan</item>
 <item>@drawable/kenya</item>
 </array>
</resources>
Now we’re ready to create the adapter. The official documentation
 (at http://developer.android.com/reference/android/widget/Adapter.html)
 for Adapter says:
An Adapter object acts as a bridge between an AdapterView and
 the underlying data for that view. The Adapter provides access to the
 data items. The Adapter is also responsible for making a View for each
 item in the data set.

There are several subclasses of Adapter; we’re going
 to extend on ArrayAdapter, which
 is a concrete BaseAdapter that is
 backed by an array of arbitrary objects (see Example 9-4).
Example 9-4. The ImageAndTextAdapter class
public class ImageAndTextAdapter extends ArrayAdapter<String> {

 private LayoutInflater mInflater;

 private String[] mStrings;
 private TypedArray mIcons;

 private int mViewResourceId;

 public ImageAndTextAdapter(Context ctx, int viewResourceId,
 String[] strings, TypedArray icons) {
 super(ctx, viewResourceId, strings);

 mInflater = (LayoutInflater)ctx.getSystemService(
 Context.LAYOUT_INFLATER_SERVICE);

 mStrings = strings;
 mIcons = icons;

 mViewResourceId = viewResourceId;
 }

 @Override
 public int getCount() {
 return mStrings.length;
 }

 @Override
 public String getItem(int position) {
 return mStrings[position];
 }

 @Override
 public long getItemId(int position) {
 return 0;
 }

 @Override
 public View getView(int position, View convertView, ViewGroup parent) {
 convertView = mInflater.inflate(mViewResourceId, null);

 ImageView iv = (ImageView)convertView.findViewById(R.id.option_icon);
 iv.setImageDrawable(mIcons.getDrawable(position));

 TextView tv = (TextView)convertView.findViewById(R.id.option_text);
 tv.setText(mStrings[position]);

 return convertView;
 }
}

The constructor accepts a Context, the id of the layout that will be used for every
 row (more on this soon), an array of strings (the country names), and a
 TypedArray (our flags).
The getView method is where we build a row for the list. We first use
 a LayoutInflater to create a View from XML, and then we retrieve the
 country flag as a Drawable and the
 country name as a String and we use
 them to populate the ImageView and
 TextView that we’ve declared in the
 layout.
Here is the layout for the list rows:
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android">
 <ImageView
 android:id="@+id/option_icon"
 android:layout_width="48dp"
 android:layout_height="fill_parent"/>
 <TextView
 android:id="@+id/option_text"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:padding="10dp"
 android:textSize="16dp" >
 </TextView>
</LinearLayout>
And this is the content of the main layout:
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
<ListView android:id="@android:id/list"
 android:layout_height="wrap_content"
 android:layout_width="fill_parent"
 />
</LinearLayout>
Note that the ListView ID must
 be exactly @android:id/list or you’ll
 get a RuntimeException.

Source Download URL

You can download the source code for this example from http://www.intransitione.com/intransitione.com/code/android/adv_listview_demo.zip.
[image: image with no caption]

9.5. Using Section Headers in ListViews

Wagied Davids

Problem

You want to display categorized items—for example, by time/day, by
 product category, or by sales/price.

Solution

Use Jeff Sharkey’s idea of “section headers” to display journal entries by
 day.

Discussion

Jeff Sharkey implemented the original section
 headers very early on in Android—in the days of the 0.9 release,
 in fact. The intention was to duplicate the look of the standard
 “Settings” app, which at the time featured a look similar to the image
 below, which we will develop in this recipe. The reusable part of this
 application is Jeff’s SeparatedListAdapter class, which implements the Composite
 design pattern by holding multiple Adapters
 inside it, and figuring out the correct one in its
 getItem() method.
[image: image with no caption]

We start with four XML files, one for the main layout (see Example 9-5) and three for the list entries. Figuring out
 the built-in but rather occult styles used was credited by Jeff to
 Romain Guy of Google.
Example 9-5. main.xml
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">

 <ListView
 android:id="@+id/add_journalentry_menuitem"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content" />
 <ListView
 android:id="@+id/list_journal"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content" />
</LinearLayout>

The list_header (see Example 9-6) is used for the smaller list separators (e.g.,
 “Security”).
Example 9-6. list_header.xml
<TextView
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/list_header_title"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:paddingTop="2dip"
 android:paddingBottom="2dip"
 android:paddingLeft="5dip"
 style="?android:attr/listSeparatorTextViewStyle" />

The list_item and
 list_complex layouts are, of course, used for
 individual items (see Examples 9-7 and 9-8).
Example 9-7. list_item.xml
<?xml version="1.0" encoding="utf-8"?>
<TextView
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/list_item_title"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:paddingTop="10dip"
 android:paddingBottom="10dip"
 android:paddingLeft="15dip"
 android:textAppearance="?android:attr/textAppearanceLarge"
 />

Example 9-8. list_complex.xml
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:orientation="vertical"
 android:paddingTop="10dip"
 android:paddingBottom="10dip"
 android:paddingLeft="15dip"
 >
 <TextView
 android:id="@+id/list_complex_title"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:textAppearance="?android:attr/textAppearanceLarge"
 />
 <TextView
 android:id="@+id/list_complex_caption"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:textAppearance="?android:attr/textAppearanceSmall"
 />
</LinearLayout>

The add_journalentry_menuitem layout is used to
 add new entries, and is not shown in action here (Example 9-9).
Example 9-9. add_journalentry_menuitem.xml
<?xml version="1.0" encoding="utf-8"?>
<!-- list_item.xml -->
<TextView
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/list_item_title"
 android:gravity="right"
 android:drawableRight="@drawable/ic_menu_add"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:paddingTop="0dip"
 android:paddingBottom="0dip"
 android:paddingLeft="10dip"
 android:textAppearance="?android:attr/textAppearanceLarge" />

Finally, Example 9-10 contains the Java activity
 code.
Example 9-10. ListSample.java
import java.util.HashMap;
import java.util.Map;
import android.app.Activity;
import android.os.Bundle;
import android.view.View;
import android.widget.AdapterView;
import android.widget.ArrayAdapter;
import android.widget.ListView;
import android.widget.Toast;
import android.widget.AdapterView.OnItemClickListener;

public class ListSample extends Activity
 {

 public final static String ITEM_TITLE = "title";
 public final static String ITEM_CAPTION = "caption";

 // SectionHeaders
 private final static String[] days =
 new String[]{"Mon", "Tue", "Wed", "Thur", "Fri"};

 // Section Contents
 private final static String[] notes = new String[]
 {"Ate Breakfast", "Ran a Marathon ...yah really", "Slept all day"};

 // Menu - ListView
 private ListView addJournalEntryItem;

 // Adapter for ListView Contents
 private SeparatedListAdapter adapter;

 // ListView Contents
 private ListView journalListView;

 public Map<String, ?> createItem(String title, String caption)
 {
 Map<String, String> item = new HashMap<String, String>();
 item.put(ITEM_TITLE, title);
 item.put(ITEM_CAPTION, caption);
 return item;
 }

 @Override
 public void onCreate(Bundle icicle)
 {
 super.onCreate(icicle);

 // Sets the View Layer
 setContentView(R.layout.main);

 // Interactive Tools
 final ArrayAdapter<String> journalEntryAdapter =
 new ArrayAdapter<String>(this, R.layout.add_journalentry_menuitem,
 new String[]{"Add Journal Entry"});

 // AddJournalEntryItem
 addJournalEntryItem = (ListView) this.findViewById(
 R.id.add_journalentry_menuitem);
 addJournalEntryItem.setAdapter(journalEntryAdapter);
 addJournalEntryItem.setOnItemClickListener(new OnItemClickListener()
 {
 @Override
 public void onItemClick(AdapterView<?> parent, View view,
 int position, long duration)
 {
 String item = journalEntryAdapter.getItem(position);
 Toast.makeText(getApplicationContext(), item,
 Toast.LENGTH_SHORT).show();
 }
 });

 // Create the ListView Adapter
 adapter = new SeparatedListAdapter(this);
 ArrayAdapter<String> listadapter = new ArrayAdapter<String>(this,
 R.layout.list_item, notes);

 // Add Sections
 for (int i = 0; i < days.length; i++)
 {
 adapter.addSection(days[i], listadapter);
 }

 // Get a reference to the ListView holder
 journalListView = (ListView) this.findViewById(R.id.list_journal);

 // Set the adapter on the ListView holder
 journalListView.setAdapter(adapter);

 // Listen for Click events
 journalListView.setOnItemClickListener(new OnItemClickListener()
 {
 @Override
 public void onItemClick(AdapterView<?> parent, View view,
 int position, long duration)
 {
 String item = (String) adapter.getItem(position);
 Toast.makeText(getApplicationContext(), item,
 Toast.LENGTH_SHORT).show();
 }
 });
 }

 }

Unfortunately, we could not get copyright clearance from Jeff
 Sharkey to include the code, so you will have to download his SeparatedListAdapter, which ties all the pieces together; the link appears in
 the See Also section below.

See Also

Jeff’s original article on section
 headers.

Source Download URL

The source code for this example is in the Android Cookbook repository at http://github.com/AndroidCook/Android-Cookbook-Examples,
 in the subdirectory SectionedHeaderListView (see Getting and Using the Code Examples).

9.6. Keeping the ListView with the User’s Focus

Ian Darwin

Problem

You don’t want to distract the user by moving the
 ListView to its beginning, away from what the user
 just did.

Solution

Keep track of the last thing you did in the
 List, and move the view there in
 onCreate().

Discussion

One of my biggest peeves is list-based applications that are
 always going back to the top of the list. Here are a few
 examples:
	The standard Contacts manager, when you edit an item, forgets
 about it and goes back to the top of the list.

	The OpenIntents File Manager, when you delete an item from the bottom of a long
 list, goes back to the top of the list to redisplay it, ignoring the
 fact that if I deleted an item, I may be cleaning up, and would like
 to keep working in the same area.

	The HTC SenseUI for Tablets mail program, when you select a large number of emails using the
 per-message checkboxes and then delete them as one, leaves the
 scrolling list in its previous position, which is now typically
 occupied by mail from yesterday or the day before!

It’s actually pretty simple to set the focus where you want it.
 Just find the item’s index in the Adapter (possibly
 using theList.getAdapter() if needed), and then
 call:
theList.setSelection(index);
This will scroll to the given item, and also select it so that it
 becomes the default to act upon, though it doesn’t invoke the action
 associated with the item.
You can calculate this anyplace in your action code, and pass it
 back to the main list view with Intent.putExtra(), or set it as a
 field in your main class, and scroll the list in your
 onCreate() method or elsewhere.

9.7. Writing a Custom List Adapter

Alex Leffelman

Problem

You want to customize the content of a ListView.

Solution

In the Activity that will host your
 ListView, define a private class that extends
 Android’s BaseAdapter class. Then override the base
 class’s methods to display custom views that you define in an XML layout
 file.

Discussion

It’s no secret that the best way to explain something is through
 an example, so let’s dive in. This is code lifted out of a media
 application I wrote that allowed the user to build playlists from the
 songs on his SD card. As promised, we’ll be extending the BaseAdapter class inside my
 MediaListActivity:
private class MediaAdapter extends BaseAdapter {
...
}
Querying the phone for the media info is outside the scope of this
 recipe, but the data to populate the list was stored in a
 MediaItem class that kept standard artist, title,
 album, and track number information, as well as a Boolean field
 indicating if the item was selected for the current playlist. In certain
 cases you may want to continually add items to your list—for example, if
 you’re downloading information and displaying it as it comes in—but for
 this purpose we’re going to supply all the required data to the
 Adapter at once in the constructor.
public MediaAdapter(ArrayList<MediaItem> items) {
 mMediaList = items;
 ...
}
If you’re developing in Eclipse you’ll notice that it wants us to
 override BaseAdapter’s abstract methods; if you’re
 not, you’ll find out as soon as you try to compile the code without
 them. Let’s take a look at those.
public int getCount() {
 return mMediaList.size();
}
The framework needs to know how many Views it
 needs to create in your list. It finds out by asking your
 Adapter how many items you’re managing. In our case
 we’ll have a View for every item in the media
 list.
public Object getItem(int position) {
 return mMediaList.get(position);
}
public long getItemId(int position) {
 return position;
}
We won’t really be using these methods, but for completeness,
 getItem(int) is what gets returned when the ListView
 hosting this adapter calls getItemAtPosition(int),
 which won’t happen in our case. getItemId(int) is
 what gets passed to the
 ListView.onListItemClick(ListView, View, int, int)
 callback when you select an item. It gives you the
 position of the view in the list and the ID supplied by your adapter. In
 our case they’re the same.
The real work of your custom adapter will be done in the
 getView() method. This method is called every time
 the ListView brings a new item into view. When an
 item goes out of view, it is recycled by the system to be used later.
 This is a powerful mechanism for providing potentially thousands of
 View objects to our ListView while
 using only as many Views as can be displayed on the
 screen. The getView() method provides the position of
 the item it is creating, a View that may be not-null
 which the system is recycling for you to use, and the
 ViewGroup parent. You’ll return either a new
 View for the list to display, or a modified copy of
 the supplied convertView parameter to conserve system
 resources. Example 9-11 shows the code.
Example 9-11. The getView method
public View getView(int position, View convertView, ViewGroup parent) {
 View V = convertView;

 if(V == null) {
 LayoutInflater vi =
 (LayoutInflater)getSystemService(Context.LAYOUT_INFLATER_SERVICE);
 V = vi.inflate(R.layout.media_row, null);
 }

 MediaItem mi = mMediaList.get(position);
 ImageView icon = (ImageView)V.findViewById(R.id.media_image);
 TextView title = (TextView)V.findViewById(R.id.media_title);
 TextView artist = (TextView)V.findViewById(R.id.media_artist);

 if(mi.isSelected()) {
 icon.setImageResource(R.drawable.item_selected);
 }
 else {
 icon.setImageResource(R.drawable.item_unselected);
 }

 title.setText(mi.getTitle());
 artist.setText("by " + mi.getArtist());

 return V;
}

We start by checking whether we’ll be recycling a
 View (which is a good practice), or whether we need
 to generate a new View from scratch. If we weren’t
 given a convertView, we’ll call the
 LayoutInflater service to build a View that we’ve
 defined in an XML layout file.
Using the View which we’ve ensured was built
 with our desired layout resource (or is a recycled copy of one we
 previously built), it’s simply a matter of updating its UI elements. In
 our case we want to display the song title, the artist, and an
 indication of whether or not the song is in our current playlist. (I’ve
 removed the error checking, but it’s a good practice to make sure any UI
 elements you’re updating are not null—you don’t want to crash the whole
 ListView if there was a small mistake in one item.)
 This method gets called for every (visible) item in the
 ListView, so in this example we have a list of
 identical View objects with different data being
 displayed in each one. If you wanted to get really creative, you could
 populate the list with different view layouts based on the list item’s
 position or content.
That takes care of the required BaseAdapter
 overrides. However, you can add any functionality to your
 Adapter to work on the data set it represents. In my
 example, I want the user to be able to click a list item and toggle it
 on/off for the current playlist. This is easily accomplished with a
 simple callback on the ListView and a short function
 in the Adapter.
This function belongs to ListActivity:
protected void onListItemClick(ListView l, View v, int position, long id) {
 super.onListItemClick(l, v, position, id);

 mAdapter.toggleItem(position);
}
This is a member function in our MediaAdapter:
public void toggleItem(int position) {
 MediaItem mi = mMediaList.get(position);

 mi.setSelected(!mi.getSelected());
 mMediaList.set(position, mi);

 this.notifyDataSetChanged();
}
First we simply register a callback for when the user clicks an
 item in our list. We’re given the ListView, the
 View, the position, and the ID of the item that was
 clicked, but we’ll only need the position, which we simply pass to the
 MediaAdapter.toggleItem(int) method. In that method we update
 the state of the corresponding MediaItem and make an
 important call to notifyDataSetChanged(). This method lets the framework know that it needs to
 redraw the ListView. If we don’t call it, we can do
 whatever we want to the data, but we won’t see anything change until the
 next redraw (e.g., when we scroll the list).
When all is said and done, we need to tell the parent
 ListView to use our Adapter to
 populate the list. That’s done with a simple call in the
 ListActivity’s onCreate(Bundle)
 method:
MediaAdapter mAdapter = new MediaAdapter(getSongsFromSD());
this.setListAdapter(mAdapter);
First we instantiate a new Adapter with data
 generated from a private function that queries the phone for the song
 data, and then we tell the ListActivity to use that
 adapter to draw the list. And there it is—your own list adapter with a
 custom view and extensible functionality.

9.8. Handling Orientation Changes: From ListView Data Values to
 Landscape Charting

Wagied Davids

Problem

You want to react to orientation changes in layout-appropriate ways.
 For example, data values to be plotted are contained in a portrait list
 view, and upon device rotation to landscape, a graph of the data values
 in a chart/plot is displayed.

Solution

Do something in reaction to physical device orientation changes. A
 new View object is created on orientation changes.
 The Activity method onConfigurationChanged(Configuration
 newConfig) can be overriden to accommodate orientation
 changes.

Discussion

In this recipe, data values to be plotted are contained in a
 portrait list view. When the device/emulator is changed to
 counterclockwise, a new Intent is launched to change
 to a plot/charting View to graphically display the
 data values. Charting is accomplished using the excellent DroidCharts
 package (http://code.google.com/p/droidcharts/).
Note that for testing this in the Android emulator, the Ctrl-F11
 key combination will result in a portrait to landscape (or vice versa)
 orientation change.
The most important trick is to modify the
 AndroidManifest.xml (shown in Example 9-12) to allow for the following:
 android:configChanges="orientation|keyboardHidden"
 android:screenOrientation="portrait"
Example 9-12. AndroidManifest.xml
<?xml version="1.0" encoding="utf-8"?>
<manifest
 xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.examples"
 android:versionCode="1"
 android:versionName="1.0">
 <application
 android:icon="@drawable/icon"
 android:label="@string/app_name"
 android:debuggable="true">
 <activity
 android:name=".DemoList"
 android:label="@string/app_name"
 android:configChanges="orientation|keyboardHidden"
 android:screenOrientation="portrait">
 <intent-filter>
 <action
 android:name="android.intent.action.MAIN" />
 <category
 android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 <activity
 android:name=".DemoCharts"
 android:configChanges="orientation|keyboardHidden"></activity>
 </application>
</manifest>

The main activity in this example is
 DemoCharts, shown in Example 9-13.
 It does the usual onCreate() stuff, but also, if a
 parameter was passed, it assumes we were restarted from the
 DemoList class shown in Example 9-14 and sets up the data accordingly. A number of
 methods have been elided as they aren’t relevant to the core issue, that of configuration changes. These
 are in the online source for this recipe.
Example 9-13. DemoCharts.java
...
import net.droidsolutions.droidcharts.core.data.XYDataset;
import net.droidsolutions.droidcharts.core.data.xy.XYSeries;
import net.droidsolutions.droidcharts.core.data.xy.XYSeriesCollection;

public class DemoCharts extends Activity {
 private static final String tag = "DemoCharts";
 private final String chartTitle = "My Daily Starbucks Allowance";
 private final String xLabel = "Week Day";
 private final String yLabel = "Allowance";

 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 // Access the Extras from the Intent
 Bundle params = getIntent().getExtras();

 // If we get no parameters, we do nothing
 if (params == null) { return; }

 // Get the passed parameter values
 String paramVals = params.getString("param");

 Log.d(tag, "Data Param:= " + paramVals);
 Toast.makeText(getApplicationContext(), "Data Param:= " +
 paramVals, Toast.LENGTH_LONG).show();

 ArrayList<ArrayList<Double>> dataVals = stringArrayToDouble(paramVals);

 XYDataset dataset =
 createDataset("My Daily Starbucks Allowance", dataVals);
 XYLineChartView graphView = new XYLineChartView(this, chartTitle,
 xLabel, yLabel, dataset);
 setContentView(graphView);
 }

 private String arrayToString(String[] data) {
 ...
 }

 private ArrayList<ArrayList<Double>> stringArrayToDouble(String paramVals) {
 ...
 }

 /**
 * Creates a sample dataset.
 */
 private XYDataset createDataset(String title,
 ArrayList<ArrayList<Double>> dataVals) {

 final XYSeries series1 = new XYSeries(title);
 for (ArrayList<Double> tuple : dataVals)
 {
 double x = tuple.get(0).doubleValue();
 double y = tuple.get(1).doubleValue();

 series1.add(x, y);
 }

 // Create a collection to hold various data sets
 final XYSeriesCollection dataset = new XYSeriesCollection();
 dataset.addSeries(series1);
 return dataset;
 }

 @Override
 public void onConfigurationChanged(Configuration newConfig)
 {
 super.onConfigurationChanged(newConfig);
 Toast.makeText(this, "Orientation Change", Toast.LENGTH_SHORT);

 // Let's go to our DemoList view
 Intent intent = new Intent(this, DemoList.class);
 startActivity(intent);

 // Finish current Activity
 this.finish();
 }
 }

The DemoList view is the portrait view. Its
 onConfigure() passes control back to the landscape DemoCharts class
 if a configuration change occurs.
Example 9-14. DemoList.java
public class DemoList extends ListActivity implements OnItemClickListener {
 private static final String tag = "DemoList";
 private ListView listview;
 private ArrayAdapter<String> listAdapter;

 // Want to pass data values as parameters to next Activity/View/Page
 private String params;

 // Our data for plotting
 private final double[][] data = {
 { 1, 1.0 }, { 2.0, 4.0 }, { 3.0, 10.0 }, { 4, 2.0 },
 { 5.0, 20 }, { 6.0, 4.0 }, { 7.0, 1.0 },
 };

 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);

 // Set the View Layer
 setContentView(R.layout.data_listview);

 // Get the Default declared ListView @android:list
 listview = getListView();

 // List for click events to the ListView items
 listview.setOnItemClickListener(this);

 // Get the data
 ArrayList<String> dataList = getDataStringList(data);

 // Create an Adapter for viewing the ListView
 listAdapter = new ArrayAdapter<String>(this,
 android.R.layout.simple_list_item_1, dataList);

 // Bind the adapter to the ListView
 listview.setAdapter(listAdapter);

 // Set the parameters to pass to the next view/ page
 setParameters(data);
 }

 private String doubleArrayToString(double[][] dataVals) {
 ...
 }

 /**
 * Sets parameters for the Bundle
 *
 * @param dataList
 */
 private void setParameters(double[][] dataVals) {
 params = toJSON(dataVals);
 }

 public String getParameters() {
 return this.params;
 }

 /**
 *
 * @param dataVals
 * @return
 */
 private String toJSON(double[][] dataVals) {
 ...
 }

 private ArrayList<String> getDataStringList(double[][] dataVals) {
 ...
 }

 @Override
 public void onConfigurationChanged(Configuration newConfig) {
 super.onConfigurationChanged(newConfig);

 // Create an Intent to switch view to the next page view
 Intent intent = new Intent(this, DemoCharts.class);

 // Pass parameters along to the next page
 intent.putExtra("param", getParameters());

 // Start the activity
 startActivity(intent);

 Log.d(tag, "Orientation Change...");
 Log.d(tag, "Params: " + getParameters());
 }

 @Override
 public void onItemClick(AdapterView<?> parent, View view,
 int position, long duration) {

 // Upon clicking item in list, pop up a toast
 String msg = "#Item: " + String.valueOf(position) +
 " - " + listAdapter.getItem(position);
 Toast.makeText(getApplicationContext(), msg, Toast.LENGTH_LONG).show();
 }
 }

The XYLineChartView class is not included here as it relates only to the plotting.
 It is included in the online version of the code, which you can download
 as per the following section.

Source Download URL

The source code for this example is in the Android Cookbook repository at http://github.com/AndroidCook/Android-Cookbook-Examples,
 in the subdirectory OrientationChanges (see Getting and Using the Code Examples).

Chapter 10. Multimedia

10.1. Introduction: Multimedia

Ian Darwin

Discussion

Android is a rich multimedia environment. The standard Android load includes
 music and video players, and most commercial devices ship with these or
 fancier versions as well as YouTube players and more. The recipes in
 this chapter show you how to control some aspects of the multimedia
 world that Android provides.

10.2. Playing a YouTube Video

Marco Dinacci

Problem

You want to play a video from YouTube on your device.

Solution

Given a URI to play the video, create an ACTION_VIEW
 Intent with it and start a new
 Activity.

Discussion

Example 10-1 shows the code required to start a
 YouTube video with an Intent.
Note
For this recipe to work, the user needs the standard YouTube
 application installed on the device.

Example 10-1. Starting a YouTube video with an Intent
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 String video_path = "http://www.youtube.com/watch?v=opZ69P-0Jbc";
 Uri uri = Uri.parse(video_path);

 // With this line the YouTube application, if installed, will launch immediately.
 // Without it you will be prompted with a list of the application to choose.
 uri = Uri.parse("vnd.youtube:" + uri.getQueryParameter("v"));

 Intent intent = new Intent(Intent.ACTION_VIEW, uri);
 startActivity(intent);
}

The example uses a standard YouTube.com URL. The uri.getQueryParameter("v") is used to extract
 the video ID from the URI itself; in our example the ID is opZ69P-0Jbc.

10.3. Using the Gallery with the ImageSwitcher View

Nidhin Jose
 Davis

Problem

You want to create a user interface for browsing through a collection
 of images.

Solution

Use the Gallery with the
 ImageSwitcher view to achieve this.

Discussion

You can use the Gallery
 (android.widget.Gallery) alongside the
 ImageSwitcher
 (android.widget.ImageSwitcher) to create a nice image
 browser for your application. Example 10-2 shows the
 layout for the Gallery.
Example 10-2. The layout for the Gallery
<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >

 <ImageSwitcher
 android:id="@+id/switcher"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:layout_alignParentLeft="true"
 android:layout_alignParentRight="true"
 android:layout_alignParentBottom="true"
 />

 <Gallery
 android:id="@+id/gallery"
 android:background="#55000000"
 android:layout_width="fill_parent"
 android:layout_height="60dip"
 android:spacing="16px"
 android:layout_alignParentBottom="true"
 android:layout_alignParentLeft="true"
 android:gravity="center_vertical"
 />

</RelativeLayout>

Example 10-3 shows how to use this
 layout.
Example 10-3. The Gallery example ImageBrowser main activity
public class ImageBrowser extends Activity
 implements AdapterView.OnItemSelectedListener, ViewSwitcher.ViewFactory {
 private ImageSwitcher mISwitcher;
 private ArrayList<Drawable> allimages = new ArrayList<Drawable>();

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 // let's remove the title bar
 requestWindowFeature(Window.FEATURE_NO_TITLE);
 setContentView(R.layout.main);

 getImages();

 mISwitcher = (ImageSwitcher)findViewById(R.id.switcher);
 mISwitcher.setFactory(this);
 // some animation when image changes
 mISwitcher.setInAnimation(AnimationUtils.loadAnimation(this,
 android.R.anim.fade_in));
 mISwitcher.setOutAnimation(AnimationUtils.loadAnimation(this,
 android.R.anim.fade_out));

 Gallery gallery = (Gallery) findViewById(R.id.gallery);
 gallery.setAdapter(new ImageAdapter(this));
 gallery.setOnItemSelectedListener(this);
 }

 private void getImages() {
 allimages.add(this.getResources().getDrawable(R.drawable.image1));
 allimages.add(this.getResources().getDrawable(R.drawable.image2));
 allimages.add(this.getResources().getDrawable(R.drawable.image3));
 allimages.add(this.getResources().getDrawable(R.drawable.image4));
 allimages.add(this.getResources().getDrawable(R.drawable.image5));
 allimages.add(this.getResources().getDrawable(R.drawable.image6));
 allimages.add(this.getResources().getDrawable(R.drawable.image7));
 allimages.add(this.getResources().getDrawable(R.drawable.image8));
 allimages.add(this.getResources().getDrawable(R.drawable.image9));

 }

 @Override
 public void onItemSelected(AdapterView<?> arg0, View v, int position, long id) {
 try{
 mISwitcher.setImageDrawable(allimages.get(position));
 }catch(Exception e){}
 }

 @Override
 public void onNothingSelected(AdapterView<?> arg0) {
 // empty
 }

 @Override
 public View makeView() {
 ImageView i = new ImageView(this);
 i.setBackgroundColor(0xFF000000);
 i.setScaleType(ImageView.ScaleType.FIT_CENTER);
 i.setLayoutParams(new ImageSwitcher.LayoutParams(
 ImageSwitcher.LayoutParams.FILL_PARENT,
 ImageSwitcher.LayoutParams.FILL_PARENT));
 return i;
 }

 public class ImageAdapter extends BaseAdapter {
 private Context mContext;

 public ImageAdapter(Context c) {
 mContext = c;
 }

 public int getCount() {
 return allimages.size();
 }

 public Object getItem(int position) {
 return position;
 }

 public long getItemId(int position) {
 return position;
 }

 public View getView(int position, View convertView, ViewGroup parent) {
 ImageView galleryview = new ImageView(mContext);
 galleryview.setImageDrawable(allimages.get(position));
 galleryview.setAdjustViewBounds(true);
 galleryview.setLayoutParams(new LayoutParams(LayoutParams.WRAP_CONTENT,
 LayoutParams.WRAP_CONTENT));
 galleryview.setPadding(5, 0, 5, 0);
 galleryview.setBackgroundResource(android.R.drawable.picture_frame);
 return galleryview;
 }
 }
}

10.4. Capturing Video Using MediaRecorder

Marco Dinacci

Problem

You want to capture video using the built-in device camera and
 save it to disk.

Solution

Capture a video and record it on the phone by using the
 MediaRecorder class provided by the Android
 framework.

Discussion

The MediaRecorder is normally used to perform
 audio and/or video recording. The class has a straightforward API, but
 as it’s based on a simple state machine, the methods must be called in
 the proper order in order to avoid
 IllegalStateExceptions from popping up.
Create a new Activity and override the
 onCreate method with the code shown in Example 10-4.
Example 10-4. The onCreate() method of the main activity
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.media_recorder_recipe);

 // we shall take the video in landscape orientation
 setRequestedOrientation(ActivityInfo.SCREEN_ORIENTATION_LANDSCAPE);

 mSurfaceView = (SurfaceView) findViewById(R.id.surfaceView);
 mHolder = mSurfaceView.getHolder();
 mHolder.addCallback(this);
 mHolder.setType(SurfaceHolder.SURFACE_TYPE_PUSH_BUFFERS);

 mToggleButton = (ToggleButton) findViewById(R.id.toggleRecordingButton);
 mToggleButton.setOnClickListener(new OnClickListener() {
 @Override
 // toggle video recording
 public void onClick(View v) {
 if (((ToggleButton)v).isChecked())
 mMediaRecorder.start();
 else {
 mMediaRecorder.stop();
 mMediaRecorder.reset();
 try {
 initRecorder(mHolder.getSurface());
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
 }
 });
 }

The preview frames from the camera will be displayed on a SurfaceView. Recording is
 controlled by a toggle button. After the recording is over, we stop the
 MediaRecorder. Since the stop
 method resets all the state machine variables in order to be able to
 grab another video, we reset the state machine and call our
 initRecorder once more.
initRecorder is where we configure the
 MediaRecorder and the camera, as shown in Example 10-5.
Example 10-5. Setting up the MediaRecorder
 /* Init the MediaRecorder, the order the methods are called is vital to
 * its correct functioning.
 */
 private void initRecorder(Surface surface) throws IOException {
 // It is very important to unlock the camera before doing setCamera
 // or it will result in a black preview
 if(mCamera == null) {
 mCamera = Camera.open();
 mCamera.unlock();
 }

 if(mMediaRecorder == null)
 mMediaRecorder = new MediaRecorder();

 mMediaRecorder.setPreviewDisplay(surface);
 mMediaRecorder.setCamera(mCamera);

 mMediaRecorder.setVideoSource(MediaRecorder.VideoSource.CAMERA);
 mMediaRecorder.setOutputFormat(MediaRecorder.OutputFormat.DEFAULT);
 File file = createFile();

 mMediaRecorder.setOutputFile(file.getAbsolutePath());

 // No limit. Don't forget to check the space on disk.
 mMediaRecorder.setMaxDuration(-1);
 mMediaRecorder.setVideoFrameRate(15);

 mMediaRecorder.setVideoEncoder(MediaRecorder.VideoEncoder.DEFAULT);

 try {
 mMediaRecorder.prepare();
 } catch (IllegalStateException e) {
 // This is thrown if the previous calls are not called with the
 // proper order
 e.printStackTrace();
 }

 mInitSuccesful = true;
 }

It is important to create and unlock a Camera object before the creation of a
 MediaRecorder. setPreviewDisplay
 and setCamera must be called immediately after the creation of the
 MediaRecorder. The choice of the format and the
 output file is obligatory. Other options, if present, must be called in
 the order outlined in Example 10-5.
The MediaRecorder is best initialized when the
 surface has been created. We register our Activity as
 a SurfaceHolder.Callback listener in order to be
 notified of this and override the surfaceCreated method to call our
 initialization code:
 @Override
 public void surfaceCreated(SurfaceHolder holder) {
 try {
 if(!mInitSuccessful)
 initRecorder(mHolder.getSurface());
 } catch (IOException e) {
 e.printStackTrace(); // better error handling?
 }
 }
When you’re done with the surface, don’t forget to release the
 resources, as the camera is a shared object and may be used by other
 applications as well:
 private void shutdown() {
 // Release MediaRecorder and especially the Camera as it's a shared
 // object that can be used by other applications
 mMediaRecorder.reset();
 mMediaRecorder.release();
 mCamera.release();

 // once the objects have been released they can't be reused
 mMediaRecorder = null;
 mCamera = null;
 }
Override the surfaceDestroyed method so that the preceding code can be called automatically
 when the user is done with the Activity:
 @Override
 public void surfaceDestroyed(SurfaceHolder holder) {
 shutdown();
 }

Source Download URL

You can download the source code for this example from http://www.intransitione.com/intransitione.com/code/android/media_recorder_recipe_code.zip.
[image: image with no caption]

10.5. Using Android’s Face Detection Capability

Wagied Davids

Problem

You want to find out whether a given photograph contains any human faces and,
 if so, where.

Solution

Use Android’s built-in face detection capability.
Face detection is a cool and fun hidden API feature of Android,
 and has been around since Android 1.5. In essence, face detection is the
 act of recognizing the parts of an image that appear to be human faces.
 It is part of a machine learning technique of recognizing objects using
 a set of features. Note that this is not face recognition; it detects
 the parts of the image that are faces, but does not tell you whose face
 they belong to. Ice Cream Sandwich (Android API 4.0) features face
 recognition for unlocking the phone.

Discussion

The main activity (see Example 10-6) creates an
 instance of our FaceDetectionView. In this example,
 we hardcode the file to be scanned, but in real life you would probably
 want to capture the image using the camera, or choose the image from
 a Gallery.
Example 10-6. The main activity
import android.app.Activity;
import android.os.Bundle;

public class Main extends Activity
{
/** Called when the activity is first created. */
@Override
public void onCreate(Bundle savedInstanceState)
{
super.onCreate(savedInstanceState);
setContentView(new FaceDetectionView(this, "face5.JPG"));
}
}

FaceDetectionView is our custom class used to
 manage the face detection code using
 android.media.FaceDetector. The
 init() method conditions some graphics used to mark
 the faces—in this example we know where the faces are, and hope that
 Android will find them. The real work is done in
 detectFaces(), where we call the FaceDetector’s
 findFaces method, passing in our image and an array
 to contain the results. We then iterate over the found faces. Example 10-7 shows the code. Figure 10-1 shows the
 result.
[image: Face detection in action]

Figure 10-1. Face detection in action

Example 10-7. FaceDetectionView.java
...
import android.media.FaceDetector;

public class FaceDetectionView extends View {
 private static final String tag = FaceDetectionView.class.getName();
 private static final int NUM_FACES = 10;
 private FaceDetector arrayFaces;
 private final FaceDetector.Face getAllFaces[] = new FaceDetector.Face[NUM_FACES];
 private FaceDetector.Face getFace = null;

 private final PointF eyesMidPts[] = new PointF[NUM_FACES];
 private final float eyesDistance[] = new float[NUM_FACES];

 private Bitmap sourceImage;

 private final Paint tmpPaint = new Paint(Paint.ANTI_ALIAS_FLAG);
 private final Paint pOuterBullsEye = new Paint(Paint.ANTI_ALIAS_FLAG);
 private final Paint pInnerBullsEye = new Paint(Paint.ANTI_ALIAS_FLAG);

 private int picWidth, picHeight;
 private float xRatio, yRatio;
 private ImageLoader mImageLoader = null;

 public FaceDetectionView(Context context, String imagePath) {
 super(context);
 init();
 mImageLoader = ImageLoader.getInstance(context);
 sourceImage = mImageLoader.loadFromFile(imagePath);
 detectFaces();
 }

 private void init() {
 Log.d(tag, "Init()...");
 pInnerBullsEye.setStyle(Paint.Style.FILL);
 pInnerBullsEye.setColor(Color.RED);
 pOuterBullsEye.setStyle(Paint.Style.STROKE);
 pOuterBullsEye.setColor(Color.RED);
 tmpPaint.setStyle(Paint.Style.STROKE);
 tmpPaint.setTextAlign(Paint.Align.CENTER);
 BitmapFactory.Options bfo = new BitmapFactory.Options();
 bfo.inPreferredConfig = Bitmap.Config.RGB_565;
 }

 private void loadImage(String imagePath) {
 sourceImage = mImageLoader.loadFromFile(imagePath);
 }

 @Override
 protected void onDraw(Canvas canvas) {
 Log.d(tag, "onDraw()...");

 xRatio = getWidth() * 1.0f / picWidth;
 yRatio = getHeight() * 1.0f / picHeight;
 canvas.drawBitmap(
 sourceImage, null, new Rect(0, 0, getWidth(), getHeight()), tmpPaint);
 for (int i = 0; i < eyesMidPts.length; i++) {
 if (eyesMidPts[i] != null) {
 pOuterBullsEye.setStrokeWidth(eyesDistance[i] / 6);
 canvas.drawCircle(eyesMidPts[i].x * xRatio,
 eyesMidPts[i].y * yRatio, eyesDistance[i] / 2, pOuterBullsEye);
 canvas.drawCircle(eyesMidPts[i].x * xRatio,
 eyesMidPts[i].y * yRatio, eyesDistance[i] / 6, pInnerBullsEye);
 }
 }
 }

 private void detectFaces() {
 Log.d(tag, "detectFaces()...");

 picWidth = sourceImage.getWidth();
 picHeight = sourceImage.getHeight();

 arrayFaces = new FaceDetector(picWidth, picHeight, NUM_FACES);
 arrayFaces.findFaces(sourceImage, getAllFaces);

 for (int i = 0; i < getAllFaces.length; i++) {
 getFace = getAllFaces[i];
 try {
 PointF eyesMP = new PointF();
 getFace.getMidPoint(eyesMP);
 eyesDistance[i] = getFace.eyesDistance();
 eyesMidPts[i] = eyesMP;

 Log.i("Face",
 i + " " + getFace.confidence() + " " + getFace.eyesDistance() + " " +
 "Pose: (" + getFace.pose(FaceDetector.Face.EULER_X) + "," +
 getFace.pose(FaceDetector.Face.EULER_Y) + "," +
 getFace.pose(FaceDetector.Face.EULER_Z) + ")" +
 "Eyes Midpoint: (" + eyesMidPts[i].x + "," + eyesMidPts[i].y + ")");
 } catch (Exception e) {
 Log.e("Face", i + " is null");
 }
 }
 }
}

Source Download URL

The source code for this example is in the Android Cookbook repository at http://github.com/AndroidCook/Android-Cookbook-Examples,
 in the subdirectory FaceFinder (see Getting and Using the Code Examples).

10.6. Playing Audio from a File

Marco Dinacci

Problem

You want to play an audio file stored on the device.

Solution

Create and properly configure a MediaPlayer and
 a MediaController, provide the path of the audio file
 to play, and enjoy the music.

Discussion

Playing an audio file is as easy as setting up a MediaPlayer and a
 MediaController.
First create a new activity that implements the MediaPlayerControl interface (see Example 10-8).
Example 10-8. The MediaPlayerControl class header
public class PlayAudioActivity extends Activity implements MediaPlayerControl {
 private MediaController mMediaController;
 private MediaPlayer mMediaPlayer;
 private Handler mHandler = new Handler();

In the onCreate method, we
 create and configure a MediaPlayer
 and a MediaController. The first is
 the object that performs the typical operations on an audio file, such
 as playing, pausing, and seeking. The second is a view containing the
 buttons that launch the aforementioned operations through our MediaPlayerControl class.
Example 10-9 shows the onCreate code.
Example 10-9. The AudioPlayer’s onCreate() method
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 mMediaPlayer = new MediaPlayer();
 mMediaController = new MediaController(this);
 mMediaController.setMediaPlayer(PlayAudioActivity.this);
 mMediaController.setAnchorView(findViewById(R.id.audioView));

 String audioFile = "" ;
 try {
 mMediaPlayer.setDataSource(audioFile);
 mMediaPlayer.prepare();
 } catch (IOException e) {
 Log.e("PlayAudioDemo",
 "Could not open file " + audioFile + " for playback.", e);
 }

 mMediaPlayer.setOnPreparedListener(new OnPreparedListener() {
 @Override
 public void onPrepared(MediaPlayer mp) {
 mHandler.post(new Runnable() {
 public void run() {
 mMediaController.show(10000);
 mMediaPlayer.start();
 }
 });
 }
 });
 }

In addition to configuring our MediaController and MediaPlayer we create an anonymous OnPreparedListener in order to start the
 player only when the media source is ready for playback.
Remember to clean up the MediaPlayer when the
 Activity is destroyed (see Example 10-10).
Example 10-10. The AudioPlayer clean up
 @Override
 protected void onDestroy() {
 super.onDestroy();
 mMediaPlayer.stop();
 mMediaPlayer.release();
 }

At last we implement the MediaPlayerControl interface. The code is very
 straightforward, as shown in Example 10-11.
Example 10-11. The MediaPlayerControl implementation
 @Override
 public boolean canPause() {
 return true;
 }

 @Override
 public boolean canSeekBackward() {
 return false;
 }

 @Override
 public boolean canSeekForward() {
 return false;
 }

 @Override
 public int getBufferPercentage() {
 return (mMediaPlayer.getCurrentPosition() * 100) / mMediaPlayer.getDuration();
 }

 // Remaining methods just delegate to the MediaPlayer
}

As a final touch we override the onTouchEvent in order to show the MediaController buttons when the user clicks
 on the screen.
Since we create our MediaController programmatically, the layout
 is very simple:
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:id="@+id/audioView"
 >
</LinearLayout>

Source Download URL

You can download the source code for this example from http://www.intransitione.com/intransitione.com/code/android/play_audio_demo.zip.
[image: image with no caption]

10.7. Playing Audio Without Interaction

Ian Darwin

Problem

You want to play an audio file with no interaction.

Solution

All you need to do to play a file with no interaction (e.g., not
 user-settable volume, pause, etc. controls) is to create a
 MediaPlayer for the file, and call its start() method.

Discussion

This is the simplest way to play a sound file. In contrast with
 Recipe 10.6, this version offers
 the user no controls to interact with the sound. You should therefore
 usually offer at least a “stop” or “cancel” button, especially if the
 audio file is or might be long. If you’re just playing a short sound
 effect within your application, no such control is needed.
You must have a MediaPlayer
 created for your file. The audio file may be on the SD card or it may be
 in your application’s res/raw directory. If the
 sound file is part of your application, store it under
 res/raw. Suppose it is in
 res/raw/alarm_sound.3gp. Then the reference to it
 is R.raw.alarm_sound, and you can play it as follows:
MediaPlayer player = MediaPlayer.create(this, R.raw.alarm_sound);
player.start();
In the SD card case, use the following invocation:
MediaPlayer player = new MediaPlayer();
player.setDataSource(fileName);
player.prepare();
player.start();
There is also a convenience routine, MediaPlayer.create(Context,
 URI), that you can use; in all cases,
 create() calls prepare() for you.
To control the player from within your application, you can call
 the relevant methods such as player.stop(),
 player.pause(), and so on. If you want to reuse a
 player after stopping it, you must call prepare()
 again.
To be notified when the audio is finished, use an OnCompletionListener:
player.setOnCompletionListener(new OnCompletionListener() {
 @Override
 public void onCompletion(MediaPlayer mp) {
 Toast.makeText(Main.this,
 "Media Play Complete", Toast.LENGTH_SHORT).show();
 }
});
When you are truly done with any MediaPlayer instance, you should call
 its release() method to
 free up memory, or you will run out of resources if you are creating a
 lot of MediaPlayer objects.

See Also

To really use the MediaPlayer effectively you should understand its various states and
 transitions, as this will help you to understand what methods are valid.
 There is a complete state diagram for the MediaPlayer
 at http://developer.android.com/reference/android/media/MediaPlayer.html.

Source Download URL

The source code for this example is in the Android Cookbook
 repository at http://github.com/AndroidCook/Android-Cookbook-Examples,
 in the subdirectory MediaPlayerDemo (see Getting and Using the Code Examples).

10.8. Using Speech to Text

Corey Sunwold

Problem

You want to accept speech input and process it as text.

Solution

One of Android’s unique features is native speech to text
 processing. This provides an alternative form of text input for the
 user, who in some situations might not have her hands readily available
 to type in information.

Discussion

Android provides an easy API for using its built-in voice
 recognition through the RecognizerIntent.
The example layout will be very simple (see Example 10-12). I’ve only included a
 TextView called speechText and a
 Button called getSpeechButton. The
 Button will be used to launch the voice recognizer,
 and when results are returned they will be displayed in the
 TextView.
Example 10-12. The speech recognizer demo program
public class Main extends Activity {

 private static final int RECOGNIZER_RESULT = 1234;

 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 Button startSpeech = (Button)findViewById(R.id.getSpeechButton);
 startSpeech.setOnClickListener(new OnClickListener() {

 @Override
 public void onClick(View v) {
 Intent intent = new Intent(RecognizerIntent.ACTION_RECOGNIZE_SPEECH);
 intent.putExtra(RecognizerIntent.EXTRA_LANGUAGE_MODEL,
 RecognizerIntent.LANGUAGE_MODEL_FREE_FORM);
 intent.putExtra(RecognizerIntent.EXTRA_PROMPT, "Speech to text");
 startActivityForResult(intent, RECOGNIZER_RESULT);
 }

 });
 }

 /**
 * Handle the results from the recognition activity.
 */
 @Override
 protected void onActivityResult(int requestCode, int resultCode, Intent data) {
 if (requestCode == RECOGNIZER_RESULT && resultCode == RESULT_OK) {
 ArrayList<String> matches = data.getStringArrayListExtra(
 RecognizerIntent.EXTRA_RESULTS);

 TextView speechText = (TextView)findViewById(R.id.speechText);
 speechText.setText(matches.get(0).toString());
 }

 super.onActivityResult(requestCode, resultCode, data);
 }
}

See Also

http://developer.android.com/reference/android/speech/RecognizerIntent.html

10.9. Making the Device Speak with Text-to-Speech

Ian Darwin

Problem

You want your application to pronounce words of text so that the user
 can perceive them without watching the screen (e.g., when
 driving).

Solution

Use the TextToSpeech API.

Discussion

The TextToSpeech API is built into Android (though you may have to
 install the voice files, depending on the version you are using).
To get started you just need a TextToSpeech
 object. In theory, you could just do this:
private TextToSpeech myTTS = new TextToSpeech(this, this);
myTTS.setLanguage(Locale.US);
myTTS.speak(textToBeSpoken, TextToSpeech.QUEUE_FLUSH, null);
myTTS.shutdown();
However, to ensure success, you actually have to use a couple of
 intents, one to check that the TTS data is available and/or install it
 if not, and another to start the TTS mechanism. So, in practice, the
 code needs to look something like Example 10-13. This
 quaint little application chooses one of half a dozen banal phrases to
 utter each time the Speak button is pressed.
Example 10-13. The text-to-speech demo program
public class Main extends Activity implements OnInitListener {

 private TextToSpeech myTTS;
 private List<String> phrases = new ArrayList<String>();

 public void onCreate(Bundle savedInstanceState) {

 phrases.add("Hello Android, Goodbye iPhone");
 phrases.add("The quick brown fox jumped over the lazy dog");
 phrases.add("What is your mother's maiden name?");
 phrases.add("Etaoin Shrdlu for Prime Minister");
 phrases.add("The letter 'Q' does not appear in 'antidisestablishmentarianism')");
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 Button startButton = (Button) findViewById(R.id.start_button);
 startButton.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View arg0) {
 Intent checkIntent = new Intent();
 checkIntent.setAction(TextToSpeech.Engine.ACTION_CHECK_TTS_DATA);
 startActivityForResult(checkIntent, 1);
 }
 });
 }

 protected void onActivityResult(int requestCode, int resultCode, Intent data) {
 if (requestCode == 1) {

 if (resultCode == TextToSpeech.Engine.CHECK_VOICE_DATA_PASS) {
 myTTS = new TextToSpeech(this, this); [image: 1]
 myTTS.setLanguage(Locale.US);
 } else {
 // TTS data not yet loaded, try to install it
 Intent ttsLoadIntent = new Intent();
 ttsLoadIntent.setAction(TextToSpeech.Engine.ACTION_INSTALL_TTS_DATA);
 startActivity(ttsLoadIntent);
 }
 }
 }

 public void onInit(int status) {
 if (status == TextToSpeech.SUCCESS) {

 int n = (int)(Math.random() * phrases.size());
 myTTS.speak(phrases.get(n), TextToSpeech.QUEUE_FLUSH, null);

 } else if (status == TextToSpeech.ERROR) {
 myTTS.shutdown();
 }
 }

	[image: 1]
	The first argument is a Context (the
 Activity) and the second is an OnInitListener, also implemented
 by the main activity in this case. When the initialization of the
 TextToSpeech object is done, it calls the
 listener, whose onInit() method is meant to
 notify that the TTS is ready. In our trivial Speaker program here,
 we simply do the speaking. In a longer example you would probably
 want to start a thread or service to do the speaking
 operation.

Source Download URL

The source code for this example is in the Android Cookbook repository at http://github.com/AndroidCook/Android-Cookbook-Examples,
 in the subdirectory Speaker (see Getting and Using the Code Examples).

Chapter 11. Data Persistence

11.1. Introduction: Data Persistence

Ian Darwin

Discussion

Data persistence is a wide topic. In this chapter we focus on selected
 topics, including:
	Filesystem topics relating to the app-accessible parts of the
 filesystems (/sdcard and friends)—but we assume
 you know the basics of reading/writing text files

	Persisting data in a database, commonly but not exclusively
 SQLite.

	More specifically, reading and writing the Contacts
 database

	Some data format conversions (e.g., JSON and XML conversions)
 that don’t fit naturally into any of the other chapters

11.2. Getting File Information

Ian Darwin

Problem

You need to know all you can about a given file “on disk,” typically
 on internal memory or on the SD card.

Solution

Use a java.io.File object.

Discussion

The File class has a number of “informational”
 methods. To use any of these, you must construct a
 File object containing the name of the file on which
 it is to operate. It should be noted up front that creating a
 File object has no effect on the permanent
 filesystem; it is only an object in Java’s memory. You must call methods
 on the File object in order to change the filesystem; as we’ll see,
 there are numerous “change” methods, such as one for creating a new (but
 empty) file, one for renaming a file, and so on, as well as many
 informational methods. Table 11-1 lists some of the
 informational methods.
Table 11-1. File class informational methods
	Return type	Method name	Meaning
	boolean	exists()	True if something of that name exists
	String	getCanonicalPath()	Full name
	String	getName()	Relative filename
	String	getParent()	Parent directory
	boolean	canRead()	True if file is readable
	boolean	canWrite()	True if file is writable
	long	lastModified()	File modification time
	long	length()	File size
	boolean	isFile()	True if it’s a file
	boolean	isDirectory()	True if it’s a directory (note: might be neither file
 nor directory)

You cannot change the name stored in a File
 object; you simply create a new File object each time
 you need to refer to a different file.
Example 11-1 is drawn from Desktop Java, but the
 File object operates the same in Android as in Java
 SE.
Example 11-1. A file information program
import java.io.*;
import java.util.*;

/**
 * Report on a file's status in Java
 */

public class FileStatus {

 public static void main(String[] argv) throws IOException {
 // Ensure that a filename (or something) was given in argv[0]
 if (argv.length == 0) {
 System.err.println("Usage: FileStatus filename");
 System.exit(1);
 }

 for (int i = 0; i< argv.length; i++) {
 status(argv[i]);
 }
 }

 public static void status(String fileName) throws IOException {
 System.out.println("---" + fileName + "---");

 // Construct a File object for the given file.
 File f = new File(fileName);

 // See if it actually exists
 if (!f.exists()) {
 System.out.println("file not found");
 System.out.println(); // Blank line
 return;
 }

 // Print full name
 System.out.println("Canonical name " + f.getCanonicalPath());

 // Print parent directory if possible
 String p = f.getParent();
 if (p != null) {
 System.out.println("Parent directory: " + p);
 }

 // Check our permissions on this file
 if (f.canRead()) {
 System.out.println("File is readable by us.");
 }
 // Check if the file is writable
 if (f.canWrite()) {
 System.out.println("File is writable by us.");
 }

 // Report on the modification time.
 Date d = new Date();
 d.setTime(f.lastModified());
 System.out.println("Last modified " + d);

 // See if file, directory, or other. If file, print size.
 if (f.isFile()) {
 // Report on the file's size
 System.out.println("File size is " + f.length() + " bytes.");
 } else if (f.isDirectory()) {
 System.out.println("It's a directory");
 } else {
 System.out.println("So weird, man! Neither a file nor a directory!");
 }

 System.out.println(); // blank line between entries
 }
}

When run with the three command-line arguments shown, it produces
 the output shown in Example 11-2.
Example 11-2. The file information program in action on Microsoft
 Windows
C:\javasrc\dir_file>java FileStatus / /tmp/id /autoexec.bat
---/---
Canonical name C:\
File is readable.
File is writable.
Last modified Thu Jan 01 00:00:00 GMT 1970
It's a directory

---/tmp/id---
file not found

---/autoexec.bat---
Canonical name C:\AUTOEXEC.BAT
Parent directory: \
File is readable.
File is writable.
Last modified Fri Sep 10 15:40:32 GMT 1999
File size is 308 bytes.

As you can see, the so-called canonical name
 not only includes a leading directory root of C:\ , but also
 has had the name converted to uppercase. You can tell I ran that on an
 older version of Microsoft Windows. On Unix, it behaves differently, as
 you can see in Example 11-3:
Example 11-3. The file information program in action on Unix
$ java FileStatus / /tmp/id /autoexec.bat
---/---
Canonical name /
File is readable.
Last modified October 4, 1999 6:29:14 AM PDT
It's a directory

---/tmp/id---
Canonical name /tmp/id
Parent directory: /tmp
File is readable.
File is writable.
Last modified October 8, 1999 1:01:54 PM PDT
File size is 0 bytes.

---/autoexec.bat---

file not found

$

This is because a typical Unix system has no
 autoexec.bat file. And Unix filenames (like those
 on the filesystem inside your Android device, and those on a Mac) can
 consist of upper- and lowercase characters: what you type is what you
 get.

11.3. Reading a File Shipped with the App Rather Than in the
 Filesystem

Rachee Singh

Problem

You need to access data stored in a file in the
 /res/raw directory rather than in the filesystem
 (/data, /sdcard, or
 /mnt). The standard file-oriented Java I/O classes
 can only open files stored on “disk” (e.g., the
 /data directory or the /sdcard
 directory).

Solution

Using the getResources() and
 openRawResource() methods to open the sample file,
 and then read it normally.

Discussion

We wish to read information from a file packaged with the Android
 application. So we will need to put the relevant file in the
 res/raw directory (and need to create the directory
 since it is not present by default). Since it is in
 res/, the generated R class will
 have an ID for it, which we pass into
 openRawResource(). Then we will read the file using
 the returned InputStreamReader wrapped in a
 BufferedReader. Finally, we extract the string from
 the BufferedReader using the
 readLine method. Eclipse asks us to enclose the
 readLine function within a
 try-catch block since there is a possibility of it
 throwing an IOException.
The example file included in /res/raw is
 named samplefile and is shown in Example 11-4.
Example 11-4. The reading code
InputStreamReader is =
 new InputStreamReader(this.getResources().openRawResource(R.raw.samplefile));
BufferedReader reader = new BufferedReader(is);
StringBuilder finalText = new StringBuilder();
String line;
try {
 while ((line = reader.readLine()) != null) {
 finalText.append(line);
 }
} catch (IOException e) {
 e.printStackTrace();
}
fileTextView = (TextView)findViewById(R.id.fileText);
fileTextView.setText(finalText.toString());

After reading the entire string, we set it to the
 TextView in the activity. Figure 11-1 shows the result.
[image: File read from application resource]

Figure 11-1. File read from application resource

Source Download URL

You can download the source code for this example from https://docs.google.com/leaf?id=0B_rESQKgad5LMWJjYjQwMjYtNDVlMi00Y2M5LTk1MmItMTc3OGNhNWZiNjNh&hl=en_US.
[image: image with no caption]

11.4. Listing a Directory

Ian Darwin

Problem

You need to list the filesystem entries named in a directory.

Solution

Use a java.io.File object’s
 list() or listFiles() method.

Discussion

The java.io.File class contains several methods
 for working with directories. For example, to list the filesystem
 entities named in the current directory, just write:
String[] list = new File(".").list()
To get an array of already constructed File
 objects rather than strings, use:
File[] list = new File(".").listFiles();
You can display the result in a ListView (see
 Recipe 9.2).
Of course, there’s lots of room for elaboration. You could print
 the names in multiple columns across or down the screen in a
 TextView in a monospace font, since you know the
 number of items in the list before you print. You could omit filenames
 with leading periods, as does the Unix ls program. Or print the directory names
 first; as some “file manager” type programs do. By using
 listFiles(), which constructs a new
 File object for each name, you could print the size
 of each, as per the MS-DOS dir command or the
 Unix ls -l command (see Recipe 11.2, available on this book’s website at http://androidcookbook.com/r/3220). Or you could figure
 out whether each is a file, a directory, or neither. Having done that,
 you could pass each directory to your top-level function, and you would
 have directory recursion (the Unix find command, or ls
 -R, or the DOS DIR /S command). Quite the
 makings of a file manager application of your own.
A more flexible way to list filesystem entries is with
 list(FilenameFilter ff).
 FilenameFilter is a tiny interface with only one
 method: boolean accept(File inDir, String fileName).
 Suppose you want a listing of only Java-related files
 (*.java, *.class,
 *.jar, etc.). Just write the
 accept() method so that it returns true for these
 files and false for any others. Example 11-5 shows the
 Ls class warmed over to use a FilenameFilter instance.
Example 11-5. Directory Lister with FilenameFilter
import java.io.*;

/**
 * FNFilter - directory lister modified to use FilenameFilter
 */
public class FNFilter {
 public static String[] getListing(String startingDir) {
 // Generate the selective list, with a one-use File object.
 String[] dir = new java.io.File(startingDir).list(new OnlyJava());
 java.util.Arrays.sort(dir); // Sorts by name
 return dir;
}

/** FilenameFilter implementation:
 * The Accept method only returns true for .java , .jar and class files.
 */
class OnlyJava implements FilenameFilter {
 public boolean accept(File dir, String s) {
 if (s.endsWith(".java") || s.endsWith(".jar") || s.endsWith(".dex"))
 return true;
 // others: projects, ... ?
 return false;
 }
}

The FilenameFilter could be more flexible; in a
 full-scale application, the list of files returned by the
 FilenameFilter would be chosen dynamically, possibly
 automatically, based on what you were working on. File Chooser dialogs
 implement this as well, allowing the user to select interactively from
 one of several sets of files to be listed. This is a great convenience
 in finding files, just as it is here in reducing the number of files
 that must be examined.
For the listFiles() method, there is an
 additional overload that accepts a FileFilter. The
 only difference is that FileFilter’s
 accept() method is called with a File object, whereas
 FileNameFilter’s is called with a filename
 string.

See Also

See Recipe 9.2 to display
 the results in your GUI. Chapter 11 of Java
 Cookbook, written by me and published by O’Reilly,
 has more information on file and directory operations.

11.5. Getting Total and Free Space Information About the SD Card

Amir Alagic

Problem

You want to find out the amount of total and available space on the SD
 card.

Solution

Use StatFs and Environment
 classes from the android.os package to find total
 and available space on the SD card.

Discussion

Here is some code that obtains the information:
StatFs statFs = new StatFs(Environment.getExternalStorageDirectory().getPath());
double bytesTotal = (long) statFs.getBlockSize() * (long) statFs.getBlockCount();
double megTotal = bytesTotal / 1048576;
To get total space on the SD card use StatFs in
 the android.os package; and as a constructor
 parameter use
 Environment.getExternalStorageDirectory().getPath().
Then, multiply the block size by the number of blocks on the SD
 card:
(long) statFs.getBlockSize() * (long) statFs.getBlockCount();
To get size in megabytes, divide the result by 1048576. To get the
 amount of available space on the SD card, replace statFs.getBlockCount() with
 statFs.getAvailableBlocks():
(long) statFs.getBlockSize() * (long) statFs.getAvailableBlocks();
If you want to display the value with two decimal places you can
 use a DecimalFormat object from java.text:
DecimalFormat twoDecimalForm = new DecimalFormat("#.##");

11.6. Providing User Preference Activity with Minimal Effort

Ian Darwin

Problem

You want to let the user specify one or more preferences values, and have them
 persisted across runs of the program.

Solution

Have your Preferences or Settings menu item or button load an
 activity that subclasses PreferenceActivity; in its
 onCreate(), load the XML PreferenceScreen.

Discussion

Android will happily maintain a
 SharedPreferences object for you in semipermanent storage. To retrieve
 settings from it, use:
sharedPreferences = PreferenceManager.getDefaultSharedPreferences(this);
This should be called in your main activity’s
 onCreate() method, or in the
 onCreate() of any activity that needs to view the
 user’s chosen preferences.
You do need to tell Android what values you want the user to be
 able to specify, such as name, Twitter account, favorite color, or
 whatever. You don’t use the traditional view items such as
 ListView or Spinner, but instead
 use the special Preference items. A reasonable
 set of choices are available, such as Lists,
 TextEdits, CheckBoxes, and so on.
 Example 11-6 uses a List, a
 TextEdit, and a CheckBox.
Example 11-6. XML PreferenceScreen
<PreferenceScreen xmlns:android="http://schemas.android.com/apk/res/android">

 <ListPreference
 android:key="listChoice"
 android:title="List Choice"
 android:entries="@array/choices"
 android:entryValues="@array/choices"
 />

 <PreferenceCategory
 android:title="Personal">

 <EditTextPreference
 android:key="nameChoice"
 android:title="Name"
 android:hint="Name"
 />

 <CheckBoxPreference
 android:key="booleanChoice"
 android:title="Binary Choice"
 />

 </PreferenceCategory>

</PreferenceScreen>

The PreferenceCategory in the XML allows you to subdivide your panel into labelled
 sections. It is also possible to have more than one
 PreferenceScreen if you have a large number of
 settings and want to divide it into “pages.” Several additional kinds of
 UI elements can be used in the XML PreferenceScreen;
 see the official documentation for details.
The PreferenceActivity subclass consists of
 nothing more than this onCreate() method:
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 addPreferencesFromResource(R.layout.prefs);
 }
When activated, the PreferenceActivity looks
 like Figure 11-2.
[image: PreferenceScreen]

Figure 11-2. PreferenceScreen

When the user clicks on, say, Name, an Edit dialog opens, as in
 Figure 11-3.
[image: String edit dialog]

Figure 11-3. String edit dialog

In the XML layout for the Preferences screen, each preference
 setting is assigned a name or “key,” as in a Java Map or Properties. The
 supported value types are the obvious string, integer, float, and
 boolean. You use this to retrieve the user’s values, and you provide a
 default value in case the settings screen hasn’t been put up yet or in
 case the user didn’t bother to specify a particular setting.
String preferredName =
 sharedPreferences.getString("nameChoice", "No name");
Like many Android apps, this demo has no Back button from its
 preferences; the user simply presses the system’s Back button. When the
 user returns to the main activity, a real app would operate based on the
 user’s choices. My demo app simply displays the values. This is shown in
 Figure 11-4.
[image: Values the main activity uses]

Figure 11-4. Values the main activity uses

Basically that’s all you need: an XML
 PreferenceScreen to define the properties and how the
 user sets them, a call to
 getDefaultSharedPrefences(), and calls to getString(),
 getBoolean(), and so on, on the returned
 SharedPreferences object. It’s easy to handle
 preferences this way, and it gives the Android system a feel of
 uniformity, consistency, and predictability that is important to the
 overall user experience.

11.7. Checking the Consistency of Default Shared Preferences

Federico Paolinelli

Problem

Android provides a very easy way to set up default preferences by
 defining a PreferenceActivity and providing it a resource
 file, as discussed in Recipe 11.6. What is not clear is how to perform
 checks on preferences given by the user.

Solution

You can implement the PreferenceActivity method
 onSharedPreferenceChanged:
public void onSharedPreferenceChanged(SharedPreferences prefs, String key)
You perform your checks in this method’s body. If the check fails
 you can restore a default value in the preference. You must be aware
 that even if the SharedPreferences will contain the
 right value, you won’t see it displayed correctly. For this reason, you
 need to reload the preferences activity.

Discussion

If you have a default preference activity that
 implements OnSharedPreferenceChangeListener, as
 shown in Example 11-7, your
 PreferenceActivity can implement the
 onSharedPreferenceChanged method.
Example 11-7. PreferenceActivity implementation
 public class MyPreferenceActivity extends PreferenceActivity
 implements OnSharedPreferenceChangeListener {

 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 Context context = getApplicationContext();
 prefs = PreferenceManager.getDefaultSharedPreferences(context);
 addPreferencesFromResource(R.xml.userprefs);
}

The onSharedPreferenceChanged() method will be
 called after the change is committed, so every other change you perform
 will be permanent.
The idea is to check whether you like the value, and otherwise to
 put a default value/disable it.
To get the method notified, you have to register your activity as
 a valid listener. A good way to do so is to register in onResume and unregister in
 onPause:
 @Override
 protected void onResume() {
 super.onResume();
 prefs.registerOnSharedPreferenceChangeListener(this);
 }

 @Override
 protected void onPause() {
 super.onPause();
 prefs.unregisterOnSharedPreferenceChangeListener(this);
 }
Now it’s time to perform the consistency check. For example, if
 you have an option whose key is MY_OPTION_KEY, you
 can use the code in Example 11-8 to check and
 allow/disallow the value.
Example 11-8. Checking and allowing/disallowing the value
public void onSharedPreferenceChanged(SharedPreferences prefs, String key) {
 SharedPreferences.Editor prefEditor = prefs.edit();

 if(key.equals(MY_OPTION_KEY)){
 String optionValue = prefs.getString(MY_OPTION_KEY, "");
 if(dontLikeTheValue(optionValue)){
 prefEditor.putString(MY_OPTION_KEY, "Default value");
 prefEditor.commit();
 reload();
 }
 }
 return;
}

Of course in this way the user will be surprised and will not know
 why you refused his option. You can then show an error dialog and
 perform the reload action after the user confirms the dialog (see Example 11-9).
Example 11-9. Explaining rejection
private void showErrorDialog(String errorString){
 String okButtonString = context.getString(R.string.ok_name);
 AlertDialog.Builder ad = new AlertDialog.Builder(context);
 ad.setTitle(context.getString(R.string.error_name));
 ad.setMessage(errorString);
 ad.setPositiveButton(okButtonString,new OnClickListener() {
 public void onClick(DialogInterface dialog, int arg1) {
 reload();
 } });
 ad.show();
 return;
}

In this way, the dontLikeTheValue “if”
 becomes:
 if(dontLikeTheValue(optionValue)){
 if(!GeneralUtils.isPhoneNumber(smsNumber)){
 showErrorDialog("I dont like the option");
 prefEditor.putString(MY_OPTION_KEY, "Default value");
 prefEditor.commit();
 }
 }
What’s still missing is the reload() function,
 but it’s pretty obvious. It relaunches the activity using the same
 intent that fired it:
private void reload(){
 startActivity(getIntent());
 finish();
 }

11.8. Performing Advanced Text Searches

Claudio Esperanca

Problem

You want to implement an advanced “search” capability, and you need to
 know how to build a data layer to store and search text data using
 SQLite’s Full Text Search.

Solution

Using an SQLite Full Text Search 3 (FTS3) virtual table and match
 function from SQLite it’s possible to build such a mechanism.

Discussion

By following these steps, you will be able to create an example
 Android project with a data layer where you will be able to store and
 retrieve some data using an SQLite database.
	Create a new Android project
 (AdvancedSearchProject).

	Select an API level equal to or greater than 8.

	Specify AdvancedSearch as
 the application name.

	Use com.androidcookbook.example.advancedsearch
 as the package name.

	Create an activity with the name AdvancedSearchActivity.

	The Min SDK version should be 8 (for Android 2.2, codenamed
 Froyo).

	Create a new Java class DbAdapter within the package com.androidcookbook.example.advancedsearch
 on the src folder.

To create the data layer for the example application, enter the
 Example 11-10 source code in the created file.
Example 11-10. The DbAdapter class
package com.androidcookbook.example.advancedsearch;

import java.util.LinkedList;

import android.content.ContentValues;
import android.content.Context;
import android.database.Cursor;
import android.database.SQLException;
import android.database.sqlite.SQLiteDatabase;
import android.database.sqlite.SQLiteOpenHelper;
import android.util.Log;

public class DbAdapter {
 public static final String APP_NAME = "AdvancedSearch";
 private static final String DATABASE_NAME = "AdvancedSearch_db";
 private static final int DATABASE_VERSION = 1;
 // Our internal database version (e.g. to control upgrades)
 private static final String TABLE_NAME = "example_tbl";
 public static final String KEY_USERNAME = "username";
 public static final String KEY_FULLNAME = "fullname";
 public static final String KEY_EMAIL = "email";
 public static long GENERIC_ERROR = -1;
 public static long GENERIC_NO_RESULTS = -2;
 public static long ROW_INSERT_FAILED = -3;
 private final Context context;
 private DbHelper dbHelper;
 private SQLiteDatabase sqlDatabase;

 public DbAdapter(Context context) {
 this.context = context;
 }

 private static class DbHelper extends SQLiteOpenHelper {
 private boolean databaseCreated=false;
 DbHelper(Context context) {
 super(context, DATABASE_NAME, null, DATABASE_VERSION);
 }
 @Override
 public void onCreate(SQLiteDatabase db) {
 Log.d(APP_NAME, "Creating the application database");

 try{
 // Create the full text search 3 virtual table
 db.execSQL(
 "CREATE VIRTUAL TABLE ["+TABLE_NAME+"] USING FTS3 (" +
 "["+KEY_USERNAME+"] TEXT," +
 "["+KEY_FULLNAME+"] TEXT," +
 "["+KEY_EMAIL+"] TEXT" +
 ");"
);
 this.databaseCreated = true;
 } catch (Exception e) {
 Log.e(APP_NAME,
 "An error occurred while creating the database: " + e.toString(), e);
 this.deleteDatabaseStructure(db);
 }
 }
 @Override
 public void onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion) {
 Log.d(APP_NAME, "Updating the database from the version " +
 oldVersion + " to " + newVersion + "...");
 this.deleteDatabaseStructure(db); // toy example: purge prev. data on upgrade
 this.onCreate(db);
 }
 public boolean databaseCreated(){
 return this.databaseCreated;
 }
 private boolean deleteDatabaseStructure(SQLiteDatabase db){
 try{
 db.execSQL("DROP TABLE IF EXISTS ["+TABLE_NAME+"];");

 return true;
 }catch (Exception e) {
 Log.e(APP_NAME,
 "An error occurred while deleting the database: " + e.toString(), e);
 }
 return false;
 }
 }

 /**
 * Open the database; if the database can't be opened, try to create it
 *
 * @return {@link Boolean} true if database opened/created OK, false otherwise
 * @throws {@link SQLException] if an error occurred
 */
 public boolean open() throws SQLException {
 try{
 this.dbHelper = new DbHelper(this.context);
 this.sqlDatabase = this.dbHelper.getWritableDatabase();
 return this.sqlDatabase.isOpen();
 }catch (SQLException e) {
 throw e;
 }
 }

 /**
 * Close the database connection
 * @return {@link Boolean} true if the connection was terminated, false otherwise
 */
 public boolean close() {
 this.dbHelper.close();
 return !this.sqlDatabase.isOpen();
 }

 /**
 * Check if the database is opened
 *
 * @return {@link Boolean} true if it was, false otherwise
 */
 public boolean isOpen(){
 return this.sqlDatabase.isOpen();
 }

 /**
 * Check if the database was created
 *
 * @return {@link Boolean} true if it was, false otherwise
 */
 public boolean databaseCreated(){
 return this.dbHelper.databaseCreated();
 }

 /**
 * Insert a new row on the table
 *
 * @param username {@link String} with the username
 * @param fullname {@link String} with the fullname
 * @param email {@link String} with the email
 * @return {@link Long} with the row id or ROW_INSERT_FAILED (bellow 0 value) on error
 */
 public long insertRow(String username, String fullname, String email) {
 try{
 // Prepare the values
 ContentValues values = new ContentValues();
 values.put(KEY_USERNAME, username);
 values.put(KEY_FULLNAME, fullname);
 values.put(KEY_EMAIL, email);

 // Try to insert the row
 return this.sqlDatabase.insert(TABLE_NAME, null, values);
 }catch (Exception e) {
 Log.e(APP_NAME,
 "An error occurred while inserting the row: "+e.toString(), e);
 }
 return ROW_INSERT_FAILED;
 }

 /**
 * The search method Uses the full text search 3 virtual table and
 * the MATCH function from SQLite to search for data.
 * @see http://www.sqlite.org/fts3.html to know more about the syntax
 * @param search {@link String} with the search expression
 * @return {@link LinkedList} with the {@link String} search results
 */
 public LinkedList<String> search(String search) {

 LinkedList<String> results = new LinkedList<String>();
 Cursor cursor = null;
 try{
 cursor = this.sqlDatabase.query(true, TABLE_NAME, new String[] {
 KEY_USERNAME, KEY_FULLNAME, KEY_EMAIL }, TABLE_NAME + " MATCH ?",
 new String[] { search }, null, null, null, null);

 if(cursor!=null && cursor.getCount()>0 && cursor.moveToFirst()){
 int iUsername = cursor.getColumnIndex(KEY_USERNAME);
 int iFullname = cursor.getColumnIndex(KEY_FULLNAME);
 int iEmail = cursor.getColumnIndex(KEY_EMAIL);

 do {
 results.add(
 new String(
 "Username: "+cursor.getString(iUsername) +
 ", Fullname: "+cursor.getString(iFullname) +
 ", Email: "+cursor.getString(iEmail)
)
);
 }while(cursor.moveToNext());
 }
 }catch(Exception e){
 Log.e(APP_NAME,
 "An error occurred while searching for "+search+": "+e.toString(), e);
 }finally{
 if(cursor!=null && !cursor.isClosed()){
 cursor.close();
 }
 }

 return results;
 }
}

Now that the data layer is usable, the activity
 AdvancedSearchActivity can be used to test it.
To define the application strings, replace the contents of the
 res/values/strings.xml file:
<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string name="label_search">Search</string>
 <string name="app_name">AdvancedSearch</string>
</resources>
The application layout can be set within the file
 res/layout/main.xml. This contains the expected
 EditText (named etSearch), a
 Button (named btnSearch), and a
 TextView (named tvResults) to
 display the results, all in a LinearLayout.
Finally, Example 11-11 shows the AdvancedSearchActivity.java
 code.
Example 11-11. AdvancedSearchActivity
package com.androidcookbook.example.advancedsearch;

import java.util.Iterator;
import java.util.LinkedList;

import android.app.Activity;
import android.os.Bundle;
import android.view.View;
import android.widget.Button;
import android.widget.EditText;
import android.widget.TextView;

public class AdvancedSearchActivity extends Activity {
 private DbAdapter dbAdapter;
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 dbAdapter = new DbAdapter(this);
 dbAdapter.open();

 if(dbAdapter.databaseCreated()){
 dbAdapter.insertRow("test", "test example", "example_test@example.com");
 dbAdapter.insertRow("lorem", "lorem ipsum", "lorem.ipsum@example2.com");
 dbAdapter.insertRow("jdoe", "Jonh Doe", "j.doe@example.com");
 }

 Button button = (Button) findViewById(R.id.btnSearch);
 final EditText etSearch = (EditText) findViewById(R.id.etSearch);
 final TextView tvResults = (TextView) findViewById(R.id.tvResults);
 button.setOnClickListener(new View.OnClickListener() {
 public void onClick(View v) {
 LinkedList<String> results =
 dbAdapter.search(etSearch.getText().toString());

 if(results.isEmpty()){
 tvResults.setText("No results found");
 }else{
 Iterator<String> i = results.iterator();
 tvResults.setText("");
 while(i.hasNext()){
 tvResults.setText(tvResults.getText()+i.next()+"\n");
 }
 }
 }
 });
 }
 @Override
 protected void onDestroy() {
 dbAdapter.close();
 super.onDestroy();
 }
}

See Also

http://www.sqlite.org/fts3.html to know more
 about the Full Text Search 3 capability, including the search syntax;
 to
 learn about a project with an implementation of this search mechanism

11.9. Creating an SQLite Database in an Android Application

Rachee Singh

Problem

You want data you save to last longer than the application’s run, and
 you want easy access to the data.

Solution

SQLite is a popular relational database using the SQL model that
 you can use to store application data. The normal way to use it is to
 extend the SQLiteOpenHelper class.

Discussion

In order to use SQLite databases in an Android application, it is
 necessary to inherit from the SQLiteOpenHelper class.
 This is a standard Android class that helps open the database file. It
 checks for the existence of the database file and if it exists, it opens
 it; otherwise, it creates one.
public class SqlOpenHelper extends SQLiteOpenHelper {
The constructor for the SQLiteOpenHelper class
 takes in a few arguments: the context, database name, CursorFactory object, and version
 number.
 public static final String DBNAME = "tasksdb.sqlite";
 public static final int VERSION =1;
 public static final String TABLE_NAME = "tasks";
 public static final String ID= "id";
 public static final String NAME="name";

 public SqlOpenHelper(Context context) {
 super(context, DBNAME, null, VERSION);

}
To create a database in SQL you use the “create” statement:
CREATE TABLE <table-name> (column1 INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL,
column2 TEXT);
The SQLiteOpenHelper method
 onCreate() is called to allow you to create (and
 possibly populate) the database.
 public void onCreate(SQLiteDatabase db) {
 createDatabase(db);
 }

 private void createDatabase(SQLiteDatabase db) {
 db.execSQL("create table " + TABLE_NAME + "(" +
 ID + " integer primary key autoincrement not null, " +
 NAME + " text "
 + ");"
);
 }
To get a handle on the SQL database you created, instantiate the
 class inheriting SQLiteOpenHelper:
 SqlOpenHelper helper = new SqlOpenHelper(this);
 SQLiteDatabase database= helper.getWritableDatabase();
Now, the SQLiteDatabase database can be used to load elements stored in the
 database, as well as update and insert elements to it.

11.10. Inserting Values into an SQLite Database

Rachee Singh

Problem

You want to save data values into an SQLite database.

Solution

Use the insert() method and pass an object of type ContentValues.

Discussion

ContentValues provides something similar to a
 key-value pair, so, for example, NAME would be a
 final string containing the key, and Mangoes could be
 the value. This would insert a row in the database with the value
 Mangoes in it.
ContentValues values = new ContentValues();
values.put(NAME, "Mangoes");
After creating the values, we insert them into the table using the
 insert() method. SQLite returns the ID for that row
 in the database.
Long id = (database.insert(TABLE_NAME, null, values));
tasks.add(t);
id is the ID for the row that we inserted into
 the database.

11.11. Loading Values from an Existing SQLite Database

Rachee Singh

Problem

Previous runs of your application have created and populated an SQLite
 database. Now you need to retrieve application data from the existing
 database.

Solution

Use the query() method of the database, and use the returned
 Cursor object to iterate over the database and
 process the date.

Discussion

In order to iterate over items in a database, we require an object
 of the Cursor class. To query the database, we use
 the query method along with appropriate arguments, most importantly the
 table name and the column names for which we are extracting values (see
 Example 11-12).
Example 11-12. Querying and iterating over results
ArrayList<Food> foods = new ArrayList(this);
Cursor listCursor = database.query(TABLE_NAME, new String [] {
ID, NAME}, null, null, null, null, String.format("%s", NAME));
listCursor.moveToFirst();
Food t;
if(! listCursor.isAfterLast()) {
 do {
 Long id = listCursor.getLong(0);
 String name= listCursor.getString(1);
 t = new Food(name);
 foods.add(t);
 } while (listCursor.moveToNext());
}
 listCursor.close();

The moveToFirst() method starts from the first item in the database and
 moveToNext() moves the cursor to the next item. We
 keep checking until we have reached the end of the database. Each item
 of the database is added to an ArrayList.

11.12. Working with Dates in SQLite

Jonathan Fuerth

Problem

Android’s embedded SQLite3 database supports date and time data directly,
 including some useful date and time arithmetic. However, getting these
 dates out of the database is troublesome: there is no Cursor.getDate() in the Android
 API.

Solution

Use SQLite’s strftime() function to convert between SQLite timestamp format and the Java API’s
 “milliseconds since the epoch” representation.

Discussion

This recipe demonstrates the advantages of using SQLite timestamps
 over storing raw milliseconds values in your database, and shows how to
 retrieve those timestamps from your database as java.util.Date objects.
Background

The usual representation for an absolute timestamp in Unix is
 time_t, which historically was just
 an alias for a 32-bit integer. This integer represented the date as
 the number of seconds elapsed since UTC 00:00 on January 1, 1970 (the
 Unix time epoch). On systems where time_t is still a 32-bit integer, the clock
 will roll over partway through the year 2038.
Java adopted a similar convention, but with a few twists. The
 epoch remains the same, but the count is always stored in a 64-bit
 signed integer (the native Java long type) and the units are milliseconds
 rather than seconds. This method of timekeeping will not roll over for
 another 292 million years.
Android example code that deals with persisting dates and times
 tends to simply store and retrieve the raw milliseconds
 since the epoch values in the database. However, by doing
 this, it misses out on some useful features built into SQLite.

The advantages

There are several advantages to storing proper SQLite timestamps
 in your data: you can default timestamp columns to the current time
 using no Java code at all; you can perform calendar-sensitive
 arithmetic such as selecting the first day of a week or month, or
 adding a week to the value stored in the database; and you can extract
 just the date or time components and return those from your data
 provider.
All of these code-saving advantages come with two added bonuses:
 first, your data provider’s API can stick to the Android convention of
 passing timestamps around as long
 values; second, all of this date manipulation is done in the natively
 compiled SQLite code, so the manipulations don’t incur the garbage
 collection overhead of creating multiple java.util.Date or
 java.util.Calendar objects.

The code

Without further ado, here’s how to do it.
First, create a table that defines a column of type timestamp.
 CREATE TABLE current_list (
 item_id INTEGER NOT NULL,
 added_on TIMESTAMP NOT NULL DEFAULT current_timestamp,
 added_by VARCHAR(50) NOT NULL,
 quantity INTEGER NOT NULL,
 units VARCHAR(50) NOT NULL,
 CONSTRAINT current_list_pk PRIMARY KEY (item_id)
);
Note the default value for the added_on column. Whenever you insert a row
 into this table, SQLite will automatically fill in the current time
 (accurate to the second) for the new record (we show this using the
 command-line SQLite program running on a desktop; we’ll show later in
 this recipe how to get these into a database under Android).
 sqlite> insert into current_list (item_id, added_by, quantity, units)
 ...> values (1, 'fuerth', 1, 'EA');
 sqlite> select * from current_list where item_id = 1;
 1|2010-05-14 23:10:26|fuerth|1|EA
 sqlite>
See how the current date was inserted automatically? This is one
 of the advantages you get from working with SQLite timestamps.
How about the other advantages?
Select just the date part, forcing the time back to
 midnight:
 sqlite> select item_id, date(added_on,'start of day')
 ...> from current_list where item_id = 1;
 1|2010-05-14
 sqlite>
Or adjust the date to the Monday of the following week:
 sqlite> select item_id, date(added_on,'weekday 1')
 ...> from current_list where item_id = 1;
 1|2010-05-17
 sqlite>
Or the Monday before:
 sqlite> select item_id, date(added_on,'weekday 1','-7 days')
 ...> from current_list where item_id = 1;
 1|2010-05-10
 sqlite>
These examples are just the tip of the iceberg. You can do a lot
 of useful things with your timestamps once SQLite recognizes them as
 such.
Last, but not least, you must be wondering how to get these
 dates back into your Java code. The trick is to press another of
 SQLite’s date functions into service—this time strftime(). Here is a Java method that
 fetches a row from the current_list
 table we’ve been working with:
 Cursor cursor = database.rawQuery(
 "SELECT item_id AS _id," +
 " (strftime('%s', added_on) * 1000) AS added_on," +
 " added_by, quantity, units" +
 " FROM current_list", new String[0]);
 long millis = cursor.getLong(cursor.getColumnIndexOrThrow("added_on"));
 Date addedOn = new Date(millis);
That’s it: using strftime’s
 %s format, you can select
 timestamps directly into your Cursor as Java
 milliseconds since the epoch values. Client code
 will be none the wiser, except that your content provider will be able
 to do date manipulations for free that would take significant amounts
 of Java code and extra object allocations.

See Also

SQLite’s
 documentation for its date and time functions

11.13. Parsing JSON Using JSONObject

Rachee Singh

Problem

JSON stands for JavaScript Object Notation and is a simpler format than
 XML for data interchange. Many websites provide data in JSON, and many
 applications need to parse JSON and provide that data in the
 application.

Solution

Using built-in classes such as JSONObject
 simplifies the process of parsing JSON and retrieving the data values
 contained in it.

Discussion

For this recipe, we will use a method to generate JSON code. In a
 real application you would likely obtain the JSON data from some web
 service. In this method we make use of a JSONObject
 class object to put in values and then to return the corresponding
 string (using the toString() method). Creating an object of type
 JSONObject can throw a
 JSONException, so we enclose the code in a
 try-catch block (see Example 11-13).
Example 11-13. Generating mock data in JSON format
private String getJsonString() {
 JSONObject string = new JSONObject();
 try {
 string.put("name", "John Doe");
 string.put("age", new Integer(25));
 string.put("address", "75 Ninth Avenue 2nd and 4th Floors New York, NY 10011");
 string.put("phone", "8367667829");
 } catch (JSONException e) {
 e.printStackTrace();
 }
 return string.toString();
}

We need to instantiate an object of class
 JSONObject that takes the JSON string as an argument.
 In this case, the JSON string is being obtained from the
 getJsonString method. From the
 JSONObject we extract the information and print it in
 a TextView.
Example 11-14. Parsing the JSON string and retrieving values
try {
 String jsonString = getJsonString();
 JSONObject jsonObject = new JSONObject(jsonString);
 String name = jsonObject.getString("name");
 String age = jsonObject.getString("age");
 String address = jsonObject.getString("address");
 String phone = jsonObject.getString("phone");
 String jsonText=name + "\n" + age + "\n" + address + "\n" + phone;
 json= (TextView)findViewById(R.id.json);
 json.setText(jsonText);
} catch (JSONException e) {
 // Display the Exception...
}

Source Download URL

You can download the source code for this example from https://docs.google.com/leaf?id=0B_rESQKgad5LZDYxN2E3NTItMjE3Yy00YjE2LThjY2UtMGE2MTIyM2I0YjUx&hl=en_US.
[image: image with no caption]

11.14. Parsing an XML Document Using the DOM API

Ian Darwin

Problem

You have data in XML, and you want to transform it into something
 useful in your application.

Solution

Android provides a fairly good clone of the standard DOM API used
 in the Java Standard Edition. Using the DOM API instead of writing your
 own parsing code just makes sense.

Discussion

This is the code that parses the XML document containing the list
 of recipes in this book, as discussed in Recipe 13.2. The input file has a single
 recipes root element, followed by a sequence of
 recipe elements, each with an id
 and a title with textual content.
The code creates a DOM DocumentBuilderFactory, which can be
 tailored, for example, to make schema-aware parsers. In real code you
 could create this in a static initializer instead of re-creating it each
 time. The DocumentBuilderFactory is used to create
 a Document Builder, a.k.a. parser. The
 parser expects to be reading from an InputStream, so
 we convert the data which we have in string form into an
 array of bytes and construct a ByteArrayInputStream.
 Again, in real life you would probably want to combine this code
 with the web service consumer so that you could simply get the input
 stream from the network connection and read the XML directly into the
 parser, instead of saving it as a string and then wrapping that in a
 converter as we do here.
Once the elements are parsed, we convert the document into an
 array of data (the singular of data is datum, so the class is called
 Datum) by calling the DOM API methods such as getDocumentElement(),
 getChildNodes(), and
 getNodeValue(). Since the DOM API was not invented by
 Java people, it doesn’t use the standard Collections API but has its own
 collections, like NodeList. In DOM’s defense, the same
 or similar APIs are used in a really wide variety of programming
 languages, so it can be said to be as much a standard as Java’s
 Collections.
Example 11-15 shows the code.
Example 11-15. Parsing XML code
 /** Convert the list of Recipes in the String result from the
 * web service into an ArrayList of Datum.
 * @throws ParserConfigurationException
 * @throws IOException
 * @throws SAXException
 */
 public static ArrayList<Datum> parse(String input) throws Exception {

 final ArrayList<Datum> results = new ArrayList<Datum>(1000);
 final DocumentBuilderFactory dbFactory =
 DocumentBuilderFactory.newInstance();
 final DocumentBuilder parser = dbFactory.newDocumentBuilder();

 final Document document =
 parser.parse(new ByteArrayInputStream(input.getBytes()));

 Element root = document.getDocumentElement();
 NodeList recipesList = root.getChildNodes();
 for (int i = 0; i < recipesList.getLength(); i++) {
 Node recipe = recipesList.item(i);
 NodeList fields = recipe.getChildNodes();
 String id = ((Element) fields.item(0)).getNodeValue();
 String title =
 ((Element) fields.item(1)).getNodeValue();
 Datum d = new Datum(Integer.parseInt(id), title);
 results.add(d);
 }
 return results;
 }

In converting this code from Java SE to Android, the only change
 we had to make was to use getNodeValue() in the
 retrieval of id and title instead
 of Java SE’s getTextContent(); so the API really is
 very close.

See Also

The web service is discussed in Recipe 13.2. There is much more in the XML chapter of my Java
 Cookbook.

11.15. Parsing an XML Document Using an XmlPullParser

Johan Pelgrim

Problem

You have data in XML, and you want to transform it into something
 useful in your application.

Solution

Apart from allowing you to process XML using DOM or SAX, the
 Android framework also provides an implementation of the
 XmlPullParser interface provided in the XML Pull v1
 API.

Discussion

The XmlPull v1 API is an easy-to-use XML pull parsing API that was
 designed for simplicity and very good performance both in constrained
 environments such as those defined by Java Micro Edition and on the
 server side when used in J2EE application servers. XML pull parsing
 allows incremental (sometimes called streaming) parsing of XML where the
 application is in control—the parsing can be interrupted at any given
 moment and resumed when the application is ready to consume more
 input.
Parsing XML with the XmlPullParser

The code in Example 11-16 parses the XML
 document containing the list of recipes in this book, as discussed in
 Recipe 13.2 and Recipe 11.14. The input file has a
 single recipes root element, followed by a sequence
 of recipe elements, each with an
 id and a title with textual
 content.
First we get an instance of an
 XmlPullParserFactory by calling its static newInstance()
 method. Basically this scans the classpath for instances of
 XmlPullParserFactory and
 XmlPullParser. If it cannot find any instances,
 this method throws an XmlPullParserException. We get an instance
 of an XmlPullParser by calling the newPullParser() factory method. We then pass the recipe list URL via the setInput(InputStream
 inputStream, String inputEncoding) method. The call to
 setInput resets the parser state
 and sets the event type to the initial value START_DOCUMENT. Also note that
 we don’t need to first retrieve the URL’s content with the converse method, as is done in Recipe 13.2 and Recipe 11.14.
Parsing XML input with an XmlPullParser means
 we are processing parser events. Simple events
 can be of the following type: START_DOCUMENT,
 END_DOCUMENT, START_TAG,
 END_TAG, and TEXT. (You might notice that these closely mimic the SAX
 callback event handler methods.) Once we have passed our URL to the
 setInput() method we are ready to
 process these events.
The first event is of type START_DOCUMENT. We
 process the input until we encounter the
 END_DOCUMENT tag. We advance to the next event by
 calling the next() method. (Note: you can even process more events by
 calling the nextToken() method,
 but that is out of scope here.)
The code simply keeps on advancing to the next event until it
 encounters a START_TAG. In this case we retrieve
 the element’s local name by calling the getName() method. When namespace processing is disabled, the raw
 name is returned. We store the tag name in a local variable currentTag, as a bread crumb. (Note: when a
 start element contains attributes you can extract them via
 the getAttributeValue(String
 namespace, String name) method, again out of scope here.)
 Now we simply fall through the loop and advance to the next
 event.
Once we encounter a TEXT event we check
 whether the currentTag is
 id or title. If this is the case
 we retrieve the text contents by calling the getText() method and assign it to the appropriate local variable.
 We keep on doing this until we encounter a recipe END_TAG event. In
 this case we simply create a new Datum object with the previously created
 id and title variables.
Example 11-16. Using the pull parser
 public static ArrayList<Datum> parse(String url) throws IOException,
 XmlPullParserException {
 final ArrayList<Datum> results = new ArrayList<Datum>(1000);

 XmlPullParserFactory factory = XmlPullParserFactory.newInstance();
 factory.setNamespaceAware(true);
 XmlPullParser xpp = factory.newPullParser();

 URL input = new URL(url);
 xpp.setInput(input.openStream(), null);

 int eventType = xpp.getEventType();
 String currentTag = null;
 Integer id = null;
 String title = null;
 while (eventType != XmlPullParser.END_DOCUMENT) {
 if (eventType == XmlPullParser.START_TAG) {
 currentTag = xpp.getName();
 } else if (eventType == XmlPullParser.TEXT) {
 if ("id".equals(currentTag)) {
 id = Integer.valueOf(xpp.getText());
 }
 if ("title".equals(currentTag)) {
 title = xpp.getText();
 }
 } else if (eventType == XmlPullParser.END_TAG) {
 if ("recipe".equals(xpp.getName())) {
 results.add(new Datum(id, title));
 }
 }
 eventType = xpp.next();
 }
 return results;
 }

Making it stricter

We can rewrite the parse method to make it a bit stricter. In
 this Example 11-17 we use the require() method to
 verify the expected XML structure. Once we are on the id or title START_TAG event we
 call nextText() to retrieve the element’s text content and advance to
 the END_TAG event immediately after.
Example 11-17. Stricter parsing
 public static ArrayList<Datum> parse(String url)
 throws IOException, XmlPullParserException {
 final ArrayList<Datum> results = new ArrayList<Datum>(1000);

 XmlPullParserFactory factory = XmlPullParserFactory.newInstance();
 factory.setNamespaceAware(true);
 XmlPullParser xpp = factory.newPullParser();

 URL input = new URL(url);
 xpp.setInput(input.openStream(), null);

 xpp.nextTag();
 xpp.require(XmlPullParser.START_TAG, null, "recipes");
 while (xpp.nextTag() == XmlPullParser.START_TAG) {
 xpp.require(XmlPullParser.START_TAG, null, "recipe");

 xpp.nextTag();
 xpp.require(XmlPullParser.START_TAG, null, "id");
 Integer id = Integer.valueOf(xpp.nextText());
 xpp.require(XmlPullParser.END_TAG, null, "id");

 xpp.nextTag();
 xpp.require(XmlPullParser.START_TAG, null, "title");
 String title = xpp.nextText();
 xpp.require(XmlPullParser.END_TAG, null, "title");

 xpp.nextTag();
 xpp.require(XmlPullParser.END_TAG, null, "recipe");

 results.add(new Datum(id, title));
 }
 xpp.require(XmlPullParser.END_TAG, null, "recipes");

 return results;
 }

Both methods return the same results. The recipe’s downloadable
 source code uses the retrieved list of Datum
 objects to fill a ListActivity.
 When you click on a list item your are redirected to the corresponding
 recipe’s web page.

Processing static XML resources

You can easily process static XML resources with an
 XmlPullParser. Simply call the getXml() method via your context’s getResources() method and you will receive an instance of XmlResourceParser.
 This basically is an implementation of XmlPullParser with an extra convenience
 method to close the input resource, so you can use the techniques
 described in this recipe to process your static XML resources as
 well!

Conclusion

The XmlPullParser is the parser of choice for
 many developers, basically because of its simplicity. If you want
 speed you should pick SAX. DOM is about twice as slow as SAX. Parsing
 XML with the XmlPullParser is somewhere in the
 middle between SAX and DOM.
Note
Don’t forget to add the
 android.permission.INTERNET permission to your
 AndroidManifest.xml file or you will not be
 able to access any web connections.

See Also

Recipe 13.2; Recipe 11.14; Recipe 4.11; http://developer.android.com/reference/org/xmlpull/v1/XmlPullParser.html;
 http://developer.android.com/reference/org/xmlpull/v1/XmlPullParserFactory.html;
 http://developer.android.com/reference/android/content/res/XmlResourceParser.html

Source Download URL

You can download the source code for this example from https://github.com/downloads/jpelgrim/androidcookbook/RecipeList.zip.
[image: image with no caption]

11.16. Adding a Contact

Ian Darwin

Problem

You have a person’s contact information that you want to save for use by the
 Contacts application and other apps on your device.

Solution

Set up a list of operations for batch insert, and tell the
 persistence manager to run it.

Discussion

The Contacts database is, to be sure, “flexible.” It has to adapt
 to many different kinds of accounts and contact management uses, with
 different types of data. And it is, as a result, somewhat complicated.
Note
In current versions, the classes named Contacts (and, by extension, all their inner
 classes and interfaces) are deprecated, meaning “don’t use them in new
 development.” The classes and interfaces that take their place have
 names beginning with (the somewhat cumbersome and somewhat
 tongue-twisting) ContactsContract.

We’ll start with the simplest case of adding a person’s contact
 information. We want to insert the following information—which we either
 got from the user or found on the network someplace:
	Name	Jon Smith
	Home Phone	416-555-5555
	Work Phone	416-555-6666
	Email	jon@jonsmith.domain

First we have to determine which Android account to associate the
 data with. For now we will use a fake account name
 (darwinian is both an adjective and my name, so
 we’ll use that).
For each of the four fields, we’ll need to create an account
 operation.
We add all five operations to a List, and pass that into getContentResolver().applyBatch().
Example 11-18 shows the code for the
 addContact() method.
Example 11-18. The addContact() method
private void addContact() {
 final String ACCOUNT_NAME = "darwinian"
 String name = "Jon Smith";
 String homePhone = "416-555-5555";
 String workPhone = "416-555-6666";
 String email = "jon@jonsmith.domain";

 // Use new-style batch operations: Build List of ops then call applyBatch
 try {
 ArrayList<ContentProviderOperation> ops =
 new ArrayList<ContentProviderOperation>();
 AuthenticatorDescription[] types = accountManager.getAuthenticatorTypes();
 ops.add(ContentProviderOperation.newInsert(
 ContactsContract.RawContacts.CONTENT_URI).withValue(
 ContactsContract.RawContacts.ACCOUNT_TYPE, types[0].type)
 .withValue(ContactsContract.RawContacts.ACCOUNT_NAME, ACCOUNT_NAME)
 .build());
 ops.add(ContentProviderOperation
 .newInsert(ContactsContract.Data.CONTENT_URI)
 .withValueBackReference(ContactsContract.Data.RAW_CONTACT_ID, 0)
 .withValue(ContactsContract.Data.MIMETYPE,
 ContactsContract.CommonDataKinds.StructuredName.CONTENT_ITEM_TYPE)
 .withValue
 (ContactsContract.CommonDataKinds.StructuredName.DISPLAY_NAME,name)
 .build());
 ops.add(ContentProviderOperation.newInsert(
 ContactsContract.Data.CONTENT_URI).withValueBackReference(
 ContactsContract.Data.RAW_CONTACT_ID, 0).withValue(
 ContactsContract.Data.MIMETYPE,
 ContactsContract.CommonDataKinds.Phone.CONTENT_ITEM_TYPE)
 .withValue(ContactsContract.CommonDataKinds.Phone.NUMBER,
 homePhone).withValue(
 ContactsContract.CommonDataKinds.Phone.TYPE,
 ContactsContract.CommonDataKinds.Phone.TYPE_HOME)
 .build());
 ops.add(ContentProviderOperation.newInsert(
 ContactsContract.Data.CONTENT_URI).withValueBackReference(
 ContactsContract.Data.RAW_CONTACT_ID, 0).withValue(
 ContactsContract.Data.MIMETYPE,
 ContactsContract.CommonDataKinds.Phone.CONTENT_ITEM_TYPE)
 .withValue(ContactsContract.CommonDataKinds.Phone.NUMBER,
 workPhone).withValue(
 ContactsContract.CommonDataKinds.Phone.TYPE,
 ContactsContract.CommonDataKinds.Phone.TYPE_WORK)
 .build());
 ops.add(ContentProviderOperation.newInsert(
 ContactsContract.Data.CONTENT_URI).withValueBackReference(
 ContactsContract.Data.RAW_CONTACT_ID, 0).withValue(
 ContactsContract.Data.MIMETYPE,
 ContactsContract.CommonDataKinds.Email.CONTENT_ITEM_TYPE)
 .withValue(ContactsContract.CommonDataKinds.Email.DATA, email)
 .withValue(ContactsContract.CommonDataKinds.Email.TYPE,
 ContactsContract.CommonDataKinds.Email.TYPE_HOME)
 .build());

 getContentResolver().applyBatch(ContactsContract.AUTHORITY, ops);

 Toast.makeText(this, getString(R.string.addContactSuccess),
 Toast.LENGTH_LONG).show();
 } catch (Exception e) {

 Toast.makeText(this, getString(R.string.addContactFailure),
 Toast.LENGTH_LONG).show();
 Log.e(LOG_TAG, getString(R.string.addContactFailure), e);
 }
}

The resultant contact shows up in the Contact Manager or People
 app, as shown in Figure 11-5. If it is
 not initially visible, go to the main Contacts list page, press Menu,
 select Display Options, and select groups until it does appear.
 Alternatively, you can Search in All Contacts and it will show up.
[image: Contact added]

Figure 11-5. Contact added

11.17. Reading Contact Data

Ian Darwin

Problem

You need to extract details, such as a phone number or email address,
 from the Contacts database.

Solution

Use an intent to let the user pick one contact. Use a ContentResolver to create an SQLite
 query for the chosen contact. Use SQLite and predefined constants in the
 confusingly named ContactContract class to retrieve
 the parts you want. Be aware that the Contacts database was designed for
 generality, not for simplicity.

Discussion

The code in Example 11-18 is from TabbyText, my SMS Text Message sender for tablets. The
 user has already picked the given contact (using the Contact app; see
 Recipe 5.2). In this code we
 want to extract the mobile number and save it in a text field in the
 current activity, so the user can post-edit it if need be, or even
 reject it, before actually sending the SMS, so we just set the text in
 an EditText once we find it.
Finding it turns out to be the hard part. We start with a query
 that we get from the content provider, to extract the ID field for the
 given contact. Information such as phone numbers and emails are in their
 own tables, so we need a second query, to feed in the ID as part of the
 “select” part of the query. This query gives a list of the contact’s
 phone numbers. We iterate through this, taking each valid phone number
 and setting it on the EditText.
A further elaboration would restrict this to only selecting the
 mobile number (Contacts allows both home fax and work fax, but only one mobile
 number, at least as of Honeycomb
 3.2).
Example 11-19. Getting the contact from the intent query’s
 ContentResolver
 @Override
 protected void onActivityResult(int requestCode, int resultCode, Intent data) {
 if (requestCode == REQ_GET_CONTACT) {
 switch(resultCode) {
 case Activity.RESULT_OK:
 // The Contacts API is about the most complex to use.
 // First we have to retrieve the Contact, since
 // we only get its URI from the Intent
 Uri resultUri = data.getData(); // e.g., content://contacts/people/123
 Cursor cont =
 getContentResolver().query(resultUri, null, null, null, null);
 if (!cont.moveToNext()) { // expect 001 row(s)
 Toast.makeText(this,
 "Cursor contains no data", Toast.LENGTH_LONG).show();
 return;
 }
 int columnIndexForId = cont.getColumnIndex(ContactsContract.Contacts._ID);
 String contactId =
 cont.getString(columnIndexForId);
 int columnIndexForHasPhone =
 cont.getColumnIndex(ContactsContract.Contacts.HAS_PHONE_NUMBER);
 boolean hasAnyPhone =
 Boolean.parseBoolean(cont.getString(columnIndexForHasPhone));
 if (!hasAnyPhone) {
 Toast.makeText(this,
 "Selected contact seems to have no phone numbers ",
 Toast.LENGTH_LONG).show();
 }

 // Now we have to do another query to actually get the numbers!
 Cursor numbers = getContentResolver().query(
 ContactsContract.CommonDataKinds.Phone.CONTENT_URI,
 null,
 ContactsContract.CommonDataKinds.Phone.CONTACT_ID +
 "=" + contactId, // "selection",
 null, null);
 // Could further restrict to Mobile number...
 while (numbers.moveToNext()) {
 String aNumber = numbers.getString(numbers.getColumnIndex(
 ContactsContract.CommonDataKinds.Phone.NUMBER));
 System.out.println(aNumber);
 number.setText(aNumber);
 }
 if (cont.moveToNext()) {
 System.out.println("WARNING: More than 1 contact returned by picker!");
 }
 numbers.close();
 cont.close();
 break;
 case Activity.RESULT_CANCELED:
 // nothing to do here
 break;
 default:
 Toast.makeText(this, "Unexpected resultCode: " + resultCode,
 Toast.LENGTH_LONG).show();
 break;
 }
 }
 super.onActivityResult(requestCode, resultCode, data);
 }

Source Download URL

You can download the source code for this example from http://projects.darwinsys.com/TabbyText-src.zip.
[image: image with no caption]

Chapter 12. Telephone Applications

12.1. Introduction: Telephone Applications

Ian Darwin

Discussion

Android began as a platform for cellular telephone handsets, so it is no
 surprise that Android apps are very capable of dealing with the phone.
 You can write apps that dial the phone, or that guide the user to do so.
 You can write apps that verify or modify the number the user is calling
 (e.g., to add a long-distance dialing prefix). You can also send and
 receive SMS (Short Message Service) messages, a.k.a. text messages, assuming your device is
 telephony-equipped. Nowadays, a great many Android tablets are
 WiFi-only, and do not have 3G or even 2G telephone/SMS capabilities. For
 these devices, other capabilities such as SMS via the Internet and VoIP
 (Voice over IP, usually SIP) have to be used.
This chapter covers most of these topics; a few are discussed
 elsewhere in this book.

12.2. Doing Something When the Phone Rings

Johan Pelgrim

Problem

You want to act on an incoming phone call and do something with the incoming
 number.

Solution

You can implement a broadcast receiver and then listen for
 a
 TelephonyManager.ACTION_PHONE_STATE_CHANGED action.

Discussion

If you want to do something when the phone rings you have to
 implement a broadcast receiver, which listens for
 the TelephonyManager.ACTION_PHONE_STATE_CHANGED
 intent action. This is a broadcast intent action indicating that the
 call state (cellular) on the device has changed. Example 12-1 shows the code for
 the incoming call interceptor, and Example 12-2 shows
 the incoming call interceptor’s layout file.
Example 12-1. The incoming call interceptor
package nl.codestone.cookbook.incomingcallinterceptor;

import android.content.BroadcastReceiver;
import android.content.Context;
import android.content.Intent;
import android.telephony.TelephonyManager;
import android.widget.Toast;

public class IncomingCallInterceptor extends BroadcastReceiver { [image: 1]

 @Override
 public void onReceive(Context context, Intent intent) { [image: 2]
 String state = intent.getStringExtra(TelephonyManager.EXTRA_STATE);[image: 3]
 String msg = "Phone state changed to " + state;

 if (TelephonyManager.EXTRA_STATE_RINGING.equals(state)) { [image: 4]
 String incomingNumber = intent.getStringExtra
 (TelephonyManager.EXTRA_INCOMING_NUMBER);[image: 5]
 msg += ". Incoming number is " + incomingNumber;

 // This is where you have to "Do something when the phone rings" ;-)

 }

 Toast.makeText(context, msg, Toast.LENGTH_LONG).show();

 }

}

	[image: 1]
	Create an IncomingCallInterceptor class that extends
 BroadcastReceiver.

	[image: 2]
	Override the onReceive
 method to handle incoming broadcast messages.

	[image: 3]
	The EXTRA_STATE intent
 extra in this case indicates the new call
 state.

	[image: 4]
	If (and only if) the new state is RINGING, a second intent extra, EXTRA_INCOMING_NUMBER, provides the
 incoming phone number as a string.

	[image: 5]
	We extract the number information from the EXTRA_INCOMING_NUMBER intent extra.

Note
Additionally, you can act on a state change to OFFHOOK or IDLE when the user picks up the phone or
 ends/rejects the phone call, respectively.

Example 12-2. The incoming call interceptor’s layout file
<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="nl.codestone.cookbook.incomingcallinterceptor"
 android:versionCode="1"
 android:versionName="1.0">
 <uses-sdk android:minSdkVersion="3" />

 <application android:icon="@drawable/icon" android:label="Incoming Call Interceptor">

 <receiver android:name="IncomingCallInterceptor"> [image: 1]
 <intent-filter> [image: 2]
 <action android:name="android.intent.action.PHONE_STATE"/>[image: 3]
 </intent-filter>
 </receiver>

 </application>

 <uses-permission android:name="android.permission.READ_PHONE_STATE"/> [image: 4]

</manifest>

	[image: 1]
	We have to register our IncomingCallInterceptor as a <receiver> within the <application> element in the
 AndroidManifest.xml file.

	[image: 2]
	We register an <intent-filter> ...

	[image: 3]
	And an <action value
 that registers our receiver to listen for TelephonyManager.ACTION_PHONE_STATE_CHANGED
 broadcast messages.

	[image: 4]
	Finally, we have to register a <uses-permission> so that we are
 allowed to listen to phone state changes.

If all is well, you should see something like Figure 12-1 when the phone
 rings.
[image: Incoming call intercepted]

Figure 12-1. Incoming call intercepted

What happens if two receivers listen for phone state
 changes?

In general, a broadcast message is just
 that, a message that is sent out to many receivers at the same time.
 This is the case for a normal broadcast, which is
 used to send out the ACTION_PHONE_STATE_CHANGED
 intent as well. All receivers of the broadcast are run in an undefined
 order, often at the same time, and for that reason
 order is not applicable.
In other cases the system sends out an ordered
 broadcast, which is described in more detail in Recipe 12.3.

Final notes

When your BroadcastReceiver does not finish
 within 10 seconds the Android framework will show the infamous
 Application Not Responding (ANR) dialog, giving your
 users the ability to kill your program. If you need to do some
 processing that takes longer than 10 seconds, implement a
 Service and call the service method.
It is also not advisable to start an activity from a
 BroadcastReceiver, as it will spawn a new screen
 that will steal focus from whatever application the user is currently
 running. If your application has something to show the user in
 response to an intent broadcast, it should do so using the
 Notification Manager.

See Also

Recipe 12.3; http://developer.android.com/reference/android/content/BroadcastReceiver.html;
 http://developer.android.com/reference/android/telephony/TelephonyManager.html#ACTION_PHONE_STATE_CHANGED

Source Download URL

You can download the source code for this example from https://github.com/downloads/jpelgrim/androidcookbook/IncomingCallInterceptor.zip.
[image: image with no caption]

12.3. Processing Outgoing Phone Calls

Johan Pelgrim

Problem

You want to block certain calls, or alter the phone number about to be
 called.

Solution

Listen for the Intent.ACTION_NEW_OUTGOING_CALL
 broadcast action and set the result data of the broadcast receiver to
 the new number.

Discussion

If you want to intercept a call before it is about to be placed
 you can implement a broadcast receiver and listen for the Intent.ACTION_NEW_OUTGOING_CALL action. This
 recipe is, in essence, similar to Recipe 12.2, but it is more interesting since we can
 actually manipulate the phone number in this case!
Here are the steps. Example 12-3
 shows the code.
	[image: 1]
	Create an OutgoingCallInterceptor class that extends
 the BroadcastReceiver.

	[image: 2]
	Override the onReceive
 method.

	[image: 3]
	Extract the phone number that the user originally intended to
 call via the Intent.EXTRA_PHONE_NUMBER intent
 extra.

	[image: 4]
	Replace this number by calling setResultData with the new number as the String
 argument.

Once the broadcast is finished, the result data is used as the
 actual number to call. If the result data is null, no call will be placed at all!
Example 12-3. The outgoing call interceptor (a BroadcastReceiver)
package nl.codestone.cookbook.outgoingcallinterceptor;

import android.content.BroadcastReceiver;
import android.content.Context;
import android.content.Intent;
import android.widget.Toast;

public class OutgoingCallInterceptor extends BroadcastReceiver { [image: 1]

 @Override
 public void onReceive(Context context, Intent intent) { [image: 2]
 final String oldNumber = intent.getStringExtra(Intent.EXTRA_PHONE_NUMBER); [image: 3]
 this.setResultData("0123456789"); [image: 4]
 final String newNumber = this.getResultData();
 String msg = "Intercepted outgoing call. Old number " +
 oldNumber + ", new number " + newNumber;
 Toast.makeText(context, msg, Toast.LENGTH_LONG).show();
 }

}

Example 12-4
 shows the code in the outgoing call interceptor’s AndroidManifest.xml
 file.
	[image: 1]
	We have to register our OutgoingCallInterceptor as a <receiver> within the <application> element in the
 AndroidManifest.xml file.

	[image: 2]
	We add an <intent-filter> element within this
 <receiver> declaration and
 add an android:priority of
 1.

	[image: 3]
	We add an <action>
 element within the <intent-filter> to only receive
 Intent.ACTION_NEW_OUTGOING_CALL
 intent actions.

	[image: 4]
	We have to hold the PROCESS_OUTGOING_CALLS permission to receive this intent, so we register a
 <uses-permission> to
 PROCESS_OUTGOING_CALLS right
 below the <application>
 element.

Example 12-4. The outgoing call interceptor’s AndroidManifest.xml
 file
<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="nl.codestone.cookbook.outgoingcallinterceptor"
 android:versionCode="1" android:versionName="1.0">
 <uses-sdk android:minSdkVersion="3" />

 <application android:icon="@drawable/icon" android:label="Outgoing Call Interceptor">

 <receiver android:name="OutgoingCallInterceptor"> [image: 1]
 <intent-filter android:priority="1"> [image: 2]
 <action android:name="android.intent.action.NEW_OUTGOING_CALL" /> [image: 3]
 </intent-filter>
 </receiver>

 </application>

 <uses-permission android:name="android.permission.PROCESS_OUTGOING_CALLS" /> [image: 4]

</manifest>

Now, when you try to dial the number 11111 you will actually be
 forwarded to 0123456789 instead! (See Figure 12-2.)
[image: Outgoing call intercepted]

Figure 12-2. Outgoing call intercepted

What happens if two receivers process outgoing calls?

As was stated before, the Intent.ACTION_NEW_OUTGOING_CALL is an
 ordered broadcast and is a protected intent that
 can only be sent by the system. Ordered broadcast
 messages come with three additional features compared to
 normal broadcast messages:
	You can use the <intent-filter> element’s android:priority attribute to influence your position in the sending
 mechanism. The android:priority
 is an integer indicating which parent (receiver) has higher
 priority in processing the incoming broadcast message. The higher
 the number, the higher the priority and the sooner that receiver
 can process the broadcast message.

	You can propagate a result to the next
 receiver by calling the setResultData method.

	You can completely abort the broadcast by calling the abortBroadcast() method so that it won’t
 be passed to other receivers.

Note that according to the API, any
 BroadcastReceiver receiving the Intent.ACTION_NEW_OUTGOING_CALL must
 not abort the broadcast by calling the abortBroadcast() method. Doing so does not
 present any errors, but apparently some system receivers still want to
 have a go at the broadcast message. Emergency calls
 cannot be intercepted using this mechanism, and
 other calls cannot be modified to call emergency numbers using this
 mechanism.
It is perfectly acceptable for multiple receivers to process the
 outgoing call in turn: for example, a parental control application
 might verify that the user is authorized to place the call at that
 time, and then a number-rewriting application might add an area code
 if one was not specified.
If two receivers are defined with an equal android:priority attribute they will be run
 in an arbitrary order (according to the API). However, in practice,
 when they both reside in the same
 AndroidManifest.xml file, it
 looks like the order in which the receivers are
 defined determines the order in which they will receive the broadcast
 message.
Furthermore, if two receivers are defined with an equal android:priority attribute but they are
 defined in a different AndroidManifest.xml file
 (i.e., they belong to a different application) it
 looks like the broadcast receiver, which was
 installed first, is
 registered first and thus will be the one that is
 allowed to process the message first. But again, don’t count on
 it!
If you want to have a shot at being the very first to process a
 message, you can use the maximum integer value (2147483647). Even
 though the API this still does not guarantee you will be first, you
 will have a pretty good chance!
Other applications could have intercepted the phone number
 before us. If you are pretty sure you want to take action on the
 original number, you can use the EXTRA_PHONE_NUMBER intent extra as described
 earlier and completely ignore the result from the receiver before you.
 If you simply want to fall in line and pick up where another broadcast
 receiver has left off, you can retrieve the intermediary phone number
 via the getResultData()
 method.
For consistency, any receiver whose purpose is to prohibit phone
 calls should have a priority of 0,
 to ensure that it will see the final phone number to be dialed. Any
 receiver whose purpose is to rewrite phone numbers to be called should
 have a positive priority. Negative priorities are
 reserved for the system for this broadcast; using them may cause
 problems.

See Also

Recipe 12.2; http://developer.android.com/reference/android/content/Intent.html#ACTION_NEW_OUTGOING_CALL

Source Download URL

You can download the source code for this example from https://github.com/downloads/jpelgrim/androidcookbook/OutgoingCallInterceptor.zip.
[image: image with no caption]

12.4. Dialing the Phone

Ian Darwin

Problem

You want to dial the phone from within an application, without worrying about
 details of telephony.

Solution

Start an Intent to dial the phone.

Discussion

One of the beauties of Android is the ease with which applications
 can reuse other applications, without being tightly coupled to the
 details (or even name) of the other program, using the
 Intent mechanism. For example, to dial the phone, you
 only need to create and start an Intent with an
 action of DIAL and a URI of “tel” +
 the number you want to dial. Thus, a basic dialer can be as simple as
 Example 12-5:
Example 12-5. Simple dialer activity
public class Main extends Activity {
 String phoneNumber = "555-1212";
 String intentStr = "tel:" + phoneNumber;

 /** Standard creational callback.
 * Just dial the phone
 */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 Intent intent = new Intent("android.intent.action.DIAL",
 Uri.parse(intentStr));

 startActivity(intent);
 }
}

You need to have the permission android.permission.CALL_PHONE to use this code. The user will see the screen shown in Figure 12-3; users know to press the green phone
 button to let the call proceed.
[image: Simple dialer]

Figure 12-3. Simple dialer

Typically, in real life you would not hardcode the number. In
 other circumstances you might want the user to call a number from the
 phone’s Contacts list.

12.5. Sending Single-Part or Multipart SMS Messages

Colin Wilcox

Problem

You want a simple way to send either a single-part or a multipart
 SMS/text message from a single entry point.

Solution

Use SmsManager.

Discussion

SMS (Short Message Service) messages, also called text messages,
 have been part of cellular technology for years. The Android API allows
 you to send an SMS message either by an Intent or in code; we’re only
 covering the code approach here.
SMS messages are limited to about 160 characters, depending on the
 carrier (in case you ever wondered where Twitter got the idea for
 140-character messages). Text messages above this size must be broken
 into chunks. To give you control over this, the SmsManager class allows you to
 break a message into “parts”, and returns a list of them.
If there is only one part, the message is short enough to send
 directly, so we use the sendTextMessage() method. Otherwise, we have to send the list of parts, so
 we pass the list back into the
 sentMultipartTextMessage() method. The actual sending code is shown in Example 12-6. The downloadable code features
 a trivial Activity to invoke the sending code.
 Although sent as three parts, the message arrives at the sender as a
 single message, as shown in Figure 12-4.
[image: The multipart message arrived]

Figure 12-4. The multipart message arrived

As you might expect, the application needs the android.permission.SEND_SMS
 permission in its AndroidManifest.xml file.
Example 12-6. The SMS sender
package com.example.sendsms;
import java.util.ArrayList;

import android.telephony.SmsManager;
import android.util.Log;

/** The code for dealing with the SMS manager;
 * called from the GUI code.
 */
public class SendSMS {
 static String TAG = "SendSMS";
 SmsManager mSMSManager = null;
 /* The list of message parts our message
 * gets broken up into by SmsManager */
 ArrayList<String> mFragmentList = null;
 /* Service Center - not used */
 String mServiceCentreAddr = null;

 SendSMS() {
 mSMSManager = SmsManager.getDefault();
 }

 /* Called from the GUI to send one message to one destination */
 public boolean sendSMSMessage(
 String aDestinationAddress,
 String aMessageText) {

 if (mSMSManager == null) {
 return (false);
 }

 mFragmentList = mSMSManager.divideMessage(aMessageText);
 int fragmentCount = mFragmentList.size();
 if (fragmentCount > 1) {
 Log.d(TAG, "Sending " + fragmentCount + " parts");
 mSMSManager.sendMultipartTextMessage(aDestinationAddress,
 mServiceCentreAddr,
 mFragmentList, null, null);
 } else {
 Log.d(TAG, "Sending one part");
 mSMSManager.sendTextMessage(aDestinationAddress,
 mServiceCentreAddr,
 aMessageText, null, null);
 }

 return true;
 }
}

See Also

For information on the SmsManager, see http://developer.android.com/reference/android/telephony/SmsManager.html.
 For information about how the division of longer messages into parts
 works “under the hood,” see http://en.wikipedia.org/wiki/Concatenated_SMS.

Source Download URL

The source code for this example
 is in the Android Cookbook repository at http://github.com/AndroidCook/Android-Cookbook-Examples,
 in the subdirectory SendSMS (see Getting and Using the Code Examples).

12.6. Receiving an SMS Message in an Android Application

Rachee Singh

Problem

You wish to enable your application to receive incoming SMS
 messages.

Solution

Use a broadcast receiver to listen for incoming SMS messages and
 then extract the messages.

Discussion

When an Android device receives a message, a broadcast intent is
 fired (the intent also includes the SMS message that is sent). The
 application can register to receive these intents. The intent has an
 action, android.provider.Telephony.SMS_RECEIVED. The
 application designed to receive SMS messages should include the RECEIVE_SMS permission in the
 manifest:
<uses-permission android:name="android.permission.RECEIVE_SMS"/>
When a message is received, the onReceive()
 method (overridden) is called. Within this method, the
 message can be processed. From the intent that is received, the SMS
 message has to be extracted using the get() method.
 The BroadcastReceiver with the code for extracting
 the message part looks like Example 12-7.
Example 12-7. The SMS BroadcastReceiver
public class InvitationSmsReceiver extends BroadcastReceiver {

 public void onReceive(Context context, Intent intent) {

 Bundle bundle = intent.getExtras();
 SmsMessage[] msgs = null;
 String message = "";
 if(bundle != null) {
 Object[] pdus = (Object[]) bundle.get("pdus");
 msgs = new SmsMessage[pdus.length];

 for(int i=0; i<msgs.length;i++) {
 msgs[i] = SmsMessage.createFromPdu((byte[]) pdus[i]);
 message = msgs[i].getMessageBody();
 Toast.makeText(context,message,Toast.LENGTH_SHORT).show();
 }

 }

 }

}

The code makes a toast with the contents of the SMS message
 sent.
To register the InvitationSmsReceiver class for
 receiving the SMS messages, add the following code in the
 manifest:
<receiver android:name=".InvitationSmsReceiver"
 android:enabled="true">
 <intent-filter>
 <action android:name="android.provider.Telephony.SMS_RECEIVED"/>
 <category android:name="android.intent.category.DEFAULT"/>
 </intent-filter>
</receiver>

Source Download URL

You can download the source code for this example from https://docs.google.com/leaf?id=0B_rESQKgad5LMjk0YjJiZTgtZGI5ZC00Mjk3LTk2MGUtMjhkOGYzNmFmYWMz&hl=en_US&authkey=CMWZvskL.
[image: image with no caption]

12.7. Using Emulator Controls to Send SMS Messages to the
 Emulator

Rachee Singh

Problem

To interactively test an SMS-message-based application before loading it
 onto a device, you need to be able to send an SMS message to the
 emulator.

Solution

Emulator control in the DDMS perspective of Eclipse allows the functionality of
 sending SMS messages to the emulator.

Discussion

To test whether your application responds to incoming SMS
 messages, you need to send an SMS message to the emulator. The DDMS
 perspective of Eclipse provides this function. You may wish to maximize
 the Emulator Control window as otherwise the important parts of it may
 be hidden and need both vertical and horizontal scrolling to access. In
 the Emulator Control tab, go to Telephony Actions and provide a phone
 number. This number can be any random number to which you would want the
 message to appear to come from. Select the SMS radio button. In the
 Message box, type in the message you wish to send. Finally, press the
 Send button below the message text. See Figure 12-5.
[image: Emulator control sending SMS message]

Figure 12-5. Emulator control sending SMS message

12.8. Using Android’s TelephonyManager to Obtain Device
 Information

Pratik Rupwal

Problem

You want to obtain network-related and telephony information on the
 device.

Solution

Use Android’s standard TelephonyManager to
 obtain different statistics regarding network status and
 telephony information.

Discussion

Android’s TelephonyManager provides information
 about the Android telephony system. It assists in collecting different
 information such as cell location, International Mobile Equipment
 Identity (IMEI) number, network provider, and more.
The program in Example 12-8 is a long one that
 covers most of the facilities provided by the Android
 TelephonyManager. It is unlikely you would need all
 of these in one real application, but they are consolidated here for a
 comprehensive example program.
Example 12-8. The phone state sample activity
...
import android.telephony.CellLocation;
import android.telephony.NeighboringCellInfo;
import android.telephony.PhoneStateListener;
import android.telephony.ServiceState;
import android.telephony.TelephonyManager;
import android.telephony.gsm.GsmCellLocation;

public class PhoneStateSample extends Activity {

 private static final String APP_NAME = "SignalLevelSample";
 private static final int EXCELLENT_LEVEL = 75;
 private static final int GOOD_LEVEL = 50;
 private static final int MODERATE_LEVEL = 25;
 private static final int WEAK_LEVEL = 0;

 // These are used to store Strings into an array for display.
 private static final int INFO_SERVICE_STATE_INDEX = 0;
 private static final int INFO_CELL_LOCATION_INDEX = 1;
 private static final int INFO_CALL_STATE_INDEX = 2;
 private static final int INFO_CONNECTION_STATE_INDEX = 3;
 private static final int INFO_SIGNAL_LEVEL_INDEX = 4;
 private static final int INFO_SIGNAL_LEVEL_INFO_INDEX = 5;
 private static final int INFO_DATA_DIRECTION_INDEX = 6;
 private static final int INFO_DEVICE_INFO_INDEX = 7;

 // These are the IDs of the displays; must keep in sync with above constants
 private static final int[] info_ids= {
 R.id.serviceState_info,
 R.id.cellLocation_info,
 R.id.callState_info,
 R.id.connectionState_info,
 R.id.signalLevel,
 R.id.signalLevelInfo,
 R.id.dataDirection,
 R.id.device_info
 };

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 startSignalLevelListener();
 displayTelephonyInfo();
 }

 @Override
 protected void onPause()
 {
 super.onPause();
 stopListening();
 }

 @Override
 protected void onResume()
 {
 super.onResume();
 startSignalLevelListener();
 }

 @Override
 protected void onDestroy()
 {
 stopListening();
 super.onDestroy();
 }

 private void setTextViewText(int id,String text) {
 ((TextView)findViewById(id)).setText(text);
 }
 private void setSignalLevel(int id,int infoid,int level){
 int progress = (int) ((((float)level)/31.0) * 100);
 String signalLevelString =getSignalLevelString(progress);
 ((ProgressBar)findViewById(id)).setProgress(progress);
 ((TextView)findViewById(infoid)).setText(signalLevelString);
 Log.i("signalLevel ","" + progress);
 }

 private String getSignalLevelString(int level) {
 String signalLevelString = "Weak";
 if(level > EXCELLENT_LEVEL) signalLevelString = "Excellent";
 else if(level > GOOD_LEVEL) signalLevelString = "Good";
 else if(level > MODERATE_LEVEL) signalLevelString = "Moderate";
 else if(level > WEAK_LEVEL) signalLevelString= "Weak";
 return signalLevelString;
 }

 private void stopListening(){
 TelephonyManager tm =
 (TelephonyManager) getSystemService(TELEPHONY_SERVICE);
 tm.listen(phoneStateListener, PhoneStateListener.LISTEN_NONE);
 }

 private void setDataDirection(int id, int direction){
 int resid = getDataDirectionRes(direction);
 ((ImageView)findViewById(id)).setImageResource(resid);
 }
 private int getDataDirectionRes(int direction){
 int resid = R.drawable.data_none;

 switch(direction)
 {
 case TelephonyManager.DATA_ACTIVITY_IN:
 resid = R.drawable.data_in; break;
 case TelephonyManager.DATA_ACTIVITY_OUT:
 resid = R.drawable.data_out; break;
 case TelephonyManager.DATA_ACTIVITY_INOUT:
 resid = R.drawable.data_both; break;
 case TelephonyManager.DATA_ACTIVITY_NONE:
 resid = R.drawable.data_none; break;
 default: resid = R.drawable.data_none; break;
 }
 return resid;
 }
 private void startSignalLevelListener() {
 TelephonyManager tm =
 (TelephonyManager) getSystemService(TELEPHONY_SERVICE);
 int events = PhoneStateListener.LISTEN_SIGNAL_STRENGTH |
 PhoneStateListener.LISTEN_DATA_ACTIVITY |
 PhoneStateListener.LISTEN_CELL_LOCATION|
 PhoneStateListener.LISTEN_CALL_STATE |
 PhoneStateListener.LISTEN_CALL_FORWARDING_INDICATOR |
 PhoneStateListener.LISTEN_DATA_CONNECTION_STATE |
 PhoneStateListener.LISTEN_MESSAGE_WAITING_INDICATOR |
 PhoneStateListener.LISTEN_SERVICE_STATE;
 tm.listen(phoneStateListener, events);
 }
 ...

Much of the information gathering in this program is done by the
 various listeners. One exception is the method
 displayTelephonyInfo(), shown in Example 12-9, which simply
 gathers a large number of information bits directly from the
 TelephonyManager and adds them to a long string,
 which is displayed in the TextView.
Example 12-9. The phone state activity (continued)
 ...

 private void displayTelephonyInfo(){
 TelephonyManager tm = (TelephonyManager)getSystemService(TELEPHONY_SERVICE);
 GsmCellLocation loc = (GsmCellLocation)tm.getCellLocation();
 int cellid = loc.getCid();
 int lac = loc.getLac();
 String deviceid = tm.getDeviceId();
 String phonenumber = tm.getLine1Number();
 String softwareversion = tm.getDeviceSoftwareVersion();
 String operatorname = tm.getNetworkOperatorName();
 String simcountrycode = tm.getSimCountryIso();
 String simoperator = tm.getSimOperatorName();
 String simserialno = tm.getSimSerialNumber();
 String subscriberid = tm.getSubscriberId();
 String networktype = getNetworkTypeString(tm.getNetworkType());
 String phonetype = getPhoneTypeString(tm.getPhoneType());
 logString("CellID: " + cellid);
 logString("LAC: " + lac);
 logString("Device ID: " + deviceid);
 logString("Phone Number: " + phonenumber);
 logString("Software Version: " + softwareversion);
 logString("Operator Name: " + operatorname);
 logString("SIM Country Code: " + simcountrycode);
 logString("SIM Operator: " + simoperator);
 logString("SIM Serial No.: " + simserialno);
 logString("Sibscriber ID: " + subscriberid);
 String deviceinfo = "";
 deviceinfo += ("CellID: " + cellid + "\n");
 deviceinfo += ("LAC: " + lac + "\n");
 deviceinfo += ("Device ID: " + deviceid + "\n");
 deviceinfo += ("Phone Number: " + phonenumber + "\n");
 deviceinfo += ("Software Version: " + softwareversion + "\n");
 deviceinfo += ("Operator Name: " + operatorname + "\n");
 deviceinfo += ("SIM Country Code: " + simcountrycode + "\n");
 deviceinfo += ("SIM Operator: " + simoperator + "\n");
 deviceinfo += ("SIM Serial No.: " + simserialno + "\n");
 deviceinfo += ("Subscriber ID: " + subscriberid + "\n");
 deviceinfo += ("Network Type: " + networktype + "\n");
 deviceinfo += ("Phone Type: " + phonetype + "\n");
 List<NeighboringCellInfo> cellinfo =tm.getNeighboringCellInfo();
 if(null != cellinfo){
 for(NeighboringCellInfo info: cellinfo){
 deviceinfo += ("\tCellID: " +
 info.getCid() +", RSSI: " + info.getRssi() + "\n");
 }
 }
 setTextViewText(info_ids[INFO_DEVICE_INFO_INDEX],deviceinfo);
 }

 private String getNetworkTypeString(int type) {
 String typeString = "Unknown";
 switch(type)
 {
 case TelephonyManager.NETWORK_TYPE_EDGE:
 typeString = "EDGE"; break;
 case TelephonyManager.NETWORK_TYPE_GPRS:
 typeString = "GPRS"; break;
 case TelephonyManager.NETWORK_TYPE_UMTS:
 typeString = "UMTS"; break;
 default:
 typeString = "UNKNOWN"; break;
 }
 return typeString;
 }

 private String getPhoneTypeString(int type){
 String typeString = "Unknown";
 switch(type)
 {
 case TelephonyManager.PHONE_TYPE_GSM:
 typeString = GSM"; break;
 case TelephonyManager.PHONE_TYPE_NONE:
 typeString = UNKNOWN"; break;
 default:typeString = "UNKNOWN"; break;
 }
 return typeString;
 }

 private int logString(String message) {
 return Log.i(APP_NAME,message);
 }

 private final PhoneStateListener phoneStateListener = new PhoneStateListener(){

 @Override
 public void onCallForwardingIndicatorChanged(boolean cfi)
 {
 Log.i(APP_NAME, "onCallForwardingIndicatorChanged " +cfi);
 super.onCallForwardingIndicatorChanged(cfi);
 }

 @Override
 public void onCallStateChanged(int state, String incomingNumber)
 {
 String callState = "UNKNOWN";
 switch(state)
 {
 case TelephonyManager.CALL_STATE_IDLE:
 callState = "IDLE"; break;
 case TelephonyManager.CALL_STATE_RINGING:
 callState = "Ringing (" + incomingNumber + ")"; break;
 case TelephonyManager.CALL_STATE_OFFHOOK:
 callState = "Offhook"; break;
 }
 setTextViewText(info_ids[INFO_CALL_STATE_INDEX],callState);
 Log.i(APP_NAME, "onCallStateChanged " + callState);
 super.onCallStateChanged(state, incomingNumber);
 }
 @Override
 public void onCellLocationChanged(CellLocation location)
 {
 String locationString = location.toString();
 setTextViewText(
 info_ids[INFO_CELL_LOCATION_INDEX],locationString);

 Log.i(APP_NAME, "onCellLocationChanged " + locationString);
 super.onCellLocationChanged(location);
 }

 @Override
 public void onDataActivity(int direction)
 {
 String directionString = "none";
 switch (direction) {
 case TelephonyManager.DATA_ACTIVITY_IN:
 directionString = "IN"; break;
 case TelephonyManager.DATA_ACTIVITY_OUT:
 directionString = "OUT"; break;
 case TelephonyManager.DATA_ACTIVITY_INOUT:
 directionString = "INOUT"; break;
 case TelephonyManager.DATA_ACTIVITY_NONE:
 directionString = "NONE"; break;
 default: directionString = "UNKNOWN: " + direction; break;
 }
 setDataDirection(info_ids[INFO_DATA_DIRECTION_INDEX],direction);
 Log.i(APP_NAME, "onDataActivity " + directionString);
 super.onDataActivity(direction);
 }

 @Override
 public void onDataConnectionStateChanged(int state)
 {
 String connectionState = "Unknown";
 switch(state) {
 case TelephonyManager.DATA_CONNECTED:
 connectionState = "Connected"; break;
 case TelephonyManager.DATA_CONNECTING:
 connectionState = "Connecting"; break;
 case TelephonyManager.DATA_DISCONNECTED:
 connectionState = "Disconnected"; break;
 case TelephonyManager.DATA_SUSPENDED:
 connectionState = "Suspended"; break;
 default:
 connectionState = "Unknown: " + state; break;
 }

 setTextViewText(
 info_ids[INFO_CONNECTION_STATE_INDEX], connectionState);

 Log.i(APP_NAME,
 "onDataConnectionStateChanged " + connectionState);

 super.onDataConnectionStateChanged(state);
 }

 @Override
 public void onMessageWaitingIndicatorChanged(boolean mwi) {
 Log.i(APP_NAME, "onMessageWaitingIndicatorChanged " + mwi);
 super.onMessageWaitingIndicatorChanged(mwi);
 }

 @Override
 public void onServiceStateChanged(ServiceState serviceState) {
 String serviceStateString = "UNKNOWN";
 switch(serviceState.getState()) {
 case ServiceState.STATE_IN_SERVICE:
 serviceStateString = "IN SERVICE"; break;
 case ServiceState.STATE_EMERGENCY_ONLY:
 serviceStateString = "EMERGENCY ONLY"; break;
 case ServiceState.STATE_OUT_OF_SERVICE:
 serviceStateString = "OUT OF SERVICE"; break;
 case ServiceState.STATE_POWER_OFF:
 serviceStateString = "POWER OFF"; break;
 default:
 serviceStateString = "UNKNOWN"; break;
 }

 setTextViewText(
 info_ids[INFO_SERVICE_STATE_INDEX], serviceStateString);

 Log.i(APP_NAME, "onServiceStateChanged " + serviceStateString);

 super.onServiceStateChanged(serviceState);
 }

 @Override
 public void onSignalStrengthChanged(int asu)
 {
 Log.i(APP_NAME, "onSignalStrengthChanged " + asu);
 setSignalLevel(info_ids[INFO_SIGNAL_LEVEL_INDEX],
 info_ids[INFO_SIGNAL_LEVEL_INFO_INDEX],asu);
 super.onSignalStrengthChanged(asu);
 }
 };
}

The main.xml layout shown next consists of a
 variety of nested linear layouts so that all the information gathered in
 the preceding code can be displayed neatly.
<?xml version="1.0" encoding="utf-8"?>
<ScrollView xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:orientation="vertical"
 android:scrollbarStyle="insideOverlay"
 android:scrollbarAlwaysDrawVerticalTrack="false">
 <LinearLayout
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <LinearLayout
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:orientation="horizontal">
 <TextView android:text="Service State"
style="@style/labelStyleRight"/>
 <TextView android:id="@+id/serviceState_info"
style="@style/textStyle"/>
 </LinearLayout>
 <LinearLayout
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:orientation="horizontal">
 <TextView android:text="Cell Location"
style="@style/labelStyleRight"/>
 <TextView android:id="@+id/cellLocation_info"
style="@style/textStyle"/>
 </LinearLayout>
 <LinearLayout
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:orientation="horizontal">
 <TextView android:text="Call State"
style="@style/labelStyleRight"/>
 <TextView android:id="@+id/callState_info"
style="@style/textStyle"/>
 </LinearLayout>
 <LinearLayout
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:orientation="horizontal">
 <TextView android:text="Connection State"
style="@style/labelStyleRight"/>
 <TextView android:id="@+id/connectionState_info"
style="@style/textStyle"/>
 </LinearLayout>
 <LinearLayout
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:orientation="horizontal">
 <TextView android:text="Signal Level"
style="@style/labelStyleRight"/>
 <LinearLayout
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:layout_weight="0.5"
 android:orientation="horizontal">
 <ProgressBar
android:id="@+id/signalLevel" style="@style/progressStyle"/>
 <TextView
android:id="@+id/signalLevelInfo" style="@style/textSmallStyle"/>
 </LinearLayout>
 </LinearLayout>
 <LinearLayout
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:orientation="horizontal">
 <TextView android:text="Data"
style="@style/labelStyleRight"/>
 <ImageView android:id="@+id/dataDirection"
style="@style/imageStyle"/>
 </LinearLayout>
 <TextView android:id="@+id/device_info"
style="@style/labelStyleLeft"/>
 </LinearLayout>
</ScrollView>
Our code uses some UI styles, which are declared in this file,
 named styles.xml:
<?xml version="1.0" encoding="utf-8"?>
<resources>
 <style name="labelStyleRight">
 <item name="android:layout_width">fill_parent</item>
 <item name="android:layout_height">wrap_content</item>
 <item name="android:layout_weight">0.5</item>
 <item name="android:textSize">15dip</item>
 <item name="android:textStyle">bold</item>
 <item name="android:layout_margin">10dip</item>
 <item name="android:gravity">center_vertical|right</item>
 </style>

 <style name="labelStyleLeft">
 <item name="android:layout_width">fill_parent</item>
 <item name="android:layout_height">wrap_content</item>
 <item name="android:layout_weight">0.5</item>
 <item name="android:textSize">15dip</item>
 <item name="android:textStyle">bold</item>
 <item name="android:layout_margin">10dip</item>
 <item name="android:gravity">center_vertical|left</item>
 </style>

 <style name="textStyle">
 <item name="android:layout_width">fill_parent</item>
 <item name="android:layout_height">wrap_content</item>
 <item name="android:layout_weight">0.5</item>
 <item name="android:textSize">15dip</item>
 <item name="android:textStyle">bold</item>
 <item name="android:layout_margin">10dip</item>
 <item name="android:gravity">center_vertical|left</item>
 </style>

 <style name="textSmallStyle">
 <item name="android:layout_width">fill_parent</item>
 <item name="android:layout_height">fill_parent</item>
 <item name="android:layout_weight">0.5</item>
 <item name="android:textSize">10dip</item>
 <item name="android:layout_margin">10dip</item>
 <item name="android:gravity">center_vertical|left</item>
 </style>

 <style name="progressStyle">
 <item name="android:layout_width">fill_parent</item>
 <item name="android:layout_height">wrap_content</item>
 <item name="android:layout_margin">10dip</item>
 <item name="android:layout_weight">0.5</item>
 <item name="android:indeterminateOnly">false</item>
 <item name="android:minHeight">20dip</item>
 <item name="android:maxHeight">20dip</item>
 <item name="android:progress">15</item>
 <item name="android:max">100</item>
 <item name="android:gravity">center_vertical|left</item>
 <item name="android:progressDrawable">
 @android:drawable/progress_horizontal</item>
 <item name="android:indeterminateDrawable">
 @android:drawable/progress_indeterminate_horizontal</item>
 </style>

 <style name="imageStyle">
 <item name="android:layout_width">fill_parent</item>
 <item name="android:layout_height">wrap_content</item>
 <item name="android:layout_weight">0.5</item>
 <item name="android:src">@drawable/icon</item>
 <item name="android:scaleType">fitStart</item>
 <item name="android:layout_margin">10dip</item>
 <item name="android:gravity">center_vertical|left</item>
 </style>
</resources>
The application uses coarse location
 permission (get approximate location from the cell radio service) which
 needs to be added in the AndroidManifest.xml file
 of your project:
<uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION" />
The application also uses some images for indicating the data
 communication state as no data communication, incoming data
 communication, outgoing data communication, and both ways data
 communication. These images are respectively named as
 data_none.png, data_in.png,
 data_out.png, and
 data_both.png. Please add some icons with the
 aforementioned names in the res/drawable folder of
 your project structure.

Source Download URL

The source code for this example is in the Android Cookbook repository at http://github.com/AndroidCook/Android-Cookbook-Examples,
 in the subdirectory TelephonyManager (see Getting and Using the Code Examples).

Chapter 13. Networked Applications

13.1. Introduction: Networking

Ian Darwin

Discussion

Networking. One could talk about it for hours. In the Android context it
 is primarily about web services, which are services accessed by another
 program (your Android app) over the HTTP (“web”) protocol. Web services
 come in two flavors: XML/SOAP and RESTful. XML/SOAP web services are
 more formal and thus have significantly more overhead, both at
 development time and at runtime, but offer more capability. RESTful
 services are much lighter weight, and are not tied to XML: we have
 recipes on using JSON (JavaScript Object Notation) and other formats
 with web services.
Choose your protocol wisely

While Java makes it easy to create network connections on any
 protocol, experience shows that HTTP (and HTTPS) are the most
 universal. If you use a custom protocol talking to your own server,
 there are some users who will not be able to access your server. Bear
 in mind that in some countries, high-speed data (a.k.a. 3G) is either
 not yet available or very expensive, whereas GPRS/EDGE is less
 expensive and more widely available. Most GPRS service providers only
 allow HTTP/HTTPS connections, often through a WAP proxy. That being
 said, there may be things you need to do that can’t be done via
 HTTP—for example, because the protocol demands a different port number
 (e.g., SIP over port 5000). But do try to make HTTP your first choice
 when you can—you’ll include more
 customers.

13.2. Using a RESTful Web Service

Ian Darwin

Problem

You need to access a RESTful web service.

Solution

You can use either the “standard” Java URL and
 URLConnection objects, or the Android-provided Apache
 HttpClient library to code at a slightly higher level or to use HTTP
 methods other than GET and
 POST.

Discussion

REST was originally intended as an architectural description of
 the early Web, in which GET requests were used and in which
 the URL fully specified (represented) the state of the request. Today
 RESTful web services are those that eschew the overhead of XML SOAP,
 WSDL, and (usually) XML Schema, and simply send URLs that contain all
 the information needed to perform the request (or almost all of it, as
 there is often a POST body sent for some types of requests). For example, to
 support an Android client that allows offline editing of recipes for
 this book, there is a (draft) web service that allows you to view the
 list of recipes (you send an HTTP GET request ending
 in /recipe/list), to view the details of one recipe
 (HTTP GET ending in
 /recipe/NNN
 where NNN is the primary key of
 the entry, gotten from the requested list of recipes), and later to
 upload your revised version of the recipe using an HTTP
 POST to
 /recipe/NNN
 with the POST body containing the revised
 recipe in the same XML document format as the “get recipe” operation
 downloads it.
By the way, the RESTful service used by these examples is
 implemented in server-side Java using the JAX-RS APII, provided by JBoss Seam using RestEasy.
Using URL and URLConnection

Android’s developers wisely preserved a lot of the Java standard
 API, including some widely used classes for networking, so as to make
 it easy to port existing code. The converse()
 method shown in Example 13-1
 uses a URL and URLConnection
 from java.net to do a GET, and is extracted from an
 example in the networking chapter of my Java
 Cookbook, published by O’Reilly. Comments in this
 version show what you’d need to change to do a
 POST.
Example 13-1. The RESTful web service client—URLConnection Version
 public static String converse(String host, int port, String path) throws IOException {
 URL url = new URL("http", host, port, path);
 URLConnection conn = url.openConnection();
 // This does a GET; to do a POST, add conn.setDoOutput(true);
 conn.setDoInput(true);
 conn.setAllowUserInteraction(true); // useless but harmless

 conn.connect();

 // To do a POST, you'd write to conn.getOutputStream());

 StringBuilder sb = new StringBuilder();
 BufferedReader in = new BufferedReader(
 new InputStreamReader(conn.getInputStream()));
 String line;
 while ((line = in.readLine()) != null) {
 sb.append(line);
 }
 in.close();
 return sb.toString();
 }

The invocation of this method in, say, your
 onResume() or onCreate() method,
 can be as simple as the following, which gets the list of recipes from
 this book:
String host = "androidcookbook.net";
String path = "/seam/resource/rest/recipe/list";
String ret = converse(host, 80, path);

Using HttpClient

Android supports the Apache HttpClient library, which is widely
 used for communicating at a slightly higher level than the
 URLConnection. I’ve used it in my PageUnit web test
 framework. HttpClient also lets you use other HTTP methods
 that are common in RESTful services, such as PUT
 and DELETE. (The URLConnection
 object used earlier, by contrast, only supports
 GET and POST). Example 13-2
 shows the same converse method coded for a
 GET using HttpClient.
Example 13-2. The RESTful web service client—HttpClient version
 public static String converse(String host, int port, String path,
 String postBody) throws IOException {
 HttpHost target = new HttpHost(host, port);
 HttpClient client = new DefaultHttpClient();
 HttpGet get = new HttpGet(path);
 HttpEntity results = null;
 try {
 HttpResponse response=client.execute(target, get);
 results = response.getEntity();
 return EntityUtils.toString(results);
 } catch (Exception e) {
 throw new RuntimeException("Web Service Failure");
 } finally {
 if (results!=null)
 try {
 results.consumeContent();
 } catch (IOException e) {
 // empty, Checked exception but don't care
 }
 }
 }

Usage will be exactly the same as for the
 URLConnection-based version.

The results

In the present version of the web service, the return value
 comes back as an XML document, which you’d need to parse to display in
 a List. If there is enough interest, we might add a
 JSON version as well.
Note
Don’t forget to add the
 android.permission.INTERNET permission to your
 AndroidManifest.xml file or you will not be
 able to access any web connections.

See Also

Recipe 11.14; Recipe 9.1

13.3. Extracting Information from Unstructured Text Using Regular
 Expressions

Ian Darwin

Problem

You want to get information from another organization, but the
 organization doesn’t make it available as information, only as a
 viewable web page.

Solution

Use java.net to download the HTML page, and use regular expressions to
 extract the information from the page.

Discussion

If you aren’t already a big fan of regular expressions, well, you
 should be. And maybe this recipe will help interest you in learning
 regex technology.
Suppose that I, as a published author, want to track how my book
 is selling in comparison to others. I can obtain this information for
 free just by clicking on the page for my book on any of the major
 bookseller sites, reading the sales rank number off the screen, and
 typing the number into a file—but that’s too tedious. As I wrote in one
 of my earlier books, “computers get paid to extract relevant information
 from files; people should not have to do such mundane tasks.” This
 program uses the Regular Expressions API and, in particular, newline matching to extract a value
 from an HTML page on the Amazon.com website. It also reads from a URL
 object (see Recipe 13.2). The
 pattern to look for is something like this (bear in mind that the HTML
 may change at any time, so I want to keep the pattern fairly
 general):
(bookstore name here) Sales Rank:
26,252
As the pattern may extend over more than one line, I read the
 entire web page from the URL into a single long string using a private
 convenience routine, readerToString(), instead of the
 more traditional line-at-a-time paradigm. The value is extracted from
 the regular expression, converted to an integer value, and returned. The
 longer version of this code in Java Cookbook would
 also plot a graph using an external program. The complete program is
 shown in Example 13-3.
Example 13-3. Part of class BookRank
public static int getBookRank(String isbn) throws IOException {
 // The RE pattern - digits and commas allowed
 final String pattern = "Rank: #([\\d,]+)";
 final Pattern r = Pattern.compile(pattern);

 // The url -- must have the "isbn=" at the very end, or otherwise
 // be amenable to being appended to.
 final String url = "http://www.amazon.com/exec/obidos/ASIN/" + isbn;

 // Open the URL and get a Reader from it.
 final BufferedReader is = new BufferedReader(new InputStreamReader(
 new URL(url).openStream()));
 // Read the URL looking for the rank information, as
 // a single long string, so can match RE across multi-lines.
 final String input = readerToString(is);

 // If found, append to sales data file.
 Matcher m = r.matcher(input);
 if (m.find()) {
 // Group 1 is digits (and maybe ','s) that matched; remove comma
 return Integer.parseInt(m.group(1).replace(",",""));
 } else {
 throw new RuntimeException(
 "Pattern not matched in `" + url + "'!");
 }
}

See Also

As mentioned, using the regex API is vital to being able to deal
 with semistructured data that you will meet in real life. Chapter 4 of Java
 Cookbook, written by me and published by O’Reilly,
 is all about regex, as is Jeffrey Friedl’s comprehensive Mastering
 Regular Expressions, also published by
 O’Reilly.

Source Download URL

You can download the source code for this example from http://javacook.darwinsys.com/javasrc/regex/BookRank.java.
[image: image with no caption]

13.4. Parsing RSS/Atom Feeds Using ROME

Wagied Davids

Problem

You want to parse RSS/Atom feeds, which are commonly used to provide
 an updated list of news articles on websites, often identified by the
 “news” icon: [image:]

Solution

This recipe shows an RSS/Atom feed parser based on ROME, a Java-based RSS
 syndication feed parser. It has some nifty features such as HTTP
 conditional GETs, ETags, and Gzip compression. It
 also covers a wide range of formats, including RSS 0.90, RSS 2.0, and
 Atom 0.3 and 1.0.
Caution
Due to an administrative error made by Oracle, as of this
 writing the java.net project sites present an intimidating “Invalid
 Security Certificate” warning. As long as the site is actually
 rome.dev.java.net, you should be OK to proceed.

Discussion

The basic steps are as follows:
	Modify your AndroidManifest.xml file to
 allow for Internet browsing:
<uses-permission android:name="android.permission.INTERNET"/>

	Download the appropriate JAR files,
 rome-0.9.jar and
 jdom-1.0.jar.

	Create an Android project. Set the layout file to be the
 contents of Example 13-4.

	Create the Activity code shown in Example 13-5. In particular, the
 getRSS() method demonstrates the use of the ROME
 API to parse the XML RSS feed and display the results.
When run with the given feed URL, the
 output should look like Figure 13-1, except with newer news
 items.

Example 13-4. main.xml
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">

 <TableLayout
 android:id="@+id/table"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:stretchColumns="0">
 <TableRow
 android:id="@+id/top_add_entry_row"
 android:layout_height="wrap_content"
 android:layout_width="fill_parent">

 <EditText
 android:id="@+id/rssURL"
 android:hint="Enter RSS URL"
 android:singleLine="true"
 android:maxLines="1"
 android:maxWidth="220dp"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content">
 </EditText>
 <Button
 android:id="@+id/goButton"
 android:text="Go"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content">
 </Button>
 </TableRow>
 </TableLayout>

 <!-- Mid Panel -->
 <ListView
 android:id="@+id/ListView"
 android:layout_weight="1"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content">
 </ListView>

 <Button
 android:id="@+id/clearButton"
 android:text="Clear"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content">
 </Button>
</LinearLayout>

Example 13-5. AndroidRss.java
import java.io.IOException;
import java.net.MalformedURLException;
import java.net.URL;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;

import android.app.Activity;
import android.os.Bundle;
import android.util.Log;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.AdapterView;
import android.widget.ArrayAdapter;
import android.widget.Button;
import android.widget.EditText;
import android.widget.ListView;
import android.widget.Toast;
import android.widget.AdapterView.OnItemClickListener;

import com.sun.syndication.feed.synd.SyndEntry;
import com.sun.syndication.feed.synd.SyndFeed;
import com.sun.syndication.io.FeedException;
import com.sun.syndication.io.SyndFeedInput;
import com.sun.syndication.io.XmlReader;

public class AndroidRss extends Activity
 {
 private static final String tag="AndroidRss ";
 private int selectedItemIndex = 0;
 private final ArrayList list = new ArrayList();
 private EditText text;
 private ListView listView;
 private Button goButton;
 private Button clearButton;
 private ArrayAdapter adapter = null;

 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 text = (EditText) this.findViewById(R.id.rssURL);
 goButton = (Button) this.findViewById(R.id.goButton);
 goButton.setOnClickListener(new OnClickListener()
 {
 @Override
 public void onClick(View v)
 {
 String rss = text.getText().toString().trim();
 getRSS(rss);
 }
 });

 clearButton = (Button) this.findViewById(R.id.clearButton);
 clearButton.setOnClickListener(new OnClickListener()
 {
 @Override
 public void onClick(View v)
 {
 adapter.clear();
 adapter.notifyDataSetChanged();
 }
 });

 listView = (ListView) this.findViewById(R.id.ListView);
 listView.setOnItemClickListener(new OnItemClickListener() {
 @Override
 public void onItemClick(AdapterView parent, View view,
 int position, long duration)
 {
 selectedItemIndex = position;
 Toast.makeText(getApplicationContext(),
 "Selected " + adapter.getItem(position) +
 " @ " + position, Toast.LENGTH_SHORT).show();
 }
 });

 adapter = new ArrayAdapter(this, R.layout.dataview, R.id.ListItemView);
 listView.setAdapter(adapter);

 }

 private void getRSS(String rss) {

 URL feedUrl;
 try
 {
 Log.d("DEBUG", "Entered:" + rss);
 feedUrl = new URL(rss);

 SyndFeedInput input = new SyndFeedInput();
 SyndFeed feed = input.build(new XmlReader(feedUrl));
 List entries = feed.getEntries();
 Toast.makeText(this,
						"#Feeds retrieved: " + entries.size(), Toast.LENGTH_SHORT).show();

 Iterator iterator = entries.listIterator();
 while (iterator.hasNext())
 {
 SyndEntry ent = (SyndEntry) iterator.next();
 String title = ent.getTitle();
 adapter.add(title);
 }
 adapter.notifyDataSetChanged();

 }
 catch (MalformedURLException e)
 {
 e.printStackTrace();
 }
 catch (IllegalArgumentException e)
 {
 e.printStackTrace();
 }
 catch (FeedException e)
 {
 e.printStackTrace();
 }
 catch (IOException e)
 {
 e.printStackTrace();
 }
 }

 private void clearTextFields()
 {
 Log.d(tag, "clearTextFields()");
 this.text.setText("");
 }
 }

[image: RSS feed in ListView]

Figure 13-1. RSS feed in ListView

Source Download URL

The source code for this example is in the Android Cookbook repository at http://github.com/AndroidCook/Android-Cookbook-Examples,
 in the subdirectory AndroidRss (see Getting and Using the Code Examples).

13.5. Using MD5 to Digest Clear Text

Colin Wilcox

Problem

Sometimes it is necessary to convert clear text to a nonreadable form
 before saving or transmitting it.

Solution

Android provides a standard Java MD5 class to allow plain text to
 be replaced with an MD5 digest of the original text. This is a one-way
 digest that is not believed to be easily reversible (if you need that,
 use Java Cryptography).

Discussion

Example 13-6 is a simple function that
 takes a clear-text string and digests it using MD5, returning the
 encrypted string as a return value.
Example 13-6. MD5 hash
public static String md5(String s) {
 try {
 // Create MD5 Hasher
 MessageDigest digest = java.security.MessageDigest.getInstance("MD5");
 digest.update(s.getBytes());
 byte messageDigest[] = digest.digest();
 // Create Hex String
 StringBuffer hexString = new StringBuffer();
 for (int i = 0; i < messageDigest.length; i++)
 {
 hexString.append(Integer.toHexString(0xFF & messageDigest[i]));
 }
 return hexString.toString();
 }
 catch (NoSuchAlgorithmException e) {
 e.printStackTrace();
 }
 return ""; // or give the user an Exception...
 }

13.6. Converting Text into Hyperlinks

Rachee Singh

Problem

You need to turn web page URLs into hyperlinks in a
 TextView of your Android app.

Solution

Use the autoLink property for a TextView.

Discussion

Say you are setting the URL www.google.com as
 part of the text in a TextView, but you want this
 text to be a hyperlink so that the user can open the web page in a
 browser by clicking on it. To achieve this, add the
 autoLink property to the
 TextView:
android:autoLink = "all"
Now, in the activity’s code, you can set any text to the
 TextView and all the URLs will be converted to
 hyperlinks!
linkText = (TextView)findViewById(R.id.link);
linkText.setText("The link is: www.google.com");
[image: image with no caption]

13.7. Accessing a Web Page Using WebView

Rachee Singh

Problem

You want to download and display a web page within your
 application.

Solution

Embed the standard WebView component in the layout and invoke its
 loadUrl() method to load and display the web
 page.

Discussion

WebView is a View component
 that can be placed in an activity. Its primary use is, as its name
 implies, to handle web pages for you.
Since WebView usually needs to access remote
 web page(s), don’t forget to add the Internet permission into the
 manifest file:
<uses-permission android:name="android.permission.INTERNET" />
Then you can add the WebView to your XML
 layout:
<WebView
android:id="@+id/webview"
android:layout_height="fill_parent"
android:layout_width="fill_parent"/>
In the Java code for the activity that displays the web page, we
 obtain a handle onto the WebView using the findViewById() method. On the
 WebView we use the loadUrl()
 method to provide it the URL of the website we wish to open in the
 application.
WebView webview = (WebView)findViewById(R.id.webview);
webview.loadUrl("http://google.com");

Source Download URL

You can download the source code for this example from https://docs.google.com/leaf?id=0B_rESQKgad5LN2JhMDFjZTUtY2IwZS00NzkyLWFlNjItMzhiZWRlYTQxMWNm&hl=en_US.
[image: image with no caption]

13.8. Customizing a WebView

Rachee Singh

Problem

You need to customize the WebView opened by your
 application.

Solution

Use the WebSettings class to access built-in
 functions for customizing the browser.

Discussion

As discussed in Recipe 13.7, to open a web page in an Android
 application we use a WebView component. Then, to load
 a URL in the WebView we use, for example:
webview.loadUrl("http://www.google.com/");
We can do many things to customize the browser to suit users’
 needs. To customize the view, we need an instance of the
 WebSettings class, which we can get from the
 WebView component:
WebSettings webSettings = webView.getSettings();
Here are some of the things we can do using
 WebSettings:
	Tell the WebView to block network images:
webSettings.setBlockNetworkImage(true);

	Set the default font size in the browser:
webSettings.setDefaultFontSize(25);

	Set whether the WebView supports zoom:
webSettings.setSupportZoom(true);

	Tell the WebView to enable JavaScript execution:
webSettings.setJavaScriptEnabled(true);

	Control whether the WebView will save passwords:
webSettings.setSavePassword(false);

	Control whether the WebView will saving form data:
webSettings.setSaveFormData(false);

Many more methods of this kind are available. For more
 information, see the Android Developers page on the topic.

Chapter 14. Gaming and Animation

14.1. Introduction: Gaming and Animation

Ian Darwin

Discussion

Gaming is obviously an important application for which people used
 to use “computers” and now use mobile devices, and Android is a
 perfectly capable contender in the graphics arena, providing support for
 OpenGL ES.
If you want to use some advanced gaming features without having to
 write a lot of code, you’re in luck, as there are many game development
 frameworks in existence today. Many of them are primarily or exclusively
 for desktops. The ones shown in Table 14-1 are known to be usable
 on Android; if you find others, please add a comment to the online
 version of this web page, at http://androidcookbook.com/r/1816, and we will
 incorporate it into the online version and eventually into a future
 revision of the published book.
Table 14-1. Android game frameworks
	Name	Open source?	Cost	URL
	AndEngine	Y	Free	http://www.andengine.org/
	Box2D	Y	Free	http://code.google.com/p/box2d/
	Corona SDK	?	$199+/year	http://www.anscamobile.com/corona/
	Flixel	Y	Free	http://flixel.org/index.html
	libgdx	Y	Free	http://code.google.com/p/libgdx/
	PlayN	Y	Free	http://code.google.com/p/playn
	rokon	Y	Free	http://code.google.com/p/rokon/
	ShiVa 3D	N	€169.00+ each for editor and server	http://www.stonetrip.com/
	Unity	N	$400+	http://unity3d.com/unity/publishing/android.html

You will need to compare the functions that each offers before
 committing to using one over another in your project.

14.2. Building an Android Game Using flixel-android

Wagied Davids

Problem

You want to build an Android game using a high-level framework.

Solution

Use Flixel, an
 ActionScript-based game framework developed by Adam (“Atomic”) Saltsman.

Discussion

Thanks to the tremendous work of Wing Eraser, a Java-based port
 has been created (http://code.google.com/p/flixel-android/), which closely
 resembles the AS3-based Flixel in terms of programming paradigm.
In this recipe, we will create a simple jumper game, containing a
 few entities, a droid, a pusher, and a few elevators. Each entity is
 declared as a separate class containing its own asset resources, and
 listeners for digital touchpad events.
Example 14-1 shows
 the code for the Flixel-based game activity.
Example 14-1. The Flixel-based game activity
import android.app.Activity;
import android.content.pm.ActivityInfo;
import android.os.Bundle;
import android.view.Window;
import android.view.WindowManager;

public class Main extends Activity
 {
 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);

 requestWindowFeature(Window.FEATURE_NO_TITLE);
 getWindow().setFlags(WindowManager.LayoutParams.FLAG_FULLSCREEN,
 WindowManager.LayoutParams.FLAG_FULLSCREEN);

 // ORIENTATION
 // setRequestedOrientation(ActivityInfo.SCREEN_ORIENTATION_PORTRAIT);
 setRequestedOrientation(ActivityInfo.SCREEN_ORIENTATION_LANDSCAPE);

 setContentView(new GameView(this, R.class));
 }
 }

Example 14-2 shows the
 code for the Flixel-based game view.
Example 14-2. The Flixel-based game view
import org.flixel.FlxGame;
import org.flixel.FlxGameView;
import android.content.Context;

public class GameView extends FlxGameView
 {
 public GameView(Context context, Class<? extends Object> resource)
 {
 super(new FlxGame(400, 240, SimpleJumper.class, context, resource), context);
 }
 }

A sprite is a small graphic that moves around in a graphics
 application; for example, a player in a video game. Example 14-3 shows the
 code for the Flixel-based Sprite class.
Example 14-3. Droid.java, a FlxSprite implementation
import org.flixel.FlxG;
import org.flixel.FlxSound;
import org.flixel.FlxSprite;

public class Droid extends FlxSprite
 {
 private final FlxSound sound = new FlxSound();

 public Droid(int X, int Y)
 {
 super(X, Y);
 loadGraphic(R.drawable.player, true, true);
 maxVelocity.x = 100; // walking speed
 acceleration.y = 400; // gravity
 drag.x = maxVelocity.x * 4; // deceleration (sliding to a stop)

 // tweak the bounding box for better feel
 width = 8;
 height = 10;

 offset.x = 3;
 offset.y = 3;

 addAnimation("idle", new int[] { 0 }, 0, false);
 addAnimation("walk", new int[] { 1, 2, 3, 0 }, 12);
 addAnimation("walk_back", new int[] { 3, 2, 1, 0 }, 10, true);
 addAnimation("flail", new int[] { 1, 2, 3, 0 }, 18, true);
 addAnimation("jump", new int[] { 4 }, 0, false);
 }

 @Override
 public void update()
 {
 // Smooth slidey walking controls
 acceleration.x = 0;
 if (FlxG.dpad.pressed("LEFT")) acceleration.x -= drag.x;
 if (FlxG.dpad.pressed("RIGHT")) acceleration.x += drag.x;

 if (onFloor)
 {
 // Jump controls
 if (FlxG.dpad.justTouched("UP"))
 {
 sound.loadEmbedded(R.raw.jump);
 sound.play();

 velocity.y = -acceleration.y * 0.51f;
 play("jump");

 }// Animations
 else if (velocity.x > 0)
 {
 play("walk");
 }
 else if (velocity.x < 0)
 {
 play("walk_back");
 }
 else play("idle");
 }
 else if (velocity.y < 0) play("jump");
 else play("flail");

 // Default object physics update
 super.update();
 }

 }

Source Download URL

The source code for this example is in the Android Cookbook
 repository at http://github.com/AndroidCook/Android-Cookbook-Examples,
 in the subdirectory SimpleJumper (see Getting and Using the Code Examples).

14.3. Building an Android Game Using AndEngine (Android-Engine)

Wagied Davids

Problem

You want to design an Android game using the AndEngine game
 framework.

Solution

AndEngine is a game
 engine framework designed for producing games on Android. Originally
 developed by Nicholas Gramlich, it has some advanced features for
 producing awesome games.

Discussion

For this recipe, I have designed a simple pool game with physics
 capabilities, such that the effects of the accelerometer are taken into
 account, as are touch events. As a result, touching a specific billiard
 ball and pulling down on it will cause it to shoot into other balls,
 with the collision detection taken care of. Example 14-4 shows the code for
 the AndDev-based game activity.
Example 14-4. The AndDev-based game activity
import org.anddev.andengine.engine.Engine;
import org.anddev.andengine.engine.camera.Camera;
import org.anddev.andengine.engine.options.EngineOptions;
import org.anddev.andengine.engine.options.EngineOptions.ScreenOrientation;
import org.anddev.andengine.engine.options.resolutionpolicy.RatioResolutionPolicy;
import org.anddev.andengine.entity.Entity;
import org.anddev.andengine.entity.primitive.Rectangle;
import org.anddev.andengine.entity.scene.Scene;
import org.anddev.andengine.entity.scene.Scene.IOnAreaTouchListener;
import org.anddev.andengine.entity.scene.Scene.IOnSceneTouchListener;
import org.anddev.andengine.entity.scene.Scene.ITouchArea;
import org.anddev.andengine.entity.shape.Shape;
import org.anddev.andengine.entity.sprite.AnimatedSprite;
import org.anddev.andengine.entity.sprite.Sprite;
import org.anddev.andengine.entity.util.FPSLogger;
import org.anddev.andengine.extension.physics.box2d.PhysicsConnector;
import org.anddev.andengine.extension.physics.box2d.PhysicsFactory;
import org.anddev.andengine.extension.physics.box2d.PhysicsWorld;
import org.anddev.andengine.extension.physics.box2d.util.Vector2Pool;
import org.anddev.andengine.input.touch.TouchEvent;
import org.anddev.andengine.opengl.texture.Texture;
import org.anddev.andengine.opengl.texture.TextureOptions;
import org.anddev.andengine.opengl.texture.region.TextureRegion;
import org.anddev.andengine.opengl.texture.region.TextureRegionFactory;
import org.anddev.andengine.opengl.texture.region.TiledTextureRegion;
import org.anddev.andengine.sensor.accelerometer.AccelerometerData;
import org.anddev.andengine.sensor.accelerometer.IAccelerometerListener;
import org.anddev.andengine.ui.activity.BaseGameActivity;

import android.hardware.SensorManager;
import android.util.DisplayMetrics;

import com.badlogic.gdx.math.Vector2;
import com.badlogic.gdx.physics.box2d.Body;
import com.badlogic.gdx.physics.box2d.BodyDef.BodyType;
import com.badlogic.gdx.physics.box2d.FixtureDef;

public class SimplePool extends BaseGameActivity implements IAccelerometerListener,
IOnSceneTouchListener, IOnAreaTouchListener
 {

 private Camera mCamera;
 private Texture mTexture;
 private Texture mBallYellowTexture;
 private Texture mBallRedTexture;
 private Texture mBallBlackTexture;
 private Texture mBallBlueTexture;
 private Texture mBallGreenTexture;
 private Texture mBallOrangeTexture;
 private Texture mBallPinkTexture;
 private Texture mBallPurpleTexture;
 private Texture mBallWhiteTexture;

 private TiledTextureRegion mBallYellowTextureRegion;
 private TiledTextureRegion mBallRedTextureRegion;
 private TiledTextureRegion mBallBlackTextureRegion;
 private TiledTextureRegion mBallBlueTextureRegion;
 private TiledTextureRegion mBallGreenTextureRegion;
 private TiledTextureRegion mBallOrangeTextureRegion;
 private TiledTextureRegion mBallPinkTextureRegion;
 private TiledTextureRegion mBallPurpleTextureRegion;
 private TiledTextureRegion mBallWhiteTextureRegion;

 private Texture mBackgroundTexture;
 private TextureRegion mBackgroundTextureRegion;

 private PhysicsWorld mPhysicsWorld;

 private float mGravityX;
 private float mGravityY;
 private Scene mScene;

 private final int mFaceCount = 0;

 private final int CAMERA_WIDTH = 720;
 private final int CAMERA_HEIGHT = 480;

 @Override
 public Engine onLoadEngine()
 {
 DisplayMetrics dm = new DisplayMetrics();
 getWindowManager().getDefaultDisplay().getMetrics(dm);

 this.mCamera = new Camera(0, 0, CAMERA_WIDTH, CAMERA_HEIGHT);
 return new Engine(new EngineOptions(true, ScreenOrientation.LANDSCAPE,
 new RatioResolutionPolicy(CAMERA_WIDTH, CAMERA_HEIGHT), this.mCamera));
 }

 @Override
 public void onLoadResources()
 {
 this.mTexture =
 new Texture(64, 64, TextureOptions.BILINEAR_PREMULTIPLYALPHA);
 this.mBallBlackTexture =
 new Texture(64, 64, TextureOptions.BILINEAR_PREMULTIPLYALPHA);
 this.mBallBlueTexture =
 new Texture(64, 64, TextureOptions.BILINEAR_PREMULTIPLYALPHA);
 this.mBallGreenTexture =
 new Texture(64, 64, TextureOptions.BILINEAR_PREMULTIPLYALPHA);
 this.mBallOrangeTexture =
 new Texture(64, 64, TextureOptions.BILINEAR_PREMULTIPLYALPHA);
 this.mBallPinkTexture =
 new Texture(64, 64, TextureOptions.BILINEAR_PREMULTIPLYALPHA);
 this.mBallPurpleTexture =
 new Texture(64, 64, TextureOptions.BILINEAR_PREMULTIPLYALPHA);
 this.mBallYellowTexture =
 new Texture(64, 64, TextureOptions.BILINEAR_PREMULTIPLYALPHA);
 this.mBallRedTexture =
 new Texture(64, 64, TextureOptions.BILINEAR_PREMULTIPLYALPHA);
 this.mBallWhiteTexture =
 new Texture(64, 64, TextureOptions.BILINEAR_PREMULTIPLYALPHA);

 TextureRegionFactory.setAssetBasePath("gfx/");
 mBallYellowTextureRegion =
 TextureRegionFactory.createTiledFromAsset(this.mBallYellowTexture, this,
 "ball_yellow.png", 0, 0, 1, 1); // 64x32
 mBallRedTextureRegion =
 TextureRegionFactory.createTiledFromAsset(this.mBallRedTexture, this,
 "ball_red.png", 0, 0, 1, 1); // 64x32
 mBallBlackTextureRegion =
 TextureRegionFactory.createTiledFromAsset(this.mBallBlackTexture, this,
 "ball_black.png", 0, 0, 1, 1); // 64x32
 mBallBlueTextureRegion =
 TextureRegionFactory.createTiledFromAsset(this.mBallBlueTexture, this,
 "ball_blue.png", 0, 0, 1, 1); // 64x32
 mBallGreenTextureRegion =
 TextureRegionFactory.createTiledFromAsset(this.mBallGreenTexture, this,
 "ball_green.png", 0, 0, 1, 1); // 64x32
 mBallOrangeTextureRegion =
 TextureRegionFactory.createTiledFromAsset(this.mBallOrangeTexture, this,
 "ball_orange.png", 0, 0, 1, 1); // 64x32
 mBallPinkTextureRegion =
 TextureRegionFactory.createTiledFromAsset(this.mBallPinkTexture, this,
 "ball_pink.png", 0, 0, 1, 1); // 64x32
 mBallPurpleTextureRegion =
 TextureRegionFactory.createTiledFromAsset(this.mBallPurpleTexture, this,
 "ball_purple.png", 0, 0, 1, 1); // 64x32
 mBallWhiteTextureRegion =
 TextureRegionFactory.createTiledFromAsset(this.mBallWhiteTexture, this,
 "ball_white.png", 0, 0, 1, 1); // 64x32

 this.mBackgroundTexture = new Texture(512, 1024,
 TextureOptions.BILINEAR_PREMULTIPLYALPHA);
 this.mBackgroundTextureRegion =
 TextureRegionFactory.createFromAsset(this.mBackgroundTexture, this,
 "table_bkg.png", 0, 0);

 this.enableAccelerometerSensor(this);

 mEngine.getTextureManager().loadTextures(mBackgroundTexture, mBallYellowTexture,
 mBallRedTexture, mBallBlackTexture, mBallBlueTexture,
 mBallGreenTexture, mBallOrangeTexture,
 mBallPinkTexture, mBallPurpleTexture);
 }

 @Override
 public Scene onLoadScene()
 {
 this.mEngine.registerUpdateHandler(new FPSLogger());

 this.mPhysicsWorld = new PhysicsWorld(
 new Vector2(0, SensorManager.GRAVITY_EARTH), false);

 this.mScene = new Scene();
 this.mScene.attachChild(new Entity());

 this.mScene.setBackgroundEnabled(false);
 this.mScene.setOnSceneTouchListener(this);
 Sprite background = new Sprite(0, 0, this.mBackgroundTextureRegion);
 background.setWidth(CAMERA_WIDTH);
 background.setHeight(CAMERA_HEIGHT);
 background.setPosition(0, 0);
 this.mScene.getChild(0).attachChild(background);

 final Shape ground = new Rectangle(0, CAMERA_HEIGHT, CAMERA_WIDTH, 0);
 final Shape roof = new Rectangle(0, 0, CAMERA_WIDTH, 0);
 final Shape left = new Rectangle(0, 0, 0, CAMERA_HEIGHT);
 final Shape right = new Rectangle(CAMERA_WIDTH, 0, 0, CAMERA_HEIGHT);

 final FixtureDef wallFixtureDef = PhysicsFactory.createFixtureDef(0, 0.5f, 0.5f);
 PhysicsFactory.createBoxBody(
 mPhysicsWorld, ground, BodyType.StaticBody, wallFixtureDef);
 PhysicsFactory.createBoxBody(
 mPhysicsWorld, roof, BodyType.StaticBody, wallFixtureDef);
 PhysicsFactory.createBoxBody(
 mPhysicsWorld, left, BodyType.StaticBody, wallFixtureDef);
 PhysicsFactory.createBoxBody(
 mPhysicsWorld, right, BodyType.StaticBody, wallFixtureDef);

 this.mScene.attachChild(ground);
 this.mScene.attachChild(roof);
 this.mScene.attachChild(left);
 this.mScene.attachChild(right);

 this.mScene.registerUpdateHandler(this.mPhysicsWorld);
 this.mScene.setOnAreaTouchListener(this);

 return this.mScene;
 }

 @Override
 public void onLoadComplete()
 {
 setupBalls();

 }

 @Override
 public boolean onAreaTouched(
 final TouchEvent pSceneTouchEvent, final ITouchArea pTouchArea,
 final float pTouchAreaLocalX, final float pTouchAreaLocalY)
 {
 if (pSceneTouchEvent.isActionDown())
 {
 final AnimatedSprite face = (AnimatedSprite) pTouchArea;
 this.jumpFace(face);
 return true;
 }

 return false;
 }

 @Override
 public boolean onSceneTouchEvent(
 final Scene pScene, final TouchEvent pSceneTouchEvent)
 {
 if (this.mPhysicsWorld != null)
 {
 if (pSceneTouchEvent.isActionDown())
 {
 // this.addFace(pSceneTouchEvent.getX(),
 // pSceneTouchEvent.getY());
 return true;
 }
 }
 return false;
 }

 @Override
 public void onAccelerometerChanged(final AccelerometerData pAccelerometerData)
 {
 this.mGravityX = pAccelerometerData.getX();
 this.mGravityY = pAccelerometerData.getY();

 final Vector2 gravity = Vector2Pool.obtain(this.mGravityX, this.mGravityY);
 this.mPhysicsWorld.setGravity(gravity);
 Vector2Pool.recycle(gravity);
 }

 private void setupBalls()
 {
 final AnimatedSprite[] balls = new AnimatedSprite[9];

 final FixtureDef objectFixtureDef = PhysicsFactory.createFixtureDef(1, 0.5f, 0.5f);

 AnimatedSprite redBall =
 new AnimatedSprite(10, 10, this.mBallRedTextureRegion);
 AnimatedSprite yellowBall =
 new AnimatedSprite(20, 20, this.mBallYellowTextureRegion);
 AnimatedSprite blueBall =
 new AnimatedSprite(30, 30, this.mBallBlueTextureRegion);
 AnimatedSprite greenBall =
 new AnimatedSprite(40, 40, this.mBallGreenTextureRegion);
 AnimatedSprite orangeBall =
 new AnimatedSprite(50, 50, this.mBallOrangeTextureRegion);
 AnimatedSprite pinkBall =
 new AnimatedSprite(60, 60, this.mBallPinkTextureRegion);
 AnimatedSprite purpleBall =
 new AnimatedSprite(70, 70, this.mBallPurpleTextureRegion);
 AnimatedSprite blackBall =
 new AnimatedSprite(70, 70, this.mBallBlackTextureRegion);
 AnimatedSprite whiteBall =
 new AnimatedSprite(70, 70, this.mBallWhiteTextureRegion);

 balls[0] = redBall;
 balls[1] = yellowBall;
 balls[2] = blueBall;
 balls[3] = greenBall;
 balls[4] = orangeBall;
 balls[5] = pinkBall;
 balls[6] = purpleBall;
 balls[7] = blackBall;
 balls[8] = whiteBall;

 for (int i = 0; i < 9; i++)
 {
 Body body = PhysicsFactory.createBoxBody(this.mPhysicsWorld, balls[i],
 BodyType.DynamicBody, objectFixtureDef);
 this.mPhysicsWorld.registerPhysicsConnector(new PhysicsConnector(balls[i],
 body, true, true));

 balls[i].animate(new long[] { 200, 200 }, 0, 1, true);
 balls[i].setUserData(body);
 this.mScene.registerTouchArea(balls[i]);
 this.mScene.attachChild(balls[i]);
 }
 }

 private void jumpFace(final AnimatedSprite face)
 {
 final Body faceBody = (Body) face.getUserData();

 final Vector2 velocity =
 Vector2Pool.obtain(this.mGravityX * -50, this.mGravityY * -50);
 faceBody.setLinearVelocity(velocity);
 Vector2Pool.recycle(velocity);
 }
 }

Source Download URL

The source code for this example is in the Android Cookbook repository at http://github.com/AndroidCook/Android-Cookbook-Examples,
 in the subdirectory SimplePool (see Getting and Using the Code Examples).

14.4. Processing Timed Keyboard Input

Kurosh Fallahzadeh

Problem

You want to determine whether a user-generated action, such as a key
 press/release, has occurred within a certain time interval. This can be
 useful in game input handling and elsewhere.

Solution

Put the thread to sleep for the time interval and use a handler to
 determine if a key press/release has occurred.

Discussion

The interval is a long integer that represents time in
 milliseconds. In Example 14-5, we override the
 onKeyUp method so that when the user releases a key, Android will
 invoke our taskHandler
 methods, which basically continue to repeatedly execute task A as long
 as the user continues to press/release any key within the one-second
 interval; otherwise, they execute task B.
Example 14-5. The keyboard input timing code
// In the main class...

private long interval = 1000; // 1 second time interval

private taskHandler myTaskHandler = new TaskHandler();

class TaskHandler extends Handler {

 @Override
 public void handleMessage(Message msg) {
 MyMainClass.this.executeTaskB();
 }

 public void sleep(long timeInterval) {
 //remove previous keyboard message in queue
 this.removeMessages(0);
 //enqueue current keyboard message to execute after timeInterval
 sendMessageDelayed(obtainMessage(0), timeInterval);
 }
}

@Override
public boolean onKeyUp(int keyCode, KeyEvent event) {

//execute TaskA and call handler to execute TaskB if
// key release message arrives after 'interval' has elapsed
 executeTaskA();
 myTaskHandler.sleep(interval);

 return true;
}

public void executeTaskA() {
...
}

public void executeTaskB() {
...
}

Chapter 15. Social Networking

15.1. Introduction: Social Networking

Ian Darwin

Discussion

In the second decade of this century, nobody writing about the Internet would
 underestimate the importance of social networking. Dominated as it is by
 a few major sites—Facebook and
 Twitter being the biggest of the big—social networking provides both an
 opportunity for developers and a missed opportunity for the developer
 community as a whole. Certainly there are still opportunities for
 creative use of social networking. But what is missing (despite valiant
 efforts) is a single “open social networking” API that includes
 authorization, messaging, and media interchange.
This chapter provides a few how-tos on accessing Facebook and
 Twitter, using plain HTTP (they all originated as web-based sites just
 before the explosion of mobile apps) and using more comprehensive but
 more-specific APIs.

15.2. Integrating Social Networking Using HTTP

Shraddha Shravagi

Problem

You need a basic level of social networking support in your
 app.

Solution

Instead of diving into the API, you can simply add social
 networking support.
For Facebook, Twitter, and LinkedIn integration, just follow three
 simple steps to get started:
	Download the logos for Facebook, Twitter, and LinkedIn.

	Create image buttons for each of them.

	Implement an event handler that, when the user presses the
 button, passes control to the relevant site and displays the results
 in a browser window.

Discussion

Here is a simple approach to adding basic social
 networking.
Step 1: Get the logos

Just download the logos from their respective websites, or use a
 web search engine.

Step 2: Create image buttons for each logo

The layout shown in Example 15-1 provides image buttons for
 each of the social networking sites. Figure 15-1 shows the buttons.
Example 15-1. The main layout
 <!-- Facebook button -->
 <ImageView android:src="@drawable/icon_facebook"
 android:layout_width="28dip"
 android:layout_height="28dip" android:id="@+id/facebookBtn"
 android:clickable="true"
 android:onClick="facebookBtnClicked" />

 <!-- Twitter button -->
 <ImageView android:src="@drawable/icon_twitter"
 android:clickable="true"
 android:layout_width="30dip" android:layout_height="28dip"
 android:id="@+id/twitterBtn" android:layout_marginLeft="3dp"
 android:layout_marginRight="3dp" android:onClick="twitterBtnClicked"
 />

 <!-- Linkedin button -->
 <ImageView android:src="@drawable/icon_linkedin"
 android:layout_width="28dip"
 android:layout_height="30dip" android:clickable="true"
 android:id="@+id/linkedinBtn"
 android:onClick="linkedinBtnClicked"
 />

[image: Social networking buttons]

Figure 15-1. Social networking buttons

Step 3: Implement the click event

The code in Example 15-2
 provides a series of listeners, each of which will open an
 Intent to the respective social networking website.
 These are added as OnClickListeners by use of
 android:onClick attributes in the layout in Example 15-1, so the main activity code
 is fairly short.
Example 15-2. The social networking action handling code
 /* The URL used here is for the application I want the user to redirect to,
 * and a comment about, for example, here I am
 * using http://goo.gl/eRAD9 as the URL. But you can use the URL of your app.
 * Take the URL from Google Play and shorten with bit.ly or Google URL shortener
 * */

 public void facebookBtnClicked(View v) {
 Toast.makeText(this,
 "Facebook Loading...\n Please make sure you are connected to the internet.",
 Toast.LENGTH_SHORT).show();
 String url="http://m.facebook.com/sharer.php?u=http%3A%2F%2Fgoo.gl%2FeRAD9";
 Intent i = new Intent(Intent.ACTION_VIEW);
 i.setData(Uri.parse(url));
 startActivity(i);
 }

 public void twitterBtnClicked(View v) {
 Toast.makeText(this,
 "Twitter Loading... \n Please make sure you are connected to the internet.",
 Toast.LENGTH_SHORT).show();
 /**/
 String url = "http://www.twitter.com/share?text=
 Checkout+This+Demo+http://goo.gl/eRAD9+";
 Intent i = new Intent(Intent.ACTION_VIEW);
 i.setData(Uri.parse(url));
 startActivity(i);
 }

 public void linkedinBtnClicked(View v) {
 Toast.makeText(this,
 "LinkedIn Loading... \n Please make sure you are connected to the internet",
 Toast.LENGTH_SHORT).show();
 String url="http://www.linkedin.com/shareArticle?url=
 http%3A%2F%2Fgoo.gl%2FeRAD9&mini=
 true&source=SampleApp&title=App+on+your+mobile";
 Intent intent=new Intent(Intent.ACTION_VIEW);
 intent.setData(Uri.parse(url));
 startActivity(intent);
 }

This is how, in three simple steps, you can get a social
 networking feature for your application. Here we used intents to start
 the site in the user’s browser; you could also use a
 WebView as shown in Recipe 13.7.

15.3. Loading a User’s Twitter Timeline Using JSON

Rachee Singh

Problem

You want to load a user’s Twitter timeline (his list of tweets) into an
 Android application.

Solution

Since timeline information is public, you don’t need to deal with
 Twitter’s authentication. You can just use an HttpGet
 request to obtain the data from the user’s Twitter page in JSON format.
 Then the user can process the JSON to obtain the tweets.

Discussion

In Example 15-3,
 HttpGet is used to obtain data from the Twitter page,
 in this example for the Times of India (a
 newspaper). The response obtained after executing the request should
 contain data from the Twitter page in JSON format. We check for the
 status code; and unless the code is 200, the request could not fetch the
 data. From the response, we obtain
 the JSON and put it into a StringBuilder object. The
 getTwitterTimeline() method returns the string that
 contains the data in JSON format.
Example 15-3. The getTwitterTimeline() method
public String getTwitterTimeline() {
 StringBuilder builder = new StringBuilder();
 HttpClient client = new DefaultHttpClient();
 HttpGet httpGet = new HttpGet(
 "http://twitter.com/statuses/user_timeline/timesofindia.json");
 try {
 HttpResponse response = client.execute(httpGet);
 StatusLine statusLine = response.getStatusLine();
 int statusCode = statusLine.getStatusCode();
 if (statusCode == 200) {
 HttpEntity entity = response.getEntity();
 InputStream content = entity.getContent();
 BufferedReader reader = new BufferedReader(new InputStreamReader(content));
 String line;
 while ((line = reader.readLine()) != null) {
 builder.append(line);
 }
 } else {
 //Couldn't obtain the data
 }
 } catch (ClientProtocolException e) {
 e.printStackTrace();
 } catch (IOException e) {
 e.printStackTrace();
 }
 return builder.toString();
 }
}

Now we process the JSON returned from the
 getTwitterTimeline() method in the standard way,
 using the getString() method. We then insert the
 tweets into a TextView. The result should look like
 Example 15-4
 and Figure 15-2.
Example 15-4. Loading the timeline from JSON into ListView
String twitterTimeline = getTwitterTimeline();
 try {
 String tweets = "";
 JSONArray jsonArray = new JSONArray(twitterTimeline);
 for (int i = 0; i < jsonArray.length(); i++) {
 JSONObject jsonObject = jsonArray.getJSONObject(i);
 int j = i+1;
 tweets +="*** " + j + " ***\n";
 tweets += "Date:" + jsonObject.getString("created_at") + "\n";
 tweets += "Post:" + jsonObject.getString("text") + "\n\n";
 }
 json= (TextView)findViewById(R.id.json);
 json.setText(tweets);
 } catch (JSONException e) {
 e.printStackTrace();
 }

[image: Twitter data parsed by JSON]

Figure 15-2. Twitter data parsed by JSON

Source Download URL

You can download the source code for this example from https://docs.google.com/leaf?id=0B_rESQKgad5LZDE3MzIxNmYtMDU3Yy00OTZjLTk2NTgtMDBiNTZiYjdlYzlm&hl=en_US.
[image: image with no caption]

Chapter 16. Location and Map Applications

16.1. Introduction: Location-Aware Applications

Ian Darwin

Discussion

Not that long ago, GPS devices were either unavailable, expensive, or
 cumbersome. Today, almost every smartphone has a GPS receiver, and many
 digital cameras do too. GPS is well on its way to becoming truly
 ubiquitous in devices. The organizations that provide map data have not
 been unaware of this trend. Indeed, OpenStreetMap exists and
 provides its “free, editable map of the world” in part because of the
 rise of consumer GPS devices—most of its map data was provided by
 enthusiasts. Google gets much of its data from commercial mapping
 services, but in Android, Google has been very driven by the
 availability of GPS receivers in Android devices. This chapter thus
 concentrates on the ins and outs of using Google Maps and OpenStreetMap
 in Android devices.

16.2. Getting Location Information

Ian Darwin

Problem

You just want to know where you are.

Solution

Use Android’s built-in location providers.
Android provides two levels of locational position. If you need to
 know fairly precisely where you are, you can use the
 FINE resolution, which is GPS-based. If you only need
 to know roughly where you are, you can use the COARSE
 resolution, which is based on the location of the cell phone tower(s)
 your phone is talking to or in range of. The fine resolution is usually
 accurate to a few meters; the coarse resolution may be accurate down to
 the building or city block in densely built-up areas, or as inaccurate
 as five or 10 kilometers in very lightly populated areas with cell
 towers maximally spaced out.

Discussion

Example 16-1 shows the setup
 portion of the code. This is part of JPStrack, a mapping
 application for OpenStreetMap. For
 mapping purposes the GPS is a must, so I only ask for the
 FINE resolution.
Example 16-1. Getting location data
 // Part of jpstrack Main.java
 LocationManager mgr =
 (LocationManager) getSystemService(LOCATION_SERVICE);
 for (String prov : mgr.getAllProviders()) {
 Log.i(LOG_TAG, getString(R.string.provider_found) + prov);
 }

 // GPS setup
 Criteria criteria = new Criteria();
 criteria.setAccuracy(Criteria.ACCURACY_FINE);
 List<String> providers = mgr.getProviders(criteria, true);
 if (providers == null || providers.size() == 0) {
 Log.e(JPSTRACK, getString(R.string.cannot_get_gps_service));
 Toast.makeText(this, "Could not open GPS service",
 Toast.LENGTH_LONG).show();
 return;
 }
 String preferred = providers.get(0); // first == preferred

After this setup, when you actually want to start the GPS sending
 you location data, you have to call LocationManager.requestLocationUpdates with
 the name of the provider you looked up previously, the
 minimum time between updates (in milliseconds), the minimum distance
 between updates (in meters), and an instance of the LocationListener interface. You should stop
 updates by calling removeUpdates
 with the previously passed-in LocationListener;
 doing so will reduce overhead and save battery life. In JPStrack the
 code looks like Example 16-2.
Example 16-2. Suspend and resume location updates
 @Override
 protected void onResume() {
 super.onResume();
 if (preferred != null) {
 mgr.requestLocationUpdates(preferred,
 MIN_SECONDS * 1000,
 MIN_METRES, this);
 }
 }

 @Override
 protected void onPause() {
 super.onPause();
 if (preferred != null) {
 mgr.removeUpdates(this);
 }
 }

Finally, the LocationListener’s
 onLocationChanged() method is called when the location changes, and this is
 where you do something with the location information.
 @Override
 public void onLocationChanged(Location location) {
 long time = location.getTime();
 double latitude = location.getLatitude();
 double longitude = location.getLongitude();
 // do something with latitude and longitude (and time?)...
 }
The remaining few methods in LocationListener can be stub methods.
What you do with the location data depends on your application, of
 course. In JPStrack I save it into a track file with handwritten
 XML-writing code. Commonly you would use it to update your position on a
 map, or upload it to a location service. There’s no limit to what you
 can do with it.

Source Download URL

You can download the source code for this example from http://www.darwinsys.com/jpstrack/.
[image: image with no caption]

16.3. Accessing GPS Information in Your Application

Pratik Rupwal

Problem

You need access to the GPS location in a class of your
 application.

Solution

Add a class that implements the LocationListener interface. Create an
 instance of this class where you want to access the GPS information and
 retrieve the data.

Discussion

In Example 16-3 the
 MyLocationListener class implements
 LocationListener.
Example 16-3. LocationListener implementation
public class MyLocationListener implements LocationListener
 {

 @Override
 public void onLocationChanged(Location loc)
 {
 loc.getLatitude();
 loc.getLongitude();

 }

 @Override
 public void onProviderDisabled(String provider)
 {

 }
 @Override
 public void onProviderEnabled(String provider)
 {

 }
 @Override
 public void onStatusChanged(String provider, int status, Bundle extras)
 {

 }
 }// End of Class MyLocationListener.

Add the class file in Example 16-3 in the package of
 your application; you can use its instance as shown in Example 16-4 to access GPS
 information in any class.
You can use the Location object
 loc in onLocationChanged
 to access GPS information; however, it is not always
 possible in an application to perform all the GPS information-related
 tasks in this overridden method due to reasons such as data
 accessibility. For example, in an application providing information on
 shopping malls near the user’s current location, the app accesses the
 names of malls according to the user’s location and displays them to the
 user; when the user chooses a mall, the app displays the different
 stores in that mall. In this example, the application uses the user’s
 location to determine which mall name to fetch from the database through
 a database handler that is a private member of the class hosting the
 view to the display list of malls; hence that database handler cannot be
 accessible in this overridden method, and therefore this operation
 cannot be carried out.
Example 16-4. Class that uses the LocationListener
public class AccessGPS extends Activity
{
//declaration of required objects

LocationManager mlocManager;
LocationListener mlocListener;
Location lastKnownLocation;
Double latitude,longitude;
...
...

protected void onCreate(Bundle savedInstanceState)
{
 ...
 ...
//instantiating objects for accessing GPS information.

mlocListener = new MyLocationListener();

//request for location updates

mlocManager.requestLocationUpdates(LocationManager.GPS_PROVIDER, 0, 0, mlocListener);
locationProvider=LocationManager.GPS_PROVIDER;
...
...

// Access the last identified location

lastKnownLocation = mlocManager.getLastKnownLocation(locationProvider);

// The above object can be used for accessing GPS data as below

latitude=lastKnownLocation.getLatitude();
longitude=lastKnownLocation.getLongitude();

// The above GPS data can be used to carry out the operations specific to the location.
...
...

}
}

16.4. Mocking GPS Coordinates on a Device

Emaad Manzoor

Problem

You need to demonstrate your application, but you are scared it might
 choke when trying to triangulate your GPS coordinates. Or you’d like to
 simulate being in a place you’re not.

Solution

Attach a mock location provider to your LocationManager object, and then
 attach mock coordinates to the mock location provider.

Discussion

Writing the setMockLocation method

The function in Example 16-5 is what you will
 eventually use in your application to set mock GPS coordinates on the
 device.
Example 16-5. Setting mock GPS coordinates
private void setMockLocation(double latitude, double longitude, float accuracy) {
 lm.addTestProvider (LocationManager.GPS_PROVIDER,
 "requiresNetwork" == "",
 "requiresSatellite" == "",
 "requiresCell" == "",
 "hasMonetaryCost" == "",
 "supportsAltitude" == "",
 "supportsSpeed" == "",
 "supportsBearing" == "",
 android.location.Criteria.POWER_LOW,
 android.location.Criteria.ACCURACY_FINE);

 Location newLocation = new Location(LocationManager.GPS_PROVIDER);

 newLocation.setLatitude(latitude);
 newLocation.setLongitude(longitude);
 newLocation.setAccuracy(accuracy);

 lm.setTestProviderEnabled(LocationManager.GPS_PROVIDER, true);

 lm.setTestProviderStatus(LocationManager.GPS_PROVIDER,
 LocationProvider.AVAILABLE,
 null,System.currentTimeMillis());

 lm.setTestProviderLocation(LocationManager.GPS_PROVIDER, newLocation);

}

What’s happening?

In Example 16-5, we
 add a mock provider using the addTestProvider method of the
 LocationManager class. Then we create a new
 location using the Location object, which allows
 us to set latitude, longitude, and accuracy.
We activate the mock provider by first setting a mock-enabled
 value for the LocationManager using its
 setTestProviderEnabled() method; then we set a
 mock status, and finally a mock
 location.

Using the setMockLocation method

To use the method, you must create a LocationManager object as you usually would,
 and then invoke the method with your coordinates (see Example 16-6).
Example 16-6. Mocking location
LocationManager lm = (LocationManager)getSystemService(Context.LOCATION_SERVICE);

lm.requestLocationUpdates(LocationManager.GPS_PROVIDER, 0, 0, new LocationListener() {
 @Override
 public void onStatusChanged(String provider, int status, Bundle extras) {}
 @Override
 public void onProviderEnabled(String provider) {}
 @Override
 public void onProviderDisabled(String provider) {}
 @Override
 public void onLocationChanged(Location location) {}
});

/* Set a mock location for debugging purposes */
setMockLocation(15.387653, 73.872585, 500);

Note
You may need to restart the device after using the mock GPS to
 reenable the real GPS.

Example application usage

Find Me
 X is an Android application that takes in a search query of the
 form place_type in locality,
 city and returns results augmented with their
 distance from the user. The location in this application is mocked to
 be BITS–Pilani Goa Campus, Goa, India.

See Also

Recipe 16.2; http://developer.android.com/reference/android/location/LocationManager.html;
 http://developer.android.com/reference/android/location/Location.html

Source Download URL

You can download the source code for this example from https://github.com/emaadmanzoor/findmex.
[image: image with no caption]

16.5. Using Geocoding and Reverse Geocoding

Nidhin Jose Davis

Problem

You want to geocode (convert an address to its coordinates) and
 reverse geocode (convert coordinates to an address).

Solution

Use the built-in Geocoder class.

Discussion

Geocoding is the process of finding the geographical coordinates
 (latitude and longitude) of a given address or location.
Reverse geocoding, as you might have guessed, is the opposite of
 geocoding. In this case a latitude and longitude pair is converted into
 an address or location.
In order to geocode or reverse geocode the first thing to do is to
 import the Geocoder class:
import android.location.Geocoder;
The geocoding or reverse geocoding should not be done on the UI
 thread as it may involve server access, and thus might cause the system
 to display an Application Not Responding (ANR) dialog to the user. The
 work has to be done in a separate thread. Example 16-7 shows the code for geocoding and Example 16-8 shows the code for reverse
 geocoding.
Example 16-7. To geocode
Geocoder gc = new Geocoder(context);

if(gc.isPresent()){
 List<Address> list =
 gc.getFromLocationName("1600 Amphitheatre Parkway, Mountain View, CA", 1);

 Address address = list.get(0);

 double lat = address.getLatitude();
 double lng = address.getLongitude();
}

Example 16-8. To reverse geocode
Geocoder gc = new Geocoder(context);

if(gc.isPresent()){
 List<Address> list = gc.getFromLocation(37.42279, -122.08506,1);

 Address address = list.get(0);

 StringBuffer str = new StringBuffer();
 str.append("Name: " + address.getLocality() + "\n");
 str.append("Sub-Admin Areas: " + address.getSubAdminArea() + "\n");
 str.append("Admin Area: " + address.getAdminArea() + "\n");
 str.append("Country: " + address.getCountryName() + "\n");
 str.append("Country Code: " + address.getCountryCode() + "\n");

 String strAddress = str.toString();
}

16.6. Getting Ready for Google Maps Development

Johan Pelgrim

Problem

You want to get set up to use Google MapView layout elements in your Android
 app.

Solution

Use the Google Maps API library, a MapView layout element, and a MapActivity.

Discussion

Let’s start by creating an Android project that displays a default
 map.
Setting up an AVD that makes use of the Google API SDK
 libraries

When you create a new Android project you have to indicate which
 minimum SDK version your app needs and which SDK version you are
 targeting. Since we will be using the Google Maps API we have to make
 sure we have an Android Virtual Device (AVD) with those libraries
 pre-installed.
Make sure you have an AVD with a build target of “Google APIs -
 1.5 - API level 3” or higher. See Figure 16-1.
[image: Creating an AVD with Google API support]

Figure 16-1. Creating an AVD with Google API support

Creating a new Android project that targets “Google APIs - 1.5
 - API level 3”

Now you need to create a MapTest project that targets “Google APIs -
 1.5 - API level 3” or higher, and uses minSDKversion 3 (see Figure 16-2). Let the Android
 New Project Wizard create a MapTest activity for
 you. Click Finish.
The MapView element
 can only live inside a MapActivity, so make sure the MapTest activity extends that class.
 A MapActivity must
 implement the isRouteDisplayed()
 method. This method is required for some accounting from the Maps
 service to see if you’re currently displaying any route information.
 In this example, we are not. We still have to implement the method,
 but it’s OK to simply return false
 for now. To be able to zoom in the map we can set the built-in zoom
 controls to true by calling the
 setBuiltInZoomControls method on the MapView
 object. Example 16-9 shows the
 code.
Example 16-9. The MapTest class
package nl.codestone.cookbook.maptest;

import android.os.Bundle;

import com.google.android.maps.MapActivity;

public class MapTest extends <tt>MapActivity</tt> {

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 MapView mapview = (MapView) findViewById(R.id.mapview);
 mapview.setBuiltInZoomControls(true);

 }

 @Override
 protected boolean isRouteDisplayed() {
 return false;
 }
}

[image: Creating the project with Google API support]

Figure 16-2. Creating the project with Google API support

Adding the MapView element to your layout file

Open the res/layout/main.xml file. Delete
 the TextView element and replace it
 with a MapView element:
<com.google.android.maps.MapView
 android:id="@+id/mapview"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:apiKey="your_api_key_here"
 android:clickable="true"
 />
Some highlights here:
	The MapView is not part
 of the standard com.android.view package, so we have to include the full package name in this
 element.

	We have to set the android:clickable attribute to true
 to be able to drag the map and zoom in and out.

	Your MapView object has
 to be configured with a personalized Google Maps API key in a special attribute android:apiKey, on the MapView definition. You can obtain this key by registering
 your MD5 hash from the keystore you sign your
 apps with (or the debug.keystore during your
 development cycle).

Registering the Google Maps API key

A full description of how to register a Google Maps API key is available at
 http://code.google.com/android/add-ons/google-apis/mapkey.html.
This section extracts the minimal steps to get such a key. If
 you get stuck please refer to the full description provided by
 Google.
Android applications have to be signed with a certificate. These
 certificates are kept in a keystore. For your commercial apps you have
 to work with a private (self-signed) certificate that is imported in
 a keystore. When you
 create and deploy Android applications in your development environment
 a debug.keystore is used to sign
 your applications. This debug.keystore is located
 in an .android directory in your user directory.
 You need your private androiddebugkey key entry’s fingerprint (MD5 hash) to register for a Google Maps API
 key.
Open a command shell and change to the
 .android directory located in your user directory
 (e.g., cd ~/.android in Unix-like
 environments).
Issue the following command:
keytool -list -alias androiddebugkey -keystore debug.keystore -storepass android
You will be presented with something like this:
androiddebugkey, 29-mrt-2011, PrivateKeyEntry,
Certificate fingerprint (MD5): 2E:54:39:DB:33:E7:D6:3A:9E:18:3D:7F:FB:6D:BC:8D
Copy the bit after Certificate
 fingerprint (MD5): to your clipboard and go to http://code.google.com/android/maps-api-signup.html
 to sign up for a Google Maps API key.
You’ll receive a key like this:
18Qcs3h-Sq5l8A7L56bjLwY1gwxgeMYF9Rp_0Cg
Copy and paste this key in the android:apiKey attribute in the MapView element in your
 res/main.xml layout file. If you are
 instantiating a MapView directly
 from code, you should pass the Maps API key in the MapView constructor.
Tip
You can always regenerate the key as described in the
 preceding steps, so there’s no need to keep this key somewhere safe.
 On the other hand, you’d better make a copy of the keystore you use for signing your personal apps!

Make the following changes in the
 AndroidManifest.xml file, as shown in Example 16-10:

	You have to register a <uses-permission
 android:name="android.permission.INTERNET"/> in your
 AndroidManifest.xml file to be able to get map tile information from the Internet.
 These map tiles are automatically cached in your
 apps-data directory, so you don’t have to do
 anything extra for that.

	The Google Maps classes are not standard, so you have to
 indicate that you use the com.google.android.maps
 library in your AndroidManifest.xml
 file.

Example 16-10. Example AndroidManifest.xml file
<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="nl.codestone.cookbook.maptest"
 android:versionCode="1"
 android:versionName="1.0">
 <uses-sdk android:minSdkVersion="3" />

 <uses-permission android:name="android.permission.INTERNET" />

 <application android:icon="@drawable/icon" android:label="@string/app_name">

 <activity android:name=".MapTest"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>

 <uses-library android:name="com.google.android.maps" />

 </application>
</manifest>

There’s another file called
 default.properties (or
 project.properties depending on which version of
 the Android SDK you are using), which contains the build target
 (level) of your app. This file is automatically generated when you
 created this project, so there is no need to change anything. It is
 good to know that the build target level is defined here if you decide
 to increase or decrease it at some point. You can either change the
 level in this file or do it via the project properties dialog in
 Eclipse.
target=Google Inc.:Google APIs:3
That’s it! Start your AVD and run your Android application. If
 all’s well you should see a map of North and South America which you
 can drag around and zoom into! (See Figure 16-3.)
[image: Map of the Americas]

Figure 16-3. Map of the Americas

Checklist

We end this recipe with a checklist that you can use to quickly
 set up projects for the other Google Maps recipes:
	Use an AVD that makes use of the Google API SDK
 libraries.

	Your Activity should
 extend the MapActivity class.

	You must implement the isRouteDisplayed() method. The
 default—let it return false—is
 fine in most cases.

	Set the built-in zoom controls to true by
 calling the setBuiltInZoomControls method on
 the MapView object.

	Add the full package name to the MapView
 element in your layout file (i.e., com.google.android.maps.MapView).

	Add your Google Maps API key to the android:apiKey attribute on the MapView element.

	If you are instantiating a MapView directly from code, you should
 pass the Google Maps API key directly in the MapView constructor.

	Set the android:clickable
 attribute on the MapView
 element to true to be able to
 drag the map and zoom in and out.

	Register a <uses-permission
 android:name="android.permission.INTERNET "/> as a
 child of the manifest element
 in your AndroidManifest.xml file.

	Register a <uses-library
 android:name="com.google.android.maps" /> as a child
 of the application element in
 your AndroidManifest.xml file.

See Also

The Google APIs
 project on Google Code; the Google API key
 sign-up page

Source Download URL

You can download the source code for this example from https://github.com/downloads/jpelgrim/androidcookbook/MapTest.zip.
[image: image with no caption]

16.7. Adding a Device’s Current Location to Google Maps

Rachee Singh

Problem

You want to show the current location of the device on Google
 Maps.

Solution

Using the MyLocationOverlay class, the current
 location of the device can be depicted on the map.
Despite its name, which makes it sound like it’s an example we
 made up for use in this book, MyLocationOverlay is a standard
 Android class, in the package com.google.android.maps.

Discussion

Add the following permissions to the Android manifest file:
<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" />
<uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION" />
When adding a MapView to your application,
 the following lines of code should be present in the XML layout. The ID
 of the MapView is map.
 <com.google.android.maps.MapView
 android:id="@+id/map"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:layout_below="@id/map_location_button"
 android:layout_above="@+id/use_this_location_button"
 android:clickable="true"
 android:apiKey="Your API Key Should be placed here"/>
In the Java class for the activity that displays the
 MapView, add a field:
 private MyLocationOverlay myLocationOverlay;
Also, get a handle to the MapView defined in
 the XML and add a MyLocationOverlay. After that, call
 the invalidate() method.
 mapView = (MapView)findViewById(R.id.map);
 myLocationOverlay = new MyLocationOverlay(this, mapView);
 mapView.getOverlays().add(myLocationOverlay);
 mapView.invalidate();
To prevent depletion of battery power, in the onPause method of the class the
 disableMyLocation() method should be called, similar
 to what was done in Example 16-2. (See Example 16-11.)
Example 16-11. Providing onPause and onResume to conserve battery life
@Override
 protected void onPause() {
 super.onPause();
 myLocationOverlay.disableMyLocation();
 }

 @Override
 protected void onResume() {
 super.onResume();
 myLocationOverlay.enableMyLocation();
 }

Source Download URL

You can download the source code for this example from https://docs.google.com/leaf?id=0B_rESQKgad5LZGU1ZmIzYjUtZTY3OS00MjczLWIxNDAtNzY4NjI5ZWJmMzZj&hl=en_US&authkey=CNb-xe8C.
[image: image with no caption]

16.8. Drawing a Location Marker on a Google MapView

Johan Pelgrim

Problem

You have a geolocation and you want to display it on a Google
 MapView.

Solution

Create an instance of Overlay,
 draw your marker in it, and add it to the MapView overlays. Animate to the given
 geopoint.

Discussion

Create a new project called “Location on Map” and use Recipe 16.6 to set it up correctly (or simply use the
 MapTest code from that recipe). If all’s well you
 should have an onCreate that looks
 like this:
@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 MapView mapView = (MapView) findViewById(R.id.mapview);
 mapView.setBuiltInZoomControls(true);

}
We are going to make this app a little more interesting. First we
 are going to set the view type to satellite so that
 we are shown some more recognizable terrain information:
mapView.setSatellite(true);
Run your application to see the effect.
You can add traffic information by calling setTraffic, but
 that works best with map information, not terrain information.
We can drag and zoom around on this map, but let’s automatically
 animate to a certain geolocation. First, create a private field called
 geoPoint and set it to some
 geolocation. Note that the GeoPoint
 constructor takes integer arguments for the latitude and longitude
 values and not floating points! You can convert a floating-point
 latitude-longitude pair by multiplying it by 1 million, or 1E6 in Java terms:
GeoPoint geoPoint = new GeoPoint((int) (52.334822 * 1E6), (int) (4.668907 * 1E6));
We need a handle to the MapView’s MapController to set the zoom level and animate to a given GeoPoint:
MapController mc = mapView.getController();
mc.setZoom(18);
mc.animateTo(geoPoint);
Pretty easy. Fire up the application to see what we’ve done here.
 Play around with the zoom level. What is the minimum value you can set?
 What is the maximum value?
The technique used to display way markers, your current location
 and other points of interest, on a map is done with
 overlays (see Figure 16-4). You can think of an overlay as
 you’ve probably seen them in the old days, used in combination with an
 overhead projector. Overlays can be seen as those transparent plastic
 sheets, which sometimes had graphics or text on them. You can layer
 several overlays on a single MapView.
[image: Map overlays]

Figure 16-4. Map overlays

Create a private inner class that extends Overlay and override the draw method. We’re calling this class
 MyOverlay, which (unlike in Recipe 16.7)
 actually is an example class (see Example 16-12).
Example 16-12. The MyOverlay class
private class MyOverlay extends com.google.android.maps.Overlay {

 @Override
 public void draw(Canvas canvas, MapView mapView, boolean shadow) { [image: 1]
 super.draw(canvas, mapView, shadow);

 if (!shadow) { [image: 2]

 Point point = new Point();
 mapView.getProjection().toPixels(geoPoint, point); [image: 3]

 Bitmap bmp =
 BitmapFactory.decodeResource(getResources(), R.drawable.marker_default); [image: 4]

 int x = point.x - bmp.getWidth() / 2; [image: 5]

 int y = point.y - bmp.getHeight(); [image: 6]

 canvas.drawBitmap(bmp, x, y, null); [image: 7]
 }

 }

}

A couple of things are done here:
	[image: 1]
	The draw method has a couple of arguments. The first argument
 is a handle to an instance of Canvas which we will use to draw our
 marker on. The second is an instance of MapView on which this overlay is
 displayed. The third argument is a boolean that indicates whether we
 are drawing the actual image, or the shadow. In fact, this method is
 called twice: once to draw the shadow and once to draw the actual
 thing you want to draw.

	[image: 2]
	We don’t want to draw a shadow.

	[image: 3]
	We translate the geopoint to actual pixels and store this
 information in the point
 variable.

	[image: 4]
	We use the resource identifier to decode it to an actual
 instance of Bitmap so that we can
 draw it on the canvas

	[image: 5]
	We calculate the x coordinate of where to
 draw the marker. We shift it to the left so that the
 center of the image is aligned with the
 x coordinate of the geopoint.

	[image: 6]
	We calculate the y coordinate of where to
 draw the marker. We shift it upward so that the
 bottom of the image is aligned with the
 y coordinate of the geopoint.

	[image: 7]
	We draw the bitmap at the calculated x and y locations.

You can use this image as the
 marker_default.png. Drop it in your
 ./res/drawable directory.
[image: image with no caption]

You can manipulate the overlays by calling getOverlays()
 on the MapView instance:
List<Overlay> overlays = mapView.getOverlays();
overlays.clear();
overlays.add(new MyOverlay());

mapView.invalidate();
To force a view to draw, call the invalidate() method, which is implemented
 in the View
 class.
That’s it. Fire it up and you should see something like Figure 16-5.
[image: The marker on a Google map]

Figure 16-5. The marker on a Google map

See Also

Recipe 16.6

Source Download URL

You can download the source code for this example from https://github.com/downloads/jpelgrim/androidcookbook/LocationOnMap.zip.
[image: image with no caption]

16.9. Drawing Multiple Location Markers on a MapView

Johan Pelgrim

Problem

You have several geopoints that you want to display on a Google
 MapView.

Solution

Implement the ItemizedOverlay
 abstract class and add various OverlayItems to it.

Discussion

Introduction

If you want to draw multiple location markers in your MapView you can, of course, take the
 approach of implementing the Overlay interface
 and do all the resource gathering and drawing in an overridden
 draw() method, as was done in Recipe 16.8. This can become
 cumbersome and hard to maintain. If you want to do
 core drawing of lines and shapes you cannot avoid
 overriding the draw() method, but
 when it comes down to drawing several simple location markers and
 handling user clicks on those markers (to name something) the Google
 Maps API has introduced the ItemizedOverlay. This
 abstract class is meant to maintain a list of
 Overlay items and display it as an
 aggregated Overlay on the MapView. ItemizedOverlay itself implements the
 Overlay interface. Besides that, it
 implements sorting north-to-south for drawing,
 creating span bounds, drawing a marker for each point, and maintaining
 a focused item. It also matches screen-taps to items, and dispatches
 focus-change events to an optional listener. This looks like the right
 candidate to display a couple of location markers on our MapView.

Adding the ItemizedOverlay to your MapView

Let’s begin with the skeleton Google Maps project described in
 Recipe 16.6; alternatively,
 you can create your own and refer to the checklist at the end of this
 recipe to make sure you are good to go.
Add an inner class to your MapActivity that extends ItemizedOverlay and implements the abstract
 methods and the default constructor. The ItemizedOverlay uses your implementations of
 the createItem and
 size() methods to get hold of all
 the overlay items in your implementation and do the aggregation. (See
 Example 16-13.)
Example 16-13. The ItemizedOverlay implementation
 private class MyItemizedOverlay extends ItemizedOverlay<OverlayItem> {

 public MyItemizedOverlay(Drawable defaultMarker) {
 super(defaultMarker);
 }

 @Override
 protected OverlayItem createItem(int i) {
 return null;
 }

 @Override
 public int size() {
 return 0;
 }
 }

The defaultMarker is a
 drawable that is drawn on every OverlayItem we add to our ItemizedOverlay. Whenever you add a drawable
 to an OverlayItem you must set its
 bounding rectangle via the setBounds method. Or you can use one of the
 two convenience methods boundCenterBottom or boundCenter, which sets the bounding
 rectangle to the center-bottom or the center, respectively. Note: a
 call to boundCenterBottom basically
 results in this call to setBounds
 (given marker is an instance of
 Drawable: marker.setBounds(-marker.getIntrinsicWidth()/2,
 -marker.getIntrinsicHeight(), marker.getIntrinsicWidth() /2,
 0);. Typically the constructor is rewritten like
 this:
 public MyItemizedOverlay(Drawable defaultMarker) {
 super(boundCenterBottom(defaultMarker));
 }
We want to add several OverlayItem instances, so we add a List to this inner type and modify the
 createItem(int i) and size() methods to use our new list (see
 Example 16-14).
Example 16-14. Multiple OverlayItems
 private List<OverlayItem> mOverlays = new ArrayList<OverlayItem>();

 @Override
 protected OverlayItem createItem(int i) {
 return mOverlays.get(i);
 }

 @Override
 public int size() {
 return mOverlays.size();
 }

So far so good. Now we add a convenience method to add OverlayItems to our internal list.
 public void addOverlayItem(OverlayItem overlayItem) {
 mOverlays.add(overlayItem);
 populate();
 }
The populate() method is a
 utility method that performs all processing on a new
 ItemizedOverlay. We provide
 Items through the
 createItem(int) method. A good rule of thumb is to
 call this as soon as we have data in our
 ItemizedOverlay, before anything else gets
 called.
We’re basically done with our inner class. Let’s add some
 statements to our onCreate method
 of the surrounding MapActivity to
 add some OverlayItems to our
 implementation of ItemizedOverlay.

Using MyItemizedOverlay in onCreate

Let’s expand our onCreate
 method and create an instance of our MyItemizedOverlay inner type.
Drawable markerDefault = this.getResources().getDrawable(R.drawable.marker_default);
MyItemizedOverlay itemizedOverlay = new MyItemizedOverlay(markerDefault);
Now let’s add some overlay items. When creating an OverlayItem we must provide three things to
 the constructor: one GeoPoint and
 two Strings, one for the title and
 one for an additional snippet of text. Let’s add an OverlayItem for the city of
 Amsterdam.
 GeoPoint point = new GeoPoint(52372991, 4892655);
 OverlayItem overlayItem = new OverlayItem(point, "Amsterdam", null);
 itemizedOverlay.addOverlayItem(overlayItem);
Let’s add another convenience method to our MyItemizedOverlay inner type that basically
 takes two int values for
 latitude and longitude and a
 String for a title.
public void addOverlayItem(int lat, int lon, String title) {
 GeoPoint point = new GeoPoint(lat, lon);
 OverlayItem overlayItem = new OverlayItem(point, title, null);
 addOverlayItem(overlayItem);
}
We can now rewrite our addition of the Amsterdam OverlayItem and add two more, one for London
 and one for Paris.
 itemizedOverlay.addOverlayItem(52372991, 4892655, "Amsterdam");
 itemizedOverlay.addOverlayItem(51501851, -140623, "London");
 itemizedOverlay.addOverlayItem(48857522, 2294496, "Paris");
The next step is to add our itemized overlay to the MapViews overlays. We get a handle to the
 list of overlays with a call to getOverlays().
mapView.getOverlays().add(itemizedOverlay);
Finally, we manipulate the MapView’s MapController to show the right area and
 zoom level on our MapView. We set
 the center to a GeoPoint of
 Dunkerque, which appears to be a nice center. There is no getCenter() convenience method in the
 ItemizedOverlay class, but this is
 something you can easily implement yourself if you want to. We can set
 the zoom level to a fixed level, but the ItemizedOverlay class does have some nice
 methods to calculate the span that covers all its overlay items. We
 use this to call zoomToSpan on
 the MapController
 instance.
MapController mc = mapView.getController();
mc.setCenter(new GeoPoint(51035349, 2370987)); // Dunkerque, Belgium
mc.zoomToSpan(itemizedOverlay.getLatSpanE6(), itemizedOverlay.getLonSpanE6());
We’re done! When you fire up your app you should see something
 like Figure 16-6.
[image: Multiple location markers on one map]

Figure 16-6. Multiple location markers on one map

Extra exercise: Draw an alternate
 marker

Search Google for some nice 100 × 100 pixel markers and place
 them in your ./res/drawable directory. Add
 these drawables as an extra argument to your addOverlayItem convenience method. When
 you create your OverlayItem instance use the setMarker(Drawable drawable) method to
 assign a different marker drawable. Remember to set the bounds by
 calling the boundCenterBottom or
 boundCenter convenience method,
 or do the math yourself and call setBounds. Good luck! (The accompanying
 source code has the solution if these hints are not
 sufficient.)

Do something when the user clicks your
 marker

Finally, the ItemizedOverlay class has some nice
 features to handle taps and focus changes on your overlay items. In
 this final section we will implement the onTap(int index) method to show a Toast message which displays our overlay
 item’s title. Of course, you can do whatever you want when a user
 taps your marker: show a dialog or another activity, draw a view on
 the map with addView, and so on.
 As you will see, this could not be simpler!
 @Override protected boolean onTap(int index) {
 Toast.makeText(MainActivity.this, getItem(index).getTitle(),
 Toast.LENGTH_LONG).show();
 return true;
 }
We return true to indicate
 we have handled the tap event. If we return false
 the onTap is executed for all the overlay items
 in our ItemizedOverlay.
Again, when taking your app for a spin, you should see
 something like Figure 16-7 when you tap near
 your Paris location marker.
[image: Several different markers on one map]

Figure 16-7. Several different markers on one map

See Also

Recipe 16.6

Source Download URL

You can download the source code for this example from https://github.com/downloads/jpelgrim/androidcookbook/MultipleLocationsOnMap.zip.
[image: image with no caption]

16.10. Creating Overlays for a Google MapView

Rachee Singh

Problem

You need to demarcate a point on a Google map using an image.

Solution

Use the concept of map overlays.

Discussion

Creating your own map overlay is a two-step process:
	Extend the Overlay class and implement the required functionality (the type and
 characteristics of the overlay) in that class. This is shown in
 Example 16-15.

	Another class that controls that Google map on the screen then
 instantiates the class that extends
 Overlay.

 public class AddressOverlay extends Overlay
Example 16-15. Constructor initialization in the AddressOverlay class
 public AddressOverlay(Context context, Address address, int drawable) {
 super();
 this.context=context;
 this.drawable=drawable;
 assert(null != address);
 this.setAddress(address);
 Double convertedLongitude = address.getLongitude() * 1E6;
 Double convertedLatitude = address.getLatitude() * 1E6;

 setGeopoint(new GeoPoint(
 convertedLatitude.intValue(),
 convertedLongitude.intValue()));
 }

Override the draw() method of the
 Overlay class, as shown in Example 16-16.
Example 16-16. Drawing the overlay
 @Override
 public boolean draw(Canvas canvas, MapView mapView, boolean shadow, long when) {
 super.draw(canvas, mapView, shadow);
 Point locationPoint = new Point();
 Projection projection = mapView.getProjection();
 projection.toPixels(getGeopoint(), locationPoint);

 // Reading the image
 Bitmap markerImage =
 BitmapFactory.decodeResource(context.getResources(), drawable);

 // Drawing the image, keeping the center of the image at the address's location
 canvas.drawBitmap(markerImage,locationPoint.x - markerImage.getWidth() / 2,
 locationPoint.y - markerImage.getHeight() / 2, null);
 return true;
 }

In the class that is implementing the map view’s function, add the
 code in Example 16-17
 to add an overlay on the map.
Example 16-17. Instantiating the overlay implementation
 List<Overlay> mapOverlays = mapView.getOverlays();
 // Instantiating the AddressOverlay class we just defined
 // 'androidmarker' is the name of the image that you wish to place on the map
 AddressOverlay addressOverlay =
 new AddressOverlay(this, address, R.drawable.androidmarker);
 // adding the overlay to the map
 mapOverlays.add(addressOverlay);
 mapView.invalidate();

16.11. Changing Modes of a Google MapView

Rachee Singh

Problem

You want to set the appropriate mode of a MapView—map,
 street, or satellite—based on the context in the application.

Solution

The MapView class provides methods for changing
 the mode of a map from the default (map) mode to satellite or street
 mode.

Discussion

If the application needs to display distance information between
 two locations on the map, keeping the map in street mode is more
 suitable. Similarly, some applications might need to use the satellite
 view of Google maps. You can do this programmatically using the
 following code:
//For street view
mapView.setStreetView(true);

//For satellite view
mapView.setSatellite(true);

16.12. Drawing an Overlay Icon Without Using a Drawable

Keith Mendoza

Problem

You want to display a map overlay in a MapView without using
 Drawable objects.

Solution

Override the ItemizedOverlay’s
 draw() function.

Discussion

This recipe assumes that you have at least done the “Hello,
 MapView” tutorial in Recipe 16.1, so I will not cover what
 abstract functions you need to implement from
 ItemizedOverlay. The complete source code for the
 sample app, Nearby Metars 01.01.0.2, is available for download, so some of the code
 for the classes mentioned will not be shown in full.
Overview

Nearby Metars displays the cloud condition icon and the
 direction part of the wind near an airport as an overlay on a
 MapView. This icon is drawn in such a way that the
 cloud condition covers the scale equivalent of about one mile around
 the airport. For anyone curious here is the description of METAR taken
 from the METARs
 help page provided by NOAA’s Aviation Weather Center:
Weather stations all over the world report weather conditions
 every hour using a data format referred to as METAR (this is a
 French acronym with a loose English translation to “routine aviation
 weather observation”). These data are collected centrally by the
 U.S. National Weather Service (and other country’s equivalents) and
 distributed.

Page
 4 of the help page shows the cloud coverage icons. These are
 the icons that need to be drawn as an overlay over the airport to
 depict the cloud coverage. The wind barb points the wind direction
 (it’s actually the direction the wind is coming from).

Overriding the ItemizedOverlay::draw() function

ItemizedOverlay::draw() is
 called whenever the MapView needs
 to be redrawn for whatever reason. Here is the function signature of
 the draw() function:
public void draw(android.graphics.Canvas canvas,
 MapView mapView,
 boolean shadow)
Here are the parameter descriptions taken from the API
 document:
	canvas
	The Canvas upon which to draw. Note
 that this may already have a transformation applied, so be sure
 to leave it the way you found it.

	mapView
	The MapView that requested the draw.
 Use MapView.getProjection() to
 convert between on-screen pixels and latitude/longitude
 pairs.

	shadow
	If true, draw the shadow layer. If
 false, draw the overlay contents.

Each time the screen is redrawn the draw() function will be called twice: once
 when shadow is true, and again
 when shadow is false. For Nearby
 Metars there is no need to draw shadows in overlay items.
For Nearby Metars, MetarList is the
 MetarItem-specific implementation of
 ItemizedOverlay. This class overrides the abstract
 functions, and the draw() function. This is the
 code for MetarList::draw():
public void draw(android.graphics.Canvas canvas, MapView mapView, boolean shadow) {
 if(!shadow) {
 Log.v("NearbyMetars", "Drawing items");
 MetarItem item;
 for(int i=0; i<mOverlays.size(); i++) {
 item = mOverlays.get(i);
 item.draw(canvas, mapView);
 }
 }
}
mOverlays is an instance of
 ArrayList<MetarItem>.
 Whenever draw() is called, we
 iterate through mOverlays and call
 MetarItem::draw(). This
 implementation makes MetarList and
 MetarItem tightly coupled for the
 sake of performance.

Overview of the MetarItem class

This class is a subclass of OverlayItem. The mTitle and mSnippet fields inherited from OverlayItem are used for the ICAO
 (International Civil Aviation Organization) airport codes, and the raw
 metar string, respectively. Two fields are added in
 MetarItem:
	skyCond
	This is an instance of the SkyConds
 enumerated type defined inside MetarItem.

	windDir
	This is a float value to store the wind
 direction.

Overview of the MetarItem::draw() function

This is where the real work of drawing the icon onto the canvas
 happens. In the METAR charts from ADDS, the cloud condition icons are
 drawn using the colors to depict the flight category in effect for
 that airport; however, as of version 01.01.0.2 Nearby Metars doesn’t
 depict the flight category, so the icons are all black. For clarity,
 the code is broken into sections and the explanation follows each code
 snippet.
public void draw(Canvas canvas, MapView mapView) {
This function takes two parameters: canvas
 and mapView. These two parameters have the same
 types as the first two parameters of ItemizedOverlay::draw().
 //Get the bounds of the icon
 Point point = new Point();
 Projection projection = mapView.getProjection();
 projection.toPixels(mPoint, point);
First we convert the latitude, longitude coordinates of the
 airport to (x,y) coordinates. Projection::toPixels() takes a
 GeoPoint object that stores the latitude, longitude
 of the location that will be marked by the overlay as the first
 parameter, and a Point instance to store the (x,y)
 coordinates of that location in the MapView
 canvas.
 final float project =
 (float)((projection.metersToEquatorPixels((float)1609.344) > 10) ?
 projection.metersToEquatorPixels((float)1609.344) : 10.0);
 Log.d("NearbyMetars", "Value of project: " + Float.toString(project));
 final RectF drawPos = new RectF(point.x-project, point.y-project,
 point.x+project, point.y+project);
We then calculate how many pixels one mile would be, given the
 map’s current zoom level. Next, we calculate the bounding coordinates
 of the icon to be drawn in as a RectF
 instance.
 //Get the paint to use for drawing the icons
 Paint paint = new Paint();
 paint.setStyle(Paint.Style.STROKE);
 paint.setARGB(179, 0, 0, 0);
 paint.setStrokeWidth(2.0f);
 paint.setStrokeCap(Paint.Cap.BUTT);
A Paint
 object is instantiated and set to draw a 2-pixel thick black
 line at about 70% transparency. The reason to not make the cloud
 condition icons drawn completely opaque is to allow the user to read
 the labels on the map. Remember, the cloud icons are drawn on top of
 the map in a layered fashion. See Example 16-18.
Example 16-18. Drawing the icon
 switch(skyCond) {
 case CLR:
 canvas.drawRect(drawPos, paint);
 break;
 case SKC:
 canvas.drawCircle(point.x, point.y, project, paint);
 break;
 case FEW:
 canvas.drawCircle(point.x, point.y, project, paint);
 canvas.drawLine(point.x, drawPos.top, point.x, drawPos.bottom, paint);
 break;
 case SCT:
 canvas.drawArc(drawPos, 0, 270, false, paint);
 paint.setStyle(Paint.Style.FILL_AND_STROKE);
 canvas.drawArc(drawPos, 270, 90, true, paint);
 break;
 case BKN:
 canvas.drawArc(drawPos, 180, 90, false, paint);
 paint.setStyle(Paint.Style.FILL_AND_STROKE);
 canvas.drawArc(drawPos, 270, 270, true, paint);
 break;
 case OVC:
 paint.setStyle(Paint.Style.FILL_AND_STROKE);
 canvas.drawCircle(point.x, point.y, project, paint);
 break;
 case OVX:
 canvas.drawArc(drawPos, 45, 180, true, paint);
 canvas.drawArc(drawPos, 135, 180, true, paint);
 canvas.drawArc(drawPos, 315, 90, true, paint);
 break;
 }

The code in Example 16-18 renders
 the cloud condition icons based on the value of skyCond. Please see the Canvas
 reference for the description of the
 draw*() functions. Drawing the icons for CLR and SKC is straightforward: call the appropriate
 draw*() function. FEW calls a drawCircle()
 to draw the circular outline, and then calls drawLine() to draw the vertical
 line. In the case of this icon, it won’t matter if
 drawLine() was called first instead of
 drawCircle(). However, it would be good to remember
 that successive calls to the draw*() function over
 the same area will draw shapes on top of one another.
Conditions such as SKT,
 BKN, and OVC first call drawArc()
 to draw the unfilled portion of the icon, and then switch the pen
 style to FILL_AND_STROKE and call
 drawArc() again to complete the circle with the filled portion of
 the icon. The use of drawArc() on these icons is
 actually an optimization. Canvas::drawCircle()
 actually calls Canvas::drawArc() under the hood.
 Why render a graphic that will simply be covered by another graphic
 drawn in the same location?
 //Draw the wind bar if wind is NOT variable
 if(windDir > 0)
 {
 final float barLen = project * 3;

 //This has been modified to go the opposite direction of
 //standard polar to Cartesian plotting
 canvas.drawLine(point.x, point.y,
 (float)(point.x + barLen * Math.sin(windDir)),
 (float)(point.y - barLen * Math.cos(windDir)), paint);
 }
}
This last portion of code draws the wind barb without the wind
 speed lines. As the comment states, this function calculates the
 Cartesian coordinate with the angle going in a clockwise direction
 since that’s how compass directions go. The standard mathematic polar
 coordinates have angles going in a counterclockwise direction. Another
 thing to note is that the value of project is actually the radian equivalent of
 the wind compass direction.

Final thoughts

Using the Canvas::draw*() functions is not
 necessarily the best way to draw the overlay icons. Android can render
 drawable
 resources in a more optimized manner than calling the
 Canvas::draw*() functions; and it’s easier to
 create great-looking images using an image editor. If the overlays for
 Nearby Metars were done using drawable resources, editing the XML
 files would be cumbersome; using bitmaps will just be a resource hog.
 Whether to use drawable or to programmatically draw the overlay icon
 will depend largely on the project’s requirements.

See Also

Hello,
 MapView tutorial; Canvas
 class reference; ItemizedOverlay
 class reference; OverlayItem
 class reference; Google
 Add-On API reference

Source Download URL

You can download the source code for this example from https://github.com/keithmendozasr/NearbyMetars/zipball/01.01.0.2.
[image: image with no caption]

Binary Download URL

You can download the executable code for this example from https://github.com/downloads/keithmendozasr/NearbyMetars/NearbyMetars-01.01.0.2.apk.
[image: image with no caption]

16.13. Implementing Location Search on Google Maps

Rachee Singh

Problem

You want to let the user type in the name of a place and find it using Google
 Maps, giving the user a list of all the results and displaying the most
 appropriate location result.

Solution

The text the user enters into an EditText is
 extracted. It is searched and the search results are extracted. The best
 out of the location search results is displayed (in this sample, the
 results are just displayed as a toast; in a real app much more could be
 done with the data).

Discussion

This method obtains text from an EditText named
 addressText. Then this text is searched for using the
 getFromLocationName() method of the Geocoder class. From the search
 results obtained the first result is extracted and displayed as a toast.
 If the string returned is of size=0, an appropriate
 message is displayed. Example 16-19 shows the code.
 Figure 16-8 shows the
 result.
Example 16-19. Searching for a location with Google Maps
protected void mapCurrentAddress() {
 String addressString = addressText.getText().toString();
 Geocoder g = new Geocoder(this);
 List<Address> addresses;
 try {
 addresses = g.getFromLocationName(addressString, 1);
 String add = "";
 if (addresses.size() > 0) {

 address = addresses.get(0);
 for (int i=0; i < address.getMaxAddressLineIndex();i++) {
 add += address.getAddressLine(i) + "\n";
 }
 Toast.makeText(getBaseContext(), add, Toast.LENGTH_SHORT).show();

 } else {
 Toast.makeText(getBaseContext(),
 "Failed to locate this address.", Toast.LENGTH_SHORT).show();
 }
 } catch (IOException e) {
 e.printStackTrace();
 }
}

16.14. Placing a MapView Inside a TabView

Vladimir Kroz

Problem

You want to place a MapView object within a
 TabView.
[image: Map showing on the first tab]

Figure 16-8. Map showing on the first tab

Solution

Create a MapView and corresponding XML layout,
 and make sure it runs in standalone mode. Then create a
 TabView and corresponding XML layout. Finally, attach
 a MapView activity to one of the tabs using
 TabSpec.setContent(). That’s it!

Discussion

For this recipe to work, you need a Google Maps API key, as we
 obtained in Recipe 16.6.
The structure of the typical TabLayout (Figure 16-9) includes TabHost as a container, TabWidget to draw tabs,
 and FrameLayout with a predefined ID of
 @android:id/tabcontent to contain the interchangeable
 content. Example 16-20 shows the code
 for the XML layout.
[image: Tab layout]

Figure 16-9. Tab layout

Example 16-20. XML layout for tabs
<?xml version="1.0" encoding="utf-8"?>
<TabHost xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@android:id/tabhost"
android:layout_width="fill_parent" android:layout_height="fill_parent">
<LinearLayout android:orientation="vertical"
android:layout_width="fill_parent" android:layout_height="fill_parent">
<TabWidget android:id="@android:id/tabs"
android:layout_width="fill_parent" android:layout_height="wrap_content"/>
<FrameLayout android:id="@android:id/tabcontent"
android:layout_width="fill_parent" android:layout_height="fill_parent">
<RelativeLayout android:id="@+id/emptylayout1" android:orientation="vertical"
android:layout_width="fill_parent" android:layout_height="fill_parent"/>
<TextView android:id="@+id/textview2"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:text="Details Details Details Details"/>
</FrameLayout>
</LinearLayout>
</TabHost>

Code for the MapView layout follows, in Example 16-21.
Example 16-21. XML layout for MapView
<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/maptablayout" android:orientation="vertical"
android:layout_width="fill_parent" android:layout_height="fill_parent">
<com.google.android.maps.MapView android:id="@+id/mapview"
android:layout_width="fill_parent" android:layout_height="fill_parent"
android:clickable="true"
android:apiKey="0pFtdSwta8EMTfArj32ycOw2kZg0LSEqa4fUGFA"/>
</RelativeLayout>

The code in Example 16-22 is the
 application entry point.
Example 16-22. AppMain.java
package org.kroztech.cookbook;

import android.app.TabActivity;
import android.content.Context;
import android.content.Intent;
import android.os.Bundle;
import android.widget.FrameLayout;
import android.widget.TabHost;
import android.widget.TabHost.TabSpec;

public class AppMain extends TabActivity {
 TabHost mTabHost;
 FrameLayout mFrameLayout;

 /** Called when the activity is first created.*/
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 mTabHost = getTabHost();
 TabSpec tabSpec = mTabHost.newTabSpec("tab_test1");
 tabSpec.setIndicator("Map");
 Context ctx = this.getApplicationContext();
 Intent i = new Intent(ctx, MapTabView.class);
 tabSpec.setContent(i);
 mTabHost.addTab(tabSpec);
 mTabHost.addTab(
 mTabHost.newTabSpec("tab_test2").setIndicator("Details").setContent(R.id.textview2));
 mTabHost.setCurrentTab(0);
 }
}

The MapActivity follows, in Example 16-23.
Example 16-23. The MapActivity
package org.kroztech.cookbook;

import android.os.Bundle;
import com.google.android.maps.MapActivity;

public class MapTabView extends MapActivity {
 @Override
 protected void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.maptabview);
 }
 @Override
 protected boolean isRouteDisplayed() {
 return false;
 }
}

Finally, Example 16-24
 shows the manifest file.
Example 16-24. The AndroidManifest.xml file
<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.kroz.tag" android:versionCode="1" android:versionName="1.0">
 <application android:icon="@drawable/icon" android:label="@string/app_name">
 <uses-library android:name="com.google.android.maps"/>
 <activity android:name=".AppMain" android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN"/>
 <category android:name="android.intent.category.LAUNCHER"/>
 </intent-filter>
 </activity>
 <activity android:name="MapTabView" android:label="@string/mapview_name">
 <intent-filter>
 <category android:name="android.intent.category.EMBED"></category>
 <action android:name="android.intent.action.MAIN"></action>
 </intent-filter>
 </activity>
 </application>
 <uses-sdk android:minSdkVersion="3"/>
 <uses-permission android:name="android.permission.INTERNET"/>
 <uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION"/>
 <uses-permission android:name="android.permission.ACCESS_FINE_LOCATION"/>
 <uses-permission android:name="android.permission.ACCESS_LOCATION_EXTRA_COMMANDS"/>
</manifest>

Source Download URL

You can download the source code for this example from http://www.kroztech.com/res/android_cookbook/src/MapTabViewDemo.zipi.
[image: image with no caption]

16.15. Handling a Long-Press in a MapView

Roger Kind Kristiansen

Problem

For some map applications you might want to let the user trigger an
 action related to an arbitrary point on the map—for example, through a
 context menu. Enabling the user to do a long-press on the map is among
 the more intuitive ways to expose this kind of functionality, but
 support for this is not built into Android.

Solution

Add this support yourself. Start by creating a subclass of
 MapView, in which you define your own OnLongpressListener interface as
 well as overriding MapView.onTouchEvent() to insert your long-press
 detection logic. onTouchEvent() is triggered every
 time the user touches, moves, or releases her finger on the map, which
 makes this the perfect place for your purposes.
After modifying your map layout file and using this map as the
 content of a MapActivity, you can finally create an
 OnLongPressListener object, add it to your
 MapView subclass object, and enjoy some long-press
 action.

Discussion

We will start with the meat of the solution: subclassing
 MapView, defining our
 OnLongpressListener interface, and implementing the
 logic to catch when a user performs a long-press (see Example 16-25).
Example 16-25. A long-pressable MapView
public class MyCustomMapView extends MapView {

 // Define the listener interface we will make use of in our MapActivity later.
 public interface OnLongpressListener {
 public void onLongpress(MapView view, GeoPoint longpressLocation);
 }

 // Time in ms before the OnLongpressListener is triggered.
 static final int LONGPRESS_THRESHOLD = 500;

 /*
 * The Timer will be instrumental in detecting our long-presses. It executes a
 * task after a given amount of time.
 */
 private Timer longpressTimer = new Timer();

 /*
 * Our OnLongPressListener instance. When a long-press is detected, its
 * onLongPress() method is called.
 */
 private MyCustomMapView.OnLongpressListener longpressListener;

 /*
 * Keep a record of the center of the map, to know if the map
 * has been panned.
 */
 private GeoPoint lastMapCenter;

 public MyCustomMapView(Context context, String apiKey) {
 super(context, apiKey);
 }

 public MyCustomMapView(Context context, AttributeSet attrs) {
 super(context, attrs);
 }

 public MyCustomMapView(Context context, AttributeSet attrs, int defStyle) {
 super(context, attrs, defStyle);
 }

 public void setOnLongpressListener(MyCustomMapView.OnLongpressListener listener) {
 longpressListener = listener;
 }

 /*
 * This method is called by Android every time the user touches the map,
 * drags a finger on the map, or removes a finger from the map.
 */
 @Override
 public boolean onTouchEvent(MotionEvent event) {
 // Perform our custom logic.
 handleLongpress(event);

 return super.onTouchEvent(event);
 }

 /*
 * This method takes MotionEvent as an argument and decides whether
 * or not a long-press has been detected.
 *
 * The Timer class executes a TimerTask after a given time,
 * and we start the timer when a finger touches the screen.
 *
 * We then listen for map movements or the finger being
 * removed from the screen. If any of these events occur
 * before the TimerTask is executed, it gets cancelled. Else
 * the OnLongPressListener.onLongpress() method is fired.
 */
 private void handleLongpress(final MotionEvent event) {

 if (event.getAction() == MotionEvent.ACTION_DOWN) {
 // Finger has touched screen.
 longpressTimer = new Timer();
 longpressTimer.schedule(new TimerTask() {
 @Override
 public void run() {
 GeoPoint longpressLocation =
 getProjection().fromPixels((int)event.getX(),
 (int)event.getY());

 /*
 * Fire the listener. We pass the map location
 * of the long-press as well, in case it is needed
 * by the caller.
 */
 longpressListener.onLongpress(
 MyCustomMapView.this, longpressLocation);
 }

 }, LONGPRESS_THRESHOLD);

 lastMapCenter = getMapCenter();
 }

 if (event.getAction() == MotionEvent.ACTION_MOVE) {

 if (!getMapCenter().equals(lastMapCenter)) {
 // User is panning the map, this is no long-press
 longpressTimer.cancel();
 }

 lastMapCenter = getMapCenter();
 }

 if (event.getAction() == MotionEvent.ACTION_UP) {
 // User has removed finger from map.
 longpressTimer.cancel();
 }

 if (event.getPointerCount() > 1) {
 // This is a multitouch event, probably zooming.
 longpressTimer.cancel();
 }
 }
}

We will need to modify our map layout file so that we make use of
 the MyCustomMapView we just defined:
 <?xml version="1.0" encoding="utf-8"?>
 <RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <com.example.MyCustomMapView android:id="@+id/mapview"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:apiKey="<YOUR MAP API KEY HERE>"
 android:clickable="true"/>
 </RelativeLayout>
Make note of the android:clickable attribute.
 As you might know, this must be set to be able to pan,
 zoom, or in other ways interact with your map.
The last thing we need to do is add our
 onLongpressListener instance to the
 MapView in our MapActivity. For
 the sake of the example, let’s say the previous layout file is named
 res/layout/map.xml. The necessary code for adding
 an OnLongPressListener will look something like Example 16-26.
Example 16-26. The map activity
public class Map extends MapActivity {
 private MyCustomMapView mapView;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 // Add our map layout to this MapActivity
 setContentView(R.layout.map);

 // Add the OnLongPressListener to our custom MapView
 mapView = (MyCustomMapView)findViewById(R.id.mapview);
 mapView.setOnLongpressListener(new MyCustomMapView.OnLongpressListener() {
 public void onLongpress(final MapView view, final GeoPoint longpressLocation) {
 runOnUiThread(new Runnable() {
 public void run() {
 /*
 * Insert your long-press action here!
 */
 }
 });
 }
 });
}

To actually have your long-press open up a context menu, you need
 to perform some additional setup of the context menu itself. I’ve
 avoided including this, to make the example shorter and hopefully
 clearer. To test that it works, try, for example, adding a log statement.

16.16. Using OpenStreetMap

Rachee Singh

Problem

You want to use OpenStreetMap (OSM) map data in your application in
 place of Google Maps.

Solution

Use the third-party osmdroid library to interact with
 OpenStreetMap data.

Discussion

OpenStreetMap is a free, editable map of the world. The
 OpenStreetMapView is an (almost) full/free
 replacement for Android’s MapView class. See the
 osmdroid Google code
 page for more details.
To use OSM map data in your Android app, your project must be
 Android API level 3 (version 1.5) or higher. You need to include two
 JARs in the Android project, namely
 osmdroid-android-x.xx.jar and
 slf4j-android-1.x.x.jar. osmdroid is a set of tools
 for OpenStreetMap data; SLF4J is (yet another) simplified logging
 facade. You can download them from the following links:
	osmdroid

	slf4j

See Recipe 1.10 to learn how to use external
 libraries in your Android project.
After adding the JARs to the project you can start coding.
You need to add an OSM MapView to your XML
 layout, like so:
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <org.osmdroid.views.MapView
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:id="@+id/mapview">
 </org.osmdroid.views.MapView>
</LinearLayout>
Remember that you need to include the INTERNET
 permission in the AndroidManifest.xml file for any
 app that downloads information over the Internet. The osmdroid code also
 needs ACCESS_NETWORK_STATE
 permission:
<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />
<uses-permission android:name="android.permission.INTERNET" />
Now we have to use this MapView in the activity
 code. The process is similar to the case of using Google Maps (see Example 16-27).
Example 16-27. Using the MapView in the application
private MapView mapView;
private MapController mapController;
mapView = (MapView) this.findViewById(R.id.mapview);
mapView.setBuiltInZoomControls(true);
mapView.setMultiTouchControls(true);
mapController = this.mapView.getController();
mapController.setZoom(2);

Figure 16-10 shows how the application should
 look on initial startup. Figure 16-11 shows how it
 might look after the user has touched the zoom controls.
[image: An OSM map]

Figure 16-10. An OSM map

[image: OSM map zoomed in]

Figure 16-11. OSM map zoomed in

Source Download URL

You can download the source code for this example from https://docs.google.com/leaf?id=0B_rESQKgad5LYjIwYTM1NTctZTU3OS00NTE5LTg1NmItZTU4MGRkYTMzODJl&hl=en_US.
[image: image with no caption]

Binary Download URL

You can download the executable code for this example from https://docs.google.com/leaf?id=0B_rESQKgad5LY2U5MzVlMGYtOWY1Ni00NThhLTg0MmItMzI2MDgyYzRjNzI5&hl=en_US.
[image: image with no caption]

16.17. Creating Overlays in OpenStreetMap Maps

Rachee Singh

Problem

You want to display graphics such as map markers on your OpenStreetMap view.
 Most map mechanisms provide an overlay feature that lets you draw these
 graphics in front of the main picture or map. Refer back to Figure 16-4.

Solution

Instantiate an Overlay class and add the
 overlay to the point you wish to demarcate on the map.

Discussion

To get started with OpenStreetMap, see Recipe 16.16.
To add overlays, first we need to get a handle on the
 MapView defined in the XML layout of the
 activity.
mapView = (MapView) this.findViewById(R.id.mapview);
Then we enable zoom controls on the MapView
 using the setBuiltInZoomControls method and
 also set the zoom level to a reasonable value.
 mapView.setBuiltInZoomControls(true);
 mapController = this.mapView.getController();
 mapController.setZoom(12);
Now we create two GeoPoints; the first one
 (mapCenter) is to center the OSM map around the point
 when the application starts, and the second
 (overlayPoint) is where the overlay will be
 placed.
 GeoPoint mapCenter = new GeoPoint(53554070, -2959520);
 GeoPoint overlayPoint = new GeoPoint(53554070 + 1000, -2959520 + 1000);
 mapController.setCenter(mapCenter);
To add the overlay, we create an ArrayList of
 OverlayItems. To this list, we will add the overlays
 we wish to add to the OSM map.
 ArrayList<OverlayItem> overlays = new ArrayList<OverlayItem>();
 overlays.add(new OverlayItem("New Overlay", "Overlay Description", overlayPoint));
To create the overlay item, we need to instantiate the
 ItemizedIconOverlay class (along with appropriate
 arguments specifying the point at which the overlay has to be placed,
 resource proxy, etc.). Then we add the overlay to the OSM map.
 resourceProxy = new DefaultResourceProxyImpl(getApplicationContext());
 this.myLocationOverlay = new ItemizedIconOverlay<OverlayItem>(
 overlays, null, resourceProxy);
 this.mapView.getOverlays().add(this.myLocationOverlay);
Then a call to the invalidate method is needed
 to update the MapView so that the user will see the
 changes we made to it.
 mapView.invalidate();
The end result should look like Figure 16-12
 and Figure 16-13.
[image: OSM map with marker overlay]

Figure 16-12. OSM map with marker overlay

[image: OSM map with marker overlay after zooming]

Figure 16-13. OSM map with marker overlay after zooming

Source Download URL

You can download the source code for this example from https://docs.google.com/leaf?id=0B_rESQKgad5LMThlYmI3ZjctMGU4ZS00ZDhjLWJjMGMtYWYwMTBmNzcxNzJl&hl=en_US.
[image: image with no caption]

16.18. Using a Scale on an OpenStreetMap Map

Rachee Singh

Problem

You need to show a map scale on your OSM map to indicate the level of
 zoom on the MapView.

Solution

You can add a scale on the OSM map as an overlay using the
 osmdroid ScaleBarOverlay class.

Discussion

Putting a scale on your MapView helps the user keep track of the map’s zoom level (as well
 as estimate distances on the map). To overlay a scale on your OSM
 MapView, instantiate the
 ScaleBarOverlay class and add it to the list of
 overlays in your MapView using the
 add() method.
Here is how the code would look:
ScaleBarOverlay myScaleBarOverlay = new ScaleBarOverlay(this);
this.mapView.getOverlays().add(this.myScaleBarOverlay);
The scale bar overlay is shown in Figure 16-14.
[image: OSM map with scale]

Figure 16-14. OSM map with scale

16.19. Handling Touch Events on an OpenStreetMap Overlay

Rachee Singh

Problem

You need to perform actions when the overlay on an OpenStreetMap map is
 tapped.

Solution

Override the methods of
 theOnItemGestureListener method for single-tap events
 and long-press events.

Discussion

To address touch events on the map overlay, we modify the way we
 instantiate an overlay item (for more details on using overlays in OSM,
 refer back to Recipe 16.17).
 While instantiating the OverlayItem, we make use of
 an anonymous object of the OnItemGestureListener
 class as an argument and provide our own implementation of the
 onItemSingleTapUp and
 onItemLongPress methods. In these methods, we simply
 display a toast depicting which action took place—single-tap or
 long-press—and also the title and description of the overlay touched.
 Example 16-28 shows the code for this.
Example 16-28. Code for touch events in OSM
 ArrayList<OverlayItem> items = new ArrayList<OverlayItem>();
 items.add(
 new OverlayItem("New Overlay", "Overlay Sample Description", overlayPoint));

 resourceProxy = new DefaultResourceProxyImpl(getApplicationContext());

 this.myLocationOverlay = new ItemizedIconOverlay<OverlayItem>(items,
 new ItemizedIconOverlay.OnItemGestureListener<OverlayItem>() {
 @Override
 public boolean onItemSingleTapUp(
 final int index, final OverlayItem item) {
 Toast.makeText(getApplicationContext(), "Overlay Titled: " +
 item.mTitle + " Single Tapped" + "\n" + "Description: " +
 item.mDescription, Toast.LENGTH_LONG).show();
 return true;
 }
 @Override
 public boolean onItemLongPress(
 final int index, final OverlayItem item) {
 Toast.makeText(getApplicationContext(), "Overlay Titled: " +
 item.mTitle + " Long pressed" + "\n" + "Description: " +
 item.mDescription ,Toast.LENGTH_LONG).show();
 return false;
 }
 }, resourceProxy);
 this.mapView.getOverlays().add(this.myLocationOverlay);
 mapView.invalidate();

After a single-tap of the overlay, the application should look
 like Figure 16-15.
[image: OSM map with touch event]

Figure 16-15. OSM map with touch event

Figure 16-16 shows how the application
 might look after a long-press of the overlay.
[image: Long-press overlay reaction]

Figure 16-16. Long-press overlay reaction

Source Download URL

You can download the source code for this example from https://docs.google.com/leaf?id=0B_rESQKgad5LMzZmMjJkZjYtN2M1OC00MGEzLWI2ZTQtNTUxMzFhZjEzMGIx&hl=en_US.
[image: image with no caption]

16.20. Getting Location Updates with OpenStreetMap Maps

Rachee Singh

Problem

You need to react to the changes in the device’s location and move the
 map to display the changed location.

Solution

Using LocationListener, you can make an
 application request location updates (see Recipe 16.2) and
 then react to these changes in location by moving the map.

Discussion

	The activity that includes the OSM MapView
 needs to implement LocationListener to be able to
 request changes in the device’s location. An activity implementing
 LocationListener will also need to add the
 unimplemented (abstract) methods from the
 LocationListener interface (Eclipse will do this
 for you). We set the center of the map to the
 GeoPoint named mapCenter so
 that the application starts with the map focused on that
 point.

	Now we need to get an instance of
 LocationManager and use it to request location updates using the
 requestLocationUpdates method.

	In one of the overridden methods (which were abstracted in the
 LocationListener interface), named onLocationChanged, we can
 write the code that we want to be executed when the location of the
 device changes.

	In the onLocationChanged method we obtain
 the latitude and longitude of the new location and set the map’s
 center to the new GeoPoint. Example 16-29 shows the
 relevant code.

Example 16-29. Managing location changes with OSM
public class LocationChange extends Activity implements LocationListener {
 private LocationManager myLocationManager;
 private MapView mapView;
 private MapController mapController;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 mapView = (MapView)findViewById(R.id.mapview);
 mapController = this.mapView.getController();
 mapController.setZoom(15);
 GeoPoint mapCenter = new GeoPoint(53554070, -2959520);
 mapController.setCenter(mapCenter);
 myLocationManager = (LocationManager) getSystemService(LOCATION_SERVICE);
 myLocationManager.requestLocationUpdates(
 LocationManager.GPS_PROVIDER, 1000, 100, this);
 }

 @Override
 public void onLocationChanged(Location location) {
 int latitude = (int) (location.getLatitude() * 1E6);
 int longitude = (int) (location.getLongitude() * 1E6);
 GeoPoint geopoint = new GeoPoint(latitude, longitude);
 mapController.setCenter(geopoint);
 mapView.invalidate();

 }

 @Override
 public void onProviderDisabled(String arg0) {

 }

 @Override
 public void onProviderEnabled(String arg0) {

 }

 @Override
 public void onStatusChanged(String arg0, int arg1, Bundle arg2) {

 }
}

When the application starts, the map is centered on the
 mapCenter GeoPoint. Since the
 application is listening to location changes, the icon in the top bar of
 the phone is visible (see Figure 16-17).
[image: Moving the map, start of move]

Figure 16-17. Moving the map, start of move

Now, using the emulator controls, new GPS coordinates
 (–122.094095, 37.422006) are sent to the emulator. The application
 reacts to this and centers the map on the new coordinates (see Figure 16-18).
Similarly, different GPS coordinates are given from the emulator
 controls and the application centers the map on the new location (see
 Figure 16-19).
Also, to allow the application to listen for location changes,
 include these permissions in the
 AndroidManifest.xml file.
<uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION"/>
<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION"/>
<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />
<uses-permission android:name="android.permission.INTERNET" />
[image: Moving the map, end of move]

Figure 16-18. Moving the map, end of move

[image: Changing the location via the emulator]

Figure 16-19. Changing the location via the emulator

Source Download URL

You can download the source code for this example from https://docs.google.com/leaf?id=0B_rESQKgad5LNGViMzhmM2ItZGFiZC00NGVhLWJmNjctNTRjNTA0M2QzMjdh&hl=en_US.
[image: image with no caption]

Chapter 17. Accelerometer

17.1. Introduction: Sensors

Ian Darwin

Discussion

Accelerometers are one of the more interesting bits of hardware in
 smartphones. Earlier devices such as the OpenMoko “Neo” smartphone and
 the Apple iPhone included them. Before Android was released I was
 advocating for OpenMoko at open source conferences. One of my favorite
 imaginary applications was private key generation. Adhering to the
 theory that “When privacy is outlawed, only outlaws will have privacy,”
 several people were talking about this as early as 2008 (when I
 presented the idea, to great applause, at the Ontario Linux Fest). The
 idea is: if you can’t or don’t want to exchange private keys over a
 public channel, you meet on a street corner and shake hands—with each
 hand having a cell phone concealed in the palm. The devices are touching
 each other, thus their sensors should record exactly the same somewhat
 random motions. With a bit of mathematics to filter out the leading and
 trailing motion of the hands moving together, both devices should have
 quite a few bits’ worth of identical, random data that nobody else
 has—just what you need for crypto key exchange. I’ve yet to see anybody
 implement this, and I must admit I still hope somebody will come
 through.
Meanwhile, we have many other recipes on accelerometers and other
 sensors in this chapter...

17.2. Checking for the Presence or Absence of a Sensor

Rachee Singh

Problem

You want to use a given sensor. Before using an Android device for a
 sensor-based application, you should ensure that the required sensor is
 supported by the device you are currently running on.

Solution

Check for the availability of the sensor on the Android
 device.

Discussion

The SensorManager class is used to manage the
 sensors available on an Android device. So we require an object of this
 class:
SensorManager deviceSensorManager =
 (SensorManager) getSystemService(SOME_SENSOR_SERVICE);
Then, using the getSensorList() method, we check
 for the presence of sensors of any type (accelerometer, gyroscope,
 pressure, etc.). If the list returned contains any elements, this
 implies that the sensor is present. A TextView is
 used to show the result: either "Sensor present!" or
 "Sensor absent.“. Example 17-1 shows the code.
Example 17-1. Checking for the accelerometer
 List<Sensor> sensorList =
 deviceSensorManager.getSensorList(Sensor.TYPE_ACCELEROMETER);

 if (sensorList.size() > 0) {
 sensorPresent = true;
 sensor = sensorList.get(0);

 }
 else
 sensorPresent = false;

 /* Set the face TextView to display sensor presence */
 face = (TextView) findViewById(R.id.face);

 if (sensorPresent)
 face.setText("Sensor present!");
 else
 face.setText("Sensor absent.");

17.3. Using the Accelerometer to Detect Shaking of the Device

Thomas Manthey

Problem

Sometimes it makes sense to evaluate not only on-screen input, but
 also gestures like tilting or shaking the phone. You need to use the
 accelerometer to detect whether the phone has been shaken.

Solution

Register with the accelerometer and compare the current
 acceleration values on all three axes to the previous ones. If the
 values have repeatedly changed on at least two axes and those changes
 exceed a high enough threshold, you can clearly determine
 shaking.

Discussion

Let us first define shaking as a fairly rapid movement of the
 device in one direction followed by a further one in another direction,
 mostly but not necessarily the opposite. If we want to detect such a
 shake motion in an activity, we need a connection to the hardware
 sensors; those are exposed by the class SensorManager. Furthermore, we need to
 define a SensorEventListener and register it with the
 SensorManager.
So the source of our activity starts like this (see Example 17-2).
Example 17-2. ShakeActivity—getting accelerometer data
public class ShakeActivity extends Activity {
 /* The connection to the hardware */
 private SensorManager mySensorManager;

 /* The SensorEventListener lets us wire up to the real hardware events */
 private final SensorEventListener mySensorEventListener = new SensorEventListener() {

 public void onSensorChanged(SensorEvent se) {
 /* we will fill this one later */
 }

 public void onAccuracyChanged(Sensor sensor, int accuracy) {
 /* can be ignored in this example */
 }
 };

In order to implement SensorEventListener, we have to implement
 methods: onSensorChanged(SensorEvent se) and onAccuracyChanged(Sensor sensor, int
 accuracy). The first one gets called whenever new sensor data
 is available, and the second one whenever the accuracy of the
 measurement changes—for example, when the location service switches from
 GPS to network-based. In our example we just need to cover onSensorChanged.
Before we continue, let us define some more variables, which will
 store the information about values of acceleration and some state (see
 Example 17-3).
Example 17-3. Variables for acceleration
 /* Here we store the current values of acceleration, one for each axis */
 private float xAccel;
 private float yAccel;
 private float zAccel;

 /* And here the previous ones */
 private float xPreviousAccel;
 private float yPreviousAccel;
 private float zPreviousAccel;

 /* Used to suppress the first shaking */
 private boolean firstUpdate = true;

 /*What acceleration difference would we assume as a rapid movement? */
 private final float shakeThreshold = 1.5f;

 /* Has a shaking motion been started (one direction) */
 private boolean shakeInitiated = false;

I hope that the names and comments do explain enough about what is
 stored in these variables; if not, it will become clearer in the next
 steps. Now let us connect to the hardware sensors and wire up for their
 events. onCreate is the perfect place
 to do so (Example 17-4).
Example 17-4. Initializing for accelerometer data
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 mySensorManager = (SensorManager) getSystemService(Context.SENSOR_SERVICE); [image: 1]
 mySensorManager.registerListener(mySensorEventListener, mySensorManager
 .getDefaultSensor(Sensor.TYPE_ACCELEROMETER),
 SensorManager.SENSOR_DELAY_NORMAL); [image: 2]
 }

	[image: 1]
	We get a reference to Android’s sensor service.

	[image: 2]
	We register the previously defined SensorEventListener with the service. More
 precisely, we register only for events of the accelerometer and for
 a normal update rate—this
 could be changed, if we needed to be more precise.

Now let us define what we want to do when new sensor data arrives.
 We have defined a stub for theSensorEventListener’s method onSensorChanged, so now we will fill it with
 some life (see Example 17-5).
Example 17-5. Using the sensor data
 public void onSensorChanged(SensorEvent se) {
 updateAccelParameters(se.values[0], se.values[1], se.values[2]); [image: 1]
 if ((!shakeInitiated) && isAccelerationChanged()) { [image: 2]
 shakeInitiated = true;
 } else if ((shakeInitiated) && isAccelerationChanged()) { [image: 3]
 executeShakeAction();
 } else if ((shakeInitiated) && (!isAccelerationChanged())) { [image: 4]
 shakeInitiated = false;
 }
 }

	[image: 1]
	We copy the values of acceleration that we received from
 the SensorEvent
 into our state variables. The corresponding method is declared like
 this:
 /* Store acceleration values from sensor */
 private void updateAccelParameters(float xNewAccel, float yNewAccel,
 float zNewAccel) {
 /* we have to suppress the first change of acceleration,
 * it results from first values being initialized with 0 */
 if (firstUpdate) {
 xPreviousAccel = xNewAccel;
 yPreviousAccel = yNewAccel;
 zPreviousAccel = zNewAccel;
 firstUpdate = false;
 } else {
 xPreviousAccel = xAccel;
 yPreviousAccel = yAccel;
 zPreviousAccel = zAccel;
 }
 xAccel = xNewAccel;
 yAccel = yNewAccel;
 zAccel = zNewAccel;
 }

	[image: 2]
	We test for a rapid change of acceleration and whether any has
 happened before; if not, we store the information that now has
 happened.

	[image: 3]
	We test again for a rapid change of acceleration, this time
 with the information from before. If this is true, we can assume a
 shaking movement according to our definition and commence
 action.

	[image: 4]
	At last we reset the shake status if we detected shaking
 before but do not get a rapid change of acceleration anymore.

To complete the code, we add the last two methods. The first is
 theisAccelerationChanged() method
 (see Example 17-6).
Example 17-6. The isAccelerationChanged() method
 /* If the values of acceleration have changed on at least two axes,
 we are probably in a shake motion */
 private boolean isAccelerationChanged() {
 float deltaX = Math.abs(xPreviousAccel - xAccel);
 float deltaY = Math.abs(yPreviousAccel - yAccel);
 float deltaZ = Math.abs(zPreviousAccel - zAccel);
 return (deltaX > shakeThreshold && deltaY > shakeThreshold)
 || (deltaX > shakeThreshold && deltaZ > shakeThreshold)
 || (deltaY > shakeThreshold && deltaZ > shakeThreshold);
 }

Here we compare the current values of acceleration with the
 previous ones, and if at least two of them have changed above our
 threshold, we return true.
The last method is executeShakeAction(), which does whatever we
 wish to do when the phone is being shaken.
 private void executeShakeAction() {
 /* Save the cheerleader, save the world
 or do something more sensible... */
 }

17.4. Checking Whether a Device Is Facing Up or Facing Down Based on
 Screen Orientation Using an Accelerometer

Rachee Singh

Problem

You want to check for the orientation (facing up/facing down) of the Android
 device.

Solution

Use a SensorEventListener to check for
 appropriate accelerometer values.

Discussion

To implement a SensorEventListener, the onSensorChanged method is called
 when sensor values change. Within this method, we check to see if the
 values lie within a particular range for the device to be facing down or
 facing up.
Here is the code to obtain the sensor object for an
 accelerometer:
List<android.hardware.Sensor> sensorList =
 deviceSensorManager.getSensorList(Sensor.TYPE_ACCELEROMETER);
sensor = sensorList.get(0);
Example 17-7 shows the
 SensorEventListener implementation.
Example 17-7. The SensorEventListener implementation
 private SensorEventListener accelerometerListener = new SensorEventListener() {
 @Override
 public void onSensorChanged(SensorEvent event) {
 float z = event.values[2];
 if (z >9 && z < 10)
 face.setText("FACE UP");
 else if (z > -10 && z < -9)
 face.setText("FACE DOWN");
 }

 @Override
 public void onAccuracyChanged(Sensor arg0, int arg1) {

 }

 };

After implementing the listener along with the methods required,
 we need to register the listener for a particular sensor (which in our
 case is the accelerometer). sensor is an object of
 the Sensor class; it represents the sensor being used in the application
 (accelerometer).
deviceSensorManager.registerListener(accelerometerListener, sensor, 0, null);

17.5. Finding the Orientation of an Android Device Using an Orientation
 Sensor

Rachee Singh

Problem

You want to detect which side of the Android device is facing upward compared to the rest
 (top/bottom/right/left side).

Solution

By checking if the pitch and roll values of the orientation sensor
 of an Android device lie within certain intervals, you can determine
 which side is facing upward.

Discussion

As we do in the case of every other sensor supported by Android,
 first we need to instantiate the SensorManager
 class.
SensorManager sensorManager = (SensorManager)getSystemService(SENSOR_SERVICE);
Using the object of the SensorManager class we
 can get a handle on the sensors available on the device. The
 getSensorList() method returns a list of all sensors
 of a particular type (in this case orientation). We need to check if the
 orientation sensor is supported by the device; if it is, we get the
 first sensor from the list of sensors. If the sensor is not supported,
 an appropriate message is displayed. See Example 17-8.
Example 17-8. Finding the orientation sensor
List<android.hardware.Sensor> sensorList =
 sensorManager.getSensorList(Sensor.TYPE_ORIENTATION);
if (sensorList.size() > 0) {
 sensor = sensorList.get(0);
}
else {
 orient.setText("Orientation sensor not present");
}

To register a SensorEventListener with this
 sensor, use this code:
sensorManager.registerListener(orientationListener,sensor, 0, null);
Now, we define the SensorEventListener. We must
 implement two methods: onAccuracyChanged() and onSensorChanged().
 onSensorChanged() is called when the sensor values
 change. In this case it’s the orientation sensor values that change on
 moving the device. The orientation sensor returns three values: azimuth,
 pitch, and roll angles. Now we check the returned values; if they lie
 within a particular range, and depending upon the range they lie in,
 appropriate text is displayed. See Example 17-9.
Example 17-9. The SensorEventListener implementation
private SensorEventListener orientationListener = new SensorEventListener() {

 @Override
 public void onAccuracyChanged(Sensor arg0, int arg1) {
 }

 @Override
 public void onSensorChanged(SensorEvent sensorEvent) {
 if (sensorEvent.sensor.getType() == Sensor.TYPE_ORIENTATION) {
 float azimuth = sensorEvent.values[0];
 float pitch = sensorEvent.values[1];
 float roll = sensorEvent.values[2];
 if (pitch < -45 && pitch > -135) {
 orient.setText("Top side of the phone is Up!");

 } else if (pitch > 45 && pitch < 135) {

 orient.setText("Bottom side of the phone is Up!");

 } else if (roll > 45) {

 orient.setText("Right side of the phone is Up!");

 } else if (roll < -45) {

 orient.setText("Left side of the phone is Up!");
 }

 }
 }

 };

Source Download URL

You can download the source code for this example from https://docs.google.com/leaf?id=0B_rESQKgad5LNzZiODY5YmMtNDAxMi00OGQwLWI3NmQtMGY1ZTdlN2E5MmI5&hl=en_US&authkey=COHZxYkE.
[image: image with no caption]

17.6. Reading the Temperature Sensor

Rachee Singh

Problem

You need to get temperature values using the temperature sensor.

Solution

Use the SensorManager and
 SensorEventListener to track changes in temperature values detected by the
 temperature sensor.

Discussion

We need to create an object of SensorManager to
 use sensors in an application. Then we register a listener with the type
 of sensor we require. To register the listener we provide the name of
 the listener, a Sensor object, and the type of delay
 (in this case it is SENSOR_DELAY_FASTEST) to the registerListener method. In this
 listener, within the overridden onSensorChanged method, we
 can print the temperature value into a TextView named
 tempVal.
SensorManager sensorManager = (SensorManager)getSystemService(SENSOR_SERVICE);
sensorManager.registerListener(temperatureListener,
 sensorManager.getDefaultSensor(Sensor.TYPE_TEMPERATURE),
 SensorManager.SENSOR_DELAY_FASTEST);
Example 17-10 shows the
 SensorEventListener implementation.
Example 17-10. The SensorEventListener implementation
private final SensorEventListener temperatureListener = new SensorEventListener(){
 @Override
 public void onAccuracyChanged(Sensor sensor, int accuracy) {}
 @Override
 public void onSensorChanged(SensorEvent event) {

 tempVal.setText("Temperature is:"+event.values[0]);

 }
};

See Also

Recipe 17.2

Chapter 18. Bluetooth

18.1. Introduction: Bluetooth

Ian Darwin

Discussion

Bluetooth technology allows users to connect a variety of peripherals to a
 computer, tablet, or phone. Headsets, speakers, keyboards, and printers;
 medical devices such as glucometers and ECG machines; these are only
 some of the numerous types of devices that can be connected via
 Bluetooth. Some, such as headsets, are supported automatically by
 Android; the more esoteric ones will need some programming. Some of
 these other devices use Serial Port Protocol (SPP), which is basically an unstructured protocol that
 requires you to write code to format data yourself.
This chapter has recipes on how to ensure that Bluetooth is turned
 on, how to make your device discoverable, how to discover other devices,
 and how to read from and write to another device over a Bluetooth
 connection.[1]
A future edition of this work will provide coverage of the
 Bluetooth Health Device Profile (HDP) standardized by the Continua Health Alliance.

18.2. Enabling Bluetooth and Making the Device Discoverable

Rachee Singh

Problem

The application requires that the Bluetooth adapter be switched on, so you need to
 check if this capability is enabled. If it is not enabled, you need to
 prompt the user to enable Bluetooth. To allow remote devices to detect
 the host device, you must make the host device discoverable.

Solution

Use intents to prompt the user to enable Bluetooth and make the
 device discoverable.

Discussion

Before performing any action with an instance of the
 BluetoothAdapter class, you should check if the
 device had enabled the Bluetooth adapter using the isEnabled() method. If the method
 returns false, the user should be prompted to enable
 Bluetooth.
BluetoothAdapter BT = BluetoothAdapter.getDefaultAdapter();
if (!BT.isEnabled()) {
//Taking user's permission to switch the bluetooth adapter On.
Intent enableIntent = new Intent(BluetoothAdapter.ACTION_REQUEST_ENABLE);
startActivityForResult(enableIntent, REQUEST_ENABLE_BT);
}
The preceding code will show an AlertDialog to the user prompting
 her to enable Bluetooth (see Figure 18-1).
[image: Bluetooth enable prompt]

Figure 18-1. Bluetooth enable prompt

On returning to the activity that started the intent, onActivityResult() is called,
 in which the name of the host device and its MAC address can be
 extracted (see Example 18-1).
Example 18-1. Getting the device and its Bluetooth MAC address
protected void onActivityResult(int requestCode, int resultCode, Intent data) {
 if(requestCode==REQUEST_ENABLE_BT && resultCode==Activity.RESULT_OK) {
 BluetoothAdapter BT = BluetoothAdapter.getDefaultAdapter();
 String address = BT.getAddress();
 String name = BT.getName();
 String toastText = name + " : " + address;
 Toast.makeText(this, toastText, Toast.LENGTH_LONG).show();
}

To request the user’s permission to make the device discoverable
 to other Bluetooth-enabled devices in the vicinity, you can use the
 following lines of code:
//Requesting user's permission to make the device discoverable for 120 secs.
Intent discoverableIntent = new Intent(BluetoothAdapter.ACTION_REQUEST_DISCOVERABLE);
startActivity(discoverableIntent);
The preceding code will show an AlertDialog to
 the user prompting her to make her device discoverable by other
 devices for 120 seconds (Figure 18-2).
[image: Bluetooth configuration]

Figure 18-2. Bluetooth configuration

18.3. Connecting to a Bluetooth-Enabled Device

Ashwini Shahapurkar

Problem

You want to connect to another Bluetooth-enabled device and communicate with it.

Solution

Use the Android Bluetooth API to connect to the device using
 sockets. The communication will be over the socket streams.

Discussion

For any Bluetooth application you need to add these two permissions to AndroidManifest.xml
 file:
<uses-permission android:name="android.permission.BLUETOOTH_ADMIN" />
<uses-permission android:name="android.permission.BLUETOOTH" />
You will create the socket connection to the other Bluetooth
 device. Then you should continuously listen for the data from the socket
 stream in a thread. You can write to the connected stream outside the
 thread. The connection is a blocking call, and with Bluetooth device
 discovery being a heavy process, this may slow down the connection. So
 it is a good practice to cancel the device discovery before trying to
 connect to the other device.
The Bluetooth socket connection is a blocking call and returns
 only if a connection is successful or if an exception occurs while
 connecting to the device.
The BluetoothConnection will,
 once instantiated, create the socket connection to the other device, and
 start listening to the data from the connected device.
Example 18-2. Reading from and writing to a Bluetooth Device
private class BluetoothConnection extends Thread {
 private final BluetoothSocket mmSocket;
 private final InputStream mmInStream;
 private final OutputStream mmOutStream;
 byte[] buffer;

 // Unique UUID for this application, you should use different
 private static final UUID MY_UUID = UUID
 .fromString("fa87c0d0-afac-11de-8a39-0800200c9a66");

 public BluetoothConnection(BluetoothDevice device) {

 BluetoothSocket tmp = null;

 // Get a BluetoothSocket for a connection with the given BluetoothDevice
 try {
 tmp = device.createRfcommSocketToServiceRecord(MY_UUID);
 } catch (IOException e) {
 e.printStackTrace();
 }
 mmSocket = tmp;

 //now make the socket connection in separate thread to avoid FC
 Thread connectionThread = new Thread(new Runnable() {

 @Override
 public void run() {
 // Always cancel discovery because it will slow down a connection
 mAdapter.cancelDiscovery();

 // Make a connection to the BluetoothSocket
 try {
 // This is a blocking call and will only return on a
 // successful connection or an exception
 mmSocket.connect();
 } catch (IOException e) {
 //connection to device failed so close the socket
 try {
 mmSocket.close();
 } catch (IOException e2) {
 e2.printStackTrace();
 }
 }
 }
 });

 connectionThread.start();

 InputStream tmpIn = null;
 OutputStream tmpOut = null;

 // Get the BluetoothSocket input and output streams
 try {
 tmpIn = socket.getInputStream();
 tmpOut = socket.getOutputStream();
 buffer = new byte[1024];
 } catch (IOException e) {
 e.printStackTrace();
 }

 mmInStream = tmpIn;
 mmOutStream = tmpOut;
 }

 public void run() {

 // Keep listening to the InputStream while connected
 while (true) {
 try {
 //read the data from socket stream
 mmInStream.read(buffer);
 // Send the obtained bytes to the UI Activity
 } catch (IOException e) {
 //an exception here marks connection loss
 //send message to UI Activity
 break;
 }
 }
 }

 public void write(byte[] buffer) {
 try {
 //write the data to socket stream
 mmOutStream.write(buffer);
 } catch (IOException e) {
 e.printStackTrace();
 }
 }

 public void cancel() {
 try {
 mmSocket.close();
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
}

See Also

Recipe 18.5

18.4. Listening for and Accepting Bluetooth Connection Requests

Rachee Singh

Problem

You want to create a listening server for Bluetooth connections.

Solution

Before two Bluetooth devices can interact, one of the
 communicating devices must act like a server. It obtains a
 BluetoothServerSocket instance and listens for incoming requests. This instance is
 obtained by calling the
 listenUsingRfcommWithServiceRecord() method
 on the Bluetooth adapter.

Discussion

With the BluetoothServerSocket instance, we can
 start listening for incoming requests from remote devices through the
 start() method. Listening is a blocking process, so
 we have to make a new thread and call it within the thread; otherwise,
 the UI of the application becomes unresponsive. Example 18-3
 shows the relevant code.
Example 18-3. Creating a Bluetooth server and accepting connections
//Making the host device discoverable
startActivityForResult(new Intent(BluetoothAdapter.ACTION_REQUEST_DISCOVERABLE),
DISCOVERY_REQUEST_BLUETOOTH);
 @Override
 protected void onActivityResult(int requestCode, int resultCode, Intent data) {
 if (requestCode == DISCOVERY_REQUEST_BLUETOOTH) {
 boolean isDiscoverable = resultCode > 0;
 if (isDiscoverable) {
 UUID uuid = UUID.fromString("a60f35f0-b93a-11de-8a39-08002009c666");
 String serverName = "BTserver";
 final BluetoothServerSocket bluetoothServer =
 bluetoothAdapter.listenUsingRfcommWithServiceRecord(serverName, uuid);

 Thread listenThread = new Thread(new Runnable() {

 public void run() {
 try {
 BluetoothSocket serverSocket = bluetoothServer.accept();
 myHandleConnectionWith(serverSocket);
 } catch (IOException e) {
 Log.d("BLUETOOTH", e.getMessage());
 }
 }
 });
 listenThread.start();
 }
 }
 }

18.5. Implementing Bluetooth Device Discovery

Shraddha Shravagi

Problem

You want to display a list of Bluetooth devices that are within communication
 range of your device.

Solution

Create an XML file to display the list, create a class file to
 load the list, and then edit the manifest file.
It’s that simple.
Note that, for security reasons, devices to be discovered must be
 in “discoverable” mode (also known as “pairing”); for Android devices
 there is a Discoverable setting in the Bluetooth Settings, while for
 “conventional” Bluetooth devices you may need to refer to the device’s
 instruction manual.

Discussion

Use the following code to create the XML file to display the
 list:
 <ListView
 android:id="@+id/pairedBtDevices"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 />
The code in Example 18-4 creates a class
 file to load the list.
Example 18-4. Activity with BroadcastReceiver for connections
 //IntentFilter will match the action specified
 IntentFilter filter = new IntentFilter(BluetoothDevice.ACTION_FOUND);
 //broadcast receiver for any matching filter
 this.registerReceiver(mReceiver, filter);

 //attach the adapter
 ListView newDevicesListView = (ListView)findViewById(R.id.pairedBtDevices);
 newDevicesListView.setAdapter(mNewDevicesArrayAdapter);

 filter = new IntentFilter(BluetoothAdapter.ACTION_DISCOVERY_FINISHED);
 this.registerReceiver(mReceiver, filter);

 // Create a receiver for the Intent
 private final BroadcastReceiver mReceiver = new BroadcastReceiver() {

 @Override
 public void onReceive(Context context, Intent intent) {

 String action = intent.getAction();

 if(BluetoothDevice.ACTION_FOUND.equals(action)){
 BluetoothDevice btDevice =
 intent.getParcelableExtra(BluetoothDevice.EXTRA_DEVICE);

 if(btDevice.getBondState() != BluetoothDevice.BOND_BONDED){
 mNewDevicesArrayAdapter.add(btDevice.getName()+"\n"+
 btDevice.getAddress());
 }
 }
 else
 if(BluetoothAdapter.ACTION_DISCOVERY_FINISHED.equals(action)){
 setProgressBarIndeterminateVisibility(false);
 setTitle(R.string.select_device);
 if(mNewDevicesArrayAdapter.getCount() == 0){
 String noDevice =
 getResources().getText(R.string.none_paired).toString();
 mNewDevicesArrayAdapter.add(noDevice);
 }
 }

 }
 };
The AndroidManifest.xml file must specify
 that you need the following permissions:
	android.permission.BLUETOOTH

	android.permission.BLUETOOTH_ADMIN

Source Download URL

The source code for this example is in the Android Cookbook repository at
 http://github.com/AndroidCook/Android-Cookbook-Examples, in the subdirectory
 BlueToothDemo
 (see Getting and Using the Code Examples).

[1] Bluetooth (the t is not capitalized) is a
 trademark of The Bluetooth
 Special Interest Group.

Chapter 19. System and Device Control

19.1. Introduction: System and Device Control

Ian Darwin

Discussion

Android provides a good compromise between the needs of the carriers for
 control and the needs of developers for device access. This chapter
 looks at some of the informational and control APIs that are publicly
 available to the Android developer to explore and control the extensive
 hardware facilities provided by the system, and to deal with the wide
 range of hardware it runs on, from 2-inch cell phones to 10-inch tablets
 and netbooks.

19.2. Accessing Phone Network/Connectivity Information

Amir Alagic

Problem

You want to find information about the device’s current network
 connectivity.

Solution

You can determine whether your phone is connected to the network,
 its type of connection, and whether your phone is in roaming territory,
 using the ConnectivityManager and a
 NetworkInfo object.

Discussion

Often you need to know whether the device you are running on can
 connect to the Internet at the moment, and, since roaming can be
 expensive, it is also very useful if you can tell the user whether he is
 roaming (the user who is truly worried about this will disable data
 roaming using the Settings application). To do this and more we can use
 the NetworkInfo class in the android.net package, as in Example 19-1.
Example 19-1. Getting network information
 ConnectivityManager connManager =
 (ConnectivityManager)this.getSystemService(Context.CONNECTIVITY_SERVICE);
 NetworkInfo ni = connManager.getActiveNetworkInfo();
 /*Indicates whether network connectivity is possible.
 A network is unavailable when a persistent or semi-persistent
 condition prevents the possibility of connecting to
 that network.*/
 boolean available = ni.isAvailable();
 /*Indicates whether network connectivity is possible.
 A network is unavailable when a persistent
 or semi-persistent condition prevents the possibility
 of connecting to that network. Examples include*/
 boolean connected = ni.isConnected();
 boolean roaming = ni.isRoaming();
 /* Reports the type of network (currently mobile or Wi-Fi) to which the info
 in this object pertains.*/
 int networkType = ni.getType();

19.3. Obtaining Information from the Manifest File

Colin Wilcox

Problem

You want to obtain project settings (e.g., app version) data from the
 AndroidManifest.xml file during program
 execution.

Solution

Use the PackageManager. Rather than hardcoding values into the application that
 need to be changed each time the application is modified, it is easier
 to read the version number from the manifest file. Other settings can be
 read in a similar manner.

Discussion

The PackageManager is fairly straightforward to
 use. The two imports in the following code need to be
 added to the Activity:
import android.content.pm.PackageInfo;
import android.content.pm.PackageManager;
The main part of the code is shown in Example 19-2.
Example 19-2. Code to get information from the manifest
// In the main Activity...
public String readVersionNameFromManifest() {
 PackageInfo packageInfo = null;

 // Read package name and version number from manifest
 try {
 // load the package manager for the current context
 PackageManager packageManager = this.getPackageManager();

 // get the package info structure and pick out the fields you want
 packageInfo = packageManager.getPackageInfo(this.getPackageName(), 0);
 } catch (Exception e) {
 Log.e(TAG, "Exception reading manifest version " + e);
 }
 return (packageInfo.versionName);
}

19.4. Changing Incoming Call Notification to Silent, Vibrate, or Normal

Rachee Singh

Problem

You need to set the Android device to silent, vibrate, or normal mode.

Solution

Use Android’s AudioManager system service to
 set the phone to normal, silent, and vibrate modes.

Discussion

This recipe presents a simple application that has three buttons
 to change the phone mode to Silent, Vibrate, and Normal, as shown in
 Figure 19-1.
We instantiate the AudioManager class to be
 able to use the setRingerMode method. For each of
 these buttons (silentButton,
 normalButton, and vibrateButton)
 we have OnClickListeners defined in which
 we used the AudioManager object to set the ringer
 mode. We also display a toast notifying the user of the mode change. See
 Example 19-3.
Example 19-3. Setting the audio mode
 am= (AudioManager) getBaseContext().getSystemService(Context.AUDIO_SERVICE);
 silentButton = (Button)findViewById(R.id.silent);
 normalButton = (Button)findViewById(R.id.normal);
 vibrateButton = (Button)findViewById(R.id.vibrate);

 //For Silent mode
 silentButton.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View arg0) {
 am.setRingerMode(AudioManager.RINGER_MODE_SILENT);
 Toast.makeText(getApplicationContext(), "Silent Mode Activated.",
 Toast.LENGTH_LONG).show();
 }
 });

 //For Normal mode
 normalButton.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View arg0) {
 am.setRingerMode(AudioManager.RINGER_MODE_NORMAL);
 Toast.makeText(getApplicationContext(),
 "Normal Mode Activated", Toast.LENGTH_LONG).show();
 }
 });

 //For Vibrate mode
 vibrateButton.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View arg0) {
 am.setRingerMode(AudioManager.RINGER_MODE_VIBRATE);
 Toast.makeText(getApplicationContext(),
 "Vibrate Mode Activated", Toast.LENGTH_LONG).show();
 }
 });

[image: Setting phone notification mode]

Figure 19-1. Setting phone notification mode

Figure 19-2 shows the application when
 the Silent button is clicked (notice also the silent icon in the status
 bar of the phone).
[image: Silent mode activated]

Figure 19-2. Silent mode activated

19.5. Copying Text and Getting Text from the Clipboard

Rachee Singh

Problem

You need to copy text to the clipboard and access the text stored on the
 clipboard; this allows you to provide full copy and paste functionality
 for text.

Solution

With the help of the ClipboardManager class,
 you can access the items stored on the clipboard of an Android
 device.

Discussion

The ClipboardManager class allows you to copy
 text to the clipboard using the setText() method and get the text stored on the clipboard using the
 getText() method. getText() returns a
 charSequence that is converted to a string by the
 toString() method.
Example 19-4 is sample
 code that demonstrates how to obtain an instance of the
 ClipboardManager class and how to use it to copy text
 to the clipboard. Then the getText() method is used
 to get the text on the clipboard, and the text is set to a
 TextView.
Example 19-4. Copying text to the clipboard
ClipboardManager clipboard = (ClipboardManager)getSystemService(CLIPBOARD_SERVICE);
clipboard.setText("Using the clipboard for the first time!");
String clip = clipboard.getText().toString();
clipTextView = (TextView) findViewById(R.id.clipText);
clipTextView.setText(clip);

19.6. Using LED-Based Notifications

Rachee Singh

Problem

Most Android devices are equipped with an LED for notification purposes. You want
 to flash different colored lights using the LED.

Solution

Using the NotificationManager and
 Notification classes allows you to provide
 notifications using the LED on the device.

Discussion

As in case of all notifications, we instantiate the
 NotificationManager class. Then we create a
 Notification class’s object. Using the method ledARGB() we can specify the
 color of the LED light. The constant ledOnMS
 is used to specify the time in milliseconds for which the
 LED will be on; ledOffMS specifies the time in milliseconds for which the LED is
 off. The notify() method starts the notification
 process. Example 19-5 shows
 the code corresponding to the actions just described.
Example 19-5. Making the LED flash in blue
NotificationManager notificationManager =
(NotificationManager)getSystemService(NOTIFICATION_SERVICE);
Notification notification = new Notification();
notification.ledARGB = 0xff0000ff; // Blue color light flash
notification.ledOnMS = 1000; // LED is on for 1 second
notification.ledOffMS = 1000; // LED is off for 1 second
notification.flags = Notification.FLAG_SHOW_LIGHTS;
notificationManager.notify(0, notification);

19.7. Making the Device Vibrate

Rachee Singh

Problem

You wish to notify the user of some event by means of device vibration.

Solution

Use notifications to set a vibration pattern.

Discussion

To allow device vibration, include this permission in the
 AndroidManifest.xml file:
<uses-permission android:name="android.permission.VIBRATE"/>
In the Java code, we need to get an instance of the
 NotificationManager class and of the Notification
 class:
NotificationManager notificationManager =
 (NotificationManager) getSystemService(NOTIFICATION_SERVICE);
Notification notification = new Notification();
To set a pattern for the vibration, assign a sequence of long
 values (time in milliseconds) to the Notification’s
 vibrate property. This sequence represents the time
 for which the device will vibrate and the time for which it will pause
 vibration. For instance, the pattern used in this example will cause the
 device to vibrate for one second and then pause for one second, then
 vibrate again for one second, and so on:
notification.vibrate =
 new long[]{1000, 1000, 1000, 1000, 1000};
notificationManager.notify(0, notification);

Source Download URL

You can download the source code for this example from https://docs.google.com/leaf?id=0B_rESQKgad5LZjJiMTU5MzEtYzk3NC00NTcxLWE0NDAtMDVjY2I3ZWFmMGI3&hl=en_US&authkey=CJ2SjpAC.
[image: image with no caption]

19.8. Running Shell Commands from Your Application

Rachee Singh

Problem

You need to run a Unix/Linux shell command (command-line program) from your
 application (e.g., pwd, ls,
 etc.).

Solution

Use the exec() method of the
 Runtime class, passing the shell command you wish to
 run as an argument.

Discussion

As in standard Java, your applications cannot create an instance
 of the Runtime class, but rather get an
 instance by invoking the static getRuntime() method.
 Using this instance we call the
 exec() method, which executes the
 specified program in a separate native process. It takes the name of the
 program to execute as an argument. The exec() method
 returns the new Process object that represents the
 native process.
As an example, we run the ps command that lists all the processes running on the system. The
 full location of the command is specified
 (/system/bin/ps) as an argument to
 exec().
We get the output of the command and return the string. Then process.waitFor() is used to wait
 for the command to finish executing. See Example 19-6.
Example 19-6. Running a shell command
try {
 Process process = Runtime.getRuntime().exec("/system/bin/ps");
 InputStreamReader reader = new InputStreamReader(process.getInputStream());
 BufferedReader bufferedReader = new BufferedReader(reader);
 int numRead;
 char[] buffer = new char[5000];
 StringBuffer commandOutput = new StringBuffer();
 while ((numRead = bufferedReader.read(buffer)) > 0) {
 commandOutput.append(buffer, 0, numRead);
 }
 bufferedReader.close();
 process.waitFor();

 return commandOutput.toString();
} catch (IOException e) {
 throw new RuntimeException(e);
} catch (InterruptedException e) {
 throw new RuntimeException(e);
}

Figure 19-3 shows the output of the ps command.
[image: Android ps(1) command output]

Figure 19-3. Android ps(1) command output

Source Download URL

You can download the source code for this example from https://docs.google.com/leaf?id=0B_rESQKgad5LNTkxMDIyYTgtMzlmMS00ZDViLThkOTUtYWY4MjQ5NGY1NzFk&hl=en_US.
[image: image with no caption]

19.9. Determining Whether a Given Application Is Running

Colin Wilcox

Problem

You want to know whether your app or some other app is running.

Solution

The system activity manager maintains a list of all active tasks.
 This provides the name of all running tasks and can be interrogated for
 various system-specific information.

Discussion

The code in Example 19-7
 takes the name of an application and returns true if
 the ActivityManager thinks it is
 currently running.
Example 19-7. Checking for a running app
import android.app.ActivityManager;
import android.app.ActivityManager.RunningAppProcessInfo;

public boolean isAppRunning (String aApplicationPackageName)
{
 ActivityManager activityManager =
 (ActivityManager) this.getSystemService(ACTIVITY_SERVICE);
 if (activityManager == null)
 {
 return false; // should report: can't get Activity Manager
 }

 List<RunningAppProcessInfo> procInfos =
 activityManager.getRunningAppProcesses();
 for(int idx = 0; idx < procInfos.size(); idx++)
 {
 if(procInfos.get(i).processName.equals(aApplicationPackageName))
 {
 return true;
 }
 }

 return false;
}

Chapter 20. Other Programming Languages and
 Frameworks

20.1. Introduction: Other Programming Languages

Ian Darwin

Discussion

Developing new programming languages is a constant process in this industry. Several new (or
 not-so-new) languages have become popular recently: Scheme, Erlang,
 Scala, Clojure, Groovy, C#, F#, and more. While the Apple approach on
 the iPhone has been to mandate use of Objective-C and to ban (at least
 initially, it has been relaxed somewhat recently) use of other
 languages, particularly JVM-style translated languages, Android
 positively encourages the use of many languages. You can write your app
 in pure Java using the SDK, of course—that’s the subject of most of the
 rest of the book. You can mix some C/C++ code into Java using native
 code (see Recipe 20.3), using
 Android’s NDK. People have made most of the major compiled languages
 work, especially (but not exclusively) the JVM-based ones. You can write
 using a variety of scripting languages such as Perl, Python, and Ruby
 (see Recipe 20.4). And there’s
 more...
If you want a very high-level, drag-and-drop development process,
 look at Android App Inventor, a Google-originated environment for
 building applications easily using the drag-and-drop metaphor and
 “Blocks” that snap together. We have a recipe in progress. App
 Inventor is now maintained at MIT; you can also visit the official
 MIT site.
If you are a web developer used to working your magic in HTML,
 JavaScript, and CSS, there is a route for you to become an Android
 developer using the tools you already know. There are, in fact, five or
 six technologies that go this route, such as AppCelerator Titanium,
 PhoneGap (see Recipe 20.9), and more. These generally use
 CSS to build a style that looks close to the native device toolkit,
 JavaScript to provide actions, and W3 standards to provide device access
 such as GPS. Most of these work by packaging up a JavaScript interpreter
 along with your HTML and CSS into an APK file. Many of these have the
 further advantage that they can be packaged to run on iPhone,
 BlackBerry, and other mobile platforms. The risk I see with these is
 that, since they’re not using native toolkit items, they may easily
 provide strange-looking user interfaces that don’t conform either to the
 Android Guidelines or to users’ expectations of how apps should behave
 on the Android platform. That is certainly something to be aware of if
 you are using one of these toolkits.
One of the key ideas in Android was to keep it as an open
 platform. The wide range of languages that you can use to develop
 Android apps testifies that this openness has been maintained.

20.2. Running an External/Native Unix/Linux Command

Amir Alagic

Problem

Sometimes it can be convenient to start one of the Linux commands available on the phone, such as
 rm, sync, top,
 or uptime.

Solution

To run Linux commands available on the Android OS you should use
 classes that are available in standard Java and are used to start
 external processes. First you have to know which command you want to
 run, get/obtain the runtime object, and then execute the native command
 in a separate native process. Often you will need to read results, and
 to do that, use streams.

Discussion

Java (both desktop and under Android) makes it pretty simple to
 start external processes.
With the a file manager such as the AndroZip File
 Manager you can find Linux commands in the
 ./system/bin folder. One of the commands is
 ls, which lists the files (and
 subfolders) in a folder. To run this command we will send its path to
 the Runtime.exec()
 method.
You cannot create a Runtime
 object directly since it is a singleton; to obtain its instance you call
 the static getRuntime()
 method and then pass the path to the Linux command you want to
 run.
 Process process = Runtime.getRuntime().exec("/system/bin/ls");
The Process class is used in the preceding code to create the process; it
 will also help us read from the process, and we obtain an
 InputStream that is connected to the standard output
 stream (stdout) of the native process represented by this object.
 DataInputStream osRes = new DataInputStream(process.getInputStream());
Then we create a BufferedReader object that will help us to read results line by
 line.
 BufferedReader reader = new BufferedReader(new InputStreamReader(osRes));
 String line;

 while ((line = reader.readLine()) != null || reader.read() !=-1) {
 Log.i("Reading command result", line);
 }
As you can see, we read all the lines and show them on the LogCat
 console. You can see the output for the example in your Eclipse
 IDE.
You could, of course, capture the output of any system command
 back into your program and either parse it for display in, for example,
 a ListView, or display it as text in a
 TextView.

20.3. Running Native C/C++ Code with JNI on the NDK

Ian Darwin

Problem

You need to run parts of your application natively in order to use existing
 C/C++ code or, possibly, to improve performance of CPU-intensive
 code.

Solution

Use JNI (Java Native Interface) via the Android
 Native Development Kit or NDK.

Discussion

Standard Java has always allowed you to load
 native or compiled code into your Java program, and
 Android’s Dalvik runtime supports this in a way that is pretty much
 identical to the original. Why would you as a developer want to do such
 a thing? One reason might be to access OS-dependent functionality.
 Another is speed: native code will likely run faster than Java, at least
 at present, although there is some contention as to how much of a
 difference this really makes. Search the Web for conflicting
 answers.
The native code language bindings are defined for code that has
 been written in C or C++. If you need to access a language other than
 C/C++, you could write a bit of C/C++
 and have it pass control to other functions or applications, but you
 should also consider using the Android Scripting Environment (see Recipe 20.4).
For this example I use a simple numeric calculation, computing the
 square root of a double using the
 Newton-Raphson iterative method. The code provides both a
 Java and a C version, to compare the speeds.
Ian’s basic steps: Java calling native code

To call native code from Java follow these steps:
	Install the NDK in addition to the Android Development Kit (ADK).

	Write Java code that declares and calls a native
 method.

	Compile this Java code.

	Create an .h header file using
 javah.

	Write a C function that includes this header file and
 implements the native method to do the work.

	Prepare the Android.mk (and optionally
 Application.mk) configuration files.

	Compile the C code into a loadable object using
 $NDK/ndk-build.

	Package and deploy your application, and test it.

The preliminary step is to download the NDK as a TAR or ZIP
 file, extract it someplace convenient, and set the environment
 variable such as NDK to where you’ve installed it,
 for referring back to the NDK install. You’ll want this to read
 documentation as well as to run the tools.
The first step is to write Java code that declares and calls a
 native method (see Example 20-1). To
 declare the method, use the keyword native to indicate that the method is
 native. To use the native method, no special syntax is used, but your
 application—typically in your main activity—must provide a static code
 block that loads your native method using
 System.loadLibrary(), as shown in Example 20-2.
 (The dynamically loadable module will be created in step 6.) Static
 blocks are executed when the class containing them is loaded; loading
 the native code here ensures that it is in memory when needed!
Object variables that your native code may modify should carry
 the volatile modifier. In my example,
 SqrtDemo.java contains the native method
 declaration (as well as a Java implementation of the
 algorithm).
Example 20-1. The Java code
public class SqrtDemo {

 public static final double EPSILON = 0.05d;

 public static native double sqrtC(double d);

 public static double sqrtJava(double d) {
 double x0 = 10.0, x1 = d, diff;
 do {
 x1 = x0 - (((x0 * x0) - d) / (x0 * 2));
 diff = x1 - x0;
 x0 = x1;
 } while (Math.abs(diff) > EPSILON);
 return x1;
 }
}

Example 20-2. The Activity class Main.java uses the native code
// In the Activity class, outside any methods:
static {
 System.loadLibrary("sqrt-demo");
}

// In a method of the Activity class where you need to use it:
double d = SqrtDemo.sqrtC(123456789.0);

The next step is simple; just build the project normally, using
 the ADK Eclipse Plugin or Ant.
Next, you need to create a C-language .h
 header file that provides the interface between the JVM and your
 native code. Use javah to produce this file.
 javah needs to read the class that declares one or
 more native methods, and will generate an .h file
 specific to the package and class name.
mkdir jni // keep everything JNI-related here
javah -d jni -classpath bin foo.ndkdemo.SqrtDemo // produces foo_ndkdemo_SqrtDemo.h
The .h file produced is a “glue” file, not
 really meant for human consumption and particularly not for editing.
 But by inspecting the resultant .h file, you’ll
 see that the C method’s name is composed of the name Java, the package
 name, the class name, and the method name:
JNIEXPORT jdouble JNICALL Java_foo_ndkdemo_SqrtDemo_sqrtC
 (JNIEnv *, jclass, jdouble);
Now create a C function that does the work. You must import the
 .h file and use the same function signature as is
 used in the .h file.
This function can do whatever it wishes. Note that it is passed
 two arguments before any declared arguments: a JVM environment
 variable and a “this” handle for the invocation context object. Table 20-1 shows the correspondence
 between Java types and the C types (JNI types) used in the C code.
Table 20-1. Java and JNI types
	Java type	JNI	Java array type	JNI
	byte	jbyte	byte[]	jbyteArray
	short	jshort	short[]	jshortArray
	int	jint	int[]	jintArray
	long	jlong	long[]	jlongArray
	float	jfloat	float[]	jfloatArray
	double	jdouble	double[]	jdoubleArray
	char	jchar	char[]	jcharArray
	boolean	jboolean	boolean[]	jbooleanArray
	void	jvoid	 	
	Object	jobject	Object[]	jobjectArray
	Class	jclass	 	
	String	jstring	 	
	array	jarray	 	
	Throwable	jthrowable	 	

Example 20-3 shows the complete C
 native implementation. It simply computes the square root of the input
 number, and returns that. The method is static, so the “this” pointer
 is not used.
Example 20-3. The C code
// jni/sqrt-demo.c

#include <stdlib.h>

#include "foo_ndkdemo_SqrtDemo.h"

JNIEXPORT jdouble JNICALL Java_foo_ndkdemo_SqrtDemo_sqrtC(
 JNIEnv *env, jclass clazz, jdouble d) {

 jdouble x0 = 10.0, x1 = d, diff;
 do {
 x1 = x0 - (((x0 * x0) - d) / (x0 * 2));
 diff = x1 - x0;
 x0 = x1;
 } while (labs(diff) > foo_ndkdemo_SqrtDemo_EPSILON);
 return x1;
}

The implementation is basically the same as the Java version.
 Note that javah even maps the final double
 EPSILON from the Java class
 SqrtDemo into a #define for use within the C
 version.
The next step is to prepare the file
 Android.mk, also in the jni
 folder. For a simple shared library, Example 20-4 will suffice.
Example 20-4. An Android.mk makefile example
Android.mk

LOCAL_PATH := $(call my-dir)

include $(CLEAR_VARS)

LOCAL_MODULE := sqrt-demo
LOCAL_SRC_FILES := sqrt-demo.c

include $(BUILD_SHARED_LIBRARY)

Finally, you compile the C code into a loadable object. Under
 desktop Java, the details depend on platform, compiler, and so on.
 However, the NDK provides a build script to automate this. Assuming
 you have set the NDK variable to the install root
 of the NDK download from step 1, you only need to type the
 following:
$ $NDK/ndk-build # for Linux, Unix, OS-X?
> %NDK%/ndk-build # for MS-Windows

Compile thumb : sqrt-demo <= sqrt-demo.c
SharedLibrary : libsqrt-demo.so
Install : libsqrt-demo.so => libs/armeabi/libsqrt-demo.so
And you’re done! Just package and run the application normally.
 The output should be similar to Figure 20-1.The
 full download example for this chapter includes buttons to run the
 sqrt function a number of times in either Java or C
 and compare the times. Note that at present it does this work on the
 event thread, so large numbers of repetitions will result in
 “Application Not Responding” (ANR) errors, which will mess up the
 timing.
[image: NDK demonstration output]

Figure 20-1. NDK demonstration output

Congratulations! You’ve called a native method. Your code may
 run slightly faster. However, you will require extra work for
 portability; as Android begins to run on more hardware platforms, you
 will have to (at least) add them to the
 Application.mk file. If you have used any
 assembler code, the problem is much worse.
Beware that problems with your native code can and will crash
 the runtime process right out from underneath the Java Virtual
 Machine. The JVM can do nothing to protect itself from poorly written
 C/C++ code. Memory must be managed by the programmer; there is no
 automatic garbage collection of memory obtained by the system runtime
 allocator. You’re dealing directly with the operating system and
 sometimes even the hardware, so, ‘Be careful. Be very careful.’

See Also

There is a recipe in Chapter 26 of my Java
 Cookbook, published by O’Reilly, that shows variables
 from the Java class being accessed from within the native code. The
 official documentation for Android’s NDK is on the Android
 Native SDK information page. Considerable documentation is
 included in the docs folder of the NDK download. If
 you need more information on Java native methods, you might be
 interested in the comprehensive treatment found in Essential
 JNI: Java Native Interface by Rob Gordon (Prentice Hall),
 originally written for Desktop Java.

Source Download URL

The source code for this example is in the Android Cookbook repository at http://github.com/AndroidCook/Android-Cookbook-Examples,
 in the subdirectory NdkDemo (see Getting and Using the Code Examples).

20.4. Getting Started with the Scripting Layer for Android (SL4A,
 Formerly Android Scripting Environment)

Ian Darwin

Problem

You want to write your application in one of several popular scripting languages,
 or you want to program interactively on your phone.

Solution

One of the best approaches is to use the Scripting Layer for
 Android (SL4A). This provides support for several popular scripting
 languages (including Python, Perl, Lua, and BeanShell). An
 Android object is provided that gives access to most
 of the underlying Android APIs from this language. This recipe shows how
 to get started; several other recipes explore particular aspects of
 using SL4A.
Here’s how to get started:
	Download the Scripting Layer for Android (formerly Android
 Scripting Environment) from http://code.google.com/p/android-scripting/.

	Add the interpreter(s) you want to use.

	Type in your program.

	Run it immediately—no compilation or packaging steps are
 needed!

Discussion

The SL4A application is not at the time of this writing in the
 Android Market, so you have to visit the website and download it (there
 is a Quick Response or QR code for downloading, so start in your laptop
 or desktop browser). And since it’s not in the Market, before you can
 download it you’ll have to go into Settings→Applications→Unknown Sources and enable unknown-sourced
 applications. Also note that since this is not downloaded via the
 Market, you will not be notified when the Google project releases a new
 binary.
Once you have the SL4A binary installed, you must start it and
 download the particular interpreter you want to use. The following are
 available as of this writing:
	Python

	Perl

	JRuby

	Lua

	BeanShell

	JavaScript

	Tcl

	Unix shell

Some of the interpreters (e.g., JRuby) run in the Dalvik VM, while
 others (e.g., Python) run the “native” versions of the language under
 Linux on your phone. Communication happens via a little server that is
 started automatically when needed or can be started from the
 Interpreters menu bar.
The technique for downloading new interpreters is a bit
 subobvious. When you start the SL4A application it shows a list of
 scripts, if you have any. Click the Menu button, then go to the View
 menu and select Interpreters (while here, notice that you can also view
 the LogCat, the system exception logfile). From the Interpreters list,
 clicking Menu again will get you a menu bar with an
 Add button, and this lets you add another interpreter.
Pick a language (Python)

Suppose you think Python is a great language (which it is).
Once your interpreter is installed, go back to the SL4A main
 page and click the Menu button, then Add (in this context, Add creates
 a new file, not another interpreter). Select the installed interpreter
 and you’ll be in Edit mode. We’re trying Python, so type in this
 canonical “hello world” example:
import android
droid = android.Android()
droid.makeToast("Hello, Android")
Click the Menu button, and Save and Run if enabled, or Save and
 Exit otherwise. The former will run your new app; the latter will
 return you to the list of scripts, in which case you want to tap your
 script’s name. In the resultant pop up, the choices are (left to
 right):
	Run (“DOS box” icon)

	Disabled

	Edit (“pencil” icon)

	Save (“1980 floppy disk icon”)

	Delete (trash can icon)

If you long-press a filename, a pop up gives you the choice of
 Rename or Delete.
When you run this trivial application, you will see the toast
 near the bottom of your screen.

Source editing

If you want to keep your scripts in a source repository, and/or
 if you prefer to edit them on a laptop or desktop with a traditional
 keyboard, just copy the files back and forth (if your phone is rooted,
 you can probably run your repository directly on the phone). Scripts
 are stored in sl4a/scripts on the SD card. If you
 have your phone mounted on your laptop’s /mnt
 folder, for example, you might see the code shown in Example 20-5 (on Windows it might
 be E: or F: instead of
 /mnt):
Example 20-5. List of scripting files
laptop$ ls /mnt/sl4a/
Shell.log demo.sh.log dialer.py.log hello_world.py.log ifconfig.py.log
notify_weather.py.log phonepicker.py.log say_chat.py.log say_time.py.log
say_weather.py.log scripts/ sms.py.log speak.py.log take_picture.py.log
test.py.log
laptop$ ls /mnt/sl4a/scripts
bluetooth_chat.py demo.sh dialer.py foo.sh hello_world.py ifconfig.py
notify_weather.py phonepicker.py say_chat.py say_time.py say_weather.py
sms.py speak.py take_picture.py test.py weather.py weather.pyc
laptop$

See Also

The official SL4A website is http://code.google.com/p/android-scripting/; a QR code is
 available there to download the latest binary. In addition, several
 textbooks are now available on SL4a, also listed there.

20.5. Creating Alerts in SL4A

Rachee Singh

Problem

You need to create an alert box or pop-up dialog using Python in the Scripting
 Layer for Android (SL4A).

Solution

You can create many kinds of alert dialogs using Python in SL4A. They can have buttons, lists, and other
 features.

Discussion

Begin by starting the SL4A app on your emulator/device. Then add a
 new Python script by clicking the Menu button and choosing Add (see
 Figure 20-2).
Choose the Python 2.x option from the submenu that appears, as
 shown in Figure 20-3.
[image: Starting to add a new script]

Figure 20-2. Starting to add a new script

This opens an editor, with the first two lines (shown in Figure 20-4) already filled in for
 you. Enter the name of the script (I have named mine
 alertdialog.py; see Figure 20-4).
Now we are ready to enter the code to create the alert dialogs.
 Type in the code shown in Example 20-6:
Example 20-6. A simple SL4A Python script
 title = 'Sample Alert Dialog'
 text = 'Alert Dialog Type 1!'
 droid.dialogCreateAlert(title, text)
 droid.dialogSetPositiveButtonText('Continue')
 droid.dialogShow()

[image: Choosing the language]

Figure 20-3. Choosing the language

[image: Composing the script]

Figure 20-4. Composing the script

Press the Menu button and choose Save and Run from the menu. This
 runs the script. The alert dialog should look like Figure 20-5.
[image: Sample alert dialog]

Figure 20-5. Sample alert dialog

Now let’s create an alert dialog with two buttons, using the code
 in Example 20-7.
Example 20-7. Composing an alert with three choices
 title = 'Sample Alert Dialog'
 text = 'Alert Dialog Type 2 with Buttons!'
 droid.dialogCreateAlert(title, text)
 droid.dialogSetPositiveButtonText('Yes')
 droid.dialogSetNegativeButtonText('No')
 droid.dialogSetNeutralButtonText('Cancel')
 droid.dialogShow()

Figure 20-6 shows
 how this alert dialog looks.
[image: Alert dialog with two choices in action]

Figure 20-6. Alert dialog with two choices in action

Now try the code in Example 20-8
 to create an alert dialog with a list.
Example 20-8. Another approach to composing an alert with three
 choices
 title = 'Sample Alert Dialog'
 droid.dialogCreateAlert(title)
 droid.dialogSetItems(['mango', 'apple', 'strawberry'])
 droid.dialogShow()

Figure 20-7 shows how
 this alert dialog looks.
[image: Dialog with three choices]

Figure 20-7. Dialog with three choices

20.6. Fetching Your Google Documents and Displaying Them in a ListView
 Using SL4A

Rachee Singh

Problem

You need to get the details of your Google documents after logging in with
 your Google ID and password.

Solution

Google Documents is a widely used document editing and sharing
 service. Using the library gdata.docs.service, we can log in (getting the username and password from
 the user) and then get the “Google documents feed” or list of
 documents.

Discussion

Fire up the Scripting Layer for Android on your device (or
 emulator). Open a new Python script and add to the script the code shown
 in Example 20-9.
 If you have not worked in Python before, be aware that indentation,
 rather than braces, is used for statement grouping, so you must be very
 consistent about leading spaces.
Example 20-9. Composing a script to fetch Google documents
import android
import gdata.docs.service

droid = android.Android()

client = gdata.docs.service.DocsService()

username = droid.dialogGetInput('Username').result
password = droid.dialogGetPassword('Password', 'For ' _username).result

def truncate(content, length=15, suffix='...'):
 if len(content) <=length:
 return content
 else:
 return content[:length] + suffix
try:
 client.ClientLogin(username, password)
except:
 droid.makeToast("Login Failed")

docs_feed = client.GetDocumentListFeed()

documentEntries = []

for entry in docs_feed.entry:
 documentEntries.append('%-18s %-12s %s' % (truncate(entry.title.text.encode('UTF-8')),
 entry.GetDocumentType(), entry.resourceId.text))

droid.dialogCreateAlert('Documents:')
droid.dialogSetItems(documentEntries)
droid.dialogShow()

Figure 20-8
 shows how the editor should look after you have finished entering the
 code.
[image: Google document fetcher in action]

Figure 20-8. Google document fetcher in action

In this Python code, we use the gdata.docs.service.DocsService() method to connect to the Google account of a user. The
 username and password are taken from the user. Once the login is done
 successfully, the GetDocumentListFeed() method is
 used to get the feed list of the Google documents. We format the details
 of each entry and append them to a list named
 documentEntries. This list is then passed as an
 argument to the alert dialog, which displays all the entries in a
 list.
Figure 20-9 shows how
 my own document list looks.
[image: List of Google documents]

Figure 20-9. List of Google documents

20.7. Sharing SL4A Scripts in QR Codes

Rachee Singh

Problem

You have a neat/useful SL4A script and want to distribute it packed in a Quick
 Response (QR) code.

Solution

Use http://zxing.appspot.com/generator/ or
 one of several other QR code generators to generate a QR code that
 contains your entire script in the QR code graphic, and share this
 image.

Discussion

Most people think of QR codes as a convenient way to share
 URL-type links. Indeed, the printed edition of this book uses QR codes
 for individual downloads of sample applications. However, the QR code
 format is much more versatile, and can be used to package all sorts of
 things, like VCard (name and address) information. Here we use it to
 wrap the “plain text” of an SL4A script so that another Android user can
 get the script onto his device without retyping it. QR codes are a great
 way to share your scripts if they are short (QR codes can only encode
 4,296 characters of content). Follow these simple steps to generate a QR
 code for your script:
	Visit http://zxing.appspot.com/generator/ in your mobile
 device’s browser.

	Select Text from the drop-down menu.

	In the “Text content” box, put the script’s name in the first
 line.

	From the next line onward, enter the script. As an alternative
 to these steps, copy the script from an SL4A editor window and paste
 it into the “Text content” box in the browser.

	Choose Large for the barcode size and click Generate.

Figure 20-10 shows
 how this looks in action.
[image: Barcode generated from the SL4A script]

Figure 20-10. Barcode generated from the SL4A script

Many QR code readers are available for Android. Any such
 application can decipher the text that the QR code encrypts. For
 example, with the common ZXing barcode scanner, the script is copied to the
 clipboard (this is controlled by a “When a Barcode is found...” entry in
 the Settings for ZXing). Then start the SL4A editor, pick a name for
 your script, ideally the same as the original if you know it—depending
 on how it was pasted into the QR code generator it may appear as the
 first line—then long-press in the body area and select Paste. You are
 now ready to save the script and run it! It should look like Figure 20-11.
[image: The script, downloaded]

Figure 20-11. The script, downloaded

I was able to run the script from the QR code with no further work
 other than commenting out the script name in the body and typing it into
 the filename field, then clicking “Save and Run” (see Figure 20-12).
[image: The script running, showing a Notification]

Figure 20-12. The script running, showing a Notification

20.8. Using Native Handset Functionality from WebView via
 JavaScript

Colin Wilcox

Problem

The availability of HTML5 as a standard feature in many browsers means that
 developers can exploit the features of the HTML5 standard to create
 applications much more quickly than they can in native Java. This sounds
 great for many applications, but, alas, not all of the cool
 functionality on the device is accessible through HTML5 and JavaScript.
 Webkits attempt to bridge the gap, but they may not provide all the
 functionality needed in all cases.

Solution

You can invoke Java code in response to JavaScript events using a
 bridge between the JavaScript and Java environments.

Discussion

The idea is to tie up events within the JavaScript embedded in an
 HTML5 web page and handle the event on the Java side by calling native
 code.
The following code creates a button in HTML5 embedded in a web
 view which, when clicked, causes the contacts application to be invoked
 on the device through the Intent mechanism:
import android.content.Context;
import android.content.Intent;
import android.util.Log;
Now we write some thin bridge code, as shown in Example 20-10.
Example 20-10. The bridge code
public class JavaScriptInterface
{
 private static final String TAG = "JavaScriptInterface";
 Context iContext = null;

 /** Instantiate the interface and set the context */
 JavaScriptInterface(Context aContext)
 {
 // save the local content for later use
 iContext = aContext;
 }

 public void launchContacts();
 {
 iContext.startActivity(contactIntent);
 launchNativeContactsApp ();
 }
}

The Java code to actually launch contacts is shown in Example 20-11.
Example 20-11. Java code to launch contacts
private void launchNativeContactsApp()
{
 String packageName = "com.android.contacts";
 String className = ".DialtactsContactsEntryActivity";
 String action = "android.intent.action.MAIN";
 String category1 = "android.intent.category.LAUNCHER";
 String category2 = "android.intent.category.DEFAULT";

 Intent intent = new Intent();
 intent.setComponent(new ComponentName(packageName, packageName + className));
 intent.setAction(action);
 intent.addCategory(category1);
 intent.addCategory(category2);
 startActivity(intent);
}

The JavaScript that ties this all together is shown in the
 following snippet. In this case the call is triggered by a click
 event.
<input type="button" value="Say hello" onClick="showAndroidContacts())" />
<script type="text/javascript">
 function showAndroidContacts()
 {
 Android.launchContacts();
 }
</script>
The only preconditions are that the web browser has JavaScript
 enabled and the interface is known. This is done by:
WebView iWebView = (WebView) findViewById(R.id.webview);
iWebView.addJavascriptInterface(new JavaScriptInterface(this), "Android");

20.9. Creating a Platform-Independent Application Using
 PhoneGap/Cordova

Shraddha Shravagi

Problem

You want an application to run on different platforms, such as iOS, Android,
 BlackBerry, Bada, Symbian, and Windows Mobile.

Solution

Cordova (better known as PhoneGap) is an open source mobile
 development framework. If you plan to develop an application for
 multiple platforms, PhoneGap is one good solution, so much so that
 Oracle and BlackBerry, among others, either endorse it or base products
 on it. PhoneGap does not use
 traditional platform GUI controls; rather you write a web page with
 buttons—made to approximate the native look by careful use of CSS—and
 PhoneGap runs this “mobile app” for you.
PhoneGap was written by Nitobi, a small company that Adobe Systems
 Inc. acquired in fall 2011. Adobe has donated the framework source code
 to the Apache Software Foundation, where its development continues, briefly under the name
 “Callback” and now under the name “Cordova.”

Discussion

We will start with an Android application. We don’t use the normal
 Android layouts nor the notion of “one activity per screen”; instead, we
 create HTML and JavaScript files, which can run on different platforms.
 In fact, the app is mostly a “mobile web app” that is packaged as an
 Android app! We keep minimal code in the activity since such code would
 have to be rewritten for each platform.
Here are the steps for a basic PhoneGap application:[2]
	Create a new Android application.

	Download the
 phonegap-version.zip
 file (the version as of this writing is 1.5.0) from http://phonegap.com/ (this URL
 will soon be changed to the Apache download site). Copy the
 cordova-version.jar file from the
 lib/android folder of the ZIP file you
 downloaded, and add it to the lib folder and,
 of course, to the project’s build path.

	Create a new folder in the assets folder;
 for example, www.

	Copy the phonegap-1.0.0.js and
 jquery.min.js files into
 assets/www.

	Create a new file, helloworld.html, in
 the assets/www folder.

	In the body of this HTML page, add:
<h1> Hello World </h1>
You can add all your HTML/jQuery mobile code here. For
 example, to add a button:
<a data-role="button" data-icon="grid" data-theme="b" onClick="showAlert()">
 Click Me!!!

	Create a new file, helloresponse.js, in
 the assets/www folder. In this JavaScript file
 you can add all your jQuery mobile and JavaScript code:
function showAlert(){
 alert('Hello World from PHONE GAP using Javascript!!! ');
}

	In your main activity file, import
 com.phonegap.DroidGap; then change
 extends Activity to extends
 DroidGap.

	In the Activity’s
 onCreate() method, pass the URI of your HTML file
 into the DroidGap loadUrl
 method so that the HTML file will be invoked.

The Java code should look just like Example 20-12.
Example 20-12. The PhoneGap activity
import com.phonegap.DroidGap;

public class HomeScreen extends DroidGap {
 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 //set the URL from assets which is to be loaded.
 super.loadUrl("file:///android_asset/www/helloworld.html");
 }
}

That’s it. You should be able to run the application.
Take a look at the source download for some more great jQuery
 mobile examples.

See Also

http://phonegap.com/. Also, Building Android Apps with HTML, CSS, and
 JavaScript by Jonathan Stark (O’Reilly) gives a
 PhoneGap-centric coverage of these “background” technologies as well as
 more information on PhoneGap development.

Source Download URL

The source code for this example is in the Android Cookbook repository at http://github.com/AndroidCook/Android-Cookbook-Examples,
 in the subdirectory PhoneGapDemo (see Getting and Using the Code Examples).

[2] Note that, as of the current version as we go to press, some
 of the filenames contain “phonegap,” while others contain
 “cordova.”

Chapter 21. Strings and Internationalization

21.1. Introduction: Internationalization

Ian Darwin

Discussion

“All the world’s a stage,” wrote William Shakespeare. But not all the players on that
 great and turbulent stage speak the great Bard’s native tongue. To be
 usable on a global scale, your software needs to communicate in many
 different languages. The menu labels, button strings, dialog messages,
 title bar titles, and even command-line error messages must be settable
 to the user’s choice of language. This is the topic of
 internationalization and localization. Because these words take a long
 time to say and write, they are often abbreviated with their first and
 last letters and the count of omitted letters, that is, I18N and
 L10N.
If you’ve got your strings in a separate XML file as we advised in
 Chapter 1, you have already done part of the work of internationalizing
 your app. Aren’t you glad you followed our advice?
Android provides a Locale class to discover/control the internationalization settings. A
 default Locale is inherited from the user’s language
 settings when your app starts up.
Note that if you know internationalization from Desktop Java, it’s
 pretty much the same. We’ll explain as we go along, with examples, in
 this chapter.
Ian’s basic steps: Internationalization

Internationalization and localization consist of:
	Sensitivity training (internationalization or I18N)
	Making your software sensitive to these issues.

	Language lessons (localization or L10N)
	Writing configuration files for each language.

	Culture lessons (optional)
	Customizing the presentation of numbers, fractions, dates,
 and message-formatting. Images can mean different things in
 different cultures.

This chapter’s recipes provide examples of doing all
 three.

See Also

Wikipedia has a good article on localization at http://en.wikipedia.org/wiki/Internationalisation_and_localisation.
See also Java
 Internationalization by Andy Deitsch and David
 Czarnecki (O’Reilly).
Microsoft’s
 The GUI Guide: International Terminology for the Windows
 Interface was, despite the title, less about UI
 design than about internationalization; it came with a 3.5-inch floppy
 disk holding suggested translations of common Microsoft Windows GUI
 element names into a dozen or so common languages. This book is rather
 dated today, but it might be a start for translating simple texts into
 some common languages. It can often be found on the usual used-book
 websites.

21.2. Internationalizing Application Text

Ian Darwin

Problem

You want the text of your buttons, labels, and so on to appear in the user’s
 chosen language.

Solution

Create a strings.xml file in the res/values-XX/ subdirectory of
 your application. Translate the string values into the given
 language.

Discussion

Every Android project created with the SDK has a file called
 strings.xml in the res/values
 directory. This is where you are advised to place your application’s
 strings, from the application title through to the button text and even
 down to the contents of dialogs.
You can refer to a string by name in the following two
 ways:
	By a reference in a layout file, to apply the correct version
 of the string directly to a GUI component; for example, android:text="@string/hello"

	If you need the value in Java code, by using a lookup such as
 getString(R.string.hello) to look
 up the string’s value from the file

To make all of these strings available in a different language,
 you need to know the correct ISO-3166 language code; a few common ones are shown in Table 21-1.
Table 21-1. Common languages and codes
	Language	Code
	Chinese (traditional)	cn-tw
	Chinese (simplified)	cn-zh
	English	en
	French	fr
	German	de
	Italian	it
	Spanish	es

With this information, you can create a new subdirectory,
 res/values-<LL>/ (where
 LL is replaced by the ISO language code). In this
 directory you create a copy of strings.xml, and in
 it you translate the individual string values (but not the names). For
 example, a simple application might have the following in
 strings.xml:
<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string name="app_name">MyAndroid</string>
 <string name="hello">Hello Android</string>
</resources>
You might create res/values-es/strings.xml
 containing the following Spanish text (see Figure 21-1):
<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string name="app_name">MiAndroid</string>
 <string name="hello">Hola Android</string>
</resources>
You might also create the file
 res/values-fr/strings.xml containing the following
 French text:
<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string name="hello">Bonjour Android</string>
 <string name="app_name">MonAndroid</string>
</resources>
Note that the order of entries within this file does not matter,
 so the fact that this example has the app_name last
 is unimportant.
Now when you look up the string “hello” using either of the
 methods described earlier, you will get the version based on the user’s
 language choice. If the user selects a language that you don’t have a
 L10N file for, the app will still work, but it will get the value from
 the default file—the one in the values directory
 with no language code. For most of us, that will contain the English
 values, but it’s up to the developer.
This lookup is done per string, so if there is a string that’s not
 defined in a language-specific file, the app will find the version of it
 from the default strings.xml file.
Is it really that simple?

Yes. Just package your application and deploy it (if you’re
 using Eclipse, just Run As Android Application). Go into the Settings
 app of your emulator or device, choose Language, and select French or
 Spanish and the program title and window contents should reflect the
 change (Figure 21-1).
[image: Hello app in Spanish]

Figure 21-1. Hello app in Spanish

You just have to remember to keep the versions of
 strings.xml in sync with the “master”
 copy.

Regional variants

OK, so it’s not quite that simple. There are also regional
 variations within a language. In English there are, for example, UK
 English (a.k.a. “the real thing” by some), U.S. English, Canadian,
 Australian, and so on. These, fortunately, have tended to use the same
 vocabulary for technical terms, so using the regional variations is
 not as important for English. On the other hand, French and Spanish,
 to name two that I am familiar with, are languages where there is
 significant variation in vocabulary from one region to another.
 Parisian French and French Canadian have used different vocabularies
 for many words coined since the 1500s when the exodus to Canada began.
 The many Spanish colonies were likewise largely isolated from hearing
 and reading one another’s words for hundreds of years—from their
 founding until the age of radio—and they have diverged even more than
 French. So you may want to create “variant” files for these languages,
 as for any other that has significant regional variation.
Android’s practice here diverges slightly from Java’s, in that Android uses a letter
 r to denote regional variations; for example,
 you’d create a values-fr-rCA directory for French
 Canadian. Note that, as in Java, language codes are in lowercase and
 variations (which are usually the two-letter ISO country code) are
 written in capital letters (except for the leading
 r). So we might wind up with the set of files
 listed in Table 21-2.
Table 21-2. L10N directory examples
	Directory	Meaning
	values	English; default.
	values-es	Spanish (“Castilian,” generic)
	values-es-rCU	Spanish - Cuban
	values-es-rCL	Spanish - Chilean

See Also

There is a bit more detail in the official Android
 Localization documentation.

21.3. Finding and Translating Strings

Ian Darwin

Problem

You need to find all the strings in your application, internationalize them, and
 begin the process of translating them.

Solution

There are several good tools for finding string literals, as well
 as collaborative and commercial services that translate text
 files.

Discussion

Suppose you have a mix of old and new Java code in your app; the
 new code was written specifically for Android, while the older code may
 have been used in some other Java environment. You need to find every
 String literal, isolated it into a
 Strings.xml file, and translate it into any
 necessary languages.
The Android
 Localizer from ArtfulBits Inc. is a free and open source tool that you can use to handle both
 steps of this process.
MOTODEV
 Studio is a freely available (with sign-up) commercial tool that includes this functionality (as well
 as quite a bit more). Both tools will feed your strings through Google
 Translate to get a rough working version.
Imagine a slightly different scenario: suppose your organization
 has a “native” (Objective-C) application from iOS and you are building
 the “native” Java version for Android. Here, the properties files are in
 very different formats—on iOS there is a Java Properties-like file but
 with the default (probably English) strings on the left and the
 translations on the right. No names are used, just the actual strings,
 so you might find something like the following:
You-not us-are responsible=You-not us-are responsible
You cannot translate this directly into XML, since the “name” is
 used as an identifier in the generated R
 (Resources) class, and the hyphen (-) and straight
 quotes ('') characters are not valid in Java identifiers. Doing it
 manually, you might come up with something like this:
<string name="you_not_us_are_responsible">You-not us-are responsible</string>
User “johnthuss” has developed a version of a
 Java program that performs such translations from iOS to Android
 format, handling characters that are not valid
 identifiers.
Now, at any rate, you are ready to begin translating your master
 resource file into other languages. While it may be tempting to scrimp
 on this part of the work, it is generally worthwhile to engage the
 services of a professional translation service skilled in the particular
 language(s) you target. Alternatively, you may wish to investigate
 the commercial
 collaborative translation service at Crowdin.net.
When using any third-party translation service, especially for
 languages with which you or your staff are not personally “first or
 second childhood language” familiar, you should normally get a
 second opinion. Embarrassing errors in software shipped with
 “bad” translations can be very expensive. There is an apocryphal story,
 widely used as a warning of this point, of Microsoft inadvertently
 hiring Taiwanese-sympathetic translators to translate the mainland
 Chinese version of Microsoft Windows. Here is one reference to this
 incident: “... The discovery, in the summer of 1996, that some Microsoft
 programs localized in Chinese carried hidden slogans has again strained
 Microsoft-PRC relations.” The
 citation given is to the South China Morning Post,
 October (day unknown), 1996.[3]
A quick web search will find many commercial services that perform
 translations for you, as well as some that help with the
 internationalization part of the work.

21.4. Handling the Nuances of strings.xml

Daniel Fowler

Problem

Entering text in the strings.xml file
 on most occasions is easy enough, but sometimes peculiar
 results crop up.

Solution

Understanding how some text strings and characters work in
 strings.xml will prevent strange results.

Discussion

When some text is required on a screen it can be declared in a
 layout file, as shown in the following android:text
 attribute:
<TextView android:id="@+id/textview1"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="This is text"/>
The text can be also be set in code:
 TextView tview = (TextView) findViewById(R.id.textview1);
 tview.setText("This is text");
However, hardcoding strings like this is not recommended, because
 it reduces maintainability. Changing text at a later date may mean
 hunting down declarations across several Java source files and layout
 files. Instead, text in a project can be centralized into a
 strings.xml file. The file is located in the
 directory values under res in
 the project folders. Centralizing text means there is only one place to
 go to change it. It also makes localization much easier; see Recipe 21.2. Here is an example of a
 strings.xml file:
 <?xml version="1.0" encoding="utf-8"?>
 <resources>
 <string name="app_name">Strings XML</string>
 <string name="text1">This is text</string>
 <string name="text2">And so is this</string>
 </resources>
To access the declared string from another project XML file use
 @ followed by string and then a slash and the string’s name.
 Using the preceding example, the text for two
 TextViews is set with the following layout XML
 file:
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <TextView android:id="@+id/textview1"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="@string/text1"
 android:textSize="16dp"/>
 <TextView android:id="@+id/textview2"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="@string/text2"
 android:textSize="16dp"/>
</LinearLayout>
[image: image with no caption]

When the strings.xml file is saved, the
 R.string class is generated (see R.java in the
 gen directory for the project). This provides a
 static int that can be used to
 reference the string in code:
 tview = (TextView) findViewById(R.id.textview1);
 tview.setText(R.string.text1);
The R class should never be
 edited, because it is generated by the SDK and any changes you do make
 will be overwritten.
In the strings.xml file an entry can
 duplicate another string by referencing it the same way as a layout
 file:
 <string name="text1">This is text</string>
 <string name="text2">@string/text1</string>
[image: image with no caption]

Since @ is used to indicate
 another string resource trying to set the text to a single @, using <string
 name="text1">@</string> will not work. Nor will text
 that starts with an @, such as
 <string
 name="text2">@mytwittername</string>.
[image: image with no caption]

The first @ needs to be
 escaped with a \
 (backslash), that is, \@ and \@mytwittername. If the @ does not start a string or is being set in
 code it does not need to be escaped; for example, android:text=Twitter:@mytwittername or
 tview.setText("@mytwittername");.
 This problem of @ as the first
 character, or only character, also applies to the ? (question mark). If it appears at the start
 of a string it also needs escaping, android:text=\?.
[image: image with no caption]

An alternative to escaping the @ or ? is
 to use quotes (speech marks); the closing quote mark is optional:
 <string name="text1">"@"</string>
 <string name="text2">"?"</string>
If fact, any number of quotes or whitespace before and after text
 is dropped. The two lines in the preceding code snippet produce an
 identical result to these two lines:
 <string name="text1">""""""""""@"""""""</string>
 <string name="text2"> "?" </string>
There is a character for which this approach will not work:
 <string name="text1">War & Peace</string>
 <string name="text2">War and Peace</string>
The first line will result in an error because of the &. This is because of the XML file format
 itself. XML requires balanced pairs of tags—for example, <string> and </string>—and each start tag and end tag
 is enclosed in opening (<) and
 closing (>) angle brackets. Once a
 start tag is encountered the editor is on the lookout for the opening
 bracket of the end tag. This produces a problem if the content of the
 XML tags contains the open angle bracket itself:
 <string name="question">Is 5 < 6?</string>
This will not work. The solution is to use an XML internal entity;
 this is similar to using an escape character but is in a specific format
 for XML. The format is an ampersand, &, followed by the entity name and then a
 semicolon. For the open angle bracket, or less-than symbol, the name is
 lt, and therefore the full entity is
 < as in:
 <string name="question">Is 5 < 6?</string>
Depending on what is required in an XML file at a particular
 point, there are five internal entities defined for XML that can be
 used, as shown in Table 21-3:
Table 21-3. The predefined entities in XML
	Entity	Name	Usage
	The left angle bracket (<)	lt	<
	The right angle bracket (>)	gt	>
	The ampersand (&)	amp	&
	The single quote or apostrophe (')	apos	'
	The double quote (“)	quot	"

Now we can see why the ampersand causes us a problem. It is used
 to define an internal entity, and thus when one is required the amp entity itself must be used. Therefore,
 <string name="text1">War &
 Peace</string> becomes <string name="text1">War &
 Peace</string>.
[image: image with no caption]

However, the XML internal entity apos, while
 valid for XML, is reported as an error when the file is saved:
 <string name="text1">This isn't working</string>
 <string name="text2">This isn't working either</string>
It is another character that requires escaping or wrapping in
 quotes:
 <string name="text1">This\'ll work</string>
 <string name="text2">"This'll work as well"</string>
To use quotes (speech marks) themselves, even the XML internal
 entity version, escape them:
 <string name="text1">Quote: \"to be, or not to be\"</string>
 <string name="text2">Quote: \"to be, or not to be\"</string>
[image: image with no caption]

When defining a string that requires pre or post space, again use
 quotes:
 <string name="text1"> No spaces before and after </string>
 <string name="text2">" Two spaces before and after "</string>
The strings will support a new line by escaping the letter
 n:
 <string name="text1">Split over\ntwo lines</string>
 <string name="text2">2 TextViews\n4 Lines</string>
[image: image with no caption]

Escaping a t adds a tab to the defined
 string:
 <string name="text1">Tab stops\ta\t\tb</string>
 <string name="text2">\t\t\t\tc\t\td</string>
[image: image with no caption]

To see the escape character (backslash), use two of them:
 <string name="text1">Backlash:\\</string>
 <string name="text2">Slash:/</string>
The android:textstyle
 attribute of a TextView
 in a layout file can be used to set the text to bold or italic (or
 both):
 android:textStyle="bold"
 android:textStyle="italic"
 android:textStyle="bold|italic"
This can be achieved in the strings.xml file
 using a bold () or italic
 tag (<i>), plus it supports an
 underline tag (<u>). However,
 instead of applying it to the whole text of the
 TextView, it can be used for individual portions of
 the text:
 <string name="text1">Hey look:bold and <i>italic</i>.</string>
 <string name="text2">And look: <u>underline</u> and <i><u>bold italic underline
 </u></i>.</string>
[image: image with no caption]

See Also

http://developer.android.com/guide/topics/resources/string-resource.html

[3] This appears in “Software Localization: Notes on Technology
 and Culture” by Kenneth Keniston, January 17, 1997, Working Paper
 #26, Program in Science, Technology, and Society, Massachusetts
 Institute of Technology, Cambridge, Massachusetts 02139. Online
 (PDF) available at http://web.mit.edu/sts/pubs/pdfs/MIT_STS_WorkingPaper_26_Keniston_2.pdf;
 viewed November 4, 2011.

Chapter 22. Packaging, Deploying, and Distributing/Selling Your App

22.1. Introduction: Packaging, Deploying, and Distributing

Ian Darwin

Discussion

The success of Android has led to a proliferation of application markets.
 But the official Android Market remains the largest marketplace for
 distributing your app, so we will cover that, along with information on
 preparing your app, making it harder to reverse-engineer, and other
 information you may need along the way.

22.2. Creating a Signing Certificate

Zigurd Mednieks

Problem

You want to publish an application, and you need a “signing key” to
 complete the process.

Solution

Use the standard JDK tool keytool to generate a
 self-signed certificate.

Discussion

Google has stated that one of its intentions with Android was to
 minimize the hassle of getting applications signed. You don’t have to go
 to a central signing authority to get a signing certificate; you can
 create the certificate yourself. Once you generate the certificate, you
 can sign your application using the jarsigner tool that comes with the
 Java JDK. Once again, you don’t need to apply for or get anyone’s
 approval. As you’ll see, it’s about as straightforward as signing can
 be.
In this recipe, you are going to create an encrypted signing
 certificate and use it to sign your application. You can sign every
 Android application you develop with the same signing certificate. You
 can create as many signing certificates as you want, but you really need
 only one for all your applications. And using one certificate for all
 your applications lets you do some things that you couldn’t do
 otherwise:
	Simplify upgrades
	Signing certificates are tied to the application package
 name, so if you change the signing certificate you use with
 subsequent versions of your application, you’ll have to change the
 package name, too. Changing certificates is manageable, but
 messy.

	Run multiple applications per user ID
	When all your applications share the same signing
 certificate, they can run in the same Linux process. You can use
 this to separate your application into smaller modules (each one
 an Android application) that together make up the larger
 application. If you were to do that, you could update the modules
 separately and they could still communicate freely.

	Share code/data
	Android lets you enable or restrict access to parts of your
 application based on the requester’s signing certificate. If all
 your applications share the same certificate, it’s easy for you to
 reuse parts of one application in another.

When you generate a key pair and certificate you’ll be asked for
 the validity period you desire for the certificate. Although usual
 practice in website development is to use one or two years, Google
 recommends that you set the validity period to at least 25 years, and in
 fact, if you’re going to use the Android Market to distribute your
 application, it requires a validity date at least until October 22, 2033
 (25 years to the day from when Google opened the Android Market) for
 your certificate.
Generating a key pair (public and private keys) and a signing
 certificate

To generate a pair of public/private keys, use a tool called keytool, which
 came with the Sun JDK when you installed it onto your development
 computer. keytool asks you for some information and uses that to
 generate the pair of keys:
	A private key that will be kept in a keystore on your
 computer, secured with passwords. You will use the private key to
 sign your application, and if you need a Map API Key for your application, you will use the
 MD5 fingerprint of the signing certificate to generate the Map API
 Key.

	A public key that Android can use to decrypt your signing
 certificate. You will send the public key along with your
 published application so that it can be made avail- able in the
 runtime environment. Signing certificates are actually checked
 only at install time, so once installed, your application is good
 to run, even if the certificate or keys expire.

keytool is pretty straightforward. From your operating system’s
 command line, enter something like the following:
$ keytool -genkey -v -keystore myapp.keystore -alias myapp -keyalg RSA
 -validity 10000
This asks keytool to generate a key pair and self-signed
 certificate (-genkey) in verbose mode
 (-v), so you get all the information, and put it in
 a keystore called myapp.keystore
 (-keystore). It also says that in the future you want to refer to that
 key by the name myapp (-alias),
 and that keytool should use the RSA algorithm for generating
 public/private key pairs (-keyalg). Finally, we say
 that we’d like the key to be valid for 10,000 days
 (-validity), or about twenty-seven years.
keytool will prompt you for some things it uses to build the key
 pair and certificate:
	A password to be used in the future when you want to access
 the keystore

	Your first and last names

	Your organizational unit (the name for your division of your
 company, or some- thing like “self” if you aren’t developing for a
 company)

	Your organization name (the name of your company, or
 anything else you want to use)

	The name of your city or locality

	The name of your state or province

	The two-letter country code where you are located

keytool will then echo all this information back to you to make
 sure it’s accurate, and if you confirm the information, will generate
 the key pair and certificate. It will then ask you for another
 password to use for the key itself (and give you the option of using
 the same password you used for the keystore). Using that password,
 keytool will store the key pair and certificate in the
 keystore.

See Also

If you’re not familiar with the algorithms used here, such as RSA
 and MD5, well, you don’t actually need to know much about them. Assuming
 you’ve a modicum of intellectual curiosity, you can find out all you
 need to know about them with any good web search engine.
You can get more information about security, key pairs, and the keytool utility on Sun’s
 website.

22.3. Signing Your Application

Zigurd Mednieks

Problem

You want to sign your application prior to uploading it to the Android
 Market.

Solution

An APK file is a standard Java Archive (JAR) format, so you just
 use the standard JDK tool jarsigner.

Discussion

Having created a key, and a Map API Key if needed, you are almost
 ready to sign your application, but first you need to create an unsigned
 version that you can sign with your digital certificate. To do that, in
 the Package Explorer window of Eclipse, right-click on your project
 name. You’ll get a long pop-up menu; toward the bottom, click on Android
 Tools. You should see another menu that includes the item you want:
 “Export Unsigned Application Package...”. This item takes you to a File
 Save dialog box, where you can pick the place to save the unsigned
 version of your APK file. It doesn’t matter where you put it, just pick
 a place you can remember. Now that you have an unsigned version of your
 APK file, we can go ahead and sign it using jarsigner.
Open a terminal or command window in the directory where you
 stored the unsigned APK file. To sign MyApp, using the key you generated
 in Recipe 22.2:
$ jarsigner -verbose -keystore myapp.keystore MyApp.apk mykey
You should now have a signed version of your application that can
 be loaded and run on any Android device. But before you send it in to
 the Android Market, there’s one more intervening step: you have rebuilt
 the application, so you must test it again, on real devices. If you
 don’t have a real device, get one. If you only have one, get more, or
 make friends with somebody who owns a device from a different
 manufacturer.
Note that in the latest version of the Eclipse plug-in, there is
 also an Export Signed Application Package, which will combine these
 actions (Recipe 22.2 and Recipe 22.3) into a
 single wizard. This new action is available in the project’s context
 menu (as discussed in the first paragraph of this recipe’s Discussion),
 and also in the File Menu under Export, where it is known simply as
 Export Android Project. This new action also allows you to create the
 keystore and generate the keys within the wizard, which is so much more
 convenient that it probably makes it more likely that you will forget
 where you put the keystore. Don’t do that!

22.4. Distributing Your Application via Android Play (formerly the
 Android Market)

Zigurd Mednieks

Problem

You want to give away or sell your application via Android Play, the app
 store formerly known as Android Market. Note that the Android Market was
 combined with Google Books and other services under the Google Play
 rubric, just as this book was going to press.

Solution

Use the Android Play app market.

Discussion

After you’re satisfied that your application runs as expected on
 real Android devices, you’re ready to upload it to the Android Play
 market, Google’s service for publishing and downloading Android
 applications. The procedure is pretty straightforward:
	Sign up as an Android developer (if you’re not already signed
 up).

	Upload your signed application.

Signing up as an Android developer

Go to Google’s
 website, and fill out the forms provided. You will be asked
 to:
	Use your Google account to log in (if you don’t have a
 Google account, you can get one for free by following the Create
 Account link on the login page)

	Agree to the Android Market Terms of Service

	Pay a one-time fee of $25 (payable by credit card via Google
 Checkout; again, if you don’t have an account set up, you can do
 so quickly)

	If the game is being charged for, specify your payment
 processor (again, you can easily sign up for a Google Payments
 account)

The forms ask for a minimal amount of information—your name,
 phone number, and so on—and you are signed up.

Uploading your application

Now you can go to http://play.google.com/apps/publish/Home to upload your
 application. To identify and categorize your application, you will be
 asked for the following:
	Application APK file name and location
	This refers to the APK file of your application, signed
 with your private signature certificate.

	Title and description
	These are very important, because they are the core of
 your marketing message to potential users. Try to make the title
 descriptive and catchy at the same time, and describe the
 application in a way that will make your target market want to
 download it.

	Application Type
	There are currently two choices: Applications or
 Games.

	Category
	The allowable list of categories varies depending on
 application type. The currently available categories for
 applications are Communications, Demo, Entertainment, Finance,
 Lifestyle, Multimedia, News & Weather, Productivity,
 Reference, Shopping, Social, Software Libraries, Tools, and
 Travel. For games, the currently available categories include
 Arcade & Action, Brain & Puzzle, Cards & Casino, and
 Casual.

	Price
	This may be “Free” or a fixed price. Refer to the
 agreement you agreed to earlier to see what percentage you
 actually get to keep.

	Geography
	You can limit where your application is available, or
 choose to make it available everywhere.

Finally, you are asked to confirm that your application meets
 the Android Content Guidelines and that it does not knowingly violate
 any export laws. After that, you can upload your APK file, and within
 a few days your application will appear on the Android Market online
 catalog, accessible from any connected Android device. There is
 currently no way to access the Android Market directly from your PC or
 Mac, so you’ll have to use your Android phone to find out when your
 application is available for download. Use the Search box in the
 Market, or load in the browser a file with a link of the form URL of
 market://details?id=com.yourorg.yourprog, but
 with your application’s actual package name.

Then what?

Then sit back and watch the fame or money—and the support
 emails—roll in. Be patient with end users, for they do not think
 as we do.

22.5. Integrating AdMob into Your App

Enrique Diaz

Problem

You want to monetize your free app by showing ads within it.

Solution

Using AdMob Libraries, you can start using ads in your free app,
 getting money each time a user taps/clicks on the ad.

Discussion

AdMob is one of the world’s largest mobile advertising networks,
 offering solutions for discovery, branding, and monetization on mobile
 phones.
The AdMob Android SDK contains the code necessary to install AdMob
 ads in your application.
Step 1

In your project’s root directory create a subdirectory named
 libs. This will already be done for you if you
 used Android’s activitycreator tool. Copy the AdMob JAR file
 (admob-sdk-android.jar) into that
 libs directory.
For Eclipse projects:
	Right-click on your project from the Package Explorer tab
 and select Properties.

	Select Java Build Path from the left panel.

	Select the Libraries tab from the main window.

	Click on Add JARs.

	Select the JAR file copied to the libs
 directory.

	Click OK to add the SDK to your Android project.

Step 2

Add your publisher ID to your
 AndroidManifest.xml file. Just before the closing
 </application> tag add a line to set your
 publisher ID. If your publisher ID were 149afxxxx, the line would look like
 this:
<meta-data android:value="a149afxxxx" android:name="ADMOB_PUBLISHER_ID"/>
To find your publisher ID, log in to your AdMob account, select
 the Sites and Apps tab, and click on the Manage Settings link for your
 site. On this page, you can find your publisher ID as shown in Figure 22-1.
[image: AdMob: Where to find your publisher ID]

Figure 22-1. AdMob: Where to find your publisher ID

Step 3

Add the INTERNET permission to your AndroidManifest.xml file
 just before the closing </manifest> tag:
<uses-permission android:name="android.permission.INTERNET" /> </manifest>
Optionally, you can add the ACCESS_COARSE_LOCATION and/or ACCESS_FINE_LOCATION permissions to allow
 AdMob the ability to show geotargeted ads.
Your final AndroidManifest.xml file may
 look something like Figure 22-2.
[image: After pasting some code]

Figure 22-2. After pasting some code

Step 4

Paste the following into your attrs.xml
 file:
<declare-styleable name="com.admob.android.ads.AdView">
<attr name="backgroundColor" format="color" />
<attr name="primaryTextColor" format="color" />
<attr name="secondaryTextColor" format="color" />
<attr name="keywords" format="string" />
<attr name="refreshInterval" format="integer" />
</declare-styleable>
If your project does not already have an
 attrs.xml file, create one in the
 /res/values/ directory of your project, and paste
 the following:
<?xml version="1.0" encoding="utf-8"?> <resources>
<declare-styleable name="com.admob.android.ads.AdView">
<attr name="backgroundColor" format="color" />
<attr name="primaryTextColor" format="color" />
<attr name="secondaryTextColor" format="color" />
<attr name="keywords" format="string" />
<attr name="refreshInterval" format="integer" />
</declare-styleable>
</resources>

Step 5

Create a reference to the attrs.xml file in
 your layout element by adding an xmlns line that
 includes your package name specified in
 AndroidManifest.xml file. For example, if your
 package name were com.example.sampleapp you would include this
 line:
xmlns:myapp="http://schemas.android.com/apk/res/com.example.sampleapp"
So, for a simple screen with only one ad, your layout element
 would look like Example 22-1.
Example 22-1. Layout with one ad
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:myapp="http://schemas.android.com/apk/res/com.example.SampleApp"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent">

<com.admob.android.ads.AdView
android:id="@+id/ad"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
myapp:backgroundColor="#000000"
myapp:primaryTextColor="#FFFFFF"
myapp:secondaryTextColor="#CCCCCC"
</LinearLayout>
/>

Step 6

When integrating AdMob ads into your application it is
 recommended that you use test mode. In a test mode test, ads are
 always returned. Test mode is enabled on a per-device basis. To enable
 test mode for a device, first request an ad, then look in LogCat for a
 line like the following:
To get test ads on the emulator use AdManager.setTestDevices...
Once you have the device ID you can enable test mode by calling
 in your main activity,
 AdManager.setTestDevices:
AdManager.setTestDevices(new String[] { AdManager.TEST_EMULATOR,
"E83D20734F72FB3108F104ABC0FFC738", //Phone ID
});
}
Once you have successfully requested test ads, try clicking on
 each type of test ad to make sure it works properly from your
 application. The type of test ad returned is changed with AdManager.setTestAction. You can see the
 result in Figure 22-3.
[image: The ad in your app]

Figure 22-3. The ad in your app

See Also

http://www.admob.com/; http://androidtitlan.org/2010/09/como-agregar-publicidad-con-admob-a-tu-android-app/;
 http://groups.google.com/group/admob-publisher-discuss

22.6. Obfuscating and Optimizing with ProGuard

Ian Darwin

Problem

You want to obfuscate your code, or optimize it (for speed or size), or all of
 the above.

Solution

The optimization and obfuscation tool ProGuard is supported by the
 Ant script provided with the Android New Project Wizard in Eclipse,
 needing only to be enabled.

Discussion

Obfuscation of code is the process of trying
 to hide information (such as compile-time names visible in the binary)
 that would be useful in reverse-engineering your code. If your
 application contains commercial or trade secrets, you probably do want
 to obfuscate it. If your program is open source, there is probably no
 need to obfuscate the code. You decide.
Optimization of code is analogous to
 refactoring at the source level; but it usually aims to make the code
 either faster, smaller, or
 both.
The normal development cycle with Android and Eclipse involves
 compilation to standard Java bytecode (done by the Eclipse Compiler) and
 then conversion to the Android-specific DEX (Dalvik Executable) format. ProGuard is Eric Lafortune’s open source, free software program for
 optimizing and obfuscating Java code. ProGuard is not Android-specific; it works with
 console-mode applications, applets, Swing applications, Java ME midlets,
 Android, or just about any type of Java program. ProGuard works on
 compiled Java, so it must be interposed in the development cycle before
 conversion to DEX. This is most readily achieved using the standard Java
 build tool Ant. The Eclipse Android New Project Wizard, as of Gingerbread
 (2.3), includes support for ProGuard in the generated
 build.xml file. You only need to edit the file
 build.properties to include the following line,
 which gives the name of the configuration file:
proguard.config=proguard.cfg
For older versions, please refer to the ProGuard Reference
 Manual.
Configuration file

The ProGuard processing is controlled by the configuration file
 (normally called proguard.cfg), which has its own
 syntax. Basically, keywords begin with a “-” character in the first
 character position, followed by a keyword, followed by optional
 parameters. Where the parameters reference Java classes or members,
 the syntax somewhat mimics Java syntax to make your life easier. Here
 is a minimal ProGuard configuration file for an Android
 application:
-injars bin/classes
-outjars bin/classes-processed.jar
-libraryjars /usr/local/java/android-sdk/platforms/android-9/android.jar

-dontpreverify
-repackageclasses ''
-allowaccessmodification
-optimizations !code/simplification/arithmetic

-keep public class com.example.MainActivity
The first section specifies the paths of your project, including
 a temporary directory for the optimized classes.
The next section lists various options. Preverification is only
 for full Java projects, so it’s turned off. The optimizations shown
 are for an Android 1.5 project and could probably be omitted
 today.
Finally, the class com.example.MainActivity has to be present
 in the output of the optimization and obfuscation process, since it is
 the main activity and is referred to by name in the
 AndroidManifest.xml file.
A full working proguard.cfg file will
 normally be generated for you by the Eclipse Android New Project
 Wizard. Example 22-2 is the
 configuration file generated for an Android 2.3.3 project.
Example 22-2. Example proguard.cfg file
-optimizationpasses 5
-dontusemixedcaseclassnames
-dontskipnonpubliclibraryclasses
-dontpreverify
-verbose
-optimizations !code/simplification/arithmetic,!field/*,!class/merging/*

-keep public class * extends android.app.Activity
-keep public class * extends android.app.Application
-keep public class * extends android.app.Service
-keep public class * extends android.content.BroadcastReceiver
-keep public class * extends android.content.ContentProvider
-keep public class * extends android.app.backup.BackupAgentHelper
-keep public class * extends android.preference.Preference
-keep public class com.android.vending.licensing.ILicensingService

-keepclasseswithmembernames class * {
 native <methods>;
}

-keepclasseswithmembernames class * {
 public <init>(android.content.Context, android.util.AttributeSet);
}

-keepclasseswithmembernames class * {
 public <init>(android.content.Context, android.util.AttributeSet, int);
}

-keepclassmembers enum * {
 public static **[] values();
 public static ** valueOf(java.lang.String);
}

-keep class * implements android.os.Parcelable {
 public static final android.os.Parcelable$Creator *;
}

The prolog is mostly similar to the earlier example. The
 keep, keepclasseswithmembernames, and keepclassmembers specify particular classes
 that must be retained. These are mostly obvious, but the enum entries may not be: the Java 5 enum
 methods values() and valueOf()
 are sometimes used with the Reflection API, so they must remain
 visible, as must any classes that you access via the Reflection
 API.
The ILicensingService entry is only needed if
 you are using Android’s License Validation Tool (LVT):
-keep class com.android.vending.licensing.ILicensingService

See Also

The ProGuard
 Reference Manual has many more details. There is
 also information at Google’s
 Developers site. Finally, Matt Quigley has an article at the
 Android Engineer blog titled “Optimizing,
 Obfuscating, and Shrinking your Android Applications with
 ProGuard”.

22.7. Providing a Link to Other Published Apps in the Google Play
 Market

Daniel Fowler

Problem

Your developed app is running on a device; you want a link to your other
 apps on the Android Market to encourage users to try them.

Solution

Use an Intent and a URI that contains your
 publisher name or package name.

Discussion

Android’s Intent system is a
 great way for your application to leverage functionality that has
 already been written by other developers. The Android Market
 application, which is used to browse and install apps, can be called
 from an application by using an Intent. This allows
 an existing app to have a link to other apps on the Android Market, thus
 allowing app developers and publishers to encourage users to try their
 other apps.
To search via the Android Market app, the standard
 Intent mechanism is used, as described in Recipe 4.2. The Uniform Resource
 Identifier (URI) used is market://search?q=search
 term where search term is replaced with
 the appropriate text, such as the program name or keyword. The Intent Action is ACTION_VIEW.
The URI can also point directly to the Android Market details page
 for a package by using market://details?id=package
 name where package name is replaced with
 the unique package name for the app.
The program shown in this recipe (and whose output is shown in
 Figure 22-4) will allow a text search of
 the Android Market or show the details page for a given app. Example 22-3 is the layout.
Example 22-3. The main layout
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <EditText android:id="@+id/etSearch"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:textSize="20sp"
 android:singleLine="true"/>
 <RadioGroup android:layout_width="wrap_content"
 android:layout_height="wrap_content">
 <RadioButton android:id="@+id/rdSearch"
 android:layout_height="wrap_content"
 android:layout_width="wrap_content"
 android:checked="true"
 android:text="search"
 android:textSize="20sp"/>
 <RadioButton android:id="@+id/rdDetails"
 android:layout_height="wrap_content"
 android:layout_width="wrap_content"
 android:text="details"
 android:textSize="20sp"/>
 </RadioGroup>
 <Button android:id="@+id/butSearch"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:textSize="20sp"
 android:text="Search Android Market"/>
</LinearLayout>

An EditText allows entry of the
 search term, a RadioButton can be
 used to do a straight search or show an app’s details page (provided the
 full package name is known). The Button starts the search.
[image: Market search]

Figure 22-4. Market search

The important point to notice in the code shown in Example 22-4 is that the search term is
 encoded.
Example 22-4. The main activity
public class Main extends Activity {
 RadioButton publisherOption; //Option for straight search or details
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 //Search button press processed by inner class HandleClick
 findViewById(R.id.butSearch).setOnClickListener(new OnClickListener(){
 public void onClick(View arg0) {
 String searchText;
 //Reference search input
 EditText searchFor=(EditText)findViewById(R.id.etSearch);
 try {
 //URL encoding handles spaces and punctuation in search term
 searchText = URLEncoder.encode(searchFor.getText().toString(),"UTF-8");
 } catch (UnsupportedEncodingException e) {
 searchText = searchFor.getText().toString();
 }
 Uri uri; //Stores intent URI
 //Get search option
 RadioButton searchOption=(RadioButton)findViewById(R.id.rdSearch);
 if(searchOption.isChecked()) {
 uri=Uri.parse("market://search?q=" + searchText);
 } else {
 uri=Uri.parse("market://details?id=" + searchText);
 }
 Intent intent = new Intent(Intent.ACTION_VIEW, uri);
 try {
 main.this.startActivity(intent);
 } catch (ActivityNotFoundException anfe) {
 Toast.makeText(main.this, "Please install the Android Market App",
 Toast.LENGTH_SHORT);
 }
 }
 });
 }
}

A straight text search is simply the text appended to the URI
 market://search?q=. To
 search by publisher name use the pub:
 qualifier, that is, append the publisher’s name to
 market://search?q=pub:. However, at the time of
 this writing, a bug exists in some versions of the Android Market that
 causes publisher names of more than one word to return no results. So,
 while market://search?q=pub:IMDb works,
 market://search?q=pub:O’Reilly+Media does not. The
 workaround is to use the straight text search for publisher names of two
 words or more—for example,
 market://search?q=oreilly+media.
[image: Market search results]

Figure 22-5. Market search results

The pub: search qualifier is also
 case-sensitive, thus market://search?q=pub:IMDb
 returns a result but market://search?q=pub:imdb
 does not.
It is also possible to search for a specific application if the
 package name is known by using the id qualifier.
 So, if an app has a package name of com.example.myapp
 the search term will be
 market://search?q=id:com.example.myapp. Even better
 is to go straight to the Apps details page with
 market://details?q=id:com.example.myapp. For
 example, O’Reilly has a free app, the details of which can be shown
 using
 market://details?id=com.aldiko.android.oreilly.isbn9781449388294.
Figure 22-5 shows the output of the
 search entered in Figure 22-4.
Using these techniques it is very easy to put a button or menu
 option on a screen to allow users to go directly to other apps that you
 have published.

See Also

http://developer.android.com/guide/publishing/publishing.html#marketintent

Index

A note on the digital index
A link in an index entry is displayed as the section title in which that entry appears. Because some sections have multiple index markers, it is not unusual for an entry to have several links to the same section. Clicking on any link will take you directly to the place in the text in which the marker appears.

A
	AboutBox class, Problem–Discussion
	
	Abstracted LCD density property (AVD), Discussion
	
	Accelerometer property (AVD), Discussion
	
	accelerometers
		about, Discussion
	
	checking device orientation, Problem
	
	checking for presence or absence of, Problem
	
	detecting shaking of devices, Problem–Discussion
	

	ACCESS_COARSE_LOCATION permission, Discussion, Step 3
	
	ACCESS_FINE_LOCATION permission, Discussion, Step 3
	
	ACCESS_NETWORK_STATE permission, Discussion, Discussion
	
	ACRA Google Code Project, See Also, See Also
	
	activities
		creating loading screens between, Problem–Discussion
	
	fragments and, Problem–Source Download URL
	
	navigating with TabView, Problem
	
	opening additional screens, Discussion–See Also
	
	providing user preference information, Problem–Discussion
	
	retrieving data from subactivities, Problem–See Also
	

	Activity class
		about, Solution
	
	finishActivity() method, Discussion
	
	getContentProvider() method, Solution
	
	getCurrentFocus() method, Discussion
	
	getLastNonConfigurationInstance() method, Solution, Discussion
	
	intents and, Device features, Discussion
	
	navigating activities with TabView, Problem
	
	onActivityResult() method, Discussion, Solution, Solution, Discussion
	
	onConfigurationChanged() method, Solution
	
	onCreate() method, Discussion, Discussion, Using onRetainNonConfigurationInstance(), Invoking BugSense at App Start, Discussion
	
	onCreateOptionsMenu() method, Solution
	
	onDestroy() method, Discussion, Discussion, Discussion
	
	onKeyDown() method, Solution
	
	onOptionsItemSelected() method, Solution, Discussion
	
	onPause() method, Discussion, Discussion, Discussion, Discussion, Discussion
	
	onRestart() method, Discussion, Discussion
	
	onResume() method, Discussion, Discussion, Discussion
	
	onRetainNonConfigurationInstance() method, Using onRetainNonConfigurationInstance(), Discussion
	
	onSaveInstanceState() method, Solution
	
	onStart() method, Discussion, Discussion
	
	onStop() method, Discussion, Discussion, Discussion
	
	onWindowFocusChanged() method, Discussion
	
	opening additional screens, Discussion–See Also
	
	processing key-press events, Problem
	
	requestWindowFeature() method, Use case 1: Processing in the background
	
	RESULT_CANCELED constant, Discussion, Discussion
	
	RESULT_OK constant, Discussion, Discussion
	
	setContentView() method, Discussion, Examining Tipster.java, Invoking BugSense at App Start, Discussion
	
	setResult() method, Solution, Discussion
	
	showDialog() method, Use case 2: Processing in the foreground
	
	startActivity() method, Discussion
	
	startActivityForResult() method, Discussion, Solution, Solution, Solution
	
	startService() method, Discussion
	
	stopService() method, Discussion
	
	tic-tac-toe example, Solution–Discussion
	

	activitycreator tool, Step 1
	
	ActivityGroup class, Discussion
	
	ActivityManager class, Discussion
	
	Adapter interface
		drop-down chooser example, Solution
	
	subclasses supported, Discussion
	
	writing custom list adapter, Problem–Discussion
	

	ADB (Android Debug Bridge)
		installing .apk files onto emulators, Problem
	
	SDK Manager and, Close ADB before updating
	
	starting, Discussion
	

	adb install command, Discussion
	
	adb logcat command, Discussion
	
	ADK (Android Development Kit), Solution, Ian’s basic steps: Java calling native code
	
	AdMob Libraries, Problem–Step 6
	
	ADT (Android Development Tools) plug-in
		about, Discussion
	
	installing, Installing the Android Development Tools (ADT) plug-in
	
	visual layout editor, Creating the layout and placing the widgets
	

	AdvancedSearchActivity.java program, Discussion
	
	AIDL (Android Interface Definition Language), Discussion, Solution
	
	AlertDialog class
		enabling Bluetooth example, Discussion
	
	pop-up dialog example, Solution
	
	Tipster program example, Showing the alerts
	

	AlertDialog.Builder class
		setMessage() method, Discussion
	
	setTitle() method, Discussion
	
	show() method, Discussion
	

	alerts (see GUI alerts)
	
	AndEngine game framework, Problem–Source Download URL
	
	Android 3.0 Photo Gallery, Problem–Source Download URL
	
	Android applications, Discussion
		(see also designing applications; testing applications; specific
 types of applications)
	
	creating SQLite databases in, Problem
	
	determining if apps are running, Problem
	
	“Hello, World”
 application, Discussion, Problem–See Also, Problem–Discussion
	
	installing onto emulators via SlideME, Problem–See Also
	
	learning Java language, Problem–See Also
	
	life cycle of, Problem–Discussion
	
	packaging, deploying, and distributing, Discussion–Discussion
	
	reading files with, Problem
	
	running shell commands from, Problem–Discussion
	
	setting up Eclipse IDE, Problem–Installing the Android Development Tools (ADT) plug-in
	
	states supported, Discussion
	

	Android Compatibility package (Google), Solution
	
	android create project command, Discussion–Discussion
	
	Android Debug Bridge (ADB)
		installing .apk files onto emulators, Problem
	
	SDK Manager and, Close ADB before updating
	
	starting, Discussion
	

	Android developers, signing up, Signing up as an Android developer
	
	Android Development Kit (ADK), Solution, Ian’s basic steps: Java calling native code
	
	Android Development Tools (ADT) plug-in
		about, Discussion
	
	installing, Installing the Android Development Tools (ADT) plug-in
	
	visual layout editor, Creating the layout and placing the widgets
	

	Android Interface Definition Language (AIDL), Discussion, Solution
	
	Android Invasion discussion forum (LinkedIn.com), Discussion
	
	Android Localizer tool, Discussion
	
	Android Market app store (Google), Problem
	
	Android platform, About Android
	
	Android Play app store (Google), Problem–Then what?
	
	Android Scripting Environment (see SL4A)
	
	Android SDK
		ADT plug-in and, Discussion
	
	installing, Installing the Android SDK (software development kit)–Installing the Android SDK (software development kit)
	
	Monkey tool, Discussion–Discussion
	
	sample programs in, Problem–See Also
	
	setting up for app testing, Solution
	
	updating, Problem–Updating Eclipse
	

	Android SDK and AVD Manager window, Discussion
	
	Android testing API, Step 3: Write and run your tests
	
	Android Virtual Devices (AVDs)
		about, Discussion
	
	defining, Discussion
	
	Google API SDK libraries and, Setting up an AVD that makes use of the Google API SDK
 libraries
	
	launch options, Discussion–Discussion
	
	placing calls between, Problem
	
	sending text messages between, Problem
	
	setting up for app testing, Problem–Discussion
	
	supported properties, Discussion
	
	viewing log, Discussion
	

	Android-Wheel widget, Problem–Problem
	
	android.appwidget package, Discussion
	
	android.net package, Discussion
	
	android.os package, Solution
	
	android.text.format package, See Also
	
	android.text.method package, Discussion
	
	android.widget package, Discussion, Discussion
	
	AndroidManifest.xml file
		about, Discussion
	
	ACCESS_COARSE_LOCATION permission, Discussion, Step 3
	
	ACCESS_FINE_LOCATION permission, Discussion, Step 3
	
	ACCESS_NETWORK_STATE permission, Discussion, Discussion
	
	adding publisher ID to, Step 2
	
	application declaration in, Discussion
	
	BLUETOOTH permission, Discussion, Discussion
	
	BLUETOOTH_ADMIN permission, Discussion, Discussion
	
	configChanges attribute, Using onRetainNonConfigurationInstance()
	
	configuring for test projects, Step 2: Configure the AndroidManifest.xml file of the test
 project
	
	content providers and, Discussion
	
	controlling device vibrator, Discussion, Stock haptic feedback events, Discussion
	
	declaring input mechanism in, Input configurations
	
	getting map tile information, Make the following changes in the
 AndroidManifest.xml file, as shown in Example 16-10:
	
	icon attribute, Discussion
	
	INTERNET permission, Discussion, Discussion, Conclusion, Step 3
	
	minSdkVersion attribute, Discussion
	
	noHistory attribute, Discussion
	
	obtaining information from, Problem
	
	outgoing call interceptor data in, Discussion
	
	package attribute, Step 2: Configure the AndroidManifest.xml file of the test
 project
	
	priority attribute, What happens if two receivers process outgoing calls?
	
	PROCESS_OUTGOING_CALLS permission, Discussion
	
	registering apps to receive intents, Discussion
	
	targetPackage attribute, Step 2: Configure the AndroidManifest.xml file of the test
 project
	
	targetSdkVersion attribute, Discussion
	
	WRITE_SETTINGS permission, Discussion
	

	AndroidPlot library
		about, Discussion
	
	displaying charts and graphs, Problem–Source Download URL
	

	AndroidTestCase class, Step 3: Write and run your tests
	
	AndroZip File Manager, Discussion
	
	animation
		about, Discussion
	
	adding to graphics, Problem–Discussion
	
	shaking views, Problem–Discussion
	
	SlidingDrawer support, Problem
	

	AnimationDrawable class, Discussion
	
	ANR (Application Not Responding), Discussion, Solution, Final notes
	
	Ant Build Tool, Discussion, Discussion
	
	Apache Software Foundation, Solution
	
	apiKey attribute, Adding the MapView element to your layout file
	
	.apk files, installing, Problem
	
	Application class
		access considerations, Problem–Discussion
	
	setting first-run preferences, Discussion
	

	Application Not Responding (ANR), Discussion, Solution, Final notes
	
	applications (see Android applications)
	
	ApplicationTestCase class, Step 3: Write and run your tests
	
	ArrayAdapter class
		extending, Discussion
	
	notifyDataSetChanged() method, Discussion
	
	SimpleCursorAdapter class and, Solution
	

	ArrayIndexOutOfBoundsException class, Discussion
	
	ArrayList class
		get() method, Use case (informal)
	
	ListActivity class and, Discussion
	

	AsyncTask class
		about, Discussion
	
	background processing and, Introduction–Source Download URL
	
	doInBackground() method, Introduction, Use case 1: Processing in the background
	
	execute() method, Use case 1: Processing in the background
	
	onPostExecute() method, Use case 1: Processing in the background, Use case 1: Processing in the background
	
	publishProgress() method, Use case 2: Processing in the foreground
	
	responsive apps example, Discussion
	

	Atom feeds, parsing, Problem–Source Download URL
	
	audio files
		playing, Problem–Source Download URL
	
	playing without interaction, Problem
	

	Audio playback support property (AVD), Discussion
	
	Audio recording support property (AVD), Discussion
	
	AudioManager.setRingerMode() method, Discussion
	
	AutoCompleteTextView class
		about, Discussion
	
	feeding with SQLite query, Problem–Discussion
	
	implementing, Problem–Source Download URL
	

	autolink attribute, Solution
	
	AVD Manager, Discussion, Discussion
	
	AVDs (Android Virtual Devices)
		about, Discussion
	
	defining, Discussion
	
	Google API SDK libraries and, Setting up an AVD that makes use of the Google API SDK
 libraries
	
	launch options, Discussion–Discussion
	
	placing calls between, Problem
	
	sending text messages between, Problem
	
	setting up for app testing, Problem–Discussion
	
	supported properties, Discussion
	
	viewing log, Discussion
	

B
	background attribute, Discussion, Solution
	
	background processing
		AsyncTask and, Introduction–Source Download URL
	
	while apps on display, Problem–Discussion
	

	backgrounds, scaling, Problem–Discussion
	
	backing up app data, Problem–Testing your backup agent
	
	Backup Manager tool, Discussion–Testing your backup agent
	
	BackupManager class
		about, Discussion–Testing your backup agent
	
	dataChanged() method, Testing your backup agent
	

	BarCamp, designing apps for, Problem–See Also
	
	barcodes, scanning, Problem–Discussion
	
	BaseAdapter class
		about, Discussion
	
	Adapter interface and, Discussion
	
	getCount() method, Setting up a basic ListView
	
	getItem() method, Setting up a basic ListView, Discussion
	
	getItemId() method, Setting up a basic ListView, Discussion
	
	getView() method, Setting up a basic ListView, Discussion
	
	writing custom list adapter, Discussion
	

	BaseKeyListener class, See Also
	
	battery levels, monitoring for Android devices, Problem
	
	Battery support property (AVD), Discussion
	
	bezier curves, drawing, Problem–Source Download URL
	
	BlackBerry Java plug-in, Discussion
	
	blood pressure readings, Discussion
	
	BLUETOOTH permission, Discussion, Discussion
	
	Bluetooth technology
		about, Discussion
	
	accepting Bluetooth connections, Problem
	
	connecting to Bluetooth-enabled devices, Problem
	
	enabling for devices, Problem–Discussion
	
	Health Device Profile, Discussion
	
	implementing device discovery, Problem–Source Download URL
	
	listening for Bluetooth connections, Problem
	

	BluetoothAdapter class
		isEnabled() method, Discussion
	
	listenUsingRfcommWithServiceRecord() method, Solution
	

	BluetoothServerSocket class, Solution
	
	BLUETOOTH_ADMIN permission, Discussion, Discussion
	
	bmgr command, Testing your backup agent
	
	borders, adding to layouts, Problem–Discussion
	
	broadcast messages
		about, Discussion
	
	receiving, Problem
	
	sending, Problem
	
	starting services after device reboot, Problem
	

	BroadcastReceiver class
		abortBroadcast() method, What happens if two receivers process outgoing calls?
	
	acting on incoming calls, Discussion–Source Download URL
	
	getResult() method, What happens if two receivers process outgoing calls?
	
	onReceive() method, Discussion, Discussion, Discussion
	
	setResultData() method, Discussion, What happens if two receivers process outgoing calls?
	

	BufferedReader class
		readLine() method, Discussion
	
	running Linux commands and, Discussion
	

	BugSense service, Problem–See Also, Discussion
	
	Bundle class, Solution
	
	Burke, Eric, Discussion
	
	Button class
		about, Creating the layout and placing the widgets
	
	opening additional screens example, Discussion
	
	setEnabled() method, Addressing ease of use or usability concerns
	

	buttons
		creating, Problem
	
	creating custom dialogs with, Problem
	
	image, Problem
	
	tablet considerations, Optional guidelines
	

	ByteArrayInputStream class, Discussion
	
	ByteBuffer class, Discussion
	

C
	Cache partition size property (AVD), Discussion
	
	Cache partition support property (AVD), Discussion
	
	Calendar class, See Also, The advantages
	
	calendars, creating, Problem–Discussion
	
	CALL_PHONE permission, Discussion
	
	Camera class
		MediaRecorder class and, Discussion
	
	PictureCallback interface, Discussion
	
	ShutterCallback interface, Discussion
	
	taking picture using, Problem–Discussion
	

	Camera support property (AVD), Discussion
	
	Camera.Parameters class
		FLASH_MODE_OFF constant, Discussion
	
	FLASH_MODE_TORCH constant, Discussion
	
	getSupportedFlashMode() method, Discussion
	

	canonical name (files), Discussion
	
	Canvas class
		drawArc() method, Overview of the MetarItem::draw() function
	
	drawCircle() method, Overview of the MetarItem::draw() function
	
	drawLine() method, Overview of the MetarItem::draw() function
	

	charts
		creating with RGraph, Problem–Source Download URL
	
	displaying with AndroidPlot, Problem–Source Download URL
	

	CheckBox class, Problem–Discussion
	
	checked exceptions, Where to catch exceptions
	
	checkedButton attribute, Addressing ease of use or usability concerns
	
	ChoiceFormat class, A better way
	
	classes, Problem
		(see also specific classes)
	
	sharing from other projects, Problem–Discussion
	
	test, Step 3: Write and run your tests
	

	.classpath file, Discussion
	
	clickable attribute, Adding the MapView element to your layout file, Discussion
	
	Clifton, Ian, Discussion
	
	clipboard, copying to and from, Problem
	
	ClipboardManager class
		getText() method, Discussion
	
	setText() method, Discussion
	

	cloud-based testing services, Problem
	
	com.android.view package, Adding the MapView element to your layout file
	
	com.google.android.maps package, Make the following changes in the
 AndroidManifest.xml file, as shown in Example 16-10:, Solution
	
	command line, creating “Hello, World” application
 from, Problem–See Also
	
	communication (see IPC)
	
	computer graphics (see graphics)
	
	concatenating strings, Discussion
	
	conferences, designing apps for, Problem–See Also
	
	configChanges attribute, Using onRetainNonConfigurationInstance()
	
	ConnectivityManager class, Solution
	
	contact information
		adding, Problem–Discussion
	
	reading, Problem–Source Download URL
	

	Contacts provider, Discussion
	
	ContactsContract class, Discussion, Solution
	
	content providers
		about, Discussion
	
	retrieving data from, Problem–Discussion
	
	writing, Problem–Discussion
	
	writing remote services, Problem–Discussion
	

	ContentProvider class, Discussion
	
	ContentResolver class
		about, Solution
	
	query() method, Discussion, Discussion
	

	ContentValues class, Solution
	
	Context class
		bindService() method, Discussion
	
	BIND_AUTO_CREATE constant, Discussion
	
	getContentResolver() method, Discussion
	
	getResources() method, Solution, Processing static XML resources
	
	getSystemService() method, Custom haptic feedback using the device’s vibrator
	
	PackageManager class and, Discussion
	
	startActivity() method, Discussion
	
	startService() method, Discussion
	

	context menus, Device features
	
	ContextMenu class, Use case (informal)
	
	controls (see system and device controls)
	
	Cooper, Alan, Discussion
	
	Cordova (see PhoneGap)
	
	countdown timer program, Problem–Source Download URL
	
	CountDownTimer class
		about, Solution
	
	onFinish() method, Discussion
	
	onTick() method, Discussion
	

	Cube class, Discussion
	
	Cursor interface
		getDate() method, Problem
	
	moveToFirst() method, Discussion
	
	moveToNext() method, Discussion
	

	CursorFactory interface, Discussion
	
	curves, drawing freehand, Problem–Source Download URL
	

D
	Dalvik Debug Monitor Server (DDMS) view (Eclipse)
		Device Screen Capture feature, Solution
	
	listening for incoming calls and messages, Discussion
	
	reproducing life-cycle scenarios for testing, Discussion
	
	sending SMS messages to emulator, Solution
	

	data feeds
		design considerations, Data feeds and feed formats
	
	parsing using ROME, Problem–Source Download URL
	

	data persistence
		about, Discussion
	
	adding contact information, Problem–Discussion
	
	checking consistency of default shared
 preferences, Problem–Discussion
	
	creating SQLite databases in apps, Problem
	
	getting file information, Problem–Discussion
	
	getting space information about SD cards, Problem
	
	inserting values into SQLite databases, Problem
	
	listing directories, Problem–See Also
	
	loading values from SQLite databases, Problem
	
	parsing JSON using JSONObject, Problem–Source Download URL
	
	parsing XML documents using DOM API, Problem–See Also
	
	parsing XML documents using XmlPullParser, Problem–Conclusion
	
	performing advanced text searches, Problem–See Also
	
	providing user preference information, Problem–Discussion
	
	reading contact data, Problem–Source Download URL
	
	reading files shipped with apps, Problem
	
	working with dates in SQLite, Problem–The code
	

	data types, Java and JNI, Ian’s basic steps: Java calling native code
	
	Date class, Discussion, Discussion
	
	date/time data
		formatting display, Problem–See Also
	
	in SQLite databases, Problem–The code
	
	strftime() function, Solution–The code
	

	DateFormat class, Solution
	
	DateKeyListener class, Discussion
	
	Datepicker class, Solution
	
	DateTimeKeyListener class, See Also
	
	DateUtils class, See Also
	
	DbAdapter class, Discussion
	
	DDMS (Dalvik Debug Monitor Server) view (Eclipse)
		Device Screen Capture feature, Solution
	
	listening for incoming calls and messages, Discussion
	
	reproducing life-cycle scenarios for testing, Discussion
	
	sending SMS messages to emulator, Solution
	

	debugging, LogCat messages and, Problem–Discussion, Discussion–Discussion
	
	DecimalFormat class
		about, General formatters, Discussion
	
	applyPattern() method, General formatters
	

	DemoCharts.java program, Discussion
	
	DemoList.java program, Discussion
	
	deploying applications (see packaging, deploying, and distributing applications)
	
	designing applications
		about, Discussion–Data feeds and feed formats
	
	accessing Application object, Problem–Discussion
	
	adapting apps for tablets, Problem–Optional guidelines
	
	backing up app data, Problem–Testing your backup agent
	
	for conferences or
 institutions, Problem–See Also
	
	controlling input with KeyListener class, Problem–See Also
	
	creating splash screens, Problem–Source Download URL
	
	exception handling, Problem–What to do with exceptions
	
	formatting date/time display, Problem–See Also
	
	Google Analytics and, Problem–Discussion
	
	hints versus tool tips, Problem–Discussion
	
	monitoring device battery levels, Problem
	
	requirements for, Requirements of a native handset application
	
	rotating device considerations, Problem–Source Download URL
	
	setting first-run preferences, Problem–Discussion
	
	torch/flashlight app, Problem–Source Download URL
	

	device controls (see system and device controls)
	
	Device RAM size property (AVD), Discussion
	
	Device Screen Capture feature (DDMS view), Solution
	
	DEX format, Discussion
	
	Dialog class
		alert method, What to do with exceptions
	
	creating custom dialogs, Problem
	
	creating tabbed dialog, Problem
	

	DigitsKeyListener class, Discussion
	
	dir command, Discussion
	
	directional pad (D-pad), Discussion, Solution
	
	directories, listing, Problem–See Also
	
	distributing applications (see packaging, deploying, and distributing applications)
	
	DocsService.GetDocumentListFeed() method, Discussion
	
	Document interface
		getChildNodes() method, Discussion
	
	getDocumentElement() method, Discussion
	
	getNodeValue() method, Discussion
	

	DocumentBuilder class, Discussion
	
	DocumentBuilderFactory class, Discussion
	
	DOM API, Problem–See Also
	
	Double.toString() method, Problem
	
	DPad support property (AVD), Discussion
	
	Drawable class, Discussion, Discussion
	
	DrawingView.java program, Discussion
	
	Droid.java program, Discussion
	
	DroidCharts package, Discussion
	

E
	Eclipse Android New Project Wizard, Step 1: Create a new Android test project within your Android
 application project, Setting up a basic ListView, Discussion
	
	Eclipse IDE
		ADT plug-in, Discussion
	
	BlackBerry Java plug-in, Discussion
	
	creating “Hello, World” application in, Problem–Discussion
	
	DDMS view, Solution, Discussion, Discussion, Solution
	
	installing, Installing Eclipse for Java development
	
	LogCat window, Discussion, Problem–Discussion, Discussion–Discussion
	
	setting up, Problem–Installing the Android Development Tools (ADT) plug-in
	
	sharing Java classes, Problem–Discussion
	
	updating, Updating Eclipse
	

	EditText class
		about, Creating the layout and placing the widgets
	
	addTextChangedListener() method, Discussion
	
	constraining values with attributes, Problem–Discussion
	
	displaying text fields, Problem
	
	imeOptions attribute, Discussion
	
	KeyListener examples, Discussion
	
	numeric attribute, Controlling input values
	
	password attribute, Problem
	
	Tipster program and, Controlling input values, Examining Tipster.java
	

	emails
		HTC SenseUI for Tablets mail program, Discussion
	
	sending text from views, Problem–Source Download URL
	
	sending with attachments, Problem–Discussion
	

	emulators
		installing .apk files via ADB tool, Problem
	
	installing apps via SlideME, Problem–See Also
	
	sending SMS messages to, Problem
	
	starting, Discussion
	
	taking screenshots from, Problem–See Also
	

	Enter key, changing on soft keyboard, Problem–See Also
	
	Environment.getExternalStorageDirectory() method, Discussion
	
	Epoch calendar, Problem–Discussion
	
	Error class, Discussion
	
	error handling (see exception handling)
	
	event listeners, wiring, Problem–Method 5. Attribute in View layout for OnClick events
	
	Exception class, Discussion
	
	exception handling
		AVD launch options, Discussion
	
	design considerations, Problem–What to do with exceptions
	
	reporting exceptions, What to do with exceptions, Problem–See Also
	
	troubleshooting application crashes, Problem–Discussion
	

	exception translation, Where to catch exceptions
	

F
	face detection feature, Problem–Source Download URL
	
	FaceDetectionView.java program, Discussion
	
	FaceDetector.findFaces() method, Discussion
	
	FC (Force Close), Discussion
	
	File class
		canRead() method, Discussion
	
	canWrite() method, Discussion
	
	exist() method, Discussion
	
	getCanonicalPath() method, Discussion
	
	getName() method, Discussion
	
	getParent() method, Discussion
	
	isDirectory() method, Discussion
	
	isFile() method, Discussion
	
	lastModified() method, Discussion
	
	length() method, Discussion
	
	list() method, Solution
	
	listFiles() method, Solution
	

	FileFilter.accept() method, Discussion
	
	FilenameFilter interface, Discussion
	
	files
		canonical name, Discussion
	
	getting information about, Problem–Discussion
	
	reading with apps, Problem
	

	FilterQueryProvider interface, Discussion
	
	finally block, exception handling and, Where to catch exceptions
	
	Find Me X application, Example application usage
	
	flashlight (torch) application, Problem–Source Download URL
	
	Flixel game framework, Problem
	
	FloatBuffer class, Discussion
	
	font sizes (tablets), Optional guidelines
	
	fonts, custom, Problem–Source Download URL
	
	Force Close (FC), Discussion
	
	Formatter class, See Also, Discussion
	
	formatting
		with correct plurals, Problem–Source Download URL
	
	date/time display, Problem–See Also
	
	numbers, Problem–See Also
	

	Fragment class
		building UIs, Discussion–Source Download URL
	
	onCreateView() method, Discussion
	
	opening additional screens, Discussion
	

	fragments
		about, Discussion
	
	building UI using, Problem–Source Download URL
	
	laying out, Discussion
	

	FrameLayout class, Discussion, Solution, Discussion
	
	Full Text Search (SQLite), Problem–See Also
	

G
	Gallery class, Problem–Problem, Discussion
	
	game programming
		advanced gaming frameworks, Discussion
	
	with AndEngine, Problem–Source Download URL
	
	with flixel-android, Problem
	
	processing timed keyboard input, Problem
	

	gdata.docs.service library, Solution
	
	Geocoder class
		about, Solution
	
	getFromLocationName() method, Discussion
	

	geocoding process, Problem
	
	GestureDetector class, Solution–See Also
	
	gestures, detecting in Android, Problem–See Also
	
	GET message (HTTP), Discussion
	
	GIMP graphics program
		creating launcher icons, Discussion
	
	scaling view backgrounds, Discussion
	

	GLSurfaceView class
		onKeyUp() method, Solution
	
	Renderer interface, Solution, Discussion
	

	GLUT library
		glutDisplayFunc function, Discussion
	
	glutReshapeFunc function, Discussion
	

	Google Analytics, Problem–Discussion
	
	Google Android Compatibility package, Solution
	
	Google Android Market app store, Solution
	
	Google Android Play app store, Problem–Then what?
	
	Google Documents, fetching and displaying, Problem–Discussion
	
	Google Maps
		adding device current location to, Problem
	
	building maps and, See Also
	
	changing modes of MapView, Problem
	
	creating overlays for MapView, Problem–Discussion
	
	drawing a location marker on MapView, Problem–Source Download URL
	
	drawing multiple location markers on MapView, Problem–Source Download URL
	
	drawing overlay icon without Drawable, Problem–Binary Download URL
	
	handling long-press in MapView, Problem–Discussion
	
	implementing location search on, Problem
	
	placing MapView inside TabView, Problem–Source Download URL
	
	setting up projects for, Checklist
	
	using in apps, Problem–Source Download URL
	

	Google Maps API key, Adding the MapView element to your layout file, Registering the Google Maps API key
	
	Google ZXing barcode scanner, Problem–Discussion, Discussion
	
	GoogleAnalyticsTracker class
		getInstance() method, Discussion
	
	trackEvent() method, Discussion
	
	trackPageView() method, Discussion
	

	GPS information
		accessing in apps, Problem–Problem
	
	getting, Problem–Source Download URL
	
	mocking GPS coordinates on devices, Problem–Source Download URL
	

	GPS support property (AVD), Discussion
	
	Gramlich, Nicholas, Solution
	
	graphical user interface (see GUI)
	
	graphics
		about, Discussion
	
	adding controls to spinning cubes, Problem–Source Download URL
	
	adding pinch movements to zoom, Problem
	
	adding raster animation, Problem–Discussion
	
	creating charts with RGraph, Problem–Source Download URL
	
	creating launcher icons using Inkscape, Problem–Discussion
	
	creating launcher icons with Paint.NET, Problem–Discussion
	
	custom fonts, Problem–Source Download URL
	
	displaying charts and graphs, Problem–Source Download URL
	
	drawing smooth curves, Problem–Source Download URL
	
	drawing spinning cubes, Problem–Discussion
	
	Nine Patch files support, Problem–Discussion
	
	scanning barcodes, Problem–Discussion
	
	scanning QR codes, Problem–Discussion
	
	taking pictures using Camera class, Problem–Discussion
	
	taking pictures using intents, Problem–Source Download URL
	

	graphs, displaying with AndroidPlot, Problem–Source Download URL
	
	gravity attribute, Discussion
	
	GregorianCalendar class, See Also
	
	GSM modem support property (AVD), Discussion
	
	GUI (graphical user interface), Discussion
		(see also ListView class)
	
	about, Discussion
	
	adding borders with rounded corners, Problem–Discussion
	
	building using fragments, Problem–Source Download URL
	
	changing Enter key, Problem–See Also
	
	checkboxes and radio buttons, Problem–Discussion
	
	constraining EditText values, Problem–Discussion
	
	creating buttons, Problem
	
	creating custom title bar, Problem–Discussion
	
	creating loading screens between activities, Problem–Discussion
	
	customizing SlidingDrawer component, Problem
	
	decoupling UI from model, Problem–Discussion
	
	detecting gestures, Problem–See Also
	
	displaying photo gallery, Problem–Source Download URL
	
	displaying text fields, Problem
	
	feeding AutoCompleteTextView, Problem–Discussion
	
	formatting numbers, Problem–See Also
	
	formatting with correct plurals, Problem–Source Download URL
	
	guideline considerations, Problem
	
	handling long events, Problem–Source Download URL
	
	image buttons, Problem
	
	implementing AutoCompleteTextView, Problem–Source Download URL
	
	making views shake, Problem–Discussion
	
	navigating activities with TabView, Problem
	
	offering drop-down choosers, Problem–Discussion
	
	opening additional screens, Problem–See Also
	
	password fields, Problem
	
	processing key-press events, Problem
	
	providing haptic feedback, Problem–Source Download URL
	
	RatingBar widget, Problem–See Also
	
	simple app widget example, Problem–Source Download URL
	
	SlidingDrawer overlapping other components, Problem–See Also
	
	wiring event listeners, Problem–Method 5. Attribute in View layout for OnClick events
	

	GUI alerts
		about, Discussion
	
	creating a ProgressDialog, Problem
	
	creating and displaying menus, Problem
	
	creating custom dialogs, Problem
	
	creating in SL4A, Problem–Discussion
	
	creating iPhone-like wheel picker, Problem–Problem
	
	creating notification icon in status bar, Problem–Source Download URL
	
	creating pop-up/alert dialogs, Problem
	
	creating reusable AboutBox class, Problem–Discussion
	
	creating submenus, Problem–Source Download URL
	
	creating tabbed dialog, Problem
	
	customizing toast notification appearance, Problem–Source Download URL
	
	device battery levels, Discussion
	
	handling menu choice selection, Problem–Source Download URL
	
	Timepicker widget, Problem–Discussion
	

H
	hackathons, designing apps for, Problem–See Also
	
	HandleClick class, Discussion
	
	Handler class
		handleMessage() method, Solution
	
	obtainMessage() method, Solution
	
	sendMessage() method, Solution
	
	UI thread and, Discussion, Discussion
	

	handlers
		about, Discussion
	
	sending messages between threads, Problem–Discussion
	

	haptic feedback, providing with apps, Problem–Source Download URL
	
	hapticFeedbackEnabled attribute, Stock haptic feedback events
	
	Hardware field (AVD), Discussion
	
	HDP (Health Device Profile), Discussion
	
	headers, section, Problem–Source Download URL
	
	Health Device Profile (HDP), Discussion
	
	“Hello, World”
 application
		about, Discussion
	
	creating from command line, Problem–See Also
	
	creating in Eclipse, Problem–Discussion
	

	hints attribute, Solution
	
	hints versus tool tips, Problem–Discussion
	
	HTC SenseUI for Tablets mail program, Discussion
	
	HTML5 standard
		Canvas component, Solution
	
	creating charts with RGraph, Problem–Source Download URL
	
	native handset functionality example, Problem–Discussion
	

	HTTP
		GET message, Discussion
	
	integrating social networking, Problem–Step 3: Implement the click event
	
	POST message, Discussion
	

	HttpClient class, Using HttpClient
	
	hyperlinks
		converting text into, Problem
	
	providing to published apps, Problem–Discussion
	

I
	Ice Cream Sandwich tablet, See Also
	
	icon attribute, Discussion
	
	id attribute, Discussion, Discussion
	
	image buttons, Problem
	
	ImageAdapter class, Discussion
	
	images
		creating browsers for, Problem–Problem
	
	creating custom dialogs with, Problem
	
	face detection feature, Problem–Source Download URL
	
	ListView displaying, Problem–Source Download URL
	

	ImageSwitcher class, Problem–Problem
	
	ImageView class
		building UIs example, Discussion
	
	customizing toast notifications, Discussion
	
	pinch movement to zoom example, Discussion
	
	simple raster animation example, Discussion
	

	IME (Input Method Editor), Solution
	
	IMEI (International Mobile Equipment Identity), Discussion
	
	imeOptions attribute, Discussion
	
	Inkscape graphics program
		creating launcher icons, Problem–Discussion, Discussion
	
	simple raster animation, Discussion
	

	input mechanisms, design considerations, Input configurations
	
	Input Method Editor (IME), Solution
	
	InputStream class, Discussion
	
	InputStreamReader class, Discussion
	
	inputType attribute, Discussion
	
	institutions, designing apps for, Problem–See Also
	
	InstrumentationTestCase class, Step 3: Write and run your tests
	
	IntelliJ IDEA, Step 1: Create a new Android test project within your Android
 application project
	
	Intent class
		ACTION_BOOT_COMPLETED constant, Discussion
	
	ACTION_NEW_OUTGOING_CALL constant, Solution–Source Download URL
	
	ACTION_SEND constant, Discussion
	
	ACTION_SEND_MULTIPLE constant, Discussion
	
	ACTION_VIEW constant, Discussion, Solution, Discussion
	
	arguments supported, Discussion
	
	createChooser() method, Discussion
	
	dialing phones, Solution
	
	EXTRA_PHONE_NUMBER constant, Discussion, What happens if two receivers process outgoing calls?
	
	getExtras() method, Solution, Discussion
	
	getIntent() method, Solution
	
	getString() method, Solution
	
	putExtra() method, Problem, Discussion, Discussion, Discussion
	
	putParcelableArrayListExtra() method, Discussion
	
	scanning barcodes, Solution
	
	scanning QR codes, Solution
	
	taking pictures and, Discussion
	

	intents
		about, Discussion
	
	Activity class and, Device features, Discussion
	
	emailing text from views, Problem–Source Download URL
	
	opening items with, Problem–Source Download URL
	
	registering apps to receive, Discussion
	
	retrieving data from subactivities, Problem–See Also
	
	scanning barcodes, Solution
	
	scanning QR codes, Solution
	
	sending emails with attachments, Problem–Discussion
	
	taking pictures using, Problem–Source Download URL, Discussion
	

	inter-process communication (see IPC)
	
	Interface type (Java), Method 2. The Interface type
	
	International Mobile Equipment Identity (IMEI), Discussion
	
	internationalization
		about, Discussion
	
	for application
 text, Problem–See Also
	
	finding and translating strings, Problem–Discussion
	
	handling nuances of strings.xml file, Problem–Discussion
	
	localization and, Ian’s basic steps: Internationalization
	

	INTERNET permission, Discussion, Discussion, Conclusion, Step 3
	
	IOException class, Discussion
	
	IPC (inter-process communication)
		about, Discussion, Solution
	
	background processing with AsyncTask, Problem–Source Download URL
	
	creating custom calendars, Problem–Discussion
	
	creating responsive apps using threads, Problem
	
	emailing text from views, Problem–Source Download URL
	
	keeping services running in background, Problem–Discussion
	
	opening items with intents, Problem–Source Download URL
	
	pushing string values, Problem
	
	receiving broadcast messages, Problem
	
	retrieving data from subactivities, Problem–See Also
	
	sending broadcast messages, Problem
	
	sending emails with attachments, Problem–Discussion
	
	sending messages between threads, Problem–Discussion
	
	starting services after device reboot, Problem
	

	iPhone-like wheel picker, Problem–Problem
	
	isIndicator attribute, Discussion
	
	ISO-3166 language code, Discussion
	
	ItemizedOverlay class
		createItem() method, Adding the ItemizedOverlay to your MapView
	
	draw() method, Solution–Binary Download URL
	
	drawing multiple location markers, Solution–Source Download URL
	
	populate() method, Adding the ItemizedOverlay to your MapView
	
	size() method, Adding the ItemizedOverlay to your MapView
	

J
	JabaGator program, Discussion
	
	JAR files
		BugSense service and, Adding the JAR file to the project
	
	creating, Discussion
	
	referencing libraries, Discussion
	

	jarsigner tool, Solution
	
	Java Development Kit (JDK)
		Eclipse IDE and, Installing Eclipse for Java development
	
	installing, Installing the JDK (Java Development Kit)
	
	jarsigner tool, Solution
	

	Java language
		additional resources, Discussion
	
	data types, Ian’s basic steps: Java calling native code
	
	exception handling, Problem–What to do with exceptions
	
	handling regional variants, Regional variants
	
	Interface type, Method 2. The Interface type
	
	learning, Problem–See Also
	
	obfuscating code, Discussion
	
	sharing classes from other projects, Problem–Discussion
	
	ternary operator, Discussion
	

	Java Native Interface (JNI), Solution–Source Download URL
	
	java.io package, Solution, Solution
	
	java.net package, Using URL and URLConnection, Solution
	
	java.text package, General formatters, A better way, Discussion
	
	java.util package, Discussion, Discussion, Discussion
	
	java.util.logging package, Solution
	
	JavaME API, Discussion
	
	JavaScript language
		calendars written in, Problem–Discussion
	
	native handset functionality via, Problem–Discussion
	

	JavaScript Object Notation (JSON)
		loading Twitter timeline, Problem
	
	parsing, Problem–Source Download URL
	

	JAX-RS API, Discussion
	
	JDK (Java Development Kit)
		Eclipse IDE and, Installing Eclipse for Java development
	
	installing, Installing the JDK (Java Development Kit)
	
	jarsigner tool, Solution
	

	JNI (Java Native Interface), Solution–Source Download URL
	
	JPSTrack GPS tracking program
		BugSense example, Invoking BugSense at App Start
	
	camera activity example, Discussion
	
	keeping services running example, Discussion
	
	sharing classes example, Discussion
	

	JPStrack mapping application, Discussion
	
	JSON (JavaScript Object Notation)
		loading Twitter timeline, Problem
	
	parsing, Problem–Source Download URL
	

	JSONObject class
		parsing JSON using, Problem–Source Download URL
	
	toString() method, Discussion
	

	JUnit testing framework
		about, Discussion
	
	test classes supported, Step 3: Write and run your tests
	

K
	kankan.wheel.widget package, Discussion
	
	Kernighan, Brian, Discussion
	
	key pairs, Generating a key pair (public and private keys) and a signing
 certificate
	
	key-press events, Problem
	
	keyboard input, timed, Problem
	
	Keyboard lid support property (AVD), Discussion
	
	Keyboard support property (AVD), Discussion
	
	KeyEvent class, Solution
	
	KeyListener class, Problem–See Also
	
	keystore, Registering the Google Maps API key, Generating a key pair (public and private keys) and a signing
 certificate
	
	keytool utility, Solution–See Also
	

L
	LabelView class, Discussion
	
	Lafortune, Eric, Discussion
	
	landscape orientation (tablets), Optional guidelines
	
	Launch Options window, Discussion
	
	launcher icons
		creating with Inkscape, Problem–Discussion
	
	creating with Paint.NET, Problem–Discussion
	

	LayoutInflater class, Discussion, Discussion
	
	layout_column attribute, TableLayout and TableRow
	
	layout_height attribute, Discussion
	
	layout_span attribute, TableLayout and TableRow
	
	layout_width attribute, Discussion
	
	LEDs
		flashing in colors and patterns, Lighting the LED
	
	for notifications, Problem
	

	libraries, referencing, Problem
	
	License Validation Tool (LVT), Configuration file
	
	life cycle of Android apps
		about, Problem–Discussion
	
	reproducing scenarios for testing, Problem–Discussion
	

	LineAndPointRenderer class, Discussion
	
	LinearLayout class
		custom dialog example, Discussion
	
	gravity attribute, Discussion
	

	Linkify class, Discussion
	
	Linux command, Problem
	
	ListActivity class
		ArrayList class and, Discussion
	
	ContextMenu class and, Use case (informal)
	
	usage considerations, Discussion
	
	writing custom list adapter example, Discussion
	

	ListAdapter interface, Discussion
	
	ListView class
		about, Discussion
	
	building list-based applications, Problem–Setting up a basic ListView
	
	creating “no data” view, Problem
	
	fetching and displaying Google Documents, Problem–Discussion
	
	handling orientation changes, Problem
	
	onListItemClick() method, Discussion
	
	section headers and, Problem–Source Download URL
	
	showing images and text, Problem–Source Download URL
	
	SlidingDrawer class and, Solution
	
	tracking user’s focus, Problem
	
	writing custom list adapter, Problem–Discussion
	

	Locale class, General formatters, Discussion
	
	localization, Ian’s basic steps: Internationalization
	
	location and map applications
		about, Discussion
	
	accessing GPS information, Problem–Problem
	
	adding device current location to Google Maps, Problem
	
	building maps in, Problem–See Also
	
	changing modes of MapView, Problem
	
	creating overlays for MapView, Problem–Discussion
	
	creating overlays in OpenStreetMap maps, Problem–Source Download URL
	
	drawing a location marker on MapView, Problem–Source Download URL
	
	drawing multiple location markers on MapView, Problem–Source Download URL
	
	drawing overlay icon without Drawable, Problem–Binary Download URL
	
	geocoding in, Problem
	
	getting location information, Problem–Source Download URL
	
	getting location updates with OpenStreetMap
 maps, Problem–Source Download URL
	
	handling long-press in MapView, Problem–Discussion
	
	handling touch events on OpenStreetMap
 overlays, Problem–Source Download URL
	
	implementing location search on Google Maps, Problem
	
	mocking GPS coordinates on devices, Problem–Source Download URL
	
	placing MapView inside TabView, Problem–Source Download URL
	
	reverse geocoding in, Problem
	
	using Google Maps in, Problem–Source Download URL
	
	using OpenStreetMap, Problem–Binary Download URL
	
	using scales on OpenStreetMap maps, Problem
	

	Location class, Discussion
	
	LocationListener interface
		accessing GPS information in apps, Solution
	
	getting location information, Discussion
	
	onLocationChanged() method, Discussion, Discussion, Discussion
	

	LocationManager class
		addTestProvider() method, What’s happening?
	
	mocking GPS coordinates on devices, Solution
	
	removeUpdates() method, Discussion
	
	requestLocationUpdates() method, Discussion, Discussion
	
	setTestProviderEnabled() method, What’s happening?
	

	Log class
		d() method, Problem–Discussion, Discussion, Discussion
	
	i() method, Discussion
	

	LogCat mechanism
		debugging with, Problem–Discussion
	
	runtime scenarios and, Discussion
	
	viewing AVD log, Discussion
	
	viewing debug messages, Discussion–Discussion
	

	logs, analyzing during testing, Problem–See Also
	
	LVT (License Validation Tool), Configuration file
	

M
	manifest file (see AndroidManifest.xml file)
	
	Map API Key, Generating a key pair (public and private keys) and a signing
 certificate
	
	map applications (see location and map applications)
	
	map overlays
		creating for MapView, Problem–Discussion
	
	creating in OpenStreetMap maps, Problem–Source Download URL
	
	drawing overlay icons without Drawable, Problem–Binary Download URL
	
	handling touch events on OpenStreetMap maps, Problem–Source Download URL
	

	MapActivity class
		getting ready for development, Solution
	
	isRouteDisplayed() method, Creating a new Android project that targets “Google APIs - 1.5
 - API level 3”
	
	MapView and, Discussion
	
	MapView class and, Creating a new Android project that targets “Google APIs - 1.5
 - API level 3”
	

	MapController class
		about, Discussion
	
	zoomToSpan() method, Using MyItemizedOverlay in onCreate
	

	MapView class
		adding to apps, Discussion
	
	apiKey attribute, Adding the MapView element to your layout file
	
	changing modes of, Problem
	
	creating overlays for, Problem–Discussion
	
	drawing a location marker on, Problem–Source Download URL
	
	drawing multiple location markers on, Problem–Source Download URL
	
	drawing overlay icon without Drawable, Problem–Binary Download URL
	
	getOverlays() method, Discussion
	
	getProjection() method, Overriding the ItemizedOverlay::draw() function
	
	getting ready for development, Problem–Source Download URL
	
	handling long-press, Problem–Discussion
	
	invalidate() method, Discussion
	
	MapActivity class and, Discussion
	
	OnLongpressListener interface, Solution–Discussion
	
	onTouchEvent() method, Solution
	
	placing inside TabView, Problem–Source Download URL
	
	setBuiltInZoomControls() method, Creating a new Android project that targets “Google APIs - 1.5
 - API level 3”, Discussion
	
	setTraffic() method, Discussion
	
	using scale on, Discussion
	

	MapView class and MapActivity class, Creating a new Android project that targets “Google APIs - 1.5
 - API level 3”
	
	Max VM application heap size property
 (AVD), Discussion
	
	Maximum horizontal camera pixels property
 (AVD), Discussion
	
	Maximum vertical camera pixels property
 (AVD), Discussion
	
	MD5 algorithm, Problem, Registering the Google Maps API key
	
	MediaAdapter class, Discussion
	
	MediaController class, Discussion–Source Download URL
	
	MediaPlayer class
		create() method, Discussion
	
	OnCompletionListener interface, Discussion
	
	pause() method, Discussion
	
	playing audio files, Discussion–Source Download URL
	
	prepare() method, Discussion
	
	release() method, Discussion
	
	start() method, Solution
	
	state diagram for, See Also
	
	stop() method, Discussion
	

	MediaRecorder class
		capturing video, Problem–Source Download URL
	
	setCamera() method, Discussion
	
	setPreviewDisplay() method, Discussion
	

	MediaStore.ACTION_IMAGE_CAPTURE constant, Solution
	
	Menu.addSubMenu() method, Discussion
	
	menus
		creating, Problem
	
	creating submenus, Problem–Source Download URL
	
	design considerations, Device features
	
	displaying, Problem
	
	handling choice selection in, Problem–Source Download URL
	

	MetaKeyKeyListener class, See Also
	
	minSdkVersion attribute, Discussion
	
	Monkey tool, Problem–Discussion
	
	MotionEvent class
		getHistoricalX() method, Discussion
	
	getHistoricalY() method, Discussion
	
	getHistorySize() method, Discussion
	

	MOTODEV Studio tool, Discussion
	
	multimedia
		about, Discussion
	
	capturing video, Problem–Source Download URL
	
	creating image browsers for apps, Problem–Problem
	
	face detection feature, Problem–Source Download URL
	
	playing audio files, Problem–Source Download URL
	
	playing audio without interaction, Problem
	
	playing YouTube videos, Problem
	
	speech-to-text processing, Problem
	
	text-to-speech processing, Problem–Source Download URL
	

	MultiTapKeyListener class, Discussion
	
	MyLocationOverlay class
		about, Solution
	
	adding to apps, Discussion
	
	disableMyLocation() method, Discussion
	

N
	Name field (AVD), Discussion
	
	naming projects, Discussion
	
	Native Development Kit (NDK), Solution–Source Download URL
	
	navigating activities with TabView, Problem
	
	NDK (Native Development Kit), Solution–Source Download URL
	
	Nearby Metars sample app, Discussion–Binary Download URL
	
	networked applications
		about, Discussion
	
	accessing RESTful services, Problem–The results
	
	accessing web pages with WebView, Problem
	
	converting text into hyperlinks, Problem
	
	customizing WebView, Problem
	
	extracting information using regular
 expressions, Problem–Source Download URL
	
	MD5 to digest clear text, Problem
	
	parsing Atom feeds, Problem–Source Download URL
	
	parsing RSS feeds, Problem–Source Download URL
	

	NetworkInfo class, Solution
	
	Newton-Raphson iterative method, Discussion
	
	Nine Patch files, Problem–Discussion
	
	NodeList interface, Discussion
	
	noHistory attribute, Discussion
	
	Notification class
		creating notification in status bar, Solution
	
	DEFAULT_SOUND constant, Sounds and other irritants
	
	FLAG_INSISTENT constant, Sounds and other irritants
	
	FLAG_SHOW_LIGHTS constant, Lighting the LED
	
	LED-based notifications, Solution
	
	ledARGB field, Discussion
	
	ledOffMS field, Lighting the LED, Discussion
	
	ledOnMS field, Lighting the LED, Discussion
	
	making devices vibrate, Discussion
	

	NotificationManager class
		creating notification in status bar, Solution
	
	LED-based notifications, Solution
	
	making devices vibrate, Discussion
	

	notifications
		changing incoming call settings, Problem–Discussion
	
	creating icon in status bar, Problem–Source Download URL
	
	customizing appearance for toast, Problem–Source Download URL
	
	LED-based, Problem
	
	making devices vibrate, Problem
	

	NPE (Null Pointer Exception), Discussion, Discussion
	
	Null Pointer Exception (NPE), Discussion, Discussion
	
	NumberFormat class
		getInstance() method, General formatters
	
	setMinimumIntegerDigits() method, General formatters
	

	NumberKeyListener class, See Also
	
	numbers, formatting, Problem–See Also
	
	numeric attribute, Controlling input values
	
	NumFormatTest demo program, General formatters
	
	numStars attribute, Discussion
	

O
	obfuscation of code, Problem–See Also
	
	OnCheckedChangeListener interface, Processing UI events
	
	onClick attribute, Method 5. Attribute in View layout for OnClick events, Step 3: Implement the click event
	
	OnClickListener interface
		background processing example, Use case 2: Processing in the foreground
	
	changing incoming call notification settings, Discussion
	
	checkboxes and radio buttons, Discussion
	
	emailing text example, Discussion
	
	implementing, Problem
	
	implementing social networking example, Step 3: Implement the click event
	
	Tipster program example, Listening to button clicks
	
	wiring up event listeners, Discussion–Method 5. Attribute in View layout for OnClick events
	

	OnCompletionListener interface, Discussion
	
	onCreateContextMenu event listener, Method 5. Attribute in View layout for OnClick events
	
	onDayClick() function, Discussion
	
	oneshot attribute, Discussion
	
	onFocusChange event listener, Method 5. Attribute in View layout for OnClick events
	
	OnInitListener interface, Discussion
	
	OnItemLongClickListener interface, Discussion
	
	onKey event listener, Method 5. Attribute in View layout for OnClick events
	
	OnKeyListener interface, Monitoring key activity in text fields
	
	onKeyUp event, Discussion
	
	onLongClick event listener, Method 5. Attribute in View layout for OnClick events
	
	OnLongpressListener interface, Solution–Discussion
	
	OnRatingBarChangeListener.onRatingChanged() method, Discussion
	
	OnSharedPreferenceChangeListener interface, Discussion
	
	onTouch event listener, Method 5. Attribute in View layout for OnClick events
	
	OnTouchListener interface, Solution, Stock haptic feedback events
	
	Open Clipart Library
		creating launcher icons, Problem–Discussion
	
	simple raster animation, Discussion
	

	OpenGL ES API
		adding controls to spinning cubes, Problem–Source Download URL
	
	drawing spinning cubes, Problem–Discussion
	
	gaming and, Discussion
	

	OpenIntents File Manager, Discussion
	
	OpenStreetMap maps
		creating overlays in, Problem–Source Download URL
	
	getting location updates with, Problem–Source Download URL
	
	handling touch events on overlays, Problem–Source Download URL
	
	JPStrack mapping application, Discussion
	
	using in location and map applications, Problem–Binary Download URL
	
	using scales on, Problem
	

	OpenStreetMap wiki project, Discussion
	
	OpenTypeFace (OTF) fonts, Discussion
	
	optimization of code, Problem–See Also
	
	options menus, Device features
	
	org.panel package, Solution
	
	orientation
		checking device, Problem
	
	finding for devices, Problem
	
	handling changes to, Problem–Source Download URL
	

	OTF (OpenTypeFace) fonts, Discussion
	
	Overlay class
		creating map overlays, Discussion–Discussion
	
	draw() method, Introduction, Discussion
	

	OverlayItem class, Solution–Source Download URL
	
	overlays (map) (see map overlays)
	
	O’Dell, Mike, Preface
	

P
	package attribute, Step 2: Configure the AndroidManifest.xml file of the test
 project
	
	PackageInfo class, Discussion
	
	PackageManager class, Discussion, Solution
	
	packaging, deploying, and distributing
 applications
		about, Discussion
	
	creating signing certificates, Problem–See Also
	
	distributing via Android Play, Problem–Then what?
	
	integrating AdMob into apps, Problem–Step 6
	
	obfuscating and optimizing code, Problem–See Also
	
	providing links to published apps, Problem–Discussion
	
	signing applications, Problem
	

	padding attribute, Discussion
	
	Paint.NET software
		creating launcher icons, Problem–Discussion
	
	scaling view backgrounds, Discussion
	

	parsing
		Atom feeds, Problem–Source Download URL
	
	JSON using JSONObject, Problem–Source Download URL
	
	RSS feeds, Problem–Source Download URL
	
	XML documents using DOM API, Problem–See Also
	
	XML documents using XmlPullParser, Problem–Conclusion
	

	password attribute, Problem
	
	PendingIntent class, Solution
	
	permissions, Discussion
		(see also specific permissions)
	
	controlling device vibrator, Discussion, Stock haptic feedback events, Discussion
	
	dialing phones, Discussion
	
	receiving SMS messages, Discussion
	
	sending SMS messages, Discussion
	

	Persson, Tomas, Best way of all (Android-only)
	
	phone numbers, opening with intents, Problem–Source Download URL
	
	PhoneGap development framework, Problem–Source Download URL
	
	Photo Gallery (Android), Problem–Source Download URL
	
	PictureCallback interface, Discussion
	
	pictures
		taking using Camera class, Problem–Discussion
	
	taking using intents, Problem–Source Download URL
	

	pinch movements, adding to zoom, Problem
	
	PNG (Portable Network Graphics) format, Discussion, Discussion
	
	pop-up/alert dialogs, creating, Problem
	
	Portable Network Graphics (PNG) format, Discussion, Discussion
	
	POST message (HTTP), Discussion
	
	Preference class, Discussion
	
	PreferenceActivity class
		onSharedPreferenceChanged() method, Solution
	
	providing user preference information, Solution–Discussion
	

	PreferenceCategory class, Discussion
	
	PreferenceManager.getDefaultSharedPrefences()
 method, Discussion
	
	preferences
		checking consistency of default shared, Problem–Discussion
	
	providing information about, Problem–Discussion
	
	setting for first-run, Problem–Discussion
	

	PreferenceScreen class, Solution–Discussion
	
	printf() function, Discussion
	
	priority attribute, What happens if two receivers process outgoing calls?
	
	private keys, Generating a key pair (public and private keys) and a signing
 certificate
	
	Process class
		about, Discussion
	
	waitFor() method, Discussion
	

	PROCESS_OUTGOING_CALLS permission, Discussion
	
	programming languages, Discussion
		(see also specific programming languages)
	
	about, Discussion
	
	creating alerts in SL4A, Problem–Discussion
	
	creating platform-independent applications, Problem–Source Download URL
	
	fetching and displaying Google Documents, Problem–Discussion
	
	getting started with SL4A, Problem–See Also
	
	native handset functionality from WebView, Problem–Discussion
	
	running apps natively, Problem–Source Download URL
	
	running Linux command, Problem
	
	sharing SL4A scripts in QR codes, Problem–Discussion
	

	ProgressBar class, Discussion
	
	ProgressDialog class
		about, Use case 2: Processing in the foreground, Problem
	
	STYLE_HORIZONTAL constant, Use case 2: Processing in the foreground
	

	ProGuard tool, Problem–See Also
	
	Projection::toPixels() method, Overview of the MetarItem::draw() function
	
	projects
		creating, Discussion, Discussion
	
	naming, Discussion
	
	referenced, Solution
	
	setting up for Google Maps, Checklist
	
	setting up test-driven development, Solution
	
	test, Problem–Source Download URL
	

	Proximity support property (AVD), Discussion
	
	ps command, Discussion, Discussion
	
	public keys, Generating a key pair (public and private keys) and a signing
 certificate
	
	publisher ID, Step 2
	
	Python language
		about, Pick a language (Python)
	
	creating alerts in SL4A, Solution–Discussion
	
	fetching and displaying Google Documents, Problem–Discussion
	

Q
	QR (Quick Response) codes
		scanning, Problem–Discussion
	
	sharing SL4A scripts in, Problem–Discussion
	

R
	R.drawable class, Discussion
	
	R.layout class, Discussion
	
	R.raw class, Discussion
	
	R.string class, Discussion
	
	RadioButton class
		about, Creating the layout and placing the widgets, Problem–Discussion
	
	Tipster program and, Addressing ease of use or usability concerns
	

	RadioGroup class
		about, Creating the layout and placing the widgets, Discussion, Discussion
	
	checkedButton attribute, Addressing ease of use or usability concerns
	
	getCheckedRadioButtonId() method, Validating the input to calculate the tip
	

	rating attribute, Discussion
	
	RatingBar class
		about, Problem–See Also
	
	getRating() method, Discussion
	
	isIndicator attribute, Discussion
	
	numStars attribute, Discussion
	
	OnRatingBarChangeListener interface, Discussion
	
	rating attribute, Discussion
	
	stepSize attribute, Discussion
	

	reading
		contact data, Problem–Source Download URL
	
	files with apps, Problem
	
	temperature sensors, Problem
	

	reboot, starting services after, Problem
	
	RECEIVE_SMS permission, Discussion
	
	RecognizerIntent class, Discussion
	
	Regular Expressions API, Discussion
	
	regular expressions, extracting information from
 unstructured text, Problem–Source Download URL
	
	RelativeLayout class
		custom dialog example, Discussion
	
	SlidingDrawer class and, Solution
	

	remote services, writing, Problem–Discussion
	
	RemoteViews class, Discussion
	
	Renderer interface
		GLSurfaceView class and, Solution, Discussion
	
	onDrawFrame() method, Discussion, Discussion
	
	onSurfaceChanged() method, Discussion, Discussion
	
	onSurfaceCreated() method, Discussion
	

	reporting exceptions, What to do with exceptions, Problem–See Also
	
	RESTful services
		about, Discussion
	
	accessing, Problem–The results
	

	reverse geocoding process, Problem
	
	RGraph library, Problem–Source Download URL
	
	Robolectric testing framework, Discussion
	
	ROME parser, Problem–Source Download URL
	
	rotating devices, design considerations, Problem–Source Download URL
	
	RSS feeds, parsing, Problem–Source Download URL
	
	Runnable interface, Discussion
	
	runtime application logs, Problem–See Also
	
	Runtime class
		exec() method, Discussion, Discussion
	
	getRuntime() method, Discussion, Discussion
	

	RuntimeException class, Discussion
	
	RuntimeLog class, Discussion–See Also
	

S
	Saltsman, Adam, Solution
	
	Scalable Vector Graphics (SVG) format, Discussion, Discussion
	
	ScaleBarOverlay class, Solution
	
	scaling view backgrounds, Problem–Discussion
	
	scanning barcodes or QR codes, Problem–Discussion
	
	screen considerations
		creating loading screens between activities, Problem–Discussion
	
	creating splash screens, Problem–Source Download URL
	
	opening additional screens, Problem–See Also
	
	screen density, Screen size and density, Discussion
	
	screen size, Screen size and density, Discussion
	

	screenshots, taking from emulators/devices, Problem–See Also
	
	Scripting Layer for Android (SL4A)
		creating alerts in, Problem–Discussion
	
	fetching and displaying Google Documents, Problem–Discussion
	
	getting started with, Problem–See Also
	
	sharing scripts in QR codes, Problem–Discussion
	

	scroll-wheel picker, Problem–Problem
	
	ScrollView class, Discussion
	
	SD (Secure Digital) card
		app testing and, Discussion
	
	getting file information, Problem
	
	getting space information about, Problem
	

	SD Card field (AVD), Discussion
	
	SD card support property (AVD), Discussion
	
	SDK Manager
		accessing, Installing the Android SDK (software development kit)
	
	configuring AVDs, Discussion
	
	error resolution, SDK Manager cannot update itself
	
	installing sample programs, Discussion
	
	running as admin, Run SDK Manager as admin–Run SDK Manager as admin
	
	updating SDK packages, Solution–Updating Eclipse
	

	searching
		Google Maps for locations, Problem
	
	text strings, Problem–See Also
	

	section headers, Problem–Source Download URL
	
	Secure Digital (SD) card
		app testing and, Discussion
	
	getting file information, Problem
	
	getting space information about, Problem
	

	selling applications (see packaging, deploying, and distributing applications)
	
	SEND_SMS permission, Discussion
	
	Sensor class, Discussion, Discussion
	
	SensorEvent class, Discussion
	
	SensorEventListener interface
		detecting shaking of devices, Discussion–Discussion
	
	onAccuracyChanged() method, Discussion, Discussion
	
	onSensorChanged() method, Discussion, Discussion, Discussion, Discussion
	
	reading temperature sensors, Solution
	

	SensorManager class
		about, Discussion
	
	getSensorList() method, Discussion, Discussion
	
	reading temperature sensors, Solution
	
	registerListener() method, Discussion
	
	SENSOR_DELAY_FASTEST constant, Discussion
	

	sensors
		about, Discussion
	
	checking device orientation, Problem
	
	checking for presence or absence of, Problem
	
	detecting shaking of devices, Problem–Discussion
	
	finding orientation of devices, Problem
	
	temperature, Problem
	

	SeparatedListAdapter class, Discussion, Discussion
	
	Serial Port Protocol (SPP), Discussion
	
	Serializable class, Solution
	
	Service class
		about, Solution
	
	notifications and, Discussion
	
	onBind() method, Discussion, Discussion
	
	onCreate() method, Discussion
	
	onDestroy() method, Discussion
	
	onStart() method, Discussion, Discussion
	
	onStartCommand() method, Discussion
	
	onUnbind() method, Discussion
	
	START_NOT_STICKY constant, Discussion
	
	START_STICKY constant, Discussion
	

	ServiceConnection interface, Discussion
	
	services
		background, Problem–Discussion
	
	remote, Problem–Discussion
	
	starting after device reboot, Problem
	

	Session Initiation Protocol (SIP), Discussion
	
	shape attribute, Discussion
	
	SharedPreferences interface
		getBoolean() method, Discussion
	
	getString() method, Discussion
	
	OnSharedPreferenceChangeListener interface, Discussion
	
	providing user preference information, Discussion–Discussion
	
	pushing string values, Discussion
	

	Sharkey, Jeff, Solution, Discussion
	
	shell commands, running from apps, Problem–Discussion
	
	Short Message Service messages (see SMS messages)
	
	ShutterCallback interface, Discussion
	
	signaling LED, Lighting the LED
	
	signatures, drawing freehand, Problem–Source Download URL
	
	signing certificates, creating, Problem–See Also
	
	SimpleCursorAdapter class, Solution
	
	SIP (Session Initiation Protocol), Discussion
	
	Skin field (AVD), Discussion
	
	SL4A (Scripting Layer for Android)
		creating alerts in, Problem–Discussion
	
	fetching and displaying Google Documents, Problem–Discussion
	
	getting started with, Problem–See Also
	
	sharing scripts in QR codes, Problem–Discussion
	

	SlideME app store, Problem–See Also
	
	SlidingDrawer class
		animateOpen() method, See Also
	
	close() method, See Also
	
	customizing to animate/transition from top
 down, Problem
	
	open() method, See Also, Problem
	
	overlapping other components, Problem–See Also
	
	toggle() method, See Also
	

	SMS messages
		receiving in apps, Problem–Source Download URL
	
	sending, Problem
	
	sending to emulators, Problem
	

	SmsManager class
		about, Discussion
	
	sendMultipartTextMessage() method, Discussion
	
	sendTextMessage() method, Discussion
	

	Snapshot field (AVD), Discussion
	
	social networking
		about, Discussion
	
	integrating using HTTP, Problem–Step 3: Implement the click event
	
	loading Twitter timeline, Problem
	

	Spannable interface, Discussion
	
	speech-to-text processing, Problem
	
	Spinner class
		about, Solution
	
	getSelectedItem() method, Discussion
	
	offering drop-down choosers, Problem–Discussion
	
	setOnItemSelectedListener() method, Discussion
	

	spinning cubes
		adding controls to, Problem–Source Download URL
	
	drawing, Problem–Discussion
	

	splash screens, creating, Problem–Source Download URL
	
	SPP (Serial Port Protocol), Discussion
	
	Sprite class, Discussion
	
	SQLite databases
		creating in applications, Problem
	
	feeding AutoCompleteTextView using queries, Problem–Discussion
	
	inserting values into, Problem
	
	loading values from, Problem
	
	strftime() function, Solution–The code
	
	working with dates, Problem–The code
	

	SQLiteDatabase class
		about, Discussion
	
	CursorFactory interface, Discussion
	
	insert() method, Solution
	
	query() method, Solution
	

	SQLiteOpenHelper class, Solution
	
	SqrtDemo class, Ian’s basic steps: Java calling native code
	
	statFs class
		getAvailableBlocks() method, Discussion
	
	getBlockCount() method, Discussion
	

	status bar, creating notification icon in, Problem–Source Download URL
	
	stepSize attribute, Discussion
	
	streaming (see parsing)
	
	stretchColumns attribute, TableLayout and TableRow
	
	strftime() function (SQLite), Solution–The code
	
	StrictMode tool, Problem
	
	String class
		format() method, Discussion, Discussion, Solution
	
	rotating devices and, Solution
	
	toString() method, Discussion, Discussion
	

	strings (see text strings)
	
	strings.xml file
		creating, Solution–See Also
	
	handling nuances of, Problem–Discussion
	

	Submenu interface
		add() method, Discussion
	
	setIcon() method, Discussion
	

	submenus, creating, Problem–Source Download URL
	
	SurfaceHolder.Callback interface
		implementing, Discussion
	
	surfaceCreated() method, Discussion
	
	surfaceDestroyed() method, Discussion
	

	SurfaceView class, Discussion
	
	SVG (Scalable Vector Graphics) format, Discussion, Discussion
	
	Swing GUI, Discussion
	
	system and device controls
		about, Discussion
	
	accessing network connectivity information, Problem
	
	adding to spinning cubes, Problem–Source Download URL
	
	changing incoming call notification settings, Problem–Discussion
	
	copying text to and from clipboard, Problem
	
	determining if apps are running, Problem
	
	LED-based notifications, Problem
	
	making devices vibrate, Problem
	
	obtaining information from manifest file, Problem
	
	running shell commands from apps, Problem–Discussion
	
	using to send SMS messages to emulators, Problem
	

	System.loadLibrary() method, Ian’s basic steps: Java calling native code
	

T
	TabbyText message sender, Discussion, Discussion
	
	TabHost class, Discussion
	
	TableLayout class
		about, Creating the layout and placing the widgets
	
	stretchColumns attribute, TableLayout and TableRow
	
	Tipster program and, TableLayout and TableRow
	

	TableRow class
		about, Creating the layout and placing the widgets
	
	layout_column attribute, TableLayout and TableRow
	
	layout_span attribute, TableLayout and TableRow
	
	Tipster program and, TableLayout and TableRow
	

	tablets
		adapting apps for, Problem–Optional guidelines
	
	optional guidelines, Optional guidelines
	

	TabSpec.setContent() method, Solution
	
	TabView class
		navigating activities within, Problem
	
	placing MapView inside, Problem–Source Download URL
	

	TabWidget class, Discussion
	
	Tag class, Discussion
	
	Target field (AVD), Discussion
	
	targetPackage attribute, Step 2: Configure the AndroidManifest.xml file of the test
 project
	
	targetSdkVersion attribute, Discussion
	
	TDD (test-driven development), Problem
	
	telephone applications
		about, Discussion
	
	acting on incoming calls, Problem–Source Download URL
	
	dialing from within, Problem
	
	processing outgoing calls, Problem–Source Download URL
	
	receiving SMS messages in, Problem–Source Download URL
	
	sending SMS messages from, Problem
	
	sending SMS messages to emulators, Problem
	
	sending text messages from, Problem
	
	TelephonyManager example, Problem–Source Download URL
	

	TelephonyManager class
		ACTION_PHONE_STATE_CHANGED constant, Solution–Source Download URL
	
	EXTRA_INCOMING_NUMBER constant, Discussion
	
	EXTRA_STATE constant, Discussion
	
	obtaining statistics with, Solution–Source Download URL
	

	temperature sensors, Problem
	
	ternary operator (Java), Discussion
	
	test projects
		about, Solution
	
	configuring AndroidManifest.xml file for, Step 2: Configure the AndroidManifest.xml file of the test
 project
	
	creating, Step 1: Create a new Android test project within your Android
 application project
	
	writing and running tests, Step 3: Write and run your tests
	

	test-driven development (TDD), Problem
	
	testing applications
		about, Discussion
	
	automatic bug reports and, Problem–See Also
	
	cloud-based services, Problem
	
	creating test projects, Problem–Source Download URL
	
	debugging with Log.d() method, Problem
	
	debugging with LogCat messages, Problem
	
	Monkey tool and, Problem–Discussion
	
	on range of devices, Problem
	
	reproducing life-cycle scenarios, Problem–Discussion
	
	runtime app log for error/situation analysis, Problem–See Also
	
	sending text messages, Problem
	
	setting up AVD for, Problem–Discussion
	
	StrictMode tool and, Problem
	
	test-driven development, Problem
	
	testing backup agents, Testing your backup agent
	
	troubleshooting application crashes, Problem–Discussion
	
	web-based services, Solution
	

	testing services, Solution
	
	TestNG framework, Discussion
	
	text attribute, Discussion, Discussion
	
	text messages
		emailing from views, Problem–Source Download URL
	
	receiving in apps, Problem–Source Download URL
	
	sending between AVDs, Problem
	
	sending from apps, Problem
	
	sending to emulators, Problem
	
	sending with TabbyText, Discussion
	

	text strings
		concatenating, Discussion
	
	converting into hyperlinks, Problem
	
	copying to and from clipboard, Problem
	
	emailing from views, Problem–Source Download URL
	
	extracting information using regular
 expressions, Problem–Source Download URL
	
	internationalization and, Discussion–Discussion
	
	ListView displaying, Problem–Source Download URL
	
	MD5 digest of, Problem
	
	searching, Problem–See Also
	
	speech-to-text processing, Problem
	
	text-to-speech processing, Problem–Source Download URL
	

	text-to-speech processing, Problem–Source Download URL
	
	TextKeyListener class, See Also
	
	textstyle attribute, Discussion
	
	TextToSpeech API, Solution–Source Download URL
	
	TextView class
		autolink attribute, Solution
	
	customizing toast notifications, Discussion
	
	date and time formats, Discussion
	
	displaying text fields, Problem
	
	gravity attribute, Discussion
	
	KeyListener examples, Discussion
	
	opening additional screens example, Discussion
	
	scanning barcodes, Discussion
	
	scanning QR codes, Discussion
	
	SlidingDrawer class and, Discussion
	
	textstyle attribute, Discussion
	
	Tipster program and, Examining Tipster.java
	
	typeface attribute, Discussion
	

	TextWatcher interface
		afterTextChanged() method, Discussion, Discussion
	
	beforeTextChanged() method, Discussion, Discussion
	
	constraining EditText values, Problem–Discussion
	
	onTextChanged() method, Discussion, Discussion
	

	Thread class
		run() method, Discussion, Discussion
	
	setName() method, Discussion
	
	start() method, Discussion
	

	threads
		blocking main, Introduction
	
	responsive apps and, Problem
	
	sending messages between, Problem–Discussion
	

	Throwable class, Discussion
	
	throws clause, exception handling and, Discussion
	
	tic-tac-toe application, Discussion–Discussion
	
	Time class, See Also
	
	time/date data
		formatting display, Problem–See Also
	
	in SQLite databases, Problem–The code
	
	strftime() function, Solution–The code
	

	timed keyboard input, Problem
	
	TimeKeyListener class, See Also
	
	Timepicker class, Problem–Discussion
	
	Tipster (tip calculator) program, Problem–Binary Download URL
	
	title bars, creating, Problem–Discussion
	
	toast notifications, Problem–Source Download URL
	
	tool tips versus hints, Problem–Discussion
	
	torch (flashlight) application, Problem–Source Download URL
	
	Touch-screen support property (AVD), Discussion
	
	Trackball support property (AVD), Discussion
	
	troubleshooting application crashes, Problem–Discussion
	
	TrueType (TTF) fonts, Discussion
	
	try-catch blocks, exception handling and, Discussion
	
	TTF (TrueType) fonts, Discussion
	
	Twitter timeline, loading, Problem
	
	TypedArray class, Discussion
	
	Typeface class
		create() method, Discussion
	
	createFromAsset() method, Discussion
	
	createFromFile() method, Discussion
	

U
	UI thread
		blocking, Introduction
	
	Handler class and, Discussion, Discussion
	
	sending information to, Discussion
	

	Uniform Resource Identifier (URI), Discussion
	
	unit testing, Discussion
	
	updating
		Android SDK, Problem–Updating Eclipse
	
	Eclipse IDE, Updating Eclipse
	

	uploading applications (see packaging, deploying, and distributing applications)
	
	URI (Uniform Resource Identifier), Discussion
	
	uri.getQueryParameter() method, Discussion
	
	URI.parse() method, Discussion
	
	URIs, creating, Discussion
	
	URL class, Using URL and URLConnection
	
	URLConnection class, Using URL and URLConnection–The results
	
	user preferences
		checking consistency of default shared, Problem–Discussion
	
	providing information about, Problem–Discussion
	
	setting for first-run, Problem–Discussion
	

V
	vibration
		controlling for devices, Discussion–Source Download URL, Discussion
	
	notifications via, Problem
	

	video
		capturing with MediaRecorder, Problem–Source Download URL
	
	YouTube, Problem
	

	View class
		about, Creating the layout and placing the widgets, Creating the layout and placing the widgets
	
	findViewById() method, Examining Tipster.java, Discussion, Discussion
	
	getTag() method, Discussion
	
	hints attribute, Solution
	
	invalidate() method, Discussion
	
	making views shake, Problem–Discussion
	
	onDraw() method, Solution
	
	onTouchEvent() method, Discussion, Discussion
	
	opening additional screens, Discussion–See Also
	
	requestFocus() method, Addressing ease of use or usability concerns
	
	setLongClickable() method, Solution
	
	setLongClickListener() method, Solution
	
	setOnClickListener() method, Discussion, Method 3. The anonymous inner class
	
	setTag() method, Discussion
	
	setTypeface() method, Solution
	
	startAnimation() method, Solution
	
	Tipster program and, Examining Tipster.java
	
	wiring up event listeners, Discussion
	

	ViewGroup class, Discussion, Discussion
	
	views
		emailing text from, Problem–Source Download URL
	
	scaling backgrounds, Problem–Discussion
	
	shaking, Problem–Discussion
	

	visual layout editor, Creating the layout and placing the widgets
	
	voice recognition feature, Problem
	

W
	web pages, accessing with WebView, Problem
	
	web pages, opening with intents, Problem–Source Download URL
	
	web-based testing services, Solution
	
	WebSettings class
		setBlockNetworkImage() method, Discussion
	
	setDefaultFontSize() method, Discussion
	
	setJavaScriptEnabled() method, Discussion
	
	setSaveFormData() method, Discussion
	
	setSavePassword() method, Discussion
	
	setSupportZoom() method, Discussion
	

	WebView class
		about, Solution
	
	accessing web pages, Problem
	
	customizing, Problem
	
	findViewById() method, Discussion
	
	loadUrl() method, Discussion, Solution
	
	native handset functionality via JavaScript, Problem–Discussion
	

	Wheel class
		addChangingListener() method, Discussion
	
	addScrollingListener() method, Discussion
	

	wheel picker (iPhone), Problem–Problem
	
	WheelView class, Discussion
	
	WRITE_SETTINGS permission, Discussion
	
	writing
		calendars in JavaScript, Problem–Discussion
	
	content providers, Problem–Discussion
	
	custom list adapters, Problem–Discussion
	
	remote services, Problem–Discussion
	
	tests, Step 3: Write and run your tests
	

X
	XML documents
		parsing using DOM API, Problem–See Also
	
	parsing using XmlPullParser, Problem–Conclusion
	

	XmlPullParser interface
		END_DOCUMENT constant, Parsing XML with the XmlPullParser
	
	END_TAG constant, Parsing XML with the XmlPullParser
	
	getAttributeValue() method, Parsing XML with the XmlPullParser
	
	getName() method, Parsing XML with the XmlPullParser
	
	getText() method, Parsing XML with the XmlPullParser
	
	next() method, Parsing XML with the XmlPullParser
	
	nextText() method, Making it stricter
	
	nextToken() method, Parsing XML with the XmlPullParser
	
	parsing XML documents, Problem–Conclusion
	
	require() method, Making it stricter
	
	setInput() method, Parsing XML with the XmlPullParser
	
	START_DOCUMENT constant, Parsing XML with the XmlPullParser
	
	START_TAG constant, Parsing XML with the XmlPullParser
	
	TEXT constant, Parsing XML with the XmlPullParser
	

	XmlPullParserFactory class
		newInstance() method, Parsing XML with the XmlPullParser
	
	newPullParser() method, Parsing XML with the XmlPullParser
	

	XmlResourceParser interface, Processing static XML resources
	
	XYLineChartView class, Discussion
	
	XYPlot class, Discussion
	
	XYSeries class, Discussion
	

Y
	YouTube videos, playing, Problem
	

Z
	zoom, adding pinch movements to, Problem
	
	ZXing barcode scanner (Google), Problem–Discussion, Discussion
	

About the Author
Ian F. Darwin has worked in the computer industry for three decades. He wrote the freeware file(1) command used on Linux and BSD and is the author of Checking C Programs with Lint, Java Cookbook, and over seventy articles and courses on C and Unix. In addition to programming and consulting, Ian teaches Unix, C, and Java for Learning Tree International, one of the world's largest technical training companies.

Colophon
The animal on the cover of the Android Cookbook
 is a marine iguana (Amblyrhynchus cristatus). These
 lizards are found exclusively in the Galapagos (with a subspecies particular
 to each island). They are believed to be descended from land iguanas carried
 to the islands on log rafts from mainland South America.
The marine iguana is the only type of lizard that feeds in the water.
 Darwin found the reptiles unattractive and awkward, labeling them
 “disgusting clumsy lizards” and “imps of darkness,” but these streamlined
 large animals (up to 5 or 6 feet long) are graceful in the water, with
 flattened tails designed for swimming.
These lizards feed on seaweed and marine algae. They can dive deeply
 (as far as 50 feet), though their dives are usually shallow, and they can
 stay underwater for up to an hour (though 5 to 10 minutes is more typical).
 Like all reptiles, marine iguanas are cold-blooded and must regulate their
 body temperature by basking in the sun; their black or gray coloration
 maximizes their heat absorption when they come out of the cold ocean. Though
 these harmless herbivores often allow humans to approach them closely, they can be aggressive when
 cold.
Marine iguanas have specialized nasal glands that filter ocean salt
 from their blood. They sneeze up the excess salt, which often accumulates on
 their heads or faces, creating a distinctive white patch or “wig.” These
 iguanas are vulnerable to predation by introduced species (including dogs
 and cats), as well as to ocean pollution and fluctuations in their food
 supply caused by weather events such as El Niño.
The cover image is from Wood’s Animate Creation.
 The cover font is Adobe ITC Garamond. The text font is Linotype Birka; the
 heading font is Adobe Myriad Condensed; and the code font is LucasFont’s
 TheSansMonoCondensed.

Special Upgrade Offer

If you purchased this ebook from a retailer other than O’Reilly, you can upgrade it for $4.99 at oreilly.com by clicking here.

Android Cookbook

Ian F. Darwin

Editor
Courtney Nash

Editor
Mike Loukides

	Revision History
	2012-04-05	First release

Copyright © 2012 O’Reilly Media, Inc.

O’Reilly books may be purchased for educational, business, or sales
 promotional use. Online editions are also available for most titles
 (http://my.safaribooksonline.com).
 For more information, contact our corporate/institutional sales
 department: (800) 998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo
 are registered trademarks of O’Reilly Media, Inc. Android
 Cookbook, the image of a marine iguana, and related trade dress
 are trademarks of O’Reilly Media, Inc.
Many of the designations used by manufacturers and sellers to
 distinguish their products are claimed as trademarks. Where those
 designations appear in this book, and O’Reilly Media, Inc., was aware of a
 trademark claim, the designations have been printed in caps or initial
 caps.

While every precaution has been taken in the preparation of this
 book, the publisher and authors assume no responsibility for errors or
 omissions, or for damages resulting from the use of the information
 contained herein.

O’Reilly Media
1005 Gravenstein Highway North
Sebastopol, CA 95472

2013-02-12T10:51:40-08:00

OEBPS/httpatomoreillycomsourceoreillyimages1128198.png

OEBPS/httpatomoreillycomsourceoreillyimages1128200.png
& wil B 138

Submenu Option 1

Submenu Option 2

OEBPS/httpatomoreillycomsourceoreillyimages1128330.png.jpg
EEHH @ 1:24om

6186 km

OEBPS/httpatomoreillycomsourceoreillyimages1128168.png
Ml @ 3:47 M

Hello! Again.

OEBPS/httpatomoreillycomsourceoreillyimages1127962.png
Joreiliyflist

O

g |- orar

] ®

Name

* @ emulator-s554 ‘Online
sstem process 2 aso0
comandroidinputmethod.oti 59 saon
e o || fss
wndroidprocessacoe | 108 saos
comandioidsetigs e || st
comandrodaamdock | 138 asos

'@ Emulator Control 32

Telephonysttus

voice:(home.) speed: [pull 2

oata: [home Latency: (None.

© Console| % Debug

Logcat 1

® v

7 = 0|3 Threads Heap 2

Rotate
mxmm image:

e

§ Allocation Tracker | File Explorer

copy.

GO 6s0am

= mh

Median.

Smallest

Largest

00O *+

Average

OEBPS/httpatomoreillycomsourceoreillyimages1128180.png.jpg
current mood:)

e *

OEBPS/httpatomoreillycomsourceoreillyimages1128228.png

OEBPS/httpatomoreillycomsourceoreillyimages1128044.png.jpg
C —
Standard Font
Custom Font

OEBPS/httpatomoreillycomsourceoreillyimages1128022.png
7 LogCat £ @OO0O®|+ ¢ ~|

Log

Tine pid tag Message B
08-25 E 328 Android ERROR: thread attach fa:
08-25 D 328 dalvikvn LinearAllac 0z0 used 63¢
08-25 D 334 ddn-hesp Got feature list request
08-25 D 334 Myhndroid onCreate

08-25 D 334 Myhndroid omStart

08-25 D 334 Myhndroid onmResune

08-25 I 64 Activit Displayed activity con.q]
08-25 D 237 dalvikvn GC freed 210 chjects / (_
i i v

Fiter:

OEBPS/httpatomoreillycomsourceoreillyimages1128194.png.jpg
Hello World, CustomMen!

Icon 1 Beep Bopl

OEBPS/httpatomoreillycomsourceoreillyimages1128126.png.jpg
A ® 1050 AM

You pressed Button 2

OEBPS/httpatomoreillycomsourceoreillyimages1128218.png
w

Thank you for selecting the notification.

OEBPS/httpatomoreillycomsourceoreillyimages1128352.png

OEBPS/httpatomoreillycomsourceoreillyimages1127964.png
Time remain:11922 Time Elapsed: 38078

OEBPS/httpatomoreillycomsourceoreillyimages1128096.png
X

8080
No Border

X

96 96
Border

OEBPS/bk01-toc.html
Android Cookbook

Table of Contents
		Dedication

		Special Upgrade Offer

		Preface		Preface

		Conventions Used in This Book

		Getting and Using the Code Examples

		Safari® Books Online

		How to Contact Us

		Acknowledgments

		1. Getting Started		1.1. Introduction: Getting Started

		1.2. Learning the Java Language

		1.3. Creating a “Hello, World” Application from the Command Line

		1.4. Creating a “Hello, World” Application in Eclipse

		1.5. Setting Up an IDE on Windows to Develop for Android

		1.6. Understanding the Android Life Cycle

		1.7. Installing .apk Files onto an Emulator via the ADB

		1.8. Installing Apps onto an Emulator via SlideME

		1.9. Sharing Java Classes from Another Eclipse Project

		1.10. Referencing Libraries to Implement External Functionality

		1.11. Using SDK Samples to Help Avoid Head Scratching

		1.12. Keeping the Android SDK Updated

		1.13. Taking a Screenshot from the Emulator/Android Device

		1.14. Program: A Simple CountDownTimer Example

		1.15. Program: Tipster, a Tip Calculator for the Android OS

		2. Designing a Successful Application		2.1. Introduction: Designing a Successful Android Application

		2.2. Exception Handling

		2.3. Accessing Android’s Application Object as a “Singleton”

		2.4. Keeping Data When the User Rotates the Device

		2.5. Monitoring the Battery Level of an Android Device

		2.6. Creating Splash Screens in Android

		2.7. Designing a Conference/Camp/Hackathon/Institution App

		2.8. Using Google Analytics in an Android Application

		2.9. A Simple Torch/Flashlight

		2.10. Adapting an Android Phone Application to Be Used on a
 Tablet

		2.11. Setting First-Run Preferences

		2.12. Formatting the Time and Date for Display

		2.13. Controlling Input with KeyListeners

		2.14. Backing Up Android Application Data

		2.15. Using Hints Instead of Tool Tips

		3. Testing		3.1. Introduction: Testing

		3.2. Doing Test-Driven Development (TDD) in Android

		3.3. Setting Up an Android Virtual Device (AVD) for App Testing

		3.4. Testing on a Huge Range of Devices with Cloud-based Testing

		3.5. Creating and Using a Test Project

		3.6. Troubleshooting Application Crashes

		3.7. Debugging Using Log.d and LogCat

		3.8. Getting Bug Reports from Users Automatically with BugSense

		3.9. Using a Local Runtime Application Log for Analysis of Field Errors
 or Situations

		3.10. Reproducing Activity Life-Cycle Scenarios for Testing

		3.11. Keeping Your App Snappy with StrictMode

		3.12. Running the Monkey Program

		3.13. Sending Text Messages and Placing Calls Between AVDs

		4. Inter-/Intra-Process Communication		4.1. Introduction: Inter-/Intra-Process Communication

		4.2. Opening a Web Page, Phone Number, or Anything Else with an
 Intent

		4.3. Emailing Text from a View

		4.4. Sending an Email with Attachments

		4.5. Pushing String Values Using Intent.putExtra()

		4.6. Retrieving Data from a Subactivity Back to Your Main
 Activity

		4.7. Keeping a Service Running While Other Apps Are on Display

		4.8. Sending/Receiving a Broadcast Message

		4.9. Starting a Service After Device Reboot

		4.10. Creating a Responsive Application Using Threads

		4.11. Using AsyncTask to Do Background Processing

		4.12. Sending Messages Between Threads Using an Activity Thread Queue and
 Handler

		4.13. Creating an Android Epoch HTML/JavaScript Calendar

		5. Content Providers		5.1. Introduction: Content Providers

		5.2. Retrieving Data from a Content Provider

		5.3. Writing a Content Provider

		5.4. Writing an Android Remote Service

		6. Graphics		6.1. Introduction: Graphics

		6.2. Using a Custom Font

		6.3. Drawing a Spinning Cube with OpenGL ES

		6.4. Adding Controls to the OpenGL Spinning Cube

		6.5. Freehand Drawing Smooth Curves

		6.6. Taking a Picture Using an Intent

		6.7. Taking a Picture Using android.media.Camera

		6.8. Scanning a Barcode or QR Code with the Google ZXing Barcode
 Scanner

		6.9. Using AndroidPlot to Display Charts and Graphs

		6.10. Using Inkscape to Create an Android Launcher Icon

		6.11. Creating Easy Launcher Icons from OpenClipArt.org Using
 Paint.NET

		6.12. Using Nine Patch Files

		6.13. Creating HTML5 Charts with Android RGraph

		6.14. Adding a Simple Raster Animation

		6.15. Using Pinch to Zoom

		7. Graphical User Interface		7.1. Introduction: GUI

		7.2. Understanding and Following User Interface Guidelines

		7.3. Handling Configuration Changes by Decoupling the View from the
 Model

		7.4. Creating a Button and Its Click Event Listener

		7.5. Wiring Up an Event Listener in Five Different Ways

		7.6. Using CheckBoxes and RadioButtons

		7.7. Enhancing UI Design Using Image Buttons

		7.8. Offering a Drop-Down Chooser via the Spinner Class

		7.9. Handling Long-Press/Long-Click Events

		7.10. Displaying Text Fields with TextView and EditText

		7.11. Constraining EditText Values with Attributes and the TextWatcher
 Interface

		7.12. Implementing AutoCompleteTextView

		7.13. Feeding AutoCompleteTextView Using an SQLite Database Query

		7.14. Turning Edit Fields into Password Fields

		7.15. Changing the Enter Key to “Next” on the Soft Keyboard

		7.16. Processing Key-Press Events in an Activity

		7.17. Let Them See Stars: Using RatingBar

		7.18. Making a View Shake

		7.19. Providing Haptic Feedback

		7.20. Navigating Different Activities Within a TabView

		7.21. Creating a Custom Title Bar

		7.22. Formatting Numbers

		7.23. Formatting with Correct Plurals

		7.24. Starting a Second Screen from the First

		7.25. Creating a Loading Screen That Will Appear Between Two
 Activities

		7.26. Using SlidingDrawer to Overlap Other Components

		7.27. Customizing the SlidingDrawer Component to Animate/Transition from
 the Top Down

		7.28. Adding a Border with Rounded Corners to a Layout

		7.29. Detecting Gestures in Android

		7.30. Building a UI Using Android 3.0 Fragments in Android 1.6 and
 Later

		7.31. Using the Android 3.0 Photo Gallery

		7.32. Creating a Simple App Widget

		8. GUI Alerts: Menus, Dialogs, Toasts, and
 Notifications		8.1. Introduction: GUI Alerts

		8.2. Creating and Displaying a Menu

		8.3. Handling Choice Selection in a Menu

		8.4. Creating a Submenu

		8.5. Creating a Pop-up/Alert Dialog

		8.6. Using a Timepicker Widget

		8.7. Creating an iPhone-like Wheel Picker for Selection

		8.8. Creating a Tabbed Dialog

		8.9. Creating a ProgressDialog

		8.10. Creating a Custom Dialog with Buttons, Images, and Text

		8.11. Creating a Reusable About Box Class

		8.12. Customizing the Appearance of a Toast

		8.13. Creating a Notification in the Status Bar

		9. GUI: ListView		9.1. Introduction: ListView

		9.2. Building List-Based Applications with ListView

		9.3. Creating a “No Data” View for ListViews

		9.4. Creating an Advanced ListView with Images and Text

		9.5. Using Section Headers in ListViews

		9.6. Keeping the ListView with the User’s Focus

		9.7. Writing a Custom List Adapter

		9.8. Handling Orientation Changes: From ListView Data Values to
 Landscape Charting

		10. Multimedia		10.1. Introduction: Multimedia

		10.2. Playing a YouTube Video

		10.3. Using the Gallery with the ImageSwitcher View

		10.4. Capturing Video Using MediaRecorder

		10.5. Using Android’s Face Detection Capability

		10.6. Playing Audio from a File

		10.7. Playing Audio Without Interaction

		10.8. Using Speech to Text

		10.9. Making the Device Speak with Text-to-Speech

		11. Data Persistence		11.1. Introduction: Data Persistence

		11.2. Getting File Information

		11.3. Reading a File Shipped with the App Rather Than in the
 Filesystem

		11.4. Listing a Directory

		11.5. Getting Total and Free Space Information About the SD Card

		11.6. Providing User Preference Activity with Minimal Effort

		11.7. Checking the Consistency of Default Shared Preferences

		11.8. Performing Advanced Text Searches

		11.9. Creating an SQLite Database in an Android Application

		11.10. Inserting Values into an SQLite Database

		11.11. Loading Values from an Existing SQLite Database

		11.12. Working with Dates in SQLite

		11.13. Parsing JSON Using JSONObject

		11.14. Parsing an XML Document Using the DOM API

		11.15. Parsing an XML Document Using an XmlPullParser

		11.16. Adding a Contact

		11.17. Reading Contact Data

		12. Telephone Applications		12.1. Introduction: Telephone Applications

		12.2. Doing Something When the Phone Rings

		12.3. Processing Outgoing Phone Calls

		12.4. Dialing the Phone

		12.5. Sending Single-Part or Multipart SMS Messages

		12.6. Receiving an SMS Message in an Android Application

		12.7. Using Emulator Controls to Send SMS Messages to the
 Emulator

		12.8. Using Android’s TelephonyManager to Obtain Device
 Information

		13. Networked Applications		13.1. Introduction: Networking

		13.2. Using a RESTful Web Service

		13.3. Extracting Information from Unstructured Text Using Regular
 Expressions

		13.4. Parsing RSS/Atom Feeds Using ROME

		13.5. Using MD5 to Digest Clear Text

		13.6. Converting Text into Hyperlinks

		13.7. Accessing a Web Page Using WebView

		13.8. Customizing a WebView

		14. Gaming and Animation		14.1. Introduction: Gaming and Animation

		14.2. Building an Android Game Using flixel-android

		14.3. Building an Android Game Using AndEngine (Android-Engine)

		14.4. Processing Timed Keyboard Input

		15. Social Networking		15.1. Introduction: Social Networking

		15.2. Integrating Social Networking Using HTTP

		15.3. Loading a User’s Twitter Timeline Using JSON

		16. Location and Map Applications		16.1. Introduction: Location-Aware Applications

		16.2. Getting Location Information

		16.3. Accessing GPS Information in Your Application

		16.4. Mocking GPS Coordinates on a Device

		16.5. Using Geocoding and Reverse Geocoding

		16.6. Getting Ready for Google Maps Development

		16.7. Adding a Device’s Current Location to Google Maps

		16.8. Drawing a Location Marker on a Google MapView

		16.9. Drawing Multiple Location Markers on a MapView

		16.10. Creating Overlays for a Google MapView

		16.11. Changing Modes of a Google MapView

		16.12. Drawing an Overlay Icon Without Using a Drawable

		16.13. Implementing Location Search on Google Maps

		16.14. Placing a MapView Inside a TabView

		16.15. Handling a Long-Press in a MapView

		16.16. Using OpenStreetMap

		16.17. Creating Overlays in OpenStreetMap Maps

		16.18. Using a Scale on an OpenStreetMap Map

		16.19. Handling Touch Events on an OpenStreetMap Overlay

		16.20. Getting Location Updates with OpenStreetMap Maps

		17. Accelerometer		17.1. Introduction: Sensors

		17.2. Checking for the Presence or Absence of a Sensor

		17.3. Using the Accelerometer to Detect Shaking of the Device

		17.4. Checking Whether a Device Is Facing Up or Facing Down Based on
 Screen Orientation Using an Accelerometer

		17.5. Finding the Orientation of an Android Device Using an Orientation
 Sensor

		17.6. Reading the Temperature Sensor

		18. Bluetooth		18.1. Introduction: Bluetooth

		18.2. Enabling Bluetooth and Making the Device Discoverable

		18.3. Connecting to a Bluetooth-Enabled Device

		18.4. Listening for and Accepting Bluetooth Connection Requests

		18.5. Implementing Bluetooth Device Discovery

		19. System and Device Control		19.1. Introduction: System and Device Control

		19.2. Accessing Phone Network/Connectivity Information

		19.3. Obtaining Information from the Manifest File

		19.4. Changing Incoming Call Notification to Silent, Vibrate, or Normal

		19.5. Copying Text and Getting Text from the Clipboard

		19.6. Using LED-Based Notifications

		19.7. Making the Device Vibrate

		19.8. Running Shell Commands from Your Application

		19.9. Determining Whether a Given Application Is Running

		20. Other Programming Languages and
 Frameworks		20.1. Introduction: Other Programming Languages

		20.2. Running an External/Native Unix/Linux Command

		20.3. Running Native C/C++ Code with JNI on the NDK

		20.4. Getting Started with the Scripting Layer for Android (SL4A,
 Formerly Android Scripting Environment)

		20.5. Creating Alerts in SL4A

		20.6. Fetching Your Google Documents and Displaying Them in a ListView
 Using SL4A

		20.7. Sharing SL4A Scripts in QR Codes

		20.8. Using Native Handset Functionality from WebView via
 JavaScript

		20.9. Creating a Platform-Independent Application Using
 PhoneGap/Cordova

		21. Strings and Internationalization		21.1. Introduction: Internationalization

		21.2. Internationalizing Application Text

		21.3. Finding and Translating Strings

		21.4. Handling the Nuances of strings.xml

		22. Packaging, Deploying, and Distributing/Selling Your App		22.1. Introduction: Packaging, Deploying, and Distributing

		22.2. Creating a Signing Certificate

		22.3. Signing Your Application

		22.4. Distributing Your Application via Android Play (formerly the
 Android Market)

		22.5. Integrating AdMob into Your App

		22.6. Obfuscating and Optimizing with ProGuard

		22.7. Providing a Link to Other Published Apps in the Google Play
 Market

		Index

		About the Author

		Colophon

		Special Upgrade Offer

		Copyright

OEBPS/httpatomoreillycomsourceoreillyimages1127892.png
Navi‘ = 0| [Mainjava | @ mainxml % _a strings.xml

P < || <zl version="1.0" encoding="utf-8"7>
g <LinearLayout xmlns:androi /schemas. android. con/apk/res/and
&1 darwinsys-api android:orientation="vertical "
ErHello android: layout width="fill parent"
; android:layout_height="fill parent"
Erjavasrc .
G jpstrack <TextView
; . android: layout width="fill parent"
G jpstrack.android android: layout_height="wrap_content"
New >
< " izontal”
@5 Gomto
v &
b | Openin New Window
b @2ge OpenType Hierarchy F4
b mAn Showin Shift+AIE+W >
B as!
: Copy cti+c
v eres
b | CoPY Qualfied Name
Paste Ctri+Vv
b e
Delete Delete
v e
Remove from Context Shift+Ctri+Alt+Down
v @& BuidPath >
Source Shift+AIt+S >
v & Refactor Shift+AIE+T >
om :Er:porr:
qe Export..
TIUseR(Refresh F5
Close Project
Assign Working Sets...
Debug As >| 2 Android Junit Test
Validate 3Java Applet Shift+AIL+X A
Team >| ajava Application Shift+Alt+X)
‘Compare With > 5 JUnit Test Shift+AIt+X T
[] Restore from Local History... 5
) ¥ Run Configurations...
s Android Tools >

OEBPS/httpatomoreillycomsourceoreillyimages1128140.png

OEBPS/httpatomoreillycomsourceoreillyimages1127894.png
9 fo) oo = 2| S| ~
~| D o 2
#/ /,4 | >| | @
4 | 1
~ = w n|l = O >
<| el u|u
L O E R EEEE
NEFNE
| of <|<=

n
©)
r
N
(-
v}

OEBPS/httpatomoreillycomsourceoreillyimages1127932.png
GLSurfaceView

Kube,

Sprite'

Textr

Touch k.

Translucent GLSurfaceView

OEBPS/httpatomoreillycomsourceoreillyimages1127930.png
R |
Building workspace (38%) ==
—

OEBPS/httpatomoreillycomsourceoreillyimages1127916.png.jpg
00006

@ (=02

plugins readm

rachee@rachee-laptop: ~/Desktop/eclipse/androld_sdks/androld-sdk-linux_86/platform-tools

File Edit View Search Terminal Help

OEBPS/callouts/1.png

OEBPS/httpatomoreillycomsourceoreillyimages1128222.png
- Kazakhstan
“ Kenya

OEBPS/httpatomoreillycomsourceoreillyimages1128350.png

OEBPS/httpatomoreillycomsourceoreillyimages1128216.png
October 21,2010 AN @ 7:57pPm

Android Clear

2 My Notification

This Is my message 7:56 PM

OEBPS/httpatomoreillycomsourceoreillyimages1128298.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages1128348.png.jpg
O @Ml 8\ 3:32am

LocationChange:

OEBPS/httpatomoreillycomsourceoreillyimages1128292.png.jpg
il ® 1:27pm

OEBPS/httpatomoreillycomsourceoreillyimages1128208.png
. About My App

Version 1.0

This Is our App, please see

Emall support at

OEBPS/httpatomoreillycomsourceoreillyimages1128394.png.jpg
This is text
And so is this.

OEBPS/httpatomoreillycomsourceoreillyimages1128414.png.jpg
Ir-uslaldldls-0-

3 packagexp 5 weraey] = O
E%|v ™

B omempesinsonss
> Simpssois

vy

[rp———

B g Carced s

Crirots- oo g oo ave’s
cintene fikers

OEBPS/httpatomoreillycomsourceoreillyimages1128172.png

OEBPS/httpatomoreillycomsourceoreillyimages1128396.png.jpg
This is text
This is text

OEBPS/httpatomoreillycomsourceoreillyimages1127890.png
[) Java - MyAndroid/res/layout/main.xml - Ecli
File Edit Refactor Run Source Navigate Search Project Window Help

@ |g|egse|s o0 a |swe o o
| Gy
[EPac 8 % Na 1= 8| [Mainjava (Ovﬂsm wml 8 a strings.xml 1
P < || <2l version="1.0" encoding="utf-8"7>
g <LinearLayout xmlns:android="http://schemas.android. con/apk/res/android"
&1 darwinsys-api android:orientation="vertical"
ErHello android: layout width="fill_parent”
! android: layout_height="fill parent”
frjavasrc N - -
Eajpstrack <TextView
; . android: layout width="fill_parent”
G jpstrack.android android: layout_height="wrap_content"
android: text="@string/hello”
v @sic android:gravity=
- 7> “top” B
& com.example </LinearLayout> o
b [Mainjava bottom’
b g8 gen [Generated Javal “left*
b =\ Android 2.1 “right*
& assets “center_vertical"
< Gres “fll_vertical” -
b & drawable-ndpi |reenter bortzongal*
b @ drawable-ldpi “fill_horizontal"
~ @ drawable-mdpi “center”
[icon.png “fill*
< & layout “clip_vertical” H
[main.xml “clin_borzontals =
v @ values
[® strings.xm!
‘@ AndroidManifest.xm
default. properties

7 UseRest

OEBPS/httpatomoreillycomsourceoreillyimages1128012.png
1 pac 37\ % Navi

2 Hello Android -
v @src
v & my.pkg.app
> [Main java
» & gen [Generated Java Files]
> m\Android 2.3.3
& assets
> &res
[.classpath
¥ project
4 AndroidManifest.xml
default.properties
proguard.cfg
v 32 Hello Android Test
v @src
v & my.pkg.app.test
> [MainTest java
» & gen [Generated Java Files]
> m\Android 2.3.3
> = Junit4
& assets
> &res
[.classpath

0

OEBPS/httpatomoreillycomsourceoreillyimages1128108.png
File
ress St toerase pirels ==

content

OEBPS/httpatomoreillycomsourceoreillyimages1128340.png
Gl @ s:45pem

OSMIntro

Overlay Titled: New Overlay Long
pressed
Description: Overlay Sample Description

OEBPS/httpatomoreillycomsourceoreillyimages1128294.png

OEBPS/httpatomoreillycomsourceoreillyimages1127886.png
s New Android Project

Create Android Project
Select project name and type of project

Project Name: [MyAndroyd

© create new project in workspace
O create project from existing source
O create project from existing sample

X Use default location

Working sets.

[Add project to working sets

OEBPS/httpatomoreillycomsourceoreillyimages1128322.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages1128004.png
1 Starting Android Emulator

Starting emulator for AVD ‘Android_1_5_Portrait'

——

invalid command-line parameter:
Files\Android\android-sdk\tools/emulator-arm.exe.
Hint; use '@foo’ to launch a virtual device named 'foo'.
please use -help for more information

OEBPS/httpatomoreillycomsourceoreillyimages1128040.png
& ml B 6:20

S

Retrieving recipes...

60% 60/100

OEBPS/httpatomoreillycomsourceoreillyimages1128016.png
o 5564:bar

A sorry! N

The application Disp (process
com.aschyiel.disp) has
stopped unexpectedly. Please
try again.

Force dose ‘

20000

o (S
®eo00

OEBPS/httpatomoreillycomsourceoreillyimages1128170.png
ull @ 7:07

Handle

Adele Azalia Adele Azalia

Alpha

Bobbie Bravissimo Bobbie Bravissimo

Bravo
Charlie Chaplin Handle

Charlie
David Delta

Delta

Jerry Jordan Jelly Bravo

Echo

Charlie

OEBPS/httpatomoreillycomsourceoreillyimages1128328.png

OEBPS/httpatomoreillycomsourceoreillyimages1128334.png

OEBPS/httpatomoreillycomsourceoreillyimages1128184.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages1128406.png.jpg
Split over
two lines

2 TextViews
4Lines

OEBPS/httpatomoreillycomsourceoreillyimages1128224.png

OEBPS/httpatomoreillycomsourceoreillyimages1128284.png

OEBPS/httpatomoreillycomsourceoreillyimages1127948.png
) You will need to provide administrator
permission to change these attributes.

Click Continue to complete this operation.

(@ continue] [cancel]

OEBPS/httpatomoreillycomsourceoreillyimages1127922.png.jpg
File Edit Run Source Navigate Search Project Refactor Winc

Open in New Window
Open Type Hierarchy
ShowIn

Copy

Copy Qualified Name
Paste

Delete

Build Path
Source
Refactor

Import...
Export

Refresh
Close Project
Assign Working Sets.

RunAs
Debug As

Team

Compare With

Restore from Local History.
Android Tools

Configure

Propgrties AltsEnter

OEBPS/httpatomoreillycomsourceoreillyimages1127898.png.jpg
Download

OEBPS/httpatomoreillycomsourceoreillyimages1128014.png

OEBPS/httpatomoreillycomsourceoreillyimages1128282.png

OEBPS/httpatomoreillycomsourceoreillyimages1128392.png
Hola Android

OEBPS/httpatomoreillycomsourceoreillyimages1128246.png

OEBPS/httpatomoreillycomsourceoreillyimages1128092.png

OEBPS/httpatomoreillycomsourceoreillyimages1128418.png
oreilly media
OSearch
.details

Search Android Market

OEBPS/httpatomoreillycomsourceoreillyimages1127902.png
Favorite Links
B Documents
B Pictures

B Music

More »

Folders

[l

rillllrﬁ;

configurat... dropins

b 10 htmi_notice htmi

OEBPS/httpatomoreillycomsourceoreillyimages1128278.png.jpg
Social
Networking

OEBPS/httpatomoreillycomsourceoreillyimages1127994.png
Property:

Type: bookean

Description: Whether there i a GPS in the device,

OEBPS/httpatomoreillycomsourceoreillyimages1128356.png
S U

o Bluetooth permission request

An application on your tablet is requesting
permission to turn on Bluetooth and to make
your tablet discoverable by other devices for 120
seconds. Do you want to do this?

Yes No

OEBPS/httpatomoreillycomsourceoreillyimages1128024.png
@e006| + |

coo==o==

334
334
334
250
250
334
334
334

tag
KeyChar
KeyChar
MyAndroid
KeyChar
KeyChar
MyAndroid
MyAndroid
dalvikn

Message
No keyboard for id 0
Using default keynap: /¢
onPause

No keyboard for id 0
Using default keynap: /¢
enStap

cnDestray

GC freed 632 objects /

Fiter:

OEBPS/httpatomoreillycomsourceoreillyimages1128416.png
EH < | i@ 647

AdMobTest

. ¢Buscas Empleo? Aqui lo encuentras!)

Adsiy Ado

OEBPS/httpatomoreillycomsourceoreillyimages1128074.png.jpg
EE%E

OEBPS/httpatomoreillycomsourceoreillyimages1128112.png
TN P ot Ty Trmm———

Longer and bigger text

Very long and
very big text!

OEBPS/httpatomoreillycomsourceoreillyimages1128102.png

OEBPS/httpatomoreillycomsourceoreillyimages1128146.png
‘AndroidCookhooKIME
Field 1\
Field 2

Field 3

qwe r tyuiop

all s i B Fed Fh B Pl Bl

DEL

4 1z B el Bvd bl Fnfl Im] P

nz | . | Next

OEBPS/httpatomoreillycomsourceoreillyimages1128384.png
5554:my_avd

(BRI G 5:33em

® Documents:

UserInterface_B... pdf
pdf:0B_rESQKgad5LYzg5ZDYzNDEtYWU3...

GSOC Applicatio... document

document:1aBZDC0ZZ38F6F1blimBHBuU_...

MRS © O @ O
o/l e [s [v Ju [s [o [» [RRgpeens
NEREEmEEEE 6 (&) ©
]2 D c Lo by u . o]
EEESSEEEEE © @ © O

OEBPS/httpatomoreillycomsourceoreillyimages1128382.png
5554:my_avd

MESEREAENAY © © O O
ANANEAEENE
NEAEENEAES 6 (&) ©
1o lx Le v o b | |

EFARSSSENE © © © O

OEBPS/httpatomoreillycomsourceoreillyimages1128078.png.jpg
W, > e
g Sample Soft Keyt
G i 36.00K8
i Time For C
K &

OEBPS/httpatomoreillycomsourceoreillyimages1128404.png
Quote: "to be, or not to be"
Quote: "to be, or not to be"

OEBPS/callouts/3.png

OEBPS/httpatomoreillycomsourceoreillyimages1128082.png.jpg
Clipart | Artists | Collections | Showcase | Request |

Clipart search results for "earth”

Njiwa Feather
by eferuzi
25022011
45000

& Asimple globe Hous
by jhnrid by vio
21022011 702,
B1700 o1

hearth christoph brill
04r

plane
by An

OEBPS/httpatomoreillycomsourceoreillyimages1127960.png
Java - recipes/src/com/oreilly/list.java - Eclipse SDK

Refactc e \

&8 s % O Q-

= &
@ Devices 2 * 6 @0 3%
Name
v B emulator-5554 online
system_process 52 8600
com.android.inputmethod.latin| 99 8601
com.android.phone 101 8602
android.process.acore 104 8603
com.android.settings 18 8604
com.android.alarmclock 138 8605
@ Emulator Control 5
Telephony Status
Voice: [home 2| speed: [Full]
Data: [home. 2| Latency: [None 2]
i LogCat 32 B console| %5 Debug
Log
Time pid tag
06-11 06:20:05] 128 DESUG
06-11 06:20:05| 1|27 vold

a

PHE @ o

% Threads | @ Heap 32

e

Allocation

updates are NOT ENABLED for this

ID| HeapSize Allocated F
Display:

Type Co
5 ool
Message

debuggerd: Dec 18 2000 16:42:51

Android Volume Daemon version 2.0

OEBPS/httpatomoreillycomsourceoreillyimages1128408.png.jpg
Tabstops a
c

OEBPS/httpatomoreillycomsourceoreillyimages1127944.png
'SDK Manager: failed to install

to be moved. On Windows this typically means that 2 program i using
that folder (for example Windows Explore or your anti-virus software)

Please momentarily deactivate your anti-virus software of close any running
programs that may be accessing the dirctory ‘C:\Program

Files\Android\android-sdktool
When ready, press YES to try again.

OEBPS/httpatomoreillycomsourceoreillyimages1128310.png

OEBPS/httpatomoreillycomsourceoreillyimages1128026.png
Log Filter

Fiter Name: MyAndroid App

byLog Tag: | MyAndroid
by pic:
s e

OEBPS/callouts/5.png

OEBPS/UbuntuMono-BoldItalic.otf

OEBPS/UbuntuMono-Italic.otf

OEBPS/httpatomoreillycomsourceoreillyimages1128144.png
Ml @ 3:08 Pm
‘Android CookbookIME

qwe r tyuiop
all s i B Fed Fh B Pl Bl

DEL

4 1z B el Bvd bl Fnfl Im] P

21238 i | s)

OEBPS/httpatomoreillycomsourceoreillyimages1128290.png
Vendor
Android Open Source Project
Googlelnc.
Android Open Source Project
Googlelnc.
Android Open Source Project
Googlelnc.
Android Open Source Project
Googlelnc.
Android Open Source Project
Googlelnc.
Android Open Source Project
Googlelnc.
Android Open Source Project
Googlelnc.

APl Level

Android + Google APIs

Properties

Application name: Map Test

Packagename: nl.codestone.cookbook maptest

(Create Activity: MapTest

Min SDK Version: 3

OEBPS/httpatomoreillycomsourceoreillyimages1128138.png
Percentage

POOOO| + ~

pid tag Message
D 768 Percentage imput: 0
D 768 Percentage imput: 1
D 768 Percentage imput: 19
D 768 Percentage imput: 139
D 768 Percentage imput: 100

OEBPS/httpatomoreillycomsourceoreillyimages1128372.png
5554:my_avd

©0d0

() — ()
Folder ﬁ‘
HTML and JavaScript OO O

el o fw [e [a v |y Ju i o |p |
Scan Barcode I_Fr,rrrﬂ_f_f_f_f_
[z x e v lo v [w]. |«

I P T P P

" EIEEErECEPRCEPNPNFY

OEBPS/httpatomoreillycomsourceoreillyimages1128288.png
2 Create new Android Virtual Device (AVD) Lx

Neme GoogieaPB
Target [GongleAPls Gaogielne) APILevel3 9

EY

Browse.

Skin:

Hardware:

Propey Vo ==

Delete

|] Override the eising AVD with the same name

e

OEBPS/httpatomoreillycomsourceoreillyimages1128370.png
ERDAI@ 3:05m

a bluetooth_chat.py
a googleDocs.py
a hello_world.py
a notify_weather.py
a say_chat.py

a say_time.py

a EEVACEIGE A

© 5554:my_avd

0000

(@

®®2609

OEBPS/DejaVuSerif.otf

OEBPS/httpatomoreillycomsourceoreillyimages1127908.png
2 Install

Available Software
Select a site or enter the location of a site.

Workwith: https:/dl-ssl.google.com/android/eclipse/ -
2 Add Repository ==

Name: AT plug-in

Location: _https://dl-ssl.google.com/android/eclipse/

Group items by category. What is slready installed?
Contact all update sites during installto find required software

® oo | s =

OEBPS/DejaVuSans-Bold.otf

OEBPS/UbuntuMono-Regular.otf

OEBPS/UbuntuMono-Bold.otf

OEBPS/httpatomoreillycomsourceoreillyimages1127966.png.jpg
Total Amou

Tip Percentage:

.15% .ZO% .Other -
aiztal

Tip Amount:

Total to Pay:

Total per Person:

OEBPS/httpatomoreillycomsourceoreillyimages1128094.png
&} Canvas Size

OEBPS/httpatomoreillycomsourceoreillyimages1128018.png
Display: Stats

@ Emulator Control &2 =8
Telephony Status
g & <ot
Log h
Tine pid tag Message
06-14 15:11:59| D 331 3dup JDWE shutting down net.
06-14 133 dalvikvm Debugger has detached; object registry had 1 entries
06-14 b 331 delvikvm v cleaning up
06-14 BE AndroidRuntine ERROR: thread attach failed
06-14 b 331 delvikvm Linearalloc 0x0 used 638506 of 5242880 (12%)
06-14 b 337 Got feature list request
06-14 b 337 Checkpoint T
06-14 1|59 Displayed activity com.oreilly.recipel2/.CustomMenu: 1309 m
06-14 D 106 dalvikvm GC freed 3077 objects / 176392 bytes in 132ms
06-14 w| 337 KeyCharacterMap No keyboard for id 0
06-14 15:12:12] 1|59 NotificationService enqueueToast pkg-com.oreilly.recipel2 callback-android.app.
06-14 15:12:12| w59 InputhanagerService Window already focused, ignoring focus gain of: com.android
Filter: |

OEBPS/httpatomoreillycomsourceoreillyimages1128134.png

OEBPS/httpatomoreillycomsourceoreillyimages1128020.png

OEBPS/httpatomoreillycomsourceoreillyimages1128048.png

OEBPS/httpatomoreillycomsourceoreillyimages1127926.png
riv |a |8 a3 o ar|wer|® |

Gy

18 Package Explorer 2

» Resource
Android
Builders

1

» Java Code Style

» Java Compiler

» Java Editor
Javadoc Location
Project References
Run/Debug Settings
Task Tags

Properties for OSMintro

Java Build Path

@source | BProjects | BiLibraries | %0rder and Export
JARS and class folders on the build path:
> @ osmdroid-android-3.0.5.jar - /home/rachee/Downloads

» @ slfaj-android-1.5.8 jar - /home/rachee/Downloads
» =\ Android 2.2

| Add JARs.

Add Variable.

Add Library.

Add Class Folder.

Edit...

Remove

Migrate JARFile...

Add External Class Fold

Checking

OEBPS/httpatomoreillycomsourceoreillyimages1128124.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages1128388.png
ify('My First Notification!', 'He

notification

1111111.111
q/w/ e r t |y ulilofp

|

1 1 1 0§ 1. 1 1@ |
a s difighlj k!l

1T 0 1 1 1 1 |
4 'zxclv bnme

2123 i

OEBPS/callouts/2.png

OEBPS/httpatomoreillycomsourceoreillyimages1128196.png
® 136

Hello World, CustomMenu!

Submenu 1

OEBPS/httpatomoreillycomsourceoreillyimages1127978.png.jpg
Hello World, Splash!

OEBPS/httpatomoreillycomsourceoreillyimages1128072.png
@ Export Bitmap (Shift+Ctri+)

Exportarea
[[page][Drawing][selection Custom
200000 o (576000 [width: 576000

w000 [y (5000] Height 57600 [}

s s]

Bitmap size
Width: |96] pixels at[15.00
Height: |96] pixet at[15.00

e For Coffeeves\crawable-shdpiicon.png]

Batch export allselected objects.

Hide all except selected

OEBPS/httpatomoreillycomsourceoreillyimages1128066.png.jpg
Clipart search results for "

e
Hisy

ey
e

f=
i

OEBPS/httpatomoreillycomsourceoreillyimages1128164.png
2 New Java Class

Java Class

i Q
Sourcetolder MyAndroidine
se comeone

[enclosing type: | com exampleScreen

Name:
Modfiers: defoult O prite O protected
[Cabstract [final static
Superclass: javalang Object
Intefaces: Eo

Which method stubs would you ke to create?
([public satic yoid main(Stringl] args)
[F] Constructors from superclass
Inherited abstract methods

Do you want to add comments? (Configure templates and default value here)

[] Generate comments.

OEBPS/httpatomoreillycomsourceoreillyimages1128206.png

OEBPS/httpatomoreillycomsourceoreillyimages1128202.png
© 11:54 A

OEBPS/httpatomoreillycomsourceoreillyimages1128374.png
Androld Scripting Environment

alertdialog.py

import android

droid = android.Android()

OEBPS/httpatomoreillycomsourceoreillyimages1127946.png
). tools Properties
L =

Type: Fie Folder
Location: C:\Program Fies\Android\android-sckc
Size: 455 MB (47,727,574 bytes)

Szeondsk: 457 MB (47,996 928 bytes)
Cortains: 118 Fles, 15 Folders

Created: 02 June 2011, 17:06:16

Abutes: [T fiead il (On applis t les o)
[tidden Advanced..

OEBPS/httpatomoreillycomsourceoreillyimages1128100.png
4 @ drawable-hdpi

OEBPS/callouts/6.png

OEBPS/httpatomoreillycomsourceoreillyimages1128280.png
s 14000
Date:Mon ul 18 15:21:54 <0000 2011
PostiLokayuia asks President to censure Sheila
Dikshit htp//tolin/uTWelb

os 15 0s
Date:Mon ul 18 14:31:54 0000 2011
Post:Gavaskar, Kapll, Sachin, Sehwag In 1CC's all
time Test X1 hitpy/tolin/wifHKZ

s 15 0s
Date:Mon ul 18 11:12:36 <0000 2011
post:Darjeeling tripartie pact sgned for
Gorkhaland Territorial Administration hitp://t0.
W lumz7Y

——
Date:Mon ul 18 10:21:46 0000 2011
PostUP poll: Holy Ganga becomes a hot
political commodity bt/ Invgciyb

s 15 0es
Date:Mon ul 18 07:52:25 <0000 2011
Post:Now, Gujarati encyclopaedia, exicon on
your mbile phone hitp:/101/bIBALE

OEBPS/httpatomoreillycomsourceoreillyimages1128182.png.jpg
current mood: :D

e *

OEBPS/httpatomoreillycomsourceoreillyimages1128010.png
G HELLO-ANDROID-TESTING @ tests ill{ocal prope
5 w
[[Project s
¥ G HELLO-ANDROID-TESTING (~/Documents/Projects/HELLO-ANDROID-T|
> .idea
» Cdassets
» Cibin
» Cagen
> libs.
>
»

© 1 Proje

Cres
(3 src

3 bin

3 gen

3 libs

Cires

Fasre The test project lies

AndroidManifest.xml within the main

dll build.properties application project,

build.xml

dll default.properties

all local.properties

B proguard.cfg

3l tests.iml

[2 .gitignore
AndroidManifest.xml

dll build.properties

build xmi

dll default properties

Tl HELLO-ANDROID-TESTING.iml

dll local.properties

M proguard.cfg

README

» (il External Libraries

Yvvvy

8 2: Structure

OEBPS/httpatomoreillycomsourceoreillyimages1128060.png
QoI B L7 22RA33394450

OEBPS/httpatomoreillycomsourceoreillyimages1128122.png

OEBPS/httpatomoreillycomsourceoreillyimages1127924.png
= e | d|s0rar|wor ||

Gy

I8 Package Explorer 5% - v =8
Properties for OSMintro
(Java Build Path
> Resource -
Android @source | SProjects | BALibraries | %order and Export:
Builders JARs and class folders on the build path:
ol » @ osmdroid-android-3.0.5jar-/homerachee/Downloads Add JARS.
» Java Code Style » @ slfaj-android-1.5.8 jar - /home/rachee/Downloads
» Java Compiler » =\ Android 2.2
» Java Editor
Javadoc Location
Project References
Run/Debug Settings
Task Tags
©)
[

Edit...

Remove

Migrate JARFile...

Checking

OEBPS/httpatomoreillycomsourceoreillyimages1128062.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages1128252.png
Incoming call

012-345-6789

Phone state changed to RINGING.
Incoming number Is 0123456789

OEBPS/httpatomoreillycomsourceoreillyimages1127914.png
| (new) I

onStart()

onPause()

onResume() onResume()

onStop() G

onDestroy()

onDestroy()

(no process)

OEBPS/httpatomoreillycomsourceoreillyimages1128038.png
& ml @ 617

Recipe List

Refresh 1 Refresh 2

OEBPS/httpatomoreillycomsourceoreillyimages1128162.png
2 New Android XML File

New Android XML File
Creates a new Android XML file.

Project MyAndroid
File secondscreenxmi

What type of resource would you like to create?

) Layout © Values
Color List Animator
© Preference © Searchable

What type of resource configuration would you like?

) Menu

AppWidget Provider

Available Qualifiers]
8 Country Code ‘ ‘

MINetwork Code.

Fraon E]

‘Smallest Screen Width -
Screen Width
Seroen Heinkt

Chosen Qualifiers

Folder [res/ayou]

Select the root element for the XML file:

[LinearLayout

OEBPS/httpatomoreillycomsourceoreillyimages1128360.png
EHM @ 6:18am
Phone e

Click Appropriate button to
change the phone mode!

silent Mode Activated.

OEBPS/httpatomoreillycomsourceoreillyimages1127934.png
Android SDK Manager

Packages Tools
SDK Path: D:\Programs\Android\android-sdk

Packages
F Name AP Rev. Status
4 [0 Tools

[% Android SDK Tools 15 Einstalled
(] % Android SDK Platform-tools 9 Bnstalled
4 [Android 40 (AP114)
1N Neriimantatinn fne Andenid EOE 11 1 B laceatied Z
Insall packages.

jpates/New [ZlInstalled [Obsolete Seect New or Updstes
Delete packsges.

Deselect All

Sort by: © APIlevel Repository.

————y

Fetching URL http://www.chobykyocera.com/download/echo_repositoryaxml

[=)

OEBPS/httpatomoreillycomsourceoreillyimages1128130.png.jpg
3
l
<
5

@«

OEBPS/httpatomoreillycomsourceoreillyimages1128132.png.jpg
]
BidieLink: Thert Prevention’

—_—

v

L

OEBPS/httpatomoreillycomsourceoreillyimages1128148.png

OEBPS/httpatomoreillycomsourceoreillyimages1128286.png

OEBPS/httpatomoreillycomsourceoreillyimages1127976.png.jpg
@ 733pM

OEBPS/httpatomoreillycomsourceoreillyimages1128104.png

OEBPS/httpatomoreillycomsourceoreillyimages1127906.png
& D
Packages Tools
SDK Path: C:\Program Files\ Android\android-sdk

AL Rev. Stats -
e ——
10§ Notinstaled

5 1§ Netinstoled
51§ Netinstoled
51§ Netinstoled
% ARM EABI V70 System Image 51§ Netinstoled
4 Google APIs by Google Inc. 51§ Netinstoled
Y Sources for Android SOK 51§ Netinstoled

il] D

bsolete Select New or Updates | Install 1 packages...

Deselect Al ==

OEBPS/httpatomoreillycomsourceoreillyimages1128106.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages1128316.png.jpg
Google

OEBPS/httpatomoreillycomsourceoreillyimages1128302.png.jpg
Ml @ 8:37Am

OEBPS/oreilly_large.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages1128158.png

OEBPS/httpatomoreillycomsourceoreillyimages1128156.png.jpg
Sample Application

OEBPS/httpatomoreillycomsourceoreillyimages1128174.png.jpg
5554:google_2.2 o0

M @ 6:250m

EIectronicE For You

Linux For You

Facts For you

OEBPS/httpatomoreillycomsourceoreillyimages1128264.png

OEBPS/httpatomoreillycomsourceoreillyimages1127896.png
Hello Android

OEBPS/httpatomoreillycomsourceoreillyimages1128260.png
5551212

(rmem—

1

(rmm—

4 GHI

7 PaRrs

(rmem—

2 ABC

(rmem——

5 kL

e —
8 Tuv

(rmem——

0+

OEBPS/httpatomoreillycomsourceoreillyimages1128326.png

OEBPS/httpatomoreillycomsourceoreillyimages1128154.png

OEBPS/httpatomoreillycomsourceoreillyimages1128188.png
‘Wl @ 402pm

OEBPS/httpatomoreillycomsourceoreillyimages1128236.png

OEBPS/httpatomoreillycomsourceoreillyimages1128254.png

OEBPS/httpatomoreillycomsourceoreillyimages1128002.png.jpg
Android SDK and AVD Manager

Lt of scting
ol pockages
o pacoses VD Name

Thursday, M| RSP R R TR Ry

OEBPS/httpatomoreillycomsourceoreillyimages1128244.png

OEBPS/httpatomoreillycomsourceoreillyimages1127942.png
Android SDK Manager

Packages Tools
SDK Path: D:\Programs\Android\android-sdk\
Packages
 Name
4 [0 Tools|
[[] X Android SDK Tools
] 7% Android SDK Platform-tools
4 [Android 40 (API14)
1) Documentation for Ancroid SDK
[C]' SDKPlatform
[1 Samples for SDK
[15 Samples for SDK
§ ARM EABI v7a System Image

0] ' Google API: by Google Inc.
4 105 Andenid 12 (8D112)

APl

Deselect All

jpates/New [ZlInstalled [Obsolete Seect New or Updstes

Status E

— 4
B instlled

B insalled
B nsalled
B nsalled
B nsalled

§ Netinstalled
B nsalled

Delete packages.

' B

OEBPS/httpatomoreillycomsourceoreillyimages1127940.png
2 Android Tools Updated

‘The Android SDK and AVD Manager that you are currently using has been updated. It
s recommended that you now close the manager window and re-open it. If you
Started this window from Eclpse, please check i the Android plug-in needs to be.
updated.

OEBPS/httpatomoreillycomsourceoreillyimages1128378.png
LMl @ 4:09em

® sample Alert Dialog

Alert Dialog Type 2 with buttons!

OEBPS/httpatomoreillycomsourceoreillyimages1128238.png
List Choice

Personal

Name

Binary Choice .

OEBPS/httpatomoreillycomsourceoreillyimages1127918.png.jpg
43 Applications Places System “o o B

Sun Sep 12, 1:23PM . ian ¢

S Properties for jpstrack.android e
Ele Edit Ref Java Build Path -
[3 Resource - — = 'Java,
] Android @Source| i Projects = Libraries | %;Order and Export |
s Builders Required projects on the build path: .
g os B
o | svBuid . 5
o dawingys| ” J2va Code style etphie DAk i J
Wdawinsys) . va compiler)8 EmorHandiing f = |
b &3 EmorHand . » |
»] b Java Editor [1& HotContacts | parayout
>
B>HoCon L doc Location
Erjavasrc £
b etk Project References & Makeltshake
Gilps Refactoring History)69 ShowMapsByintent
Run/Debug Settings
b 33 Makeltsh oo
| b Task Repository
&1 MyAndroi
b Sshonmap] ok
e Validation
jisetes WikiText
Select All Deselect All
@ [cancet |[o cancel [ox
Property Value
~ Info]
derived false o
([T)

i@l [[Update Manager] | = Java- MakeltShake/re... | & [Terminall [m] | | [

OEBPS/httpatomoreillycomsourceoreillyimages1128296.png

OEBPS/httpatomoreillycomsourceoreillyimages1128242.png
Ml @ 9:07pPm

Hello Preferences

Prefs: List One, Name Charlie Horse,
Choice true

OEBPS/httpatomoreillycomsourceoreillyimages1128398.png
<2xml versio:
& <resources>

0" encoding="utf-g"2>

‘app_name">Strings XML</string>

«J ‘text1">@</string>
= text2">Gmveui cternanek/ scrin)
Resources| () stingsmi

[E! Problems 52 @ Javedoc| [} Declaration | &l Console| 47 Search|

1 error, 0 warnings, 0 others

[Descrp

© Errors (Litem)
© error: Error: No resource type specified (at 'tetl’ with value '@).

OEBPS/httpatomoreillycomsourceoreillyimages1127992.png
Create new Android Virual Device (AVD)

e]]

Tager | [

O —
[Enabled

Property value

Dekete

(Override the existing AVD vith the same name

OEBPS/httpatomoreillycomsourceoreillyimages1128084.png
SVG filesize: 36030 bytes

Lossy: [Type resolution of bitmag

OEBPS/httpatomoreillycomsourceoreillyimages1128336.png.jpg
EEHH @ 1:24om

OSMIntro

6186 km

OEBPS/httpatomoreillycomsourceoreillyimages1128270.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages1128114.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages1127950.png
Date modified

e Links
ocuments i samples 13/05/2011 1203
ictures & temp 260872011 09118
. 130572011 11:59
fore »

i Program Files +.

OEBPS/httpatomoreillycomsourceoreillyimages1128058.png

OEBPS/httpatomoreillycomsourceoreillyimages1128400.png
>Strings XML</s
>\@</stri
>Tuitter: @mytwittername</s

OEBPS/httpatomoreillycomsourceoreillyimages1128364.png
USER PID PPID VSIZE RSS WCHAN PC

NAME
root 1
S /init
root 2
kthreadd
root 3
ksoftirqd/o
root 4
events/0
root

kblockd/0
root

pdflush

0

0

0

312 220 c009b74c 0000cade

0

004€72c 00000000 §
003fdc8 00000000 S
004b2c4 00000000 §
004b2c4 00000000 §
004b2c4 00000000 §
004b2c4 00000000 §
004b2c4 00000000 §
018179¢ 00000000 §
004b2c4 00000000 §
006fc74 00000000 S

006fc74 00000000 S

OEBPS/httpatomoreillycomsourceoreillyimages1128028.png
7 LogCat 13 QOOOG+¢ -

Log () | MiyAndroid App.

Tine pid tag Message

08-25 334 Myhndroid onCreate
08-25 334 Myhndroid onStart
08-25 334 Myhndroid onResune
08-25 334 Myhndroid onPause
08-25 334 Myhndroid onStop
08-25 334 MyAndroid onDestroy

OEBPS/httpatomoreillycomsourceoreillyimages1127928.png
2 Java - Eclipse.

Fie] Edit Run Source Navigste Search Project Refactor Window Help
New AleShifteN » | 45 Java Project
Open Fie. & Android Project
Close CtrleW DA [Project
Close Al CuleShift-W |8 Package
Save Ctrl+S. g |e=
g

OEBPS/httpatomoreillycomsourceoreillyimages1128266.png
r3- 82 @lare © e

@ Devices 2
& ~|[fiog

Name
* @ emulator-5554 <
system_process :

@ Emulator Control

Telephony Actions
Incoming number: (809887868

Voice
®svs.

Message: imite

send

Location Controls

Fiter

© console 1
Android

{2011-06-21 14:5:

[2011-06-21 14:53:14 - bosbdefusal] Starting activity con.SHS.Mainbenu on device emulator-5554
7 - bosbdefusal] ActivityManager: Starting: Intent { actzandroid.intent.action MATN ca

o (§ooms ”
Pe0OO *+ L]

= 8% Theads @ eap @ Allcation racke [FleExplore [Loocyg =

Heaphorker

Heapiorker chread

oWe shutting down net
Debugger has detaches
ot cleaning up

(011

o uzn)
.Splashscreen: pid-356 uide10031 o

s (total 1337 ms)

Bogus mon 130°0;

OEBPS/httpatomoreillycomsourceoreillyimages1128042.png

OEBPS/httpatomoreillycomsourceoreillyimages1128046.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages1128150.png
Ml @ 15:39

Rate our service:

i W e

Rate our price:

W W

Awesome - thanks!

OEBPS/httpatomoreillycomsourceoreillyimages1128324.png.jpg
Ml @ 4:50em

o
8 e
SN T

g AC i "

o | =
§

s

re oo
o A s
o

OEBPS/httpatomoreillycomsourceoreillyimages1128248.png
Call home
416-555-5555

Call work
416-555-6666

Email home
jon@jonsmith.domain

OEBPS/callouts/7.png

OEBPS/httpatomoreillycomsourceoreillyimages1128204.png.jpg
Right Arm - Upper - R

OEBPS/httpatomoreillycomsourceoreillyimages1128036.png.jpg
S5554N1L

Me: Hi there AVD with
process id 5556
17AM

Q W E|[R |T| ¥ Ul T of [P
ASDFGH] KL
4 ZXCVBNMaea

m e,

! 15555215554

Hithere AVD with
process id 5556

:

e AR Y
P e ey e e e
o i i
e

| |owle | = o

OEBPS/orm_front_cover.jpg
Problems and Solutions for Android Developers

O’REILLY*® Edited by lan F.Darwin

OEBPS/httpatomoreillycomsourceoreillyimages1128300.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages1128306.png.jpg
Multiple Locations on Map

tor

onwen
A s Amsterdamic £
m.mm, oy
Cheimstord
Lo
London > geey

WD) atons L

Sl Ervoimel IR

Ty

OEBPS/httpatomoreillycomsourceoreillyimages1127900.png.jpg
MecipseDownioads | +|

Packages Developer Builds Projects Indigo Torrents

—— Older Versio pse Indigo Packages for [T
kA Eclipse IDE for Java EE Developers, 212 M8 ! Windows 32 Bit
7 Downioaded 1732914 Times Details Windows 64 Bit
a Eclipse Classic 3.7 174 M8, ! Windows 32 Bit
Downloaded 1,505,392 Times ~ Defails Other Downloads Windows 64 Bit
Eclipse IDE for Java Developers, 122 v8 ! Windows 32 Bit
Downloaded 524 452 Times Details Windows 64 Bit

OEBPS/httpatomoreillycomsourceoreillyimages1127884.png
New Project

Select a wizard

Wizards:
[tvpe filter text |

b & General

[~ = Android

& Android Sample Project
Ji Android Test Project

b &cvs

b & Java

P & Examples

Cancel Finish

ok [we>]

OEBPS/httpatomoreillycomsourceoreillyimages1128258.png

OEBPS/httpatomoreillycomsourceoreillyimages1128006.png
ommand Prompt

<DIR> Perflogs.
<DIR> PROGRA™1 Progran Files
14:47 <DIR> u:
16:36_ <DIR>
2 File(s> ytes
E DS 6677721008 hores free

OEBPS/httpatomoreillycomsourceoreillyimages1128274.png
The link Is: wuw.google.com

OEBPS/httpatomoreillycomsourceoreillyimages1127968.png

OEBPS/httpatomoreillycomsourceoreillyimages1128116.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages1128142.png
ok T il B 3:18em

PasswordText

Enter your username and password:

ABC@xyz.com

cereaed

“

OEBPS/httpatomoreillycomsourceoreillyimages1128192.png

OEBPS/httpatomoreillycomsourceoreillyimages1127912.png
Welcome to Android Development
Configure SDK

To develop for Android, you need an Android SDK, and at least one version of the Android APIs to compile
against, You may also want additional versions of Android to test with.

Install the latest available version of Android APIs (supports al the latest features)
Install Android 2.1, a version which s supported by ~97% phones and tablets
(You can add additional platforms using the SDK Manager.)

[e e =
Use isting SDKs
stng Location: C\Program FiesAndrodhandroid-sck ==

® e

OEBPS/httpatomoreillycomsourceoreillyimages1128076.png

OEBPS/httpatomoreillycomsourceoreillyimages1128136.png
& ml B 7:59

When Reading Taken

Breakfast

Dinner

OEBPS/httpatomoreillycomsourceoreillyimages1127920.png
[xpeitertec]

Resource
Builders
s
Java Build Path

D Java Code Style

P Java Compiler

b Java Editor
Javadoc Location
Project References
Refactoring History
Run/Debug Settings

D Task Repository
Task Tags
Validation
wikiText

Properties for WheelDemo

Android

Project Build Target

Target Name | vendor

[ptatrorfapi |

O Android 1.5 Android OpenSource Pr 1.5 3
O Android2.1 Android OpenSource Pr 2.1 7
O Android2.2 Android OpenSourcePr 22 8
X Android2.3. Android OpenSourcePr 23.3 10
O Android3.0 Android OpenSource Pr 3.0 1
O Android3.1 Android OpenSourcePr 3.1 12
O Android4.0 Android OpenSource Pr 4.0 14
O Google APIs Google Inc. 40 14
Library-
O s Library
Reference [Project “Add.
v . [wheel wheel

OEBPS/httpatomoreillycomsourceoreillyimages1127984.png
tity

You are ordering doughnuts.

Amountf

OEBPS/httpatomoreillycomsourceoreillyimages1128120.png
File Edit View Layer Object Path Text Fitrs B 4 Export Bitmap (ShiftCtrl+E)

BEE aLen<

Qo200 0Llh A

-

Export area

(B = e |

0: (20119 o width: 583962 [

AET | Height:[ss6.420 |-
vnits on [7]

Bitmap size

width: 128] pixls at 1967 i

Heights 150] pixls at 1967 dpi

C:\Users\All Users\Documents\red.png

[Batch export 21 selected objects
(1] ide all except selected

OEBPS/httpatomoreillycomsourceoreillyimages1128118.png
Rl @ 12:38¢m

TestAndroidRGraph

Browsers (tooltips, context, zoom)

=

wie 6o

Some data (context, annotatable)

OEBPS/httpatomoreillycomsourceoreillyimages1127888.png
s New Android Project

Select Build Target
Choose an SDK to target

Build Target

Target Name [vendor Tratrorm Jari]H

O Android 1.5 ‘Android Open Source Project 15 3

O Android 2.1 Android Open Source Project 21 7

O GoogleAPIs Google Inc. 21 7

O Android 2.2 Android Open Source Project 22 8

® Android2.33 Android Open Source Project 233 10

O Google APIs Google Inc. 233 10

O Android 3.0 Android Open Source Project 30 i

O Android 3.1 Android Open Source Project 31 12

O Android 4.0 Android Open Source Project 40 14

O GoogleAPIs Google Inc. 40 14

O Android 403 Android Open Source Project 403 15

[_Google APIs Google Inc. 403 s |0
[1
Standard Android platform 2.3.3

<Back | nNext> [cancel

OEBPS/httpatomoreillycomsourceoreillyimages1128088.png.jpg
sy: I

80

OEBPS/httpatomoreillycomsourceoreillyimages1128000.png
'S atnch Options

‘Skin: HYGA (320x480)
Density: Medium (160)
E==

[Jwipe user data

OEBPS/httpatomoreillycomsourceoreillyimages1127996.png
' Create hew Android Virtiial Device (AVD)

Name:

Target
5D Card

Snapshot

Hardware:

Anchoid-v2, 1HVGA

0. updsor 91 L7 o

O [e [+]
OFile:

[enabled

@suitn: [HvGa

OResolution: x

Property value
GPS support ol
Abstracted LCD density 160

Max M applcation heap size 24

OEBPS/httpatomoreillycomsourceoreillyimages1128054.png

OEBPS/httpatomoreillycomsourceoreillyimages1128064.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages1128214.png
BEl @ 7:57pPm

JPSTrack bant People
KBS X i
3 My Notification i
, B | This is my message |

I A r = 4oV |

OEBPS/httpatomoreillycomsourceoreillyimages1128226.png.jpg
Y

3 S8 @
A journal Eny @)
Jr——

Ran a Marathan . yah ealy
Septal day
A Breatast

Ran a Marathan yah ealy

Septat day

@ a

OEBPS/httpatomoreillycomsourceoreillyimages1128032.png
171 LogCat 32 QOOOG+¢ -

Log (153) | MyAndroid App.

Tine pid tag Message B
08-26 D 549 Myhndroid onCreate

08-26 D 549 Myhndroid omStart L
08-26 D 549 Myhndroid onmResune

08-26 D 549 Myhndroid onPause

08-26 D 549 Myhndroid omStop =
08-26 D 655 Myhndroid onCreate

08-26 D 655 Myhndroid omStart

08-26 D 655 Myhndroid onmResune

‘ i ’

Fitter:

OEBPS/httpatomoreillycomsourceoreillyimages1127958.png
ala|lsifd|soase oy |z |@EE e e v

e Explorer 3
ink.

bdefusal
ntproviders
d_test
_World
bluetooth
Bluetooth

Skeleton

e_a
sribution Library
fe

Droid

et

[Generated Java Files]
Jroid 2.1-update1
ets

iroidManifest xml
ault properties
quard.cfg

@ -°

(@ lstava 5 DDMS

Resource Jrecipes/src/comy/oreilyst java’ does not exist.

22 Problems @ Declaration| @ Console % . % Debug| Ge g8 ¢ Bvr3v =0
\Ands

[2011-06-11 12:19:24 - Recipel] Starting activity con.oreilly. recipel Recipel on device enulator-5554
[2011-06-11 12:19:27 - Recipel] ActivityManager: Starting: Intent { act=android.intent.action.HAIN cat=(android. intent

OEBPS/httpatomoreillycomsourceoreillyimages1128376.png
BN 3:33m

® sample Alert Dialog

Alert Dialog Type 1!

Continue

OEBPS/httpatomoreillycomsourceoreillyimages1128342.png

OEBPS/httpatomoreillycomsourceoreillyimages1127980.png

OEBPS/httpatomoreillycomsourceoreillyimages1128402.png
cesources> strings XML

"app_name">Strings XML</
"textinWar samp; Peace</s
{textzn>Ts 5 slt; 62</strin

OEBPS/httpatomoreillycomsourceoreillyimages1128390.png
N

Thu, Dec 29, 2011 # © 14:00

SpeakOut
Oongoing

USB connected
ect to copy files to/from your computer.

USB debugging connected
ect to disable USB debugging.

Notifications

= 5 My First Notification!
Hello World

OEBPS/httpatomoreillycomsourceoreillyimages1128320.png

OEBPS/httpatomoreillycomsourceoreillyimages1128386.png
Contents (Toxt B

Text content | groid = androld. Android()

o notity(My First Notficatont,

Hello World)

Barcode size (L2

Generate |

Download or embed wit this URL:
hitp://chart apis.google.com/chart2cht=qré.chs=350x3508¢

Project Home P

OEBPS/httpatomoreillycomsourceoreillyimages1127904.png.jpg
v E

RecycleBin Microsoft
Office
Outlook

fo

Eclipse

Internet:
Explorer

OEBPS/httpatomoreillycomsourceoreillyimages1128354.png
e B
o Bluetooth permission request

An application is requesting permission to turn
on Bluetooth. Do you want to do this?

Yes No

OEBPS/httpatomoreillycomsourceoreillyimages1128366.png

OEBPS/httpatomoreillycomsourceoreillyimages1127938.png
Android SDK Manager Log

Installing SDK Platform Android 1.6, API 4, revision 3
Installed SDK Platform Android 16, APL4, revision 3
Downloading SDK Platform Android 1.5, API 3, revision 4
Installing SDK Platform Android 1.5, API 3, revision 4
Installed SDK Platform Android 15, APL3, revision 4
Google APIs by Google Inc., Android AP 14, revision 1

Google APIs by Google Inc., Android AP 14, revision 1
Installed Google APIs by Google Inc, Android API14, revision 1
Updated ADB to support the USB devices declared in the SDK add-ons.
Done. 25 packages installed.
Fetching URL http://www.echobykyocera.com/download/echo_repository.xml
Validate XML http://www.echobykyocera.com/download/echo_repository.xml/addon.xm
Done loading packages.

Done loading packages.

OEBPS/httpatomoreillycomsourceoreillyimages1128344.png
O @M@ 4:18Am

LocationChange:

OEBPS/httpatomoreillycomsourceoreillyimages1128008.png
Android

Android Prefrences

SOK Locaton: | CAPROGRA~1}Androidh anrid-sdk

Moo The let of SDK Tarerete belom e oo reloaded omee vow it “Aonf

OEBPS/httpatomoreillycomsourceoreillyimages1128262.png
Me <+1-647 1>

- Me: Lorem ipsum dolor sit
< amet, consectetur

~ adipisicing elit, sed do
eiusmod tempor incididunt ut
labore et dolore magna aliqua.
Ut enim ad minim veniam, quis
nostrud exercitation ullamco
laboris nisi ut aliquip ex ea
commodo consequat. Duis aute
irure dolor in reprehenderit in
voluptate velit esse cillum
dolore eu fugiat nulla pariatur.
Excepteur sint occaecat
cupidatat non proident, suntin
culpa qui officia deserunt mollit
anim id est laborum.

Sent: 18:44

fype to compose

OEBPS/httpatomoreillycomsourceoreillyimages1128312.png

OEBPS/httpatomoreillycomsourceoreillyimages1127990.png
¥ Android SOK'and AVD Manager

frn Listof existing Android Virtual Devices lacated at Ci{Documents and Settings|Daniel Fawerl androidiavd

vl paciages ||| AvoName Target Name Platform AP Level

< A vald Aot Vsl Devic, - A reparableAnchod Vsl D,
X A Anchid Yl Device that et o, Clck D't s th et

OEBPS/httpatomoreillycomsourceoreillyimages1128234.png
This I a sample File.The application

demonstrates how to read a file from your
Android application.

OEBPS/httpatomoreillycomsourceoreillyimages1128368.png
ime a number of iterations of Newto!

Raphson square root computation in
java and in C.

k2

Time 42 iters In Java was 7 msec,
avg result 11111.111061

Time 42 Iters In Java was 4 msec,
avg result 11111.111061

Time 42 iters In C was 3 msec, avg
result 11111111061

Time 42 Iters In Java was 6 msec,
avg result 11111.111061

OEBPS/httpatomoreillycomsourceoreillyimages1128230.png.jpg
AndroFace

ia o
-

OEBPS/httpatomoreillycomsourceoreillyimages1128276.png

OEBPS/httpatomoreillycomsourceoreillyimages1128232.png

OEBPS/httpatomoreillycomsourceoreillyimages1127988.png
arch Project

%-0-

New Window
ew Edtor

Open Perspective »
Shaw View »

Custaize Perspective.
Save Perspective As.
Reset Perspective.
Closs Perspective
Close Al Perspectives

Navigation »

Preferences

OEBPS/httpatomoreillycomsourceoreillyimages1128080.png.jpg
0000
0000

#808080 #3366CC #00CCO0 #FF9900

000
|
00000

4000000 #404040 #003399 #BEO900 HFFREO0 #CCO000

OEBPS/httpatomoreillycomsourceoreillyimages1128272.png.jpg
UN 'secret votes' won't sway
Canada: PM

Khadr plea deal in the works
Chilean mine safety under scrutiny
BlackBerry ban at Col. Williams
hearing lfted

Graham James pardon could be
revoked

Canadian sports doctor indicted
by N.Y. grand jury

U, appeals to keep miltary gay
ban

OEBPS/httpatomoreillycomsourceoreillyimages1128318.png
LinearLayout

TabWidget

Framelayout

OEBPS/httpatomoreillycomsourceoreillyimages1128052.png

OEBPS/httpatomoreillycomsourceoreillyimages1128186.png

OEBPS/httpatomoreillycomsourceoreillyimages1128268.png

OEBPS/httpatomoreillycomsourceoreillyimages1127986.png
tity

You are ordering doughnuts.

OEBPS/httpatomoreillycomsourceoreillyimages1128030.png
7 LogCat £3 QOOOG+¢ -

Log 33)| MyAndroid App

Tine pid tag Message
[T BHEY T Wydndreid T oRCTERTe

08726 D 487 Myindroid omStart

08-26 D 487 Myhndroid onmResune

08-26 D 487 lMyhndroid onPause

08-26 D 487 Myhndroid omStop

08-26 D 487 Myhndroid omRestart

08-26 D 487 Myhndroid omStart

08-26 D 487 Myindroid onmResune

‘ i ’

Fiter:

OEBPS/httpatomoreillycomsourceoreillyimages1128220.png
Hello World, Listview!

List is Empty

OEBPS/httpatomoreillycomsourceoreillyimages1128152.png.jpg
— —

&

: P p—
v

Final Answer: Price 4/5, Service 5/5 ‘

Thank you!

Telerorio y Corttactos

o

OEBPS/httpatomoreillycomsourceoreillyimages1127936.png
Choose Packages to Install

Packages

' findroid $DK Piatform-tools, revision 5

~ Documentstion for Android SDK, API12, re.
 SDK Platform Android 31, API12,revision .
~ Samples for SDK API12, revision

? Google APls by Google Inc, Ancroid APIL.
? Google APls by Google Inc, Android APIL.
? Google APls by Google Inc, Android APIL.
? Google APls by Google Inc, Android APIS,

© Accept O Reject

“This update will replace revision 3 with
revision 5.

T
Archive for Windows
Size: 15 MiB.
SHAL:

Accept All

OEBPS/httpatomoreillycomsourceoreillyimages1128176.png

OEBPS/httpatomoreillycomsourceoreillyimages1127956.png
2 Android SDK Verification

“This Android SDK requires Android Developer Toolkit version 14.0.0 or above.

Current version is 12.0.0.v201106281929-138431.

Please update ADT to the latest version.

OEBPS/httpatomoreillycomsourceoreillyimages1128178.png.jpg
E Android Honeycomb Photo Gallery Example

Selected Image: re/drawable-hdpl/hollywoodjpg
Helght: 355
widih: 267

G & 0 1]

OEBPS/httpatomoreillycomsourceoreillyimages1127954.png
Android SDK Manager Log

nstlld Googie Webdriver package,evision 2

Downloading Android SDK Tools, revision 15
Installing Android SDK Tools, revision 15
[post_tools installbat] Updating SDK Manager.exe
Ipost_tools installbat] O file(s) copied.
[post_tools_instalLbat] Error: The process cannot access the file because it s being used by
another
[post.toolsinstallbat] Updating AVD Manager.exe
lpost tools installbat] 1file(s) copied.
Installed Android SDK Tools,revision 15
D SDK id 4.0, APL 14, revision 1
Installing SDK Platform Android 4.0, API 14, revision 1
Installed SDK Platform Android 4.0, API 14, revision 1
D SDK id 3.2, APL 13, revision 1

Downloading SDK Platform Android 1.5, AP13, revision 4 (62% 1517 KiB/s, 13 seconds left)

OEBPS/httpatomoreillycomsourceoreillyimages1127982.png

OEBPS/httpatomoreillycomsourceoreillyimages1128086.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages1128098.png

OEBPS/callouts/4.png

OEBPS/httpatomoreillycomsourceoreillyimages1128090.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages1128304.png

OEBPS/httpatomoreillycomsourceoreillyimages1128338.png
Gl @ s:45pPm

OSMIntro

Overlay Titled: New Overlay Single
Tapped
Description: Overlay Sample Description

OEBPS/httpatomoreillycomsourceoreillyimages1128068.png
Portrsit © Landscape

Show page border

IE) Borderontop of drawing

[Show border shadow

‘Border color: NG

OEBPS/httpatomoreillycomsourceoreillyimages1128070.png
@ cup_of coffee.svg - Inkscape.

Ele Edit View Layer
BEEE dLn<

B BB

Object Path Tot Fiers bxtensions Help

x[25131 [(28702

RN AN AR AN

“a
1

L T E)

PERE<LO200LULH
' |

< i
Fil: Different
[Stroke: _ Different

052 &% @ ot [-] At clckto seled

X se3.e8
v sl

@

z| 64% 3

OEBPS/httpatomoreillycomsourceoreillyimages1128308.png.jpg
Multiple Locations on Map

cham

mampt. &

i
London *<2 5oy
W00 tone

L Eestoume

OEBPS/httpatomoreillycomsourceoreillyimages1128314.png

OEBPS/httpatomoreillycomsourceoreillyimages1127952.png
ADE Restart

A package that depends on ADB has been updated.
Do you want to restart ADE now?

OEBPS/httpatomoreillycomsourceoreillyimages1128332.png
&M ® 12:46e0m

OEBPS/httpatomoreillycomsourceoreillyimages1128050.png
12:17 AM

cm,

OEBPS/httpatomoreillycomsourceoreillyimages1128256.png
Dialing

¢

012-345-6789

T p—

Intercepted outgolng call. Old number
11111, new number 0123456789

OEBPS/httpatomoreillycomsourceoreillyimages1128410.png
old and jtalic.

And look: underline and bold italic
underline.

OEBPS/httpatomoreillycomsourceoreillyimages1128034.png.jpg
554N

Dialing

Dialpad

Speaker

Incoming call

-

1-555-521-5554

OEBPS/httpatomoreillycomsourceoreillyimages1128056.png.jpg
Scan Barcode

X o B

EAN_1

OEBPS/httpatomoreillycomsourceoreillyimages1128190.png
‘Wl @ 402pm

OEBPS/httpatomoreillycomsourceoreillyimages1127972.png
OutOfMemoryError

OEBPS/httpatomoreillycomsourceoreillyimages1128346.png.jpg
O Gl 8\ 3:30Am

LocationChange

OEBPS/httpatomoreillycomsourceoreillyimages1128160.png
mainaml 2

Editing config: default locale ~| [Android 21-updatel. ~] [Create.

Android 15
[27in Quea Android 16
Palette Android 22

Android 231

Form Widgets Android 233

JE—] Andraid 0

Android 31
 Andiroic 3.2

o O

() Text Fields
£ Layouts

£ Composite
£ Images & Media
£ Time & Date
£ Transitons

£ Advanced

£ Custom & Library Views

] Graphical Layout| = mainaeml

OEBPS/httpatomoreillycomsourceoreillyimages1128166.png
Hello World, Main!

OEBPS/httpatomoreillycomsourceoreillyimages1128362.png

OEBPS/httpatomoreillycomsourceoreillyimages1128358.png
Bl @ 6184
Phonel

Click Appropriate button to
change the phone mode!

OEBPS/httpatomoreillycomsourceoreillyimages1128412.png.jpg
Publisher ID

o e s &

oy s o 1 ot g o v . o h o o o, e A i i o e,
o it g s o ot e o A St .

R o g P Tt P |ty T i | e Sergs

s rt

oot U, P
Cuaarinr)

0

[P ——

OEBPS/httpatomoreillycomsourceoreillyimages1128128.png.jpg
£3

SelectExample

CheckBox: Box Is checked

@ suttont
@ sutton2
@ suttons

Radio: Button 2 pic

OEBPS/httpatomoreillycomsourceoreillyimages1128212.png
=
& Lookie Herell

rld, Main!

AT&T Code Scar bil
i i
i Ly

Lookie Here!l

OEBPS/httpatomoreillycomsourceoreillyimages1128380.png
5 alertDialog.py exited.

strawberry

OEBPS/httpatomoreillycomsourceoreillyimages1127910.png
2 Install

Available Software
Checkthe tems that you wish o instal @

Worwit DT plag-in - s/ goagecomandroiecise] =

Find more software by working with the *Availsble Softuware Sites” preferences.

type filter text

Name Version
10 Developer Tools

fT—

Detai

ow only the stest versions of vaisble software (1] ide items that re slresdy instaled
roup items by category Whatis sleady instlled?
Contactal updite sites during nstll o find required software

@ <Back Next> Finish

OEBPS/httpatomoreillycomsourceoreillyimages1127998.png
|+ Android'SDK"and'AVD Manager

List of existing Android Yirtual Devices located at C:\Documents and Settings\Daniel Fowler!, androidiavd

Installed packages
Available packages || | avD Name Target Name Platform API Level hlew. .

Edit...

Refresh

~ & valid Android Virtual Device. @ A repairable Android Virtual Device.
X An Android Virtual Device that failed to load. Click 'Details' to see the error,

OEBPS/httpatomoreillycomsourceoreillyimages1127970.png

OEBPS/httpatomoreillycomsourceoreillyimages1128250.png

OEBPS/httpatomoreillycomsourceoreillyimages1127974.png

OEBPS/httpatomoreillycomsourceoreillyimages1128210.png

OEBPS/httpatomoreillycomsourceoreillyimages1128110.png

OEBPS/httpatomoreillycomsourceoreillyimages1128240.png
® Name

Charlie Horse

OEBPS/httpatomoreillycomsourceoreillyimages1128420.png
¢

B2 oreilly+media

APPS 4
Learning Java
& *hkkd

Catch Notes
<

*hkkd

p Mixology™ Drink Recipes

¥ dkkkd
Compass
®
*hkkd
Programming Python, 4E

LY s AeAed
7S

C#4.0in a Nutshell

CEF pkhk)
=& Learning Python

