

Cody Lindley

JavaScript Enlightenment

ISBN: 978-1-449-34288-3

[LSI]

JavaScript Enlightenment
by Cody Lindley

Copyright © 2013 Cody Lindley. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://my.safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Simon St. Laurent and Meghan Blanchette
Production Editor: Kristen Borg

Proofreader: BIM Proofreading Services
Indexer: Ellen Troutman Zaig
Cover Designer: Randy Comer
Interior Designer: David Futato

January 2013: First Edition

Revision History for the First Edition:

2012-12-18 First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449342883 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of O’Reilly
Media, Inc. JavaScript Enlightenment, the image of a Eurasian eagle owl, and related trade dress are trade‐
marks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a trade‐
mark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained
herein.

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449342883

Table of Contents

Preface. ix

1. JavaScript Objects. 1
Creating Objects 1
JavaScript Constructors Construct and Return Object Instances 6
The JavaScript Native/Built-In Object Constructors 8
User-Defined/Non-Native Object Constructor Functions 9
Instantiating Constructors Using the new Operator 10
Creating Shorthand/Literal Values from Constructors 12
Primitive (a.k.a. Simple) Values 13
The Primitive Values null, undefined, “string”, 10, true, and false Are Not

Objects 15
How Primitive Values Are Stored/Copied in JavaScript 16
Primitive Values Are Equal by Value 17
The String, Number, and Boolean Primitive Values Act Like Objects When

Used Like Objects 18
Complex (a.k.a. Composite) Values 19
How Complex Values Are Stored/Copied in JavaScript 20
Complex Objects Are Equal by Reference 21
Complex Objects Have Dynamic Properties 22
The typeof Operator Used on Primitive and Complex Values 22
Dynamic Properties Allow for Mutable Objects 23
All Constructor Instances Have Constructor Properties that Point to Their

Constructor Function 24
Verify that an Object Is an Instance of a Particular Constructor Function 26
An Instance Created From a Constructor Can Have Its Own Independent

Properties (Instance Properties) 27
The Semantics of “JavaScript Objects” and “Object() Objects” 29

2. Working with Objects and Properties. 31

iii

Complex Objects Can Contain Most of the JavaScript Values as Properties 31
Encapsulating Complex Objects in a Programmatically Beneficial Way 32
Getting/Setting/Updating an Object’s Properties Using Dot Notation or

Bracket Notation 33
Deleting Object Properties 36
How References to Object Properties Are Resolved 36
Using hasOwnProperty, Verify That an Object Property Is Not From the

Prototype Chain 39
Checking If an Object Contains a Given Property Using the in Operator 39
Enumerate (Loop Over) an Object’s Properties using the for in Loop 40
Host Objects versus Native Objects 41
Enhancing and Extending Objects with Underscore.js 43

3. Object(). 45
Conceptual Overview of Using Object() Objects 45
Object() Parameters 46
Object() Properties and Methods 47
Object() Object Instance Properties and Methods 47
Creating Object() Objects Using “Object Literals” 48
All Objects Inherit From Object.prototype 49

4. Function(). 51
Conceptual Overview of Using Function() Objects 51
Function() Parameters 52
Function() Properties and Methods 53
Function Object Instance Properties and Methods 53
Functions Always Return a Value 53
Functions Are First-Class Citizens (Not Just Syntax but Values) 54
Passing Parameters to a Function 55
this and arguments Values Available To All Functions 55
The arguments.callee Property 56
The Function Instance length Property and arguments.length 57
Redefining Function Parameters 58
Return a Function Before It Is Done (Cancel Function Execution) 58
Defining a Function (Statement, Expression, or Constructor) 59
Invoking a Function [Function, Method, Constructor, or call() and apply()] 60
Anonymous Functions 61
Self-Invoking Function Expression 61
Self-Invoking Anonymous Function Statements 62
Functions Can Be Nested 62
Passing Functions to Functions and Returning Functions from Functions 63
Invoking Function Statements Before They Are Defined (Function Hoisting) 64

iv | Table of Contents

A Function Can Call Itself (Recursion) 64

5. The Head/Global Object. 67
Conceptual Overview of the Head Object 67
Global Functions Contained Within the Head Object 68
The Head Object versus Global Properties and Global Variables 68
Referring to the Head Object 70
The Head Object Is Implied and Typically Not Referenced Explicitly 70

6. The this Keyword. 73
Conceptual Overview of this and How It Refers to Objects 73
How Is the Value of this Determined? 74
The this Keyword Refers to the Head Object in Nested Functions 76
Working Around the Nested Function Issue by Leveraging the Scope Chain 77
Controlling the Value of this Using call() or apply() 77
Using the this Keyword Inside a User-Defined Constructor Function 79
The this Keyword Inside a Prototype Method Refers to a Constructor Instance 80

7. Scope and Closures. 83
Conceptual Overview of JavaScript Scope 83
JavaScript Does Not Have Block Scope 84
Use var Inside Functions to Declare Variables and Avoid Scope Gotchas 85
The Scope Chain (Lexical Scoping) 85
The Scope Chain Lookup Returns the First Found Value 87
Scope Is Determined During Function Definition, not Invocation 87
Closures Are Caused by the Scope Chain 88

8. Function Prototype Property. 91
Conceptual Overview of the Prototype Chain 91
Why Care About the prototype Property? 92
Prototype Is Standard on All function() Instances 93
The Default prototype Property Is an Object() Object 93
Instances Created From a Constructor Function are Linked to the

Constructor’s prototype Property 94
Last Stop in the prototype Chain is Object.prototype 95
The prototype Chain Returns the First Property Match It Finds in the Chain 96
Replacing the prototype Property with a New Object Removes the Default

Constructor Property 96
Instances That Inherit Properties from the Prototype Will Always Get the

Latest Values 97
Replacing the prototype Property with a New Object Does Not Update

Former Instances 98

Table of Contents | v

User-Defined Constructors Can Leverage the Same Prototype Inheritance as
Native Constructors 99

Creating Inheritance Chains (the Original Intention) 100

9. Array(). 103
Conceptual Overview of Using Array() Objects 103
Array() Parameters 104
Array() Properties and Methods 104
Array Object Instance Properties and Methods 105
Creating Arrays 105
Adding and Updating Values in Arrays 106
Length versus Index 107
Defining Arrays with a Predefined Length 107
Setting Array Length can Add or Remove Values 108
Arrays Containing Other Arrays (Multidimensional Arrays) 108
Looping Over an Array, Backwards and Forwards 109

10. String(). 111
Conceptual Overview of Using the String() Object 111
String() Parameters 111
String() Properties and Methods 112
String Object Instance Properties and Methods 112

11. Number(). 115
Conceptual Overview of Using the Number() Object 115
Integers and Floating-Point Numbers 116
Number() Parameters 116
Number() Properties 117
Number Object Instance Properties and Methods 117

12. Boolean(). 119
Conceptual Overview of Using the Boolean() Object 119
Boolean() Parameters 120
Boolean() Properties and Methods 120
Boolean Object Instance Properties and Methods 121
Non-Primitive False Boolean Objects Convert to true 121
Certain Things Are false, Everything Else Is true 122

13. Working with Primitive String, Number, and Boolean Values. 123
Primitive/Literal Values Are Converted to Objects When Properties Are

Accessed 123

vi | Table of Contents

You Should Typically Use Primitive String, Number, and Boolean Values 125

14. Null. 127
Conceptual Overview of Using the null Value 127
typeof Returns null Values as “object” 127

15. Undefined. 129
Conceptual Overview of the undefined Value 129
JavaScript ECMAScript 3 Edition (and Later) Declares the undefined Variable

in the Global Scope 130

16. Math Function. 131
Conceptual Overview of the Built-In Math Object 131
Math Properties and Methods 131
Math Is Not a Constructor Function 132
Math Has Constants You Cannot Augment/Mutate 133

A. Review. 135

B. Conclusion. 139

Index. 141

Table of Contents | vii

Preface

Introduction
This book is not about JavaScript design patterns or implementing an object-oriented
paradigm with JavaScript code. It was not written to distinguish the good features of the
JavaScript language from the bad. It is not meant to be a complete reference guide. It is
not targeted at people new to programming or those completely new to JavaScript. Nor
is this a cookbook of JavaScript recipes. Those books have been written.

It was my intention to write a book to give the reader an accurate JavaScript worldview
through an examination of native JavaScript objects and supporting nuances: complex
values, primitive values, scope, inheritance, the head object, etc. I intend this book to
be a short and digestible summary of the ECMAScript 3 Edition specification, focused
on the nature of objects in JavaScript.

If you are a designer or developer who has only used JavaScript under the mantle of
libraries (such as jQuery, MooTools, Zepto, YUI, Dojo, etc.), it is my hope that the
material in this book will transform you from a JavaScript library user into a JavaScript
developer.

Why Did I Write This Book?
First, I must admit that I wrote this book for myself. Truth be told, I crafted this material
so I could drink my own Kool-Aid and always remember what it tastes like. In other
words, I wanted a reference written in my own words used to jog my memory as needed.
Additionally:

• Libraries facilitate a “black box” syndrome that can be beneficial in some regards,
but detrimental in others. Things may get done fast and efficiently, but you have no
idea how or why. And the how and why really matter when things go wrong or

ix

performance becomes an issue. The fact is that anyone who intends to implement
a JavaScript library or framework when building a web application (or just a good
signup form) ought to look under the hood and understand the engine. This book
was written for those who want to pop the hood and get their hands dirty in Java‐
Script itself.

• Mozilla has provided the most up-to-date and complete reference guide for Java‐
Script 1.5. I believe what is missing is a digestible document, written from a single
point of view, to go along with their reference guide. It is my hope that this book
will serve as a “what you need to know” manual for JavaScript values, detailing
concepts beyond what the Mozilla reference covers.

• Version 1.5 of JavaScript is going to be around for a fair amount of time, but as we
move towards the new additions to the language found in ES5 and ES6, I wanted
to document the cornerstone concepts of JavaScript that will likely be perennial.

• Advanced technical books written about programing languages are often full of
monolithic code examples and pointless meanderings. I prefer short explanations
that get to the point, backed by real code that I can run instantly. I coined a term,
“technical thin-slicing,” to describe what I am attempting to employ in this book.
This entails reducing complex topics into smaller, digestible concepts taught with
minimal words and backed with comprehensive/focused code examples.

• Most JavaScript books worth reading are three inches thick. Definitive guides like
David Flanigan’s certainly have their place, but I wanted to create a book that hones
in on the important stuff without being exhaustive.

Who Should Read This Book?
This book is targeted at two types of people. The first is an advanced beginner or in‐
termediate JavaScript developer who wishes to solidify his or her understanding of the
language through an in-depth look at JavaScript objects. The second type is a JavaScript
library veteran who is ready to look behind the curtain. This book is not ideal for newbies
to programming, JavaScript libraries, or JavaScript itself.

Why JavaScript 1.5 and ECMAScript 3 Edition?
In this book, I focus on version 1.5 of JavaScript (equivalent to ECMAScript 3 Edition)
because it is the most widely implemented version of JavaScript to date. The next version
of this book will certainly be geared towards the up-and-coming ES5 and ES6.

Why Didn’t I Cover the Date(), Error(), and RegEx() Objects?
Like I said, this book is not an exhaustive reference guide to JavaScript. Rather, it focuses
on objects as a lens through which to understand JavaScript. So I have decided not to

x | Preface

cover the Date(), Error(), or RegEx() objects because, as useful as they are, grasping
the details of these objects will not make or break your general understanding of objects
in JavaScript. My hope is that you simply apply what you learn here to all objects available
in the JavaScript environment.

Before you begin, it is important to understand various styles employed in this book.
Please do not skip this section, because it contains important information that will aid
you as you read the book.

More Code, Fewer Words
Please examine the code examples in detail. The text should be viewed as secondary to
the code itself. It is my opinion that a code example is worth a thousand words. Do not
worry if you’re initially confused by explanations. Examine the code. Tinker with it.
Reread the code comments. Repeat this process until the concept being explained be‐
comes clear. I hope you achieve a level of expertise such that well-documented code is
all you need to grok a programming concept.

Exhaustive Code and Repetition
You will probably curse me for repeating myself and for being so comprehensive with
my code examples. And while I might deserve it, I prefer to err on the side of being
exact, verbose, and repetitive, rather than make false assumptions authors often make
about their reader. Yes, both can be annoying, depending upon what knowledge you
bring to the subject, but they can also serve a useful purpose for those who want to learn
a subject in detail.

Color-Coding Conventions
In the JavaScript code examples (example shown below), bold is used to highlight code
directly relevant to the concept being discussed. Any additional code used to support
the bold code will be in normal text. The lighter gray in the code examples is reserved
for JavaScript comments (example shown below).

<!DOCTYPE html><html lang="en"><body><script>

// this is a comment about a specific part of the code
var foo = 'calling out this part of the code';

</script></body></html>

Preface | xi

jsFiddle, JS Bin, and Firebug lite-dev
The majority of code examples in this book are linked to a corresponding jsFiddle
page, where the code can be tweaked and executed online. The jsFiddle examples have
been configured to use the Firebug lite-dev plugin so that the log function (i.e., con
sole.log) will work in most any modern browser regardless of whether the browser
has its own console. Before reading this book, make sure you are comfortable with the
usage and purpose of console.log.

In situations where jsFiddle and Firebug lite-dev caused complications with the Java‐
Script code JS Bin and Firebug Lite-dev will be used. I’ve tried to avoid a dependency
on a browser console by using Firebug lite-dev but with certain code examples the sol‐
ution itself gets in the way of code execution. In these situations the console built into
your web browser will have to be leveraged to output logs. If you are not using a browser
with a built-in JavaScript console, I would suggest upgrading or switching browsers.

When JS Bin is used, keep in mind that the code has to be executed manually (clicking
“Render”), which differs from the page load execution done by jsFiddle.

Conventions Used in This Book
The following typographical conventions are used in this book [see also “Color-Coding
Conventions” (page xi)]:
Italic

Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This icon signifies a tip, suggestion, or general note.

xii | Preface

http://jsfiddle.net/
http://jsfiddle.net/
http://fbug.googlecode.com/svn/lite/branches/firebug1.3/content/firebug-lite-dev.js
http://stackoverflow.com/questions/4743730/javascript-what-is-console-log-and-how-do-i-use-it
http://jsbin.tumblr.com/about
http://browsehappy.com/

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, if this book includes code
examples, you may use the code in your programs and documentation. You do not need
to contact us for permission unless you’re reproducing a significant portion of the code.
For example, writing a program that uses several chunks of code from this book does
not require permission. Selling or distributing a CD-ROM of examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of ex‐
ample code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “JavaScript Enlightenment by Cody Lindley
(O’Reilly). Copyright 2013 Cody Lindley, 978-1-449-34288-3.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online (www.safaribooksonline.com) is an on-demand
digital library that delivers expert content in both book and video
form from the world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and creative
professionals use Safari Books Online as their primary resource for research, problem
solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi‐
zations, government agencies, and individuals. Subscribers have access to thousands of
books, training videos, and prepublication manuscripts in one fully searchable database
from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley
Professional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technol‐
ogy, and dozens more. For more information about Safari Books Online, please visit us
online.

Preface | xiii

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content
http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals
http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://oreil.ly/javascript_enlightenment.

To comment or ask technical questions about this book, send email to bookques
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

About the Author
Cody Lindley is a client-side engineer (a.k.a. front-end developer) and recovering Flash
developer. He has an extensive background working professionally (11+ years) with
HTML, CSS, JavaScript, Flash, and client-side performance techniques as it pertains to
web development. If he is not wielding client-side code, he is likely toying with interface/
interaction design or authoring material and speaking at various conferences. When
not sitting in front of a computer, it is a sure bet he is hanging out with his wife and kids
in Boise, Idaho—training for triathlons, skiing, mountain biking, road biking, alpine
climbing, reading, watching movies, or debating the rational evidence for a Christian
worldview.

xiv | Preface

http://oreil.ly/javascript_enlightenment
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

About the Technical Editors
Michael Richardson
Michael Richardson is a web and application developer living in Boise, Idaho. Way back
when, he got an MFA in creative writing from Sarah Lawrence and published a novel
in 2003 called Plans for a Mushroom Radio. These days, when he’s not spending quality
time with his lovely wife and rascal kid, he’s managing his little web-based application
called Timeglider.

Kyle Simpson
Kyle Simpson is a JavaScript Systems Architect from Austin, Texas. He focuses on Java‐
Script, web performance optimization, and “middle-end” application architecture. If
something can’t be done in JavaScript or web stack technology, he’s probably bored by
it. He runs several open-source projects, including LABjs, HandlebarJS, and Bike‐
chainJS. Kyle works as a Software Engineer on the Development Tools team for Mozilla.

Nathan Smith
Nathan Smith is a UX developer at HP. He holds a MDiv from Asbury Theological
Seminary. He began building sites late last century and enjoys hand coding HTML, CSS,
and JavaScript. He created the 960 Grid System, a design and CSS framework for
sketching, designing, and coding page layouts. He also made Formalize, a JavaScript
and CSS framework that endeavors to bring sanity to form styling.

Ben Nadel
Ben Nadel is the chief software engineer at Epicenter Consulting, a Manhattan-based
web application development firm specializing in innovative custom software that
transforms the way its clients do business. He is also an Adobe Community Professional
as well as an Adobe Certified Professional in Advanced ColdFusion. In his spare time,
he blogs extensively about all aspects of obsessively thorough web application develop‐
ment at www.bennadel.com.

Ryan Florence
Ryan Florence is a front-end web developer from Salt Lake City, Utah, and has been
creating websites since the early 90’s. He is especially interested in creating experiences
that are pleasing to both the end user and the developer inheriting the project. Ryan is
active in the JavaScript community writing plugins, contributing to popular JavaScript
libraries, speaking at conferences and meet-ups, and writing about it on the web. He
currently works as a Senior Technical Consultant at Clock Four.

Preface | xv

http://timeglider.com/
http://handlebarjs.com/
http://bikechainjs.com/
http://bikechainjs.com/
http://sonspring.com
http://960.gs/
http://formalize.me
http://www.bennadel.com
http://ryanflorence.com/

Nathan Logan
Nathan Logan has been a professional web developer for eight years. His focus is on
client-side technologies, but he also digs the server-side. He currently works for Mem‐
olane, alongside the author of this book. Personally, Nathan is blessed with a wonderful
wife and son, and enjoys mountain biking, hot springs, spicy food, scotch, and Christian
faith/theology.

xvi | Preface

http://nathanlogan.com/

CHAPTER 1

JavaScript Objects

Creating Objects
In JavaScript, objects are king: Almost everything is an object or acts like an object.
Understand objects and you will understand JavaScript. So let’s examine the creation of
objects in JavaScript.

An object is just a container for a collection of named values (a.k.a. properties). Before
we look at any JavaScript code, let’s first reason this out. Take myself, for example. Using
plain language, we can express in a table, a “cody”:

cody

property: property value:

living true

age 33

gender male

The word “cody” in the table above is just a label for the group of property names and
corresponding values that make up exactly what a cody is. As you can see from the table,
I am living, 33, and a male.

JavaScript, however, does not speak in tables. It speaks in objects, which are not unlike
the parts contained in the “cody” table. Translating the above table into an actual Java‐
Script object would look like this:

Live Code

<!DOCTYPE html><html lang="en"><body><script>

// create the cody object...
var cody = new Object();

1

http://jsfiddle.net/javascriptenlightenment/ckVA5/

// then fill the cody object with properties (using dot notation)
cody.living = true;
cody.age = 33;
cody.gender = 'male';

console.log(cody); // logs Object {living = true, age = 33, gender = 'male'}

</script></body></html>

Keep this at the forefront of your mind: objects are really just containers for properties,
each of which has a name and a value. This notion of a container of properties with
named values (i.e., an object) is used by JavaScript as the building blocks for expressing
values in JavaScript. The cody object is a value which I expressed as a JavaScript object
by creating an object, giving the object a name, and then giving the object properties.

Up to this point, the cody object we are discussing has only static information. Since we
are dealing with a programing language, we want to program our cody object to actually
do something. Otherwise, all we really have is a database, akin to JSON. In order to bring
the cody object to life, I need to add a property method. Property methods perform a
function. To be precise, in JavaScript, methods are properties that contain a Func
tion() object, whose intent is to operate on the object the function is contained within.

If I were to update the cody table with a getGender method, in plain English it would
look like this:

cody

property: property value:

living true

age 33

gender male

getGender return the value of gender

Using JavaScript, the getGender method from the updated “cody” table above would
look like this:

Live Code

<!DOCTYPE html><html lang="en"><body><script>

var cody = new Object();
cody.living = true;
cody.age = 33;
cody.gender = 'male';
cody.getGender = function(){return cody.gender;};

console.log(cody.getGender()); // logs 'male'

</script></body></html>

2 | Chapter 1: JavaScript Objects

http://www.json.org/
http://bclary.com/2004/11/07/%23a-4.3.3
http://jsfiddle.net/javascriptenlightenment/3gBT4/

The getGender method, a property of the cody object, is used to return one of cody’s
other property values: the value “male” stored in the gender property. What you must
realize is that without methods, our object would not do much except store static
properties.

The cody object we have discussed thus far is what is known as an Object() object. We
created the cody object using a blank object that was provided to us by invoking the
Object() constructor function. Think of constructor functions as a template or cookie
cutter for producing pre-defined objects. In the case of the cody object, I used the
Object() constructor function to produce an empty object which I named cody. Now
since cody is an object constructed from the Object() constructor, we call cody an
Object() object. What you really need to grok, beyond the creation of a simple Ob
ject() object like cody, is that the majority of values expressed in JavaScript are objects
(primitive values like “foo”, 5, and true are the exception but have equivalent wrapper
objects).

Consider that the cody object created from the Object() constructor function is not
really different from, say, a string object created via the String() constructor function.
To drive this fact home, examine and contrast the code below:

Live Code

<!DOCTYPE html><html lang="en"><body><script>

var myObject = new Object(); // produces an Object() object
myObject['0'] = 'f';
myObject['1'] = 'o';
myObject['2'] = 'o';

console.log(myObject); // logs Object { 0="f", 1="o", 2="o"}

var myString = new String('foo'); // produces a String() object

console.log(myString); // logs foo { 0="f", 1="o", 2="o"}

</script></body></html>

As it turns out, myObject and myString are both…objects! They both can have prop‐
erties, inherit properties, and are produced from a constructor function. The my
String variable containing the 'foo' string value seems to be as simple as it goes, but
amazingly it’s got an object structure under its surface. If you examine both of the objects
produced, you will see that they are identical objects in substance but not in type. More
importantly, I hope you begin to see that JavaScript uses objects to express values.

Creating Objects | 3

http://jsfiddle.net/javascriptenlightenment/XcfC5/

Note
You might find it odd to see the string value 'foo' in the object form
because typically a string is represented in JavaScript as a primitive value
(e.g., var myString = 'foo';). I specifically used a string object value
here to highlight that anything can be an object, including values that
we might not typically think of as an object (i.e., string, number,
boolean). Also, I think this helps explain why some say that everything
in JavaScript can be an object.

JavaScript bakes the String() and Object() constructor functions into the language
itself to make the creation of a String() object and Object() object trivial. But you, as
a coder of the JavaScript language, can also create equally powerful constructor func‐
tions. Below, I demonstrate this by defining a non-native custom Person() constructor
function, so that I can create people from it.

Live Code

<!DOCTYPE html><html lang="en"><body><script>

/* define Person constructor function in order to create custom
Person() objects later */
var Person = function(living, age, gender) {
 this.living = living;
 this.age = age;
 this.gender = gender;
 this.getGender = function() {return this.gender;};
};

// instantiate a Person object and store it in the cody variable
var cody = new Person(true, 33, 'male');

console.log(cody);

/* The String() constructor function below, having been defined by JavaScript,
has the same pattern. Because the string constructor is native to JavaScript,
all we have to do to get a string instance is instantiate it. But the pattern is
the same whether we use native constructors like String() or user-defined
constructors like Person(). */

// instantiate a String object stored in the myString variable
var myString = new String('foo');

console.log(myString);

</script></body></html>

4 | Chapter 1: JavaScript Objects

http://jsfiddle.net/javascriptenlightenment/zQDSw/

The user-defined Person() constructor function can produce person objects, just as the
native String() constructor function can produce string objects. The Person() con‐
structor is no less capable, and is no more or less malleable, than the native String()
constructor or any of the native constructors found in JavaScript.

Remember how the cody object we first looked at was produced from an Object(). It’s
important to note that the Object() constructor function and the new Person() con‐
structor shown in the last code example can give us identical outcomes. Both can pro‐
duce an identical object with the same properties and property methods. Examine the
two sections of code below, showing that codyA and codyB have the same object values,
even though they are produced in different ways.

Live Code

<!DOCTYPE html><html lang="en"><body><script>

// create a codyA object using the Object() constructor

var codyA = new Object();
codyA.living = true;
codyA.age = 33;
codyA.gender = 'male';
codyA.getGender = function() {return codyA.gender;};

console.log(codyA); // logs Object {living=true, age=33, gender="male", ...}

/* The same cody object is created below, but instead of using the native
Object() constructor to create a one-off cody, we first define our own Person()
constructor that can create a cody object (and any other Person object we like)
and then instantiate it with "new". */

var Person = function(living, age, gender) {
 this.living = living;
 this.age = age;
 this.gender = gender;
 this.getGender = function() {return this.gender;};
};

// logs Object {living=true, age=33, gender="male", ...}
var codyB = new Person(true, 33, 'male');

console.log(codyB);

</script></body></html>

The main difference between the codyA and codyB objects is not found in the object
itself, but in the constructor functions used to produce the objects. The codyA object

Creating Objects | 5

http://jsfiddle.net/javascriptenlightenment/Du5YV/

was produced using an instance of the Object() constructor. The Person() constructor
constructed codyB but can also be used as a powerful, centrally defined object “factory”
to be used for creating more Person() objects. Crafting your own constructors for pro‐
ducing custom objects also sets up prototypal inheritance for Person() instances.

Both solutions resulted in the same complex object being created. It’s these two patterns
that are the most commonly used for constructing objects.

JavaScript is really just a language that is pre-packaged with a few native object con‐
structors used to produce complex objects which express a very specific type of value
(e.g., numbers, strings, functions, object, arrays, etc.), as well as the raw materials via
Function() objects for crafting user-defined object constructors [e.g., Person()]. The
end result—no matter the pattern for creating the object—is typically the creation of a
complex object.

Understanding the creation, nature, and usage of objects and their primitive equivalents
is the focus of the rest of this book.

JavaScript Constructors Construct and Return
Object Instances
The role of a constructor function is to create multiple objects that share certain qualities
and behaviors. Basically a constructor function is a cookie cutter for producing objects
that have default properties and property methods.

If you said, “A constructor is nothing more than a function,” then I would reply, “You
are correct—unless that function is invoked using the new keyword.” [e.g., new
String('foo')]. When this happens, a function takes on a special role, and JavaScript
treats the function as special by setting the value of this for the function to the new
object that is being constructed. In addition to this special behavior, the function will
return the newly created object (i.e., this) by default instead of a falsey value. The new
object that is returned from the function is considered to be an instance of the con‐
structor function that constructs it.

Consider the Person() constructor again, but this time read the comments in the code
below carefully, as they highlight the effect of the new keyword.

Live Code

<!DOCTYPE html><html lang="en"><body><script>

/* Person is a constructor function. It was written with the intent of being used
with the new keyword. */

var Person = function Person(living, age, gender) {
 /* "this" below is the new object that is being created
 (i.e., this = new Object();) */

6 | Chapter 1: JavaScript Objects

http://jsfiddle.net/javascriptenlightenment/YPR6Q/

 this.living = living;
 this.age = age;
 this.gender = gender;
 this.getGender = function() {return this.gender;};
 /* when the function is called with the new keyword "this" is returned
 instead of undefined */
};

// instantiate a Person object named cody
var cody = new Person(true, 33, 'male');

// cody is an object and an instance of Person()
console.log(typeof cody); // logs object
console.log(cody); // logs the internal properties and values of cody
console.log(cody.constructor); // logs the Person() function

</script></body></html>

The above code leverages a user-defined constructor function [i.e., Person()] to create
the cody object. This is no different from the Array() constructor creating an Array()
object [e.g., new Array()]:

Live Code

<!DOCTYPE html><html lang="en"><body><script>

// instantiate an Array object named myArray
var myArray = new Array(); // myArray is an instance of Array

// myArray is an object and an instance of Array() constructor
console.log(typeof myArray); // logs object! What? Yes, arrays are type of object

console.log(myArray); // logs []

console.log(myArray.constructor); // logs Array()

</script></body></html>

In JavaScript, most values (excluding primitive values) involve objects being created, or
instantiated, from a constructor function. An object returned from a constructor is called
an instance. Make sure you are comfortable with these semantics, as well as the pattern
of leveraging constructors to construct objects.

JavaScript Constructors Construct and Return Object Instances | 7

http://jsfiddle.net/javascriptenlightenment/cKa3a/

The JavaScript Native/Built-In Object Constructors
The JavaScript language contains nine native (or built-in) object constructors. These
objects are used by JavaScript to construct the language, and by “construct” I mean that
these objects are used to express object values in JavaScript code, as well as orchestrate
several features of the language. Thus, the native object constructors are multifaceted
in that they produce objects, but are also leveraged in facilitating many of the language’s
programming conventions. For example, functions are objects created from the Func
tion() constructor, but are also used to create other objects when called as constructor
functions using the new keyword.

Below, I list the nine native object constructors that come pre-packaged with JavaScript:

• Number()

• String()

• Boolean()

• Object()

• Array()

• Function()

• Date()

• RegExp()

• Error()

JavaScript is mostly constructed from just these nine objects (as well as string, number,
and boolean primitive values). Understanding these objects in detail is key to taking
advantage of JavaScript’s unique programming power and language flexibility.

8 | Chapter 1: JavaScript Objects

Notes
• The Math object is the oddball here. It’s a static object, rather than

a constructor function, meaning you can’t do this: var x = new
Math(). But you can use it as if it has already been instantiated (e.g.,
Math.PI). Truly, Math is a just an object namespace set up by Java‐
Script to house math functions.

• The native objects are sometimes referred to as “global objects”
since they are the objects that JavaScript has made natively avail‐
able for use. Do not confuse the term global object with the “head”
global object that is the topmost level of the scope chain, for ex‐
ample, the window object in all web browsers.

• The Number(), String(), and Boolean() constructors not only
construct objects; they also provide a primitive value for a string,
number and boolean, depending upon how the constructor is
leveraged. If you called these constructors directly, then a complex
object is returned. If you simply express a number, string, or
boolean value in your code (primitive values like 5, “foo” and
true), then the constructor will return a primitive value instead of
a complex object value.

User-Defined/Non-Native Object Constructor Functions
As you saw with the Person() constructor, we can make our own constructor functions,
from which we can produce not just one but multiple custom objects.

Below, I present the familiar Person() constructor function:
Live Code

<!DOCTYPE html><html lang="en"><body><script>

var Person = function(living, age, gender) {
 this.living = living;
 this.age = age;
 this.gender = gender;
 this.getGender = function() {return this.gender;};
};

var cody = new Person(true, 33, 'male');
console.log(cody); // logs Object {living=true, age=33, gender="male", ...}

var lisa = new Person(true, 34, 'female');
console.log(lisa); // logs Object {living=true, age=34, gender="female", ...}

</script></body></html>

User-Defined/Non-Native Object Constructor Functions | 9

http://jsfiddle.net/javascriptenlightenment/GLMr8/

As you can see, by passing unique parameters and invoking the Person() constructor
function, you could easily create a vast number of unique people objects. This can be
pretty handy when you need more than two or three objects that possess the same
properties, but with different values. Come to think of it, this is exactly what JavaScript
does with the native objects. The Person() constructor follows the same principles as
the Array() constructor. So new Array('foo','bar') is really not that different than
new Person(true, 33, 'male'). Creating your own constructor functions is just using
the same pattern that JavaScript itself uses for its own native constructor functions.

Notes
• It is not required, but when creating custom constructor functions

intended to be used with the new operator, it’s best practice to make
the first character of the constructor name uppercase: Person()
rather than person().

• One tricky thing about constructor functions is the use of the this
value inside of the function. Remember, a constructor function is
just a cookie cutter. When used with the new keyword, it will create
an object with properties and values defined inside of the con‐
structor function. When new is used, the value this literally means
the new object/instance that will be created based on the statements
inside the constructor function. On the other hand, if you create a
constructor function and call it without the use of the new keyword
the this value will refer to the “parent” object that contains the
function. More detail about this topic can be found in Chapter 6.

• It’s possible to forgo the use of the new keyword and the concept of
a constructor function by explicitly having the function return an
object. The function would have to be written explicitly to build an
Object() object and return it: var myFunction = function()
{return {prop: val}};. Doing this, however, sidesteps prototy‐
pal inheritance.

Instantiating Constructors Using the new Operator
A constructor function is basically a cookie cutter template used to create pre-configured
objects. Take String() for example. This function, when used with the new operator
[new String('foo')] creates a string instance based on the String() “template.” Let’s
look at an example.

Live Code

<!DOCTYPE html><html lang="en"><body><script>

var myString = new String('foo');

10 | Chapter 1: JavaScript Objects

http://jsfiddle.net/javascriptenlightenment/FKdsp/

console.log(myString); // logs foo {0 = "f", 1 = "o", 2 = "o"}

</script></body></html>

Above, we created a new string object that is an instance of the String() constructor
function. Just like that, we have a string value expressed in JavaScript.

Note
I’m not suggesting that you use constructor functions instead of their
literal/primitive equivalents—like var string="foo";. I am, however,
suggesting that you understand what is going on behind literal/primi‐
tive values.

As previously mentioned, the JavaScript language has the following native predefined
constructors: Number(), String(), Boolean(), Object(), Array(), Function(),
Date(), RegExp(), and Error(). We can instantiate an object instance from any of these
constructor functions by applying the new operator. Below, I construct these nine native
JavaScript objects.

Live Code

<!DOCTYPE html><html lang="en"><body><script>

// instantiate an instance for each native constructor using the new keyword

var myNumber = new Number(23);
var myString = new String('male');
var myBoolean = new Boolean(false);
var myObject = new Object();
var myArray = new Array('foo','bar');
var myFunction = new Function("x", "y", "return x*y");
var myDate = new Date();
var myRegExp = new RegExp('\bt[a-z]+\b');
var myError = new Error('Crap!');

// log/verify which constructor created the object
console.log(myNumber.constructor); // logs Number()
console.log(myString.constructor); // logs String()
console.log(myBoolean.constructor); // logs Boolean()
console.log(myObject.constructor); // logs Object()
console.log(myArray.constructor); //logs Array(), in modern browsers
console.log(myFunction.constructor); // logs Function()
console.log(myDate.constructor); // logs Date()
console.log(myRegExp.constructor); // logs RegExp()
console.log(myError.constructor); // logs Error()

</script></body></html>

Instantiating Constructors Using the new Operator | 11

http://mzl.la/ViOjPn
http://mzl.la/YM9Bvd
http://mzl.la/UEllgn
http://mzl.la/VyxfH6
http://mzl.la/TE7WoN
http://mzl.la/R5txHy
http://mzl.la/TGbFkN
http://mzl.la/VuiLfg
http://mzl.la/WHAgnu
http://jsfiddle.net/javascriptenlightenment/M9cWA/

By using the new operator, we are telling the JavaScript interpreter that we would like
an object that is an instance of the corresponding constructor function. For example, in
the code above, the Date() constructor function is used to create date objects. The
Date() constructor function is a cookie cutter for date objects. That is, it produces date
objects from a default pattern defined by the Date() constructor function.

At this point, you should be well acquainted with creating object instances from native
[e.g., new String('foo')] and user-defined constructor functions [e.g., new Per
son(true, 33, 'male')].

Note
Keep in mind that Math is a static object—a container for other
methods—and is not a constructor that uses the new operator.

Creating Shorthand/Literal Values from Constructors
JavaScript provides shortcuts—called “literals”—for manufacturing most of the native
object values without having to use new Foo() or new Bar(). For the most part, the
literal syntax accomplishes the same thing as using the new operator. The exceptions are:
Number(), String(), and Boolean()—see notes below.

If you come from other programming backgrounds, you are likely more familiar with
the literal way of creating objects. Below, I instantiate the native JavaScript constructors
using the new operator and then create corresponding literal equivalents.

Live Code

<!DOCTYPE html><html lang="en"><body><script>

var myNumber = new Number(23); // an object
var myNumberLiteral = 23; // primitive number value, not an object

var myString = new String('male'); // an object
var myStringLiteral = 'male'; // primitive string value, not an object

var myBoolean = new Boolean(false); // an object
var myBooleanLiteral = false; // primitive boolean value, not an object

var myObject = new Object();
var myObjectLiteral = {};

var myArray = new Array('foo', 'bar');
var myArrayLiteral = ['foo', 'bar'];

var myFunction = new Function("x", "y", "return x*y");
var myFunctionLiteral = function(x, y) {return x*y};

12 | Chapter 1: JavaScript Objects

http://jsfiddle.net/javascriptenlightenment/Nbkw4/

var myRegExp = new RegExp('\bt[a-z]+\b');
var myRegExpLiteral = /\bt[a-z]+\b/;

// verify that literals are created from same constructor

console.log(myNumber.constructor,myNumberLiteral.constructor);
console.log(myString.constructor,myStringLiteral.constructor);
console.log(myBoolean.constructor,myBooleanLiteral.constructor);
console.log(myObject.constructor,myObjectLiteral.constructor);
console.log(myArray.constructor,myArrayLiteral.constructor);
console.log(myFunction.constructor,myFunctionLiteral.constructor);
console.log(myRegExp.constructor,myRegExpLiteral.constructor);

</script></body></html>

What you need to take away here is the fact that, in general, using literals simply conceals
the underlying process identical to using the new operator. Maybe more importantly, it’s
a lot more convenient!

Okay, things are a little more complicated with respect to the primitive string, number,
and boolean values. In these cases, literal values take on the characteristics of primitive
values rather than complex object values. See my note below.

Note
When using literal values for string, number, and boolean, an actual
complex object is never created until the value is treated as an object.
In other words, you are dealing with a primitive datatype until you at‐
tempt to use methods or retrieve properties associated with the con‐
structor (e.g., var charactersInFoo = 'foo'.length). When this
happens, JavaScript creates a wrapper object for the literal value behind
the scenes, allowing the value to be treated as an object. Then, after the
method is called, JavaScript discards the wrapper object and the value
returns to a literal type. This is why string, number, and boolean are
considered primitive (or simple) datatypes. I hope this clarifies the
misconception that “everything in JavaScript is an object” with the con‐
cept that “everything in JavaScript can act like an object.”

Primitive (a.k.a. Simple) Values
The JavaScript values 5, 'foo', true, and false, as well as null and undefined, are
considered primitive because they are irreducible. That is, a number is a number, a string
is a string, a boolean is either true or false, and null and undefined are just that, null
and undefined. These values are inherently simple, and do not represent values that can
be made up of other values.

Primitive (a.k.a. Simple) Values | 13

Examine the code below and ask yourself if the string, number, boolean, null, and
undefined values could be more complex. Contrast this to what you know of an
Object() instance or Array() instance or really any complex object.

Live Code

<!DOCTYPE html><html lang="en"><body><script>

var myString = 'string'
var myNumber = 10;
var myBoolean = false; // could be true or false, but that is it
var myNull = null;
var myUndefined = undefined;

console.log(myString, myNumber, myBoolean, myNull, myUndefined);

/* Consider that a complex object like array or object can be made up of multiple
primitive values, and thus becomes a complex set of multiple values. */

var myObject = {
 myString: 'string',
 myNumber: 10,
 myBoolean: false,
 myNull: null,
 myUndefined: undefined
};

console.log(myObject);

var myArray = ['string', 10, false, null, undefined];

console.log(myArray);

</script></body></html>

Quite simply, primitive values represent the lowest form (i.e., simplest) of datum/
information available in JavaScript.

Notes
• As opposed to creating values with literal syntax, when a String(),
Number(), or Boolean() value is created using the new keyword,
the object created is actually a complex object.

• It’s critical that you understand the fact that the String(), Num
ber(), and Boolean() constructors are dual-purpose constructors
used to create literal/primitive values as well as complex values.
These constructors do not always return objects, but instead, when
used without the new operator, can return a primitive representa‐
tion of the actual complex object value.

14 | Chapter 1: JavaScript Objects

http://jsfiddle.net/javascriptenlightenment/xUQTC/

The Primitive Values null, undefined, “string”, 10, true,
and false Are Not Objects
The null and undefined values are such trivial values that they do not require a con‐
structor function, nor the use of the new operator to establish them as a JavaScript value.
To use null or undefined, all you do is use them as if they were an operator. The
remaining primitive values string, number, and boolean, while technically returned
from a constructor function, are not objects.

Below, I contrast the difference between primitive values and the rest of the native Java‐
Script objects.

Live Code

<!DOCTYPE html><html lang="en"><body><script>

/* no object is created when producing primitive values,
notice no use of the "new" keyword */
var primitiveString1 = "foo";
var primitiveString2 = String('foo');
var primitiveNumber1 = 10;
var primitiveNumber2 = Number('10');
var primitiveBoolean1 = true;
var primitiveBoolean2 = Boolean('true');

// confirm the typeof is not object
console.log(typeof primitiveString1, typeof primitiveString2);
 // logs 'string,string'
console.log(typeof primitiveNumber1, typeof primitiveNumber2);
 // logs 'number,number,
console.log(typeof primitiveBoolean1, typeof primitiveBoolean2);
 // logs 'boolean,boolean'

// versus the usage of a constructor and new keyword for creating objects

var myNumber = new Number(23);
var myString = new String('male');
var myBoolean = new Boolean(false);
var myObject = new Object();
var myArray = new Array('foo', 'bar');
var myFunction = new Function("x", "y", "return x * y");
var myDate = new Date();
var myRegExp = new RegExp('\\bt[a-z]+\\b');
var myError = new Error('Crap!');

// logs 'object object object object object function object function object'
console.log(
typeof myNumber,
typeof myString,
typeof myBoolean,

The Primitive Values null, undefined, “string”, 10, true, and false Are Not Objects | 15

http://jsfiddle.net/javascriptenlightenment/ZwgqD/

typeof myObject,
typeof myArray,
typeof myFunction, // BE AWARE typeof returns function for all function objects
typeof myDate,
typeof myRegExp, // BE AWARE typeof returns function for RegExp()
typeof myError
);

</script></body></html>

What I would like you to grasp from the previous code example is that primitive values
are not objects. Primitive values are special in that they are used to represent simple
values.

How Primitive Values Are Stored/Copied in JavaScript
It is extremely important to grok that primitive values are stored and manipulated at
“face value.” It might sound simple, but this means that if I store the string value "foo"
in a variable called myString, then the value "foo" is literally stored in memory as such.
Why is this important? Once you begin manipulating (e.g., copying) values, you have
to be equipped with this knowledge, because primitive values are copied literally.

In the example below, we store a copy of the myString value ('foo') in the variable
myStringCopy, and its value is literally copied. Even if we change the original value, the
copied value, referenced by the variable myStringCopy, remains unchanged.

Live Code

<!DOCTYPE html><html lang="en"><body><script>

var myString = 'foo' // create a primitive string object
var myStringCopy = myString; // copy its value into a new variable

var myString = null; // manipulate the value stored in the myString variable

/* The original value from myString was copied to myStringCopy. This is confirmed
by updating the value of myString then checking the value of myStringCopy */

console.log(myString, myStringCopy); // logs 'null foo'

</script></body></html>

The takeaway here is that primitive values are stored and manipulated as irreducible
values. Referring to them transfers their value. In the example above, we copied, or
cloned, the myString value to the variable myStringCopy. When we updated the my
String value, the myStringCopy value still had a copy of the old myString value. Re‐
member this and contrast the mechanics here with complex objects (discussed below).

16 | Chapter 1: JavaScript Objects

http://jsfiddle.net/javascriptenlightenment/Gh3dW/

Primitive Values Are Equal by Value
Primitives can be compared to see if their values are literally the same. As logic would
suggest, if you compare a variable containing the numeric value 10 with another variable
containing the numeric value 10, JavaScript will consider these equal because 10 is the
same as 10 (i.e., 10 === 10). The same, of course, would apply if you compare the
primitive string 'foo' to another primitive string with a value of 'foo'. The comparison
would say that they are equal to each other based on their value (i.e., 'foo' === 'foo').

In the code below, I demonstrate the “equal by value” concept using primitive numbers,
as well as contrast this with a complex number object.

Live Code

<!DOCTYPE html><html lang="en"><body><script>

var price1 = 10;
var price2 = 10;
var price3 = new Number('10'); // a complex numeric object because new was used
var price4 = price3;

console.log(price1 === price2); // logs true

/* logs false because price3 contains a complex number object and price 1 is
a primitive value */
console.log(price1 === price3);

// logs true because complex values are equal by reference, not value
console.log(price4 === price3);

// what if we update the price4 variable to contain a primitive value?
price4 = 10;

console.log(price4 === price3); /* logs false: price4 is now primitive
 rather than complex */

</script></body></html>

The takeaway here is that primitives, when compared, will check to see if the expressed
values are equal. When a string, number, or boolean value is created using the new
keyword [e.g., new Number('10')], the value is no longer primitive. As such, comparison
does not work the same as if the value had been created via literal syntax. This is not
surprising, given that primitive values are stored by value (does 10 === 10?), while
complex values are stored by reference (do price3 and price4 contain a reference to
the same value?).

Primitive Values Are Equal by Value | 17

http://jsfiddle.net/javascriptenlightenment/NewQU/

The String, Number, and Boolean Primitive Values Act Like
Objects When Used Like Objects
When a primitive value is used as if it were an object created by a constructor, JavaScript
converts it to an object in order to respond to the expression at hand, but then discards
the object qualities and changes it back to a primitive value. In the code below, I take
primitive values and showcase what happens when the values are treated like objects.

Live Code

<!DOCTYPE html><html lang="en"><body><script>

// Produce primitive values
var myNull = null;
var myUndefined = undefined;
var primitiveString1 = "foo";
var primitiveString2 = String('foo'); // did not use new, so we get primitive
var primitiveNumber1 = 10;
var primitiveNumber2 = Number('10'); // did not use new, so we get primitive
var primitiveBoolean1 = true;
var primitiveBoolean2 = Boolean('true'); // did not use new, so we get primitive

/* Access the toString() property method (inherited by objects from
object.prototype) to demonstrate that the primitive values are converted to
objects when treated like objects. */

// logs "string string"
console.log(primitiveString1.toString(), primitiveString2.toString());

// logs "number number"
console.log(primitiveNumber1.toString(), primitiveNumber2.toString());

// logs "boolean boolean"
console.log(primitiveBoolean1.toString(), primitiveBoolean2.toString());

/* This will throw an error and not show up in firebug lite, as null and
undefined do not convert to objects and do not have constructors. */
console.log(myNull.toString());
console.log(myUndefined.toString());

</script></body></html>

In the above code example, all of the primitive values (except null and undefined) are
converted to objects, so as to leverage the toString() method, and then are returned
to primitive values once the method is invoked and returned.

18 | Chapter 1: JavaScript Objects

http://jsfiddle.net/javascriptenlightenment/gSTNp/

Complex (a.k.a. Composite) Values
The native object constructors Object(), Array(), Function(), Date(), Error(), and
RegExp() are complex because they can contain one or or more primitive or complex
values. Essentially, complex values can be made up of many different types of JavaScript
objects. It could be said that complex objects have an unknown size in memory because
complex objects can contain any value and not a specific known value. In the code below,
we create an object and an array that houses all of the primitive objects.

Live Code

<!DOCTYPE html><html lang="en"><body><script>

var object = {
 myString: 'string',
 myNumber: 10,
 myBoolean: false,
 myNull: null,
 myUndefined: undefined
};

var array = ['string', 10, false, null, undefined];

/* Contrast this to the simplicity of the primitive values below. In a primitive
form, none of the values below can be more complex than what you see while
complex values can encapsulate any of the JavaScript values (seen above). */

var myString = 'string';
var myNumber = 10;
var myBoolean = false;
var myNull = null;
var myUndefined = undefined;

</script></body></html>

The takeaway here is that complex values are a composite of values and differ in com‐
plexity and composition to primitive values.

Note
The term “complex object” has also been expressed in other writings as
“composite objects” or “reference types.” If it’s not obvious, all these
names describe the nature of a JavaScript value excluding primitive
values. Primitive values are not “referenced by value” and cannot rep‐
resent a composite (i.e., a thing made up of several parts or elements)
of other values. Complex objects, on the other hand, are “referenced by
value” and can contain or encapsulate other values.

Complex (a.k.a. Composite) Values | 19

http://jsfiddle.net/javascriptenlightenment/JeFqt/

How Complex Values Are Stored/Copied in JavaScript
It is extremely important to grok that complex values are stored and manipulated by
reference. When creating a variable containing a complex object, the value is stored in
memory at an address. When you reference a complex object, you’re using its name (i.e.,
variable or object property) to retrieve the value at that address in memory. The impli‐
cations are significant when you consider what happens when you attempt to copy a
complex value. Below, we create an object stored in the variable myObject. Then the
value in myObject is copied to the variable copyOfMyObject. Really, it is not a copy of
the object—more like a copy of the address of the object.

Live Code

<!DOCTYPE html><html lang="en"><body><script>

var myObject = {};

var copyOfMyObject = myObject; /* not copied by value,
 just the reference is copied */

myObject.foo = 'bar'; // manipulate the value stored in myObject

/* Now if we log myObject and copyOfMyObject, they will have a foo property
because they reference the same object. */
console.log(myObject, copyOfMyObject); /* logs 'Object { foo="bar"}
 Object { foo="bar"}' */

</script></body></html>

What you need to realize is that, unlike primitive values that would copy a value, objects
(a.k.a. complex values) are stored by reference. As such, the reference (a.k.a. address) is
copied, but not the actual value. This means that objects are not copied at all. Like I said,
what is copied is the address or reference to the object in the memory stack. In our code
example, myObject and copyOfMyObject point to the same object stored in memory.

The big takeaway here is that when you change a complex value—because it is stored
by reference—you change the value stored in all variables that reference that complex
value. In our code example, both myObject and copyOfMyObject are changed when you
update the object stored in either variable.

20 | Chapter 1: JavaScript Objects

http://jsfiddle.net/javascriptenlightenment/hypZC/

Notes
• When the values String(), Number(), and Boolean() are created

using the new keyword, or converted to complex objects behind the
scenes, the values continue to be stored/copied by value. So, even
though primitive values can be treated like complex values, they
do not take on the quality of being copied by reference.

• To truly make a copy of an object, you have to extract the values
from the old object, and inject them into a new object.

Complex Objects Are Equal by Reference
When comparing complex objects, they are equal only when they reference the same
object (i.e., have the same address). Two variables containing identical objects are not
equal to each other since they do not actually point at the same object.

Below, objectFoo and objectBar have the same properties and are, in fact, identical
objects, but when asked if they are equal via ===, JavaScript tells us they are not.

Live Code

<!DOCTYPE html><html lang="en"><body><script>

var objectFoo = {same: 'same'};
var objectBar = {same: 'same'};

/* logs false, JS does not care that they are identical
and of the same object type */
console.log(objectFoo === objectBar);

// how complex objects are measured for equality
var objectA = {foo: 'bar'};
var objectB = objectA;

console.log(objectA === objectB); /* logs true because they reference
 the same object */

</script></body></html>

The takeaway here is that variables that point to a complex object in memory are equal
only because they are using the same “address.” Conversely, two independently created
objects are not equal even if they are of the same type and possess the exact same
properties.

Complex Objects Are Equal by Reference | 21

http://jsfiddle.net/javascriptenlightenment/g4CfS/

Complex Objects Have Dynamic Properties
A new variable that points to an existing complex object does not copy the object. This
is why complex objects are sometimes called reference objects. A complex object can
have as many references as you want, and they will always refer to the same object, even
as that object changes.

Live Code

<!DOCTYPE html><html lang="en"><body><script>

var objA = {property: 'value'};
var pointer1 = objA;
var pointer2 = pointer1;

// update the objA.property, and all references (pointer1 and pointer2) are updated
objA.property = null;

/* logs 'null null null' because objA, pointer1, and pointer2 all reference
the same object */
console.log(objA.property, pointer1.property, pointer2.property);

</script></body></html>

This allows for dynamic object properties because you can define an object, create ref‐
erences, update the object, and all of the variables referring to the object will “get” that
update.

The typeof Operator Used on Primitive and
Complex Values
The typeof operator can be used to return the type of value you are dealing with. But
the values returned from it are not exactly consistent or what some might say, logical.
The following code exhibits the returned values from using the typeof operator.

Live Code

<!DOCTYPE html><html lang="en"><body><script>

// primitive values
var myNull = null;
var myUndefined = undefined;
var primitiveString1 = "string";
var primitiveString2 = String('string');
var primitiveNumber1 = 10;
var primitiveNumber2 = Number('10');
var primitiveBoolean1 = true;
var primitiveBoolean2 = Boolean('true');

22 | Chapter 1: JavaScript Objects

http://jsfiddle.net/javascriptenlightenment/SSsVC/
http://jsfiddle.net/javascriptenlightenment/QM95R/

console.log(typeof myNull); // logs object? WHAT? Be aware...
console.log(typeof myUndefined); // logs undefined
console.log(typeof primitiveString1, typeof primitiveString2);
 // logs string string
console.log(typeof primitiveNumber1, typeof primitiveNumber2);
 // logs number number
console.log(typeof primitiveBoolean1, typeof primitiveBoolean2);
 // logs boolean boolean

// Complex Values
var myNumber = new Number(23);
var myString = new String('male');
var myBoolean = new Boolean(false);
var myObject = new Object();
var myArray = new Array('foo', 'bar');
var myFunction = new Function("x", "y", "return x * y");
var myDate = new Date();
var myRegExp = new RegExp('\\bt[a-z]+\\b');
var myError = new Error('Crap!');

console.log(typeof myNumber); // logs object
console.log(typeof myString); // logs object
console.log(typeof myBoolean); // logs object
console.log(typeof myObject); // logs object
console.log(typeof myArray); // logs object
console.log(typeof myFunction); // logs function? WHAT? Be aware...
console.log(typeof myDate); // logs object
console.log(typeof myRegExp); // logs function? WHAT? Be aware...
console.log(typeof myError); // logs object

</script></body></html>

When using this operator on values, you should be aware of the potential values returned
given the type of value (primitive or complex) that you are dealing with.

Dynamic Properties Allow for Mutable Objects
Complex objects are made up of dynamic properties. This allows for user-defined
objects—and most of the native objects—to be mutated. This means that the majority
of objects in JavaScript can be updated or changed at any time. Because of this, we can
change the native pre-configured nature of JavaScript itself by augmenting its native
objects. However, I am not telling you to do this; in fact, I do not think you should. But
let’s not cloud what is possible with opinions.

This means it’s possible to store properties on native constructors and add new methods
to the native objects with additions to their prototype objects.

In the code below, I mutate the String() constructor function and String.prototype.

Dynamic Properties Allow for Mutable Objects | 23

Live Code

<!DOCTYPE html><html lang="en"><body><script>

/* augment the built-in String constructor Function() with the augmentedProperties
property */
String.augmentedProperties = [];

if (!String.prototype.trimIT) { // if the prototype does not have trimIT() add it
 String.prototype.trimIT = function() {
 return this.replace(/^\s+|\s+$/g, '');
 }

 // now add trimIT string to the augmentedProperties array
 String.augmentedProperties.push('trimIT');
}
var myString = ' trim me ';
console.log(myString.trimIT()); /* invoke our custom trimIT string method,
 logs 'trim me' */

console.log(String.augmentedProperties.join()); // logs 'trimIT'

</script></body></html>

I want to drive home the fact that objects in JavaScript are dynamic. This allows objects
in JavaScript to be mutated. Essentially, the entire language can be mutated into a custom
version (e.g., trimIT string method). Again, I am not recommending this—I am just
pointing out that it is part of the nature of objects in JavaScript.

Note
Careful! If you mutate the native inner workings of JavaScript, you po‐
tentially have a custom version of JavaScript to deal with. Proceed with
caution, as most people will assume that JavaScript is the same whenever
it’s available.

All Constructor Instances Have Constructor Properties that
Point to Their Constructor Function
When any object is instantiated, the constructor property is created behind the scenes
as a property of that object/instance. This points to the constructor function that created
the object. Below, we create an Object() object, stored in the foo variable, and then
verify that the constructor property is available for the object we created.

Live Code

<!DOCTYPE html><html lang="en"><body><script>

24 | Chapter 1: JavaScript Objects

http://jsfiddle.net/javascriptenlightenment/QvbDw/
http://jsfiddle.net/javascriptenlightenment/ZtewV/

var foo = {};

console.log(foo.constructor === Object) /* logs true, because object()
 constructed foo */
console.log(foo.constructor) // points to the Object() constructor function

</script></body></html>

This can be handy: if I’m working with some instance, and I can’t see who or what created
it (especially if it was someone else’s code), I can determine if it’s an array, an object, or
whatever.

Below, you can see that I have instantiated most of the pre-configured objects that come
included with the JavaScript language. Note that using the constructor property on
literal/primitive values correctly resolves (i.e., points) to the right constructor.

Live Code

<!DOCTYPE html><html lang="en"><body><script>

var myNumber = new Number('23');
var myNumberL = 23; // literal shorthand
var myString = new String('male');
var myStringL = 'male'; // literal shorthand
var myBoolean = new Boolean('true');
var myBooleanL = true; // literal shorthand
var myObject = new Object();
var myObjectL = {}; // literal shorthand
var myArray = new Array();
var myArrayL = []; // literal shorthand
var myFunction = new Function();
var myFunctionL = function() {}; // literal shorthand
var myDate = new Date();
var myRegExp = new RegExp('/./');
var myRegExpL = /./; // literal shorthand
var myError = new Error();

console.log(// all of these return true
 myNumber.constructor === Number,
 myNumberL.constructor === Number,
 myString.constructor === String,
 myStringL.constructor === String,
 myBoolean.constructor === Boolean,
 myBooleanL.constructor === Boolean,
 myObject.constructor === Object,
 myObjectL.constructor === Object,
 myArray.constructor === Array,
 myArrayL.constructor === Array,
 myFunction.constructor === Function,
 myFunctionL.constructor === Function,
 myDate.constructor === Date,
 myRegExp.constructor === RegExp,

All Constructor Instances Have Constructor Properties that Point to Their Constructor Function | 25

http://jsfiddle.net/javascriptenlightenment/yJqaF/

 myRegExpL.constructor === RegExp,
 myError.constructor === Error
);

</script></body></html>

The constructor property also works on user-defined constructor functions. Below, we
define a CustomConstructor() constructor function, then using the keyword new, we
invoke the function to produce an object. Once we have our object, we can then leverage
the constructor property.

Live Code

<!DOCTYPE html><html lang="en"><body><script>

var CustomConstructor = function CustomConstructor(){ return 'Wow!'; };
var instanceOfCustomObject = new CustomConstructor();

// logs true
console.log(instanceOfCustomObject.constructor === CustomConstructor);

// returns a reference to CustomConstructor() function
// returns 'function() { return 'Wow!'; };'
console.log(instanceOfCustomObject.constructor);

</script></body></html>

Notes
• You might be confused as to why primitive values have constructor

properties that point to constructor functions when objects are not
returned. By using a primitive value, the constructor is still called,
so there is still a relationship with primitive values and constructor
functions. However, the end result is a primitive value.

• If you would like the constructor property to log the actual name
of the constructor for user-defined constructor function expres‐
sions, you have to give the constructor function expressions an
actual name (e.g., var Person = function Person(){};).

Verify that an Object Is an Instance of a Particular
Constructor Function
By using the instanceof operator, we can determine (true or false) if an object is an
instance of a particular constructor function.

26 | Chapter 1: JavaScript Objects

http://jsfiddle.net/javascriptenlightenment/MDs2t/

Below, we are verifying if the object InstanceOfCustomObject is an instance of the
CustomConstructor constructor function. This works with user-defined objects as well
as native objects created with the new operator.

Live Code

<!DOCTYPE html><html lang="en"><body><script>

// user-defined object constructor
var CustomConstructor = function() {this.foo = 'bar';};

// instantiate an instance of CustomConstructor
var instanceOfCustomObject = new CustomConstructor();

console.log(instanceOfCustomObject instanceof CustomConstructor); // logs true

// works the same as a native object
console.log(new Array('foo') instanceof Array) // logs true

</script></body></html>

Notes
• One thing to watch out for when dealing with the instanceof

operator is that it will return true any time you ask if an object is
an instance of Object since all objects inherit from the Object()
Constructor.

• The instanceof operator will return false when dealing with prim‐
itive values that leverage object wrappers (e.g., 'foo' instanceof
String // returns false). Had the string 'foo' been created with
the new operator, the instanceof operator would have returned
true. So, keep in mind that instanceof really only works with
complex objects and instances created from constructor functions
that return objects.

An Instance Created From a Constructor Can Have Its Own
Independent Properties (Instance Properties)
In JavaScript, objects can be augmented at any time (i.e., dynamic properties). As pre‐
viously mentioned, and to be exact, JavaScript has mutable objects. This means that
objects created from a constructor function can be augmented with properties.

Below, I create an instance from the Array() constructor and then augment it with its
own property.

An Instance Created From a Constructor Can Have Its Own Independent Properties (Instance Properties) | 27

http://jsfiddle.net/javascriptenlightenment/g9Tt6/

Live Code

<!DOCTYPE html><html lang="en"><body><script>

var myArray = new Array();
myArray.prop = 'test';

console.log(myArray.prop) // logs 'test'

</script></body></html>

This could be done with Object(), RegExp(), or any of the other non-primitive
constructors—even Boolean().

Live Code

<!DOCTYPE html><html lang="en"><body><script>

/* this can be done with any of the native constructors that actually
produce an object */
var myString = new String();
var myNumber = new Number();
var myBoolean = new Boolean(true);
var myObject = new Object();
var myArray = new Array();
var myFunction = new Function('return 2+2');
var myRegExp = new RegExp('\bt[a-z]+\b');

myString.prop = 'test';
myNumber.prop = 'test';
myBoolean.prop = 'test';
myObject.prop = 'test';
myArray.prop = 'test';
myFunction.prop = 'test';
myRegExp.prop = 'test';

// logs 'test', 'test', 'test', 'test', 'test', 'test', 'test'
console.log(myString.prop,myNumber.prop,myBoolean.prop,myObject.prop,
 myArray.prop,myFunction.prop, myRegExp.prop);

// be aware: instance properties do not work with primitive/literal values
var myString = 'string';
var myNumber = 1;
var myBoolean = true;

myString.prop = true;
myNumber.prop = true;
myBoolean.prop = true;

// logs undefined, undefined, undefined
console.log(myString.prop, myNumber.prop, myBoolean.prop);

</script></body></html>

28 | Chapter 1: JavaScript Objects

http://jsfiddle.net/javascriptenlightenment/RuQfJ/
http://jsfiddle.net/javascriptenlightenment/GnbPf/

Adding properties to objects created from a constructor function is not uncommon.
Remember: object instances created from constructor functions are just plain old
objects.

Note
Keep in mind that, besides their own properties, instances can have
properties inherited from the prototype chain. Or, as we just saw in the
code, properties added to the constructor after instantiation. This high‐
lights the dynamic nature of objects in JavaScript.

The Semantics of “JavaScript Objects” and
“Object() Objects”
Do not confuse the general term “JavaScript objects”, which refers to the notion of
objects in JavaScript, with Object() objects. An Object() object [e.g., var myObject
= new Object()] is a very specific type of value expressed in JavaScript. Just as an
Array() object is a type of object called array, an Object() object is a type of object
called object. The gist is that the Object() constructor function produces an empty
generic object container, which is referred to as an Object() object. Similarly, the Ar
ray() constructor function produces an array object, and we refer to these objects as
Array() objects.

In this book, the term “JavaScript object” is used to refer to all objects in JavaScript,
because most of the values in JavaScript can act like objects. This is due to the fact that
the majority of JavaScript values are created from a native constructor function which
produces a very specific type of object.

What you need to remember is that an Object() object is a very specific kind of value.
It’s a generic empty object. Do not confuse this with the term “JavaScript objects” used
to refer to most of the values that can be expressed in JavaScript as an object.

The Semantics of “JavaScript Objects” and “Object() Objects” | 29

CHAPTER 2

Working with Objects and Properties

Complex Objects Can Contain Most of the JavaScript
Values as Properties
A complex object can hold any permitted JavaScript value. Below, I create an Ob
ject() object called myObject and then add properties representing the majority of
values available in JavaScript.

Live Code

<!DOCTYPE html><html lang="en"><body><script>

var myObject = {};

/* contain properties inside of myObject representing most of the native
JavaScript values */

myObject.myFunction = function() {};
myObject.myArray = [];
myObject.myString = 'string';
myObject.myNumber = 33;
myObject.myDate = new Date();
myObject.myRegExp = /a/;
myObject.myNull = null;
myObject.myUndefined = undefined;
myObject.myObject = {};
myObject.myMath_PI = Math.PI;
myObject.myError = new Error('Crap!');

console.log(myObject.myFunction,myObject.myArray,myObject.myString,
 myObject.myNumber,myObject.myDate,myObject.myRegExp,myObject.myNull,
 myObject.myNull,myObject.myUndefined,myObject.myObject,
 myObject.myMath_PI,myObject.myError);

31

http://jsfiddle.net/javascriptenlightenment/JAEMd/

/* works the same with any of the complex objects, for example a function */

var myFunction = function() {};

myFunction.myFunction = function() {};
myFunction.myArray = [];
myFunction.myString = 'string';
myFunction.myNumber = 33;
myFunction.myDate = new Date();
myFunction.myRegExp = /a/;
myFunction.myNull = null;
myFunction.myUndefined = undefined;
myFunction.myObject = {};
myFunction.myMath_PI = Math.PI;
myFunction.myError = new Error('Crap!');

console.log(myFunction.myFunction,myFunction.myArray,myFunction.myString,
 myFunction.myNumber,myFunction.myDate,myFunction.myRegExp,myFunction.myNull,
 myFunction.myNull,myFunction.myUndefined,myFunction.myObject,
 myFunction.myMath_PI,myFunction.myError);

</script></body></html>

The simple takeaway here is that complex objects can contain—or refer to—anything
you can nominally express in JavaScript. You should not be surprised when you see this
done, as all of the native objects can be mutated. This even applies to String(), Num
ber(), and Boolean() values in their object form—i.e., when they are created with the
new operator.

Encapsulating Complex Objects in a Programmatically
Beneficial Way
The Object(), Array(), and Function() objects can contain other complex objects.
Below, I demonstrate this by setting up an object tree using Object() objects.

Live Code

<!DOCTYPE html><html lang="en"><body><script>

// encapsulation using objects, creates object chains
var object1 = {
 object1_1: {
 object1_1_1: {foo: 'bar'},
 object1_1_2: {},
 },
 object1_2: {
 object1_2_1: {},
 object1_2_2: {},
 }
};

32 | Chapter 2: Working with Objects and Properties

http://jsfiddle.net/javascriptenlightenment/mLYfe/

console.log(object1.object1_1.object1_1_1.foo); // logs 'bar'

</script></body></html>

The same thing could be done with an Array() object (a.k.a. multidimensional array),
or with a Function() object.

Live Code

<!DOCTYPE html><html lang="en"><body><script>

// encapsulation using arrays, creates multidimensional array chain
var myArray= [[[]]]; /* an empty array, inside an empty array,
 inside an empty array */

/* Here is an example of encapsulation using functions: an empty function
inside an empty function inside an empty function. */
var myFunction = function() {
 // empty
 var myFunction = function() {
 // empty
 var myFunction = function() {
 // empty
 };
 };
};

// we can get crazy and mix and match too
var foo = [{foo: [{bar: {say: function() {return 'hi';}}}]}];
console.log(foo[0].foo[0].bar.say()); // logs 'hi'

</script></body></html>

The main takeaway here is that some of the complex objects are designed to encapsulate
other objects in a programmatically beneficial way.

Getting/Setting/Updating an Object’s Properties Using
Dot Notation or Bracket Notation
We can get, set, or update an object’s properties using either dot notation or bracket
notation.

Below, I demonstrate dot notation, which is accomplished by using the object name
followed by a period and then followed by the property to get, set, or update (e.g.,
objectName.property).

Live Code

<!DOCTYPE html><html lang="en"><body><script>

Getting/Setting/Updating an Object’s Properties Using Dot Notation or Bracket Notation | 33

http://jsfiddle.net/javascriptenlightenment/9J6Ya/
http://jsfiddle.net/javascriptenlightenment/DYkey/

// create cody Object() object
var cody = new Object();

// setting properties
cody.living = true;
cody.age = 33;
cody.gender = 'male';
cody.getGender = function() {return cody.gender;};

// getting properties
console.log(
 cody.living,
 cody.age,
 cody.gender,
 cody.getGender()
); // logs 'true 33 male male'

// updating properties, exactly like setting
cody.living = false;
cody.age = 99;
cody.gender = 'female';
cody.getGender = function() {return 'Gender = ' + cody.gender;};

console.log(cody);

</script></body></html>

Dot notation is the most common notation for getting, setting, or updating an object’s
properties.

Bracket notation, unless required, is not as commonly used. Below, I replace the dot
notation used above with bracket notation. The object name is followed by an opening
bracket, the property name (in quotes), and then a closing bracket:

Live Code

<!DOCTYPE html><html lang="en"><body><script>

// creating cody Object() object
var cody = new Object();

// setting properties
cody['living'] = true;
cody['age'] = 33;
cody['gender'] = 'male';
cody['getGender'] = function() {return cody.gender;};

// getting properties
console.log(
 cody['living'],
 cody['age'],
 cody['gender'],

34 | Chapter 2: Working with Objects and Properties

http://jsfiddle.net/javascriptenlightenment/94GXg/

 cody['getGender']() // just slap the function invocation on the end!
); // logs 'true 33 male male'

// updating properties, very similar to setting
cody['living'] = false;
cody['age'] = 99;
cody['gender'] = 'female';
cody['getGender'] = function() {return 'Gender = ' + cody.gender;};

console.log(cody);

</script></body></html>

Bracket notation can be very handy when you need to access a property key and what
you have to work with is a variable that contains a string value representing the property
name. Below, I demonstrate the advantage of bracket notation over dot notation by using
it to access the property foobar. I do this using two variables that, when joined, produce
the string version of the property key contained in foobarObject.

Live Code

<!DOCTYPE html><html lang="en"><body><script>

var foobarObject = {foobar: 'Foobar is code for no code'};

var string1 = 'foo';
var string2 = 'bar';

console.log(foobarObject[string1 + string2]); // Let's see dot notation do this!

</script></body></html>

Additionally, bracket notation can come in handy for getting at property names that are
invalid JavaScript identifiers. Below, I use a number and a reserved keyword as a property
name (valid as a string) that only bracket notation can access.

Live Code

<!DOCTYPE html><html lang="en"><body><script>

var myObject = {'123':'zero','class':'foo'};

// Let's see dot notation do this! Keep in mind 'class' is a keyword in JavaScript
console.log(myObject['123'], myObject['class']); // logs 'zero foo'

// it can't do what bracket notation can do, in fact it causes an error
// console.log(myObject.0, myObject.class);

</script></body></html>

Getting/Setting/Updating an Object’s Properties Using Dot Notation or Bracket Notation | 35

http://jsfiddle.net/javascriptenlightenment/RQB6N/
http://jsfiddle.net/javascriptenlightenment/D6GhN/

Notes
• Because objects can contain other objects, it is not uncommon to

see cody.object.object.object.object or cody['object']

['object']['object']['object']. This is called object chaining.
The encapsulation of object(s) can go on indefinitely.

• Objects are mutable in JavaScript, meaning that getting, setting, or
updating them can be performed on most objects at any time.
By using the bracket notation (e.g., cody['age']), you can mimic
Associative Arrays found in other languages.

• If a property inside an object is a method, all you have to do is use
the () operators [e.g., cody.getGender()] to invoke the property
method.

Deleting Object Properties
The delete operator can be used to completely remove properties from an object. Below,
we delete the bar property from the foo object.

Live Code

<!DOCTYPE html><html lang="en"><body><script>

var foo = {bar: 'bar'};
delete foo.bar;
console.log('bar' in foo); // logs false, because bar was deleted from foo

</script></body></html>

Notes
• Delete will not delete properties that are found on the prototype

chain.
• Deleting is the only way to actually remove a property from an

object. Setting the property to undefined or null only changes the
value of a property. It does not remove the property from the object.

How References to Object Properties Are Resolved
If you attempt to access a property that is not contained in an object, JavaScript will
always attempt to find the property or method using the prototype chain. Below, I create
an array and then attempt to access a property called foo that has not yet been defined.

36 | Chapter 2: Working with Objects and Properties

http://jsfiddle.net/javascriptenlightenment/Zwg8T/

You might think that because myArray.foo is not a property of the myArray object,
JavaScript will immediately return undefined. But JavaScript will look in two more
places (Array.prototype and then Object.prototype) for the value of foo before it
returns undefined.

Live Code

<!DOCTYPE html><html lang="en"><body><script>

var myArray = [];

console.log(myArray.foo); // logs undefined

/* JS will look at Array.prototype for Array.prototype.foo, but it is not there.
Then it will look for it at Object.prototype, but it is not there either,
so undefined is returned! */

</script></body></html>

When I attempt to access a property of an object, it will check that object instance for
the property. If it has the property, it will return the value of the property, and there is
no inheritance occurring because the prototype chain is not leveraged. If the instance
does not have the property, JavaScript will then look for it on the object’s constructor
function prototype object.

All object instances have a property that is a secret link [a.k.a. __proto__] to the con‐
structor function that created the instance. This secret link can be leveraged to grab the
constructor function, specifically the prototype property of the instance’s constructor
function.

This is one of the most confusing aspects of objects in JavaScript. But let’s reason this
out. Remember that a function is also an object with properties. It makes sense to allow
objects to inherit properties from other objects. Just like saying: “Hey object B, I would
like you to share all the properties that object A has.” JavaScript wires this all up for native
objects by default via the prototype object. When you create your own constructor
functions, you can leverage prototype chaining as well.

How exactly JavaScript accomplishes this is confusing until you see it for what it is: just
a set of rules. Let’s create an array to examine the prototype property closer.

Live Code

<!DOCTYPE html><html lang="en"><body><script>

// myArray is an Array object
var myArray = ['foo', 'bar'];

console.log(myArray.join()); // join() is actually defined at Array.prototype.join

</script></body></html>

How References to Object Properties Are Resolved | 37

http://jsfiddle.net/javascriptenlightenment/DjC6E/
http://mzl.la/12dULO9
http://jsfiddle.net/javascriptenlightenment/VBRyb/

Our Array() instance is an object with properties and methods. As we access one of the
array methods, like join(), let’s ask ourselves: Does the myArray instance created from
the Array() constructor have its own join() method? Let’s check.

Live Code

<!DOCTYPE html><html lang="en"><body><script>

var myArray = ['foo', 'bar'];

console.log(myArray.hasOwnProperty('join')); // logs false

</script></body></html>

No, it does not. Yet myArray has access to the join() method as if it were its own property.
What happened here? Well, you just observed the prototype chain in action. We accessed
a property that, although not contained in the myArray object, could be found by Java‐
Script somewhere else. That somewhere else is very specific. When the Array() con‐
structor was created by JavaScript, the join() method was added (among others) as a
property of the prototype property of Array().

To reiterate, if you try to access a property on an object that does not contain it, JavaScript
will search the prototype chain for this value. First it will look at the constructor func‐
tion that created the object (e.g., Array), and inspect its prototype (e.g., Array.proto
type) to see if the property can be found there. If the first prototype object does not have
the property, then JavaScript keeps searching up the chain at the constructor behind the
initial constructor. It can do this all the way up to the end of the chain.

Where does the chain end? Let’s examine the example again, invoking the toLocale
String() method on myArray.

Live Code

<!DOCTYPE html><html lang="en"><body><script>

// myArray and Array.prototype contains no toLocaleString() method
var myArray = ['foo', 'bar'];

// toLocaleString() is actually defined at Object.prototype.toLocaleString
console.log(myArray.toLocaleString()); // logs 'foo,bar'

</script></body></html>

The toLocaleString() method is not defined within the myArray object. So, the pro‐
totype chaining rule is invoked and JavaScript looks for the property in the Array
constructor’s prototype property (e.g., Array.prototype). It is not there either, so the
chain rule is invoked again and we look for the property in the Object() prototype
property (Object.prototype). And yes, it is found there. Had it not been found there,
JavaScript would have produced an error stating that the property was undefined.

38 | Chapter 2: Working with Objects and Properties

http://jsfiddle.net/javascriptenlightenment/bceyR/
http://jsfiddle.net/javascriptenlightenment/vVVeM/

Since all prototype properties are objects, the final link in the chain is Object.proto
type. There is no other constructor prototype property that can be examined.

There is an entire chapter ahead that breaks down the prototype chain into smaller parts,
so if this was completely lost on you, read Chapter 8 and then come back to this ex‐
planation to solidify your understanding. From this short read on the matter, I
hope you understand that when a property is not found (and deemed undefined), Java‐
Script will have looked at several prototype objects to determine that a property is
undefined. A lookup always occurs, and this lookup process is how JavaScript handles
inheritance as well as simple property lookups.

Using hasOwnProperty, Verify That an Object Property Is
Not From the Prototype Chain
While the in operator can check for properties of an object, including properties from
the prototype chain, the hasOwnProperty method can check an object for a property
that is not from the prototype chain.

Below, we want to know if myObject contains the property foo, and that it is not inher‐
iting the property from the prototype chain. To do this, we ask if myObject has its own
property called foo.

Live Code

<!DOCTYPE html><html lang="en"><body><script>

var myObject = {foo: 'value'};

console.log(myObject.hasOwnProperty('foo')) // logs true

// vs. a property from the prototype chain
console.log(myObject.hasOwnProperty('toString'); // logs false

</script></body></html>

The hasOwnProperty method should be leveraged when you need to determine whether
a property is local to an object or inherited from the prototype chain.

Checking If an Object Contains a Given Property Using
the in Operator
The in operator is used to verify (true or false) if an object contains a given property.
Below, we are checking to see if foo is a property in myObject.

Using hasOwnProperty, Verify That an Object Property Is Not From the Prototype Chain | 39

http://jsfiddle.net/javascriptenlightenment/5ecJb/

Live Code

<!DOCTYPE html><html lang="en"><body><script>

var myObject = {foo: 'value'};
console.log('foo' in myObject); // logs true

</script></body></html>

You should be aware that the in operator not only checks for properties contained in
the object referenced, but also for any properties that object inherits via the proto
type chain. Thus, the same property lookup rules apply and the property, if not in the
current object, will be searched for on the prototype chain.

This means that myObject in the above code actually contains a toString property
method via the prototype chain (Object.prototype.toString), even if we did not
specify one (e.g., myObject.toString = 'foo').

Live Code

<!DOCTYPE html><html lang="en"><body><script>

var myObject = {foo: 'value'};
console.log('toString' in myObject); // logs true

</script></body></html>

In the last code example, the toString property is not literally inside of the myObject
object. However, it is inherited from Object.prototype and so the in operator con‐
cludes that myObject does in fact have an inherited toString() property method.

Enumerate (Loop Over) an Object’s Properties using the
for in Loop
By using for in, we can loop over each property in an object. In the code below, we are
using the for in loop to retrieve the property names from the cody object.

Live Code

<!DOCTYPE html><html lang="en"><body><script>

var cody = {
 age : 23,
 gender : 'male'
};

for (var key in cody) { // key is a variable used to represent each property name
 // avoid properties inherited from the prototype chain
 if(cody.hasOwnProperty(key)) {
 console.log(key);

40 | Chapter 2: Working with Objects and Properties

http://jsfiddle.net/javascriptenlightenment/z6Bet/
http://jsfiddle.net/javascriptenlightenment/Z3B87/
http://jsfiddle.net/javascriptenlightenment/fwr2B/

 }
}

</script></body></html>

Notes
• The for in loop has a drawback. It will not only access the prop‐

erties of the specific object being looped over, but will also include
in the loop any properties inherited (via the prototype chain) by
the object. Thus, if this is not the desired result (and most of the
time it is not), we have to use a simple if statement inside of the
loop to make sure we only access the properties contained within
the specific object we are looping over. This can be done by using
the hasOwnProperty() method, inherited by all objects.

• The order in which the properties are accessed in the loop is not
always in the order they are defined within the loop. Additionally
the order in which you defined properties is not necessarily the
order they are accessed.

• Only properties that are enumerable (i.e., available when looping
over an object’s properties) show up with the for in loop. For
example, the constructor property will not show up. It is possible
to check which properties are enumerable with the propertyIsE
numerable() method.

Host Objects versus Native Objects
You should be aware that the environment (e.g., a web browser) in which JavaScript is
executed typically contains what are known as host objects. Host objects are not part of
the ECMAScript implementation, but are available as objects during execution. Of
course, the availability and behavior of a host object depends completely on what the
host environment provides.

For example, in the web browser environment the window/head object and all of its
containing objects [excluding what JavaScript provides] are considered host objects.

Below, I examine the properties of the window object.

Host Objects versus Native Objects | 41

http://mzl.la/WHAqLy
http://mzl.la/WHAqLy
https://developer.mozilla.org/en/Gecko_DOM_Reference
https://developer.mozilla.org/en/Gecko_DOM_Reference

Live Code

<!DOCTYPE html><html lang="en"><body><script>

for (x in window) {
 console.log(x); //logs all of the properties of the window/head object
}

</script></body></html>

You might have noticed that native JavaScript objects are not listed among the host
objects. It’s fairly common that a browser distinguishes between host objects and native
objects.

As it pertains to web browsers, the most famous of all hosted objects is the interface for
working with HTML documents, also known as the DOM. Below, is a method to list all
of the objects contained inside the window.document object provided by the browser
environment.

Live Code

<!DOCTYPE html><html lang="en"><body><script>

for (x in window.document) {
 console.log();
}

</script></body></html>

What I want you to grok here is that the JavaScript specification does not concern itself
with host objects and vice versa. There is a dividing line between what JavaScript pro‐
vides (e.g., JavaScript 1.5, ES3 versus Mozilla’s JavaScript 1.6, 1.7, 1.8, 1.8.1, 1.8.5) and
what the host environment provides, and these two should not be confused.

Notes
• The host environment (e.g., a web browser) that runs JavaScript

code typically provides the head object (e.g., window object in a
web browser) where the native portions of the language are stored
along with host objects (e.g., window.location in a web browser)
and user-defined objects (e.g., the code you write to run in a web
browser).

• It’s not uncommon for a web browser manufacturer as the host of
the JavaScript interrupter to push forward the version of JavaScript
or add future specifications to JavaScript before they have been
approved (e.g., Mozilla’s Firefox JavaScript 1.6, 1.7, 1.8, 1.8.1, 1.8.5).

42 | Chapter 2: Working with Objects and Properties

http://jsfiddle.net/javascriptenlightenment/zn4rY/
https://developer.mozilla.org/en/DOM/document
http://jsfiddle.net/javascriptenlightenment/fTS7X/
https://developer.mozilla.org/en/JavaScript/New_in_JavaScript/1.6
https://developer.mozilla.org/en/JavaScript/New_in_JavaScript/1.7
https://developer.mozilla.org/en/JavaScript/New_in_JavaScript/1.8
https://developer.mozilla.org/En/JavaScript/New_in_JavaScript/1.8.1
https://developer.mozilla.org/en/JavaScript/New_in_JavaScript/1.8.5
https://developer.mozilla.org/en/JavaScript/New_in_JavaScript/1.6
https://developer.mozilla.org/en/JavaScript/New_in_JavaScript/1.7
https://developer.mozilla.org/en/JavaScript/New_in_JavaScript/1.8
https://developer.mozilla.org/En/JavaScript/New_in_JavaScript/1.8.1
https://developer.mozilla.org/en/JavaScript/New_in_JavaScript/1.8.5

Enhancing and Extending Objects with Underscore.js
JavaScript 1.5 is lacking when it comes time to seriously manipulate and manage objects.
If you are running JavaScript in a web browser, I would like to be bold here and suggest
the usage of Underscore.js when you need more functionality than is provided by Java‐
Script 1.5. Underscore.js provides the following functionality when dealing with objects.

These functions work on all objects and arrays:

• each()

• map()

• reduce()

• reduceRight()

• detect()

• select()

• reject()

• all()

• any()

• include()

• invoke()

• pluck()

• max()

• min()

• sortBy()

• sortIndex()

• toArray()

• size()

These functions work on all objects:

• keys()

• values()

• functions()

• extend()

• clone()

• tap()

Enhancing and Extending Objects with Underscore.js | 43

http://documentcloud.github.com/underscore/

• isEqual()

• isEmpty()

• isElement()

• isArray()

• isArguments

• isFunction()

• isString()

• isNumber

• isBoolean

• isDate

• isRegExp

• isNaN

• isNull

• isUndefined

I like this library because it takes advantage of the new native additions to JavaScript
where browsers support them, but also provides the same functionality to browsers that
do not, all without changing the native implementation of JavaScript unless it has to.

Note
Before you start to use Underscore.js, make sure the functionality you
need is not already provided by a JavaScript library or framework that
might already be in use in your code.

44 | Chapter 2: Working with Objects and Properties

CHAPTER 3

Object()

Conceptual Overview of Using Object() Objects
Using the built-in Object() constructor function, we can create generic empty objects
on the fly. In fact, if you remember back to the beginning of Chapter 1, this is exactly
what we did by creating the cody object. Let’s re-create the cody object.

Live Code

<!DOCTYPE html><html lang="en"><body><script>

var cody = new Object(); // create an empty object with no properties

for (key in cody) { // confirm that cody is an empty generic object
 if(cody.hasOwnProperty(key)) {
 console.log(key); /* should not see any logs,
 because cody itself has no properties */
 }
}

</script></body></html>

Here, all we are doing is using the Object() constructor function to create a generic
object called cody. You can think of the Object() constructor as a cookie cutter for
creating empty objects that have no predefined properties or methods (except, of course,
those inherited from the prototype chain).

45

http://jsfiddle.net/javascriptenlightenment/EZ52Q/

Note
If it’s not obvious, the Object() constructor is an object itself. That is,
the constructor function is based on an object created from the Function
constructor. This can be confusing. Just remember that like the Array
constructor, the Object constructor simply spits out blank objects. And
yes, you can create all the empty objects you like. However, creating an
empty object like cody is very different than creating your own con‐
structor function with predefined properties. Make sure you grok that
cody is just an empty object based on the Object() constructor. To really
harness the power of JavaScript, you will need to grok not only how to
create empty object containers from Object(), but also how to build
your own “class” of objects [e.g., Person()] like the Object() construc‐
tor function itself.

Object() Parameters
The Object() constructor function takes one optional parameter. That parameter is the
value you would like to create. If you provide no parameter, then a null or undefined
value will be assumed.

Live Code

<!DOCTYPE html><html lang="en"><body><script>

// create an empty object with no properties
var cody1 = new Object();
var cody2 = new Object(undefined);
var cody3 = new Object(null);

console.log(typeof cody1, typeof cody2, typeof cody3); /* logs
 'object object object' */

</script></body></html>

If a value besides null or undefined is passed to the Object() constructor, the value
passed will be created as an object. So theoretically, we can use the Object() constructor
to create any of the other native objects that have a constructor. Below, I do just that.

Live Code

<!DOCTYPE html><html lang="en"><body><script>

/* Use Object() constructor to create a string, number, array, function, boolean,
and regex object. */

// logs below confirm object creation
console.log(new Object('foo'));
console.log(new Object(1));

46 | Chapter 3: Object()

http://jsfiddle.net/javascriptenlightenment/L5bvU/
http://jsfiddle.net/javascriptenlightenment/M7cgC/

console.log(new Object([]));
console.log(new Object(function() {}));
console.log(new Object(true));
console.log(new Object(/\bt[a-z]+\b/));

/* Creating a string, number, array, function, boolean, and regex object instance
via the Object() constructor is really never done. I am just demonstrating that
it can be done */

</script></body></html>

Object() Properties and Methods
The Object() object has the following properties (not including inherited properties
and methods):

Properties (e.g., Object.prototype;):

• prototype

Object() Object Instance Properties and Methods
Object() object instances have the following properties and methods:

Instance Properties (e.g., var myObject = {}; myObject.constructor;):

• constructor

Instance Methods (e.g., var myObject = {}; myObject.toString();):

• hasOwnProperty()

• isPrototypeOf()

• propertyIsEnumerable()

• toLocaleString()

• toString()

• valueOf()

Note
The prototype chain ends with Object.prototype and thus all of the
properties and methods of Object() (shown above) are inherited by all
JavaScript objects.

Object() Properties and Methods | 47

Creating Object() Objects Using “Object Literals”
Creating an “object literal” entails instantiating an object with or without properties
using braces (e.g., var cody = {};). Remember back to the beginning of Chapter 1,
when we created the one-off cody object and then gave the cody object properties using
dot notation? Let’s do that again.

Live Code

<!DOCTYPE html><html lang="en"><body><script>

var cody = new Object();
cody.living = true;
cody.age = 33;
cody.gender = 'male';
cody.getGender = function() {return cody.gender;};

console.log(cody); // logs cody object and properties

</script></body></html>

Notice in the code above that creating the cody object and its properties took five state‐
ments. Using the “object literal” notation, we can express the same cody object in one
statement.

Live Code

<!DOCTYPE html><html lang="en"><body><script>

var cody = {
 living: true,
 age: 23,
 gender: 'male',
 getGender: function() {return cody.gender;}
};
// notice the last property has no comma after it

console.log(cody); // logs cody object and properties

</script>
</body>

Using literal notation gives us the ability to create objects, including defined properties,
with less code and visually encapsulate the related data. Notice the use of the ; and ,
operators in a single statement. This is actually the preferred syntax for creating objects
in JavaScript because of its terseness and readability.

You should be aware that property names can also be specified as strings:

48 | Chapter 3: Object()

http://jsfiddle.net/javascriptenlightenment/5RBny/
http://jsfiddle.net/javascriptenlightenment/aYmTQ/

Live Code

<!DOCTYPE html><html lang="en"><body><script>

var cody = {
 'living': true,
 'age': 23,
 'gender': 'male',
 'getGender': function() {return cody.gender;}
};

console.log(cody); // logs cody object and properties

</script>
</body>

It’s not necessary to specify properties as strings unless the property name

• is one of the reserved keywords [e.g., class]
• contains spaces or special characters [anything other than numbers, letters, the

dollar sign ($) or the underscore (_) character]
• starts with a number

Note
Careful! The last property of an object should not have a trailing comma.
This will cause an error in some JavaScript environments.

All Objects Inherit From Object.prototype
The Object() constructor function in JavaScript is special, as its prototype property is
the last stop in the prototype chain.

Below, I augment the Object.prototype with a foo property, then create a string and
attempt to access the foo property as if it were a property of the string instance. Since
the myString instance does not have a foo property, the prototype chain kicks in and
the value is looked for at String.prototype. It is not there, so the next place to look is
Object.prototype, which is the final location JavaScript will look for an object value.
The foo value is found at Object.prototype because I added it, thus it returns the value
of foo.

All Objects Inherit From Object.prototype | 49

http://jsfiddle.net/javascriptenlightenment/jLgsU/
https://developer.mozilla.org/en/Core_JavaScript_1.5_Reference/Reserved_Words

Live Code

<!DOCTYPE html><html lang="en"><body><script>

Object.prototype.foo = 'foo';

var myString = 'bar';

// logs 'foo', being found at Object.prototype.foo via prototype chain
console.log(myString.foo);

</script>
</body>

Note
Careful! Anything added to Object.prototype will show up in a for
in loop and the prototype chain. Because of this, it’s been said that
changing Object.prototype is forbidden or verboten, as some might
say.

50 | Chapter 3: Object()

http://jsfiddle.net/javascriptenlightenment/NtPXk/
http://erik.eae.net/archives/2005/06/06/22.13.54/

CHAPTER 4

Function()

Conceptual Overview of Using Function() Objects
A function is a container of code statements that can be invoked using the parentheses
() operator. Parameters can be passed inside of the parentheses during invocation so
that the statements in the function can access certain values when the function is
invoked.

Below, we create two versions of an addNumbers function object—one using the new
operator and another using the more common, literal pattern. Both are expecting two
parameters. In each case, we invoke the function, passing parameters in the parentheses
() operator.

Live Code

<!DOCTYPE html><html lang="en"><body><script>

var addNumbersA = new Function('num1', 'num2', 'return num1 + num2');

console.log(addNumbersA(2, 2)); // logs 4

// could also be written the literal way, which is much more common
var addNumbersB = function(num1, num2) {return num1 + num2;};

console.log(addNumbersB(2, 2)); // logs 4

</script></body></html>

A function can be used to return a value, construct an object, or as a mechanism to
simply run code. JavaScript has several uses for functions, but in its most basic form, a
function is simply a unique scope of executable statements.

51

http://jsfiddle.net/javascriptenlightenment/dMrDk/

Function() Parameters
The Function() constructor takes an indefinite number of parameters, but the last
parameter expected by the Function() constructor is a string containing statements
that comprise the body of the function. Any parameters passed to the constructor before
the last will be available to the function being created. It’s also possible to send multiple
parameters as a comma-separated string.

Below, I contrast the usage of the Function() constructor with the more common pat‐
terns of instantiating a function object.

Live Code

<!DOCTYPE html><html lang="en"><body><script>

var addFunction = new Function('num1', 'num2', 'return num1 + num2');

/* Alternately, a single comma-separated string with arguments can be
 the first parameter of the constructor, with the function body following. */
var timesFunction = new Function('num1,num2', 'return num1 * num2');

console.log(addFunction(2,2),timesFunction(2,2)); // logs '4 4'

// versus the more common patterns for instantiating a function
var addFunction = function(num1, num2) {return num1 + num2;}; // expression form
function addFunction(num1, num2) {return num1 + num2;} // statement form

</script></body></html>

Notes
• Directly leveraging the Function() constructor is not recom‐

mended or typically ever done because JavaScript will use eval()
to parse the string containing the function’s logic. Many consider
eval() to be unnecessary overhead. If it’s in use, a flaw in the design
of the code is highly possible.

• Using the Function() constructor without the new keyword has
the same effect as using only the constructor to create function
objects [e.g., new Function('x','return x') versus func
tion(('x','return x')].

• No closure is created (see Chapter 7) when invoking the Func
tion() constructor directly.

52 | Chapter 4: Function()

http://jsfiddle.net/javascriptenlightenment/RT8QD/

Function() Properties and Methods
The function object has the following properties (not including inherited properties and
methods):

Properties (e.g., Function.prototype;):

• prototype

Function Object Instance Properties and Methods
Function object instances have the following properties and methods:

Instance Properties (e.g., var myFunction = function(x, y, z) {}; myFunc
tion.length;):

• arguments

• constructor

• length

Instance Methods (e.g., var myFunction = function(x, y, z) {}; myFunction.to
String();):

• apply()

• call()

• toString()

Functions Always Return a Value
While it’s possible to create a function simply to execute code statements, it’s also very
common for a function to return a value. Below, we are returning a string from the sayHi
function.

Live Code

<!DOCTYPE html><html lang="en"><body><script>

var sayHi = function() {
 return 'Hi';
};

console.log(sayHi()); // logs "Hi"

</script></body></html>

Function() Properties and Methods | 53

http://jsfiddle.net/javascriptenlightenment/G6YrQ/

If a function does not specify a return value, then undefined is returned. Below, we call
the yelp function, which logs the string 'yelp' to the console without explicitly re‐
turning a value.

Live Code

<!DOCTYPE html><html lang="en"><body><script>

var yelp = function() {
 console.log('I am yelping!');
 // functions return undefined even if we don't
}

/* logs true because a value is always returned,
even if we don't specifically return one */
console.log(yelp() === undefined);

</script></body></html>

The takeaway here is that all functions return a value, even if you do not explicitly provide
a value to return. If you do not specify a value to return, the value returned is undefined.

Functions Are First-Class Citizens (Not Just Syntax
but Values)
In JavaScript, functions are objects. This means that a function can be stored in a vari‐
able, array, or object. Also, a function can be passed to, and returned from, a function.
A function has properties because it is an object. All of these factors make functions
first-class citizens in JavaScript.

Live Code

<!DOCTYPE html><html lang="en"><body><script>

/* functions can be stored in variables (funcA), arrays (funcB),
and objects (funcC) */
var funcA = function(){}; // called like so: funcA()
var funcB = [function(){}]; // called like so: funcB[0]()
var funcC = {method: function(){}}; // too.method() or funcC['method']()

// functions can be sent to, and sent back from, functions
var funcD = function(func){
 return func
};

var runFuncPassedToFuncD = funcD(function(){console.log('Hi');});

runFuncPassedToFuncD();

54 | Chapter 4: Function()

http://jsfiddle.net/javascriptenlightenment/LbenJ/
http://jsfiddle.net/javascriptenlightenment/2BTjU/

// functions are objects, which means they can have properties
var funcE = function(){};
funcE.answer = 'yup'; // instance property
console.log(funcE.answer); // logs 'yup'

</script></body></html>

It is crucial that you realize a function is an object, and thus a value. It can be passed
around or augmented like any other expression in JavaScript.

Passing Parameters to a Function
Parameters are vehicles for passing values into the scope of a function when it is invoked.
Below, as we invoke addFunction(), since we have predefined it to take two parameters,
two added values become available within its scope.

Live Code

<!DOCTYPE html><html lang="en"><body><script>

var addFunction = function(number1, number2) {
 var sum = number1 + number2;
 return sum;
}

console.log(addFunction(3, 3)); // logs 6

</script></body></html>

Notes
• In contrast to some other programming languages, it is perfectly

legal in JavaScript to omit parameters even if the function has been
defined to accept these arguments. The missing parameters are
simply given the value of undefined. Of course, by leaving out val‐
ues for the parameters, the function might not work properly.

• If you pass unexpected parameters to a function (those not defined
when the function was created), no error will occur. And it’s pos‐
sible to access these parameters from the arguments object, which
is available to all functions.

this and arguments Values Available To All Functions
Inside the scope/body of all functions, the this and arguments values are available.

Passing Parameters to a Function | 55

http://jsfiddle.net/javascriptenlightenment/MBhkj/

The arguments object is an array-like object containing all of the parameters being
passed to the function. In the code below, even though we forgo specifying parameters
when defining the function, we can rely on the arguments array passed to the function
to access parameters if they are sent upon invocation.

Live Code

<!DOCTYPE html><html lang="en"><body><script>

var add = function() {
 return arguments[0] + arguments[1];
};

console.log(add(4, 4)); // returns 8

</script></body></html>

The this keyword, passed to all functions, is a reference to the object that contains the
function. As you might expect, functions contained within objects as properties (i.e.,
methods) can use this to gain a reference to the “parent” object. When a function is
defined in the global scope, the value of this is the global object. Review the code below
and make sure you understand what this is returning.

Live Code

<!DOCTYPE html><html lang="en"><body><script>

var myObject1 = {
 name: 'myObject1',
 myMethod: function(){console.log(this);}
};

myObject1.myMethod(); // logs 'myObject1'

var myObject2 = function(){console.log(this);};

myObject2(); // logs window

</script></body></html>

The arguments.callee Property
The arguments object has a property called callee, which is a reference to the function
currently executing. This property can be used to reference the function from within
the scope of the function (e.g., arguments.callee)—a self-reference. In the code below,
we use this property to gain a reference to the calling function.

56 | Chapter 4: Function()

http://jsfiddle.net/javascriptenlightenment/2R2Vz/
http://jsfiddle.net/javascriptenlightenment/WFzW3/

Live Code

<!DOCTYPE html><html lang="en"><body><script>

var foo = function foo() {
 console.log(arguments.callee); // logs foo()
 /* callee could be used to invoke recursively the foo function
 (e.g., arguments.callee()) */
}();

</script></body></html>

This can be useful when a function needs to be called recursively.

The Function Instance length Property and
arguments.length
The arguments object has a unique length property. While you might think this length
property will give you the number of defined arguments, it actually gives the number
of parameters sent to the function during invocation.

Live Code

<!DOCTYPE html><html lang="en"><body><script>

var myFunction = function(z, s, d) {
 return arguments.length;
};

console.log(myFunction()); /* logs 0 because no parameters were passed
 to the function */

</script></body></html>

Using the length property of all Function() instances, we can actually grab the total
number of parameters the function is expecting.

Live Code

<!DOCTYPE html><html lang="en"><body><script>

var myFunction = function(z, s, d, e, r, m, q) {
 return myFunction.length;
};

console.log(myFunction()); // logs 7

</script></body></html>

The Function Instance length Property and arguments.length | 57

http://jsfiddle.net/javascriptenlightenment/TdZVg/
http://jsfiddle.net/javascriptenlightenment/CbgrD/
http://jsfiddle.net/javascriptenlightenment/Uhjbb/

Note
The arguments.length property beginning with JavaScript 1.4 is dep‐
recated, and the number of arguments sent to a function can be accessed
from the length property of the function object. So, moving forward,
you can get the length value by leveraging the callee property to first
gain reference to the function being invoked (i.e., arguments.call
ee.length).

Redefining Function Parameters
A function’s parameters can be redefined inside the function either directly, or by using
the arguments array. Take a look at the code below.

Live Code

<!DOCTYPE html><html lang="en"><body><script>

var foo = false;
var bar = false;

var myFunction = function(foo, bar) {
 arguments[0] = true;
 bar = true;
 console.log(arguments[0], bar); // logs true true
}

myFunction();

</script></body></html>

Notice that I can redefine the value of the bar parameter using the arguments index or
by directly reassigning a new value to the parameter.

Return a Function Before It Is Done (Cancel
Function Execution)
Functions can be cancelled at any time during invocation by using the return keyword
with or without a value. Below, we are canceling the add function if the parameters are
undefined or not a number.

Live Code

<!DOCTYPE html><html lang="en"><body><script>

var add = function(x, y) {
 // If the parameters are not numbers, return error.
 if (typeof x !== 'number' || typeof y !== 'number') {return 'pass in numbers';}

58 | Chapter 4: Function()

http://jsfiddle.net/javascriptenlightenment/bE7cn/
http://jsfiddle.net/javascriptenlightenment/FQUje/

 return x + y;
}
console.log(add(3,3)); // logs 6
console.log(add('2','2')); // logs 'pass in numbers'

</script></body></html>

The takeaway here is that you can cancel a function’s execution by using the return
keyword at any point in the execution of the function.

Defining a Function (Statement, Expression,
or Constructor)
A function can be defined in three different ways: a function constructor, a function
statement, or a function expression. Below, I demonstrate each variation.

Live Code

<!DOCTYPE html><html lang="en"><body><script>

/* function constructor: the last parameter is the function logic,
 everything before it is a parameter */
var addConstructor = new Function('x', 'y', 'return x + y');

// function statement
function addStatement(x, y) {
 return x + y;
}

// function expression
var addExpression = function(x, y) {
 return x + y;
};

console.log(addConstructor(2,2), addStatement (2,2), addExpression (2,2));
 // logs '4 4 4'

</script></body></html>

Note
Some have said that there is a fourth type of definition for functions,
called the “named function expression.” A named function expression
is simply a function expression that also contains a name (e.g., var add
= function add(x, y) {return x+y}).

Defining a Function (Statement, Expression, or Constructor) | 59

http://jsfiddle.net/javascriptenlightenment/DLrAk/

Invoking a Function [Function, Method, Constructor, or
call() and apply()]
Functions are invoked using four different scenarios or patterns:

• As a function
• As a method
• As a constructor
• Using apply() or call()

In the code below, we examine each of these invocation patterns.
Live Code

<!DOCTYPE html><html lang="en"><body><script>

// function pattern
var myFunction = function(){return 'foo'};
console.log(myFunction()); // log 'foo'

// method pattern
var myObject = {myFunction: function(){return 'bar';}}
console.log(myObject.myFunction()); // log 'bar'

// constructor pattern
var Cody = function(){
 this.living = true;
 this.age = 33;
 this.gender = 'male';
 this.getGender = function() {return this.gender;};
}
var cody = new Cody(); // invoke via Cody constructor
console.log(cody); // logs cody object and properties

// apply() and call() pattern
var greet = {
 runGreet: function(){
 console.log(this.name,arguments[0],arguments[1]);
 }
}

var cody = {name:'cody'};
var lisa = {name:'lisa'};

// invoke the runGreet function as if it were inside of the cody object
greet.runGreet.call(cody,'foo','bar'); // logs 'cody foo bar'

// invoke the runGreet function as if it were inside of the lisa object
greet.runGreet.apply(lisa, ['foo','bar']); // logs 'lisa foo bar'

60 | Chapter 4: Function()

http://jsfiddle.net/javascriptenlightenment/aqbQ9/

/* Notice the difference between call() and apply() in how parameters are sent
to the function being invoked */

</script></body></html>

Make sure you are aware of all four of the invocation patterns, as code you will encounter
may contain any of them.

Anonymous Functions
An anonymous function is a function that is not given an identifier. Anonymous func‐
tions are mostly used for passing functions as a parameter to another function.

Live Code

<!DOCTYPE html><html lang="en"><body><script>

// function(){console.log('hi');}; // anonymous function, but no way to invoke it

// create a function that can invoke our anonymous function
var sayHi = function(f){
 f(); // invoke anonymous function
}

// pass an anonymous function as parameter
sayHi(function(){console.log('hi');}); // log 'hi'

</script></body></html>

Self-Invoking Function Expression
A function expression (really any function except one created from the Function()
constructor) can be immediately invoked after definition by using the parentheses op‐
erator. Below, we create a sayWord() function expression and then immediately invoke
the function. This is considered to be a self-invoking function.

Live Code

<!DOCTYPE html><html lang="en"><body><script>

var sayWord = function() {console.log('Word 2 yo mo!');}();
// logs 'Word 2 yo mo!'

</script></body></html>

Anonymous Functions | 61

http://jsfiddle.net/javascriptenlightenment/4nAX5/
http://jsfiddle.net/javascriptenlightenment/w9jMG/

Self-Invoking Anonymous Function Statements
It’s possible to create an anonymous function statement that is self-invoked. This is called
a self-invoking anonymous function. Below, we create several anonymous functions that
are immediately invoked.

Live Code

<!DOCTYPE html><html lang="en"><body><script>

// most commonly used/seen in the wild
(function(msg) {
 console.log(msg);
})('Hi');

// slightly different but achieving the same thing:
(function(msg) {
 console.log(msg)
}('Hi'));

// the shortest possible solution
!function sayHi(msg) {console.log(msg);}('Hi');

// FYI, this does NOT work!
// function sayHi() {console.log('hi');}();

</script></body></html>

Note
According to the ECMAScript standard, the parentheses around the
function (or anything that transforms the function into an expression)
are required if the function is to be invoked immediately.

Functions Can Be Nested
Functions can be nested inside of other functions indefinitely. Below, we encapsulate
the goo function inside of the bar function, which is inside of the foo function.

Live Code

<!DOCTYPE html><html lang="en"><body><script>

var foo = function() {
 var bar = function() {
 var goo = function() {
 console.log(this); // logs reference to head window object
 }();

62 | Chapter 4: Function()

http://jsfiddle.net/javascriptenlightenment/yUwFG/
http://jsfiddle.net/javascriptenlightenment/ZsHua/

 }();
}();

</script></body></html>

The simple takeaway here is that functions can be nested and that there is no limit to
how deep the nesting can go.

Note
Remember, the value of this for nested functions will be the head object
(e.g., window object in a web browser) in JavaScript 1.5, ECMAScript
3 Edition.

Passing Functions to Functions and Returning Functions
from Functions
As previously mentioned, functions are first-class citizens in JavaScript. And since a
function is a value, and a function can be passed any sort of value, a function can be
passed to a function. Functions that take and/or return other functions are sometimes
called “higher-order functions.”

Below, we are passing an anonymous function to the foo function, which we then im‐
mediately return from the foo function. It is this anonymous function that the variable
bar points to, since foo accepts and then returns the anonymous function.

Live Code

<!DOCTYPE html><html lang="en"><body><script>

// functions can be sent to, and sent back from, functions
var foo = function(f) {
 return f;
}

var bar = foo(function() {console.log('Hi');});

bar(); // logs 'Hi'

</script></body></html>

So when bar is invoked, it invokes the anonymous function that was passed to the foo()
function, which is then passed back from the foo() function and referenced from the
bar variable. All this is to showcase the fact that functions can be passed around just
like any other value.

Passing Functions to Functions and Returning Functions from Functions | 63

http://jsfiddle.net/javascriptenlightenment/w2C75/

Invoking Function Statements Before They Are Defined
(Function Hoisting)
A function statement can be invoked during execution before its actual definition. This
is a bit odd, but you should be aware of it so you can leverage it, or at least know what’s
going on when you encounter it. Below, I invoke the sayYo() and sum() function state‐
ments before they are defined.

Live Code

<!DOCTYPE html><html lang="en"><body><script>

// Example 1

var speak = function() {
 sayYo(); /* sayYo() has not been defined yet but it can still be invoked,
 logs 'yo' */
 function sayYo() {console.log('Yo');}
}(); // invoke

// Example 2

console.log(sum(2, 2)); /* invoke sum(), which is not defined yet,
 but can still be invoked */
function sum(x, y) {return x + y;}

</script></body></html>

This happens because before the code runs, function statements are interpreted and
added to the execution stack/context. Make sure you are aware of this as you use function
statements.

Note
Functions, defined as “function expressions” are not hoisted—only
“function statements” are hoisted.

A Function Can Call Itself (Recursion)
It’s perfectly legitimate for a function to call itself. In fact, this is often used in well-known
coding patterns. In the code below, we kick off the countDownFrom function, which then
calls itself via the function name countDownFrom. Essentially, this creates a loop that
counts down from 5 to 0.

64 | Chapter 4: Function()

http://jsfiddle.net/javascriptenlightenment/7hvUw/

Live Code

<!DOCTYPE html><html lang="en"><body><script>

var countDownFrom = function countDownFrom(num) {
 console.log(num);
 num--; // change the parameter value
 if (num < 0){return false;} // if num < 0 return function with no recursion
 // could have also done arguments.callee(num) if it was an anonymous function
 countDownFrom(num);
};

countDownFrom(5); // kick off the function, which logs separately 5,4,3,2,1,0

</script></body></html>

You should be aware that it’s not uncommon for a function to invoke itself (a.k.a. re‐
cursion) or to do so repetitively.

A Function Can Call Itself (Recursion) | 65

http://jsfiddle.net/javascriptenlightenment/xacLe/

CHAPTER 5

The Head/Global Object

Conceptual Overview of the Head Object
JavaScript code, itself, must be contained within an object. As an example, when crafting
JavaScript code for a web browser environment, JavaScript is contained and executed
within the window object. This window object is considered to be the “head object,” or
sometimes confusingly referred to as “the global object.” All implementations of Java‐
Script require the use of a single head object.

The head object is set up by JavaScript behind the scenes to encapsulate user-defined
code and to house the native code with which JavaScript comes prepackaged. User-
defined code is placed by JavaScript inside the head object for execution. Let’s verify this
as it pertains to a web browser.

Below, I am creating some JavaScript values and verifying the values are placed in the
head window object.

Live Code

<!DOCTYPE html><html lang="en"><body><script>

var myStringVar = 'myString';
var myFunctionVar = function() {};
myString = 'myString';
myFunction = function() {};

console.log('myStringVar' in window); // returns true
console.log('myFunctionVar' in window); // return true
console.log('myString' in window); // returns true
console.log('myFunction' in window); // return true

</script></body></html>

67

http://jsbin.com/upotis/edit

You should always be aware that when you write JavaScript, it will be written in the
context of the head object. The remaining material in this chapter assumes you are aware
that the term “head object” is synonymous with “global object.”

Note
The head object is the highest scope/context available in a JavaScript
environment.

Global Functions Contained Within the Head Object
JavaScript ships with some predefined functions. The following native functions
are considered methods of the head object [e.g., in a web browser window.parse
Int('500')]. You can think of these as ready-to-use functions/methods (of the head
object) provided by JavaScript:

• decodeURI()

• decodeURIComponent()

• encodeURI()

• encodeURIComponent()

• eval()

• isFinite()

• isNaN()

• parseFloat()

• parseInt()

The Head Object versus Global Properties and
Global Variables
Do not confuse the head object with global properties or global variables contained
within the global scope. The head object is an object that contains all objects. The term
“global properties” or “global variables” is used to refer to values directly contained inside
the head object and are not specifically scoped to other objects. These values are con‐
sidered global because no matter where code is currently executing, in terms of scope,
all code has access (via the scope chain) to these global properties/variables.

Below, I place a foo property in the the global scope, then access this property from a
different scope.

68 | Chapter 5: The Head/Global Object

Live Code

<!DOCTYPE html><html lang="en"><body><script>

var foo = 'bar'; /* foo is a global object and a property of the
 head/window object */

var myApp = function() { // remember functions create scope
 var run = function() {
 // logs bar, foo's value is found via the scope chain in the head object
 console.log(foo);
 }();
}

myApp();

</script></body></html>

Had I placed the foo property outside of the global scope, the console.log function
would return undefined. This is demonstrated in the next code example.

<!DOCTYPE html><html lang="en"><body><script>

var myFunction = function() {var foo = 'bar'}; /* foo is now in the scope of
 myFunction() */

var myApp = function() {
 var run = function() {
 console.log(foo); /* foo is undefined, no longer in the global scope,
 error occurs */
 }();
}

myApp();

</script></body></html>

In the browser environment, this is why global property methods [e.g., win
dow.alert()] can be invoked from any scope. What you need to take away from this is
that anything in the global scope is available to any scope, and thus gets the title of “global
variable” or “global property.”

Note
There is a slight difference between using var and not using var in the
global scope (global properties versus global variables). Have a look at
this Stack Overflow exchange for the details.

The Head Object versus Global Properties and Global Variables | 69

http://jsbin.com/utaloy/edit
http://stackoverflow.com/questions/1470488/difference-between-using-var-and-not-using-var-in-javascript/1471738%231471738

Referring to the Head Object
There are typically two ways to reference the head object. The first way is to simply
reference the name given to the head object (e.g., in a web browser this would be win
dow). The second way is to use the this keyword in the global scope. Each of these are
detailed in the code below.

Live Code

<!DOCTYPE html><html lang="en"><body><script>

var foo = 'bar';

windowRef1 = window;
windowRef2 = this;

console.log(windowRef1, windowRef2); // logs reference to window object

console.log(windowRef1.foo, windowRef2.foo); // logs 'bar', 'bar'

</script></body></html>

In the code above, we explicitly store a reference to the head object in two variables that
are then used to gain access to the global foo variable.

The Head Object Is Implied and Typically Not
Referenced Explicitly
Typically a reference to the head object is not used because it is implied. For example,
in the browser environment, window.alert and alert() are essentially the same state‐
ment. JavaScript fills in the blanks here. Because the window object (i.e., the head object)
is the last object checked in the scope chain for a value, the window object is essentially
always implied. Below, we leverage the alert() function which is contained in the global
scope.

Live Code

<!DOCTYPE html><html lang="en"><body><script>

var foo = { // window is implied here, window.foo
 fooMethod: function() {
 alert('foo' + 'bar'); // window is implied here, window.alert
 window.alert('foo' + 'bar'); /* window is explicitly used,
 with the same effect */
 }
}

70 | Chapter 5: The Head/Global Object

http://jsbin.com/ubilim/edit
http://jsbin.com/ikepup/edit

foo.fooMethod(); // window is implied here, window.foo.fooMethod()

</script></body></html>

Make sure you understand that the head object is implied, even when you don’t explicitly
include it, because the head object is the last stop in the scope chain.

Note
Being explicit [e.g., window.alert() versus alert()] costs a little bit
more with regards to performance (how fast the code runs). It’s faster
if you rely on the scope chain alone and avoid explicitly referencing the
head object even if you know the property you want is contained in the
global scope.

The Head Object Is Implied and Typically Not Referenced Explicitly | 71

CHAPTER 6

The this Keyword

Conceptual Overview of this and How It Refers to Objects
When a function is created, a keyword called this is created (behind the scenes), which
links to the object in which the function operates. Said another way, this is available to
the scope of its function, yet is a reference to the object of which that function is a
property/method.

Let’s take a look at the cody object from Chapter 1 again:
Live Code

<!DOCTYPE html><html lang="en"><body><script>

var cody = {
 living : true,
 age : 23,
 gender : 'male',
 getGender : function() {return cody.gender;}
};

console.log(cody.getGender()); // logs 'male'

</script></body></html>

Notice how inside of the getGender function, we are accessing the gender property
using dot notation (e.g., cody.gender) on the cody object itself. This can be rewritten
using this to access the cody object because this points to the cody object.

Live Code

<!DOCTYPE html><html lang="en"><body><script>

var cody = {
 living: true,

73

http://jsfiddle.net/javascriptenlightenment/yMXec/
http://jsfiddle.net/javascriptenlightenment/dDvPa/

 age: 23,
 gender: 'male',
 getGender: function() {return this.gender;}
};

console.log(cody.getGender()); // logs 'male'

</script></body></html>

The this used in this.gender simply refers to the cody object on which the function
is operating.

The topic of this can be confusing, but it does not have to be. Just remember that, in
general, this is used inside of functions to refer to the object the function is contained
within, as opposed to the function itself [exceptions include using the new keyword or
call() and apply()].

Notes
• The keyword this looks and acts like any other variable, except

you can’t modify it.
• As opposed to arguments and any parameters sent to the function,
this is a keyword (not a property) in the call/activation object.

How Is the Value of this Determined?
The value of this, passed to all functions, is based on the context in which the function
is called at runtime. Pay attention here, because this is one of those quirks you just need
to memorize.

The myObject object in the code below is given a property called sayFoo, which points
to the sayFoo function. When the sayFoo function is called from the global scope, this
refers to the window object. When it is called as a method of myObject, this refers to
myObject.

Since myObject has a property named foo, that property is used.
Live Code

<!DOCTYPE html><html lang="en"><body><script>

var foo = 'foo';
var myObject = {foo: 'I am myObject.foo'};

var sayFoo = function() {
 console.log(this['foo']);
};

74 | Chapter 6: The this Keyword

http://jsbin.com/oxaliq/edit

// give myObject a sayFoo property and have it point to sayFoo function
myObject.sayFoo = sayFoo;

myObject.sayFoo(); // logs 'I am myObject.foo'
sayFoo(); // logs 'foo'

</script></body></html>

Clearly, the value of this is based on the context in which the function is being called.
Consider that both myObject.sayFoo and sayFoo point to the same function. However,
depending upon where (i.e., the context) sayFoo() is called from, the value of this is
different.

If it helps, here is the same code with the head object (i.e., window) explicitly used.
Live Code

<!DOCTYPE html><html lang="en"><body><script>

window.foo = 'foo';
window.myObject = {foo: 'I am myObject.foo'};

window.sayFoo = function() {
 console.log(this.foo);
};

window.myObject.sayFoo = window.sayFoo;

window.myObject.sayFoo();
window.sayFoo();

</script></body></html>

Make sure that as you pass around functions, or have multiple references to a function,
you realize that the value of this will change depending upon the context in which you
call the function.

Note
All variables except this and arguments follow lexical scope.

How Is the Value of this Determined? | 75

http://jsfiddle.net/javascriptenlightenment/VeKWq/
http://en.wikipedia.org/wiki/Lexical_scope%23Lexical_scoping

The this Keyword Refers to the Head Object in
Nested Functions
You might be wondering what happens to this when it is used inside of a function that
is contained inside of another function. The bad news is in ES3, this loses its way and
refers to the head object (window object in browsers), instead of the object within which
the function is defined.

In the code below, this inside of func2 and func3 loses its way and refers not to myObject
but instead to the head object.

Live Code

<!DOCTYPE html><html lang="en"><body><script>

var myObject = {
 func1: function() {
 console.log(this); // logs myObject
 var func2 = function() {
 console.log(this) // logs window, and will do so from this point on
 var func3 = function() {
 console.log(this); // logs window, as it's the head object
 }();
 }();
 }
}

myObject.func1();

</script></body></html>

The good news is that this will be fixed in ES5. For now, you should be aware of this
predicament, especially when you start passing functions around as values to other
functions.

Consider the code below and what happens when passing an anonymous function to
foo.func1. When the anonymous function is called inside of foo.func1 (a function
inside of a function) the this value inside of the anonymous function will be a reference
to the head object.

Live Code

<!DOCTYPE html><html lang="en"><body><script>

var foo = {
 func1:function(bar) {
 bar(); // logs window, not foo
 console.log(this); /* the this keyword here will be a reference to
 foo object */
 }

76 | Chapter 6: The this Keyword

http://jsfiddle.net/javascriptenlightenment/9GJhu/
http://jsfiddle.net/javascriptenlightenment/DudU3/

}

foo.func1(function(){console.log(this)});

</script></body></html>

Now you will never forget: the this value will always be a reference to the head object
when its host function is encapsulated inside of another function or invoked within the
context of another function (again, this is fixed in ES5).

Working Around the Nested Function Issue by Leveraging
the Scope Chain
So that the this value does not get lost, you can simply use the scope chain to keep a
reference to this in the parent function. The code below demonstrates how, using a
variable called that, and leveraging its scope, we can keep better track of function
context.

Live Code

<!DOCTYPE html><html lang="en"><body><script>

var myObject = {
 myProperty: 'I can see the light',
 myMethod : function(){
 var that = this; /* store a reference to this (i.e., myObject)
 in myMethod scope */
 var helperFunction function() { // child function
 // logs 'I can see the light' via scope chain because that = this
 console.log(that.myProperty); // logs 'I can see the light'
 console.log(this); // logs window object, if we don't use "that"
 }();
 }
}

myObject.myMethod(); // invoke myMethod

</script></body></html>

Controlling the Value of this Using call() or apply()
The value of this is normally determined from the context in which a function is called
(except when the new keyword is used—more about that in a minute), but you can
overwrite/control the value of this using apply() or call()to define what object this
points to when invoking a function. Using these methods is like saying: “Hey, call X
function but tell the function to use Z object as the value for this.” By doing so, the
default way in which JavaScript determines the value of this is overridden.

Working Around the Nested Function Issue by Leveraging the Scope Chain | 77

http://jsfiddle.net/javascriptenlightenment/k8uCu/

Below, we create an object and a function. We then invoke the function via call() so
that the value of this inside the function uses myObject as its context. The statements
inside the myFunction function will then populate myObject with properties instead of
populating the head object. We have altered the object to which this (inside of myFunc
tion) refers.

Live Code

<!DOCTYPE html><html lang="en"><body><script>

var myObject = {};

var myFunction = function(param1, param2) {
 // set via call() 'this' points to myObject when function is invoked
 this.foo = param1;
 this.bar = param2;
 console.log(this) // logs Object {foo = 'foo', bar = 'bar'}
};

myFunction.call(myObject, 'foo', 'bar'); /* invoke function, set this value to
 myObject */

console.log(myObject) // logs Object {foo = 'foo', bar = 'bar'}

</script></body></html>

In the example above, we are using call(), but apply() could be used as well. The
difference between the two is how the parameters for the function are passed. Using
call(), the parameters are just comma-separated values. Using apply(), the parameter
values are passed inside of an array. Below, is the same idea, but using apply().

Live Code

<!DOCTYPE html><html lang="en"><body><script>

var myObject = {};

var myFunction = function(param1, param2) {
 // set via apply(), this points to myObject when function is invoked
 this.foo = param1;
 this.bar = param2;
 console.log(this) // logs Object {foo = 'foo', bar = 'bar'}
};

myFunction.apply(myObject, ['foo', 'bar']); // invoke function, set this value

console.log(myObject) // logs Object {foo = 'foo', bar = 'bar'}

</script></body></html>

78 | Chapter 6: The this Keyword

http://jsfiddle.net/javascriptenlightenment/7t6xD/
http://jsfiddle.net/javascriptenlightenment/X9vDB/

What you need to take away here is that you can override the default way in which
JavaScript determines the value of this in a function’s scope.

Using the this Keyword Inside a User-Defined
Constructor Function
When a function is invoked with the new keyword, the value of this—as it’s stated in
the constructor—refers to the instance itself. Said another way: in the constructor func‐
tion, we can leverage the object via this before the object is actually created. In this case,
the default value of this changes in a way not unlike using call() or apply().

Below, we set up a Person constructor function that uses this to reference an object
being created. When an instance of Person is created, this.name will reference the newly
created object and place a property called name in the new object with a value from the
parameter (name) passed to the constructor function.

Live Code

<!DOCTYPE html><html lang="en"><body><script>

var Person = function(name) {
 this.name = name || 'john doe'; // this will refer to the instance created
}

var cody = new Person('Cody Lindley'); /* create an instance,
 based on Person constructor */

console.log(cody.name); // logs 'Cody Lindley'

</script></body></html>

Again, this refers to the “object that is to be” when the constructor function is invoked
using the new keyword. Had we not used the new keyword, the value of this would be
the context in which Person is invoked—in this case the head object. Let’s examine this
scenario.

Live Code

<!DOCTYPE html><html lang="en"><body><script>

var Person = function(name) {
 this.name = name || 'john doe';
}

var cody = Person('Cody Lindley'); // notice we did not use 'new'

console.log(cody.name); // undefined, the value is actually set at window.name

Using the this Keyword Inside a User-Defined Constructor Function | 79

http://jsfiddle.net/javascriptenlightenment/TWecy/
http://jsfiddle.net/javascriptenlightenment/HHJ7y/

console.log(window.name); // logs 'Cody Lindley'

</script></body></html>

The this Keyword Inside a Prototype Method Refers to a
Constructor Instance
When used in functions added to a constructor’s prototype property, this refers to the
instance on which the method is invoked. Say we have a custom Person() constructor
function. As a parameter, it requires the person’s full name. In case we need to access
the full name of the person, we add a whatIsMyFullName method to the Person.proto
type, so that all Person instances inherit the method. When using this, the method can
refer to the instance invoking it (and thus its properties).

Here I demonstrate the creation of two Person objects (cody and lisa) and the inherited
whatIsMyFullName method that contains the this keyword to access the instance.

Live Code

<!DOCTYPE html><html lang="en"><body><script>

var Person = function(x){
 if(x){this.fullName = x};
};

Person.prototype.whatIsMyFullName = function(){
 return this.fullName; // 'this' refers to the instance created from Person()
}

var cody = new Person('cody lindley');
var lisa = new Person('lisa lindley');

/* call the inherited whatIsMyFullName method, which uses this to refer to
the instance */
console.log(cody.whatIsMyFullName(),lisa.whatIsMyFullName());

/* The prototype chain is still in effect, so if the instance does not have a
fullName property, it will look for it in the prototype chain. Below, we add
a fullName property to both the Person prototype and the Object prototype.
See notes. */

Object.prototype.fullName = 'John Doe';
var john = new Person(); // no argument is passed,
 // so fullName is not added to instance
console.log(john.whatIsMyFullName()); // logs 'John Doe'

</script></body></html>

80 | Chapter 6: The this Keyword

http://jsfiddle.net/javascriptenlightenment/uV3sP/

The takeaway here is that the keyword this is used to refer to instances when used inside
of a method contained in the prototype object. If the instance does not contain the
property, the prototype lookup begins.

Note
If the instance or the object pointed to by this does not contain the
property being referenced, the same rules that apply to any property
lookup get applied and the property will be “looked up” on the prototype
chain. So in our example, if the fullName property was not contained
within our instance, then fullName would be looked for at Person.pro
totype.fullName, and then Object.prototype.fullName.

The this Keyword Inside a Prototype Method Refers to a Constructor Instance | 81

CHAPTER 7

Scope and Closures

Conceptual Overview of JavaScript Scope
In JavaScript, scope is the context in which code is executed, and there are three types
of scope: global scope, local scope (sometimes referred to as “function scope”), and eval
scope.

Code defined using var inside of a function is locally scoped, and is only “visible” to
other expressions in that function, which includes code inside any nested/child func‐
tions. Variables defined in the global scope can be accessed from anywhere because it
is the highest level/last stop in the scope chain.

Examine the code below and make sure you understand that each declaration of foo is
unique because of scope.

Live Code

<!DOCTYPE html><html lang="en"><body><script>

var foo = 0; // global scope
console.log(foo); // logs 0

var myFunction = function() {

 var foo = 1; // local scope

 console.log(foo); // logs 1

 var myNestedFunction = function() {

 var foo = 2; // local scope

 console.log(foo); // logs 2
 }();

83

http://jsfiddle.net/javascriptenlightenment/RNLm3/

}();

eval('var foo = 3; console.log(foo);'); // eval() scope

</script></body></html>

Please notice that each foo variable contains a different value because each one is defined
in a specifically delineated scope.

Notes
• An unlimited number of function and eval scopes can be created,

while only one global scope is used by a JavaScript environment.
• The global scope is the last stop in the scope chain.
• Functions that contain functions create stacked execution scopes.

These stacks which are chained together are often referred to as the
scope chain.

JavaScript Does Not Have Block Scope
Since logic statements (e.g., if(){}) and looping statements (e.g., for) do not create a
scope, variables can overwrite each other. Examine the code below and make sure you
understand that the value of foo is being redefined as the program executes the code.

Live Code

<!DOCTYPE html><html lang="en"><body><script>

var foo = 1; // foo = 1

if (true) {
 foo = 2; // foo = 2
 for(var i = 3; i <= 5; i++) {
 foo = i; // foo = 3,4, then 5
 console.log(foo); // logs 3,4,5
 }
}

</script></body></html>

So foo is changing as the code executes because JavaScript has no block scope—only
function, global, or eval scope.

84 | Chapter 7: Scope and Closures

http://jsfiddle.net/javascriptenlightenment/Wn9p6/

Use var Inside Functions to Declare Variables and Avoid
Scope Gotchas
JavaScript will declare any variables lacking a var declaration (even those contained in
a function or encapsulated functions) to be in the global scope instead of the intended
local scope. Have a look at the code below and notice that without the use of var to
declare bar, the variable is actually defined in the global scope and not the local scope,
where it should be.

Live Code

<!DOCTYPE html><html lang="en"><body><script>

var foo = function() {
 var boo = function() {
 bar = 2; /* no var used, so bar is placed in the global scope
 at window.bar */
 }();
}();

console.log(bar); // logs 2, because bar is in the global scope

// As opposed to...

var foo = function() {
 var boo = function() {
 var doo = 2;
 }();
}();

console.log(doo); /* logs undefined, doo is in the boo function scope,
 error occurs */

</script></body></html>

The takeaway here is that you should always use var when defining variables inside of
a function. This will prevent you from dealing with potentially confusing scope prob‐
lems. The exception to this convention, of course, is when you want to create or change
properties in the global scope from within a function.

The Scope Chain (Lexical Scoping)
There is a lookup chain that is followed when JavaScript looks for the value associated
with a variable. This chain is based on the hierarchy of scope. In the code below, I am
logging the value of sayHiText from the func2 function scope.

Use var Inside Functions to Declare Variables and Avoid Scope Gotchas | 85

http://jsfiddle.net/javascriptenlightenment/WysKZ/

Live Code

<!DOCTYPE html><html lang="en"><body><script>

var sayHiText = 'howdy';

var func1 = function() {
 var func2 = function() {
 console.log(sayHiText); /* func2 scope, but it finds sayHiText in
 global scope */
 }();
}();

</script></body></html>

How is the value of sayHiText found when it is not contained inside of the scope of the
func2 function? JavaScript first looks in the func2 function for a variable named say
HiText. Not finding func2 there, it looks up to func2’s parent function, func1. The
sayHiText variable is not found in the func1 scope, either, so JavaScript then continues
up to the global scope where sayHiText is found, at which point the value of sayHi
Text is delivered. If sayHiText had not been defined in the global scope, undefined
would have been returned by JavaScript.

This is such an important concept to grok. Let’s examine another code example. Below,
we grab three values from three different scopes.

Live Code

<!DOCTYPE html><html lang="en"><body><script>

var x = 10;
var foo = function() {
 var y = 20;
 var bar = function() {
 var z = 30;
 console.log(z + y + x); // z is local, y and z are found in the scope chain
 }();
}()

foo(); // logs 60

</script></body></html>

The value for z is local to the bar function and the context in which the console.log is
invoked, the value for y is in the foo function, which is the parent of bar(), and the
value for x is in the global scope. All of these are accessible to the bar function via the
scope chain. Make sure you understand that referencing variables in the bar function
will check all the way up the scope chain for the variables referenced.

86 | Chapter 7: Scope and Closures

http://jsfiddle.net/javascriptenlightenment/2CNwT/
http://jsfiddle.net/javascriptenlightenment/Uv66Q/

Note
The scope chain, if you think about it, is not that different from the
prototype chain. Both are simply a way for a value to be looked up by
checking a systematic and hierarchical set of locations.

The Scope Chain Lookup Returns the First Found Value
In the code below, a variable called x exists in the same scope in which it is examined
with console.log. This “local” value of x is used, and one might say that it shadows, or
masks, the identically named x variables found further up in the scope chain.

Live Code

<!DOCTYPE html><html lang="en"><body><script>

var x = false;
var foo = function() {
 var x = false;
 bar = function() {
 var x = true;
 console.log(x); // local x is first in the scope so it shadows the rest
 }();
}

foo(); // logs true

</script></body></html>

Remember that the scope lookup ends when the variable is found in the nearest available
link of the chain, even if the same variable name is used further up the chain.

Scope Is Determined During Function Definition,
not Invocation
Since functions determine scope and functions can be passed around just like any Java‐
Script value, one might think that deciphering the scope chain is complicated. It is
actually very simple. The scope chain is decided based on the location of a function
during definition, not during invocation. This is also called lexical scoping. Think long
and hard about this, as most people stumble over it a lot in JavaScript code.

The scope chain is created before you invoke a function. Because of this, we can create
closures. For example, we can have a function return a nested function to the global
scope, yet our function can still access, via the scope chain, its parent function’s scope.

The Scope Chain Lookup Returns the First Found Value | 87

http://jsfiddle.net/javascriptenlightenment/6BMPV/

Below, we define a parentFunction that returns an anonymous function, and we call
the returned function from the global scope. Because our anonymous function was
defined as being contained inside of parentFunction, it still has access to parentFunc
tion’s scope when it is invoked. This is called a closure.

Live Code

<!DOCTYPE html><html lang="en"><body><script>

var parentFunction = function() {
 var foo = 'foo';
 return function() { // anonymous function being returned
 console.log(foo); // logs 'foo'
 }
}

// nestedFunction refers to the nested function returned from parentFunction
var nestedFunction = parentFunction();

nestedFunction(); /* logs foo because the returned function accesses foo
 via the scope chain */

</script></body></html>

What you should take away here is that the scope chain is determined during definition
—literally in the way the code is written. Passing around functions inside of your code
will not change the scope chain.

Closures Are Caused by the Scope Chain
Take what you have learned about the scope chain and scope lookup in this chapter, and
a closure should not be overly complicated to understand. Below, we create a function
called countUpFromZero. This function actually returns a reference to the child function
contained within it. When this child function (nested function) is invoked, it still has
access to the parent function’s scope because of the scope chain.

Live Code

<!DOCTYPE html><html lang="en"><body><script>

var countUpFromZero = function() {
 var count = 0;
 return function() { /* return nested child function when countUpFromZero is
 invoked */
 return ++count; // count is defined up the scope chain, in parent function
 };
}(); // invoke immediately, return nested function

88 | Chapter 7: Scope and Closures

http://jsfiddle.net/javascriptenlightenment/TCdbJ/
http://jsfiddle.net/javascriptenlightenment/8u3Km/

console.log(countUpFromZero()); // logs 1
console.log(countUpFromZero()); // logs 2
console.log(countUpFromZero()); // logs 3

</script></body></html>

Each time the countUpFromZero function is invoked, the anonymous function contained
in (and returned from) the countUpFromZero function still has access to the parent
function’s scope. This technique, facilitated via the scope chain, is an example of a
closure.

Note
If you feel I have oversimplified closures, you are likely correct in this
thought. But I did so on purpose, as I believe the important parts come
from a solid understanding of functions and scope, not necessarily the
complexities of execution context. If you are in need of an in-depth dive
into closures, have a look at “JavaScript Closures”.

Closures Are Caused by the Scope Chain | 89

http://jibbering.com/faq/notes/closures/

CHAPTER 8

Function Prototype Property

Conceptual Overview of the Prototype Chain
The prototype property is an object created by JavaScript for every Function() in‐
stance. Specifically, it links object instances created with the new keyword back to the
constructor function that created them. This is done so that instances can share, or
inherit, common methods and properties. Importantly, the sharing occurs during prop‐
erty lookup. Remember from Chapter 1 that every time you look up or access a property
on an object, the property will be searched for on the object as well as the prototype
chain.

Note
A prototype object is created for every function, regardless of whether
you intend to use that function as a constructor.

Below, I construct an array from the Array() constructor, and then I invoke the join()
method.

Live Code

<!DOCTYPE html><html lang="en"><body><script>

var myArray = new Array('foo', 'bar');

console.log(myArray.join()); // logs 'foo, bar'

</script></body></html>

91

http://jsfiddle.net/javascriptenlightenment/4L7ae/

The join() method is not defined as a property of the myArray object instance, but
somehow we have access to join() as if it were. This method is defined somewhere, but
where? Well, it is defined as a property of the Array() constructor’s prototype property.
Since join() is not found within the array object instance, JavaScript looks up the
prototype chain for a method called join().

Okay, so why are things done this way? Really, it is about efficiency and reuse. Why
should every array instance created from the array constructor function have a uniquely
defined join() method when join() always functions the same way? It makes more
sense for all arrays to leverage the same join() function without having to create a new
instance of the function for each array instance.

This efficiency we speak of is all possible because of the prototype property, prototype
linkage, and the prototype lookup chain. In this chapter, we break down these often
confusing attributes of prototypal inheritance. But truth be told, you would be better
off simply memorizing the mechanics of how the chain hierarchy actually works. Refer
back to Chapter 1 if you need a refresher on how property values are resolved.

Why Care About the prototype Property?
You should care about the prototype property for four reasons.

1. The first reason is that the prototype property is used by the native constructor
functions (e.g., Object(), Array(), Function(), etc.) to allow constructor instances
to inherit properties and methods. It is the mechanism that JavaScript itself uses to
allow object instances to inherit properties and methods from the constructor
function’s prototype property. If you want to understand JavaScript better, you need
to understand how JavaScript itself leverages the prototype object.

2. When creating user-defined constructor functions, you can orchestrate inheritance
the same way JavaScript native objects do. But first you have to grok how it works.

3. You might really dislike prototypal inheritance or prefer another pattern for object
inheritance, but the reality is that someday you might have to edit or manage some‐
one else’s code who thought prototypal inheritance was the bee’s knees. When this
happens, you should be aware of how prototypal inheritance works, as well as how
it can be replicated by developers who make use of custom constructor functions.

4. By using prototypal inheritance, you can create efficient object instances that all
leverage the same methods. As already mentioned, not all array objects, which are
instances of the Array() constructor, need their own join() methods. All instances
can leverage the same join() method because the method is stored in the prototype
chain.

92 | Chapter 8: Function Prototype Property

Prototype Is Standard on All function() Instances
All functions are created from a Function() constructor, even if you do not directly
invoke the Function() constructor (e.g., var add = new Function('x', 'y', 're
turn x + z');) and instead use the literal notation (e.g., var add = function(x,y)
{return x + z};).

When a function instance is created, it is always given a prototype property, which is
an empty object. Below, we define a function called myFunction, then we access the
prototype property, which is simply an empty object.

Live Code

<!DOCTYPE html><html lang="en"><body><script>

var myFunction = function() {};
console.log(myFunction.prototype); // logs object{}
console.log(typeof myFunction.prototype); // logs 'object'

</script></body></html>

Make sure you completely understand that the prototype property is coming from the
Function() constructor. It is only once we intend to use our function as a user-defined
constructor function that the prototype property is leveraged, but this does not change
the fact that the Function() constructor gives each instance a prototype property.

The Default prototype Property Is an Object() Object
All this prototype talk can get a bit heavy. Truly, prototype is just an empty object
property called “prototype” created behind the scenes by JavaScript and made available
by invoking the Function() constructor. If you were to do it manually, it would look
something like this:

Live Code

<!DOCTYPE html><html lang="en"><body><script>

var myFunction = function() {};

myFunction.prototype = {}; /* add the prototype property and set it to an
 empty object */

console.log(myFunction.prototype); // logs an empty object

</script></body></html>

In fact, the above code actually works just fine, essentially just duplicating what Java‐
Script already does.

Prototype Is Standard on All function() Instances | 93

http://jsfiddle.net/javascriptenlightenment/E5LKA/
http://jsfiddle.net/javascriptenlightenment/GxKLr/

Note
The value of a prototype property can be set to any of the complex
values (i.e., objects) available in JavaScript. JavaScript will ignore any
prototype property set to a primitive value.

Instances Created From a Constructor Function are Linked
to the Constructor’s prototype Property
While it’s only an object, prototype is special because the prototype chain links every
instance to its constructor function’s prototype property. This means that any time an
object is created from a constructor function using the new keyword (or when an object
wrapper is created for a primitive value), it adds a hidden link between the object in‐
stance created and the prototype property of the constructor function used to create
it. This link is known inside the instance as __proto__ [though it is only exposed/
supported via code in Firefox 2+, Safari, Chrome, and Android]. JavaScript wires this
together in the background when a constructor function is invoked and it’s this link that
allows the prototype chain to be, well, a chain. Below, we add a property to the native
Array() constructor’s prototype, which we can then access from an Array() instance
using the __proto__ property set on that instance.

Live Code

<!DOCTYPE html><html lang="en"><body><script>

// this code only works in browsers that supports __proto__ access

Array.prototype.foo = 'foo';
var myArray = new Array();
// Only works in Firefox 2+, Safari, Chrome, and Android

console.log(myArray.__proto__.foo); /* logs foo, because
 myArray.__proto__ = Array.prototype */

</script></body></html>

Since accessing __proto__ is not part of the official ECMA standard, there is a more
universal way to trace the link from an object to the prototype object it inherits, and
that is by using the constructor property. This is demonstrated below.

Live Code

<!DOCTYPE html><html lang="en"><body><script>

Array.prototype.foo = 'foo'; /* all instances of Array() now inherit a
 foo property */
var myArray = new Array();

94 | Chapter 8: Function Prototype Property

http://mzl.la/QFxtgH
http://mzl.la/QFxtgH
http://jsfiddle.net/javascriptenlightenment/kcz6q/
http://mzl.la/QFxtgH
http://jsfiddle.net/javascriptenlightenment/2QLvv/

// trace foo in a verbose way leveraging *.constructor.prototype
console.log(myArray.constructor.prototype.foo); // logs foo

// or, of course, leverage the chain
console.log(myArray.foo) // logs foo
// uses prototype chain to find property at Array.prototype.foo

</script></body></html>

In the code above, the foo property is found within the prototype object. You need to
realize this is only possible because of the association/link between the instance of
Array() and the Array() constructor prototype object (i.e., Array.prototype). Simply
put, myArray.__proto__ (or myArray.constructor.prototype) references Array.pro
totype.

Last Stop in the prototype Chain is Object.prototype
Since the prototype property is an object, the last stop in the prototype chain or lookup
is at Object.prototype. In the code below, I create myArray, which is an empty array.
I then attempt to access a property of myArray which has not yet been defined, engaging
the prototype lookup chain. The myArray object is examined for the foo property. Being
absent, it then looks for the property at Array.prototype, but it is not there, either. So
the final place it looks is Object.prototype. Because it is not defined in any of those
three objects, the property is undefined.

Live Code

<!DOCTYPE html><html lang="en"><body><script>

var myArray = [];

console.log(myArray.foo) // logs undefined

/* foo was not found at myArray.foo or Array.prototype.foo or
Object.prototype.foo, so it is undefined. */

</script></body></html>

Take note that the chain stopped with Object.prototype. The last place we looked for
foo was Object.prototype.

Note
Careful! Anything added to Object.prototype will show up in a for
in loop.

Last Stop in the prototype Chain is Object.prototype | 95

http://jsfiddle.net/javascriptenlightenment/L6ZaS/

The prototype Chain Returns the First Property Match It
Finds in the Chain
Like the scope chain, the prototype chain will use the first value it finds during the
chain lookup.

Modifying the last code example, if we added the same value to the Object.proto
type and Array.prototype objects, and then attempted to access a value on an array
instance, the value returned would be from the Array.prototype object.

Live Code

<!DOCTYPE html><html lang="en"><body><script>

Object.prototype.foo = 'object-foo';
Array.prototype.foo = 'array-foo';
var myArray = [];

console.log(myArray.foo); // logs 'array-foo', was found at Array.prototype.foo

myArray.foo = 'bar';

console.log(myArray.foo) // logs 'bar', was found at Array.foo

</script></body></html>

In the code above, the foo value at Array.prototype.foo is shadowing, or masking,
the foo value found at Object.prototype.foo. Just remember that the lookup ends
when the property is found in the chain, even if the same property name is also used
farther up the chain.

Replacing the prototype Property with a New Object
Removes the Default Constructor Property
It’s possible to replace the default value of a prototype property with a new value. Doing
so, however, will eliminate the default constructor property found in the “pre-made”
prototype object—unless you manually specify one.

In the code below, we create a Foo constructor function, replace the prototype property
with a new empty object, and verify that the constructor property is broken (it now
references the less useful Object() constructor).

Live Code

<!DOCTYPE html><html lang="en"><body><script>

var Foo = function Foo(){};

96 | Chapter 8: Function Prototype Property

http://jsfiddle.net/javascriptenlightenment/3cYUz/
http://jsfiddle.net/javascriptenlightenment/rWv8Z/

Foo.prototype = {}; // replace prototype property with an empty object

var FooInstance = new Foo();

console.log(FooInstance.constructor === Foo); /* logs false,
 we broke the reference */
console.log(FooInstance.constructor); // logs Object(), not Foo()

// compare to code where we do not replace the prototype value

var Bar = function Bar(){};

var BarInstance = new Bar();

console.log(BarInstance.constructor === Bar); // logs true
console.log(BarInstance.constructor); // logs Bar()

</script></body></html>

If you intend to replace the default prototype property (common with some JS OOP
patterns) set up by JavaScript, you should wire back together a constructor property that
references the constructor function. Below, we alter our previous code so that the con
structor property will again provide a reference to the proper constructor function.

Live Code

<!DOCTYPE html><html lang="en"><body><script>

var Foo = function Foo(){};

Foo.prototype = {constructor:Foo};

var FooInstance = new Foo();

console.log(FooInstance.constructor === Foo); // logs true
console.log(FooInstance.constructor); // logs Foo()

</script></body></html>

Instances That Inherit Properties from the Prototype Will
Always Get the Latest Values
The prototype property is dynamic in the sense that instances will always get the latest
value from the prototype, regardless of when it was instantiated, changed, or appended.
In the code below, we create a Foo constructor, add the property x to the prototype, and
then create an instance of Foo() named FooInstance. Next, we log the value of x. Then
we update the prototype’s value of x and log it again to find that our instance has access
to the latest value found in the prototype object.

Instances That Inherit Properties from the Prototype Will Always Get the Latest Values | 97

http://jsfiddle.net/javascriptenlightenment/uc389/

Live Code

<!DOCTYPE html><html lang="en"><body><script>

var Foo = function Foo(){};

Foo.prototype.x = 1;

var FooInstance = new Foo();

console.log(FooInstance.x); // logs 1

Foo.prototype.x = 2;

console.log(FooInstance.x); // logs 2, the FooInstance was updated

</script></body></html>

Given how the lookup chain works, this behavior should not be that surprising. If you
are wondering, this works the same, regardless of whether you use the default proto
type object or override it with your own. Here I replace the default prototype object
to demonstrate this fact:

Live Code

<!DOCTYPE html><html lang="en"><body><script>

var Foo = function Foo(){};

Foo.prototype = {x:1}; // the logs below still work the same

var FooInstance = new Foo();

console.log(FooInstance.x); // logs 1

Foo.prototype.x = 2;

console.log(FooInstance.x); // logs 2, the FooInstance was updated

</script></body></html>

Replacing the prototype Property with a New Object Does
Not Update Former Instances
You might think that you can replace the prototype property entirely at any time and
that all instances will be updated, but this is not correct. When you create an instance,
that instance will be tied to the prototype that was “minted” at the time of instantiation.
Providing a new object as the prototype property does not update the connection be‐
tween instances already created and the new prototype.

98 | Chapter 8: Function Prototype Property

http://jsfiddle.net/javascriptenlightenment/mLyJQ/
http://jsfiddle.net/javascriptenlightenment/xnyHk/

But remember, as I stated above, you can update or add to the originally created proto
type object and those values remain connected to the first instance(s).

Live Code

<!DOCTYPE html><html lang="en"><body><script>

var Foo = function Foo(){};

Foo.prototype.x = 1;

var FooInstance = new Foo();

console.log(FooInstance.x); // logs 1, as you think it would

// now let's replace/override the prototype object with a new Object() object
Foo.prototype = {x:2};

console.log(FooInstance.x); /* logs 1, WHAT? Shouldn't it log 2, we just
 updated prototype */
/* FooInstance still references the same state of the prototype object that
was there when it was instantiated. */

// create a new instance of Foo()
var NewFooInstance = new Foo();

// the new instance is now tied to the new prototype object value (i.e., {x:2};)
console.log(NewFooInstance.x); // logs 2

</script></body></html>

The key takeaway here is that an object’s prototype should not be replaced with a new
object once you start creating instances. Doing so will result in instances that have a link
to different prototypes.

User-Defined Constructors Can Leverage the Same
Prototype Inheritance as Native Constructors
Hopefully at this point in the chapter it is sinking in how JavaScript itself leverages the
prototype property for inheritance (e.g., Array.prototype). This same pattern can be
leveraged when creating non-native, user-defined constructor functions. Below, we take
the classic Person object and mimic the pattern that JavaScript uses for inheritance.

Live Code

<!DOCTYPE html><html lang="en"><body><script>

var Person = function() {};

User-Defined Constructors Can Leverage the Same Prototype Inheritance as Native Constructors | 99

http://jsfiddle.net/javascriptenlightenment/fQHJB/
http://jsfiddle.net/javascriptenlightenment/7SBmx/

// all Person instances inherit a legs, arms, and countLimbs properties
Person.prototype.legs = 2;
Person.prototype.arms = 2;
Person.prototype.countLimbs = function() {return this.legs + this.arms;};

var chuck = new Person();

console.log(chuck.countLimbs()); // logs 4

</script></body></html>

In the code above, a Person() constructor function is created. We then add properties
to the prototype property of Person(), which can be inherited by all instances. So
clearly, in your code you can leverage the prototype chain the same way that JavaScript
leverages it for native object inheritance.

As a good example of how you might leverage this, you can create a constructor function
whose instances inherit legs and arms properties if they are not provided as parameters.
Below, if the Person() constructor is sent parameters, they are used as instance prop‐
erties, but if one or more parameters is not provided, there is a fallback. These instance
properties then shadow or mask the inherited properties. So you have the best of both
worlds.

Live Code

<!DOCTYPE html><html lang="en"><body><script>

var Person = function(legs, arms) {

 // shadow prototype value
 if (legs !== undefined) {this.legs = legs;}
 if (arms !== undefined) {this.arms = arms;}
};

Person.prototype.legs = 2;
Person.prototype.arms = 2;
Person.prototype.countLimbs = function() {return this.legs + this.arms;};

var chuck = new Person(0, 0);

console.log(chuck.countLimbs()); // logs 0

</script></body></html>

Creating Inheritance Chains (the Original Intention)
Prototypal inheritance was conceived to allow inheritance chains that mimic the in‐
heritance patterns found in traditional object-oriented programming languages. Inheri‐
tance is simply one object being given access to another object’s properties. This is done

100 | Chapter 8: Function Prototype Property

http://jsfiddle.net/javascriptenlightenment/BmeEA/

by instantiating an instance of the object you want to inherit from as the value for the
prototype property of the function that creates the object that is doing the inheriting.
When this is done, there is a link (a.k.a. __proto__) between the objects that extends
the available properties to an object upon property lookup.

In the code below, Chef objects (i.e., cody) inherit from Person().This means that if a
property is not found in a Chef object, it will next be looked for on the prototype of the
function that created Person() objects. To wire up the inheritance, all you have to do
is instantiate an instance of Person() as the value for Chef.prototype (i.e., Chef.pro
totype = new Person();).

Live Code

<!DOCTYPE html><html lang="en"><body><script>

var Person = function(){this.bar = 'bar'};
Person.prototype.foo = 'foo';

var Chef = function(){this.goo = 'goo'};
Chef.prototype = new Person();
var cody = new Chef();

console.log(cody.foo); // logs 'foo'
console.log(cody.goo); // logs 'goo'
console.log(cody.bar); // logs 'bar'

</script></body></html>

All we have done in the above code is to leverage a system that is already in place with
the native objects. Consider that Person() is not unlike the default Object() value for
prototype properties. In other words, this is exactly what happens when a prototype
property, containing its default empty Object() value, looks to the prototype of the
constructor function that created it (i.e., Object.prototype) for inherited properties.

Creating Inheritance Chains (the Original Intention) | 101

http://jsfiddle.net/javascriptenlightenment/rRbsL/

CHAPTER 9

Array()

Conceptual Overview of Using Array() Objects
An array is an ordered list of values, typically created with the intention of looping
through numerically indexed values, beginning with the index zero. What you need to
know is that arrays are numerically ordered sets, versus objects, which have property
names associated with values in non-numeric order. Essentially, arrays use numbers as
a lookup key, while objects have user-defined property names. JavaScript does not have
true associative arrays, but objects can be used to achieve the functionality of associate
arrays.

Below, I store four strings in myArray that I can access using a numeric index. I compare
and contrast it to an object-literal mimicking an associative array.

Live Code

<!DOCTYPE html><html lang="en"><body><script>

var myArray = ['blue', 'green', 'orange', 'red'];

console.log(myArray[0]); // logs blue using 0 index to access string in myArray

// versus

var myObject = { // a.k.a. associative array/hash, known as an object in JavaScript
 'blue': 'blue',
 'green': 'green',
 'orange': 'orange',
 'red': 'red'
};

console.log(myObject['blue']); // logs blue

</script></body></html>

103

http://jsfiddle.net/javascriptenlightenment/TTL5E/

Notes
• Arrays can hold any type of values, and these values can be updated

or deleted at any time.
• If you need a “hash” (a.k.a. associative array), an object is the closest

solution.
• An Array() is just a special type of Object(). That is, Array()

instances are basically Object() instances with a couple of extra
functions (e.g., .length and a built-in numeric index).

• Values contained in an array are commonly referred to as elements.

Array() Parameters
You can pass the values of an array instance to the constructor as comma-separated
parameters (e.g., new Array('foo', 'bar');). The Array() constructor can take up
to 4,294,967,295 parameters.

However, if only one parameter is sent to the Array() constructor, and that value is an
integer (e.g., 1, 123, or 1.0), then it will be used to set up the length of the array, and
will not be used as a value contained within the array.

Live Code

<!DOCTYPE html><html lang="en"><body><script>

var foo = new Array(1, 2, 3);
var bar = new Array(100);

console.log(foo[0], foo[2]); // logs '1 3'
console.log(bar[0], bar.length); // logs 'undefined 100'

</script></body></html>

Array() Properties and Methods
The Array() object has the following properties (not including inherited properties and
methods):

Properties (e.g., Array.prototype):

• prototype

104 | Chapter 9: Array()

http://jsfiddle.net/javascriptenlightenment/TjABp/

Array Object Instance Properties and Methods
Array object instances have the following properties and methods:

Instance Properties (e.g., var myArray = ['foo', 'bar']; myArray.length;):

• constructor

• index

• input

• length

Instance Methods (e.g., var myArray = ['foo']; myArray.pop();):

• pop()

• push()

• reverse()

• shift()

• sort()

• splice()

• unshift()

• concat()

• join()

• slice()

Creating Arrays
Like most of the objects in JavaScript, an array object can be created using the new
operator in conjunction with the Array() constructor, or by using the literal syntax.

Below, I create the myArray1 array with predefined values using the Array() constructor,
and then myArray2 using literal notation.

Live Code

<!DOCTYPE html><html lang="en"><body><script>

// Array() constructor
var myArray1 = new Array('blue', 'green', 'orange', 'red');

console.log(myArray1); // logs ["blue", "green", "orange", "red"]

Array Object Instance Properties and Methods | 105

http://jsfiddle.net/javascriptenlightenment/Gs8rR/

// array literal notation
var myArray2 = ['blue', 'green', 'orange', 'red'];

console.log(myArray2); // logs ["blue", "green", "orange", "red"]

</script></body></html>

It is more common to see an array defined using the literal syntax, but one should be
aware that this shortcut is merely concealing the use of the Array() constructor.

Notes
• In practice, the array literal is typically all you will ever need.
• Regardless of how an array is defined, if you do not provide any

predefined values to the array, it will still be created but will simply
contain no values.

Adding and Updating Values in Arrays
A value can be added to an array at any index, at any time. Below, we are adding a value
to the numeric index 50 of an empty array. What about all the indexes before 50? Well,
like I said, you can add a value to an array at any index, at any time. But, if you add a
value to the numeric index 50 of an empty array, JavaScript will fill in all of the necessary
indexes before it with undefined values.

Live Code

<!DOCTYPE html><html lang="en"><body><script>

var myArray = [];
myArray[50] = 'blue';
console.log(myArray.length); /* logs 51 (0 is counted) because JS created
 values 0 to 50 before "blue"*/

</script></body></html>

Additionally, considering the dynamic nature of JavaScript and the fact that JavaScript
is not strongly typed, an array value can be updated at any time and the value contained
in the index can be any legal JavaScript value. Below, I change the value at the numeric
index 50 to an object.

Live Code

<!DOCTYPE html><html lang="en"><body><script>

var myArray = [];
myArray[50] = 'blue';

106 | Chapter 9: Array()

http://jsfiddle.net/javascriptenlightenment/2VPSS/
http://jsfiddle.net/javascriptenlightenment/ZkqxK/

myArray[50] = {'color': 'blue'}; /* change object type from string to
 Object() object */
console.log(myArray[50]); // logs 'Object {color="blue"}'

// using brackets to access the index in the array, then the property blue
console.log(myArray[50]['color']); // logs 'blue'

// using dot notation
console.log(myArray[50].color); // logs 'blue'

</script></body></html>

Length versus Index
An array starts indexing values at 0. This means that the first numeric slot to hold a
value in an array looks like myArray[0]. This can be a bit confusing—if I create an array
with a single value, the index of the value is 0 while the length of the array is 1. Make
sure you understand that the length of an array represents the number of values con‐
tained within the array, while the numeric index of the array starts at zero.

Below, the string value blue is contained in the myArray array at the numeric index 0,
but since the array contains one value, the length of the array is 1.

Live Code

<!DOCTYPE html><html lang="en"><body><script>

var myArray = ['blue'] // the index 0 contains the string value 'blue'
console.log(myArray[0]); // logs 'blue'
console.log(myArray.length); // logs 1

</script></body></html>

Defining Arrays with a Predefined Length
As I mentioned earlier, by passing a single integer parameter to the Array() constructor,
it’s possible to predefine the array’s length, or the number of values it will contain. In
this case, the constructor makes an exception and assumes you want to set the length
of the array and not pre-populate the array with values.

Below, we set up the myArray array with a predefined length of 3. Again, we are con‐
figuring the length of the array, not passing it a value to be stored at the 0 index.

Live Code

<!DOCTYPE html><html lang="en"><body><script>

var myArray = new Array(3);

Length versus Index | 107

http://jsfiddle.net/javascriptenlightenment/8amEG/
http://jsfiddle.net/javascriptenlightenment/SmgaZ/

console.log(myArray.length); /* logs 3, because we are passing one
 numeric parameter */
console.log(myArray[0]); // logs undefined

</script></body></html>

Notes
• Providing a predefined length will give each numeric index, up to

the length specified, an associated value of undefined.
• You might be wondering if it is possible to create a predefined array

containing only one numeric value. Yes, it is—by using the literal
form var myArray = [4].

Setting Array Length can Add or Remove Values
The length property of an array object can be used to get or set the length of an array.
As shown above, setting the length higher than the actual number of values contained
in the array will add undefined values to the array. What you might not expect is that
you can actually remove values from an array by setting the length value to a number
less than the number of values contained in the array.

Live Code

<!DOCTYPE html><html lang="en"><body><script>

var myArray = ['blue', 'green', 'orange', 'red'];
console.log(myArray.length); // logs 4
myArray.length = 99;
console.log(myArray.length); /* logs 99, remember we set the length,
 not an index */
myArray.length = 1; // removed all but one value, so index [1] is gone!
console.log(myArray[1]); // logs undefined

console.log(myArray); // logs '["blue"]'

</script></body></html>

Arrays Containing Other Arrays (Multidimensional Arrays)
Since an array can hold any valid JavaScript value, an array can contain other arrays.
When this is done, the array containing encapsulated arrays is considered a multidi‐
mensional array. Accessing encapsulated arrays is done by bracket chaining. Below, we
create an array literal that contains an array, inside of which we create another array
literal, inside of which we create another array literal, containing a string value at the 0
index.

108 | Chapter 9: Array()

http://jsfiddle.net/javascriptenlightenment/ScQ5u/

Live Code

<!DOCTYPE html><html lang="en"><body><script>

var myArray = [[[['4th dimension']]]];
console.log(myArray[0][0][0][0]); // logs '4th dimension'

</script></body></html>

The code above is rather silly, but you can take away the fact that arrays can contain
other arrays and you can access encapsulated arrays indefinitely.

Looping Over an Array, Backwards and Forwards
The simplest (and arguably the fastest) way to loop over an array is to use the while
loop.

Below, we loop from the beginning of the index to the end.
Live Code

<!DOCTYPE html><html lang="en"><body><script>

var myArray = ['blue', 'green', 'orange', 'red'];

var myArrayLength = myArray.length; /* cache array length, to avoid unnecessary
 lookup */
var counter = 0; // setup counter

while (counter < myArrayLength) { // run if counter is less than array length
 console.log(myArray[counter]); // logs 'blue', 'green', 'orange', 'red'
 counter++; // add 1 to the counter
}

</script></body></html>

And now we loop from the end of the index to the beginning.
Live Code

<!DOCTYPE html><html lang="en"><body><script>

var myArray = ['blue', 'green', 'orange', 'red'];

var myArrayLength = myArray.length;
while (myArrayLength--) { /* if length is not zero, loop and
 subtract 1 */
 console.log(myArray[myArrayLength]); // logs 'red', 'orange', 'green', 'blue'
}

</script></body></html>

Looping Over an Array, Backwards and Forwards | 109

http://jsfiddle.net/javascriptenlightenment/eGPLR/
http://jsfiddle.net/javascriptenlightenment/Vhm2a/
http://jsfiddle.net/javascriptenlightenment/DYcpX/

If you are wondering why I am not showing for loops here, it is because while loops
have fewer moving parts and I believe they are easier to read.

110 | Chapter 9: Array()

CHAPTER 10

String()

Conceptual Overview of Using the String() Object
The String() constructor function is used to create string objects and string primitive
values.

In the code below, I detail the creation of string values in JavaScript.
Live Code

<!DOCTYPE html><html lang="en"><body><script>

// create string object using the new keyword and the String() constructor
var stringObject = new String('foo');
console.log(stringObject); // logs foo {0 = 'f', 1 = 'o', 2 = 'o'}
console.log(typeof stringObject); // logs 'object'

// create string literal/primitive by directly using the String constructor
var stringObjectWithOutNewKeyword = String('foo'); // without new keyword
console.log(stringObjectWithOutNewKeyword); // logs 'foo'
console.log(typeof stringObjectWithOutNewKeyword); // logs 'string'

// create string literal/primitive (constructor leveraged behind the scene)
var stringLiteral = 'foo';
console.log(stringLiteral); // logs foo
console.log(typeof stringLiteral); // logs 'string'

</script></body></html>

String() Parameters
The String() constructor function takes one parameter: the string value being created.
Below, we create a variable, stringObject, to contain the string value 'foo'.

111

http://jsfiddle.net/javascriptenlightenment/deT8R/

Live Code

<!DOCTYPE html><html lang="en"><body><script>

// create string object
var stringObject = new String('foo');

console.log(stringObject); // logs 'foo {0="f", 1="o", 2="o"}'

</script></body></html>

Note
Instances from the String() constructor, when used with the new key‐
word, produce an actual complex object. You should avoid doing this
(using literal/primitive numbers) due to the potential problems associ‐
ated with the typeof operator. The typeof operator reports complex
string objects as 'object' instead of the primitive label ('string') you
might expect. Additionally, the literal/primitive value is just faster to
write and is more concise.

String() Properties and Methods
The string object has the following properties and methods (not including inherited
properties and methods):

Properties (e.g., String.prototype;):

• prototype

Methods (e.g., String.fromCharChode();):

• fromCharCode()

String Object Instance Properties and Methods
String object instances have the following properties and methods:

Instance Properties (e.g., var myString = 'foo'; myString.length;):

• constructor

• length

112 | Chapter 10: String()

http://jsfiddle.net/javascriptenlightenment/tNBGr/

Instance Methods (e.g., var myString = 'foo'; myString.toLowerCase();):

• charAt()

• charCodeAt()

• concat()

• indexOf()

• lastIndexOf()

• localeCompare()

• match()

• quote()

• replace()

• search()

• slice()

• split()

• substr()

• substring()

• toLocaleLowerCase()

• toLocaleUpperCase()

• toLowerCase()

• toString()

• toUpperCase()

• valueOf()

String Object Instance Properties and Methods | 113

CHAPTER 11

Number()

Conceptual Overview of Using the Number() Object
The Number() constructor function is used to create numeric objects and numeric
primitive values.

In the code below, I detail the creation of numeric values in JavaScript.
Live Code

<!DOCTYPE html><html lang="en"><body><script>

// create number object using the new keyword and the Number() constructor
var numberObject = new Number(1);
console.log(numberObject); // logs 1
console.log(typeof numberObject) // logs 'object'

// create number literal/primitive using the number constructor without new
var numberObjectWithOutNew = Number(1); // without using new keyword
console.log(numberObjectWithOutNew); // logs 1
console.log(typeof numberObjectWithOutNew) // logs 'number'

// create number literal/primitive (constructor leveraged behind the scene)
var numberLiteral = 1;
console.log(numberLiteral); // logs 1
console.log(typeof numberLiteral); // logs 'number'

</script></body></html>

115

http://jsfiddle.net/javascriptenlightenment/QJNRA/

Integers and Floating-Point Numbers
Numbers in JavaScript are typically written as either integer values or floating point
values. In the code below, I create a primitive integer number and a primitive floating
point number. This is the most common usage of number values in JavaScript.

Live Code

<!DOCTYPE html><html lang="en"><body><script>

var integer = 1232134;
console.log(integer); // logs '1232134'

var floatingPoint = 2.132;
console.log(floatingPoint); // logs '2.132'

</script></body></html>

Note
In JavaScript, a numeric value can be a hexadecimal value or octal val‐
ue, but this is typically not done.

Number() Parameters
The Number() constructor function takes one parameter: the numeric value being cre‐
ated. Below, we create a number object for the value 456 called numberOne.

Live Code

<!DOCTYPE html><html lang="en"><body><script>

var numberOne = new Number(456);

console.log(numberOne); // logs '456{}'

</script></body></html>

Note
Instances from the Number() constructor, when used with the new key‐
word, produce a complex object. You should avoid creating number
values using the Number() constructor (use literal/primitive numbers)
due to the potential problems associated with the typeof operator. The
typeof operator reports number objects as 'object' instead of the
primitive label ('number') you might expect. The literal/primitive value
is just more concise.

116 | Chapter 11: Number()

http://jsfiddle.net/javascriptenlightenment/c4TVQ/
http://livepage.apple.com/
http://en.wikipedia.org/wiki/Octal
http://en.wikipedia.org/wiki/Octal
http://jsfiddle.net/javascriptenlightenment/aHbNY/

Number() Properties
The Number() object has the following properties:

Properties (e.g., Number.prototype;):

• MAX_VALUE

• MIN_VALUE

• NaN

• NEGATIVE_INFINITY

• POSITIVE_INFINITY

• prototype

Number Object Instance Properties and Methods
Number object instances have the following properties and methods:

Instance Properties (e.g., var myNumber = 5; myNumber.constructor;):

• constructor

Instance Methods (e.g., var myNumber = 1.00324; myNumber.toFixed();):

• toExponential()

• toFixed()

• toLocaleString()

• toPrecision()

• toString()

• valueOf()

Number() Properties | 117

CHAPTER 12

Boolean()

Conceptual Overview of Using the Boolean() Object
The Boolean() constructor function can be used to create boolean objects, as well as
boolean primitive values, that represent either a true or a false value.

In the code below, I detail the creation of boolean values in JavaScript.
Live Code

<!DOCTYPE html><html lang="en"><body><script>

// create boolean object using the new keyword and the Boolean() constructor
var myBoolean1 = new Boolean(false); // using new keyword
console.log(typeof myBoolean1); // logs 'object'

/* create boolean literal/primitive by directly using the number constructor
without new */
var myBoolean2 = Boolean(0); // without new keyword
console.log(typeof myBoolean2); // logs 'boolean'

// create boolean literal/primitive (constructor leveraged behind the scene)
var myBoolean3 = false;
console.log(typeof myBoolean3); // logs 'boolean'
console.log(myBoolean1, myBoolean2, myBoolean3); // logs false false false

</script></body></html>

119

http://jsfiddle.net/javascriptenlightenment/wSqVc/

Boolean() Parameters
The Boolean() constructor function takes one parameter to be converted to a boolean
value (i.e., true or false). Any valid JavaScript value that is not 0, −0, null, false, NaN,
undefined, or an empty string(""), will be converted to true. Below, we create two
boolean object values. One true, one false.

Live Code

<!DOCTYPE html><html lang="en"><body><script>

// parameter passed to Boolean() = 0 = false, thus foo = false
var foo = new Boolean(0)
console.log(foo);

// parameter passed to Boolean() = Math = true, thus bar = true
var bar = new Boolean(Math)
console.log(bar);

</script></body></html>

Note
Instances from the Boolean() constructor, when used with the new
keyword, produce an actual complex object. You should avoid creating
boolean values using the Boolean() constructor (instead, use literal/
primitive numbers) due to the potential problems associated with the
typeof operator. The typeof operator reports boolean objects as 'ob
ject', instead of the primitive label ('boolean') you might expect.
Additionally, the literal/primitive value is just faster to write.

Boolean() Properties and Methods
The Boolean() object has the following properties:

Properties (e.g., Boolean.prototype;):

• prototype

120 | Chapter 12: Boolean()

http://jsfiddle.net/javascriptenlightenment/4TEtb/

Boolean Object Instance Properties and Methods
Boolean object instances have the following properties and methods:

Instance Properties (e.g., var myBoolean = false; myBoolean.constructor;):

• constructor

Instance Methods (e.g., var myNumber = false; myBoolean.toString();):

• toSource()

• toString()

• valueOf()

Non-Primitive False Boolean Objects Convert to true
A false boolean object (as opposed to a primitive value) created from the Boolean()
constructor is an object, and objects convert to true. Thus, when creating a false
boolean object via the Boolean() constructor, the value itself converts to true. Below,
I demonstrate how a false boolean object is always “truthy.”

Live Code

<!DOCTYPE html><html lang="en"><body><script>

var falseValue = new Boolean(false);

console.log(falseValue); // we have a false boolean object, but objects are truthy

if (falseValue) { // boolean objects, even false boolean objects, are truthy
 console.log('falseValue is truthy');
}

</script></body></html>

If you need to convert a non-boolean value into a boolean, just use the Boolean()
constructor without the new keyword and the value returned will be a primitive value
instead of a boolean object.

Boolean Object Instance Properties and Methods | 121

http://jsfiddle.net/javascriptenlightenment/K7qtj/

Certain Things Are false, Everything Else Is true
It has already been mentioned, but is worth mentioning again because it pertains to
conversions. If a value is 0, −0, null, false, NaN, undefined, or an empty string(""), it
is false. Any value in JavaScript except the aforementioned values will be converted to
true if used in a boolean context (i.e., if (true) {};).

Live Code

<!DOCTYPE html><html lang="en"><body><script>

// all of these return a false boolean value
console.log(Boolean(0));
console.log(Boolean(-0));
console.log(Boolean(null));
console.log(Boolean(false));
console.log(Boolean(''));
console.log(Boolean(undefined));
console.log(Boolean(null));

// all of these return a true boolean value
console.log(Boolean(1789));
console.log(Boolean('false')); /* 'false' as a string is not false
 the boolean value */
console.log(Boolean(Math));
console.log(Boolean(Array());

</script></body></html>

It’s critical that you understand which JavaScript values are reduced to false so you are
aware that all other values are considered true.

122 | Chapter 12: Boolean()

http://jsfiddle.net/javascriptenlightenment/2aqGS/

CHAPTER 13

Working with Primitive String, Number,
and Boolean Values

Primitive/Literal Values Are Converted to Objects When
Properties Are Accessed
Do not be mystified by the fact that string, number, and boolean literals can be treated
like an object with properties [e.g., true.toString()]. When these primitive values are
treated like an object by attempting to access properties, JavaScript will create a wrapper
object from the primitive’s associated constructor, so that the properties and methods
of the wrapper object can be accessed. Once the properties have been accessed, the
wrapper object is discarded. This conversion allows us to write code that would make
it appear as if a primitive value was, in fact, an object. Truth be told, when it is treated
like an object in code, JavaScript will convert it to an object so property access will work,
and then back to a primitive value once a value is returned. The key thing to grok here
is what is occurring, and that JavaScript is doing this for you behind the scenes.

String:
Live Code

<!DOCTYPE html><html lang="en"><body><script>

// string object treated like an object
var stringObject = new String('foo');
console.log(stringObject.length); // logs 3
console.log(stringObject['length']); // logs 3

// string literal/primitive converted to an object when treated as an object
var stringLiteral = 'foo';
console.log(stringLiteral.length); // logs 3

123

http://jsfiddle.net/javascriptenlightenment/kpfNk/

console.log(stringLiteral['length']); // logs 3
console.log('bar'.length); // logs 3
console.log('bar'['length']); // logs 3

</script></body></html>

Number:
Live Code

<!DOCTYPE html><html lang="en"><body><script>

// number object treated like an object
var numberObject = new Number(1.10023);
console.log(numberObject.toFixed()); // logs 1
console.log(numberObject['toFixed']()); // logs 1

// number literal/primitive converted to an object when treated as an object
var numberLiteral = 1.10023;
console.log(numberLiteral.toFixed()); // logs 1
console.log(numberLiteral['toFixed']()); // logs 1
console.log((1234).toString()); // logs '1234'
console.log(1234['toString']()); // logs '1234'

</script></body></html>

Boolean:
Live Code

<!DOCTYPE html><html lang="en"><body><script>

// boolean object treated like an object
var booleanObject = new Boolean(0);
console.log(booleanObject.toString()); // logs 'false'
console.log(booleanObject['toString']()); // logs 'false'

// boolean literal/primitive converted to an object when treated as an object
var booleanLiteral = false;
console.log(booleanLiteral.toString()); // logs 'false'
console.log(booleanLiteral['toString']()); // logs 'false'
console.log((true).toString()); // logs 'true'
console.log(true['toString']()); // logs 'true'

</script></body></html>

124 | Chapter 13: Working with Primitive String, Number, and Boolean Values

http://jsfiddle.net/javascriptenlightenment/sQXdE/
http://jsfiddle.net/javascriptenlightenment/dQMHs/

Note
When accessing a property on a primitive number directly (not stored
in a variable), you have to first evaluate the number before the value is
treated as an object (e.g., (1).toString(); or 1..toString();). Why
two dots? The first dot is considered a numeric decimal, not an operator
for accessing object properties.

You Should Typically Use Primitive String, Number, and
Boolean Values
The literal/primitive values that represent a string, number, or boolean are faster to write
and are more concise in the literal form.

You should use the literal value because of this. Additionally, the accuracy of the type
of operator depends upon how you create the value (literal versus constructor invoca‐
tion). If you create a string, number, or boolean object, the typeof operator reports the
type as an object. If you use literals, the typeof operator returns a string name of the
actual value type (e.g., typeof 'foo' // returns 'string').

In the code below, I demonstrate this fact.
Live Code

<!DOCTYPE html><html lang="en"><body><script>

// string, number, and boolean objects
console.log(typeof new String('foo')); // logs 'object'
console.log(typeof new Number(1)); // logs 'object'
console.log(typeof new Boolean(true)); // logs 'object'

// string, number, and boolean literals/primitives
console.log(typeof 'foo'); // logs 'string'
console.log(typeof 1); // logs 'number'
console.log(typeof true); // logs 'boolean'

</script></body></html>

If your program depends upon the typeof operator to identify string, number, or
boolean values in terms of those primitive types, you should avoid the String(), Num
ber(), and Boolean() constructors.

You Should Typically Use Primitive String, Number, and Boolean Values | 125

http://jsfiddle.net/javascriptenlightenment/NYcnn/

CHAPTER 14

Null

Conceptual Overview of Using the null Value
You can use null to explicitly indicate that an object property does not contain a value.
Typically, if a property is set up to contain a value, but the value is not available for some
reason, the value null should be used to indicate that the reference property has an
empty value.

Live Code

<!DOCTYPE html><html lang="en"><body><script>

// the property foo is waiting for a value, so we set its initial value to null
var myObjectObject = {foo: null};

console.log(myObjectObject.foo); //logs 'null'

</script></body></html>

Note
Don’t confuse null with undefined. undefined is used by JavaScript to
tell you that something is missing. null is provided so you can deter‐
mine when a value is expected but just not available yet.

typeof Returns null Values as “object”
For a variable that has a value of null, the typeof operator returns 'object'. If you
need to verify a null value, the ideal solution would be to see if the value you are after
is equal to null. Below, we use the === operator to specifically verify that we are dealing
with a null value.

127

http://jsfiddle.net/javascriptenlightenment/PBq4y/

Live Code

<!DOCTYPE html><html lang="en"><body><script>

var myObject = null;

console.log(typeof myObject); // logs 'object', not exactly helpful
console.log(myObject === null); // logs true, only for a real null value

</script></body></html>

Note
When verifying a null value, always use === because == does not dis‐
tinguish between null and undefined.

128 | Chapter 14: Null

http://jsfiddle.net/javascriptenlightenment/fG94Y/

CHAPTER 15

Undefined

Conceptual Overview of the undefined Value
The undefined value is used by JavaScript in two slightly different ways.

The first way it’s used is to indicate that a declared variable (e.g., var foo) has no assigned
value. The second way it’s used is to indicate that an object property you’re trying to
access is not defined (i.e., it has not even been named), and is not found in the prototype
chain.

Below, I examine both usages of undefined by JavaScript.
Live Code

<!DOCTYPE html><html lang="en"><body><script>

var initializedVariable; // declare variable

console.log(initializedVariable); // logs undefined
console.log(typeof initializedVariable); /* confirm that JavaScript returns
 undefined */

var foo = {};

console.log(foo.bar); // logs undefined, no bar property in foo object
console.log(typeof foo.bar); // confirm that JavaScript returns undefined

</script></body></html>

129

http://jsfiddle.net/javascriptenlightenment/kGhrK/

Note
It is considered good practice to allow JavaScript alone to use unde
fined. You should never find yourself setting a value to undefined, as
in foo = undefined. Instead, null should be used if you are specifying
that a property or variable value is not available.

JavaScript ECMAScript 3 Edition (and Later) Declares the
undefined Variable in the Global Scope
Unlike previous versions, JavaScript ECMAScript 3 Edition (and later) has a global
variable called undefined declared in the global scope. Because the variable is declared,
and not assigned a value, the undefined variable is set to undefined.

Live Code

<!DOCTYPE html><html lang="en"><body><script>

// confirm that undefined is a property of the global scope
console.log(undefined in this); // logs true

</script></body></html>

130 | Chapter 15: Undefined

http://jsfiddle.net/javascriptenlightenment/MhRKB/

CHAPTER 16

Math Function

Conceptual Overview of the Built-In Math Object
The Math object contains static properties and methods for mathematically dealing with
numbers or providing mathematical constants (e.g., Math.PI;). This object is built into
JavaScript, as opposed to being based on a Math() constructor that creates math
instances.

Note
It might seem odd that Math starts with a capitalized letter since you do
not instantiate an instance of a Math object. Do not be thrown off by
this. Simply be aware that JavaScript sets this object up for you.

Math Properties and Methods
The Math object has the following properties and methods:

Properties (e.g., Math.PI;):

• E

• LN2

• LN10

• LOG2E

• LOG10E

• PI

131

• SQRT1_2

• SQRT2

Methods (e.g., Math.random();):

• abs()

• acos()

• asin()

• atan()

• atan2()

• ceil()

• cos()

• exp()

• floor()

• log()

• max()

• min()

• pow()

• random()

• round()

• sin()

• sort()

• tan()

Math Is Not a Constructor Function
The Math object is unlike the other built-in objects that are instantiated. Math is a one-
off object created to house static properties and methods, ready to be used when dealing
with numbers. Just remember, there is no way to create an instance of Math, as there is
no constructor.

132 | Chapter 16: Math Function

Math Has Constants You Cannot Augment/Mutate
Many of the Math properties are constants that cannot be mutated. Since this is a de‐
parture from the mutable nature of JavaScript, these properties are in all-caps (e.g.,
Math.PI;). Do not confuse these property constants for constructor functions due to
the capitalization of their first letter. They are simply object properties that cannot be
changed.

Note
User-defined constants are not possible in JavaScript 1.5, ECMAScript
3 Edition.

Math Has Constants You Cannot Augment/Mutate | 133

http://en.wikipedia.org/wiki/Constant_%2528programming%2529

APPENDIX A

Review

The following points summarize what you should have learned during the reading of
this book (and investigation of code examples). Read each summary, and if you don’t
understand what is being said, return to the topic in the book.

• An object is made up of named properties that store values.
• Most everything in JavaScript can act like an object. Complex values are, well, ob‐

jects and primitive values can be treated like objects. This is why you may hear
people say that everything in JavaScript is an object.

• Objects are created by invoking a constructor function with the new keyword, or by
using a shorthand literal expression.

• Constructor functions are objects (Function() objects), thus, in JavaScript, objects
create objects.

• JavaScript offers 9 native constructor functions: Object(), Array(), String(),
Number(), Boolean(), Function(), Date(), RegExp(), and Error(). The String(),
Number(), and Boolean() constructors are dual-purposed in providing a) primitive
values and b) object wrappers when needed, so that primitive values can act like
objects when so treated.

• The values null, undefined, "string", 10, true, and false are all primitive values,
without an object nature unless treated like an object.

• When the Object(), Array(), String(), Number(), Boolean(), Function(),
Date(), RegExp(), and Error() constructor functions are invoked using the new
keyword, an object is created that is known as a “complex object” or “reference
object.”

• "string", 10, true, and false, in their primitive forms, have no object qualities
until they are used as objects; then JavaScript, behind the scenes, creates temporary
wrapper objects so that such values can act like objects.

135

• Primitive values are stored by value, and when copied, are literally copied. Complex
object values, on the other hand, are stored by reference, and when copied, are
copied by reference.

• Primitive values are equal to other primitive values when their values are equal,
whereas complex objects are equal only when they reference the same value. That
is: a complex value is equal to another complex value when they both refer to the
same object.

• Due to the nature of complex objects and references, JavaScript objects have
dynamic properties.

• JavaScript is mutable, which means that native objects and user-defined object
properties can be manipulated at any time.

• Getting/setting/updating an object’s properties is done by using dot notation or
bracket notation. Bracket notation is convenient when the name of the object prop‐
erty being manipulated is in the form of an expression [e.g., Array['prototype']
['join'].apply()].

• When referencing object properties, a lookup chain is used to first look at the object
that was referenced for the property; if the property is not there, the property is
looked for on the constructor function’s prototype property. If it’s not found there,
because the prototype holds an object value and the value is created from the
Object() constructor, the property is looked for on the Object() constructor’s
prototype property (Object.prototype). If the property is not found there, then
the property is determined to be undefined.

• The Prototype lookup chain is how inheritance (a.k.a. prototypal inheritance) was
designed to be accomplished in JavaScript.

• Because of the object property lookup chain (a.k.a. prototypal inheritance), all ob‐
jects inherit from Object() simply because the prototype property is, itself, an
Object() object.

• JavaScript functions are first-class citizens: functions are objects with properties
and values.

• The this keyword, when used inside a function, is a generic way to reference the
object containing the function.

• The value of this is determined during runtime based on the context in which the
function is called.

• Used in the global scope, the this keyword refers to the global object.
• JavaScript uses functions as a way to create a unique scope.
• JavaScript provides the global scope, and it’s in this scope that all JavaScript code

exists.

136 | Appendix A: Review

• Functions (specifically, encapsulated functions) create a scope chain for resolving
variable lookups.

• The scope chain is set up based on the way code is written, not necessarily by the
context in which a function is invoked. This permits a function to have access to
the scope in which it was originally written, even if the function is called from a
different context. This result is known as a closure.

• Function expressions and variables declared inside a function without using var
become global properties. However, function statements inside of a function scope
remain defined in the scope in which they are written.

• Functions and variables declared (without var) in the global scope become prop‐
erties of the global object.

• Functions and variables declared (with var) in the global scope become global
variables.

Review | 137

APPENDIX B

Conclusion

It’s my hope that after reading this book, you will be equipped to either better understand
your JavaScript library of choice, or better yet, be equipped to write your own JavaScript
solutions. Either way this book alone was not written to be a definitive guide to the
language. From here, I would recommend reading (or rereading) the following books
so that the topics explained here may be reinforced from a different voice, and additional
JavaScript topics may be examined and explored:

• JavaScript: The Good Parts, by Douglas Crockford (O’Reilly)
• JavaScript Patterns, by Stoyan Stefanov (O’Reilly)
• Object-Oriented JavaScript, by Stoyan Stefanov (Packt Publishing)
• Professional JavaScript for Web Developers, by Nicholas C. Zakas (Wiley/Wrox)
• High Performance JavaScript, by Nicholas C. Zakas (O’Reilly)

139

http://shop.oreilly.com/product/9780596517748.do
http://shop.oreilly.com/product/9780596806767.do
http://shop.oreilly.com/product/9781118026694.do
http://shop.oreilly.com/product/9780596802806.do

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Index

Symbols
() (parentheses)

invoking methods, 36
parentheses operator, 51

invoking function expressions, 61
. (dot)

dot notation, getting setting object proper‐
ties with, 33

= (equals sign)
== (equal to) operator, null values and, 128
=== (identity) operator

comparison of primitive values, 17
comparisons of complex objects, 21
verifying null values, 127

[] (square brackets)
bracket chaining to access encapsulated ar‐

rays, 108
bracket notation, getting/setting object prop‐

erties, 34

A
alert() function, 70
anonymous functions, 61

passing to and returning from other func‐
tions, 63

self-invoking anonymous function state‐
ments, 62

apply() method, 60
using to control value of this keyword, 78

arguments array, 58
arguments object, 56

callee property, 56
length property, 57

Array() constructor, 8, 103–110
Array() object properties and methods, 104
complex values, 19
creating arrays, 105
creating instance with its own instance prop‐

erty, 27
instantiating instance using new operator, 11
objects containing other complex objects, 33
parameters, 104
using Array() objects, conceptual overview,

103
Array.prototype, 37, 95, 104
arrays

adding and updating values in, 106
array object instance properties and meth‐

ods, 105
containing other arrays (multidimensional),

108
defining with predefined length, 107
length versus index, 107
looping over, backward and forward, 109
setting length property, adding or removing

values, 108

141

using Array() objects, conceptual overview,
103

associative arrays, mimicking with use of brack‐
et notation, 36

B
block scope, nonexistent in JavaScript, 84
Boolean() constructor, 8, 119–122

Boolean() object properties and methods,
120

creation of literal/primitive and complex val‐
ues, 14

false boolean objects created from, conver‐
sion to true, 121

instantiating instance using new operator, 11
literal values and, 12
parameters, 120
using Boolean object, conceptual overview,

119
values converting to false and true values,

122
booleans

as primitive or simple values, 13
boolean primitive values behaving as objects,

18
working with primitive boolean values, 124

bracket chaining, 108
bracket notation, getting/setting object proper‐

ties, 34
built-in object constructors, 8

C
call() method, 60

using to control value of this keyword, 77
callee property, arguments object, 56
chaining, object, 36
closures, 52

caused by scope chain, 88
code examples in this book, xii
complex objects

containing most JavaScript values as proper‐
ties, 31

encapsulating in programmatically benefi‐
cial way, 32

complex values, 19
storing and copying in JavaScript, 20
typeof operator used on, 22

composite values (see complex values)

console.log function, xii
constants, 133
constructor functions, 103

(see also individual constructor names)
constructing and returning object instances,

6
creating shorthand/literal values from, 12
defined, 3
instance created from, having its own in‐

stance properties, 27
instances created from, linkage to construc‐

tor’s prototype property, 94
instantiating using new operator, 10–12
native or built-in object constructors, 8
objects instantiated by, constructor property

and, 24
prototype object, 37
review, 135
same prototype inheritance in user-defined

and native constructors, 99
this keyword in prototype method, 80
user-defined, using this keyword in, 79
user-defined/non-native object constructors,

9
verifying object as instance of, 26

constructor property, 24
boolean object instances, 121
default, removal by replacing default proto‐

type property, 96
number object instances, 117
tracing link from object to prototype object

it inherits, 94
use on user-defined constructor functions,

26
context, function calls, this keyword and, 75
copying

complex values, 20
primitive values, 16

D
Date() constructor, 8

complex values, 19
creating date objects, 12
instantiating instance using new operator, 11

decodeURI() function, 68
decodeURIComponent() function, 68
delete operator, 36
DOM (Document Object Model), 42

142 | Index

dot notation, getting/setting object properties,
33

dynamic properties
allowing for mutable objects, 23
complex objects, 22

E
ECMAScript 3 Edition, x, 42

global variable called undefined declared in
global scope, 130

encodeURI() function, 68
encodeURIComponent() function, 68
enumerable properties, 41
equality comparisons

complex objects, equal by reference, 21
null values, 127
primitive values, 17

Error() constructor, 8
complex values, 19
instantiating instance using new operator, 11

eval scope, 83
eval() function, 52, 68

F
Firebug lite-dev, xii
Firefox

JavaScript versions, 42
__proto__ link suppport, 94

floating-point numbers, 116
for in loop, enumerating object’s properties, 40
fromCharCode() method, string object, 112
function expressions, 59

self-invoking, 61
function hoisting, 64
function scope (see local scope)
function statements, 59

invoking before definition (function hoist‐
ing), 64

self-invoking anonymous function state‐
ments, 62

Function() constructor, 6, 8, 51–65
complex values, 19
defining a function, 59
instantiating instance using new operator, 11
length property of instances, 57
objects containing other complex objects, 33
parameters, 52
properties and methods, 53

prototype property on all instances, 93
functions, 2

anonymous, 61
arguments.callee property, referencing func‐

tion currently executing, 56
as objects, 54
calling themselves (recursion), 64
canceling execution, 58
defined, 51
defining, different methods of, 59
global functions within head object, 68
invoking, 60
nested, 62
passing parameters to, 55
passing to and returning from other func‐

tions, 63
redefining parameters, 58
returning a value, 53
review, 136
scope determination during definition, not

invocation, 87
this keyword and, 73
values of this operator and arguments, 55

G
global object (see head object)
global scope, 83

function called from, this keyword value, 74
global properties and variables versus head

object, 68
global variables

head object versus, 68
undefined, declared in global space, 130

H
hasOwnProperty() method, 39, 41, 47
head object, 42, 63, 67–71

global functions in, 68
versus global properties and global variables,

68
implied, and not explicitly referenced, 70
referring to, 70
this keyword referring to, in nested func‐

tions, 76
hoisting, 64
host objects, 41

Index | 143

I
identity operator (===)

comparison of complex objects, 21
primitive value comparisons, 17
verifying null values, 127

in operator, 39
checking if object has a given property, 39

index versus length, array object, 107
inheritance

all objects inheriting from Object.prototype,
49

creating inheritance chains, 101
prototypal, 136

in user-defined and native constructors,
99

prototype property and, 92
instance methods

array object, 105
boolean object, 121
number object, 117
string object instances, 113

instance properties, 27
array object, 105
boolean object, 121
Function object, 53
number object, 117
Object() instances, 47
string object instances, 112

instances (object), constructing and returning, 6
instantiated objects, 7
integers, 116
invoking functions, 60

function calling itself (recursion), 64
function statements before definition (func‐

tion hoisting), 64
self-invoking anonymous function state‐

ments, 62
self-invoking function expressions, 61

irreducible values, 13
isFinite() function, 68
isNaN() function, 68
isPrototypeOf() method, 47

J
JavaScript

books on, 139
versions, 42

JavaScript 1.5, x

JS Bin, xii
jsFiddle examples, xii

L
length property

arguments object, 57
array object, 104, 105

defining arrays with predefined length,
107

index versus, 107
setting to add or remove array values, 108

Function() instances, 57
lexical scoping, 85, 87

(see also scope chain)
literals, 12

creating Object() objects using object liter‐
als, 48

string, number, and boolean literal values,
123–125

local scope, 83

M
Math object, 9

conceptual overview, 131
constants, manipulating, 133
not a constructor function, 132
properties and methods, 131

memory
complex values, storage of, 20
primitive values, storage of, 16

methods, 56
defined, 2
Function object instances, 53
invoking functions as, 60
invoking with () operator, 36
Object() instance methods, 47

Mozilla, JavaScript versions, 42
multidimensional arrays, 108
mutable objects, 27

dynamic properties allowing for, 23

N
named function expressions, 59
native objects

creating with Object() constructor, 46
host objects versus, 41

native or built-in object constructors, 8

144 | Index

nested functions, 62
this keyword issue, workaround leveraging

scope chain, 77
this keyword referring to head object, 76

new keyword, 8
constructor function invoked with, this key‐

word and, 79
custom constructor functions used with,

naming convention, 10
function object created with, 51
functions invoked via, 6
instances from Boolean() constructor used

with, 120
instances from String() constructor used

with, 112
instantiating constructors with, 10–12
used with this keyword, 10
using Function() constructor without, 52
using literals instead of, 13

null values, 13
returned by typeof operator as object, 127
using, conceptual overview, 127

Number() constructor, 8, 115–117
creation of literal/primitive and complex val‐

ues, 14
instantiating instance using new operator, 11
literal values and, 12
Number() object properties, 117
parameters, 116
using Number() object, conceptual over‐

view, 115
numbers

as primitive or simple values, 13
integers and floating-point numbers, 116
number object instance properties and

methods, 117
number primitive values behaving as objects,

18
working with primitive number values, 125

O
object chaining, 36
Object() constructor, 8, 45–50

complex values, 19
instantiating instance using new operator, 11
object instance properties and methods, 47
objects containing other complex objects, 32
parameters, 46
properties and methods, 47

prototype property, 38, 49
Object() objects, 3

creating using object literals, 48
creation of, 4
JavaScript objects versus, 29
prototype property as, 93
using, conceptual overview of, 45

object-oriented programming languages, inheri‐
tance chains in, 101

Object.prototype, 37, 38
all objects inheriting from, 49
last stop in prototype chain, 95

objects, 1–29
built-in object constructors, 8
complex

containing most JavaScript values as
properties, 31

dynamic properties, 22
encapsulating, 32

complex, equality by reference, 21
constructing and returning object instances,

6
creating, 1–6
creating shorthand/literal values from con‐

structors, 12
deleting object properties, 36
dynamic properties allowing for mutable ob‐

jects, 23
enhancing and extending with Under‐

score.js, 43
enumerating properties using for in loop, 40
functions as, 54
getting/setting properties using dot or brack‐

et notation, 33
host versus native objects, 41
in operator, using to check for a specific

property, 39
inheritance from Object.prototype, 49
instances from String() constructor used

with new keyword, 112
instantiating constructors using new opera‐

tor, 10
JavaScript objects versus Object() objects, 29
primitive values are not objects, 15
resolving references to object properties, 37
review, 135
string, number and boolean primitive values,

acting like objects, 18

Index | 145

user-defined, non-native object constructor
functions, 9

verifying as instance of a constructor func‐
tion, 26

verifying that property is not from prototype
chain, 39

P
parseFloat() function, 68
parseInt() function, 68
Person() custom constructor, 9

leveraging prototype inheritance, 100
using this keyword in, 79

primitive values, 13
constructor properties pointing to construc‐

tor functions, 26
equal by value, 17
not objects, 15
number, 115
returning from Boolean() constructor, 121
review, 135
storing and copying in JavaScript, 16
string, 111
string, number, and boolean, behaving as

objects, 18
typeof operator used on, 22
working with string, number, and boolean

values, 123–125
reasons to use primitive values, 125

properties
complex objects, 31
deleting object properties, 36
dynamic properties allowing for mutable ob‐

jects, 23
dynamic properties of complex objects, 22
enumerating object properties with for in

loop, 40
getting/setting for objects using dot or

bracket notation, 33
global, head object versus, 68
instance, 27
null value for object property, 127
Object() instance properties, 47
Object() object, 47
objects as containers for, 2
undefined object property, 129
using in operator to check if object contains

a property, 39

verifying object property is not from proto‐
type chain, 39

property names, specified as strings, 48
propertyIsEnumerable() method, 47
__proto__ property, 37, 94
prototypal inheritance, 6, 136
prototype chain

conceptual overview, 91
Object.prototype as last stop, 95
returning first property match found, 96

prototype property, 37, 91–101, 136
all objects inheriting from Object.prototype,

49
Array object, 104
boolean object, 120
constructor, linkage to instances created

from constructor function, 94
creating inheritance chains, 101
on all Function() instances, 93
Function.prototype, 53
importance of, 92
latest value for instances inheriting proper‐

ties from, 97
number object, 117
as Object() object, 93
Object.prototype, 47
replacement with new object, not updating

former instances, 98
replacement with new object, removing de‐

fault constructor property, 96
string objects, 112
this keyword inside prototype method, 80

R
recursion, 64
references

to head object, 70
to object properties, resolving, 37

RegExp() constructor, 8
complex values, 19
instantiating instance using new operator, 11

return keyword, canceling function execution,
58

S
scope, 83–89

determination during function definition,
not invocation, 87

146 | Index

no block scope in JavaScript, 84
using var in functions for variable declara‐

tions and to avoid scope problems, 85
scope chain, 77, 85, 137

closures caused by, 88
defined, 84
lookups returning first found value, 87

simple values (see primitive values)
String() constructor, 8, 111–113

creation of literal/primitive and complex val‐
ues, 14

creation of String() objects, 4
dynamic properties allowing for mutable ob‐

jects, 23
instantiating instance using new operator, 11
literal values and, 12
parameters, 111
properties and methods of string object, 112

strings
as primitive or simple values, 13
string object created via String() constructor

function, 3
string object instance properties and meth‐

ods, 112
string primitive value behaving as object, 18
using string objects and string primitive val‐

ues, 111
working with primitive string values, 123

T
this keyword, 6, 73–81, 136

controlling value using call() or apply(), 77
determining value of, 74
referring to head object, 70
referring to head object in nested functions,

76
workaround leveraging scope chain, 77

used in prototype method, referring to con‐
structor instance, 80

used with new keyword, 10
using in user-defined constructor function,

79
value available to all functions, 56
value for nested functions, 63

toLocaleString() method, 38, 47
toString() method, 18, 47
true and false values, 13

conversion of other values to, 122

false boolean objects, conversion to true, 121
typeof operator

complex string objects, problems with, 112
primitive string, number, and boolean val‐

ues, 125
returning null values as object, 127
using on primitive and complex values, 22

U
undefined values, 13

conceptual overview, 129
undefined variable declared in global scope,

130
Underscore.js, 43
user-defined constructor functions

leveraging same prototype inheritance as na‐
tive constructors, 99

use of constructor property on, 26
user-defined objects, 23

verifying as instance of a constructor func‐
tion, 27

user-defined/non-native object constructor
functions, 9

V
valueOf() method, 47
var keyword, using to declare variables in func‐

tions to avoid scope problems, 85
variables

declaration in functions, using var keyword,
85

declared, having no assigned value, 129
global, head object versus, 68

versions of JavaScript, 42

W
web browsers

head object, 42, 63
host objects, 41
__proto__ link support, 94

while loops, looping over array, 109
window object, 41, 67

(see also head object)
window.alert(), 70
window.document object, 42

Index | 147

Colophon
The animal on the cover of JavaScript Enlightenment is a Eurasian eagle owl (Bubo bu‐
bo), one of the largest species of owl in the world. Its habitat ranges from the dense forests
of western Europe to the mountains of Asia, and from frigid Scandinavian fjords to the
deserts of Saharan Africa and the Middle East.

The eagle owl is an imposing bird of prey with a large facial disc (the feathers surround‐
ing the eyes) and bright orange eyes. It stands over 2 feet tall, with a wingspan up to 6
feet across. Along with its size, the dark vertical stripes on its feathers, a mottled white
pattern on the breast, and prominent ear tufts make the eagle owl easy to identify.

This owl hunts by watching for prey from a high perch. When it spots a rabbit or other
small mammal, it swoops in swiftly and low to the ground to capture prey with its large
talons. Eagle owls can also pluck birds out of the air or plunge into water to grab a fish.

The eagle owl prefers to build nests on rocky ledges, crevices on the face of a cliff, or in
the shelter of a cave entrance. A typical brood contains one to four owlets who are born
in mid-to-late winter and grow quickly—by early spring, they are too large to remain
in the nest. The female will continue to feed and protect her offspring even after they
leave the nest, until they are able to hunt on their own in the fall.

The eagle owl can be seen soaring on thermal updrafts or flying with shallow wing beats
and long glides, a pattern of flight more similar to the red-tailed hawk than other owl
species. Eagle owls can be ferocious, especially when feeding and tending to their young,
and have been known to fight other large birds of prey (such as golden eagles or peregrine
falcons). When threatened, an eagle owl will puff out its chest and ear tufts to make itself
seem larger.

The cover image is from Meyers Lexikon. The cover font is Adobe ITC Garamond. The
text font is Adobe Minion Pro; the heading font is Adobe Myriad Condensed; and the
code font is Dalton Maag’s Ubuntu Mono.

	Copyright
	Table of Contents
	Preface
	Introduction
	Why Did I Write This Book?
	Who Should Read This Book?
	Why JavaScript 1.5 and ECMAScript 3 Edition?
	Why Didn’t I Cover the Date(), Error(), and RegEx()
 Objects?

	More Code, Fewer Words
	Exhaustive Code and Repetition
	Color-Coding Conventions
	jsFiddle, JS Bin, and Firebug lite-dev
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	About the Author
	About the Technical Editors
	Michael Richardson
	Kyle Simpson
	Nathan Smith
	Ben Nadel
	Ryan Florence
	Nathan Logan

	Chapter 1. JavaScript Objects
	Creating Objects
	JavaScript Constructors Construct and Return Object Instances
	The JavaScript Native/Built-In Object Constructors
	User-Defined/Non-Native Object Constructor Functions
	Instantiating Constructors Using the new Operator
	Creating Shorthand/Literal Values from Constructors
	Primitive (a.k.a. Simple) Values
	The Primitive Values null, undefined, “string”, 10, true, and false
 Are Not Objects
	How Primitive Values Are Stored/Copied in JavaScript
	Primitive Values Are Equal by Value
	The String, Number, and Boolean Primitive Values Act Like Objects
 When Used Like Objects
	Complex (a.k.a. Composite) Values
	How Complex Values Are Stored/Copied in JavaScript
	Complex Objects Are Equal by Reference
	Complex Objects Have Dynamic Properties
	The typeof Operator Used on Primitive and Complex Values
	Dynamic Properties Allow for Mutable Objects
	All Constructor Instances Have Constructor Properties that Point to
 Their Constructor Function
	Verify that an Object Is an Instance of a Particular Constructor
 Function
	An Instance Created From a Constructor Can Have Its Own Independent
 Properties (Instance Properties)
	The Semantics of “JavaScript Objects” and “Object() Objects”

	Chapter 2. Working with Objects and Properties
	Complex Objects Can Contain Most of the JavaScript Values as
 Properties
	Encapsulating Complex Objects in a Programmatically Beneficial
 Way
	Getting/Setting/Updating an Object’s Properties Using Dot Notation
 or Bracket Notation
	Deleting Object Properties
	How References to Object Properties Are Resolved
	Using hasOwnProperty, Verify That an Object Property Is Not From
 the Prototype Chain
	Checking If an Object Contains a Given Property Using the in Operator
	Enumerate (Loop Over) an Object’s Properties using the for in
 Loop
	Host Objects versus Native Objects
	Enhancing and Extending Objects with Underscore.js

	Chapter 3. Object()
	Conceptual Overview of Using Object() Objects
	Object() Parameters
	Object() Properties and Methods
	Object() Object Instance Properties and Methods
	Creating Object() Objects Using “Object Literals”
	All Objects Inherit From Object.prototype

	Chapter 4. Function()
	Conceptual Overview of Using Function() Objects
	Function() Parameters
	Function() Properties and Methods
	Function Object Instance Properties and Methods
	Functions Always Return a Value
	Functions Are First-Class Citizens (Not Just Syntax but Values)
	Passing Parameters to a Function
	this and arguments Values Available To All Functions
	The arguments.callee Property
	The Function Instance length Property and arguments.length
	Redefining Function Parameters
	Return a Function Before It Is Done (Cancel Function Execution)
	Defining a Function (Statement, Expression, or Constructor)
	Invoking a Function [Function, Method, Constructor, or call() and
 apply()]
	Anonymous Functions
	Self-Invoking Function Expression
	Self-Invoking Anonymous Function Statements
	Functions Can Be Nested
	Passing Functions to Functions and Returning Functions from
 Functions
	Invoking Function Statements Before They Are Defined (Function
 Hoisting)
	A Function Can Call Itself (Recursion)

	Chapter 5. The Head/Global Object
	Conceptual Overview of the Head Object
	Global Functions Contained Within the Head Object
	The Head Object versus Global Properties and Global Variables
	Referring to the Head Object
	The Head Object Is Implied and Typically Not Referenced Explicitly

	Chapter 6. The this Keyword
	Conceptual Overview of this and How It Refers to Objects
	How Is the Value of this Determined?
	The this Keyword Refers to the Head Object in Nested Functions
	Working Around the Nested Function Issue by Leveraging the Scope
 Chain
	Controlling the Value of this Using call() or apply()
	Using the this Keyword Inside a User-Defined Constructor Function
	The this Keyword Inside a Prototype Method Refers to a Constructor
 Instance

	Chapter 7. Scope and Closures
	Conceptual Overview of JavaScript Scope
	JavaScript Does Not Have Block Scope
	Use var Inside Functions to Declare Variables and Avoid Scope
 Gotchas
	The Scope Chain (Lexical Scoping)
	The Scope Chain Lookup Returns the First Found Value
	Scope Is Determined During Function Definition, not Invocation
	Closures Are Caused by the Scope Chain

	Chapter 8. Function Prototype Property
	Conceptual Overview of the Prototype Chain
	Why Care About the prototype Property?
	Prototype Is Standard on All function() Instances
	The Default prototype Property Is an Object() Object
	Instances Created From a Constructor Function are Linked to the
 Constructor’s prototype Property
	Last Stop in the prototype Chain is Object.prototype
	The prototype Chain Returns the First Property Match It Finds in
 the Chain
	Replacing the prototype Property with a New Object Removes the
 Default Constructor Property
	Instances That Inherit Properties from the Prototype Will Always
 Get the Latest Values
	Replacing the prototype Property with a New Object Does Not Update
 Former Instances
	User-Defined Constructors Can Leverage the Same Prototype
 Inheritance as Native Constructors
	Creating Inheritance Chains (the Original Intention)

	Chapter 9. Array()
	Conceptual Overview of Using Array() Objects
	Array() Parameters
	Array() Properties and Methods
	Array Object Instance Properties and Methods
	Creating Arrays
	Adding and Updating Values in Arrays
	Length versus Index
	Defining Arrays with a Predefined Length
	Setting Array Length can Add or Remove Values
	Arrays Containing Other Arrays (Multidimensional Arrays)
	Looping Over an Array, Backwards and Forwards

	Chapter 10. String()
	Conceptual Overview of Using the String() Object
	String() Parameters
	String() Properties and Methods
	String Object Instance Properties and Methods

	Chapter 11. Number()
	Conceptual Overview of Using the Number() Object
	Integers and Floating-Point Numbers
	Number() Parameters
	Number() Properties
	Number Object Instance Properties and Methods

	Chapter 12. Boolean()
	Conceptual Overview of Using the Boolean() Object
	Boolean() Parameters
	Boolean() Properties and Methods
	Boolean Object Instance Properties and Methods
	Non-Primitive False Boolean Objects Convert to true
	Certain Things Are false, Everything Else Is true

	Chapter 13. Working with Primitive String, Number, and Boolean Values
	Primitive/Literal Values Are Converted to Objects When Properties
 Are Accessed
	You Should Typically Use Primitive String, Number, and Boolean
 Values

	Chapter 14. Null
	Conceptual Overview of Using the null Value
	typeof Returns null Values as “object”

	Chapter 15. Undefined
	Conceptual Overview of the undefined Value
	JavaScript ECMAScript 3 Edition (and Later) Declares the undefined
 Variable in the Global Scope

	Chapter 16. Math Function
	Conceptual Overview of the Built-In Math Object
	Math Properties and Methods
	Math Is Not a Constructor Function
	Math Has Constants You Cannot Augment/Mutate

	Appendix A. Review
	Appendix B. Conclusion
	Index

