
Charles Petzold

Programming
Windows
Sixth Edition
Writing Windows 8 Apps
with C# and XAML

Pr
of

es
sio

na
l

®

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2013 by Charles Petzold

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any
means without the written permission of the publisher.

Library of Congress Control Number: 2012955549
ISBN: 978-0-7356-7176-8

Printed and bound in the United States of America.

First Printing

Microsoft Press books are available through booksellers and distributors worldwide. If you need support related
to this book, email Microsoft Press Book Support at mspinput@microsoft.com. Please tell us what you think of
this book at http://www.microsoft.com/learning/booksurvey.

Microsoft and the trademarks listed at http://www.microsoft.com/about/legal/en/us/IntellectualProperty/
Trademarks/EN-US.aspx are trademarks of the Microsoft group of companies. All other marks are property of
their respective owners.

The example companies, organizations, products, domain names, email addresses, logos, people, places, and
events depicted herein are fictitious. No association with any real company, organization, product, domain name,
email address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without
any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or
distributors will be held liable for any damages caused or alleged to be caused either directly or indirectly by
this book.

Acquisitions Editor: Devon Musgrave
Developmental Editor: Devon Musgrave
Project Editor: Devon Musgrave
Editorial Production: Waypoint Press
Technical Reviewer: Marc Young
Indexer: Christina Yeager
Cover: Twist Creative • Seattle and Joel Panchot

Contents at a Glance

Introduction xv

PART I	 ELEMENTALS

CHAPTER 1	 Markup and Code	 3

CHAPTER 2	 XAML Syntax	 31

CHAPTER 3	 Basic Event Handling	 69

CHAPTER 4	 Presentation with Panels	 97

CHAPTER 5	 Control Interaction	 139

CHAPTER 6	 WinRT and MVVM	 193

CHAPTER 7	 Asynchronicity 221

CHAPTER 8	 App Bars and Popups	 261

CHAPTER 9	 Animation 329

CHAPTER 10	 Transforms 377

CHAPTER 11	 The Three Templates	 449

CHAPTER 12	 Pages and Navigation	 539

PART II	 SPECIALTIES

CHAPTER 13	 Touch, Etc.	 615

CHAPTER 14	 Bitmaps 683

CHAPTER 15	 Going Native	 779

CHAPTER 16	 Rich Text	 845

CHAPTER 17	 Share and Print	 893

CHAPTER 18	 Sensors and GPS	 953

CHAPTER 19	 Pen (Also Known as Stylus)	 1013

Index 1057

		 v

Table of Contents

Introduction	 xv

PART I	 ELEMENTALS

Chapter 1	 Markup and Code	 3
The First Project. . 3

Graphical Greetings. . 9

Variations in Text. . 13

Media As Well. . 22

The Code Alternatives . . 23

Images in Code. . 27

Not Even a Page. . 29

Chapter 2	 XAML Syntax	 31
The Gradient Brush in Code. . 31

Property Element Syntax. . 34

Content Properties. . 37

The TextBlock Content Property. . 41

Sharing Brushes (and Other Resources) . . 43

Resources Are Shared. . 47

Exploring Vector Graphics. . 48

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our books and learning
resources for you. To participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey

vi	 Contents

Stretching with Viewbox. .58

Styles. . 60

A Taste of Data Binding. . 66

Chapter 3	 Basic Event Handling	 69
The Tapped Event. . 69

Routed Event Handling. . 72

Overriding the Handled Setting. . 78

Input, Alignment, and Backgrounds. . 80

Size and Orientation Changes . . 83

Bindings to Run?. . 87

Timers and Animation. . 89

Chapter 4	 Presentation with Panels	 97
The Border Element . . 97

Rectangle and Ellipse. . 101

The StackPanel. . 103

Horizontal Stacks . . 106

WhatSize with Bindings (and a Converter). . 108

The ScrollViewer Solution . . 112

Layout Weirdness or Normalcy?. .118

Making an E-Book . . 119

Fancier StackPanel Items. . 122

Deriving from UserControl . . 124

Creating Windows Runtime Libraries . . 127

The Wrap Alternative. . 130

The Canvas and Attached Properties. . 132

The Z-Index . . 136

Canvas Weirdness. . 137

	 Contents	 vii

Chapter 5	 Control Interaction	 139
The Control Difference. . 139

The Slider for Ranges. . 141

The Grid . . 146

Orientation and Aspect Ratios. . 152

Slider and the Formatted String Converter . . 154

Tooltips and Conversions. . 154

Sketching with Sliders. .157

The Varieties of Button Experience. . 159

Defining Dependency Properties. . 167

RadioButton Tags . . 177

Keyboard Input and TextBox. . 184

Touch and Thumb. . 187

Chapter 6	 WinRT and MVVM	 193
MVVM (Brief and Simplified) . . 193

Data Binding Notifications . . 194

A View Model for ColorScroll. . 196

Syntactic Shortcuts. . 201

The DataContext Property . . 204

Bindings and TextBox. . 206

Buttons and MVVM. . 212

The DelegateCommand Class. . 213

Chapter 7	 Asynchronicity	 221
Threads and the User Interface . . 221

Working with MessageDialog. . 222

Callbacks as Lambda Functions. . 228

The Amazing await Operator. . 229

Cancelling an Asynchronous Operation. . 231

viii	 Contents

Approaches to File I/O. . 233

Application Local Storage. . 234

File Pickers. . 234

Bulk Access . . 235

File Pickers and File I/O. . 235

Handling Exceptions. . 240

Consolidating Async Calls. . 241

Streamlined File I/O. . 243

Application Lifecycle Issues. . 245

Your Own Asynchronous Methods . . 250

Chapter 8	 App Bars and Popups	 261
Implementing Context Menus. . 261

The Popup Dialog. . 265

Application Bars . . 268

The Application Bar Button Style. . 271

Inside the Segoe UI Symbol Font. . 276

App Bar CheckBox and RadioButton. . 283

An App Bar for a Note Pad. . 286

Introducing XamlCruncher. . 293

Application Settings and View Models. . 308

The XamlCruncher Page . . 311

Parsing the XAML. . 316

XAML Files In and Out. . 318

The Settings Dialog. .322

Beyond the Windows Runtime. . 327

Chapter 9	 Animation	 329
The Windows.UI.Xaml.Media.Animation Namespace. 329

Animation Basics. . 330

Animation Variation Appreciation. . 334

	 Contents	 ix

Other Double Animations. . 340

Animating Attached Properties. . 347

The Easing Functions. . 350

All-XAML Animations. . 359

Animating Custom Classes . . 364

Key Frame Animations. . 367

The Object Animation . . 371

Predefined Animations and Transitions . . 373

Chapter 10	 Transforms	 377
A Brief Overview. . 377

Rotation (Manual and Animated). . 380

Visual Feedback. . 386

Translation. . 388

Transform Groups. . 391

The Scale Transform. . 396

Building an Analog Clock . . 400

Skew . . 406

Making an Entrance. . 409

Transform Mathematics. . 410

The CompositeTransform. . 418

Geometry Transforms. . 421

Brush Transforms. . 422

Dude, Where’s My Element?. . 427

Projection Transforms . . 430

Deriving a Matrix3D. . 437

Chapter 11	 The Three Templates	 449
Data in a Button. . 450

Making Decisions. . 460

x	 Contents

Collection Controls and the Real Use of DataTemplate. 463

Collections and Interfaces. . 474

Tapping and Selecting. . 475

Panels and Virtualizing Panels. . 481

Custom Panels. . 484

The Item Template Bar Chart. . 497

The FlipView Control. . 500

The Basic Control Template. . 502

The Visual State Manager. . 513

Using generic.xaml. . 520

Template Parts. . 521

Custom Controls. . 530

Templates and Item Containers. . 535

Chapter 12	 Pages and Navigation	 539
Screen Resolution Issues. . 539

Scaling Issues. . 545

Snap Views. . 549

Orientation Changes . . 554

Simple Page Navigation. . 557

The Back Stack. . 562

Navigation Events and Page Restoration. . 564

Saving and Restoring Application State. . 568

Navigational Accelerators and Mouse Buttons. . 572

Passing and Returning Data. . 575

Visual Studio’s Standard Templates. . 581

View Models and Collections. . 588

Grouping the Items. . 608

	 Contents	 xi

PART II	 SPECIALTIES

Chapter 13	 Touch, Etc.	 615
A Pointer Roadmap. . 616

A First Dab at Finger Painting. . 619

Capturing the Pointer. . 622

Editing with a Popup Menu. . 630

Pressure Sensitivity. . 633

Smoothing the Tapers. . 637

How Do I Save My Drawings?. . 646

Real and Surreal Finger Painting . . 647

A Touch Piano. . 649

Manipulation, Fingers, and Elements . . 655

Working with Inertia. . 663

An XYSlider Control . . 667

Centered Scaling and Rotation. . 673

Single-Finger Rotation. . 676

Chapter 14	 Bitmaps	 683
Pixel Bits. . 684

Transparency and Premultiplied Alphas. . 691

A Radial Gradient Brush. . 696

Loading and Saving Image Files. . 703

Posterize and Monochromize. . 714

Saving Finger Paint Artwork. . 722

HSL Color Selection . . 747

Reverse Painting. . 758

Accessing the Pictures Library . . 763

Capturing Camera Photos . . 772

xii	 Contents

Chapter 15	 Going Native	 779
An Introduction to P/Invoke. . 780

Some Help. . 786

Time Zone Information. . 786

A Windows Runtime Component Wrapper for DirectX. 808

DirectWrite and Fonts . . 809

Configurations and Platforms. . 821

Interpreting Font Metrics. .824

Drawing on a SurfaceImageSource. 831

Chapter 16	 Rich Text	 845
Private Fonts . . 847

A Taste of Glyphs. . 850

Font Files in Local Storage. . 852

Typographical Enhancements. . 856

RichTextBlock and Paragraphs . . 858

RichTextBlock Selection. . 862

RichTextBlock and Overflow . . 862

The Perils of Pagination. . 870

Rich Editing with RichEditBox. . 877

Your Own Text Input. . 886

Chapter 17	 Share and Print	 893
Settings and Popups. . 894

Sharing Through the Clipboard. . 898

The Share Charm. . 903

Basic Printing. . 904

Printable and Unprintable Margins. . 911

The Pagination Process . . 915

Custom Printing Properties. . 922

	 Contents	 xiii

Printing a Monthly Planner. . 928

Printing a Range of Pages. . 937

Where To Do the Big Jobs? . . 948

Printing FingerPaint Art. . 948

Chapter 18	 Sensors and GPS	 953
Orientation and Orientation. . 953

Acceleration, Force, Gravity, and Vectors. . 958

Follow the Rolling Ball. . 969

The Two Norths. . 973

Inclinometer = Accelerometer + Compass. . 976

OrientationSensor = Accelerometer + Compass. .980

Azimuth and Altitude. . 986

Bing Maps and Bing Map Tiles. . 999

Chapter 19	 Pen (Also Known as Stylus)	 1013
The InkManager Collections. . 1014

The Ink Drawing Attributes. . 1017

Erasing and Other Enhancements. . 1023

Selecting Strokes. . 1029

The Yellow Pad . . 1038

	 Index	 1057

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our books and learning
resources for you. To participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey

http://msdn.microsoft.com/windows/apps

		 xv

Introduction

This book—the 6th edition of Programming Windows—is a guide to writing
applications that run under Microsoft Windows 8.

To use this book, you’ll need a computer running Windows 8, on which you can
install the Windows 8 development tools and software development kit (SDK), most
conveniently in the form of the free download of Microsoft Visual Studio Express 2012
for Windows 8. That download is accessible from the Windows 8 developer portal:

http://msdn.microsoft.com/windows/apps

To install Visual Studio, follow the "Downloads for developers" link on that page and
then the “Download the tools and SDK” link on the following page. This page also
provides information on obtaining a Windows 8 developer account that lets you upload
new applications to the Windows Store.

The Versions of Windows 8

For the most part, Windows 8 is intended to run on the same class of personal
computers as Windows 7, which are machines built around the 32-bit or 64-bit Intel
x86 microprocessor family. Windows 8 is available in a regular edition called simply
Windows 8 and also a Windows 8 Pro edition with additional features that appeal to
tech enthusiasts and professionals.

Both Windows 8 and Windows 8 Pro run two types of programs:

■■ Desktop applications

■■ New Windows 8 applications, often called Windows Store applications

Desktop applications are traditional Windows programs that currently run under
Windows 7 and that interact with the operating system through the Windows
application programming interface, known familiarly as the Win32 API. To run these
desktop applications, Windows 8 includes a familiar Windows desktop screen.

xvi	 Introduction

The new Windows Store applications represent a radical break with traditional
Windows. The programs generally run in a full-screen mode—although two programs
can share the screen in a “snap” mode—and many of these programs will probably be
optimized for touch and tablet use. These applications are purchasable and installable
only from the application store run by Microsoft. (As a developer, you can deploy and
test applications directly from Visual Studio.)

In addition to the versions of Windows 8 that run on x86 processors, there is also a
version of Windows 8 that runs on ARM processors, most commonly found in low-cost
tablets and other mobile devices. This version of Windows 8 is called Windows RT,
and it only comes preinstalled on these machines. One of the first computers running
Windows RT is the initial release of the Microsoft Surface.

Aside from some preinstalled desktop applications, Windows RT runs new Windows
Store applications only. You cannot run existing Windows 7 applications under
Windows RT. You cannot run Visual Studio under Windows RT, and you cannot develop
Windows 8 applications under Windows RT.

The Windows 8 user interface incorporates a new design paradigm that is likely to
be reflected in Windows Store applications. Somewhat inspired by signage in urban
environments, this design paradigm emphasizes content over program “chrome” and is
characterized by the use of unadorned fonts, clean open styling, a tile-based interface,
and transitional animations.

Many developers were first introduced to the Windows 8 design paradigm with
Windows Phone 7, so it’s interesting to see how Microsoft’s thinking concerning large
and small computers has evolved. In years gone by, Microsoft attempted to adapt the
design of the traditional Windows desktop to smaller devices such as hand-held com-
puters and phones. Now a user-interface design for the phone is being moved up to
tablets and the desktop.

One important characteristic of this new environment is an emphasis on multitouch,
which has dramatically changed the relationship between human and computer. In
fact, the term “multitouch” is now outmoded because virtually all new touch devices
respond to multiple fingers. The simple word “touch” is now sufficient. Part of the
new programming interface for Windows 8 applications treats touch, mouse, and
pen input in a unified manner so that applications are automatically usable with all
three input devices.

	 Introduction	 xvii

The Focus of This Book

This book focuses exclusively on writing Windows Store applications. Plenty of other
books already exist for writing Win32 desktop applications, including the 5th edition
of Programming Windows. I’ll occasionally make reference to Win32 API and desktop
applications, but this book is really all about writing new Windows 8 applications.

For writing these applications, a new object-oriented API has been introduced called
the Windows Runtime or WinRT (not to be confused with the version of Windows 8 that
runs on ARM processors, called Windows RT). Internally, the Windows Runtime is based
on COM (Component Object Model) with interfaces exposed through metadata files
with the extension .winmd located in the /Windows/System32/WinMetadata directory.
Externally, it is very object-oriented.

From the application programmer’s perspective, the Windows Runtime resembles
Silverlight, although internally it is not a managed API. For Silverlight programmers,
perhaps the most immediate difference involves namespace names: the Silverlight
namespaces beginning with System.Windows have been replaced with namespaces
beginning with Windows.UI.Xaml.

Most Windows 8 applications will be built not only from code but also markup,
either the industry-standard HyperText Markup Language (HTML) or Microsoft’s
eXtensible Application Markup Language (XAML). One advantage of splitting an
application between code and markup is potentially splitting the development of the
application between programmers and designers.

Currently there are three main options for writing Windows 8 applications, each of
which involves a programming language and a markup language:

■■ C++ with XAML

■■ C# or Visual Basic with XAML

■■ JavaScript with HTML5

The Windows Runtime is common to all these options, but the Windows Runtime is
also supplemented by another programming interface appropriate for the particular
language. Although you can’t mix languages within a single application, you can create
libraries (called Windows Runtime Components) with their own .winmd files that can be
accessed from any other Windows 8 language.

xviii	 Introduction

The C++ programmer uses a dialect of C++ called C++ with Component
Extensions, or C++/CX, that allows the language to make better use of WinRT. The C++
programmer also has direct access to a subset of the Win32 and COM APIs, as well as
DirectX. C++ programs are compiled to native machine code.

Programmers who use the managed languages C# or Visual Basic .NET will find
WinRT to be very familiar territory. Windows 8 applications written in these languages
can’t access Win32, COM, or DirectX APIs with as much ease as the C++ programmer,
but it is possible to do so, and some sample programs in Chapter 15, “Going Native,”
show how. A stripped-down version of .NET is also available for performing low-level
tasks.

For JavaScript, the Windows Runtime is supplemented by a Windows Library for
JavaScript, or WinJS, which provides a number of system-level features for Windows 8
apps.

After much consideration (and some anguish), I decided that this book would focus
almost exclusively on the C# and XAML option. For at least a decade I have been con-
vinced of the advantages of managed languages for development and debugging, and
for me C# is the language that has the closest fit to the Windows Runtime. I hope C++
programmers find C# code easy enough to read to derive some benefit from this book.

I also believe that a book focusing on one language option is more valuable than
one that tries for equal coverage among several languages. There will undoubtedly be
plenty of other Windows 8 books that show how to write Windows 8 applications using
the other options.

With that said, I have greatly enjoyed the renewed debate about the advantages of
C++ and native code in crafting high-performance applications. No single tool is best
for every problem, and I will be exploring C++ and DirectX development for Windows 8
more in the future, both in my blog and the pages of MSDN Magazine. As a modest
start, the companion content for this book includes all the program samples converted
to C++.

http://www.charlespetzold.com/dotnet

	 Introduction	 xix

The Approach

In writing this book, I’ve made a couple assumptions about you, the reader. I assume
that you are comfortable with C#. If not, you might want to supplement this book with
a C# tutorial. If you are coming to C# from a C or C++ background, my free online book
.NET Book Zero: What the C or C++ Programmer Needs to Know About C# and the .NET
Framework might be adequate. This book is available in PDF or XPS format at
www.charlespetzold.com/dotnet.

I also assume that you know the rudimentary syntax of XML (eXtensible Markup
Language) because XAML is based on XML. But I assume no familiarity with XAML or
any XAML-based programming interface.

This is an API book rather than a tools book. The only programming tool I use in this
book is Microsoft Visual Studio Express 2012 for Windows 8 (which I’ll generally simply
refer to as Visual Studio).

Markup languages are generally much more toolable than programming code.
Indeed, some programmers even believe that markup such as XAML should be entirely
machine-generated. Visual Studio has a built-in interactive XAML designer that
involves dragging controls to a page, and many programmers have come to know and
love Microsoft Expression Blend for generating complex XAML for their applications.
(Expression Blend is included among the free download of the development tools and
SDK I mentioned earlier.)

While such design tools are great for experienced programmers, I think that the
programmer new to the environment is better served by learning how to write XAML
by hand. That’s how I’ll approach XAML in this book. The XAML Cruncher tool featured
in Chapter 8, “App Bars and Popups,” is very much in keeping with this philosophy: it
lets you type in XAML and interactively see the objects that are generated, but it does
not try to write XAML for you.

On the other hand, some programmers become so skilled at working with XAML
that they forget how to create and initialize certain objects in code! I think both skills
are important, and consequently I often show how to do similar tasks in both code
and markup.

http://shop.oreilly.com/product/0790145369079.do

xx	 Introduction

As I began working on this book, I contemplated different approaches to how a
tutorial about the Windows Runtime can be structured. One approach is to start with
rather low-level graphics and user input, demonstrate how controls can be built, and
then describe the controls that have already been built for you.

I have instead chosen to focus initially on those skills I think are most important for
most mainstream programmers: assembling the predefined controls in an application
and linking them with code and data. This is the focus of the 12 chapters of the book’s
Part I, “Elementals.” One of my goals in Part I is to make comprehensible all the code
and markup that Visual Studio generates in the various project templates it supports.

Part II, “Specialities,” covers more low-level and esoteric tasks, such as touch, bitmap
graphics, rich text, printing, and working with the orientation and GPS sensors.

Source Code

Learning a new API is similar to learning how to play basketball or the oboe: You don’t
get the full benefit by watching someone else do it. Your own fingers must get involved.
The source code in these pages is downloadable via the “Companion Content” link here:

http://shop.oreilly.com/product/0790145369079.do

But you’ll learn better by actually typing in the code yourself.

My Setup

For writing this book, I used the special version of the Samsung 700T tablet that was
distributed to attendees of the Microsoft Build Conference in September 2011. (For
that reason, it’s sometimes called the Build Tablet.) This machine has an Intel Core i5
processor running at 1.6 GHz with 4 GB of RAM and a 64-GB hard drive. The screen
(from which most of the screenshots in the book were taken) has 8 touch points and a
resolution of 1366 × 768 pixels, which is the lowest resolution for which snap views are
supported.

Although the Build Tablets were originally distributed with the Windows 8 Developer
Preview installed, I progressively replaced that with the Consumer Preview (build 8250)
in March 2012 and the Release Preview (build 8400) in June 2012, and eventually the
official release of Windows 8 Pro. Except when testing orientation sensors, I generally
used the tablet in the docking port with an external 1920×1080 HDMI monitor, and an
external keyboard and mouse.

	 Introduction	 xxi

When the Microsoft Surface first became available, I purchased one for testing my
applications. For deploying and debugging applications on the Surface, I used the
technique discussed by Tim Heuer in his blog entry:

http://timheuer.com/blog/archive/2012/10/26/remote-debugging-windows-store-
apps-on-surface-arm-devices.aspx

This technique is more formally described in the documentation topic "Running
Windows Store apps on a remote machine":

	 http://msdn.microsoft.com/en-us/library/hh441469.aspx

The Surface became particularly vital for testing programs that access the orientation
sensors.

For the most part, however, I’m still using the Build Tablet in the docking station. The
external keyboard, mouse, and monitor lets me run Visual Studio and Microsoft Word
as I’m accustomed to, while my Windows 8 programs run on the tablet’s touch screen.
This is a fine development environment, particularly compared with the setup I used to
write the first edition of Programming Windows.

But that was 25 years ago.

The Programming Windows Heritage

This is the 6th edition of Programming Windows, a book that was first conceived by
Microsoft Press in the fall of 1986. The project came to involve me because at the time
I was writing articles about Windows programming for Microsoft Systems Journal (the
predecessor to MSDN Magazine).

I still get a thrill when I look at my very first book contract:

xxii	 Introduction

Perhaps the most amusing part of this contract occurs further down the first page:

The reference to “typescript” means that the pages must as least resemble something
that came out of a typewriter. A double-spaced manuscript page with a fixed-pitch font
has about 250 words, as the description indicates. A book page is more in the region of
400 words, so Microsoft Press obviously wasn’t expecting a very long book.

For writing the book I used an IBM PC/AT with an 80286 microprocessor running
at 8 MHz with 512 KB of memory and two 30 MB hard drives. The display was an IBM
Enhanced Graphics Adapter, with a maximum resolution of 640×350 with 16 simultane-
ous colors. I wrote some of the early chapters using Windows 1 (introduced over a year
earlier in November 1985), but beta versions of Windows 2 soon became available.

In those years, editing and compiling a Windows program occurred outside of
Windows in MS-DOS. For editing source code, I used WordStar 3.3, the same word
processor I used for writing the chapters. From the MS-DOS command line, you would
run the Microsoft C compiler and then launch Windows with your program to test it
out. It was necessary to exit Windows and return to MS-DOS for the next edit-compile-
run cycle.

As I got deeper into writing the book over the course of 1987, much of the rest of
my life faded away. I stayed up later and later into the night. I didn’t have a television
at the time, but the local public radio station, WNYC-FM, was on almost constantly with
classical music and programming from National Public Radio. For a while, I managed
to shift my day to such a degree that I went to bed after Morning Edition but awoke in
time for All Things Considered.

As the contract stipulated, I sent chapters to Microsoft Press on diskette and
paper. (We all had email, of course, but email didn’t support attachments at the
time.) The edited chapters came back to me by mail decorated with proofreading
marks and numerous sticky notes. I remember a page on which someone had drawn

	 Introduction	 xxiii

a thermometer indicating the increasing number of pages I was turning in with the
caption “Temperature’s Rising!”

Along the way, the focus of the book changed. Writing a book for “Programmers
and Other Advanced Users” proved to be a flawed concept. I don’t know who came up
with the title Programming Windows.

The contract had a completion date of April, but I didn’t finish until August and the
book wasn’t published until early 1988. The final page total was about 850. If these
were normal book pages (that is, without program listings or diagrams) the word count
would be about 400,000 rather than the 100,000 indicated in the contract.

The cover of the first edition of Programming Windows described it as “The
Microsoft Guide to Programming for the MS-DOS Presentation Manager: Windows
2.0 and Windows/386.” The reference to Presentation Manager reminds us of the days
when Windows and the OS/2 Presentation Manager were supposed to peacefully
coexist as similar environments for two different operating systems.

The first edition of Programming Windows went pretty much unnoticed by the
programming community. When MS-DOS programmers gradually realized they needed
to learn about the brave new environment of Windows, it was mostly the 2nd edition
(published in 1990 and focusing on Windows 3) and the 3rd edition (1992, Windows 3.1)
that helped out.

When the Windows API graduated from 16-bit to 32-bit, Programming Windows
responded with the 4th edition (1996, Windows 95) and 5th edition (1998, Windows
98). Although the 5th edition is still in print, the email I receive from current readers
indicates that the book is most popular in India and China.

From the 1st edition to the 5th, I used the C programming language. Sometime
between the 3rd and 4th editions, my good friend Jeff Prosise said that he wanted to
write Programming Windows with MFC, and that was fine by me. I didn’t much care for
the Microsoft Foundation Classes, which seemed to me a fairly light wrapper on the
Windows API, and I wasn’t that thrilled with C++ either.

As the years went by, Programming Windows acquired the reputation of being the
book for programmers who needed to get close to the metal without any extraneous
obstacles between their program code and the operating system.

But to me, the early editions of Programming Windows were nothing of the sort. In
those days, getting close to the metal involved coding in assembly language, writing
character output directly into video display memory, and resorting to MS-DOS only
for file I/O. In contrast, programming for Windows involved a high-level language,

http://www.charlespetzold.com
mailto:cp@charlespetzold.com
http://msdn.microsoft.com/magazine

xxiv	 Introduction

completely unaccelerated graphics, and accessing hardware only through a heavy layer
of APIs and device drivers.

This switch from MS-DOS to Windows represented a deliberate forfeit of speed
and efficiency in return for other advantages. But what advantages? Many veteran
programmers just couldn’t see the point. Graphics? Pictures? Color? Fancy fonts? A
mouse? That’s not what computers are all about! The skeptics called it the WIMP
(window-icon-menu-pointer) interface, which was not exactly a subtle implication
about the people who chose to use such an environment or code for it.

If you wait long enough, a high-level language becomes a low-level language,
and multiple layers of interface seemingly shrink down (at least in lingo) to a native
API. Some C and C++ programmers of today reject a managed language like C# on
grounds of efficiency, and Windows has even sparked some energetic controversy
once again. Windows 8 is easily the most revolutionary updating to Windows since its
very first release in 1985, but many old-time Windows users are wondering about the
wisdom of bringing a touch-based interface tailored for smartphones and tablets to the
mainstream desktop, and they grumble when they can’t find familiar features.

I suppose that Programming Windows could only be persuaded to emerge from
semi-retirement with an exciting and controversial new user interface on Windows, and
an API and programming language suited to its modern aspirations.

More in the Future

I suspect that Windows 8 will dominate my programming life for a while, which
means that I’m likely to be posting blog entries about various aspects of Windows 8
programming. You can access my blog and subscribe to the RSS feed at
www.charlespetzold.com.

I always enjoy solving a thorny programming problem and posting a blog entry
about it, so if you have a Windows 8 programming issue that you’d like me to take a
look at and possibly figure out, write me at cp@charlespetzold.com.

Beginning with the January 2013 issue of MSDN Magazine, I will be writing a
monthly column called “DirectX Factor,” focusing specifically on using DirectX from
Windows 8 and Windows Phone 8 applications. MSDN Magazine is available for free
perusal at http://msdn.microsoft.com/magazine.

http://www.charlespetzold.com/pw6
http://microsoftpress.oreilly.com
mailto:mspinput@microsoft.com

	 Introduction	 xxv

Behind the Scenes

This book exists only because Ben Ryan and Devon Musgrave at Microsoft Press
developed an interesting way to release early content to the developer community and
get advance sales of the final book simultaneously.

Part of the job duties of Devon and my technical reviewer Marc Young is to protect
me from embarrassment by identifying blunders in my prose and code, and I thank
them both for finding quite a few.

Thanks also to Andrew Whitechapel for giving me feedback on the C++ sample
code; Brent Rector for an email with a crucial solution for an issue involving touch, as
well as some background into IBuffer; Robert Levy for reflections about touch; Jeff
Prosise for always seeming to have a dead-on answer when I’m puzzled; Larry Smith for
finding numerous flaws in my prose; and Admiral for prodding me to make the book as
useful as possible to C++ programmers.

The errors that remain in these chapters are my own fault, of course. Later in this
Introduction is an email address for reporting errors to the publisher, but I’ll also try to
identify the most egregious issues on my website at www.charlespetzold.com/pw6.

Finally, I want to thank my wife Deirdre Sinnott for love and support and making the
necessary adjustments to our lives that writing a book inevitably entails.

Charles Petzold
Roscoe, NY and New York City

December 31, 2012

Errata & Book Support

We’ve made every effort to ensure the accuracy of this book and its companion
content. Any errors that have been reported since this book was published are
listed on our Microsoft Press site at oreilly.com. Search for the book at
http://microsoftpress.oreilly.com, and then click the “View/Submit Errata” link. If you
find an error that is not already listed, you can report it to us through the same page.

If you need additional support, email Microsoft Press Book Support at
mspinput@microsoft.com.

Please note that product support for Microsoft software is not offered through the
addresses above.

xxvi	 Introduction

We Want to Hear from You

At Microsoft Press, your satisfaction is our top priority, and your feedback our most
valuable asset. Please tell us what you think of this book at

http://aka.ms/tellpress

The feedback form is very short, and we read every one of your comments and
ideas. Thanks in advance for your input.

Stay in Touch

Let’s keep the conversation going! We’re on Twitter: http://twitter.com/MicrosoftPress

PART I

Elementals

CHAPTER 1 Markup and Code . 3

CHAPTER 2 XAML Syntax. .31

CHAPTER 3 Basic Event Handling .69

CHAPTER 4 Presentation with Panels. .97

CHAPTER 5 Control Interaction .139

CHAPTER 6 WinRT and MVVM .193

CHAPTER 7 Asynchronicity .221

CHAPTER 8 App Bars and Popups .261

CHAPTER 9 Animation .329

CHAPTER 10 Transforms. .377

CHAPTER 11 The Three Templates .449

CHAPTER 12 Pages and Navigation .539

C01671768.indd 1C01671768.indd 1 1/9/2013 2:02:12 PM1/9/2013 2:02:12 PM

		 3

C H A P T E R 1

Markup and Code

Ever since the publication of Brian Kernighan and Dennis Ritchie’s classic book The C Programming
Language (Prentice Hall, 1978), it has been customary for programming tutorials to begin with

a simple program that displays a short text string such as “hello, world.” Let’s create a few similar
programs for the new world of Windows 8.

I’ll assume you have Windows 8 installed as well as a recent version of Microsoft Visual Studio that
supports the creation of Windows 8 applications.

Launch Visual Studio from the Windows 8 start screen, and let’s get coding.

The First Project

On the opening screen in Visual Studio, the Get Started tab should already be selected. Over at the
left you’ll see a New Project option. Click that item, or select New Project from the File menu.

When the New Project dialog box opens, select Templates in the left panel, then Visual C#, and the
option for creating a new Windows Store project. From the list of available templates in the central
area, select Blank App. Toward the bottom of the dialog box, type a project name in the Name field:
Hello, for example. Let the Solution Name be the same. Use the Browse button to select a directory
location for this program, and click OK. (I’ll generally use mouse terminology such as “click” when re-
ferring to Visual Studio, but I’ll switch to touch terminology such as “tap” for the applications you’ll be
creating. A version of Visual Studio that is optimized for touch is probably at least a few years away.)

Visual Studio creates a solution named Hello and a project within that solution named Hello, as
well as a bunch of files in the Hello project. These files are listed in the Solution Explorer on the far
right of the Visual Studio screen. Every Visual Studio solution has at least one project, but a solution
might contain additional application projects and library projects.

4	 PART 1  Elementals

The list of files for this project includes one called MainPage.xaml, and if you click the little
arrowhead next to that file, you’ll see a file named MainPage.xaml.cs indented underneath
MainPage.xaml:

You can view either of these two files by double-clicking the file name or by right-clicking the file
name and choosing Open.

The MainPage.xaml and MainPage.xaml.cs files are linked in the Solution Explorer because they
both contribute to the definition of a class named MainPage. For a simple program like Hello, this
MainPage class defines all the visuals and user interface for the application.

Despite its funny file name, MainPage.xaml.cs definitely has a .cs extension, which stands for
“C Sharp.” Stripped of all its comments, the skeleton MainPage.xaml.cs file contains C# code that looks
like this:

using System;
using System.Collections.Generic;
using System.IO;
using System.Linq;
using Windows.Foundation;
using Windows.Foundation.Collections;
using Windows.UI.Xaml;
using Windows.UI.Xaml.Controls;
using Windows.UI.Xaml.Controls.Primitives;
using Windows.UI.Xaml.Data;
using Windows.UI.Xaml.Input;
using Windows.UI.Xaml.Media;
using Windows.UI.Xaml.Navigation;

namespace Hello
{
 public sealed partial class MainPage : Page
 {
 public MainPage()
 {

	 CHAPTER 1  Markup and Code	 5

 this.InitializeComponent();
 }
 protected override void OnNavigatedTo(NavigationEventArgs e)
 {
 }
 }
}

The file is dominated by using directives for all the namespaces that you are anticipated to need.
You’ll discover that most MainPage.xaml.cs files don’t require all these namespaces and many others
require some additional namespaces.

These namespaces fall into two general categories based on the first word in the name:

■■ System.* . NET for new Windows 8 applications

■■ Windows.*  Windows Runtime (or WinRT)

As suggested by the list of using directives, namespaces that begin with Windows.UI.Xaml play a
major role in the Windows Runtime.

Following the using directives, this MainPage.xaml.cs file defines a namespace named Hello (the
same as the project name) and a class named MainPage that derives from Page, a class that is part of
the Windows Runtime.

The documentation of the Windows 8 API is organized by namespace, so if you want to locate the
documentation of the Page class, knowing the namespace where it’s defined is useful. Let the mouse
pointer rest on the name Page in the MainPage.xaml.cs source code, and you’ll discover that Page is in
the Windows.UI.Xaml.Controls namespace.

The constructor of the MainPage class calls an InitializeComponent method (which I’ll discuss
shortly), and the class also contains an override of a method named OnNavigatedTo. Windows
8 applications often have a page-navigation structure somewhat like a website, and hence they
often consist of multiple classes that derive from Page. For navigational purposes, Page defines
virtual methods named OnNavigatingFrom, OnNavigatedFrom, and OnNavigatedTo. The override of
OnNavigatedTo is a convenient place to perform initialization when the page becomes active. But
that’s for later; most of the programs in the early chapters of this book will have only one page. I’ll
tend to refer to an application’s “page” more than its “window.” There is still a window underneath the
application, but it doesn’t play nearly as large a role as the page.

Notice the partial keyword on the MainPage class definition. This keyword usually means that the
class definition is continued in another C# source code file. In reality (as you’ll see), that’s exactly the case.

6	 PART 1  Elementals

Conceptually, however, the missing part of the MainPage class is not another C# code file but the
MainPage.xaml file:

<Page
 x:Class="Hello.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="using:Hello"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d">

 <Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">

 </Grid>
</Page>

This file consists of markup conforming to the standard known as the eXtensible Application Markup
Language, or XAML, pronounced “zammel.” As the name implies, XAML is based on eXtensible
Markup Language, or XML.

Generally, you’ll use the XAML file for defining all the visual elements of the page, while the C# file
handles jobs that can’t be performed in markup, such as number crunching and responding to user
input. The C# file is often referred to as the “code-behind” file for the corresponding XAML file.

The root element of this XAML file is Page, which you already know is a class in the Windows
Runtime. But notice the x:Class attribute:

<Page
 x:Class="Hello.MainPage"

The x:Class attribute can appear only on the root element in a XAML file. This particular x:Class
attribute translates as “a class named MainPage in the Hello namespace is defined as deriving from
Page.” It means the same thing as the class definition in the C# file!

Following that are a bunch of XML namespace declarations. As usual, these URIs don’t actu-
ally reference interesting webpages but instead serve as unique identifiers maintained by particular
companies or organizations. The first two are the most important:

xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

The 2006 date harkens back to Microsoft’s introduction of the Windows Presentation Foundation
and the debut of XAML. WPF was part of the .NET Framework 3.0, which prior to its release was
known as WinFX, hence the “winfx” in the URI. To a certain extent, XAML files are compatible among
WPF, Silverlight, Windows Phone, and the Windows Runtime, but only if they use classes, properties,
and features common to all the environments.

The first namespace declaration with no prefix refers to public classes, structures, and
enumerations defined in the Windows Runtime, which includes all the controls and everything else
that can appear in a XAML file, including the Page and Grid classes in this particular file. The word
“presentation” in this URI refers to a visual user interface, and that distinguishes it from other types

	 CHAPTER 1  Markup and Code	 7

of applications that can use XAML. For example, if you were using XAML for the Windows Workflow
Foundation (WF), you’d use a default namespace URI ending with the word “workflow.”

The second namespace declaration associates an “x” prefix with elements and attributes that
are intrinsic to XAML itself. Only nine of these are applicable in Windows Runtime applications, and
obviously one of the most important is the x:Class attribute.

The third namespace declaration is interesting:

xmlns:local="using:Hello"

This associates an XML prefix of local with the Hello namespace of this particular application. You
might create custom classes in your application, and you’d use the local prefix to reference them
in XAML. If you need to reference classes in code libraries, you’ll define additional XML namespace
declarations that refer to the assembly name and namespace name of these libraries. You’ll see how
to do this in chapters ahead.

The remaining namespace declarations are for Microsoft Expression Blend. Expression Blend
might insert special markup of its own that should be ignored by the Visual Studio compiler, so that’s
the reason for the Ignorable attribute, which requires yet another namespace declaration. For any
program in this book, these last three lines of the Page root element can be deleted.

The Page element has a child element named Grid, which is another class defined in the
Windows.UI.Xaml.Controls namespace. The Grid will become extremely familiar. It is sometimes
referred to as a “container” because it can contain other visual objects, but it’s more formally classified
as a “panel” because it derives from the Panel class. Classes that derive from Panel play a very impor-
tant role in layout in Windows 8 applications. In the MainPage.xaml file that Visual Studio creates for
you, the Grid is assigned a background color (actually a Brush object) based on a predefined identifier
using a syntax I’ll discuss in Chapter 2, “XAML Syntax.”

Generally, you’ll divide a Grid into rows and columns to define individual cells (as I’ll demonstrate
in Chapter 5, “Control Interaction”), somewhat like a much improved version of an HTML table. A Grid
without rows and columns is sometimes called a “single-cell Grid” and is still quite useful.

To display up to a paragraph of text in the Windows Runtime, you’ll generally use a TextBlock
(another class defined in the Windows.UI.Xaml.Controls namespace), so let’s put a TextBlock in the
single-cell Grid and assign a bunch of attributes. These attributes are actually properties defined by
the TextBlock class:

Project: Hello | File: MainPage.xaml (excerpt)

<Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <TextBlock Text="Hello, Windows 8!"
 FontFamily="Times New Roman"
 FontSize="96"
 FontStyle="Italic"
 Foreground="Yellow"
 HorizontalAlignment="Center"
 VerticalAlignment="Center" />
</Grid>

8	 PART 1  Elementals

Note  In this book, whenever a block of code or markup is preceded by a heading like this
one, you’ll find the code among this book’s downloadable companion content. Generally,
I’ll just show an excerpt of the total file but with enough context so that you know exactly
where it is.

The order of these attributes doesn’t matter, and of course the indentation doesn’t matter, and
all of them except the Text attribute can be skipped if you’re in a hurry. As you type you’ll notice that
Visual Studio’s IntelliSense feature suggests attribute names and possible values for you. Often you
can just select the one you want. As you finish typing the TextBlock, Visual Studio’s design view gives
you a preview of the page’s appearance.

You can also skip all the typing and simply drag a TextBlock from the Visual Studio Toolbox
and then set the properties in a table, but I won’t be doing that in this book. I’ll instead describe
the creation of these programs as if you and I actually type in the code and markup just like real
programmers.

Press F5 to compile and run this program, or select Start Debugging from the Debug menu. Even
for simple programs like this, it’s best to run the program under the Visual Studio debugger. If all goes
well, this is what you’ll see:

The HorizontalAlignment and VerticalAlignment attributes on the TextBlock have caused the text to
be centered, obviously without the need for you the programmer to explicitly determine the size of
the video display and the size of the rendered text. You can alternatively set HorizontalAlignment to

	 CHAPTER 1  Markup and Code	 9

Left or Right, and VerticalAlignment to Top or Bottom to position the TextBlock in one of nine places in
the Grid. As you’ll see in Chapter 4, “Presentation with Panels,” the Windows Runtime supports precise
pixel placement of visual objects, but usually you’ll want to rely on the built-in layout features.

The TextBlock has Width and Height properties, but generally you don’t need to bother setting
those. In fact, if you set the Width and Height properties on this particular TextBlock, you might end
up cropping part of the text or interfering with the centering of the text on the page. The TextBlock
knows better than you how large it should be.

You might be running this program on a device that responds to orientation changes, such as a
tablet. If so, you’ll notice that the page content dynamically conforms to the change in orientation
and aspect ratio, apparently without any interaction from the program. The Grid, the TextBlock, and
the Windows 8 layout system are doing most of the work.

To terminate the Hello program, press Shift+F5 in Visual Studio, or select Stop Debugging from
the Debug menu. You’ll notice that the program hasn’t merely been executed, but has actually been
deployed to Windows 8 and is now executable from the start screen. If you’ve created the project
yourself, the tile is not very pretty, but the program’s tiles are all stored in the Assets directory of the
project, so you can spruce them up if you want. (The projects in the downloadable companion con-
tent for this book have been given custom tiles.) You can run the program again outside of the Visual
Studio debugger right from the Windows 8 start screen.

Another option is to run your programs in a simulator that lets you control resolution, orientation,
and other characteristics. In the Visual Studio toolbar, you’ll see a drop-down list with the current
setting Local Machine. Simply change that to Simulator.

Graphical Greetings

Traditional “hello” programs display a greeting in text, but that’s not the only way to do it. The
HelloImage project accesses a bitmap from my website using a tiny piece of XAML:

Project: HelloImage | File: MainPage.xaml (excerpt)

<Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <Image Source="http://www.charlespetzold.com/pw6/PetzoldJersey.jpg" />
</Grid>

10	 PART 1  Elementals

The Image element is defined in the Windows.UI.Xaml.Controls namespace, and it’s the standard
way to display bitmaps in a Windows Runtime program. By default, the bitmap is stretched to fit the
space available for it while respecting the original aspect ratio:

If you make the page smaller—perhaps by changing the orientation or invoking a snap view—the
image will change size to accommodate the new size of the page.

You can override the default display of this bitmap by using the Stretch property defined by Image.
The default value is the enumeration member Stretch.Uniform. Try setting it to Fill:

<Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <Image Source="http://www.charlespetzold.com/pw6/PetzoldJersey.jpg"
 Stretch="Fill" />
</Grid>

	 CHAPTER 1  Markup and Code	 11

Now the aspect ratio is ignored and the bitmap fills the container:

Set the Stretch property to None to display the image in its pixel dimensions (320 by 400):

You can control where it appears on the page by using the same HorizontalAlignment and
VerticalAlignment properties you use with TextBlock.

The fourth option for the Stretch property is UniformToFill, which respects the aspect ratio but fills
the container regardless. It achieves this feat by the only way possible: clipping the image. Which part
of the image that gets clipped depends on the HorizontalAlignment and VerticalAlignment properties.

12	 PART 1  Elementals

Accessing bitmaps over the Internet is dependent on a network connection and even then might
require some time. A better guarantee of having an image immediately available is to bind the
bitmap into the application itself.

You can create simple bitmaps right in Windows Paint. Let’s run Paint and use the File Properties
option to set a size of 480 by 320 (for example). Using a mouse, finger, or pen, you can create your
own personalized greeting:

The Windows Runtime supports the popular BMP, JPEG, PNG, and GIF formats, as well as a couple less
common formats. For images such as the preceding one, PNG is common, so save it with a name like
Greeting.png.

Now create a new project: HelloLocalImage, for example. It’s common to store bitmaps used by a
project in a directory named Images. In the Solution Explorer, right-click the project name and choose
Add and New Folder. (Or, if the project is selected in the Solution Explorer, pick New Folder from the
Project menu.) Give the folder a name such as Images.

Now right-click the Images folder and choose Add and Existing Item. Navigate to the Greeting.png
file you saved and click the Add button. Once the file is added to the project, you’ll want to right-click
the Greeting.png file name and select Properties. In the Properties panel, make sure the Build Action
is set to Content. You want this image to become part of the content of the application.

The XAML file that references this image looks very much like one for accessing an image over the
web:

Project: HelloLocalImage | File: MainPage.xaml (excerpt)

<Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <Image Source="Images/Greeting.png"
 Stretch="None" />
</Grid>

	 CHAPTER 1  Markup and Code	 13

Notice that the Source property is set to the folder and file name. Here’s how it looks:

Sometimes programmers prefer giving a name of Assets to the folder that stores application
bitmaps. You’ll notice that the standard project already contains an Assets folder containing program
logo bitmaps. You can use that same folder for your other images instead of creating a separate
folder.

Variations in Text

You might be tempted to refer to the Grid, TextBlock, and Image as “controls,” perhaps based on
the knowledge that these classes are in the Windows.UI.Xaml.Controls namespace. Strictly speaking,
however, they are not controls. The Windows Runtime does define a class named Control, but these
three classes do not descend from Control. Here’s a tiny piece of the Windows Runtime class hierarchy
showing the classes encountered so far:

Object
 DependencyObject
 UIElement
 FrameworkElement
 TextBlock
 Image
 Panel
 Grid
 Control
 UserControl
 Page

14	 PART 1  Elementals

Page derives from Control but TextBlock and Image do not. TextBlock and Image instead derive from
UIElement and FrameworkElement. For that reason, TextBlock and Image are more correctly referred
to as “elements,” the same word often used to describe items that appear in XML files.

The distinction between an element and a control is not always obvious, but the distinction is
useful nonetheless. Visually, controls are built from elements, and the visual appearance of the control
can be customizable through a template. A Grid is also an element, but it’s more often referred to as a
“panel,” and that (as you’ll see) is a very useful distinction.

Try this: In the original Hello program move the Foreground attribute and all the font-related
attributes from the TextBlock element to the Page. The entire MainPage.xaml file now looks like this:

<Page
 x:Class="Hello.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="using:Hello"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d"
 FontFamily="Times New Roman"
 FontSize="96"
 FontStyle="Italic"
 Foreground="Yellow">

 <Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <TextBlock Text="Hello, Windows 8!"
 HorizontalAlignment="Center"
 VerticalAlignment="Center" />
 </Grid>
</Page>

You’ll discover that the result is exactly the same. When these attributes are set on the Page element,
they apply to everything on that page.

Now try setting the Foreground property of the TextBlock to red:

<TextBlock Text="Hello, Windows 8!"
 Foreground="Red"
 HorizontalAlignment="Center"
 VerticalAlignment="Center" />

The local red setting overrides the yellow setting on the Page.

The Page, Grid, and TextBlock form what is called a “visual tree” of elements, except that in the
XAML file the tree is upside-down. The Page is the trunk of the tree, and its descendants (Grid and
TextBlock) form branches. You might imagine that the values of the font properties and Foreground
property defined on the Page are propagated down through the visual tree from parent to child. This
is true except for a little peculiarity: These properties don’t exist in Grid. These properties are defined
by TextBlock and separately defined by Control, which means that the properties manage to propa-
gate from the Page to the TextBlock despite an intervening element that has very different DNA.

	 CHAPTER 1  Markup and Code	 15

If you begin examining the documentation of these properties in the TextBlock or Page class, you’ll
discover that they seem to appear twice under somewhat different names. In the documentation of
TextBlock you’ll see a FontSize property of type double:

public double FontSize { set; get; }

You’ll also see a property named FontSizeProperty of type DependencyProperty:

public static DependencyProperty FontSizeProperty { get; }

Notice that this FontSizeProperty property is get-only and static as well.

Many of the classes that you’ll use in constructing the user interface of a Windows 8 application
have conventional properties as well as corresponding properties called “dependency properties”
of type DependencyProperty. Interestingly enough, the class hierarchy I just showed you has a class
named DependencyObject. These two types are related: A class that derives from DependencyObject
often declares static get-only properties of type DependencyProperty. Both DependencyObject and
DependencyProperty are defined in the Windows.UI.Xaml namespace, suggesting how fundamental
they are to the whole system.

Dependency properties are intended to solve some fundamental problems that come about in
sophisticated user interfaces. In a Windows 8 application, properties can be set in a variety of ways.
For example, you’ve already seen that properties can be set directly on an object or inherited through
the visual tree. As you’ll see in Chapter 2, "XAML Syntax," properties might also be set from a Style
definition. In a future chapter you’ll see properties set from animations. The DependencyObject and
DependencyProperty classes are part of a system that helps maintain order in such an environment by
establishing priorities for the different ways in which the property might be set. I don’t want to go too
deeply into the mechanism just yet; it’s something you’ll experience more intimately when you begin
defining your own controls.

The FontSize property is sometimes said to be “backed by” the dependency property named
FontSizeProperty. But sometimes a semantic shortcut is used and FontSize itself is referred to as a
dependency property. Usually this is not confusing.

Many of the properties defined by UIElement and its descendent classes are dependency
properties, but only a few of these properties are propagated through the visual tree. Foreground and
all the font-related properties are, as well as a few others that I’ll be sure to call your attention to as
we encounter them. Dependency properties also have an intrinsic default value. If you remove all the
TextBlock and Page attributes except Text, you’ll get white text displayed with an 11-pixel system font
in the upper-left corner of the page.

The FontSize property is in units of pixels and refers to the design height of a font. This design
height includes space for descenders and diacritical marks. As you might know, font sizes are often
specified in points, which in electronic typography are units of 1/72 inch. The equivalence between
pixels and points requires knowing the resolution of the video display in dots-per-inch (DPI). Without
that information, it’s generally assumed that video displays have a resolution of 96 DPI, so a 96-pixel
font is thus a 72-point font (one-inch high) and the default 11-pixel font is an 8¼-point font.

16	 PART 1  Elementals

For high-resolution displays, Windows automatically adjusts sizes and coordinates. An application
can obtain this information from the DisplayProperties class, which pretty much dominates the
Windows.Graphics.Display namespace. For most purposes, however, assuming a resolution of 96 DPI
is fine, and you’ll use this same assumption for the printer. In accordance with this assumption, I tend
to use pixel dimensions that represent simple fractions of inches: 48 (1/2”), 24 (1/4”), 12 (1/8”), and
6 (1/16”).

You’ve seen that if you remove the Foreground attribute, you get white text on a dark background.
The background is not exactly black, but the predefined ApplicationPageBackgroundThemeBrush
identifier that the Grid references is close to it.

The Hello project also includes two other files that come in a pair: App.xaml and App.xaml.cs
together define a class named App that derives from Application. Although an application can have
multiple Page derivatives, it has only one Application derivative. This App class is responsible for
settings or activities that affect the application as a whole.

Try this: In the root element of the App.xaml file, set the attribute RequestedTheme to Light.

<Application
 x:Class="Hello.App"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="using:Hello"
 RequestedTheme="Light">
 ...
</Application>

The only options are Light and Dark. Now when you recompile and run the program, it has a light
background, which means the color referenced by the ApplicationPageBackgroundThemeBrush identi-
fier is different. If the Foreground property on the Page or TextBlock is not explicitly set, you’ll also get
black text, which means that the Foreground property has a different default value with this theme.

In many of the sample programs in the remainder of this book, I’ll be using the light theme with-
out mentioning it. I think the screen shots look better on the page, and they won’t consume as much
ink if you decide to print pages from the book. However, keep in mind that many small devices and
an increasing number of larger devices have video displays built around organic light-emitting diode
(OLED) technology and these displays consume less power if the screen isn’t lit up like a billboard.
Reduced power consumption is one reason why dark color schemes are becoming more popular.

Of course, you can completely specify your own colors by explicitly setting both the Background of
the Grid and the Foreground of the TextBlock:

<Grid Background="Blue">
 <TextBlock Text="Hello, Windows 8!"
 Foreground="Yellow"
 ... />
</Grid>

	 CHAPTER 1  Markup and Code	 17

For these properties, Visual Studio’s IntelliSense provides 140 standard color names, plus Transparent.
These are actually static properties of the Colors class. Alternatively, you can specify red-green-blue
(RGB) values directly in hexadecimal with values ranging from 00 to FF prefaced by a pound sign:

Foreground="#FF8000"

That’s maximum red, half green, and no blue. An optional fourth byte at the beginning is the alpha
channel, with values ranging from 00 for transparent and FF for opaque. Here’s a half-transparent red:

Foreground="#80FF0000"

When an alpha value is included at the beginning, these are sometimes referred to as ARGB colors.
The UIElement class also defines an Opacity property that can be set to values between 0 (transpar-
ent) and 1 (opaque). In HelloImage, try setting the Background property of the Grid to a nonblack
color (perhaps Blue) and set the Opacity property of the Image element to 0.5.

When you specify colors by using bytes, the values are in accordance with the familiar sRGB
(“standard RGB”) color space. This color space dates back to the era of cathode-ray tube displays
where these bytes directly controlled the voltages illuminating the pixels. Very fortuitously, nonlinear-
ities in pixel brightness and nonlinearities in the perception of brightness by the human eye roughly
cancel each other out, so these byte values often seem perceptually linear, or nearly so.

An alternative is the scRGB color space, which uses values between 0 and 1 that are proportional to
light intensity. Here’s a value for medium gray:

Foreground="sc# 0.5 0.5 0.5"

Because of the logarithmic response of the human eye to light intensity, this gray will appear to be
rather too light to be classified as medium.

If you need to display text characters that are not on your keyboard, you can specify them in
Unicode by using standard XML character escaping. For example, if you want to display the text “This
costs €55” and you’re confined to an American keyboard, you can specify the Unicode Euro in decimal
like this:

<TextBlock Text="This costs €55" ...

Or perhaps you prefer hexadecimal:

<TextBlock Text="This costs €55" ...

Or you can simply paste text into Visual Studio as I obviously did with a program later in this chapter.

As with standard XML, strings can contain special characters beginning with the ampersand:

■■ & is an ampersand

■■ ' is a single-quotation mark (“apostrophe”)

■■ " is a double-quotation mark

18	 PART 1  Elementals

■■ < is a left angle bracket (“less than”)

■■ > is a right angle bracket (“greater than”)

An alternative to setting the Text property of TextBlock requires separating the element into a start
tag and end tag and specifying the text as content:

<TextBlock ... >
 Hello, Windows 8!
</TextBlock>

As I’ll discuss in Chapter 2, setting text as content of the TextBlock is not exactly equivalent to
setting the Text property. It’s actually much more powerful. But even without taking advantage of
additional features, specifying text as content is useful for displaying a larger quantity of text because
you don’t have to worry about extraneous white space as much as when you’re dealing with quoted
text. The WrappedText project displays a whole paragraph of text by specifying this text as content of
the TextBlock:

Project: WrappedText | File: MainPage.xaml (excerpt)

<Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <TextBlock FontSize="48"
 TextWrapping="Wrap">
 For a long time I used to go to bed early. Sometimes, when I had put out
 my candle, my eyes would close so quickly that I had not even time to
 say "I’m going to sleep." And half an hour later the thought that it was
 time to go to sleep would awaken me; I would try to put away the book
 which, I imagined, was still in my hands, and to blow out the light; I
 had been thinking all the time, while I was asleep, of what I had just
 been reading, but my thoughts had run into a channel of their own,
 until I myself seemed actually to have become the subject of my book:
 a church, a quartet, the rivalry between François I and Charles V. This
 impression would persist for some moments after I was awake; it did not
 disturb my mind, but it lay like scales upon my eyes and prevented them
 from registering the fact that the candle was no longer burning. Then
 it would begin to seem unintelligible, as the thoughts of a former
 existence must be to a reincarnate spirit; the subject of my book would
 separate itself from me, leaving me free to choose whether I would form
 part of it or no; and at the same time my sight would return and I
 would be astonished to find myself in a state of darkness, pleasant and
 restful enough for the eyes, and even more, perhaps, for my mind, to
 which it appeared incomprehensible, without a cause, a matter dark
 indeed.
 </TextBlock>
</Grid>

When parsed, the end-of-line characters at the end of each line and the eight space characters at the
beginning of each line are collapsed into a single space character.

Notice the TextWrapping property. The default is the TextWrapping.NoWrap enumeration
member; Wrap is the only alternative. You can also set the TextAlignment property to members of
the TextAlignment enumeration: Left, Right, Center, or Justify, which causes extra space to be inserted
between words so that the text is even on both the left and right.

	 CHAPTER 1  Markup and Code	 19

You can run this program in either portrait mode or landscape:

If your display responds to orientation changes, the text is automatically reformatted. The Windows
Runtime breaks lines at spaces or hyphens, but it does not break lines at nonbreaking spaces
(‘ ’) or nonbreaking hyphens (‘‑’). Any soft hyphens (‘­’) are ignored.

Not every element in XAML supports text content like TextBlock. You can’t have text content in the
Page or Grid, for example. XAML is not as free form as HTML because XAML syntax is based entirely
on underlying classes and properties.

But the Grid can support multiple TextBlock children. The OverlappedStackedText project has two
TextBlock elements in the Grid with different colors and font sizes:

Project: OverlappedStackedText | File: MainPage.xaml

<Grid Background="Yellow">
 <TextBlock Text="8"
 FontSize="864"
 FontWeight="Bold"
 Foreground="Red"
 HorizontalAlignment="Center"
 VerticalAlignment="Center" />

 <TextBlock Text="Windows"
 FontSize="192"
 FontStyle="Italic"
 Foreground="Blue"
 HorizontalAlignment="Center"
 VerticalAlignment="Center" />
</Grid>

20	 PART 1  Elementals

Here’s the result:

Notice that the second element is visually above the first. This visual stacking is often referred to as
“Z order” because in a three-dimensional coordinate space, an imaginary Z axis comes out of the
screen. In Chapter 4 you’ll see a way to override this behavior.

Of course, overlapping is not a generalized solution to displaying multiple items of text!
In Chapter 5 you’ll see how to define rows and columns in the Grid for layout purposes, but
another approach to organizing multiple elements in a single-cell Grid is to use various val-
ues of HorizontalAlignment and VerticalAlignment to prevent them from overlapping. The
InternationalHelloWorld program displays “hello, world” in nine different languages. (Thank you,
Google Translate.)

Project: InternationalHelloWorld | File: MainPage.xaml (excerpt)

<Page
 x:Class="InternationalHelloWorld.MainPage"
 ...
 FontSize="40">

 <Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <!-- Chinese (simplified) -->
 <TextBlock Text="你好，世界"
 HorizontalAlignment="Left"
 VerticalAlignment="Top" />

 <!-- Urdu -->
 <TextBlock Text="ایند ولیہ،"
 HorizontalAlignment="Center"
 VerticalAlignment="Top" />

	 CHAPTER 1  Markup and Code	 21

 <!-- Japanese -->
 <TextBlock Text="こんにちは、世界中のみなさん"
 HorizontalAlignment="Right"
 VerticalAlignment="Top" />

 <!-- Hebrew -->
 <TextBlock Text="םלוע ,םולש"
 HorizontalAlignment="Left"
 VerticalAlignment="Center" />

 <!-- Esperanto -->
 <TextBlock Text="Saluton, mondo"
 HorizontalAlignment="Center"
 VerticalAlignment="Center" />

 <!-- Arabic -->
 <TextBlock Text="ملاعلا ،ابحرم"
 HorizontalAlignment="Right"
 VerticalAlignment="Center" />

 <!-- Korean -->
 <TextBlock Text="안녕하세요, 전 세계"
 HorizontalAlignment="Left"
 VerticalAlignment="Bottom" />

 <!-- Russian -->
 <TextBlock Text="Здравствуй, мир"
 HorizontalAlignment="Center"
 VerticalAlignment="Bottom" />

 <!-- Hindi -->
 <TextBlock Text="नमस्ते दुनिया है,"
 HorizontalAlignment="Right"
 VerticalAlignment="Bottom" />
 </Grid>
</Page>

Notice the FontSize attribute set in the root element to apply to all nine TextBlock elements. Property
inheritance is obviously one way to reduce repetition in XAML, and you’ll see other approaches as
well in the next chapter.

22	 PART 1  Elementals

Media As Well

So far you’ve seen greetings in text and bitmaps. The HelloAudio project plays an audio greeting from
a file on my website. I made the recording using the Windows 8 Sound Recorder application, which
automatically saves in WMA format. The XAML file looks like this:

Project: HelloAudio | File: MainPage.xaml (excerpt)

<Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <MediaElement Source="http://www.charlespetzold.com/pw6/AudioGreeting.wma" />
</Grid>

The MediaElement class derives from FrameworkElement and has no user interface, although it
provides enough information for you to build your own.

You can also use MediaElement for playing movies. The HelloVideo program plays a video from my
website:

Project: HelloVideo | File: MainPage.xaml (excerpt)

<Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <MediaElement Source="http://www.charlespetzold.com/pw6/VideoGreeting.wmv" />
</Grid>

	 CHAPTER 1  Markup and Code	 23

The Code Alternatives

It’s not necessary to instantiate elements or controls in XAML. You can alternatively create them
entirely in code. Indeed, very much of what can be done in XAML can be done in code instead. Code
is particularly useful for creating many objects of the same type because there’s no such thing as a for
loop in XAML.

Let’s create a new project named HelloCode, but let’s visit the MainPage.xaml file only long
enough to give the Grid a name:

Project: HelloCode | File: MainPage.xaml (excerpt)

<Grid Name="contentGrid"
 Background="{StaticResource ApplicationPageBackgroundThemeBrush}">

</Grid>

Setting the Name attribute allows the Grid to be accessed from the code-behind file. Alternatively,
you can use x:Name:

<Grid x:Name="contentGrid"
 Background="{StaticResource ApplicationPageBackgroundThemeBrush}">

</Grid>

For most cases, there’s really no practical difference between Name and x:Name. As the “x” prefix
indicates, the x:Name attribute is intrinsic to XAML itself, and you can use it to identify any object
in the XAML file. The Name attribute is more restrictive: Name is defined by FrameworkElement, so
you can use it only with classes that derive from FrameworkElement. For a class not derived from
FrameworkElement, you’ll need to use x:Name instead. Some programmers prefer to be consistent by
using x:Name throughout. I tend to use Name whenever I can and x:Name otherwise. (However, when
naming a custom control that is defined in the application assembly, sometimes Name doesn’t work
and x:Name is required.)

Whether you use Name or x:Name, the rules for the name you choose are the same as the rules for
variable names. The name can’t contain spaces or begin with a number, for example. All names within
a particular XAML file must be unique.

In the MainPage.xaml.cs file you’ll want two additional using directives:

Project: HelloCode | File: MainPage.xaml.cs (excerpt)

using Windows.UI;
using Windows.UI.Text;

The first is for the Colors class; the second is for a FontStyle enumeration. It’s not strictly necessary
that you insert these using directives manually. If you use the Colors class or FontStyle enumeration,
Visual Studio will indicate with a red squiggly underline that it can’t resolve the identifier, at which
point you can right-click it and select Resolve from the shortcut menu. The new using directive will be
added to the others in correct alphabetical order (as long as the existing using directives are alpha-
betized). When you’re all finished with the code file, you can right-click anywhere in the file and select

24	 PART 1  Elementals

Organize Usings and Remove Unused Usings to clean up the list. (I’ve done that with this
MainPage.xaml.cs file.)

The constructor of the MainPage class is a handy place to create a TextBlock, assign properties, and
then add it to the Grid:

Project: HelloCode | File: MainPage.xaml.cs (excerpt)

public MainPage()
{
 this.InitializeComponent();

 TextBlock txtblk = new TextBlock();
 txtblk.Text = "Hello, Windows 8!";
 txtblk.FontFamily = new FontFamily("Times New Roman");
 txtblk.FontSize = 96;
 txtblk.FontStyle = FontStyle.Italic;
 txtblk.Foreground = new SolidColorBrush(Colors.Yellow);
 txtblk.HorizontalAlignment = HorizontalAlignment.Center;
 txtblk.VerticalAlignment = VerticalAlignment.Center;

 contentGrid.Children.Add(txtblk);
}

Notice that the last line of code here references the Grid named contentGrid in the XAML file just
as if it were a normal object, perhaps stored as a field. (As you’ll see, it actually is a normal object and
it is a field!) Although not evident in XAML, the Grid has a property named Children that it inherits
from Panel. This Children property is of type UIElementCollection, which is a collection that imple-
ments the IList<UIElement> and IEnumerable<UIElement> interfaces. This is why the Grid can support
multiple child elements.

Code often tends to be a little wordier than XAML partially because the XAML parser works behind
the scenes to create additional objects and perform conversions. The code reveals that the FontFamily
property requires that a FontFamily object be created and that Foreground is of type Brush and
requires an instance of a Brush derivative, such as SolidColorBrush. Colors is a class that contains 141
static properties of type Color. You can alternatively create a Color value from ARGB bytes by using
the static Color.FromArgb method.

The FontStyle, HorizontalAlignment, and VerticalAlignment properties are all enumeration types,
where the enumeration is the same name as the property. Indeed, the Text and FontSize properties
seem odd in that they are primitive types: a string and a double-precision floating-point number.

You can reduce the code bulk a little by using a style of property initialization introduced in C# 3.0:

TextBlock txtblk = new TextBlock
{
 Text = "Hello, Windows 8!",
 FontFamily = new FontFamily("Times New Roman"),
 FontSize = 96,
 FontStyle = FontStyle.Italic,
 Foreground = new SolidColorBrush(Colors.Yellow),
 HorizontalAlignment = HorizontalAlignment.Center,
 VerticalAlignment = VerticalAlignment.Center
};

	 CHAPTER 1  Markup and Code	 25

I’ve tended to use this style a lot in this book. (However, I have not used another popular feature
introduced in C# 3.0—implicit typing using the var keyword—because it tends to obscure rather than
illuminate the code.) Either way, you can now compile and run the HelloCode project and the result
should look the same as the XAML version. It looks the same because it basically is the same.

You can alternatively create the TextBlock and add it to the Children collection of the Grid in the
OnNavigatedTo override. Or you can create the TextBlock in the constructor, save it as a field, and add
it to the Grid in OnNavigatedTo.

Notice that I put the code after the InitializeComponent call in the MainPage constructor.
You can create the TextBlock prior to InitializeComponent, but you must add it to the Grid after
InitializeComponent because the Grid does not exist prior to that call. The InitializeComponent
method basically parses the XAML at run time and instantiates all the XAML objects and puts them all
together in a tree. InitializeComponent is obviously an important method, which is why you might be
puzzled when you can’t find it in the documentation.

Here’s the story: When Visual Studio compiles the application, it generates some intermediate
files. You can find these files with Windows Explorer by navigating to the HelloCode solution, the
HelloCode project, and then the obj and Debug directories. Among the list of files are MainPage.g.cs
and MainPage.g.i.cs. The “g” stands for “generated.” Both these files define MainPage classes derived
from Page with the partial keyword. The composite MainPage class thus consists of the
MainPage.xaml.cs file under your control plus these two generated files, which you don’t mess with.
Although you don’t edit these files, they are important to know about because they might pop up in
Visual Studio if a run-time error occurs involving the XAML file.

The MainPage.g.i.cs file is the more interesting of the two. Here you’ll find the definition of the
InitializeComponent method, which calls a static method named Application.LoadComponent to load
the MainPage.xaml file. Notice also that this partial class definition contains a private field named
contentGrid, which is the name you’ve assigned to the Grid in the XAML file. The InitializeComponent
method concludes by setting that field to the actual Grid object created by Application.LoadComponent.

The contentGrid field is thus accessible throughout the MainPage class, but the value will be null
until InitializeComponent is called.

In summary, parsing the XAML is a two-stage process. At compile time the XAML is parsed to
extract all the element names (among other tasks) and generate the intermediate C# files in the obj
directory. These generated C# files are compiled along with the C# files under your control. At run
time the XAML file is parsed again to instantiate all the elements, assemble them in a visual tree, and
obtain references to them.

Where is the standard Main method that serves as an entry point to any C# program? That’s in
App.g.i.cs, one of two files generated by Visual Studio based on App.xaml.

Let me show you something else that will serve as just a little preview of dependency properties:

As I mentioned earlier, many properties that we’ve been dealing with—FontFamily, FontSize,
FontStyle, Foreground, Text, HorizontalAlignment, and VerticalAlignment—have corresponding static

26	 PART 1  Elementals

dependency properties, named FontFamilyProperty, FontSizeProperty, and so forth. You might amuse
yourself by changing a normal statement like this:

txtblk.FontStyle = FontStyle.Italic;

to an alternative that might look quite peculiar:

txtblk.SetValue(TextBlock.FontStyleProperty, FontStyle.Italic);

What you’re doing here is calling a method named SetValue defined by DependencyObject and
inherited by TextBlock. You’re calling this method on the TextBlock object but passing to it the
static FontStyleProperty object of type DependencyProperty defined by TextBlock and the value you
want for that property. There is no real difference between these two ways of setting the FontStyle
property. Within TextBlock, the FontStyle property is very likely defined something like this:

public FontStyle FontStyle
{
 set
 {
 SetValue(TextBlock.FontStyleProperty, value);
 }
 get
 {
 return (FontStyle)GetValue(TextBlock.FontStyleProperty);
 }
}

I say “very likely” because I’m not privy to the Windows Runtime source code, and that source code
is likely written in C++ rather than C#, but if the FontStyle property is defined like all other properties
backed by dependency properties, the set and get accessors simply call SetValue and GetValue with
the TextBlock.FontStyleProperty dependency property. This is extremely standard code, and it’s a pat-
tern you’ll come to be so familiar with that you’ll generally define your own dependency properties
without so much white space like this:

public FontStyle FontStyle
{
 set { SetValue(TextBlock.FontStyleProperty, value); }
 get { return (FontStyle)GetValue(TextBlock.FontStyleProperty); }
}

Earlier you saw how you can set the Foreground and font-related properties in XAML on the Page
tag rather than the TextBlock and how these properties are inherited by the TextBlock. Of course you
can do the same thing in code:

public MainPage()
{
 this.InitializeComponent();

 this.FontFamily = new FontFamily("Times New Roman");
 this.FontSize = 96;
 this.FontStyle = FontStyle.Italic;
 this.Foreground = new SolidColorBrush(Colors.Yellow);

	 CHAPTER 1  Markup and Code	 27

 TextBlock txtblk = new TextBlock();
 txtblk.Text = "Hello, Windows 8!";
 txtblk.HorizontalAlignment = HorizontalAlignment.Center;
 txtblk.VerticalAlignment = VerticalAlignment.Center;

 contentGrid.Children.Add(txtblk);
}

C# doesn’t require the this prefix to access properties and methods of the class, but when you’re
editing the files in Visual Studio, typing the this prefix invokes IntelliSense to give you a list of available
methods, properties, and events.

Images in Code

The HelloImage and HelloLocalImage projects earlier in this chapter used the Image element to
display bitmaps. In XAML, you set the Source property to a URI indicating the location of a bitmap.
Judging solely from the XAML file, you might have assumed that this Source property is defined as
a string or perhaps the Uri type. It’s actually more complex than that: The Source property is of type
ImageSource, which encapsulates the actual image that the Image element is responsible for dis
playing. ImageSource doesn’t define anything on its own and cannot be instantiated, but several
important classes descend from ImageSource, as shown in this partial class hierarchy:

Object
 DependencyObject
 ImageSource
 BitmapSource
 BitmapImage
 WriteableBitmap

ImageSource is defined in the Windows.UI.Xaml.Media namespace, but the descendent classes are
in Windows.UI.Xaml.Media.Imaging. A BitmapSource can’t be instantiated either, but it defines public
PixelWidth and PixelHeight properties as well as a SetSource method that lets you read in bitmap
data from a file or network stream. BitmapImage inherits these members and also defines a UriSource
property.

You can use BitmapImage for displaying a bitmap from code. Besides defining this UriSource
property, BitmapImage also defines a constructor that accepts a Uri object. In the HelloImageCode
project, the Grid has been given a name of “contentGrid” and a using directive for Windows.UI.Xaml.
Media.Imaging has been added to the code-behind file. Here’s the MainPage constructor:

Project: HelloImageCode | File: MainPage.xaml.cs (excerpt)

public MainPage()
{
 this.InitializeComponent();

 Uri uri = new Uri("http://www.charlespetzold.com/pw6/PetzoldJersey.jpg");
 BitmapImage bitmap = new BitmapImage(uri);

28	 PART 1  Elementals

 Image image = new Image();
 image.Source = bitmap;
 contentGrid.Children.Add(image);
}

Setting a Name of “contentGrid” on the Grid is not strictly necessary for accessing the Grid from
code. The Grid is actually set to the Content property of the Page, so rather than accessing the Grid
like so:

contentGrid.Children.Add(image);

you can do it like this:

Grid grid = this.Content as Grid;
grid.Children.Add(image);

In fact, the Grid isn’t even necessary in such a simple program. You can effectively remove the Grid
from the visual tree by setting the Image directly to the Content property of MainPage:

this.Content = image;

The Content property that MainPage inherits from UserControl is of type UIElement, so it can support
only one child. Generally, the child of the MainPage is a Panel derivative that supports multiple
children, but if you need only one child, you can use the Content property of the MainPage directly.

It’s also possible to make a hybrid of the XAML and code approaches: to instantiate the Image
element in XAML and create the BitmapImage in code, or to instantiate both the Image element and
BitmapImage in XAML and then set the UriSource property of BitmapImage from code. I’ve used the
first approach in the HelloLocalImageCode project, which has an Images directory with the Greeting.
png file. The XAML file already contains the Image element, but it doesn’t reference an actual bitmap:

Project: HelloLocalImageCode | File: MainPage.xaml (excerpt)

<Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <Image Name="image"
 Stretch="None" />
</Grid>

The code-behind file sets the Source property of the Image element in a single line:

Project: HelloLocalImageCode | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 public MainPage()
 {
 this.InitializeComponent();
 image.Source = new BitmapImage(new Uri("ms-appx:///Images/Greeting.png"));
 }
}

	 CHAPTER 1  Markup and Code	 29

Look at that special URL for referencing the content bitmap file from code. In XAML, that special
prefix is optional.

Are there general rules to determine when to use XAML and when to use code? Not really. I tend
to use XAML whenever possible except when the repetition becomes ridiculous. My normal rule
for code is “three or more: use a for,” but I’ll often allow somewhat more repetition in XAML before
moving it into code. A lot depends on how concise and elegant you’ve managed to make the XAML
and how much effort it would be to change something.

Not Even a Page

Insights into how a Windows Runtime program starts up can be obtained by examining the
OnLaunched override in the standard App.xaml.cs file. You’ll discover that it creates a Frame object,
uses this Frame object to navigate to an instance of MainPage (which is how MainPage gets
instantiated), and then sets this Frame object to a precreated Window object accessible through the
Window.Current static property. Here’s the simplified code:

var rootFrame = new Frame();
rootFrame.Navigate(typeof(MainPage));
Window.Current.Content = rootFrame;
Window.Current.Activate();

A Windows 8 application doesn’t require a Page derivative, a Frame, or even any XAML files at
all. Let’s conclude this chapter by creating a new project named StrippedDownHello and begin by
deleting the App.xaml, App.xaml.cs, MainPage.xaml, and MainPage.xaml.cs files, as well as the entire
Common folder. Yes, delete them all! Now the project has no code files and no XAML files. It’s left
with just an app manifest, assembly information, and some PNG files.

Right-click the project name and select Add and New Item. Select either a new class or code file
and name it App.cs. Here’s what you’ll want it to look like:

Project: StrippedDownHello | File: App.cs

using Windows.ApplicationModel.Activation;
using Windows.UI;
using Windows.UI.Xaml;
using Windows.UI.Xaml.Controls;
using Windows.UI.Xaml.Media;

namespace StrippedDownHello
{
 public class App : Application
 {
 static void Main(string[] args)

30	 PART 1  Elementals

 {
 Application.Start((p) => new App());
 }

 protected override void OnLaunched(LaunchActivatedEventArgs args)
 {
 TextBlock txtblk = new TextBlock
 {
 Text = "Stripped-Down Windows 8",
 FontFamily = new FontFamily("Lucida sans Typewriter"),
 FontSize = 96,
 Foreground = new SolidColorBrush(Colors.Red),
 HorizontalAlignment = HorizontalAlignment.Center,
 VerticalAlignment = VerticalAlignment.Center
 };

 Window.Current.Content = txtblk;
 Window.Current.Activate();
 }
 }
}

That’s all you need (and obviously much less if you want default properties on the TextBlock).
The static Main method is the entry point and that creates a new App object and starts it going, and
the OnLaunched override creates a TextBlock and makes it the content of the application’s default
window.

I won’t be pursuing this approach to creating Windows 8 applications in this book, but obviously
it works.

		 31

C H A P T E R 2

XAML Syntax

A Windows 8 application is divided into code and markup because each has its own strength.
Despite the limitations of markup in performing complex logic or computational tasks, it’s good

to get as much of a program into markup as possible. Markup is easier to edit with tools and shows
a clearer sense of the visual layout of a page. Of course, everything in markup is a string, so markup
sometimes becomes cumbersome in representing complex objects. Because markup doesn’t have the
loop processing common in programming languages, it can also be prone to repetition.

These issues have been addressed in the syntax of XAML in several ways, the most important of
which are explored in this chapter. But let me begin this vital subject with a topic that will at first
appear to be completely off topic: defining a gradient brush.

The Gradient Brush in Code

The Background property in Grid and the Foreground property of the TextBlock are both of
type Brush. The programs shown so far have set these properties to a derivative of Brush called
SolidColorBrush. As demonstrated in Chapter 1, “Markup and Code,” you can create a SolidColorBrush
in code and give it a Color value; in XAML this is done for you behind the scenes.

SolidColorBrush is only one of four available brushes, as shown in this class hierarchy:

Object
 DependencyObject
 Brush
 SolidColorBrush
 GradientBrush
 LinearGradientBrush
 TileBrush
 ImageBrush
 WebViewBrush

Only SolidColorBrush, LinearGradientBrush, ImageBrush, and WebViewBrush are instantiable. Like
many other graphics-related classes, most of these brush classes are defined in the Windows.UI.Xaml
.Media namespace, although WebViewBrush is defined in Windows.UI.Xaml.Controls.

32	 PART 1  Elementals

The LinearGradientBrush creates a gradient between two or more colors. For example, suppose
you want to display some text with blue at the left gradually turning to red at the right. While we’re at
it, let’s set a similar gradient on the Background property of the Grid but going the other way.

In the GradientBrushCode program, a TextBlock is instantiated in XAML, and both the Grid and the
TextBlock have names:

Project: GradientBrushCode | File: MainPage.xaml (excerpt)

<Grid Name="contentGrid"
 Background="{StaticResource ApplicationPageBackgroundThemeBrush}">

 <TextBlock Name="txtblk"
 Text="Hello, Windows 8!"
 FontSize="96"
 FontWeight="Bold"
 HorizontalAlignment="Center"
 VerticalAlignment="Center" />
</Grid>

The constructor of the code-behind file creates two separate LinearGradientBrush objects to set to
the Background property of the Grid and Foreground property of the TextBlock:

Project: GradientBrushCode | File: MainPage.xaml.cs (excerpt)

public MainPage()
{
 this.InitializeComponent();

 // Create the foreground brush for the TextBlock
 LinearGradientBrush foregroundBrush = new LinearGradientBrush();
 foregroundBrush.StartPoint = new Point(0, 0);
 foregroundBrush.EndPoint = new Point(1, 0);

 GradientStop gradientStop = new GradientStop();
 gradientStop.Offset = 0;
 gradientStop.Color = Colors.Blue;
 foregroundBrush.GradientStops.Add(gradientStop);

 gradientStop = new GradientStop();
 gradientStop.Offset = 1;
 gradientStop.Color = Colors.Red;
 foregroundBrush.GradientStops.Add(gradientStop);

 txtblk.Foreground = foregroundBrush;

 // Create the background brush for the Grid
 LinearGradientBrush backgroundBrush = new LinearGradientBrush
 {
 StartPoint = new Point(0, 0),
 EndPoint = new Point(1, 0)
 };
 backgroundBrush.GradientStops.Add(new GradientStop
 {
 Offset = 0,
 Color = Colors.Red
 });

	 CHAPTER 2  XAML Syntax	 33

 backgroundBrush.GradientStops.Add(new GradientStop
 {
 Offset = 1,
 Color = Colors.Blue
 });

 contentGrid.Background = backgroundBrush;
}

The two brushes are created with two different styles of property initialization, but otherwise
they’re basically the same. The LinearGradientBrush class defines two properties named StartPoint and
EndPoint of type Point, which is a structure with X and Y properties representing a two-dimensional
coordinate point. The StartPoint and EndPoint properties are relative to the object to which the brush
is applied based on the standard windowing coordinate system: X values increase to the right and Y
values increase going down. The relative point (0, 0) is the upper-left corner and (1, 0) is the upper-
right corner, so the brush gradient extends along an imaginary line between these two points, and
all lines parallel to that line. The StartPoint and EndPoint defaults are (0, 0) and (1, 1), which defines a
gradient from the upper-left to the lower-right corners of the target object.

LinearGradientBrush also has a property named GradientStops that is a collection of GradientStop
objects. Each GradientStop indicates an Offset relative to the gradient line and a Color at that offset.
Generally the offsets range from 0 to 1, but for special purposes they can go beyond the range
encompassed by the brush. LinearGradientBrush defines additional properties to indicate how the
gradient is calculated and what happens beyond the smallest Offset and the largest Offset.

Here’s the result:

If you now consider defining these same brushes in XAML, all of a sudden the limitations of
markup become all too evident. XAML lets you define a SolidColorBrush by just specifying the color,
but how on earth do you set a Foreground or Background property to a text string defining two
points and two or more offsets and colors?

34	 PART 1  Elementals

Property-Element Syntax

Fortunately, there is a way. As you’ve seen, you normally indicate that you want a SolidColorBrush in
XAML simply by specifying the color of the brush:

<TextBlock Text="Hello, Windows 8!"
 Foreground="Blue"
 FontSize="96" />

The SolidColorBrush is created for you behind the scenes.

However, it’s possible to use a variation of this syntax that gives you the option of being more
explicit about the nature of this brush. Remove that Foreground property, and separate the TextBlock
element into start and end tags:

<TextBlock Text="Hello, Windows 8!"
 FontSize="96">

</TextBlock>

Within those tags, insert additional start and end tags consisting of the element name, a period,
and a property name:

<TextBlock Text="Hello, Windows 8!"
 FontSize="96">
 <TextBlock.Foreground>

 </TextBlock.Foreground>
</TextBlock>

And within those tags put the object you want to set to that property:

<TextBlock Text="Hello, Windows 8!"
 FontSize="96">
 <TextBlock.Foreground>
 <SolidColorBrush Color="Blue" />
 </TextBlock.Foreground>
</TextBlock>

Now it’s explicit that Foreground is being set to an instance of a SolidColorBrush.

This is called property-element syntax, and it’s an important feature of XAML. At first it might
seem to you (as it did to me) that this syntax is an extension or aberration of standard XML, but it’s
definitely not. Periods are perfectly valid characters in XML element names.

	 CHAPTER 2  XAML Syntax	 35

In reference to that last little snippet of XAML it is now possible to categorize three types of XAML
syntax:

■■ The TextBlock and SolidColorBrush are both examples of “object elements” because they are
XML elements that result in the creation of objects.

■■ The Text, FontSize, and Color settings are examples of “property attributes.” They are XML
attributes that specify the settings of properties.

■■ The TextBlock.Foreground tag is a “property element.” It is a property expressed as an XML
element.

XAML poses a restriction on property-element tags: Nothing else can go in the start tag. The
object being set to the property must be content that goes between the start and end tags.

The following example uses a second set of property-element tags for the Color property of the
SolidColorBrush:

<TextBlock Text="Hello, Windows 8!"
 FontSize="96">
 <TextBlock.Foreground>
 <SolidColorBrush>
 <SolidColorBrush.Color>
 Blue
 </SolidColorBrush.Color>
 </SolidColorBrush>
 </TextBlock.Foreground>
</TextBlock>

If you want, you can set the other two properties of the TextBlock similarly:

<TextBlock>
 <TextBlock.Text>
 Hello, Windows 8
 </TextBlock.Text>

 <TextBlock.FontSize>
 96
 </TextBlock.FontSize>

 <TextBlock.Foreground>
 <SolidColorBrush>
 <SolidColorBrush.Color>
 Blue
 </SolidColorBrush.Color>
 </SolidColorBrush>
 </TextBlock.Foreground>
</TextBlock>

36	 PART 1  Elementals

But there’s really no point. For these simple properties, the property attribute syntax is shorter and
clearer. Where property-element syntax comes to the rescue is in expressing more complex objects
like LinearGradientBrush. Let’s begin again with the property-element tags:

<TextBlock Text="Hello, Windows 8!"
 FontSize="96">
 <TextBlock.Foreground>

 </TextBlock.Foreground>
</TextBlock>

Put a LinearGradientBrush in there, separated into start tags and end tags. Set the StartPoint and
EndPoint properties in this start tag:

<TextBlock Text="Hello, Windows 8!"
 FontSize="96">
 <TextBlock.Foreground>
 <LinearGradientBrush StartPoint="0 0" EndPoint="1 0">

 </LinearGradientBrush>
 </TextBlock.Foreground>
</TextBlock>

Notice that the two properties of type Point are specified with two numbers separated by a space.
You can separate the number pair with a comma if you choose.

The LinearGradientBrush has a GradientStops property that is a collection of GradientStop objects,
so include the GradientStops property with another property element:

<TextBlock Text="Hello, Windows 8!"
 FontSize="96">
 <TextBlock.Foreground>
 <LinearGradientBrush StartPoint="0 0" EndPoint="1 0">
 <LinearGradientBrush.GradientStops>

 </LinearGradientBrush.GradientStops>
 </LinearGradientBrush>
 </TextBlock.Foreground>
</TextBlock>

The GradientStops property is of type GradientStopCollection, so let’s add that in as well:

<TextBlock Text="Hello, Windows 8!"
 FontSize="96">
 <TextBlock.Foreground>
 <LinearGradientBrush StartPoint="0 0" EndPoint="1 0">
 <LinearGradientBrush.GradientStops>
 <GradientStopCollection>

 </GradientStopCollection>
 </LinearGradientBrush.GradientStops>
 </LinearGradientBrush>
 </TextBlock.Foreground>
</TextBlock>

	 CHAPTER 2  XAML Syntax	 37

Finally, add the two GradientStop objects to the collection:

<TextBlock Text="Hello, Windows 8!"
 FontSize="96">
 <TextBlock.Foreground>
 <LinearGradientBrush StartPoint="0 0" EndPoint="1 0">
 <LinearGradientBrush.GradientStops>
 <GradientStopCollection>
 <GradientStop Offset="0" Color="Blue" />
 <GradientStop Offset="1" Color="Red" />
 </GradientStopCollection>
 </LinearGradientBrush.GradientStops>
 </LinearGradientBrush>
 </TextBlock.Foreground>
</TextBlock>

And there we have it: a rather complex property setting expressed entirely in markup.

Content Properties

The syntax I’ve just shown you for instantiating and initializing the LinearGradientBrush is actually a
bit more extravagant than what you actually need. You might be persuaded of this fact when you
consider that all the XAML files we’ve seen so far have apparently been missing some properties and
elements. Look at this little snippet of markup:

<Page ... >
 <Grid ... >
 <TextBlock ... />
 <TextBlock ... />
 <TextBlock ... />
 </Grid>
</Page>

We know from working with the classes in code that the TextBlock elements are added to the Children
collection of the Grid, and the Grid is set to the Content property of the Page. But where are those
Children and Content properties in the markup?

Well, you can include them if you want. Here are the Page.Content and Grid.Children property
elements as they are allowed to appear in a XAML file:

<Page ... >
 <Page.Content>
 <Grid ... >
 <Grid.Children>
 <TextBlock ... />
 <TextBlock ... />
 <TextBlock ... />
 </Grid.Children>
 </Grid>
 </Page.Content>
</Page>

38	 PART 1  Elementals

This markup is still missing the UIElementCollection object that is set to the Children property of the
Grid. That cannot be explicitly included because only elements with parameterless public constructors
can be instantiated in XAML files, and the UIElementCollection class is missing such a constructor.

The real question is this: Why aren’t the Page.Content and Grid.Children property elements
required in the XAML file?

Simple: All classes referenced in XAML are allowed to have one (and only one) property that is
designated as a “content” property. For this content property, and only this property, property-
element tags are not required.

The content property for a particular class is specified as a .NET attribute. Somewhere in the actual
class definition of the Panel class (from which Grid derives) is an attribute named ContentProperty. If
these classes were defined in C#, it would look like this:

[ContentProperty(Name="Children")]
public class Panel : FrameworkElement
{
 ...
}

What this means is simple. Whenever the XAML parser encounters some markup like this:

<Grid ... >
 <TextBlock ... />
 <TextBlock ... />
 <TextBlock ... />
</Grid>

then it checks the ContentProperty attribute of the Grid and discovers that these TextBlock elements
should be added to the Children property.

Similarly, the definition of the UserControl class (from which Page derives) defines the Content
property as its content property (which might sound appropriately redundant if you say it out loud):

[ContentProperty(Name="Content")]
public class UserControl : Control
{
 ...
}

You can define a ContentProperty attribute in your own classes. The ContentPropertyAttribute class
required for this is in the Windows.UI.Xaml.Markup namespace.

Unfortunately, at the time I’m writing this book, the documentation for the Windows Runtime
indicates only when a ContentProperty attribute has been set on a class—look in the Attributes
section of the home page for the Panel class, for example—but not what that property actually is!
Perhaps the documentation will be enhanced in the future, but until then, you’ll just have to learn by
example and retain by habit.

	 CHAPTER 2  XAML Syntax	 39

Fortunately, many content properties are defined to be the most convenient property of the class.
For LinearGradientBrush, the content property is GradientStops. Although GradientStops is of type
GradientStopCollection, XAML does not require collection objects to be explicitly included. Here’s the
excessively wordy form of the LinearGradientBrush syntax:

<TextBlock Text="Hello, Windows 8!"
 FontSize="96">
 <TextBlock.Foreground>
 <LinearGradientBrush StartPoint="0 0" EndPoint="1 0">
 <LinearGradientBrush.GradientStops>
 <GradientStopCollection>
 <GradientStop Offset="0" Color="Blue" />
 <GradientStop Offset="1" Color="Red" />
 </GradientStopCollection>
 </LinearGradientBrush.GradientStops>
 </LinearGradientBrush>
 </TextBlock.Foreground>
</TextBlock>

Neither the LinearGradientBrush.GradientStops property elements nor the GradientStopCollection tags
are required, so it simplifies to this:

<TextBlock Text="Hello, Windows 8!"
 FontSize="96">
 <TextBlock.Foreground>
 <LinearGradientBrush StartPoint="0 0" EndPoint="1 0">
 <GradientStop Offset="0" Color="Blue" />
 <GradientStop Offset="1" Color="Red" />
 </LinearGradientBrush>
 </TextBlock.Foreground>
</TextBlock>

Now it’s difficult to imagine how it can get any simpler and still be valid XML.

It is now possible to rewrite the GradientBrushCode program so that everything is done in XAML:

Project: GradientBrushMarkup | File: MainPage.xaml (excerpt)

<Grid>
 <Grid.Background>
 <LinearGradientBrush StartPoint="0 0" EndPoint="1 0">
 <GradientStop Offset="0" Color="Red" />
 <GradientStop Offset="1" Color="Blue" />
 </LinearGradientBrush>
 </Grid.Background>

 <TextBlock Name="txtblk"
 Text="Hello, Windows 8!"
 FontSize="96"
 FontWeight="Bold"
 HorizontalAlignment="Center"
 VerticalAlignment="Center">
 <TextBlock.Foreground>
 <LinearGradientBrush StartPoint="0 0" EndPoint="1 0">
 <GradientStop Offset="0" Color="Blue" />

40	 PART 1  Elementals

 <GradientStop Offset="1" Color="Red" />
 </LinearGradientBrush>
 </TextBlock.Foreground>
 </TextBlock>
</Grid>

Even with the property-element syntax, it’s more readable than the code version. What code
illustrates most clearly is how something is built. Markup shows the completed construction.

Here’s something to watch out for. Suppose you define a property element on a Grid with multiple
children:

<Grid>
 <Grid.Background>
 <SolidColorBrush Color="Blue" />
 </Grid.Background>

 <TextBlock Text="one" />
 <TextBlock Text="two" />
 <TextBlock Text="three" />
</Grid>

You can alternatively put the property element at the bottom:

<Grid>
 <TextBlock Text="one" />
 <TextBlock Text="two" />
 <TextBlock Text="three" />

 <Grid.Background>
 <SolidColorBrush Color="Blue" />
 </Grid.Background>
</Grid>

But you can’t have some content before the property element and some content after it:

<!-- This doesn't work! -->
<Grid>
 <TextBlock Text="one" />

 <Grid.Background>
 <SolidColorBrush Color="Blue" />
 </Grid.Background>

 <TextBlock Text="two" />
 <TextBlock Text="three" />
</Grid>

Why the prohibition? The problem becomes very apparent when you include the property-element
tags for the Children property:

<!-- This doesn't work! -->
<Grid>
 <Grid.Children>
 <TextBlock Text="one" />
 </Grid.Children>

	 CHAPTER 2  XAML Syntax	 41

 <Grid.Background>
 <SolidColorBrush Color="Blue" />
 </Grid.Background>

 <Grid.Children>
 <TextBlock Text="two" />
 <TextBlock Text="three" />
 </Grid.Children>
</Grid>

Now it’s obvious that the Children property is defined twice with two separate collections, and that’s
not legal.

The TextBlock Content Property

As you saw in the WrappedText program in Chapter 1, TextBlock allows you to specify text as content.
However, the content property of TextBlock is not the Text property. It is instead a property named
Inlines of type InlineCollection, a collection of Inline objects, or more precisely, instances of Inline
derivatives. The Inline class and its derivatives can all be found in the Windows.UI.Xaml.Documents
namespace. Here’s the hierarchy:

Object
 DependencyObject
 TextElement
 Block
 Paragraph
 Inline
 InlineUIContainer
 LineBreak
 Run (defines Text property)
 Span (defines Inlines property)
 Bold
 Italic
 Underline

These classes allow you to specify varieties of formatted text in a single TextBlock. TextElement
defines Foreground and all the font-related properties: FontFamily, FontSize, FontStyle, FontWeight (for
setting bold), FontStretch (expanded and compressed for fonts that support it), and CharacterSpacing,
and these are inherited by all the descendent classes.

The Block and Paragraph classes are mostly used in connection with a souped-up version of
TextBlock called RichTextBlock that I’ll discuss in Chapter 16, “Rich Text.” The remainder of this
discussion will focus entirely on classes that derive from Inline.

The Run element is the only class here that defines a Text property, and Text is also the content
property of Run. Any text content in an InlineCollection is converted to a Run, except when that text is

42	 PART 1  Elementals

already content of a Run. You can also use Run objects explicitly to specify different font properties of
the text strings.

Span defines an Inlines property just like TextBlock. This allows Span and its descendent classes
to be nested. The three descendent classes of Span are shortcuts. For example, the Bold class is
equivalent to Span with the FontWeight attribute set to Bold.

As an example, here’s a TextBlock with a small Inlines collection using the shortcut classes with
nesting:

 <TextBlock>
 Text in <Bold>bold</Bold> and <Italic>italic</Italic> and
 <Bold><Italic>bold italic</Italic></Bold>
 </TextBlock>

As this is parsed, all those pieces of loose text are converted to Run objects, so the Inlines collection of
the TextBlock contains six items: instances of Run, Bold, Run, Italic, Run, and Bold. The Inlines collection
of the first Bold item contains a single Run object as does the Inlines collection of the first Italic
item. The Inlines collection of the second Bold item contains an Italic object, whose Inlines collection
contains a Run object.

The use of Bold and Italic with a TextBlock demonstrates clearly how the syntax of XAML is based
on the classes and properties that support these elements. It wouldn’t be possible to nest an Italic tag
in a Bold tag if Bold didn’t have an Inlines collection.

Here’s a somewhat more extensive TextBlock that shows off more formatting features:

Project: TextFormatting | File: MainPage.xaml (excerpt)

<Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <TextBlock Width="400"
 FontSize="24"
 TextWrapping="Wrap"
 HorizontalAlignment="Center"
 VerticalAlignment="Center">
 Here is text in a
 <Run FontFamily="Times New Roman">Times New Roman</Run> font,
 as well as text in a
 <Run FontSize="36">36-pixel</Run> height.
 <LineBreak />
 <LineBreak />
 Here is some <Bold>bold</Bold> and here is some
 <Italic>italic</Italic> and here is some
 <Underline>underline</Underline> and here is some
 <Bold><Italic><Underline>bold italic underline and
 bigger and
 Red as well
 </Underline></Italic></Bold>.
 </TextBlock>
</Grid>

	 CHAPTER 2  XAML Syntax	 43

The TextBlock is given an explicit 400-pixel width so that it doesn’t sprawl too wide. Individual
Run elements can always be used to format pieces of text as shown in the first several lines in this
paragraph, but if you want nested formatting—and particularly in connection with the shortcut
classes—you’ll want to switch to Span and its derivatives:

As you can see, the LineBreak element can arbitrarily break lines. In theory, the InlineUIContainer
class allows you to embed any UIElement in the text (for example, Image elements), but it only works
with RichTextBlock and not the regular TextBlock.

Sharing Brushes (and Other Resources)

Suppose you have multiple TextBlock elements on a page, and you want several of them to have
the same brush. If this is a SolidColorBrush, the repetitive markup is not too bad. However, if it’s a
LinearGradientBrush, it gets messier. A LinearGradientBrush requires at least six tags, and all that
repetitive markup becomes very painful, particularly if something needs to be changed.

The Windows Runtime has a feature called the “XAML resource” that lets you share objects among
multiple elements. Sharing brushes is one common application of the XAML resource, but the most
common is defining and sharing styles.

XAML resources are stored in a ResourceDictionary, a dictionary whose keys and values are both of
type object. Very often, however, the keys are strings. Both FrameworkElement and Application define
a property named Resources of type ResourceDictionary.

44	 PART 1  Elementals

The SharedBrush project shows a typical way to share a LinearGradientBrush (and a couple other
objects) among several elements on a page. Toward the top of the XAML file I’ve defined a Resources
property element for the collection of resources for that page:

Project: SharedBrush | File: MainPage.xaml (excerpt)

<Page ... >

 <Page.Resources>
 <x:String x:Key="appName">Shared Brush App</x:String>

 <LinearGradientBrush x:Key="rainbowBrush">
 <GradientStop Offset="0" Color="Red" />
 <GradientStop Offset="0.17" Color="Orange" />
 <GradientStop Offset="0.33" Color="Yellow" />
 <GradientStop Offset="0.5" Color="Green" />
 <GradientStop Offset="0.67" Color="Blue" />
 <GradientStop Offset="0.83" Color="Indigo" />
 <GradientStop Offset="1" Color="Violet" />
 </LinearGradientBrush>

 <FontFamily x:Key="fontFamily">Times New Roman</FontFamily>

 <x:Double x:Key="fontSize">96</x:Double>
 </Page.Resources>
 ...
</Page>

Often the definition of resources near the top of a XAML file is referred to as a “resources section.”
This particular Resources dictionary is initialized with four items of four different types: String,
LinearGradientBrush, FontFamily, and Double. Notice the “x” prefix on String and Double. These are
.NET primitive types, of course, but they are not Windows Runtime types, and hence they are not in
the default XAML namespace. Also available are x:Boolean and x:Int32 types.

Notice as well that each of these objects has an x:Key attribute. The x:Key attribute is valid only
in a Resources dictionary. As the name suggests, the x:Key attribute is the key for that item in the
dictionary.

In the body of the XAML file, an element references the resource by using this key in some special
markup called a XAML markup extension.

There are just a few XAML markup extensions, and you’ll always recognize them by curly braces.
The markup extension for referencing a resource consists of the keyword StaticResource and the key
name. In fact, you’ve already seen the StaticResource markup extension numerous times: It provides
the standard Grid with a background brush. The rest of this XAML file uses StaticResource to obtain
items defined in the Resources dictionary:

Project: SharedBrush | File: MainPage.xaml (excerpt)

<Page ... >
 ...
 <Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <TextBlock Text="{StaticResource appName}"
 FontSize="48"

	 CHAPTER 2  XAML Syntax	 45

 HorizontalAlignment="Center"
 VerticalAlignment="Center" />

 <TextBlock Text="Top Text"
 Foreground="{StaticResource rainbowBrush}"
 FontFamily="{StaticResource fontFamily}"
 FontSize="{StaticResource fontSize}"
 HorizontalAlignment="Center"
 VerticalAlignment="Top" />

 <TextBlock Text="Left Text"
 Foreground="{StaticResource rainbowBrush}"
 FontFamily="{StaticResource fontFamily}"
 FontSize="{StaticResource fontSize}"
 HorizontalAlignment="Left"
 VerticalAlignment="Center" />

 <TextBlock Text="Right Text"
 Foreground="{StaticResource rainbowBrush}"
 FontFamily="{StaticResource fontFamily}"
 FontSize="{StaticResource fontSize}"
 HorizontalAlignment="Right"
 VerticalAlignment="Center" />

 <TextBlock Text="Bottom Text"
 Foreground="{StaticResource rainbowBrush}"
 FontFamily="{StaticResource fontFamily}"
 FontSize="{StaticResource fontSize}"
 HorizontalAlignment="Center"
 VerticalAlignment="Bottom" />
 </Grid>
</Page>

Here’s the result:

46	 PART 1  Elementals

A few notes:

Referencing the same three resources in four TextBlock elements cries out for a more efficient
approach, namely, a style, which I’ll discuss later in this chapter.

Resources must be defined in a XAML file lexically preceding their use. This is why it’s most
common for the Resources dictionary to be near the top of a XAML file and most conveniently
defined on the root element.

However, every FrameworkElement descendent can support a Resources dictionary, so you might
include them further down the visual tree. The keys must be unique within any Resources dictionary,
but you can use duplicate keys in other Resources dictionaries. When the XAML parser encounters
a StaticResource markup extension, it begins searching up the visual tree for a Resources dictionary
with a matching key and it uses the first one it encounters. You can effectively override the values of
Resources keys with those in more local dictionaries.

If the XAML parser cannot find a matching key by searching up the visual tree, it checks the
Resources dictionary in the Application object. The App.xaml file is an ideal place for defining
resources that are used throughout the application. To use a bunch of resources across multiple
applications, you can define them in a separate XAML file with a root element of ResourceDictionary.
Include that file in a project, reference it in the App.xaml file, and you can then use items in that
dictionary.

Indeed, an example is already provided for you in the standard Visual Studio projects for Windows
8 applications. The Common folder contains a file named StandardStyles.xaml that has a root element
of ResourceDictionary:

<ResourceDictionary
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">

 ...

</ResourceDictionary>

This file is referenced in the standard App.xaml file. In fact, referencing this resources collection is just
about all that the standard App.xaml file does:

<Application
 x:Class="SharedBrush.App"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="using:SharedBrush">

 <Application.Resources>
 <ResourceDictionary>
 <ResourceDictionary.MergedDictionaries>
 <ResourceDictionary Source="Common/StandardStyles.xaml"/>
 </ResourceDictionary.MergedDictionaries>
 </ResourceDictionary>
 </Application.Resources>
</Application>

	 CHAPTER 2  XAML Syntax	 47

You can include your own collections of resources by inserting additional ResourceDictionary tags in
the MergedDictionaries collection. Or you can include your own resources directly in the App object’s
Resources dictionary.

You can also reference the Resources dictionary from code. Following the InitializeComponent call,
you can retrieve an item from the dictionary with an indexer:

FontFamily fntfam = this.Resources["fontFamily"] as FontFamily;

Now try this: Comment out the “fontFamily” entry in the MainPage.xaml file, but add that item to
the dictionary in the MainPage constructor prior to the InitializeComponent call.

this.Resources.Add("fontFamily", new FontFamily("Times New Roman"));

When the XAML file is parsed by InitializeComponent, this object will be available within that XAML
file.

The ResourceDictionary class does not define a public method that searches up the visual tree
for dictionaries in ancestor classes. If you need something like that to search for resources in code,
you can easily write it yourself by “climbing the visual tree” using the Parent property defined by
FrameworkElement or the VisualTreeHelper class defined in the Windows.UI.Xaml.Media namespace.
The Application object for the application is available from the static Application.Current property.

The predefined resources (such as the ApplicationPageBackgroundThemeBrush referenced by the
Grid) don't seem to be documented, but you can get a list of their values (in the Default, Light, and
High Contrast themes) in the file:

C:\Program Files (x86)\Windows Kits\8.0\Include\winrt\xaml\design\themeresources.xaml

After ApplicationPageBackgroundThemeBrush, the next most important predefined resource
identifier is ApplicationForegroundThemeBrush, which is black in the light theme, and white in the
dark theme. If you need a color to properly contrast with the background (as I will shortly), this is
it. For a convenient highlight color that contrasts with both background and foreground, create
a SolidColorBrush based on the Highlight color available from the UIElementColor method of the
UISettings class.

Resources Are Shared

Are resource objects truly shared among the elements that reference them? Or are separate instances
created for each StaticResource reference?

Try inserting the following code after the InitializeComponent call in the SharedBrush.xaml.cs file:

TextBlock txtblk = (this.Content as Grid).Children[1] as TextBlock;
LinearGradientBrush brush = txtblk.Foreground as LinearGradientBrush;
brush.StartPoint = new Point(0, 1);
brush.EndPoint = new Point(0, 0);

48	 PART 1  Elementals

This code references the LinearGradientBrush of the second TextBlock in the Children collection of the
Grid and changes the StartPoint and EndPoint properties. Lo and behold, all the TextBlock elements
referencing that LinearGradientBrush are affected:

Conclusion: Resources are shared.

It’s also easy to verify that even if a resource is not referenced by any element, it is still instantiated.

Exploring Vector Graphics

As you’ve seen, displaying text and bitmaps in a Windows 8 application involves creating objects of
type TextBlock and Image and attaching them to a visual tree. There’s no concept of “drawing” or
“painting,” at least not on the application level. Internal to the Windows Runtime, the TextBlock and
Image elements are rendering themselves.

Similarly, if you wish to display some vector graphics—lines, curves, and filled areas—you
don’t do it by calling methods like DrawLine and DrawBezier. These methods do not exist in the
Windows Runtime! Methods with names like those exist in DirectX, which you can use in a Windows
8 application, but when using the Windows Runtime you instead create elements of type Line,
Polyline, Polygon, and Path. These classes derive from the Shape class (which itself derives from
FrameworkElement) and can all be found in the Windows.UI.Xaml.Shapes namespace, which is
sometimes referred to as the Shapes library.

The most powerful members of the Shapes library are Polyline and Path. Polyline renders a
collection of connected straight lines, but its real purpose is to draw complex curves. All you need
to do is keep the individual lines short and supply plenty of them. Don’t hesitate to give Polyline
thousands of lines. That’s what it’s there for.

	 CHAPTER 2  XAML Syntax	 49

Let’s use Polyline to draw an Archimedean spiral. The XAML file for the Spiral program instantiates
the Polyline object but doesn’t include the points that define the figure:

Project: Spiral | File: MainPage.xaml (excerpt)

<Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <Polyline Name="polyline"
 Stroke="{StaticResource ApplicationForegroundThemeBrush}"
 StrokeThickness="3"
 HorizontalAlignment="Center"
 VerticalAlignment="Center" />
</Grid>

The Stroke property (inherited from Shape) is the brush used to draw the actual lines. Generally, this
is a SolidColorBrush, but you’ll see shortly that it doesn’t have to be. I’ve used StaticResource with the
predefined identifier that provides a white brush with a dark theme and a black brush with a light
theme. StrokeThickness (also inherited from Shape) is the width of the lines in pixels, and you’ve seen
HorizontalAlignment and VerticalAlignment before.

It might seem a little strange to specify HorizontalAlignment and VerticalAlignment for a chunk of
vector graphics, so a little explanation might be in order.

Two-dimensional vector graphics involve the use of coordinate points in the form (X, Y) on a
Cartesian coordinate system, where X is a position on the horizontal axis and Y is a position on the
vertical axis. Vector graphics in the Windows Runtime use a coordinate convention commonly associ-
ated with windowing environments: Values of X increase to the right (as is normal), but values of Y
increase going down (which is opposite the mathematical convention).

When only positive values of X and Y are used, the origin—the point (0, 0)—is the upper-left
corner of the graphical figure.

Negative coordinates can be used to indicate points to the left of the origin or above the origin.
However, when the Windows Runtime calculates the dimensions of a vector graphics object for layout
purposes, these negative coordinates are ignored. For example, suppose you draw a polyline with
points that have X coordinates ranging from –100 to 300 and Y coordinates ranging from –200 to
400. This implies that the polyline has a dimension of 400 pixels wide and 600 pixels high, and that is
certainly true. But for purposes of layout and alignment, the polyline is treated as if it were 300 pixels
wide and 400 pixels tall.

For a vector graphics figure to be treated in a predictable manner in the Windows Runtime layout
system, all that’s required is that you regard the point (0, 0) as the upper-left corner. For purposes of
layout, the maximum positive X coordinate becomes the element’s width and the maximum positive Y
coordinate becomes the element’s height.

For specifying a coordinate point, the Windows.Foundation namespace includes a Point structure
that has two properties of type double named X and Y. In addition, the Windows.UI.Xaml.Media
namespace includes a PointCollection, which is a collection of Point objects.

The only property that Polyline defines on its own is Points of type PointCollection. A collection
of points can be assigned to the Points property in XAML, but for very many points calculated

50	 PART 1  Elementals

algorithmically, code is ideal. In the constructor of the Spiral class, a for loop goes from 0 to 3600
degrees, effectively spinning around a circle 10 times:

Project: Spiral | File: MainPage.xaml.cs (excerpt)

public MainPage()
{
 this.InitializeComponent();

 for (int angle = 0; angle < 3600; angle++)
 {
 double radians = Math.PI * angle / 180;
 double radius = angle / 10;
 double x = 360 + radius * Math.Sin(radians);
 double y = 360 + radius * Math.Cos(radians);
 polyline.Points.Add(new Point(x, y));
 }
}

The radians variable converts degrees to radians for the .NET trig functions, and radius is calculated
to range from 0 through 360 depending on the angle, which means that the maximum radius will be
360 pixels. The values returned by the Math.Sin and Math.Cos static methods are multiplied by radius,
which means these products will range between –360 and 360 pixels.

To shift this figure so that all pixels have positive values relative to an upper-left origin, 360 is
added to both products. The spiral is thus centered at the point (360, 360) and extends no more than
360 pixels in all directions.

The loop concludes by instantiating a Point value and adding it to the Points collection of the
Polyline. Here it is:

	 CHAPTER 2  XAML Syntax	 51

Without the HorizontalAlignment and VerticalAlignment settings, the figure would be aligned at
the upper-left corner of the page. If the adjustment for the spiral’s center is also removed from the
calculation, the center would be in the upper-left corner of the page and three-quarters of the figure
would not be visible. If you keep HorizontalAlignment and VerticalAlignment set to Center but remove
the adjustment for the spiral’s center, you’ll see the figure positioned so that the lower-right quadrant
is centered.

The spiral almost fills the screen, but that’s only because the screen I’m using for these images has
a height of 768 pixels. What if we wanted to ensure that the spiral filled the screen regardless of the
screen’s size?

One solution is to base the numbers going into the calculation of the spiral coordinates directly on
the pixel size of the screen. You’ll see how to do that in Chapter 3, “Basic Event Handling.”

Another solution requires noticing that the Shape class defines a property named Stretch that you
use in exactly the same way you use the Stretch property of Image. By default, the Stretch property
for Polyline is the enumeration member Stretch.None, which means no stretching, but you can set it to
Uniform so that the figure fills the container while maintaining its aspect ratio.

The StretchedSpiral project demonstrates this. The XAML file sets a larger stroke width as well:

Project: StretchedSpiral | File: MainPage.xaml (excerpt)

<Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <Polyline Name="polyline"
 Stroke="{StaticResource ApplicationForegroundThemeBrush}"
 StrokeThickness="6"
 Stretch="Uniform" />
</Grid>

The code-behind file calculates the coordinates of the spiral using arbitrary coordinates, which in
this case I’ve chosen based on a radius of 1000:

Project: StretchedSpiral | File: MainPage.xaml.cs (excerpt)

public MainPage()
{
 this.InitializeComponent();

 for (int angle = 0; angle < 3600; angle++)
 {
 double radians = Math.PI * angle / 180;
 double radius = angle / 3.6;
 double x = 1000 + radius * Math.Sin(radians);
 double y = 1000 - radius * Math.Cos(radians);
 polyline.Points.Add(new Point(x, y));
 }
}

52	 PART 1  Elementals

You might also notice that I changed a plus to a minus in the y calculation so that the spiral ends at
the top rather than the bottom. The switch to the light theme demonstrates the convenience of using
ApplicationForegroundThemeBrush for the Stroke color:

Try setting the Stretch property to Fill to see this circular spiral be distorted into an elliptical spiral.

You’ll recall how LinearGradientBrush adapts itself to the size of whatever element it’s applied to.
The same is true when using that brush with vector graphics. Let’s instead try an ImageBrush, which is
a brush created from a bitmap.

The code-behind file for ImageBrushedSpiral is the same as StretchedSpiral. The XAML file widens
the stroke considerably and instantiates an ImageBrush:

Project: ImageBrushedSpiral | File: MainPage.xaml (excerpt)

<Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <Polyline Name="polyline"
 StrokeThickness="25"
 Stretch="Uniform">
 <Polyline.Stroke>
 <ImageBrush ImageSource="http://www.charlespetzold.com/pw6/PetzoldJersey.jpg"
 Stretch="UniformToFill"
 AlignmentY="Top" />
 </Polyline.Stroke>
 </Polyline>
</Grid>

The ImageSource property of ImageBrush is of type ImageSource, just like the Source property of
Image. In XAML you can just set it to a URL. ImageBrush has its own Stretch property, which by default
is Fill. This means that the bitmap is stretched to fill the area without respecting the aspect ratio. For
the image I’m using, that would make me look fat, so I switched to UniformToFill, which maintains the
image’s aspect ratio while filling the area. Doing so requires part of the image to be cropped. Use

	 CHAPTER 2  XAML Syntax	 53

the AlignmentX and AlignmentY properties to indicate how the bitmap should be aligned with the
graphical figure, and consequently, where the image should be cropped. For this bitmap, I prefer that
the bottom be cropped rather than my head:

Notice that the alignment of the image seems to be based on the geometric line of the spiral
rather than the line rendered with a width of 25 pixels. This causes areas at the top, left, and right
sides to be shaved off. The problem can be fixed with the Transform property of ImageBrush, but
that’s a little too advanced for this chapter.

You may have noticed that ImageBrush derives from TileBrush. That heritage might suggest that
you could repeat bitmap images horizontally and vertically to tile a surface, but doing so is not
supported by the Windows Runtime.

Any curve that you can define with parametric formulas, you can render with Polyline. But if the
complex curves you need are arcs (that is, curves on the circumference of an ellipse), cubic Bézier
splines (the standard sort), or quadratic Bézier splines (which have only one control point), you don’t
need to use Polyline. These curves are all supported with the Path element.

Path defines just one property on its own called Data, of type Geometry, a class defined in
Windows.UI.Xaml.Media. In the Windows Runtime, Geometry and related classes represent pure
analytic geometry. The Geometry object defines lines and curves using coordinate points, and the
Path renders those lines with a particular stroke brush and thickness.

The most powerful and flexible Geometry derivative is PathGeometry. The content property of
PathGeometry is named Figures, which is a collection of PathFigure objects. Each PathFigure is a
series of connected straight lines and curves. The content property of PathFigure is Segments, a
collection of PathSegment objects. PathSegment is the parent class to LineSegment, PolylineSegment,
BezierSegment, PolyBezierSegment, QuadraticBezierSegment, PolyQuadraticBezierSegment, and
ArcSegment.

54	 PART 1  Elementals

Let’s display the word HELLO using Path and PathGeometry:

Project: HelloVectorGraphics | File: MainPage.xaml (excerpt)

<Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <Path Stroke="Red"
 StrokeThickness="12"
 StrokeLineJoin="Round"
 HorizontalAlignment="Center"
 VerticalAlignment="Center">
 <Path.Data>
 <PathGeometry>
 <!-- H -->
 <PathFigure StartPoint="0 0">
 <LineSegment Point="0 100" />
 </PathFigure>
 <PathFigure StartPoint="0 50">
 <LineSegment Point="50 50" />
 </PathFigure>
 <PathFigure StartPoint="50 0">
 <LineSegment Point="50 100" />
 </PathFigure>

 <!-- E -->
 <PathFigure StartPoint="125 0">
 <BezierSegment Point1="60 -10" Point2="60 60" Point3="125 50" />
 <BezierSegment Point1="60 40" Point2="60 110" Point3="125 100" />
 </PathFigure>

 <!-- L -->
 <PathFigure StartPoint="150 0">
 <LineSegment Point="150 100" />
 <LineSegment Point="200 100" />
 </PathFigure>

 <!-- L -->
 <PathFigure StartPoint="225 0">
 <LineSegment Point="225 100" />
 <LineSegment Point="275 100" />
 </PathFigure>

 <!-- O -->
 <PathFigure StartPoint="300 50">
 <ArcSegment Size="25 50" Point="300 49.9" IsLargeArc="True" />
 </PathFigure>
 </PathGeometry>
 </Path.Data>
 </Path>
</Grid>

Each letter is one or more PathFigure objects, which always specifies a starting point for a series of
connected lines. The PathSegment derivatives continue the figure from that point. For example, to

	 CHAPTER 2  XAML Syntax	 55

draw the “E,” BezierSegment specifies two control points and an end point. The next BezierSegment
then continues from the end of the previous segment. (In the ArcSegment, the end point for the arc
can’t be the same as the start point or nothing will be drawn. That why it’s set to 1/10th pixel short. A
better alternative is to split the ArcSegment into two, each drawing half the circle.)

The result suggests that a pair of Bézier splines was perhaps not the best way to render a capital E:

Try setting the Stretch property of Path to Fill for a “really big hello”:

Of course you can assemble the PathFigure and PathSegment objects in code, but let me
show you an easier way to do it in XAML. A Path Markup Syntax is available that consists of single

56	 PART 1  Elementals

letters, coordinate points, an occasional size, and a couple Boolean values that reduce the markup
considerably. The HelloVectorGraphicsPath project creates the same figure as HelloVectorGraphics:

Project: HelloVectorGraphicsPath | File: MainPage.xaml (excerpt)

<Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <Path Stroke="Red"
 StrokeThickness="12"
 StrokeLineJoin="Round"
 HorizontalAlignment="Center"
 VerticalAlignment="Center"
 Data="M 0 0 L 0 100 M 0 50 L 50 50 M 50 0 L 50 100
 M 125 0 C 60 -10, 60 60, 125 50, 60 40, 60 110, 125 100
 M 150 0 L 150 100, 200 100
 M 225 0 L 225 100, 275 100
 M 300 50 A 25 50 0 1 0 300 49.9" />
</Grid>

The Data property is now one big string, but I’ve separated it into five lines corresponding to the five
letters. The M code is a “move” followed by x and y coordinate points. This indicates the start of a
figure. The L is a line (or, more precisely, a polyline) followed by one or more points; C is a cubic Bézier
curve, followed by control points and an end point, but more than one can be included; and A is an
arc. The arc is by far the most complex: The first two numbers indicate the horizontal and vertical radii
of an ellipse, which is rotated a number of degrees given by the next argument. Following are two
flags for the IsLargeArc property and sweep direction, followed by the end point. Not used here is the
often useful Z, which closes a figure with a straight line back to the start point.

Defining a complex geometry in terms of Path Markup Syntax is one example of something that
can be done only in XAML. Whatever class performs this conversion is not publicly exposed in the
Windows Runtime. It is available only to the XAML parser. To convert a string of Path Markup Syntax
to a Geometry in code would require some way to convert XAML to an object in code.

Fortunately, something like that is available. It’s a static method named XamlReader.Load in the
Windows.UI.Xaml.Markup namespace. Pass it a string of XAML and get out an instance of the root
element with all the other parts of the tree instantiated and assembled. XamlReader.Load has some
restrictions—the XAML it parses can’t refer to event handlers in external code, for example—but it is
a very powerful facility. In Chapter 8, “App Bars and Popups,” I’ll show you the source code for a tool
called XamlCruncher that lets you interactively experiment with XAML.

Meanwhile, here’s a Path with Path Markup Syntax created entirely in code:

Project: PathMarkupSyntaxCode | File: MainPage.xaml.cs

using Windows.UI; // for Colors
using Windows.UI.Xaml;
using Windows.UI.Xaml.Controls;
using Windows.UI.Xaml.Markup; // for XamlReader
using Windows.UI.Xaml.Media;
using Windows.UI.Xaml.Shapes; // for Path

	 CHAPTER 2  XAML Syntax	 57

namespace PathMarkupSyntaxCode
{
 public sealed partial class MainPage : Page
 {
 public MainPage()
 {
 this.InitializeComponent();

 Path path = new Path
 {
 Stroke = new SolidColorBrush(Colors.Red),
 StrokeThickness = 12,
 StrokeLineJoin = PenLineJoin.Round,
 HorizontalAlignment = HorizontalAlignment.Center,
 VerticalAlignment = VerticalAlignment.Center,
 Data = PathMarkupToGeometry(
 "M 0 0 L 0 100 M 0 50 L 50 50 M 50 0 L 50 100 " +
 "M 125 0 C 60 -10, 60 60, 125 50, 60 40, 60 110, 125 100 " +
 "M 150 0 L 150 100, 200 100 " +
 "M 225 0 L 225 100, 275 100 " +
 "M 300 50 A 25 50 0 1 0 300 49.9")
 };

 (this.Content as Grid).Children.Add(path);
 }

 Geometry PathMarkupToGeometry(string pathMarkup)
 {
 string xaml =
 "<Path " +
 "xmlns='http://schemas.microsoft.com/winfx/2006/xaml/presentation'>" +
 "<Path.Data>" + pathMarkup + "</Path.Data></Path>";

 Path path = XamlReader.Load(xaml) as Path;

 // Detach the PathGeometry from the Path
 Geometry geometry = path.Data;
 path.Data = null;
 return geometry;
 }
 }
}

Watch out when working with the Path class in code: The MainPage.xaml.cs file that Visual Studio
generates does not include a using directive for Windows.UI.Xaml.Shapes where Path resides but does
include a using directive for System.IO, which has a very different Path class for working with files and
directories.

The magic method is down at the bottom. It assembles a tiny piece of legal XAML with Path as
the root element and property-element syntax to enclose the string of Path Markup Syntax. Notice
that the XAML must include the standard XML namespace declaration. If XamlReader.Load doesn’t
encounter any errors, it returns a Path with a Data property set to a PathGeometry. However, you
can’t use this PathGeometry for another Path unless you disconnect it from this Path, which requires
setting the Data property of the returned Path to null.

58	 PART 1  Elementals

Stretching with Viewbox

Both the Image class and the Shape class define a Stretch property that can stretch the
bitmap or vector graphics to the size of its container. This property is not universal among the
FrameworkElement derivatives. After all, why would you ever want to stretch a TextBlock in such a
way?

Well, sometimes you need to do precisely that. Suppose you were displaying a bunch of
objects with text titles. You want these items to look similar with each title restricted to a particular
rectangular area. But the length of the text might be variable. Perhaps the user types in this text. If
the text is very long, you might prefer that it be shrunk down a bit to fit the rectangle. While you
could always perform a FontSize calculation in the code-behind file, it would be nice to have the
TextBlock sized automatically to fit a particular space.

This a job for Viewbox, which has a Child property of type UIElement and which stretches that
child to its own size. Like Image and Shape, Viewbox defines a Stretch property. The default setting
is Uniform (the same default as Image), but the following program sets Stretch to Fill to ignore the
aspect ratio of a TextBlock and make it fill the screen:

Project: TextStretch | File: MainPage.xaml (excerpt)

<Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <Viewbox Stretch="Fill">
 <TextBlock Text="Stretch Windows 8!" />
 </Viewbox>
</Grid>

TextBlock always calculates its height to encompass diacritics and descenders even if they don’t
exist in the text, which is why the text doesn’t quite extend to the full height of the window:

	 CHAPTER 2  XAML Syntax	 59

Still, it definitely no longer has the correct aspect ratio.

Unlike Image and Shape, Viewbox defines a StretchDirection property that can take on values of
UpOnly, DownOnly, or Both (the default). This instructs Viewbox to only increase the size of its child or
only decrease the size if that’s what you want.

Suppose you wanted to modify the HelloVectorGraphics program so that each letter is a different
color. Instead of using one Path element you’d need to split it up into five Path elements. But if you
then try to use the Stretch property of Path to stretch each letter to the size of the window, it wouldn’t
work because each letter has a different size.

Instead, put all five Path elements in a Grid, and put the Grid inside a Viewbox:

Project: VectorGraphicsStretch | File: MainPage.xaml (excerpt)

<Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <Viewbox Stretch="Fill">
 <Grid Margin="6 6 0 0">
 <!-- H -->
 <Path Stroke="Red"
 StrokeThickness="12"
 StrokeLineJoin="Round"
 Data="M 0 0 L 0 100 M 0 50 L 50 50 M 50 0 L 50 100" />

 <!-- E -->
 <Path Stroke="#C00040"
 StrokeThickness="12"
 StrokeLineJoin="Round"
 Data="M 125 0 C 60 -10, 60 60, 125 50, 60 40, 60 110, 125 100" />

 <!-- L -->
 <Path Stroke="#800080"
 StrokeThickness="12"
 StrokeLineJoin="Round"
 Data="M 150 0 L 150 100, 200 100" />

 <!-- L -->
 <Path Stroke="#4000C0"
 StrokeThickness="12"
 StrokeLineJoin="Round"
 Data="M 225 0 L 225 100, 275 100" />

 <!-- O -->
 <Path Stroke="Blue"
 StrokeThickness="12"
 StrokeLineJoin="Round"
 Data="M 300 50 A 25 50 0 1 0 300 49.9" />
 </Grid>
 </Viewbox>
</Grid>

60	 PART 1  Elementals

Now the whole ensemble of vector graphics is sized uniformly:

Notice also that the Viewbox increases the stroke width along with the size of the graphics,
whereas setting Stretch on the Path element does not.

Styles

You’ve seen how brushes can be defined as resources and shared among elements. By far the most
common use of resources is to define styles, which are instances of the Style class. A style is basically a
collection of property definitions that can be shared among multiple elements. The use of styles not
only reduces repetitive markup, but also allows easier global changes.

After this discussion, much of the StandardStyles.xaml file included in the Common folder of your
Visual Studio projects will be comprehensible, except for large sections within ControlTemplate tags.
That’s coming up in Chapter 11, "The Three Templates."

The SharedBrushWithStyle project is much the same as SharedBrush except that it uses a Style to
consolidate several properties. Here’s the new Resources section with the Style near the bottom:

Project: SharedBrushWithStyle | File: MainPage.xaml (excerpt)

<Page.Resources>
 <x:String x:Key="appName">Shared Brush with Style</x:String>

 <LinearGradientBrush x:Key="rainbowBrush">
 <GradientStop Offset="0" Color="Red" />
 <GradientStop Offset="0.17" Color="Orange" />
 <GradientStop Offset="0.33" Color="Yellow" />
 <GradientStop Offset="0.5" Color="Green" />
 <GradientStop Offset="0.67" Color="Blue" />

	 CHAPTER 2  XAML Syntax	 61

 <GradientStop Offset="0.83" Color="Indigo" />
 <GradientStop Offset="1" Color="Violet" />
 </LinearGradientBrush>

 <Style x:Key="rainbowStyle" TargetType="TextBlock">
 <Setter Property="FontFamily" Value="Times New Roman" />
 <Setter Property="FontSize" Value="96" />
 <Setter Property="Foreground" Value="{StaticResource rainbowBrush}" />
 </Style>
</Page.Resources>

Like all resources, the start tag of the Style includes an x:Key attribute. Style also requires
a TargetType attribute indicating either FrameworkElement or a class that derives from
FrameworkElement. Styles can be applied only to FrameworkElement derivatives.

The body of the Style includes a bunch of Setter tags, each of which specifies Property and Value
attributes. Notice that the last one has its Value attribute set to a StaticResource of the previously
defined LinearGradientBrush. For this reference to work, this particular Style must be defined later in
the XAML file than the brush, although it can be in a different Resources section deeper in the visual
tree.

Like other resources, an element references a Style by using the StaticResource markup extension
on its Style property:

Project: SharedBrushWithStyle | File: MainPage.xaml (excerpt)

<Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <TextBlock Text="{StaticResource appName}"
 FontSize="48"
 HorizontalAlignment="Center"
 VerticalAlignment="Center" />

 <TextBlock Text="Top Text"
 Style="{StaticResource rainbowStyle}"
 HorizontalAlignment="Center"
 VerticalAlignment="Top" />

 <TextBlock Text="Left Text"
 Style="{StaticResource rainbowStyle}"
 HorizontalAlignment="Left"
 VerticalAlignment="Center" />

 <TextBlock Text="Right Text"
 Style="{StaticResource rainbowStyle}"
 HorizontalAlignment="Right"
 VerticalAlignment="Center" />

 <TextBlock Text="Bottom Text"
 Style="{StaticResource rainbowStyle}"
 HorizontalAlignment="Center"
 VerticalAlignment="Bottom" />
</Grid>

Except for the application name, the visuals are the same as the SharedBrush program.

62	 PART 1  Elementals

There is an alternative way for this particular Style to incorporate the LinearGradientBrush. Just as
you can use property-element syntax on elements to define an object with complex markup, you can
use property-element syntax with the Value property of the Setter class:

<Style x:Key="rainbowStyle" TargetType="TextBlock">
 <Setter Property="FontFamily" Value="Times New Roman" />
 <Setter Property="FontSize" Value="96" />
 <Setter Property="Foreground">
 <Setter.Value>
 <LinearGradientBrush>
 <GradientStop Offset="0" Color="Red" />
 <GradientStop Offset="0.17" Color="Orange" />
 <GradientStop Offset="0.33" Color="Yellow" />
 <GradientStop Offset="0.5" Color="Green" />
 <GradientStop Offset="0.67" Color="Blue" />
 <GradientStop Offset="0.83" Color="Indigo" />
 <GradientStop Offset="1" Color="Violet" />
 </LinearGradientBrush>
 </Setter.Value>
 </Setter>
</Style>

I know it looks a little odd at first, but defining brushes within styles is very common. Notice that the
LinearGradientBrush now has no x:Key of its own. Only items defined at the root level in a Resources
collection can have x:Key attributes.

You can define a Style in code, for example, like so:

Style style = new Style(typeof(TextBlock));
style.Setters.Add(new Setter(TextBlock.FontSizeProperty, 96));
style.Setters.Add(new Setter(TextBlock.FontFamilyProperty,
 new FontFamily("Times New Roman")));

You could then add this to the Resources collection of a Page prior to the InitializeComponent call so
that it would be available to TextBlock elements defined in the XAML file. Or you could assign this
Style object directly to the Style property of a TextBlock. This isn’t common, however, because code
offers other solutions for defining the same properties on several different elements, namely, the for
or foreach loop.

Take careful note of the first argument to the Setter constructor in the code example. It’s defined
as a DependencyProperty, and what you specify is a static property of type DependencyProperty
defined by (or inherited by) the target class of the style. This is an excellent example of how
dependency properties allow a property of a class to be specified independently of a particular in-
stance of that class.

	 CHAPTER 2  XAML Syntax	 63

The code also makes clear that the properties targeted by a Style can only be dependency
properties. I mentioned earlier that dependency properties impose a hierarchy on the way that
properties can be set. For example, suppose you have the following markup in this program:

<TextBlock Text="Top Text"
 Style="{StaticResource rainbowStyle}"
 FontSize="24"
 HorizontalAlignment="Center"
 VerticalAlignment="Top" />

The Style defines a FontSize value, but the FontSize property is also set locally on the TextBlock. As
you might hope and expect, the local setting takes precedence over the Style setting, and both take
precedence over a FontSize value propagated through the visual tree.

Once a Style object is set to the Style property of an element, the Style can no longer be changed.
You can later set a different Style object to the element, and you can change properties of objects
referenced by the style (such as brushes), but you cannot set or remove Setter objects or change their
Value properties.

Styles can inherit property settings from other styles by using a Style property called BasedOn,
which is usually set to a StaticResource markup extension referencing a previously defined Style
definition:

<Style x:Key="baseTextBlockStyle" TargetType="TextBlock">
 <Setter Property="FontFamily" Value="Times New Roman" />
 <Setter Property="FontSize" Value="24" />
</Style>

<Style x:Key="gradientStyle" TargetType="TextBlock"
 BasedOn="{StaticResource baseTextBlockStyle}">
 <Setter Property="FontSize" Value="96" />
 <Setter Property="Foreground">
 <Setter.Value>
 <LinearGradientBrush>
 <GradientStop Offset="0" Color="Red" />
 <GradientStop Offset="1" Color="Blue" />
 </LinearGradientBrush>
 </Setter.Value>
 </Setter>
</Style>

The Style with the key “gradientStyle” is based on the previous Style with the key “baseTextBlockStyle,”
which means that it inherits the FontFamily setting, overrides the FontSize setting, and defines a new
Foreground setting.

Here’s another example:

<Style x:Key="centeredStyle" TargetType="FrameworkElement">
 <Setter Property="HorizontalAlignment" Value="Center" />
 <Setter Property="VerticalAlignment" Value="Center" />
</Style>

64	 PART 1  Elementals

<Style x:Key="rainbowStyle" TargetType="TextBlock"
 BasedOn="{StaticResource centeredStyle}">
 <Setter Property="FontSize" Value="96" />
 <Setter Property="Foreground">
 <Setter.Value>
 <LinearGradientBrush>
 <GradientStop Offset="0" Color="Red" />
 <GradientStop Offset="1" Color="Blue" />
 </LinearGradientBrush>
 </Setter.Value>
 </Setter>
</Style>

In this case, the first Style has a TargetType of FrameworkElement, which means that it can include only
properties defined by FrameworkElement or inherited by FrameworkElement. You can still use this
style for a TextBlock because TextBlock derives from FrameworkElement. The second Style is based on
“centeredStyle” but has a TargetType of TextBlock, which means it can also include property settings
specific to TextBlock. The TargetType must be the same as the BasedOn type or derived from the
BasedOn type.

Despite all I’ve said about keys being required for resources, a Style is actually the only exception
to this rule. A Style without an x:Key is a very special case called an implicit style. The Resources section
of the ImplicitStyle project has an example:

Project: ImplicitStyle | File: MainPage.xaml (excerpt)

<Page.Resources>
 <x:String x:Key="appName">Implicit Style App</x:String>

 <Style TargetType="TextBlock">
 <Setter Property="FontFamily" Value="Times New Roman" />
 <Setter Property="FontSize" Value="96" />
 <Setter Property="Foreground">
 <Setter.Value>
 <LinearGradientBrush>
 <GradientStop Offset="0" Color="Red" />
 <GradientStop Offset="0.17" Color="Orange" />
 <GradientStop Offset="0.33" Color="Yellow" />
 <GradientStop Offset="0.5" Color="Green" />
 <GradientStop Offset="0.67" Color="Blue" />
 <GradientStop Offset="0.83" Color="Indigo" />
 <GradientStop Offset="1" Color="Violet" />
 </LinearGradientBrush>
 </Setter.Value>
 </Setter>
 </Style>
</Page.Resources>

A key is actually created behind the scenes. It’s an object of type RuntimeType (which is not a public
type) indicating the TextBlock type.

The implicit style is very powerful. Any TextBlock further down the visual tree that does not have its
Style property set instead gets the implicit style. If you have a page already full of TextBlock elements

	 CHAPTER 2  XAML Syntax	 65

and you then decide that you want them all to be styled the same way, the implicit style makes it very
easy. Notice that none of these TextBlock elements have their Style properties set:

Project: ImplicitStyle | File: MainPage.xaml (excerpt)

<Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">

 <TextBlock Text="{StaticResource appName}"
 FontFamily="Portable User Interface"
 FontSize="48"
 Foreground="{StaticResource ApplicationForegroundThemeBrush}"
 HorizontalAlignment="Center"
 VerticalAlignment="Center" />

 <TextBlock Text="Top Text"
 HorizontalAlignment="Center"
 VerticalAlignment="Top" />

 <TextBlock Text="Left Text"
 HorizontalAlignment="Left"
 VerticalAlignment="Center" />

 <TextBlock Text="Right Text"
 HorizontalAlignment="Right"
 VerticalAlignment="Center" />

 <TextBlock Text="Bottom Text"
 HorizontalAlignment="Center"
 VerticalAlignment="Bottom" />
</Grid>

Although I obviously intended for the implicit style to apply to most of the TextBlock elements on
the page, I didn’t want it to apply to the first one, which appears in the center. If you want certain
elements on the page not to have this implicit style, you must give those elements an explicit style, or
provide local settings that override the properties included in the Style object, or set the Style prop-
erty to null. (I’ll show you how to do that in XAML shortly.) In this example, I’ve effectively overridden
the implicit style in the first TextBlock by giving it the default FontFamily name, an explicit FontSize,
and a Foreground based on a predefined resource.

You cannot derive a style from an implicit style. However, an implicit style can be based on a
nonimplicit style. Simply provide TargetType and BasedOn attributes and leave out the x:Key.

The implicit style is very powerful, but remember: With great power comes…and you know the
rest. In a large application, styles can be defined all over the place and visual trees can extend over
multiple XAML files. It sometimes happens that a style is implicitly applied to an element, but it’s very
hard to determine where that style is actually defined!

At this point, you can begin using (or at least start looking at) the TextBlock styles defined in
the StandardStyles.xaml file. These are called BasicTextStyle, BaselineTextStyle, HeaderTextStyle,
SubheaderTextStyle, TitleTextStyle, ItemTextStyle, BodyTextStyle, CaptionTextStyle,
PageHeaderTextStyle, PageSubheaderTextStyle, and SnappedPageHeaderTextStyle, and obviously
they are for more extensive text layout than I’ve been doing here.

66	 PART 1  Elementals

A Taste of Data Binding

Another way to share objects in a XAML file is through data bindings. Basically, a data binding
establishes a connection between two properties of different objects. As you’ll see in Chapter 6,
“WinRT and MVVM,” data bindings find their greatest application in linking visual elements on a page
with data sources, and they form a crucial part of implementing the popular Model-View-ViewModel
(MVVM) architectural pattern. In MVVM, the target of the binding is a visual element in the View, and
the source of the binding is a property in a corresponding View Model. As you’ll see in Chapter 11,
bindings are crucial in defining templates to display data objects.

You can also use data bindings to link properties of two elements. Like StaticResource, Binding
is generally expressed as a markup extension, which means that it appears between a pair of curly
braces. However, Binding is more elaborate than StaticResource and can alternatively be expressed in
property-element syntax.

Here’s the Resources section from the SharedBrushWithBinding project:

Project: SharedBrushWithBinding | File: MainPage.xaml (excerpt)

<Page.Resources>
 <x:String x:Key="appName">Shared Brush with Binding</x:String>

 <Style TargetType="TextBlock">
 <Setter Property="FontFamily" Value="Times New Roman" />
 <Setter Property="FontSize" Value="96" />
 </Style>
</Page.Resources>

The implicit style for the TextBlock no longer has a Foreground property. The LinearGradientBrush is
defined on the first of the four TextBlock elements that use that brush, and the subsequent TextBlock
elements reference that same brush through a binding:

Project: SharedBrushWithBinding | File: MainPage.xaml (excerpt)

<Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <TextBlock Text="{StaticResource appName}"
 FontFamily="Portable User Interface"
 FontSize="48"
 HorizontalAlignment="Center"
 VerticalAlignment="Center" />

 <TextBlock Name="topTextBlock"
 Text="Top Text"
 HorizontalAlignment="Center"
 VerticalAlignment="Top">
 <TextBlock.Foreground>
 <LinearGradientBrush>
 <GradientStop Offset="0" Color="Red" />
 <GradientStop Offset="0.17" Color="Orange" />
 <GradientStop Offset="0.33" Color="Yellow" />
 <GradientStop Offset="0.5" Color="Green" />
 <GradientStop Offset="0.67" Color="Blue" />
 <GradientStop Offset="0.83" Color="Indigo" />

	 CHAPTER 2  XAML Syntax	 67

 <GradientStop Offset="1" Color="Violet" />
 </LinearGradientBrush>
 </TextBlock.Foreground>
 </TextBlock>

 <TextBlock Text="Left Text"
 HorizontalAlignment="Left"
 VerticalAlignment="Center"
 Foreground="{Binding ElementName=topTextBlock, Path=Foreground}" />

 <TextBlock Text="Right Text"
 HorizontalAlignment="Right"
 VerticalAlignment="Center"
 Foreground="{Binding ElementName=topTextBlock, Path=Foreground}" />

 <TextBlock Text="Bottom Text"
 HorizontalAlignment="Center"
 VerticalAlignment="Bottom">
 <TextBlock.Foreground>
 <Binding ElementName="topTextBlock" Path="Foreground" />
 </TextBlock.Foreground>
 </TextBlock>
</Grid>

Data bindings are said to have a source and a target. The target is always the property on which
the binding is set, and the source is the property the binding references. The TextBlock with the
name “topTextBlock” is considered the source of these data bindings; the three TextBlock elements
that share the Foreground property are targets. Two of these targets show the more standard way of
expressing the Binding object as a XAML markup extension:

Foreground="{Binding ElementName=topTextBlock, Path=Foreground}"

XAML markup extensions always appear in curly braces. In the markup extension for Binding, a
couple properties and values usually need to be set. These properties are separated by commas. The
ElementName property indicates the name of the element on which the desired property has been
set; the Path provides the name of the property.

When I’m typing a Binding markup extension, I always want to put quotation marks around the
property values, but that’s wrong. Quotation marks do not appear in a binding expression.

The final TextBlock shows the Binding expressed in less common property-element syntax:

<TextBlock.Foreground>
 <Binding ElementName="topTextBlock" Path="Foreground" />
</TextBlock.Foreground>

With this syntax, the quotation marks around the element name and path are required.

You can also create a Binding object in code and set it on a target property by using the SetBinding
method defined by FrameworkElement. When doing this, you’ll discover that the binding target must
be a dependency property.

68	 PART 1  Elementals

The Path property of the Binding class is called Path because it can actually be several property
names separated by periods. For example, replace one of the Text settings in this project with the
following:

Text="{Binding ElementName=topTextBlock, Path=FontFamily.Source}"

The first part of the Path indicates that we want something from the FontFamily property. That
property is set to an object of type FontFamily, which has a property named Source indicating the
font family name. The text displayed by this TextBlock is therefore “Times New Roman.” (This does not
work in a C++ program. Compound and indexed binding paths are not currently supported.)

Try this on any TextBlock in this project:

Text="{Binding RelativeSource={RelativeSource Self}, Path=FontSize}"

That’s a RelativeSource markup extension inside a Binding markup extension, and you use it to
reference a property of the same element on which the binding is set.

With StaticResource, Binding, and RelativeSource, you’ve now seen 60 percent of the XAML markup
extensions supported by the Windows Runtime. The TemplateBinding markup extension won’t turn up
until Chapter 11.

The remaining markup extension is not used very often, but when you need it, it’s indispensable.
Suppose you’ve defined an implicit style for the Grid that includes a Background property, and it does
exactly what you want except for one Grid where you want the Background property to be its default
value of null. How do you specify null in markup? Like so:

Background="{x:Null}"

Or suppose you’ve defined an implicit style and there’s one element where you don’t want any
part of the style to apply. Inhibit the implicit style like so:

Style="{x:Null}"

You have now seen nearly all the elements and attributes that appear with an “x” prefix in
Windows Runtime XAML files. These are the data types x:Boolean, x:Double, x:Int32, x:String, as well
as the x:Class, x:Name, and x:Key attributes and the x:Null markup extension. The only one I haven’t
mentioned is x:Uid, which must be set to application-wide unique strings that reference resources for
internationalization purposes.

		 69

C H A P T E R 3

Basic Event Handling

The previous chapters have demonstrated how you can instantiate and initialize elements and
other objects in either XAML or code. The most common procedure is to use XAML to define the

initial layout and appearance of elements on a page but then to change properties of these elements
from code as the program is running.

As you’ve seen, assigning a Name or x:Name to an element in XAML causes a field to be defined
in the page class that gives the code-behind file easy access to that element. This is one of the two
major ways that code and XAML interact. The second is through events. An event is a general-
purpose mechanism that allows one object to communicate something of interest to other objects.
The event is said to be “fired” or “triggered” or “raised” by the first object and “handled” by the other.
In the Windows Runtime, one important application of events is to signal the presence of user input
from touch, the mouse, a pen, or the keyboard.

Following initialization, a Windows Runtime program generally sits dormant in memory waiting for
something interesting to happen. Almost everything the program does thereafter is in response to an
event, so the job of event handling is one that will occupy much of the rest of this book.

The Tapped Event

The UIElement class defines all the basic user-input events. These include

■■ eight events beginning with the word Pointer that consolidate input from touch, the mouse,
and the pen;

■■ five events beginning with the word Manipulation that combine input from multiple fingers;

■■ two Key events for keyboard input; and

■■ higher level events named Tapped, DoubleTapped, RightTapped, and Holding.

No, the RightTapped event is not generated by a finger on your right hand; it’s mostly used to
register right-button clicks on the mouse, but you can simulate a right tap with touch by holding
your finger down for a moment and then lifting, a gesture that also generates Holding events. It’s the
application’s responsibility to determine how it wants to handle these.

70	 PART 1  Elementals

An extensive exploration of touch, mouse, and pen events awaits us in Chapter 13, “Touch, Etc.”
The only other events that UIElement defines are also related to user input:

■■ GotFocus and LostFocus signal when an element is the target of keyboard input; and

■■ DragEnter, DragOver, DragLeave, and Drop relate to drag-and-drop.

For now, let’s focus on Tapped as a simple representative event. An element that derives from
UIElement fires a Tapped event to indicate that the user has briefly touched the element with a finger,
or clicked it with the mouse, or dinged it with the pen. To qualify as a Tapped event, the finger (or
mouse or pen) cannot move very much and must be released in a short period of time.

All the user-input events have a similar pattern. Expressed in C# syntax, UIElement defines the
Tapped event like so:

public event TappedEventHandler Tapped;

The TappedEventHandler is defined in the Windows.UI.Xaml.Input namespace. It’s a delegate type that
defines the signature of the event handler:

public delegate void TappedEventHandler(object sender, TappedRoutedEventArgs e);

In the event handler, the first argument indicates the source of the event (which is always an instance
of a class that derives from UIElement) and the second argument provides properties and methods
specific to the Tapped event.

The XAML file for the TapTextBlock program defines a TextBlock with a Name attribute as well as a
handler for the Tapped event:

Project: TapTextBlock | File: MainPage.xaml (excerpt)

<Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <TextBlock Name="txtblk"
 Text="Tap Text!"
 FontSize="96"
 HorizontalAlignment="Center"
 VerticalAlignment="Center"
 Tapped="txtblk_Tapped_1" />
</Grid>

As you type TextBlock attributes in XAML, IntelliSense suggests events as well as properties. These
are distinguished with little icons: a wrench for properties and a lightning bolt for events. (You’ll
also see a few with pairs of curly braces. These are attached properties that I’ll describe in Chapter 4,
“Presentation with Panels.”) If you allow it, IntelliSense also suggests a name for the event handler,
and I let it choose this one. Based solely on the XAML syntax, you really can’t tell which attributes are
properties and which are events.

	 CHAPTER 3  Basic Event Handling	 71

The actual event handler is implemented in the code-behind file. If you allow Visual Studio to
select a handler name for you, you’ll discover that Visual Studio also creates a skeleton event handler
in the MainPage.xaml.cs file:

private void txtblk_Tapped_1(object sender, TappedRoutedEventArgs e)
{

}

This is the method that is called when the user taps the TextBlock. In future projects, I’ll change the
names of event handlers to make them more to my liking. I’ll remove the private keyword (because
that’s the default), I’ll change the name to eliminate underscores and preface it with the word On (for
example OnTextBlockTapped), and I’ll change the argument named e to args. You can rename the
method in the code file and then click a little global-rename icon to rename the method in the XAML
file as well.

For this sample program, I decided I want to respond to the tap by setting the TextBlock to a
random color. In preparation for that job, I defined fields for a Random object and a byte array for the
red, green, and blue bytes:

Project: TapTextBlock | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 Random rand = new Random();
 byte[] rgb = new byte[3];

 public MainPage()
 {
 this.InitializeComponent();
 }

 private void txtblk_Tapped_1(object sender, TappedRoutedEventArgs e)
 {
 rand.NextBytes(rgb);
 Color clr = Color.FromArgb(255, rgb[0], rgb[1], rgb[2]);
 txtblk.Foreground = new SolidColorBrush(clr);
 }
}

I’ve removed the OnNavigatedTo method because it’s not being used here. In the Tapped event
handler, the NextBytes method of the Random object obtains three random bytes, and these are used
to construct a Color value with the static Color.FromArgb method. The handler finishes by setting the
Foreground property of the TextBlock to a SolidColorBrush based on that Color value.

When you run this program, you can tap the TextBlock with a finger, mouse, or pen and it will
change to a random color. If you tap on an area of the screen outside the TextBlock, nothing happens.
If you’re using a mouse or pen, you might notice that you don’t need to tap the actual strokes
that comprise the letters. You can tap between and inside those strokes, and the TextBlock will still
respond. It’s as if the TextBlock has an invisible background that encompasses the full height of the
font including diacritical marks and descenders, and that’s precisely the case.

72	 PART 1  Elementals

If you look inside the MainPage.g.cs file generated by Visual Studio, you’ll see a Connect method
containing the code that attaches the event handler to the Tapped event of the TextBlock. You can
do this yourself in code. Try eliminating the Tapped handler assigned in the MainPage.xaml file and
instead attach an event handler in the constructor of the code-behind file:

public MainPage()
{
 this.InitializeComponent();
 txtblk.Tapped += txtblk_Tapped_1;
}

No real difference.

Several properties of TextBlock need to be set properly for the Tapped event to work. The
IsHitTestVisible and IsTapEnabled properties must both be set to their default values of true. The
Visibility property must be set to its default value of Visibility.Visible. If set to Visibility.Collapsed, the
TextBlock will not be visible at all and will not respond to user input.

The first argument to the txtblk_Tapped_1 event handler is the element that sent the event, in this
case the TextBlock. The second argument provides information about this particular event, including
the coordinate point at which the tap occurred, and whether the tap came from a finger, mouse, or
pen. This information will be explored in more detail in Chapter 13.

Routed Event Handling

Because the first argument to the Tapped event handler is the element that generates the event, you
don’t need to give the TextBlock a name to access it from within the event handler. You can simply
cast the sender argument to an object of type TextBlock. This technique is particularly useful for
sharing an event handler among multiple elements, and I’ve done precisely that in the RoutedEvents0
project.

RoutedEvents0 is the first of several projects that demonstrate the concept of routed event
handling, which is an important feature of the Windows Runtime. But this particular program doesn’t
show any features particular to routed events. Hence the suffix of zero. For this project I created the
Tapped handler first with the proper signature and my preferred name:

Project: RoutedEvents0 | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 Random rand = new Random();
 byte[] rgb = new byte[3];

 public MainPage()
 {
 this.InitializeComponent();
 }

 void OnTextBlockTapped(object sender, TappedRoutedEventArgs args)
 {
 TextBlock txtblk = sender as TextBlock;

	 CHAPTER 3  Basic Event Handling	 73

 rand.NextBytes(rgb);
 Color clr = Color.FromArgb(255, rgb[0], rgb[1], rgb[2]);
 txtblk.Foreground = new SolidColorBrush(clr);
 }
}

Notice that the first line of the event handler casts the sender argument to TextBlock.

Because this event handler already exists in the code-behind file, Visual Studio suggests that
name when you type the name of the event in the XAML file. This was handy because I added nine
TextBlock elements to the Grid:

Project: RoutedEvents0 | File: MainPage.xaml (excerpt)

<Page
 x:Class="RoutedEvents0.MainPage"
 ...
 FontSize="48">

 <Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <TextBlock Text="Left / Top"
 HorizontalAlignment="Left"
 VerticalAlignment="Top"
 Tapped="OnTextBlockTapped" />

 ...

 <TextBlock Text="Right / Bottom"
 HorizontalAlignment="Right"
 VerticalAlignment="Bottom"
 Tapped="OnTextBlockTapped" />
 </Grid>
</Page>

I’m sure you don’t need to see them all to get the general idea. Notice that FontSize is set for the
Page so that it is inherited by all the TextBlock elements. When you run the program, you can tap the
individual elements and each one changes its color independently of the others:

74	 PART 1  Elementals

If you tap anywhere between the elements, nothing happens.

You might consider it a nuisance to set the same event handler on nine different elements in the
XAML file. If so, you’ll probably appreciate the following variation to the program. The RoutedEvents1
program uses routed input handling, a term used to describe how input events such as Tapped are
fired by the element on which the event occurs but the events are then routed up the visual tree.
Rather than set a Tapped handler for the individual TextBlock elements, you can instead set it on the
parent of one of these elements (for example, the Grid). Here’s an excerpt from the XAML file for the
RoutedEvents1 program:

Project: RoutedEvents1 | File: MainPage.xaml (excerpt)

<Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}"
 Tapped="OnGridTapped">

 <TextBlock Text="Left / Top"
 HorizontalAlignment="Left"
 VerticalAlignment="Top" />

 ...

 <TextBlock Text="Right / Bottom"
 HorizontalAlignment="Right"
 VerticalAlignment="Bottom" />
</Grid>

In the process of moving the Tapped handler from the individual TextBlock elements to the Grid, I’ve
also renamed it to more accurately describe the source of the event.

The event handler must also be modified. The previous Tapped handler cast the sender argument
to a TextBlock. It could perform this cast with confidence because the event handler was set only on
elements of type TextBlock. However, when the event handler is set on the Grid as it is here, the sender
argument to the event handler will be the Grid. How can we determine which TextBlock was tapped?

Easy: The TappedRoutedEventArgs class—an instance of which appears as the second argument to
the event handler—has a property named OriginalSource, and that indicates the source of the event.
In this example, OriginalSource can be either a TextBlock (if you tap the text) or the Grid (if you tap
between the text), so the new event handler must perform a check before casting:

Project: RoutedEvents1 | File: MainPage.xaml.cs (excerpt)

void OnGridTapped(object sender, TappedRoutedEventArgs args)
{
 if (args.OriginalSource is TextBlock)
 {
 TextBlock txtblk = args.OriginalSource as TextBlock;
 rand.NextBytes(rgb);
 Color clr = Color.FromArgb(255, rgb[0], rgb[1], rgb[2]);
 txtblk.Foreground = new SolidColorBrush(clr);
 }
}

	 CHAPTER 3  Basic Event Handling	 75

Slightly more efficient is performing the cast first and then checking if the result is non-null.

TappedRoutedEventArgs derives from RoutedEventArgs, which defines OriginalSource and no other
properties. Obviously, the OriginalSource property is a central concept of routed event handling. The
property allows elements to process events that originate with their children and other descendents
in the visual tree and to know the source of these events. Routed event handling lets a parent know
what its children are up to, and OriginalSource identifies the particular child involved.

Alternatively, you can set the Tapped handler on MainPage rather than the Grid. But with
MainPage there’s an easier way. I mentioned earlier that UIElement defines all the user-input events.
These events are inherited by all derived classes, but the Control class adds its own event interface
consisting of a whole collection of virtual methods corresponding to these events. For example, for
the Tapped event defined by UIElement, the Control class defines a virtual method named OnTapped.
These virtual methods always begin with the word On followed by the name of the event, so they
are sometimes referred to as “On methods.” Page derives from Control through UserControl, so these
methods are inherited by the Page and MainPage classes.

Here’s an excerpt from the XAML file for RoutedEvents2 demonstrating that the XAML file defines
no event handlers:

Project: RoutedEvents2 | File: MainPage.xaml (excerpt)

<Page
 x:Class="RoutedEvents2.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="using:RoutedEvents2"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d"
 FontSize="48">

 <Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <TextBlock Text="Left / Top"
 HorizontalAlignment="Left"
 VerticalAlignment="Top" />

 ...

 <TextBlock Text="Right / Bottom"
 HorizontalAlignment="Right"
 VerticalAlignment="Bottom" />
 </Grid>
</Page>

76	 PART 1  Elementals

Instead, the code-behind file has an override of the OnTapped method:

Project: RoutedEvents2 | File: MainPage.xaml.cs (excerpt)

protected override void OnTapped(TappedRoutedEventArgs args)
{
 if (args.OriginalSource is TextBlock)
 {
 TextBlock txtblk = args.OriginalSource as TextBlock;
 rand.NextBytes(rgb);
 Color clr = Color.FromArgb(255, rgb[0], rgb[1], rgb[2]);
 txtblk.Foreground = new SolidColorBrush(clr);
 }
 base.OnTapped(args);
}

When you’re typing in Visual Studio and you want to override a virtual method like OnTapped,
simply type the keyword override and press the space bar, and Visual Studio will provide a list of
all the virtual methods defined for that class. When you select one, Visual Studio creates a skeleton
method with a call to the base method. A call to the base method isn’t really required here, but
including it is a good habit to develop when overriding virtual methods. Depending on the method
you’re overriding, you might want to call the base method first, last, in the middle, or not at all.

The On methods are basically the same as the event handlers, but they have no sender argument
because it would be redundant: sender would be the same as this, the instance of the Page that is
processing the event.

The next project is RoutedEvents3. I decided to give the Grid a random background color if that’s
the element being tapped. The XAML file looks the same, but the revised OnTapped method looks
like this:

Project: RoutedEvents3 | File: MainPage.xaml.cs (excerpt)

protected override void OnTapped(TappedRoutedEventArgs args)
{
 rand.NextBytes(rgb);
 Color clr = Color.FromArgb(255, rgb[0], rgb[1], rgb[2]);
 SolidColorBrush brush = new SolidColorBrush(clr);

 if (args.OriginalSource is TextBlock)
 (args.OriginalSource as TextBlock).Foreground = brush;

 else if (args.OriginalSource is Grid)
 (args.OriginalSource as Grid).Background = brush;

 base.OnTapped(args);
}

Now when you tap a TextBlock element, it changes color, but when you tap anywhere else on the
screen, the Grid changes color.

Now suppose for one reason or another, you decide you want to go back to the original scheme of
explicitly defining an event handler separately for each TextBlock element to change the text colors,
but you also want to retain the OnTapped override for changing the Grid background color. In the

	 CHAPTER 3  Basic Event Handling	 77

RoutedEvents4 project, the XAML file has the Tapped events restored for TextBlock elements and the
Grid has been given a name:

Project: RoutedEvents4 | File: MainPage.xaml (excerpt)

<Grid Name="contentGrid"
 Background="{StaticResource ApplicationPageBackgroundThemeBrush}">

 <TextBlock Text="Left / Top"
 HorizontalAlignment="Left"
 VerticalAlignment="Top"
 Tapped="OnTextBlockTapped" />

 ...

 <TextBlock Text="Right / Bottom"
 HorizontalAlignment="Right"
 VerticalAlignment="Bottom"
 Tapped="OnTextBlockTapped" />
</Grid>

One advantage is that the methods to set the TextBlock and Grid colors are now separate and
distinct, so there’s no need for if-else blocks. The Tapped handler for the TextBlock elements can cast
the sender argument with impunity, and the OnTapped override can simply access the Grid by name:

Project: RoutedEvents4 | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 Random rand = new Random();
 byte[] rgb = new byte[3];

 public MainPage()
 {
 this.InitializeComponent();
 }

 void OnTextBlockTapped(object sender, TappedRoutedEventArgs args)
 {
 TextBlock txtblk = sender as TextBlock;
 txtblk.Foreground = GetRandomBrush();
 }

 protected override void OnTapped(TappedRoutedEventArgs args)
 {
 contentGrid.Background = GetRandomBrush();
 base.OnTapped(args);
 }

 Brush GetRandomBrush()
 {
 rand.NextBytes(rgb);
 Color clr = Color.FromArgb(255, rgb[0], rgb[1], rgb[2]);
 return new SolidColorBrush(clr);
 }
}

78	 PART 1  Elementals

However, the code might not do exactly what you want. When you tap a TextBlock, not only does
the TextBlock change color, but the event continues to go up the visual tree where it’s processed by
the OnTapped override, and the Grid changes color as well! If that’s what you want, you’re in luck.
If not, then I’m sure you’ll be interested to know that the TappedRoutedEventArgs has a property
specifically to prevent this. If the OnTextBlockTapped handler sets the Handled property of the event
arguments to true, the event is effectively inhibited from further processing higher in the visual tree.

This is demonstrated in the RoutedEvents5 project, which is the same as RoutedEvents4 except for
a single statement in the OnTextBlockTapped method:

Project: RoutedEvents5 | File: MainPage.xaml.cs (excerpt)

void OnTextBlockTapped(object sender, TappedRoutedEventArgs args)
{
 TextBlock txtblk = sender as TextBlock;
 txtblk.Foreground = GetRandomBrush();
 args.Handled = true;
}

Overriding the Handled Setting

You’ve just seen that when an element handles an event such as Tapped and concludes its event
processing by setting the Handled property of the event arguments to true, the routing of the event
effectively stops. The event isn’t visible to elements higher in the visual tree.

In some cases, this behavior might be undesirable. Suppose you’re working with an element that
sets the Handled property to true in its event handler, but you still want to see that event higher in
the visual tree. One solution is to simply change the code, but that option might not be available.
The element might be implemented in a dynamic-link library, and you might not have access to the
source code.

In RoutedEvents6, the XAML file is the same as in RoutedEvents5: Each TextBlock has a handler set
for its Tapped event. The Tapped handler sets the Handled property to true. The class also defines a
separate OnPageTapped handler that sets the background color of the Grid:

Project: RoutedEvents6 | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 Random rand = new Random();
 byte[] rgb = new byte[3];

 public MainPage()
 {
 this.InitializeComponent();

 this.AddHandler(UIElement.TappedEvent,
 new TappedEventHandler(OnPageTapped),
 true);
 }

	 CHAPTER 3  Basic Event Handling	 79

 void OnTextBlockTapped(object sender, TappedRoutedEventArgs args)
 {
 TextBlock txtblk = sender as TextBlock;
 txtblk.Foreground = GetRandomBrush();
 args.Handled = true;
 }

 void OnPageTapped(object sender, TappedRoutedEventArgs args)
 {
 contentGrid.Background = GetRandomBrush();
 }

 Brush GetRandomBrush()
 {
 rand.NextBytes(rgb);
 Color clr = Color.FromArgb(255, rgb[0], rgb[1], rgb[2]);
 return new SolidColorBrush(clr);
 }
}

But look at the interesting way that the constructor sets a Tapped handler for the Page. Normally, it
would attach the event handler like so:

this.Tapped += OnPageTapped;

In that case the OnPageTapped handler would not get a Tapped event originating with the TextBlock
because the TextBlock handler sets Handled to true. Instead, it attaches the handler with a method
named AddHandler:

this.AddHandler(UIElement.TappedEvent,
 new TappedEventHandler(OnPageTapped),
 true);

AddHandler is defined by UIElement, which also defines the static UIElement.TappedEvent property.
This property is of type RoutedEvent.

Just as a property like FontSize is backed by a static property named FontSizeProperty of
type DependencyProperty, a routed event such as Tapped is backed by a static property named
TappedEvent of type RoutedEvent. RoutedEvent defines nothing public on its own; it mainly exists to
allow an event to be referenced in code without requiring an instance of an element.

The AddHandler method attaches a handler to that event. The second argument of AddHandler is
defined as just an object, so creating a delegate object is required to reference the event handler. And
here’s the magic: Set the last argument to true if you want this handler to also receive routed events
that have been flagged as Handled.

The AddHandler method isn’t used often, but when you need it, it is essential.

80	 PART 1  Elementals

Input, Alignment, and Backgrounds

I have just one more, very short program in the RoutedEvents series to make a couple important
points about input events.

The XAML file for RoutedEvents7 has just one TextBlock and no event handlers defined:

Project: RoutedEvents7 | File: MainPage.xaml (excerpt)

<Page ...
 FontSize="48">

 <Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <TextBlock Text="Hello, Windows 8!"
 Foreground="Red" />
 </Grid>
</Page>

The absence of HorizontalAlignment and VerticalAlignment settings on the TextBlock cause it to
appear in the upper-left corner of the Grid.

Like RoutedEvents3, the code-behind file contains separate processing for an event originating
from the TextBlock and an event coming from the Grid:

Project: RoutedEvents7 | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 Random rand = new Random();
 byte[] rgb = new byte[3];

 public MainPage()
 {
 this.InitializeComponent();
 }

 protected override void OnTapped(TappedRoutedEventArgs args)
 {
 rand.NextBytes(rgb);
 Color clr = Color.FromArgb(255, rgb[0], rgb[1], rgb[2]);
 SolidColorBrush brush = new SolidColorBrush(clr);

 if (args.OriginalSource is TextBlock)
 (args.OriginalSource as TextBlock).Foreground = brush;

 else if (args.OriginalSource is Grid)
 (args.OriginalSource as Grid).Background = brush;

 base.OnTapped(args);
 }
}

	 CHAPTER 3  Basic Event Handling	 81

Here it is:

As you tap the TextBlock, it changes to a random color like normal, but when you tap outside the
TextBlock, the Grid doesn’t change color like it did earlier. Instead, the TextBlock changes color! It’s as
if…yes, it’s as if the TextBlock is now occupying the entire page and snagging all the Tapped events for
itself.

And that’s precisely the case. This TextBlock has default values of HorizontalAlignment and
VerticalAlignment, but those default values are not Left and Top like the visuals might suggest. The
default values are named Stretch, and that means that the TextBlock is stretched to the size of its
parent, the Grid. It’s hard to tell because the text still has a 48-pixel font, but the TextBlock has a
transparent background that now fills the entire page.

In fact, throughout the Windows Runtime, all elements have default HorizontalAlignment and
VerticalAlignment values of Stretch, and it’s an important part of the Windows Runtime layout system.
More details are coming in Chapter 4.

Let’s put HorizontalAlignment and VerticalAlignment values in this TextBlock:

<Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <TextBlock Text="Hello, Windows 8!"
 HorizontalAlignment="Left"
 VerticalAlignment="Top"
 Foreground="Red" />
</Grid>

Now the TextBlock is only occupying a small area in the upper-left corner of the page, and when you
tap outside the TextBlock, the Grid changes color.

82	 PART 1  Elementals

Now change HorizontalAlignment to TextAlignment:

<Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <TextBlock Text="Hello, Windows 8!"
 TextAlignment="Left"
 VerticalAlignment="Top"
 Foreground="Red" />
</Grid>

The program looks the same. The text is still positioned at the upper-left corner. But now when you
tap to the right of the TextBlock, the TextBlock changes color rather than the Grid. The TextBlock has
its default HorizontalAlignment property of Stretch, so it is now occupying the entire width of the
screen, but within the total width that the TextBlock occupies, the text is aligned to the left.

The lesson: HorizontalAlignment and TextAlignment are not equivalent, although they might seem
to be if you judge solely from the visuals.

Now try another experiment by restoring the HorizontalAlignment setting and removing the
Background property of the Grid:

<Grid>
 <TextBlock Text="Hello, Windows 8!"
 HorizontalAlignment="Left"
 VerticalAlignment="Top"
 Foreground="Red" />
</Grid>

With a light theme, the Grid has an off-white background. When the Background property is
removed, the background of the page changes to black. But you’ll also experience a change in the
behavior of the program: The TextBlock still changes color when you tap it, but when you tap outside
the TextBlock, the Grid doesn’t change color at all.

The default value of the Background property defined by Panel (and inherited by Grid) is null, and
with a null background, the Grid doesn’t trap touch events. They just fall right through.

One way to fix this without altering the visual appearance is to give the Grid a Background
property of Transparent:

<Grid Background="Transparent">
 <TextBlock Text="Hello, Windows 8!"
 HorizontalAlignment="Left"
 VerticalAlignment="Top"
 Foreground="Red" />
</Grid>

It looks the same as null, but now you’ll get Tapped events with an OriginalSource of Grid.

The lessons here are important: Looks can be deceiving. An element with default settings of
HorizontalAlignment and VerticalAlignment might look the same as one with settings of Left and Top,
but it is actually occupying the entire area of its container and might block events from reaching
underlying elements. A Panel derivative with a default Background property of null might look the
same as one with a setting of Transparent, but it does not respond to touch events.

	 CHAPTER 3  Basic Event Handling	 83

I can almost guarantee that sometime in the future, one of these two issues will cause a bug in one
of your programs that will drive you crazy for the good part of a day, and that this will happen even
after many years of working with the XAML layout system.

I speak from experience.

Size and Orientation Changes

Many, many years ago when Windows was very young, information about Windows programming
was hard to find. It wasn’t until the December 1986 issue of Microsoft Systems Journal (the predeces-
sor to MSDN Magazine) that the very first magazine article about Windows programming appeared.
The article described a program called WHATSIZE (all capital letters, of course), which did little more
than display the current size of the program’s window. But as the size of the window changed, the
displayed values reflected that change.

Obviously, the original WHATSIZE program was written for the Windows APIs of that era, so it
redrew the display in response to a WM_PAINT message. In the original Windows API, this message
occurred whenever the contents of part of a program’s window became “invalid” and needed redraw-
ing. A program could define its window so that the entire window was invalidated whenever its size
changed.

The Windows Runtime has no equivalent of the WM_PAINT message, and indeed, the entire
graphics paradigm is quite different. Previous versions of Windows implemented a “direct mode”
graphics system in which applications drew to the actual video memory. Of course, this occurred
through a software layer (the Graphics Device Interface) and a device driver, but at some point in the
actual drawing functions, code was writing into video display memory.

The Windows Runtime is quite different. In its public programming interface, it doesn’t even have
a concept of drawing or painting. Instead, a Windows 8 application creates elements—that is, objects
instantiated from classes that derive from FrameworkElement—and adds them to the application’s
visual tree. These elements are responsible for rendering themselves. When a Windows 8 applica-
tion wants to display text, it doesn’t draw text but instead creates a TextBlock. When the application
wants to display a bitmap, it creates an Image element. Instead of drawing lines and Bézier splines and
ellipses, the program creates Polyline and Path elements.

The Windows Runtime implements a “retained mode” graphics system. Between your application
and the video display is a composition layer on which all the rendered output is assembled before it
is presented to the user. Perhaps the most important benefit of retained mode graphics is flicker-free
animation, as you’ll witness for yourself toward the end of this chapter and in much of the remainder
of this book.

Although the graphics system in the Windows Runtime is very different from earlier versions of
Windows, in another sense a Windows 8 application is similar to its earlier brethren. Once a program
is loaded into memory and starts running, it spends most of its time generally sitting dormant in
memory, waiting for something interesting to happen. These notifications take the form of events and

84	 PART 1  Elementals

callbacks. Often these events signal user input, but there might be other interesting activity as well.
One such callback is the OnNavigatedTo method. In a simple single-page program, this method is
called soon after the constructor returns.

Another event that might be of interest to a Windows 8 application—particularly one that does
what the old WHATSIZE program did—is named SizeChanged. Here’s the XAML file for the Windows 8
WhatSize program. Notice that the root element defines a handler for the SizeChanged event:

Project: WhatSize | File: MainPage.xaml (excerpt)

<Page
 x:Class="WhatSize.MainPage"
 ...
 FontSize="36"
 SizeChanged="OnPageSizeChanged">

 <Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <TextBlock HorizontalAlignment="Center"
 VerticalAlignment="Top">
 ↤ <Run x:Name="widthText" /> pixels ↦
 </TextBlock>

 <TextBlock HorizontalAlignment="Center"
 VerticalAlignment="Center"
 TextAlignment="Center">
 ↥
 <LineBreak />
 <Run x:Name="heightText" /> pixels
 <LineBreak />
 ↧
 </TextBlock>
 </Grid>
</Page>

The remainder of the XAML file defines two TextBlock elements containing some Run objects
surrounded by arrow characters. (You’ll see what they look like soon.) It might seem excessive to set
three properties to Center in the second TextBlock, but they’re all necessary. The first two center the
TextBlock in the page; setting TextAlignment to Center results in the two arrows being centered rela-
tive to the text. The two Run elements are given x:Name attributes so that the Text properties can be
set in code. This happens in the SizeChanged event handler:

Project: WhatSize | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 public MainPage()
 {
 this.InitializeComponent();
 }

 void OnPageSizeChanged(object sender, SizeChangedEventArgs args)
 {
 widthText.Text = args.NewSize.Width.ToString();
 heightText.Text = args.NewSize.Height.ToString();
 }
}

	 CHAPTER 3  Basic Event Handling	 85

Very conveniently, the event arguments supply the new size in the form of a Size structure, and
the handler simply converts the Width and Height properties to strings and sets them to the Text
properties of the two Run elements:

If you’re running the program on a device that responds to orientation changes, you can try
flipping the screen and observe how the numbers change. You can also sweep your finger from the
left of the screen to invoke the snapped views and then divide the screen between this program and
another to see how the width value changes.

You don’t need to set the SizeChanged event handler in XAML. You can set it in code, perhaps
during the Page constructor:

this.SizeChanged += OnPageSizeChanged;

SizeChanged is defined by FrameworkElement and inherited by all descendent classes. Despite
the fact that SizeChangedEventArgs derives from RoutedEventArgs, this is not a routed event. You
can tell it’s not a routed event because the OriginalSource property of the event arguments is always
null; there is no SizeChangedEvent property; and whatever element you set this event on, that’s the
element’s size you get. But you can set SizeChanged handlers on any element. Generally, the order
the events are fired proceeds down the visual tree: MainPage first (in this example), and then Grid and
TextBlock.

If you need the rendered size of an element other than in the context of a SizeChanged handler,
that information is available from the ActualWidth and ActualHeight properties defined by
FrameworkElement. Indeed, the SizeChanged handler in WhatSize is actually a little shorter when ac-
cessing those properties:

void OnPageSizeChanged(object sender, SizeChangedEventArgs args)
{
 widthText.Text = this.ActualWidth.ToString();
 heightText.Text = this.ActualHeight.ToString();
}

86	 PART 1  Elementals

What you probably do not want are the Width and Height properties. Those properties are also
defined by FrameworkElement, but they have default values of “not a number” or NaN. A program
can set Width and Height to explicit values (such as in the TextFormatting project in Chapter 2, “XAML
Syntax”), but usually these properties remain at their default values and they are of no use in de-
termining how large an element actually is. FrameworkElement also defines MinWidth, MaxWidth,
MinHeight, and MaxHeight properties with default NaN values, but these aren’t used very often.

If you access the ActualWidth and ActualHeight properties in the page’s constructor, however,
you’ll find they have values of zero. Despite the fact that InitializeComponent has constructed the
visual tree, that visual tree has not yet gone through a layout process. After the constructor finishes,
the page gets several events in sequence:

■■ OnNavigatedTo

■■ SizeChanged

■■ LayoutUpdated

■■ Loaded

If the page later changes size, additional SizeChanged events and LayoutUpdated events are fired.
LayoutUpdated can also be fired if elements are added to or removed from the visual tree or if an
element is changed so as to affect layout.

If you need a place to perform initialization after initial layout when all the elements in the visual
tree have nonzero sizes, the event you want is Loaded. It is very common for a Page derivative to
attach a handler for the Loaded event. Generally, the Loaded event occurs only once during the
lifetime of a Page object. I say “generally” because if the Page object is detached from its parent (a
Frame) and reattached, the Loaded event will occur again. But this won’t happen unless you deliber-
ately make it happen. Also, the Unloaded event can let you know if the page has been detached from
the visual tree.

Every FrameworkElement derivative has a Loaded event. As a visual tree is built, the Loaded events
occur in a sequence going up the visual tree, ending with the Page derivative. When that Page ob-
ject gets a Loaded event, it can assume that all its children have fired their own Loaded events and
everything has been correctly sized.

Handling a Loaded event in a Page class is so common that some programmers perform Loaded
processing right in the constructor using an anonymous handler:

public MainPage()
{
 this.InitializeComponent();

 Loaded += (sender, args) =>
 {
 ...
 };
}

	 CHAPTER 3  Basic Event Handling	 87

Sometimes Windows 8 applications need to know when the orientation of the screen changes.
In Chapter 1, “Markup and Code,” I showed an InternationalHelloWorld program that looks fine in
landscape mode but probably results in overlapping text if switched to portrait mode. To fix that, the
ScalableInternationalHelloWorld program code-behind file changes the page’s FontSize property to
24 in portrait mode:

Project: ScalableInternationalHelloWorld | File: MainPage.xaml.cs

public sealed partial class MainPage : Page
{
 public MainPage()
 {
 this.InitializeComponent();
 SetFont();
 DisplayProperties.OrientationChanged += OnDisplayPropertiesOrientationChanged;
 }

 void OnDisplayPropertiesOrientationChanged(object sender)
 {
 SetFont();
 }

 void SetFont()
 {
 bool isLandscape =
 DisplayProperties.CurrentOrientation == DisplayOrientations.Landscape ||
 DisplayProperties.CurrentOrientation == DisplayOrientations.LandscapeFlipped;

 this.FontSize = isLandscape ? 40 : 24;
 }
}

The DisplayProperties class and DisplayOrientations enumeration are defined in the Windows
.Graphics.Display namespace. DisplayProperties.OrientationChanged is a static event, and when
that event is fired, the static DisplayProperties.CurrentOrientation property provides the current
orientation.

Somewhat more information, including snapped states, is provided by the ViewStateChanged
event of the AppicationView class in the Windows.UI.ViewManagement namespace, but working with
this event must await Chapter 12, “Pages and Navigation.”

Bindings to Run?

In Chapter 2 I discussed data bindings. Data bindings can link properties of two elements so that
when a source property changes, the target property also changes. Data bindings are particularly
satisfying when they eliminate the need for event handlers.

Is it possible to rewrite WhatSize to use data bindings rather than a SizeChanged handler? It’s
worth a try.

88	 PART 1  Elementals

In the WhatSize project, remove the OnPageSizeChanged handler from the MainPage.xaml.cs file
(or just comment it out if you don’t want to do too much damage to the file). In the root tag of the
MainPage.xaml file, remove the SizeChanged attribute and give MainPage a name of “page.” Then,
set Binding markup extensions on the two Run objects referencing the ActualWidth and ActualHeight
properties of the page:

<Page ...
 FontSize="36"
 Name="page">

 <Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <TextBlock HorizontalAlignment="Center"
 VerticalAlignment="Top">
 ↤
 <Run Text="{Binding ElementName=page, Path=ActualWidth}" />
 pixels ↦
 </TextBlock>

 <TextBlock HorizontalAlignment="Center"
 VerticalAlignment="Center"
 TextAlignment="Center">
 ↥
 <LineBreak />
 <Run Text="{Binding ElementName=page, Path=ActualHeight}" /> pixels
 <LineBreak />
 ↧
 </TextBlock>
 </Grid>
</Page>

The program compiles fine, and it runs smoothly without any run-time exceptions. The only
problem is: Where the numbers should appear is a discouraging 0.

This is likely to seem odd, particularly when you set the same bindings on the Text property of
TextBlock instead of Run:

<Page ...
 FontSize="36"
 Name="page">

 <Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <TextBlock HorizontalAlignment="Center"
 VerticalAlignment="Top"
 Text="{Binding ElementName=page, Path=ActualWidth}" />

 <TextBlock HorizontalAlignment="Center"
 VerticalAlignment="Center"
 TextAlignment="Center"
 Text="{Binding ElementName=page, Path=ActualHeight}" />
 </Grid>
</Page>

	 CHAPTER 3  Basic Event Handling	 89

This works:

At least it appears to work at first. With the version of Windows 8 that I’m using to write this
chapter, the numbers are not updated as you change the orientation or size of the page, and they
really should be. In theory, a data binding is notified when a source property changes so that it can
change the target property, but the application source code appears to have no event handlers and
no moving parts. This is what is supposed to make data bindings so great.

Unfortunately, by giving up on the bindings to Run we’ve also lost the informative arrows. So, why
do the data bindings work (or almost work) on the Text property of TextBlock but not at all on the
Text property of Run?

It’s very simple. The target of a data binding must be a dependency property. This fact is obvious
when you define a data binding in code by using the SetBinding method. That’s the difference: The
Text property of TextBlock is backed by the TextProperty dependency property, but the Text property
of Run is not. The Run version of Text is a plain old property that cannot serve as a target for a data
binding. The XAML parser probably shouldn’t allow a binding to be set on the Text property of Run,
but it does.

In Chapter 4 I’ll show you how to use a StackPanel to get the arrows back in a version of
WhatSize that uses data bindings, and in Chapter 16, “Rich Text,” I’ll demonstrate a technique using
RichTextBlock.

Timers and Animation

Sometimes a Windows 8 application needs to receive periodic events at a fixed interval. A clock
application, for example, probably needs to update its display every second. The ideal class for this
job is DispatcherTimer. Set a timer interval, set a handler for the Tick event, and go.

90	 PART 1  Elementals

Here’s the XAML file for a digital clock application. It’s just a big TextBlock:

Project: DigitalClock | File: MainPage.xaml (excerpt)

<Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <TextBlock Name="txtblk"
 FontFamily="Lucida Console"
 FontSize="120"
 HorizontalAlignment="Center"
 VerticalAlignment="Center" />
</Grid>

The code-behind file creates the DispatcherTimer with a 1-second interval and sets the Text
property of the TextBlock in the event handler:

Project: DigitalClock | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 public MainPage()
 {
 this.InitializeComponent();

 DispatcherTimer timer = new DispatcherTimer();
 timer.Interval = TimeSpan.FromSeconds(1);
 timer.Tick += OnTimerTick;
 timer.Start();
 }

 void OnTimerTick(object sender, object e)
 {
 txtblk.Text = DateTime.Now.ToString("h:mm:ss tt");
 }
}

And here it is:

	 CHAPTER 3  Basic Event Handling	 91

Calls to the Tick handler occur in the same execution thread as the rest of the user interface, so if
the program is busy doing something in that thread, the calls won’t interrupt that work and might
become somewhat irregular and even skip a few beats. In a multipage application, you might want to
start the timer in the OnNavigatedTo override and stop it in OnNavigatedFrom to avoid the program
wasting time doing work when the page is not visible.

This is a good illustration of the difference in how a desktop Windows application and a Windows
8 application update the video display. Both types of applications use a timer for implementing a
clock, but rather than drawing and redrawing text every second by invalidating the contents of the
window, the Windows 8 application changes the visual appearance of an existing element simply by
changing one of its properties.

You can set the DispatcherTimer for an interval as low as you want, but you’re not going to get
calls to the Tick handler faster than the frame rate of the video display, which is probably 60 Hertz
or about a 17-millisecond period. Of course, it doesn’t make sense to update the video display faster
than the frame rate. Updating the display precisely at the frame rate gives you as smooth an anima-
tion as possible. If you want to perform an animation in this way, don’t use DispatcherTimer. A better
choice is the static CompositionTarget.Rendering event, which is specifically designed to be called prior
to a screen refresh.

Even better than CompositionTarget.Rendering are all the animation classes provided as part of the
Windows Runtime. These classes let you define animations in XAML or code, they have lots of options,
and some of them are performed in background threads.

But until I cover the animation classes in Chapter 9, “Animation”—and perhaps even after I do—
the CompositionTarget.Rendering event is well suited for performing animations. These are sometimes
called “manual” animations because the program itself has to carry out some calculations based on
elapsed time.

 Here’s a little project called ExpandingText that changes the FontSize of a TextBlock in the
CompositionTarget.Rendering event handler, making the text larger and smaller. The XAML file simply
instantiates a TextBlock:

Project: ExpandingText | File: MainPage.xaml (excerpt)

<Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <TextBlock Name="txtblk"
 Text="Hello, Windows 8!"
 HorizontalAlignment="Center"
 VerticalAlignment="Center" />
</Grid>

In the code-behind file, the constructor starts a CompositionTarget.Rendering event simply by
setting an event handler. The second argument to that handler is defined as type object, but it is

92	 PART 1  Elementals

actually of type RenderingEventArgs, which has a property named RenderingTime of type TimeSpan,
giving you an elapsed time since the app was started:

Project: ExpandingText | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 public MainPage()
 {
 this.InitializeComponent();
 CompositionTarget.Rendering += OnCompositionTargetRendering;
 }

 void OnCompositionTargetRendering(object sender, object args)
 {
 RenderingEventArgs renderArgs = args as RenderingEventArgs;
 double t = (0.25 * renderArgs.RenderingTime.TotalSeconds) % 1;
 double scale = t < 0.5 ? 2 * t : 2 - 2 * t;
 txtblk.FontSize = 1 + scale * 143;
 }
}

I’ve attempted to generalize this code somewhat. The calculation of t causes it to repeatedly
increase from 0 to 1 over the course of 4 seconds. During those same 4 seconds, the value of scale
goes from 0 to 1 and back to 0, so FontSize ranges from 1 to 144 and back to 1. (The code ensures
that the FontSize is never set to zero, which would raise an exception.) When you run this program,
you might see a little jerkiness at first because fonts need to be rasterized at a bunch of different
sizes. But after it settles into a rhythm, it’s fairly smooth and there is definitely no flickering.

It’s also possible to animate color, and I’ll show you two different ways to do it. The second
way is better than the first, but I want to make a point here, so here’s the XAML file for the
ManualBrushAnimation project:

Project: ManualBrushAnimation | File: MainPage.xaml (excerpt)

<Grid Name="contentGrid">
 <TextBlock Name="txtblk"
 Text="Hello, Windows 8!"
 FontFamily="Times New Roman"
 FontSize="96"
 FontWeight="Bold"
 HorizontalAlignment="Center"
 VerticalAlignment="Center" />
</Grid>

Neither the Grid nor the TextBlock have explicit brushes defined. Creating those brushes based on
animated colors is the job of the CompositionTarget.Rendering event handler:

Project: ManualBrushAnimation | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 public MainPage()
 {
 this.InitializeComponent();
 CompositionTarget.Rendering += OnCompositionTargetRendering;
 }

	 CHAPTER 3  Basic Event Handling	 93

 void OnCompositionTargetRendering(object sender, object args)
 {
 RenderingEventArgs renderingArgs = args as RenderingEventArgs;
 double t = (0.25 * renderingArgs.RenderingTime.TotalSeconds) % 1;
 t = t < 0.5 ? 2 * t : 2 - 2 * t;

 // Background
 byte gray = (byte)(255 * t);
 Color clr = Color.FromArgb(255, gray, gray, gray);
 contentGrid.Background = new SolidColorBrush(clr);

 // Foreground
 gray = (byte)(255 - gray);
 clr = Color.FromArgb(255, gray, gray, gray);
 txtblk.Foreground = new SolidColorBrush(clr);
 }
}

As the background color of the Grid goes from black to white and back, the foreground color of
the TextBlock goes from white to black and back, meeting halfway through.

The effect is nice, but notice that two SolidColorBrush objects are being created at the frame rate
of the video display (which is probably about 60 times a second) and these objects are just as quickly
discarded. This is not necessary. A much better approach is to create two SolidColorBrush objects
initially in the XAML file:

Project: ManualColorAnimation | File: MainPage.xaml (excerpt)

<Grid>
 <Grid.Background>
 <SolidColorBrush x:Name="gridBrush" />
 </Grid.Background>

 <TextBlock Text="Hello, Windows 8!"
 FontFamily="Times New Roman"
 FontSize="96"
 FontWeight="Bold"
 HorizontalAlignment="Center"
 VerticalAlignment="Center">
 <TextBlock.Foreground>
 <SolidColorBrush x:Name="txtblkBrush" />
 </TextBlock.Foreground>
 </TextBlock>
</Grid>

These SolidColorBrush objects exist for the entire duration of the program, and they are given names
for easy access from the CompositionTarget.Rendering handler:

Project: ManualColorAnimation | File: MainPage.xaml.cs (excerpt)

void OnCompositionTargetRendering(object sender, object args)
{
 RenderingEventArgs renderingArgs = args as RenderingEventArgs;
 double t = (0.25 * renderingArgs.RenderingTime.TotalSeconds) % 1;
 t = t < 0.5 ? 2 * t : 2 - 2 * t;

94	 PART 1  Elementals

 // Background
 byte gray = (byte)(255 * t);
 gridBrush.Color = Color.FromArgb(255, gray, gray, gray);

 // Foreground
 gray = (byte)(255 - gray);
 txtblkBrush.Color = Color.FromArgb(255, gray, gray, gray);
}

At first this might not seem a whole lot different because two Color objects are being created and
discarded at the video frame rate. But it’s wrong to speak of objects here because Color is a structure
rather than a class. It is more correct to speak of Color values. These Color values are stored on the
stack rather than requiring a memory allocation from the heap.

It’s best to avoid frequent allocations from the heap whenever possible, and particularly at the rate
of 60 times per second. But what I like most about this example is the idea of SolidColorBrush objects
remaining alive in the Windows Runtime composition system. This program is effectively reaching
down into that composition layer and changing a property of the brush so that it renders differently.

This program also illustrates part of the wonders of dependency properties. Dependency
properties are built to respond to changes in a very structured manner. As you’ll discover, the built-in
animation facilities of the Windows Runtime can target only dependency properties, and “manual”
animations using CompositionTarget.Rendering have pretty much the same limitation. Fortunately,
the Foreground property of TextBlock and the Background property of Grid are both dependency
properties of type Brush, and the Color property of the SolidColorBrush is also a dependency
property.

Indeed, whenever you encounter a dependency property, you might ask yourself, “How can I
animate that?” For example, the Offset property in the GradientStop class is a dependency property,
and you can animate it for some interesting effects.

Here’s the XAML file for the RainbowEight project:

Project: RainbowEight | File: MainPage.xaml (excerpt)

<Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <TextBlock Name="txtblk"
 Text="8"
 FontFamily="CooperBlack"
 FontSize="1"
 HorizontalAlignment="Center">
 <TextBlock.Foreground>
 <LinearGradientBrush x:Name="gradientBrush">
 <GradientStop Offset="0.00" Color="Red" />
 <GradientStop Offset="0.14" Color="Orange" />
 <GradientStop Offset="0.28" Color="Yellow" />
 <GradientStop Offset="0.43" Color="Green" />
 <GradientStop Offset="0.57" Color="Blue" />
 <GradientStop Offset="0.71" Color="Indigo" />
 <GradientStop Offset="0.86" Color="Violet" />
 <GradientStop Offset="1.00" Color="Red" />
 <GradientStop Offset="1.14" Color="Orange" />

	 CHAPTER 3  Basic Event Handling	 95

 <GradientStop Offset="1.28" Color="Yellow" />
 <GradientStop Offset="1.43" Color="Green" />
 <GradientStop Offset="1.57" Color="Blue" />
 <GradientStop Offset="1.71" Color="Indigo" />
 <GradientStop Offset="1.86" Color="Violet" />
 <GradientStop Offset="2.00" Color="Red" />
 </LinearGradientBrush>
 </TextBlock.Foreground>
 </TextBlock>
</Grid>

A bunch of those GradientStop objects have Offset values above 1, so they’re not going to be visible.
Moreover, the TextBlock itself won’t be very obvious because it has a FontSize of 1. However, during
its Loaded event, the Page class obtains the ActualHeight of that tiny TextBlock and saves it in a field. It
then starts a CompositionTarget.Rendering event going:

Project: RainbowEight | File: MainPage.xaml (excerpt)

public sealed partial class MainPage : Page
{
 double txtblkBaseSize; // ie, for 1-pixel FontSize

 public MainPage()
 {
 this.InitializeComponent();
 Loaded += OnPageLoaded;
 }

 void OnPageLoaded(object sender, RoutedEventArgs args)
 {
 txtblkBaseSize = txtblk.ActualHeight;
 CompositionTarget.Rendering += OnCompositionTargetRendering;
 }

 void OnCompositionTargetRendering(object sender, object args)
 {
 // Set FontSize as large as it can be
 txtblk.FontSize = this.ActualHeight / txtblkBaseSize;

 // Calculate t from 0 to 1 repetitively
 RenderingEventArgs renderingArgs = args as RenderingEventArgs;
 double t = (0.25 * renderingArgs.RenderingTime.TotalSeconds) % 1;

 // Loop through GradientStop objects
 for (int index = 0; index < gradientBrush.GradientStops.Count; index++)
 gradientBrush.GradientStops[index].Offset = index / 7.0 - t;
 }
}

In the CompositionTarget.Rendering handler, the FontSize of the TextBlock is increased based on
the ActualHeight property of the Page, rather like a manual version of Viewbox. It won’t be the full
height of the page because the ActualHeight of the TextBlock includes space for descenders and
diacriticals, but it will be as large as is convenient to make it, and it will change when the display
switches orientation.

96	 PART 1  Elementals

Moreover, the CompositionTarget.Rendering handler goes on to change all the Offset properties of
the LinearGradientBrush for an animated rainbow effect that I’m afraid can’t quite be rendered on the
static page of this book:

You might wonder: Isn’t it inefficient to change the FontSize property of the TextBlock at the frame
rate of the video display? Wouldn’t it make more sense to set a SizeChanged handler for the Page and
do it then?

Perhaps a little. But it is another feature of dependency properties that the object doesn’t register
a change unless the property really changes. If the property is being set to the value it already is,
nothing happens, as you can verify by attaching a SizeChanged handler on the TextBlock itself.

		 97

C H A P T E R 4

Presentation with Panels

A Windows Runtime program generally consists of one or more classes that derive from Page.
Each page contains a visual tree of elements connected in a parent-child hierarchy. A Page

object can have only one child set to its Content property, but in most cases this child is an
instance of a class that derives from Panel. Panel defines a property named Children that is of type
UIElementCollection—a collection of UIElement derivatives, including other panels.

These Panel derivatives form the core of the Windows Runtime dynamic layout system. As the
size or orientation of a page changes, panels can reorganize their children to optimally fill the
available space. Each type of panel arranges its children differently. The Grid, for example, arranges its
children in rows and columns. The StackPanel stacks its children either horizontally or vertically. The
VariableSizedWrapGrid also stacks its children horizontally or vertically but then uses additional rows
or columns if necessary, much like the Windows 8 start screen. The Canvas allows its children to be
positioned at specific pixel locations.

What makes a layout system complex is balancing the conflicting needs of parents and children.
In part, a layout system needs to be “child-driven” in that each child should be allowed to determine
how large it needs to be, and to obtain sufficient screen space for itself. But the layout system also
needs to be “parent-driven.” At any time, the page is fixed in size and cannot give its descendents in
the visual tree more space than it has available.

Similar concepts are well known in the Web world. For example, a simple HTML page has a width
that is parent-driven because it’s constrained by the width of the video display or the browser
window. However, the height of a page is child-driven because it depends on the content of the page.
If that height exceeds the height of the browser window, scrollbars are required.

In contrast, the Windows 8 start screen is the other way around: The number of application tiles
that can fit vertically is parent-driven because it’s based on the height of the screen. The width of this
tile display is child-driven. If tiles extend off the screen horizontally, they must be moved into view by
scrolling.

The Border Element

Two of the most important properties connected with layout are HorizontalAlignment and
VerticalAlignment. These properties are defined by FrameworkElement and set to members of
enumerations with identical names: HorizontalAlignment and VerticalAlignment.

98	 PART 1  Elementals

As you saw in Chapter 3, “Basic Event Handling,” the default values of HorizontalAlignment
and VerticalAlignment are not Left and Top. They are instead HorizontalAlignment.Stretch and
VerticalAlignment.Stretch. These default Stretch settings imply parent-driven layout: Elements auto-
matically stretch to become as large as their parents. This is not always visually apparent, but in the
last chapter you saw how a TextBlock stretched to the size of its parent gets all the Tapped events
anywhere within that parent.

When the HorizontalAlignment or VerticalAlignment properties are set to values other than Stretch,
the element sets its own width or height based on its content. Layout becomes more child-driven.

The important role of HorizontalAlignment and VerticalAlignment also becomes apparent when
you start adding more parents and children to the page. For example, suppose you want to display a
TextBlock with a border around it. You might discover (perhaps with some dismay) that TextBlock has
no properties that relate to a border. However, the Windows.UI.Xaml.Controls namespace contains a
Border element with a property named Child. So, you put the TextBlock in a Border and put the Border
in the Grid, like so:

Project: NaiveBorderedText | File: MainPage.xaml (excerpt)

<Page ... >

 <Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">

 <Border BorderBrush="Red"
 BorderThickness="12"
 CornerRadius="24"
 Background="Yellow">

 <TextBlock Text="Hello Windows 8!"
 FontSize="96"
 Foreground="Blue"
 HorizontalAlignment="Center"
 VerticalAlignment="Center" />
 </Border>

 </Grid>
</Page>

The BorderThickness property defined by Border can be set to different values for the four sides.
Just specify four different values in the order left, top, right, and bottom. If you specify only two
values, the first applies to the left and right and the second applies to the top and bottom. The
CornerRadius property defines the curvature of the corners. You can set it a uniform value or four
different values in the order upper-left, upper-right, lower-right, and lower-left.

	 CHAPTER 4  Presentation with Panels	 99

Notice the HorizontalAlignment and VerticalAlignment properties set on the TextBlock. The markup
looks reasonable, but the result is probably not what you want:

Because Border derives from FrameworkElement, it also has HorizontalAlignment and
VerticalAlignment properties, and their default values are Stretch, which causes the size of the Border
to be stretched to the size of its parent. To get the effect you probably want, you need to move the
HorizontalAlignment and VerticalAlignment settings from the TextBlock to the Border:

Project: BetterBorderedText | File: MainPage.xaml (excerpt)

<Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">

 <Border BorderBrush="Red"
 BorderThickness="12"
 CornerRadius="24"
 Background="Yellow"
 HorizontalAlignment="Center"
 VerticalAlignment="Center">

 <TextBlock Text="Hello Windows 8!"
 FontSize="96"
 Foreground="Blue"
 Margin="24" />
 </Border>

</Grid>

100	 PART 1  Elementals

I’ve also added a quarter-inch margin to the TextBlock by setting its Margin property. This causes
the Border to be a quarter-inch larger than the size of the text on all four sides:

The Margin property is defined by FrameworkElement, so it is available on every element. The
property is of type Thickness (the same as the type of the BorderThickness property)—a structure with
four properties named Left, Top, Right, and Bottom. Margin is exceptionally useful for defining a little
breathing room around elements so that they don’t butt up against each other, and it appears a lot in
real-life XAML. Like BorderThickness, Margin can potentially have four different values. In XAML, they
appear in the order left, top, right, and bottom. Specify just two values and the first applies to the left
and right, and the second to the top and bottom.

In addition, Border defines a Padding property, which is similar to Margin except that it applies to
the inside of the element rather than the outside. Try removing the Margin property from TextBlock
and instead set Padding on the Border:

<Border BorderBrush="Red"
 BorderThickness="12"
 CornerRadius="24"
 Background="Yellow"
 HorizontalAlignment="Center"
 VerticalAlignment="Center"
 Padding="24">

 <TextBlock Text="Hello Windows 8!"
 FontSize="96"
 Foreground="Blue" />
</Border>

The result is the same. In either case, any HorizontalAlignment or VerticalAlignment settings on the
TextBlock are now irrelevant.

	 CHAPTER 4  Presentation with Panels	 101

For layout purposes, Margin is considered to be part of the size of the element, but otherwise it is
entirely out of the element’s control. The element cannot control the background color of its margin,
for example. That color depends on the element’s parent. Nor does an element get user input from
the margin area. If you tap in an element’s margin area, the element’s parent gets the Tapped event.

The Padding property is also of type Thickness, but only a few classes define a Padding property:
Control, Border, TextBlock, RichTextBlock, and RichTextBlockOverflow. The Padding property defines an
area inside the element. This area is considered to be part of the element for all purposes, including
user input.

If you want a TextBlock to respond to taps not only on the text itself but also within a 100-pixel
area surrounding the text, set the Padding property of the TextBlock to 100 rather than the Margin
property.

Rectangle and Ellipse

As you saw in Chapter 2, “XAML Syntax,” the Windows.UI.Xaml.Shapes namespace contains classes
used to render vector graphics: lines, curves, and filled areas. The Shape class itself derives from
FrameworkElement and defines various properties, including Stroke (for specifying the brush used
to render straight lines and curves), StrokeThickness, and Fill (for specifying the brush used to render
enclosed areas).

Six classes derive from Shape. Line, Polyline, and Polygon render straight lines based on coordinate
points, and Path uses a series of classes in Windows.UI.Xaml.Media for rendering a series of straight
lines, arcs, and Bézier curves.

The remaining two classes that derive from Shape are Rectangle and Ellipse. Despite the innocent
names, these elements are real oddities in that they define figures without the use of coordinate
points. Here, for example, is a tiny piece of XAML to render an ellipse:

Project: SimpleEllipse | File: MainPage.xaml (excerpt)

<Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <Ellipse Stroke="Red"
 StrokeThickness="24"
 Fill="Blue" />
</Grid>

102	 PART 1  Elementals

Notice how the ellipse fills its container:

Like all other FrameworkElement derivatives, Ellipse has default HorizontalAlignment and
VerticalAlignment settings of Stretch, but more than most other elements, Ellipse unashamedly flaunts
the implications of these settings.

What happens if you set a nondefault HorizontalAlignment or VerticalAlignment on this Ellipse
element? Try it! The ellipse shrinks down to nothing. It disappears. In fact, it’s hard to imagine how it
can legitimately have any other behavior. If you do not want the Ellipse or Rectangle element to fill its
container, your only real alternative is to set explicit Height and Width values on it.

The Shape class also defines a Stretch property (not to be confused with the Stretch values of
HorizontalAlignment and VerticalAlignment), which is similar to the Stretch property defined by Image
and Viewbox. For example, in the SimpleEllipse program, if you set the Stretch property to Uniform,
you’ll get a special case of an ellipse that has equal horizontal and vertical radii. This is a circle, and
its diameter is set to the minimum of the container’s width and height. Setting the Stretch property
to UniformToFill also gets you a circle, but now the diameter is the maximum of the container’s width
and height, so part of the circle is cropped:

	 CHAPTER 4  Presentation with Panels	 103

You can control what part is cropped with the HorizontalAlignment and VerticalAlignment properties.

Rectangle is very similar to Ellipse and also shares several characteristics with Border, although the
properties have different names:

Border Rectangle

BorderBrush Stroke

BorderThickness StrokeThickness

Background Fill

CornerRadius RadiusX / RadiusY

The big difference between Border and Rectangle is that Border has a Child property and Rectangle
does not.

The StackPanel

Panel and its derivative classes form the core of the Windows Runtime layout system. Panel defines
just a few properties on its own, but one of them is Children, and that’s crucial. A Panel derivative is
the only type of element that supports multiple children.

This class hierarchy shows Panel and some of its derivatives:

Object
 DependencyObject
 UIElement
 FrameworkElement
 Panel
 Canvas
 Grid
 StackPanel
 VariableSizedWrapGrid

There are others, but they have restrictions that prevent them from being used except in controls
of type ItemsControl (which I’ll discuss in Chapter 11, “The Three Templates”). I’ll save the Grid for
Chapter 5, “Control Interaction,” and I’ll cover the other three here.

Of these standard panels, the StackPanel is certainly the easiest to use. Like the name suggests, it
stacks its children, by default vertically. The children can be different heights, but each child gets only
as much height as it needs. The SimpleVerticalStack program shows how it’s done:

Project: SimpleVerticalStack | File: MainPage.xaml (excerpt)

<Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <StackPanel>
 <TextBlock Text="Right-Aligned Text"
 FontSize="48"
 HorizontalAlignment="Right" />

104	 PART 1  Elementals

 <Image Source="http://www.charlespetzold.com/pw6/PetzoldJersey.jpg"
 Stretch="None" />

 <TextBlock Text="Figure 1. Petzold heading to the basketball court"
 FontSize="24"
 HorizontalAlignment="Center" />

 <Ellipse Stroke="Red"
 StrokeThickness="12"
 Fill="Blue" />

 <TextBlock Text="Left-Aligned Text"
 FontSize="36"
 HorizontalAlignment="Left" />
 </StackPanel>
</Grid>

In XAML the children of the StackPanel are simply listed in order, just as they appear on the screen:

Notice that I made this StackPanel a child of the Grid. Panels can be nested, and they very often
are nested. In this particular case I could have replaced the Grid with StackPanel and set that same
Background property on it.

Each element in the StackPanel gets only as much height as it needs but can stretch to the panel’s
full width, as demonstrated by the first and last TextBlock aligned to the right and left. In a vertical
StackPanel, any VerticalAlignment settings on the children are irrelevant and are basically ignored.

Notice that the Stretch property of the Image element is set to None to display the bitmap in
its pixel dimensions. If left at its default value of Uniform, the Image is stretched to the width of
the StackPanel (which is the same as the width of the Page) and its vertical dimension increases
proportionally. This might cause all the elements below the Image to be pushed right off the bottom
of the screen and into the bit bucket.

The XAML also includes an Ellipse. What happened to it? Like all the other children of the
StackPanel, the Ellipse is given only as much vertical space as it needs, and it really doesn’t need

	 CHAPTER 4  Presentation with Panels	 105

any, so it shrinks to nothing. If you want the Ellipse to be visible, give it at least a nonzero Height, for
example, 48:

If you also set the Stretch property of the Ellipse to Uniform, you’ll get a circle rather than a very wide
ellipse.

This StackPanel occupies the entire page. How do I know this? When experimenting with panels,
one very useful technique is to give each panel a unique Background so that you can see the footprint
that the panel occupies on the screen. For example:

<StackPanel Background="Blue">

Like all other FrameworkElement derivatives, StackPanel also has HorizontalAlignment and
VerticalAlignment properties. When set to nondefault values, these properties cause the StackPanel to
tightly hug its children (so to speak), and the change can be dramatic. Here’s what it looks like with the
StackPanel getting a Background of Blue and HorizontalAlignment and VerticalAlignment values of Center:

106	 PART 1  Elementals

The width of the StackPanel is now governed by the width of its widest child, which is the totally
honest caption under the photograph.

Horizontal Stacks

It is also possible to use StackPanel to stack elements horizontally by setting its Orientation property
to Horizontal. The SimpleHorizontalStack program shows an example:

Project: SimpleHorizontalStack | File: MainPage.xaml (excerpt)

<Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">

 <StackPanel Orientation="Horizontal"
 VerticalAlignment="Center"
 HorizontalAlignment="Center">

 <TextBlock Text="Rectangle: "
 VerticalAlignment="Center" />

 <Rectangle Stroke="Blue"
 Fill="Red"
 Width="72"
 Height="72"
 Margin="12 0"
 VerticalAlignment="Center" />

 <TextBlock Text="Ellipse: "
 VerticalAlignment="Center" />

 <Ellipse Stroke="Red"
 Fill="Blue"
 Width="72"
 Height="72"
 Margin="12 0"
 VerticalAlignment="Center" />

 <TextBlock Text="Petzold: "
 VerticalAlignment="Center" />

 <Image Source="http://www.charlespetzold.com/pw6/PetzoldJersey.jpg"
 Stretch="Uniform"
 Width="72"
 Margin="12 0"
 VerticalAlignment="Center" />

 </StackPanel>
</Grid>

	 CHAPTER 4  Presentation with Panels	 107

Here it is:

You might question the apparently excessive number of alignment settings. Try removing all the
VerticalAlignment and HorizontalAlignment settings, and the result looks like this:

The StackPanel is now occupying the entire page, and each of the individual elements occupies the
full height of the StackPanel. TextBlock aligns itself at the top, and the other elements are in the

108	 PART 1  Elementals

center. Setting the HorizontalAlignment and VerticalAlignment settings of the Panel to Center tightens
up the space that the panel occupies and moves it to the center of the display, like this:

The height of the StackPanel is now governed by the height of its tallest element, but all the elements
are stretched to that height. To center all the elements relative to each other, the easiest approach is
to give them all VerticalAlignment settings of Center.

WhatSize with Bindings (and a Converter)

In Chapter 3 I discussed how the WhatSize program couldn’t accommodate a data binding because
the Text property in the Run class isn’t a dependency property. Only dependency properties can be
targets of data bindings.

Fortunately, for single lines of text, you can mimic multiple Run objects with multiple TextBlock
elements in a horizontal StackPanel. Here’s WhatSizeWithBindings:

Project: WhatSizeWithBindings | File: MainPage.xaml (excerpt)

<Page
 x:Class="WhatSizeWithBindings.MainPage"
 ...
 FontSize="36"
 Name="page">

 <Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <StackPanel Orientation="Horizontal"
 HorizontalAlignment="Center"
 VerticalAlignment="Top">
 <TextBlock Text="↤ " />
 <TextBlock Text="{Binding ElementName=page, Path=ActualWidth}" />
 <TextBlock Text=" pixels ↦" />
 </StackPanel>

	 CHAPTER 4  Presentation with Panels	 109

 <StackPanel HorizontalAlignment="Center"
 VerticalAlignment="Center">
 <TextBlock Text="↥" TextAlignment="Center" />

 <StackPanel Orientation="Horizontal"
 HorizontalAlignment="Center">
 <TextBlock Text="{Binding ElementName=page, Path=ActualHeight}" />
 <TextBlock Text=" pixels" />
 </StackPanel>

 <TextBlock Text="↧" TextAlignment="Center" />
 </StackPanel>
 </Grid>
</Page>

Notice that the root element is now given a name of page, which is referenced in the two data
bindings to obtain the ActualWidth and ActualHeight properties. The big advantage over the previous
version is that there’s no longer any need for an event handler in the code-behind file. And here it is:

Although the values are initially correct, the bindings in the Windows 8 version that I’m using for
this chapter unfortunately don’t update the values with a different orientation or snap view.

These data bindings are automatically converting double values to string objects. But what if you
wanted this conversion to work a little differently? Suppose you want to display a particular number
of decimal places in the results? Or perhaps, more appropriate for this example, you want a comma
separator to appear in the width so that it’s 1,366?

It is possible to customize the data conversion that occurs in a binding by supplying a little piece of
code to the Binding object. The Binding class has a property named Converter of type IValueConverter,
an interface with two methods named Convert (to convert from a binding source to a binding target)
and ConvertBack (for a conversion from the target back to the source in a two-way binding).

110	 PART 1  Elementals

To create your own custom converter, you’ll need to derive a class from IValueConverter and to fill
in the two methods. Here’s an example that shows these methods doing nothing:

public class NothingConverter : IValueConverter
{
 public object Convert(object value, Type targetType, object parameter, string language)
 {
 return value;
 }

 public object ConvertBack(object value, Type targetType, object parameter, string language)
 {
 return value;
 }
}

If you’ll be using the binding only in a one-way mode, you can ignore the ConvertBack method.
In the Convert method, the value argument is the value coming from the binding source. In the
WhatSize example, this is a double. The TargetType is the type of the target—in the WhatSize example,
a string.

If you’re writing a binding converter specifically for WhatSize to convert floating-point numbers to
strings with comma separators and no decimal points, the Convert method can be as simple as this:

public object Convert(object value, Type targetType, object parameter, string language)
{
 return ((double)value).ToString("N0");
}

But it’s more common to generalize binding converters. For example, it might be useful for the
converter to handle value arguments of any type that implements the IFormattable interface, which
includes double as well as all the other numeric types and DateTime. The IFormattable interface
defines a ToString method with two arguments: a formatting string and an object that implements
IFormatProvider, which is generally a CultureInfo object.

Besides value and targetType, the Convert method also has parameter and language
arguments. These come from two properties of the Binding class named ConverterParameter and
ConverterLanguage, which are generally set right in the XAML file. This means that the formatting
specification for ToString can be provided by the parameter argument to Convert, and a CultureInfo
object could be created from the language argument. Here’s one possibility:

Project: WhatSizeWithBindingConverter | File: FormattedStringConverter.cs

using System;
using System.Globalization;
using Windows.UI.Xaml.Data;

namespace WhatSizeWithBindingConverter
{
 public class FormattedStringConverter : IValueConverter
 {
 public object Convert(object value, Type targetType, object parameter, string language)
 {

	 CHAPTER 4  Presentation with Panels	 111

 if (value is IFormattable &&
 parameter is string &&
 !String.IsNullOrEmpty(parameter as string) &&
 targetType == typeof(string))
 {
 if (String.IsNullOrEmpty(language))
 return (value as IFormattable).ToString(parameter as string, null);

 return (value as IFormattable).ToString(parameter as string,
 new CultureInfo(language));
 }

 return value;
 }
 public object ConvertBack(object value, Type targetType, object parameter, string
		 language)
 {
 return value;
 }
 }
}

The Convert method uses ToString only if several conditions are met. If the conditions are not met, the
fallback is simply to return the incoming value argument.

In the XAML file, the binding converter is generally defined as a resource so that it can be shared
among multiple bindings:

Project: WhatSizeWithBindingConverter | File: MainPage.xaml (excerpt)

<Page
 x:Class="WhatSizeWithBindingConverter.MainPage"
 ...
 FontSize="36"
 Name="page">

 <Page.Resources>
 <local:FormattedStringConverter x:Key="stringConverter" />
 </Page.Resources>

 <Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <StackPanel Orientation="Horizontal"
 HorizontalAlignment="Center"
 VerticalAlignment="Top">
 <TextBlock Text="↤ " />
 <TextBlock Text="{Binding ElementName=page,
 Path=ActualWidth,
 Converter={StaticResource stringConverter},
 ConverterParameter=N0}" />
 <TextBlock Text=" pixels ↦" />
 </StackPanel>

 <StackPanel HorizontalAlignment="Center"
 VerticalAlignment="Center">
 <TextBlock Text="↥" TextAlignment="Center" />

 <StackPanel Orientation="Horizontal"
 HorizontalAlignment="Center">

112	 PART 1  Elementals

 <TextBlock Text="{Binding ElementName=page,
 Path=ActualHeight,
 Converter={StaticResource stringConverter},
 ConverterParameter=N0}" />
 <TextBlock Text=" pixels" />
 </StackPanel>

 <TextBlock Text="↧" TextAlignment="Center" />
 </StackPanel>
 </Grid>
</Page>

Take careful note of the Binding syntax. I’ve spread it out over four lines for purposes of clarity (and
to stay within the margins of the book page), but notice that the Binding markup extension contains
an embedded markup extension of StaticResource for referencing the binding converter resource. No
quotation marks appear within either markup extension.

Now the width is formatted a little fancier:

The ScrollViewer Solution

What happens if there are too many elements for StackPanel to display on the screen? In real life, that
situation occurs quite often and it’s why a StackPanel with more than just a few elements is almost
always put inside a ScrollViewer.

The ScrollViewer has a property named Content that you can set to anything that might be too
large to display in the space allowed for it—a single large Image, for example. ScrollViewer provides
scrollbars for the mouse-users among us. Otherwise, you can just move the content around with your
fingers. By default, ScrollViewer also adds a pinch interface so that you can use two fingers to make
the content larger or smaller. This can be disabled if you want by setting the ZoomMode property to
Disabled.

	 CHAPTER 4  Presentation with Panels	 113

ScrollViewer defines a couple other crucial properties. Most often you’ll be using ScrollViewer
for vertical scrolling, such as with a vertical StackPanel. Consequently, the default value of the
VerticalScrollBarVisibility property is the enumeration member ScrollBarVisibility.Visible. This setting
doesn’t mean that the scrollbar is actually visible all the time. For mouse users, the scrollbar appears
only when the mouse is moved to the right side of the ScrollViewer, and then it fades from view if the
mouse is moved away. A much thinner slider appears when you scroll using your finger.

Horizontal scrolling is different: The default value of HorizontalScrollBarVisibility property is
Disabled, so you’ll want to change that to enable horizontal scrolling. The other two options are
Hidden, which allows scrolling with your fingers but not the mouse, and Auto, which is the same as
Visible if the content requires scrolling and Disabled otherwise.

The XAML file for the StackPanelWithScrolling program contains a StackPanel in a ScrollViewer.
Notice that the FontSize property is set in the root tag so that it can be inherited throughout the
page:

Project: StackPanelWithScrolling | File: MainPage.xaml (excerpt)

<Page
 x:Class="StackPanelWithScrolling.MainPage"
 ...
 FontSize="26">

 <Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <ScrollViewer>
 <StackPanel Name="stackPanel" />
 </ScrollViewer>
 </Grid>
</Page>

Now all that’s necessary in the code-behind file is to generate so many items for the StackPanel
that they can’t all be visible at once. Where do we get so many items? One convenient solution is to
use .NET reflection to obtain all 141 static Color properties defined in the Colors class:

Project: StackPanelWithScrolling | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 public MainPage()
 {
 this.InitializeComponent();

 IEnumerable<PropertyInfo> properties =
 typeof(Colors).GetTypeInfo().DeclaredProperties;

 foreach (PropertyInfo property in properties)
 {
 Color clr = (Color)property.GetValue(null);
 TextBlock txtblk = new TextBlock();
 txtblk.Text = String.Format("{0} \x2014 {1:X2}-{2:X2}-{3:X2}-{4:X2}",
 property.Name, clr.A, clr.R, clr.G, clr.B);
 stackPanel.Children.Add(txtblk);
 }
 }
}

114	 PART 1  Elementals

Windows 8 reflection works a little differently from .NET reflection. Generally, to get anything
interesting from the Type object, you need to call a Windows 8 extension method GetTypeInfo. The
returned TypeInfo object makes available additional information about the Type. In this program, the
DeclaredProperties property of TypeInfo obtains all the properties of the Colors class in the form of
PropertyInfo objects. Because all the properties in the Colors class are static, the value of these static
properties can be obtained by calling GetValue on each PropertyInfo object with a null parameter.
Each TextBlock gets the name of the color, an em-dash (Unicode 0x2014), and the hexadecimal color
bytes. The display looks like this:

And, of course, you can scroll it with your finger or the mouse.

To simplify the use of reflection in the C++ version of this program, the program references a
ReflectionHelper library in the solution that I wrote in C#. This library is also referenced in some
subsequent projects in this chapter and other chapters. I’ll discuss libraries later in this chapter.

As you play around with the program, you’ll discover that the ScrollViewer incorporates a nice fluid
response to your finger movements, including inertia and bounce. You’ll want to use ScrollViewer for
virtually all your scrolling needs. You’ll discover that many controls that incorporate scrolling—such
as the ListBox and GridView coming up in Chapter 11—have this same ScrollViewer built right in. I
wouldn’t be surprised if this same ScrollViewer is used in the Windows 8 start screen.

Wouldn’t it be nice to see the actual colors as well as their names and values? That enhancement is
coming up soon!

Several times already in this book I’ve shown you partial class hierarchies. If you’ve explored the
Windows 8 documentation trying to find these class hierarchies, you’ve probably discovered that
the documentation for each class shows only an ancestor class hierarchy but not derived classes. So,
how exactly did I create the class hierarchies for this book?. They come from a program I wrote called
DependencyObjectClassHierarchy, which uses a ScrollViewer and StackPanel to show all the classes
that derive from DependencyObject.

	 CHAPTER 4  Presentation with Panels	 115

 highlightBrush =
 new SolidColorBrush(new UISettings().UIElementColor(UIElementType.Highlight));

The XAML file is similar to the previous one except I’ve specified a smaller font:

Project: DependencyObjectClassHierarchy | File: MainPage.xaml (excerpt)

<Page
 x:Class="DependencyObjectClassHierarchy.MainPage"
 ...
 FontSize="{StaticResource ControlContentThemeFontSize}">

 <Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <ScrollViewer>
 <StackPanel Name="stackPanel" />
 </ScrollViewer>
 </Grid>
</Page>

The program builds a tree of classes and their descendent classes. Each node is a particular class
and a collection of its immediate descendent classes, so I added another code file to the project for a
class that represents this node:

Project: DependencyObjectClassHierarchy | File: ClassAndSubclasses.cs

using System;
using System.Collections.Generic;

namespace DependencyObjectClassHierarchy
{
 class ClassAndSubclasses
 {
 public ClassAndSubclasses(Type parent)
 {
 this.Type = parent;
 this.Subclasses = new List<ClassAndSubclasses>();
 }

 public Type Type { protected set; get; }
 public List<ClassAndSubclasses> Subclasses { protected set; get; }
 }
}

Just as it’s possible to use reflection to get all the properties defined by a class, you can use
reflection to get all public classes defined in an assembly. These classes are available from the
ExportedTypes property of the Assembly object. Conceptually, the entire Windows Runtime is
associated with a single assembly, so to get a reference to that assembly you just need one type. You
get the Assembly object from the Assembly property of the TypeInfo object for that type.

Project: DependencyObjectClassHierarchy | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 Type rootType = typeof(DependencyObject);
 TypeInfo rootTypeInfo = typeof(DependencyObject).GetTypeInfo();

116	 PART 1  Elementals

 List<Type> classes = new List<Type>();
 Brush highlightBrush;

 public MainPage()
 {
 this.InitializeComponent();

 highlightBrush =
 new SolidColorBrush(new UISettings().UIElementColor(UIElementType.Highlight));

 // Accumulate all the classes that derive from DependencyObject
 AddToClassList(typeof(Windows.UI.Xaml.DependencyObject));

 // Sort them alphabetically by name
 classes.Sort((t1, t2) =>
 {
 return String.Compare(t1.GetTypeInfo().Name, t2.GetTypeInfo().Name);
 });

 // Put all these sorted classes into a tree structure
 ClassAndSubclasses rootClass = new ClassAndSubclasses(rootType);
 AddToTree(rootClass, classes);

 // Display the tree using TextBlock's added to StackPanel
 Display(rootClass, 0);
 }

 void AddToClassList(Type sampleType)
 {
 Assembly assembly = sampleType.GetTypeInfo().Assembly;

 foreach (Type type in assembly.ExportedTypes)
 {
 TypeInfo typeInfo = type.GetTypeInfo();

 if (typeInfo.IsPublic && rootTypeInfo.IsAssignableFrom(typeInfo))
 classes.Add(type);
 }
 }

 void AddToTree(ClassAndSubclasses parentClass, List<Type> classes)
 {
 foreach (Type type in classes)
 {
 Type baseType = type.GetTypeInfo().BaseType;

 if (baseType == parentClass.Type)
 {
 ClassAndSubclasses subClass = new ClassAndSubclasses(type);
 parentClass.Subclasses.Add(subClass);
 AddToTree(subClass, classes);
 }
 }
 }

	 CHAPTER 4  Presentation with Panels	 117

 void Display(ClassAndSubclasses parentClass, int indent)
 {
 TypeInfo typeInfo = parentClass.Type.GetTypeInfo();

 // Create TextBlock with type name
 TextBlock txtblk = new TextBlock();
 txtblk.Inlines.Add(new Run { Text = new string(' ', 8 * indent) });
 txtblk.Inlines.Add(new Run { Text = typeInfo.Name });

 // Indicate if the class is sealed
 if (typeInfo.IsSealed)
 txtblk.Inlines.Add(new Run
 {
 Text = " (sealed)",
 Foreground = highlightBrush
 });

 // Indicate if the class can't be instantiated
 IEnumerable<ConstructorInfo> constructorInfos = typeInfo.DeclaredConstructors;
 int publicConstructorCount = 0;

 foreach (ConstructorInfo constructorInfo in constructorInfos)
 if (constructorInfo.IsPublic)
 publicConstructorCount += 1;

 if (publicConstructorCount == 0)
 txtblk.Inlines.Add(new Run
 {
 Text = " (non-instantiable)",
 Foreground = highlightBrush
 });

 // Add to the StackPanel
 stackPanel.Children.Add(txtblk);

 // Call this method recursively for all subclasses
 foreach (ClassAndSubclasses subclass in parentClass.Subclasses)
 Display(subclass, indent + 1);
 }
}

Notice how the TextBlock for each class is constructed by adding Run items to its Inlines collection.
It’s sometimes useful for a class hierarchy to display additional information, so the program also
checks whether the class is marked as sealed and whether it can be instantiated. In the Windows
Presentation Foundation and Silverlight, classes that can’t be instantiated are generally defined as
abstract. In the Windows Runtime, they have protected constructors instead.

118	 PART 1  Elementals

Here’s the section of the class hierarchy with Panel derivatives:

Layout Weirdness or Normalcy?

Becoming acquainted with the mechanics of layout is an important part of being a crafty Windows
Runtime developer, and the best way to make this acquaintance is to write your own Panel deriva-
tives. That job awaits us in a Chapter 11, but you can also discover a lot by just experimenting.

Suppose you have a StackPanel and you decide that one of the items in this StackPanel should be
a ScrollViewer with another StackPanel. To determine what happens in such a situation, you might
experiment with the StackPanelWithScrolling project and change the XAML file like so:

 <Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <StackPanel>
 <ScrollViewer>
 <StackPanel Name="stackPanel" />
 </ScrollViewer>
 </StackPanel>
 </Grid>

When you try it out, you’ll discover it doesn’t work. You can’t scroll. What happened?

The conflict here results from the different ways in which StackPanel and ScrollViewer calculate
their desired heights. The StackPanel calculates a desired height based on the total height of all its
children. In the vertical dimension (by default), StackPanel is entirely child-driven. To calculate a total
height, it offers to each of its children an infinite height. (When you write your own Panel derivatives,
you’ll see that I’m not speaking metaphorically or abstractly. A Double.PositiveInfinity value actually
comes into play!) The children respond by calculating a desired height based on their natural size. The
StackPanel adds these heights to calculate its own desired height.

	 CHAPTER 4  Presentation with Panels	 119

The height of the ScrollViewer, however, is parent-driven. Its height is only what its parent offers to
it, and in our earlier example this was the height of the Grid, which was the height of the Page, which
was the height of the window. The ScrollViewer is able to determine how to scroll its content because
it knows the difference between the height of its child (often a StackPanel) and its own height.

Now put a vertically scrolling ScrollViewer as a child of a vertical StackPanel. To determine the
desired size of this ScrollViewer child, the StackPanel offers it an infinite height. How tall does the
ScrollViewer really want to be? The height of the ScrollViewer is now child-driven rather than parent-
driven, and its desired height is the height of its child, which is the total height of the inner StackPanel,
which is the total accumulated height of all the children in that StackPanel.

From the perspective of the ScrollViewer, its height is the same as the height of its content, which
means that there’s nothing to scroll.

In other words, when a vertically scrolling ScrollViewer is put in a vertical StackPanel, losing the
ability to scroll is totally expected behavior!

Here’s another seeming layout oddity that is actually quite normal: Try giving a TextBlock a very
long chunk of text to display, and set the TextWrapping property to Wrap. In most cases, the text
wraps as we might expect. Now put that TextBlock in a StackPanel with an Orientation property set
to Horizontal. To determine how wide the TextBlock needs to be, the StackPanel offers it an infinite
width, and in response to that infinite width, the TextBlock stops wrapping the text.

In the WhatSizeWithBindings and WhatSizeWithBindingConverter programs you saw how a
horizontal StackPanel can effectively concatenate TextBlock elements, one of which has a binding on
its Text property. But what if you wanted to use this same technique with a paragraph of wrapped
text? What if you wanted part of the text of this paragraph to be a result of a binding? You can’t do it
with a horizontal StackPanel because the text will never wrap. You can’t do it with a Run element of a
TextBlock because the Text property of Run is not backed by a dependency property. The solution, of
course, is to set that item from code. Another solution involves RichTextBlock, as you’ll see in Chapter
16, “Rich Text.”

A horizontal StackPanel can’t impose text wrapping on child TextBlock elements, but a vertical
StackPanel can. A vertical StackPanel has a finite width, so it’s an ideal host for TextBlock elements that
wrap text, as you’ll see next.

Making an E-Book

A TextBlock item that goes into a vertical StackPanel can have its TextWrapping property set to Wrap,
which means that it can actually be a whole paragraph rather than just a word or two. Image elements
can also go into this same StackPanel, and the result can be a rudimentary illustrated e-book.

On the famous Project Gutenberg website, I found an illustrated version of Beatrix Potter’s classic
children’s book The Tale of Tom Kitten (http://www.gutenberg.org/ebooks/14837), so I created a Visual
Studio project named TheTaleOfTomKitten and I made a folder in that project called Images. From
Project Gutenberg’s HTML version of the book, it was easy to download all the illustrations in the

http://www.gutenberg.org/ebooks/14837

120	 PART 1  Elementals

form of JPEG files. These have names such as tomxx.jpg, where xx is the original page number of the
book where that illustration appeared. From within the Visual Studio project, I then added all 28 of
these JPEG files to the Images folder.

Most of the rest of the work involved the MainPage.xaml file. Each paragraph of the book became
a TextBlock, and these I interspersed with Image elements referencing the JPEG files in the Images
folder.

However, I felt it necessary to deviate somewhat from the ordering of the text and images in
Project Gutenberg’s HTML file. A PDF of the original edition of The Tale of Tom Kitten on the Internet
Archive site (http://archive.org/details/taleoftomkitten00pottuoft) reveals how Miss Potter’s illustrations
are associated with the text of the book. There are two patterns:

1.	 Text appears on the verso (left-hand, even-numbered) page with an accompanying illustration
on the recto (right-hand, odd-numbered) page.

2.	 Text appears on the recto page with an accompanying illustration on the verso page.

Adapting this paginated book to a continuous format required altering the order of the text and
image in this second case so that the text appears before the accompanying illustration. That’s why
you’ll see some page swaps in the XAML file.

Given the very many TextBlock and Image elements, styles seemed almost mandatory:

Project: TheTaleOfTomKitten | File: MainPage.xaml (excerpt)

<Page.Resources>
 <Style x:Key="commonTextStyle" TargetType="TextBlock">
 <Setter Property="FontFamily" Value="Century Schoolbook" />
 <Setter Property="FontSize" Value="36" />
 <Setter Property="Foreground" Value="Black" />
 <Setter Property="Margin" Value="0 12" />
 </Style>

 <Style x:Key="paragraphTextStyle" TargetType="TextBlock"
 BasedOn="{StaticResource commonTextStyle}">
 <Setter Property="TextWrapping" Value="Wrap" />
 </Style>

 <Style x:Key="frontMatterTextStyle" TargetType="TextBlock"
 BasedOn="{StaticResource commonTextStyle}">
 <Setter Property="TextAlignment" Value="Center" />
 </Style>

 <Style x:Key="imageStyle" TargetType="Image">
 <Setter Property="Stretch" Value="None" />
 <Setter Property="HorizontalAlignment" Value="Center" />
 </Style>
</Page.Resources>

http://archive.org/details/taleoftomkitten00pottuoft

	 CHAPTER 4  Presentation with Panels	 121

Notice the Margin value that provides a little spacing between the paragraphs. Each TextBlock
element references either paragraphTextStyle (for the actual paragraphs of the book) or
frontMatterTextStyle (for all the titles and other information that appears in the front of the book).
I could have made the style for the Image element an implicit style by simply removing the x:Key
attribute and removing the Style attributes from the Image elements.

Many of the TextBlock elements that comprise the front matter have various local FontSize settings.
Books generally are printed with black ink on white pages, so I hard-coded the Foreground of the
TextBlock to black and set the Background of the Grid to white. To restrict the text to reasonable line
lengths, the StackPanel is given a MaxWidth of 640 and centered within the ScrollViewer. Here’s a little
excerpt of the alternating TextBlock elements and Image elements:

Project: TheTaleOfTomKitten | File: MainPage.xaml (excerpt)

<Grid Background="White">
 <ScrollViewer>
 <StackPanel MaxWidth="640"
 HorizontalAlignment="Center">
 ...
 <!-- pg. 38 -->
 <TextBlock Style="{StaticResource paragraphTextStyle}">
   Mittens laughed so that she fell off the
 wall. Moppet and Tom descended after her; the pinafores
 and all the rest of Tom's clothes came off on the way down.
 </TextBlock>

 <TextBlock Style="{StaticResource paragraphTextStyle}">
   "Come! Mr. Drake Puddle-Duck," said Moppet
 — "Come and help us to dress him! Come and button up Tom!"
 </TextBlock>

 <Image Source="Images/tom39.jpg" Style="{StaticResource imageStyle}" />

 <!-- pg. 41 -->
 <TextBlock Style="{StaticResource paragraphTextStyle}">
   Mr. Drake Puddle-Duck advanced in a slow
 sideways manner, and picked up the various articles.
 </TextBlock>

 <Image Source="Images/tom40.jpg" Style="{StaticResource imageStyle}" />
 ...
 </StackPanel>
 </ScrollViewer>
</Grid>

The two   characters at the beginning of each paragraph are em-spaces. These provide
a first-line indentation, which, unfortunately, is not provided by the TextBlock class. (This feature is
provided by RichTextBlock, as you’ll see in Chapter 16.)

122	 PART 1  Elementals

You can read this book in either landscape or portrait mode:

Fancier StackPanel Items

I mentioned earlier I’d be showing you a program that displays all 141 available Windows Runtime
colors with the colors as well as their names and RGB values. My first example is called ColorList1, but
let’s begin with the screen shot of the completed program so that you can see the goal:

	 CHAPTER 4  Presentation with Panels	 123

This program contains a total of 283 StackPanel elements. Each of the 141 colors gets a pair: A
vertical StackPanel is parent to the two TextBlock elements, and a horizontal StackPanel is parent to a
Rectangle and the vertical StackPanel. All the horizontal StackPanel elements are then children of the
main vertical StackPanel in a ScrollViewer. The XAML file is responsible for centering that StackPanel:

Project: ColorList1 | File: MainPage.xaml (excerpt)

<Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <ScrollViewer>
 <StackPanel Name="stackPanel"
 HorizontalAlignment="Center" />
 </ScrollViewer>
</Grid>

Although the StackPanel is aligned in the center of the ScrollViewer (and is as wide as its widest child),
the ScrollViewer occupies the entire width of the page. Any visible sliders or scrollbars appear on the
far right of the page. Alternatively, you can put the HorizontalAlignment setting on the ScrollViewer,
in which case the contents will still be the center but the ScrollViewer will be only as wide as the
StackPanel.

While enumerating through the static properties of the Colors class, the constructor in the
code-behind file builds the nested StackPanel elements for each item:

Project: ColorList1 | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 public MainPage()
 {
 this.InitializeComponent();

 IEnumerable<PropertyInfo> properties = typeof(Colors).GetTypeInfo().DeclaredProperties;

 foreach (PropertyInfo property in properties)
 {
 Color clr = (Color)property.GetValue(null);

 StackPanel vertStackPanel = new StackPanel
 {
 VerticalAlignment = VerticalAlignment.Center
 };

 TextBlock txtblkName = new TextBlock
 {
 Text = property.Name,
 FontSize = 24
 };
 vertStackPanel.Children.Add(txtblkName);

 TextBlock txtblkRgb = new TextBlock
 {
 Text = String.Format("{0:X2}-{1:X2}-{2:X2}-{3:X2}",
 clr.A, clr.R, clr.G, clr.B),
 FontSize = 18
 };
 vertStackPanel.Children.Add(txtblkRgb);

124	 PART 1  Elementals

 StackPanel horzStackPanel = new StackPanel
 {
 Orientation = Orientation.Horizontal
 };

 Rectangle rectangle = new Rectangle
 {
 Width = 72,
 Height = 72,
 Fill = new SolidColorBrush(clr),
 Margin = new Thickness(6)
 };
 horzStackPanel.Children.Add(rectangle);
 horzStackPanel.Children.Add(vertStackPanel);
 stackPanel.Children.Add(horzStackPanel);
 }
 }
}

Now, there’s nothing really wrong with this code, except that there are numerous ways to do it
better, and by “better” I don’t mean faster or more efficient but cleaner and more elegant and—most
important—easier to maintain and modify.

Let’s look at a better solution, but at the same time be aware that I won’t be finished with this
example until Chapter 11, where you’ll see not only a better way of doing it, but the best way of doing it.

Deriving from UserControl

The key to making ColorList1 better is expressing those color items—the nested StackPanel and
TextBlock and Rectangle—in XAML. Just offhand, this doesn’t seem possible. We can’t put this XAML
in the MainPage.xaml file because we can’t tell XAML to make 141 instances of the item unless we
actually paste in 141 copies, and I suspect we’re all agreed that would be the worst way to do it.

The ColorList2 program shows one common approach. After creating the ColorList2 project, I
right-clicked the project name in the Solution Explorer and selected Add and New Item. In the Add
New Item dialog box, I chose User Control and gave it a name of ColorItem.xaml. This process creates
a pair of files: ColorItem.xaml accompanied by a code-behind file ColorItem.xaml.cs.

The ColorItem.xaml.cs file created by Visual Studio defines a ColorItem class in the ColorList2
namespace that derives from UserControl:

namespace ColorList2
{
 public sealed partial class ColorItem : UserControl
 {
 public ColorItem()
 {
 this.InitializeComponent();
 }
 }
}

	 CHAPTER 4  Presentation with Panels	 125

The ColorItem.xaml file created by Visual Studio says the same thing in XAML:

<UserControl
 x:Class="ColorList2.ColorItem"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="using:ColorList2"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d"
 d:DesignHeight="300"
 d:DesignWidth="400">

 <Grid>

 </Grid>
</UserControl>

You’ve actually already seen the UserControl class before because Page derives from UserControl.
The “user” refers not to the end user of your application but to you, the programmer. Deriving from
UserControl is the easiest way for you (the programmer) to make a custom control because you can
define the visuals of the control in this XAML file. UserControl defines a property named Content,
which is also the class’s content property, so anything you add within the UserControl tags is set to
this Content property.

Don’t worry about the d:DesignHeight and d:DesignWidth properties in the ColorItem.xaml file.
Those are for Microsoft Expression Blend. The actual size of this control depends on its contents.

The next step is to define the visuals of the color item in this ColorItem.xaml file:

Project: ColorList2 | File: ColorItem.xaml (excerpt)

<UserControl
 x:Class="ColorList2.ColorItem" ... >

 <Grid>
 <StackPanel Orientation="Horizontal">
 <Rectangle Name="rectangle"
 Width="72"
 Height="72"
 Margin="6" />

 <StackPanel VerticalAlignment="Center">

 <TextBlock Name="txtblkName"
 FontSize="24" />

 <TextBlock Name="txtblkRgb"
 FontSize="18" />
 </StackPanel>
 </StackPanel>
 </Grid>
</UserControl>

126	 PART 1  Elementals

It’s the same element hierarchy as defined in code in ColorList1, but now it’s actually readable.
The Rectangle and the two TextBlock elements all have names, so they can be referenced in the
code-behind file:

Project: ColorList2 | File: ColorItem.xaml.cs (excerpt)

public sealed partial class ColorItem : UserControl
{
 public ColorItem(string name, Color clr)
 {
 this.InitializeComponent();

 rectangle.Fill = new SolidColorBrush(clr);
 txtblkName.Text = name;
 txtblkRgb.Text = String.Format("{0:X2}-{1:X2}-{2:X2}-{3:X2}",
 clr.A, clr.R, clr.G, clr.B);
 }
}

I’ve redefined the constructor to accept a color name and a Color value as arguments. It uses those
arguments to set the appropriate properties of the Rectangle and two TextBlock elements.

Let me warn you that defining a parameterized constructor in a UserControl derivative is extremely
unorthodox. A much better approach is to define properties instead, but I don’t want to do that right
now because these properties should really be dependency properties, and that’s too involved at the
moment.

Without a parameterless constructor, this ColorItem class cannot be instantiated in XAML. But
that’s OK for this program because I’m not going to try instantiating it in XAML. The MainPage
.xaml file for the ColorList2 project looks the same as the one for ColorList1. What’s different is the
simplicity of the code-behind file:

Project: ColorList2 | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 public MainPage()
 {
 this.InitializeComponent();

 IEnumerable<PropertyInfo> properties = typeof(Colors).GetTypeInfo().DeclaredProperties;

 foreach (PropertyInfo property in properties)
 {
 Color clr = (Color)property.GetValue(null);
 ColorItem clrItem = new ColorItem(property.Name, clr);
 stackPanel.Children.Add(clrItem);
 }
 }
}

Each ColorItem is instantiated with a name and Color and then added to the StackPanel.

	 CHAPTER 4  Presentation with Panels	 127

Creating Windows Runtime Libraries

Let’s create another version of this program, but this time the ColorItem class will be in a library that
can be shared with other projects.

You can create a Visual Studio solution containing only a library project, but it’s more common to
add a library project to the solution of an existing application project. As you’re developing the code
in the library, you want to test it, and it really helps to have an application project in the same solution
for that purpose. After developing a library in conjunction with an application, you can then share
that library later if desired.

So let’s create a new application project named ColorList3. In the Solution Explorer, add a library
project to the solution by right-clicking the solution name and selecting Add and New Project. (Or
pick Add New Project from the File menu.) In the Add New Project dialog box, at the left select Visual
C# and the option for creating a new Windows 8 project. From the list of templates, select Class
Library.

Generally, a library has a multilevel name separated by periods. This name also becomes the
default namespace for that project. The library name usually begins with a company name (or its
equivalent), so for this example I wanted to choose a library name of Petzold.Windows8.Controls.
However, I had problems with a multileveled assembly name, so I left out the periods and used
PetzoldWindow8Controls instead, and then later I changed the namespace to Petzold.Windows8
.Controls.

In a new library, Visual Studio automatically creates a file named Class1.cs, but you can delete that.
Now right-click the library project name and select Add and New Item, and in the Add New Item
dialog box, select User Control and give it a name of ColorItem. I decided to enhance the visuals of
this ColorItem a little beyond the one you’ve already seen:

Solution: ColorList3 | Project: PetzoldWindows8Controls | File: ColorItem.xaml (excerpt)

<UserControl ... >
 <Grid>
 <Border BorderBrush="{StaticResource ApplicationForegroundThemeBrush}"
 BorderThickness="1"
 Width="336"
 Margin="6">
 <StackPanel Orientation="Horizontal">
 <Rectangle Name="rectangle"
 Width="72"
 Height="72"
 Margin="6" />

 <StackPanel VerticalAlignment="Center">

 <TextBlock Name="txtblkName"
 FontSize="24" />

 <TextBlock Name="txtblkRgb"
 FontSize="18" />
 </StackPanel>

128	 PART 1  Elementals

 </StackPanel>
 </Border>
 </Grid>
</UserControl>

Notice that I’ve given it a Border with an explicit Width property and a Margin. I chose this width
empirically based on the longest color name (LightGoldenrodYellow). Notice also that the BorderBrush
is set to a predefined identifier, which will be black with a light theme and white with a dark theme.
Themes are set on applications rather than libraries—indeed, a library has no App class to set a
theme—so this brush will be based on the theme of the application that uses ColorItem.

We still haven’t touched the ColorList3 application project. Despite the fact that they’re in
the same solution, this application project will need a reference to the library, so right-click the
References item under the ColorList3 project and select Add Reference. In the Reference Manager
dialog box, at the left select Solution (indicating you want an assembly in the same solution), click
PetzoldWindows8Controls, and click OK.

There is a distinct advantage to having both these projects in the same solution: Whenever you
build ColorList3, Visual Studio will also rebuild the PetzoldWindows8Controls library if it’s not up to
date.

The MainPage.xaml file in ColorList3 is the same as in the previous two projects. The code-behind
file needs a using directive for the namespace of the library, but otherwise it’s the same as ColorList2:

Project: ColorList3 | File: MainPage.xaml.cs

using System.Collections.Generic;
using System.Reflection;
using Windows.UI;
using Windows.UI.Xaml.Controls;
using Petzold.Windows8.Controls;

namespace ColorList3
{
 public sealed partial class MainPage : Page
 {
 public MainPage()
 {
 this.InitializeComponent();

 IEnumerable<PropertyInfo> properties =
 typeof(Colors).GetTypeInfo().DeclaredProperties;

 foreach (PropertyInfo property in properties)
 {
 Color clr = (Color)property.GetValue(null);
 ColorItem clrItem = new ColorItem(property.Name, clr);
 stackPanel.Children.Add(clrItem);
 }
 }
 }
}

	 CHAPTER 4  Presentation with Panels	 129

Here’s the result:

When creating the Petzold.Windows8.Controls library, I indicated that you should choose Class
Library from the Add New Project dialog box. There is another option for creating a library labeled
Windows Runtime Component. For this particular example, it doesn’t matter which one you choose.
In fact, you can right-click the library project name, select Properties, and in the Application screen
change the Output type from Class Library to Windows Runtime Component. The ColorList3 program
will run the same.

The big difference is this: The library you create by selecting Class Library can be accessed only
from other C# and Visual Basic applications. A Windows Runtime Component can additionally be ac-
cessed from C++ and JavaScript. It is the Windows Runtime Component that allows language interop-
erability for Windows 8 applications.

Consequently, a Windows Runtime Component has some restrictions that a regular Class Library
does not. Public classes must be sealed, for example. If you remove the sealed keyword from the
definition of the ColorItem control, that class cannot be part of a Windows Runtime Component. The
other major rules involve structures—you can’t have any public members that are not fields—and the
restriction of data types passing over the API to Windows Runtime types.

The C++ version of StackPanelWithScrolling includes a Windows Runtime Component named
ReflectionHelper written in C# that simplifies the use of reflection by the C++ programs. Chapter 15,
“Going Native,” shows the opposite approach: a Windows Runtime Component written in C++ that
gives C# programs access to DirectX classes.

130	 PART 1  Elementals

The Wrap Alternative

Now let’s use that PetzoldWindows8Controls library in another project. There are three ways to do it:

Method 1: Add a new application project to the same solution as the existing library: the ColorList3
solution, in this example. This is the easiest approach, and it certainly makes sense if the two
applications are related some way.

Instead, I’m going to use one of the other two methods. These two methods both involve creating
a new solution and application project, which I’ll call ColorWrap. This project needs a reference to the
PetzoldWindows8Controls library.

Method 2: Right-click the References item in the ColorWrap project, and select Add Reference.
In the left column of the Reference Manager, select Browse, and then click the Browse but-
ton in the lower-right corner. This will allow you to browse to the directory location where
the PetzoldWindows8Controls.dll file is located (which is the bin/Debug directory of the
PetzoldWindows8Controls project in the ColorList3 solution), and you can select that DLL.

The disadvantage to this method is that you’re assuming that the library is complete and finished
and that you won’t need to make any changes. You’re referencing a DLL rather than the project
with its source code. However, in my experience the really big disadvantage to this method is that it
doesn’t work quite right with the current release of Windows 8 when there are XAML files involved.

That leaves us with:

Method 3: In the ColorWrap solution, right-click the solution name and select Add and Existing
Project. The existing project you want to add is the library. In the Add Existing Project dialog box,
navigate to the PetzoldWindows8Controls.csproj file. This is the C# project file maintained by Visual
Studio in the ColorList3 solution. Select that. The library project is not copied! Instead, only a refer-
ence is created to that library project. Regardless, Visual Studio can still determine if the library needs
to be rebuilt, and it performs that rebuild if necessary.

Now the PetzoldWindows8Controls project is part of the ColorWrap solution, but the ColorWrap
application project still needs a reference to the library. Right-click the References section under the
ColorWrap project and select the library from the solution, just as you did in ColorList3.

It could be that you have two instances of Visual Studio running, perhaps with the ColorList3 and
ColorWrap solutions loaded, both of which let you make changes to the PetzoldWindows8Controls
library. That’s generally OK as long as you save or compile after making changes. If the same file is
open in both instances of Visual Studio and you make changes to that file, the other instance of Visual
Studio will notify you of changes when that file is saved to disk.

With those preliminaries out of the way, let’s focus on the ColorWrap program, which demonstrates
how to display these colors with a VariableSizedWrapGrid panel. Despite the name of this panel, it really
wants all the items to be the same size. That’s why I added the explicit Width to the Border in ColorItem.

Like StackPanel, VariableSizedWrapGrid has an Orientation property and the default is
Vertical. The first items in the Children collection are displayed in a column. The difference is that

	 CHAPTER 4  Presentation with Panels	 131

VariableSizedWrapGrid will use multiple columns, just like the Windows 8 start screen. This means that
the default VariableSizedWrapGrid must be horizontally scrolled, so ScrollViewer properties must be
set accordingly. Here’s the XAML file:

Project: ColorWrap | File: MainPage.xaml (excerpt)

<Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <ScrollViewer HorizontalScrollBarVisibility="Visible"
 VerticalScrollBarVisibility="Disabled">
 <VariableSizedWrapGrid Name="wrapPanel" />
 </ScrollViewer>
</Grid>

The code-behind file is similar to the previous program except that now it puts the items into
wrapPanel:

Project: ColorWrap | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 public MainPage()
 {
 this.InitializeComponent();

 IEnumerable<PropertyInfo> properties = typeof(Colors).GetTypeInfo().DeclaredProperties;

 foreach (PropertyInfo property in properties)
 {
 Color clr = (Color)property.GetValue(null);
 ColorItem clrItem = new ColorItem(property.Name, clr);
 wrapPanel.Children.Add(clrItem);
 }
 }
}

And here it is:

Scrolling is horizontal.

132	 PART 1  Elementals

The Canvas and Attached Properties

The final Panel derivative I’ll discuss in this chapter is the Canvas. In one sense, Canvas is the most
“traditional” type of panel because it allows you to position elements at precise pixel locations.

But what property of the child element do you set to indicate the element’s position relative to the
Canvas? If you’ve scoured the properties defined by UIElement and FrameworkElement searching for
something named Location or Position or X or Y, you haven’t found it. Properties that let you specify
coordinate positions exist for drawing vector graphics but not for other elements. Such a property
doesn’t make much sense in the Windows Runtime because it is not applicable when you’re using a
Grid, a StackPanel, or a WrapPanel. We’ve managed to make it this far without specifying pixel loca-
tions for positioning elements, and the only time one is needed is when the element is a child of a
Canvas.

For that reason, Canvas itself defines the properties used to position elements relative to itself.
These are a very special type of property known as attached properties, and they are a subset of de-
pendency properties. Attached properties defined by one class (Canvas, in this example) are actually
set on instances of other classes (children of the Canvas, in this case). The objects on which you set an
attached property don’t need to know what that property does or where it came from.

Let’s see how this works. The TextOnCanvas project has a XAML file that contains a Canvas within
the standard Grid. (You can alternatively replace the Grid with the Canvas.) The Canvas contains three
TextBlock children:

Project: TextOnCanvas | File: MainPage.xaml (excerpt)

<Page
 x:Class="TextOnCanvas.MainPage"
 ...
 FontSize="48">

 <Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <Canvas>
 <TextBlock Text="Text on Canvas at (0, 0)"
 Canvas.Left="0"
 Canvas.Top="0" />

 <TextBlock Text="Text on Canvas at (200, 100)"
 Canvas.Left="200"
 Canvas.Top="100" />

 <TextBlock Text="Text on Canvas at (400, 200)"
 Canvas.Left="400"
 Canvas.Top="200" />
 </Canvas>
 </Grid>
</Page>

	 CHAPTER 4  Presentation with Panels	 133

Here’s the (rather unexciting) result:

Look at that markup again, and take special note of the strange syntax:

<TextBlock Text="Text on Canvas at (200, 100)"
 Canvas.Left="200"
 Canvas.Top="100" />

Judging from their names, the Canvas.Left and Canvas.Top attributes appear to be defined by
the Canvas class, and yet they are set on the children of the Canvas to indicate their positions.
XAML attribute names identified with both class and property names like this are always attached
properties.

The funny thing is, Canvas actually doesn’t define any properties named Left and Top! It defines
properties and methods with similar names but not those names exactly.

The nature of these attached properties might become a little clearer by examining how they are
set in code. The XAML file for the TapAndShowPoint program contains only a named Canvas in the
standard Grid:

Project: TapAndShowPoint | File: MainPage.xaml (excerpt)

<Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <Canvas Name="canvas" />
</Grid>

Everything else is the responsibility of the code-behind file. It overrides the OnTapped method to
create a dot (an Ellipse element actually) and a TextBlock, both of which it adds to the Canvas at the
point where the screen was tapped:

Project: TapAndShowPoint | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 public MainPage()
 {

134	 PART 1  Elementals

 this.InitializeComponent();
 }

 protected override void OnTapped(TappedRoutedEventArgs args)
 {
 Point pt = args.GetPosition(this);

 // Create dot
 Ellipse ellipse = new Ellipse
 {
 Width = 3,
 Height = 3,
 Fill = this.Foreground
 };

 Canvas.SetLeft(ellipse, pt.X);
 Canvas.SetTop(ellipse, pt.Y);
 canvas.Children.Add(ellipse);

 // Create text
 TextBlock txtblk = new TextBlock
 {
 Text = String.Format("({0})", pt),
 FontSize = 24,
 };

 Canvas.SetLeft(txtblk, pt.X);
 Canvas.SetTop(txtblk, pt.Y);
 canvas.Children.Add(txtblk);

 args.Handled = true;
 base.OnTapped(args);
 }
}

As you tap the screen, the dots and text appear at the tap points:

	 CHAPTER 4  Presentation with Panels	 135

Here’s how the position of the dot is specified in code as it’s added to the Children collection of the
Canvas:

Canvas.SetLeft(ellipse, pt.X);
Canvas.SetTop(ellipse, pt.Y);
canvas.Children.Add(ellipse);

The order doesn’t matter: You could add the element to the Canvas first, and then set its position.
The Canvas.SetLeft and Canvas.SetTop static methods play the same role here as the Canvas.Left and
Canvas.Top attributes in XAML. They let you specify a coordinate point where a particular element
is to be positioned. (However, there’s a little flaw in the approach I’ve used to position the dots. This
flaw becomes evident if you make the Ellipse a little larger. The program should really be putting the
center of the dot at the tapped point, and instead the Canvas.SetLeft and Canvas.SetTop calls I’ve
used position the upper-left corner of the Ellipse there. If you want the center of the Ellipse at the
point pt, you’ll want to subtract half its width from pt.X and half its height from pt.Y.)

I mentioned that Canvas doesn’t define Left and Top properties specifically. Instead, Canvas defines
static SetLeft and SetTop methods as well as static properties of type DependencyProperty. Here’s how
the two DependencyProperty objects might be defined if the Canvas class were written in C#:

public static DependencyProperty LeftProperty { get; }
public static DependencyProperty TopProperty { get; }

As you’ll see in a later chapter, these are special types of dependency properties in that they can be
set on elements other than Canvas.

Let me show you something interesting. The TapAndShowPoint program calls the static
Canvas.SetLeft and Canvas.SetTop methods like this:

Canvas.SetLeft(ellipse, pt.X);
Canvas.SetTop(ellipse, pt.Y);

An alternative approach—just as legal, just as valid, and 100 percent equivalent—involves calling Set-
Value on the child element and referencing the static DependencyProperty objects defined by Canvas:

ellipse.SetValue(Canvas.LeftProperty, pt.X);
ellipse.SetValue(Canvas.TopProperty, pt.Y);

These statements are exactly equivalent to the Canvas.SetLeft and Canvas.SetTop calls, and it doesn’t
matter which form you use.

You’ve seen that SetValue method before. SetValue is defined by DependencyObject and inherited
by very many classes in the Windows Runtime. A property like FontSize is actually defined in terms of
the static dependency property that becomes an argument to this same SetValue method:

public double FontSize
{
 set { SetValue(FontSizeProperty, value); }
 get { return (double)GetValue(FontSizeProperty); }
}

136	 PART 1  Elementals

 In fact, although I have never seen the internal source code of the Canvas class, I can practically
guarantee you that the SetLeft and SetTop static methods in Canvas are defined with code that’s
equivalent to this C# syntax:

public static void SetLeft(DependencyObject element, double value)
{
 element.SetValue(LeftProperty, value);
}
public static void SetTop(DependencyObject element, double value)
{
 element.SetValue(TopProperty, value);
}

These methods show very clearly how the dependency property is actually being set on the child
element rather than the Canvas.

Canvas also defines GetLeft and GetTop methods, defined in code equivalent to this:

public static double GetLeft(DependencyObject element)
{
 return (double)element.GetValue(LeftProperty);
}
public static double GetTop(DependencyObject element)
{
 return (double)element.GetValue(TopProperty);
}

The Canvas class uses these methods internally to obtain the left and top settings on each of its
children so that it can position them during the layout process.

The static SetLeft, SetTop, GetLeft, and GetTop methods suggest that the dependency property
system involves a dictionary of sorts. The SetValue method allows an attached property like Canvas
.LeftProperty to be stored in an element that has no knowledge of this property or its purpose. Can-
vas can later retrieve this property to determine where the child should appear relative to itself.

The Z-Index

Canvas has a third attached property that you can set in XAML with the attribute Canvas.ZIndex. The
“Z” in ZIndex refers to a three-dimensional coordinate system, where the Z axis extends out of the
screen toward the user.

When sibling elements overlap, they are normally displayed in the order they appear in the visual
tree, which means that elements early in a panel’s Children collection can be covered by elements
later in the Children collection. For example, consider the following:

<Grid>
 <TextBlock Text="Blue Text" Foreground="Blue" FontSize="96" />
 <TextBlock Text="Red Text" Foreground="Red" FontSize="96" />
</Grid>

	 CHAPTER 4  Presentation with Panels	 137

The red text obscures part of the blue text.

You can override that behavior with the Canvas.ZIndex attached property, and the weird thing is
this: It works with all panels, and not just Canvas. To make the blue text appear on top of the red text,
give it a higher z-index:

<Grid>
 <TextBlock Text="Blue Text" Foreground="Blue" FontSize="96" Canvas.ZIndex="1" />
 <TextBlock Text="Red Text" Foreground="Red" FontSize="96" Canvas.ZIndex="0" />
</Grid>

Canvas Weirdness

Much of what I’ve described about layout earlier in this chapter doesn’t apply to the Canvas. Layout
within a Canvas is always child-driven. The Canvas always offers its children an infinite size, which
means that each child sets a natural size for itself and that’s the only space the child occupies.
HorizontalAlignment and VerticalAlignment settings have no effect on a child of a Canvas. Likewise,
the Stretch property of Image has no effect when the Image is a child of a Canvas: Image always
displays the bitmap in its pixel size. Rectangle and Ellipse shrink to nothing in a Canvas unless given an
explicit width and height.

Although HorizontalAlignment and VerticalAlignment have no effect on a child of the Canvas,
they do have an effect when set on the Canvas itself. With other panels, when you set the alignment
properties to something other than Stretch, the panel becomes as small as possible while still encom-
passing its children. The Canvas, however, is different. Set HorizontalAlignment and VerticalAlignment
to values other than Stretch, and the Canvas shrinks to nothing regardless of its children.

Even when the Canvas shrinks down to a zero size, the display of its children is not affected.
Conceptually, the Canvas is more like a reference point than a container, and the size of the children
of a Canvas are ignored in layout.

You can use this characteristic of the Canvas to your advantage. For example, suppose you try to
display a TextBlock in a Grid that is obviously too small for it:

<Grid Width="200" Height="100">
 <TextBlock Text="Text in a Small Grid" FontSize="144" />
</Grid>

The TextBlock is clipped to the dimensions of the Grid. You could make the Grid larger of course, but
you might be stuck with this Grid size, perhaps because of other child elements. Still, you want the
TextBlock to be aligned with these other elements without being clipped to the Grid.

138	 PART 1  Elementals

The extremely simple solution is to put a Canvas in the Grid and put the TextBlock in that Canvas:

<Grid Width="200" Height="100">
 <Canvas>
 <TextBlock Text="Text in a Small Grid" FontSize="144" />
 </Canvas>
</Grid>

Even though the Canvas is now clipped to the size of the Grid, the TextBlock is not. The TextBlock is
still where you want it—aligned with the upper-left corner of the Grid—but it’s now displayed without
any clipping. The TextBlock essentially exists outside of normal layout.

It’s a very simple technique that can be very useful when you need it.

		 139

C H A P T E R 5

Control Interaction

Early on in this book I made a distinction between classes that derive from FrameworkElement
and those that derive from Control. I’ve tended to refer to FrameworkElement derivatives (such

as TextBlock and Image) as “elements” to preserve this distinction, but a deeper explication is now
required.

The title of this chapter might suggest that elements are for presentation and controls are for
interaction, but that’s not necessarily so. It is the UIElement class that defines all the user-input events
for touch, mouse, stylus, and keyboard, which means that elements as well as controls can interact
with the user in very sophisticated ways.

Nor are elements deficient in layout, styling, or data binding capabilities. It’s the
FrameworkElement class that defines layout properties such as Width, Height, HorizontalAlignment,
VerticalAlignment, and Margin, as well as the Style property and the SetBinding method.

The Control Difference

Visually and functionally, FrameworkElement derivatives are primitives—atoms, so to speak—while
Control derivatives are assemblages of these primitives, or molecules in this analogy. A Button is
actually constructed from a Border and a TextBlock (in many cases). A Slider consists of a couple of
Rectangle elements with a Thumb, which itself is a Control probably built from a Rectangle. Anything
that has visual content beyond text, a bitmap, or vector graphics is almost certainly a Control
derivative.

Consequently, one of the most important properties defined by Control is called Template. As I’ll
demonstrate in Chapter 11, “The Three Templates,” this property allows you to completely redefine
the appearance of a control by defining a visual tree of your own invention. It makes sense to visually
redefine a Button because (for example) you might want it to be round rather than rectangular
because you want to put it on an application bar. It makes no sense to visually redefine a TextBlock or
Image because there’s nothing you can do with it beyond the text or bitmap itself. If you want to add
something to a TextBlock or Image, you’re defining a Control because you’re constructing a visual tree
that includes the element primitive.

140	 PART 1  Elementals

Although you can derive a custom class from FrameworkElement, there is little you can do with the
result. You can’t give it any visuals. But when you derive from Control, you generally give your custom
control a default visual appearance by defining a visual tree in XAML.

Control defines a bunch of properties that the Control class itself does not need. These are for
use by classes that derive from Control, and consist of properties mostly associated with TextBlock
(CharacterSpacing, FontFamily, FontSize, FontStretch, FontStyle, FontWeight, and Foreground) and
Border (Background, BorderBrush, BorderThickness, and Padding). Not every Control derivative has text
or a border, but if you need those properties when creating a new control or creating a new template
for an existing control, they are conveniently provided. Control also provides two new properties
named HorizontalContentAlignment and VerticalContentAlignment for purposes of defining control
visuals.

A Control derivative often defines some new properties and events. Commonly, a Control
derivative will process user-input events from the pointer, mouse, stylus, and keyboard and will
convert that input into a higher-level event. For example, the ButtonBase class (from which all the
buttons derive) defines a Click event. The Slider defines a ValueChanged event indicating when its
Value property changes. The TextBox defines a TextChanged event indicating when its Text property
changes.

It turns out that in real life, Control derivatives really do interact more with users, so the title of this
chapter is accurate. For the convenience of working with user input, Control provides protected virtual
methods corresponding to all the user-input events defined by UIElement. For example, UIElement
defines the Tapped event, but Control defines the protected virtual method OnTapped. Control also
defines an IsEnabled property so that controls can avoid user input if input is not currently applicable,
and it defines an IsEnabledChanged event that is fired when the property changes. This is the only
public event actually defined by Control.

The idea of a control having “input focus” is still applicable in Windows 8. When a control has the
input focus, the user expects that particular control to get most keyboard events. (Of course, some
keyboard events, such as the Windows key, transcend input focus.) For this purpose, Control defines a
Focus method, as well as OnGotFocus and OnLostFocus virtual methods.

In connection with keyboard focus is the idea of being able to navigate among controls by using
the keyboard Tab key. Control provides for this by defining IsTabStop, TabIndex, and TabNavigation
properties.

Many Control derivatives are in the Windows.UI.Xaml.Controls namespace, but a few are in
the Windows.UI.Xaml.Controls.Primitives namespace. The latter namespace is generally reserved
for those controls that usually appear only as parts of other controls, but that’s a suggestion rather
than a restriction.

	 CHAPTER 5  Control Interaction	 141

Most Control derivatives derive directly from Control, but four important classes derive from
Control to define their own subcategories of controls. Here they are:

Object
 DependencyObject
 UIElement
 FrameworkElement
 Control
 ContentControl
 ItemsControl
 RangeBase
 UserControl

ContentControl—from which important classes like Button, ScrollViewer, and AppBar derive—
seemingly does little more than define a property named Content of type object. For a Button, for
example, this Content property is what you set to whatever you want to appear inside the Button.
Most often this is text or a bitmap, but you can also use a panel that contains other content.

It is interesting that the Content property of ContentControl is of type object rather than UIElement.
There’s a good reason for that. You can actually put pretty much any type of object you want as the
content of a Button, and you can supply a template (in the form of a visual tree) that tells the Button
how to display this content. This feature is not so much used for Button, but it’s used a great deal for
items in ItemsControl derivatives. I’ll show you how to define a content template in Chapter 11.

ItemsControl is the parent class to a bunch of controls that display collections of items. Here you’ll
find the familiar ListBox and ComboBox as well as the new Windows 8 controls FlipView, GridView, and
ListView. Again, Chapter 11.

There are a couple ways to create custom controls. The really simple way is by defining a Style for
the control, but more extensive visual changes require a template. In some cases you can derive from
an existing control to add some features to it, or you can derive from ContentControl or ItemsControl
if these controls provide features you need.

But one of the most common ways to create a custom control is by deriving from UserControl. This
is not the approach you’ll use if you want to market a custom control library, but it’s great for controls
that you use yourself within the context of an application.

The Slider for Ranges

In the Control class hierarchy shown above, the remaining important class is RangeBase, which has
three derivatives: ProgressBar, ScrollBar, and Slider.

Which of these is not like the others? Obviously ProgressBar, which exists in this hierarchy mainly
to inherit several properties from RangeBase: Minimum, Maximum, SmallChange, LargeChange, and
Value. In every RangeBase control, the Value property takes on values of type double ranging from
Minimum through Maximum. With the ScrollBar and Slider, the Value property changes when the user

142	 PART 1  Elementals

manipulates the control; with ProgressBar, the Value property is set programmatically to indicate the
progress of a lengthy operation.

ProgressBar has an indeterminate mode to display a row of dots that skirt across the screen, but
also available is ProgressRing, which displays a now familiar spinning circle of dots.

In the quarter-century evolution of Windows, the ScrollBar has slipped from its high perch in the
control hierarchy and is commonly seen today only in a ScrollViewer control. Try to instantiate the
Windows Runtime version of ScrollBar, and you won’t even see it. If you want to use ScrollBar, you’ll
have to supply a template for it. Like RangeBase, ScrollBar is defined in the Windows.UI.Xaml.Controls
.Primitives namespace, indicating that it’s not something application programmers normally use.

For virtually all needs that involve choosing from a range of values, ScrollBar has been replaced
with Slider, and with touch interfaces, Slider has become simpler than ever. In its default manifestation,
Slider has no arrows. It simply jumps to the value corresponding to the point where you touch the
Slider or drag your finger or mouse.

The Value property of the Slider can change either programmatically or through user
manipulation. To obtain a notification when the Value property changes, attach an event handler for
the ValueChanged event, such as shown in the SliderEvents project:

Project: SliderEvents | File: MainPage.xaml (excerpt)

<Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <StackPanel>
 <Slider ValueChanged="OnSliderValueChanged" />

 <TextBlock HorizontalAlignment="Center"
 FontSize="48" />

 <Slider ValueChanged="OnSliderValueChanged" />

 <TextBlock HorizontalAlignment="Center"
 FontSize="48" />
 </StackPanel>
</Grid>

Both Slider controls here share the same event handler. The idea behind this simple program is
that the current Value of each Slider is displayed by the TextBlock below it. This might be considered
somewhat challenging when you notice that nothing in this XAML file is assigned a name. However,
the event handler makes a few assumptions. It assumes that the parent to the Slider is a Panel, and the
next child in this Panel is a TextBlock:

Project: SliderEvents | File: MainPage.xaml.cs (excerpt)

void OnSliderValueChanged(object sender, RangeBaseValueChangedEventArgs args)
{
 Slider slider = sender as Slider;
 Panel parentPanel = slider.Parent as Panel;
 int childIndex = parentPanel.Children.IndexOf(slider);
 TextBlock txtblk = parentPanel.Children[childIndex + 1] as TextBlock;
 txtblk.Text = args.NewValue.ToString();
}

	 CHAPTER 5  Control Interaction	 143

This little bit of “trickery” merely demonstrates that there’s more than one way to access elements
in the visual tree. In the final step, the Text property of the TextBlock is assigned the NewValue
argument from the event arguments, converted to a string. Equally valid would be using the Value
property of the Slider:

txtblk.Text = slider.Value.ToString();

Although RangeBaseValueChangedEventArgs derives from RoutedEvent, this is not a routed
event. The event does not travel up the visual tree. The sender argument is always the Slider, and the
OriginalSource property of the event arguments is always null.

When you run the program, you’ll notice that the TextBlock elements initially display nothing. The
ValueChanged event is not fired until Value actually changes from its default value of zero.

As you touch a Slider or click it with a mouse, the value jumps to that position. You can then
sweep your finger or mouse pointer back and forth to change the value. As you manipulate the Slider
controls, you’ll see that they let you select values from 0 to 100, inclusive:

This default range is a result of the default values of the Minimum and Maximum properties, which
are 0 and 100, respectively. Although the Value property is a double, it takes on integral values as a
result of the default StepFrequency property, which is 1.

By default the Slider is oriented horizontally, but you can switch to vertical with the Orientation
property. The thickness of the Slider cannot be changed except by redefining the visuals with a
template. The total thickness of the control in layout includes a bit more space than the visuals imply.
In layout, the default height of a horizontal Slider is 60 pixels; the default width of a vertical Slider is 45
pixels. In use, these dimensions are adequate for touch purposes.

144	 PART 1  Elementals

If you press the Tab key while this program is running, you can change the keyboard input focus
from one Slider to another and then use the keyboard arrow keys to make the value go up or down.
Pressing Home and End shoots to the minimum and maximum values.

Some other variations are illustrated in the next project called SliderBindings, in which I’ve moved
all the updating logic to the XAML file. Three Slider controls are instantiated in a StackPanel and
alternated with TextBlock elements with bindings to the Value properties of each Slider. An implicit
style for the TextBlock is defined to reduce repetitive markup:

Project: SliderBindings | File: MainPage.xaml (excerpt)

<Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <Grid.Resources>
 <Style TargetType="TextBlock">
 <Setter Property="FontSize" Value="48" />
 <Setter Property="HorizontalAlignment" Value="Center" />
 </Style>
 </Grid.Resources>

 <StackPanel>
 <Slider Name="slider1" />

 <TextBlock Text="{Binding ElementName=slider1, Path=Value}" />

 <Slider Name="slider2"
 IsDirectionReversed="True"
 StepFrequency="0.01" />

 <TextBlock Text="{Binding ElementName=slider2, Path=Value}" />

 <Slider Name="slider3"
 Minimum="-1"
 Maximum="1"
 StepFrequency="0.01"
 SmallChange="0.01"
 LargeChange="0.1" />

 <TextBlock Text="{Binding ElementName=slider3, Path=Value}" />
 </StackPanel>
</Grid>

	 CHAPTER 5  Control Interaction	 145

Bindings obtain initial values and don’t wait for the first ValueChanged event to be fired. The
bindings then keep track of changing values resulting from user manipulation:

The markup for the second Slider sets the StepFrequency property to 0.01 and also sets
IsDirectionReversed to true so that the minimum value of 0 occurs when the thumb is positioned to
the far right. It’s rather rare to set IsDirectionReversed to true for horizontal sliders but more common
for vertical sliders. The default vertical slider has a minimum value when the slider is all the way down,
and for some purposes that should be a maximum value.

For that second Slider, however, the keyboard arrow keys change the value in increments of 1 rath-
er than the StepFrequency of 0.01. The keyboard interface is governed by the SmallChange property,
which by default is 1.

The third Slider has a range from –1 to 1. When the Slider is first displayed, the thumb is set
in the center at the default Value of 0. I’ve set both StepFrequency and SmallChange to 0.01, and
LargeChange to 0.1, but I’ve found no way to trigger the LargeChange jump with either the mouse or
keyboard.

The Slider class defines TickFrequency and TickPlacement properties to display tick marks
adjacent to the Slider. If the Background and Foreground properties of the Slider are set, the Slider
uses Foreground for the slider area associated with the minimum value and Background for the
area associated with the maximum value, but it switches to default colors when the Slider is being
manipulated or when the mouse hovers overhead.

As we begin creating more Slider controls, it becomes necessary to find a better way to lay them
out on the page. It’s time to get familiar with the Grid.

146	 PART 1  Elementals

The Grid

The Grid probably seems like a familiar friend at this point because it’s been in almost every program
in this book, but obviously we haven’t gotten to know it in any depth. Many of the programs in the
remainder of this book will use the Grid not in its single-cell mode but with actual rows and columns.

The Grid has a superficial resemblance to the HTML table, but it’s quite different. The Grid doesn’t
have any facility to define borders or margins for individual cells. It is strictly for layout purposes. Any
sprucing up for presentation must occur on the parent or children elements: You can put the Grid in a
Border, and Border elements can adorn the contents of the individual Grid cells.

The number of rows and columns in a Grid must be explicitly specified; the Grid cannot determine
this information by the number of children. Children of the Grid generally go in a particular cell, which
is an intersection of a row and column, but children can also span multiple rows and columns.

Although the numbers of rows and columns can be changed programmatically at run time, it’s
not often done. Much more common is to fix the number of desired rows and columns in the XAML
file. This is accomplished with objects of type RowDefinition and ColumnDefinition added to two
collections defined by Grid called RowDefinitions and ColumnDefinitions.

The size of each row and column can be defined in one of three ways:

■■ An explicit row height or column width in pixels

■■ Auto, meaning based on the size of the children

■■ Asterisk (or star), which allocates remaining space proportionally

In XAML, property-element syntax is used to fill the RowDefinitions and ColumnDefinitions
collections, so a typical Grid looks like this:

<Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="55" />
 <RowDefinition Height="*" />
 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition Width="10*" />
 <ColumnDefinition Width="20*" />
 <ColumnDefinition Width="Auto" />
 </Grid.ColumnDefinitions>

 <!-- Children go here -->

</Grid>

Notice that the Grid collection properties are named RowDefinitions and ColumnDefinitions (plural)
but they contain objects of type RowDefinition and ColumnDefinition (singular). You can omit the
RowDefinitions or ColumnDefinitions for a Grid that has only one row or one column.

	 CHAPTER 5  Control Interaction	 147

This particular Grid has three rows and four columns, and it shows the various ways that the size
of the rows and columns can be defined. A number by itself indicates a width (or height) in pixels.
Explicit row heights and column widths are not generally used as much as the other two options.

The word Auto means to let the child decide. The calculated height of the row (or width of the
column) is based on the maximum height (or width) of the children in that row (or column).

As in HTML, the asterisk (pronounced “star” in this context) directs the Grid to allocate the
available space. In this Grid, the height of the third row is calculated by subtracting the height of
the first and second rows from the total height of the Grid. For the columns, the second and third
columns are allocated the remaining space calculated by subtracting the widths of the first and fourth
columns from the total width of the Grid. The numbers before the asterisks indicate proportions, and
here they mean that the third column gets twice the width of the second column.

The star values are applicable only when the size of the Grid is parent-driven! For example,
suppose that this Grid is a child of a StackPanel with a vertical orientation. The StackPanel offers to the
Grid an unconstrained infinite height. How can the Grid allocate that infinite height to its middle row?
It cannot. The asterisk specification degenerates to Auto.

Similarly, if a Grid is a child of a Canvas and the Grid is not given an explicit Height and Width,
all the star specifications degenerate to Auto. The same thing happens to a Grid that does not have
default Stretch values of HorizontalAlignment and VerticalAlignment. In the Grid example shown
earlier, the second column might actually become wider than the third if that’s what the sizes of the
children in those columns dictate.

However, if you have no RowDefinition objects with a star specification, the height of the
Grid is child-driven. The Grid can go in a vertical StackPanel or Canvas or be given a non-default
VerticalAlignment without weirdness happening.

The Height property of RowDefinition and the Width property of ColumnDefinition are both of
type GridLength, a structure defined in Windows.UI.Xaml that lets you specify Auto or star sizes from
code. RowDefinition also defines MinHeight and MaxHeight properties, and ColumnDefinition defines
MinWidth and MaxWidth. These are all of type double and indicate minimum and maximum sizes
in pixels. You can obtain the actual sizes with the ActualHeight property of RowDefinition and the
ActualWidth property of ColumnDefinition.

Grid also defines four attached properties that you set on the children of a Grid: Grid.Row and Grid
.Column have default values of 0, and Grid.RowSpan and Grid.ColumnSpan have default values of 1.
This is how you indicate the cell in which a particular child resides and how many rows and columns it
spans. A cell can contain more than one element.

You can nest a Grid within a Grid or put other panels in Grid cells, but the nesting of panels could
degrade layout performance, so watch out if a deeply nested element is changing size based on an
animation or if children are frequently being added to or removed from Children collections. You
should probably try to avoid the layout of your page being recalculated at the video frame rate!

148	 PART 1  Elementals

In Chapter 3, “Basic Event Handling,” I presented a Windows 8 version of WHATSIZE, the first
program to appear in a magazine article about Windows programming. The third article about
Windows Programming to appear in a magazine was in the May 1987 issue of Microsoft Systems
Journal and featured a program called COLORSCR (“color scroll”). Here it is as it looked in that article
running under a beta version of Windows 2:

Manipulate the scrollbars to mix red, green, and blue values, and you’d see the result at the right.
(In those days, most graphics displays didn’t have full ranges of color, so dithering was used to
approximate colors not renderable by the device.) The value of each scrollbar is also displayed
beneath the scrollbar. The program performed a rather crude (and heavily arithmetic) attempt at
dynamic layout, even changing the width of the scrollbars when the window size changed.

This seems like an ideal program to demonstrate a simple Grid. Considering the six instances of
TextBlock and three instances of Slider required, the XAML file in the SimpleColorScroll project starts
off with two implicit styles:

Project: SimpleColorScroll | File: MainPage.xaml (excerpt)

<Page.Resources>
 <Style TargetType="TextBlock">
 <Setter Property="Text" Value="00" />
 <Setter Property="FontSize" Value="24" />
 <Setter Property="HorizontalAlignment" Value="Center" />
 <Setter Property="Margin" Value="0 12" />
 </Style>

 <Style TargetType="Slider">
 <Setter Property="Orientation" Value="Vertical" />
 <Setter Property="IsDirectionReversed" Value="True" />
 <Setter Property="Maximum" Value="255" />
 <Setter Property="HorizontalAlignment" Value="Center" />
 </Style>
</Page.Resources>

I’ve decided to display the current value of each Slider in hexadecimal, so the Style for the TextBlock
initializes the Text property to “00”, which is the hexadecimal value corresponding to the minimum
Slider position.

	 CHAPTER 5  Control Interaction	 149

The Grid begins by defining three rows (for each Slider and two accompanying TextBlock labels)
and four columns. Notice that the first three columns are all the same width but the fourth column is
three times as wide:

Project: SimpleColorScroll | File: MainPage.xaml (excerpt)

<Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="*" />
 <ColumnDefinition Width="*" />
 <ColumnDefinition Width="*" />
 <ColumnDefinition Width="3*" />
 </Grid.ColumnDefinitions>

 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="*" />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>

 ...

</Grid>

The remainder of the XAML file instantiates 10 children of the Grid. Each one has both Grid.Row
and Grid.Column attached properties set, although these aren’t necessary for values of 0. When
specifying attributes of Grid children, I tend to put these attached properties early but after at least
one attribute (such as a Name or Text) that provides a quick visual identification of the element:

Project: SimpleColorScroll | File: MainPage.xaml (excerpt)

<Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">

 ...

 <!-- Red -->
 <TextBlock Text="Red"
 Grid.Column="0"
 Grid.Row="0"
 Foreground="Red" />

 <Slider Name="redSlider"
 Grid.Column="0"
 Grid.Row="1"
 Foreground="Red"
 ValueChanged="OnSliderValueChanged" />

 <TextBlock Name="redValue"
 Grid.Column="0"
 Grid.Row="2"
 Foreground="Red" />

150	 PART 1  Elementals

 <!-- Green -->
 <TextBlock Text="Green"
 Grid.Column="1"
 Grid.Row="0"
 Foreground="Green" />

 <Slider Name="greenSlider"
 Grid.Column="1"
 Grid.Row="1"
 Foreground="Green"
 ValueChanged="OnSliderValueChanged" />

 <TextBlock Name="greenValue"
 Grid.Column="1"
 Grid.Row="2"
 Foreground="Green" />

 <!-- Blue -->
 <TextBlock Text="Blue"
 Grid.Column="2"
 Grid.Row="0"
 Foreground="Blue" />

 <Slider Name="blueSlider"
 Grid.Column="2"
 Grid.Row="1"
 Foreground="Blue"
 ValueChanged="OnSliderValueChanged" />

 <TextBlock Name="blueValue"
 Grid.Column="2"
 Grid.Row="2"
 Foreground="Blue" />

 <!-- Result -->
 <Rectangle Grid.Column="3"
 Grid.Row="0"
 Grid.RowSpan="3">
 <Rectangle.Fill>
 <SolidColorBrush x:Name="brushResult"
 Color="Black" />
 </Rectangle.Fill>
 </Rectangle>
</Grid>

Notice that all the TextBlock and Slider elements are given Foreground property assignments based on
what color they represent.

The Rectangle at the bottom has the Grid.RowSpan attached property set to 3, indicating that
it spans all three rows. The SolidColorBrush is set to Black, so that’s consistent with the three initial
Slider values. If you can’t get everything initialized correctly in the XAML file, the constructor of the
code-behind file (or the Loaded event) is usually the place to do it.

	 CHAPTER 5  Control Interaction	 151

All three Slider controls have the same handler for the ValueChanged event. That’s in the
code-behind file:

Project: SimpleColorScroll | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 public MainPage()
 {
 this.InitializeComponent();
 }

 void OnSliderValueChanged(object sender, RangeBaseValueChangedEventArgs args)
 {
 byte r = (byte)redSlider.Value;
 byte g = (byte)greenSlider.Value;
 byte b = (byte)blueSlider.Value;

 redValue.Text = r.ToString("X2");
 greenValue.Text = g.ToString("X2");
 blueValue.Text = b.ToString("X2");

 brushResult.Color = Color.FromArgb(255, r, g, b);
 }
}

The event handler could obtain the actual Slider firing the event by casting the sender argument
and obtain the new value from the RangeBaseValueChangedEventArgs object. But regardless of which
Slider actually changes value, the event handler needs to create a whole new Color value, and that
requires all three values. The only somewhat wasteful part of this code is setting all three text values
when only one is changing, but fixing that would require accessing the TextBlock associated with the
particular Slider firing the event.

Here’s one of 16,777,216 possible results:

152	 PART 1  Elementals

Orientation and Aspect Ratios

If you run SimpleColorScroll on a tablet and rotate it into portrait mode, the layout starts to look a
little funny, and even if you run it in landscape mode, a snap view might cause some of the text labels
to overlap. It might make sense to add some logic in the code-behind file that adjusts the layout
based on the orientation or aspect ratio of the display.

Adjusting the layout with this particular program becomes much easier if the single Grid is split
in two, one nested in the other. The inner Grid has three rows and three columns for the TextBlock
elements and Slider controls. The outer Grid has just two children: the inner Grid and the Rectangle. In
landscape mode, the outer Grid has two columns; in portrait mode, it has two rows.

The XAML file for the OrientableColorScroll project has the same Style definitions as
SimpleColorScroll. The outer Grid is shown here:

Project: OrientableColorScroll | File: MainPage.xaml (excerpt)

<Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}"
 SizeChanged="OnGridSizeChanged">

 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="*" />
 <ColumnDefinition x:Name="secondColDef" Width="*" />
 </Grid.ColumnDefinitions>

 <Grid.RowDefinitions>
 <RowDefinition Height="*" />
 <RowDefinition x:Name="secondRowDef" Height="0" />
 </Grid.RowDefinitions>

 <Grid Grid.Row="0"
 Grid.Column="0">

 ...

 </Grid>

 <!-- Result -->
 <Rectangle Name="rectangleResult"
 Grid.Column="1"
 Grid.Row="0">
 <Rectangle.Fill>
 <SolidColorBrush x:Name="brushResult"
 Color="Black" />
 </Rectangle.Fill>
 </Rectangle>
</Grid>

The outer Grid has its RowDefinitions and ColumnDefinitions collections initialized for either
contingency: two columns or two rows. In each collection, the second item has been given a name
so that it can be accessed from code. The second row has a height of zero, so the initial configuration
assumes a landscape mode.

	 CHAPTER 5  Control Interaction	 153

The inner Grid (containing the TextBlock elements and Slider controls) is always in either the first
column or first row:

<Grid Grid.Row="0"
 Grid.Column="0">

...

</Grid>

Setting Grid.Row and Grid.Column attributes on a Grid tag always looks a little peculiar to me. They
refer not to the rows and columns of this Grid but to the rows and columns of the parent Grid. The
default values of these attached properties are both zero, so these particular attribute settings aren’t
actually required.

The Rectangle is initially in the second column and first row:

<Rectangle Name="rectangleResult"
 Grid.Column="1"
 Grid.Row="0">
 ...
</Rectangle>

In this version of the program the Rectangle has a name, so these attached properties can be
changed from the code-behind file. This is done in the SizeChanged event handler set on the outer
Grid:

Project: OrientableColorScroll | File: MainPage.xaml.cs (excerpt)

void OnGridSizeChanged(object sender, SizeChangedEventArgs args)
{
 // Landscape mode
 if (args.NewSize.Width > args.NewSize.Height)
 {
 secondColDef.Width = new GridLength(1, GridUnitType.Star);
 secondRowDef.Height = new GridLength(0);

 Grid.SetColumn(rectangleResult, 1);
 Grid.SetRow(rectangleResult, 0);
 }
 // Portrait mode
 else
 {
 secondColDef.Width = new GridLength(0);
 secondRowDef.Height = new GridLength(1, GridUnitType.Star);

 Grid.SetColumn(rectangleResult, 0);
 Grid.SetRow(rectangleResult, 1);
 }
}

This code changes the second RowDefinition and ColumnDefinition in the outer Grid. These both
apply to the Rectangle, which has its column and row attached properties changed so that it finds
itself in the second column (for portrait mode) or second row (for landscape mode).

154	 PART 1  Elementals

Here’s the program running in a snap mode:

I’ll have more to say about adjusting to snap modes in Chapter 12, “Pages and Navigation.”

Slider and the Formatted String Converter

In both ColorScroll programs so far, the TextBlock labels at the bottom show the current values of the
Slider in hexadecimal. It’s not necessary to provide these values from the code-behind file. It could be
done with a data binding from the Slider to the TextBlock. The only thing that’s required is a binding
converter that can convert a double into a two-digit hexadecimal string.

It’s disturbing to discover that the FormattedStringConverter class I described in Chapter 4,
“Presentation with Panels,” in connection with the WhatSizeWithBindingConverter project will not
work in this case. You’re welcome to try it out, but you’ll discover (if you don’t already know) that
a hexadecimal formatting specification of “X2” can be used only with integral types and the Value
property of the Slider is a double.

However, in this case it might make more sense to write a very short ad hoc binding converter,
particularly when you realize it can be used for two purposes, as I’ll discuss next.

Tooltips and Conversions

As you manipulate the Slider controls in either ColorScroll program, you’ve probably noticed
something peculiar: The Slider has a built-in tooltip that shows the current value in a little box. That’s
a nice feature except that this tooltip shows the value in decimal but the program insists on displaying
the current value in hexadecimal.

	 CHAPTER 5  Control Interaction	 155

If you think it’s great for the Slider value to be displayed in both decimal and hexadecimal,
skip to the next section. If you’d prefer that the two values be consistent—and that they
both display the value in hexadecimal—you’ll be pleased to know that the Slider defines a
ThumbToolTipValueConverter property that lets you supply a class that performs the formatting
you want. This class must implement the IValueConverter interface, which is the same interface you
implement to write binding converters.

However, a converter class for the ThumbToolTipValueConverter property can’t be as sophisticated
as a converter class for a data binding because you don’t have the option of supplying a parameter
for the conversion. On the plus side, the converter class can be very simple and do only what is
required for the particular case.

The ColorScrollWithValueConverter project defines a converter dedicated to converting a double
to a two-character string indicating the value in hexadecimal. The name of this class is almost longer
than the actual code:

Project: ColorScrollWithValueConverter | File: DoubleToStringHexByteConverter.cs

using System;
using Windows.UI.Xaml.Data;

namespace ColorScrollWithValueConverter
{
 public class DoubleToStringHexByteConverter : IValueConverter
 {
 public object Convert(object value, Type targetType, object parameter, string language)
 {
 return ((int)(double)value).ToString("X2");
 }
 public object ConvertBack(object value, Type targetType, object parameter, string lang)
 {
 return value;
 }
 }
}

This converter is suitable not only for formatting the tooltip value, but also for a binding converter
used to display the value of the Slider in the TextBlock. The following variation of the ColorScroll
program shows how it’s done. (To keep things simple, this version doesn’t adjust for aspect ratio.) The
XAML file instantiates the converter in the Resources section:

Project: ColorScrollWithValueConverter | File: MainPage.xaml (excerpt)

<Page.Resources>
 <local:DoubleToStringHexByteConverter x:Key="hexConverter" />
 ...
</Page.Resources>

156	 PART 1  Elementals

Here’s the first set of TextBlock labels and Slider. The hexConverter resource is referenced both by a
simple StaticResource markup extension by the Slider, and by the Binding on the TextBlock, which I’ve
broken into three lines for easy readability:

Project: ColorScrollWithValueConverter | File: MainPage.xaml (excerpt)

<!-- Red -->
<TextBlock Text="Red"
 Grid.Column="0"
 Grid.Row="0"
 Foreground="Red" />

<Slider Name="redSlider"
 Grid.Column="0"
 Grid.Row="1"
 ThumbToolTipValueConverter="{StaticResource hexConverter}"
 Foreground="Red"
 ValueChanged="OnSliderValueChanged" />

<TextBlock Text="{Binding ElementName=redSlider,
 Path=Value,
 Converter={StaticResource hexConverter}}"
 Grid.Column="0"
 Grid.Row="2"
 Foreground="Red" />

Because the ValueChanged handler no longer needs to update the TextBlock labels, that code has
been removed, but the handler still needs to calculate a new color:

Project: ColorScrollWithValueConverter | File: MainPage.xaml.cs (excerpt)

void OnSliderValueChanged(object sender, RangeBaseValueChangedEventArgs args)
{
 byte r = (byte)redSlider.Value;
 byte g = (byte)greenSlider.Value;
 byte b = (byte)blueSlider.Value;

 brushResult.Color = Color.FromArgb(255, r, g, b);
}

It’s possible to remove the ThumbToolTipValueConverter from the individual Slider tags and move it
to the Slider style:

<Style TargetType="Slider">
 <Setter Property="Orientation" Value="Vertical" />
 <Setter Property="IsDirectionReversed" Value="True" />
 <Setter Property="Maximum" Value="255" />
 <Setter Property="HorizontalAlignment" Value="Center" />
 <Setter Property="ThumbToolTipValueConverter" Value="{StaticResource hexConverter}" />
</Style>

	 CHAPTER 5  Control Interaction	 157

Is it possible to go another step with the data bindings and eliminate the ValueChanged handler
entirely? That would surely be feasible if it were possible to establish bindings on the individual
properties of Color, like so:

<!-- Doesn't work! -->
<Rectangle Grid.Column="3"
 Grid.Row="0"
 Grid.RowSpan="3">
 <Rectangle.Fill>
 <SolidColorBrush>
 <SolidColorBrush.Color>
 <Color A="255"
 R="{Binding ElementName=redSlider, Path=Value}"
 G="{Binding ElementName=greenSlider, Path=Value}"
 B="{Binding ElementName=blueSlider, Path=Value}" />
 </SolidColorBrush.Color>
 </SolidColorBrush>
 </Rectangle.Fill>
</Rectangle>

The big problem with this markup is that binding targets need to be backed by dependency
properties, and the properties of Color are not. They can’t be, because dependency properties can
be implemented only in a class that derives from DependencyObject and Color isn’t a class at all. It’s a
structure.

The Color property of SolidColorBrush is backed by a dependency property, and that could be
the target of a data binding. However, in this program the Color property needs three values to be
computed, and the Windows Runtime does not support data bindings with multiple sources.

The solution is to have a separate class devoted to the job of creating a Color object from red,
green, and blue values, and I’ll show you how to do it in Chapter 6, “WinRT and MVVM.”

Sketching with Sliders

I’m not going to show you a screen shot of the next program. It’s called SliderSketch, and it’s a Slider
version of a popular toy invented about 50 years ago. The user of SliderSketch must skillfully manipu-
late a horizontal Slider and a vertical Slider in tandem to control a conceptual stylus that progressively
extends a continuous polyline. I’m not going to show you a screen shot because the program is very
difficult to use, and I’ve never managed to get beyond the baby stage.

The XAML file defines a 2-by-2 Grid, but the screen is dominated by one cell containing a large
Border and a Polyline. A vertical Slider is at the far left, and a horizontal Slider sits at the bottom. The
cell in the lower-left corner is empty:

Project: SliderSketch | File: MainPage.xaml (excerpt)

<Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <Grid.RowDefinitions>
 <RowDefinition Height="*" />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>

158	 PART 1  Elementals

 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition Width="*" />
 </Grid.ColumnDefinitions>

 <Slider Name="ySlider"
 Grid.Row="0"
 Grid.Column="0"
 Orientation="Vertical"
 IsDirectionReversed="True"
 Margin="0 18"
 ValueChanged="OnSliderValueChanged" />

 <Slider Name="xSlider"
 Grid.Row="1"
 Grid.Column="1"
 Margin="18 0"
 ValueChanged="OnSliderValueChanged" />

 <Border Grid.Row="0"
 Grid.Column="1"
 BorderBrush="{StaticResource ApplicationForegroundThemeBrush}"
 BorderThickness="3 0 0 3"
 Background="#C0C0C0"
 Padding="24"
 SizeChanged="OnBorderSizeChanged">

 <Polyline Name="polyline"
 Stroke="#404040"
 StrokeThickness="3"
 Points="0 0" />
 </Border>
</Grid>

It is very common for a Grid to define rows and columns at the edges using Auto and then make the
whole interior as large as possible with a star specification. The content at the edges is effectively
docked. Windows 8 has no DockPanel, but it’s easy to mimic with Grid.

The Margin properties on the Slider controls were developed based on experimentation. For the
program to work intuitively, the range of Slider values should be set equal to the number of pixels
between the minimum and maximum positions, and the Slider thumbs should be approximately even
with the pixel for that value. The calculation of the Minimum and Maximum values for each Slider
occurs when the size of the display area changes:

Project: SliderSketch | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 public MainPage()
 {
 this.InitializeComponent();
 }

 void OnBorderSizeChanged(object sender, SizeChangedEventArgs args)

	 CHAPTER 5  Control Interaction	 159

 {
 Border border = sender as Border;
 xSlider.Maximum = args.NewSize.Width - border.Padding.Left
 - border.Padding.Right
 - polyline.StrokeThickness;

 ySlider.Maximum = args.NewSize.Height - border.Padding.Top
 - border.Padding.Bottom
 - polyline.StrokeThickness;
 }

 void OnSliderValueChanged(object sender, RangeBaseValueChangedEventArgs args)
 {
 polyline.Points.Add(new Point(xSlider.Value, ySlider.Value));
 }
}

After all that, it’s really astonishing to see the actual “drawing” method down at the bottom: just a
single line of code that adds a new Point to a Polyline.

But don’t try turning your tablet upside down and shaking it to start anew. I haven’t defined an
erase function just yet.

The Varieties of Button Experience

The Windows Runtime supports several buttons that derive from the ButtonBase class:

Object
 DependencyObject
 UIElement
 FrameworkElement
 Control
 ContentControl
 ButtonBase
 Button
 HyperlinkButton
 RepeatButton
 ToggleButton
 CheckBox
 RadioButton

The ButtonVarieties program demonstrates the default appearances and functionality of all these
buttons:

Project: ButtonVarieties | File: MainPage.xaml (excerpt)

<Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <StackPanel>
 <Button Content="Just a plain old Button" />
 <HyperlinkButton Content="HyperlinkButton" />

160	 PART 1  Elementals

 <RepeatButton Content="RepeatButton" />
 <ToggleButton Content="ToggleButton" />
 <CheckBox Content="CheckBox" />

 <RadioButton Content="RadioButton #1" />
 <RadioButton>RadioButton #2</RadioButton>
 <RadioButton>
 <RadioButton.Content>
 RadioButton #3
 </RadioButton.Content>
 </RadioButton>
 <RadioButton>
 <RadioButton.Content>
 <TextBlock Text="RadioButton #4" />
 </RadioButton.Content>
 </RadioButton>

 <ToggleSwitch />
 </StackPanel>
</Grid>

I’ve included four RadioButton instances, all with different approaches to setting the Content
property, and they’re all basically equivalent:

If you don’t like the look of any of these, keep in mind that you can entirely redesign them with a
ControlTemplate that I’ll explore in Chapter 11.

Like all FrameworkElement derivatives, the default values of the HorizontalAlignment and
VerticalAlignment properties are Stretch. However, by the time the button is loaded, the
HorizontalAlignment property has been set to Left, the VerticalAlignment is Center, and a nonzero
Padding has also been set. Although the Margin property is zero, the visuals contain a little built-in
margin that surrounds the Border.

	 CHAPTER 5  Control Interaction	 161

ButtonBase defines the Click event, which is fired when a finger, mouse, or stylus presses the
control and then releases, but that behavior can be altered with the ClickMode property. Alternatively,
a program can be notified that the button has been clicked through a command interface that I’ll
discuss in Chapter 6.

The classic button is Button. There’s nothing really special about HyperlinkButton except that it
looks different as a result of a different template. RepeatButton generates a series of Click events if
held down for a moment; this is mostly intended for the repeat behavior of the ScrollBar.

Each click of the ToggleButton toggles it on and off. The screen shot shows the on state. CheckBox
defines nothing public on its own; it simply inherits all the functionality of ToggleButton and achieves
a different look with a template.

ToggleButton defines an IsChecked property to indicate the current state, as well as Checked and
Unchecked events to signal when changing to the on or off state. In general, you’ll want to install
handlers for both these events, but you can share one handler for the job.

The IsChecked property of ToggleButton is not a bool. It is a Nullable<bool>, which means
that it can have a value of null. This oddity is to accommodate toggle buttons that have a third
“indeterminate” state. The classic example is a CheckBox labeled “Bold” in a word-processing pro-
gram: If the selected text is bold, the box should be checked. If the selected text is not bold, it should
be unchecked. If the selected text contains some bold and some nonbold, however, the CheckBox
should show an indeterminate state. You’ll need to set the IsThreeState property to true to enable
this feature, and you’ll want to install a handler for the Indeterminate event. ToggleButton does not
have a unique appearance for the indeterminate state; CheckBox displays a little box rather than a
checkmark.

With all that said, you might want to gravitate toward the ToggleSwitch control for your toggling
needs because it’s specifically designed for touch in Windows 8 applications. Although ToggleSwitch
does not derive from ButtonBase, I’ve included one anyway at the bottom of the list. As you can see,
it provides default labels of “Off” and “On”, but you can change those. A header is also available, as
you’ll discover in Chapter 8, “App Bars and Popups.”

The RadioButton is a special form of ToggleButton for selecting one item from a collection of
mutually exclusive options. The name of the control comes from old car radios with buttons for
preselected stations: Press a button, and the previously pressed button pops out. Similarly, when
a RadioButton control is checked, it unchecks all other sibling RadioButton controls. The only thing
you need to do is make them all children of the same panel. (Watch out: If you put a RadioButton in
a Border, it is no longer a sibling with any other RadioButton. Use a template if you need a Border in
the visuals of a RadioButton.) If you prefer to separate the RadioButton controls into multiple mutually
exclusive groups within the same panel, a GroupName property is available for that purpose.

162	 PART 1  Elementals

The Control class defines a Foreground property, many font-related properties, and several
properties associated with Border, and setting these properties will change button appearance. For
example, suppose you initialize a Button like so:

<Button Content="Not just a plain old Button anymore"
 Background="Yellow"
 BorderBrush="Red"
 BorderThickness="12"
 Foreground="Blue"
 FontSize="48"
 FontStyle="Italic" />

Now it looks like this:

However, certain visual characteristics are still governed by the template. For example, when you
pass the mouse over this button or press it, the yellow background momentarily disappears and the
button background changes to standard colors. Also, although you can change the Border color and
thickness, you can’t give it rounded corners.

ButtonBase derives from ContentControl, which defines a property named Content. Although the
Content property is commonly set to text, it can be set to an Image or a panel. This is obviously very
powerful. For example, here’s how a Button can contain a bitmap and a caption for the bitmap:

<Button>
 <StackPanel>
 <Image Source="http://www.charlespetzold.com/pw6/PetzoldJersey.jpg"
 Width="100" />
 <TextBlock Text="Figure 1"
 HorizontalAlignment="Center" />
 </StackPanel>
</Button>

	 CHAPTER 5  Control Interaction	 163

In Chapter 11, I’ll show you how the Content property can be set to virtually any object and how you
can supply a template to display that object in a desirable way.

Let’s make a simple telephone-like keypad. The keys are Button controls, and the telephone
number that you type is displayed in a TextBlock.

In the following XAML file, the keypad is enclosed in a Grid that is given a HorizontalAlignment
and VerticalAlignment of Center so that it sits in the center of the screen. Regardless of the size of
this keypad and the contents of the buttons, it should have 12 buttons of exactly the same size.
I handled the width and the height of these buttons in two different ways. A width of 288 (that is, 3
inches) is imposed on the keyboard Grid itself. I wanted a specific width because I realized that a user
could type many numbers, and I didn’t want the width of the keypad to expand to accommodate an
extra-wide TextBlock. The Height of each Button, however, is specified in an implicit style:

Project: SimpleKeypad | File: MainPage.xaml (excerpt)

<Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">

 <Grid HorizontalAlignment="Center"
 VerticalAlignment="Center"
 Width="288">

 <Grid.Resources>
 <Style TargetType="Button">
 <Setter Property="ClickMode" Value="Press" />
 <Setter Property="HorizontalAlignment" Value="Stretch" />
 <Setter Property="Height" Value="72" />
 <Setter Property="FontSize" Value="36" />
 </Style>
 </Grid.Resources>

 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="*" />
 <ColumnDefinition Width="*" />
 <ColumnDefinition Width="*" />
 </Grid.ColumnDefinitions>

 <Grid Grid.Row="0" Grid.Column="0" Grid.ColumnSpan="3">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="*" />
 <ColumnDefinition Width="Auto" />
 </Grid.ColumnDefinitions>

164	 PART 1  Elementals

 <Border Grid.Column="0"
 HorizontalAlignment="Left">

 <TextBlock Name="resultText"
 HorizontalAlignment="Right"
 VerticalAlignment="Center"
 FontSize="24" />
 </Border>

 <Button Name="deleteButton"
 Content="⇦"
 Grid.Column="1"
 IsEnabled="False"
 FontFamily="Segoe Symbol"
 HorizontalAlignment="Left"
 Padding="0"
 BorderThickness="0"
 Click="OnDeleteButtonClick" />
 </Grid>

 <Button Content="1"
 Grid.Row="1" Grid.Column="0"
 Click="OnCharButtonClick" />

 <Button Content="2"
 Grid.Row="1" Grid.Column="1"
 Click="OnCharButtonClick" />

 <Button Content="3"
 Grid.Row="1" Grid.Column="2"
 Click="OnCharButtonClick" />

 <Button Content="4"
 Grid.Row="2" Grid.Column="0"
 Click="OnCharButtonClick" />

 <Button Content="5"
 Grid.Row="2" Grid.Column="1"
 Click="OnCharButtonClick" />

 <Button Content="6"
 Grid.Row="2" Grid.Column="2"
 Click="OnCharButtonClick" />

 <Button Content="7"
 Grid.Row="3" Grid.Column="0"
 Click="OnCharButtonClick" />

 <Button Content="8"
 Grid.Row="3" Grid.Column="1"
 Click="OnCharButtonClick" />

	 CHAPTER 5  Control Interaction	 165

 <Button Content="9"
 Grid.Row="3" Grid.Column="2"
 Click="OnCharButtonClick" />

 <Button Content="*"
 Grid.Row="4" Grid.Column="0"
 Click="OnCharButtonClick" />

 <Button Content="0"
 Grid.Row="4" Grid.Column="1"
 Click="OnCharButtonClick" />

 <Button Content="#"
 Grid.Row="4" Grid.Column="2"
 Click="OnCharButtonClick" />
 </Grid>
</Grid>

The hard part is the first row. This must accommodate a TextBlock to show the typed result as well
as a delete button. I didn’t want a very large delete button, so I made the whole first row of the Grid a
separate Grid just for these two items. The attributes of the delete button override many of the prop-
erties set in the implicit style. Notice that the delete button is initially disabled. It should be enabled
only when there are characters to delete.

The TextBlock was a little tricky. I wanted it to be left-justified during normal typing, but if the
string got too long to be displayed, I wanted the TextBlock to be clipped at the left, not at the right.
My solution was to enclose the TextBlock in a Border:

<Border Grid.Column="0"
 HorizontalAlignment="Left">

 <TextBlock Name="resultText"
 HorizontalAlignment="Right"
 VerticalAlignment="Center"
 FontSize="24" />
</Border>

The Border has a fixed limit to its width: It cannot get wider than the width of the overall Grid minus
the width of the delete button. But within that area the Border is aligned to the left. It is sized to fit
the TextBlock, so despite its HorizontalAlignment setting, the TextBlock is also positioned at the left.
As more characters are typed, the TextBlock gets wider until it becomes wider than the Border. At that
point, the HorizontalAlignment setting of Right comes into play and the left part of TextBlock is what
gets clipped.

After that top row, everything else is smooth sailing. The implicit style helps keep the markup for
each of the 12 numeric and symbol buttons as small as possible.

166	 PART 1  Elementals

The code-behind file handles the Click event from the delete button and has a shared handler for
the other 12 buttons:

Project: SimpleKeypad | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 string inputString = "";
 char[] specialChars = { '*', '#' };

 public MainPage()
 {
 this.InitializeComponent();
 }

 void OnCharButtonClick(object sender, RoutedEventArgs args)
 {
 Button btn = sender as Button;
 inputString += btn.Content as string;
 FormatText();
 }

 void OnDeleteButtonClick(object sender, RoutedEventArgs args)
 {
 inputString = inputString.Substring(0, inputString.Length - 1);
 FormatText();
 }

 void FormatText()
 {
 bool hasNonNumbers = inputString.IndexOfAny(specialChars) != -1;

 if (hasNonNumbers || inputString.Length < 4 || inputString.Length > 10)
 resultText.Text = inputString;

 else if (inputString.Length < 8)
 resultText.Text = String.Format("{0}-{1}", inputString.Substring(0, 3),
 inputString.Substring(3));

 else
 resultText.Text = String.Format("({0}) {1}-{2}", inputString.Substring(0, 3),
 inputString.Substring(3, 3),
 inputString.Substring(6));

 deleteButton.IsEnabled = inputString.Length > 0;
 }
}

The handler for the delete button removes a character from the inputString field, and the other
handler adds a character. Each handler then calls FormatText, which attempts to format the string as
a telephone number. At the end of the method, the delete button is enabled only if the input string
contains characters.

	 CHAPTER 5  Control Interaction	 167

The OnCharButtonClick event handler uses the Content property of the button being pressed to
determine which character to add to the string. Such an easy equivalence between the Content visuals
of the button and the functionality of the button isn’t always available. Sometimes sharing an event
handler among multiple controls requires that the handler extract more information from the button
being clicked. FrameworkElement defines a Tag property of type object specifically for this purpose.
You can set Tag to an identifying string or object in the XAML file and check it in the event handler, as
I’ll demonstrate later in this chapter with RadioButton.

Defining Dependency Properties

Perhaps you’re writing an application where you want all the Button controls to display text with a
gradient brush. Of course, you can simply define the Foreground property of each Button to be a
LinearGradientBrush, but the markup might start becoming a bit overwhelming. You could then try
a Style with the Foreground property set to a LinearGradientBrush, but then each Button shares the
same LinearGradientBrush with the same gradient colors, and perhaps you want more flexibility than
that.

What you really want is a Button with two properties named Color1 and Color2 that you can set to
the gradient colors. That sounds like a custom control. It’s a class that derives from Button that creates
a LinearGradientBrush in its constructor and defines Color1 and Color2 properties to control this
gradient.

Can these Color1 and Color2 properties be just plain old .NET properties with set and get
accessors? Yes, they can. However, defining the properties like that will limit them in some crucial
ways. Such properties cannot be the targets of styles, bindings, or animations. Only dependency
properties can do all that.

168	 PART 1  Elementals

Dependency properties have a bit more overhead than regular properties, but learning how to
define dependency properties in your own classes is an important skill. In a new project, begin by
adding a new item to the project and select Class from the list. Give it a name of GradientButton, and
in the file, make the class public and derived from Button:

public class GradientButton : Button
{

}

Now let’s fill up that class. You will need to add some using directives along the way.

The two new properties are named Color1 and Color2 of type Color. These two properties require
two dependency properties of type DependencyProperty named Color1Property and Color2Property.
They must be public and static but settable only from within the class:

public static DependencyProperty Color1Property { private set; get; }
public static DependencyProperty Color2Property { private set; get; }

These DependencyProperty objects can be created in the static constructor. The
DependencyProperty class defines a static method named Register for the job of creating
DependencyProperty objects:

static GradientButton()
{
 Color1Property =
 DependencyProperty.Register("Color1",
 typeof(Color),
 typeof(GradientButton),
 new PropertyMetadata(Colors.White, OnColorChanged));

 Color2Property =
 DependencyProperty.Register("Color2",
 typeof(Color),
 typeof(GradientButton),
 new PropertyMetadata(Colors.Black, OnColorChanged));
}

A slightly different static method named DependencyProperty.RegisterAttached is used to create
attached properties.

The first argument to DependencyProperty.Register is the text name of the property. This is
used sometimes by the XAML parsers. The second argument is the type of the property. The third
argument is the type of the class that is registering this dependency property.

The fourth argument is an object of type PropertyMetadata. The constructor comes in two
versions. In one version, all you need to specify is a default value of the property. In the other, you
also specify a method that is called when the property changes. This method will not be called if the
property happens to be set to the same value it already has.

	 CHAPTER 5  Control Interaction	 169

The default value you specify as the first argument to the PropertyMetadata constructor must
match the type indicated in the second argument or a run-time exception will result. This is not as
easy as it sounds. For example, it is very common for programmers to supply a default value of 0 for
a property of type double. During compilation, the 0 is assumed to be an integer, so at run time a
type mismatch is discovered and an exception is thrown. If you’re defining a dependency property
of type double, give it a default value of 0.0 so that the compiler knows the correct data type of this
argument.

An alternative approach is to define DependencyProperty objects as private static fields and then
return those objects from the public static properties:

static readonly DependencyProperty color1Property =
 DependencyProperty.Register("Color1",
 typeof(Color),
 typeof(GradientButton),
 new PropertyMetadata(Colors.White, OnColorChanged));

static readonly DependencyProperty color2Property =
 DependencyProperty.Register("Color2",
 typeof(Color),
 typeof(GradientButton),
 new PropertyMetadata(Colors.Black, OnColorChanged));

public static DependencyProperty Color1Property
{
 get { return color1Property; }
}

public static DependencyProperty Color2Property
{
 get { return color2Property; }
}

The explicit static constructor isn’t required. It’s also possible to do it WPF or Silverlight style, where
you don’t have public static properties at all but simply define the static fields as public. Note that the
fields are now named Color1Property and Color2Property:

public static readonly DependencyProperty Color1Property =
 DependencyProperty.Register("Color1",
 typeof(Color),
 typeof(GradientButton),
 new PropertyMetadata(Colors.White, OnColorChanged));

public static readonly DependencyProperty Color2Property =
 DependencyProperty.Register("Color2",
 typeof(Color),
 typeof(GradientButton),
 new PropertyMetadata(Colors.Black, OnColorChanged));

This approach works with Windows 8, but I tend not to use it because all the public static
DependencyProperty objects defined by the standard Windows Runtime controls are properties rather
than fields.

170	 PART 1  Elementals

Regardless of how you define the public static DependencyProperty objects, the GradientButton
class also needs regular .NET property definitions of Color1 and Color2. These properties are always of
a very specific form:

public Color Color1
{
 set { SetValue(Color1Property, value); }
 get { return (Color)GetValue(Color1Property); }
}

public Color Color2
{
 set { SetValue(Color2Property, value); }
 get { return (Color)GetValue(Color2Property); }
}

The set accessor always calls SetValue (inherited from the DependencyObject class), referencing the
dependency property object, and the get accessor always calls GetValue and casts the return value to
the proper type for the property. You can make the set accessor protected or private if you don’t want
the property being set from outside the class.

In my GradientButton control, I want the Foreground property to be a LinearGradientBrush and
I want the Color1 and Color2 properties to be the colors of the two GradientStop objects. Two
GradientStop objects are thus defined as fields:

GradientStop gradientStop1, gradientStop2;

The regular instance constructor of the class creates those objects as well as the LinearGradientBrush
to set it to the Foreground property:

public GradientButton()
{
 gradientStop1 = new GradientStop
 {
 Offset = 0,
 Color = this.Color1
 };

 gradientStop2 = new GradientStop
 {
 Offset = 1,
 Color = this.Color2
 };

 LinearGradientBrush brush = new LinearGradientBrush();
 brush.GradientStops.Add(gradientStop1);
 brush.GradientStops.Add(gradientStop2);

 this.Foreground = brush;
}

Notice how the property initializers for the two GradientStop objects access the Color1 and Color2
properties. This is how the colors in the LinearGradientBrush are set to the default colors defined by
the two dependency properties.

	 CHAPTER 5  Control Interaction	 171

You’ll recall that in the definition of the two dependency properties, a method named
OnColorChanged was specified as the method to be called whenever either the Color1 or Color2
property changes value. Because this property-changed method is referenced in a static constructor,
the method itself must also be static:

static void OnColorChanged(DependencyObject obj, DependencyPropertyChangedEventArgs args)
{

}

Now this is kind of weird, because the whole point of defining this GradientButton class is to use it
multiple times in an application, and now we’re defining a static property that is called whenever the
Color1 or Color2 property in an instance of this class changes. How do you know to what instance this
method call applies?

Easy: It’s the first argument. That first argument to this OnColorChanged method is always a
GradientButton object, and you can safely cast it to a GradientButton and then access fields and
properties in the particular GradientButton instance.

What I like to do in the static property-changed method is call an instance method of the same
name, passing to it the second argument:

static void OnColorChanged(DependencyObject obj, DependencyPropertyChangedEventArgs args)
{
 (obj as GradientButton).OnColorChanged(args);
}
void OnColorChanged(DependencyPropertyChangedEventArgs args)
{

}

This second method then does all the work accessing instance fields and properties of the class.

The DependencyPropertyChangedEventArgs object contains some useful information.
The Property property is of type DependencyProperty and indicates the property that’s been
changed. In this example, the Property property will be either Color1Property or Color2Property.
DependencyPropertyChangedEventArgs also has properties named OldValue and NewValue of type
object.

In GradientButton, the property-changed handler sets the Color property of the appropriate
GradientStop object from NewValue:

void OnColorChanged(DependencyPropertyChangedEventArgs args)
{
 if (args.Property == Color1Property)
 gradientStop1.Color = (Color)args.NewValue;

 if (args.Property == Color2Property)
 gradientStop2.Color = (Color)args.NewValue;
}

172	 PART 1  Elementals

And that’s it for GradientButton. The only job left to do is arrange all these pieces of the
GradientButton class in the class in an order that makes sense to you. I like to put all fields at the top,
static constructor next, static properties next, and then the instance constructor, instance properties,
and all methods. Here’s the complete GradientButton class from the DependencyProperties project:

Project: DependencyProperties | File: GradientButton.cs

using Windows.UI;
using Windows.UI.Xaml;
using Windows.UI.Xaml.Controls;
using Windows.UI.Xaml.Media;

namespace DependencyProperties
{
 public class GradientButton : Button
 {
 GradientStop gradientStop1, gradientStop2;

 static GradientButton()
 {
 Color1Property =
 DependencyProperty.Register("Color1",
 typeof(Color),
 typeof(GradientButton),
 new PropertyMetadata(Colors.White, OnColorChanged));

 Color2Property =
 DependencyProperty.Register("Color2",
 typeof(Color),
 typeof(GradientButton),
 new PropertyMetadata(Colors.Black, OnColorChanged));
 }

 public static DependencyProperty Color1Property { private set; get; }

 public static DependencyProperty Color2Property { private set; get; }

 public GradientButton()
 {
 gradientStop1 = new GradientStop
 {
 Offset = 0,
 Color = this.Color1
 };

 gradientStop2 = new GradientStop
 {
 Offset = 1,
 Color = this.Color2
 };

	 CHAPTER 5  Control Interaction	 173

 LinearGradientBrush brush = new LinearGradientBrush();
 brush.GradientStops.Add(gradientStop1);
 brush.GradientStops.Add(gradientStop2);

 this.Foreground = brush;
 }

 public Color Color1
 {
 set { SetValue(Color1Property, value); }
 get { return (Color)GetValue(Color1Property); }
 }

 public Color Color2
 {
 set { SetValue(Color2Property, value); }
 get { return (Color)GetValue(Color2Property); }
 }

 static void OnColorChanged(DependencyObject obj,
 DependencyPropertyChangedEventArgs args)
 {
 (obj as GradientButton).OnColorChanged(args);
 }

 void OnColorChanged(DependencyPropertyChangedEventArgs args)
 {
 if (args.Property == Color1Property)
 gradientStop1.Color = (Color)args.NewValue;

 if (args.Property == Color2Property)
 gradientStop2.Color = (Color)args.NewValue;
 }
 }
}

There are some alternate ways of writing the property-changed handler. If you specify separate
handlers for each property, you don’t need to look at the Property property of the event arguments.

Another option: Rather than access the NewValue property, you can just get the value of the
property from the class. For example:

gradientStop1.Color = this.Color1;

The Color1 property has already been set to the new value by the time the property-changed handler
is called.

Where are the actual values of the Color1 and Color2 properties stored? I suspect it’s some kind
of dictionary, perhaps optimized somewhat (one would hope) but otherwise inaccessible through the
API. The state of these properties is managed by the operating system, and the only access to their
values is through SetValue and GetValue.

174	 PART 1  Elementals

The XAML file in this project defines a couple styles, one with Setter elements for Color1 and
Color2, and applies these styles to two instances of GradientButton. Any reference to GradientButton
in this XAML file must be preceded by the local XML namespace that is associated with the
DependencyProperties namespace in which GradientButton is defined. Notice the local prefix in both
the TargetType of the Style and when the buttons are instantiated:

Project: DependencyProperties | File: MainPage.xaml (excerpt)

<Page ...
 xmlns:local="using:DependencyProperties"
 ... >

 <Page.Resources>
 <Style x:Key="baseButtonStyle" TargetType="local:GradientButton">
 <Setter Property="FontSize" Value="48" />
 <Setter Property="HorizontalAlignment" Value="Center" />
 <Setter Property="Margin" Value="0 12" />
 </Style>

 <Style x:Key="blueRedButtonStyle"
 TargetType="local:GradientButton"
 BasedOn="{StaticResource baseButtonStyle}">
 <Setter Property="Color1" Value="Blue" />
 <Setter Property="Color2" Value="Red" />
 </Style>
 </Page.Resources>

 <Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <StackPanel>
 <local:GradientButton Content="GradientButton #1"
 Style="{StaticResource baseButtonStyle}" />

 <local:GradientButton Content="GradientButton #2"
 Style="{StaticResource blueRedButtonStyle}" />

 <local:GradientButton Content="GradientButton #3"
 Style="{StaticResource baseButtonStyle}"
 Color1="Aqua"
 Color2="Lime" />
 </StackPanel>
 </Grid>
</Page>

	 CHAPTER 5  Control Interaction	 175

The first one gets the default settings of Color1 and Color2, the second one gets the settings defined
in the Style, and the third gets local settings Here it is:

I want to show you an alternative way to create the GradientButton class that lets you define the
LinearGradientBrush in XAML and eliminate the property-changed handlers. Interested?

In a separate project, to create the GradientButton class, rather than adding a new item and
picking Class from the list, add a new item, pick User Control from the list, and give it a name of
GradientButton. As usual you’ll get a pair of files: GradientButton.xaml and GradientButton.xaml.cs.
The GradientButton class derives from UserControl. Here’s the class definition in the
GradientButton.xaml.cs file:

public sealed partial class GradientButton : UserControl
{
 public GradientButton()
 {
 this.InitializeComponent();
 }
}

Change the base class from UserControl to Button:

public sealed partial class GradientButton : Button
{
 public GradientButton()
 {
 this.InitializeComponent();
 }
}

176	 PART 1  Elementals

The body of this class will be very much like the first GradientButton class except the instance
constructor doesn’t do anything except call InitializeComponent. There are no property-changed
handlers. Here’s how it looks in the DependencyPropertiesWithBindings project:

Project: DependencyPropertiesWithBindings | File: GradientButton.xaml.cs

public sealed partial class GradientButton : Button
{
 static GradientButton()
 {
 Color1Property =
 DependencyProperty.Register("Color1",
 typeof(Color),
 typeof(GradientButton),
 new PropertyMetadata(Colors.White));

 Color2Property =
 DependencyProperty.Register("Color2",
 typeof(Color),
 typeof(GradientButton),
 new PropertyMetadata(Colors.Black));
 }

 public static DependencyProperty Color1Property { private set; get; }

 public static DependencyProperty Color2Property { private set; get; }

 public GradientButton()
 {
 this.InitializeComponent();
 }

 public Color Color1
 {
 set { SetValue(Color1Property, value); }
 get { return (Color)GetValue(Color1Property); }
 }

 public Color Color2
 {
 set { SetValue(Color2Property, value); }
 get { return (Color)GetValue(Color2Property); }
 }
}

When first created, the GradientButton.xaml file has a root element that indicates the class derives
from UserControl:

<UserControl
 x:Class="DependencyPropertiesWithBindings.GradientButton" ... >
 ...
</UserControl>

	 CHAPTER 5  Control Interaction	 177

Change that to Button as well:

<Button
 x:Class="DependencyPropertiesWithBindings.GradientButton" ... >
 ...
</Button>

Normally, when you put stuff between the root tags of a XAML file, you’re implicitly setting the
Content property. But in this case we don’t want to set the Content property of the Button. We want
to set the Foreground property of GradientButton to a LinearGradientBrush. This requires property-
element tags of Button.Foreground. Here’s the complete XAML file:

Project: DependencyPropertiesWithBindings | File: GradientButton.xaml

<Button
 x:Class="DependencyPropertiesWithBindings.GradientButton"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Name="root">

 <Button.Foreground>
 <LinearGradientBrush>
 <GradientStop Offset="0"
 Color="{Binding ElementName=root,
 Path=Color1}" />
 <GradientStop Offset="1"
 Color="{Binding ElementName=root,
 Path=Color2}" />
 </LinearGradientBrush>
 </Button.Foreground>
</Button>

Notice the cool way that the Color properties of the GradientStop objects are set: The root element
is given a name of “root” so that it can be the source of two data bindings referencing the custom
dependency properties.

The MainPage.xaml file for this project is the same as the previous project, and the result is also
the same.

RadioButton Tags

A group of RadioButton controls allows a user to choose between one of several mutually exclusive
items. From the program’s perspective, often it is convenient that each RadioButton in a particular
group corresponds with a member of an enumeration and that the enumeration value be identifiable
from the RadioButton object. This allows all the buttons in a group to share the same event handler.

The Tag property is ideal for this purpose. You can set Tag to anything you want to identify
the control. For example, suppose you want to write a program that lets you experiment with the
StrokeStartLineCap, StrokeEndLineCap, and StrokeLineJoin properties defined by the Shape class.
When rendering thick lines, these properties govern the shape of the ends of the line and the shape
where two lines join. The StrokeStartLineCap and StrokeEndLineCap properties are set to members

178	 PART 1  Elementals

of the PenLineCap enumeration type, and the StrokeLineJoin property is set to members of the
PenLineJoin enumeration.

For example, one of the members of the PenLineJoin enumeration is Bevel. You might define a
RadioButton to represent this option like so:

<RadioButton Content="Bevel join"
 Tag="Bevel"
 ... />

The problem is that “Bevel” is interpreted by the XAML parser as a string, so in the event handler in
the code-behind file, you need to use switch and case to differentiate between the different strings or
Enum.TryParse to convert the string into an actual PenLineJoin.Bevel value.

A better way of defining the Tag property involves breaking it out as a property element and
explicitly indicating that it’s being set to a value of type PenLineJoin:

<RadioButton Content="Bevel join"
 ... >
 <RadioButton.Tag>
 <PenLineJoin>Bevel</PenLineJoin>
 </RadioButton.Tag>
</RadioButton>

Of course, this is a bit wordy and cumbersome. Nevertheless, I’ve used this approach in the
LineCapsAndJoins project. The XAML file defines three groups of RadioButton controls for the three
Shape properties. Each group contains three or four controls corresponding to the appropriate
enumeration members.

Project: LineCapsAndJoins | File: MainPage.xaml (excerpt)

<Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <Grid.RowDefinitions>
 <RowDefinition Height="*" />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition Width="*" />
 <ColumnDefinition Width="Auto" />
 </Grid.ColumnDefinitions>

 <StackPanel Name="startLineCapPanel"
 Grid.Row="0" Grid.Column="0"
 Margin="24">

 <RadioButton Content="Flat start"
 Checked="OnStartLineCapRadioButtonChecked">
 <RadioButton.Tag>
 <PenLineCap>Flat</PenLineCap>
 </RadioButton.Tag>
 </RadioButton>

	 CHAPTER 5  Control Interaction	 179

 <RadioButton Content="Round start"
 Checked="OnStartLineCapRadioButtonChecked">
 <RadioButton.Tag>
 <PenLineCap>Round</PenLineCap>
 </RadioButton.Tag>
 </RadioButton>

 <RadioButton Content="Square start"
 Checked="OnStartLineCapRadioButtonChecked">
 <RadioButton.Tag>
 <PenLineCap>Square</PenLineCap>
 </RadioButton.Tag>
 </RadioButton>

 <RadioButton Content="Triangle start"
 Checked="OnStartLineCapRadioButtonChecked">
 <RadioButton.Tag>
 <PenLineCap>Triangle</PenLineCap>
 </RadioButton.Tag>
 </RadioButton>
 </StackPanel>

 <StackPanel Name="endLineCapPanel"
 Grid.Row="0" Grid.Column="2"
 Margin="24">
 <RadioButton Content="Flat end"
 Checked="OnEndLineCapRadioButtonChecked">
 <RadioButton.Tag>
 <PenLineCap>Flat</PenLineCap>
 </RadioButton.Tag>
 </RadioButton>

 <RadioButton Content="Round end"
 Checked="OnEndLineCapRadioButtonChecked">
 <RadioButton.Tag>
 <PenLineCap>Round</PenLineCap>
 </RadioButton.Tag>
 </RadioButton>

 <RadioButton Content="Square end"
 Checked="OnEndLineCapRadioButtonChecked">
 <RadioButton.Tag>
 <PenLineCap>Square</PenLineCap>
 </RadioButton.Tag>
 </RadioButton>

 <RadioButton Content="Triangle End"
 Checked="OnEndLineCapRadioButtonChecked">
 <RadioButton.Tag>
 <PenLineCap>Triangle</PenLineCap>
 </RadioButton.Tag>
 </RadioButton>
 </StackPanel>

 <StackPanel Name="lineJoinPanel"
 Grid.Row="1" Grid.Column="1"
 HorizontalAlignment="Center"
 Margin="24">

180	 PART 1  Elementals

 <RadioButton Content="Bevel join"
 Checked="OnLineJoinRadioButtonChecked">
 <RadioButton.Tag>
 <PenLineJoin>Bevel</PenLineJoin>
 </RadioButton.Tag>
 </RadioButton>

 <RadioButton Content="Miter join"
 Checked="OnLineJoinRadioButtonChecked">
 <RadioButton.Tag>
 <PenLineJoin>Miter</PenLineJoin>
 </RadioButton.Tag>
 </RadioButton>

 <RadioButton Content="Round join"
 Checked="OnLineJoinRadioButtonChecked">
 <RadioButton.Tag>
 <PenLineJoin>Round</PenLineJoin>
 </RadioButton.Tag>
 </RadioButton>
 </StackPanel>

 <Polyline Name="polyline"
 Grid.Row="0"
 Grid.Column="1"
 Points="0 0, 500 1000, 1000 0"
 Stroke="{StaticResource ApplicationForegroundThemeBrush}"
 StrokeThickness="100"
 Stretch="Fill"
 Margin="24" />
</Grid>

Each of the three groups of RadioButton controls is in its own StackPanel, and all the controls within
each StackPanel share the same handler for the Checked event.

The markup doesn’t put any RadioButton in its checked state. This is the responsibility of the
Loaded handler defined in the constructor in the code-behind file. (Oddly, when performing the
initialization in the constructor rather than the Loaded handler, the line-join RadioButton gets
initialized but not the other two.)

At the bottom of the markup is a thick Polyline waiting for its StrokeStartLineCap,
StrokeEndLineCap, and StrokeLineJoin properties to be set. This happens in the three Checked event
handlers also in the code-behind file:

Project: LineCapsAndJoins | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 public MainPage()
 {
 this.InitializeComponent();

 Loaded += (sender, args) =>
 {

	 CHAPTER 5  Control Interaction	 181

 foreach (UIElement child in startLineCapPanel.Children)
 (child as RadioButton).IsChecked =
 (PenLineCap)(child as RadioButton).Tag == polyline.StrokeStartLineCap;

 foreach (UIElement child in endLineCapPanel.Children)
 (child as RadioButton).IsChecked =
 (PenLineCap)(child as RadioButton).Tag == polyline.StrokeEndLineCap;

 foreach (UIElement child in lineJoinPanel.Children)
 (child as RadioButton).IsChecked =
 (PenLineJoin)(child as RadioButton).Tag == polyline.StrokeLineJoin;
 };
 }

 void OnStartLineCapRadioButtonChecked(object sender, RoutedEventArgs args)
 {
 polyline.StrokeStartLineCap = (PenLineCap)(sender as RadioButton).Tag;
 }

 void OnEndLineCapRadioButtonChecked(object sender, RoutedEventArgs args)
 {
 polyline.StrokeEndLineCap = (PenLineCap)(sender as RadioButton).Tag;
 }

 void OnLineJoinRadioButtonChecked(object sender, RoutedEventArgs args)
 {
 polyline.StrokeLineJoin = (PenLineJoin)(sender as RadioButton).Tag;
 }
}

The Loaded handler loops through all the RadioButton controls in each group, setting the
IsChecked property to true if the Tag value matches the corresponding property of the Polyline. Any
further RadioButton checking occurs under the user’s control. The event handlers simply need to set a
property of the Polyline based on the Tag property of the checked RadioButton. Here’s the result:

182	 PART 1  Elementals

Although the markup is very explicit about setting the Tag property to a member of the
PenLineCap or PenLineJoin enumeration, the XAML parser actually assigns the Tag an integer
corresponding to the underlying enumeration value. This integer can easily be cast into the correct
enumeration member, but it’s definitely not the enumeration member itself.

Much of the awkward markup in LineCapsAndJoins can be eliminated by defining a couple simple
custom controls. These custom controls don’t need to have dependency properties; they can have just
a very simple regular .NET property for a tag corresponding to a particular type.

The LineCapsAndJoinsWithCustomClass shows how this works. Here’s a RadioButton derivative
specifically for representing a PenLineCap value:

Project: LineCapsAndJoinsWithCustomClass | File: LineCapRadioButton.cs

using Windows.UI.Xaml.Controls;
using Windows.UI.Xaml.Media;

namespace LineCapsAndJoinsWithCustomClass
{
 public class LineCapRadioButton : RadioButton
 {
 public PenLineCap LineCapTag { set; get; }
 }
}

Similarly, here’s one for PenLineJoin values:

Project: LineCapsAndJoinsWithCustomClass | File: LineJoinRadioButton.cs

using Windows.UI.Xaml.Controls;
using Windows.UI.Xaml.Media;

namespace LineCapsAndJoinsWithCustomClass
{
 public class LineJoinRadioButton : RadioButton
 {
 public PenLineJoin LineJoinTag { set; get; }
 }
}

Let me show you just a little piece of the XAML (the last group of three RadioButton controls) to
demonstrate how the property-element syntax has been eliminated:

Project: LineCapsAndJoinsWithCustomClass | File: MainPage.xaml (excerpt)

<StackPanel Name="lineJoinPanel"
 Grid.Row="1" Grid.Column="1"
 HorizontalAlignment="Center"
 Margin="24">

 <local:LineJoinRadioButton Content="Bevel join"
 LineJoinTag="Bevel"
 Checked="OnLineJoinRadioButtonChecked" />

	 CHAPTER 5  Control Interaction	 183

 <local:LineJoinRadioButton Content="Miter join"
 LineJoinTag="Miter"
 Checked="OnLineJoinRadioButtonChecked" />

 <local:LineJoinRadioButton Content="Round join"
 LineJoinTag="Round"
 Checked="OnLineJoinRadioButtonChecked" />
</StackPanel>

You’ll notice that as you type this markup, IntelliSense correctly recognizes the LineCapTag and
LineJoinTag properties to be an enumeration type and gives you an option of typing in one of the
enumeration members. Nice!

This switch to custom RadioButton derivatives mostly affects the XAML file. The code-behind file is
pretty much the same except for somewhat less casting:

Project: LineCapsAndJoinsWithCustomClass | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 public MainPage()
 {
 this.InitializeComponent();

 Loaded += (sender, args) =>
 {
 foreach (UIElement child in startLineCapPanel.Children)
 (child as LineCapRadioButton).IsChecked =
 (child as LineCapRadioButton).LineCapTag == polyline.StrokeStartLineCap;

 foreach (UIElement child in endLineCapPanel.Children)
 (child as LineCapRadioButton).IsChecked =
 (child as LineCapRadioButton).LineCapTag == polyline.StrokeEndLineCap;

 foreach (UIElement child in lineJoinPanel.Children)
 (child as LineJoinRadioButton).IsChecked =
 (child as LineJoinRadioButton).LineJoinTag == polyline.StrokeLineJoin;
 };
 }

 void OnStartLineCapRadioButtonChecked(object sender, RoutedEventArgs args)
 {
 polyline.StrokeStartLineCap = (sender as LineCapRadioButton).LineCapTag;
 }

 void OnEndLineCapRadioButtonChecked(object sender, RoutedEventArgs args)
 {
 polyline.StrokeEndLineCap = (sender as LineCapRadioButton).LineCapTag;
 }

 void OnLineJoinRadioButtonChecked(object sender, RoutedEventArgs args)
 {
 polyline.StrokeLineJoin = (sender as LineJoinRadioButton).LineJoinTag;
 }
}

184	 PART 1  Elementals

Keyboard Input and TextBox

Keyboard input in Windows 8 applications is complicated somewhat by the on-screen touch keyboard
that allows the user to enter text by tapping on the screen. Although the touch keyboard is impor-
tant for tablets and other devices that don’t have real keyboards attached, it can also be invoked as a
supplement to a real keyboard.

It is vital that the touch keyboard not pop up and disappear in an annoying fashion. For this
reason, many controls—including custom controls—do not automatically receive keyboard input.
If they did, the system would need to invoke the touch keyboard whenever these controls received
input focus. Consequently, if you create a custom control and install event handlers for the KeyUp and
KeyDown events (or override the OnKeyUp and OnKeyDown methods), you’ll discover that nothing
comes through. You need to write code that gives the control input focus.

If you are interested in getting keyboard input from the physical keyboard only and you don’t
care about the touch keyboard—perhaps for a program intended only for yourself or for testing
purposes—there is a fairly easy way to do it. In the constructor of your page, obtain your application’s
CoreWindow object:

CoreWindow coreWindow = Window.Current.CoreWindow;

This class is defined in the Windows.UI.Core namespace. You can then install event handlers on this
object for KeyDown and KeyUp (which indicate keys on the keyboard) as well as CharacterReceived
(which translates keys to text characters).

If you need to create a custom control that obtains keyboard input from both the physical
keyboard and the touch keyboard, the process is rather more involved. You need to derive a class
from FrameworkElementAutomationPeer that implements the ITextProvider and IValueProvider
interfaces and return this class in an override of the OnCreateAutomationPeer method of your custom
control.

Obviously this is a nontrivial task, but I’ll provide full details in Chapter 16, “Rich Text.”

Meanwhile, if your program needs text input, the best approach is to use one of the controls
specifically provided for this purpose:

■■ TextBox features single-line or multiline input with a uniform font, much like the traditional
Windows Notepad program.

■■ RichEditBox features formatted text, much like the traditional Windows WordPad program.

■■ PasswordBox allows a single line of masked input.

I’ll be focusing on TextBox in this brief discussion, and I’ll provide more examples in the chapters
ahead. I’ll save RichTextBox for Chapter 16.

TextBox defines a Text property that lets code set the text in the TextBox or obtain the current text.
The SelectedText property is the text that’s selected (if any), and the SelectionStart and SelectionLength
properties indicate the offset and length of the selection. If SelectionLength is 0, SelectionStart is the

	 CHAPTER 5  Control Interaction	 185

position of the cursor. Setting the IsReadOnly property to true inhibits typed input but allows text to
be selected and copied to the Clipboard. All cut, copy, and paste interaction occurs through context
menus. The TextBox defines both TextChanged and SelectionChanged events.

By default, a TextBox allows only a single line of input. Two properties can change that behavior:

■■ Normally the TextBox ignores the Return key, but setting AcceptsReturn to true causes the
TextBox to begin a new line when Return is pressed.

■■ The default setting of the TextWrapping property is NoWrap. Setting that to Wrap causes the
TextBox to generate a new line when the user types beyond the end of the current line.

These properties can be set independently. Either will cause a TextBox to grow vertically as additional
lines are added. TextBox has a built-in ScrollViewer. If you don’t want the TextBox to grow indefinitely,
set the MaxLength property.

There is not just one touch keyboard but several, and some are more suitable for entering
numbers or email addresses or URIs. A TextBox specifies what type of keyboard it wants with the
InputScope property.

The following TextBoxInputScopes program lets you experiment with different keyboard layouts,
as well as different modes of multiline TextBox instances and (as a bonus) PasswordBox:

Project: TextBoxInputScopes | File: MainPage.xaml (excerpt)

<Page ... >
 <Page.Resources>
 <Style TargetType="TextBlock">
 <Setter Property="FontSize" Value="24" />
 <Setter Property="VerticalAlignment" Value="Center" />
 <Setter Property="Margin" Value="6" />
 </Style>

 <Style TargetType="TextBox">
 <Setter Property="Width" Value="320" />
 <Setter Property="VerticalAlignment" Value="Center" />
 <Setter Property="Margin" Value="0 6" />
 </Style>
 </Page.Resources>

 <Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <Grid HorizontalAlignment="Center">
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>

186	 PART 1  Elementals

 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition Width="Auto" />
 </Grid.ColumnDefinitions>

 <!-- Multiline with Return, no wrapping -->
 <TextBlock Text="Multiline (accepts Return, no wrap):"
 Grid.Row="0" Grid.Column="0" />

 <TextBox AcceptsReturn="True"
 Grid.Row="0" Grid.Column="1" />

 <!-- Multiline with no Return, wrapping -->
 <TextBlock Text="Multiline (ignores Return, wraps):"
 Grid.Row="1" Grid.Column="0" />

 <TextBox TextWrapping="Wrap"
 Grid.Row="1" Grid.Column="1" />

 <!-- Multiline with Return and wrapping -->
 <TextBlock Text="Multiline (accepts Return, wraps):"
 Grid.Row="2" Grid.Column="0" />

 <TextBox AcceptsReturn="True"
 TextWrapping="Wrap"
 Grid.Row="2" Grid.Column="1" />

 <!-- Default input scope -->
 <TextBlock Text="Default input scope:"
 Grid.Row="3" Grid.Column="0" />

 <TextBox Grid.Row="3" Grid.Column="1"
 InputScope="Default" />

 <!-- Email address input scope -->
 <TextBlock Text="Email address input scope:"
 Grid.Row="4" Grid.Column="0" />

 <TextBox Grid.Row="4" Grid.Column="1"
 InputScope="EmailSmtpAddress" />

 <!-- Number input scope -->
 <TextBlock Text="Number input scope:"
 Grid.Row="5" Grid.Column="0" />

 <TextBox Grid.Row="5" Grid.Column="1"
 InputScope="Number" />

 <!-- Search input scope -->
 <TextBlock Text="Search input scope:"
 Grid.Row="6" Grid.Column="0" />

 <TextBox Grid.Row="6" Grid.Column="1"
 InputScope="Search" />

	 CHAPTER 5  Control Interaction	 187

 <!-- Telephone number input scope -->
 <TextBlock Text="Telephone number input scope:"
 Grid.Row="7" Grid.Column="0" />

 <TextBox Grid.Row="7" Grid.Column="1"
 InputScope="TelephoneNumber" />

 <!-- URL input scope -->
 <TextBlock Text="URL input scope:"
 Grid.Row="8" Grid.Column="0" />

 <TextBox Grid.Row="8" Grid.Column="1"
 InputScope="Url" />

 <!-- PasswordBox -->
 <TextBlock Text="PasswordBox:"
 Grid.Row="9" Grid.Column="0" />

 <PasswordBox Grid.Row="9" Grid.Column="1" />
 </Grid>
 </Grid>
</Page>

This is a program you’ll want to experiment with before choosing a multiline mode or an InputScope
value.

Touch and Thumb

In Chapter 13, “Touch, Etc.,” I’ll discuss touch input and how you can use it to manipulate objects
on the screen. Meanwhile, a modest control called Thumb provides some rudimentary touch
functionality. Thumb is defined in the Windows.UI.Xaml.Controls.Primitives namespace, and it is
primarily intended as a building block for the Slider and Scrollbar. In Chapter 8, I’ll use it in a custom
grid-splitter control.

The Thumb control generates three events based on mouse, stylus, or touch movement relative
to itself: DragStarted, DragDelta, and DragCompleted. The DragStarted event occurs when you put
your finger on a Thumb control or move the mouse to its surface and click. Thereafter, DragDelta
events indicate how the finger or mouse is moving. You can use these events to move the Thumb
(and anything else), most conveniently on a Canvas. DragCompleted indicates a lift of a finger or the
release of the mouse button.

In the AlphabetBlocks program, a series of buttons labeled with letters, numbers, and some
punctuation surrounds the perimeter. Click one, and an alphabet block appears that you can
drag with your finger or the mouse. I know that you’ll want to send this alphabet block scurrying
across the screen with a flick of your finger, but it won’t respond in that way. The Thumb does not
incorporate touch inertia. For inertia, you’ll have to tap into the actual touch events beginning with
the word Manipulation.

188	 PART 1  Elementals

For the alphabet blocks themselves, a UserControl derivative named Block has a XAML file that
defines a 144-pixel square image with a Thumb, some graphics, and a TextBlock:

Project: AlphabetBlocks | File: Block.xaml

<UserControl
 x:Class="AlphabetBlocks.Block"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="using:AlphabetBlocks"
 Width="144"
 Height="144"
 Name="root">

 <Grid>
 <Thumb DragStarted="OnThumbDragStarted"
 DragDelta="OnThumbDragDelta"
 Margin="18 18 6 6" />

 <!-- Left -->
 <Polygon Points="0 6, 12 18, 12 138, 0 126"
 Fill="#E0C080" />

 <!-- Top -->
 <Polygon Points="6 0, 18 12, 138 12, 126 0"
 Fill="#F0D090" />

 <!-- Edge -->
 <Polygon Points="6 0, 18 12, 12 18, 0 6"
 Fill="#E8C888" />

 <Border BorderBrush="{Binding ElementName=root, Path=Foreground}"
 BorderThickness="12"
 Background="#FFE0A0"
 CornerRadius="6"
 Margin="12 12 0 0"
 IsHitTestVisible="False" />

 <TextBlock FontFamily="Courier New"
 FontSize="156"
 FontWeight="Bold"
 Text="{Binding ElementName=root, Path=Text}"
 HorizontalAlignment="Center"
 VerticalAlignment="Center"
 Margin="12 18 0 0"
 IsHitTestVisible="False" />
 </Grid>
</UserControl>

The Polygon shape is similar to Polyline except that it automatically closes the figure and then fills
the figure with the brush referenced by the Fill property.

The Thumb has DragStarted and DragDelta event handlers installed. The two elements that sit on
top of the Thumb—the Border and TextBlock—visually hide the Thumb but have their IsHitTestVisible
properties set to false so that they don’t block touch input from reaching the Thumb.

	 CHAPTER 5  Control Interaction	 189

The BorderBrush property of the Border has a binding to the Foreground property of the root
element. Foreground, you’ll recall, is defined by the Control class and inherited by UserControl and
propagated through the visual tree. The Foreground property of the TextBlock automatically gets this
same brush. The Text property of the TextBlock element is bound to the Text property of the control.
UserControl doesn’t have a Text property, which strongly suggests that Block defines it.

The code-behind file confirms that supposition. Much of this class is devoted to defining a Text
property backed by a dependency property:

Project: AlphabetBlocks | File: Block.xaml.cs

using Windows.UI.Xaml;
using Windows.UI.Xaml.Controls;
using Windows.UI.Xaml.Controls.Primitives;

namespace AlphabetBlocks
{
 public sealed partial class Block : UserControl
 {
 static int zindex;

 static Block()
 {
 TextProperty = DependencyProperty.Register("Text",
 typeof(string),
 typeof(Block),
 new PropertyMetadata("?"));
 }

 public static DependencyProperty TextProperty { private set; get; }

 public static int ZIndex
 {
 get { return ++zindex; }
 }

 public Block()
 {
 this.InitializeComponent();
 }

 public string Text
 {
 set { SetValue(TextProperty, value); }
 get { return (string)GetValue(TextProperty); }
 }

 void OnThumbDragStarted(object sender, DragStartedEventArgs args)
 {
 Canvas.SetZIndex(this, ZIndex);
 }

 void OnThumbDragDelta(object sender, DragDeltaEventArgs args)
 {
 Canvas.SetLeft(this, Canvas.GetLeft(this) + args.HorizontalChange);
 Canvas.SetTop(this, Canvas.GetTop(this) + args.VerticalChange);
 }
 }
}

190	 PART 1  Elementals

This Block class also defines a static ZIndex property that requires an explanation. As you click
buttons in this program and Block objects are created and added to a Canvas, each subsequent Block
appears on top of the previous Block objects because of the way they’re ordered in the collection.
However, when you later put your finger on a Block, you want that object to pop to the top of the
pile, which means that it should have a z-index higher than every other Block.

The static ZIndex property defined here helps achieve that. Notice that the value is incremented
each time it’s called. Whenever a DragStarted event occurs, which means that the user has touched
one of these controls, the Canvas.SetZIndex method gives the Block a z-index higher than all the oth-
ers. Of course, this process will break down eventually when the ZIndex property reaches its maximum
value, but it’s highly unlikely that will happen. (The Windows Runtime imposes an arbitrary maximum
value of 1,000,000, so if you move one block per second without stopping, the program will go out
on an exception during the 12th day.)

The DragDelta event of the Thumb reports how touch or the mouse has moved relative to itself in
the form of HorizontalChange and VerticalChange properties. These are simply used to increment the
Canvas.Left and Canvas.Top attached properties.

The MainPage.xaml file is very bare. The XAML is dominated by some text that displays the name
of the program in the center of the page:

Project: AlphabetBlocks | File: MainPage.xaml (excerpt)

<Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}"
 SizeChanged="OnGridSizeChanged">

 <TextBlock Text="Alphabet Blocks"
 FontStyle="Italic"
 FontWeight="Bold"
 FontSize="96"
 TextWrapping="Wrap"
 HorizontalAlignment="Center"
 VerticalAlignment="Center"
 TextAlignment="Center"
 Opacity="0.1" />

 <Canvas Name="buttonCanvas" />
 <Canvas Name="blockcanvas" />
</Grid>

Notice the SizeChanged handler on the Grid. Whenever the size of the page changes, the handler is
responsible for re-creating all the Button objects and distributing them equally around the perimeter
of the page. That code dominates that code-behind file:

Project: AlphabetBlocks | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 const double BUTTON_SIZE = 60;
 const double BUTTON_FONT = 18;
 string blockChars = "ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789!?-+*/%=";
 Color[] colors = { Colors.Red, Colors.Green, Colors.Orange, Colors.Blue, Colors.Purple };
 Random rand = new Random();

	 CHAPTER 5  Control Interaction	 191

 public MainPage()
 {
 this.InitializeComponent();
 }

 void OnGridSizeChanged(object sender, SizeChangedEventArgs args)
 {
 buttonCanvas.Children.Clear();

 double widthFraction = args.NewSize.Width /
 (args.NewSize.Width + args.NewSize.Height);
 int horzCount = (int)(widthFraction * blockChars.Length / 2);
 int vertCount = (int)(blockChars.Length / 2 - horzCount);
 int index = 0;

 double slotWidth = (args.NewSize.Width - BUTTON_SIZE) / horzCount;
 double slotHeight = (args.NewSize.Height - BUTTON_SIZE) / vertCount + 1;

 // Across top
 for (int i = 0; i < horzCount; i++)
 {
 Button button = MakeButton(index++);
 Canvas.SetLeft(button, i * slotWidth);
 Canvas.SetTop(button, 0);
 buttonCanvas.Children.Add(button);
 }

 // Down right side
 for (int i = 0; i < vertCount; i++)
 {
 Button button = MakeButton(index++);
 Canvas.SetLeft(button, this.ActualWidth - BUTTON_SIZE);
 Canvas.SetTop(button, i * slotHeight);
 buttonCanvas.Children.Add(button);
 }

 // Across bottom from right
 for (int i = 0; i < horzCount; i++)
 {
 Button button = MakeButton(index++);
 Canvas.SetLeft(button, this.ActualWidth - i * slotWidth - BUTTON_SIZE);
 Canvas.SetTop(button, this.ActualHeight - BUTTON_SIZE);
 buttonCanvas.Children.Add(button);
 }

 // Up left side
 for (int i = 0; i < vertCount; i++)
 {
 Button button = MakeButton(index++);
 Canvas.SetLeft(button, 0);
 Canvas.SetTop(button, this.ActualHeight - i * slotHeight - BUTTON_SIZE);
 buttonCanvas.Children.Add(button);
 }
 }

192	 PART 1  Elementals

 Button MakeButton(int index)
 {
 Button button = new Button
 {
 Content = blockChars[index].ToString(),
 Width = BUTTON_SIZE,
 Height = BUTTON_SIZE,
 FontSize = BUTTON_FONT,
 Tag = new SolidColorBrush(colors[index % colors.Length]),
 };
 button.Click += OnButtonClick;
 return button;
 }

 void OnButtonClick(object sender, RoutedEventArgs e)
 {
 Button button = sender as Button;

 Block block = new Block
 {
 Text = button.Content as string,
 Foreground = button.Tag as Brush
 };
 Canvas.SetLeft(block, this.ActualWidth / 2 - 144 * rand.NextDouble());
 Canvas.SetTop(block, this.ActualHeight / 2 - 144 * rand.NextDouble());
 Canvas.SetZIndex(block, Block.ZIndex);
 blockcanvas.Children.Add(block);
 }
}

A Block is created in the Click handler for the Button and given a random location somewhere close
to the center of the screen. It’s the responsibility of the user to then move the blocks to discover yet
another way to say Hello to Windows 8:

		 193

C H A P T E R 6

WinRT and MVVM

In structuring software, one of the primary guiding rules is the separation of concerns. A large
application is best developed, debugged, and maintained by being separated into specialized layers.

In highly interactive graphical environments, one obvious separation is between presentation and
content. The presentation layer is the part of the program that displays controls (and other graphics)
and interacts with the user. Underlying this presentation layer is business logic and data providers.

To help programmers conceptualize and implement separations of concerns, architectural patterns
are developed. In XAML-based programming environments, one pattern that has become extremely
popular is Model-View-ViewModel, or MVVM. MVVM is particularly suited for implementing a
presentation layer in XAML and linking to the underlying business logic through data bindings and
commands.

Unfortunately, books such as this one tend to contain very small programs to illustrate particular
features and concepts. Very small programs often become somewhat larger when they are made
to fit an architectural pattern! MVVM is overkill for a small application and may very well obfuscate
rather than clarify.

Nevertheless, data binding and commanding are an important part of the Windows Runtime, and
you should see how they help implement an MVVM architecture.

MVVM (Brief and Simplified)

As the name suggests, an application using the Model-View-ViewModel pattern is split into three
layers:

■■ The Model is the layer that deals with data and raw content. It is often involved with obtaining
and maintaining data from files or web services.

■■ The View is the presentation layer of controls and graphics, generally implemented in XAML.

■■ The View Model sits between the Model and View. In the general case, it is responsible for
making the data or content from the Model more conducive to the View.

It’s not uncommon for the Model layer to be unnecessary and therefore absent, and that’s the case
for the programs shown in this chapter.

194	 PART 1  Elementals

If all the interaction between these three layers occurs through procedural method calls, a calling
hierarchy would be imposed:

View → View Model → Model

Calls in the other direction are not allowed except for events. The Model can define an event that the
View Model handles, and the View Model can define an event that the View handles. Events allow the
View Model (for example) to signal to the View that updated data is available. The View can then call
into the View Model to obtain that updated data.

Most often, the View and View Model interact through data bindings and commands.
Consequently, most or all of these method calls and event handling actually occur under the covers.
These data bindings and commands serve to allow three types of interactions:

■■ The View can transfer user input to the View Model.

■■ The View Model can notify the View when updated data is available.

■■ The View can obtain and display updated data from the View Model.

One of the goals inherent in MVVM is to minimize the code-behind file—at least on the page or
window level. MVVM mavens are happiest when all the connections between the View and View
Model are accomplished through bindings in the XAML file.

Data Binding Notifications

In Chapter 5, “Control Interaction,” you saw data bindings that looked like this:

<TextBlock Text="{Binding ElementName=slider, Path=Value}" />

This is a binding between two FrameworkElement derivatives. The target of this data binding is the
Text property of the TextBlock. The binding source is the Value property of a Slider identified by the
name slider. Both the target and source properties are backed by dependency properties. This is a
requirement for the binding target but not (as you’ll see) for the source.

Whenever the Value property of the Slider changes, the text displayed by the TextBlock changes
accordingly. How does this work? When the binding source is a dependency property, the actual
mechanism is internal to the Windows Runtime. Undoubtedly an event is involved. The Binding
object installs a handler for an event that provides a notification when the Value property of the
Slider changes, and the Binding object sets that changed value to the Text property of the TextBlock,
converting from double to string in the process. This shouldn’t be very mysterious, considering that
Slider has a public ValueChanged event that is also fired when the Value property changes.

When implementing a View Model, the data bindings are a little different: The binding targets are
still elements in the XAML file, but the binding sources are properties in the View Model class. This is
the basic way that the View Model and the View (the XAML file) transfer data back and forth.

	 CHAPTER 6  WinRT and MVVM	 195

A binding source is not required to be backed by a dependency property. But in order for the
binding to work properly, the binding source must implement some other kind of notification
mechanism to signal to the Binding object when a property has changed. This notification does not
happen automatically; it must be implemented through an event.

The standard way for a View Model to serve as a binding source is by implementing the
INotifyPropertyChanged interface defined in the System.ComponentModel namespace. This interface
has an exceptionally simple definition:

public interface INotifyPropertyChanged
{
 event PropertyChangedEventHandler PropertyChanged;
}

The PropertyChangedEventHandler delegate is associated with the PropertyChangedEventArgs
class, which defines one property: PropertyName of type string. When a class implements
INotifyPropertyChanged, it fires a PropertyChanged event whenever one of its properties changes.

Here’s a simple example of a class that implements INotifyPropertyChanged. The single property
named TotalScore fires the PropertyChanged event when the property changes:

public class SimpleViewModel : INotifyPropertyChanged
{
 double totalScore;

 public event PropertyChangedEventHandler PropertyChanged;

 public double TotalScore
 {
 set
 {
 if (totalScore != value)
 {
 totalScore = value;

 if (PropertyChanged != null)
 PropertyChanged(this, new PropertyChangedEventArgs("TotalScore"));
 }
 }
 get
 {
 return totalScore;
 }
 }
}

The TotalScore property is backed by the totalScore field. Notice that the TotalScore property
checks the value coming into the set accessor against the totalScore field and fires the
PropertyChanged event only when the property actually changes. Do not skimp on this step just
to make these set accessors a little shorter! The event is called PropertyChanged and not
PropertySetAndPerhapsChangedOrMaybeNot.

196	 PART 1  Elementals

Also notice that it’s possible for a class to legally implement INotifyPropertyChanged and not
actually fire any PropertyChanged events, but that would be considered very bad behavior.

When a class has more than a couple properties, it starts making sense to define a protected
method named OnPropertyChanged and let that method do the actual event firing. It’s also possible
to automate part of this class, as you’ll see shortly.

As you design a View and View Model, it helps to start thinking of controls as visual manifestations
of data types. Through data bindings, the controls in the View are connected to properties of
these types in the View Model. For example, a Slider is a double, a TextBox is a string, a CheckBox or
ToggleSwitch is a bool, and a group of RadioButton controls is an enumeration.

A View Model for ColorScroll

The ColorScroll programs in Chapter 5 showed how to use data bindings to update a TextBlock from
the value property of a Slider. However, defining a data binding to change the color based on the
three Slider values proved much more elusive. Is it possible at all?

The solution is to have a separate class devoted to the job of creating a Color object from the
values of Red, Green, and Blue properties. Any change to one of these three properties triggers a
recalculation of the Color property. In the XAML file, bindings connect the Slider controls with the
Red, Green, and Blue properties and the SolidColorBrush with the Color property. Even if we don’t call
this class a View Model, that’s what it is.

Here’s an RgbViewModel class that implements the INotifyPropertyChanged interface to fire
PropertyChanged events whenever its Red, Green, Blue, or Color properties change:

Project: ColorScrollWithViewModel | File: RgbViewModel.cs

using System.ComponentModel; // for INotifyPropertyChanged
using Windows.UI; // for Color

namespace ColorScrollWithViewModel
{
 public class RgbViewModel : INotifyPropertyChanged
 {
 double red, green, blue;
 Color color = Color.FromArgb(255, 0, 0, 0);

 public event PropertyChangedEventHandler PropertyChanged;

 public double Red
 {
 set
 {
 if (red != value)
 {
 red = value;
 OnPropertyChanged("Red");
 Calculate();
 }

	 CHAPTER 6  WinRT and MVVM	 197

 }
 get
 {
 return red;
 }
 }

 public double Green
 {
 set
 {
 if (green != value)
 {
 green = value;
 OnPropertyChanged("Green");
 Calculate();
 }
 }
 get
 {
 return green;
 }
 }

 public double Blue
 {
 set
 {
 if (blue != value)
 {
 blue = value;
 OnPropertyChanged("Blue");
 Calculate();
 }
 }
 get
 {
 return blue;
 }
 }

 public Color Color
 {
 protected set
 {
 if (color != value)
 {
 color = value;
 OnPropertyChanged("Color");
 }
 }
 get
 {
 return color;
 }
 }

198	 PART 1  Elementals

 void Calculate()
 {
 this.Color = Color.FromArgb(255, (byte)this.Red, (byte)this.Green, (byte)this.Blue);
 }

 protected void OnPropertyChanged(string propertyName)
 {
 if (PropertyChanged != null)
 PropertyChanged(this, new PropertyChangedEventArgs(propertyName));
 }
 }
}

The OnPropertyChanged method at the bottom of the class has the job of actually firing the
PropertyChanged event with the name of the property.

I’ve defined the Red, Green, and Blue properties as double to facilitate data bindings. These
properties are basically input to the View Model, and they’ll probably come from controls such as
Slider, so the double type is the most generalized.

Each of the Red, Green, and Blue property set accessors fires a PropertyChanged event and then
calls Calculate, which sets a new Color value, which causes another PropertyChanged event to be fired
for the Color property. The Color property itself has a protected set accessor, indicating that this class
isn’t designed to calculate Red, Green, and Blue values from a new Color value. (I’ll explore this issue
shortly.)

The RgbViewModel class is part of the ColorScrollWithViewModel project. The MainPage.xaml file
instantiates the RgbViewModel in its Resources section.

Project: ColorScrollWithViewModel | File: MainPage.xaml (excerpt)

<Page.Resources>
 <local:RgbViewModel x:Key="rgbViewModel" />
 ...
</Page.Resources>

Notice the namespace prefix of local.

Defining the View Model as a resource is one of two basic ways that a XAML file can get access to
the object. As was demonstrated in Chapter 2, “XAML Syntax,” a class included in a Resources section
is instantiated only once and shared among all StaticResource references. That behavior is essential for
an application such as this, in which all the bindings need to reference the same object.

Each of the Slider controls is similar. Only one is shown here:

Project: ColorScrollWithViewModel | File: MainPage.xaml (excerpt)

<!-- Red -->
<TextBlock Text="Red"
 Grid.Column="0"
 Grid.Row="0"
 Foreground="Red" />

	 CHAPTER 6  WinRT and MVVM	 199

<Slider Grid.Column="0"
 Grid.Row="1"
 Value="{Binding Source={StaticResource rgbViewModel},
 Path=Red,
 Mode=TwoWay}"
 Foreground="Red" />

<TextBlock Text="{Binding Source={StaticResource rgbViewModel},
 Path=Red,
 Converter={StaticResource hexConverter}}"
 Grid.Column="0"
 Grid.Row="2"
 Foreground="Red" />

Notice that the Slider element no longer has a Name attribute because no other element in the XAML
file refers to this element, and neither does the code-behind file. There’s no ValueChanged event
handler because that’s not needed either. The code-behind file contains nothing except a call to
InitializeComponent.

Take careful note of the binding on the Slider:

<Slider ...
 Value="{Binding Source={StaticResource rgbViewModel},
 Path=Red,
 Mode=TwoWay}" ... />

This binding is a little long, so I’ve broken it into three lines. It does not specify an ElementName
because it’s not referencing another element in the XAML file. Instead, it’s referencing an object
instantiated as a XAML resource, so it must use Source with StaticResource. The syntax of this binding
implies that the binding target is the Value property of the Slider and the binding source is the Red
property of the RgbViewModel instance.

Does this seem backward? Shouldn’t the Slider be providing a value to RgbViewModel?

Yes, but RgbViewModel must be a binding source rather than a target. It can’t be a binding target
because it has no dependency properties. Despite the syntax implying that Value is the binding
target, in reality we want the Slider to provide a value to the Red property. For this reason, the Mode
property of Binding must be set to TwoWay, which means

■■ an updated source value causes a change to the target property (the normal case for a data
binding), and

■■ an updated target value causes a change to the source property (which is actually the essential
transfer here).

The default Mode setting is OneWay. The only other option is OneTime, which means that the
target is updated from the source property only when the binding is established. With OneTime, no
updating occurs when the source property later changes. You can use OneTime if the source has no
notification mechanism.

200	 PART 1  Elementals

Also notice that the TextBlock showing the current value now has a binding to the RgbViewModel
object:

<TextBlock Text="{Binding Source={StaticResource rgbViewModel},
 Path=Red,
 Converter={StaticResource hexConverter}}" ... />

This binding could instead refer directly to the Slider as in the previous project, but I thought it
would be better that it also refer to the RgbViewModel instance. The default OneWay mode is fine
here because data only needs to go from the source to the target.

The OneWay mode is also good for the binding on the Color property of the SolidColorBrush:

Project: ColorScrollWithViewModel | File: MainPage.xaml (excerpt)

<Rectangle Grid.Column="3"
 Grid.Row="0"
 Grid.RowSpan="3">
 <Rectangle.Fill>
 <SolidColorBrush Color="{Binding Source={StaticResource rgbViewModel},
 Path=Color}" />
 </Rectangle.Fill>
</Rectangle>

The SolidColorBrush no longer has an x:Name attribute because there’s nothing in the code-
behind file that refers to it.

Of course, the code in the RgbViewModel class is much longer than the ValueChanged event
handler we’ve managed to remove from the code-behind file. I warned you at the outset that MVVM
is overkill for small programs. Even in larger applications, often there’s an initial price to pay for
cleaner architecture, but the separation of presentation and business logic usually has long-term
advantages.

In the RgbViewModel class I made the set accessor of Color protected so that it can be accessed
only from within the class. Is this really necessary? Perhaps the Color property can be defined so that
an external change to the property causes new values of the Red, Green, and Blue properties to be
calculated:

public Color Color
{
 set
 {
 if (color != value)
 {
 color = value;
 OnPropertyChanged("Color");
 this.Red = color.R;
 this.Green = color.G;
 this.Blue = color.B;
 }
 }
 get
 {
 return color;
 }
}

	 CHAPTER 6  WinRT and MVVM	 201

At first this might seem like asking for trouble because it causes recursive property changes and
recursive calls to OnPropertyChanged. But that doesn’t happen because the set accessors do nothing
if the property is not actually changing, so this should be safe.

But it’s actually flawed. Suppose the Color property is currently the RGB value (0, 0, 0) and it’s set
to value (255, 128, 0). When the Red property is set to 255 in the code, a PropertyChanged event is
fired, but now Color (and color) is set to (255, 0, 0), so the code here continues with Green and Blue
being set to the new color values of 0.

Rather than guard against re-entry, try searching for a change in logic that does what you want.
This version works OK, even though it causes a flurry of PropertyChanged events:

public Color Color
{
 set
 {
 if (color != value)
 {
 color = value;
 OnPropertyChanged("Color");
 this.Red = value.R;
 this.Green = value.G;
 this.Blue = value.B;
 }
 }
 get
 {
 return color;
 }
}

I’ll make the set accessor of Color property public in the next version of the program.

Syntactic Shortcuts

You might have concluded from the RgbViewModel code that implementing INotifyPropertyChanged
is a bit of a hassle, and that’s true. To make it somewhat easier, Visual Studio creates a BindableBase
class in the Common folder for projects of type Grid App and Split App. (Don’t confuse this class with
the BindingBase class from which Binding derives.)

However, Visual Studio does not create this BindableBase class in the Blank App project. But let’s
take a look at it and see if we can learn anything.

The BindableBase class is defined in a namespace that consists of the project name followed by a
period and the word Common. Stripped of comments and attributes, here’s what it looks like:

public abstract class BindableBase : INotifyPropertyChanged
{
 public event PropertyChangedEventHandler PropertyChanged;

202	 PART 1  Elementals

 protected bool SetProperty<T>(ref T storage, T value,
 [CallerMemberName] String propertyName = null)
 {
 if (object.Equals(storage, value)) return false;

 storage = value;
 this.OnPropertyChanged(propertyName);
 return true;
 }

 protected void OnPropertyChanged([CallerMemberName] string propertyName = null)
 {
 var eventHandler = this.PropertyChanged;
 if (eventHandler != null)
 {
 eventHandler(this, new PropertyChangedEventArgs(propertyName));
 }
 }
}

A class that derives from BindableBase calls SetProperty in the set accessor of its property
definitions. The signature for the SetProperty method looks a little hairy, but it’s very easy to use. For
a property named Red of type double, for example, you would have a backing field defined like this:

double red;

You call SetProperty in the set accessor like so:

SetProperty<double>(ref red, value, "Red");

Notice the use of CallerMemberName in BindableBase. This is an attribute added to .NET 4.5 that
C# 5.0 can use to obtain information about code that’s calling a particular property or method, which
means that you can call SetProperty without that last argument. If you’re calling SetProperty from the
set accessor of the Red property, the name will be automatically provided:

SetProperty<double>(ref red, value);

The return value from SetProperty is true if the property is actually changing. You’ll probably
want to use the return in logic that does something with the new value. For the next project, called
ColorScrollWithDataContext, I’ve created an alternate version of RgbViewModel that steals some code
from BindableBase, and I’ve given Color a public set accessor:

Project: ColorScrollWithDataContext | File: RgbViewModel.cs

using System.ComponentModel;
using System.Runtime.CompilerServices;
using Windows.UI;

namespace ColorScrollWithDataContext
{
 public class RgbViewModel : INotifyPropertyChanged
 {
 double red, green, blue;

	 CHAPTER 6  WinRT and MVVM	 203

 Color color = Color.FromArgb(255, 0, 0, 0);

 public event PropertyChangedEventHandler PropertyChanged;

 public double Red
 {
 set
 {
 if (SetProperty<double>(ref red, value, "Red"))
 Calculate();
 }
 get
 {
 return red;
 }
 }

 public double Green
 {
 set
 {
 if (SetProperty<double>(ref green, value))
 Calculate();
 }
 get
 {
 return green;
 }
 }

 public double Blue
 {
 set
 {
 if (SetProperty<double>(ref blue, value))
 Calculate();
 }
 get
 {
 return blue;
 }
 }

 public Color Color
 {
 set
 {
 if (SetProperty<Color>(ref color, value))
 {
 this.Red = value.R;
 this.Green = value.G;
 this.Blue = value.B;
 }
 }
 get
 {
 return color;

204	 PART 1  Elementals

 }
 }

 void Calculate()
 {
 this.Color = Color.FromArgb(255, (byte)this.Red, (byte)this.Green, (byte)this.Blue);
 }

 protected bool SetProperty<T>(ref T storage, T value,
 [CallerMemberName] string propertyName = null)
 {
 if (object.Equals(storage, value))
 return false;

 storage = value;
 OnPropertyChanged(propertyName);
 return true;
 }

 protected void OnPropertyChanged(string propertyName)
 {
 if (PropertyChanged != null)
 PropertyChanged(this, new PropertyChangedEventArgs(propertyName));
 }
 }
}

This form of the INotifyPropertyChanged implementation is somewhat cleaner and certainly
sleeker. I’ll use this version in the ColorScrollWithDataContext project in the next section.

The DataContext Property

So far you’ve seen three ways to specify a source object in a binding: ElementName, RelativeSource,
and Source. ElementName is ideal for referencing a named element in XAML, and RelativeSource
allows a binding to reference a property in the target object. (RelativeSource actually has a more
important but also more esoteric use that you’ll discover in Chapter 11, “The Three Templates.”) The
third option is the Source property, which is generally used with StaticResource for accessing an object
in the Resources collection.

There’s a fourth way to specify a binding source: If ElementName, RelativeSource, and Source are all
null, the Binding object checks the DataContext property of the binding target.

The DataContext property is defined by FrameworkElement, and it has the wonderful (and
essential) characteristic of propagating down through the visual tree. Not many properties propagate
through the visual tree in this way. Foreground and all the font-related properties do so, but not many
others. DataContext is one of the big exceptions to the rule. The constructor of a code-behind file can

	 CHAPTER 6  WinRT and MVVM	 205

instantiate a View Model and set that instance to the DataContext of the page. Here’s how it’s done in
the MainPage.xaml.cs file of the ColorScrollWithDataContext project:

Project: ColorScrollWithDataContext | File: MainPage.xaml.cs

public MainPage()
{
 this.InitializeComponent();
 this.DataContext = new RgbViewModel();

 // Initialize to highlight color
 (this.DataContext as RgbViewModel).Color =
 new UISettings().UIElementColor(UIElementType.Highlight);

}

Instantiating the View Model in code might be necessary or desirable for one reason or another.
Perhaps the View Model has a constructor that requires an argument. That’s something XAML
can’t do.

Notice that I’ve also taken the opportunity to test the settability of the Color property by
initializing it to the system highlight color.

One big advantage to the DataContext approach is the simplification of the data bindings. Because
they no longer require Source settings, they can look like this:

<Slider ... Value="{Binding Path=Red, Mode=TwoWay}" ... />

Moreover, if the Path item is the first item in the binding markup, the Path= part can be removed:

<Slider ... Value="{Binding Red, Mode=TwoWay}" ... />

Now that’s a simple Binding syntax!

You can remove the Path= part of any binding specification regardless of the source, but only if
Path is the first item. Whenever I use Source or ElementName, I prefer for that part of the Binding
specification to appear first, so I’ll drop Path= only when the DataContext comes into play.

Here’s an excerpt from the XAML file showing the new bindings. They’ve become so short that I’ve
stopped breaking them into multiple lines:

Project: ColorScrollWithDataContext | File: MainPage.xaml (excerpt)

<!-- Red -->
<TextBlock Text="Red"
 Grid.Column="0"
 Grid.Row="0"
 Foreground="Red" />

<Slider Grid.Column="0"
 Grid.Row="1"
 Value="{Binding Red, Mode=TwoWay}"
 Foreground="Red" />

206	 PART 1  Elementals

<TextBlock Text="{Binding Red, Converter={StaticResource hexConverter}}"
 Grid.Column="0"
 Grid.Row="2"
 Foreground="Red" />
...
<!-- Result -->
<Rectangle Grid.Column="3"
 Grid.Row="0"
 Grid.RowSpan="3">
 <Rectangle.Fill>
 <SolidColorBrush Color="{Binding Color}" />
 </Rectangle.Fill>
</Rectangle>

It’s possible to mix the two approaches. For example, you can instantiate the View Model in the
Resources collection of the XAML file:

<Page.Resources>
 ...
 <local:RgbViewModel x:Key="rgbViewModel" />
 ...
</Page.Resources>

Then at the earliest convenient place in the visual tree, you can set a DataContext property:

<Grid ... DataContext="{StaticResource rgbViewModel}" ... >

Or:

<Grid ... DataContext="{Binding Source={StaticResource rgbViewModel}}" ... >

The second form is particularly useful if you want to set the DataContext to a property of the View
Model. You’ll see examples when I begin discussing collections in Chapter 11.

Bindings and TextBox

One of the big advantages to isolating underlying business logic is the ability to completely revamp
the user interface without touching the View Model. For example, suppose you want a color-selection
program that is similar to ColorScroll but where each color component is entered in a TextBox. Such a
program might be a little clumsy to use, but it should be possible.

The ColorTextBoxes project has the same RgbViewModel class as the ColorScrollWithDataContext
program. The code-behind file has the same constructor as that project as well:

Project: ColorTextBoxes | File: MainPage.xaml.cs (excerpt)

public MainPage()
{
 this.InitializeComponent();
 this.DataContext = new RgbViewModel();

	 CHAPTER 6  WinRT and MVVM	 207

 // Initialize to highlight color
 (this.DataContext as RgbViewModel).Color =
 new UISettings().UIElementColor(UIElementType.Highlight);

}

The XAML file instantiates three TextBox controls and defines data bindings between the Red,
Green, and Blue properties of RgbViewModel:

Project: ColorTextBoxes | File: MainPage.xaml (excerpt)

<Page ... >

 <Page.Resources>
 <Style TargetType="TextBlock">
 <Setter Property="FontSize" Value="24" />
 <Setter Property="Margin" Value="24 0 0 0" />
 <Setter Property="VerticalAlignment" Value="Center" />
 </Style>

 <Style TargetType="TextBox">
 <Setter Property="Margin" Value="24 48 96 48" />
 <Setter Property="VerticalAlignment" Value="Center" />
 </Style>
 </Page.Resources>

 <Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="*" />
 <ColumnDefinition Width="*" />
 </Grid.ColumnDefinitions>

 <Grid Grid.Column="0">
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition Width="*" />
 </Grid.ColumnDefinitions>

 <TextBlock Text="Red: "
 Grid.Row="0"
 Grid.Column="0" />

 <TextBox Text="{Binding Red, Mode=TwoWay}"
 Grid.Row="0"
 Grid.Column="1" />

 <TextBlock Text="Green: "
 Grid.Row="1"
 Grid.Column="0" />

208	 PART 1  Elementals

 <TextBox Text="{Binding Green, Mode=TwoWay}"
 Grid.Row="1"
 Grid.Column="1" />

 <TextBlock Text="Blue: "
 Grid.Row="2"
 Grid.Column="0" />

 <TextBox Text="{Binding Blue, Mode=TwoWay}"
 Grid.Row="2"
 Grid.Column="1" />
 </Grid>

 <!-- Result -->
 <Rectangle Grid.Column="1">
 <Rectangle.Fill>
 <SolidColorBrush Color="{Binding Color}" />
 </Rectangle.Fill>
 </Rectangle>
 </Grid>
</Page>

When the program runs, the individual TextBox controls are initialized with color values, all the
necessary data conversions being performed behind the scenes:

Now tap one of the TextBox controls, and try entering another number. Nothing happens. Now
tap another TextBox, or press the Tab key to shift the input focus to the next TextBox. Aha! Now the
number you entered in the first TextBox has finally been acknowledged and used to update the color.

As you experiment with this program, you’ll find that the Windows Runtime is extremely lenient
about accepting letters and symbols in these text strings without raising exceptions but that any new
value you type registers only when the TextBox loses input focus.

	 CHAPTER 6  WinRT and MVVM	 209

This behavior is by design. Suppose a View Model bound to a TextBox is using a Model to update
a database through a network connection. As the user types text into a TextBox—perhaps making
mistakes and backspacing—do you really want each and every change going over the network? For
that reason, user entry in the TextBox is considered to be completed and ready for processing only
when the TextBox loses input focus.

Unfortunately, there’s currently no option to change this behavior. Nor is there any way to include
validation in these data bindings. If the TextBox binding behavior is unacceptable, and if you prefer
not duplicating TextBox logic with a control of your own, the only real choice you have is abandoning
bindings for this case and using the TextChanged event handler instead.

The ColorTextBoxesWithEvents project shows one possible approach. The project still uses the
same RgbViewModel class. The XAML file is similar to the previous project except that the TextBox
controls now have names and TextChanged handlers assigned:

Project: ColorTextBoxesWithEvents | File: MainPage.xaml (excerpt)

<TextBlock Text="Red: "
 Grid.Row="0"
 Grid.Column="0" />

<TextBox Name="redTextBox"
 Grid.Row="0"
 Grid.Column="1"
 Text="0"
 TextChanged="OnTextBoxTextChanged" />

<TextBlock Text="Green: "
 Grid.Row="1"
 Grid.Column="0" />

<TextBox Name="greenTextBox"
 Grid.Row="1"
 Grid.Column="1"
 Text="0"
 TextChanged="OnTextBoxTextChanged" />

<TextBlock Text="Blue: "
 Grid.Row="2"
 Grid.Column="0" />

<TextBox Name="blueTextBox"
 Grid.Row="2"
 Grid.Column="1"
 Text="0"
 TextChanged="OnTextBoxTextChanged" />

The Rectangle, however, still has the same data binding as in the earlier programs.

Because we’re replacing two-way bindings, not only do we need event handlers on the TextBox
controls, but we need to install a handler for the PropertyChanged event of RgbViewModel. Updating

210	 PART 1  Elementals

a TextBox when a View Model property changes is fairly easy, but I also decided I wanted to actually
validate the text entered by the user:

Project: ColorTextBoxesWithEvents | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 RgbViewModel rgbViewModel;
 Brush textBoxTextBrush;
 Brush textBoxErrorBrush = new SolidColorBrush(Colors.Red);

 public MainPage()
 {
 this.InitializeComponent();

 // Get TextBox brush
 textBoxTextBrush = this.Resources["TextBoxForegroundThemeBrush"] as SolidColorBrush;

 // Create RgbViewModel and save as field
 rgbViewModel = new RgbViewModel();
 rgbViewModel.PropertyChanged += OnRgbViewModelPropertyChanged;
 this.DataContext = rgbViewModel;

 // Initialize to highlight color
 rgbViewModel.Color = new UISettings().UIElementColor(UIElementType.Highlight);
 }

 void OnRgbViewModelPropertyChanged(object sender, PropertyChangedEventArgs args)
 {
 switch (args.PropertyName)
 {
 case "Red":
 redTextBox.Text = rgbViewModel.Red.ToString("F0");
 break;

 case "Green":
 greenTextBox.Text = rgbViewModel.Green.ToString("F0");
 break;

 case "Blue":
 blueTextBox.Text = rgbViewModel.Blue.ToString("F0");
 break;
 }
 }

 void OnTextBoxTextChanged(object sender, TextChangedEventArgs args)
 {
 byte value;

 if (sender == redTextBox && Validate(redTextBox, out value))
 rgbViewModel.Red = value;

 if (sender == greenTextBox && Validate(greenTextBox, out value))
 rgbViewModel.Green = value;

	 CHAPTER 6  WinRT and MVVM	 211

 if (sender == blueTextBox && Validate(blueTextBox, out value))
 rgbViewModel.Blue = value;
 }

 bool Validate(TextBox txtbox, out byte value)
 {
 bool valid = byte.TryParse(txtbox.Text, out value);
 txtbox.Foreground = valid ? textBoxTextBrush : textBoxErrorBrush;
 return valid;
 }
}

The Validate method uses the standard TryParse method to convert the text into a byte value. If
successful, the View Model is updated with the value. If not, the text is displayed in red, indicating a
problem.

This works well except when the numbers being entered are preceded with leading blanks or
zeros. For example, suppose you type 0 in the first TextBox. That’s a valid byte, so the Red property in
RgbViewModel is updated with this value, which triggers a PropertyChanged method, and the TextBox
is assigned a Text value of “0”. No problem. Now type a 5. The TextBox contains “05”. The TryParse
method considers this to be a valid byte string, and the Red property is updated with the value 5.
Now the PropertyChanged handler sets the Text property of the TextBox to the string “5”, replacing
“05”. But the cursor location is not changed, so it’s in front of the 5 instead of being after the 5.

Perhaps the best way to prevent this problem is to ignore PropertyChanged events from the View
Model while setting a property in the View Model from the TextChanged handler. You can do this
with a simple flag:

bool blockViewModelUpdates;

...

void OnRgbViewModelPropertyChanged(object sender, PropertyChangedEventArgs args)
{
 if (blockViewModelUpdates)
 return;
 ...
}

void OnTextBoxTextChanged(object sender, TextChangedEventArgs args)
{
 blockViewModelUpdates = true;
 ...
 blockViewModelUpdates = false;
}

You’ll probably also want to clean up the displayed values when each TextBox loses input focus.

In some cases, data entry validation might more properly be under the jurisdiction of View Model
rather than the View.

212	 PART 1  Elementals

Buttons and MVVM

At first, the idea that you can use MVVM to eliminate most of a code-behind file seems valid only for
controls that generate values. The concept starts to crumble when you consider buttons. A Button
fires a Click event. That Click event must be handled in the code-behind file. If a View Model is actu-
ally implementing the logic for that button (which is likely), the Click handler must call a method in
the View Model. That might be architecturally legal, but it’s still rather cumbersome.

Fortunately, there’s an alternative to the Click event that is ideal for MVVM. This is sometimes
informally referred to as the “command interface.” ButtonBase defines properties named Command
(of type ICommand) and CommandParameter (of type object) that allow a Button to effectively make
a call into a View Model through a data binding. Command and CommandParameter are both backed
by dependency properties, which means they can be binding targets. Command is almost always
the target of a data binding. CommandParameter is optional. It’s useful for differentiating between
buttons bound to the same Command object, and it’s usually treated like a Tag property.

Perhaps you’ve written a calculator application where you’ve implemented the engine as a View
Model that’s set as the DataContext. The calculator button for the + (plus) command might be
instantiated in XAML like so:

<Button Content="+"
 Command="{Binding CalculateCommand}"
 CommandParameter="add" />

What this means is that the View Model has a property named CalculateCommand of type
ICommand, perhaps defined like this:

public ICommand CalculateCommand { protected set; get; }

The View Model must initialize the CalculateCommand property by setting it to an instance of a class
that implements the ICommand interface, which is defined like so:

public interface ICommand
{
 void Execute(object param);
 bool CanExecute(object param)
 event EventHandler<object> CanExecuteChanged;
}

When this particular Button is clicked, the Execute method is called in the object referenced by
CalculateCommand with an argument of “add”. This is how a Button basically makes a call right into
the View Model (or rather, the class containing that Execute method).

The other two-thirds of the ICommand interface contain the phrase “can execute” and involve
the validity of the particular command at a particular time. If this command is not currently valid—
perhaps the calculator can’t add right now because no number has been entered—the Button should
be disabled.

	 CHAPTER 6  WinRT and MVVM	 213

Here’s how it works: As the XAML is being parsed and loaded at run time, the Command property
of the Button is assigned a binding to (in this example) the CalculateCommand object. The Button
installs a handler for the CanExecuteChanged event and calls the CanExecute method in this object
with an argument (in this example) of “add”. If CanExecute returns false, the Button disables itself.
Thereafter, the Button calls CanExecute again whenever the CanExecuteChanged event is fired.

To include a command in your View Model, you must provide a class that implements the
ICommand interface. However, it’s very likely that this class needs to access properties in the View
Model class, and vice versa.

So you might wonder: Can these two classes be one and the same?

In theory, yes they can, but only if you use the same Execute and CanExecute methods for all the
buttons on the page, which means that each button must have a unique CommandParameter so that
the methods can distinguish between them. But let me show you the standard way of implementing
commands in a View Model.

The DelegateCommand Class

Let’s rewrite the SimpleKeypad application from Chapter 5 so that it uses a View Model to
accumulate the keystrokes and generate a formatted text string. Besides implementing the
INotifyPropertyChanged interface, the View Model will also process commands from all the buttons
in the keypad. There will be no more Click handlers.

Here’s the problem: For the View Model to process button commands, it must have one or more
properties of type ICommand, which means that we need one or more classes that implement the
ICommand interface. To implement ICommand, these classes must contain Execute and CanExecute
methods and the CanExecuteChanged event. Yet, the bodies of these methods undoubtedly need to
interact with the other parts of the View Model.

The solution is to define all the Execute and CanExecute methods in the View Model class but with
different and unique names. Then, a special class can be defined that implements ICommand but that
actually calls the methods in the View Model.

This special class is often named DelegateCommand, and if you search around, you’ll find several
somewhat different implementations of this class, including one in Microsoft’s Prism framework,
which helps developers implement MVVM in Windows Presentation Foundation (WPF) and Silverlight.
The version here is my variation.

DelegateCommand implements the ICommand interface, which means it has Execute and
CanExecute methods and the CanExecuteChanged event, but it turns out that DelegateCommand
also needs another method to fire the CanExecuteChanged event. Let’s call this additional method

214	 PART 1  Elementals

RaiseCanExecuteChanged. The first job is to define an interface that implements ICommand plus this
additional method:

Project: KeypadWithViewModel | File: IDelegateCommand.cs

using System.Windows.Input;

namespace KeypadWithViewModel
{
 public interface IDelegateCommand : ICommand
 {
 void RaiseCanExecuteChanged();
 }
}

The DelegateCommand class implements the IDelegateCommand interface and makes use of a
couple simple (but useful) generic delegates defined in the System namespace. These predefined
delegates have the names Action and Func with anything from 1 to 16 arguments. The Func delegates
return an object of a particular type; the Action delegates do not. The Action<object> delegate
represents a method with a single object argument and a void return value; this is the signature of the
Execute method. The Func<object, bool> delegate represents a method with an object argument that
returns a bool; this is the signature of the CanExecute method. DelegateCommand defines two fields
of these types for storing methods with these signatures:

Project: KeypadWithViewModel | File: DelegateCommand.cs

using System;

namespace KeypadWithViewModel
{
 public class DelegateCommand : IDelegateCommand
 {
 Action<object> execute;
 Func<object, bool> canExecute;

 // Event required by ICommand
 public event EventHandler CanExecuteChanged;

 // Two constructors
 public DelegateCommand(Action<object> execute, Func<object, bool> canExecute)
 {
 this.execute = execute;
 this.canExecute = canExecute;
 }
 public DelegateCommand(Action<object> execute)
 {
 this.execute = execute;
 this.canExecute = this.AlwaysCanExecute;
 }

 // Methods required by ICommand
 public void Execute(object param)
 {
 execute(param);
 }

	 CHAPTER 6  WinRT and MVVM	 215

 public bool CanExecute(object param)
 {
 return canExecute(param);
 }

 // Method required by IDelegateCommand
 public void RaiseCanExecuteChanged()
 {
 if (CanExecuteChanged != null)
 CanExecuteChanged(this, EventArgs.Empty);
 }

 // Default CanExecute method
 bool AlwaysCanExecute(object param)
 {
 return true;
 }
 }
}

This class implements Execute and CanExecute methods, but these methods merely call the methods
saved as fields. These fields are set by the constructor of the class from constructor arguments.

For example, if the calculator View Model has a command to calculate, it can define the
CalculateCommand property like so:

public IDelegateCommand CalculateCommand { protected set; get; }

The View Model also defines two methods named ExecuteCalculate and CanExecuteCalculate:

void ExecuteCalculate(object param)
{
 ...
}

bool CanExecuteCalculate(object param)
{
 ...
}

The constructor of the View Model class creates the CalculateCommand property by instantiating
DelegateCommand with these two methods:

this.CalculateCommand = new DelegateCommand(ExecuteCalculate, CanExecuteCalculate);

Now that you see the general idea, let’s look at the View Model for the keypad. For the text
entered into and displayed by the keypad, this View Model defines two properties named InputString
and the formatted version, DisplayText.

The View Model also defines two properties of type IDelegateCommand named
AddCharacterCommand (for all the numeric and symbol keys) and DeleteCharacterCommand. These
properties are created by instantiating DelegateCommand with the methods ExecuteAddCharacter,

216	 PART 1  Elementals

ExecuteDeleteCharacter, and CanExecuteDeleteCharacter. There’s no CanExecuteAddCharacter
because the keys are always valid.

Project: KeypadWithViewModel | File: KeypadViewModel.cs

using System;
using System.ComponentModel;
using System.Runtime.CompilerServices;

namespace KeypadWithViewModel
{
 public class KeypadViewModel : INotifyPropertyChanged
 {
 string inputString = "";
 string displayText = "";
 char[] specialChars = { '*', '#' };

 public event PropertyChangedEventHandler PropertyChanged;

 // Constructor
 public KeypadViewModel()
 {
 this.AddCharacterCommand = new DelegateCommand(ExecuteAddCharacter);
 this.DeleteCharacterCommand =
 new DelegateCommand(ExecuteDeleteCharacter, CanExecuteDeleteCharacter);
 }

 // Public properties
 public string InputString
 {
 protected set
 {
 bool previousCanExecuteDeleteChar = this.CanExecuteDeleteCharacter(null);

 if (this.SetProperty<string>(ref inputString, value))
 {
 this.DisplayText = FormatText(inputString);

 if (previousCanExecuteDeleteChar != this.CanExecuteDeleteCharacter(null))
 this.DeleteCharacterCommand.RaiseCanExecuteChanged();
 }
 }

 get { return inputString; }
 }

 public string DisplayText
 {
 protected set { this.SetProperty<string>(ref displayText, value); }
 get { return displayText; }
 }

	 CHAPTER 6  WinRT and MVVM	 217

 // ICommand implementations
 public IDelegateCommand AddCharacterCommand { protected set; get; }

 public IDelegateCommand DeleteCharacterCommand { protected set; get; }

 // Execute and CanExecute methods
 void ExecuteAddCharacter(object param)
 {
 this.InputString += param as string;
 }

 void ExecuteDeleteCharacter(object param)
 {
 this.InputString = this.InputString.Substring(0, this.InputString.Length - 1);
 }

 bool CanExecuteDeleteCharacter(object param)
 {
 return this.InputString.Length > 0;
 }

 // Private method called from InputString
 string FormatText(string str)
 {
 bool hasNonNumbers = str.IndexOfAny(specialChars) != -1;
 string formatted = str;

 if (hasNonNumbers || str.Length < 4 || str.Length > 10)
 {
 }
 else if (str.Length < 8)
 {
 formatted = String.Format("{0}-{1}", str.Substring(0, 3),
 str.Substring(3));
 }
 else
 {
 formatted = String.Format("({0}) {1}-{2}", str.Substring(0, 3),
 str.Substring(3, 3),
 str.Substring(6));
 }
 return formatted;
 }

 protected bool SetProperty<T>(ref T storage, T value,
 [CallerMemberName] string propertyName = null)
 {
 if (object.Equals(storage, value))
 return false;

 storage = value;
 OnPropertyChanged(propertyName);
 return true;

218	 PART 1  Elementals

 }

 protected void OnPropertyChanged(string propertyName)
 {
 if (PropertyChanged != null)
 PropertyChanged(this, new PropertyChangedEventArgs(propertyName));
 }
 }
}

The ExecuteAddCharacter method expects that the parameter is the character entered by the user.
This is how the single command is shared among multiple buttons.

The CanExecuteDeleteCharacter returns true only if there are characters to delete. The delete
button should be disabled otherwise. But this method is called initially when the binding is first
established and thereafter only if the CanExecuteChanged event is fired. The logic to fire this event
is in the set accessor of InputString, which compares the CanExecuteDeleteCharacter return values
before and after the input string is modified.

The XAML file instantiates the View Model as a resource and then defines a DataContext in the
Grid. Notice the simplicity of the Command bindings on the thirteen Button controls and the use of
CommandParameter on the numeric and symbol keys:

Project: KeypadWithViewModel | File: MainPage.xaml (excerpt)

<Page ... >

 <Page.Resources>
 <local:KeypadViewModel x:Key="viewModel" />
 </Page.Resources>

 <Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}"
 DataContext="{StaticResource viewModel}">

 <Grid HorizontalAlignment="Center"
 VerticalAlignment="Center"
 Width="288">

 <Grid.Resources>
 <Style TargetType="Button">
 <Setter Property="ClickMode" Value="Press" />
 <Setter Property="HorizontalAlignment" Value="Stretch" />
 <Setter Property="Height" Value="72" />
 <Setter Property="FontSize" Value="36" />
 </Style>
 </Grid.Resources>

 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>

	 CHAPTER 6  WinRT and MVVM	 219

 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="*" />
 <ColumnDefinition Width="*" />
 <ColumnDefinition Width="*" />
 </Grid.ColumnDefinitions>

 <Grid Grid.Row="0" Grid.Column="0" Grid.ColumnSpan="3">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="*" />
 <ColumnDefinition Width="Auto" />
 </Grid.ColumnDefinitions>

 <Border Grid.Column="0"
 HorizontalAlignment="Left">

 <TextBlock Text="{Binding DisplayText}"
 HorizontalAlignment="Right"
 VerticalAlignment="Center"
 FontSize="24" />
 </Border>

 <Button Content="⇦"
 Command="{Binding DeleteCharacterCommand}"
 Grid.Column="1"
 FontFamily="Segoe Symbol"
 HorizontalAlignment="Left"
 Padding="0"
 BorderThickness="0" />
 </Grid>

 <Button Content="1"
 Command="{Binding AddCharacterCommand}"
 CommandParameter="1"
 Grid.Row="1" Grid.Column="0" />

 ...

 <Button Content="#"
 Command="{Binding AddCharacterCommand}"
 CommandParameter="#"
 Grid.Row="4" Grid.Column="2" />
 </Grid>
 </Grid>
</Page>

The really boring part of this project is the code-behind file, which now contains nothing but a call
to InitializeComponent.

Mission accomplished.

		 221

C H A P T E R 7

Asynchronicity

These days programmers are discouraged from making frequent use of message boxes, but I’m
sure we can all acknowledge how useful they can be to give the user some important information

in a very direct manner, or to obtain a vital Yes, No, or Cancel.

The Windows Runtime supports a message box with the MessageDialog class, and it’s actually
quite versatile: Up to three buttons can be labeled with whatever text you’d like. However, there is no
Show method in this class. The expected Show method has been replaced with ShowAsync.

That Async suffix is short for “asynchronous,” and that's a very important sequence of five letters
in the Windows Runtime. It’s not just a change of name; it’s a change in how you use the method and
ultimately a change in philosophy in how we code for modern operating systems like Windows 8.

Threads and the User Interface

Like applications for earlier versions of Windows, a Windows 8 program is structured much like a state
machine. Following initialization, the program usually sits dormant in memory waiting for events. Very
often these events signal user interaction with the program, but sometimes they signal systemwide
changes, such as a switch in the orientation of the display.

It’s important that applications process events as quickly as possible and then return control back
to the operating system to wait for more events. If an application doesn’t process an event quickly,
it could become unresponsive and annoy the user. For this reason, applications should relegate very
lengthy jobs to secondary threads of execution. The thread devoted to the user interface should
remain free and unencumbered of heavy processing.

But what if a particular method call in the Windows Runtime itself takes a long time to complete?
Is the application programmer expected to anticipate that problem and put that call in a secondary
thread?

No, that seems unreasonable. For that reason, when the Microsoft developers were designing the
Windows Runtime, they attempted to identify any method call that could require more than 50 mil-
liseconds to return control to the application. Approximately 10–15 percent of the Windows Runtime
qualified. These methods were made asynchronous, meaning that the methods themselves spin off
secondary threads to do the lengthy processing. They return control back to the application very
quickly and later notify the application when they’ve completed.

222	 PART 1  Elementals

You’ll encounter asynchronous methods most often when working with file I/O or accessing the
Internet. But they also turn up when invoking dialog boxes implemented in Windows 8, such as
MessageDialog and a couple file pickers you’ll see later in this chapter. All asynchronous methods in
the Windows Runtime are identified with the Async suffix, and they all have similar definition pat-
terns. Fortunately, working with asynchronous methods has become much less onerous as a result of
powerful .NET libraries and enhancements to the C# programming language.

A skill in asynchronous programming is likely to become much more important in the years ahead.
In consumer computers of the past, all threads of execution ran on the same processor. It was the
job of the operating system to switch quickly among these threads, giving the appearance that they
run simultaneously. In recent years, however, computers frequently have multiple processors, usually
occupying the same chip in a multicore configuration. This type of hardware allows different threads
to run on different processors.

Some types of heavy computational tasks—such as array processing—can take advantage of
multiple processors by running a bunch of calculations in parallel. To support asynchronous and
parallel processing, support was added to .NET called the Task-based Asynchronous Pattern, or TAP,
which is centered around the Task class in the System.Threading.Tasks namespace. This part of .NET
can be accessed by Windows Runtime applications coded in C# and Visual Basic, and it is much more
powerful and versatile than the asynchronous support in the Windows Runtime itself.

Working with MessageDialog

To get a feel for the syntax of using asynchronous functions, let’s look at MessageDialog. The
MessageDialog constructor accepts a message string and (optionally) a title and by default displays a
single button named “Close.” This is suitable for delivering some essential information to the user. You
also have the option of defining up to three custom buttons by using UICommand objects. Here’s an
example from a project called HowToAsync1:

MessageDialog msgdlg = new MessageDialog("Choose a color", "How To Async #1");
msgdlg.Commands.Add(new UICommand("Red", null, Colors.Red));
msgdlg.Commands.Add(new UICommand("Green", null, Colors.Green));
msgdlg.Commands.Add(new UICommand("Blue", null, Colors.Blue));

The first argument to the UICommand constructor is the text that appears on the button, and the
third argument is an ID of type object that can be anything you like to identify the button. I’ve chosen
to use the actual Color value indicated by the label. I’ll discuss the second argument shortly.

The UICommand class implements the IUICommand interface. When the MessageDialog informs
your program what button has been pressed, it does so with an object of type IUICommand.

The asynchronous processing occurs when you call the ShowAsync method. The method has
no arguments and returns quickly back to the application. The message box itself is handled by a
secondary thread of execution. Here’s the call:

IAsyncOperation<IUICommand> asyncOp = msgdlg.ShowAsync();

	 CHAPTER 7  Asynchronicity	 223

What ShowAsync returns is an object that implements the generic IAsyncOperation interface. The
generic argument is the IUICommand interface, which means that the MessageDialog returns an
object of type IUICommand, except not right away. It can’t return a value until the user presses one of
the buttons and the MessageDialog is dismissed, and the MessageDialog hasn’t even been displayed
yet! For that reason, an object like IAsyncOperation is sometimes called a “future” or a “promise.”

IAsyncOperation<T> derives from the IAsyncInfo interface, which defines methods named Cancel
and Close and properties named Id, Status, and ErrorCode. The IAsyncOperation<T> interface
additionally defines a property named Completed, which is a delegate of type
AsyncOperationCompletedHandler<T>.

What you set to this Completed property is a callback method in your code. Although Completed
is defined as a property, it functions like an event, in that it signals something of interest to your pro-
gram. (The difference is that an event can have multiple handlers, but a property can have only one.)
Here’s how it’s done:

asyncOp.Completed = OnMessageDialogShowAsyncCompleted;

If the method in your program that calls ShowAsync and sets the Completed handler contains any
additional code, that code will be executed next. Only after the method calling ShowAsync returns
control back to the operating system will the MessageDialog be displayed:

This MessageDialog is handled by a thread created specifically for this purpose. Although the user
interface of your program is disabled while the MessageDialog is displayed, the user interface thread
of your program is not blocked. It can continue to do work.

You’ll notice the button labeled Red is colored differently from the others. This is the default
button that is effectively triggered when the user presses Enter. You can change which button is the

224	 PART 1  Elementals

default using the DefaultCommandIndex property of MessageDialog. You can also select a button to
be triggered when the user presses Esc by setting the CancelCommandIndex property.

When the user presses a button, the message box is dismissed and the Completed callback method
in your program is called. The first argument to this method is the same object that ShowAsync
returned, but I’ve given it a somewhat different name (asyncInfo) because now it actually has some
information for us:

void OnMessageDialogShowAsyncCompleted(IAsyncOperation<IUICommand> asyncInfo,
 AsyncStatus asyncStatus)
{
 // Get the Color value
 IUICommand command = asyncInfo.GetResults();
 Color clr = (Color)command.Id;
 ...
}

This IAsyncOperation argument has a property named Status of type AsyncStatus, an enumeration
with four members: Started, Completed, Canceled, or Error. This value is reproduced as the second
argument to the Completed handler. If an error has occurred—which is not relevant for the
MessageDialog class but certainly possible when dealing with file I/O or Internet access—the
ErrorCode property of IAsyncOperation is an object of type Exception.

In the general case, you should check that the status is Completed before calling GetResults. The
GetResults method returns an object of the same type as the generic argument to IAsyncOperation, in
this case an object of type IUICommand indicating the pressed button. From this, you can get the Id
property that comes from the third argument to the UICommand constructor. In this code it can be
cast to a Color value.

And now, perhaps, the program can use this color to set the background brush on a Grid:

contentGrid.Background = new SolidColorBrush(clr);

Not so fast!

When your program calls ShowAsync, the MessageDialog class creates a secondary thread of
execution to display the message box and buttons. When the user presses a button, the Completed
handler in your code is called, but it runs in that secondary thread, and you cannot access user
interface objects from this secondary thread!

For any particular window, there can be only one application thread that handles user input and
displays controls and graphics that interact with this input. This “UI thread” (as it’s called) is conse-
quently very important and very special to Windows applications because all interaction with the user
must occur through this thread. But only code that runs in that thread can access the elements and
controls that constitute the user interface.

This prohibition can be generalized: DependencyObject is not thread safe. Any object based on a
class that derives from DependencyObject can only be accessed by the thread that creates that object.

	 CHAPTER 7  Asynchronicity	 225

In this particular example, a Color value can be obtained by a secondary thread of execution
because Color is a structure and hence does not derive from DependencyObject. However, any code
that applies that Color value to the user interface must run in the UI thread.

Fortunately, there’s a way to do it. To compensate for the fact that it is not thread safe,
DependencyObject has a property named Dispatcher that returns an object of type CoreDispatcher.
This Dispatcher property is an exception to the rule that prohibits you from accessing a
DependencyObject from another thread. The HasThreadAccess property of CoreDispatcher lets you
know if you can access this particular DependencyObject from the thread in which the code is running.
If you can’t (and even if you can), you can put a chunk of code on a queue for execution by the thread
that created the object.

You queue up some code to run on the user interface thread by calling the RunAsync method
defined by CoreDispatcher. This is another asynchronous method, and you pass to it a method that
you want to run in the user interface thread:

void OnMessageDialogShowAsyncCompleted(IAsyncOperation<IUICommand> asyncInfo,
 AsyncStatus asyncStatus)
{
 ...
 this.Dispatcher.RunAsync(CoreDispatcherPriority.Normal, OnDispatcherRunAsyncCallback);
}

void OnDispatcherRunAsyncCallback()
{
 contentGrid.Background = new SolidColorBrush(clr);
}

Usually the CoreDispatcher object obtained from the Dispatcher property is not saved as a variable;
the RunAsync method is just called on the Dispatcher property itself, as shown here. The call-
back you pass to the RunAsync method can safely access elements in the user interface. How-
ever, notice that there’s no way to pass arbitrary information to this method, which means that
OnMessageDialogShowAsyncCompleted must first save the Color value as a field.

It doesn’t matter from which user interface element you obtain this CoreDispatcher object; all the
user interface objects are created in the same UI thread, so they all work identically.

Although I haven’t shown it in this code, the RunAsync method of CoreDispatcher returns an object
of IAsyncAction:

IAsyncAction asyncAction = this.Dispatcher.RunAsync(CoreDispatcherPriority.Normal,
 OnDispatcherRunAsyncCallback);

IAsyncAction is very similar to the IAsyncOperation object returned from the ShowAsync method
of MessageDialog. Both of them implement the IAsyncInfo interface. The big difference is that
IAsyncOperation is used for asynchronous methods that need to return something to the program
(hence the generic argument), while IAsyncAction is used for asynchronous methods that do not
return information.

226	 PART 1  Elementals

Here’s an interface hierarchy:

IAsyncInfo
		 IAsyncAction
		 IAsyncActionWithProgress<TProgress>
		 IAsyncOperation<TResult>
		 IAsyncOperationWithProgress<TResult, TProgress>

Some asynchronous methods are capable of reporting progress while performing the
asynchronous job, and those have their own interfaces.

At any rate, you can set a Completed handler on the IAsyncAction object returned from the
RunAsync method of CoreDispatcher and use that for accessing the user interface:

void OnMessageDialogShowAsyncCompleted(IAsyncOperation<IUICommand> asyncInfo,
 AsyncStatus asyncStatus)
{
 ...
 IAsyncAction asyncAction = this.Dispatcher.RunAsync(CoreDispatcherPriority.Normal,
 OnDispatcherRunAsyncCallback);

 asyncAction.Completed = OnDispatcherRunAsyncCompleted;
}

void OnDispatcherRunAsyncCompleted(IAsyncAction asyncInfo, AsyncStatus asyncStatus)
{
 contentGrid.Background = new SolidColorBrush(clr);
}

This particular Completed handler runs in the user interface thread. But there’s no real purpose for
this additional method; you can’t set the second argument of the RunAsync method to null, so you
still need that method as well.

Here’s the entire HowToAsync1 project. The XAML file has a button specifically for invoking the
MessageDialog:

Project: HowToAsync1 | File: MainPage.xaml (excerpt)

<Grid Name="contentGrid"
 Background="{StaticResource ApplicationPageBackgroundThemeBrush}">

 <Button Content="Show me a MessageDialog!"
 HorizontalAlignment="Center"
 VerticalAlignment="Center"
 Click="OnButtonClick" />

</Grid>

	 CHAPTER 7  Asynchronicity	 227

Nothing in the code-behind file should be surprising at this point:

Project: HowToAsync1 | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 Color clr;

 public MainPage()
 {
 this.InitializeComponent();
 }

 void OnButtonClick(object sender, RoutedEventArgs args)
 {
 MessageDialog msgdlg = new MessageDialog("Choose a color", "How To Async #1");
 msgdlg.Commands.Add(new UICommand("Red", null, Colors.Red));
 msgdlg.Commands.Add(new UICommand("Green", null, Colors.Green));
 msgdlg.Commands.Add(new UICommand("Blue", null, Colors.Blue));

 // Show the MessageDialog with a Completed handler
 IAsyncOperation<IUICommand> asyncOp = msgdlg.ShowAsync();
 asyncOp.Completed = OnMessageDialogShowAsyncCompleted;
 }

 void OnMessageDialogShowAsyncCompleted(IAsyncOperation<IUICommand> asyncInfo,
 AsyncStatus asyncStatus)
 {
 // Get the Color value
 IUICommand command = asyncInfo.GetResults();
 clr = (Color)command.Id;

 // Use a Dispatcher to run in the UI thread
 IAsyncAction asyncAction = this.Dispatcher.RunAsync(CoreDispatcherPriority.Normal,
 OnDispatcherRunAsyncCallback);
 }

 void OnDispatcherRunAsyncCallback()
 {
 // Set the background brush
 contentGrid.Background = new SolidColorBrush(clr);
 }
}

The optional second argument to the UICommand constructor is a callback method of the del-
egate type UICommandInvokedHandler:

void OnMessageDialogCommand(IUICommand command)
{
 ...
}

This callback runs in the UI thread, and for that reason it represents perhaps an easier alternative to
get the button pressed by the user.

228	 PART 1  Elementals

Callbacks as Lambda Functions

To more gracefully handle callback methods is one reason why C# 3.0 added a support of
anonymous methods, also known as lambda functions or lambda expressions. All the callback logic
in HowToAsync1 can be moved to lambda functions in the Click handler, and the Color value doesn’t
need to be saved as a field. This is shown in the HowToAsync2 project:

Project: HowToAsync2 | File: MainPage.xaml.cs (excerpt)

void OnButtonClick(object sender, RoutedEventArgs args)
{
 MessageDialog msgdlg = new MessageDialog("Choose a color", "How To Async #2");
 msgdlg.Commands.Add(new UICommand("Red", null, Colors.Red));
 msgdlg.Commands.Add(new UICommand("Green", null, Colors.Green));
 msgdlg.Commands.Add(new UICommand("Blue", null, Colors.Blue));

 // Show the MessageDialog with a Completed handler
 IAsyncOperation<IUICommand> asyncOp = msgdlg.ShowAsync();
 asyncOp.Completed = (asyncInfo, asyncStatus) =>
 {
 // Get the Color value
 IUICommand command = asyncInfo.GetResults();
 Color clr = (Color)command.Id;

 // Use a Dispatcher to run in the UI thread
 IAsyncAction asyncAction = this.Dispatcher.RunAsync(CoreDispatcherPriority.Normal,
 () =>
 {
 // Set the background brush
 contentGrid.Background = new SolidColorBrush(clr);
 });
 };
}

Although everything has been moved to the single Click handler, obviously this code does not run
all at once. The Completed handler for the MessageDialog runs only after the box is dismissed, and the
callback of the CoreDispatcher class runs only when the user interface thread is available for running
some code.

This particular assemblage of two lambda functions isn’t too bad, but it’s easy for nested lambda
functions to get rather more entangled. Once you start working with file I/O, for example, often
several steps must be executed in sequence, many of which are asynchronous. The nested lambda
functions start piling up and begin obscuring the actual structure of the code. Lambda functions are
certainly convenient, but they are often not very readable. In some cases, lambda functions can even
turn common procedural code inside out and make it difficult to execute a simple return statement or
deal with an exception.

Another solution is desperately needed. Fortunately, it exists.

	 CHAPTER 7  Asynchronicity	 229

The Amazing await Operator

The C# 5.0 keyword await allows us to work with asynchronous operations as if they were relatively
normal method calls without callback methods. Here’s the code I’ve been using to obtain the
IAsyncOperation object:

IAsyncOperation<IUICommand> asyncOp = msgdlg.ShowAsync();

The earlier programs used a callback method to obtain that IUICommand object indicating the
pressed button. The await operator effectively extracts that IUICommand object directly from the
IAsyncOperation object:

IUICommand command = await asyncOp;

Very often, these two statements are combined into one, as shown in the HowToAsync3 program,
which is functionally equivalent to the first two programs:

Project: HowToAsync3 | File: MainPage.xaml.cs (excerpt)

async void OnButtonClick(object sender, RoutedEventArgs args)
{
 MessageDialog msgdlg = new MessageDialog("Choose a color", "How To Async #3");
 msgdlg.Commands.Add(new UICommand("Red", null, Colors.Red));
 msgdlg.Commands.Add(new UICommand("Green", null, Colors.Green));
 msgdlg.Commands.Add(new UICommand("Blue", null, Colors.Blue));

 // Show the MessageDialog
 IUICommand command = await msgdlg.ShowAsync();

 // Get the Color value
 Color clr = (Color)command.Id;

 // Set the background brush
 contentGrid.Background = new SolidColorBrush(clr);
}

Nice, wouldn’t you say?

The await keyword is a full-fledged C# operator, and it’s perfectly legal to embed it in more
complex code. This single statement does the work of the last three statements shown above:

contentGrid.Background = new SolidColorBrush((Color)(await msgdlg.ShowAsync()).Id);

Let me emphasize again: HowToAsync3 is functionally identical to the two previous programs. Yet,
the syntax is considerably cleaner, and it all results from the await operator. The await operator seems
to bypass all the messy callback stuff and return the IUICommand directly. It looks like magic, but
much of the messy implementation details are now hidden. The C# compiler recognizes the pattern
of the ShowAsync method and generates the callback and the GetResults call.

What the await operator essentially does is break up the method in which it’s used and turn it into
a state machine. This OnButtonClick method begins executing normally until ShowAsync is called and
the await appears. Despite its name, that await does not wait until the operation completes. Instead,

230	 PART 1  Elementals

the Click handler is exited at that point. Control returns to Windows. Other code on the program’s
user interface thread can then run, as can the MessageDialog itself. When the MessageDialog is
dismissed and a result is ready and the UI thread is ready to run some code, execution of the Click
handler continues with the assignment to the IUICommand object. The method then proceeds until
the next await operator, if there is one.

However, there are no more await operators required in this particular Click handler: When
the IUICommand object is assigned a value, the code is running in the user interface thread and a
dispatcher is not required.

Prior to await, calling asynchronous operations in C# always seemed to me to violate the
imperative structure of the language. The await operator brings back that imperative structure and
turns asynchronous calls into what appears to be a series of sequential normal method calls. But de-
spite the ease of await, you’ll probably want to keep in mind that a method in which await appears is
actually chopped into pieces behind the scenes with callbacks that you cannot see.

This can be a problem in some cases. Sometimes when Windows calls a method in your program,
Windows expects that the method has completed when the method returns control back to the
operating system. If that method has an await operator, that’s not necessarily the case. The method
with the await actually returns control back to Windows prior to the execution of the code following
the await operator.

To let Windows know that a method using the await operator hasn’t yet completed, a “deferral”
object is involved. You’ll see how this works later in this chapter when handling the Suspending event
of the Application class.

There are some other restrictions on the await operator. If cannot appear in the catch or finally
clause of an exception handler. However, it can appear in the try clause, and this is precisely how you’ll
trap errors that occur in the asynchronous method or determine if the asynchronous operation has
been cancelled (as you’ll see shortly).

The method in which the await operator appears must be flagged as async as this Click handler is:

async void OnButtonClick(object sender, RoutedEventArgs args)
{
 // ... code with await operators
}

But this async keyword doesn’t do much of anything. In earlier versions of C#, await was not a
keyword, so programmers could use the word for variable names or property names or whatever.
Adding a new await keyword to C# 5.0 would break this code, but restricting await to methods
flagged with async avoids that problem. The async modifier does not change the signature of the
method—the method is still a valid Click handler. But you can’t use async (and hence await) with
methods that serve as entry points, specifically Main or class constructors.

	 CHAPTER 7  Asynchronicity	 231

If you need to call asynchronous methods during page initialization, call these methods in the
handler for the Loaded event and flag that handler as async:

public MainPage()
{
 this.InitializeComponent();
 ...
 Loaded += OnLoaded;
}

async void OnLoaded(object sender, RoutedEventArgs arg)
{
 ...
}

Or, if you prefer defining the Loaded handler as an anonymous method:

public MainPage()
{
 this.InitializeComponent();
 ...
 Loaded += async (sender, args) =>
 {
 ...
 };
}

See the async before the argument list?

Cancelling an Asynchronous Operation

Not all asynchronous operations can be as cleanly structured as the ShowAsync call of MessageDialog.
Three characteristics of asynchronous operations often make them more complex:

■■ Cancellation  Many asynchronous operations can be cancelled, either by a user deliberately
stopping an operation that might be taking too long or in some other way.

■■ Progress  Some asynchronous operations report progress as they are performing a lengthy
job. Often users appreciate seeing a progress report, either with a ProgressBar or text.

■■ Errors  An asynchronous operation might encounter a problem—for example, trying to open
a file that no longer exists.

Let’s tackle the cancellation issue first. Cancelling a message box—that is, removing it from the
screen prior to the user pressing a button—is not very common, but it might make sense in certain
scenarios.

The IAsyncInfo interface—which the four other standard Windows Runtime asynchronous
interfaces implement—defines a method named Cancel that cancels the operation. As I men-
tioned earlier, the IAsyncInfo interface also includes a Status property that takes on a value of the

232	 PART 1  Elementals

AsyncStatus enumeration, which has four members: Started, Completed, Canceled, and Error. For the
last case, IAsyncInfo also defines an ErrorCode property of type Exception.

If you use a callback for the asynchronous operation, generally you need to check this status at the
top of the callback method and make sure that the status is Completed rather than Canceled or Error
before calling GetResults.

If you use await, put the await statement in a try block. If the asynchronous operation is cancelled,
an exception is thrown of type TaskCanceledException. If an actual error occurs in the asynchronous
operation, the exception indicates that error.

The HowToAsync3 program called the ShowAsync method of MessageDialog like this:

IUICommand command = await msgdlg.ShowAsync();

You can alternatively break this statement down to reveal the IAsyncOperation object:

IAsyncOperation<IUICommand> asyncOp = msgdlg.ShowAsync();
IUICommand command = await asyncOp;

No difference. This means that you can save the asyncOp object as a field so that some other method
in the class can call the Cancel method on that object.

Let’s simulate a cancellation of MessageDialog with a timer. The HowToCancelAsync program
starts a five-second DispatcherTimer when the MessageDialog is displayed. If the MessageDialog is not
dismissed in five seconds, the timer Tick callback calls Cancel on the IAsyncOperation object stored as
a field:

Project: HowToCancelAsync | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 IAsyncOperation<IUICommand> asyncOp;

 public MainPage()
 {
 this.InitializeComponent();
 }

 async void OnButtonClick(object sender, RoutedEventArgs args)
 {
 MessageDialog msgdlg = new MessageDialog("Choose a color", "How To Cancel Async");
 msgdlg.Commands.Add(new UICommand("Red", null, Colors.Red));
 msgdlg.Commands.Add(new UICommand("Green", null, Colors.Green));
 msgdlg.Commands.Add(new UICommand("Blue", null, Colors.Blue));

 // Start a five-second timer
 DispatcherTimer timer = new DispatcherTimer();
 timer.Interval = TimeSpan.FromSeconds(5);
 timer.Tick += OnTimerTick;
 timer.Start();

	 CHAPTER 7  Asynchronicity	 233

 // Show the MessageDialog
 asyncOp = msgdlg.ShowAsync();
 IUICommand command = null;

 try
 {
 command = await asyncOp;
 }
 catch (Exception)
 {
 // The exception in this case will be TaskCanceledException
 }

 // Stop the timer
 timer.Stop();

 // If the operation was cancelled, exit the method
 if (command == null)
 return;

 // Get the Color value and set the background brush
 Color clr = (Color)command.Id;
 contentGrid.Background = new SolidColorBrush(clr);
 }

 void OnTimerTick(object sender, object args)
 {
 // Cancel the asynchronous operation
 asyncOp.Cancel();
 }
}

The logic is a little messier than the noncancellable version, of course, but it’s no messier than
other code involving try and catch blocks, and it still maintains an imperative structure. Once again,
everything up to the await operator is executed first, and then the method continues in the try block
when the MessageDialog is dismissed. Either an exception is raised or not, and the program can
determine if an exception has occurred with a null value of the command variable assigned in the
try block.

Approaches to File I/O

Programmers who work with .NET are familiar with the System.IO namespace for performing file I/O.
You can leverage some of this knowledge in Windows 8, but you’ll find the Windows 8 version of
System.IO to be a bit emaciated. Instead, much of the Windows Runtime file I/O support can be found
in several namespaces beginning with Windows.Storage. Be prepared for plenty of new file I/O classes
and concepts. The whole file and stream interface has been revamped, and any method that accesses
a disk is asynchronous.

234	 PART 1  Elementals

A Windows 8 application can take one of three basic approaches to file I/O, which I describe in the
next three sections in order of preference.

Application Local Storage
If an application needs to retain information that is of no value to any other application or to the
user's examination, it is best to keep this information in application local storage (sometimes called
isolated storage). This is an area on the hard drive that is private to the application, but the applica-
tion doesn’t need to worry where it’s actually located. If the application is ever uninstalled from the
machine, the storage is automatically freed.

Getting access to this storage requires the ApplicationData class in the Windows.Storage
namespace. An ApplicationData object applicable to the current application can be obtained from the
static Current property:

ApplicationData appData = ApplicationData.Current;

The ApplicationData class defines several properties you can use with this object:

The LocalSettings and RoamingSettings properties give you access to an ApplicationDataContainer
that provides a dictionary for storing application settings. These application settings are restricted to
the basic Windows Runtime types (numbers and strings).

The LocalFolder, RoamingFolder, and TemporaryFolder properties return objects of type
StorageFolder, an important class also defined in the Windows.Storage namespace. The StorageFolder
class represents a directory, in this case a directory for private use by the application. The
StorageFolder class contains methods to create subfolders and to create or access files represented as
objects of type StorageFile. A StorageFile object can then be opened and return a stream object for
reading and writing.

File Pickers
The Windows.Storage.Pickers namespace is devoted to the FileOpenPicker, FileSavePicker, and
FolderPicker. These are the standard dialog boxes that a Windows 8 program can use to open and
save files in the standard data folders, such as the Documents Library, Music Library, and Pictures
Library.

Like MessageDialog, FileOpenPicker and FileSavePicker have asynchronous methods to display
the dialogs and return information of type StorageFile; the FolderPicker returns an object of type
StorageFolder.

Because the user effectively gives the application permission to access the file system by invoking
one of the pickers and then guides the pickers through the file system, the pickers have a great deal
of flexibility. However, the application is required to indicate the specific file types that it’s interested
in. When using the FileOpenPicker, for example, the application is required to specify at least one file
type (such as “.txt”) in the FileTypeFilter property. These file types cannot include wildcards.

	 CHAPTER 7  Asynchronicity	 235

A FileOpenPicker will list only the file types specified by the application in the FileTypeFilter
collection. Although FileOpenPicker can display many different types of files, it cannot list all possible
files.

Bulk Access
An application can also access the user’s file system directly using the FileInformation and
FolderInformation classes defined in the Windows.Storage.BulkAccess namespace. The application is
allowed to query folders for subfolders and files and to manipulate these folders and files in a fairly
flexible manner.

However, because this process is not guided by the user, the application needs to declare its needs.
An application that uses bulk access is required to have a package.appxmanifest file that indicates
what areas of storage the application is allowed to examine. In Visual Studio you can edit the package.
appxmanifest file from a dialog box. In the Capabilities section of this dialog, the Documents Library,
Music Library, Pictures Library, or Videos Library option must be selected to get access to these areas.
These capabilities define the limitations of the application. For the Documents Library, the Declara-
tions section must include File Type Associations, and all the file types that the application wants must
be explicitly listed; all file queries are limited to these file types.

I’ll demonstrate the use of the bulk access classes with the Pictures Library in the PhotoScatter pro-
gram in Chapter 14, “Bitmaps.” The other two approaches to file I/O are demonstrated in this chapter.

File Pickers and File I/O

Let’s become familiar with the FileOpenPicker and FileSavePicker classes by writing a simple program
called PrimitivePad similar to the classic Windows Notepad. This program is basically a big TextBox
with a couple commands. Normally these commands would be implemented on an application bar,
but I’m going to save that topic for Chapter 8, “App Bars and Popups.”

PrimitivePad has just two buttons for file I/O: Open and Save As. If it were a real application, it
would also have New and Save buttons and it would prompt you to save a file if you pressed New or
Open without saving your previous work. That logic is also coming up in the next chapter.

PrimitivePad has a third button for the word-wrapping mode, which is saved as a program setting.
Here’s the XAML file:

Project: PrimitivePad | File: MainPage.xaml (excerpt)

<Page ... >
 <Page.Resources>
 <Style x:Key="buttonStyle" TargetType="ButtonBase">
 <Setter Property="HorizontalAlignment" Value="Center" />
 <Setter Property="Margin" Value="0 12" />
 </Style>
 </Page.Resources>

236	 PART 1  Elementals

 <Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="*" />
 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="*" />
 <ColumnDefinition Width="*" />
 <ColumnDefinition Width="*" />
 </Grid.ColumnDefinitions>

 <Button Content="Open..."
 Grid.Row="0"
 Grid.Column="0"
 Style="{StaticResource buttonStyle}"
 Click="OnFileOpenButtonClick" />

 <Button Content="Save As..."
 Grid.Row="0"
 Grid.Column="1"
 Style="{StaticResource buttonStyle}"
 Click="OnFileSaveAsButtonClick" />

 <ToggleButton Name="wrapButton"
 Content="No Wrap"
 Grid.Row="0"
 Grid.Column="2"
 Style="{StaticResource buttonStyle}"
 Checked="OnWrapButtonChecked"
 Unchecked="OnWrapButtonChecked" />

 <TextBox Name="txtbox"
 Grid.Row="1"
 Grid.Column="0"
 Grid.ColumnSpan="3"
 FontSize="24"
 AcceptsReturn="True" />
 </Grid>
</Page>

	 CHAPTER 7  Asynchronicity	 237

The three buttons are displayed at the top, and in the big TextBox you can perhaps type some
poetry:

The FileOpenPicker and FileSavePicker classes invoke dialogs that take over the screen from your
application and don’t return control until they have been dismissed. If this is unacceptable to you,
you’ll want to explore the bulk access approach and navigate the directories on your own.

Both classes deliver an object of type StorageFile back to your application. (FileOpenPicker has an
option for multiple selection that returns multiple StorageFile objects.) StorageFile is defined in the
Windows.Storage namespace and represents an unopened file. Calling one of the Open methods on
this StorageFile object gives you a stream object in the form of an interface such as IInputStream or
IRandomAccessStream defined in the Windows.Storage.Streams namespace. You can then attach a
DataReader or DataWriter object to this stream for reading or writing. Through extension methods
defined in System.IO, it’s also possible to create a .NET Stream object from the Windows Runtime
stream objects and then use some familiar .NET objects, such as StreamReader or StreamWriter, for
dealing with files. You might be able to salvage some existing code that uses .NET streams, and you’ll
also need these .NET stream objects for reading and writing XML files.

The only prerequisite for invoking FileOpenPicker is adding at least one string to the FileTypeFilter
collection (for example, “.txt”). You then call the PickSingleFileAsync method. The standard file open
picker is displayed, and the user selects an existing file and then presses Open or Cancel. If you use
await with this method call, your program then gets back a StorageFile object indicating the file that
the user selected. Here’s the entire Click handler for the Open button:

Project: PrimitivePad | File: MainPage.xaml.cs (excerpt)

async void OnFileOpenButtonClick(object sender, RoutedEventArgs args)
{
 FileOpenPicker picker = new FileOpenPicker();
 picker.FileTypeFilter.Add(".txt");
 StorageFile storageFile = await picker.PickSingleFileAsync();

238	 PART 1  Elementals

 // If user presses Cancel, result is null
 if (storageFile == null)
 return;

 using (IRandomAccessStream stream = await storageFile.OpenReadAsync())
 {
 using (DataReader dataReader = new DataReader(stream))
 {
 uint length = (uint)stream.Size;
 await dataReader.LoadAsync(length);
 txtbox.Text = dataReader.ReadString(length);
 }
 }
}

PickSingleFileAsync actually returns an IAsyncOperation<StorageFile> object, but this is one of the
few asynchronous calls in which the object represented by the generic argument can be null. This null
value occurs when the user presses the Cancel button on the file open picker. For this case, nothing
more needs to be done.

To open that StorageFile object for reading, you can call OpenReadAsync on it. That’s
another asynchronous operation, which of course makes sense because the call must access the
disk. OpenReadAsync actually returns an object of type (hold your breath)
IAsyncOperation<IRandomAccessStreamWithContentType>, but the
IRandomAccessStreamWithContentType interface implements IRandomAccessStream, so I’ve used
the shorter version. IRandomAccessStream implements IDisposable, so it’s a good idea to put the
stream object in a using block to be automatically disposed.

DataReader also implements IDisposable. This class provides access to many Read methods for the
Windows Runtime primitive types, such as ReadString. These Read methods are not asynchronous
because they don’t involve disk accesses. The methods merely read bytes from an internal buffer (of
type IBuffer) stored in memory and converts them to specific data types. The method call that actu-
ally accesses the disk file is LoadAsync, which loads a particular number of bytes from the file into this
buffer and which must occur before any Read calls. For very large files, you might want to break down
the file loading into smaller pieces. DataReader has an UnconsumedBufferLength property to help
with this process.

Without the await operator, these three asynchronous methods would all require their own
callbacks and a fourth callback would be required to run the code that sets the Text property of the
TextBox in the user interface thread.

The file-saving logic is similar:

Project: PrimitivePad | File: MainPage.xaml.cs (excerpt)

async void OnFileSaveAsButtonClick(object sender, RoutedEventArgs args)
{
 FileSavePicker picker = new FileSavePicker();
 picker.DefaultFileExtension = ".txt";
 picker.FileTypeChoices.Add("Text", new List<string> { ".txt" });

	 CHAPTER 7  Asynchronicity	 239

 StorageFile storageFile = await picker.PickSaveFileAsync();

 // If user presses Cancel, result is null
 if (storageFile == null)
 return;

 using (IRandomAccessStream stream = await storageFile.OpenAsync(FileAccessMode.ReadWrite))
 {
 using (DataWriter dataWriter = new DataWriter(stream))
 {
 dataWriter.WriteString(txtbox.Text);
 await dataWriter.StoreAsync();
 }
 }
}

The StoreAsync method of DataWriter returns a DataWriteStoreOperation object that implements
IAsyncOperation<uint>. This uint indicates the number of bytes stored in the file. This value isn’t
used for anything here, and StoreAsync is the last statement of this method, so you might wonder if
you need to use the await operator on this call. In general, you can call asynchronous methods that
don’t return values without the await operator, but keep in mind that the method making the call will
continue execution while the asynchronous method runs, and that might be an issue if the method
making the call implicitly expects the asynchronous method to complete before continuing execu-
tion. In this particular case, I’d be leery of omitting await because the using blocks implicitly close the
DataWriter and IRandomAccessStream objects and you don’t want that happening before StoreAsync
completes.

The PrimitivePad program also gives you the option to set text wrapping on and off using a
ToggleButton. The only part of the MainPage code-behind file you haven’t seen yet is the portion of
the program that is devoted to that feature:

Project: PrimitivePad | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 ApplicationDataContainer appData = ApplicationData.Current.LocalSettings;

 public MainPage()
 {
 this.InitializeComponent();

 Loaded += (sender, args) =>
 {
 if (appData.Values.ContainsKey("TextWrapping"))
 txtbox.TextWrapping = (TextWrapping)appData.Values["TextWrapping"];

 wrapButton.IsChecked = txtbox.TextWrapping == TextWrapping.Wrap;
 wrapButton.Content = (bool)wrapButton.IsChecked ? "Wrap" : "No Wrap";

 txtbox.Focus(FocusState.Programmatic);
 };
 }

240	 PART 1  Elementals

 ...
 void OnWrapButtonChecked(object sender, RoutedEventArgs args)
 {
 txtbox.TextWrapping = (bool)wrapButton.IsChecked ? TextWrapping.Wrap :
 TextWrapping.NoWrap;
 wrapButton.Content = (bool)wrapButton.IsChecked ? "Wrap" : "No Wrap";
 appData.Values["TextWrapping"] = (int)txtbox.TextWrapping;
 }
}

A field obtains an ApplicationDataContainer object for this application. The Values property of
this object is a dictionary that an application can use for saving program settings—at least those
that can be expressed as primitive types. During the Loaded handler, if this dictionary contains a
“TextWrapping” item, that item is used to set the property of the TextBox, and the ToggleButton is
initialized accordingly.

Whenever the ToggleButton is checked or unchecked, the handler sets the TextWrapping property
of the TextBox and saves the new value in the dictionary.

This is one way to save application settings. I’ll show you another way later in this chapter involving
the Suspending property of the Application class. If you ever need to locate these settings (and other
local storage) on the hard drive, first use Visual Studio to check the Package Name of the application
in the Packaging tab of the Package.appxmanifest file. (Or check the Name attribute of the Identity
element in the actual file.) This is a GUID that uniquely identifies the application. The settings and
local data can be found at the directory:

C:\Users\[user-name]\AppData\Local\Packages\[app-guid]

Handling Exceptions

If you work at it, you can crash the PrimitivePad program. For example, press the Open button in
PrimitivePad, select a file in the picker, but before pressing the picker’s Open button, use Windows
Explorer (or something else) to delete the selected file. When PrimitivePad tries to open that
nonexistent file, an exception is raised.

To catch errors such as these, the entire block of code after the check for a null StorageFile can be
put in a try block. But watch out: You can’t display a MessageDialog informing the user of the prob-
lem in the catch block because await isn’t allowed in a catch block. A better way to handle exceptions
looks more like this:

async void OnFileOpenButtonClick(object sender, RoutedEventArgs args)
{
 ...
 Exception exception = null;

 try
 {
 using (IRandomAccessStream stream = await storageFile.OpenReadAsync())
 {

	 CHAPTER 7  Asynchronicity	 241

 using (DataReader dataReader = new DataReader(stream))
 {
 uint length = (uint)stream.Size;
 await dataReader.LoadAsync(length);
 txtbox.Text = dataReader.ReadString(length);
 }
 }
 }
 catch (Exception exc)
 {
 exception = exc;
 }

 if (exception != null)
 {
 MessageDialog msgdlg = new MessageDialog(exception.Message,
 "File Read Error");
 await msgdlg.ShowAsync();
 }
}

The final if statement determines if an exception has occurred by checking for a non-null value of the
exception variable. At that point a MessageDialog can be used to display the error.

Consolidating Async Calls

Suppose you’d like to consolidate all the file-open and file-save logic into methods that are then
called from the Click handlers of the buttons. This might be warranted if you’re invoking these open
and save pickers from more than one place in the program.

Let’s imagine a method named LoadFile that displays the FileOpenPicker, reads the entire contents
of a text file, and returns a string. The OnFileOpenButtonClick method can then be as simple as this:

void OnFileOpenButtonClick(object sender, RoutedEventArgs args)
{
 txtbox.Text = LoadFile();
}

Well, no, it actually can’t be as simple as that. This LoadFile method cannot return a string because
that string isn’t available until multiple asynchronous operations have completed. Keep in mind that
the await operator actually results in the creation of callback methods just as if you wrote them
explicitly. Try writing a LoadFile method with explicit callback methods and then try to return a string
from LoadFile. You can’t do it.

You must be able to apply an await operator to LoadFile itself, which means you probably want to
name it LoadFileAsync, which you’ll call like this:

async void OnFileOpenButtonClick(object sender, RoutedEventArgs args)
{
 txtbox.Text = await LoadFileAsync();
}

242	 PART 1  Elementals

But this should actually make you happy because it means that you can write LoadFileAsync
without any exception handling and instead put the exception handling in the caller, in this case the
OnFileOpenButtonClick handler.

But the real question is this: What should the return type of LoadFileAsync be? Judging
from the asynchronous methods implemented in the Windows Runtime, you might guess
IAsyncOperation<string>, but that’s not so. The big problem is that the Windows Runtime does not
define a public class that implements this interface.

Instead, as a C# programmer, you’ll use classes in .NET that support asynchronous operations. The
best return value of LoadFileAsync is Task<string>, and the method looks like this:

async Task<string> LoadFileAsync()
{
 FileOpenPicker picker = new FileOpenPicker();
 picker.FileTypeFilter.Add(".txt");
 StorageFile storageFile = await picker.PickSingleFileAsync();

 // If user presses Cancel, result is null
 if (storageFile == null)
 return null;

 using (IRandomAccessStream stream = await storageFile.OpenReadAsync())
 {
 using (DataReader dataReader = new DataReader(stream))
 {
 uint length = (uint)stream.Size;
 await dataReader.LoadAsync(length);
 return dataReader.ReadString(length);
 }
 }
}

Although this method is named LoadFileAsync, all the code that you supply to this method runs
in the user interface thread. But it’s considered an asynchronous method because parts of it run
in secondary threads. Notice that the method returns null if the user presses Cancel on the picker.
You can’t assign a null to the Text property of TextBox, so the Click handler must accommodate that
possibility:

async void OnFileOpenButtonClick(object sender, RoutedEventArgs args)
{
 string text = await LoadFileAsync();

 if (text != null)
 txtbox.Text = text;
}

What is Task? Task is a class defined in the System.Threading.Tasks namespace, and it is the core of
the .NET support of asynchronous and parallel processing. It exists in both generic and nongeneric

	 CHAPTER 7  Asynchronicity	 243

versions. You’ll use the nongeneric version for a method that doesn’t return anything, such as a
method that consolidates all the save logic:

async void OnFileSaveAsButtonClick(object sender, RoutedEventArgs args)
{
 await SaveFileAsync(txtbox.Text);
}

async Task SaveFileAsync(string text)
{
 FileSavePicker picker = new FileSavePicker();
 picker.DefaultFileExtension = ".txt";
 picker.FileTypeChoices.Add("Text", new List<string> { ".txt" });
 StorageFile storageFile = await picker.PickSaveFileAsync();

 // If user presses Cancel, result is null
 if (storageFile == null)
 return;

 using (IRandomAccessStream stream = await storageFile.OpenAsync(FileAccessMode.ReadWrite))
 {
 using (DataWriter dataWriter = new DataWriter(stream))
 {
 dataWriter.WriteString(text);
 await dataWriter.StoreAsync();
 }
 }
}

Support of asynchronous processing in .NET and the Windows Runtime is similar enough that
the types can be converted to each other. Task has an extension method named AsAsyncAction
that returns an IAsyncAction, and Task<T> has an extension method AsAsyncOperation<T> that
returns an IAsyncOperation<T>. Similarly, IAsyncAction has an AsTask method that returns a Task, and
IAsyncOperation<T> has an AsTask<T> method that returns a Task<T>.

However, Task is much more powerful than the asynchronous support in the Windows Runtime,
offering facilities to manage parallel processing and to await groups of tasks. Task really deserves a
book of its own—this is not that book, but later in this chapter I’ll show you how to use Task for your
own lengthy processing jobs.

Streamlined File I/O

Although it’s good for programmers to be familiar with file I/O using the DataReader and DataWriter
classes, much of your file I/O jobs can probably be accomplished with some streamlined methods.
These are available in the static FileIO and PathIO classes from the Windows.Storage namespace.
Methods in these classes read or write whole files in single asynchronous calls.

For text files, the FileIO.ReadLinesAsync method can read a text file and return an IList of
string objects (one per line) and FileIO.ReadTextAsync can return a file in a single string object. In

244	 PART 1  Elementals

PrimitivePad, the block of two nested using statements in OnFileOpenButtonClick can be replaced
with this:

txtbox.Text = await FileIO.ReadTextAsync(storageFile);

Similarly, the file save logic can be replaced with this single call:

await FileIO.WriteTextAsync(storageFile, txtbox.Text, UnicodeEncoding.Utf8);

For binary files, you can use ReadBufferAsync and WriteBufferAsync. These methods work with an
object of type IBuffer. An IBuffer object is basically an array of bytes that exists in system memory.
References to an IBuffer are tracked so that Windows can remove it from memory if it’s no longer
needed.

The IBuffer object can’t be accessed directly from a C# program, but you can get at it indirectly. To
create a binary file, you can create a DataWriter object, write into it, and then save the internal IBuffer
object that the DataWriter created:

DataWriter dataWriter = new DataWriter();
// ... write to dataWriter
await FileIO.WriteBufferAsync(storageFile, dataWriter.DetachBuffer());

For reading a binary file, you first obtain an IBuffer object by reading the file and then create a
DataReader from that:

IBuffer buffer = await FileIO.ReadBufferAsync(storageFile);
DataReader dataReader = DataReader.FromBuffer(buffer);
// ... read from dataReader

If you include the System.Runtime.InteropServices.WindowsRuntime namespace in your program, you
can convert an IBuffer object to a .NET Stream object and then use this Stream to create other classes
defined in the System.IO namespace: BinaryReader, BinaryWriter, StreamReader, and StreamWriter. Or
you can convert an IBuffer to an array of bytes.

The PathIO class is similar to FileIO but instead of passing StorageFile objects to the static methods,
you pass a string URI. This URI generally begins with “ms-appx:///” to access files stored as program
content and “ms-appdata:///” to access files in application storage, as I’ll demonstrate shortly.

The HttpClient class is the main class for uploading or downloading files over the Web, but if you
don’t need that flexibility, RandomAccessStreamReference comes in very handy:

Uri uri = new Uri("http://...");
RandomAccessStreamReference streamRef = RandomAccessStreamReference.CreateFromUri(uri);

using (IRandomAccessStream stream = await streamRef.OpenReadAsync())
{
 ...
}

	 CHAPTER 7  Asynchronicity	 245

You can then call ReadAsync on that IRandomAccessStream to read the contents of the file into an
IBuffer, and then pass the IBuffer to the static DataReader.FromBuffer method.

Application Lifecycle Issues

The PrimitivePad program has a subtle flaw that needs to be addressed. As you know, if you run
the regular Windows desktop Notepad program, type in some text, and then try to terminate the
program—by pressing the Close button at the upper right corner, by pressing Alt+F4, by selecting
Exit from the File menu, or by shutting down Windows—Notepad will display a “Do you want to save
changes…?” message box. You can select Save, Don’t Save, or Cancel.

We’re all familiar with this convention, but it is no longer a good solution. Computing no longer
exclusively involves sitting down at your desk, turning on the computer, doing some work, and then
shutting the computer down. It’s just as likely that you’ll pull a tablet out of your handbag or off the
coffee table, unlock the screen, spend some time with it, and then toss it back where it came from,
perhaps putting it to sleep by pressing the on/off button or letting it go to sleep by itself.

Do you want your Windows applications to ask you to save data when the computer is going to
sleep? No, you do not. By putting the computer to sleep (or even by turning your eyes away from the
screen) you’ve signaled that continued interaction with the computer is precisely what you do not
want.

But here’s the problem: What if that tablet now sitting on the coffee table determines that the
battery is getting too low to continue maintaining even the sleep state and it decides to turn itself
off? In a practical sense, it can’t warn you that this is happening.

Or perhaps you’re using the computer and Windows needs to free up some memory. One way
it can do this is by terminating applications that haven’t been used in a while. Again, as a user, you
probably don’t want to be notified of this event.

For these reasons, a polite Windows 8 application saves information so that it can provide a
continuous user experience regardless of whether it’s terminated or not. If an application contains
some unsaved data that the user might regret losing and that application is terminated, then the next
time that application runs, it should display that data. (Obviously, for some applications this is more
important than for others. For a calculator, for example, it probably doesn’t matter all that much if the
program discards the data. But for a spreadsheet it’s a very big deal.)

This is easy, right? As a programmer all you need to know about is the event that is fired when
the application is about to be terminated. You can use this event to save any unsaved data in local
application storage and then restore that data the next time the program is run.

The only problem is: There’s no such event.

246	 PART 1  Elementals

However, there is an event that indicates when an application is being suspended. An application
is always suspended before it’s terminated (unless the termination is abnormal, such as crash), but a
suspension doesn’t necessarily result in termination. There’s another event that indicates when the
application is being resumed following a suspension.

An application is suspended when it’s no longer running in the foreground—that is, when you
bring up the Windows start screen or sweep your finger from the left edge to bring another program
to the foreground. An application is also suspended when you press Alt+F4 to terminate it or when
you put the computer to sleep. In all these cases, there’s actually about a 10-second delay before the
application is suspended; this delay is for Windows (and the application) to avoid doing work if the
program is resumed shortly.

After a program is suspended, it might be resumed or it might be terminated. Much time might
elapse after suspension before resumption or termination. Because there is no event to indicate when
a program is being terminated, the application must use the suspension to save everything it needs
to resume, even though that suspension might not end in a termination. (Now perhaps you can see
why there’s no specific event for program termination: If the program is already suspended, Windows
would need to resume the application just to fire the termination event!)

The Application class defines two events for this purpose: Suspending and Resuming. The
Suspending event is much more important than Resuming. An application uses this event to save
unsaved data in local application storage. The program does not need to restore this data during the
Resuming event. Windows restores the application itself. All the program needs to do is load the data
the next time it’s run.

However, an application can choose to do other chores during the Suspending event and undo
those during the Resuming event. For example, the program can try to minimize its footprint in
memory by letting go of large resources that it can re-create. Or it might use the Resuming event to
refresh itself with updated data coming from a Web source.

When a program is running under the Visual Studio debugger, it does not get suspended and
resumed the same way as when it’s running by itself. An application running by itself is suspended
when the program is no longer running in the foreground, but an application running under the
Visual Studio debugger is not.

Another difference: A program is not suspended prior to termination if the termination is
abnormal. Abnormal termination can occur by an unhandled exception or—keep this in mind when
you’re experimenting—when you use the Stop Debugging command of Visual Studio.

However, if you terminate an application running under the Visual Studio debugger with Alt+F4,
the program gets a Suspending event and the program is terminated, but that process is delayed
about 10 seconds, during which time Visual Studio still believes that the program is running!

To compensate for these issues, Visual Studio has commands on the Debug Location toolbar to
manually Suspend, Resume, or Suspend And Shutdown an application. These commands are essential
for developing suspension and resumption code while running the program under the debugger.

	 CHAPTER 7  Asynchronicity	 247

Because it’s hard to examine normal Suspending and Resuming events while a program is running
under Visual Studio, I’ve written a little program that logs these events to a file that it stores in local
application storage. This program is intended to be run outside the Visual Studio debugger.

The XAML file of the SuspendResumeLog program contains a read-only TextBox:

Project: SuspendResumeLog | File: MainPage.xaml (excerpt)

<Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <TextBox Name="txtbox"
 AcceptsReturn="True"
 IsReadOnly="True" />
</Grid>

The code-behind file handles three events: the Loaded event of MainPage (which is executed once
when the program is launched), and the Suspending and Resuming events of the current Application
object. All these events are logged to a file named logfile.txt that is saved in local application storage:

Project: SuspendResumeLog | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 StorageFile logfile;

 public MainPage()
 {
 this.InitializeComponent();

 Loaded += OnLoaded;
 Application.Current.Suspending += OnAppSuspending;
 Application.Current.Resuming += OnAppResuming;
 }

 async void OnLoaded(object sender, RoutedEventArgs args)
 {
 // Create or obtain the log file
 StorageFolder localFolder = ApplicationData.Current.LocalFolder;
 logfile = await localFolder.CreateFileAsync("logfile.txt",
 CreationCollisionOption.OpenIfExists);

 // Load the file and display it
 txtbox.Text = await FileIO.ReadTextAsync(logfile);

 // Log the launch
 txtbox.Text += String.Format("Launching at {0}\r\n", DateTime.Now.ToString());
 await FileIO.WriteTextAsync(logfile, txtbox.Text);
 }

 async void OnAppSuspending(object sender, SuspendingEventArgs args)
 {
 SuspendingDeferral deferral = args.SuspendingOperation.GetDeferral();

248	 PART 1  Elementals

 // Log the suspension
 txtbox.Text += String.Format("Suspending at {0}\r\n", DateTime.Now.ToString());
 await FileIO.WriteTextAsync(logfile, txtbox.Text);

 deferral.Complete();
 }

 async void OnAppResuming(object sender, object args)
 {
 // Log the resumption
 txtbox.Text += String.Format("Resuming at {0}\r\n", DateTime.Now.ToString());
 await FileIO.WriteTextAsync(logfile, txtbox.Text);
 }
}

During the Loaded event, the program obtains the StorageFolder associated with local storage for
this application and creates a file named logfile.txt. Using the handy CreationCollisionOption
.OpenIfExists argument, this CreateFileAsync call is the same as a GetFileAsync if the file already exists,
which it will the second and subsequent times this program is run.

The OpenIfExists enumeration member is somewhat misnamed. It should really be GetIfExists
because the file is not opened for reading and writing in the normal sense. However, the file is created
with a zero-byte length, and a reference to that file is obtained. The FileIO.ReadTextAsync and FileIO
.WriteTextAsync calls actually open the file, read or write to it, and close the file.

Notice the use of the SuspendingDeferral object in the Suspending event handler. Without that,
Windows would think that the Suspending handler had completed when it calls the WriteTextAsync
call because that’s when the handler is exited for the first time.

Normally, when a program maintains unsaved data in local storage, the program only needs to
load the data during the Loaded event (or some other initialization event) and save it during the
Suspending event. The SuspendResumeLog program also saves the file during the Loaded event and
Resuming event. Although the program is most designed to run outside the Visual Studio debugger,
I added this code in case the program is running under the Visual Studio debugger and terminates
with Stop Debugging. Without those saves, that data would be lost because the Suspending handler is
not fired for this type of termination.

When testing a program’s ability to save and restore data running in the Visual Studio debugger, it
might be best to get into the habit of terminating the program by using the Suspend And Shutdown
command rather than Stop Debugging.

You can replace the FileIO.ReadTextAsync call with this:

txtbox.Text = await PathIO.ReadTextAsync("ms-appdata:///local/logfile.txt");

And you can replace the FileIO.WriteTextAsync calls with this:

await PathIO.WriteTextAsync("ms-appdata:///local/logfile.txt", txtbox.Text);

	 CHAPTER 7  Asynchronicity	 249

The ms-appdata prefix indicates application isolated storage. What appears to be a directory named
local actually differentiates this area from roaming or temp. Even if you use these file URIs for reading
and writing, you still need to create the StorageFile object by using a method of StorageFolder.

Normally, code that updates log files appends text to an existing file. There are methods in FileIO
and PathIO for appending text, but I decided not to do that in the SuspendResumeLog program
because the same text would need to be appended to both the TextBox and the log file, or the
TextBox would need to be reloaded from the appended log file.

The QuickNotes project is similar to SuspendResumeLog in that it consists of a TextBox and saves
the contents in local application storage. However, QuickNotes lets you type text in the TextBox, and
of course it’s automatically saved for the next time you bring up the program. Here’s the XAML file:

Project: QuickNotes | File: MainPage.xaml (excerpt)

<Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <TextBox Name="txtbox"
 AcceptsReturn="True"
 TextWrapping="Wrap" />
</Grid>

The code-behind file uses FileIO.ReadTextAsync to read the file (because it already has a
StorageFile object handy) but PathIO.WriteTextAsync for writing the file:

Project: QuickNotes | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 public MainPage()
 {
 this.InitializeComponent();
 Loaded += OnLoaded;
 Application.Current.Suspending += OnAppSuspending;
 }

 async void OnLoaded(object sender, RoutedEventArgs args)
 {
 StorageFolder localFolder = ApplicationData.Current.LocalFolder;
 StorageFile storageFile = await localFolder.CreateFileAsync("QuickNotes.txt",
 CreationCollisionOption.OpenIfExists);
 txtbox.Text = await FileIO.ReadTextAsync(storageFile);
 txtbox.SelectionStart = txtbox.Text.Length;
 txtbox.Focus(FocusState.Programmatic);
 }

 async void OnAppSuspending(object sender, SuspendingEventArgs args)
 {
 SuspendingDeferral deferral = args.SuspendingOperation.GetDeferral();
 await PathIO.WriteTextAsync("ms-appdata:///local/QuickNotes.txt", txtbox.Text);
 deferral.Complete();
 }
}

250	 PART 1  Elementals

Your Own Asynchronous Methods

Earlier I demonstrated how to write a method with the word Async at the end that calls one or
more other asynchronous methods. The code that you supply for such a method runs in the user
interface thread, even though the asynchronous methods that are called within that method run in
secondary threads.

Sometimes an application needs to perform a lengthy computational job that has the potential
of grinding the UI thread to a halt. If you can chop the job into tiny pieces, you might be able to use
a DispatcherTimer or a CompositionTarget.Rendering event to do it. The event handlers run in the UI
thread, but the job is spread out in such a way that the user interface remains responsive.

Or you can do the job in a secondary thread. One approach is to make use of the ThreadPool class
in the Windows.System.Threading namespace, but the Task class is much more versatile, so that’s the
approach I’ll be demonstrating here.

The simplest Task.Run method has an argument of type Action (a method with no arguments and
no return value) and runs that argument in a thread obtained from the thread pool. Generally, you’ll
use a lambda function for this argument.

For example, suppose you have a method (perhaps with a couple arguments) that requires a long
time to run:

void BigJob(object arg1, object arg2)
{
 // ... heavy processing job
}

You don’t want to run this method directly from the user interface thread, but you can await this
method by putting it in the body of a lambda function that you pass to Task.Run:

await Task.Run(() => BigJob("abc", 555));

Because Task.Run runs BigJob in a secondary thread, BigJob cannot contain any code that accesses
user interface objects. (Or rather, if it does need to contain code that accesses user interface objects,
it must do so using the RunAsync method of CoreDispatcher. If BigJob needs to await that RunAsync
call, BigJob must be declared as async and return a Task object.)

Here’s another method that requires lots of processing time but returns a value:

double CalculateMagicNumber(string str, double x)
{
 double magicNumber = 0;

 // ... big job

 return magicNumber;
}

	 CHAPTER 7  Asynchronicity	 251

Again, you don’t want to call this method on the user interface thread, but you can do so safely
with Task.Run:

double magicNum = await Task.Run(() =>
 {
 return CalculateMagicNumber("abc", 5);
 });

Because the method in the body of the lambda function passed to Task.Run returns a double (the
return value from CalculateMagicNumber), the return value of Task.Run is Task<double>. Notice the
await operator that returns the double value that CalculateMagicNumber calculated.

Or you can define a CalculateMagicNumberAsync method like so:

Task<double> CalculateMagicNumberAsync(string str, double x)
{
 return Task.Run(() =>
 {
 return CalculateMagicNumber(str, x);
 });
}

You can then call this method from the user interface thread:

double magicNum = await CalculateMagicNumberAsync("xyz", 333);

Or you can consolidate the entire big job in a single method:

Task<double> CalculateMagicNumberAsync(string str, double x)
{
 return Task.Run(() =>
 {
 double magicNumber = 0;

 // ... big job in non-UI thread

 return magicNumber;
 });
}

If the calculation requires some calls to other asynchronous methods, those methods should be
preceded with await and the lambda function should be declared with async:

Task<double> CalculateMagicNumberAsync(string str, double x)
{
 return Task.Run(async () =>
 {
 double magicNumber = 0;

 // ... big job with await’s

 return magicNumber;
 });
}

252	 PART 1  Elementals

This last form—with everything in this one method—is the easiest if you want to incorporate
cancellation and progress reports.

It is very likely that the asynchronous method that you’re defining contains some kind of loop:

Task<double> CalculateMagicNumberAsync(string str, double x)
{
 return Task.Run(async () =>
 {
 double magicNumber = 0;

 for (int i = 0; i < 100; i++)
 {
 // ... big job with await’s
 }
 return magicNumber;
 });
}

This loop is a good place to perform both cancellation and progress, but some judgment and
prudence are required. You don’t want to check for cancellation or report progress thousands of
times per second, or every five seconds. Every second or several times a second is about right. For a
loop that executes thousands or millions of times, you might want to include some logic that checks
for cancellation or reports progress only if the loop variable is equally divisible by 100, for example.

To incorporate cancellation into this method, you add a method parameter of type
CancellationToken and at a convenient point, call the ThrowIfCancellationRequested method on that
argument:

Task<double> CalculateMagicNumberAsync(string str, double x,
 CancellationToken cancellationToken)
{
 return Task.Run(async () =>
 {
 double magicNumber = 0;

 for (int i = 0; i < 100; i++)
 {
 cancellationToken.ThrowIfCancellationRequested();

 // ... big job with await’s
 }
 return magicNumber;
 }, cancellationToken);
}

Notice that the cancellationToken parameter is also passed as a second argument to Task.Run. This
allows the task to be cancelled before it’s even started.

	 CHAPTER 7  Asynchronicity	 253

Now, when calling the CalculateMagicNumberAsync method, you must pass a CancellationToken
as the last argument. To obtain this object, you’ll need to define an object of type
CancellationTokenSource as a field:

CancellationTokenSource cts;

This object must be defined as a field because it needs to be accessed from a method that triggers
the cancellation, very likely based on the user’s initiative:

void OnCancelButtonClick(object sender, RoutedEventArgs args)
{
 cts.Cancel();
}

Prior to calling CalculateMagicNumberAsync, a new CancellationTokenSource must be created and
its Token property passed to the method in a try block:

cts = new CancellationTokenSource();
double magicNum = 0;

try
{
 magicNum = await CalculateMagicNumberAsync("xyz", 333, cts.Token);
}
catch (OperationCanceledException)
{
 // ... cancellation logic
}
catch (Exception exc)
{
 // ... other exceptions logic
}

When the Cancel method of CancellationTokenSource is called, the next time the asynchronous
method calls the ThrowIfCancellationRequested method of the CancellationToken object, an exception
is raised of type OperationCanceledException, and this is caught by the code calling the asynchronous
method. Other exceptions that might be raised (most likely as a result of file I/O or web access calls)
are trapped in the second catch block.

If you want the asynchronous method to report progress, you add another parameter to the
method for that purpose. This parameter is of type IProgress<T>, where T is the type you prefer for
marking the progress. Generally T will be a double, but whether the progress ranges from 0 to 1 or 0
to 100 is up to you. If the latter, T can be an int. I’ve even seen an example where T is a bool, with true
indicating the job is complete!

At a convenient place—perhaps at the same point you check for cancellation—you can report
progress:

Task<double> CalculateMagicNumberAsync(string str, double x,
 CancellationToken cancellationToken,
 IProgress<double> progress)
{

254	 PART 1  Elementals

 return Task.Run(async () =>
 {
 double magicNumber = 0;

 for (int i = 0; i < 100; i++)
 {
 cancellationToken.ThrowIfCancellationRequested();
 progress.Report((double)i);

 // ... big job with await’s
 }
 return magicNumber;
 }, cancellationToken);
}

This code just casts the loop variable to a double so it ranges from 0 to 100 and represents a
percentage (which makes it convenient for setting the Value property of a ProgressBar). In some cases
you might want to explicitly report a zero progress at the beginning of the method and a maximum
progress at the end.

You’ll also want a method that has the progress type you’ve selected as a parameter and which
displays that progress:

void ProgressCallback(double progress)
{
 progressBar.Value = progress;
}

This callback is called in the user interface thread.

When calling CalculateMagicNumberAsync (which, as you’ll recall, is inside a try block), you
create an object of type Progress with the callback method you’ve defined and pass that as the last
argument:

magicNum = await CalculateMagicNumberAsync("xyz", 333, cts.Token,
 new Progress<double>(ProgressCallback));

The progress callback doesn’t need to be a separate function. It can be a simple lambda
expression:

magicNum = await CalculateMagicNumberAsync("xyz", 333, cts.Token,
 new Progress<double>((percent) => progressBar.Value = percent));

Let’s look at a real example.

For the author of a programming tutorial, one of the hard parts of demonstrating asynchronous
operations is coming up with a reasonably simple example that requires an appreciable amount of
time to execute. One finds oneself deliberately writing inefficient code just so that there’s time to see
the ProgressBar move and to hit the Cancel button before the job is done!

The WordFreq project reads a text file—such as a plain-text e-book from the famous Project
Gutenberg website—and calculates word frequencies, letting you determine, for example, how many
times the word “whale” appears in Herman Melville’s Moby-Dick. In fact, WordFreq is hard-coded

	 CHAPTER 7  Asynchronicity	 255

for Moby-Dick, but of course the word-counting code in the GetWordFrequenciesAsync method is
generalized.

GetWordFrequenciesAsync has a .NET Stream argument because I wanted to use the .NET
StreamReader within the method to read the file line by line. It also includes CancellationToken and
IProgress arguments.

But the return value is a bit hairy. The method uses a .NET Dictionary object to accumulate the
counts of each unique word in the file. Hence, the Dictionary key is of type string and the value is
of type int. At the end of the method, the LINQ OrderByDescending function sorts the dictionary by
value—that is, the highest frequency words at the beginning. The result is a collection of objects of
type:

KeyValuePair<string, int>

The actual collection returned by OrderByDescending is an object of the generic type
IOrderedEnumerable:

IOrderedEnumerable<KeyValuePair<string, int>>

This means that the return value of the GetWordFrequenciesAsync method is:

Task<IOrderedEnumerable<KeyValuePair<string, int>>>

And here it is:

Project: WordFreq | File: MainPage.xaml.cs (excerpt)

Task<IOrderedEnumerable<KeyValuePair<string, int>>> GetWordFrequenciesAsync(Stream stream,
 CancellationToken cancellationToken,
 IProgress<double> progress)
{
 return Task.Run(async () =>
 {
 Dictionary<string, int> dictionary = new Dictionary<string, int>();

 using (StreamReader streamReader = new StreamReader(stream))
 {
 // Read the first line
 string line = await streamReader.ReadLineAsync();

 while (line != null)
 {
 cancellationToken.ThrowIfCancellationRequested();
 progress.Report(100.0 * stream.Position / stream.Length);

 string[] words = line.Split(‘ ‘, ‘,’, ‘.’, ‘;’, ‘:’);

 foreach (string word in words)
 {
 string charWord = word.ToLower();

 while (charWord.Length > 0 && !Char.IsLetter(charWord[0]))
 charWord = charWord.Substring(1);

256	 PART 1  Elementals

 while (charWord.Length > 0 &&
 !Char.IsLetter(charWord[charWord.Length - 1]))
 charWord = charWord.Substring(0, charWord.Length - 1);

 if (charWord.Length == 0)
 continue;

 if (dictionary.ContainsKey(charWord))
 dictionary[charWord] += 1;
 else
 dictionary.Add(charWord, 1);
 }
 line = await streamReader.ReadLineAsync();
 }
 }

 // Return the dictionary sorted by Value (the word count)
 return dictionary.OrderByDescending(i => i.Value);
 }, cancellationToken);
}

Notice that the body of the method passed to Task.Run has occurrences of the await operator with
calls to the ReadLineAsync method of StreamReader. Consequently, the lambda function passed to
Task.Run is flagged with async. For every line in the file, the CancellationToken is checked and prog-
ress is reported as a percentage based on the amount of the Stream object that’s been read. The
Project Gutenberg e-book of Moby-Dick contains over 22,000 lines, so these two calls are rather too
frequent, but reducing their number probably involves keeping track of line counts.

This method has no exception handling. If the StreamReader constructor or ReadLineAsync call
raises an exception, that must be handled by the code calling this method.

The XAML file for the program has two buttons for Start and Cancel (the latter initially disabled), a
ProgressBar for reporting progress, a TextBlock for reporting errors, and a StackPanel in a ScrollViewer
for the list of words and word counts:

Project: WordFreq | File: MainPage.xaml (excerpt)

<Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <Grid HorizontalAlignment="Center">
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="*" />
 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="*" />
 <ColumnDefinition Width="*" />
 </Grid.ColumnDefinitions>

	 CHAPTER 7  Asynchronicity	 257

 <Button Name="startButton"
 Content="Start"
 Grid.Row="0" Grid.Column="0"
 HorizontalAlignment="Center"
 Margin="24 12"
 Click="OnStartButtonClick" />

 <Button Name="cancelButton"
 Content="Cancel"
 Grid.Row="0" Grid.Column="1"
 IsEnabled="false"
 HorizontalAlignment="Center"
 Margin="24 12"
 Click="OnCancelButtonClick" />

 <ProgressBar Name="progressBar"
 Grid.Row="1" Grid.Column="0" Grid.ColumnSpan="2"
 Margin="24" />

 <TextBlock Name="errorText"
 Grid.Row="2" Grid.Column="0" Grid.ColumnSpan="2"
 FontSize="24"
 TextWrapping="Wrap" />

 <ScrollViewer Grid.Row="3" Grid.Column="0" Grid.ColumnSpan="2">
 <StackPanel Name="stackPanel" />
 </ScrollViewer>
 </Grid>
</Grid>

The code-behind file contains the GetWordFrequenciesAsync method as well as a couple of short
methods for cancellation and progress:

Project: WordFreq | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 // Project Gutenberg ebook of Herman Melville’s "Moby-Dick"
 Uri uri = new Uri("http://www.gutenberg.org/ebooks/2701.txt.utf-8");
 CancellationTokenSource cts;

 public MainPage()
 {
 this.InitializeComponent();
 }

 async void OnStartButtonClick(object sender, RoutedEventArgs args)
 {
 ...
 }

 void OnCancelButtonClick(object sender, RoutedEventArgs args)
 {
 cts.Cancel();
 }

258	 PART 1  Elementals

 void ProgressCallback(double progress)
 {
 progressBar.Value = progress;
 }

 Task<IOrderedEnumerable<KeyValuePair<string, int>>> GetWordFrequenciesAsync(Stream stream,
 CancellationToken cancellationToken,
 IProgress<double> progress)
 {
 ...
 }
}

The only code you haven’t seen yet is the Click handler for the Start button. The handler is
designed to be called multiple times while the program is running, but it’s not re-entrant—that is,
it’s not designed to be started a second time until it’s exited the first time. Much of the logic in the
method involves initializing the StackPanel, initializing the ProgressBar, and enabling and disabling the
buttons. Notice all the file accesses as well as the call to GetWordFrequenciesAsync are in a try block:

Project: WordFreq | File: MainPage.xaml.cs (excerpt)

async void OnStartButtonClick(object sender, RoutedEventArgs args)
{
 stackPanel.Children.Clear();
 progressBar.Value = 0;
 errorText.Text = "";
 startButton.IsEnabled = false;
 IOrderedEnumerable<KeyValuePair<string, int>> wordList = null;

 try
 {
 RandomAccessStreamReference streamRef = RandomAccessStreamReference.CreateFromUri(uri);

 using (IRandomAccessStream raStream = await streamRef.OpenReadAsync())
 {
 using (Stream stream = raStream.AsStream())
 {
 cancelButton.IsEnabled = true;
 cts = new CancellationTokenSource();

 wordList = await GetWordFrequenciesAsync(stream, cts.Token,
 new Progress<double>(ProgressCallback));

 cancelButton.IsEnabled = false;
 }
 }
 }
 catch (OperationCanceledException)
 {
 progressBar.Value = 0;
 cancelButton.IsEnabled = false;
 startButton.IsEnabled = true;
 return;
 }

	 CHAPTER 7  Asynchronicity	 259

 catch (Exception exc)
 {
 progressBar.Value = 0;
 cancelButton.IsEnabled = false;
 startButton.IsEnabled = true;
 errorText.Text = "Error: " + exc.Message;
 return;
 }

 // Transfer the list of words and counts to the StackPanel
 foreach (KeyValuePair<string, int> word in wordList)
 {
 if (word.Value > 1)
 {
 TextBlock txtblk = new TextBlock
 {
 FontSize = 24,
 Text = word.Key + " \x2014 " + word.Value.ToString()
 };
 stackPanel.Children.Add(txtblk);
 }
 await Task.Yield();
 }

 startButton.IsEnabled = true;
}

But another issue has arisen: After the asynchronous method has returned, the program must
transfer the items into the StackPanel. This job is handled by the foreach block at the end of the
method. This loop involves extreme interaction with user interface objects—creating a TextBlock and
adding it to the StackPanel—and it simply can’t be handled in another thread. Even limiting the list
to those words that show up at least twice in Moby-Dick (as I’ve done) involves almost 10,000 items.
Such a loop has the potential of freezing the user interface, preventing it from responding to user
input, and even preventing the prompt appearance of the items on the screen.

The solution—not entirely successful—involves this statement:

await Task.Yield();

This call with await effectively allows other code on the user interface thread to run and then returns
when that code has completed. The other code that executes includes code implemented in the
StackPanel class that lays out the TextBlock children and user input that might want to scroll the
StackPanel within the ScrollViewer.

Without that call to Task.Yield, the list of words doesn’t appear on the screen for about five seconds
after the ProgressBar has signaled maximum progress. To be sure, the repeated calls to Task.Yield
slow down the loop considerably. It will take longer to complete (as you can see for yourself when
running the program by the delay before the Start button is enabled), but you’ll see results almost

260	 PART 1  Elementals

immediately. You should also be able to scroll the list before it has completed, and you’ll discover that
the Moby-Dick file contains 963 occurrences of the word “whale”:

A better solution for this program is not to use a StackPanel at all. As you’ll discover in Chapter 11,
“The Three Templates,” there are controls specifically for displaying lists of items. These controls can
use a VirtualizingStackPanel, which doesn’t create actual elements until they are scrolled into view.

Although Windows 8, .NET, and C# have made working with asynchronous methods easier than
ever, attention to detail and testing are still required. For example, on the machine I’m using for this
book, the GetWordFrequenciesAsync method requires three to four seconds to finish. However, if I
remove the check for cancellation and progress reporting, the method requires less than one second.
I don’t know about you, but I find it questionable whether cancellation and progress are suitable for a
one-second asynchronous method.

These things are not easy, and they’re not easy because in one sense we’re trying to do the
impossible: We’re trying to give our computers lots of work to do but make it seem as if they’re doing
nothing at all. Windows 8 applications should appear as if they can engage in heavy lifting without
breaking a sweat, and that’s still a challenge for programmers.

		 261

C H A P T E R 8

App Bars and Popups

By assembling the elements, controls, and panels discussed in Chapter 4, “Presentation with Panels,”
and Chapter 5, “Control Interaction,” it is possible to construct an entire user interface on the

surface of a page. But for many programs, it’s preferable that most commands and program options
remain hidden until the user specifically needs to use them.

Windows applications of the past generally used menus and dialog boxes to consolidate
commands and options. While the top level of a menu always remains visible, the actual commands
are usually on drop-down submenus. Some menu commands have the effect of invoking a dialog box
for presenting a group of related program options.

Windows 8 instead places emphasis on application content rather than chrome. In many cases,
program options formerly on an application menu will be moved to an application bar, which is
normally hidden from view but invoked when the user sweeps a finger on the top or bottom edge
of the screen, or moves the mouse pointer to that location. The application bar is a ContentControl
derivative named AppBar, and I’ll show you how to use it in this chapter.

In addition, a Windows 8 program can display a list of commands in a simple object of type
PopupMenu (often used as a context menu) or a more extensive collection of controls that you
present to the user through an element named Popup. I’ll show you how to use both types of popups
in this chapter.

This chapter concludes with the most extensive application so far in this book—a program called
XamlCruncher that lets you interactively experiment with XAML.

Implementing Context Menus

A context menu is a menu that is invoked with a right click of a mouse or a press-hold-and-release
finger gesture. The menu pops up at the point where the screen was touched and generally disap-
pears when one of the commands is selected. Very often, the context menu is associated with a
particular control or a particular area of a single control; this is what justifies the “context” part of
the name.

262	 PART 1  Elementals

The TextBox control includes a context menu. To see it, run any program in this book that uses a
TextBox. Type some text into it, select some, and then right-click the control or perform the press-
hold-and-release gesture. A menu appears that potentially contains up to five commands, depending
on the selection and the state of the clipboard:

To make your own custom context menu you create an object of type PopupMenu. This class is
defined in the Windows.UI.Popups namespace along with MessageDialog (which you encountered in
Chapter 7, “Asynchronicity”) and UICommand, which is what you use to specify commands in both
MessageDialog and PopupMenu.

PopupMenu derives from Object, so it’s very unlikely that you’ll instantiate it in a visual tree in a
XAML file. Instead, you’ll probably want to construct a PopupMenu object entirely in code at the time
it’s invoked, most likely in response to a RightTapped event.

Here’s a XAML file containing a TextBlock centered on the page with a handler assigned for the
RightTapped event:

Project: SimpleContextMenu | File: MainPage.xaml (excerpt)

<Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <TextBlock Name="textBlock"
 FontSize="24"
 HorizontalAlignment="Center"
 VerticalAlignment="Center"
 TextAlignment="Center"
 RightTapped="OnTextBlockRightTapped">
 Simple Context Menu
 <LineBreak />
 <LineBreak />
 (right-click or press-and-hold-and-release to invoke)
 </TextBlock>
</Grid>

	 CHAPTER 8  App Bars and Popups	 263

Just as with MessageDialog, you indicate the commands you want to appear on the menu with
instances of UICommand. Call ShowAsync to display it:

Project: SimpleContextMenu | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 public MainPage()
 {
 this.InitializeComponent();
 }

 async void OnTextBlockRightTapped(object sender, RightTappedRoutedEventArgs args)
 {
 PopupMenu popupMenu = new PopupMenu();
 popupMenu.Commands.Add(new UICommand("Larger Font", OnFontSizeChanged, 1.2));
 popupMenu.Commands.Add(new UICommand("Smaller Font", OnFontSizeChanged, 1 / 1.2));
 popupMenu.Commands.Add(new UICommandSeparator());
 popupMenu.Commands.Add(new UICommand("Red", OnColorChanged, Colors.Red));
 popupMenu.Commands.Add(new UICommand("Green", OnColorChanged, Colors.Green));
 popupMenu.Commands.Add(new UICommand("Blue", OnColorChanged, Colors.Blue));

 await popupMenu.ShowAsync(args.GetPosition(this));
 }

 void OnFontSizeChanged(IUICommand command)
 {
 textBlock.FontSize *= (double)command.Id;
 }

 void OnColorChanged(IUICommand command)
 {
 textBlock.Foreground = new SolidColorBrush((Color)command.Id);
 }
}

Notice the UICommandSeparator object to create a horizontal line in the menu.

Just as with MessageDialog, the ShowAsync call returns an object of type
IAsyncOperation<IUICommand>, from which you can obtain the command selected by the user. I
have chosen instead to specify two custom handlers for the commands in the UICommand construc-
tors, and I’ve used the third argument of that constructor to specify a value that helps the handler
process the command with as little fuss as possible.

The ShowAsync method requires a Point value to indicate where the menu is to be displayed. This
point should be relative to the application’s window, which usually means that it can be relative to the
page. The menu is generally horizontally centered at this point and positioned vertically above the
point. This makes sense for a touch interface: You don’t want the menu obscured by the user’s hand!

264	 PART 1  Elementals

Here’s how it appears when I right-click at the top of the ‘S’ in “Simple”:

Of course, if you click outside the TextBlock, nothing will happen.

If the point you specify is too close to the left, top, or right edge of the window, the location will
be automatically shifted so that the menu is not cropped. The menu is always displayed with black
text on a white background regardless of the RequestedTheme value.

The menu has a keyboard interface, but not much of one: You can use the arrow keys to move
a selection among the items, and then press Enter to choose one. The menu disappears when you
select a command, if you tap or click anywhere outside the menu, or if you press any other key on the
keyboard. If you choose to process the IUICommand object returned from ShowAsync, that object will
be null if the menu was dismissed without a command being selected.

You have now seen virtually everything you can do with PopupMenu. The only other option is an
alternative method to invoke the menu called ShowForSelectionAsync. This method requires a Rect
value and an optional member of the Placement enumeration, which has members Default, Above,
Below, Left, and Right. This is only a preferred location: The actual location will be chosen so that the
entire menu appears within the program’s window.

You can’t display any commands in a PopupMenu in a shaded disabled state. If a particular com-
mand isn’t currently applicable, don’t include it!

Nor can you display any commands with check marks to indicate a selected item. If you want to
display anything beyond simple commands, you need to graduate from PopupMenu to Popup.

	 CHAPTER 8  App Bars and Popups	 265

The Popup Dialog

The Popup class (which derives from FrameworkElement) is the closest thing the Windows Runtime has
to the traditional dialog box. Popup has a Child property of type UIElement that you’ll likely set to a
Panel containing a bunch of controls or to a Border with a Panel child.

The SimpleContextDialog project is functionally equivalent to the previous project, and the XAML
file is very similar:

Project: SimpleContextDialog | File: MainPage.xaml (excerpt)

<Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <TextBlock Name="textBlock"
 FontSize="24"
 HorizontalAlignment="Center"
 VerticalAlignment="Center"
 TextAlignment="Center"
 RightTapped="OnTextBlockRightTapped">
 Simple Context Dialog
 <LineBreak />
 <LineBreak />
 (right-click or press-hold-and-release to invoke)
 </TextBlock>
</Grid>

The handler for the RightTapped event on the TextBlock assembles two Button controls and three
RadioButton controls in a StackPanel that is made a child of a Border that is then set to the Child prop-
erty of a Popup. That’s the long part. Much shorter are the Click handler for the Button controls and
the Checked handler for the RadioButton controls:

Project: SimpleContextDialog | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 public MainPage()
 {
 this.InitializeComponent();
 }

 void OnTextBlockRightTapped(object sender, RightTappedRoutedEventArgs args)
 {
 StackPanel stackPanel = new StackPanel();

 // Create two Button controls and add to StackPanel
 Button btn1 = new Button
 {
 Content = "Larger font",
 Tag = 1.2,
 HorizontalAlignment = HorizontalAlignment.Center,
 Margin = new Thickness(12)
 };

266	 PART 1  Elementals

 btn1.Click += OnButtonClick;
 stackPanel.Children.Add(btn1);

 Button btn2 = new Button
 {
 Content = "Smaller font",
 Tag = 1 / 1.2,
 HorizontalAlignment = HorizontalAlignment.Center,
 Margin = new Thickness(12)
 };
 btn2.Click += OnButtonClick;
 stackPanel.Children.Add(btn2);

 // Create three RadioButton controls and add to StackPanel
 string[] names = { "Red", "Green", "Blue" };
 Color[] colors = { Colors.Red, Colors.Green, Colors.Blue };

 for (int i = 0; i < names.Length; i++)
 {
 RadioButton radioButton = new RadioButton
 {
 Content = names[i],
 Foreground = new SolidColorBrush(colors[i]),
 IsChecked = (textBlock.Foreground as SolidColorBrush).Color == colors[i],
 Margin = new Thickness(12)
 };
 radioButton.Checked += OnRadioButtonChecked;
 stackPanel.Children.Add(radioButton);
 }

 // Create a Border for the StackPanel
 Border border = new Border
 {
 Child = stackPanel,
 Background =
 this.Resources["ApplicationPageBackgroundThemeBrush"] as SolidColorBrush,
 BorderBrush = this.Resources["ApplicationForegroundThemeBrush"] as SolidColorBrush,
 BorderThickness = new Thickness(1),
 Padding = new Thickness(24),
 };

 // Create the Popup object
 Popup popup = new Popup
 {
 Child = border,
 IsLightDismissEnabled = true
 };

 // Adjust location based on content size
 border.Loaded += (loadedSender, loadedArgs) =>
 {
 Point point = args.GetPosition(this);
 point.X -= border.ActualWidth / 2;
 point.Y -= border.ActualHeight;

	 CHAPTER 8  App Bars and Popups	 267

 // Leave at least a quarter inch margin
 popup.HorizontalOffset =
 Math.Min(this.ActualWidth - border.ActualWidth - 24,
 Math.Max(24, point.X));

 popup.VerticalOffset =
 Math.Min(this.ActualHeight - border.ActualHeight - 24,
 Math.Max(24, point.Y));

 // Set keyboard focus to first element
 btn1.Focus(FocusState.Programmatic);
 };

 // Open the popup
 popup.IsOpen = true;
 }

 void OnButtonClick(object sender, RoutedEventArgs args)
 {
 textBlock.FontSize *= (double)(sender as Button).Tag;
 }

 void OnRadioButtonChecked(object sender, RoutedEventArgs args)
 {
 textBlock.Foreground = (sender as RadioButton).Foreground;
 }
}

To position the Popup, it is necessary to set the HorizontalOffset and VerticalOffset properties
to values relative to the program’s window. However, these properties cannot be set intelligently
without knowing the size of the content that the Popup is hosting, and that’s generally not available
until the Popup is displayed. For that reason, this code sets a Loaded handler on the Border, which is
the content element of the Popup. The Popup is then positioned centered above the right-tap point
(much like PopupMenu), but I’ve also allowed at least a 24-pixel margin between the Popup and the
program’s window.

The RightTapped handler concludes by setting the IsOpen property of the Popup to true. This
causes the Popup to be displayed on the screen. Normally the user can still interact with the rest of
the program’s page. But notice that the IsLightDismissEnabled property of the Popup is set to true.
This allows the Popup to be dismissed with a click or a tap outside the Popup or with a press of the
Esc key. Without this property set, multiple copies of this dialog can be displayed and the program
would need to remove the Popup from the screen by setting the IsOpen property of false, probably in
response to an event of one of the child controls. Popup also defines Opened and Closed properties if
you need that information for initialization or cleanup.

268	 PART 1  Elementals

Here’s a click on the upper end of the right parenthesis with the font already having been
increased in size:

You can use the Tab key to navigate among the items. By default these dialogs have the same color
theme as the application, so using a Border as I’ve done helps to set off the dialog visually on the
page.

This dialog box has no OK or Cancel button. Instead, I’ve implemented this dialog so that clicking
the buttons changes the underlying display immediately and the Popup is dismissed by clicking or
pressing anywhere outside it. In more complex dialogs, you might want a button to restore defaults.

Of course, defining the entire content of the Popup in code is a nuisance. It’s more common to
define a UserControl specifically for the dialog and then make an instance of that the child of the
Popup. However, you then need to provide some way for this UserControl to convey the user selec-
tions back to the program, and the best way to do that is with bindings between the dialog and the
application, either directly or through a view model. You’ll see examples of both approaches later in
this chapter.

Application Bars

The Windows 8 application bar is intended to implement program commands and options in a
manner similar to a traditional menu or toolbar. The application bar is a class named AppBar, and it
is invoked when the user sweeps a finger on the top or bottom of the screen. Application bars can
appear at the top of the page, the bottom, or both. The application bar often disappears when a
command has been selected, but that’s not required.

The Page class defines two properties named TopAppBar and BottomAppBar that you generally
set to AppBar tags in XAML. AppBar derives from ContentControl, and you’ll usually set the Content

	 CHAPTER 8  App Bars and Popups	 269

property to a panel that contains the controls that appear on the application bar. AppBar does not
have a fixed height: The height is based on the controls it hosts.

Certainly the best way to become familiar with the use of application bars in real programs is to
explore some of the standard applications that are part of Windows 8. Mostly you’ll see applica-
tion bars that consist of a row of circular Button controls, but the application bars in the Windows 8
version of Internet Explorer demonstrate that an application bar can contain a variety of controls. In
Internet Explorer, the bottom application bar contains a TextBox into which you can type a URL; the
top application bar displays a collection of visited web pages.

Here’s a program with a rather unconventional pair of application bars:

Project: UnconventionalAppBar | File: MainPage.xaml (excerpt)

<Page ... >
 <Grid Background="LightGray">
 <TextBlock Name="textBlock"
 Text="Unconventional App Bar"
 HorizontalAlignment="Center"
 VerticalAlignment="Center"
 FontSize="{Binding ElementName=slider, Path=Value}" />
 </Grid>

 <Page.TopAppBar>
 <AppBar Name="topAppBar">
 <Slider Name="slider"
 Minimum="8"
 Maximum="196"
 Value="24" />
 </AppBar>
 </Page.TopAppBar>

 <Page.BottomAppBar>
 <AppBar Name="bottomAppBar">
 <StackPanel Orientation="Horizontal"
 HorizontalAlignment="Right">

 <Button Content="Red"
 Foreground="Red"
 Margin="24 12"
 Click="OnAppBarButtonClick" />

 <Button Content="Green"
 Foreground="Green"
 Margin="24 12"
 Click="OnAppBarButtonClick" />

 <Button Content="Blue"
 Foreground="Blue"
 Margin="24 12"
 Click="OnAppBarButtonClick" />
 </StackPanel>
 </AppBar>
 </Page.BottomAppBar>
</Page>

270	 PART 1  Elementals

Again, a TextBlock sits in the center of the screen, but this one has its FontSize bound to a Slider
that is the only content of an AppBar that appears at the top. The second AppBar is set to the
BottomAppBar property and contains a horizontal StackPanel with three Button controls. The Button
controls share a Click handler in the code-behind file:

Project: UnconventionalAppBar | File: MainPage.xaml.cs (excerpt)

void OnAppBarButtonClick(object sender, RoutedEventArgs args)
{
 textBlock.Foreground = (sender as Button).Foreground;
}

It is generally much easier working with an application bar than a Popup or PopupMenu because
the AppBar is part of the visual tree of the page, which eases the setting of bindings and event
handlers. The only difference between controls on an AppBar and controls on the page is that the
application bars are usually not visible until the user sweeps a finger on the top or bottom of the
screen. At that point, the user can interact with the controls:

An application bar and controls are colored according to the RequestedTheme of the application,
which is set to Light in this program. I gave the main Grid a LightGray background to contrast with
those colors. Most programs that use application bars seem to have Dark themes.

An application bar is automatically dismissed and goes back into hiding when you click or press
anywhere outside the application bar, or if you press Esc. If you prefer that the application bar is not
dismissed in this way, set the IsSticky property of AppBar to true. In that case, to get rid of the applica-
tion bar, the user needs to perform another finger sweep or you’ll need to set the IsOpen property of
one or both AppBar objects to false in the code-behind file.

There are some cases where a program might want to dismiss the application bar from code. For
example, in this particular program, to change the text color, a user needs to bring up the applica-
tion bar with a finger sweep, press a button, and then dismiss the application bar with another finger

	 CHAPTER 8  App Bars and Popups	 271

sweep or by pressing outside the bar. You might choose to dismiss the application bars from code
when a button is pressed:

void OnAppBarButtonClick(object sender, RoutedEventArgs args)
{
 textBlock.Foreground = (sender as Button).Foreground;
 topAppBar.IsOpen = false;
 bottomAppBar.IsOpen = false;
}

This is very common, and you know you’ll need to do it when you get tired of dismissing an
application bar after you’ve clicked a button on it. However, sometimes the user might find it conve-
nient to set several options in a row without re-invoking the application bar. This is a judgment call.

Some applications might want to require the user to interact with an application bar the first time
the program is run. In that case, initializing the IsOpen property to true is fine. Like Popup, AppBar has
Opened and Closed events for initialization and cleanup.

The Application Bar Button Style

Many Windows 8 applications have only a bottom application bar containing a row of circular Button
controls. The buttons are usually identified both with a symbol in a circle and a short text command.

The basis of this circular button is a Style defined in StandardStyles.xaml with the key name
AppBarButtonStyle. StandardStyles.xaml is the file located in the Common folder of every C#, Visual
Basic, or C++ Windows 8 project created by Visual Studio. The file is included in the Resources section
of the App.xaml file and hence is available to any Windows 8 application.

The AppBarButtonStyle Style definition contains a long ControlTemplate that defines the visuals
of this circular button. You might want to take a closer look at this ControlTemplate after assimilating
Chapter 11, “The Three Templates.” Meanwhile, you can just use this Style without knowing exactly
how the template works.

The AppBarButtonStyle contains a Setter object that sets the FontFamily to Segoe UI Symbol, and
the symbol that appears in the button is a character from this font.

As the name indicates, Segoe UI Symbol is a symbol font. However, it is not like an old-fashioned
symbol font where a bunch of symbols replace the common letters and numbers. The normal char-
acters still exist in this font, and you can use this font for normal purposes. But the Unicode standard
allows fonts such as this to include custom characters by defining the range of codes from 0xE000
through 0xF8FF as a “private use area,” which means that these character codes are font-specific.
The Segoe UI Symbol doesn’t fill up this whole area with custom symbols, but the range of 0xE100
through 0xE1F4 is a collection of glyphs that symbolize a bunch of common computer chores and
hence are suitable for application bar buttons.

272	 PART 1  Elementals

For example, if you want to display a button with a little house and the word “Home,” you can put
such a button on an application bar like so:

<Page.BottomAppBar>
 <AppBar>
 <StackPanel Orientation="Horizontal">
 <Button Style="{StaticResource AppBarButtonStyle}"
 Content=""
 AutomationProperties.Name="Home"
 Click="OnButtonClick" />
 ...
 </StackPanel>
 </AppBar>
</Page.BottomAppBar>

You’ve seen the Content and Click attributes before. The AutomationProperties class is a collection
of attached properties, of which Name is one. These properties normally allow user interface
elements to be identified for purposes of testing, and for accessibility by assistive technologies
such as screen readers. The ControlTemplate defined within AppBarButtonStyle references the
AutomationProperties.Name property to display a text string under the button. Here’s how this
particular button appears with a dark theme:

The StandardStyles.xaml file also defines individual styles based on AppBarButtonStyle for many
(but not all) of the Segoe UI Symbol character codes from 0xE100 through 0xE1E9. For example,
here’s a Style definition for HomeAppBarButtonStyle:

<Style x:Key="HomeAppBarButtonStyle" TargetType="ButtonBase"
 BasedOn="{StaticResource AppBarButtonStyle}">
 <Setter Property="AutomationProperties.AutomationId" Value="HomeAppBarButton"/>
 <Setter Property="AutomationProperties.Name" Value="Home"/>
 <Setter Property="Content" Value=""/>
</Style>

Obviously these styles can be very handy because someone has already matched up the symbols,
names, and suggested functionality. However, in the standard StandardStyles.xaml files, these styles
are all commented out and you need to remove the comments in order to use them. Here’s how you
would reference this Style in a XAML file:

<Button Style="{StaticResource HomeAppBarButtonStyle}"
 Click="OnButtonClick" />

But feel free to specify your own text if you want:

<Button Style="{StaticResource HomeAppBarButtonStyle}"
 AutomationProperties.Name="Head on Home"
 Click="OnButtonClick" />

	 CHAPTER 8  App Bars and Popups	 273

Wouldn’t it be nice to get a complete list of the application bar button styles
defined in StandardStyles.xaml with the symbols and text labels? That’s provided by the
LookAtAppBarButtonStyles program. The XAML file contains a ScrollViewer and StackPanel ready
for filling, and an application bar with a couple standard RadioButton controls:

Project: LookAtAppBarButtonStyles | File: MainPage.xaml (excerpt)

<Page ... >
 <Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <ScrollViewer FontSize="20">
 <StackPanel Name="stackPanel" />
 </ScrollViewer>
 </Grid>

 <Page.BottomAppBar>
 <AppBar>
 <StackPanel Orientation="Horizontal">
 <RadioButton Name="symbolSortRadio"
 Content="Sort by symbol"
 Checked="OnRadioButtonChecked" />

 <RadioButton Name="textSortRadio"
 Content="Sort by text"
 Checked="OnRadioButtonChecked" />
 </StackPanel>
 </AppBar>
 </Page.BottomAppBar>
</Page>

In the handler for the Loaded event, the code-behind file gets access to the ResourceDictionary
provided by StandardStyles.xaml by referencing the MergedDictionaries property of the Resources
collection associated with the current Application instance. The code locates the Style with the key
name “AppBarButtonStyle” and then saves all Style instances with a BasedOn property equal to that
Style in a collection of type Item, an internal class:

Project: LookAtAppBarButtonStyles | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 class Item
 {
 public string Key;
 public char Symbol;
 public string Text;
 }

 List<Item> appbarStyles = new List<Item>();
 FontFamily segoeSymbolFont = new FontFamily("Segoe UI Symbol");

 public MainPage()
 {
 this.InitializeComponent();
 Loaded += OnLoaded;
 }

274	 PART 1  Elementals

 void OnLoaded(object sender, RoutedEventArgs args)
 {
 // Basically gets StandardStyles.xaml
 ResourceDictionary dictionary = Application.Current.Resources.MergedDictionaries[0];
 Style baseStyle = dictionary["AppBarButtonStyle"] as Style;

 // Find all styles based on AppBarButtonStyle
 foreach (object key in dictionary.Keys)
 {
 Style style = dictionary[key] as Style;

 if (style != null && style.BasedOn == baseStyle)
 {
 Item item = new Item
 {
 Key = key as string
 };

 foreach (Setter setter in style.Setters)
 {
 if (setter.Property.Equals(AutomationProperties.NameProperty))
 item.Text = setter.Value as string;

 if (setter.Property.Equals(ButtonBase.ContentProperty))
 item.Symbol = (setter.Value as string)[0];
 }

 appbarStyles.Add(item);
 }
 }

 // Display items by checking RadioButton
 symbolSortRadio.IsChecked = true;
 }
 ...
}

The Loaded event concludes by checking one of the two RadioButton controls in the application
bar. This causes a call to the Checked handler for the RadioButton, which sorts the collection of styles
in one of two different ways:

Project: LookAtAppBarButtonStyles | File: MainPage.xaml.cs (excerpt)

void OnRadioButtonChecked(object sender, RoutedEventArgs args)
{
 if (sender == symbolSortRadio)
 {
 // Sort by symbol
 appbarStyles.Sort((item1, item2) =>
 {
 return item1.Symbol.CompareTo(item2.Symbol);
 });
 }
 else

	 CHAPTER 8  App Bars and Popups	 275

 {
 // Sort by text
 appbarStyles.Sort((item1, item2) =>
 {
 return item1.Text.CompareTo(item2.Text);
 });
 }

 // Close app bar and display the items
 this.BottomAppBar.IsOpen = false;
 DisplayList();
}

Processing of the Checked handler concludes with a call to DisplayList that creates lines of text for
each item. (Notice that the FontFamily for the first TextBlock in each line uses the Segoe UI Symbol
font.) Each of these items is added to the StackPanel in the ScrollViewer.

Project: LookAtAppBarButtonStyles | File: MainPage.xaml.cs (excerpt)

void DisplayList()
{
 // Clear the StackPanel
 stackPanel.Children.Clear();

 // Loop through the styles
 foreach (Item item in appbarStyles)
 {
 // A StackPanel for each item
 StackPanel itemPanel = new StackPanel
 {
 Orientation = Orientation.Horizontal,
 Margin = new Thickness(0, 6, 0, 6)
 };

 // The symbol itself
 TextBlock textBlock = new TextBlock
 {
 Text = item.Symbol.ToString(),
 FontFamily = segoeSymbolFont,
 Margin = new Thickness(24, 0, 24, 0)
 };
 itemPanel.Children.Add(textBlock);

 // The Unicode identifier
 textBlock = new TextBlock
 {
 Text = "0x" + ((int)item.Symbol).ToString("X4"),
 Width = 96
 };
 itemPanel.Children.Add(textBlock);

 // The text for the button
 textBlock = new TextBlock
 {
 Text = "\"" + item.Text + "\"",
 Width = 240,
 };

276	 PART 1  Elementals

 itemPanel.Children.Add(textBlock);

 // The key name
 textBlock = new TextBlock
 {
 Text = item.Key
 };
 itemPanel.Children.Add(textBlock);

 stackPanel.Children.Add(itemPanel);
 }
}

Here’s an excerpt of part of the list:

Don’t feel restricted to the items in this list. You can use any character in the Segoe UI Symbol font
for application bar buttons, or you can specify a different font.

Inside the Segoe UI Symbol Font

Besides the characters in the private-use area, the Segoe UI Symbol font also supports character
codes from 0x2600 through 0x26FF that the Unicode standard classifies as “miscellaneous symbols.”
Some of these characters might also be suitable for application bar buttons.

The Segoe UI Symbol font also goes beyond the range of 16-bit codes and contains glyphs for
character codes 0x1F300 through 0x1F5FF that map to emoji characters. These are icon characters
that originated in Japan but that have also found their way into the Microsoft Windows Phone and
the Apple iPhone.

	 CHAPTER 8  App Bars and Popups	 277

The Segoe UI Symbol font also supports common emoticon characters in the range 0x1F600
through 0x1F64F, including nine cat emoticons and a trio of see-no-evil, hear-no-evil, speak-no-evil
monkeys.

Also supported is the range from 0x1F680 through 0x1F6C5 containing transportation and map
symbols.

To help you (and me) select additional symbols for application bars, I’ve written a program named
SegoeSymbols that displays all the characters from 0 through 0x1FFFF in the Segoe UI Symbol font.

As you might know, Unicode started out as a 16-bit character encoding with codes ranging from
0x0000 through 0xFFFF. When it became evident that 65,536 code points were not sufficient, Unicode
began incorporating character codes in the range 0x10000 through 0x10FFFF, increasing the number
of characters to over 1.1 million. This expansion of Unicode also included a system to represent these
additional characters using a pair of 16-bit values.

The use of a single 32-bit code to represent Unicode characters is known as 32-bit Unicode
Transformation Format, or UTF-32. But that’s a bit of misnomer because with UTF-32 there is no
transformation: A one-to-one mapping exists from the 32-bit numeric codes to character glyphs.

UTF-32 is extremely rare. Indeed, most people don’t even think of Unicode as a 32-bit character
encoding because the 32-bit part of Unicode is really tacked on to the 16-bit encoding.

Accordingly, most modern programming languages and operating systems instead support UTF-
16. The Char structure in the Windows Runtime is basically a 16-bit integer, and that’s the basis for the
char data type in C#. To represent the additional characters in the range 0x10000 through 0x10FFFF,
UTF-16 uses two 16-bit characters in sequence. These are known as surrogates, and a special range of
16-bit codes in Unicode has been set aside for their use. The leading surrogate is in the range 0xD800
through 0xDBFF, and the trailing surrogate is in the range 0xDC00 through 0xDFFF. That’s 1,024 pos-
sible leading surrogates, and 1,024 possible trailing surrogates, which is sufficient for the 1,048,576
codes in the range 0x10000 through 0x10FFFF. (You’ll see the actual algorithm shortly.)

Text in languages that use the Latin alphabet is mostly restricted to ASCII character codes in the
range 0x0020 and 0x007E, so most webpages and other files save lots of space by using a system
called UTF-8 for storing text. UTF-8 encodes these 7-bit characters directly but uses one to three
additional bytes for other Unicode characters.

Because I wrote SegoeSymbols mostly to let me examine the symbols that might be useful in
application bars, the program only goes up to character codes of 0x1FFFF. The XAML file has a simple
title, a Grid awaiting rows and columns to display a block of 256 characters, and a Slider:

Project: SegoeSymbols | File: MainPage.xaml (excerpt)

<Page ... >

 <Page.Resources>
 <local:DoubleToStringHexByteConverter x:Key="hexByteConverter" />
 </Page.Resources>

278	 PART 1  Elementals

 <Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="*" />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>

 <TextBlock Name="titleText"
 Grid.Row="0"
 Text="Segoe UI Symbol"
 HorizontalAlignment="Center"
 Style="{StaticResource HeaderTextStyle}" />

 <Grid Name="characterGrid"
 Grid.Row="1"
 HorizontalAlignment="Center"
 VerticalAlignment="Center" />

 <Slider Grid.Row="2"
 Orientation="Horizontal"
 Margin="24 0"
 Minimum="0"
 Maximum="511"
 SmallChange="1"
 LargeChange="16"
 ThumbToolTipValueConverter="{StaticResource hexByteConverter}"
 ValueChanged="OnSliderValueChanged" />
 </Grid>
</Page>

Notice that the Slider has a Maximum value of 511, which is the maximum character code I want
to display (0x1FFFF) divided by 256. The DoubleToStringHexByteConverter class referenced in the
Resources section is similar to one you’ve seen before, but it displays a couple underlines as well to be
consistent with the screen visuals:

Project: SegoeSymbols | File: DoubleToStringHexByteConverter.cs (excerpt)

public class DoubleToStringHexByteConverter : IValueConverter
{
 public object Convert(object value, Type targetType, object parameter, string language)
 {
 return ((int)(double)value).ToString("X2") + "__";
 }
 public object ConvertBack(object value, Type targetType, object parameter, string language)
 {
 return value;
 }
}

Each Slider value corresponds to a display of 256 characters in a 16 × 16 array. The code to build
the Grid that displays these 256 characters is rather messy because I decided that there should be
lines between all the rows and columns of characters and that these lines should have their own rows
and columns in the Grid.

	 CHAPTER 8  App Bars and Popups	 279

Project: SegoeSymbols | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 const int CellSize = 36;
 const int LineLength = (CellSize + 1) * 16 + 18;
 FontFamily symbolFont = new FontFamily("Segoe UI Symbol");

 TextBlock[] txtblkColumnHeads = new TextBlock[16];
 TextBlock[,] txtblkCharacters = new TextBlock[16, 16];

 public MainPage()
 {
 this.InitializeComponent();

 for (int row = 0; row < 34; row++)
 {
 RowDefinition rowdef = new RowDefinition();

 if (row == 0 || row % 2 == 1)
 rowdef.Height = GridLength.Auto;
 else
 rowdef.Height = new GridLength(CellSize, GridUnitType.Pixel);

 characterGrid.RowDefinitions.Add(rowdef);

 if (row != 0 && row % 2 == 0)
 {
 TextBlock txtblk = new TextBlock
 {
 Text = (row / 2 - 1).ToString("X1"),
 VerticalAlignment = VerticalAlignment.Center
 };
 Grid.SetRow(txtblk, row);
 Grid.SetColumn(txtblk, 0);
 characterGrid.Children.Add(txtblk);
 }

 if (row % 2 == 1)
 {
 Rectangle rectangle = new Rectangle
 {
 Stroke = this.Foreground,
 StrokeThickness = row == 1 || row == 33 ? 1.5 : 0.5,
 Height = 1
 };
 Grid.SetRow(rectangle, row);
 Grid.SetColumn(rectangle, 0);
 Grid.SetColumnSpan(rectangle, 34);
 characterGrid.Children.Add(rectangle);
 }
 }

 for (int col = 0; col < 34; col++)
 {
 ColumnDefinition coldef = new ColumnDefinition();

280	 PART 1  Elementals

 if (col == 0 || col % 2 == 1)
 coldef.Width = GridLength.Auto;
 else
 coldef.Width = new GridLength(CellSize);

 characterGrid.ColumnDefinitions.Add(coldef);

 if (col != 0 && col % 2 == 0)
 {
 TextBlock txtblk = new TextBlock
 {
 Text = "00" + (col / 2 - 1).ToString("X1") + "_",
 HorizontalAlignment = HorizontalAlignment.Center
 };
 Grid.SetRow(txtblk, 0);
 Grid.SetColumn(txtblk, col);
 characterGrid.Children.Add(txtblk);
 txtblkColumnHeads[col / 2 - 1] = txtblk;
 }

 if (col % 2 == 1)
 {
 Rectangle rectangle = new Rectangle
 {
 Stroke = this.Foreground,
 StrokeThickness = col == 1 || col == 33 ? 1.5 : 0.5,
 Width = 1
 };
 Grid.SetRow(rectangle, 0);
 Grid.SetColumn(rectangle, col);
 Grid.SetRowSpan(rectangle, 34);
 characterGrid.Children.Add(rectangle);
 }
 }

 for (int col = 0; col < 16; col++)
 for (int row = 0; row < 16; row++)
 {
 TextBlock txtblk = new TextBlock
 {
 Text = ((char)(16 * col + row)).ToString(),
 FontFamily = symbolFont,
 FontSize = 24,
 HorizontalAlignment = HorizontalAlignment.Center,
 VerticalAlignment = VerticalAlignment.Center
 };
 Grid.SetRow(txtblk, 2 * row + 2);
 Grid.SetColumn(txtblk, 2 * col + 2);
 characterGrid.Children.Add(txtblk);
 txtblkCharacters[col, row] = txtblk;
 }
 }
 ...
}

	 CHAPTER 8  App Bars and Popups	 281

The ValueChanged handler for the Slider has the relatively easier job of inserting the correct text
into the existing TextBlock elements, but there’s also that irksome matter of dealing with character
codes above 0xFFFF:

Project: SegoeSymbols | File: MainPage.xaml.cs (excerpt)

void OnSliderValueChanged(object sender, RangeBaseValueChangedEventArgs args)
{
 int baseCode = 256 * (int)args.NewValue;

 for (int col = 0; col < 16; col++)
 {
 txtblkColumnHeads[col].Text = (baseCode / 16 + col).ToString("X3") + "_";

 for (int row = 0; row < 16; row++)
 {
 int code = baseCode + 16 * col + row;
 string strChar = null;

 if (code <= 0x0FFFF)
 {
 strChar = ((char)code).ToString();
 }
 else
 {
 code -= 0x10000;
 int lead = 0xD800 + code / 1024;
 int trail = 0xDC00 + code % 1024;
 strChar = ((char)lead).ToString() + (char)trail;
 }
 txtblkCharacters[col, row].Text = strChar;
 }
 }
}

Four statements toward the end of the handler demonstrate the mathematics that separate a Unicode
character code between 0x10000 and 0x10FFFF into two 10-bit values to construct leading and trail-
ing surrogates, which together in a string define a single character.

If you’re the type of person who prefers not witnessing how sausage is made, you can replace
those four lines with

strChar = Char.ConvertFromUtf32(code);

For a code value of 0xFFFF and below, Char.ConvertFromUtf32 returns a string consisting of one
character; for codes above 0xFFFF, the string has two characters. Passing the method a surrogate code
(0xD800 through 0xDFFF) raises an exception.

The areas that are of most interest in constructing application bar buttons begin at 0x2600 (the
miscellaneous symbols area), 0xE100 (the private use area used by the Seqoe UI Symbol font), and
0x1F300 (emoji, emoticons, and transportation and map symbols). Here’s the first screen of the emoji
characters:

282	 PART 1  Elementals

You can specify a character beyond 0xFFFF in XAML like so:

<TextBlock FontFamily="Segoe UI Symbol"
 FontSize="24"
 Text="🎷" />

That’s the saxophone symbol. Visual Studio sometimes complains, but the program compiles and runs
just fine.

Here’s a row of application bar buttons obviously for a very musical application:

<Button Style="{StaticResource AppBarButtonStyle}"
 Content="🎷"
 AutomationProperties.Name="Saxophone"
 Click="OnMusicButtonClick" />

<Button Style="{StaticResource AppBarButtonStyle}"
 Content="🎸"
 AutomationProperties.Name="Guitar"
 Click="OnMusicButtonClick" />

<Button Style="{StaticResource AppBarButtonStyle}"
 Content="🎹"
 AutomationProperties.Name="Piano"
 Click="OnMusicButtonClick" />

<Button Style="{StaticResource AppBarButtonStyle}"
 Content="🎺"
 AutomationProperties.Name="Trumpet"
 Click="OnMusicButtonClick" />

<Button Style="{StaticResource AppBarButtonStyle}"
 Content="🎻"
 AutomationProperties.Name="Violin"
 Click="OnMusicButtonClick" />

	 CHAPTER 8  App Bars and Popups	 283

And here it is:

App Bar CheckBox and RadioButton

Circular buttons that function like CheckBox or RadioButton can be seen on the application bars of
several standard Windows 8 applications. In the Calendar application, the Day, Week, and Month
buttons work like a trio of RadioButton controls, and the Show Traffic button in the Maps application
works like a CheckBox.

The AppBarButtonStyle has a TargetType of ButtonBase, which means that you can use it to style
a CheckBox or a RadioButton. However, in the version of StandardStyles.xaml that I’m seeing, the
ControlTemplate for AppBarButtonStyle has a reference to BackgroundCheckedGlyph, which is not
defined in the template. If you get an error when using these styles with CheckBox or RadioButton,
comment out the ObjectAnimationUsingKeyFrames object that references BackgroundCheckedGlyph.

This is what I’ve done for the TextFormattingAppBar, which has a TextBlock sitting in the center
of the page with an application bar with three CheckBox controls and three RadioButton controls, all
with styles based on AppBarButtonStyle:

Project: TextFormattingAppBar | File: MainPage.xaml (excerpt)

<Page ... >
 <Grid Background="LightGray">
 <TextBlock Name="textBlock"
 FontFamily="Times New Roman"
 FontSize="96"
 HorizontalAlignment="Center"
 VerticalAlignment="Center">
 <Run>Text Formatting AppBar</Run>
 </TextBlock>
 </Grid>

 <Page.BottomAppBar>
 <AppBar>
 <StackPanel Orientation="Horizontal">
 <CheckBox Style="{StaticResource BoldAppBarButtonStyle}"
 Checked="OnBoldAppBarCheckBoxChecked"
 Unchecked="OnBoldAppBarCheckBoxChecked" />

 <CheckBox Style="{StaticResource ItalicAppBarButtonStyle}"
 Checked="OnItalicAppBarCheckBoxChecked"
 Unchecked="OnItalicAppBarCheckBoxChecked" />

 <CheckBox Style="{StaticResource UnderlineAppBarButtonStyle}"
 Checked="OnUnderlineAppBarCheckBoxChecked"
 Unchecked="OnUnderlineAppBarCheckBoxChecked" />

284	 PART 1  Elementals

 <Polyline Points="0 12, 0 48"
 Stroke="{StaticResource ApplicationForegroundThemeBrush}"
 VerticalAlignment="Top" />

 <RadioButton Name="redRadioButton"
 Style="{StaticResource FontColorAppBarButtonStyle}"
 Foreground="Red"
 AutomationProperties.Name="Red"
 Checked="OnFontColorAppBarRadioButtonChecked" />

 <RadioButton Style="{StaticResource FontColorAppBarButtonStyle}"
 Foreground="Green"
 AutomationProperties.Name="Green"
 Checked="OnFontColorAppBarRadioButtonChecked" />

 <RadioButton Style="{StaticResource FontColorAppBarButtonStyle}"
 Foreground="Blue"
 AutomationProperties.Name="Blue"
 Checked="OnFontColorAppBarRadioButtonChecked" />
 </StackPanel>
 </AppBar>
 </Page.BottomAppBar>
</Page>

When such a button is selected, it’s displayed in reverse colors, but it doesn’t quite work as nicely
for the RadioButton indicating color:

If you have another idea about how to color a selected CheckBox or RadioButton, you can always
make changes to AppBarButtonStyle.

	 CHAPTER 8  App Bars and Popups	 285

The code-behind file is much as you might expect, except that implementing the underline option
is exceptionally kludgy:

Project: TextFormattingAppBar | File: MainPage.xaml (excerpt)

public sealed partial class MainPage : Page
{
 public MainPage()
 {
 this.InitializeComponent();
 }

 void OnBoldAppBarCheckBoxChecked(object sender, RoutedEventArgs args)
 {
 CheckBox chkbox = sender as CheckBox;
 textBlock.FontWeight = (bool)chkbox.IsChecked ? FontWeights.Bold : FontWeights.Normal;
 }

 void OnItalicAppBarCheckBoxChecked(object sender, RoutedEventArgs args)
 {
 CheckBox chkbox = sender as CheckBox;
 textBlock.FontStyle = (bool)chkbox.IsChecked ? FontStyle.Italic : FontStyle.Normal;
 }

 void OnUnderlineAppBarCheckBoxChecked(object sender, RoutedEventArgs args)
 {
 CheckBox chkbox = sender as CheckBox;
 Inline inline = textBlock.Inlines[0];

 if ((bool)chkbox.IsChecked && !(inline is Underline))
 {
 Underline underline = new Underline();
 textBlock.Inlines[0] = underline;
 underline.Inlines.Add(inline);
 }
 else if (!(bool)chkbox.IsChecked && inline is Underline)
 {
 Underline underline = inline as Underline;
 Run run = underline.Inlines[0] as Run;
 underline.Inlines.Clear();
 textBlock.Inlines[0] = run;
 }
 }

 void OnFontColorAppBarRadioButtonChecked(object sender, RoutedEventArgs args)
 {
 textBlock.Foreground = (sender as RadioButton).Foreground;
 }
}

Styling a CheckBox or RadioButton is not the only way to implement this type of functionality.
Another approach to mimic a CheckBox is illustrated in the Weather application. When tapped, the
Button labeled “Change to Celsius” changes to “Change to Fahrenheit.”

A button on an application bar can also invoke a PopupMenu or Popup. For example, press the
button with the wrench icon in Windows 8 Internet Explorer. A little popup appears with at least two

286	 PART 1  Elementals

additional commands: “Find on page” and “View on the desktop.” Or try the Map Style button in
Maps to see two mutually exclusive options “Road View” and “Aerial View” with a check mark indi-
cating the current selection. Or press the Camera Options command in the Camera application. You
get a popup with combo boxes, a toggle switch, and a link for “More,” which displays a larger popup
dialog.

Using PopupMenu and Popup with an application bar is very similar to invoking them with a
right-click: You just need to position them intelligently, as I’ll demonstrate shortly.

If you sweep your finger on the right side of the screen while an application is running, you’ll
bring up the standard list of charms: Search, Share, Start, Devices, and Settings. I’ll demonstrate in
Chapter 17, “Share and Print,” how your application can hook into these charms. In particular, the
Settings button often invokes a list of options that can include About and Help as well as Settings.
However, some applications include an Options item on the application bar, and the application bar
can also contain a Settings item. Indeed, StandardStyles.xaml includes a SettingsAppBarButtonStyle
that displays a gear icon and the word “Settings.” How you divide program functionality among these
items is up to you, but generally you’ll use an application bar Options button for items accessed
more frequently than the Settings and you’ll use the Settings button on the application bar for items
accessed more frequently than those on the Settings charm.

An App Bar for a Note Pad

The PrimitivePad program in Chapter 7 had three buttons at the top of its page labeled “Open,”
“Save As,” and a ToggleButton with “Wrap” alternating with “No Wrap.” Let’s convert these to
application bar buttons, as well as implementing the text-wrapping option as a Popup and adding
buttons to increase and decrease the font size. But I won’t attempt to make the file I/O logic more
sophisticated.

Here’s the MainPage.xaml file for AppBarPad:

Project: AppBarPad | File: MainPage.xaml (excerpt)

<Page ... >
 <Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <TextBox Name="txtbox"
 IsEnabled="False"
 FontSize="24"
 AcceptsReturn="True" />
 </Grid>

 <Page.BottomAppBar>
 <AppBar>
 <Grid>
 <StackPanel Orientation="Horizontal"
 HorizontalAlignment="Left">

 <Button Style="{StaticResource FontIncreaseAppBarButtonStyle}"
 Click="OnFontIncreaseAppBarButtonClick" />

 <Button Style="{StaticResource FontDecreaseAppBarButtonStyle}"
 Click="OnFontDecreaseAppBarButtonClick" />

	 CHAPTER 8  App Bars and Popups	 287

 <Button Style="{StaticResource SettingsAppBarButtonStyle}"
 AutomationProperties.Name="Wrap Option"
 Click="OnWrapOptionAppBarButtonClick" />
 </StackPanel>

 <StackPanel Orientation="Horizontal"
 HorizontalAlignment="Right">

 <Button Style="{StaticResource OpenFileAppBarButtonStyle}"
 Click="OnOpenAppBarButtonClick" />

 <Button Style="{StaticResource SaveAppBarButtonStyle}"
 AutomationProperties.Name="Save As"
 Click="OnSaveAsAppBarButtonClick" />
 </StackPanel>
 </Grid>
 </AppBar>
 </Page.BottomAppBar>
</Page>

Generally, an application bar has some buttons on the left and some on the right. When holding
a tablet, these are more convenient than buttons in the middle. You can use XAML in a couple ways
to divide the buttons between left and right. Perhaps the easiest approach is to put two horizontal
StackPanel elements in a single-cell Grid and align them on the right and left.

It’s recommended that a New (or Add) button be on the far right, and although this program does
not have a New button, the other file-related buttons should also appear on the right side because
they are related to New. I supplied a name of “Save As” to replace “Save” for the Button styled with
the SaveAppBarButtonStyle.

The program options are on the left: buttons to increase and decrease the font size, and another
(using a generic SettingsAppBarButtonStyle) for the word-wrap setting. When you sweep your finger
on the top or bottom of the screen, here’s what you’ll see:

288	 PART 1  Elementals

The program saves user settings (and the content of the TextBox) in response to the Suspending
event defined by Application. These settings are loaded in the Loaded handler. For convenience, I’ve
defined both of these as anonymous methods in the MainPage constructor. Also shown here are the
simple handlers for the font size increase and decrease buttons:

Project: AppBarPad | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 public MainPage()
 {
 this.InitializeComponent();

 // Get local settings object
 ApplicationDataContainer appData = ApplicationData.Current.LocalSettings;

 Loaded += async (sender, args) =>
 {
 // Load TextBox settings
 if (appData.Values.ContainsKey("TextWrapping"))
 txtbox.TextWrapping = (TextWrapping)appData.Values["TextWrapping"];

 if (appData.Values.ContainsKey("FontSize"))
 txtbox.FontSize = (double)appData.Values["FontSize"];

 // Load TextBox content
 StorageFolder localFolder = ApplicationData.Current.LocalFolder;
 StorageFile storageFile = await localFolder.CreateFileAsync("AppBarPad.txt",
 CreationCollisionOption.OpenIfExists);
 txtbox.Text = await FileIO.ReadTextAsync(storageFile);

 // Enable the TextBox and give it input focus
 txtbox.IsEnabled = true;
 txtbox.Focus(FocusState.Programmatic);
 };

 Application.Current.Suspending += async (sender, args) =>
 {
 // Save TextBox settings
 appData.Values["TextWrapping"] = (int)txtbox.TextWrapping;
 appData.Values["FontSize"] = txtbox.FontSize;

 // Save TextBox content
 SuspendingDeferral deferral = args.SuspendingOperation.GetDeferral();
 await PathIO.WriteTextAsync("ms-appdata:///local/AppBarPad.txt", txtbox.Text);
 deferral.Complete();
 };
 }

 void OnFontIncreaseAppBarButtonClick(object sender, RoutedEventArgs args)
 {
 ChangeFontSize(1.1);
 }

	 CHAPTER 8  App Bars and Popups	 289

 void OnFontDecreaseAppBarButtonClick(object sender, RoutedEventArgs args)
 {
 ChangeFontSize(1/1.1);
 }

 void ChangeFontSize(double multiplier)
 {
 txtbox.FontSize *= multiplier;
 }
 ...
}

When the Button labeled “Wrap Options” is clicked, the program displays a little dialog with
“Wrap” and “No wrap” items. I’ve defined the layout of this little dialog as a UserControl called
WrapOptionsDialog. The XAML file represents the two options with RadioButton controls:

Project: AppBarPad | File: WrapOptionsDialog.xaml (excerpt)

<UserControl ... >

 <Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <StackPanel Name="stackPanel"
 Margin="24">
 <RadioButton Content="Wrap"
 Checked="OnRadioButtonChecked">
 <RadioButton.Tag>
 <TextWrapping>Wrap</TextWrapping>
 </RadioButton.Tag>
 </RadioButton>

 <RadioButton Content="No wrap"
 Checked="OnRadioButtonChecked">
 <RadioButton.Tag>
 <TextWrapping>NoWrap</TextWrapping>
 </RadioButton.Tag>
 </RadioButton>
 </StackPanel>
 </Grid>
</UserControl>

You’ll notice that this Grid has the standard background brush. It needs to have some kind of brush or
the background will be transparent. I’ve retained a dark theme in this program, so this dialog will have
a white foreground and black background and hence contrast with the TextBox.

The code-behind file for the dialog defines a dependency property named TextWrapping of type
TextWrapping. The property-changed handler checks a RadioButton when this property is set, and the
property is set when a user selects a RadioButton:

Project: AppBarPad | File: WrapOptionsDialog.xaml.cs (excerpt)

public sealed partial class WrapOptionsDialog : UserControl
{
 static WrapOptionsDialog()
 {
 TextWrappingProperty = DependencyProperty.Register("TextWrapping",
 typeof(TextWrapping),

290	 PART 1  Elementals

 typeof(WrapOptionsDialog),
 new PropertyMetadata(TextWrapping.NoWrap, OnTextWrappingChanged));
 }

 public static DependencyProperty TextWrappingProperty { private set; get; }

 public WrapOptionsDialog()
 {
 this.InitializeComponent();
 }

 public TextWrapping TextWrapping
 {
 set { SetValue(TextWrappingProperty, value); }
 get { return (TextWrapping)GetValue(TextWrappingProperty); }
 }

 static void OnTextWrappingChanged(DependencyObject obj,
 DependencyPropertyChangedEventArgs args)
 {
 (obj as WrapOptionsDialog).OnTextWrappingChanged(args);
 }

 void OnTextWrappingChanged(DependencyPropertyChangedEventArgs args)
 {
 foreach (UIElement child in stackPanel.Children)
 {
 RadioButton radioButton = child as RadioButton;
 radioButton.IsChecked =
		 (TextWrapping)radioButton.Tag == (TextWrapping)args.NewValue;
 }
 }

 void OnRadioButtonChecked(object sender, RoutedEventArgs args)
 {
 this.TextWrapping = (TextWrapping)(sender as RadioButton).Tag;
 }
}

The event handler for the “Wrap Options” application bar button is in the MainPage code-behind
file. The event handler instantiates a WrapOptionsDialog object and initializes its TextWrapping prop-
erty from the TextWrapping property of the TextBox. It then defines a binding in code between the
two TextWrapping properties. This allows the user to see the result of changing this property directly
in the TextBox. The WrapOptionsDialog object is then made a child of a new Popup object:

Project: AppBarPad | File: MainPage.xaml.cs (excerpt)

void OnWrapOptionsAppBarButtonClick(object sender, RoutedEventArgs args)
{
 // Create dialog
 WrapOptionsDialog wrapOptionsDialog = new WrapOptionsDialog
 {
 TextWrapping = txtbox.TextWrapping
 };

	 CHAPTER 8  App Bars and Popups	 291

 // Bind dialog to TextBox
 Binding binding = new Binding
 {
 Source = wrapOptionsDialog,
 Path = new PropertyPath("TextWrapping"),
 Mode = BindingMode.TwoWay
 };
 txtbox.SetBinding(TextBox.TextWrappingProperty, binding);

 // Create popup
 Popup popup = new Popup
 {
 Child = wrapOptionsDialog,
 IsLightDismissEnabled = true
 };

 // Adjust location based on content size
 wrapOptionsDialog.Loaded += (dialogSender, dialogArgs) =>
 {
 // Get Button location relative to screen
 Button btn = sender as Button;
 Point pt = btn.TransformToVisual(null).TransformPoint(new Point(btn.ActualWidth / 2,
 btn.ActualHeight / 2));

 popup.HorizontalOffset = pt.X - wrapOptionsDialog.ActualWidth / 2;
 popup.VerticalOffset = this.ActualHeight - wrapOptionsDialog.ActualHeight
 - this.BottomAppBar.ActualHeight - 48;
 };

 // Open the popup
 popup.IsOpen = true;
}

Generally, popups such as this are positioned just above the application bar, which means that
you need to know the height of the popup, the height of the page, and the height of the applica-
tion bar to get it right. I also wanted to position the Popup horizontally so that it’s aligned with the
button that invoked it. This requires making use of the TransformToVisual method (which I’ll discuss in
Chapter 10, “Transforms”) to obtain the coordinates of the center of the button relative to the screen.
You can perform calculations such as these during either the Loaded or the SizeChanged event on the
child of the Popup.

292	 PART 1  Elementals

The Click handler concludes by setting the IsOpen property of the Popup to true, and here it is:

The Popup is automatically dismissed when the user taps anywhere outside the Popup, and then
the user needs to tap once more to dismiss the application bar. Because both AppBar and Popup have
Opened and Closed events for performing initialization or cleanup, it’s possible to install a handler
for the Closed event of Popup and use that to set the IsOpen property of the AppBar to false (for
example).

The file I/O logic uses the simple static FileIO methods but without exception handling:

Project: AppBarPad | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 ...
 async void OnOpenAppBarButtonClick(object sender, RoutedEventArgs args)
 {
 FileOpenPicker picker = new FileOpenPicker();
 picker.FileTypeFilter.Add(".txt");
 StorageFile storageFile = await picker.PickSingleFileAsync();

 // If user presses Cancel, result is null
 if (storageFile == null)
 return;

 txtbox.Text = await FileIO.ReadTextAsync(storageFile);
 }

 async void OnSaveAsAppBarButtonClick(object sender, RoutedEventArgs args)
 {
 FileSavePicker picker = new FileSavePicker();
 picker.DefaultFileExtension = ".txt";
 picker.FileTypeChoices.Add("Text", new List<string> { ".txt" });
 StorageFile storageFile = await picker.PickSaveFileAsync();

	 CHAPTER 8  App Bars and Popups	 293

 // If user presses Cancel, result is null
 if (storageFile == null)
 return;

 await FileIO.WriteTextAsync(storageFile, txtbox.Text);
 }
}

Introducing XamlCruncher

Even after becoming familiar with various features of the Windows Runtime, putting it all together to
create an application can still be a challenge. But with the ability to create application bars and dialog
boxes, it is now possible to build something that looks like a real application.

XamlCruncher lets you type XAML into a TextBox and see the result. The magic method
that XamlCruncher uses is XamlReader.Load, which you had a brief glimpse of in the
PathMarkupSyntaxCode project in Chapter 2, “XAML Syntax.” The XAML processed by XamlReader
.Load cannot reference event handlers or external assemblies, but a tool such as XamlCruncher is
very useful for interactively experimenting with XAML and learning about it. I won’t pretend that this
program is commercial grade, but it’s a real program with real Windows 8 features.

Here’s a view of the program with some XAML in the editor on the left and the resultant objects in
a display area on the right:

The editor doesn’t include any amenities. It won’t even automatically generate a closing tag when
you type a start tag; it doesn’t use different colors for elements, attributes, and strings; and it doesn’t
have anything close to IntelliSense. However, the configuration of the page is changeable: You can put
the edit window on the top, right, or bottom.

294	 PART 1  Elementals

The application bar has Add, Open, Save, and Save As buttons as well as a Refresh button and a
button for application settings:

You can select whether XamlCruncher reparses the XAML with each keystroke or only with a press of
the Refresh button. That option and others are available from the dialog invoked when you press the
Settings button:

I’ve turned on the Ruler and Grid Lines options to show you the result in the display area on the right.
All these settings are saved for the next time the program is run.

	 CHAPTER 8  App Bars and Popups	 295

Most of the page is a custom UserControl derivative called SplitContainer. In the center is a Thumb
control that lets you select the proportion of space in the left and right panels (or top and bottom
panels). In the screen shots, this Thumb is a lighter gray vertical bar in the center of the screen. The
XAML file for SplitContainer consists of a Grid defined for both horizontal and vertical configurations:

Project: XamlCruncher | File: SplitContainer.xaml

<UserControl
 x:Class="XamlCruncher.SplitContainer"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="using:XamlCruncher">

 <Grid>
 <!-- Default Orientation is Horizontal -->
 <Grid.ColumnDefinitions>
 <ColumnDefinition x:Name="coldef1" Width="*" MinWidth="100" />
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition x:Name="coldef2" Width="*" MinWidth="100" />
 </Grid.ColumnDefinitions>

 <!-- Alternative Orientation is Vertical -->
 <Grid.RowDefinitions>
 <RowDefinition x:Name="rowdef1" Height="*" />
 <RowDefinition Height="Auto" />
 <RowDefinition x:Name="rowdef2" Height="0" />
 </Grid.RowDefinitions>

 <Grid Name="grid1"
 Grid.Row="0"
 Grid.Column="0" />

 <Thumb Name="thumb"
 Grid.Row="0"
 Grid.Column="1"
 Width="12"
 DragStarted="OnThumbDragStarted"
 DragDelta="OnThumbDragDelta" />

 <Grid Name="grid2"
 Grid.Row="0"
 Grid.Column="2" />
 </Grid>
</UserControl>

In Chapter 5 you’ve seen similar markup in the OrientableColorScroll program, which altered a Grid
when the aspect ratio of the page changed between landscape and portrait.

296	 PART 1  Elementals

The code-behind file defines five properties backed by dependency properties. Normally the
Child1 and Child2 properties are set to the elements to appear in the left and right of the control, but
where they actually appear is governed by the Orientation and SwapChildren properties:

Project: XamlCruncher | File: SplitContainer.xaml.cs (excerpt)

public sealed partial class SplitContainer : UserControl
{
 // Static constructor and properties
 static SplitContainer()
 {
 Child1Property =
 DependencyProperty.Register("Child1",
 typeof(UIElement), typeof(SplitContainer),
 new PropertyMetadata(null, OnChildChanged));

 Child2Property =
 DependencyProperty.Register("Child2",
 typeof(UIElement), typeof(SplitContainer),
 new PropertyMetadata(null, OnChildChanged));

 OrientationProperty =
 DependencyProperty.Register("Orientation",
 typeof(Orientation), typeof(SplitContainer),
 new PropertyMetadata(Orientation.Horizontal, OnOrientationChanged));

 SwapChildrenProperty =
 DependencyProperty.Register("SwapChildren",
 typeof(bool), typeof(SplitContainer),
 new PropertyMetadata(false, OnSwapChildrenChanged));

 MinimumSizeProperty =
 DependencyProperty.Register("MinimumSize",
 typeof(double), typeof(SplitContainer),
 new PropertyMetadata(100.0, OnMinSizeChanged));
 }

 public static DependencyProperty Child1Property { private set; get; }
 public static DependencyProperty Child2Property { private set; get; }
 public static DependencyProperty OrientationProperty { private set; get; }
 public static DependencyProperty SwapChildrenProperty { private set; get; }
 public static DependencyProperty MinimumSizeProperty { private set; get; }

 // Instance constructor and properties
 public SplitContainer()
 {
 this.InitializeComponent();
 }

 public UIElement Child1
 {
 set { SetValue(Child1Property, value); }
 get { return (UIElement)GetValue(Child1Property); }
 }

	 CHAPTER 8  App Bars and Popups	 297

 public UIElement Child2
 {
 set { SetValue(Child2Property, value); }
 get { return (UIElement)GetValue(Child2Property); }
 }

 public Orientation Orientation
 {
 set { SetValue(OrientationProperty, value); }
 get { return (Orientation)GetValue(OrientationProperty); }
 }

 public bool SwapChildren
 {
 set { SetValue(SwapChildrenProperty, value); }
 get { return (bool)GetValue(SwapChildrenProperty); }
 }

 public double MinimumSize
 {
 set { SetValue(MinimumSizeProperty, value); }
 get { return (double)GetValue(MinimumSizeProperty); }
 }
 ...
}

The Orientation property is of type Orientation, the same enumeration used for StackPanel and
VariableSizedWrapGrid. It’s always nice to use existing types for dependency properties rather than
inventing your own. Notice that the MinimumSize is of type double and hence is initialized as 100.0
rather than 100 to prevent a type mismatch at run time.

The property-changed handlers show two different approaches that programmers use
in calling the instance property-changed handler from the static handler. I’ve already shown
you the approach where the static handler simply calls the instance handler with the same
DependencyPropertyChangedEventArgs object. Sometimes—as with the handlers for the Orientation,
SwapChildren, and MinimumSize properties—it’s more convenient for the static handler to call the
instance handler with the old value and new value cast to the proper type:

Project: XamlCruncher | File: SplitContainer.xaml.cs (excerpt)

public sealed partial class SplitContainer : UserControl
{
 ...
 // Property-changed handlers
 static void OnChildChanged(DependencyObject obj,
 DependencyPropertyChangedEventArgs args)
 {
 (obj as SplitContainer).OnChildChanged(args);
 }

298	 PART 1  Elementals

 void OnChildChanged(DependencyPropertyChangedEventArgs args)
 {
 Grid targetGrid = (args.Property == Child1Property ^ this.SwapChildren) ? grid1 : grid2;
 targetGrid.Children.Clear();

 if (args.NewValue != null)
 targetGrid.Children.Add(args.NewValue as UIElement);
 }

 static void OnOrientationChanged(DependencyObject obj,
 DependencyPropertyChangedEventArgs args)
 {
 (obj as SplitContainer).OnOrientationChanged((Orientation)args.OldValue,
 (Orientation)args.NewValue);
 }

 void OnOrientationChanged(Orientation oldOrientation, Orientation newOrientation)
 {
 // Shouldn't be necessary, but...
 if (newOrientation == oldOrientation)
 return;

 if (newOrientation == Orientation.Horizontal)
 {
 coldef1.Width = rowdef1.Height;
 coldef2.Width = rowdef2.Height;

 coldef1.MinWidth = this.MinimumSize;
 coldef2.MinWidth = this.MinimumSize;

 rowdef1.Height = new GridLength(1, GridUnitType.Star);
 rowdef2.Height = new GridLength(0);

 rowdef1.MinHeight = 0;
 rowdef2.MinHeight = 0;

 thumb.Width = 12;
 thumb.Height = Double.NaN;

 Grid.SetRow(thumb, 0);
 Grid.SetColumn(thumb, 1);

 Grid.SetRow(grid2, 0);
 Grid.SetColumn(grid2, 2);
 }
 else
 {
 rowdef1.Height = coldef1.Width;
 rowdef2.Height = coldef2.Width;

 rowdef1.MinHeight = this.MinimumSize;
 rowdef2.MinHeight = this.MinimumSize;

 coldef1.Width = new GridLength(1, GridUnitType.Star);
 coldef2.Width = new GridLength(0);

	 CHAPTER 8  App Bars and Popups	 299

 coldef1.MinWidth = 0;
 coldef2.MinWidth = 0;

 thumb.Height = 12;
 thumb.Width = Double.NaN;

 Grid.SetRow(thumb, 1);
 Grid.SetColumn(thumb, 0);

 Grid.SetRow(grid2, 2);
 Grid.SetColumn(grid2, 0);
 }
 }

 static void OnSwapChildrenChanged(DependencyObject obj,
 DependencyPropertyChangedEventArgs args)
 {
 (obj as SplitContainer).OnSwapChildrenChanged((bool)args.OldValue,
 (bool)args.NewValue);
 }

 void OnSwapChildrenChanged(bool oldOrientation, bool newOrientation)
 {
 grid1.Children.Clear();
 grid2.Children.Clear();

 grid1.Children.Add(newOrientation ? this.Child2 : this.Child1);
 grid2.Children.Add(newOrientation ? this.Child1 : this.Child2);
 }

 static void OnMinSizeChanged(DependencyObject obj,
 DependencyPropertyChangedEventArgs args)
 {
 (obj as SplitContainer).OnMinSizeChanged((double)args.OldValue,
 (double)args.NewValue);
 }

 void OnMinSizeChanged(double oldValue, double newValue)
 {
 if (this.Orientation == Orientation.Horizontal)
 {
 coldef1.MinWidth = newValue;
 coldef2.MinWidth = newValue;
 }
 else
 {
 rowdef1.MinHeight = newValue;
 rowdef2.MinHeight = newValue;
 }
 }
 ...
}

My original version of the property-changed handler for Orientation assumed that the Orientation
property was actually changing, as should be the case whenever a property-changed handler is

300	 PART 1  Elementals

called. However, I discovered that sometimes the property-changed handler was called when the
property was set to its existing value.

All that’s left for SplitContainer is examining the event handlers for the Thumb. The idea here is
that the two columns (or rows) of the Grid are allocated size based on the star specification so that
the relative size of the columns (or rows) remains the same when the size or aspect ratio of the Grid
changes. However, to keep the Thumb dragging logic reasonably simple, it helps if the numeric
proportions associated with the star specifications are actual pixel dimensions. These are initialized in
the OnThumbDragStarted method and changed in OnDragThumbDelta:

Project: XamlCruncher | File: SplitContainer.xaml.cs (excerpt)

public sealed partial class SplitContainer : UserControl
{
 ...
 // Thumb event handlers
 void OnThumbDragStarted(object sender, DragStartedEventArgs args)
 {
 if (this.Orientation == Orientation.Horizontal)
 {
 coldef1.Width = new GridLength(coldef1.ActualWidth, GridUnitType.Star);
 coldef2.Width = new GridLength(coldef2.ActualWidth, GridUnitType.Star);
 }
 else
 {
 rowdef1.Height = new GridLength(rowdef1.ActualHeight, GridUnitType.Star);
 rowdef2.Height = new GridLength(rowdef2.ActualHeight, GridUnitType.Star);
 }
 }

 void OnThumbDragDelta(object sender, DragDeltaEventArgs args)
 {
 if (this.Orientation == Orientation.Horizontal)
 {
 double newWidth1 = Math.Max(0, coldef1.Width.Value + args.HorizontalChange);
 double newWidth2 = Math.Max(0, coldef2.Width.Value - args.HorizontalChange);

 coldef1.Width = new GridLength(newWidth1, GridUnitType.Star);
 coldef2.Width = new GridLength(newWidth2, GridUnitType.Star);
 }
 else
 {
 double newHeight1 = Math.Max(0, rowdef1.Height.Value + args.VerticalChange);
 double newHeight2 = Math.Max(0, rowdef2.Height.Value - args.VerticalChange);

 rowdef1.Height = new GridLength(newHeight1, GridUnitType.Star);
 rowdef2.Height = new GridLength(newHeight2, GridUnitType.Star);
 }
 }
}

The last of the earlier screen shots of XamlCruncher showed a ruler and grid lines in the display
area. The ruler is in units of inches, based on 96 pixels to the inch, so the grid lines are 24 pixels apart.

	 CHAPTER 8  App Bars and Popups	 301

The ruler and grid lines are useful if you’re interactively designing some vector graphics or other
precise layout.

The ruler and grid lines are independently optional. The UserControl derivative that displays them
is called RulerContainer. As you’ll see when the XamlCruncher page is constructed, an instance of
RulerContainer is set to the Child2 property of the SplitContainer object. Here’s the XAML file for
RulerContainer:

Project: XamlCruncher | File: RulerContainer.xaml (excerpt)

<UserControl ... >
 <Grid SizeChanged="OnGridSizeChanged">
 <Canvas Name="rulerCanvas" />
 <Grid Name="innerGrid">
 <Grid Name="gridLinesGrid" />
 <Border Name="border" />
 </Grid>
 </Grid>
</UserControl>

This RulerContainer control has a Child property, and the child of this control is set to the Child
property of the Border. Visually behind this Border is the grid of horizontal and vertical lines, which
are children of the Grid labeled “gridLinesGrid.” If the ruler is also present, the Grid labeled “innerGrid”
is given a nonzero Margin on the left and top to accommodate this ruler. The tick marks and numbers
that comprise the ruler are children of the Canvas named “rulerCanvas.”

Here’s all the overhead for the dependency property definitions in the code-behind file:

Project: XamlCruncher | File: RulerContainer.xaml.cs (excerpt)

public sealed partial class RulerContainer : UserControl
{
 ...
 static RulerContainer()
 {
 ChildProperty =
 DependencyProperty.Register("Child",
 typeof(UIElement), typeof(RulerContainer),
 new PropertyMetadata(null, OnChildChanged));

 ShowRulerProperty =
 DependencyProperty.Register("ShowRuler",
 typeof(bool), typeof(RulerContainer),
 new PropertyMetadata(false, OnShowRulerChanged));

 ShowGridLinesProperty =
 DependencyProperty.Register("ShowGridLines",
 typeof(bool), typeof(RulerContainer),
 new PropertyMetadata(false, OnShowGridLinesChanged));
 }

 public static DependencyProperty ChildProperty { private set; get; }
 public static DependencyProperty ShowRulerProperty { private set; get; }
 public static DependencyProperty ShowGridLinesProperty { private set; get; }

302	 PART 1  Elementals

 public RulerContainer()
 {
 this.InitializeComponent();
 }

 public UIElement Child
 {
 set { SetValue(ChildProperty, value); }
 get { return (UIElement)GetValue(ChildProperty); }
 }

 public bool ShowRuler
 {
 set { SetValue(ShowRulerProperty, value); }
 get { return (bool)GetValue(ShowRulerProperty); }
 }

 public bool ShowGridLines
 {
 set { SetValue(ShowGridLinesProperty, value); }
 get { return (bool)GetValue(ShowGridLinesProperty); }
 }

 // Property changed handlers
 static void OnChildChanged(DependencyObject obj,
 DependencyPropertyChangedEventArgs args)
 {
 (obj as RulerContainer).border.Child = (UIElement)args.NewValue;
 }

 static void OnShowRulerChanged(DependencyObject obj,
 DependencyPropertyChangedEventArgs args)
 {
 (obj as RulerContainer).RedrawRuler();
 }

 static void OnShowGridLinesChanged(DependencyObject obj,
 DependencyPropertyChangedEventArgs args)
 {
 (obj as RulerContainer).RedrawGridLines();
 }

 void OnGridSizeChanged(object sender, SizeChangedEventArgs args)
 {
 RedrawRuler();
 RedrawGridLines();
 }

 ...

}

	 CHAPTER 8  App Bars and Popups	 303

Also shown here are the property-changed handlers (which are simple enough to use in the static
versions) as well as the SizeChanged handler for the Grid. Two redraw methods handle all the drawing,
which involves creating Line elements and TextBlock elements and organizing them in the two panels:

Project: XamlCruncher | File: RulerContainer.xaml.cs (excerpt)

public sealed partial class RulerContainer : UserControl
{
 const double RULER_WIDTH = 12;
 ...
 void RedrawGridLines()
 {
 gridLinesGrid.Children.Clear();

 if (!this.ShowGridLines)
 return;

 // Vertical grid lines every 1/4"
 for (double x = 24; x < gridLinesGrid.ActualWidth; x += 24)
 {
 Line line = new Line
 {
 X1 = x,
 Y1 = 0,
 X2 = x,
 Y2 = gridLinesGrid.ActualHeight,
 Stroke = this.Foreground,
 StrokeThickness = x % 96 == 0 ? 1 : 0.5
 };
 gridLinesGrid.Children.Add(line);
 }

 // Horizontal grid lines every 1/4"
 for (double y = 24; y < gridLinesGrid.ActualHeight; y += 24)
 {
 Line line = new Line
 {
 X1 = 0,
 Y1 = y,
 X2 = gridLinesGrid.ActualWidth,
 Y2 = y,
 Stroke = this.Foreground,
 StrokeThickness = y % 96 == 0 ? 1 : 0.5
 };
 gridLinesGrid.Children.Add(line);
 }
 }

 void RedrawRuler()
 {
 rulerCanvas.Children.Clear();

 if (!this.ShowRuler)
 {
 innerGrid.Margin = new Thickness();
 return;
 }

 innerGrid.Margin = new Thickness(RULER_WIDTH, RULER_WIDTH, 0, 0);

304	 PART 1  Elementals

 // Ruler across the top
 for (double x = 0; x < gridLinesGrid.ActualWidth - RULER_WIDTH; x += 12)
 {
 // Numbers every inch
 if (x > 0 && x % 96 == 0)
 {
 TextBlock txtblk = new TextBlock
 {
 Text = (x / 96).ToString("F0"),
 FontSize = RULER_WIDTH - 2
 };

 txtblk.Measure(new Size());
 Canvas.SetLeft(txtblk, RULER_WIDTH + x - txtblk.ActualWidth / 2);
 Canvas.SetTop(txtblk, 0);
 rulerCanvas.Children.Add(txtblk);
 }
 // Tick marks every 1/8"
 else
 {
 Line line = new Line
 {
 X1 = RULER_WIDTH + x,
 Y1 = x % 48 == 0 ? 2 : 4,
 X2 = RULER_WIDTH + x,
 Y2 = x % 48 == 0 ? RULER_WIDTH - 2 : RULER_WIDTH - 4,
 Stroke = this.Foreground,
 StrokeThickness = 1
 };
 rulerCanvas.Children.Add(line);
 }
 }

 // Heavy line underneath the tick marks
 Line topLine = new Line
 {
 X1 = RULER_WIDTH - 1,
 Y1 = RULER_WIDTH - 1,
 X2 = rulerCanvas.ActualWidth,
 Y2 = RULER_WIDTH - 1,
 Stroke = this.Foreground,
 StrokeThickness = 2
 };
 rulerCanvas.Children.Add(topLine);

 // Ruler down the left side
 for (double y = 0; y < gridLinesGrid.ActualHeight - RULER_WIDTH; y += 12)
 {
 // Numbers every inch
 if (y > 0 && y % 96 == 0)
 {
 TextBlock txtblk = new TextBlock
 {
 Text = (y / 96).ToString("F0"),
 FontSize = RULER_WIDTH - 2,
 };

	 CHAPTER 8  App Bars and Popups	 305

 txtblk.Measure(new Size());
 Canvas.SetLeft(txtblk, 2);
 Canvas.SetTop(txtblk, RULER_WIDTH + y - txtblk.ActualHeight / 2);
 rulerCanvas.Children.Add(txtblk);
 }
 // Tick marks every 1/8"
 else
 {
 Line line = new Line
 {
 X1 = y % 48 == 0 ? 2 : 4,
 Y1 = RULER_WIDTH + y,
 X2 = y % 48 == 0 ? RULER_WIDTH - 2 : RULER_WIDTH - 4,
 Y2 = RULER_WIDTH + y,
 Stroke = this.Foreground,
 StrokeThickness = 1
 };
 rulerCanvas.Children.Add(line);
 }
 }

 Line leftLine = new Line
 {
 X1 = RULER_WIDTH - 1,
 Y1 = RULER_WIDTH - 1,
 X2 = RULER_WIDTH - 1,
 Y2 = rulerCanvas.ActualHeight,
 Stroke = this.Foreground,
 StrokeThickness = 2
 };
 rulerCanvas.Children.Add(leftLine);
 }
}

These two methods make extensive use of the Line element, which renders a single straight line
between the points (X1, Y1) and (X2, Y2).

This RedrawRuler code also illustrates a technique for obtaining the rendered size of a TextBlock:
When you create a new TextBlock, the ActualWidth and ActualHeight properties are both zero.
These properties are normally not calculated until the TextBlock becomes part of a visual tree and is
subjected to layout. However, you can force the TextBlock to calculate a size for itself by calling its
Measure method. This method is defined by UIElement and is an important component of the layout
system.

The argument to the Measure method is a Size value indicating the size available for the element,
but you can set the size to zero for this purpose:

txtblk.Measure(new Size());

If you need to find the size of a TextBlock that wraps text, you must supply a nonzero first argument
to the Size constructor so that TextBlock knows the width in which to wrap the text.

306	 PART 1  Elementals

Following the Measure call, the ActualWidth and ActualHeight properties of TextBlock are valid
and usable for positioning the TextBlock in a Canvas. Calling the Canvas.SetLeft and Canvas.SetTop
properties is necessary only when positioning the TextBlock elements in the Canvas. In either a single-
cell Grid or Canvas, the Line elements are positioned based on their coordinates.

As you’ll see, an instance of RulerContainer is set to the Child2 property of the SplitContainer that
dominates the XamlCruncher page. The Child1 property appears to be a TextBox, but it’s actually an
instance of another custom control named TabbableTextBox, which derives from TextBox.

The standard TextBox does not respond to the Tab key, and when you’re typing XAML into an
editor, you really want tabs. That’s the primary feature of TabbableTextBox, shown here in its entirety:

Project: XamlCruncher | File: TabbableTextBox.cs

using Windows.System;
using Windows.UI.Xaml;
using Windows.UI.Xaml.Controls;
using Windows.UI.Xaml.Input;

namespace XamlCruncher
{
 public class TabbableTextBox : TextBox
 {
 static TabbableTextBox()
 {
 TabSpacesProperty =
 DependencyProperty.Register("TabSpaces",
 typeof(int), typeof(TabbableTextBox),
 new PropertyMetadata(4));
 }

 public static DependencyProperty TabSpacesProperty { private set; get; }

 public int TabSpaces
 {
 set { SetValue(TabSpacesProperty, value); }
 get { return (int)GetValue(TabSpacesProperty); }
 }

 public bool IsModified { set; get; }

 protected override void OnKeyDown(KeyRoutedEventArgs args)
 {
 this.IsModified = true;

 if (args.Key == VirtualKey.Tab)
 {
 int line, col;
 GetPositionFromIndex(this.SelectionStart, out line, out col);
 int insertCount = this.TabSpaces - col % this.TabSpaces;
 this.SelectedText = new string(' ', insertCount);
 this.SelectionStart += insertCount;
 this.SelectionLength = 0;
 args.Handled = true;
 return;

	 CHAPTER 8  App Bars and Popups	 307

 }
 base.OnKeyDown(args);
 }

 public void GetPositionFromIndex(int index, out int line, out int col)
 {
 if (index > Text.Length)
 {
 line = col = -1;
 return;
 }

 line = col = 0;
 int i = 0;

 while (i < index)
 {
 if (Text[i] == '\n')
 {
 line++;
 col = 0;
 }
 else if (Text[i] == '\r')
 {
 index++;
 }
 else
 {
 col++;
 };
 i++;
 }
 }
 }
}

The class intercepts the OnKeyDown method to determine if the Tab key is being pressed. If that’s
the case, it inserts blanks into the Text object so that the cursor moves to a text column that is an
integral multiple of the TabSpaces property. This calculation requires knowing the character position
of the cursor on the current line. To obtain this information, it uses the GetPositionFromIndex method
also defined in this class. (Although the lines in the Text property of the TextBox are delimited by
a carriage return and line feed, the SelectionStart index is calculated based on just one end-of-line
character.) This method is public and is also used by XamlCruncher to display the current position of
the cursor and the current selection (if any).

Another property—not backed by a dependency property—is also defined by TabbableTextBox.
This is IsModified, which is set to true whenever a KeyDown event occurs.

Like many programs that deal with documents, XamlCruncher keeps track if the text file has
changed since the last save. If the user initiates an operation to create a new file or open an existing
file, and the current document is in a modified state, the program asks if the user wants to save that
document.

308	 PART 1  Elementals

Often this logic occurs entirely external to the TextBox control. The program sets an IsModified flag
to false when a new file is loaded or the file is saved and to true on receipt of a TextChanged event.
However, the TextChanged event is fired when the Text property of the TextBox is set programmati-
cally, so even if the TextBox is being set to a newly loaded file, the TextChanged event is fired and the
IsModified flag would be set by the TextChanged handler. You might think that setting the IsModified
flag in that case might be avoided by setting a flag when the Text property is set programmatically.
However, the TextChanged handler is not called until the method setting the Text property has
returned control to the operating system, which makes the logic rather messy. Implementing the
IsModified flag in the TextBox derivative helps.

Application Settings and View Models

Many applications maintain user settings and preferences between invocations of the program. As
you’ve seen, the Windows Runtime provides an isolated area of application data storage for storing
settings or entire files.

In this program, I’ve consolidated user settings in a class named AppSettings. This class implements
INotifyPropertyChanged to let it be used for data binding. It’s basically a View Model, or perhaps (in a
larger application) part of a View Model.

One program option that should be saved is the orientation of the edit and display areas. As
you’ll recall, the SplitContainer has two properties named Orientation and SwapChildren. For stor-
ing user settings, I wanted something more specific to this application. The TextBox (or rather, the
TabbableTextBox) can be on the left, top, right, or bottom, and this enumeration encapsulates those
options:

Project: XamlCruncher | File: EditOrientation.cs

namespace XamlCruncher
{
 public enum EditOrientation
 {
 Left, Top, Right, Bottom
 }
}

Here’s AppSettings showing all the properties that comprise program settings. The constructor
loads the settings, and a Save method saves them. All the property values are backed by fields initial-
ized with the program’s default settings. Notice that the EditOrientation property is based on the
EditOrientation enumeration:

Project: XamlCruncher | File: AppSettings.cs

public class AppSettings : INotifyPropertyChanged
{
 // Application settings initial values
 EditOrientation editOrientation = EditOrientation.Left;
 Orientation orientation = Orientation.Horizontal;
 bool swapEditAndDisplay = false;

	 CHAPTER 8  App Bars and Popups	 309

 bool autoParsing = false;
 bool showRuler = false;
 bool showGridLines = false;
 double fontSize = 18;
 int tabSpaces = 4;

 public event PropertyChangedEventHandler PropertyChanged;

 public AppSettings()
 {
 ApplicationDataContainer appData = ApplicationData.Current.LocalSettings;

 if (appData.Values.ContainsKey("EditOrientation"))
 this.EditOrientation = (EditOrientation)(int)appData.Values["EditOrientation"];

 if (appData.Values.ContainsKey("AutoParsing"))
 this.AutoParsing = (bool)appData.Values["AutoParsing"];

 if (appData.Values.ContainsKey("ShowRuler"))
 this.ShowRuler = (bool)appData.Values["ShowRuler"];

 if (appData.Values.ContainsKey("ShowGridLines"))
 this.ShowGridLines = (bool)appData.Values["ShowGridLines"];

 if (appData.Values.ContainsKey("FontSize"))
 this.FontSize = (double)appData.Values["FontSize"];

 if (appData.Values.ContainsKey("TabSpaces"))
 this.TabSpaces = (int)appData.Values["TabSpaces"];
 }

 public EditOrientation EditOrientation
 {
 set
 {
 if (SetProperty<EditOrientation>(ref editOrientation, value))
 {
 switch (editOrientation)
 {
 case EditOrientation.Left:
 this.Orientation = Orientation.Horizontal;
 this.SwapEditAndDisplay = false;
 break;

 case EditOrientation.Top:
 this.Orientation = Orientation.Vertical;
 this.SwapEditAndDisplay = false;
 break;

 case EditOrientation.Right:
 this.Orientation = Orientation.Horizontal;
 this.SwapEditAndDisplay = true;
 break;

310	 PART 1  Elementals

 case EditOrientation.Bottom:
 this.Orientation = Orientation.Vertical;
 this.SwapEditAndDisplay = true;
 break;
 }
 }
 }
 get { return editOrientation; }
 }

 public Orientation Orientation
 {
 protected set { SetProperty<Orientation>(ref orientation, value); }
 get { return orientation; }
 }

 public bool SwapEditAndDisplay
 {
 protected set { SetProperty<bool>(ref swapEditAndDisplay, value); }
 get { return swapEditAndDisplay; }
 }

 public bool AutoParsing
 {
 set { SetProperty<bool>(ref autoParsing, value); }
 get { return autoParsing; }
 }

 public bool ShowRuler
 {
 set { SetProperty<bool>(ref showRuler, value); }
 get { return showRuler; }
 }

 public bool ShowGridLines
 {
 set { SetProperty<bool>(ref showGridLines, value); }
 get { return showGridLines; }
 }

 public double FontSize
 {
 set { SetProperty<double>(ref fontSize, value); }
 get { return fontSize; }
 }

 public int TabSpaces
 {
 set { SetProperty<int>(ref tabSpaces, value); }
 get { return tabSpaces; }
 }

 public void Save()
 {
 ApplicationDataContainer appData = ApplicationData.Current.LocalSettings;
 appData.Values.Clear();

	 CHAPTER 8  App Bars and Popups	 311

 appData.Values.Add("EditOrientation", (int)this.EditOrientation);
 appData.Values.Add("AutoParsing", this.AutoParsing);
 appData.Values.Add("ShowRuler", this.ShowRuler);
 appData.Values.Add("ShowGridLines", this.ShowGridLines);
 appData.Values.Add("FontSize", this.FontSize);
 appData.Values.Add("TabSpaces", this.TabSpaces);
 }

 protected bool SetProperty<T>(ref T storage, T value,
 [CallerMemberName] string propertyName = null)
 {
 if (object.Equals(storage, value))
 return false;

 storage = value;
 OnPropertyChanged(propertyName);
 return true;
 }

 protected void OnPropertyChanged(string propertyName)
 {
 if (PropertyChanged != null)
 PropertyChanged(this, new PropertyChangedEventArgs(propertyName));
 }
}

Besides EditOrientation, AppSettings defines two additional properties that more directly
correspond to properties of the SplitContainer: Orientation and SwapEditAndDisplay. The set accessors
are protected, and the properties are set only from the set accessor of EditOrientation. These
two properties are not saved with the other application settings, but they are easily derived from
application settings and make the bindings easier.

The XamlCruncher Page

Sufficient pieces have now been created to let us begin assembling this application. Here’s
MainPage.xaml:

Project: XamlCruncher | File: MainPage.xaml (excerpt)

<Page ... >

 <Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="*" />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="*" />
 <ColumnDefinition Width="Auto" />
 </Grid.ColumnDefinitions>

312	 PART 1  Elementals

 <TextBlock Name="filenameText"
 Grid.Row="0"
 Grid.Column="0"
 Grid.ColumnSpan="2"
 FontSize="18"
 TextTrimming="WordEllipsis" />

 <local:SplitContainer x:Name="splitContainer"
 Orientation="{Binding Orientation}"
 SwapChildren="{Binding SwapEditAndDisplay}"
 MinimumSize="200"
 Grid.Row="1"
 Grid.Column="0"
 Grid.ColumnSpan="2">
 <local:SplitContainer.Child1>
 <local:TabbableTextBox x:Name="editBox"
 AcceptsReturn="True"
 FontSize="{Binding FontSize}"
 TabSpaces="{Binding TabSpaces}"
 TextChanged="OnEditBoxTextChanged"
 SelectionChanged="OnEditBoxSelectionChanged"/>
 </local:SplitContainer.Child1>

 <local:SplitContainer.Child2>
 <local:RulerContainer x:Name="resultContainer"
 ShowRuler="{Binding ShowRuler}"
 ShowGridLines="{Binding ShowGridLines}" />
 </local:SplitContainer.Child2>
 </local:SplitContainer>

 <TextBlock Name="statusText"
 Text="OK"
 Grid.Row="2"
 Grid.Column="0"
 FontSize="18"
 TextWrapping="Wrap" />

 <TextBlock Name="lineColText"
 Grid.Row="2"
 Grid.Column="1"
 FontSize="18" />
 </Grid>

 <Page.BottomAppBar>
 <AppBar>
 <Grid>
 <StackPanel Orientation="Horizontal" HorizontalAlignment="Left">
 <Button Style="{StaticResource RefreshAppBarButtonStyle}"
 Click="OnRefreshAppBarButtonClick" />

 <Button Style="{StaticResource SettingsAppBarButtonStyle}"
 Click="OnSettingsAppBarButtonClick" />
 </StackPanel>

	 CHAPTER 8  App Bars and Popups	 313

 <StackPanel Orientation="Horizontal" HorizontalAlignment="Right">
 <Button Style="{StaticResource OpenAppBarButtonStyle}"
 Click="OnOpenAppBarButtonClick" />

 <Button Style="{StaticResource SaveLocalAppBarButtonStyle}"
 AutomationProperties.Name="Save As"
 Click="OnSaveAsAppBarButtonClick" />

 <Button Style="{StaticResource SaveAppBarButtonStyle}"
 Click="OnSaveAppBarButtonClick" />

 <Button Style="{StaticResource AddAppBarButtonStyle}"
 Click="OnAddAppBarButtonClick" />
 </StackPanel>
 </Grid>
 </AppBar>
 </Page.BottomAppBar>
</Page>

The main Grid has three rows:

■■ for the name of the loaded file (the TextBlock named “filenameText”),

■■ the SplitContainer,

■■ and the status bar at the bottom.

The status bar consists of two TextBlock elements named “statusText” (to indicate possible XAML
parsing errors) and “lineColText” (for the line and column of the TabbableTextBox). The Grid is further
divided into two columns for the two components of that status bar.

Most of the page is occupied by the SplitContainer, and you’ll see that it contains bindings to
the Orientation and SwapEditAndDisplay properties of AppSettings. The SplitContainer contains
a TabbableTextBox (with bindings to the FontSize and TabSpaces properties of AppSettings) and a
RulerContainer (with bindings to ShowRuler and ShowGridLines). All these bindings strongly suggest
that the DataContext of MainPage is set to an instance of AppSettings.

The bottom of the XAML file has the Button definitions for the application bar.

As you might expect, the code-behind file is the longest file in the project, but I’m going to discuss
it in various modular sections so that it won’t be too overwhelming. Here are the constructor, Loaded
handler, and a few simple methods:

Project: XamlCruncher | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 ...
 AppSettings appSettings;
 StorageFile loadedStorageFile;

 public MainPage()
 {
 this.InitializeComponent();

 ...

314	 PART 1  Elementals

 // Why aren't these set in the generated C# files?
 editBox = splitContainer.Child1 as TabbableTextBox;
 resultContainer = splitContainer.Child2 as RulerContainer;

 // Set a fixed-pitch font for the TextBox
 Language language =
 new Language(Windows.Globalization.Language.CurrentInputLanguageTag);
 LanguageFontGroup languageFontGroup = new LanguageFontGroup(language.LanguageTag);
 LanguageFont languageFont = languageFontGroup.FixedWidthTextFont;
 editBox.FontFamily = new FontFamily(languageFont.FontFamily);

 Loaded += OnLoaded;
 Application.Current.Suspending += OnApplicationSuspending;
 }

 async void OnLoaded(object sender, RoutedEventArgs args)
 {
 // Load AppSettings and set to DataContext
 appSettings = new AppSettings();
 this.DataContext = appSettings;

 // Load any file that may have been saved
 StorageFolder localFolder = ApplicationData.Current.LocalFolder;
 StorageFile storageFile = await localFolder.CreateFileAsync("XamlCruncher.xaml",
 CreationCollisionOption.OpenIfExists);
 editBox.Text = await FileIO.ReadTextAsync(storageFile);

 if (editBox.Text.Length == 0)
 await SetDefaultXamlFile();

 // Other initialization
 ParseText();
 editBox.Focus(FocusState.Programmatic);
 DisplayLineAndColumn();
 ...
 }

 async void OnApplicationSuspending(object sender, SuspendingEventArgs args)
 {
 // Save application settings
 appSettings.Save();

 // Save text content
 SuspendingDeferral deferral = args.SuspendingOperation.GetDeferral();
 await PathIO.WriteTextAsync("ms-appdata:///local/XamlCruncher.xaml", editBox.Text);
 deferral.Complete();
 }

 async Task SetDefaultXamlFile()
 {
 editBox.Text =
 "<Page xmlns=\"http://schemas.microsoft.com/winfx/2006/xaml/presentation\"\r\n" +
 " xmlns:x=\"http://schemas.microsoft.com/winfx/2006/xaml\">\r\n\r\n" +
 " <TextBlock Text=\"Hello, Windows 8!\"\r\n" +
 " FontSize=\"48\" />\r\n\r\n" +
 "</Page>";

	 CHAPTER 8  App Bars and Popups	 315

 editBox.IsModified = false;
 loadedStorageFile = null;
 filenameText.Text = "";
 }
 ...
 void OnEditBoxSelectionChanged(object sender, RoutedEventArgs args)
 {
 DisplayLineAndColumn();
 }

 void DisplayLineAndColumn()
 {
 int line, col;
 editBox.GetPositionFromIndex(editBox.SelectionStart, out line, out col);
 lineColText.Text = String.Format("Line {0} Col {1}", line + 1, col + 1);

 if (editBox.SelectionLength > 0)
 {
 editBox.GetPositionFromIndex(editBox.SelectionStart + editBox.SelectionLength - 1,
 out line, out col);
 lineColText.Text += String.Format(" - Line {0} Col {1}", line + 1, col + 1);
 }
 }
 ...
}

The constructor begins by fixing a little bug involving the editBox and resultContainer fields.
The XAML parser definitely creates these fields during compilation, but they are not set by the
InitializeComponent call at run time.

The remainder of the constructor sets a fixed-pitch font in the TabbableTextBox based on the
predefined fonts available from the LanguageFontGroup class. This is apparently the only way to get
actual font family names from the Windows Runtime. (In Chapter 15, “Going Native,” I demonstrate
how to use DirectWrite to obtain the collection of fonts installed on the system.)

The remaining initialization occurs in the Loaded event handler. The DataContext of the page is set
to the AppSettings instance, as you probably anticipated from the data bindings in the MainPage.xaml
file.

The OnLoaded method continues by loading a previously saved file or (if it doesn’t exist) setting
a default piece of XAML in the TabbableTextBox and calling ParseText to parse it. (You’ll see how this
works soon.) The TabbableTextBox is assigned keyboard input focus, and OnLoaded concludes by dis-
playing the initial line and column, which is then updated whenever the TextBox selection changes.

You might wonder why SetDefaultXamlFile is defined as async and returns Task when it does not
actually contain any asynchronous code. You’ll see later that this method is used as an argument to
another method in the file I/O logic, and that’s the sole reason I had to define it oddly. The compiler
generates a warning message because it doesn’t contain any await logic.

316	 PART 1  Elementals

Parsing the XAML

The major job of XamlCruncher is to pass a piece of XAML to XamlReader.Load and get out an object.
A property of the AppSettings class named AutoParsing allows this to happen with every keystroke, or
the program waits until you press the Refresh button on the application bar.

If XamlReader.Load encounters an error, it raises an exception, and the program then displays that
error in red in the status bar at the bottom of the page and also colors the text in the TabbableTextBox
red.

Project: XamlCruncher | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 Brush textBlockBrush, textBoxBrush, errorBrush;
 ...
 public MainPage()
 {
 ...
 // Set brushes
 textBlockBrush = Resources["ApplicationForegroundThemeBrush"] as SolidColorBrush;
 textBoxBrush = Resources["TextBoxForegroundThemeBrush"] as SolidColorBrush;
 errorBrush = new SolidColorBrush(Colors.Red);
 ...
 }

 ...

 void OnRefreshAppBarButtonClick(object sender, RoutedEventArgs args)
 {
 ParseText();
 this.BottomAppBar.IsOpen = false;
 }
 ...
 void OnEditBoxTextChanged(object sender, RoutedEventArgs e)
 {
 if (appSettings.AutoParsing)
 ParseText();
 }

 void ParseText()
 {
 object result = null;

 try
 {
 result = XamlReader.Load(editBox.Text);
 }
 catch (Exception exc)
 {
 SetErrorText(exc.Message);
 return;
 }

 if (result == null)

	 CHAPTER 8  App Bars and Popups	 317

 {
 SetErrorText("Null result");
 }
 else if (!(result is UIElement))
 {
 SetErrorText("Result is " + result.GetType().Name);
 }
 else
 {
 resultContainer.Child = result as UIElement;
 SetOkText();
 return;
 }
 }

 void SetErrorText(string text)
 {
 SetStatusText(text, errorBrush, errorBrush);
 }

 void SetOkText()
 {
 SetStatusText("OK", textBlockBrush, textBoxBrush);
 }

 void SetStatusText(string text, Brush statusBrush, Brush editBrush)
 {
 statusText.Text = text;
 statusText.Foreground = statusBrush;
 editBox.Foreground = editBrush;
 }
}

It could be that a chunk of XAML successfully passes XamlReader.Load with no errors but then
raises an exception later on. This can happen particularly when XAML animations are involved
because the animation doesn’t start up until the visual tree is loaded.

The only real solution is to install a handler for the UnhandledException event defined by the
Application object, and that’s done in the conclusion of the Loaded handler:

Project: XamlCruncher | File: MainPage.xaml.cs (excerpt)

async void OnLoaded(object sender, RoutedEventArgs args)
{
 ...
 Application.Current.UnhandledException += (excSender, excArgs) =>
 {
 SetErrorText(excArgs.Message);
 excArgs.Handled = true;
 };
}

The problem with something like this is that you want to make sure that the program isn’t going to
have some other kind of unhandled exception that isn’t a result of some errant code.

318	 PART 1  Elementals

Also, when Visual Studio is running a program in its debugger, it wants to snag the unhandled
exceptions so that it can report them to you. Use the Exceptions dialog from the Debug menu to indi-
cate which exceptions you want Visual Studio to intercept and which should be left to the program.

XAML Files In and Out

Whenever I approach the code involved in loading and saving documents, I always think it’s going to
be easier than it turns out to be. Here’s the basic problem: Whenever a New or Open command oc-
curs, you need to check if the current document has been modified without being saved. If that’s the
case, a message box should be displayed asking whether the user wants to save the file. The options
are Save, Don’t Save, and Cancel.

The easy answer is Cancel. The program doesn’t need to do anything further. If the user selects
the Don’t Save option, the current document can be abandoned and the New or Open command
can proceed.

If the user answers Save, the existing document needs to be saved under its file name. But that file
name might not exist if the document wasn’t loaded from a disk file or previously saved. At that point,
the Save As dialog box needs to be displayed. But the user can select Cancel from that dialog box as
well, and the New or Open operation ends. Otherwise, the existing file is first saved.

Let’s first look at the methods involved in saving documents. The application button has Save and
Save As buttons, but the Save button needs to invoke the Save As dialog box if it doesn’t have a file
name for the document:

Project: XamlCruncher | File: MainPage.xaml.cs (excerpt)

async void OnSaveAsAppBarButtonClick(object sender, RoutedEventArgs args)
{
 StorageFile storageFile = await GetFileFromSavePicker();

 if (storageFile == null)
 return;

 await SaveXamlToFile(storageFile);
}

async void OnSaveAppBarButtonClick(object sender, RoutedEventArgs args)
{
 Button button = sender as Button;
 button.IsEnabled = false;

 if (loadedStorageFile != null)
 {
 await SaveXamlToFile(loadedStorageFile);
 }
 else
 {
 StorageFile storageFile = await GetFileFromSavePicker();

 if (storageFile != null)

	 CHAPTER 8  App Bars and Popups	 319

 {
 await SaveXamlToFile(storageFile);
 }
 }
 button.IsEnabled = true;
}

async Task<StorageFile> GetFileFromSavePicker()
{
 FileSavePicker picker = new FileSavePicker();
 picker.DefaultFileExtension = ".xaml";
 picker.FileTypeChoices.Add("XAML", new List<string> { ".xaml" });
 picker.SuggestedSaveFile = loadedStorageFile;
 return await picker.PickSaveFileAsync();
}

async Task SaveXamlToFile(StorageFile storageFile)
{
 loadedStorageFile = storageFile;
 string exception = null;

 try
 {
 await FileIO.WriteTextAsync(storageFile, editBox.Text);
 }
 catch (Exception exc)
 {
 exception = exc.Message;
 }

 if (exception != null)
 {
 string message = String.Format("Could not save file {0}: {1}",
 storageFile.Name, exception);
 MessageDialog msgdlg = new MessageDialog(message, "XAML Cruncher");
 await msgdlg.ShowAsync();
 }
 else
 {
 editBox.IsModified = false;
 filenameText.Text = storageFile.Path;
 }
}

For the Save button, the handler disables the button and then enables it when it’s completed.
I’m worried that the button might be re-pressed during the time the file is being saved and there
might even be a reentrancy problem if the handler tries to save it again when the first save hasn’t
completed.

In the final method, the FileIO.WriteTextAsync call is in a try block. If an exception occurs while
saving the file, the program wants to use MessageDialog to inform the user. But asynchronous meth-
ods such as ShowAsync can’t be called in a catch block, so the exception is simply saved for checking
afterward.

320	 PART 1  Elementals

For both Add and Open, XamlCruncher needs to check if the file has been modified. If so, a
message box must be displayed to inform the user and request further direction. This occurs in a
method I’ve called CheckIfOkToTrashFile. Because this method is applicable for both the Add and
Open buttons, I gave this method an argument named commandAction of type Func<Task>, a
delegate meaning a method with no arguments that returns a Task. The Click handler for the Open
button passes the LoadFileFromOpenPicker method as this argument, and the handler for the Add
button uses the aforementioned SetDefaultXamlFile.

Project: XamlCruncher | File: MainPage.xaml.cs (excerpt)

async void OnAddAppBarButtonClick(object sender, RoutedEventArgs args)
{
 Button button = sender as Button;
 button.IsEnabled = false;
 await CheckIfOkToTrashFile(SetDefaultXamlFile);
 button.IsEnabled = true;
 this.BottomAppBar.IsOpen = false;
}

async void OnOpenAppBarButtonClick(object sender, RoutedEventArgs args)
{
 Button button = sender as Button;
 button.IsEnabled = false;
 await CheckIfOkToTrashFile(LoadFileFromOpenPicker);
 button.IsEnabled = true;
 this.BottomAppBar.IsOpen = false;
}

async Task CheckIfOkToTrashFile(Func<Task> commandAction)
{
 if (!editBox.IsModified)
 {
 await commandAction();
 return;
 }

 string message =
 String.Format("Do you want to save changes to {0}?",
 loadedStorageFile == null ? "(untitled)" : loadedStorageFile.Name);

 MessageDialog msgdlg = new MessageDialog(message, "XAML Cruncher");
 msgdlg.Commands.Add(new UICommand("Save", null, "save"));
 msgdlg.Commands.Add(new UICommand("Don't Save", null, "dont"));
 msgdlg.Commands.Add(new UICommand("Cancel", null, "cancel"));
 msgdlg.DefaultCommandIndex = 0;
 msgdlg.CancelCommandIndex = 2;
 IUICommand command = await msgdlg.ShowAsync();

 if ((string)command.Id == "cancel")
 return;

	 CHAPTER 8  App Bars and Popups	 321

 if ((string)command.Id == "dont")
 {
 await commandAction();
 return;
 }

 if (loadedStorageFile == null)
 {
 StorageFile storageFile = await GetFileFromSavePicker();

 if (storageFile == null)
 return;

 loadedStorageFile = storageFile;
 }

 await SaveXamlToFile(loadedStorageFile);
 await commandAction();
}

async Task LoadFileFromOpenPicker()
{
 FileOpenPicker picker = new FileOpenPicker();
 picker.FileTypeFilter.Add(".xaml");
 StorageFile storageFile = await picker.PickSingleFileAsync();

 if (storageFile != null)
 {
 string exception = null;

 try
 {
 editBox.Text = await FileIO.ReadTextAsync(storageFile);
 }
 catch (Exception exc)
 {
 exception = exc.Message;
 }

 if (exception != null)
 {
 string message = String.Format("Could not load file {0}: {1}",
 storageFile.Name, exception);
 MessageDialog msgdlg = new MessageDialog(message, "XAML Cruncher");
 await msgdlg.ShowAsync();
 }
 else
 {
 editBox.IsModified = false;
 loadedStorageFile = storageFile;
 filenameText.Text = loadedStorageFile.Path;
 }
 }
}

322	 PART 1  Elementals

The Settings Dialog

When the user clicks the Settings button, the handler instantiates a UserControl derivative named
SettingsDialog and makes it the child of a Popup. Among these options is the orientation of the dis-
play. You’ll recall I defined an EditOrientation enumeration for the four possibilities. Accordingly, the
project also contains an EditOrientationRadioButton for storing one of the four values as a custom tag:

Project: XamlCruncher | File: EditOrientationRadioButton.cs

using Windows.UI.Xaml.Controls;

namespace XamlCruncher
{
 public class EditOrientationRadioButton : RadioButton
 {
 public EditOrientation EditOrientationTag { set; get; }
 }
}

The SettingsDialog.xaml file arranges all the controls in a StackPanel:

Project: XamlCruncher | File: SettingsDialog.xaml (excerpt)

<UserControl ... >

 <UserControl.Resources>
 <Style x:Key="DialogCaptionTextStyle"
 TargetType="TextBlock"
 BasedOn="{StaticResource CaptionTextStyle}">
 <Setter Property="FontSize" Value="14.67" />
 <Setter Property="FontWeight" Value="SemiLight" />
 <Setter Property="Margin" Value="7 0 0 0" />
 </Style>
 </UserControl.Resources>

 <Border Background="{StaticResource ApplicationPageBackgroundThemeBrush}"
 BorderBrush="{StaticResource ApplicationForegroundThemeBrush}"
 BorderThickness="1">
 <StackPanel Margin="24">
 <TextBlock Text="XamlCruncher settings"
 Style="{StaticResource SubheaderTextStyle}"
 Margin="0 0 0 12" />

 <!-- Auto parsing -->
 <ToggleSwitch Header="Automatic parsing"
 IsOn="{Binding AutoParsing, Mode=TwoWay}" />

 <!-- Orientation -->
 <TextBlock Text="Orientation"
 Style="{StaticResource DialogCaptionTextStyle}" />

 <Grid Name="orientationRadioButtonGrid"
 Margin="7 0 0 0">
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />

	 CHAPTER 8  App Bars and Popups	 323

 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition Width="Auto" />
 </Grid.ColumnDefinitions>

 <Grid.Resources>
 <Style TargetType="Border">
 <Setter Property="BorderBrush"
 Value="{StaticResource ApplicationForegroundThemeBrush}" />
 <Setter Property="BorderThickness" Value="1" />
 <Setter Property="Padding" Value="3" />
 </Style>

 <Style TargetType="TextBlock">
 <Setter Property="TextAlignment" Value="Center" />
 </Style>

 <Style TargetType="local:EditOrientationRadioButton">
 <Setter Property="Margin" Value="0 6 12 6" />
 </Style>
 </Grid.Resources>

 <local:EditOrientationRadioButton Grid.Row="0" Grid.Column="0"
 EditOrientationTag="Left"
 Checked="OnOrientationRadioButtonChecked">
 <StackPanel Orientation="Horizontal">
 <Border>
 <TextBlock Text="edit" />
 </Border>
 <Border>
 <TextBlock Text="display" />
 </Border>
 </StackPanel>
 </local:EditOrientationRadioButton>

 <local:EditOrientationRadioButton Grid.Row="0" Grid.Column="1"
 EditOrientationTag="Bottom"
 Checked="OnOrientationRadioButtonChecked">
 <StackPanel>
 <Border>
 <TextBlock Text="display" />
 </Border>
 <Border>
 <TextBlock Text="edit" />
 </Border>
 </StackPanel>
 </local:EditOrientationRadioButton>

 <local:EditOrientationRadioButton Grid.Row="1" Grid.Column="0"
 EditOrientationTag="Top"
 Checked="OnOrientationRadioButtonChecked">
 <StackPanel>
 <Border>
 <TextBlock Text="edit" />
 </Border>

324	 PART 1  Elementals

 <Border>
 <TextBlock Text="display" />
 </Border>
 </StackPanel>
 </local:EditOrientationRadioButton>

 <local:EditOrientationRadioButton Grid.Row="1" Grid.Column="1"
 EditOrientationTag="Right"
 Checked="OnOrientationRadioButtonChecked">
 <StackPanel Orientation="Horizontal">
 <Border>
 <TextBlock Text="display" />
 </Border>
 <Border>
 <TextBlock Text="edit" />
 </Border>
 </StackPanel>
 </local:EditOrientationRadioButton>
 </Grid>

 <!-- Ruler -->
 <ToggleSwitch Header="Ruler"
 OnContent="Show"
 OffContent="Hide"
 IsOn="{Binding ShowRuler, Mode=TwoWay}" />

 <!-- Grid lines -->
 <ToggleSwitch Header="Grid lines"
 OnContent="Show"
 OffContent="Hide"
 IsOn="{Binding ShowGridLines, Mode=TwoWay}" />

 <!-- Font size -->
 <TextBlock Text="Font size"
 Style="{StaticResource DialogCaptionTextStyle}" />

 <Slider Value="{Binding FontSize, Mode=TwoWay}"
 Minimum="10"
 Maximum="48"
 Margin="7 0 0 0" />

 <!-- Tab spaces -->
 <TextBlock Text="Tab spaces"
 Style="{StaticResource DialogCaptionTextStyle}" />

 <Slider Value="{Binding TabSpaces, Mode=TwoWay}"
 Minimum="1"
 Maximum="12"
 Margin="7 0 0 0" />
 </StackPanel>
 </Border>
</UserControl>

	 CHAPTER 8  App Bars and Popups	 325

All the two-way bindings strongly suggest that the DataContext is set to an instance of AppSettings,
just like MainPage. It’s actually the same instance of AppSettings, which means that any changes in
this dialog are automatically applied to the program.

This means that you can’t make a bunch of changes in the dialog and hit Cancel. There is no
Cancel button. To compensate, it might make sense for a dialog to have a Defaults button that re-
stores everything to its factory-new condition.

A significant chunk of the XAML file is devoted to the four EditOrientationRadioButton controls.
The content of each of these is a StackPanel with two bordered TextBlock elements, to create a little
graphic that resembles the four layout options you saw in the earlier screen shot (that is, the third
screen shot in the “Introducing XamlCruncher” section).

The dialog contains three instances of ToggleSwitch. By default, the OnContent and OffContent
properties are set to the text string “On” and “Off,” but I thought “Show” and “Hide” were better for
the ruler and grid displays.

ToggleSwitch also has a Header property that displays text above the switch. In the screen shot
I just referred to, the labels “Automatic parsing,” “Ruler,” and “Grid lines” are all displayed by the
ToggleSwitch. I thought the labels looked good, so I made an effort to duplicate the font and place-
ment with the Style labeled as “DialogCaptionTextStyle.”

A Slider is used to set the font size, which might seem reasonable, but I also use a Slider to set the
number of tab spaces, which I’ll admit doesn’t seem reasonable at all. Even though the AppSettings
class defines the TabSpaces property as an integer, the binding with the Value property of the Slider
works regardless, and the Slider proves to be a convenient way to change the property.

The only chore left for the code-behind file is to manage the RadioButton controls:

Project: XamlCruncher | File: SettingsDialog.xaml.cs

using Windows.UI.Xaml;
using Windows.UI.Xaml.Controls;

namespace XamlCruncher
{
 public sealed partial class SettingsDialog : UserControl
 {
 public SettingsDialog()
 {
 this.InitializeComponent();
 Loaded += OnLoaded;
 }

 // Initialize RadioButton for edit orientation
 void OnLoaded(object sender, RoutedEventArgs args)
 {
 AppSettings appSettings = DataContext as AppSettings;

326	 PART 1  Elementals

 if (appSettings != null)
 {
 foreach (UIElement child in orientationRadioButtonGrid.Children)
 {
 EditOrientationRadioButton radioButton =
			 child as EditOrientationRadioButton;
 radioButton.IsChecked =
 appSettings.EditOrientation == radioButton.EditOrientationTag;
 }
 }
 }

 // Set EditOrientation based on checked RadioButton
 void OnOrientationRadioButtonChecked(object sender, RoutedEventArgs args)
 {
 AppSettings appSettings = DataContext as AppSettings;
 EditOrientationRadioButton radioButton = sender as EditOrientationRadioButton;

 if (appSettings != null)
 appSettings.EditOrientation = radioButton.EditOrientationTag;
 }
 }
}

The display of the dialog is very similar to the AppBarPad program:

Project: XamlCruncher | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 ...
 void OnSettingsAppBarButtonClick(object sender, RoutedEventArgs args)
 {
 SettingsDialog settingsDialog = new SettingsDialog();
 settingsDialog.DataContext = appSettings;

 Popup popup = new Popup
 {
 Child = settingsDialog,
 IsLightDismissEnabled = true
 };

 settingsDialog.Loaded += (dialogSender, dialogArgs) =>
 {
 popup.VerticalOffset = this.ActualHeight - settingsDialog.ActualHeight
 - this.BottomAppBar.ActualHeight - 24;
 popup.HorizontalOffset = 24;
 };

	 CHAPTER 8  App Bars and Popups	 327

 popup.Closed += (popupSender, popupArgs) =>
 {
 this.BottomAppBar.IsOpen = false;
 };
 popup.IsOpen = true;
 }
 ...
}

The Closed event handler for the Popup closes the application bar. The new settings are saved in the
handler for the Suspending event that you’ve already seen.

Beyond the Windows Runtime

Earlier I mentioned some limitations to the XAML that you can enter in XamlCruncher. Elements
cannot have their events set because events require event handlers and event handlers must be
implemented in code. Nor can the XAML contain references to external classes or assemblies.

However, the parsed XAML runs in the XamlCruncher process, which means that it does have
access to any classes that XamlCruncher has access to, including the custom classes I created for the
program. Here’s a piece of XAML that includes a namespace declaration for local. This enables it to
use the SplitContainer and nests two instances of it:

This piece of XAML is among the downloadable code for this chapter, as is the XAML used for the
earlier screen shots.

This is interesting because it means that XamlCruncher really can go beyond the Windows Runtime
and let you experiment with custom classes.

		 329

C H A P T E R 9

Animation

The topic of animation might at first seem as if it doesn’t quite belong in the “Elementals” section
of this book. Perhaps the subject is more suited for advanced programmers working on games

or physics simulations. Animation just doesn’t seem appropriate in sedate and dignified business
applications (except perhaps on casual Fridays).

But animation has more of a central role in Windows 8 applications than you might think. You’ll
discover part of that role in Chapter 11, “The Three Templates,” which shows how to use XAML to
create ControlTemplate objects that entirely redefine the appearances of controls. Although the most
important part of a ControlTemplate is a visual tree, the template must also indicate how the appear-
ance of the control changes under certain conditions. For example, a Button might be highlighted
when it’s pressed and “grayed out” when it’s disabled. All these changes in appearance within the
ControlTemplate are defined as animations—even if the change is instantaneous and doesn’t really
seem much like an animation.

Animations also come into play to define transitions between different application views or the
movement of items during changes to a collection. Try moving a tile on the Start screen from one
location to another and you’ll see neighboring tiles shift in response. These are animations, and this is
an important part of the fluid nature of Windows 8 aesthetics.

The Windows.UI.Xaml.Media.Animation Namespace

In Chapter 3, “Basic Event Handling,” I demonstrated how to animate objects by using the
CompositionTarget.Rendering event, a technique I referred to as a “manual” animation. Although a
manual animation can be powerful, it has some limitations. The callback method always runs in the
user interface thread, which means that the animation can interfere with program responsiveness to
user input.

Also, the animations I demonstrated with CompositionTarget.Rendering were all linear—that
is, they increased or decreased a value linearly over a period of time. Animations are often more
pleasant when they have a little variation, usually by speeding up at the beginning and slowing down
toward the end, perhaps with a little “bounce” for extra realism. You can certainly perform animations
of this sort using CompositionTarget.Rendering, but the mathematics can be challenging.

330	 PART 1  Elementals

In contrast, in this chapter I’ll be demonstrating instead the built-in Windows Runtime animation
facility that consists of 71 classes, 4 enumerations, and 2 structures in the Windows.UI.Xaml.Media
.Animation namespace. These animations often run on background threads and support several
features for sophisticated effects. Very often, you can define animations entirely in XAML and then
trigger them from code or (in one particular but common case) directly from XAML.

Of course, the very idea of mastering an animation facility with 71 classes can be intimidating.
Fortunately, these classes fall into just a few general categories, and by the end of this chapter, the
namespace should be entirely comprehensible.

Animation involves change, and what these animations change is a property of an object. This
property is often referred to as the “target” of the animation. The Windows Runtime animations
require this target property to be backed by a dependency property and therefore defined in a class
that derives from DependencyObject.

Some graphical environments have animations that are frame-based, meaning that the pacing of
the animation is based on the frame rate of the video display. Different video frame rates on different
hardware platforms might result in animations of different speeds. The Windows Runtime animations
are instead time-based, meaning that they are based on actual durations of clock time: seconds and
milliseconds.

What happens if the thread running an animation needs to do some work and the animation
misses a few ticks? A frame-based animation generally continues where it left off. A Windows Runtime
time-based animation adjusts itself based on clock time and catches up to where it should be.

Animation Basics

Let’s begin with the animation of the FontSize property of a TextBlock, much like the ExpandingText
program in Chapter 3. The SimpleAnimation project has a two-row Grid with a TextBlock and a
Button to start the animation going. Very often, animations are defined in the Resources section of
the root element of the XAML file. A simple animation like this one consists of a Storyboard and a
DoubleAnimation:

Project: SimpleAnimation | File: MainPage.xaml (excerpt)

<Page ... >

 <Page.Resources>
 <Storyboard x:Key="storyboard">
 <DoubleAnimation Storyboard.TargetName="txtblk"
 Storyboard.TargetProperty="FontSize"
 EnableDependentAnimation="True"
 From="1" To="144" Duration="0:0:3" />
 </Storyboard>
 </Page.Resources>

 <Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <Grid.RowDefinitions>
 <RowDefinition Height="*" />

	 CHAPTER 9  Animation	 331

 <RowDefinition Height="*" />
 </Grid.RowDefinitions>

 <TextBlock Name="txtblk"
 Text="Animated Text"
 Grid.Row="0"
 FontSize="48"
 HorizontalAlignment="Center"
 VerticalAlignment="Center" />

 <Button Content="Trigger!"
 Grid.Row="1"
 HorizontalAlignment="Center"
 VerticalAlignment="Center"
 Click="OnButtonClick" />
 </Grid>
</Page>

The name of the DoubleAnimation class doesn’t mean that it performs two animations! This is an
animation that targets properties of type Double. As you’ll see, the Windows Runtime also supports
animations that target properties of type Point, Color, and Object. (An animation that targets proper-
ties of type Object might seem as if it’s the only animation you’d need, but in reality it’s limited to
setting discrete property values rather than smoothly animating them.)

The Windows Runtime requires that an animation object such as DoubleAnimation be a child of a
Storyboard. A Storyboard can have multiple children performing parallel animations, and the job of
the Storyboard is to provide a framework for synchronizing the children.

Storyboard also defines two attached properties named TargetName and TargetProperty. You set
these properties in the animation object to indicate the name of the object you’re targeting, and the
property of that object you wish to animate:

<Storyboard x:Key="storyboard">
 <DoubleAnimation Storyboard.TargetName="txtblk"
 Storyboard.TargetProperty="FontSize"
 ... />
</Storyboard>

By default, animations are performed in a secondary thread so that the user interface thread
remains free to respond to user input. However, an animation that targets the FontSize property of
a TextBlock must run in the user interface thread because a change in the font size triggers a layout
change. The Windows Runtime is reluctant to run animations in the user-interface thread, even to the
extent of implementing a default behavior to disallow them! To let the Windows Runtime know your
intention—yes, you want the animation to run even if it happens in the user interface thread—you
must set the EnableDependentAnimation property to true:

<Storyboard x:Key="storyboard">
 <DoubleAnimation Storyboard.TargetName="txtblk"
 Storyboard.TargetProperty="FontSize"
 EnableDependentAnimation="True"
 ... />
</Storyboard>

332	 PART 1  Elementals

In this context, the word “dependent” means “dependent on the user interface thread.”

The remainder of this particular animation indicates that we want to animate the value of the
FontSize property from 1 to 144 over the course of three seconds:

<Storyboard x:Key="storyboard">
 <DoubleAnimation Storyboard.TargetName="txtblk"
 Storyboard.TargetProperty="FontSize"
 EnableDependentAnimation="True"
 From="1" To="144" Duration="0:0:3" />
</Storyboard>

The duration of the animation is specified in hours, minutes, and seconds. All three values and two
colons are required. If you specify just one number, it will be interpreted as an integral number of
hours; two numbers separated by a colon are interpreted as hours and minutes. The seconds can
include fractional seconds. If you need an animation that runs more than a day, you can precede the
hours with a number of days and a period.

When you first run this program, the TextBlock is displayed with a 48-pixel height, as specified in
the TextBlock element in the XAML file:

The Storyboard doesn’t run by itself. It needs to be triggered, usually by something happening in the
user interface. In this program, the Click handler for the Button obtains a reference to the Storyboard
by accessing the Resources collection, and then it calls Begin:

Project: SimpleAnimation | File: MainPage.xaml.cs

using Windows.UI.Xaml;
using Windows.UI.Xaml.Controls;
using Windows.UI.Xaml.Media.Animation;

	 CHAPTER 9  Animation	 333

namespace SimpleAnimation
{
 public sealed partial class MainPage : Page
 {
 public MainPage()
 {
 this.InitializeComponent();
 }

 void OnButtonClick(object sender, RoutedEventArgs args)
 {
 (this.Resources["storyboard"] as Storyboard).Begin();
 }
 }
}

Notice the using directive for Windows.UI.Xaml.Media.Animation. This is not provided for you
automatically by the Visual Studio template.

When the storyboard is started, the TextBlock immediately jumps to a FontSize of 1 (the From value
in DoubleAnimation), and then the FontSize increases to 144 over the course of three seconds. The in-
crease is linear: At the one-second mark, the FontSize is 48-2/3 pixels, and at two seconds, it’s 96-1/3.
At the end of three seconds, the animation stops and the TextBlock remains at the 144-pixel size:

You can click the button again, and the animation starts over again. In fact, you can click the
button repeatedly while the animation is running, and each time it starts over again at the 1-pixel size.

334	 PART 1  Elementals

Animation Variation Appreciation

When the animation in the SimpleAnimation program completes, the FontSize remains at the value
specified by the To property of DoubleAnimation. This is a result of the value of the FillBehavior prop-
erty of DoubleAnimation, which by default is the enumeration member HoldEnd. You can alternatively
set it to Stop:

<Storyboard x:Key="storyboard">
 <DoubleAnimation Storyboard.TargetName="txtblk"
 Storyboard.TargetProperty="FontSize"
 EnableDependentAnimation="True"
 FillBehavior="Stop"
 From="1" To="144" Duration="0:0:3" />
</Storyboard>

Now at the end of the animation, the animation is released from the target property and FontSize
reverts to its pre-animation value of 48.

Another variation is to leave out the From or To value. For example,

<Storyboard x:Key="storyboard">
 <DoubleAnimation Storyboard.TargetName="txtblk"
 Storyboard.TargetProperty="FontSize"
 EnableDependentAnimation="True"
 From="1" Duration="0:0:3" />
</Storyboard>

Now the animation begins at 1 but goes up only to the pre-animation value of 48. The increase in size
proceeds at a slower rate because the duration is still three seconds.

This animation causes FontSize to go from its current value up to 144 over three seconds:

<Storyboard x:Key="storyboard">
 <DoubleAnimation Storyboard.TargetName="txtblk"
 Storyboard.TargetProperty="FontSize"
 EnableDependentAnimation="True"
 To="144" Duration="0:0:3" />
</Storyboard>

I say the FontSize goes from “its current value” because that value isn’t necessarily the pre-animation
value of 48. Click the button, and while the TextBlock is still increasing in size, click the button again.
Each successive click effectively terminates the existing animation and starts a new animation from
the current FontSize. Each new click slows down the rate of increase because the length of the
animation is still three seconds.

You might assume that the DoubleAnimation class defines the To and From properties as type
double. That’s almost true. They are actually of type nullable double, and null is the default value. This
is how DoubleAnimation can determine whether these properties are set.

	 CHAPTER 9  Animation	 335

The other option is By:

<Storyboard x:Key="storyboard">
 <DoubleAnimation Storyboard.TargetName="txtblk"
 Storyboard.TargetProperty="FontSize"
 EnableDependentAnimation="True"
 By="100" Duration="0:0:3" />
</Storyboard>

Now each click of the button triggers an animation that increases the FontSize by another 100 pixels
over the course of three seconds. The text just gets larger and larger and larger.

Try going back to the original settings and add an attribute that sets AutoReverse to true:

<Storyboard x:Key="storyboard">
 <DoubleAnimation Storyboard.TargetName="txtblk"
 Storyboard.TargetProperty="FontSize"
 EnableDependentAnimation="True"
 From="1" To="144" Duration="0:0:3"
 AutoReverse="True" />
</Storyboard>

When this animation is triggered, the FontSize jumps down to 1, goes up to 144 over the course of
three seconds, and then goes back down to 1 over another three seconds, at which time the anima-
tion is completed. The entire animation is six seconds in length. Set FillBehavior to Stop, and the
FontSize will jump back to its pre-animation value of 48 at the end of those six seconds.

You can also set a RepeatBehavior attribute with or without AutoReverse. The following
combination indicates that you want to perform three entire cycles of increasing and decreasing
the FontSize:

<Storyboard x:Key="storyboard">
 <DoubleAnimation Storyboard.TargetName="txtblk"
 Storyboard.TargetProperty="FontSize"
 EnableDependentAnimation="True"
 From="1" To="144" Duration="0:0:3"
 AutoReverse="True"
 RepeatBehavior="3x" />
</Storyboard>

The entire animation lasts for 18 seconds.

You can also set RepeatBehavior to a duration:

<Storyboard x:Key="storyboard">
 <DoubleAnimation Storyboard.TargetName="txtblk"
 Storyboard.TargetProperty="FontSize"
 EnableDependentAnimation="True"
 From="1" To="144" Duration="0:0:3"
 AutoReverse="True"
 RepeatBehavior="0:0:7.5" />
</Storyboard>

336	 PART 1  Elementals

The total animation lasts 7.5 seconds. The FontSize increases from 1 to 144 over the course of three
seconds, decreases from 144 to 1 in another three seconds, and then starts to increase again but
stops. The final FontSize value is 73.5.

You can also set RepeatBehavior to Forever:

<Storyboard x:Key="storyboard">
 <DoubleAnimation Storyboard.TargetName="txtblk"
 Storyboard.TargetProperty="FontSize"
 EnableDependentAnimation="True"
 From="1" To="144" Duration="0:0:3"
 AutoReverse="True"
 RepeatBehavior="Forever" />
</Storyboard>

And it does exactly that (or at least until you get bored and terminate the program).

You can delay the start of an animation with the BeginTime property:

<Storyboard x:Key="storyboard">
 <DoubleAnimation Storyboard.TargetName="txtblk"
 Storyboard.TargetProperty="FontSize"
 EnableDependentAnimation="True"
 BeginTime="0:0:1.5"
 From="1" To="144" Duration="0:0:3" />
</Storyboard>

When you click the button, nothing will seem to happen for a second and a half, and then the
TextBlock will jump to a 1-pixel size and start to expand. The animation concludes 4.5 seconds after
the button click.

Even with all these variations, all the animations so far have been linear. The FontSize always
increases or decreases linearly by a certain number of pixels per second. One easy way to create
a nonlinear animation is by setting the EasingFunction property defined by DoubleAnimation.
Break out the property as a property element, and specify one of the 11 classes that derive from
EasingFunctionBase. Here’s ElasticEase:

<Storyboard x:Key="storyboard">
 <DoubleAnimation Storyboard.TargetName="txtblk"
 Storyboard.TargetProperty="FontSize"
 EnableDependentAnimation="True"
 From="1" To="144" Duration="0:0:3">
 <DoubleAnimation.EasingFunction>
 <ElasticEase />
 </DoubleAnimation.EasingFunction>
 </DoubleAnimation>
</Storyboard>

You really need to try this out to see the effect. As the TextBlock gets larger, it actually goes beyond
the 144-pixel size and then decreases to below 144 and back and forth a couple times, finally settling
at the To value. (That behavior rather stretches the meaning of the word “ease”!)

	 CHAPTER 9  Animation	 337

EasingFunctionBase defines an EasingMode property that is inherited by all 11 derived classes. The
default setting is the enumeration member EasingMode.EaseOut, which means that the animation
begins linearly and the special effect is applied at the end of the animation. You can specify EaseIn to
apply the effect to the beginning of the animation or EaseInOut to the beginning and the end.

Some EasingFunctionBase derivatives define their own properties for a little variation. ElasticEase
defines an Oscillations property (an integer with a default value of 3 that indicates how many times
the values swings back and forth) and a Springiness property, a double also with a default setting of 3.
The lower the Springiness value, the more extreme the effect. Try this:

<Storyboard x:Key="storyboard">
 <DoubleAnimation Storyboard.TargetName="txtblk"
 Storyboard.TargetProperty="FontSize"
 EnableDependentAnimation="True"
 From="1" To="144" Duration="0:0:3">
 <DoubleAnimation.EasingFunction>
 <ElasticEase Oscillations="10"
 Springiness="0" />
 </DoubleAnimation.EasingFunction>
 </DoubleAnimation>
</Storyboard>

A program to explore the easing functions is coming up soon.

I mentioned earlier that an animation object such as DoubleAnimation must be a child of a
Storyboard. Interestingly, Storyboard and DoubleAnimation are siblings in the class hierarchy:

Object
 DependencyObject
 Timeline
 Storyboard
 DoubleAnimation
 ...

Storyboard defines a Children property of type TimelineCollection, the attached properties
TargetName and TargetProperty, as well as methods to pause and resume the animation.
DoubleAnimation defines From, To, By, EnableDependentAnimation, and EasingFunction.

All the other properties you’ve seen so far—AutoReverse, BeginTime, Duration, FillBehavior,
and RepeatBehavior—are defined by Timeline, which means that you can set these properties on
Storyboard to define behavior for all the children of the Storyboard.

Timeline also defines a property named SpeedRatio:

<Storyboard x:Key="storyboard">
 <DoubleAnimation Storyboard.TargetName="txtblk"
 Storyboard.TargetProperty="FontSize"
 EnableDependentAnimation="True"
 SpeedRatio="10"
 From="1" To="144" Duration="0:0:3" />
</Storyboard>

338	 PART 1  Elementals

This SpeedRatio setting causes the animation to go 10 times faster! Setting SpeedRatio on the
DoubleAnimation is certainly allowed, but it’s much more common to set it on a Storyboard so that
it applies to all the animation children within that Storyboard. You can use SpeedRatio for fine-tuning
the speed of an animation without changing all the individual Duration times or for debugging
complex collections of animations. For example, set the SpeedRatio to 0.1 to slow down the animation
so that you can better see what it’s doing.

Timeline also defines a Completed event, which you can set on either a Storyboard or a
DoubleAnimation to be notified when an animation has completed.

It’s also possible to define an animation entirely in code. The XAML file for the
SimpleAnimationCode project has a Grid with nine Button elements sharing the same Click event
handler. No Storyboard or DoubleAnimation appears in the XAML file:

Project: SimpleAnimationCode | File: MainPage.xaml (excerpt)

<Page ... >
 <Page.Resources>
 <Style TargetType="Button">
 <Setter Property="Content" Value="Trigger!" />
 <Setter Property="FontSize" Value="48" />
 <Setter Property="HorizontalAlignment" Value="Center" />
 <Setter Property="VerticalAlignment" Value="Center" />
 <Setter Property="Margin" Value="12" />
 </Style>
 </Page.Resources>

 <Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <Grid HorizontalAlignment="Center"
 VerticalAlignment="Center">
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition Width="Auto" />
 </Grid.ColumnDefinitions>

 <Button Grid.Row="0" Grid.Column="0" Click="OnButtonClick" />
 <Button Grid.Row="0" Grid.Column="1" Click="OnButtonClick" />
 <Button Grid.Row="0" Grid.Column="2" Click="OnButtonClick" />
 <Button Grid.Row="1" Grid.Column="0" Click="OnButtonClick" />
 <Button Grid.Row="1" Grid.Column="1" Click="OnButtonClick" />
 <Button Grid.Row="1" Grid.Column="2" Click="OnButtonClick" />
 <Button Grid.Row="2" Grid.Column="0" Click="OnButtonClick" />
 <Button Grid.Row="2" Grid.Column="1" Click="OnButtonClick" />
 <Button Grid.Row="2" Grid.Column="2" Click="OnButtonClick" />
 </Grid>
 </Grid>
</Page>

	 CHAPTER 9  Animation	 339

In the code-behind file, you can create the Storyboard and DoubleAnimation once and reuse the
objects whenever you need to trigger the animation, or you can create them anew as needed. The
first approach only works when the animation target is always the same object. This program poten-
tially needs nine independent animations for the nine buttons, so it’s easiest just creating them on
demand. Everything is in the Click handler:

Project: SimpleAnimationCode | File: MainPage.xaml.cs (excerpt)

void OnButtonClick(object sender, RoutedEventArgs args)
{
 DoubleAnimation anima = new DoubleAnimation
 {
 EnableDependentAnimation = true,
 To = 96,
 Duration = new Duration(new TimeSpan(0, 0, 1)),
 AutoReverse = true,
 RepeatBehavior = new RepeatBehavior(3)
 };
 Storyboard.SetTarget(anima, sender as Button);
 Storyboard.SetTargetProperty(anima, "FontSize");

 Storyboard storyboard = new Storyboard();
 storyboard.Children.Add(anima);
 storyboard.Begin();
}

In the earlier XAML definition of DoubleAnimation, the attached properties Storyboard.TargetName
and Storyboard.TargetProperty indicate the object and property to animate. In code, it’s a little differ-
ent: You continue to use the static method Storyboard.SetTargetProperty to set the property name,
but you use Storyboard.SetTarget—not Storyboard.SetTargetName—to set the target object rather
than the XAML name of the target object. If the target object is a TextBlock in XAML with the name
“txtblk,” the SetTarget call would look like this:

Storyboard.SetTarget(anima, txtblk);

It’s the object variable name, not the text name. In this code example I’ve set the target object to the
Button generating the Click event.

Also notice how the Duration property is set. Using a TimeSpan is the most common approach,
but Duration also has two static properties: Automatic (which means one second in this context) and
Forever (which is not recommended because it makes the animation infinitely slow). The default value
is Automatic, which is handy if you forget to specify it.

340	 PART 1  Elementals

Because the change in each FontSize affects the size of each Button, the Grid needs to recalculate
the width and height of its cells. It’s fun to get all the animations going at once to watch how the Grid
changes size:

Other Double Animations

A DoubleAnimation can animate any property of type double that’s backed by a dependency
property, for example, Width or Height (or both):

Project: EllipseBlobAnimation | File: MainPage.xaml (excerpt)

<Page ... >

 <Page.Resources>
 <Storyboard x:Key="storyboard"
 RepeatBehavior="Forever"
 AutoReverse="True">
 <DoubleAnimation Storyboard.TargetName="ellipse"
 Storyboard.TargetProperty="Width"
 EnableDependentAnimation="True"
 From="100" To="600" Duration="0:0:1" />

 <DoubleAnimation Storyboard.TargetName="ellipse"
 Storyboard.TargetProperty="Height"
 EnableDependentAnimation="True"
 From="600" To="100" Duration="0:0:1" />
 </Storyboard>
 </Page.Resources>

	 CHAPTER 9  Animation	 341

 <Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <Ellipse Name="ellipse">
 <Ellipse.Fill>
 <LinearGradientBrush>
 <GradientStop Offset="0" Color="Pink" />
 <GradientStop Offset="1" Color="LightBlue" />
 </LinearGradientBrush>
 </Ellipse.Fill>
 </Ellipse>
 </Grid>
</Page>

The two animations run in parallel. The first animates the Width of the Ellipse from 100 to 600,
and the second animates the Height of the Ellipse from 600 to 100. The two dimensions only briefly
meet up in the middle to make a circle. The settings of AutoReverse and RepeatBehavior can be set on
either the Storyboard (as I’ve done) or on the individual animations.

The animation is triggered when the page is loaded, and it runs “forever”:

Project: EllipseBlobAnimation | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 public MainPage()
 {
 this.InitializeComponent();

 Loaded += (sender, args) =>
 {
 (this.Resources["storyboard"] as Storyboard).Begin();
 };
 }
}

342	 PART 1  Elementals

Because the LinearGradientBrush that colors the Ellipse has a default gradient from the upper-left
corner of a bounding rectangle to the lower-right corner, the gradient actually shifts a bit during the
animation:

Width and Height aren’t the only properties of Ellipse that can be animated. The StrokeThickness
property defined by Shape is also a double and is backed by a dependency property. Here’s an Ellipse
with a dotted line around its circumference, and the animation targets the thickness of that dotted
line:

Project AnimateStrokeThickness | File: MainPage.xaml (excerpt)

<Page ... >
 <Page.Resources>
 <Storyboard x:Key="storyboard">
 <DoubleAnimation Storyboard.TargetName="ellipse"
 Storyboard.TargetProperty="StrokeThickness"
 EnableDependentAnimation="True"
 From="1" To="100" Duration="0:0:4"
 AutoReverse="True"
 RepeatBehavior="Forever" />
 </Storyboard>
 </Page.Resources>

 <Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <Ellipse Name="ellipse"
 Stroke="Red"
 StrokeDashCap="Round"
 StrokeDashArray="0 2" />
 </Grid>
</Page>

The animation is triggered during the Loaded event with the same code as the previous program.

	 CHAPTER 9  Animation	 343

The “0 2” value of the StrokeDashArray indicates that the dashed line consists of a dash that
is zero units long followed by a gap two units long, where these units indicate multiples of the
StrokeThickness. This dash has rounded ends benefit of the StrokeDashCap property, and the rounded
ends add to the length of the dash, so the dash actually becomes a dot with a diameter equal to the
StrokeThickness. The centers of these dots are separated by a gap equal to twice the StrokeThickness,
so the dots themselves are separated by the StrokeThickness.

In this animation, the number of dots actually decreases and then increases as the StrokeThickness
is increased and decreased by the animation. The dots seem to disappear and reappear at the far
right of the Ellipse:

Can you find another property of Ellipse of type double? How about StrokeDashOffset, which
indicates where the dashes and gaps of a dotted line begin in a dashed line? Here’s some XAML that
uses a Path with Bézier curves to draw an infinity sign with dotted lines. The animation targets Stroke-
DashOffset to make the dots seem to travel around the figure:

Project: AnimateDashOffset | File: MainPage.xaml (excerpt)

<Page ... >
 <Page.Resources>
 <Storyboard x:Key="storyboard">
 <DoubleAnimation Storyboard.TargetName="path"
 Storyboard.TargetProperty="StrokeDashOffset"
 EnableDependentAnimation="True"
 From="0" To="1.5" Duration="0:0:1"
 RepeatBehavior="Forever" />
 </Storyboard>
 </Page.Resources>

344	 PART 1  Elementals

 <Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <Viewbox>
 <Path Name="path"
 Margin="12"
 Stroke="{StaticResource ApplicationForegroundThemeBrush}"
 StrokeThickness="24"
 StrokeDashArray="0 1.5"
 StrokeDashCap="Round"
 Data="M 100 0
 C 45 0, 0 45, 0 100
 S 45 200, 100 200
 S 200 150, 250 100
 S 345 0, 400 0
 S 500 45, 500 100
 S 455 200, 400 200
 S 300 150, 250 100
 S 155 0, 100 0" />
 </Viewbox>
 </Grid>
</Page>

Unfortunately, I can’t show the dots traveling around the infinity sign on the printed page:

The Path definition in this program incorporates a well-known Bézier approximation to a quarter
circle. For a circle centered at the point (0, 0), the lower-right quarter-circle arc begins at (100, 0) and
ends at (0, 100). This can be approximated very well with a Bézier curve that also begins at (100, 0)
and ends at (0, 100) with two control points (100, 55) and (55, 100). You can draw an entire circle us-
ing four of these “Bezier 55” arcs.

Thus, the quarter-circle arc that begins this infinity sign at the upper-left corner starts at (100, 0)
and ends at (0, 100), but the center is (100, 100) rather than (0, 0), so the first control point is 55 units
to the left of (100, 0), and the second is 55 units above (0, 100), or (45, 0), and (0, 45). The next Bézier

	 CHAPTER 9  Animation	 345

should continue the figure around the lower-left corner starting at (0, 100)—the end of the previous
Bézier—and ending at (100, 200) with control points (0, 155) and (45, 200). But the remainder of the
path markup geometry continues not with figures indicated by C, which stands for “Cubic Bézier,” but
with S, which stands for “Smooth Bézier.” It is well known that two connected Bézier curves have a
smooth connection if their common point and two adjacent control points are collinear (that is, lie on
the same line). The S figure in path markup syntax causes the first control point to be automatically
derived so that it is collinear with the start point and previous control point and the same distance
from the start point as the previous collinear point. Thus, based on the point (0, 45) and (0, 100) in the
first Bézier curve, the first S figure derives the first control point to be (0, 155).

When drawing a dashed line whose end connects back with its beginning, it is very likely that
there will be a discontinuity at the start point where only a partial dash will be displayed. The
StrokeThickness of 24 was derived experimentally and need not necessarily be a whole number. For
the Windows Phone version of this program, I settled upon a StrokeThickness of 23.98.

When exploring the rest of the Shapes library for properties of type double to animate, you’ll also
discover the X1, Y1, X2, and Y2 properties of Line. Later in this chapter I’ll demonstrate how to animate
properties of type Point that show up in many of the PathSegment derivatives.

The Opacity property is a very common animation target, and it’s used to fade elements in and
out. You can set Opacity to a value ranging from 0 (transparent) to 1 (opaque). Here’s an Opacity
animation based on John Tenniel’s illustrations of the Cheshire Cat for the original edition of Lewis
Carroll’s Alice’s Adventures in Wonderland (1865):

Project: CheshireCat | File: MainPage.xaml (excerpt)

<Page ... >

 <Page.Resources>
 <Storyboard x:Key="storyboard">
 <DoubleAnimation Storyboard.TargetName="image2"
 Storyboard.TargetProperty="Opacity"
 From="0" To="1" Duration="0:0:2"
 AutoReverse="True"
 RepeatBehavior="Forever" />
 </Storyboard>
 </Page.Resources>

 <!-- Images from Project Gutenberg Book #114
 http://www.gutenberg.org/ebooks/114
 John Tenniel's illustrations for Lewis Carroll's "Alice in Wonderland" -->

 <Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <Viewbox>
 <Grid>
 <Image Source="Images/alice23a.gif"
 Width="640" />

 <TextBlock FontFamily="Century Schoolbook"
 FontSize="24"
 Foreground="Black"
 TextWrapping="Wrap"

346	 PART 1  Elementals

 TextAlignment="Justify"
 Width="320"
 Margin="0 0 24 60"
 HorizontalAlignment="Right"
 VerticalAlignment="Bottom">
   "All right," said the Cat; and this
 time it vanished quite slowly, beginning with the end
 of the tail, and ending with the grin, which
 remained some time after the rest of it had gone.
 <LineBreak />
 <LineBreak />
   "Well! I've often seen a cat without a
 grin," thought Alice; "but a grin without a cat! It's
 the most curious thing I ever saw in all my life!"
 </TextBlock>

 <Image Name="image2"
 Source="Images/alice24a.gif"
 Stretch="None"
 VerticalAlignment="Top">
 <Image.Clip>
 <RectangleGeometry Rect="320 70 320 240" />
 </Image.Clip>
 </Image>
 </Grid>
 </Viewbox>
 </Grid>
</Page>

As the comment in the XAML file indicates, I obtained the images from Project Gutenberg. In
the original edition of Alice’s Adventures in Wonderland, the two images were both the width of the
page, but the first image also extended to the full height of the page to show Alice standing by the
tree. The images on the Project Gutenberg site, however, don’t have the same width. The first image
(alice23a.gif) is 342 × 480 pixels and the second (alice24a.gif) is 640 × 435. When I forced them to
have the same rendered width, they seemed to line up very well considering that they’re definitely
two different drawings. Still, I decided to use a rectangular clipping area to restrict the second image
to only the disappearing cat. The text that I added is not the same as that which appeared in this spot
in the original edition.

	 CHAPTER 9  Animation	 347

The utility of DoubleAnimation increases enormously when you begin animating the classes
that derive from Transform. This is a subject for the next chapter (Chapter 10, “Transforms”). You
might remember the RainbowEight program from Chapter 3 that animated the Offset property
of 15 GradientStop objects in tandem. You can do a similar program using 15 DoubleAnimation
objects, but in the next chapter I’ll show you how to do it with one DoubleAnimation animating a
TranslateTransform set on the LinearGradientBrush.

Animating Attached Properties

One of the simple uses of transforms that I’ll explore in the next chapter involves moving an object
around the screen. But you don’t need transforms for that. You can put the object in a Canvas and
animate the Canvas.Left and Canvas.Top attached properties. Animating attached properties requires
a special syntax for Storyboard.TargetProperty, as shown here:

Project: AttachedPropertyAnimation | File: MainPage.xaml (excerpt)

<Page ... >

 <Page.Resources>
 <Storyboard x:Key="storyboard">
 <DoubleAnimation Storyboard.TargetName="ellipse"
 Storyboard.TargetProperty="(Canvas.Left)"
 From="0" Duration="0:0:2.51"
 AutoReverse="True"
 RepeatBehavior="Forever" />

348	 PART 1  Elementals

 <DoubleAnimation Storyboard.TargetName="ellipse"
 Storyboard.TargetProperty="(Canvas.Top)"
 From="0" Duration="0:0:1.01"
 AutoReverse="True"
 RepeatBehavior="Forever" />
 </Storyboard>
 </Page.Resources>

 <Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <Canvas SizeChanged="OnCanvasSizeChanged"
 Margin="0 0 48 48">
 <Ellipse Name="ellipse"
 Width="48"
 Height="48"
 Fill="Red" />
 </Canvas>
 </Grid>
</Page>

The Canvas.Left and Canvas.Top attached properties are simply enclosed in parentheses. The target is
an Ellipse colored red and hence easily recognizable as a ball.

Notice the absence of an EnableDependentAnimation setting. This indicates that these animations
do not occur in the user interface thread. If you’re unsure whether to use EnableDependentAnimation,
try leaving it out. If the animation works, it’s OK!

This Storyboard has two DoubleAnimation children that run in synchronization. Notice that each of
these DoubleAnimation definitions has AutoReverse set to True and RepeatBehavior set to Forever and
Duration values set to 1.01 seconds and 2.51 seconds, respectively. I chose prime numbers here (101
and 251) to avoid repetitive patterns. The two animations include From values but no To values. That
happens in the code-behind file:

Project: AttachedPropertyAnimation | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 public MainPage()
 {
 this.InitializeComponent();

 Loaded += (sender, args) =>
 {
 (this.Resources["storyboard"] as Storyboard).Begin();
 };
 }

 void OnCanvasSizeChanged(object sender, SizeChangedEventArgs args)
 {
 Storyboard storyboard = this.Resources["storyboard"] as Storyboard;

 // Canvas.Left animation
 DoubleAnimation anima = storyboard.Children[0] as DoubleAnimation;
 anima.To = args.NewSize.Width;

	 CHAPTER 9  Animation	 349

 // Canvas.Top animation
 anima = storyboard.Children[1] as DoubleAnimation;
 anima.To = args.NewSize.Height;
 }
}

The storyboard is started in the Loaded event handler. Whenever the size of the Canvas changes
(which happens when the size of the window changes), new To values are calculated based on the
height and width of the Canvas, which has a Margin setting in the XAML file to compensate for the
size of the Ellipse. You might assume that you wouldn’t be allowed to change values of an ongoing
animation, but it seems to work fine. The effect is a ball that appears to bounce between the edges of
the screen:

Both DoubleAnimation definitions include the same AutoReverse and RepeatBehavior settings.
As I mentioned earlier, these properties are defined by Timeline, which is also the parent class to
Storyboard. Might these two settings be moved to the Storyboard tag? Try it:

<Storyboard x:Key="storyboard"
 AutoReverse="True"
 RepeatBehavior="Forever">
 <DoubleAnimation Storyboard.TargetName="ellipse"
 Storyboard.TargetProperty="(Canvas.Left)"
 From="0" Duration="0:0:2.51" />

 <DoubleAnimation Storyboard.TargetName="ellipse"
 Storyboard.TargetProperty="(Canvas.Top)"
 From="0" Duration="0:0:1.01" />
</Storyboard>

350	 PART 1  Elementals

This is perfectly legal, but it doesn’t work the same as the previous markup. The duration of a
Storyboard is the duration of the longest animation child of that Storyboard, which in this case is 2.51
seconds. The animation begins by moving the ball both horizontally and vertically. But at the end
of 1.01 seconds, the ball hits an edge. In landscape mode, this is the bottom edge. The animation of
the Canvas.Top property has completed, but the animation of Canvas.Left continues to move the ball
horizontally for another 1.5 seconds. At that point the ball is in the lower-right corner of the screen.
Both animations have now completed, so the Storyboard reverses the animation we’ve just seen until
the ball is in the upper-left corner again. Then that same pattern repeats forever.

Only if all the animations in a Storyboard are the same length can the AutoReverse and
RepeatBehavior properties be moved to the Storyboard.

The Easing Functions

Suppose a DoubleAnimation has a From value of 100, a To value of 500, and a Duration of five
seconds. By default the DoubleAnimation is linear, which means that the target property takes on
values from 100 through 500 based on a linear relationship with elapsed time:

Time Value

0 sec 100

1 180

2 260

3 340

4 420

5 500

Or, perhaps more clearly:

Value = From + Time
Duration

× (To – From)

The purpose of the easing functions is to make this more interesting.

I was originally planning to begin this discussion by demonstrating how to derive from
EasingFunctionBase to create a custom easing function, but for reasons that I’m sure are very good
reasons, you cannot derive from EasingFunctionBase. If you were able to, you could create your own
easing function by simply overriding the Ease method and implementing a transfer function. The Ease
method has a double argument that ranges from 0 to 1. The method returns a double value. When
the argument is 0, the method returns 0. When the argument is 1, the method returns 1. In between,
anything goes. In this way, the easing function effectively bends time so that the relationship between
elapsed time and the animation value becomes nonlinear.

	 CHAPTER 9  Animation	 351

When an easing function is in effect, the elapsed time is normalized to a value between 0 and 1
by dividing by the Duration (just as in the formula above). The Ease function is called, and the return
value is used to calculate a value:

Value = From +Ease Time
Duration

× (To – From)

For example, the ExponentialEase function with the default EasingMode setting of EaseOut has this
transfer function:

t’ =
1–e–Nt

1–e–N

where t is the argument to the Ease function, t’ is the result, and N is the setting of the Exponent
property. If N equals 2 (the default value), the animation shown in the table above is instead like this:

Time t t’ Value

0 sec 0.0 0.000 100

1 0.2 0.381 252

2 0.4 0.637 355

3 0.6 0.808 423

4 0.8 0.923 469

5 1.0 1.000 500

It’s faster at the beginning and then seems to slow down.

The AnimationEaseGrapher program provides a visual representation of the easing functions and
lets you experiment with them:

352	 PART 1  Elementals

The graph is the transfer function with the horizontal access representing t from 0 to 1, and the
vertical access representing t’ with 0 at the top and 1 at the bottom. The dotted line from upper
left to lower right is a linear transfer function, and the blue line is the selected transfer function. The
points of that Polyline are assigned from the code-behind file by repeatedly calling the Ease method
of the selected easing class. When you press the Demo button, the little red ball in the upper-left
corner is animated horizontally with a regular linear animation and animated vertically with the se-
lected ease function, and—amazingly enough—it follows the graph.

Here’s the program’s XAML file with the animation for the red ball defined at the top. The easing
function for this animation is assigned from the code-behind file. The To and From values are adjusted
based on the 6-pixel radius of the ball (which appears way down at the bottom):

Project: AnimationEaseGrapher | File: MainPage.xaml (excerpt)

<Page ... >
 <Page.Resources>
 <Storyboard x:Key="storyboard"
 FillBehavior="Stop">
 <DoubleAnimation Storyboard.TargetName="redBall"
 Storyboard.TargetProperty="(Canvas.Left)"
 From="-6" To="994" Duration="0:0:3" />

 <DoubleAnimation x:Name="anima2"
 Storyboard.TargetName="redBall"
 Storyboard.TargetProperty="(Canvas.Top)"
 From="-6" To="494" Duration="0:0:3" />
 </Storyboard>
 </Page.Resources>

 <Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition Width="*" />
 </Grid.ColumnDefinitions>

 <!-- Control panel -->
 <Grid Grid.Column="0"
 VerticalAlignment="Center">
 <Grid.RowDefinitions>
 <RowDefinition Height="*" />
 <RowDefinition Height="*" />
 <RowDefinition Height="*" />
 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition Width="Auto" />
 </Grid.ColumnDefinitions>

 <!-- Easing function (populated by code) -->
 <StackPanel Name="easingFunctionStackPanel"
 Grid.Row="0"
 Grid.RowSpan="3"
 Grid.Column="0"
 VerticalAlignment="Center">

	 CHAPTER 9  Animation	 353

 <RadioButton Content="None"
 Margin="6"
 Checked="OnEasingFunctionRadioButtonChecked" />
 </StackPanel>

 <!-- Easing mode -->
 <StackPanel Name="easingModeStackPanel"
 Grid.Row="0"
 Grid.Column="1"
 HorizontalAlignment="Center"
 VerticalAlignment="Center">
 <RadioButton Content="Ease In"
 Margin="6"
 Checked="OnEasingModeRadioButtonChecked">
 <RadioButton.Tag>
 <EasingMode>EaseIn</EasingMode>
 </RadioButton.Tag>
 </RadioButton>

 <RadioButton Content="Ease Out"
 Margin="6"
 Checked="OnEasingModeRadioButtonChecked">
 <RadioButton.Tag>
 <EasingMode>EaseOut</EasingMode>
 </RadioButton.Tag>
 </RadioButton>

 <RadioButton Content="Ease In/Out"
 Margin="6"
 Checked="OnEasingModeRadioButtonChecked">
 <RadioButton.Tag>
 <EasingMode>EaseInOut</EasingMode>
 </RadioButton.Tag>
 </RadioButton>
 </StackPanel>

 <!-- Easing properties (populated by code) -->
 <StackPanel Name="propertiesStackPanel"
 Grid.Row="1"
 Grid.Column="1"
 HorizontalAlignment="Center"
 VerticalAlignment="Center" />

 <!-- Demo button -->
 <Button Grid.Row="2"
 Grid.Column="1"
 Content="Demo!"
 HorizontalAlignment="Center"
 VerticalAlignment="Center"
 Click="OnDemoButtonClick" />
 </Grid>

 <!-- Graph using arbitrary coordinates and scaled to window -->
 <Viewbox Grid.Column="1">
 <Grid Width="1000"
 Height="500"
 Margin="0 250 0 250">

354	 PART 1  Elementals

 <!-- Rectangle outline -->
 <Polygon Points="0 0, 1000 0, 1000 500, 0 500"
 Stroke="{StaticResource ApplicationForegroundThemeBrush}"
 StrokeThickness="3" />

 <Canvas>
 <!-- Linear transfer -->
 <Polyline Points="0 0, 1000 500"
 Stroke="{StaticResource ApplicationForegroundThemeBrush}"
 StrokeThickness="1"
 StrokeDashArray="3 3" />

 <!-- Points set by code based on easing function -->
 <Polyline Name="polyline"
 Stroke="Blue"
 StrokeThickness="3" />

 <!-- Animated ball -->
 <Ellipse Name="redBall"
 Width="12"
 Height="12"
 Fill="Red" />
 </Canvas>
 </Grid>
 </Viewbox>
 </Grid>
</Page>

The code-behind file uses reflection to obtain all the classes that derive from EasingFunction-
Base and creates a RadioButton element for each one. When one is selected, reflection also comes
to the rescue to obtain a parameterless constructor for the class. This allows the class to be in-
stantiated. Additional reflection lets the program obtain all the public properties the particular
EasingFunctionBase derivative has defined on its own. Fortunately, all these public properties are
restricted to int or double types, so a Slider control is created for each.

Project: AnimationEaseGrapher | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 EasingFunctionBase easingFunction;

 public MainPage()
 {
 this.InitializeComponent();
 Loaded += OnMainPageLoaded;
 }

 void OnMainPageLoaded(object sender, RoutedEventArgs args)
 {
 Type baseType = typeof(EasingFunctionBase);
 TypeInfo baseTypeInfo = baseType.GetTypeInfo();
 Assembly assembly = baseTypeInfo.Assembly;

 // Enumerate through all Windows Runtime types
 foreach (Type type in assembly.ExportedTypes)

	 CHAPTER 9  Animation	 355

 {
 TypeInfo typeInfo = type.GetTypeInfo();

 // Create RadioButton for each easing function
 if (typeInfo.IsPublic &&
 baseTypeInfo.IsAssignableFrom(typeInfo) &&
 type != baseType)
 {
 RadioButton radioButton = new RadioButton
 {
 Content = type.Name,
 Tag = type,
 Margin = new Thickness(6),

 };
 radioButton.Checked += OnEasingFunctionRadioButtonChecked;
 easingFunctionStackPanel.Children.Add(radioButton);
 }
 }

 // Check the first RadioButton in the StackPanel (the one labeled "None")
 (easingFunctionStackPanel.Children[0] as RadioButton).IsChecked = true;
 }

 void OnEasingFunctionRadioButtonChecked(object sender, RoutedEventArgs args)
 {
 RadioButton radioButton = sender as RadioButton;
 Type type = radioButton.Tag as Type;
 easingFunction = null;
 propertiesStackPanel.Children.Clear();

 // type is only null for "None" button
 if (type != null)
 {
 TypeInfo typeInfo = type.GetTypeInfo();

 // Find a parameterless constructor and instantiate the easing function
 foreach (ConstructorInfo constructorInfo in typeInfo.DeclaredConstructors)
 {
 if (constructorInfo.IsPublic && constructorInfo.GetParameters().Length == 0)
 {
 easingFunction = constructorInfo.Invoke(null) as EasingFunctionBase;
 break;
 }
 }

 // Enumerate the easing function properties
 foreach (PropertyInfo property in typeInfo.DeclaredProperties)
 {
 // We can only deal with properties of type int and double
 if (property.PropertyType != typeof(int) &&
 property.PropertyType != typeof(double))
 {
 continue;
 }

356	 PART 1  Elementals

 // Create a TextBlock for the property name
 TextBlock txtblk = new TextBlock
 {
 Text = property.Name + ":"
 };
 propertiesStackPanel.Children.Add(txtblk);

 // Create a Slider for the property value
 Slider slider = new Slider
 {
 Width = 144,
 Minimum = 0,
 Maximum = 10,
 Tag = property
 };

 if (property.PropertyType == typeof(int))
 {
 slider.StepFrequency = 1;
 slider.Value = (int)property.GetValue(easingFunction);
 }
 else
 {
 slider.StepFrequency = 0.1;
 slider.Value = (double)property.GetValue(easingFunction);
 }

 // Define the Slider event handler right here
 slider.ValueChanged += (sliderSender, sliderArgs) =>
 {
 Slider sliderChanging = sliderSender as Slider;
 PropertyInfo propertyInfo = sliderChanging.Tag as PropertyInfo;

 if (property.PropertyType == typeof(int))
 property.SetValue(easingFunction, (int)sliderArgs.NewValue);
 else
 property.SetValue(easingFunction, (double)sliderArgs.NewValue);

 DrawNewGraph();
 };
 propertiesStackPanel.Children.Add(slider);
 }
 }

 // Initialize EasingMode radio buttons
 foreach (UIElement child in easingModeStackPanel.Children)
 {
 RadioButton easingModeRadioButton = child as RadioButton;
 easingModeRadioButton.IsEnabled = easingFunction != null;

 easingModeRadioButton.IsChecked =
 easingFunction != null &&
 easingFunction.EasingMode == (EasingMode)easingModeRadioButton.Tag;
 }

	 CHAPTER 9  Animation	 357

 DrawNewGraph();
 }

 void OnEasingModeRadioButtonChecked(object sender, RoutedEventArgs args)
 {
 RadioButton radioButton = sender as RadioButton;
 easingFunction.EasingMode = (EasingMode)radioButton.Tag;
 DrawNewGraph();
 }

 void OnDemoButtonClick(object sender, RoutedEventArgs args)
 {
 // Set the selected easing function and start the animation
 Storyboard storyboard = this.Resources["storyboard"] as Storyboard;
 (storyboard.Children[1] as DoubleAnimation).EasingFunction = easingFunction;
 storyboard.Begin();
 }

 void DrawNewGraph()
 {
 polyline.Points.Clear();

 if (easingFunction == null)
 {
 polyline.Points.Add(new Point(0, 0));
 polyline.Points.Add(new Point(1000, 500));
 return;
 }

 for (decimal t = 0; t <= 1; t += 0.01m)
 {
 double x = (double)(1000 * t);
 double y = 500 * easingFunction.Ease((double)t);
 polyline.Points.Add(new Point(x, y));
 }
 }
}

There is some redundancy in these easing functions: The QuadraticEase, CubicEase, QuarticEase,
and QuinticEase are all special cases of the PowerEase class, and they can be duplicated with
PowerEase by setting the Power property to 2, 3, 4, and 5, respectively.

The above screen shot (a few pages ago) with ElasticEase shows that this particular Ease function
returns values outside the range of 0 and 1. The same is true with BackEase. Because the transfer
function possibly returns values less than 0 or greater than 1, the animation could take on values
outside the range of its From and To settings.

For many properties, this is no problem. But for some properties an exception could be raised.
Opacity, for example, can’t be set to values less than 0 or greater than 1. Width and Height can’t be set
to negative values, and FontSize must be greater than 0. Applying an animation to these properties
that results in an illegal value will raise a run-time exception.

358	 PART 1  Elementals

Although the easing functions usually cause animations to slow down and speed up in various
ways, it’s possible to use the easing functions in somewhat unorthodox ways. For example, SineEase
has this transfer function when EasingMode is set to the default value of EaseOut:

t’ = sin �
2

t

It’s the first quarter of a sine curve, starting fast and slowing down. For EaseIn, it’s the first quarter of a
cosine curve but flipped around to go from 0 to 1:

t’ = 1– cos �
2

t

It starts slow and speeds up.

SineEase with an EasingMode setting of EaseInOut is the first half of a cosine curve, adjusted to go
from 0 to 1:

 1– cos(�t)
2

t’ =

It starts slow, speeds up, and then slows down again. If you were to use the EaseInOut variation
of SineEase with a DoubleAnimation applied to the Canvas.Left property of an Ellipse and you set
AutoReverse equal to True and RepeatBehavior to Forever, you would get motion that resembles a
pendulum: slow right before and after the motion reverses, but faster in the middle.

If you apply a similar animation to Canvas.Top but offset by half a cycle, you can move an object
around in a circle, as the following program demonstrates:

Project: CircleAnimation | File: MainPage.xaml (excerpt)

<Page ... >
 <Page.Resources>
 <Storyboard x:Key="storyboard" SpeedRatio="3">
 <DoubleAnimation Storyboard.TargetName="ball"
 Storyboard.TargetProperty="(Canvas.Left)"
 From="-350" To="350" Duration="0:0:2"
 AutoReverse="True"
 RepeatBehavior="Forever">
 <DoubleAnimation.EasingFunction>
 <SineEase EasingMode="EaseInOut" />
 </DoubleAnimation.EasingFunction>
 </DoubleAnimation>

 <DoubleAnimation Storyboard.TargetName="ball"
 Storyboard.TargetProperty="(Canvas.Top)"
 BeginTime="0:0:1"
 From="-350" To="350" Duration="0:0:2"
 AutoReverse="True"
 RepeatBehavior="Forever">
 <DoubleAnimation.EasingFunction>
 <SineEase EasingMode="EaseInOut" />

	 CHAPTER 9  Animation	 359

 </DoubleAnimation.EasingFunction>
 </DoubleAnimation>
 </Storyboard>
 </Page.Resources>

 <Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <Canvas HorizontalAlignment="Center"
 VerticalAlignment="Center"
 Margin="0 0 48 48">
 <Ellipse Name="ball"
 Width="48"
 Height="48"
 Fill="Red" />
 </Canvas>
 </Grid>
</Page>

The Canvas is aligned in the center but offset by the size of the ellipse, which means that the point
(0, 0) relative to the Canvas is 24 pixels to the left and 24 pixels above the center of the window. The
Ellipse has default zero values of Canvas.Left and Canvas.Top and sits in the center. The animations
move that Ellipse 350 pixels to the left and right and up and down.

Notice that the second animation has a BeginTime of one second, so for the first second after the
program is loaded, the first animation moves the ellipse horizontally from –350 pixels to 0, and then
the second animation kicks in and begins moving the ball vertically from –350 to 0 as it is moving
horizontally from 0 to 350. Although the easing functions are intended to slow down and speed up
animations, the Ellipse has a constant angular velocity as it travels around in a circle.

I’ll show you a more direct way of implementing revolution by using a RotateTransform in the next
chapter.

All-XAML Animations

Several of the programs shown so far in this chapter have triggered the Storyboard in the handler for
the page’s Loaded event. This is handy when you need to start an animation when a program or page
is loaded or for “demo” animations that simply run forever.

Triggering an animation in the Loaded event can actually be done entirely in XAML using a legacy
property named Triggers inherited from the Windows Presentation Foundation. In the long journey
from WPF to the Windows Runtime, the Triggers property has lost virtually all its earlier functionality,
but it can still trigger a storyboard:

<Page.Triggers>
 <EventTrigger>
 <BeginStoryboard>
 <Storyboard ... >
 ...
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger>
</Page.Triggers>

360	 PART 1  Elementals

The Triggers property element usually appears on the root element of a XAML file, traditionally
toward the bottom of the file, but you can actually define the Triggers property element on any an-
cestor element of the animation target.

Notice EventTrigger and BeginStoryboard. This is the only context in which you’ll see those tags.
EventTrigger has a RoutedEvent property, but if you try setting it to anything (including the reasonable
“Loaded” or “Page.Loaded”), you’ll generate a run-time error. BeginStoryboard can have multiple
Storyboard children.

Here’s a program that’s similar to the ManualColorAnimation of Chapter 3. The background of the
Grid and the Foreground of a TextBlock are animated from black to white in different directions. The
two ColorAnimation objects target the Color properties of two SolidColorBrush objects:

Project: ForeverColorAnimation | File: MainPage.xaml (excerpt)

<Page ... >
 <Grid>
 <Grid.Background>
 <SolidColorBrush x:Name="gridBrush" />
 </Grid.Background>

 <TextBlock Text="Color Animation"
 FontFamily="Times New Roman"
 FontSize="96"
 FontWeight="Bold"
 HorizontalAlignment="Center"
 VerticalAlignment="Center">
 <TextBlock.Foreground>
 <SolidColorBrush x:Name="txtblkBrush" />
 </TextBlock.Foreground>
 </TextBlock>
 </Grid>

 <Page.Triggers>
 <EventTrigger>
 <BeginStoryboard>
 <Storyboard RepeatBehavior="Forever"
 AutoReverse="True">
 <ColorAnimation Storyboard.TargetName="gridBrush"
 Storyboard.TargetProperty="Color"
 From="Black" To="White" Duration="0:0:2" />

 <ColorAnimation Storyboard.TargetName="txtblkBrush"
 Storyboard.TargetProperty="Color"
 From="White" To="Black" Duration="0:0:2" />
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger>
 </Page.Triggers>
</Page>

	 CHAPTER 9  Animation	 361

ColorAnimation is perhaps the second most common animation class after DoubleAnimation. It’s
pretty much limited to targeting the Color property of SolidColorBrush and GradientStop, but these
brushes show up frequently, so it’s more versatile than it might seem. Notice the RepeatBehavior and
AutoReverse settings in the Storyboard.

The code-behind file contains nothing but an InitializeComponent call in the page’s constructor.
What this means is that you can copy this XAML file into the editor in the XamlCruncher program
presented in Chapter 8, “App Bars and Popups,” remove the x:Class attribute, and run the anima-
tion without help from any code. XamlCruncher (or another XAML-editing program) is a fine way to
experiment with animations.

It’s also possible to animate properties of type Point. Properties of type Point aren’t very common,
but EllipseGeometry has a Center property of type Point. If you create a circle or ellipse using Path
and EllipseGeometry rather than the Ellipse class, you can move it around the screen by animating
the Center property. Unlike animating Canvas.Left and Canvas.Top, this Path doesn’t need to be in
a Canvas, and the position of the figure is specified relative to its center rather than the upper-left
corner.

However, you can’t animate the X and Y properties of a Point value separately. Point is a structure
rather than a class, which means it doesn’t derive from DependencyObject, which means that the X
and Y properties aren’t backed by dependency properties.

Properties of type Point also show up in some PathSegment derivatives: ArcSegment,
BezierSegment, LineSegment, and QuadraticBezierSegment all have properties of type Point.
Animating these Point properties allows you to dynamically alter graphical figures. Here’s a program
that uses the Bézier approximation to a circle I discussed earlier but then animates all 13 points so
that the circle deforms into a square. Just to demonstrate that the Triggers property element doesn’t
need to be defined on the root element of the XAML file, I’ve defined it right on the Path:

Project: SquaringTheCircle | File: MainPage.xaml (excerpt)

<Page ... >
 <Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <Canvas HorizontalAlignment="Center"
 VerticalAlignment="Center">
 <Path Fill="{StaticResource ApplicationPressedForegroundThemeBrush}"
 Stroke="{StaticResource ApplicationForegroundThemeBrush}"
 StrokeThickness="3" >
 <Path.Data>
 <PathGeometry>
 <PathFigure x:Name="bezier1" IsClosed="True">
 <BezierSegment x:Name="bezier2" />
 <BezierSegment x:Name="bezier3" />
 <BezierSegment x:Name="bezier4" />
 <BezierSegment x:Name="bezier5" />
 </PathFigure>
 </PathGeometry>
 </Path.Data>

362	 PART 1  Elementals

 <Path.Triggers>
 <EventTrigger>
 <BeginStoryboard>
 <Storyboard RepeatBehavior="Forever">
 <PointAnimation Storyboard.TargetName="bezier1"
 Storyboard.TargetProperty="StartPoint"
 EnableDependentAnimation="True"
 From="0 200" To="0 250"
 AutoReverse="True" />

 <PointAnimation Storyboard.TargetName="bezier2"
 Storyboard.TargetProperty="Point1"
 EnableDependentAnimation="True"
 From="110 200" To="125 125"
 AutoReverse="True" />

 <PointAnimation Storyboard.TargetName="bezier2"
 Storyboard.TargetProperty="Point2"
 EnableDependentAnimation="True"
 From="200 110" To="125 125"
 AutoReverse="True" />

 <PointAnimation Storyboard.TargetName="bezier2"
 Storyboard.TargetProperty="Point3"
 EnableDependentAnimation="True"
 From="200 0" To="250 0"
 AutoReverse="True" />

 <PointAnimation Storyboard.TargetName="bezier3"
 Storyboard.TargetProperty="Point1"
 EnableDependentAnimation="True"
 From="200 -110" To="125 -125"
 AutoReverse="True" />

 <PointAnimation Storyboard.TargetName="bezier3"
 Storyboard.TargetProperty="Point2"
 EnableDependentAnimation="True"
 From="110 -200" To="125 -125"
 AutoReverse="True" />

 <PointAnimation Storyboard.TargetName="bezier3"
 Storyboard.TargetProperty="Point3"
 EnableDependentAnimation="True"
 From="0 -200" To="0 -250"
 AutoReverse="True" />

 <PointAnimation Storyboard.TargetName="bezier4"
 Storyboard.TargetProperty="Point1"
 EnableDependentAnimation="True"
 From="-110 -200" To="-125 -125"
 AutoReverse="True" />

 <PointAnimation Storyboard.TargetName="bezier4"
 Storyboard.TargetProperty="Point2"
 EnableDependentAnimation="True"
 From="-200 -110" To="-125 -125"
 AutoReverse="True" />

	 CHAPTER 9  Animation	 363

 <PointAnimation Storyboard.TargetName="bezier4"
 Storyboard.TargetProperty="Point3"
 EnableDependentAnimation="True"
 From="-200 0" To="-250 0"
 AutoReverse="True" />

 <PointAnimation Storyboard.TargetName="bezier5"
 Storyboard.TargetProperty="Point1"
 EnableDependentAnimation="True"
 From="-200 110" To="-125 125"
 AutoReverse="True" />

 <PointAnimation Storyboard.TargetName="bezier5"
 Storyboard.TargetProperty="Point2"
 EnableDependentAnimation="True"
 From="-110 200" To="-125 125"
 AutoReverse="True" />

 <PointAnimation Storyboard.TargetName="bezier5"
 Storyboard.TargetProperty="Point3"
 EnableDependentAnimation="True"
 From="0 200" To="0 250"
 AutoReverse="True" />
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger>
 </Path.Triggers>
 </Path>
 </Canvas>
 </Grid>
</Page>

Here’s the figure somewhere between a square and a circle:

364	 PART 1  Elementals

Animating Custom Classes

Yes, you can animate properties of custom classes. But the animatable properties must be backed by
dependency properties.

Here’s a class named PieSlice that derives from Path to render a pie slice such as used in pie charts.
The custom properties are Center, Radius, StartAngle (in degrees, measured clockwise from 12:00),
and SweepAngle (in degrees, measured clockwise from StartAngle):

Project: AnimatedPieSlice | File: PieSlice.cs

using System;
using Windows.Foundation;
using Windows.UI.Xaml;
using Windows.UI.Xaml.Media;
using Windows.UI.Xaml.Shapes;

namespace AnimatedPieSlice
{
 public class PieSlice : Path
 {
 PathFigure pathFigure;
 LineSegment lineSegment;
 ArcSegment arcSegment;

 static PieSlice()
 {
 CenterProperty = DependencyProperty.Register("Center",
 typeof(Point), typeof(PieSlice),
 new PropertyMetadata(new Point(100, 100), OnPropertyChanged));

 RadiusProperty = DependencyProperty.Register("Radius",
 typeof(double), typeof(PieSlice),
 new PropertyMetadata(100.0, OnPropertyChanged));

 StartAngleProperty = DependencyProperty.Register("StartAngle",
 typeof(double), typeof(PieSlice),
 new PropertyMetadata(0.0, OnPropertyChanged));

 SweepAngleProperty = DependencyProperty.Register("SweepAngle",
 typeof(double), typeof(PieSlice),
 new PropertyMetadata(90.0, OnPropertyChanged));
 }

 public PieSlice()
 {
 pathFigure = new PathFigure { IsClosed = true };
 lineSegment = new LineSegment();
 arcSegment = new ArcSegment { SweepDirection = SweepDirection.Clockwise };
 pathFigure.Segments.Add(lineSegment);
 pathFigure.Segments.Add(arcSegment);

 PathGeometry pathGeometry = new PathGeometry();
 pathGeometry.Figures.Add(pathFigure);

 this.Data = pathGeometry;
 UpdateValues();
 }

	 CHAPTER 9  Animation	 365

 public static DependencyProperty CenterProperty { private set; get; }

 public static DependencyProperty RadiusProperty { private set; get; }

 public static DependencyProperty StartAngleProperty { private set; get; }

 public static DependencyProperty SweepAngleProperty { private set; get; }

 public Point Center
 {
 set { SetValue(CenterProperty, value); }
 get { return (Point)GetValue(CenterProperty); }
 }

 public double Radius
 {
 set { SetValue(RadiusProperty, value); }
 get { return (double)GetValue(RadiusProperty); }
 }

 public double StartAngle
 {
 set { SetValue(StartAngleProperty, value); }
 get { return (double)GetValue(StartAngleProperty); }
 }

 public double SweepAngle
 {
 set { SetValue(SweepAngleProperty, value); }
 get { return (double)GetValue(SweepAngleProperty); }
 }

 static void OnPropertyChanged(DependencyObject obj,
 DependencyPropertyChangedEventArgs args)
 {
 (obj as PieSlice).UpdateValues();
 }

 void UpdateValues()
 {
 pathFigure.StartPoint = this.Center;

 double x = this.Center.X + this.Radius * Math.Sin(Math.PI * this.StartAngle / 180);
 double y = this.Center.Y - this.Radius * Math.Cos(Math.PI * this.StartAngle / 180);
 lineSegment.Point = new Point(x, y);

 x = this.Center.X + this.Radius * Math.Sin(Math.PI * (this.StartAngle +
 this.SweepAngle) / 180);

 y = this.Center.Y - this.Radius * Math.Cos(Math.PI * (this.StartAngle +
 this.SweepAngle) / 180);
 arcSegment.Point = new Point(x, y);
 arcSegment.IsLargeArc = this.SweepAngle >= 180;

 arcSegment.Size = new Size(this.Radius, this.Radius);
 }
 }
}

366	 PART 1  Elementals

Just about everything in this class is overhead for the dependency properties except the
UpdateValues method, and that method is critical. UpdateValues is called whenever any of the four
properties changes. Any of those four properties can be the target of an animation, which means that
UpdateValues might be called 60 times per second for an indefinite period of time.

In methods called so frequently you should be careful about creating objects that require memory
allocations on the heap. Creating new double and Point values is fine because those are stored on the
stack. But a not very good way to implement this method would be to create new PathFigure, Line-
Segment, and ArcSegment objects during every call because that generates a lot of activity allocating
memory that must later be freed. Try re-using or caching objects rather than re-creating them.

The PieSlice class is part of the AnimatedPieSlice project, which includes a MainPage.xaml that
instantiates, initializes, and animates it:

Project: AnimatedPieSlice | File: MainPage.xaml (excerpt)

<Page ... >
 <Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <local:PieSlice x:Name="pieSlice"
 Center="400 400"
 Radius="200"
 Stroke="Red"
 StrokeThickness="3"
 Fill="Yellow" />
 </Grid>

 <Page.Triggers>
 <EventTrigger>
 <BeginStoryboard>
 <Storyboard>
 <DoubleAnimation Storyboard.TargetName="pieSlice"
 Storyboard.TargetProperty="SweepAngle"
 EnableDependentAnimation="True"
 From="1" To="359" Duration="0:0:3"
 AutoReverse="True"
 RepeatBehavior="Forever" />
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger>
 </Page.Triggers>
</Page>

The result is a pie slice that ranges from 1 degree to 359 degrees, back and forth forever:

	 CHAPTER 9  Animation	 367

Key Frame Animations

All the programs you’ve seen so far have animated properties from one value to another, usually
specified as the From and To properties of DoubleAnimation, ColorAnimation, and PointAnima-
tion classes, and the only variations have involved nonlinear ways to get from From to To and then
reversing animations to go from To to From.

What if you need to animate a property from one value to another value and then to a third value,
and maybe even beyond? A solution that might occur to you is to define several animations in the
storyboard targeting the same property and to use BeginTime to delay some of those animations so
that they don’t overlap. But that’s illegal. You can’t have more than one animation in a storyboard
targeting a particular property.

The correct solution is a key frame animation, so called because you define the progress of the
animation through a series of key frames. Each key frame indicates what the value of the property
should be at a particular elapsed time and how to get from the previous key frame value to the new
value in that key frame.

Here’s a simple example of a key frame animation that targets the Center property of an
EllipseGeometry to move the circle around the screen:

Project: SimpleKeyFrameAnimation | File: MainPage.xaml (excerpt)

<Page ... >
 <Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <Path Fill="Blue">
 <Path.Data>
 <EllipseGeometry x:Name="ellipse"
 RadiusX="24"
 RadiusY="24" />

368	 PART 1  Elementals

 </Path.Data>
 </Path>
 </Grid>

 <Page.Triggers>
 <EventTrigger>
 <BeginStoryboard>
 <Storyboard>
 <PointAnimationUsingKeyFrames Storyboard.TargetName="ellipse"
 Storyboard.TargetProperty="Center"
 EnableDependentAnimation="True"
 RepeatBehavior="Forever">
 <DiscretePointKeyFrame KeyTime="0:0:0" Value="100 100" />
 <LinearPointKeyFrame KeyTime="0:0:2" Value="700 700" />
 <LinearPointKeyFrame KeyTime="0:0:2.1" Value="700 100" />
 <LinearPointKeyFrame KeyTime="0:0:4.1" Value="100 700" />
 <LinearPointKeyFrame KeyTime="0:0:4.2" Value="100 100" />
 </PointAnimationUsingKeyFrames>
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger>
 </Page.Triggers>
</Page>

Rather than a PointAnimation, the Storyboard contains a PointAnimationUsingKeyFrames.
Rather than specifying From, To, and Duration properties in the PointAnimation, the
PointAnimationUsingKeyFrames contains children of type DiscretePointKeyFrame and
LinearPointKeyFrame.

Each key frame in a collection specifies what you want the value of the target property to be at
that particular time from the beginning of the animation. Very often a collection of key frames will
begin with a Discrete item with a KeyTime of zero, basically initializing the property to that value:

<DiscretePointKeyFrame KeyTime="0:0:0" Value="100 100" />

The next key frame in the collection is

<LinearPointKeyFrame KeyTime="0:0:2" Value="700 700" />

What this means is that the target property is linearly increased from the previous point (100, 100) to
the point (700, 700) over the course of two seconds. At an elapsed time of two seconds, the value is
(700, 700).

The next key frame specifies a much faster animation:

<LinearPointKeyFrame KeyTime="0:0:2.1" Value="700 100" />

From an elapsed time of two seconds to 2.1 seconds, the point changes from (700, 700) to (700, 100).
The animation then slows up again for the next two seconds:

<LinearPointKeyFrame KeyTime="0:0:4.1" Value="100 700" />

The last key frame is:

	 CHAPTER 9  Animation	 369

<LinearPointKeyFrame KeyTime="0:0:4.2" Value="100 100" />

At an elapsed time of 4.2 seconds, the value of the target property is (100, 100) and the animation is
finished. At this point, it can reverse (if AutoReverse is true) or start over again (if an appropriate value
of RepeatBehavior is set).

It’s possible for programmers to “overthink” key frames, so here are two extraordinarily simple
rules that might prevent confusion:

■■ A key frame always indicates the desired value of the property at that elapsed time.

■■ The duration of an animation is the highest key time in the collection.

To store the collection of key frames, the PointAnimationUsingKeyFrames class defines a property
named KeyFrames of type PointKeyFrameCollection, which is a collection of PointKeyFrame objects.
PointKeyFrame defines the KeyTime and Value properties. Four classes derive from PointKeyFrame,
and you’ve already seen two of them:

■■ DiscretePointKeyFrame jumps to a particular value.

■■ LinearPointKeyFrame performs a linear animation.

■■ SplinePointKeyFrame can speed up or slow down.

■■ EasingPointKeyFrame animates with an easing function.

Similarly, the Windows Runtime includes a DoubleAnimationUsingKeyFrames class, which has
children of type DoubleKeyFrame, from which similar Discrete, Linear, Spline, and Easing classes derive,
and ColorAnimationUsingKeyFrames with children of type ColorKeyFrame, also with Discrete, Linear,
Spline, and Easing derivatives.

The following project uses ColorAnimationUsingKeyFrames to color the background of the grid
with colors that animate through the rainbow:

Project: RainbowAnimation | File: MainPage.xaml (excerpt)

<Page ... >
 <Grid>
 <Grid.Background>
 <SolidColorBrush x:Name="brush" />
 </Grid.Background>
 </Grid>

 <Page.Triggers>
 <EventTrigger>
 <BeginStoryboard>
 <Storyboard RepeatBehavior="Forever">
 <ColorAnimationUsingKeyFrames Storyboard.TargetName="brush"
 Storyboard.TargetProperty="Color">
 <DiscreteColorKeyFrame KeyTime="0:0:0" Value="#FF0000" />
 <LinearColorKeyFrame KeyTime="0:0:1" Value="#FFFF00" />
 <LinearColorKeyFrame KeyTime="0:0:2" Value="#00FF00" />
 <LinearColorKeyFrame KeyTime="0:0:3" Value="#00FFFF" />
 <LinearColorKeyFrame KeyTime="0:0:4" Value="#0000FF" />

370	 PART 1  Elementals

 <LinearColorKeyFrame KeyTime="0:0:5" Value="#FF00FF" />
 <LinearColorKeyFrame KeyTime="0:0:6" Value="#FF0000" />
 </ColorAnimationUsingKeyFrames>
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger>
 </Page.Triggers>
</Page>

The animation is 6 seconds in length, and it ends up at the same value it started with, which means
there won’t be any discontinuities when it starts over again from the beginning.

Here’s a pair of PointAnimationUsingKeyFrames objects that animate the StartPoint and EndPoint
properties of a LinearGradientBrush object to make the gradient go around in circles:

Project: GradientBrushPointAnimation | File: MainPage.xaml (excerpt)

<Page ... >
 <Grid>
 <Grid.Background>
 <LinearGradientBrush x:Name="gradientBrush">
 <GradientStop Offset="0" Color="Red" />
 <GradientStop Offset="1" Color="Blue" />
 </LinearGradientBrush>
 </Grid.Background>
 </Grid>

 <Page.Triggers>
 <EventTrigger>
 <BeginStoryboard>
 <Storyboard RepeatBehavior="Forever">
 <PointAnimationUsingKeyFrames Storyboard.TargetName="gradientBrush"
 Storyboard.TargetProperty="StartPoint"
 EnableDependentAnimation="True">
 <LinearPointKeyFrame KeyTime="0:0:0" Value="0 0" />
 <LinearPointKeyFrame KeyTime="0:0:1" Value="1 0" />
 <LinearPointKeyFrame KeyTime="0:0:2" Value="1 1" />
 <LinearPointKeyFrame KeyTime="0:0:3" Value="0 1" />
 <LinearPointKeyFrame KeyTime="0:0:4" Value="0 0" />
 </PointAnimationUsingKeyFrames>

 <PointAnimationUsingKeyFrames Storyboard.TargetName="gradientBrush"
 Storyboard.TargetProperty="EndPoint"
 EnableDependentAnimation="True">
 <LinearPointKeyFrame KeyTime="0:0:0" Value="1 1" />
 <LinearPointKeyFrame KeyTime="0:0:1" Value="0 1" />
 <LinearPointKeyFrame KeyTime="0:0:2" Value="0 0" />
 <LinearPointKeyFrame KeyTime="0:0:3" Value="1 0" />
 <LinearPointKeyFrame KeyTime="0:0:4" Value="1 1" />
 </PointAnimationUsingKeyFrames>
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger>
 </Page.Triggers>
</Page>

	 CHAPTER 9  Animation	 371

The SplineDoubleKeyFrame, SplineColorKeyFrame, and SplinePointKeyFrame objects are not
used as much as they once were because much of their functionality has been superseded by
EasingDoubleKeyFrame, EasingColorKeyFrame, and EasingPointKeyFrame. With the Spline variations of
the key frame, you use a KeySpline object to define two control points of a Bézier spline that begins at the
point (0, 0) and ends at (1, 1). This spline performs the same role as an easing function in that it bends
time and causes an animation to speed up and slow down. I’ll have an example in the next chapter.

The Object Animation

The Windows Runtime animation system is also capable of animating properties of type Object, which
implicitly seems to encompass everything, but there’s a catch: There is no ObjectAnimation class with
From and To properties. There is only an ObjectAnimationUsingKeyFrames class, and the only class
that derives from ObjectKeyFrame is DiscreteObjectKeyFrame.

In other words, you can indeed define an animation to target a property of any type (as long as
that property is backed by a dependency property), but you can use the animation only to set that
property to discrete values.

In practice, object animations are used mostly for targeting properties of enumeration types or
Brush types, which allows setting the property to a predefined brush resource. These are mostly used
in control templates, as you’ll see in Chapter 11.

But here’s an example that moves an Ellipse around a screen while animating its Visibility property
with the enumeration members Visible and Collapsed and its Fill property with predefined brushes.
Because these animations cause the Ellipse to flicker on and off, and with different discrete colors, the
project is called FastNotFluid:

Project: FastNotFluid | File: MainPage.xaml (excerpt)

<Page ... >

 <Grid Background="Gray">
 <Canvas SizeChanged="OnCanvasSizeChanged"
 Margin="0 0 96 96">
 <Ellipse Name="ellipse"
 Width="96"
 Height="96" />
 </Canvas>
 </Grid>

 <Page.Triggers>
 <EventTrigger>
 <BeginStoryboard>
 <Storyboard>
 <DoubleAnimation x:Name="horzAnima"
 Storyboard.TargetName="ellipse"
 Storyboard.TargetProperty="(Canvas.Left)"
 From="0" Duration="0:0:2.51"
 AutoReverse="True"
 RepeatBehavior="Forever" />

372	 PART 1  Elementals

 <DoubleAnimation x:Name="vertAnima"
 Storyboard.TargetName="ellipse"
 Storyboard.TargetProperty="(Canvas.Top)"
 From="0" Duration="0:0:1.01"
 AutoReverse="True"
 RepeatBehavior="Forever" />

 <ObjectAnimationUsingKeyFrames
 Storyboard.TargetName="ellipse"
 Storyboard.TargetProperty="Visibility"
 RepeatBehavior="Forever">
 <DiscreteObjectKeyFrame KeyTime="0:0:0" Value="Visible" />
 <DiscreteObjectKeyFrame KeyTime="0:0:0.2" Value="Collapsed" />
 <DiscreteObjectKeyFrame KeyTime="0:0:0.25" Value="Visible" />
 <DiscreteObjectKeyFrame KeyTime="0:0:0.3" Value="Collapsed" />
 <DiscreteObjectKeyFrame KeyTime="0:0:0.45" Value="Visible" />
 </ObjectAnimationUsingKeyFrames>

 <ObjectAnimationUsingKeyFrames
 Storyboard.TargetName="ellipse"
 Storyboard.TargetProperty="Fill"
 RepeatBehavior="Forever">
 <DiscreteObjectKeyFrame KeyTime="0:0:0"
 Value="{StaticResource ApplicationPageBackgroundThemeBrush}" />
 <DiscreteObjectKeyFrame KeyTime="0:0:0.2"
 Value="{StaticResource ApplicationForegroundThemeBrush}" />
 <DiscreteObjectKeyFrame KeyTime="0:0:0.4"
 Value="{StaticResource ApplicationPressedForegroundThemeBrush}" />
 <DiscreteObjectKeyFrame KeyTime="0:0:0.6"
 Value="{StaticResource ApplicationPageBackgroundThemeBrush}" />
 </ObjectAnimationUsingKeyFrames>
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger>
 </Page.Triggers>
</Page>

It is interesting that the Value property of the DiscreteObjectKeyFrame can be set directly to the name
of an enumeration member or set to a StaticResource without causing confusion about the type.

Another advantage of defining the Storyboard and animations in a Triggers section is accessing the
individual animations by name in the code-behind file:

Project: FastNotFluid | File: MainPage.xaml.cs (excerpt)

void OnCanvasSizeChanged(object sender, SizeChangedEventArgs args)
{
 horzAnima.To = args.NewSize.Width;
 vertAnima.To = args.NewSize.Height;
}

	 CHAPTER 9  Animation	 373

Predefined Animations and Transitions

I said at the outset that the Windows.UI.Xaml.Media.Animation contained 71 classes, but if you’ve
been keeping count, you probably haven’t reached that number yet.

Besides the classes I’ve mentioned so far, the namespace also includes 14 predefined animations
that derive from Timeline with names that end with ThemeAnimation. These animations al-
ready have all their properties and target properties set and need only a target object that you
set with a TargetName property. So that you can experiment with these predefined animations,
I’ve created a program where 12 of these animations (excluding SplitOpenThemeAnimation and
SplitCloseThemeAnimation, which don’t quite fit in the scheme of this program) are associated with
their own Storyboard objects where the TargetName is set to an element with the name of “button”:

Project: PreconfiguredAnimations | MainPage.xaml (excerpt)

<Page ... >
 <Page.Resources>
 <Style TargetType="Button">
 <Setter Property="Margin" Value="0 6" />
 </Style>

 <Storyboard x:Key="fadeIn">
 <FadeInThemeAnimation TargetName="button" />
 </Storyboard>

 <Storyboard x:Key="fadeOut">
 <FadeOutThemeAnimation TargetName="button" />
 </Storyboard>

 <Storyboard x:Key="popIn">
 <PopInThemeAnimation TargetName="button" />
 </Storyboard>

 <Storyboard x:Key="popOut">
 <PopOutThemeAnimation TargetName="button" />
 </Storyboard>

 <Storyboard x:Key="reposition">
 <RepositionThemeAnimation TargetName="button" />
 </Storyboard>

 <Storyboard x:Key="pointerUp">
 <PointerUpThemeAnimation TargetName="button" />
 </Storyboard>

 <Storyboard x:Key="pointerDown">
 <PointerDownThemeAnimation TargetName="button" />
 </Storyboard>

 <Storyboard x:Key="swipeBack">
 <SwipeBackThemeAnimation TargetName="button" />
 </Storyboard>

374	 PART 1  Elementals

 <Storyboard x:Key="swipeHint">
 <SwipeHintThemeAnimation TargetName="button" />
 </Storyboard>

 <Storyboard x:Key="dragItem">
 <DragItemThemeAnimation TargetName="button" />
 </Storyboard>

 <Storyboard x:Key="dropTargetItem">
 <DropTargetItemThemeAnimation TargetName="button" />
 </Storyboard>

 <Storyboard x:Key="dragOver">
 <DragOverThemeAnimation TargetName="button" />
 </Storyboard>
 </Page.Resources>

 <Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition Width="*" />
 </Grid.ColumnDefinitions>

 <StackPanel Name="animationTriggersStackPanel"
 Grid.Column="0"
 VerticalAlignment="Center">

 <Button Content="Fade In"
 Tag="fadeIn"
 Click="OnButtonClick" />

 <Button Content="Fade Out"
 Tag="fadeOut"
 Click="OnButtonClick" />

 <Button Content="Pop In"
 Tag="popIn"
 Click="OnButtonClick" />

 <Button Content="Pop Out"
 Tag="popOut"
 Click="OnButtonClick" />

 <Button Content="Reposition"
 Tag="reposition"
 Click="OnButtonClick" />

 <Button Content="Pointer Up"
 Tag="pointerUp"
 Click="OnButtonClick" />

 <Button Content="Pointer Down"
 Tag="pointerDown"
 Click="OnButtonClick" />

	 CHAPTER 9  Animation	 375

 <Button Content="Swipe Back"
 Tag="swipeBack"
 Click="OnButtonClick" />

 <Button Content="Swipe Hint"
 Tag="swipeHint"
 Click="OnButtonClick" />

 <Button Content="Drag Item"
 Tag="dragItem"
 Click="OnButtonClick" />

 <Button Content="Drop Target Item"
 Tag="dropTargetItem"
 Click="OnButtonClick" />

 <Button Content="Drag Over"
 Tag="dragOver"
 Click="OnButtonClick" />
 </StackPanel>

 <!-- Animation target -->
 <Button Name="button"
 Grid.Column="1"
 Content="Big Button"
 FontSize="48"
 HorizontalAlignment="Center"
 VerticalAlignment="Center" />
 </Grid>
</Page>

Besides the Button named “button”, the XAML file also defines a Button for each of the
preconfigured animations. The code-behind file uses the Tag property to trigger the corresponding
Storyboard:

Project: PreconfiguredAnimations | File: MainPage.xaml.cs (excerpt)

void OnButtonClick(object sender, RoutedEventArgs args)
{
 Button btn = sender as Button;
 string key = btn.Tag as string;
 Storyboard storyboard = this.Resources[key] as Storyboard;
 storyboard.Begin();
}

Watch out! Some of these animations cause the target Button to disappear, and others are
rather subtle, but you’ll get an idea of some of the effects that you might want to add to your own
application.

Another set of predefined animations is the eight classes that derive from Transition. These are
rather more complex sets of animations that you set to one of the following properties of type
TransitionCollection:

■■ Transitions property defined by UIElement

■■ ContentTransitions property defined by ContentControl

376	 PART 1  Elementals

■■ ChildrenTransitions property defined by Panel

■■ ItemContainerTransitions property defined by ItemsControl

For example, try replacing the StackPanel tag in the PreconfiguredAnimations program with the
following:

<StackPanel Name="animationTriggersStackPanel"
 Grid.Column="0"
 VerticalAlignment="Center">
 <StackPanel.ChildrenTransitions>
 <TransitionCollection>
 <EntranceThemeTransition />
 </TransitionCollection>
 </StackPanel.ChildrenTransitions>

Now, as the page is loaded, the buttons seem to appear a little offset from their actual positions and
then shift into place.

I’ll have more to say about these transitions in Chapter 11 and Chapter 12, “Pages and Navigation.”

		 377

C H A P T E R 1 0

Transforms

In Chapter 9, “Animation,” you saw how to use animations to move objects around the screen,
change their size or color or opacity, and even move the dots in a dotted line. But certain types of

animations were missing. What if you want to use an animation to rotate a button when the button is
clicked? And I don’t necessarily mean to make the button spin around crazy, but maybe just jiggle a
little as if the button is saying, “I simply can’t restrain my enthusiasm to be carrying out the command
you desire.”

What you need for this job (and others like it) are transforms. Back in the old days, transforms were
called graphics transforms or even—perhaps to scare away the uninitiated—matrix transforms. But
in recent years transforms have been liberated from the greedy clutches of the graphics mavens and
made available to all programmers.

This is not to imply that transforms no longer have anything to do with mathematics. (Yes, there
will be math.) But it’s possible to use transforms in the Windows Runtime without getting involved in
the mathematics that enable their capabilities.

A Brief Overview

A transform is basically a mathematical formula that is applied to a point (x, y) to create a new point
(x’, y’). If you apply the same formula to all the points of a visual object, you can effectively move the
object, or make it a different size, or rotate it, or even distort the object in various ways.

Transforms are supported in the Windows Runtime with three properties defined by UIElement:
RenderTransform, RenderTransformOrigin, and Projection. Because these properties are defined by
UIElement, transforms are not limited to vector graphics as they were in the old days. You can apply
transforms to any element, including Image, TextBlock, and Button. If you apply a transform to a Panel
derivative such as a Grid, it also applies to all the children of that panel.

378	 PART 1  Elementals

To apply a transform to an element, use property-element syntax to set the RenderTransform
property to an instance of a class that derives from Transform, for example, RotateTransform:

Project: SimpleRotate | File: MainPage.xaml (excerpt)

<Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <Image Source="http://www.charlespetzold.com/pw6/PetzoldJersey.jpg"
 Stretch="None"
 HorizontalAlignment="Right"
 VerticalAlignment="Bottom">
 <Image.RenderTransform>
 <RotateTransform Angle="135" />
 </Image.RenderTransform>
 </Image>
</Grid>

The Angle property of the RotateTransform indicates a clockwise rotation of 135 degrees:

But the result only appears reasonable because I knew that the Image would be rotated relative to
its upper-left corner, so I deliberately positioned the Image element in the lower-right corner of the
page. Rotation in two dimensions always occurs around a particular point—like a pin that attaches
a photograph to a cork board—and setting that point correctly turns out to be one of the trickier
aspects of working with transforms.

	 CHAPTER 10  Transforms	 379

You can set the RenderTransform property to any one of the seven classes that derive from
Transform, arranged here roughly in order of increasing mathematical complexity:

Object
 DependencyObject
 GeneralTransform
 Transform
 TranslateTransform
 ScaleTransform
 RotateTransform
 SkewTransform
 CompositeTransform
 MatrixTransform
 TransformGroup

These classes define traditional two-dimensional affine transforms. The word “affine” suggests that
the transformed object has certain affinities with the nontransformed object: A straight line is always
transformed to another straight line. The line possibly assumes a different location, size, or orienta-
tion, but it is still a straight line. Lines that are parallel prior to an affine transform continue to be
parallel after the transform. An affine transform never causes anything to shoot off into infinity.
Indeed, the mathematical definition of affine is “preserving finiteness.”

The Windows Runtime also supports a certain type of non-affine transform commonly used in
three-dimensional perspective. You can use the Windows Runtime to achieve three-dimensional
effects by setting the Projection property defined by UIElement to an instance of one of the two
classes that derive from Projection:

Object
 DependencyObject
 Projection
 PlaneProjection
 Matrix3DProjection

Rotation in three dimensions is always around an axis. Rotation around the Y (vertical) axis is
demonstrated in the SimpleProjection project:

Project: SimpleProjection | File: MainPage.xaml (excerpt)

<Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <Image Source="http://www.charlespetzold.com/pw6/PetzoldJersey.jpg"
 HorizontalAlignment="Center"
 VerticalAlignment="Center">
 <Image.Projection>
 <PlaneProjection RotationY="-60" />
 </Image.Projection>
 </Image>
</Grid>

380	 PART 1  Elementals

This creates a rather different sort of rotation, seeming to add a third dimension to the two
dimensions of the screen:

Obviously, parallel lines are not preserved in this type of transform. That’s what makes it appear as if it
exists in 3D space.

The Projection transforms are sometimes called pseudo-3D transforms and are intended to provide
a little “3Dishness” to the Windows Runtime. You can define an animation to make an element seem
to swing into view like a door or flip around like a playing card. But the element itself stays flat. This is
why one of the Projection classes refers to a “plane.” You’re basically taking a flat element and moving
it in 3D space.

Math-oriented programmers might be able to persuade Matrix3DProjection to display actual 3D
objects in the Windows Runtime. But the Windows Runtime is missing some crucial features of 3D,
such as surface shading based on light sources, or clipping when one object is partially hidden behind
another. If you need to bring real 3D graphics into your Windows 8 application, you’ll want to use
Direct3D, which is only accessible from C++ and (it grieves me to say) beyond the scope of this book.

Rotation (Manual and Animated)

It’s common for tutorials such as this to begin the subject of transforms with the mathematically
simple ones: TranslateTransform to move objects and ScaleTransform to make them larger or smaller.
But these aren’t very impressive because you’ve already seen animations that move an object around
the screen or change its size. That’s why I’m starting with something you can’t do in other ways.

I just demonstrated that you can set the Angle property of RotateTransform directly in XAML, but
it’s much more fun to change the Angle property dynamically with a data binding or an animation,
and the result can also be more revealing of what’s actually going on. Here’s a XAML file with the

	 CHAPTER 10  Transforms	 381

Angle property of a RotateTransform bound to the Value property of a Slider with a range from 0
through 360:

Project: RotateTheText | File: MainPage.xaml (excerpt)

<Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <Border BorderBrush="{StaticResource ApplicationForegroundThemeBrush}"
 BorderThickness="1"
 HorizontalAlignment="Center"
 VerticalAlignment="Center">
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>

 <Slider Name="slider"
 Grid.Row="0"
 Minimum="0"
 Maximum="360" />

 <TextBlock Text="Rotate Text with Slider"
 Grid.Row="1"
 FontSize="48">
 <TextBlock.RenderTransform>
 <RotateTransform Angle="{Binding ElementName=slider, Path=Value}" />
 </TextBlock.RenderTransform>
 </TextBlock>
 </Grid>
 </Border>
</Grid>

The Slider and TextBlock occupy two rows of a Grid that’s inside a Border. Here’s how it looks when
the screen first comes up:

382	 PART 1  Elementals

The TextBlock width determines the Grid width, which then determines the Slider width and the Border
width.

As you use the mouse or your fingers to change the Slider value, the TextBlock rotates in a
clockwise direction. Here it is at 120 degrees:

It’s obvious that the size of the Grid and the Border continue to be based on the unrotated TextBlock,
and the rotated TextBlock has broken free of the boundaries of its ancestors in the visual tree.

The property of UIElement to which you set the RotateTransform is named RenderTransform, and
you’ll want to mull over that property name a little bit. That word render means that the transform
affects only how the element is rendered and not how the element appears to the layout system.
That’s a mix of good news and bad news.

The good news is that this transform occurs at a relatively deep level in the graphics composition
system. Rotating the TextBlock does not require that the entire visual tree be subjected to an
updated layout. Because the layout system doesn’t get involved, transform animations can occur in a
secondary thread and performance is very good. The layout system is completely unaware that the
TextBlock is being rotated.

The bad news is that the layout system is completely unaware that the TextBlock is being rotated.
For example, you might want to display a sideways TextBlock by rotating it by 90 degrees, perhaps
as a caption for the side of a graph. It would be most convenient if the layout system calculated the
dimensions of the rotated TextBlock so that you could simply put it in the cell of a Grid and have the
Grid position it properly. But that’s not possible in the Windows Runtime in any easy generalized
manner.

In contrast, the version of UIElement available in the Windows Presentation Foundation (WPF)
defined both a RenderTransform property (which worked like the Windows Runtime) and a
LayoutTransform property, which allowed specifying a transform recognized by the layout system.

	 CHAPTER 10  Transforms	 383

That LayoutTransform property was lost in the transition from WPF to Silverlight and the Windows
Runtime, and mimicking it requires a bit of work.

Let’s go back to the running RotateTheText program. Manipulate the Slider so that the TextBlock
partially lies on top of the Slider:

Now remove all fingers from the screen (or release the mouse button), and try touching or clicking
the Slider in a spot where the TextBlock overlaps. The Slider doesn’t respond because the TextBlock
is blocking the mouse or touch input. The lesson learned is this: Although the layout system doesn’t
know that the TextBlock has moved, hit-testing logic continues to be aware exactly where it is. (On
the other hand, while you’re in the actual process of manipulating the Slider, the TextBlock doesn’t
interfere because the Slider has captured this input, which is a concept I’ll discuss in Chapter 13,
“Touch, Etc.”)

You’ll also notice that the rotation of the TextBlock is relative to its upper-left corner, which
conceptually is the origin of the TextBlock: the point (0, 0). In many graphics systems, it is com-
mon for graphics transforms to be relative to the origin of the canvas on which the graphics object
is positioned. In the Windows Runtime, all transforms are relative to the element to which they’re
applied.

Very often you’ll prefer that rotation be relative to some point other than the upper-left corner.
This point is sometimes referred to as “the center of rotation,” and you can specify it in three different
ways:

The first way is the one that is most illuminating of the underlying mathematics of the transform,
but I’ll save it for later.

The second way involves the RotateTransform class itself. The class defines CenterX and CenterY
properties that are 0 by default. If you want this particular TextBlock to rotate relative to its center,
set CenterX to half the width of the TextBlock and CenterY to half its height. This information can be

384	 PART 1  Elementals

obtained during the Loaded handler, so you can add something like the following to the constructor
of the code-behind file. Fortunately, I gave the TextBlock a name even though that name isn’t used in
the XAML file:

public MainPage()
{
 this.InitializeComponent();

 Loaded += (sender, args) =>
 {
 RotateTransform rotate = txtblk.RenderTransform as RotateTransform;
 rotate.CenterX = txtblk.ActualWidth / 2;
 rotate.CenterY = txtblk.ActualHeight / 2;
 };
}

You might think that this approach is a bit of a hassle, so you’ll be pleased to discover that the
third approach is much simpler. It involves the RenderTransformOrigin property defined by UIElement.
This property is of type Point but you set it to relative coordinates, where the X and Y values normally
range from 0 to 1. The default is the point (0, 0), which is the upper-left corner. The point (1, 0) is the
upper-right corner, (0, 1) is the lower-left corner, and (1, 1) is the lower-right corner. To specify an
origin at the center of the element, use the point (0.5, 0.5):

<TextBlock Name="txtblk"
 Text="Rotate Text with Slider"
 Grid.Row="1"
 FontSize="48"
 RenderTransformOrigin="0.5 0.5">
 <TextBlock.RenderTransform>
 <RotateTransform Angle="{Binding ElementName=slider, Path=Value}" />
 </TextBlock.RenderTransform>
</TextBlock>

Notice that CenterX and CenterY are properties of RotateTransform, but the RenderTransformOri-
gin property is defined by UIElement and common to all elements. If you set RenderTransformOrigin
in addition to CenterX and CenterY, the effects are compounded. In this example, the compounded
effect of both examples would cause rotation to be around the lower-right corner of the TextBlock.

You can specify a center of rotation that is outside the element. Here’s a XAML file that positions a
TextBlock in the top center of the page and then starts up a “forever” animation to rotate it:

Project: RotateAroundCenter | File: MainPage.xaml (excerpt)

<Page ... >
 <Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <TextBlock Name="txtblk"
 Text="Rotated Text"
 FontSize="48"
 HorizontalAlignment="Center"
 VerticalAlignment="Top">

	 CHAPTER 10  Transforms	 385

 <TextBlock.RenderTransform>
 <RotateTransform x:Name="rotate" />
 </TextBlock.RenderTransform>
 </TextBlock>
 </Grid>

 <Page.Triggers>
 <EventTrigger>
 <BeginStoryboard>
 <Storyboard RepeatBehavior="Forever">
 <DoubleAnimation Storyboard.TargetName="rotate"
 Storyboard.TargetProperty="Angle"
 From="0" To="360" Duration="0:0:2" />
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger>
 </Page.Triggers>
</Page>

Without any additional code, this program would rotate the TextBlock around its upper-left corner,
and it would sweep right off the screen at certain times during the animation. But the constructor
of the code-behind file defines two event handlers to set the CenterX and CenterY properties of the
RotateTransform:

Project: RotateAroundCenter | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 public MainPage()
 {
 this.InitializeComponent();

 Loaded += (sender, args) =>
 {
 rotate.CenterX = txtblk.ActualWidth / 2;
 };

 SizeChanged += (sender, args) =>
 {
 rotate.CenterY = args.NewSize.Height / 2;
 };
 }
}

386	 PART 1  Elementals

The center of rotation is set to a point aligned with the horizontal center of the TextBlock but a
distance below the TextBlock equal to half the height of the page. The result is that the TextBlock
rotates in a circle around the page center:

Visual Feedback

An animated transform can be effective for alerting the user to something on the screen that requires
attention or for confirming that an operation has been initiated. In the JiggleButtonDemo program,
I added a new UserControl item that I named JiggleButton, but then I changed the base class in the
XAML and C# files from UserControl to Button. Here’s the complete JiggleButton.xaml file:

Project: JiggleButtonDemo | JiggleButton.xaml

<Button
 x:Class="JiggleButtonDemo.JiggleButton"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 RenderTransformOrigin="0.5 0.5"
 Click="OnJiggleButtonClick">

 <Button.Resources>
 <Storyboard x:Key="jiggleAnimation">
 <DoubleAnimation Storyboard.TargetName="rotate"
 Storyboard.TargetProperty="Angle"
 From="0" To="10" Duration="0:0:0.33"
 AutoReverse="True">
 <DoubleAnimation.EasingFunction>
 <ElasticEase EasingMode="EaseIn" />
 </DoubleAnimation.EasingFunction>
 </DoubleAnimation>
 </Storyboard>
 </Button.Resources>

	 CHAPTER 10  Transforms	 387

 <Button.RenderTransform>
 <RotateTransform x:Name="rotate" />
 </Button.RenderTransform>
</Button>

The content of the Button isn’t defined in this XAML file but three Button properties are set:
RenderTransformOrigin (in the root tag), Resources, and RenderTransform. Normally, if you wanted to
jiggle an element with a rotation, you’d need to use key frames because you first want to rotate from
0 to 10 degrees (for example), then from 10 degrees to –10 degrees several times, and then back to
0 degrees. But ElasticEase with an EasingMode of EaseIn is a great alternative. The DoubleAnimation
is defined to rotate the button 10 degrees and then back to zero, but the ElasticEase function
incorporates wide negative swing, so the animation actually ranges from –10 to 10 degrees.

The code-behind file for the JiggleButton simply triggers the animation in a Click event handler:

Project: JiggleButtonDemo | JiggleButton.xaml.cs

using Windows.UI.Xaml;
using Windows.UI.Xaml.Controls;
using Windows.UI.Xaml.Media.Animation;

namespace JiggleButtonDemo
{
 public sealed partial class JiggleButton : Button
 {
 public JiggleButton()
 {
 this.InitializeComponent();
 }

 void OnJiggleButtonClick(object sender, RoutedEventArgs args)
 {
 (this.Resources["jiggleAnimation"] as Storyboard).Begin();
 }
 }
}

The MainPage.xaml file instantiates a JiggleButton so that you can play with it:

Project: JiggleButtonDemo | File: MainPage.xaml (excerpt)

<Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <local:JiggleButton Content="JiggleButton Demo"
 FontSize="24"
 HorizontalAlignment="Center"
 VerticalAlignment="Center" />
</Grid>

Keep in mind that JiggleButton derives from Button, so you can use it just like any other Button,
except that you shouldn’t set the RenderTransform or RenderTransformOrigin properties on it because
doing so would interfere with the jiggle animation.

388	 PART 1  Elementals

Translation

TranslateTransform defines two properties X and Y that cause an element to be rendered offset
to its original position. One simple application of the TranslateTransform is to display text with an
“embossed” or “engraved” appearance, or with a drop shadow like this:

Because light normally comes from above—and perhaps also because we’re accustomed to the con-
vention that 3D-ish objects on the computer screen are illuminated with a light source from the upper
left—the text on the top appears as if it has shadows at the right and bottom, and hence the letters
are projecting outward from the screen. The engraved effect is opposite that: The shadows are on the
left and top, and so the letters appear to be carved out.

The page that displays those three text strings actually consists of six TextBlock elements. In the
first two pairs, a TextBlock colored with the default foreground brush is covered by another TextBlock
colored with the default background brush but offset by 2 pixels in the horizontal and vertical
directions:

Project: TextEffects | File: MainPage.xaml (excerpt)

<Page ... >
 <Page.Resources>
 <Style TargetType="TextBlock">
 <Setter Property="FontFamily" Value="Times New Roman" />
 <Setter Property="FontSize" Value="192" />
 <Setter Property="HorizontalAlignment" Value="Center" />
 <Setter Property="VerticalAlignment" Value="Center" />
 </Style>
 </Page.Resources>

	 CHAPTER 10  Transforms	 389

 <Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <Grid.RowDefinitions>
 <RowDefinition Height="*" />
 <RowDefinition Height="*" />
 <RowDefinition Height="*" />
 </Grid.RowDefinitions>

 <TextBlock Text="EMBOSS"
 Grid.Row="0" />

 <TextBlock Text="EMBOSS"
 Grid.Row="0"
 Foreground="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <TextBlock.RenderTransform>
 <TranslateTransform X="-2" Y="-2" />
 </TextBlock.RenderTransform>
 </TextBlock>

 <TextBlock Text="ENGRAVE"
 Grid.Row="1" />

 <TextBlock Text="ENGRAVE"
 Grid.Row="1"
 Foreground="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <TextBlock.RenderTransform>
 <TranslateTransform X="2" Y="2" />
 </TextBlock.RenderTransform>
 </TextBlock>

 <TextBlock Text="Drop Shadow"
 Grid.Row="2"
 Foreground="Gray">
 <TextBlock.RenderTransform>
 <TranslateTransform X="6" Y="6" />
 </TextBlock.RenderTransform>
 </TextBlock>

 <TextBlock Text="Drop Shadow"
 Grid.Row="2" />
 </Grid>
</Page>

Notice that the embossing effect requires negative offsets (so that the TextBlock on top is shifted to
the left and up) whereas the engraving effect has positive offsets. You can use these same effects just
slightly less successfully with a dark theme, but you’ll have to switch the signs of the X and Y values.

A drop-shadow effect is similar except that the text on top is colored normally and a gray shadow
is offset underneath.

390	 PART 1  Elementals

I don’t recommend using the following technique on a regular basis, but you can give your
on-screen text a little bit of depth—that’s visual depth and not intellectual depth, alas—using a bunch
of TextBlock elements offset from each other by one pixel:

The generation of these elements is handled entirely in the code-behind file:

Project: DepthText | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 const int COUNT = 48; // ~1/2 inch

 public MainPage()
 {
 this.InitializeComponent();

 Grid grid = this.Content as Grid;
 Brush foreground = this.Resources["ApplicationForegroundThemeBrush"] as Brush;
 Brush grayBrush = new SolidColorBrush(Colors.Gray);

 for (int i = 0; i < COUNT; i++)
 {
 bool firstOrLast = i == 0 || i == COUNT - 1;

 TextBlock txtblk = new TextBlock
 {
 Text = "DEPTH",
 FontSize = 192,
 FontWeight = FontWeights.Bold,
 HorizontalAlignment = HorizontalAlignment.Center,

	 CHAPTER 10  Transforms	 391

 VerticalAlignment = VerticalAlignment.Center,
 RenderTransform = new TranslateTransform
 {
 X = COUNT - i - 1,
 Y = i - COUNT + 1,
 },
 Foreground = firstOrLast ? foreground : grayBrush
 };
 grid.Children.Add(txtblk);
 }
 }
}

A TranslateTransform is a great way to move something a little bit from the position determined
by the layout system. You’ll see a couple examples of TranslateTransform used in this way in the
StandardStyles.xaml file.

In Chapter 9 I showed an example of animating Canvas.Left and Canvas.Top attached properties
to move an object around the screen. You can do the same type of animation by defining a
TranslateTransform on the element you wish to move and using the animation to target the X and
Y properties. One advantage is that the element being animated need not be a child of a Canvas,
but there doesn’t seem to be a performance difference. Both types of animations are performed in
secondary threads.

Transform Groups

I mentioned earlier that there are three ways to set a center of rotation but I was going to save the
first way for a later discussion. Now is the time. It’s a little more complicated because it involves a
transform that is constructed from other transforms.

One of the classes that derives from Transform is TransformGroup, which has a property named
Children of type TransformCollection, which you can use to construct a composite transform from
multiple Transform derivatives.

You might define a RotateTransform like this:

<RotateTransform Angle="A" CenterX="CX" CenterY="CY" />

where A, CX, and CY are actual numbers or perhaps data bindings. That transform is equivalent to the
following TransformGroup:

<TransformGroup>
 <TranslateTransform X="-CX" Y="-CY" />
 <RotateTransform Angle="A" />
 <TranslateTransform X="CX" Y="CY" />
</TransformGroup>

392	 PART 1  Elementals

The two TranslateTransform tags seem to cancel each other out, but they surround a RotateTransform.
Let me demonstrate in two ways that this transform group is equivalent to the first RotateTransform
by itself.

The following ImageRotate program references a bitmap on my website that I know is 320 pixels
wide and 400 pixels tall. To rotate that bitmap around its center the RotateTransform would nor-
mally have CenterX and CenterY set to half those values (160 and 200), but I’ve instead used a pair of
TranslateTransform objects:

Project: ImageRotate | File: MainPage.xaml (excerpt)

<Page ... >
 <Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <Image Source="http://www.charlespetzold.com/pw6/PetzoldJersey.jpg"
 Stretch="None"
 HorizontalAlignment="Center"
 VerticalAlignment="Center">
 <Image.RenderTransform>
 <TransformGroup>
 <TranslateTransform X="-160" Y="-200" />
 <RotateTransform x:Name="rotate" />
 <TranslateTransform X="160" Y="200" />
 </TransformGroup>
 </Image.RenderTransform>
 </Image>
 </Grid>

 <Page.Triggers>
 <EventTrigger>
 <BeginStoryboard>
 <Storyboard RepeatBehavior="Forever">
 <DoubleAnimation Storyboard.TargetName="rotate"
 Storyboard.TargetProperty="Angle"
 From="0" To="360" Duration="0:0:3">
 <DoubleAnimation.EasingFunction>
 <ElasticEase EasingMode="EaseInOut" />
 </DoubleAnimation.EasingFunction>
 </DoubleAnimation>
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger>
 </Page.Triggers>
</Page>

	 CHAPTER 10  Transforms	 393

The ElasticEase animation with a mode of EaseInOut causes the image to rock back and forth crazily
before and after it actually spins around, but you can see that the rotation is clearly around the
image’s center:

The following screenshot shows the process in the individual steps: The lightest TextBlock
is positioned in the center of the page. The next darkest TextBlock shows the effect of a
TranslateTransform that shifts the TextBlock left by half its width and up by half its height. The next
darkest TextBlock is rotated relative to its origin—the upper-left corner of the original TextBlock.
The final black TextBlock is then shifted by half its width and height. The final result is the original
TextBlock rotated around its center:

394	 PART 1  Elementals

Here’s the XAML file that created that image:

Project: RotationCenterDemo | File: MainPage.xaml (excerpt)

<Page ... >
 <Page.Resources>
 <Style TargetType="TextBlock">
 <Setter Property="Text" Value="Rotate around Center" />
 <Setter Property="FontSize" Value="48" />
 <Setter Property="HorizontalAlignment" Value="Center" />
 <Setter Property="VerticalAlignment" Value="Center" />
 </Style>
 </Page.Resources>

 <Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <TextBlock Name="txtblk"
 Foreground="#D0D0D0" />

 <TextBlock Foreground="#A0A0A0">
 <TextBlock.RenderTransform>
 <TranslateTransform x:Name="translateBack1" />
 </TextBlock.RenderTransform>
 </TextBlock>

 <TextBlock Foreground="#707070">
 <TextBlock.RenderTransform>
 <TransformGroup>
 <TranslateTransform x:Name="translateBack2" />
 <RotateTransform Angle="45" />
 </TransformGroup>
 </TextBlock.RenderTransform>
 </TextBlock>

 <TextBlock Foreground="{StaticResource ApplicationForegroundThemeBrush}">
 <TextBlock.RenderTransform>
 <TransformGroup>
 <TranslateTransform x:Name="translateBack3" />
 <RotateTransform Angle="45" />
 <TranslateTransform x:Name="translate" />
 </TransformGroup>
 </TextBlock.RenderTransform>
 </TextBlock>
 </Grid>
</Page>

The X and Y values for all the TranslateTransform tags are set from the Loaded handler:

Project: RotationCenterDemo | File: MainPage.xaml.cs (excerpt)

public MainPage()
{
 this.InitializeComponent();

 Loaded += (sender, args) =>
 {
 translateBack1.X =
 translateBack2.X =
 translateBack3.X = -(translate.X = txtblk.ActualWidth / 2);

	 CHAPTER 10  Transforms	 395

 translateBack1.Y =
 translateBack2.Y =
 translateBack3.Y = -(translate.Y = txtblk.ActualHeight / 2);
 };
}

Transforms can be combined for some very interesting effects that might initially seem beyond
the scope of the nonmathematical, nongraphics programmer. Here’s a XAML file that uses a Polygon
element to define a simple propeller shape, and then applies three transforms to it, a RotateTransform,
a TranslateTransform, and another RotateTransform:

Project: Propeller | File: MainPage.xaml (excerpt)

<Page ... >
 <Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <Polygon Points="40 0, 60 0, 53 47,
 100 40, 100 60, 53 53,
 60 100, 40 100, 47 53,
 0 60, 0 40, 47 47"
 Stroke="{StaticResource ApplicationForegroundThemeBrush}"
 Fill="SteelBlue"
 HorizontalAlignment="Center"
 VerticalAlignment="Center"
 RenderTransformOrigin="0.5 0.5">
 <Polygon.RenderTransform>
 <TransformGroup>
 <RotateTransform x:Name="rotate1" />
 <TranslateTransform X="300" />
 <RotateTransform x:Name="rotate2" />
 </TransformGroup>
 </Polygon.RenderTransform>
 </Polygon>
 </Grid>

 <Page.Triggers>
 <EventTrigger>
 <BeginStoryboard>
 <Storyboard>
 <DoubleAnimation Storyboard.TargetName="rotate1"
 Storyboard.TargetProperty="Angle"
 From="0" To="360" Duration="0:0:0.5"
 RepeatBehavior="Forever" />

 <DoubleAnimation Storyboard.TargetName="rotate2"
 Storyboard.TargetProperty="Angle"
 From="0" To="360" Duration="0:0:6"
 RepeatBehavior="Forever" />
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger>
 </Page.Triggers>
</Page>

396	 PART 1  Elementals

The Storyboard contains two DoubleAnimation objects. The first DoubleAnimation targets the first
RotateTransform object to rotate the propeller itself around its center at the speed of 2 cycles per
second. The TranslateTransform moves this rotating propeller 300 pixels to the right of the center of
the page, and the second DoubleAnimation targets the second RotateTransform to rotate the pro-
peller again. But this rotation is relative to the original center of the propeller, which means that the
propeller circles the center of the page with a radius of 300 pixels at the rate of 10 revolutions per
minute.

Now it’s perhaps clear how RenderTransformOrigin works: RenderTransformOrigin is equivalent to
performing a TranslateTransform with negative X and Y values prior to the transform specified as the
RenderTransform property, and performing another TranslateTransform with positive X and Y values
after the RenderTransform.

The Scale Transform

The ScaleTransform class defines properties named ScaleX and ScaleY that increase or decrease the
size of an element independently in the horizontal and vertical directions. If you want to preserve
the correct aspect ratio of a target, you’ll need to use the same values for ScaleX and ScaleY. If it’s an
animation, you need two animation objects.

The ScaleTransform does not affect the ActualWidth and ActualHeight properties of an element.

	 CHAPTER 10  Transforms	 397

You’ve seen how to use a Viewbox to stretch a TextBlock in ways that violate its typographically
correct aspect ratio. Here’s how to do it with a ScaleTransform:

Project: OppositelyScaledText | File: MainPage.xaml (excerpt)

<Page ... >
 <Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <TextBlock Text="Scaled Text"
 FontSize="144"
 HorizontalAlignment="Center"
 VerticalAlignment="Center"
 RenderTransformOrigin="0.5 0.5">
 <TextBlock.RenderTransform>
 <ScaleTransform x:Name="scale" />
 </TextBlock.RenderTransform>
 </TextBlock>
 </Grid>

 <Page.Triggers>
 <EventTrigger>
 <BeginStoryboard>
 <Storyboard>
 <DoubleAnimation Storyboard.TargetName="scale"
 Storyboard.TargetProperty="ScaleX"
 BeginTime="0:0:2"
 From="1" To="0.01" Duration="0:0:2"
 AutoReverse="True"
 RepeatBehavior="Forever" />

 <DoubleAnimation Storyboard.TargetName="scale"
 Storyboard.TargetProperty="ScaleY"
 From="10" To="0.1" Duration="0:0:2"
 AutoReverse="True"
 RepeatBehavior="Forever" />
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger>
 </Page.Triggers>
</Page>

This is actually not quite the way I wanted to write this program. I originally gave the TextBlock a
FontSize of 1 and then animated ScaleX from 1 to 144 and ScaleY from 144 to 1, both reversed and
repeated forever. That should probably have worked, but it resulted in the 1-pixel-high font being
increased in size by a factor of 144 rather than becoming a 144-pixel-high font. To get the program

398	 PART 1  Elementals

to work in a way I wanted, I gave the TextBlock a 144-pixel size and started the animations offset from
each other. The TextBlock alternately stretches out horizontally and vertically:

Scaling is like rotation in that it is always in reference to a center point. The ScaleTransform
class defines CenterX and CenterY properties just like RotateTransform, or you can set
RenderTransformOrigin as I’ve done in the OppositelyScaledText program. The scaling center is the
point that remains in the same location when the scaling occurs.

Scaling and rotation centers play a big role in manipulating on-screen objects (such as
photographs) with your fingers. As you stretch, pinch, and rotate a photograph, the scaling and
rotation centers change as your fingers move relative to each other. I’ll discuss the technique for
calculating these rotation centers in Chapter 13.

Negative scaling factors flip an element around the horizontal or vertical axis. This technique is
particularly useful for creating reflection effects. Unfortunately, the Windows Runtime is missing an
important contributor to this effect: a UIElement property named OpacityMask of type Brush that
allows defining a graduated opacity based on the alpha channel of the colors of a gradient brush. In
the Windows Runtime, you’ll have to mimic a graduated fade-out by covering up the element with
another element that has a gradient brush incorporating transparency and the background color.

This is demonstrated in the ReflectedFadeOutImage project. The upper half of a Grid is shared
by two items: an Image and another Grid. That second Grid contains the same Image covered by a

	 CHAPTER 10  Transforms	 399

Rectangle with a LinearGradientBrush that fades from the background color at top to transparent at
the bottom:

Project: ReflectedFadeOutImage | File: MainPage.xaml (excerpt)

<Page ... >
 <Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <Grid.RowDefinitions>
 <RowDefinition Height="*" />
 <RowDefinition Height="*" />
 </Grid.RowDefinitions>

 <Image Source="http://www.charlespetzold.com/pw6/PetzoldJersey.jpg"
 HorizontalAlignment="Center" />

 <Grid RenderTransformOrigin="0 1"
 HorizontalAlignment="Center">
 <Grid.RenderTransform>
 <ScaleTransform ScaleY="-1" />
 </Grid.RenderTransform>
 <Image Source="http://www.charlespetzold.com/pw6/PetzoldJersey.jpg" />
 <Rectangle>
 <Rectangle.Fill>
 <LinearGradientBrush StartPoint="0 0" EndPoint="0 1" >
 <GradientStop Offset="0"
 Color="{Binding
 Source={StaticResource ApplicationPageBackgroundThemeBrush},
 Path=Color}" />
 <GradientStop Offset="1" Color="Transparent" />
 </LinearGradientBrush>
 </Rectangle.Fill>
 </Rectangle>
 </Grid>
 </Grid>
</Page>

400	 PART 1  Elementals

That inner Grid is also reflected around its bottom edge. The RenderTransformOrigin assigns a
transform center at the lower left, and the ScaleTransform sets ScaleY to –1, which flips the element
around the horizontal axis:

In Chapter 14, “Bitmaps,” I’ll demonstrate another way to achieve this effect accessing the pixels of
a bitmap and setting the transparency appropriately.

Building an Analog Clock

An analog clock is round. This simple fact implies that drawing the clock would probably be
mathematically easiest if you use arbitrary coordinates—that is, coordinates not in units of pixels
but in units you choose for convenience—with the origin in the center. Putting the origin in the
center also means you probably won’t need to mess around with CenterX or CenterY settings for the
RotateTransform objects that position the hands of the clock because the origin is also the center of
rotation.

The traditional analog clock in a graphical environment adapts itself to whatever size it’s given.
It is tempting to use a Viewbox for this job, but with an analog clock that could be a problem. The
layout system (and Viewbox) perceives the size of a vector graphics object to be the maximum X and
Y values of its coordinate points. Negative coordinates are ignored, including those in three-quarters
of an analog clock with an origin in the center.

	 CHAPTER 10  Transforms	 401

The layout system (and Viewbox) will not correctly determine the size of graphics objects with
negative coordinates, and a little “help” is required. Fortunately, transforms cascade from parent to
child. You can set a transform on a Grid, and it will apply to everything in that Grid. The contents of
the Grid can then have their own transforms.

That’s what I’ve done in the AnalogClock program. All the graphics are in a Grid that is fixed in size
with a 200-pixel Width and Height implying a 100-pixel radius:

<Grid Width="200" Height="200">

 ... clock graphics go here

</Grid>

Within that Grid are five Path elements that render the tick marks around the circumference of
the clock, as well as the hour, minute, and second hands. These are all based on a coordinate system
with X and Y values ranging from –100 to 100. If you could see that Grid (outlined here in red) and the
clock, it would look like this:

The Grid is positioned in the center of the page thanks to its default alignment, but the center of
the clock is positioned at the upper-left corner of the Grid because that’s where the point (0, 0) is.

Now let’s put that Grid in a Viewbox, like so:

<Viewbox>
 <Grid Width="200" Height="200">

 ... clock graphics go here

 </Grid>
</Viewbox>

402	 PART 1  Elementals

The Viewbox can correctly handle elements that have an origin at the upper-left corner but not
graphics with negative coordinates:

Fortunately, the fix is fairly easy. All that’s necessary is to shift the Grid and the clock. This
transform occurs before the Viewbox gets ahold of the element, so it’s merely by 100 pixels:

<Viewbox>
 <Grid Width="200" Height="200">
 <Grid.RenderTransform>
 <TranslateTransform X="100" Y="100" />
 </Grid.RenderTransform>

 ... clock graphics go here

 </Grid>
</Viewbox>

	 CHAPTER 10  Transforms	 403

And here it is:

Now all that’s needed is to get rid of that red border.

The clock consists of five Path elements. Each of the three hands is defined by path markup syntax
consisting of straight lines and Bézier curves. Here’s the hour hand pointing to the 12:00 position.
Because the hand is initially mostly on the top half of this clock, most of the hand has negative Y
coordinates with only a few positive Y coordinates as it loops around the center.

<Path Data="M 0 -60 C 0 -30, 20 -30, 5 -20 L 5 0
 C 5 7.5, -5 7.5, -5 0 L -5 -20
 C -20 -30, 0 -30, 0 -60">
 <Path.RenderTransform>
 <RotateTransform x:Name="rotateHour" />
 </Path.RenderTransform>
</Path>

The tick marks are actually dotted lines. Here’s the Path element for the small tick marks:

<Path Fill="{x:Null}"
 StrokeThickness="3"
 StrokeDashArray="0 3.14159">
 <Path.Data>
 <EllipseGeometry RadiusX="90" RadiusY="90" />
 </Path.Data>
</Path>

This creates a circle with a radius of 90, so the circumference is 2π90, which means that the 60 tick
marks are separated by 3π, which not coincidentally is the product of the StrokeThickness and number
in the StrokeDashArray indicating the distance between the dots in units of the StrokeThickness.

404	 PART 1  Elementals

Since you enjoyed that one, here’s the Path for the large tick marks:

<Path Fill="{x:Null}"
 StrokeThickness="6"
 StrokeDashArray="0 7.854">
 <Path.Data>
 <EllipseGeometry RadiusX="90" RadiusY="90" />
 </Path.Data>
</Path>

Again, the circumference is 2π90, but there are only 12 tick marks, so they are separated by 15π,
which is close enough to the product of 6 and 7.854. Here’s everything put together:

Project: AnalogClock | File: MainPage.xaml (excerpt)

<Page ... >

 <Page.Resources>
 <Style TargetType="Path">
 <Setter Property="Stroke"
			 Value="{StaticResource ApplicationForegroundThemeBrush}" />
 <Setter Property="StrokeThickness" Value="2" />
 <Setter Property="StrokeStartLineCap" Value="Round" />
 <Setter Property="StrokeEndLineCap" Value="Round" />
 <Setter Property="StrokeLineJoin" Value="Round" />
 <Setter Property="StrokeDashCap" Value="Round" />
 <Setter Property="Fill" Value="Blue" />
 </Style>
 </Page.Resources>

 <Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">

 <Viewbox>
 <!-- Grid containing all graphics based on (0, 0) origin, 100-pixel radius -->
 <Grid Width="200" Height="200">

 <!-- Transform for entire clock -->
 <Grid.RenderTransform>
 <TranslateTransform X="100" Y="100" />
 </Grid.RenderTransform>

 <!-- Small tick marks -->
 <Path Fill="{x:Null}"
 StrokeThickness="3"
 StrokeDashArray="0 3.14159">
 <Path.Data>
 <EllipseGeometry RadiusX="90" RadiusY="90" />
 </Path.Data>
 </Path>

 <!-- Large tick marks -->
 <Path Fill="{x:Null}"
 StrokeThickness="6"
 StrokeDashArray="0 7.854">
 <Path.Data>
 <EllipseGeometry RadiusX="90" RadiusY="90" />
 </Path.Data>
 </Path>

	 CHAPTER 10  Transforms	 405

 <!-- Hour hand pointing straight up -->
 <Path Data="M 0 -60 C 0 -30, 20 -30, 5 -20 L 5 0
 C 5 7.5, -5 7.5, -5 0 L -5 -20
 C -20 -30, 0 -30, 0 -60">
 <Path.RenderTransform>
 <RotateTransform x:Name="rotateHour" />
 </Path.RenderTransform>
 </Path>

 <!-- Minute hand pointing straight up -->
 <Path Data="M 0 -80 C 0 -75, 0 -70, 2.5 -60 L 2.5 0
 C 2.5 5, -2.5 5, -2.5 0 L -2.55 -60
 C 0 -70, 0 -75, 0 -80">
 <Path.RenderTransform>
 <RotateTransform x:Name="rotateMinute" />
 </Path.RenderTransform>
 </Path>

 <!-- Second hand pointing straight up -->
 <Path Data="M 0 10 L 0 -80">
 <Path.RenderTransform>
 <RotateTransform x:Name="rotateSecond" />
 </Path.RenderTransform>
 </Path>
 </Grid>
 </Viewbox>
 </Grid>
</Page>

The code-behind file is responsible for calculating angles measured clockwise from 12:00 for the
three RotateTransform objects:

Project: AnalogClock | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 public MainPage()
 {
 this.InitializeComponent();
 CompositionTarget.Rendering += OnCompositionTargetRendering;
 }

 void OnCompositionTargetRendering(object sender, object args)
 {
 DateTime dt = DateTime.Now;
 rotateSecond.Angle = 6 * (dt.Second + dt.Millisecond / 1000.0);
 rotateMinute.Angle = 6 * dt.Minute + rotateSecond.Angle / 60;
 rotateHour.Angle = 30 * (dt.Hour % 12) + rotateMinute.Angle / 12;
 }
}

This clock has a “sweep” second hand that seems to move continuously. If you prefer a
“tick” second hand that jumps by seconds, you can simply remove the milliseconds from the
calculation. But a better solution is using a DispatcherTimer with an interval of 1 second rather than
CompositionTarget.Rendering, which always goes at the video refresh rate.

406	 PART 1  Elementals

Skew

I discussed earlier that all the classes that derive from Transform are restricted to defining two-
dimensional affine transforms, and one of the characteristics of an affine transform is the preservation
of parallel lines. However, an affine transform does not necessarily preserve angles between lines. For
example, an affine transform is capable of transforming a square to a parallelogram:

In the Windows Runtime, this type of transform is known as a skew, but in other graphics
environments it might be called a shear. The figure is progressively shifted positively or negatively in
the horizontal or vertical direction. In a sense, the skew is the most extreme of the affine transforms,
but it still preserves a great deal of the original geometry. A skew transform applied to a circle or
ellipse never results in anything other than an ellipse:

Similarly, a skewed Bézier curve remains a Bézier curve.

The SkewTransform has AngleX and AngleY properties that you set to an angle in degrees. The
examples shown were created with a SkewTransform with AngleX set to 45 degrees, which skews
the bottom to the right. Set the angle negative to skew the bottom to the left. For text, negative
AngleX values create an oblique effect (similar to italic but without any typographical changes to the
characters). Here’s AngleX set to –30 degrees:

	 CHAPTER 10  Transforms	 407

Nonzero settings of AngleY cause skew in the vertical direction. Positive values of AngleY cause the
right side of figures to skew down:

Negative values cause the right sides to skew up. By default, the upper-left corner of the figure stays
in the same location with the skew, but you can change that with CenterX and CenterY properties or
with RenderTransformOrigin.

The following program demonstrates what happens when you combine AngleX and AngleY
skewing:

Project: SkewPlusSkew | File: MainPage.xaml (excerpt)

<Page ... >
 <Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <TextBlock Text="SKEW"
 FontSize="288"
 FontWeight="Bold"
 HorizontalAlignment="Center"
 VerticalAlignment="Center"
 RenderTransformOrigin="0.5 0.5">
 <TextBlock.RenderTransform>
 <SkewTransform x:Name="skew" />
 </TextBlock.RenderTransform>
 </TextBlock>
 </Grid>

 <Page.Triggers>
 <EventTrigger>
 <BeginStoryboard>
 <Storyboard SpeedRatio="0.5" RepeatBehavior="Forever">
 <DoubleAnimationUsingKeyFrames Storyboard.TargetName="skew"
 Storyboard.TargetProperty="AngleX">

 <!-- Back and forth for 4 seconds -->
 <DiscreteDoubleKeyFrame KeyTime="0:0:0" Value="0" />
 <LinearDoubleKeyFrame KeyTime="0:0:1" Value="90" />
 <LinearDoubleKeyFrame KeyTime="0:0:2" Value="0" />
 <LinearDoubleKeyFrame KeyTime="0:0:3" Value="-90" />
 <LinearDoubleKeyFrame KeyTime="0:0:4" Value="0" />

408	 PART 1  Elementals

 <!-- Do nothing for 4 seconds -->
 <DiscreteDoubleKeyFrame KeyTime="0:0:8" Value="0" />

 <!-- Back and forth for 4 seconds -->
 <LinearDoubleKeyFrame KeyTime="0:0:9" Value="90" />
 <LinearDoubleKeyFrame KeyTime="0:0:10" Value="0" />
 <LinearDoubleKeyFrame KeyTime="0:0:11" Value="-90" />
 <LinearDoubleKeyFrame KeyTime="0:0:12" Value="0" />
 </DoubleAnimationUsingKeyFrames>

 <DoubleAnimationUsingKeyFrames Storyboard.TargetName="skew"
 Storyboard.TargetProperty="AngleY">

 <!-- Do nothing for 4 seconds -->
 <DiscreteDoubleKeyFrame KeyTime="0:0:0" Value="0" />
 <DiscreteDoubleKeyFrame KeyTime="0:0:4" Value="0" />

 <!-- Back and forth for 4 seconds -->
 <LinearDoubleKeyFrame KeyTime="0:0:5" Value="-90" />
 <LinearDoubleKeyFrame KeyTime="0:0:6" Value="0" />
 <LinearDoubleKeyFrame KeyTime="0:0:7" Value="90" />
 <LinearDoubleKeyFrame KeyTime="0:0:8" Value="0" />

 <!-- Back and forth for 4 seconds -->
 <LinearDoubleKeyFrame KeyTime="0:0:9" Value="-90" />
 <LinearDoubleKeyFrame KeyTime="0:0:10" Value="0" />
 <LinearDoubleKeyFrame KeyTime="0:0:11" Value="90" />
 <LinearDoubleKeyFrame KeyTime="0:0:12" Value="0" />
 </DoubleAnimationUsingKeyFrames>
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger>
 </Page.Triggers>
</Page>

I’ve set the SpeedRatio on the Storyboard to 0.5 so that you can better relish the effects, but I’ll use
the key frame times to discuss what’s going on. During the first four seconds, the first animation ani-
mates the AngleX property to 90 degrees, back to zero, to –90 degrees, and back to zero. During the
next four seconds the second animation animates the AngleY property between –90 and 90. During
the final four seconds, the two animations go together.

	 CHAPTER 10  Transforms	 409

You may or may not be surprised that combining AngleX and AngleY in this way results in rotation:

However, as a result of the mathematics, the figure gets larger as well.

Skew is often used to give a little 3D-like depth to elements, but it works best in combination with
an unskewed element, as I’ll demonstrate later in this chapter.

Making an Entrance

Sometimes you want an animated transform to occur on an element when a page is first loaded. For
example, an element might slide in from the side and then come to rest, or expand in size, or spin in
from above.

It’s generally easiest to begin by positioning the element in its final location with no transforms.
You can then define the transforms and animations so that the element ends up in that spot. Often
you can simply leave out the To value of a DoubleAnimation on a transform because the To value is
the same as the pre-animation default value.

This is demonstrated in the SkewSlideInText project. As you can see, the TextBlock has some
transforms defined, but with default values the element simply sits in the center of the display. That’s
the final location and orientation of the TextBlock, and the animations conclude at that spot.

Project: SkewSlideInText | File: MainPage.xaml (excerpt)

<Page ... >
 <Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <TextBlock Text="Hello!"
 FontSize="192"
 HorizontalAlignment="Center"
 VerticalAlignment="Center"

410	 PART 1  Elementals

 RenderTransformOrigin="0.5 1">
 <TextBlock.RenderTransform>
 <TransformGroup>
 <SkewTransform x:Name="skew" />
 <TranslateTransform x:Name="translate" />
 </TransformGroup>
 </TextBlock.RenderTransform>
 </TextBlock>
 </Grid>

 <Page.Triggers>
 <EventTrigger>
 <BeginStoryboard>
 <Storyboard>
 <DoubleAnimation Storyboard.TargetName="translate"
 Storyboard.TargetProperty="X"
 From="-1000" Duration="0:0:1" />

 <DoubleAnimationUsingKeyFrames
 Storyboard.TargetName="skew"
 Storyboard.TargetProperty="AngleX">
 <DiscreteDoubleKeyFrame KeyTime="0:0:0" Value="15" />
 <LinearDoubleKeyFrame KeyTime="0:0:1" Value="30" />
 <EasingDoubleKeyFrame KeyTime="0:0:1.5" Value="0">
 <EasingDoubleKeyFrame.EasingFunction>
 <ElasticEase />
 </EasingDoubleKeyFrame.EasingFunction>
 </EasingDoubleKeyFrame>
 </DoubleAnimationUsingKeyFrames>
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger>
 </Page.Triggers>
</Page>

The DoubleAnimation applied to the TranslateTransform has a From value that starts the TextBlock
1000 pixels to the left of its final location. The absence of a To value means that the animation ends at
the pre-animation value, which is 0.

As that’s happening, a DoubleAnimationUsingKeyFrames makes the skew progress from an AngleX
value of 15 degrees to 30 degrees, as if the TextBlock is being pulled into the center of the screen. The
final key frame then animates the AngleX back to its pre-animation value of 0, shaking it back and
forth in the process.

Transform Mathematics

I stated at the outset of this chapter that a transform is a formula that converts a point (x, y)
into (x’, y’) and performs that conversion for all the points of an element. It’s now time to look at
that math.

	 CHAPTER 10  Transforms	 411

Suppose a TranslateTransform has its X and Y properties set to TX and TY. The transform formulas
add these translation factors to x and y:

x x TX′ = +

y y TY′ = +

If the ScaleX and ScaleY properties of a ScaleTransform are set to SX and SY, the transform formulas
are also fairly obvious:

x SX x′ = •

y SY y′ = •

Now that we have the basics down, let’s start combining transforms, such as in a TransformGroup.
If the ScaleTransform occurs first, followed by the TranslateTransform, the formulas are:

x SX x TX′ = +•

y SY y TY′ = +•

But if the translate transform is applied first, followed by the scale transform, it’s a little different:

x SX x TX′ = +()•

y SY y TY′ = +()•

The translation factors are now effectively multiplied by the scaling factors.

The ScaleTransform defines ScaleX and ScaleY properties but also CenterX and CenterY. I discussed
earlier how the center point is used to construct two translations. The first translation is negative,
which is then followed by the scale or rotation, followed by positive translation. Suppose CenterX and
CenterY are set to the values CX and CY. The composite scaling formulas are:

x SX x CX CX′ = −() +•

y SX y CY CY′ = −() +•

You can easily confirm that the point (CX, CY) is transformed to the point (CX, CY), which is the
characteristic of the center of scaling: the point that the transform leaves unchanged.

In all the cases so far, x’ has depended solely on constants multiplied by and added to x, and y’
has depended only on constants multiplied by and added to y. With rotation, it gets a bit messier
because x’ depends on both x and y, and y’ also depends on both x and y. If the Angle property of a
RotateTransform is set to A, the transform formulas are:

x A x A y′ = () − ()cos sin• •

y A x A y′ = () + ()sin cos• •

412	 PART 1  Elementals

These formulas are pretty easy to confirm for simple cases. If A is zero, the formulas are just:

x x′ =

y y′ =

If A is 90 degrees, the sine is 1, and the cosine is 0, so

x y′ = −

y x′ =

For example, the point (1, 0) is transformed to (0, 1), and (0, 1) is transformed to (–1, 0). When A is 180
degrees, the sine is 0 and the cosine is –1, so

x x′ = −

y y′ = −

It’s a reflection around the origin, and you can get the same effect with a ScaleTransform with ScaleX
and ScaleY both set to –1. When A is 270 degrees,

x y′ =

y x′ = −

Here’s the first diagram of a skew transform shown earlier:

The transform formulas for this particular skew (AngleX set to 45 degrees) are

x x y′ = +

y y′ =

When y equals 0 (at the top of the figure), x’ simply equals x and y’ equals y. But as you move down
the figure, y gets larger, so x’ becomes increasing greater than x. The generalized formulas for
SkewTransform when AngleX is set to AX and AngleY is set to AY are

x x AX y′ = + ()sin •

y AY x y′ = () +sin •

When you begin exploring combinations of rotation with other transforms, this type of notation
starts to become rather clumsy. Fortunately, matrix algebra comes to the rescue. When individual

	 CHAPTER 10  Transforms	 413

transforms are expressed as matrices, transforms can be combined through the well-established
process of matrix multiplication.

Let’s represent a point (x, y) as a 2×1 matrix:

x y

And let’s represent the transform as a 2×2 matrix:

M M
M M

11 12
21 22

Applying the transform can then be represented with a matrix multiplication. The result is the
transformed point:

x y
M M
M M

x y× =
11 12
21 22

′ ′

The rules of matrix multiplication imply the following formulas:

x M x M y′ = +11 21• •

y M x M y′ = +12 22• •

This process works for scaling if M11 is the ScaleX value and M22 is the ScaleY value, and M21 and
M12 are zero. It also works for rotation and skewing, which both involve factors that are multiplied by
x and y.

But it does not work for translation. The translation formulas look like this:

x x TX′ = +

y y TY′ = +

These translation factors are added in by themselves, not multiplied by x or y. How can we represent
a generalized transform by a matrix if it doesn’t allow for translation, which is arguably the simplest
type of transform of them all?

The interesting solution is to introduce a third dimension. In addition to the X and Y axes on the
plane of the computer screen, a conceptual Z axis extends out from the screen. Let’s assume that
we’re still drawing on a two-dimensional plane, but that plane exists in 3D space with a constant Z
coordinate equal to 1.

This means that the point (x, y) is actually the point (x, y, 1) and we can represent it as a 3×1 matrix:

x y 1

414	 PART 1  Elementals

The matrix transform is now a 3×3 matrix, and the multiplication looks like this:

x y
M M M
M M M
M M M

x y z1
11 12 13
21 22 23
31 32 33

× = ′ ′ ′

The formulas implied by the matrix multiplication are:

x M x M y M′ = + +11 21 31• •

y M x M y M′ = + +12 22 32• •

z M x M y M′ = + +13 23 33• •

This is a partial success because the transform formulas now include translation factors of M31 and
M32. These two numbers aren’t multiplied by x or y.

But it’s not a total success because z’ is generally not equal to 1, which means that we’ve shifted off
the plane where z always equals 1. One way to get back to that plane is simply to set all those errant
z’ values to 1. But shouldn’t points that are transformed a long distance away from the plane where z
equals 1 be distinguished from those that end up close to it?

One clever way to get the z values to 1 without simply ignoring them is to take the 3×1 matrix
result and divide all three coordinates by z’:

x
z

y
z

z
z

x
z

y
z

′
′

′
′

′
′

′
′

′
′

, , , ,





 =







1

This approach to representing two-dimensional transforms with three-dimensional coordinates
is called homogenous coordinates, and it was developed by August Möbius in the 1820s as a way to
represent infinity, which results when z’ is zero. But for us, infinite coordinates are a problem. If we
want to avoid infinite coordinates, z’ cannot be allowed to be zero. Indeed, we can avoid dividing by
z’ entirely if we ensure that z’ is always equal to 1.

It’s possible to do that by setting M13 and M23 in the matrix to 0 and M33 to 1. Now the trans-
form is represented by formulas that remain entirely in the same plane:

x y
M M
M M
M M

x y1
11 12 0
21 22 0
31 32 1

1× = ′ ′

This is the standard matrix representation of the two-dimensional affine transform. (Allowing other
values in the third column results in a non-affine transform. Because such a matrix is capable of
transforming parallel lines to nonparallel lines, it is sometimes also called a taper transform.)

	 CHAPTER 10  Transforms	 415

With the notation I was using earlier, the ScaleTransform where ScaleX is set to SX and ScaleY is set
to SY is

x y
SX

SY x y1
0 0

0 0
0 0 1

1× = ′ ′

A TranslateTransform with TX and TY factors is

x y
TX TY

x y1
1 0 0
0 1 0

1
1× = ′ ′

A ScaleTransform with center (CX, CY) is effectively a multiplication of three 3×3 transforms:

x y
CX CY

SX
SY

CX CY
x y1

1 0 0
0 1 0

1

0 0
0 0
0 0 1

1 0 0
0 1 0

1
1×

− −
× × = ′ ′

Similarly, a RotateTransform with angle A and center (CX, CY) also informs three transforms:

x y
CX CY

A A
A A

CX C
1

1 0 0
0 1 0

1

0
0

0 0 1

1 0 0
0 1 0×

− −
×

() ()
− () () ×
cos sin
sin cos

YY
x y

1
1= ′ ′

And here’s the SkewTransform with angles AX and AY and a center:

x y
CX CY

AY
AX

CX CY
x y1

1 0 0
0 1 0

1

1 0
1 0

0 0 1

1 0 0
0 1 0

1
1×

− −
×

()
() × =

sin
sin ′ ′

A well-known property of matrix multiplication is that it is not commutative. The order of
multiplication makes a difference. This has already been demonstrated with translation and scaling. If
the translation comes first, the translation factors themselves are also scaled by the scaling factors.

However, certain types of transforms can be safely multiplied in any order:

■■ Multiple TranslateTransform objects. The total translation is the sum of the individual
translation factors.

■■ Multiple ScaleTransform objects with the same scaling center. The total scaling is the product
of the individual scaling factors.

■■ Multiple RotateTransforms with the same rotation center. The total rotation is the sum of the
angles of the individual rotations.

416	 PART 1  Elementals

In addition, if a ScaleTransform has equal ScaleX and ScaleY properties, it can be multiplied by a
RotateTransform or a SkewTransform in either order.

The Windows Runtime defines a Matrix structure that has six properties that correspond to the
cells of the matrix like this:

M M
M M

OffsetX OffsetY

11 12 0
21 22 0

1

The last row of this matrix is fixed. You cannot use this Matrix structure to define a taper transform or
anything “crazier” than what you’ve already seen. OffsetX and OffsetY are the translation properties.
The default values for M11 and M22 are 1, and the default values for the other four properties are
zero. That’s the identity matrix with a diagonal of 1s:

1 0 0
0 1 0
0 0 1

The Matrix structure has a static Identity property that returns this value and an IsIdentity property
that returns true if the Matrix value is the identity matrix.

Along with the “easy” Transform derivatives like ScaleTransform and RotateTransform, there is also
the low-level alternative MatrixTransform, which has a property of type Matrix. If you know the matrix
transform you want, you can specify it directly in six numbers in the order M11, M12, M21, M22,
OffsetX, OffsetY. Here’s one way to set this transform:

<TextBlock ... >
 <TextBlock.RenderTransform>
 <MatrixTransform Matrix="10 0 0 5 0 100" />
 </TextBlock.RenderTransform>
</TextBlock>

This transform scales in the horizontal direction by a factor of 10 (M11) and in the vertical direction by
a factor of 5 (M22), and then it shifts the TextBlock down by 100 pixels (OffsetY). But you can also set
the transform directly to the RenderTransform property:

<TextBlock ...
 RenderTransform="10 0 0 5 0 100"
 ... />

The preview design view in Microsoft Visual Studio doesn’t particularly care for this syntax, but it’s no
problem for the compiler or Windows 8.

	 CHAPTER 10  Transforms	 417

Using this implicit form of MatrixTransform is handy for several common rotation transforms that
are shown in the following program. Each TextBlock displays the transform applied to it:

Project: CommonMatrixTransforms | File: MainPage.xaml (excerpt)

<Page ... >
 <Page.Resources>
 <Style TargetType="TextBlock">
 <Setter Property="FontSize" Value="24" />
 <Setter Property="RenderTransformOrigin" Value="0 0.5" />
 </Style>
 </Page.Resources>

 <Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">

 <!-- Move origin to center -->
 <Canvas HorizontalAlignment="Center"
 VerticalAlignment="Center">

 <TextBlock Text=" RenderTransform='1 0 0 1 0 0'"
 RenderTransform="1 0 0 1 0 0" />

 <TextBlock Text=" RenderTransform='.7 .7 -.7 .7 0 0'"
 RenderTransform=".7 .7 -.7 .7 0 0" />

 <TextBlock Text=" RenderTransform='0 1 -1 0 0 0'"
 RenderTransform="0 1 -1 0 0 0" />

 <TextBlock Text=" RenderTransform='-.7 .7 -.7 -.7 0 0"
 RenderTransform="-.7 .7 -.7 -.7 0 0" />

 <TextBlock Text=" RenderTransform='-1 0 0 -1 0 0'"
 RenderTransform="-1 0 0 -1 0 0" />

 <TextBlock Text=" RenderTransform='-.7 -.7 .7 -.7 0 0'"
 RenderTransform="-.7 -.7 .7 -.7 0 0" />

 <TextBlock Text=" RenderTransform='0 -1 1 0 0 0'"
 RenderTransform="0 -1 1 0 0 0" />

 <TextBlock Text=" RenderTransform='.7 -.7 .7 .7 0 0"
 RenderTransform=".7 -.7 .7 .7 0 0" />
 </Canvas>
 </Grid>
</Page>

418	 PART 1  Elementals

The frequent references to .7 should more accurately be .707, the sine and cosine of 45 degrees and
(not coincidently) half the square root of 2. These eight transforms result in each TextBlock being
rotated an additional 45 degrees from the previous one:

If you’re working in code, the Matrix structure has a Transform method that applies the transform
to a Point value and returns the transformed Point.

However, the Matrix structure is missing many amenities. It’s missing a multiplication operator
that would allow you to easily perform your own matrix multiplications in code. You could write the
multiplication code yourself, or you can use TransformGroup, which internally performs matrix mul-
tiplications and makes the result available in a read-only Value property of type Matrix. If you need
to perform matrix multiplications, you can create a TransformGroup in code, add a couple initialized
Transform derivatives to it, and access the Value property.

I’ll have an important example in Chapter 13. Matrix transform calculations become essential in
computing scaling and rotation centers when using touch to manipulate on-screen objects.

The Composite Transform

When combining transforms of various types, the order makes a difference. In practical use, however,
it turns out that you usually want various transforms to be applied in a fairly standard order.

	 CHAPTER 10  Transforms	 419

For example, suppose you want to rotate, scale, and translate an element. ScaleTransform usually
comes first because generally you want to specify the scaling in terms of the unrotated element.
The TranslateTransform comes last because generally you don’t want scaling or rotation to affect
the translation factors. That means the RotateTransform is in the middle. The order is: scale, rotate,
translate.

If that’s the order you want, you can use CompositeTransform. CompositeTransform has a bunch of
properties defined to perform transforms in the order:

■■ Scale

■■ Skew

■■ Rotate

■■ Translate

The properties are

■■ CenterX and CenterY for the center of scaling, skewing, and rotation

■■ ScaleX and ScaleY

■■ SkewX and SkewY

■■ Rotation

■■ TranslateX and TranslateY

Here’s a little program that uses a CompositeTransform as a convenient way to combine scaling and
skewing:

Project: TiltedShadow | File: MainPage.xaml (excerpt)

<Page ... >
 <Page.Resources>
 <Style TargetType="TextBlock">
 <Setter Property="Text" Value="quirky" />
 <Setter Property="FontFamily" Value="Times New Roman" />
 <Setter Property="FontSize" Value="192" />
 <Setter Property="HorizontalAlignment" Value="Center" />
 <Setter Property="VerticalAlignment" Value="Center" />
 </Style>
 </Page.Resources>

420	 PART 1  Elementals

 <Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <!-- Shadow TextBlock -->
 <TextBlock Foreground="Gray"
 RenderTransformOrigin="0 1">
 <TextBlock.RenderTransform>
 <CompositeTransform ScaleY="1.5" SkewX="-60" />
 </TextBlock.RenderTransform>
 </TextBlock>

 <!-- TextBlock with all styled properties -->
 <TextBlock />
 </Grid>
</Page>

The XAML instantiates two TextBlock elements with mostly the same properties specified in the
Style, including the Text property, and as far as the layout system is concerned, they both occupy the
same space. The bottom one is gray, however, and has scale and skew transforms applied:

Notice that the RenderTransformOrigin is set to the point (0, 1), which means that the transform
is relative to the lower-left corner. However, that point could be specified as (1, 1) or anything in
between, and it would work the same. All that’s required is that the two TextBlock elements share the
same bottom edge. A ScaleY of 1.5 is applied to increase the height of the shadow by 50 percent. The
SkewX value of –60 degrees should shift the bottom to the left, but because the bottom is the center
of scaling and skewing, the top is skewed to the right.

Look closely and you’ll notice that the bottoms of the descenders don’t quite meet up. That’s
because the TextBlock actually extends a little below the bottom of the descenders. Change the
RenderTransformOrigin to (0, 0.96) for a somewhat better match.

	 CHAPTER 10  Transforms	 421

What if you wanted a similar effect with text with no descenders? Here’s an example:

The problem is that you need to come up with a RenderTransformOrigin with a Y value equal to
the relative height of the text above the baseline. That’s dependent on the font. For this particular
screenshot, I experimented until I came up with (0, 0.78), but that’s appropriate only for the Times
New Roman font. To do something like this in a generalized way, you’d need access to font metrics,
which are available to a Windows 8 application only through DirectX. I’ll show you how to do that in
Chapter 15, "Going Native."

Geometry Transforms

The Geometry class defines a Transform property, which naturally raises the question: What is the
difference between applying a transform to a Path element and applying a transform to a Geometry
object that is set to the Data property of a Path?

The big difference is that a Transform applied to the RenderTransform property of a Path increases
the width of the strokes, whereas a Transform applied to the Geometry does not.

Here’s a Path element based on a RectangleGeometry with a height and width of 10 but with a
transform applied to the geometry to increase it by a factor of 20:

<Path Stroke="Black"
 StrokeThickness="1"
 StrokeDashArray="1 1">
 <Path.Data>
 <RectangleGeometry Rect="0 0 10 10"
 Transform="20 0 0 20 0 0" />
 </Path.Data>
</Path>

422	 PART 1  Elementals

The result is as if the Rect value in the RectangleGeometry had a height and width of 200:

This XAML has the same initial RectangleGeometry but the transform is applied to the Path:

<Path Stroke="Black"
 StrokeThickness="1"
 StrokeDashArray="1 1"
 RenderTransform="20 0 0 20 0 0">
 <Path.Data>
 <RectangleGeometry Rect="0 0 10 10" />
 </Path.Data>
</Path>

The result is quite different:

To the layout system, however, these elements appear to be identical. Both Path elements are
perceived to have a width and height of 10.

Brush Transforms

The Brush class defines two transform-related properties: Transform and RelativeTransform, which are
distinguished by letting you specify translation factors based on the pixel size of the brush or relative
to its size. RelativeTransform is often easier to use unless you’ve given the brushed element a specific
pixel size.

	 CHAPTER 10  Transforms	 423

Here’s a program that replicates the RainbowEight program from Chapter 3, “Basic Event
Handling,” but using an animated brush transform. I’ve substituted a Path rendition of the 8 rather
than using a TextBlock because I couldn’t get the brush to repeat with the SpreadMethod property of
Repeat for a TextBlock.

Project: RainbowEightTransform | File: MainPage.xaml (excerpt)

<Page ... >
 <Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <Viewbox>
 <Path StrokeThickness="50"
 Margin="0 25 0 0">
 <Path.Data>
 <PathGeometry>
 <PathFigure StartPoint="110 0">
 <ArcSegment Size="90 90" Point="110 180"
 SweepDirection="Clockwise" />
 <ArcSegment Size="110 110" Point="110 400"
 SweepDirection="Counterclockwise" />
 <ArcSegment Size="110 110" Point="110 180"
 SweepDirection="Counterclockwise" />
 <ArcSegment Size="90 90" Point="110 0"
 SweepDirection="Clockwise" />
 </PathFigure>
 </PathGeometry>
 </Path.Data>
 <Path.Stroke>
 <LinearGradientBrush StartPoint="0 0" EndPoint="1 1"
 SpreadMethod="Repeat">
 <LinearGradientBrush.RelativeTransform>
 <TranslateTransform x:Name="translate" />
 </LinearGradientBrush.RelativeTransform>

 <GradientStop Offset="0.00" Color="Red" />
 <GradientStop Offset="0.14" Color="Orange" />
 <GradientStop Offset="0.28" Color="Yellow" />
 <GradientStop Offset="0.43" Color="Green" />
 <GradientStop Offset="0.57" Color="Blue" />
 <GradientStop Offset="0.71" Color="Indigo" />
 <GradientStop Offset="0.86" Color="Violet" />
 <GradientStop Offset="1.00" Color="Red" />
 </LinearGradientBrush>
 </Path.Stroke>
 </Path>
 </Viewbox>
 </Grid>

 <Page.Triggers>
 <EventTrigger>
 <BeginStoryboard>
 <Storyboard>
 <DoubleAnimation Storyboard.TargetName="translate"
 Storyboard.TargetProperty="Y"
 EnableDependentAnimation="True"
 From="0" To="-1.36" Duration="0:0:10"
 RepeatBehavior="Forever" />

424	 PART 1  Elementals

 </Storyboard>
 </BeginStoryboard>
 </EventTrigger>
 </Page.Triggers>
</Page>

Here’s the image:

There’s a “magic number” in the markup. It’s the To value of the DoubleAnimation. That’s the value
that is applied to the Y property of the TranslateTransform, and it was chosen so that the translated
brush with that value is identical to the untranslated brush. The magic number, you can see, is –1.36,
and I’m sure you want to know where it came from.

If the LinearGradientBrush went from top to bottom—with a StartPoint of (0, 0) and an EndPoint
of (0, 1)—this To value would simply be –1. If the gradient went from left to right—with a StartPoint
of (0, 0) and an EndPoint of (1, 0)—the X property of the TranslateTransform would be the animation
target, and again a To value of 1 or –1 would be used.

But when the gradient goes from one corner to the opposite—with the default StartPoint of (0, 0)
and EndPoint of (1, 1)—then that’s not quite right. When covering a Path element with a brush, the
Windows Runtime computes a bounding rectangle that includes the geometric size of the element
plus the stroke width. The brush is then stretched to this bounding rectangle:

	 CHAPTER 10  Transforms	 425

The gradient line runs along the diagonal, which means that lines of constant color are at right angles
to this gradient line.

When the brush has a SpreadMethod of Repeat, the brush conceptually repeats beyond the
specified offsets. This SpreadMethod setting is useful when applying a TranslateTransform to the brush
because the brush seems to repeat regardless how it’s shifted.

If you shift this brush up by the height of the element (that is, a Y value of –1 in the
TranslateTransform), the bottom edge of the untransformed brush becomes the top edge of the
transformed brush, but you can see the result in the following image, and it’s not the same as the
previous image:

426	 PART 1  Elementals

To get a smooth animation, you need to shift it up some more. But by how much?

Let’s extend this figure to show part of the repeating brush, and let’s label the width of the
element with ‘w’, the height with ‘h’, the diagonal with ‘d’, and the increase in height with ‘Δh’.

You can figure out Δh in a variety of ways, but perhaps the most straightforward is based on
similar triangles:

d
h

h h
d

=
+ ∆

from which it’s easy to derive

∆h w
h

=
2

or, the number we really want:

h h
h

w
h

+
= + 








∆ 1
2

	 CHAPTER 10  Transforms	 427

Try plugging in the numbers from the Path shown earlier. You’ll need to add the StrokeThickness to
the widths and heights of the geometry. With a width of 270 and a height of 450, Δh is 162. Add that
to h and divide by h, and that’s the magic number of 1.36.

Would you like to hear about an easier approach? Simply use two DoubleAnimation objects in the
Storyboard, where one targets the Y property and the other targets X. Set the To value of both to –1
and the brush shifts both up and left with every cycle.

Dude, Where’s My Element?

Earlier I mentioned that a computed Matrix value is available from TransformGroup, but it’s not
available from other sources where you might expect it. For example, GeneralTransform—from which
Transform and all the other transform classes derive—might be expected to have a Matrix property,
but it does not.

However, the GeneralTransform class has a TransformPoint method and a TransformBounds
method, which applies the transform to a Rect value, and these actually come in handy in some
circumstances.

Suppose an element is a child of a panel. The panel is responsible for positioning the element
relative to itself, but the element could also have a RenderTransform applied with translation, scale,
rotation, or skewing. For purposes of hit-testing, the location and orientation of that element are
known internal to the system. But can your own program find where the element is actually located?

Yes! The essential (but obscure) method is defined by UIElement and called TransformToVisual.
Generally, you’ll call this method on an element with an argument that is the element’s parent or
some other ancestor:

GeneralTransform xform = element.TransformToVisual(parent);

The GeneralTransform object returned from the method maps from element coordinates to parent
coordinates. But you can’t actually see what this transform is! It won’t give you a Matrix value. All you
can do with it is call TransformPoint or TransformBounds or use the Inverse property. But this is often
all you need.

Here’s a XAML file that animates properties of a CompositeTransform to make a TextBlock go crazy
all over the screen:

Project: WheresMyElement | File: MainPage.xaml (excerpt)

<Page ... >
 <Grid Name="contentGrid"
 Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <TextBlock Name="txtblk"
 Text="Tap to Find"
 FontSize="96"
 HorizontalAlignment="Center"
 VerticalAlignment="Center"
 RenderTransformOrigin="0.5 0.5">

428	 PART 1  Elementals

 <TextBlock.RenderTransform>
 <CompositeTransform x:Name="transform" />
 </TextBlock.RenderTransform>
 </TextBlock>

 <Polygon Name="polygon" Stroke="Blue" />
 <Path Name="path" Stroke="Red" />
 </Grid>

 <Page.Triggers>
 <EventTrigger>
 <BeginStoryboard>
 <Storyboard x:Name="storyboard">
 <DoubleAnimation Storyboard.TargetName="transform"
 Storyboard.TargetProperty="TranslateX"
 From="-300" To="300" Duration="0:0:2.11"
 AutoReverse="True" RepeatBehavior="Forever" />
 <DoubleAnimation Storyboard.TargetName="transform"
 Storyboard.TargetProperty="TranslateY"
 From="-300" To="300" Duration="0:0:2.23"
 AutoReverse="True" RepeatBehavior="Forever" />
 <DoubleAnimation Storyboard.TargetName="transform"
 Storyboard.TargetProperty="Rotation"
 From="0" To="360" Duration="0:0:2.51"
 AutoReverse="True" RepeatBehavior="Forever" />
 <DoubleAnimation Storyboard.TargetName="transform"
 Storyboard.TargetProperty="ScaleX"
 From="1" To="2" Duration="0:0:2.77"
 AutoReverse="True" RepeatBehavior="Forever" />
 <DoubleAnimation Storyboard.TargetName="transform"
 Storyboard.TargetProperty="ScaleY"
 From="1" To="2" Duration="0:0:3.07"
 AutoReverse="True" RepeatBehavior="Forever" />
 <DoubleAnimation Storyboard.TargetName="transform"
 Storyboard.TargetProperty="SkewX"
 From="-30" To="30" Duration="0:0:3.31"
 AutoReverse="True" RepeatBehavior="Forever" />
 <DoubleAnimation Storyboard.TargetName="transform"
 Storyboard.TargetProperty="SkewY"
 From="-30" To="30" Duration="0:0:3.53"
 AutoReverse="True" RepeatBehavior="Forever" />
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger>
 </Page.Triggers>
</Page>

Notice that the Grid also contains a blue Polygon and a red Path, but with no actual coordinate points.

The code-behind file uses the Tapped event to take a “snapshot” of the TextBlock by calling
TransformToVisual and pausing the Storyboard (resumed on the next tap). TransformToVisual returns

	 CHAPTER 10  Transforms	 429

a GeneralTransform object that describes the relationship between the TextBlock and the Grid. The
program uses this to transform the four corners of the TextBlock to Grid coordinates for the Polygon,
which effectively draws a rectangle around the TextBlock:

Project: WheresMyElement | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 bool storyboardPaused;

 public MainPage()
 {
 this.InitializeComponent();
 }

 protected override void OnTapped(TappedRoutedEventArgs args)
 {
 if (storyboardPaused)
 {
 storyboard.Resume();
 storyboardPaused = false;
 return;
 }

 GeneralTransform xform = txtblk.TransformToVisual(contentGrid);

 // Draw blue polygon around element
 polygon.Points.Clear();
 polygon.Points.Add(xform.TransformPoint(new Point(0, 0)));
 polygon.Points.Add(xform.TransformPoint(new Point(txtblk.ActualWidth, 0)));
 polygon.Points.Add(xform.TransformPoint(new Point(txtblk.ActualWidth,
 txtblk.ActualHeight)));
 polygon.Points.Add(xform.TransformPoint(new Point(0, txtblk.ActualHeight)));

 // Draw red bounding box
 path.Data = new RectangleGeometry
 {
 Rect = xform.TransformBounds(new Rect(new Point(0, 0), txtblk.DesiredSize))
 };

 storyboard.Pause();
 storyboardPaused = true;
 base.OnTapped(args);
 }
}

430	 PART 1  Elementals

The call to TransformBounds obtains something a little different: a rectangle describing a boundary
box with sides parallel to the horizontal and vertical large enough to encompass the element. This is
drawn in red:

That boundary rectangle is easily calculable from the maximum and minimum X and Y coordinates of
the transformed four corners, but it’s nice to have it conveniently available.

Projection Transforms

Earlier in this chapter I discussed why a two-dimensional graphics transform is mathematically
described by a 3×3 matrix and requires a flirtation with the third dimension. By a similar analogy, a
three-dimensional graphics transform is expressed by a 4×4 matrix, and the Windows Runtime has
one.

The Windows.UI.Xaml.Media.Media3D namespace contains exactly two items: a Matrix3D structure
available for all programmers, and a Matrix3DHelper class that’s mostly of value to C++ programmers
because they can’t access any of the methods defined by Matrix3D. The properties of Matrix3D are
analogous to those in the regular Matrix structure except that every cell of the matrix is available:

M M M M
M M M M
M M M M

OffsetX OffsetY OffsetZ M

11 12 13 14
21 22 23 24
31 32 33 34

444

However, few programmers ever really get close to this matrix. Most of them are content to use the
PlaneProjection class that I briefly demonstrated at the beginning of this chapter.

	 CHAPTER 10  Transforms	 431

PlaneProjection is intended mostly to let you rotate two-dimensional elements in three-
dimensional space. Rotation in 3D space is always around an axis, and PlaneProjection lets you rotate
an element around a horizontal axis (using the RotationX property), the vertical axis (with RotationY),
or the Z axis that conceptually pokes out of the screen. Rotation around the Z axis is simply two-
dimensional rotation, so that’s not nearly as exciting as the other two.

You can anticipate the direction of rotation using the right-hand rule: Point the thumb of your
right hand in the direction of the positive axis. That’s right for the X axis, down for the Y axis, and out
of the screen for Z. The curve of your fingers indicates the direction of rotation for positive angles.
PlaneProjection applies the rotations in the order X, Y, and Z, but generally you’ll be using only one of
them.

With a little discreet use of PlaneProjection, you can have elements swing into view or even
conceptually flip over to reveal something on the “other side” (as I’ll demonstrate shortly).

And then there’s the not-so-discreet uses. The ThreeDeeSpinningText program lets you
independently animate the RotationX, RotationY, and RotationZ properties to spin a TextBlock around
in 3D space. Here’s the XAML file with a group of Begin/Stop and Play/Pause buttons at the bottom:

Project: ThreeDeeSpinningText | File: MainPage.xaml (excerpt)

<Page ... >
 <Page.Resources>
 <Storyboard x:Key="xAxisAnimation" RepeatBehavior="Forever">
 <DoubleAnimation Storyboard.TargetName="projection"
 Storyboard.TargetProperty="RotationX"
 From="0" To="360" Duration="0:0:1.9" />
 </Storyboard>

 <Storyboard x:Key="yAxisAnimation" RepeatBehavior="Forever">
 <DoubleAnimation Storyboard.TargetName="projection"
 Storyboard.TargetProperty="RotationY"
 From="0" To="360" Duration="0:0:3.1" />
 </Storyboard>

 <Storyboard x:Key="zAxisAnimation" RepeatBehavior="Forever">
 <DoubleAnimation Storyboard.TargetName="projection"
 Storyboard.TargetProperty="RotationZ"
 From="0" To="360" Duration="0:0:4.3" />
 </Storyboard>
 </Page.Resources>

 <Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <Grid.RowDefinitions>
 <RowDefinition Height="*" />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>

 <TextBlock Text="3D-ish"
 FontSize="384"
 HorizontalAlignment="Center"
 VerticalAlignment="Center">
 <TextBlock.Projection>

432	 PART 1  Elementals

 <PlaneProjection x:Name="projection" />
 </TextBlock.Projection>
 </TextBlock>

 <!-- Control Panel -->
 <Grid Grid.Row="1" HorizontalAlignment="Center">
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition Width="Auto" />
 </Grid.ColumnDefinitions>

 <Grid.Resources>
 <Style TargetType="TextBlock">
 <Setter Property="FontSize"
 Value="{StaticResource ControlContentThemeFontSize}" />
 <Setter Property="VerticalAlignment" Value="Center" />
 </Style>

 <Style TargetType="Button">
 <Setter Property="Width" Value="120" />
 <Setter Property="Margin" Value="12" />
 </Style>
 </Grid.Resources>

 <TextBlock Text="X Axis: " Grid.Row="0" Grid.Column="0"
 Tag="xAxisAnimation" />
 <Button Content="Begin" Grid.Row="0" Grid.Column="1"
 Click="OnBeginStopButton" />
 <Button Content="Pause" Grid.Row="0" Grid.Column="2"
 IsEnabled="False"
 Click="OnPauseResumeButton" />

 <TextBlock Text="Y Axis: " Grid.Row="1" Grid.Column="0"
 Tag="yAxisAnimation" />
 <Button Content="Begin" Grid.Row="1" Grid.Column="1"
 Click="OnBeginStopButton" />
 <Button Content="Pause" Grid.Row="1" Grid.Column="2"
 IsEnabled="False"
 Click="OnPauseResumeButton" />

 <TextBlock Text="Z Axis: " Grid.Row="2" Grid.Column="0"
 Tag="zAxisAnimation" />
 <Button Content="Begin" Grid.Row="2" Grid.Column="1"
 Click="OnBeginStopButton" />
 <Button Content="Pause" Grid.Row="2" Grid.Column="2"
 IsEnabled="False"
 Click="OnPauseResumeButton" />
 </Grid>
 </Grid>
</Page>

	 CHAPTER 10  Transforms	 433

The durations of the individual DoubleAnimation objects all have somewhat different times to
avoid repetitive patterns when they’re all going at once. The buttons in the code-behind file use the
Begin, Stop, Pause, and Resume methods of Storyboard to control the activity:

Project: ThreeDeeSpinningText | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 public MainPage()
 {
 this.InitializeComponent();
 }

 void OnBeginStopButton(object sender, RoutedEventArgs args)
 {
 Button btn = sender as Button;
 string key = GetSibling(btn, -1).Tag as string;
 Storyboard storyboard = this.Resources[key] as Storyboard;
 Button pauseResumeButton = GetSibling(btn, 1) as Button;
 pauseResumeButton.Content = "Pause";

 if (btn.Content as string == "Begin")
 {
 storyboard.Begin();
 btn.Content = "Stop";
 pauseResumeButton.IsEnabled = true;
 }
 else
 {
 storyboard.Stop();
 btn.Content = "Begin";
 pauseResumeButton.IsEnabled = false;
 }
 }

 void OnPauseResumeButton(object sender, RoutedEventArgs args)
 {
 Button btn = sender as Button;
 string key = GetSibling(btn, -2).Tag as string;
 Storyboard storyboard = this.Resources[key] as Storyboard;

 if (btn.Content as string == "Pause")
 {
 storyboard.Pause();
 btn.Content = "Resume";
 }
 else
 {
 storyboard.Resume();
 btn.Content = "Pause";
 }
 }

 FrameworkElement GetSibling(FrameworkElement element, int relativeIndex)
 {
 Panel parent = element.Parent as Panel;
 int index = parent.Children.IndexOf(element);

434	 PART 1  Elementals

 return parent.Children[index + relativeIndex] as FrameworkElement;
 }
}

And here’s a sample image:

The PlaneProjection class has a bunch of additional properties. The CenterOfRotationX and
CenterOfRotationY properties are both in coordinates relative to the element. The default values are
0.5, which is the center of the element and usually what you want. The CenterOfRotationZ property is
in pixels with a default value of 0, corresponding to the surface of the screen. For purposes of internal
calculations, it is assumed that the “camera” (or you, the user) is viewing the screen from a distance of
1000 pixels, or about 10 inches.

PlaneProjection also defines three LocalOffset properties for the X, Y, and Z dimensions and three
GlobalOffset properties. These are translation factors in pixels. The LocalOffset values are applied
before the rotation, and the GlobalOffset values are applied after the rotation. Most often, you’ll be
setting the GlobalOffset properties.

Here’s a little example of a “flip panel,” a technique that was once quite difficult and involved real
3D programming. The idea is that you have a little collection of controls on a panel and a way to flip
that panel over to use a different (but related) set of controls. In this example, I’ve represented the
front and “back” of this panel with two Grid panels with different background colors containing a
TextBlock each:

Project: TapToFlip | File: MainPage.xaml (excerpt)

<Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <Grid HorizontalAlignment="Center"
 VerticalAlignment="Center"
 Tapped="OnGridTapped">

 <Grid Name="grid1"

	 CHAPTER 10  Transforms	 435

 Background="Cyan"
 Canvas.ZIndex="1">
 <TextBlock Text="Hello"
 HorizontalAlignment="Center"
 FontSize="192" />
 </Grid>

 <Grid Name="grid2"
 Background="Yellow"
 Canvas.ZIndex="0">
 <TextBlock Text="Windows 8"
 FontSize="192" />
 </Grid>

 <Grid.Projection>
 <PlaneProjection x:Name="projection" />
 </Grid.Projection>
 </Grid>
</Grid>

Notice the Canvas.ZIndex settings. These ensure that the grid1 is visually on top of grid2 even though
it comes earlier in the children collection of their mutual parent.

The Resources section contains two Storyboard definitions, one to flip and the other to flip back:

Project: TapToFlip | File: MainPage.xaml (excerpt)

<Page.Resources>
 <Storyboard x:Key="flipStoryboard">
 <DoubleAnimationUsingKeyFrames
 Storyboard.TargetName="projection"
 Storyboard.TargetProperty="RotationY">
 <DiscreteDoubleKeyFrame KeyTime="0:0:0" Value="0" />
 <LinearDoubleKeyFrame KeyTime="0:0:0.99" Value="90" />
 <DiscreteDoubleKeyFrame KeyTime="0:0:1.01" Value="-90" />
 <LinearDoubleKeyFrame KeyTime="0:0:2" Value="0" />
 </DoubleAnimationUsingKeyFrames>

 <DoubleAnimation Storyboard.TargetName="projection"
 Storyboard.TargetProperty="GlobalOffsetZ"
 From="0" To="-1000" Duration="0:0:1"
 AutoReverse="True" />

 <ObjectAnimationUsingKeyFrames
 Storyboard.TargetName="grid1"
 Storyboard.TargetProperty="(Canvas.ZIndex)">
 <DiscreteObjectKeyFrame KeyTime="0:0:0" Value="1" />
 <DiscreteObjectKeyFrame KeyTime="0:0:1" Value="0" />
 </ObjectAnimationUsingKeyFrames>

 <ObjectAnimationUsingKeyFrames
 Storyboard.TargetName="grid2"
 Storyboard.TargetProperty="(Canvas.ZIndex)">
 <DiscreteObjectKeyFrame KeyTime="0:0:0" Value="0" />
 <DiscreteObjectKeyFrame KeyTime="0:0:1" Value="1" />
 </ObjectAnimationUsingKeyFrames>
 </Storyboard>

436	 PART 1  Elementals

 <Storyboard x:Key="flipBackStoryboard">
 <DoubleAnimationUsingKeyFrames
 Storyboard.TargetName="projection"
 Storyboard.TargetProperty="RotationY">
 <DiscreteDoubleKeyFrame KeyTime="0:0:0" Value="0" />
 <LinearDoubleKeyFrame KeyTime="0:0:0.99" Value="-90" />
 <DiscreteDoubleKeyFrame KeyTime="0:0:1.01" Value="90" />
 <LinearDoubleKeyFrame KeyTime="0:0:2" Value="0" />
 </DoubleAnimationUsingKeyFrames>

 <DoubleAnimation Storyboard.TargetName="projection"
 Storyboard.TargetProperty="GlobalOffsetZ"
 From="0" To="-1000" Duration="0:0:1"
 AutoReverse="True" />

 <ObjectAnimationUsingKeyFrames
 Storyboard.TargetName="grid1"
 Storyboard.TargetProperty="(Canvas.ZIndex)">
 <DiscreteObjectKeyFrame KeyTime="0:0:0" Value="0" />
 <DiscreteObjectKeyFrame KeyTime="0:0:1" Value="1" />
 </ObjectAnimationUsingKeyFrames>

 <ObjectAnimationUsingKeyFrames
 Storyboard.TargetName="grid2"
 Storyboard.TargetProperty="(Canvas.ZIndex)">
 <DiscreteObjectKeyFrame KeyTime="0:0:0" Value="1" />
 <DiscreteObjectKeyFrame KeyTime="0:0:1" Value="0" />
 </ObjectAnimationUsingKeyFrames>
 </Storyboard>
</Page.Resources>

These two storyboards are very similar. Each of them contains a DoubleAnimationUsingKeyFrames
to target the RotationY property of the PlaneProjection object. The property is rotated from 0 to
either 90 or –90 degrees (at which point it’s at right angles to the user), and then it’s switched 180
degrees so that the animation can continue in the same direction back to 0.

At the same time, the GlobalOffsetZ property is animated from 0 to –1000 and back to 0. This
makes it seem as if the panel is dropping behind the screen in preparation for performing the flip
(perhaps so that the flipping panel won’t smack the user in the nose).

Halfway through each Storyboard, the Canvas.ZIndex indices are swapped. The Canvas.ZIndex
property is another appropriate target of an ObjectAnimationUsingKeyFrames.

The animations are triggered by a tap, which is handled in the code-behind file:

Project: TapToFlip | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 Storyboard flipStoryboard, flipBackStoryboard;
 bool flipped = false;

 public MainPage()
 {

	 CHAPTER 10  Transforms	 437

 this.InitializeComponent();
 flipStoryboard = this.Resources["flipStoryboard"] as Storyboard;
 flipBackStoryboard = this.Resources["flipBackStoryboard"] as Storyboard;
 }

 void OnGridTapped(object sender, TappedRoutedEventArgs args)
 {
 if (flipStoryboard.GetCurrentState() == ClockState.Active ||
 flipBackStoryboard.GetCurrentState() == ClockState.Active)
 {
 return;
 }

 Storyboard storyboard = flipped ? flipBackStoryboard : flipStoryboard;
 storyboard.Begin();
 flipped ^= true;
 }
}

Much of the logic here is to prevent one Storyboard from starting when the previous one hasn’t yet
finished. With the way these storyboards are defined, that would cause discontinuities. (Try removing
the return statement from OnGridTapped to see the unsatisfactory result.) I would prefer that a tap
while an animation is in progress simply reverses the operation, but that would require somewhat
more complex logic.

Deriving a Matrix3D

Let’s get into some hairy math, OK?

As you discovered earlier, two-dimensional graphics requires a 3×3 transform matrix to
accommodate translation as well as scaling, rotation, and skew. Conceptually, a point (x, y) is treated
as if it exists in 3D space with the coordinates (x, y, 1).

The application of the generalized two-dimensional affine transform looks like this:

x y
M M
M M

OffsetX OffsetY
x y1

11 12 0
21 22 0

1
1× = ′ ′

Those are the actual fields of the Matrix structure provided for this purpose. The fixed third column
restricts it to affine transforms. The transform formulas implied by the matrix multiplication are

x M x M y OffsetX′ = + +11• 21 •

y M x M y OffsetY′ = + +12 22• •

438	 PART 1  Elementals

Because this is an affine transform, a square is always transformed into a parallelogram. This
parallelogram is defined by three corners, and the fourth corner is determined by the other three.

Is it possible to derive the affine transform that maps a unit square into an arbitrary parallelogram?
What we want is a mapping like this:

0 0 0 0,() → ()x y,

0 1 1 1,() → ()x y,

1 0 2 2,() → ()x y,

If you begin substituting these points into the transform formulas, it is easy to derive the following
cells of the required matrix:

M x x11 2 0= −

M y y12 2 0= −

M x x21 1 0= −

M y y22 1 0= −

OffsetX x= 0

OffsetY y= 0

In 3D graphics programming, a 4×4 transform matrix is required and a point (x, y, z) is treated as if
it exists in 4D space with coordinates (x, y, z, 1). Because there are no remaining letters after x, y, and
z, that fourth dimension is usually referred to with the letter w. Application of a transform looks like
this:

x y z

M M M M
M M M M
M M M M

OffsetX OffsetY Off

1

11 12 13 14
21 22 23 24
31 32 33 34

×

ssetZ M

x y z w

44

= ′ ′ ′ ′

Those are the actual fields of the Matrix3D structure.

That resultant 4×1 matrix is then converted back to a point in three-dimensional space by dividing
all the coordinates by w’:

x y z w x
w

y
w

z
w

′ ′ ′ ′ ′
′

′
′

′
′

→ 





, ,

In conventional 2D graphics, a potential division by zero is generally undesired. But in 3D graphics,
division by a value that might equal zero is essential because this is how perspective is achieved. You
want parallel lines to meet at infinity because that’s how the world looks in real life.

	 CHAPTER 10  Transforms	 439

The only purpose of this Matrix3D structure in the Windows Runtime is to set to the
ProjectionMatrix property of a Matrix3DProjection object, which you can then set to the Projection
property of an element as an alternative to PlaneProjection. In XAML, it might look like this:

<Image ... >
 <Image.Projection>
 <Matrix3DProjection>
 <Matrix3DProjection.ProjectionMatrix>
 1 0 0 0, 0 1 0 0, 0 0 1 0, 0 0 0 1
 </Matrix3DProjection.ProjectionMatrix>
 </Matrix3DProjection>
 </Image.Projection>
</Image>

You can’t actually instantiate a Matrix3D value in XAML, so instead you need to specify the 16
numbers that make up the matrix, starting with the first row. This example shows the identity matrix,
with its characteristic diagonal of 1s.

This full-blown 4×4 matrix isn’t entirely used in this context because the element that it’s applied
to is flat and has a Z coordinate of zero, so the application of the matrix really looks like this:

x y

M M M M
M M M M
M M M M

OffsetX OffsetY Off

0 1

11 12 13 14
21 22 23 24
31 32 33 34

×

ssetZ M

x y z w

44

= ′ ′ ′ ′

This means that the cells that make up the entire third row—the values of M31, M32, M33, and M34—
are irrelevant. They are multiplied by 0 and hence do not enter the calculation.

Moreover, the 3D point derived from this process is collapsed on the Z axis to obtain a 2D point for
mapping to the video display:

x
w

y
w

z
w

x
w

y
w

′
′

′
′

′
′

′
′

′
′

, , ,





 →









This is a process that happens in standard 3D graphics as well, but there’s usually much more work
involved because the Z values also indicate what’s visible to the camera and what’s obscured.

Moreover, in standard 3D graphics, only a range of Z values is retained. A “near plane” and “far
plane” are defined in terms of Z, and only coordinates between these two planes are visible. The rest
are simply thrown away because they are conceptually too near or too far from the camera. In the
Windows Runtime, only coordinates with Z values between the values of 0 and 1 are retained. To
avoid losing part of a transformed element, M13 and M23 should be set to zero. OffsetZ can be set to
any value between 0 and 1, but it’s convenient to set it to zero as well.

440	 PART 1  Elementals

When applying a Matrix3DProjection to a two-dimensional element, the transform formulas are
therefore

x M x M y OffsetX′ = + +11 21• •

y M x M y OffsetY′ = + +12 22• •

w M x M y M′ = + +14 24 44• •

If M14 and M24 are zero and M44 is 1, this is simply a two-dimensional affine transform. Nonzero
values of M14 and M24 are the non-affine parts of these formulas. M44 can be something other than
1, but if it’s not zero, you can always find an equivalent transform where M44 equals 1. Just multiply
all the fields by 1/M44.

With a non-affine transform, a square is not necessarily transformed to a parallelogram. However,
a non-affine matrix transform still has limitations. It can’t transform a square to any arbitrary
quadrilateral. The transformed lines cannot cross each other and the four angles must be convex.

Let’s attempt to derive a non-affine transform that maps the four corners of a square to four
arbitrary points:

0 0 0 0,() → ()x y,

0 1 1 1,() → ()x y,

1 0 2 2,() → ()x y

1 1 3 3,() → ()x y

This exercise will be easier if we break this down into two transforms:

0 0 0 0 0 0,() → () → ()x y

0 1 0 1 1 1,() → () → ()x y

1 0 1 0 2 2,() → () → ()x y

1 1 3 3,() → () → ()a b x y

The first transform is obviously a non-affine transform that I’ll call B. The second is something
that we’ll force to be an affine transform called A (for affine). The way we’ll force it to be an affine
transform is by deriving values of a and b. The composite transform is B×A.

I’ve already shown you the derivation of the affine transform, and I don’t even need to change
notation when switching from the 3×3 matrix to the 4×4 matrix. But we also want this affine transform

	 CHAPTER 10  Transforms	 441

to map the point (a, b) to the arbitrary point (x3, y3). By applying the derived affine transform to (a, b)
and solving for a and b, we get this:

a M x M y M OffsetY M OffsetX
M M M M

=
− + −

−
22 21 21 22

11 22 12 21
3 3• • • •

• •

b M y M x M OffsetX M OffsetY
M M M M

=
− + −

−
11 12 12 11

11 22 12 21
3 3•

• •

• • •

Now let’s take a shot at the non-affine transform, which needs to yield the following mappings:

0 0 0 0() → ()

0 1 0 1() → ()

1 0 1 0, ,() → ()

1 1, ,() → ()a b

Here are the transform formulas from earlier:

x M x M y OffsetX′ = + +11 21 ••

y M x M y OffsetY′ = + +12 22 ••

w M x M y M′ = + +14 24 44••

Keep in mind that x’ and y’ must be divided by w’ to get the transformed point.

If (0, 0) maps to (0, 0), then OffsetX and OffsetY are zero and M44 is nonzero. Let’s go out on a
limb and set M44 to 1.

If (0, 1) maps to (0, 1), then M21 must be zero (to calculate a zero value of x’) and y’ divided by w’
must equal 1, which means M24 equals M22 minus 1.

If (1, 0) maps to (1, 0), then M12 is zero (for the zero value of y’) and x’ divided by w’ must equal 1,
or M14 equals M11 minus 1.

If (1, 1) maps to (a, b), then a bit of algebra derives

M a
a b

11
1

=
+ −

M b
a b

22
1

=
+ −

And a and b have already been derived.

442	 PART 1  Elementals

Now let’s code it up. I want to display the actual matrix that’s derived from this process. That’s the
purpose of a UserControl derivative named DisplayMatrix3D. The XAML file consists of little more
than a 4×4 Grid of TextBlock elements:

Project: NonAffineStretch | File: DisplayMatrix3D.xaml (excerpt)

<UserControl ... >
 <UserControl.Resources>
 <Style TargetType="TextBlock">
 <Setter Property="TextAlignment" Value="Right" />
 <Setter Property="Margin" Value="6 0" />
 </Style>
 </UserControl.Resources>

 <Border BorderBrush="{StaticResource ApplicationForegroundThemeBrush}"
 BorderThickness="1 0">
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition Width="Auto" />
 </Grid.ColumnDefinitions>

 <TextBlock Name="m11" Grid.Row="0" Grid.Column="0" />
 <TextBlock Name="m12" Grid.Row="0" Grid.Column="1" />
 <TextBlock Name="m13" Grid.Row="0" Grid.Column="2" />
 <TextBlock Name="m14" Grid.Row="0" Grid.Column="3" />

 <TextBlock Name="m21" Grid.Row="1" Grid.Column="0" />
 <TextBlock Name="m22" Grid.Row="1" Grid.Column="1" />
 <TextBlock Name="m23" Grid.Row="1" Grid.Column="2" />
 <TextBlock Name="m24" Grid.Row="1" Grid.Column="3" />

 <TextBlock Name="m31" Grid.Row="2" Grid.Column="0" />
 <TextBlock Name="m32" Grid.Row="2" Grid.Column="1" />
 <TextBlock Name="m33" Grid.Row="2" Grid.Column="2" />
 <TextBlock Name="m34" Grid.Row="2" Grid.Column="3" />

 <TextBlock Name="m41" Grid.Row="3" Grid.Column="0" />
 <TextBlock Name="m42" Grid.Row="3" Grid.Column="1" />
 <TextBlock Name="m43" Grid.Row="3" Grid.Column="2" />
 <TextBlock Name="m44" Grid.Row="3" Grid.Column="3" />
 </Grid>
 </Border>
</UserControl>

	 CHAPTER 10  Transforms	 443

The code-behind file defines a dependency property of type Matrix3D, so it receives a notification
whenever the property is changed. Watch out: The notification will not occur if a property of the
existing Matrix3D structure is changed. The entire structure must be replaced.

Project: NonAffineStretch | File: DisplayMatrix3D.xaml.cs (excerpt)

public sealed partial class DisplayMatrix3D : UserControl
{
 static DependencyProperty matrix3DProperty =
 DependencyProperty.Register("Matrix3D",
 typeof(Matrix3D), typeof(DisplayMatrix3D),
 new PropertyMetadata(Matrix3D.Identity, OnPropertyChanged));

 public DisplayMatrix3D()
 {
 this.InitializeComponent();
 }

 public static DependencyProperty Matrix3DProperty
 {
 get { return matrix3DProperty; }
 }

 public Matrix3D Matrix3D
 {
 set { SetValue(Matrix3DProperty, value); }
 get { return (Matrix3D)GetValue(Matrix3DProperty); }
 }

 static void OnPropertyChanged(DependencyObject obj,
 DependencyPropertyChangedEventArgs args)
 {
 (obj as DisplayMatrix3D).OnPropertyChanged(args);
 }

 void OnPropertyChanged(DependencyPropertyChangedEventArgs args)
 {
 m11.Text = this.Matrix3D.M11.ToString("F3");
 m12.Text = this.Matrix3D.M12.ToString("F3");
 m13.Text = this.Matrix3D.M13.ToString("F3");
 m14.Text = this.Matrix3D.M14.ToString("F6");

 m21.Text = this.Matrix3D.M21.ToString("F3");
 m22.Text = this.Matrix3D.M22.ToString("F3");
 m23.Text = this.Matrix3D.M23.ToString("F3");
 m24.Text = this.Matrix3D.M24.ToString("F6");

 m31.Text = this.Matrix3D.M31.ToString("F3");
 m32.Text = this.Matrix3D.M32.ToString("F3");
 m33.Text = this.Matrix3D.M33.ToString("F3");
 m34.Text = this.Matrix3D.M34.ToString("F6");

 m41.Text = this.Matrix3D.OffsetX.ToString("F0");
 m42.Text = this.Matrix3D.OffsetY.ToString("F0");
 m43.Text = this.Matrix3D.OffsetZ.ToString("F0");
 m44.Text = this.Matrix3D.M44.ToString("F0");
 }
}

444	 PART 1  Elementals

The formatting specifications were chosen based on a bit of experience with the common ranges of
these cells.

The XAML file for MainPage includes an instance of the DisplayMatrix3D control, but it also
references an image from my website and adorns it with four Thumb controls. These Thumb controls
allow us to drag any corner to an arbitrary location. The prefixes “ul”, “ur”, “ll”, and “lr” stand for
“upper-left,” “upper-right,” “lower-left,” and “lower-right.”

Project: NonAffineStretch | File: MainPage.xaml (excerpt)

<Page ... >
 <Page.Resources>
 <Style TargetType="Thumb">
 <Setter Property="Width" Value="48" />
 <Setter Property="Height" Value="48" />
 <Setter Property="HorizontalAlignment" Value="Left" />
 <Setter Property="VerticalAlignment" Value="Top" />
 </Style>
 </Page.Resources>

 <Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <Image Source="http://www.charlespetzold.com/pw6/PetzoldJersey.jpg"
 Stretch="None"
 HorizontalAlignment="Left"
 VerticalAlignment="Top">
 <Image.Projection>
 <Matrix3DProjection x:Name="matrixProjection" />
 </Image.Projection>
 </Image>

 <Thumb DragDelta="OnThumbDragDelta">
 <Thumb.RenderTransform>
 <TransformGroup>
 <TranslateTransform X="-24" Y="-24" />
 <TranslateTransform x:Name="ulTranslate" X="100" Y="100" />
 </TransformGroup>
 </Thumb.RenderTransform>
 </Thumb>

 <Thumb DragDelta="OnThumbDragDelta">
 <Thumb.RenderTransform>
 <TransformGroup>
 <TranslateTransform X="-24" Y="-24" />
 <TranslateTransform x:Name="urTranslate" X="420" Y="100" />
 </TransformGroup>
 </Thumb.RenderTransform>
 </Thumb>

 <Thumb DragDelta="OnThumbDragDelta">
 <Thumb.RenderTransform>
 <TransformGroup>
 <TranslateTransform X="-24" Y="-24" />
 <TranslateTransform x:Name="llTranslate" X="100" Y="500" />
 </TransformGroup>
 </Thumb.RenderTransform>
 </Thumb>

	 CHAPTER 10  Transforms	 445

 <Thumb DragDelta="OnThumbDragDelta">
 <Thumb.RenderTransform>
 <TransformGroup>
 <TranslateTransform X="-24" Y="-24" />
 <TranslateTransform x:Name="lrTranslate" X="420" Y="500" />
 </TransformGroup>
 </Thumb.RenderTransform>
 </Thumb>

 <local:DisplayMatrix3D HorizontalAlignment="Right"
 VerticalAlignment="Bottom"
 FontSize="24"
 Matrix3D="{Binding ElementName=matrixProjection,
 Path=ProjectionMatrix}" />
 </Grid>
</Page>

The code-behind file implements the math I just showed you, except that another matrix is needed
for mapping from the actual size and location of the image to a unit square. That’s the matrix called S
in the CalculateNewTransform code:

Project: NonAffineStretch | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 // Location and Size of Image with no transform
 Rect imageRect = new Rect(0, 0, 320, 400);

 public MainPage()
 {
 this.InitializeComponent();

 Loaded += (sender, args) =>
 {
 CalculateNewTransform();
 };
 }

 void OnThumbDragDelta(object sender, DragDeltaEventArgs args)
 {
 Thumb thumb = sender as Thumb;
 TransformGroup xformGroup = thumb.RenderTransform as TransformGroup;
 TranslateTransform translate = xformGroup.Children[1] as TranslateTransform;
 translate.X += args.HorizontalChange;
 translate.Y += args.VerticalChange;
 CalculateNewTransform();
 }

 void CalculateNewTransform()
 {
 Matrix3D matrix = CalculateNewTransform(imageRect,
 new Point(ulTranslate.X, ulTranslate.Y),
 new Point(urTranslate.X, urTranslate.Y),
 new Point(llTranslate.X, llTranslate.Y),
 new Point(lrTranslate.X, lrTranslate.Y));

446	 PART 1  Elementals

 matrixProjection.ProjectionMatrix = matrix;
 }

 // The returned transform maps the points (0, 0),
 // (0, 1), (1, 0), and (1, 1) to the points
 // ptUL, ptUR, ptLL, and ptLR normalized based on rect.
 static Matrix3D CalculateNewTransform(Rect rect, Point ptUL, Point ptUR,
 Point ptLL, Point ptLR)
 {
 // Scale and translate normalization transform
 Matrix3D S = new Matrix3D()
 {
 M11 = 1 / rect.Width,
 M22 = 1 / rect.Height,
 OffsetX = -rect.Left / rect.Width,
 OffsetY = -rect.Top / rect.Height,
 M44 = 1
 };

 // Affine transform: Maps
 // (0, 0) --> ptUL
 // (1, 0) --> ptUR
 // (0, 1) --> ptLL
 // (1, 1) --> (x2 + x1 + x0, y2 + y1 + y0)
 Matrix3D A = new Matrix3D()
 {
 OffsetX = ptUL.X,
 OffsetY = ptUL.Y,
 M11 = (ptUR.X - ptUL.X),
 M12 = (ptUR.Y - ptUL.Y),
 M21 = (ptLL.X - ptUL.X),
 M22 = (ptLL.Y - ptUL.Y),
 M44 = 1
 };

 // Non-affine transform
 Matrix3D B = new Matrix3D();
 double den = A.M11 * A.M22 - A.M12 * A.M21;
 double a = (A.M22 * ptLR.X - A.M21 * ptLR.Y +
 A.M21 * A.OffsetY - A.M22 * A.OffsetX) / den;
 double b = (A.M11 * ptLR.Y - A.M12 * ptLR.X +
 A.M12 * A.OffsetX - A.M11 * A.OffsetY) / den;

 B.M11 = a / (a + b - 1);
 B.M22 = b / (a + b - 1);
 B.M14 = B.M11 - 1;
 B.M24 = B.M22 - 1;
 B.M44 = 1;

 // Product of three transforms
 return S * B * A;
 }
}

	 CHAPTER 10  Transforms	 447

Unlike the two-dimensional Matrix structure, the Matrix3D structure implements the multiplication
operator, which makes array manipulation much easier.

It is certainly possible to drag one of the thumbs to a position where the image disappears
because at least one of the angles is concave or the lines cross each other. But under those restrictions
you can indeed stretch the image to a non-affine shape:

Obviously, it's a little bit of work to persuade the Windows Runtime to apply a taper transform
of a desired form, but the work is compensated by the pleasures of distorting photographs to make
people look funny.

		 449

C H A P T E R 1 1

The Three Templates

The word “template” generally refers to a kind of pattern or mold used for creating identical or
similar objects. In the Windows Runtime, a template is a chunk of XAML that Windows uses to

create a visual tree of elements. This might not seem so astonishing. You’ve seen Windows turning
XAML into visual trees since the first pages of this book. But templates almost always contain data
bindings, so a single template can result in many visual trees of somewhat different appearances
based on the binding sources. For this reason, templates are very often defined as resources so that
they can be shared and used multiple times.

The title of this chapter refers to three templates. These correspond to the three classes that derive
from FrameworkTemplate:

 Object
 DependencyObject
 FrameworkTemplate (non-instantiable)
 DataTemplate
 ControlTemplate
 ItemsPanelTemplate

You cannot define a template in code. You must use XAML. And don’t expect to get any
deeper knowledge of these classes by consulting the Windows Runtime documentation.
DataTemplate defines just one public method, ControlTemplate defines just one public property,
and ItemsPanelTemplate defines nothing on its own. Virtually everything connected with the actual
mechanics of the template classes is internal to the Windows Runtime.

You use DataTemplate to give a visual appearance to data objects that don’t necessarily have
intrinsic visuals. I will first demonstrate DataTemplate in connection with controls that derive from
ContentControl, and it will initially seem to have limited applicability. But DataTemplate is essential for
displaying individual items in collections, which involves controls that derive from ItemsControl.

You use ControlTemplate to redefine the appearance of standard controls; this is a very powerful
tool for customizing the visuals of an application.

ItemsPanelTemplate is much simpler than the other two and plays a role only in classes that derive
from ItemsControl.

As might be expected from so versatile a tool, the templates defined as part of a DataTemplate or
ControlTemplate can be complex. Many programmers cherish the help that Expression Blend brings
in designing their templates. As usual, however, I will demonstrate here how to create templates

450	 PART 1  Elementals

“by hand.” Even if you end up using Expression Blend, you’ll be in better shape for understanding the
XAML that Expression Blend generates.

By the end of this chapter, everything in the StandardStyles.xaml file that Visual Studio generates
as part of standard projects should be entirely comprehensible.

Data in a Button

Several common elements and controls in the Windows Runtime can have visual children. The
most obvious is Panel, which can support multiple children through its Children property of type
UIElementCollection. The Border can have one child; its Child property is of type UIElement. When you
create a custom control from UserControl, you set a visual tree to its Content property, which is also of
type UIElement.

Button has a Content property as well, but this Content property is of type Object. Why is that?

The easy answer is: Because Button derives from ContentControl, and ContentControl defines a
Content property of type Object:

 Object
 DependencyObject
 UIElement
 FrameworkElement
 Control
 ContentControl
 ButtonBase
 Button

But that’s really not a good answer.

Most of the time, you do not set the Content property of Button to any old object. Most of the
time you set the Content property to text, and you probably (and correctly) presume that a TextBlock
is being created behind the scenes to display that text.

For fancier buttons, you can set the Content property to anything that derives from UIElement. For
example, here’s a button with a panel containing a bitmap and formatted text:

<Button HorizontalAlignment="Center">
 <StackPanel>
 <Image Source="http://www.charlespetzold.com/pw6/PetzoldJersey.jpg"
 Width="100" />
 <TextBlock>
 <Italic>Tap</Italic> to shoot the basket
 </TextBlock>
 </StackPanel>
</Button>

	 CHAPTER 11  The Three Templates	 451

And here it is:

But if the Content property of Button is truly of type Object, we should be able to set it to
something that does not derive from UIElement. What do you suppose happens in that case? Try it
out by setting the content of a button to a LinearGradientBrush, for example:

<Button HorizontalAlignment="Center">
 <LinearGradientBrush>
 <GradientStop Offset="0" Color="Red" />
 <GradientStop Offset="1" Color="Blue" />
 </LinearGradientBrush>
</Button>

That’s perfectly legal, even though it’s not quite clear what you’re trying to do. Brushes are
commonly set to various properties of elements (such as the Background or Foreground properties of
Button) to color them in various ways. But a brush doesn’t have any visual representation of its own.
For that reason what you’ll see displayed in the button is the ToString representation of the brush.
ToString might return something meaningful for some classes but the default implementation simply
returns the fully qualified class name:

This is not very satisfying.

This problem is fixable! ContentControl defines (and Button inherits) not only a Content property
but also a property named ContentTemplate. You set the ContentTemplate property to an object of
type DataTemplate, in which you define a visual tree. This visual tree usually contains bindings that
reference the object set to the Content property.

Let’s first add property-element tags for the ContentTemplate property of Button and set to that a
DataTemplate:

<Button HorizontalAlignment="Center">
 <LinearGradientBrush>
 <GradientStop Offset="0" Color="Red" />
 <GradientStop Offset="1" Color="Blue" />
 </LinearGradientBrush>

452	 PART 1  Elementals

 <Button.ContentTemplate>
 <DataTemplate>

 </DataTemplate>
 </Button.ContentTemplate>
</Button>

Within those DataTemplate tags we can define a visual tree of elements that make use of the
button content in some way. Let’s try an Ellipse:

<Button HorizontalAlignment="Center">
 <LinearGradientBrush>
 <GradientStop Offset="0" Color="Red" />
 <GradientStop Offset="1" Color="Blue" />
 </LinearGradientBrush>

 <Button.ContentTemplate>
 <DataTemplate>
 <Ellipse Width="120"
 Height="144"
 Fill="{Binding}" />
 </DataTemplate>
 </Button.ContentTemplate>
</Button>

Notice the Binding markup extension on the Fill property of the Ellipse. This is obviously a very
simple binding. It doesn’t need a Source because the DataContext of this template has been set to the
content of the button. The binding doesn’t have a Path because we want the Fill property set directly
to the content of the button. The template makes the button content visible:

Visually, it’s the same as setting an Ellipse as content of the button and defining the
LinearGradientBrush directly on the Fill property, like so:

<Button HorizontalAlignment="Center">
 <Ellipse Width="120"
 Height="144">
 <Ellipse.Fill>
 <LinearGradientBrush>
 <GradientStop Offset="0" Color="Red" />

	 CHAPTER 11  The Three Templates	 453

 <GradientStop Offset="1" Color="Blue" />
 </LinearGradientBrush>
 </Ellipse.Fill>
 </Ellipse>
</Button>

However, the template could be part of a style that is shared among multiple buttons, so the template
approach is definitely more flexible and versatile.

The data bindings in a DataTemplate need not be as simple as the one I just showed you. Here’s a
more extensive template that references the Color property of the second GradientStop object in the
button’s content and uses that to set the color of a SolidColorBrush that strokes the circumference of
the ellipse:

<Button HorizontalAlignment="Center">
 <LinearGradientBrush>
 <GradientStop Offset="0" Color="Red" />
 <GradientStop Offset="1" Color="Blue" />
 </LinearGradientBrush>

 <Button.ContentTemplate>
 <DataTemplate>
 <Ellipse Width="120"
 Height="144"
 Fill="{Binding}"
 StrokeThickness="6">
 <Ellipse.Stroke>
 <SolidColorBrush Color="{Binding Path=GradientStops[1].Color}" />
 </Ellipse.Stroke>
 </Ellipse>
 </DataTemplate>
 </Button.ContentTemplate>
</Button>

The Binding on the Color property of the SolidColorBrush uses a Path to reference the
GradientStops property of the LinearGradientBrush, an index to obtain a particular GradientStop
object, and then Color to get a property of that object:

<SolidColorBrush Color="{Binding Path=GradientStops[1].Color}" />

A Binding in a DataTemplate usually doesn't have an ElementName or Source setting because that
source is provided as the data context. Because Path is the first (and only) item in the Binding, the
“Path=” part can be removed:

<SolidColorBrush Color="{Binding GradientStops[1].Color}" />

454	 PART 1  Elementals

This is how you’ll almost always see bindings in data templates, and here’s what results:

Of course, the template is relying on the content being a LinearGradientBrush. If it’s not, the
bindings won’t work.

You can define a DataTemplate in the Resources section of a page (or other XAML file):

<Page.Resources>
 <DataTemplate x:Key="ellipseTemplate">
 <Ellipse Width="120"
 Height="144"
 Fill="{Binding}"
 StrokeThickness="6">
 <Ellipse.Stroke>
 <SolidColorBrush Color="{Binding GradientStops[1].Color}" />
 </Ellipse.Stroke>
 </Ellipse>
 </DataTemplate>
</Page.Resources>

Referencing this template in a button requires only the standard StaticResource markup extension:

<Button HorizontalAlignment="Center"
 ContentTemplate="{StaticResource ellipseTemplate}">
 <LinearGradientBrush>
 <GradientStop Offset="0" Color="Red" />
 <GradientStop Offset="1" Color="Blue" />
 </LinearGradientBrush>
</Button>

The template can be shared among multiple buttons (or other ContentControl derivatives).
Normally, visual trees cannot be shared because visual elements can’t have more than one parent. But
the template works quite differently. When a template is shared, it is used to generate a unique visual
tree for each control that references it. If 100 buttons have their ContentTemplate properties set to
this template, 100 Ellipse elements will be created.

	 CHAPTER 11  The Three Templates	 455

Very often, a template is defined within a Style so that other properties can be applied to the
control at the same time. The SharedStyleWithDataTemplate project defines an implicit style in the
Resources section of the page:

Project: SharedStyleWithDataTemplate | File: MainPage.xaml (excerpt)

<Page ... >
 <Page.Resources>
 <Style TargetType="Button">
 <Setter Property="HorizontalAlignment" Value="Center" />
 <Setter Property="VerticalAlignment" Value="Center" />
 <Setter Property="ContentTemplate">
 <Setter.Value>
 <DataTemplate>
 <Ellipse Width="144"
 Height="192"
 Fill="{Binding}" />
 </DataTemplate>
 </Setter.Value>
 </Setter>
 </Style>
 </Page.Resources>

 <Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="*" />
 <ColumnDefinition Width="*" />
 <ColumnDefinition Width="*" />
 </Grid.ColumnDefinitions>

 <Button Grid.Column="0">
 <SolidColorBrush Color="Green" />
 </Button>

 <Button Grid.Column="1">
 <LinearGradientBrush>
 <GradientStop Offset="0" Color="Blue" />
 <GradientStop Offset="1" Color="Red" />
 </LinearGradientBrush>
 </Button>

 <Button Grid.Column="2">
 <ImageBrush ImageSource="http://www.charlespetzold.com/pw6/PetzoldJersey.jpg" />
 </Button>
 </Grid>
</Page>

456	 PART 1  Elementals

The implicit style sets the properties of each Button automatically, including the ContentTemplate
property. All that’s left for the individual buttons is to define a Brush derivative as content:

A template references objects through normal data bindings, so if the source object implements
a notification mechanism—most likely INotifyPropertyChanged—then the visuals are dynamically
updated. For example, suppose you create a Clock class that uses a CompositionTarget.Rendering
event to obtain the current time and use that to set several properties, each of which fires a
PropertyChanged event:

Project: ClockButton | File: Clock.cs

using System;
using System.ComponentModel;
using System.Runtime.CompilerServices;
using Windows.UI.Xaml.Media;

namespace ClockButton
{
 public class Clock : INotifyPropertyChanged
 {
 bool isEnabled;
 int hour, minute, second;
 int hourAngle, minuteAngle, secondAngle;

 public event PropertyChangedEventHandler PropertyChanged;

 public bool IsEnabled
 {
 set
 {
 if (SetProperty<bool>(ref isEnabled, value, "IsEnabled"))
 {
 if (isEnabled)
 CompositionTarget.Rendering += OnCompositionTargetRendering;

	 CHAPTER 11  The Three Templates	 457

 else
 CompositionTarget.Rendering -= OnCompositionTargetRendering;
 }
 }
 get
 {
 return isEnabled;
 }
 }

 public int Hour
 {
 set { SetProperty<int>(ref hour, value); }
 get { return hour; }
 }

 public int Minute
 {
 set { SetProperty<int>(ref minute, value); }
 get { return minute; }
 }

 public int Second
 {
 set { SetProperty<int>(ref second, value); }
 get { return second; }
 }

 public int HourAngle
 {
 set { SetProperty<int>(ref hourAngle, value); }
 get { return hourAngle; }
 }

 public int MinuteAngle
 {
 set { SetProperty<int>(ref minuteAngle, value); }
 get { return minuteAngle; }
 }
 public int SecondAngle
 {
 set { SetProperty<int>(ref secondAngle, value); }
 get { return secondAngle; }
 }

 void OnCompositionTargetRendering(object sender, object args)
 {
 DateTime dateTime = DateTime.Now;
 this.Hour = dateTime.Hour;
 this.Minute = dateTime.Minute;
 this.Second = dateTime.Second;

 this.HourAngle = 30 * dateTime.Hour + dateTime.Minute / 2;
 this.MinuteAngle = 6 * dateTime.Minute + dateTime.Second / 10;
 this.SecondAngle = 6 * dateTime.Second + dateTime.Millisecond / 166;
 }

458	 PART 1  Elementals

 protected bool SetProperty<T>(ref T storage, T value,
 [CallerMemberName] string propertyName = null)
 {
 if (object.Equals(storage, value))
 return false;

 storage = value;
 OnPropertyChanged(propertyName);
 return true;
 }

 protected virtual void OnPropertyChanged(string propertyName)
 {
 if (PropertyChanged != null)
 PropertyChanged(this, new PropertyChangedEventArgs(propertyName));
 }
 }
}

You can then set an instance of this class to the content of a Button and use a DataTemplate to
define how this object is rendered:

Project: ClockButton | MainPage.xaml (excerpt)

<Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <Button HorizontalAlignment="Center"
 VerticalAlignment="Center">

 <local:Clock IsEnabled="True" />

 <Button.ContentTemplate>
 <DataTemplate>
 <Grid Width="144" Height="144">
 <Grid.Resources>
 <Style TargetType="Polyline">
 <Setter Property="Stroke"
 Value="{StaticResource ApplicationForegroundThemeBrush}" />
 </Style>
 </Grid.Resources>

 <Polyline Points="72 80, 72 24"
 StrokeThickness="6">
 <Polyline.RenderTransform>
 <RotateTransform Angle="{Binding HourAngle}"
 CenterX="72"
 CenterY="72" />
 </Polyline.RenderTransform>
 </Polyline>

 <Polyline Points="72 88, 72 12"
 StrokeThickness="3">
 <Polyline.RenderTransform>
 <RotateTransform Angle="{Binding MinuteAngle}"
 CenterX="72"
 CenterY="72" />
 </Polyline.RenderTransform>
 </Polyline>

	 CHAPTER 11  The Three Templates	 459

 <Polyline Points="72 88, 72 6"
 StrokeThickness="1">
 <Polyline.RenderTransform>
 <RotateTransform Angle="{Binding SecondAngle}"
 CenterX="72"
 CenterY="72" />
 </Polyline.RenderTransform>
 </Polyline>
 </Grid>
 </DataTemplate>
 </Button.ContentTemplate>
 </Button>
</Grid>

Notice that I’ve defined an implicit Style for Polyline within the visual tree of the DataTemplate.
This applies to all the Polyline elements within that visual tree. These Polyline elements have their
RenderTransform properties set to a RotateTransform, the Angle of which is bound to various proper-
ties of the Clock class. Together, these three Polyline elements constitute a primitive clock that tells
time along with functioning as part of a completely functional Button:

Keep in mind that the DataTemplate set to the ContentTemplate property of the Button defines
only the appearance of the button content and not the button’s chrome. The button still has a
rectangular border, for example, and (in the dark theme) it still assumes a somewhat grayer appear-
ance when the mouse passes over and it displays a white background when it’s clicked. Changing
those aspects of the button’s appearance requires working with a ControlTemplate object set to the
button’s Template property, as you’ll see later in this chapter.

460	 PART 1  Elementals

Making Decisions

XAML is not a real programming language because it doesn’t have loops and if statements. XAML
isn’t capable of making decisions, so it cannot contain blocks of markup that are conditionally
executed.

But we can always try.

Let’s expand upon the Clock class in the previous project to make it differentiate between morning
and afternoon. To do this we’ll derive a new class from Clock with a new property named Hour12 that
ranges from 1 through 12. Let’s also give this new class a couple Boolean properties named IsAm
and IsPm in the hopes that we might use these properties for displaying something a little different
depending on their values.

The ConditionalClockButton project contains a link to the Clock.cs file from the ClockButton
project and defines a TwelveHourClock class that derives from Clock:

Project: ConditionalClockButton | File: TwelveHourClock.cs

namespace ConditionalClockButton
{
 public class TwelveHourClock : ClockButton.Clock
 {
 // Initialize for Hour value of 0
 int hour12 = 1;
 bool isAm = true;
 bool isPm = false;

 public int Hour12
 {
 set { SetProperty<int>(ref hour12, value); }
 get { return hour12; }
 }

 public bool IsAm
 {
 set { SetProperty<bool>(ref isAm, value); }
 get { return isAm; }
 }

 public bool IsPm
 {
 set { SetProperty<bool>(ref isPm, value); }
 get { return isPm; }
 }

 protected override void OnPropertyChanged(string propertyName)
 {
 if (propertyName == "Hour")
 {
 this.Hour12 = (this.Hour - 1) % 12 + 1;
 this.IsAm = this.Hour < 12;

	 CHAPTER 11  The Three Templates	 461

 this.IsPm = !this.IsAm;
 }

 base.OnPropertyChanged(propertyName);
 }
 }
}

Fortunately, I defined the OnPropertyChanged method in Clock as virtual, so this new class can
override that method and check if the propertyName argument equals “Hour.” If so, all three new
properties are set, and those properties also call SetProperty and hence OnPropertyChanged to fire
their own PropertyChanged events.

Suppose you want a Button that says, “It’s after 9 in the morning” or “It’s after 3 in the afternoon.”
This TwelveHourClock class has all the information you need, and you might begin defining the button
like so:

<Button>

 <local:TwelveHourClock />

 <Button.ContentTemplate>
 <DataTemplate>
 <StackPanel Orientation="Horizontal">
 <TextBlock Text="It's after " />
 <TextBlock Text="{Binding Hour12}" />
 <TextBlock Text=" o'clock" />
 <TextBlock Text=" in the morning!" />
 <TextBlock Text=" in the afternoon!" />
 </StackPanel>
 </DataTemplate>
 </Button.ContentTemplate>
</Button>

However, one of those two last TextBlock elements needs to be suppressed. The first of that pair
should be displayed only when the IsAm property is true, and the second should be displayed only
when IsPm is true. As you’ll recall, elements have a Visibility property that can be set to members of
the Visibility enumeration, either Visible or Collapsed. If there were some way to convert the Boolean
properties of TwelveHourClock to members of the Visibility enumeration, we’d be in great shape.

I introduced binding converters in Chapter 4, “Presentation with Panels,” and it turns out that one
of the most popular binding converters is often named BooleanToVisibilityConverter. Indeed, if you
create a project of type Grid App or Split App in Visual Studio, you get one of these converters for
free in the Common folder, but writing one isn’t hard:

Project: ConditionalClockButton | File: BooleanToVisibilityConverter.cs

using System;
using Windows.UI.Xaml;
using Windows.UI.Xaml.Data;

462	 PART 1  Elementals

namespace ConditionalClockButton
{
 public sealed class BooleanToVisibilityConverter : IValueConverter
 {
 public object Convert(object value, Type targetType, object parameter, string language)
 {
 return (bool)value ? Visibility.Visible : Visibility.Collapsed;
 }

 public object ConvertBack(object value, Type targetType, object parameter, string lang)
 {
 return (Visibility)value == Visibility.Visible;
 }
 }
}

The version that Visual Studio generates is just a bit more elaborate than this: It checks that the
value arguments are actually of the types to which they are cast. But if you’re restricting the use of a
converter to some specific markup, you can relax the type checking. A restricted use is certainly the
case in this program, in which the converter is instantiated not in the Resources section of the Page
but in a Resources section within the template:

Project: ConditionalClockButton | File: MainPage.xaml (excerpt)

<Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <Button HorizontalAlignment="Center"
 VerticalAlignment="Center"
 FontSize="24">

 <local:TwelveHourClock IsEnabled="True" />

 <Button.ContentTemplate>
 <DataTemplate>
 <StackPanel Orientation="Horizontal">
 <StackPanel.Resources>
 <local:BooleanToVisibilityConverter x:Key="booleanToVisibility" />
 </StackPanel.Resources>

 <TextBlock Text="It's after " />
 <TextBlock Text="{Binding Hour12}" />
 <TextBlock Text=" o'clock" />
 <TextBlock Text=" in the morning!"
 Visibility="{Binding IsAm,
 Converter={StaticResource booleanToVisibility}}" />
 <TextBlock Text=" in the afternoon!"
 Visibility="{Binding IsPm,
 Converter={StaticResource booleanToVisibility}}" />
 </StackPanel>
 </DataTemplate>
 </Button.ContentTemplate>
 </Button>
</Grid>

	 CHAPTER 11  The Three Templates	 463

The Visibility properties of the last two TextBlock items are now bound to the IsAm and IsPm
properties of TwelveHourClock, and the BooleanToVisibilityConverter determines which one is visible:

Collection Controls and the Real Use of DataTemplate

I’ve been demonstrating the use of DataTemplate with a representative class that derives
from ContentControl, but there aren’t very many of those classes, and to be honest, the use of
DataTemplate with these classes is not very common.

The real use of DataTemplate is with controls that derive from ItemsControl, which are controls that
store a collection of objects, usually of the same type:

Object
 DependencyObject
 UIElement
 FrameworkElement
 Control
 ItemsControl
 Selector (non-instantiable)
 ComboBox
 FlipView
 ListBox
 ListViewBase (non-instantiable)
 GridView
 ListView

464	 PART 1  Elementals

Certainly the most famous of these is ListBox, which has existed in Windows (in one form or
another) from the very beginning. The archetypal ListBox presents a vertical list of items through
which a user can scroll and select using the keyboard or mouse. (The modern ListBox is more flex-
ible and allows touch manipulation.) The ComboBox came a little later in Windows and got its name
because it combined a text-editing field with a drop-down list of items. FlipView is new in Windows 8.

The GridView and ListView are rather more sophisticated than the others and I’ll leave those for
Chapter 12, “Pages and Navigation.”

When working with these various controls, it’s easy to neglect ItemsControl itself, from which
everything else derives. ItemsControl simply displays a collection of items for presentation purposes;
there’s no concept of selection. The Selector class adds selection logic, and all the other classes derive
from that. I’ll generally refer to this entire group of controls as items controls. All of them display a
collection of items.

You can get objects into an items control in one of four ways: individually in XAML, individually in
code, in bulk in code, or in bulk in XAML, usually with a data binding. The objects that you put into
an items control usually do not derive from UIElement. Very often these items are business objects or
view models.

For a brief list of items, you can specify them right in the XAML file:

<Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <ItemsControl FontSize="24">
 <x:String>One potato</x:String>
 <x:String>Two potato</x:String>
 <x:String>Three potato</x:String>
 <x:String>Four</x:String>
 <x:String>Five potato</x:String>
 <x:String>Six potato</x:String>
 <x:String>Seven potato</x:String>
 <x:String>More</x:String>
 </ItemsControl>
</Grid>

The content property of ItemsControl is Items, which is an object of type ItemCollection, a class that
implements IList, IEnumerable, and IObservableVector. (I’ll have more to say about these interfaces
shortly.)

	 CHAPTER 11  The Three Templates	 465

In this example the items being added to the ItemsControl are objects of type String, so they just
display as text:

This particular use of ItemsControl is not much better than a StackPanel except that you can fill
it with items of type String rather than using TextBlock. Behind the scenes, of course, a TextBlock is
generated for each item.

Unlike the controls that derive from ItemsControl, ItemsControl itself does not have a built-in
facility for scrolling. It you have a bunch of items that might require scrolling, you’ll want to put the
ItemsControl inside a ScrollViewer, like so:

<Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <ScrollViewer>
 <ItemsControl FontSize="24">
 <Color>AliceBlue</Color>
 <Color>AntiqueWhite</Color>
 <Color>Aqua</Color>
 ...
 <Color>WhiteSmoke</Color>
 <Color>Yellow</Color>
 <Color>YellowGreen</Color>
 </ItemsControl>
 </ScrollViewer>
</Grid>

466	 PART 1  Elementals

This list scrolls, but it’s not exactly informative because each Color item is displayed with its
ToString representation:

Whenever you see a list of type names in an items control, don’t fret! You should actually be
quite happy to see a binding working because it means that you can display these items better. All
you need do is set the ItemTemplate property of ItemsControl to a DataTemplate with bindings for
rendering these items:

<Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <ScrollViewer>
 <ItemsControl>
 <ItemsControl.ItemTemplate>
 <DataTemplate>
 <Rectangle Width="144"
 Height="72"
 Margin="12">
 <Rectangle.Fill>
 <SolidColorBrush Color="{Binding}" />
 </Rectangle.Fill>
 </Rectangle>
 </DataTemplate>
 </ItemsControl.ItemTemplate>

 <Color>AliceBlue</Color>
 <Color>AntiqueWhite</Color>
 <Color>Aqua</Color>
 ...
 <Color>WhiteSmoke</Color>
 <Color>Yellow</Color>
 <Color>YellowGreen</Color>
 </ItemsControl>
 </ScrollViewer>
</Grid>

	 CHAPTER 11  The Three Templates	 467

The ItemTemplate property of ItemsControl is analogous to the ContentTemplate property of
ContentControl. Both properties are of type DataTemplate. With the ItemTemplate property, however,
the template is used to generate a visual tree for each item. Here’s how it looks now:

As the ItemsControl is being constructed, the DataTemplate is used to generate 141 Rectangle
elements and 141 SolidColorBrush objects, one for each item in the control.

Of course, you probably don’t want a whole list of 141 Color items in the XAML file. You’ll probably
want to generate them in code. In the ColorItems project, the XAML file contains no items but it does
have a more elaborate template that also displays the components of the color:

Project: ColorItems | File: MainPage.xaml (excerpt)

<Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <ScrollViewer>
 <ItemsControl Name="itemsControl"
 FontSize="24">
 <ItemsControl.ItemTemplate>
 <DataTemplate>
 <Grid Width="240"
 Margin="0 12">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="144" />
 <ColumnDefinition Width="Auto" />
 </Grid.ColumnDefinitions>

 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>

468	 PART 1  Elementals

 <Rectangle Grid.Column="0"
 Grid.Row="0"
 Grid.RowSpan="4"
 Margin="12 0">
 <Rectangle.Fill>
 <SolidColorBrush Color="{Binding}" />
 </Rectangle.Fill>
 </Rectangle>

 <StackPanel Grid.Column="1"
 Grid.Row="0"
 Orientation="Horizontal">
 <TextBlock Text="A = " />
 <TextBlock Text="{Binding A}" />
 </StackPanel>

 <StackPanel Grid.Column="1"
 Grid.Row="1"
 Orientation="Horizontal">
 <TextBlock Text="R = " />
 <TextBlock Text="{Binding R}" />
 </StackPanel>

 <StackPanel Grid.Column="1"
 Grid.Row="2"
 Orientation="Horizontal">
 <TextBlock Text="G = " />
 <TextBlock Text="{Binding G}" />
 </StackPanel>

 <StackPanel Grid.Column="1"
 Grid.Row="3"
 Orientation="Horizontal">
 <TextBlock Text="B = " />
 <TextBlock Text="{Binding B}" />
 </StackPanel>
 </Grid>
 </DataTemplate>
 </ItemsControl.ItemTemplate>
 </ItemsControl>
 </ScrollViewer>
</Grid>

The items themselves are generated in code. As you probably expect by now, the code-behind file
uses reflection to obtain all the Color properties defined by the static Colors class. Each Color value
is added to the ItemsControl using the Add method defined by ItemCollection. This represents the
second method of putting items in an items control:

Project: ColorItems | File: MainPage.xaml (excerpt)

public MainPage()
{
 this.InitializeComponent();

	 CHAPTER 11  The Three Templates	 469

 IEnumerable<PropertyInfo> properties = typeof(Colors).GetTypeInfo().DeclaredProperties;

 foreach (PropertyInfo property in properties)
 {
 Color clr = (Color)property.GetValue(null);
 itemsControl.Items.Add(clr);
 }
}

And now we get the color display with the decimal values of the components of each color:

Unfortunately, we can’t use this same technique to display the name of each color because that’s
not part of the Color structure. If we want to display the name along with the color, we’ll need to fill
the ItemsControl with instances of a class that provides this name.

Let’s create this class. In a library project I’ve called Petzold.ProgrammingWindows6.Chapter11, I’ve
defined a class called NamedColor:

Project: Petzold.ProgrammingWindows6.Chapter11 | File: NamedColor.cs (excerpt)

public class NamedColor
{
 static NamedColor()
 {
 List<NamedColor> colorList = new List<NamedColor>();
 IEnumerable<PropertyInfo> properties = typeof(Colors).GetTypeInfo().DeclaredProperties;

 foreach (PropertyInfo property in properties)
 {
 NamedColor namedColor = new NamedColor
 {
 Name = property.Name,
 Color = (Color)property.GetValue(null)
 };

470	 PART 1  Elementals

 colorList.Add(namedColor);
 }

 All = colorList;
 }

 public static IEnumerable<NamedColor> All { private set; get; }

 public string Name { private set; get; }

 public Color Color { private set; get; }
}

The NamedColor class has two public properties: a Name property of type string, and a Color
property of type Color. It also defines a static property named All of type IEnumerable<NamedColor>.
This property is set from the static constructor to consist of a collection of all NamedColor objects
obtained using reflection of the static Colors class.

I have not defined this class as implementing INotifyPropertyChanged because the properties of
any NamedColor object do not change after the object is initialized.

For displaying hexadecimal color values, the Petzold.ProgrammingWindows6.Chapter11 library
also contains a ByteToHexStringConverter:

Project: Petzold.ProgrammingWindows6.Chapter11 | File: ByteToHexStringConverter.cs

using System;
using Windows.UI.Xaml.Data;

namespace Petzold.ProgrammingWindows6.Chapter11
{
 public class ByteToHexStringConverter : IValueConverter
 {
 public object Convert(object value, Type targetType, object parameter, string language)
 {
 return ((byte)value).ToString("X2");
 }
 public object ConvertBack(object value, Type targetType, object parameter, string lang)
 {
 return value;
 }
 }
}

As with many of the projects in the rest of this chapter, the ColorItemsSource solution contains
a link to this library project: With the ColorItemsSource solution in Visual Studio, I right-clicked the
solution name in the Solution Explorer and chose Add and Existing Project. Then I navigated to the
Petzold.ProgrammingWindows6.Chapter11.csproj file. I then defined a reference to this project: I

	 CHAPTER 11  The Three Templates	 471

right-clicked the References under the ColorItemsSource project and in the Reference Manager dialog
box I selected Projects (under Solution) at the left and the library at the right. The MainPage.xaml file
contains an XML namespace declaration for the library:

xmlns:ch11="using:Petzold.ProgrammingWindows6.Chapter11"

The MainPage.xaml.cs file contains a using directive for this namespace:

using Petzold.ProgrammingWindows6.Chapter11;

This project is called ColorItemsSource for a reason: I’ve already shown you how to fill up an
ItemCollection object accessible from the Items property of ItemsControl from either XAML or code.
An alternative is the ItemsSource property. This property is defined as type object but you’ll undoubt-
edly set ItemsSource to something that implements the IEnumerable interface. The object you set to
ItemsSource becomes the collection for the ItemsControl, at which point the Items property becomes
read-only.

You can set the ItemsSource property from either code or XAML. Let me show you the code
approach first. Here’s the XAML file, the bulk of which is a DataTemplate defining the visual tree for
each NamedColor item in the collection.

Project: ColorItemsSource | File: MainPage.xaml (excerpt)

<Page ...
 xmlns:ch11="using:Petzold.ProgrammingWindows6.Chapter11"
 ... >
 <Page.Resources>
 <ch11:ByteToHexStringConverter x:Key="byteToHexString" />
 </Page.Resources>

 <Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <ScrollViewer>
 <ItemsControl Name="itemsControl">

 <ItemsControl.ItemTemplate>
 <DataTemplate>
 <Border BorderBrush="{StaticResource ApplicationForegroundThemeBrush}"
 BorderThickness="1"
 Width="336"
 Margin="6">
 <Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition Width="*"/>
 </Grid.ColumnDefinitions>

 <Rectangle Grid.Column="0"
 Height="72"
 Width="72"
 Margin="6">
 <Rectangle.Fill>
 <SolidColorBrush Color="{Binding Color}" />
 </Rectangle.Fill>
 </Rectangle>

472	 PART 1  Elementals

 <StackPanel Grid.Column="1"
 VerticalAlignment="Center">
 <TextBlock FontSize="24"
 Text="{Binding Name}" />

 <ContentControl FontSize="18">
 <StackPanel Orientation="Horizontal">
 <TextBlock Text="{Binding Color.A,
 Converter={StaticResource byteToHexString}}" />
 <TextBlock Text="-" />
 <TextBlock Text="{Binding Color.R,
 Converter={StaticResource byteToHexString}}" />
 <TextBlock Text="-" />
 <TextBlock Text="{Binding Color.G,
 Converter={StaticResource byteToHexString}}" />
 <TextBlock Text="-" />
 <TextBlock Text="{Binding Color.B,
 Converter={StaticResource byteToHexString}}" />
 </StackPanel>
 </ContentControl>
 </StackPanel>
 </Grid>
 </Border>
 </DataTemplate>
 </ItemsControl.ItemTemplate>
 </ItemsControl>
 </ScrollViewer>
 </Grid>
</Page>

Notice the seven TextBlock elements displaying the Color components. These are all within a
horizontal StackPanel, which is then in a ContentControl. The sole reason for this ContentControl is to
provide a FontSize that is inherited by the seven TextBlock elements. An implicit Style would also have
worked fine.

The bindings on the SolidColorBrush and TextBlock elements obviously imply that an object of
type NamedColor is being displayed, but no objects of NamedColor are instantiated in the XAML file.
Instead, the ItemsSource property of the ItemsControl is set in the constructor of the code-behind file:

Project: ColorItemsSource | File: MainPage.xaml.cs (excerpt)

public MainPage()
{
 this.InitializeComponent();

 itemsControl.ItemsSource = NamedColor.All;
}

	 CHAPTER 11  The Three Templates	 473

When ItemsSource is set, the ItemsControl generates visual trees for all the items in collection:

It is also possible to implement a XAML-only solution by binding the ItemsSource property to the
collection. The ColorItemsSourceWithBinding project is very similar to the ColorItemsSource project
in that it also uses the Petzold.ProgrammingWindows6.Chapter11 library, and it defines the same
DataTemplate in the XAML file. But a NamedColor object is instantiated as a resource, and a binding
to the All property is defined in the ItemsSource property of the ItemsControl:

Project: ColorItemsSourceWithBinding | File: MainPage.xaml (excerpt)

<Page ...
 xmlns:ch11="using:Petzold.ProgrammingWindows6.Chapter11"
 ... >
 <Page.Resources>
 <ch11:NamedColor x:Key="namedColor" />
 <ch11:ByteToHexStringConverter x:Key="byteToHexString" />
 </Page.Resources>

 <Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <ScrollViewer>
 <ItemsControl ItemsSource="{Binding Source={StaticResource namedColor},
 Path=All}">
 <ItemsControl.ItemTemplate>
 <DataTemplate>
 ...
 </DataTemplate>
 </ItemsControl.ItemTemplate>
 </ItemsControl>
 </ScrollViewer>
 </Grid>
</Page>

474	 PART 1  Elementals

If the resource itself were a collection object, ItemsSource could be set to a StaticResource markup
extension of that resource, but because the collection is accessible only from the All property of
NamedColor, a Binding markup extension is necessary to reference the NamedColor object and the All
property.

You’ll recall that Chapter 4 has a couple programs that display lists of colors in various ways and
that I indicated that we’d need to wait for Chapter 11 to see the best way of doing it. This is it. A class
defines the type of the items you wish to display, and a DataTemplate on an ItemsControl defines how
you want these items rendered.

This is the coming together of collections and bindings and templates, and it represents an
essential aspect of Windows Runtime programming.

Collections and Interfaces

Normally, in constructing a class such as NamedColor I would have defined the instance constructor
as protected or private because it doesn’t make much sense for an individual NamedColor object to
be instantiated from outside the class. That would work fine in the ColorItemsSource project but not
in ColorItemsSourceWithBinding. In this second program, NamedColor needs a public parameterless
constructor because the class must be instantiated in XAML as a resource. That particular instance of
NamedColor isn’t otherwise used: It just provides a way to access the static All property in the bind-
ing. In most programs, you’ll probably have a view model class that is instantiated once (the so-called
singleton pattern) and that provides instance properties of particular collections. (I’ll define such a
class in the next chapter.)

In NamedColor, I had some choice in defining the type of the All property. I could have defined
it as what it actually is: a List<NamedColor>. Or I could have gone to the other extreme and
defined it as object. That’s not a problem. When the ItemsSource property of an items control
is set, the control itself checks whether the object set to ItemsSource implements IEnumerable.
That’s all it needs to access the actual items in the collection. That’s why I defined the property as
IEnumerable<NamedColor>. Regardless of how I later change the internals of NamedColor class,
I know that property should always implement IEnumerable because it must provide a suitable
collection source for an items control.

When you begin looking at the documentation of collections and interfaces, it’s apt to be a bit
confusing. Programmers working with .NET recognize the IEnumerable<T> interface defined in the
System.Collections.Generic namespace. Yet in some contexts this interface is referred to as IIterable<T>,
which is defined in the Windows.Foundations.Collections namespace. It’s the same interface, but C#
and Visual Basic programmers refer to it as IEnumerable, while C++ programmers use IIterable.

C# and Visual Basic programmers are also accustomed to working with two basic types of
collections: List<T>, which is an ordered collection of objects of type T, and Dictionary<TKey,
TValue>, which is an ordered collection of unique non-null keys and corresponding values. C++

	 CHAPTER 11  The Three Templates	 475

programmers, however, know these two basic types of collections under the names vector and map,
respectively. For that reason, the Windows.Foundations.Collections namespace includes the interfaces
IVector<T> and IMap<K, V>, but C# and Visual Basic programmers see these interfaces as IList<T> and
IDictionary<TKey, TValue>, both defined in System.Collections.Generic.

If you just remember “a vector is a list; a map is a dictionary,” you’ll certainly be less confused.

You’ve already acquired a familiarity with the INotifyPropertyChanged interface defined in
System.ComponentModel. (C++ programmers use an interface of the same name but defined
in Windows.UI.Xaml.Data.) If an item in a collection that is set to ItemsSource implements the
INotifyPropertyChanged interface, any change to the properties of those items will be reflected in
the visual elements bound to those properties. In other words, the bindings in the DataTemplate can
respond to property changes. You’ve seen this with the ClockButton project for a single item of type
Clock. It also works with items in collections, as you’ll see in the next chapter.

When working with collections and items controls, there is another important interface named
INotifyCollectionChanged defined in System.Collections.Specialized. This interface defines a
CollectionChanged event that is fired when changes to the collection itself occur—that is, when items
are added to the collection or removed from the collection, or items are reordered. If the collec-
tion set to the ItemsSource property of an items control implements INotifyCollectionChanged, these
changes will be perceived by the items control and items will be dynamically added to the display or
removed from the display.

For C# programmers, the ObservableCollection<T> class implements INotifyCollectionChanged, and
this is the class to use for this purpose in Windows Runtime programming.

Tapping and Selecting

In the ColorItemsSource and ColorItemsSourceWithBinding projects, the visuals of each item are
defined by a DataTemplate, but that doesn’t prohibit you from getting input events from the
individual items. In either ColorItemsSource or ColorItemsSourceWithBinding, give the Border that
begins the DataTemplate a non-null background and define a handler for the Tapped event:

<Border BorderBrush="{StaticResource ApplicationForegroundThemeBrush}"
 BorderThickness="1"
 Width="336"
 Margin="6"
 Background="{StaticResource ApplicationPageBackgroundThemeBrush}"
 Tapped="OnItemTapped">

This gives each of the 144 Border elements the same Tapped handler. In that handler, the sender
argument is the Border; the OriginalSource property of the event arguments is either that Border
or another element in the template. Regardless, the DataContext of that element is the particular

476	 PART 1  Elementals

NamedColor object associated with that item, which means that you can extract the Color value and
use that to color the background:

void OnItemTapped(object sender, TappedRoutedEventArgs args)
{
 object dataContext = (args.OriginalSource as FrameworkElement).DataContext;
 Color clr = (dataContext as NamedColor).Color;
 (this.Content as Grid).Background = new SolidColorBrush(clr);
}

Here’s the result when the Brown item has been tapped:

Considering that you can easily implement a tap or click interface in an ItemsControl, you might
wonder why you need controls that derive from Selector, most notably ListBox.

One simple answer is that tapping is not selecting. When an item in a ListBox is selected, it has a
different visual appearance. In addition, the selection can be moved from item to item by using the
keyboard arrow keys. If these aren’t features you need, obviously ItemsControl might be a satisfactory
solution.

To indicate the currently selected item, Selector defines three different (but obviously related)
properties:

■■ SelectedIndex is the index of the selected item within the collection, or –1 if no item is currently
selected.

■■ SelectedItem is the selected item itself, or null if no item is selected.

	 CHAPTER 11  The Three Templates	 477

■■ SelectedValue is generally the value of a property of the selected item, as indicated by
SelectedValuePath. (More on this shortly.)

If SelectedIndex is not –1, SelectedItem is the same object obtained from indexing the Items
property with SelectedIndex. All these properties can be set programmatically or in XAML. When a
ListBox is first filled with items, its SelectedIndex will be –1 and its SelectedItem will be null until these
properties are explicitly changed or until the user selects an item with a finger or mouse.

Selector defines a SelectionChanged event that is fired when the selection changes. The handler
then obtains the selected item by using one of these properties.

SelectedItem is backed by a dependency property, which means that it can be the target of a
data binding, but it’s more commonly used as a binding source. The SimpleListBox project uses
NamedColor.All as a binding source for the Items property, but it does not define a template. Instead,
it uses a somewhat different technique for displaying items:

Project: SimpleListBox | File: MainPage.xaml (excerpt)

<Page ... >
 <Page.Resources>
 <ch11:NamedColor x:Key="namedColor" />
 </Page.Resources>

 <Grid>
 <ListBox Name="lstbox"
 ItemsSource="{Binding Source={StaticResource namedColor},
 Path=All}"
 DisplayMemberPath="Name"
 Width="288"
 HorizontalAlignment="Center" />

 <Grid.Background>
 <SolidColorBrush Color="{Binding ElementName=lstbox,
 Path=SelectedItem.Color}" />
 </Grid.Background>
 </Grid>
</Page>

The ListBox incorporates its own ScrollViewer, but it tends to grab as much screen space as possible
regardless of the settings of HorizontalAlignment and VerticalAlignment. You’ll want to give ListBox a
specific Width, as I’ve done here. As you’ll discover shortly, there are very good reasons why a ListBox
can’t determine its own width based on the maximum width of its items.

Rather than defining a DataTemplate for displaying the NamedColor items, I’ve set the
DisplayMemberPath to “Name,” which refers to the Name property of the items in the ListBox.
These items are of type NamedColor, and fortunately, NamedColor includes a Name property. This
is the property that ListBox uses to display the items. Initially, the SolidColorBrush set to the Grid will

478	 PART 1  Elementals

reference a default Color value because there is no selected item, but once you select an item, that
color will form the background of the window:

This program has a dark theme. The light background of the ListBox items and the selection
highlight represent default behavior for the ListBox. You’ll see how to change this highlighting later in
this chapter. If you experiment with this program, you’ll discover that you can move the selection by
using the keyboard arrow keys, Page Up and Page Down, and Home and End.

There’s an alternative way to defining the binding to the selected item. Similar to
DisplayMemberPath that you use to indicate the property of the item you want displayed is
SelectedValuePath, which is the name of the property to expose as the SelectedValue:

<Grid>
 <ListBox Name="lstbox"
 ItemsSource="{Binding Source={StaticResource namedColor},
 Path=All}"
 DisplayMemberPath="Name"
 SelectedValuePath="Color"
 Width="288"
 HorizontalAlignment="Center" />

 <Grid.Background>
 <SolidColorBrush Color="{Binding ElementName=lstbox,
 Path=SelectedValue}" />
 </Grid.Background>
</Grid>

The SelectedValuePath property of the ListBox indicates that the Color property of the ListBox
items should be exposed as the SelectedValue property, so the binding on the SolidColorBrush is
simplified.

	 CHAPTER 11  The Three Templates	 479

It’s easy to confuse SelectedItem and SelectedValue. They are the same if no SelectedValuePath
property has been set. Otherwise, SelectedItem is an object in the collection, and SelectedValue is a
property of that object.

It is more common for ListBox to have its ItemTemplate property set to a DataTemplate, as this one
does. I’ve simplified the item template to not show the hexadecimal representation of the color, but
otherwise it’s the same as the ones you’ve seen already:

Project: ListBoxWithItemTemplate | File: MainPage.xaml (excerpt)

<Page ... >
 <Page.Resources>
 <ch11:NamedColor x:Key="namedColor" />
 </Page.Resources>

 <Grid>
 <ListBox Name="lstbox"
 ItemsSource="{Binding Source={StaticResource namedColor},
 Path=All}"
 Width="388">
 <ListBox.ItemTemplate>
 <DataTemplate>
 <Border
 BorderBrush="{Binding RelativeSource={RelativeSource TemplatedParent},
 Path=Foreground}"
 BorderThickness="1"
 Width="336"
 Margin="6"
 Loaded="OnItemLoaded">
 <Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition Width="*"/>
 </Grid.ColumnDefinitions>

 <Rectangle Grid.Column="0"
 Height="72"
 Width="72"
 Margin="6">
 <Rectangle.Fill>
 <SolidColorBrush Color="{Binding Color}" />
 </Rectangle.Fill>
 </Rectangle>

 <TextBlock Grid.Column="1"
 FontSize="24"
 Text="{Binding Name}"
 VerticalAlignment="Center" />
 </Grid>
 </Border>
 </DataTemplate>
 </ListBox.ItemTemplate>
 </ListBox>

 <Grid.Background>
 <SolidColorBrush Color="{Binding ElementName=lstbox,
 Path=SelectedItem.Color}" />

480	 PART 1  Elementals

 </Grid.Background>
 </Grid>
</Page>

Very early in the item template, you might notice a big difference in how the Border is colored.
In the programs using ItemsControl, the Border could be colored with a reference to the theme
foreground brush:

BorderBrush="{StaticResource ApplicationForegroundThemeBrush}"

With a dark theme (which I’ve been using throughout the chapter), that’s white.

However, we have discovered that the ListBox items get a white background by default, which
means that white brush would disappear against the background. We really want to set it to the
Foreground property of the ancestor element being templated, and the option of doing that is pro-
vided for with a special binding syntax:

BorderBrush="{Binding RelativeSource={RelativeSource TemplatedParent},
 Path=Foreground}"

The only two options for RelativeSource are Self and TemplatedParent, and you can’t use Self here
because Border doesn’t have a Foreground property.

What is the TemplatedParent exactly? In this context, it’s a ContentPresenter, which is a class that
you rarely see unless you’re writing another type of template (a control template) that I’ll discuss later
in this chapter. The TextBlock doesn’t need any binding to obtain the correct color because it simply
inherits the Foreground property, and both elements are properly flipped in color when the item is
selected:

ListBox supports multiple selection if you need it. Set the SelectionMode property to Multiple or
Extended, and use the SelectedItems property for obtaining the selected items.

	 CHAPTER 11  The Three Templates	 481

Panels and Virtualizing Panels

I’ve done something in ListBoxWithItemTemplate that I haven’t often done in this book: I’ve left in a
bit of debugging code. The sole purpose of this is to give you a firsthand glimpse of something very
important going on internally within ListBox.

The Border element that surrounds each item defines a handler for the Loaded event:

<Border BorderBrush="{Binding RelativeSource={RelativeSource TemplatedParent},
 Path=Foreground}"
 BorderThickness="1"
 Width="336"
 Margin="6"
 Loaded="OnItemLoaded">

In the Loaded handler, a call to System.Diagnostics.Debug.WriteLine displays the Name property of
the NamedColor object set to the loaded element’s DataContext property:

void OnItemLoaded(object sender, RoutedEventArgs args)
{
 System.Diagnostics.Debug.WriteLine("Item Loaded: " +
 ((sender as FrameworkElement).DataContext as NamedColor).Name);
}

Run this program under the Visual Studio debugger, and watch the Output window. When the
program first loads, you’ll see only several of these colors and definitely not all 141 of them. On my
tablet, the 768-pixel-tall screen allows for the display of 6 full items (from AliceBlue through Beige)
and a half of the next item. The list in the Visual Studio Output window shows that visual trees for 11
items have been loaded, from AliceBlue to BlueViolet.

Now start scrolling the list. You might see a few more items in the Output window—I see Brown,
BurlyWood, and CadetBlue—but then the list stops. What exactly is going on?

The ListBox is being efficient. It’s building visual trees only for those items initially displayed (plus a
couple more), and it’s re-using these visual trees when some items are scrolled out of view and others
are scrolled into view. And why not? All it needs to do is change the bindings.

This virtualization is essential when you start binding your ListBox control with collections of
hundreds or thousands of items. But it also means that ListBox can’t determine the width it needs to
display all its items.

Watch out: There might be something peculiar about the items in your collection that have issues
with this virtualization. I’ll discuss such a case in Chapter 16, “Rich Text,” that involves visual trees
that contain links to each other. In that case, you can basically turn off this virtualization feature.
An items control always uses a Panel of some sort to display the items, and you can specify which
Panel derivative it uses or supply your own. ItemsControl defines (and ListBox inherits) a property
named ItemsPanel that you can set to an object of type ItemsPanelTemplate. This is the second
of the three templates referred to in the title of this chapter, but it’s certainly the simplest of the
three. ItemsPanelTemplate only needs one item: a Panel derivative. This is the panel that the items

482	 PART 1  Elementals

control uses for hosting the child items. In a regular ItemsControl, it’s a StackPanel. In a ListBox, it’s a
VirtualizingStackPanel.

In ListBoxWithItemTemplate, you can set the ItemsPanel property of the ListBox to the default
value with the following markup:

<ListBox Name="lstbox"
 ItemsSource="{Binding Source={StaticResource namedColor},
 Path=All}"
 Width="380">
 <ListBox.ItemTemplate>
 ...
 </ListBox.ItemTemplate>

 <ListBox.ItemsPanel>
 <ItemsPanelTemplate>
 <VirtualizingStackPanel />
 </ItemsPanelTemplate>
 </ListBox.ItemsPanel>
</ListBox>

Now try changing that to a regular StackPanel:

<ListBox.ItemsPanel>
 <ItemsPanelTemplate>
 <StackPanel />
 </ItemsPanelTemplate>
</ListBox.ItemsPanel>

Now all the items are created when the ListBox is first loaded, as a glance at the Output window in
Visual Studio will verify.

However, you can also do this:

<ListBox.ItemsPanel>
 <ItemsPanelTemplate>
 <VirtualizingStackPanel Orientation="Horizontal" />
 </ItemsPanelTemplate>
</ListBox.ItemsPanel>

And that will turn your vertical ListBox into a horizontal ListBox.

Well, not quite. You’ll also need to make some adjustments to the ListBox size and the internal
ScrollViewer properties, as I’ve done in the HorizontalListBox project:

Project: HorizontalListBox | File: MainPage.xaml (excerpt)

<Page ... >
 <Page.Resources>
 <ch11:NamedColor x:Key="namedColor" />
 </Page.Resources>

 <Grid>
 <ListBox Name="lstbox"

	 CHAPTER 11  The Three Templates	 483

 ItemsSource="{Binding Source={StaticResource namedColor},
 Path=All}"
 Height="120"
 ScrollViewer.HorizontalScrollMode="Enabled"
 ScrollViewer.HorizontalScrollBarVisibility="Auto"
 ScrollViewer.VerticalScrollMode="Disabled"
 ScrollViewer.VerticalScrollBarVisibility="Disabled">
 <ListBox.ItemTemplate>
 <DataTemplate>
 <Border
 BorderBrush="{Binding RelativeSource={RelativeSource TemplatedParent},
 Path=Foreground}"
 BorderThickness="1"
 Width="336"
 Margin="6"
 Loaded="OnItemLoaded">
 <Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition Width="*"/>
 </Grid.ColumnDefinitions>

 <Rectangle Grid.Column="0"
 Height="72"
 Width="72"
 Margin="6">
 <Rectangle.Fill>
 <SolidColorBrush Color="{Binding Color}" />
 </Rectangle.Fill>
 </Rectangle>

 <TextBlock Grid.Column="1"
 FontSize="24"
 Text="{Binding Name}"
 VerticalAlignment="Center" />
 </Grid>
 </Border>
 </DataTemplate>
 </ListBox.ItemTemplate>

 <ListBox.ItemsPanel>
 <ItemsPanelTemplate>
 <VirtualizingStackPanel Orientation="Horizontal" />
 </ItemsPanelTemplate>
 </ListBox.ItemsPanel>
 </ListBox>

 <Grid.Background>
 <SolidColorBrush Color="{Binding ElementName=lstbox,
 Path=SelectedItem.Color}" />
 </Grid.Background>
 </Grid>
</Page>

ScrollViewer defines several properties that govern the control’s appearance and functionality, but
sometimes the ScrollViewer itself is inaccessible, as it is when it’s inside a ListBox. For situations like

484	 PART 1  Elementals

that, ScrollViewer has conveniently defined several attached properties that you can set right in the
ListBox tag.

The only differences between this program and the previous ListBox are the use of a horizontal
VirtualizingStackPanel and some changes in the ListBox tag to alter the dimensions of the control and
provide for horizontal scrolling. The result is a fully functional horizontal ListBox:

Oddly enough, I have not had success using a WrapGrid or a VariableSizedWrapGrid panel with
ListBox. Attempting to do so raises an exception with the message “The Panel you are using for the
Control is not allowed as an ItemsPanel for the Control.” But I will provide something similar to these
wrap panels in the next section.

Custom Panels

Perhaps the primary reason to write a custom Panel derivative is to use as an ItemsPanelTemplate of
an items control. Each type of custom Panel can lay out children in a different manner.

Writing a Panel derivative that lays out its children in an unusual way—in a circle, perhaps—is
easiest if all the items can fit on the screen and no scrolling is required. If scrolling is required, the
layout of the items needs to be conducive to the abilities of ScrollViewer. Or, ScrollViewer itself needs
to be replaced with some custom scrolling mechanism.

Panel derivatives can define dependency properties and attached properties. Both Grid and
Canvas define attached properties, for example. However, generally a Panel derivative that has
attached properties cannot be used as the ItemsPanelTemplate because there’s usually no sensible
way to set these attached properties from the DataTemplate.

	 CHAPTER 11  The Three Templates	 485

A Panel derivative always overrides two virtual protected methods: MeasureOverride and
ArrangeOverride. These correspond to the two passes of layout. During the MeasureOverride method,
the Panel derivative calls the Measure method on all its children and calculates a desired size for itself.
During the ArrangeOverride method, the Panel derivative calls Arrange on all its children, which sizes
and positions each child relative to itself.

The two method names MeasureOverride and ArrangeOverride might seem somewhat peculiar.
These method names originated in the Windows Presentation Foundation and involve the difference
between the WPF versions of the UIElement and FrameworkElement classes. UIElement implements
a comparatively simpler layout system involving the methods Measure and Arrange. To the WPF
UIElement, however, FrameworkElement added the properties HorizontalAlignment, VerticalAlignment,
and Margin, which make layout considerably more complicated. Hence, FrameworkElement also
defines MeasureOverride and ArrangeOverride to supersede the Measure and Arrange methods,
although Measure and Arrange still continue to play a role in layout.

In summary, a Panel overrides MeasureOverride and ArrangeOverride and within these meth-
ods calls Measure and Arrange on all its children. Internally, these Measure and Arrange methods
in the child call the child’s MeasureOverride and ArrangeOverride methods. The child then uses the
opportunity to call Measure and Arrange on all its children, and the process continues down the tree.

You can override MeasureOverride and ArrangeOverride in any FrameworkElement derivative, but
programs written for the Windows Runtime generally do not do so except in Panel derivatives.

A Panel derivative does not need to bother itself with any of the following properties set on itself
or its children:

■■ Width, MinWidth, and MaxWidth

■■ Height, MinHeight, and MaxHeight

■■ HorizontalAlignment and VerticalAlignment

■■ Margin

■■ Visibility

■■ Opacity (does not affect layout)

■■ RenderTransform (does not affect layout)

All these properties are handled automatically.

In a Panel derivative, the MeasureOverride method looks like this:

protected override Size MeasureOverride(Size availableSize)
{
 ...

 return desiredSize;
}

486	 PART 1  Elementals

The availableSize argument is of type Size, which (as you know) has two properties of type double
named Width and Height. This availableSize argument is sometimes very simple: If this panel is the
content of a Page, for example, the availableSize indicates the size of the page, which is usually the
size of the application’s window. If this panel is in a cell of a Grid and that Grid cell has specific pixel
dimensions, the availableSize is the size of that cell.

However, there are also common cases where the available size Width or Height or both might
be infinite. Within the MeasureOverride method, you can test Width and Height for infinity using the
static Double.IsPositiveInfinity method.

An infinite Width or Height property of availableSize means that the parent of the panel is
offering the panel as much horizontal or vertical space as it needs. If the panel is a child of a vertical
StackPanel, the Height property will be infinite; if the panel is a child of a horizontal StackPanel, the
Width property will be infinite. If the panel is a child of a Canvas, both Width and Height will be infi-
nite. If the panel is in a Grid cell where the cell width and height are both Auto, the Width and Height
properties of availableSize will be infinite.

The MeasureOverride method must properly deal with these cases. The desiredSize returned from
the method must not have infinite Width or Height properties. In other words, MeasureOverride
cannot simply return availableSize. That will not work.

The MeasureOverride method must call Measure on each of its children; otherwise, the children will
not be visible. On return from each Measure call, the child’s DesiredSize property will be valid, and the
panel can use the desired sizes of all its children to compute its own desired size.

When MeasureOverride calls Measure on a child, it provides an available size for the child. One or
both properties of this available size can be infinite. For example, a vertical StackPanel calls Measure
on all its children with an available Width that equals its own available Width and an available Height
of infinity:

protected override Size MeasureOverride(Size availableSize)
{
 double maxWidth = 0;
 double totalHeight = 0;

 foreach (UIElement child in this.Children)
 {
 child.Measure(new Size(availableSize.Width, Double.PositiveInfinity));
 maxWidth = Math.Max(maxWidth, child.DesiredSize.Width);
 totalHeight += child.DesiredSize.Height;
 }
 return new Size(maxWidth, totalHeight);
}

This MeasureOverride for a vertical stack then accumulates a maximum width and a total height of all
its children. That becomes its desired size.

	 CHAPTER 11  The Three Templates	 487

The ArrangeOverride method has an argument that indicates the size computed for this panel. For
a vertical stack panel, the method again loops through all its children and stacks them, giving to each
its own width and the child’s desired height:

protected override Size ArrangeOverride(Size finalSize)
{
 double y = 0;

 foreach (UIElement child in this.Children)
 {
 child.Arrange(new Rect(0, y, finalSize.Width, child.DesiredSize.Height));
 y += child.DesiredSize.Height;
 }
 return base.ArrangeOverride(finalSize);
}

One Panel derivative that I find useful when programming with WPF is called the UniformGrid.
It’s similar to a regular Grid but every cell has the same size. The children are simply distributed one
to a cell so that no attached properties are required. Although the size of the children can vary, the
UniformGrid treats the children as if they all have the same size. This size is based on the maximum
child size or the space available for the UniformGrid.

My version of UniformGrid defines two properties named Rows and Columns of type int, but the
default values are –1, indicating no preset values. If neither of these two properties is set, UniformGrid
attempts to determine an optimum number of rows and columns; otherwise, if one of the two prop-
erties is set, the other is calculated based on the number of children. It is not recommended that both
properties be set: If the product of Rows and Columns is less than the number of children, some of the
children might not appear in the panel.

In most uses of UniformGrid, Rows and Columns are left at their default –1 values or one or the
other of these properties is set to 1. If Rows or Columns is set to 1, UniformGrid behaves like a Grid
with a single column or single row, or like a StackPanel where every child has the same size.

If the Width and Height properties of availableSize are both finite values, UniformGrid attempts to
fit all the children into that space. Otherwise, it uses the maximum child size to lay out its children.
The only situation UniformGrid can’t handle is when Rows and Columns are both left at –1 and
available Width and Height are both infinite. In that case, an exception is raised.

Like StackPanel, UniformGrid also defines an Orientation property. Here are the property
definitions and the property-changed handler they all share:

Project: Petzold.ProgrammingWindows6.Chapter11 | File: UniformGrid.cs (excerpt)

public class UniformGrid : Panel
{
 // Set by MeasureOverride, used in ArrangeOverride
 protected int rows, cols;

 static UniformGrid()

488	 PART 1  Elementals

 {
 RowsProperty = DependencyProperty.Register("Rows",
 typeof(int),
 typeof(UniformGrid),
 new PropertyMetadata(-1, OnPropertyChanged));

 ColumnsProperty = DependencyProperty.Register("Columns",
 typeof(int),
 typeof(UniformGrid),
 new PropertyMetadata(-1, OnPropertyChanged));

 OrientationProperty = DependencyProperty.Register("Orientation",
 typeof(Orientation),
 typeof(UniformGrid),
 new PropertyMetadata(Orientation.Vertical, OnPropertyChanged));
 }

 public static DependencyProperty RowsProperty { private set; get; }

 public static DependencyProperty ColumnsProperty { private set; get; }

 public static DependencyProperty OrientationProperty { private set; get; }

 public int Rows
 {
 set { SetValue(RowsProperty, value); }
 get { return (int)GetValue(RowsProperty); }
 }

 public int Columns
 {
 set { SetValue(ColumnsProperty, value); }
 get { return (int)GetValue(ColumnsProperty); }
 }

 public Orientation Orientation
 {
 set { SetValue(OrientationProperty, value); }
 get { return (Orientation)GetValue(OrientationProperty); }
 }
 ...

 static void OnPropertyChanged(DependencyObject obj, DependencyPropertyChangedEventArgs args)
 {
 if (args.Property == UniformGrid.OrientationProperty)
 {
 (obj as UniformGrid).InvalidateArrange();
 }
 else
 {
 (obj as UniformGrid).InvalidateMeasure();
 }
 }
}

	 CHAPTER 11  The Three Templates	 489

In the property-changed handler, the InvalidateMeasure and InvalidateArrange calls signal the
layout system that a new layout is required. A call to InvalidateMeasure triggers both measure and
arrange passes; a call to InvalidateArrange triggers only an arrange pass, skipping the measure pass.
In that case, everything remains the same size, but children might be moved to different locations.

Of course, these are not the only ways that layout is invalidated. Any change in the number of
children in the panel triggers a new layout, for example.

The MeasureOverride method begins by performing a couple validity checks and then calculating
the rows and cols fields by using the Rows and Columns properties and the number of children:

Project: Petzold.ProgrammingWindows6.Chapter11 | File: UniformGrid.cs (excerpt)

protected override Size MeasureOverride(Size availableSize)
{
 // Only bother if children actually exist
 if (this.Children.Count == 0)
 return new Size();

 // Throw exceptions if the properties aren't OK
 if (this.Rows != -1 && this.Rows < 1)
 throw new ArgumentOutOfRangeException("UniformGrid Rows must be greater than zero");

 if (this.Columns != -1 && this.Columns < 1)
 throw new ArgumentOutOfRangeException("UniformGrid Columns must be greater than zero");

 // Determine the actual number of rows and columns
 // --
 // This option is discouraged
 if (this.Rows != -1 && this.Columns != -1)
 {
 rows = this.Rows;
 cols = this.Columns;
 }
 // These two options often appear with values of 1
 else if (this.Rows != -1)
 {
 rows = this.Rows;
 cols = (int)Math.Ceiling((double)this.Children.Count / rows);
 }
 else if (this.Columns != -1)
 {
 cols = this.Columns;
 rows = (int)Math.Ceiling((double)this.Children.Count / cols);
 }
 // No values yet if both Rows and Columns are both -1, but
 // check for infinite availableSize
 else if (Double.IsInfinity(availableSize.Width) &&
 Double.IsInfinity(availableSize.Height))
 {
 throw new NotSupportedException("Completely unconstrained UniformGrid " +
 "requires Rows or Columns property to be set");
 }
 ...
}

490	 PART 1  Elementals

Processing of MeasureOverride continues with a calculation of the maximum child size. This is the
code that enumerates through the Children collection and performs the crucial calls to the Measure
method of each child. Without this Measure call, the child has zero size. Following the Measure call,
the DesiredSize property of the child is valid:

Project: Petzold.ProgrammingWindows6.Chapter11 | File: UniformGrid.cs (excerpt)

protected override Size MeasureOverride(Size availableSize)
{
 ...

 // Determine the maximum size of all children
 // --
 Size maximumSize = new Size();
 Size infiniteSize = new Size(Double.PositiveInfinity,
 Double.PositiveInfinity);

 // Find the maximum size of all children
 foreach (UIElement child in this.Children)
 {
 child.Measure(infiniteSize);
 Size childSize = child.DesiredSize;
 maximumSize.Width = Math.Max(maximumSize.Width, childSize.Width);
 maximumSize.Height = Math.Max(maximumSize.Height, childSize.Height);
 }

 ...
}

This is a calculation that occurs in many Panel derivatives. However, the Measure method isn’t
always called with infinite height and widths. In this particular case, UniformGrid wants to determine
the “natural size” of each element, and this is the way to do it.

I mentioned earlier that the Panel derivative does not need to take account of any Margin
property set on itself or its children. The available size that’s passed as an argument to
MeasureOverride excludes any Margin property set on the element. However, when the panel calls
Measure on its children, that size implicitly includes the child’s Margin. The Measure method in
the child then decreases that available size by the child’s Margin setting. (Of course, if the size is
infinite, as it is in this case, the result is the same.) That size without the Margin is then passed to
the child’s MeasureOverride method, and the child calculates a size for itself that it returns from
MeasureOverride. The child’s Measure method continues by adding the child’s Margin to the size
returned from MeasureOverride and set’s the child’s DesiredSize property to that increased size.

This is how Margin is accounted for in layout despite MeasureOverride not bothering with it.

Now that the maximum child size has been calculated, a desired size for the Panel can be
calculated. But there is still potentially a rather lengthy calculation: If both Rows and Columns have

	 CHAPTER 11  The Three Templates	 491

been left at their default values, the Panel itself needs to calculate an optimum number of rows and
columns based on available size and the maximum child size:

Project: Petzold.ProgrammingWindows6.Chapter11 | File: UniformGrid.cs (excerpt)

protected override Size MeasureOverride(Size availableSize)
{
 ...

 // Find rows and cols if Rows and Colunms are both -1
 if (this.Rows == -1 && this.Columns == -1)
 {
 if (Double.IsInfinity(availableSize.Width))
 {
 rows = (int)Math.Max(1, availableSize.Height / maximumSize.Height);
 cols = (int)Math.Ceiling((double)this.Children.Count / rows);
 }
 else if (Double.IsInfinity(availableSize.Height))
 {
 cols = (int)Math.Max(1, availableSize.Width / maximumSize.Width);
 rows = (int)Math.Ceiling((double)this.Children.Count / cols);
 }
 // Neither dimension is infinite -- the hard one
 else
 {
 double aspectRatio = maximumSize.Width / maximumSize.Height;
 double bestHeight = 0;
 double bestWidth = 0;

 for (int tryRows = 1; tryRows < this.Children.Count; tryRows++)
 {
 int tryCols = (int)Math.Ceiling((double)this.Children.Count / tryRows);
 double childHeight = availableSize.Height / tryRows;
 double childWidth = availableSize.Width / tryCols;

 // Adjust for aspect ratio
 if (childWidth > aspectRatio * childHeight)
 childWidth = aspectRatio * childHeight;
 else
 childHeight = childWidth / aspectRatio;

 // Check if it's larger than other trials
 if (childHeight > bestHeight)
 {
 bestHeight = childHeight;
 bestWidth = childWidth;
 rows = tryRows;
 cols = tryCols;
 }
 }
 }
 }
 // Return desired size
 Size desiredSize = new Size(Math.Min(cols * maximumSize.Width, availableSize.Width),
 Math.Min(rows * maximumSize.Height, availableSize.Height));

 return desiredSize;
}

492	 PART 1  Elementals

Normally, the panel’s desired size is based entirely on the size of its children and any overhead
that may be required. That size might well be larger than availableSize. That’s how ScrollViewer knows
how to scroll a child element. With a non-infinite availableSize on the UniformGrid, however, I want to
restrict the panel to just that size.

The ArrangeOverride method is often much simpler than MeasureOverride. The finalSize argument
is the finite size allocated for the panel. The only requirement for ArrangeOverride is that the Arrange
method be called on each child, passing to it a Rect object indicating the location of the child relative
to the panel, and the size of the child. Very often this size is the child’s DesiredSize property, but in
this case I want the total size of the panel to be allocated equally for the rows and columns:

Project: Petzold.ProgrammingWindows6.Chapter11 | File: UniformGrid.cs (excerpt)

protected override Size ArrangeOverride(Size finalSize)
{
 int index = 0;
 double cellWidth = finalSize.Width / cols;
 double cellHeight = finalSize.Height / rows;

 if (this.Orientation == Orientation.Vertical)
 {
 for (int row = 0; row < rows; row++)
 {
 double y = row * cellHeight;

 for (int col = 0; col < cols; col++)
 {
 double x = col * cellWidth;

 if (index < this.Children.Count)
 this.Children[index].Arrange(new Rect(x, y, cellWidth, cellHeight));

 index++;
 }
 }
 }
 else
 {
 for (int col = 0; col < cols; col++)
 {
 double x = col * cellWidth;

 for (int row = 0; row < rows; row++)
 {
 double y = row * cellHeight;

 if (index < this.Children.Count)
 this.Children[index].Arrange(new Rect(x, y, cellWidth, cellHeight));

 index++;
 }
 }
 }

 return base.ArrangeOverride(finalSize);
}

	 CHAPTER 11  The Three Templates	 493

This is the only place in UniformGrid where Orientation plays a role and governs whether the
children should be positioned left to right first, or from top to bottom first. The ArrangeOverride
method almost always returns finalSize, which is what the base method returns.

Let’s try this out for a situation where availableSize has finite Width and Height properties. This is
the case for an ItemsControl that is not in a ScrollViewer, such as this one:

Project: AllColorsItemsControl | File: MainPage.xaml (excerpt)

<Page ... >
 <Page.Resources>
 <ch11:NamedColor x:Key="namedColor" />
 <ch11:ColorToContrastColorConverter x:Key="colorConverter" />
 </Page.Resources>

 <Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <ItemsControl ItemsSource="{Binding Source={StaticResource namedColor},
 Path=All}">
 <ItemsControl.ItemTemplate>
 <DataTemplate>
 <Border
 BorderBrush="{Binding RelativeSource={RelativeSource TemplatedParent},
 Path=Foreground}"
 BorderThickness="2"
 Margin="2">
 <Border.Background>
 <SolidColorBrush Color="{Binding Color}" />
 </Border.Background>

 <Viewbox>
 <TextBlock Text="{Binding Name}"
 HorizontalAlignment="Center"
 VerticalAlignment="Center">
 <TextBlock.Foreground>
 <SolidColorBrush Color="{Binding Color,
 Converter={StaticResource colorConverter}}" />
 </TextBlock.Foreground>
 </TextBlock>
 </Viewbox>
 </Border>
 </DataTemplate>
 </ItemsControl.ItemTemplate>

 <ItemsControl.ItemsPanel>
 <ItemsPanelTemplate>
 <ch11:UniformGrid />
 </ItemsPanelTemplate>
 </ItemsControl.ItemsPanel>
 </ItemsControl>
 </Grid>
</Page>

Notice the UniformGrid toward the bottom used as the control’s ItemsPanel.

494	 PART 1  Elementals

I’ve made the item template a little simpler than previous examples. It now consists of a Border
with its Background property constructed from a binding to the Color property of NamedColor,
and a TextBlock child displaying the name of the color. Notice that the TextBlock is inside a View-
box, so the text size should adapt itself to the available size for the child. Also notice that I’ve bound
the Foreground of the TextBlock to the Color property but passed through a converter named
ColorToContrastColorConverter. This converter calculates a gray shade corresponding to the input
color and then selects Colors.Black or Colors.White to contrast:

Project: Petzold.ProgrammingWindows6.Chapter11 | File: ColorToContrastColorConverter.cs

public class ColorToContrastColorConverter : IValueConverter
{
 public object Convert(object value, Type targetType, object parameter, string language)
 {
 Color clr = (Color)value;
 double grayShade = 0.30 * clr.R + 0.59 * clr.G + 0.11 * clr.B;
 return grayShade > 128 ? Colors.Black : Colors.White;
 }
 public object ConvertBack(object value, Type targetType, object parameter, string language)
 {
 return value;
 }
}

This works well for every color except Transparent:

	 CHAPTER 11  The Three Templates	 495

All 141 colors fit within the window, which was the objective here. The cells and text become
smaller when the program is in a snap view:

However, if the cells become too small, the visuals break down a bit.

Now let’s try UniformGrid in a ListBox. I’ve retained the simplified data template, but I’ve given the
Border and TextBlock specific sizes:

Project: ListBoxWithUniformGrid | File: MainPage.xaml (excerpt)

<Page ... >
 <Page.Resources>
 <ch11:NamedColor x:Key="namedColor" />
 <ch11:ColorToContrastColorConverter x:Key="colorConverter" />
 </Page.Resources>

 <Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <ListBox ItemsSource="{Binding Source={StaticResource namedColor},
 Path=All}">
 <ListBox.ItemTemplate>
 <DataTemplate>
 <Border
 BorderBrush="{Binding RelativeSource={RelativeSource TemplatedParent},
 Path=Foreground}"
 Width="288"
 Height="72"
 BorderThickness="3"
 Margin="3">
 <Border.Background>
 <SolidColorBrush Color="{Binding Color}" />
 </Border.Background>

 <TextBlock Text="{Binding Name}"
 FontSize="24"
 HorizontalAlignment="Center"

496	 PART 1  Elementals

 VerticalAlignment="Center">
 <TextBlock.Foreground>
 <SolidColorBrush Color="{Binding Color,
 Converter={StaticResource colorConverter}}" />
 </TextBlock.Foreground>
 </TextBlock>
 </Border>
 </DataTemplate>
 </ListBox.ItemTemplate>

 <ListBox.ItemsPanel>
 <ItemsPanelTemplate>
 <ch11:UniformGrid />
 </ItemsPanelTemplate>
 </ListBox.ItemsPanel>
 </ListBox>
 </Grid>
</Page>

In this case, the availableSize argument to the MeasureOverride method in UniformGrid has an
infinite Height property for vertical scrolling. UniformGrid calculates a number of columns based
on the available width and maximum child width. The number of rows is calculated from that.
UniformGrid has a desired size that is based on its total height, and the panel becomes vertically
scrollable:

It’s fairly easy to switch to horizontal scrolling. Simply set the ScrollViewer attached proper-
ties as you saw earlier in the HorizontalListBox project and then set the Orientation property of the
UniformGrid to Horizontal:

<ListBox ItemsSource="{Binding Source={StaticResource namedColor},
 Path=All}"
 ScrollViewer.HorizontalScrollMode="Enabled"
 ScrollViewer.HorizontalScrollBarVisibility="Auto"

	 CHAPTER 11  The Three Templates	 497

 ScrollViewer.VerticalScrollMode="Disabled"
 ScrollViewer.VerticalScrollBarVisibility="Disabled">
 <ListBox.ItemTemplate>
 <DataTemplate>
 ...
 </DataTemplate>
 </ListBox.ItemTemplate>

 <ListBox.ItemsPanel>
 <ItemsPanelTemplate>
 <ch11:UniformGrid Orientation="Horizontal" />
 </ItemsPanelTemplate>
 </ListBox.ItemsPanel>
</ListBox>

The Horizontal setting of Orientation isn’t strictly required but causes the children to be ordered
differently, first from top to bottom and then from left to right:

The Item Template Bar Chart

One of the great “parlor tricks” with an items control involves creating a bar chart with a minimum of
fuss. All you really need is a data item containing a numeric property suitable for binding, a Rectangle
in an ItemTemplate, and a UniformGrid or StackPanel to hold the items.

The RgbBarChart project demonstrates this technique. This ItemsSource for the ItemsControl is, of
course, the collection of NamedColor objects. The DataTemplate is a vertical StackPanel containing
three Rectangle elements, the Height properties of each bound to the R, G, and B properties of the
Color property of the items. Normally, this would create a stack of three Rectangle elements that start

498	 PART 1  Elementals

at the top of the StackPanel, and I wanted a more traditional looking stacked bar chart oriented at the
bottom, so I used a RenderTransform to flip the bars upside down:

Project: RgbBarChart | File: MainPage.xaml (excerpt)

<Page ... >
 <Page.Resources>
 <ch11:NamedColor x:Key="namedColor" />
 </Page.Resources>

 <Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <ItemsControl ItemsSource="{Binding Source={StaticResource namedColor},
 Path=All}">
 <ItemsControl.ItemTemplate>
 <DataTemplate>
 <StackPanel Name="stackPanel"
 Height="765"
 RenderTransformOrigin="0.5 0.5"
 Margin="1 0">
 <StackPanel.RenderTransform>
 <ScaleTransform ScaleY="-1" />
 </StackPanel.RenderTransform>

 <Rectangle Fill="Red"
 Height="{Binding Color.R}" />
 <Rectangle Fill="Green"
 Height="{Binding Color.G}" />
 <Rectangle Fill="Blue"
 Height="{Binding Color.B}" />

 <ToolTipService.ToolTip>
 <ToolTip x:Name="tooltip"
 PlacementTarget="{Binding ElementName=stackPanel}">

 <!-- Set DataContext to StackPanel containing items-->
 <Grid DataContext="{Binding ElementName=tooltip,
 Path=PlacementTarget}">

 <!-- Set DataContext to NamedColor -->
 <StackPanel DataContext="{Binding DataContext}">
 <TextBlock Text="{Binding Name}"
 HorizontalAlignment="Center" />
 <StackPanel DataContext="{Binding Color}"
 Orientation="Horizontal"
 HorizontalAlignment="Center">
 <TextBlock Text="R=" />
 <TextBlock Text="{Binding R}" />
 <TextBlock Text=" G=" />
 <TextBlock Text="{Binding G}" />
 <TextBlock Text=" B=" />
 <TextBlock Text="{Binding B}" />
 </StackPanel>
 </StackPanel>
 </Grid>
 </ToolTip>
 </ToolTipService.ToolTip>

	 CHAPTER 11  The Three Templates	 499

 </StackPanel>
 </DataTemplate>
 </ItemsControl.ItemTemplate>

 <ItemsControl.ItemsPanel>
 <ItemsPanelTemplate>
 <ch11:UniformGrid Rows="1" />
 </ItemsPanelTemplate>
 </ItemsControl.ItemsPanel>
 </ItemsControl>
 </Grid>
</Page>

Of course, bars by themselves can be pretty vague, and one good way to identify them is with
tooltips invoked when the mouse hovers. That turned out to be rather messier. You can attach a
tooltip to an element by setting a ToolTipService.ToolTip attached property as a child of the element
and defining a ToolTip control as a child of that. ToolTip derives from ContentControl. However, this
ToolTip element is not actually part of the visual tree because it “floats” outside the tree. It doesn’t
inherit properties through the visual tree, including the all-important DataContext property. I had to
get at that through the PlacementTarget property of ToolTip.

Here’s the bar chart showing the relative red, green, and blue components of all 141 colors, and a
tooltip for one of them showing the color name and RGB values:

For White, the color components total to 765, just a touch under the 768-pixel height of the
screen. Of course, these bars can be shortened for smaller screens (or larger values) using a
RenderTransform.

500	 PART 1  Elementals

The FlipView Control

One of my favorite controls introduced in the Windows Runtime is FlipView, which (like ListBox)
derives from ItemsControl by way of Selector. FlipView displays only one item at a time, and that
item is the selected item, so it shouldn’t replace ListBox for most applications. But it has a nice touch
interface, and it’s good to keep it in mind for some special purposes.

Like many of the other projects in this chapter, the FlipViewColors project uses the
Petzold.ProgrammingWindows.Chapter11 library. The Resources section of MainPage.xaml contains
the usual reference to the NamedColor class but also defines a DataTemplate and ItemsPanelTemplate
and then references both of those in a Style definition that also includes the ItemsSource binding. A
Border and TextBlock have SolidColorBrush definitions with bindings to two FlipView controls:

Project: FlipViewColors | File: MainPage.xaml (excerpt)

<Page ... >
 <Page.Resources>
 <ch11:NamedColor x:Key="namedColor" />
 <ch11:ColorToContrastColorConverter x:Key="colorConverter" />

 <DataTemplate x:Key="colorTemplate">
 <Border BorderBrush="{Binding RelativeSource={RelativeSource TemplatedParent},
 Path=Foreground}"
 Width="288"
 Height="72"
 BorderThickness="3"
 Margin="3">
 <Border.Background>
 <SolidColorBrush Color="{Binding Color}" />
 </Border.Background>

 <TextBlock Text="{Binding Name}"
 FontSize="24"
 HorizontalAlignment="Center"
 VerticalAlignment="Center">
 <TextBlock.Foreground>
 <SolidColorBrush Color="{Binding Color,
 Converter={StaticResource colorConverter}}" />
 </TextBlock.Foreground>
 </TextBlock>
 </Border>
 </DataTemplate>

 <ItemsPanelTemplate x:Key="panelTemplate">
 <VirtualizingStackPanel />
 </ItemsPanelTemplate>

 <Style TargetType="FlipView">
 <Setter Property="Width" Value="300" />
 <Setter Property="Height" Value="100" />
 <Setter Property="ItemsSource" Value="{Binding Source={StaticResource namedColor},
 Path=All}" />
 <Setter Property="ItemTemplate" Value="{StaticResource colorTemplate}" />
 <Setter Property="ItemsPanel" Value="{StaticResource panelTemplate}" />

	 CHAPTER 11  The Three Templates	 501

 <Setter Property="SelectedValuePath" Value="Color" />
 </Style>
 </Page.Resources>

 <Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="*" />
 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="*" />
 <ColumnDefinition Width="*" />
 </Grid.ColumnDefinitions>

 <Border Grid.Row="0"
 Grid.Column="0"
 Grid.ColumnSpan="2"
 BorderThickness="12"
 CornerRadius="48"
 Margin="48"
 Padding="48"
 HorizontalAlignment="Center">
 <Border.Background>
 <SolidColorBrush Color="{Binding ElementName=flipView1,
 Path=SelectedValue}" />
 </Border.Background>

 <Border.BorderBrush>
 <SolidColorBrush Color="{Binding ElementName=flipView2,
 Path=SelectedValue}" />
 </Border.BorderBrush>

 <TextBlock FontFamily="Times New Roman"
 FontSize="96">
 The <Italic>FlipView</Italic> Control
 <TextBlock.Foreground>
 <SolidColorBrush Color="{Binding ElementName=flipView2,
 Path=SelectedValue}" />
 </TextBlock.Foreground>
 </TextBlock>
 </Border>

 <FlipView Name="flipView1"
 Grid.Row="1"
 Grid.Column="0" />

 <FlipView Name="flipView2"
 Grid.Row="1"
 Grid.Column="1" />
 </Grid>
</Page>

By default, the ItemsPanelTemplate for FlipView is a VirtualizingStackPanel like ListBox but with a
horizontal orientation. I’ve replaced that with a vertical VirtualizingStackPanel. Like ListBox, FlipView
controls tend to sprawl out over the available space, so it’s good to set explicit Height and Width

502	 PART 1  Elementals

properties. The idea here is that you “dial” the controls to two different colors. The first color controls
the background of the Border; the second controls the border itself and the text:

Chapter 16 demonstrates how to use a FlipView control as a simple e-book reader. I got the
idea because the standard printer dialog uses a FlipView for previewing pages, as is demonstrated
in Chapter 17, “Share and Print.” In that chapter I also use a FlipView for a control that allows date
selection.

The Basic Control Template

You’ve seen how you can set a DataTemplate to the ContentTemplate property of a ContentControl
derivative, or to the ItemTemplate of an ItemsControl derivative to format the display of data objects.

You’ve also seen how you can define an ItemsPanelTemplate to set to the ItemsPanel of an
ItemsControl derivative to provide a panel for hosting the items.

The third type of template is of type ControlTemplate. The Control class defines a Template
property of type ControlTemplate that allows you to entirely redefine the visuals of the control itself—
not the content of the control but the part of the control commonly referred to as “chrome.”

The existence of the Template property is probably the most important difference between
a Control derivative and a mere FrameworkElement derivative. Controls have chrome, and the
appearance of this chrome is entirely under your control.

Whenever you think you need a custom control, you should probably ask yourself whether it’s
truly a new control or simply an existing control with a different appearance. Sometimes you get

	 CHAPTER 11  The Three Templates	 503

lucky and discover that you can adapt an existing control simply by using a Style. Other times,
however, you’ll need a ControlTemplate.

Like a Style, the ControlTemplate is often defined as a resource so that it can be shared. Like a Style
as well, the ControlTemplate has a TargetType, which is the type of the control for which the template
is designed. The Template property defined by Control is backed by a dependency property, which
means that the Template property can be set in a Style. This is very common, and here’s what it might
look like in a Resources section:

<Style x:Key="buttonStyle" TargetType="Button">
 <Setter Property="Margin" Value="12" />
 <Setter Property="Template">
 <Setter.Value>
 <ControlTemplate TargetType="Button">
 ...
 </ControlTemplate>
 </Setter.Value>
 </Setter>
</Style>

Generally, you’ll want to use Setter objects to set some properties of the control together with
defining the template. These Setter tags define new default properties for the control, but they can be
overridden by local property settings for the control that uses this style.

For purposes of clarity in the next several pages, I’ll be defining a ControlTemplate right on the
control itself. To demonstrate the basics of control templates, I’m going to redefine the appearance of
a Button, but it won’t be all that different from the existing Button.

Here’s a standard Button as it might appear in a visual tree. It has content, an event handler, and
some common properties:

<Button Content="Click me!"
 Click="OnButtonClick"
 HorizontalAlignment="Center"
 VerticalAlignment="Center" />

Let’s define a new ControlTemplate on this Button by breaking out the Template property as a
property element:

<Button Content="Click me!"
 Click="OnButtonClick"
 HorizontalAlignment="Center"
 VerticalAlignment="Center">
 <Button.Template>
 <ControlTemplate TargetType="Button">

 </ControlTemplate>
 </Button.Template>
</Button>

504	 PART 1  Elementals

Notice the TargetType on the ControlTemplate. Sometimes you can leave this out and the template
will still work except that it will stop working if the template references a property that is defined by
the target control and not defined by Control.

A Button with an empty ControlTemplate can still be instantiated, but it no longer has any visual
appearance. Because it has no visuals, there is no way for a user to see it, let alone click it. Just to
make sure that we haven’t caused too much damage, let’s put a temporary TextBlock between those
ControlTemplate tags:

<Button Content="Click me!"
 Click="OnButtonClick"
 HorizontalAlignment="Center"
 VerticalAlignment="Center">
 <Button.Template>
 <ControlTemplate TargetType="Button">
 <TextBlock Text="temporary" />
 </ControlTemplate>
 </Button.Template>
</Button>

Now the Button again has a visual appearance that consists solely of this text, and it is also
functional. That Click event definitely fires when you tap or click the TextBlock. The visuals, however,
are static. There is no longer any special appearance to indicate that the mouse pointer is hovering
over the Button or that the Button is in the process of being clicked. Along with the standard visuals,
those special appearances are defined within the template.

You can put a Border around the TextBlock:

<Button Content="Click me!"
 Click="OnButtonClick"
 HorizontalAlignment="Center"
 VerticalAlignment="Center">
 <Button.Template>
 <ControlTemplate TargetType="Button">
 <Border BorderBrush="Red"
 BorderThickness="3">
 <TextBlock Text="temporary" />
 </Border>
 </ControlTemplate>
 </Button.Template>
</Button>

	 CHAPTER 11  The Three Templates	 505

And here’s what it looks like:

But do you really want to hard-code a red brush in the template? If you’re defining a template for
a single Button as I’m doing here, that’s fine. But in the general case, you’ll be defining templates as
shared resources, and sometimes you might want this Border to be red, and other times you might
want it to be something else.

Control itself defines BorderBrush and BorderThickness properties, and Button inherits those
properties, so it would make more sense to define those properties on the Button itself:

<Button Content="Click me!"
 Click="OnButtonClick"
 HorizontalAlignment="Center"
 VerticalAlignment="Center"
 BorderBrush="Red"
 BorderThickness="3">
 <Button.Template>
 <ControlTemplate TargetType="Button">
 <Border>
 <TextBlock Text="temporary" />
 </Border>
 </ControlTemplate>
 </Button.Template>
</Button>

But now the Border has disappeared entirely from the Button visuals! The Border in the template
doesn’t magically pick up the properties set on the Button. The Border in the template needs some
kind of binding to reference the properties defined in the Button.

506	 PART 1  Elementals

This is a very special kind of binding called a TemplateBinding, and it has its own markup extension:

<Button Content="Click me!"
 Click="OnButtonClick"
 HorizontalAlignment="Center"
 VerticalAlignment="Center"
 BorderBrush="Red"
 BorderThickness="3">
 <Button.Template>
 <ControlTemplate TargetType="Button">
 <Border BorderBrush="{TemplateBinding BorderBrush}"
 BorderThickness="{TemplateBinding BorderThickness}">
 <TextBlock Text="temporary" />
 </Border>
 </ControlTemplate>
 </Button.Template>
</Button>

What the TemplateBinding does is bind properties of an element in the visual tree of a
ControlTemplate to properties of the control on which the ControlTemplate is applied. The Button
visuals now contain a red Border as before.

The TemplateBinding syntax is exceptionally simple: It always targets a dependency property of an
element in the visual tree of a ControlTemplate. It always references a property of the control to which
the template is applied. Nothing else can go in the TemplateBinding markup. The TemplateBinding
only appears on visual trees in a ControlTemplate.

TemplateBinding is actually a shortcut for a RelativeSource binding. The following bindings work as
well, but they’re obviously syntactically messier:

<Button Content="Click me!"
 Click="OnButtonClick"
 HorizontalAlignment="Center"
 VerticalAlignment="Center"
 BorderBrush="Red"
 BorderThickness="3">
 <Button.Template>
 <ControlTemplate TargetType="Button">
 <Border BorderBrush="{Binding RelativeSource={RelativeSource TemplatedParent},
 Path=BorderBrush}"
 BorderThickness="{Binding RelativeSource={RelativeSource TemplatedParent},
 Path=BorderThickness}">
 <TextBlock Text="temporary" />
 </Border>
 </ControlTemplate>
 </Button.Template>
</Button>

You’ll use this verbose syntax if you ever need to establish a two-way binding in a ControlTemplate.
TemplateBinding is one-way only and does not allow a Mode setting.

Now suppose you want this red border to be the default in your new button but you want to allow
individual buttons to override this default. In that case, you can define this ControlTemplate as part of

	 CHAPTER 11  The Three Templates	 507

a Style. Keep in mind that normally this Style would be defined as a resource and shared by multiple
buttons, but I’m attaching it directly to the button for this exercise:

<Button Content="Click me!"
 Click="OnButtonClick"
 HorizontalAlignment="Center"
 VerticalAlignment="Center">
 <Button.Style>
 <Style TargetType="Button">
 <Setter Property="BorderBrush" Value="Red" />
 <Setter Property="BorderThickness" Value="3" />
 <Setter Property="Template">
 <Setter.Value>
 <ControlTemplate TargetType="Button">
 <Border BorderBrush="{TemplateBinding BorderBrush}"
 BorderThickness="{TemplateBinding BorderThickness}">
 <TextBlock Text="temporary" />
 </Border>
 </ControlTemplate>
 </Setter.Value>
 </Setter>
 </Style>
 </Button.Style>
</Button>

Now you can set BorderBrush and BorderThickness properties on the Button itself and these will
override those set in the Style. Let’s add default Background and Foreground properties to this Style,
as well as a FontSize to make the text a little larger:

<Button Content="Click me!"
 Click="OnButtonClick"
 HorizontalAlignment="Center"
 VerticalAlignment="Center">
 <Button.Style>
 <Style TargetType="Button">
 <Setter Property="Background" Value="White" />
 <Setter Property="Foreground" Value="Blue" />
 <Setter Property="BorderBrush" Value="Red" />
 <Setter Property="BorderThickness" Value="3" />
 <Setter Property="FontSize" Value="24" />
 <Setter Property="Template">
 <Setter.Value>
 <ControlTemplate TargetType="Button">
 <Border Background="{TemplateBinding Background}"
 BorderBrush="{TemplateBinding BorderBrush}"
 BorderThickness="{TemplateBinding BorderThickness}">
 <TextBlock Text="temporary" />
 </Border>
 </ControlTemplate>
 </Setter.Value>
 </Setter>
 </Style>
 </Button.Style>
</Button>

508	 PART 1  Elementals

Notice the TemplateBinding on the Background property of the Border. However, the TextBlock
doesn’t need a TemplateBinding for the Foreground or FontSize properties because those properties
are inherited through the visual tree. The TextBlock now shows up with blue text a little larger than
before:

So far, each TemplateBinding has bound a property of an element in the visual tree with a property
of the same name in the control. This one-to-one equivalence isn’t required. Within the template, you
could easily swap the bindings of Background and BorderBrush because both are of type Brush.

<ControlTemplate TargetType="Button">
 <Border Background="{TemplateBinding BorderBrush}"
 BorderBrush="{TemplateBinding Background}"
 BorderThickness="{TemplateBinding BorderThickness}">
 <TextBlock Text="temporary" />
 </Border>
</ControlTemplate>

There’s nothing wrong with this except for the bafflement that it might cause.

Perhaps you want this new Button to have rounded corners on the Border. There’s no property in
Control or Button that corresponds to that, so unless we want to define a class derived from Button
that includes a CornerRadius property, we’ll have to hard-code it. Here’s only the ControlTemplate
part of the markup:

<ControlTemplate TargetType="Button">
 <Border Background="{TemplateBinding Background}"
 BorderBrush="{TemplateBinding BorderBrush}"
 BorderThickness="{TemplateBinding BorderThickness}"
 CornerRadius="12">
 <TextBlock Text="temporary" />
 </Border>
</ControlTemplate>

	 CHAPTER 11  The Three Templates	 509

Here’s what we’re up to so far:

Let’s address the little issue of the TextBlock with the temporary text. Based on what you’ve seen
so far, you might be tempted to replace that temporary text with a TemplateBinding to the Content
property of the Button:

<TextBlock Text="{TemplateBinding Content}" />

This works in this example, but it is very wrong. I began this chapter by discussing how the Content
property of a ContentControl derivative such as Button is of type object, and TextBlock only works for
text. It doesn’t even work when the content is set to a bitmap.

Fortunately, there is a special class designed expressly to display content inside a ContentControl
derivative. That class is ContentPresenter, and like ContentControl it has a Content property of type
object:

<ControlTemplate TargetType="Button">
 <Border Background="{TemplateBinding Background}"
 BorderBrush="{TemplateBinding BorderBrush}"
 BorderThickness="{TemplateBinding BorderThickness}"
 CornerRadius="12">
 <ContentPresenter Content="{TemplateBinding Content}" />
 </Border>
</ControlTemplate>

You’ll find a ContentPresenter in most every template for ContentControl derivatives.
ContentPresenter derives from FrameworkElement, but it also generates its own visual tree to
render the content. In this specific example, ContentPresenter creates a TextBlock to display its
Content property.

510	 PART 1  Elementals

ContentPresenter is also entrusted with the job of building a visual tree to display any kind of
content based on the ContentTemplate property of the control. Indeed, ContentPresenter has its own
ContentTemplate property that you can bind to the ContentTemplate property of the control:

<ControlTemplate TargetType="Button">
 <Border Background="{TemplateBinding Background}"
 BorderBrush="{TemplateBinding BorderBrush}"
 BorderThickness="{TemplateBinding BorderThickness}"
 CornerRadius="12">
 <ContentPresenter Content="{TemplateBinding Content}"
 ContentTemplate="{TemplateBinding ContentTemplate}" />
 </Border>
</ControlTemplate>

These two template bindings on ContentPresenter are so standard and so essential that they’re not
actually required! ContentPresenter will automatically pick up the values of these properties from the
control in which it’s being used. If you want to leave them out, you can do so. I personally feel more
comfortable seeing them in there.

You might recall that Control defines a property named Padding that is intended to provide a little
space between the control’s chrome and the control’s content. Try setting the Padding property in
this Button:

<Button Content="Click me!"
 Click="OnButtonClick"
 HorizontalAlignment="Center"
 VerticalAlignment="Center"
 Padding="24">
 ...
</Button>

Nothing happens. You need to add something to the ControlTemplate to explicitly leave a little
space between the Border and the ContentPresenter. This can be a TemplateBinding on the Padding
property of the Border, but the more common approach is to set a TemplateBinding on the Margin
property of the ContentPresenter:

<ControlTemplate TargetType="Button">
 <Border Background="{TemplateBinding Background}"
 BorderBrush="{TemplateBinding BorderBrush}"
 BorderThickness="{TemplateBinding BorderThickness}"
 CornerRadius="12">
 <ContentPresenter Content="{TemplateBinding Content}"
 ContentTemplate="{TemplateBinding ContentTemplate}"
 Margin="{TemplateBinding Padding}" />
 </Border>
</ControlTemplate>

	 CHAPTER 11  The Three Templates	 511

Now try setting the HorizontalAlignment and VerticalAlignment properties of the Button to Stretch.
The Button properly expands to fill the page:

This is good because it means that these properties are being handled automatically. However,
the content is at the upper-left corner of the button. Control defines two properties named
HorizontalContentAlignment and VerticalContentAlignment that govern how content should be
positioned within the button, but if you try setting these properties, you’ll find that they don’t work.

This means you’ll have to add something to the template to get them to work. The standard way is
for these properties to be bound to the HorizontalAlignment and VerticalAlignment properties of the
ContentPresenter:

<ControlTemplate TargetType="Button">
 <Border Background="{TemplateBinding Background}"
 BorderBrush="{TemplateBinding BorderBrush}"
 BorderThickness="{TemplateBinding BorderThickness}"
 CornerRadius="12">
 <ContentPresenter Content="{TemplateBinding Content}"
 ContentTemplate="{TemplateBinding ContentTemplate}"
 Margin="{TemplateBinding Padding}"
 HorizontalAlignment="{TemplateBinding HorizontalContentAlignment}"
 VerticalAlignment="{TemplateBinding VerticalContentAlignment}" />
 </Border>
</ControlTemplate>

512	 PART 1  Elementals

These properties position the ContentPresenter within its parent, which in this case is the Border.
I’m going to add one more TemplateBinding on the ContentPresenter and then declare it ready for the
next step:

<Button Content="Click me!"
 Click="OnButtonClick"
 HorizontalAlignment="Center"
 VerticalAlignment="Center"
 Padding="24">
 <Button.ContentTransitions>
 <TransitionCollection>
 <EntranceThemeTransition />
 </TransitionCollection>
 </Button.ContentTransitions>
 <Button.Style>
 <Style TargetType="Button">
 <Setter Property="Background" Value="White" />
 <Setter Property="Foreground" Value="Blue" />
 <Setter Property="BorderBrush" Value="Red" />
 <Setter Property="BorderThickness" Value="3" />
 <Setter Property="FontSize" Value="24" />
 <Setter Property="Template">
 <Setter.Value>
 <ControlTemplate TargetType="Button">
 <Border Background="{TemplateBinding Background}"
 BorderBrush="{TemplateBinding BorderBrush}"
 BorderThickness="{TemplateBinding BorderThickness}"
 CornerRadius="12">
 <ContentPresenter Content="{TemplateBinding Content}"
 ContentTemplate="{TemplateBinding ContentTemplate}"
 Margin="{TemplateBinding Padding}"
 HorizontalAlignment=
 "{TemplateBinding HorizontalContentAlignment}"
 VerticalAlignment=
 "{TemplateBinding VerticalContentAlignment}"
 ContentTransitions=
 "{TemplateBinding ContentTransitions}" />
 </Border>
 </ControlTemplate>
 </Setter.Value>
 </Setter>
 </Style>
 </Button.Style>
</Button>

The ContentTransitions property of ContentPresenter is now bound to the ContentTransitions
property of the Button, and I’ve added an EntranceThemeTransition to the Button to test it out. Now
when the Button loads, the text slides in from the right.

	 CHAPTER 11  The Three Templates	 513

The Visual State Manager

If you’ve been playing along defining new Button visuals, you might have noted that this Button has
always remained fully functional in firing Click events when it’s been clicked or tapped. However,
it has been deficient in providing visual feedback to the user. Normal buttons assume somewhat
different appearances when they are disabled, or have keyboard input focus, or are in the process of
being clicked, or when the mouse passes over.

These different appearances are known as visual states, and you build them right into the template
by using classes that are part of the Visual State Manager.

The Button has seven visual states divided into two groups:

■■ CommonStates  Normal, PointerOver, Pressed, and Disabled

■■ FocusStates  Focused, Unfocused, PointerFocused

Within each group, the states are mutually exclusive. For example, there is no visual state that applies
to a disabled button that is also pressed.

The underlying code for the control is responsible for putting the control into these states with
calls to VisualStateManager.GoToState. These states are always referred to with text names.

Often these visual states are implemented with additional elements in the visual tree of the
template; these elements are normally invisible. This invisibility can result from the use of a color that
matches a background color, a Visibility property of Collapsed, or an Opacity of 0. An animation then
targets this property to make the element visible. Often these animations have a duration of zero,
which means they occur instantaneously, but you can stretch out your animations if you wish.

 Be forewarned that accounting for these visual states is certainly the most complex part of
defining a template. If you will be using a control only in a particular application, you might want to
cut a few corners. For example, if you know that a control will never be disabled, you don’t need to
provide a visual state for that.

In the ControlTemplate I’ve been building I’m going to handle the Pressed, Disabled, and Focused
states and then declare it complete.

In the standard Button, keyboard input focus is indicated by a dotted line that surrounds the
button’s border. I’m going to instead make it a dotted line that surrounds the content of the button,
which means it goes inside the Border along with the ContentPresenter, which means that both this
dotted line and ContentPresenter need to go in a single-cell Grid. Here’s the dotted line implemented
with a Rectangle that has the name “focusRectangle”:

<ControlTemplate TargetType="Button">
 <Border Background="{TemplateBinding Background}"
 BorderBrush="{TemplateBinding BorderBrush}"
 BorderThickness="{TemplateBinding BorderThickness}"
 CornerRadius="12">
 <Grid>

514	 PART 1  Elementals

 <ContentPresenter Content="{TemplateBinding Content}"
 ContentTemplate="{TemplateBinding ContentTemplate}"
 Margin="{TemplateBinding Padding}"
 HorizontalAlignment="{TemplateBinding HorizontalContentAlignment}"
 VerticalAlignment="{TemplateBinding VerticalContentAlignment}"
 ContentTransitions="{TemplateBinding ContentTransitions}" />

 <Rectangle Name="focusRectangle"
 Stroke="{TemplateBinding Foreground}"
 StrokeThickness="1"
 StrokeDashArray="2 2"
 Margin="4"
 RadiusX="12"
 RadiusY="12" />
 </Grid>
 </Border>
</ControlTemplate>

And here’s what it looks like now:

Of course, you don’t want that Rectangle to appear all the time. One way to make it invisible is to
give it an Opacity of 0:

<Rectangle Name="focusRectangle"
 Stroke="{TemplateBinding Foreground}"
 Opacity="0"
 StrokeThickness="1"
 StrokeDashArray="2 2"
 Margin="4"
 RadiusX="12"
 RadiusY="12" />

Then, customarily within the root element in the visual tree that makes up the ControlTemplate—in
this example, right after the start tag for Border—you want a VisualStateManager.VisualStateGroups

	 CHAPTER 11  The Three Templates	 515

section. Within that are VisualStateGroup tags for each group, and within those, VisualState tags for
each state in that group. All are identified with x:Name attributes:

<VisualStateManager.VisualStateGroups>
 <VisualStateGroup x:Name="CommonStates">
 <VisualState x:Name="Normal">
 ...
 </VisualState>

 <VisualState x:Name="PointerOver">
 ...
 </VisualState>

 <VisualState x:Name="Pressed">
 ...
 </VisualState>

 <VisualState x:Name="Disabled">
 ...
 </VisualState>
 </VisualStateGroup>

 <VisualStateGroup x:Name="FocusedStates">
 <VisualState x:Name="Unfocused">
 ...
 </VisualState>

 <VisualState x:Name="Focused">
 ...
 </VisualState>

 <VisualState x:Name="PointerFocused">
 ...
 </VisualState>
 </VisualStateGroup>
</VisualStateManager.VisualStateGroups>

If the visual part of your basic template is designed for the Normal and Unfocused states, you can
make those empty tags. And if you don’t wish to handle various states, you can make those tags
empty as well:

<VisualStateManager.VisualStateGroups>
 <VisualStateGroup x:Name="CommonStates">
 <VisualState x:Name="Normal" />
 <VisualState x:Name="PointerOver" />

 <VisualState x:Name="Pressed">
 ...
 </VisualState>

 <VisualState x:Name="Disabled">
 ...
 </VisualState>
 </VisualStateGroup>

516	 PART 1  Elementals

 <VisualStateGroup x:Name="FocusedStates">
 <VisualState x:Name="Unfocused" />

 <VisualState x:Name="Focused">
 ...
 </VisualState>

 <VisualState x:Name="PointerFocused" />
 </VisualStateGroup>
</VisualStateManager.VisualStateGroups>

But don’t delete them. Within a particular group you should have tags for all the states. Leave one
out and any transition back to that state won’t occur.

For the states you want to handle, put a Storyboard between the VisualState tags that contains
animations that target the elements you’ve supplied for this purpose. For example:

<VisualStateGroup x:Name="FocusedStates">
 <VisualState x:Name="Unfocused" />

 <VisualState x:Name="Focused">
 <Storyboard>
 <DoubleAnimation Storyboard.TargetName="focusRectangle"
 Storyboard.TargetProperty="Opacity"
 To="1" Duration="0" />
 </Storyboard>
 </VisualState>

 <VisualState x:Name="PointerFocused" />
</VisualStateGroup>

Notice the absence of a From property. You want to indicate only what the value should end up at—
not what it starts at.

With this in place, when the underlying control receives input focus, its OnGotFocus method is
called. The control responds by calling VisualStateManager.GoToState with “Focused.” This triggers
the Storyboard, which sets the target Opacity property to 1. When the underlying control loses input
focus, it calls VisualStateManager.GoToState with “Unfocused,” which undoes that animation.

For the disabled state, I want the entire control grayed out, and a good way to do that is to cover
the entire control with a semi-transparent black rectangle with a Visibility of Collapsed. So, let’s put
the Border in another Grid and add a named Rectangle to that Grid that sits visually on top of the
Border. In doing this, I’ve also moved the Visual State Manager markup to the outermost Grid:

<ControlTemplate TargetType="Button">
 <Grid>
 <VisualStateManager.VisualStateGroups>
 ...
 </VisualStateManager.VisualStateGroups>

 <Border Name="border" ... >
 <Grid>
 <ContentPresenter Name="contentPresenter" ... />
 <Rectangle Name="focusRectangle" ... />

	 CHAPTER 11  The Three Templates	 517

 </Grid>
 </Border>

 <Rectangle Name="disabledRect"
 Visibility="Collapsed"
 Fill="Black"
 Opacity="0.5" />
 </Grid>
</ControlTemplate>

I’ve also given the Border and ContentPresenter names so that I can reference those in animations.
For the Disabled state, I’ve defined an animation to make the disabledRect visible, and for the Pressed
state, I’ve defined two animations to set the background and foreground colors of the control.

These can be seen in the CustomButtonTemplate project, which has the final style and
template. Primarily to avoid extremely long line lengths on the printed page, I have defined the
ControlTemplate as a separate object in the Resources dictionary and referenced that from the Style:

Project: CustomButtonTemplate | File: MainPage.xaml (excerpt)

<Page ... >
 <Page.Resources>
 <ControlTemplate x:Key="buttonTemplate" TargetType="Button">
 <Grid>
 <VisualStateManager.VisualStateGroups>
 <VisualStateGroup x:Name="CommonStates">
 <VisualState x:Name="Normal" />
 <VisualState x:Name="PointerOver" />

 <VisualState x:Name="Pressed">
 <Storyboard>
 <ObjectAnimationUsingKeyFrames
 Storyboard.TargetName="border"
 Storyboard.TargetProperty="Background">
 <DiscreteObjectKeyFrame KeyTime="0"
 Value="LightGray" />
 </ObjectAnimationUsingKeyFrames>

 <ObjectAnimationUsingKeyFrames
 Storyboard.TargetName="contentPresenter"
 Storyboard.TargetProperty="Foreground">
 <DiscreteObjectKeyFrame KeyTime="0"
 Value="Black" />
 </ObjectAnimationUsingKeyFrames>
 </Storyboard>
 </VisualState>

 <VisualState x:Name="Disabled">
 <Storyboard>
 <ObjectAnimationUsingKeyFrames
 Storyboard.TargetName="disabledRect"
 Storyboard.TargetProperty="Visibility">
 <DiscreteObjectKeyFrame KeyTime="0"
 Value="Visible" />
 </ObjectAnimationUsingKeyFrames>
 </Storyboard>

518	 PART 1  Elementals

 </VisualState>
 </VisualStateGroup>

 <VisualStateGroup x:Name="FocusedStates">
 <VisualState x:Name="Unfocused" />

 <VisualState x:Name="Focused">
 <Storyboard>
 <DoubleAnimation Storyboard.TargetName="focusRectangle"
 Storyboard.TargetProperty="Opacity"
 To="1" Duration="0" />
 </Storyboard>
 </VisualState>

 <VisualState x:Name="PointerFocused" />
 </VisualStateGroup>
 </VisualStateManager.VisualStateGroups>

 <Border Name="border"
 Background="{TemplateBinding Background}"
 BorderBrush="{TemplateBinding BorderBrush}"
 BorderThickness="{TemplateBinding BorderThickness}"
 CornerRadius="12">

 <Grid>
 <ContentPresenter Name="contentPresenter"
 Content="{TemplateBinding Content}"
 ContentTemplate="{TemplateBinding ContentTemplate}"
 Margin="{TemplateBinding Padding}"
 HorizontalAlignment="{TemplateBinding HorizontalContentAlignment}"
 VerticalAlignment="{TemplateBinding VerticalContentAlignment}"
 ContentTransitions="{TemplateBinding ContentTransitions}" />

 <Rectangle Name="focusRectangle"
 Stroke="{TemplateBinding Foreground}"
 Opacity="0"
 StrokeThickness="1"
 StrokeDashArray="2 2"
 Margin="4"
 RadiusX="12"
 RadiusY="12" />
 </Grid>
 </Border>

 <Rectangle Name="disabledRect"
 Visibility="Collapsed"
 Fill="Black"
 Opacity="0.5" />
 </Grid>
 </ControlTemplate>

 <Style x:Key="buttonStyle" TargetType="Button">
 <Setter Property="Background" Value="White" />
 <Setter Property="Foreground" Value="Blue" />
 <Setter Property="BorderBrush" Value="Red" />

	 CHAPTER 11  The Three Templates	 519

 <Setter Property="BorderThickness" Value="3" />
 <Setter Property="FontSize" Value="24" />
 <Setter Property="Padding" Value="12" />
 <Setter Property="Template" Value="{StaticResource buttonTemplate}" />
 </Style>
 </Page.Resources>

 <Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="*" />
 <ColumnDefinition Width="*" />
 <ColumnDefinition Width="*" />
 </Grid.ColumnDefinitions>

 <Button Content="Disable center button"
 Grid.Column="0"
 Style="{StaticResource buttonStyle}"
 Click="OnButton1Click"
 HorizontalAlignment="Center"
 VerticalAlignment="Center" />

 <Button Name="centerButton"
 Content="Center button"
 Grid.Column="1"
 Style="{StaticResource buttonStyle}"
 FontSize="48"
 Background="DarkGray"
 Foreground="Red"
 HorizontalAlignment="Center"
 VerticalAlignment="Center" />

 <Button Content="Enable center button"
 Grid.Column="2"
 Style="{StaticResource buttonStyle}"
 Click="OnButton3Click"
 HorizontalAlignment="Center"
 VerticalAlignment="Center" />
 </Grid>
</Page>

The XAML file concludes with three buttons, with the center one getting some local property
values that override those in the Style. The outer two buttons disable and enable the center button:

Project: CustomButtonTemplate | File: MainPage.xaml.cs (excerpt)

void OnButton1Click(object sender, RoutedEventArgs args)
{
 centerButton.IsEnabled = false;
}

void OnButton3Click(object sender, RoutedEventArgs args)
{
 centerButton.IsEnabled = true;
}

520	 PART 1  Elementals

In this screen shot, the center button has indeed been disabled and the third button has keyboard
input focus:

Using generic.xaml

Look in the following directory of the machine on which you’ve installed Visual Studio:

C:\Program Files (x86)\Windows Kits\8.0\Include\winrt\xaml\design

You should see two files there. The shorter one, themeresources.xaml, contains mostly SolidColorBrush
definitions for the standard colors available to Windows Runtime applications, including the famous
ApplicationPageBackgroundThemeBrush and ApplicationForegroundThemeBrush colors. Entire sets of
these colors are in three sections: Default (meaning the dark theme), Light, and HighContrast. A user
can select a high-contrast display from the Ease of Access section in the PC Settings program acces-
sible from the Settings charm.

The larger file, generic.xaml, contains the same definitions as themeresources.xaml, plus all the
default Style and ControlTemplate definitions for all the standard controls.

If you want to become good at designing custom templates for controls, studying the default
templates in generic.xaml is essential. Within these templates is also (apparently) the only documenta-
tion of the visual states associated with each control, as well as the named parts that I’ll discuss in the
next section.

To find the default Style for a particular control, do a search of TargetType=” followed by the
control name.

	 CHAPTER 11  The Three Templates	 521

Often the templates reference the brushes defined earlier in generic.xaml, and there are
special brushes for various visual states. For example, visual state animations in the default Button
template reference brushes with names such as ButtonPressedBackgroundThemeBrush and
ButtonPressedForegroundThemeBrush. The actual colors of these brushes are different based on the
Light or Dark theme the application has selected or the HighContrast theme that the user might have
selected.

These Style definitions for all the standard controls have no key names. They are basically implicit
styles that are applied to the control when the control is instantiated. Anything the application
provides is in addition to this implicit style.

One good way to develop a new template for a control is simply to copy the entire existing Style
definition from generic.xaml into your own XAML file and then begin making changes.

Template Parts

As I guided you through the process of constructing a template for a Button, you were possibly
wondering how this concept works with more sophisticated controls. Consider the Slider, for example.
The Slider has moving parts. How does the underlying control reference these parts of the template?

The underlying code for a control such as Slider assumes that certain elements that comprise the
template have specific names. During initialization, the control code gets references to these elements
in an override of the OnApplyTemplate method by calling the GetTemplateChild method with these
names. The control code can save these element objects as fields, install event handlers on them, and
alter their properties as the user manipulates the control.

Unfortunately, these named parts are not yet indicated in any documentation I’ve seen for the
Windows Runtime. You’ll have to study the default templates in generic.xaml to figure out what they
are. In many cases, you don’t have to know about each and every one. It is considered proper for
controls to not raise exceptions if certain pieces of the template are missing.

To be minimally functional, a Slider template must contain a template for both horizontal and
vertical orientations. These separate templates are generally of type Grid. Give these names of
“HorizontalTemplate” and “VerticalTemplate”.

Within each Grid must be a Rectangle that encompasses the full extent of the Slider named
“HorizontalTrackRect” or “VerticalTrackRect”, a Thumb named “HorizontalThumb” or “VerticalThumb”,
and a second Rectangle that appears to the left of the Thumb named “HorizontalDecreaseRect” or
“VerticalDecreaseRect”. When the user manipulates the Thumb or clicks or taps anywhere within
the Slider, the underlying control changes the size of this second rectangle to reflect the value
of the Slider.

522	 PART 1  Elementals

Let’s look at a nearly minimally functional Slider template that contains several explicit property
settings and ignores the TickBar elements that provide optional tick marks. This is a project I call
BareBonesSlider:

Project: BareBonesSlider | File: MainPage.xaml (excerpt)

<Page ... >
 <Page.Resources>
 <ControlTemplate x:Key="sliderTemplate"
 TargetType="Slider">
 <Grid>
 <Grid Name="HorizontalTemplate"
 Background="Transparent"
 Height="48">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition Width="*" />
 </Grid.ColumnDefinitions>

 <Rectangle Name="HorizontalTrackRect"
 Grid.Column="0"
 Grid.ColumnSpan="3"
 Fill="Blue"
 Margin="0 12" />

 <Thumb Name="HorizontalThumb"
 Grid.Column="1"
 DataContext="{TemplateBinding Value}"
 Width="24" />

 <Rectangle Name="HorizontalDecreaseRect"
 Grid.Column="0"
 Fill="Red"
 Margin="0 12" />
 </Grid>

 <Grid Name="VerticalTemplate"
 Visibility="Collapsed"
 Background="Transparent"
 Width="48">
 <Grid.RowDefinitions>
 <RowDefinition Height="*" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>

 <Rectangle Name="VerticalTrackRect"
 Grid.Row="0"
 Grid.RowSpan="3"
 Fill="Blue"
 Margin="12 0" />

	 CHAPTER 11  The Three Templates	 523

 <Thumb Name="VerticalThumb"
 Grid.Row="1"
 DataContext="{TemplateBinding Value}"
 Height="24" />

 <Rectangle Name="VerticalDecreaseRect"
 Grid.Row="2"
 Fill="Red"
 Margin="12 0" />
 </Grid>
 </Grid>
 </ControlTemplate>
 </Page.Resources>

 <Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="*" />
 </Grid.RowDefinitions>

 <Slider Grid.Row="0"
 Template="{StaticResource sliderTemplate}"
 Margin="48" />

 <Slider Grid.Row="1"
 Template="{StaticResource sliderTemplate}"
 Orientation="Vertical"
 Margin="48" />
 </Grid>
</Page>

At the bottom of the XAML file are two Slider controls, one horizontal and one vertical, that reference
these templates.

I’ll describe the template for the horizontal Slider; the vertical is structured similarly.

The total width of the Grid named “HorizontalTemplate” is the width of the Slider control in
layout. The Grid has three columns. The Rectangle named “HorizontalTrackRect” spans all three
columns so that Rectangle will always be the width of the Slider itself. The Rectangle named
“HorizontalDecreaseRect” occupies the first column in the Grid, which has a width of Auto, which has
the effect of reducing that Rectangle to a zero width. The Thumb occupies the center column in the
Grid, which also has a width of Auto, which means that this center column is the size of the Thumb.

The underlying code allows the Thumb to move horizontally only and not past the limits of
the Slider. As the user manipulates the Thumb or presses or taps anywhere else on the Slider, the
underlying code sets the Width property of the “HorizontalDecreaseRect” element accordingly. For
the minimum value of the Slider, this Width property is set to zero; for the maximum value, it’s set to

524	 PART 1  Elementals

the width of the “HorizontalTrackRect” element minus the width of the Thumb. I’ve given sizes and
margins to these components so that the Thumb is a little larger than the rectangles:

You’ll notice that the template contains a single TemplateBinding that binds the DataContext of the
Thumb to the Value property of the Slider. This is required to get the Slider popup tooltip to display
the correct value.

As you manipulate the Thumb in BareBonesSlider, you’ll discover that it becomes a nearly
transparent black as it is being pressed. Thumb derives from Control and hence can be given its own
template. This is done in the default Slider template in a Resources section attached to the outermost
Grid of the template.

With just a little alteration of the BareBonesSlider program, you can do something fancy. Here’s
something I call a SpringLoadedSlider:

Project: SpringLoadedSlider | File: MainPage.xaml (excerpt)

<Page ... >
 <Page.Resources>
 <ControlTemplate x:Key="sliderTemplate"
 TargetType="Slider">
 <Grid>
 <Grid.Resources>
 <Style TargetType="Path">
 <Setter Property="StrokeThickness" Value="6" />
 <Setter Property="StrokeLineJoin" Value="Round" />
 <Setter Property="Stretch" Value="Fill" />
 </Style>
 </Grid.Resources>

	 CHAPTER 11  The Three Templates	 525

 <Grid Name="HorizontalTemplate"
 Background="Transparent"
 Height="48">

 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition Width="*" />
 </Grid.ColumnDefinitions>

 <Rectangle Name="HorizontalTrackRect"
 Grid.Column="0"
 Grid.ColumnSpan="3"
 Fill="Transparent" />

 <Thumb Name="HorizontalThumb"
 Grid.Column="1"
 DataContext="{TemplateBinding Value}"
 Width="12" />

 <Rectangle Name="HorizontalDecreaseRect"
 Grid.Column="0"
 Fill="Transparent" />

 <Path Stroke="Red"
 Grid.Column="0"
 Width="{Binding ElementName=HorizontalDecreaseRect,
 Path=Width}"
 Data="M 0 0 L 100 100, 200 0, 300 100, 400 0,
 400 100, 300 0, 200 100, 100 0, 0 100 Z" />

 <Path Stroke="Blue"
 Grid.Column="2"
 Data="M 0 0 L 100 100, 200 0, 300 100, 400 0,
 400 100, 300 0, 200 100, 100 0, 0 100 Z" />
 </Grid>

 <Grid Name="VerticalTemplate"
 Visibility="Collapsed"
 Background="Transparent"
 Width="48">
 <Grid.RowDefinitions>
 <RowDefinition Height="*" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>

 <Rectangle Name="VerticalTrackRect"
 Grid.Row="0"
 Grid.RowSpan="3"
 Fill="Transparent" />

526	 PART 1  Elementals

 <Thumb Name="VerticalThumb"
 Grid.Row="1"
 DataContext="{TemplateBinding Value}"
 Height="12" />

 <Rectangle Name="VerticalDecreaseRect"
 Grid.Row="2"
 Fill="Transparent" />

 <Path Stroke="Red"
 Grid.Row="2"
 Height="{Binding ElementName=VerticalDecreaseRect,
 Path=Height}"
 Data="M 0 0 L 100 100, 0 200, 100 300, 0 400,
 100 400, 0 300, 100 200, 0 100, 100 0 Z" />

 <Path Stroke="Blue"
 Grid.Row="0"
 Data="M 0 0 L 100 100, 0 200, 100 300, 0 400,
 100 400, 0 300, 100 200, 0 100, 100 0 Z" />
 </Grid>
 </Grid>
 </ControlTemplate>
 </Page.Resources>

 <Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="*" />
 </Grid.RowDefinitions>

 <Slider Grid.Row="0"
 Template="{StaticResource sliderTemplate}"
 Margin="48" />

 <Slider Grid.Row="1"
 Template="{StaticResource sliderTemplate}"
 Orientation="Vertical"
 Margin="48" />

 </Grid>
</Page>

The two templates are structured the same, except that the Rectangle elements have all been given
Fill colors of Transparent. In addition, two Path elements have been added to each template. The first
Path sits in the first column (for a horizontal Slider) and is colored red. The Width of this Path is bound
to the Width of the element named “HorizontalDecreaseRect”. The second Path is blue and occupies
the third column. Each has the same geometry—a crisscrossing lattice—with a Stretch mode of Fill,
meaning that it will fill the space allowed for it.

	 CHAPTER 11  The Three Templates	 527

This gives the appearance of springs on either side of the Thumb:

The default template for the ProgressBar is rather elaborate because it needs to encompass both
determinate and indeterminate appearances. However, if you restrict yourself to just the determi-
nate ProgressBar, it becomes very simple: The underlying code changes the width of an element
named “ProgressBarIndicator” between 0 and the width of an element named “DeterminateRoot”.
In the default template, “DeterminateRoot” is a Border that contains a left-aligned Rectangle named
”ProgressBarIndicator”.

In SpeedometerProgressBar, neither “DeterminateRoot” nor “ProgressBarIndicator” are
visible, but the Width of “DeterminateRoot” is hard-coded as 180. This means that the Width
of “ProgressBarIndicator” will range from 0 to 180. A binding from the Width property of
“ProgressBarIndicator” targets the Angle property of a RotateTransform, which rotates an arrow
indicator from 0 through 180 degrees:

Project: SpeedometerProgressBar | File: MainPage.xaml (excerpt)

<Page ... >
 <Page.Resources>
 <ControlTemplate x:Key="progressTemplate"
 TargetType="ProgressBar">
 <Grid>
 <Grid.Resources>
 <Style TargetType="Line">
 <Setter Property="Stroke" Value="Black" />
 <Setter Property="StrokeThickness" Value="1" />
 <Setter Property="X1" Value="-85" />
 <Setter Property="X2" Value="-95" />
 </Style>

528	 PART 1  Elementals

 <Style TargetType="TextBlock">
 <Setter Property="FontSize" Value="11" />
 <Setter Property="Foreground" Value="Black" />
 </Style>
 </Grid.Resources>

 <Border Width="270" Height="120"
 BorderBrush="{TemplateBinding BorderBrush}"
 BorderThickness="{TemplateBinding BorderThickness}"
 Background="White">

 <!-- Canvas for positioning graphics-->
 <Canvas Width="0" Height="0"
 RenderTransform="1 0 0 1 0 50" >

 <!-- The required parts of the ProgressBar template -->
 <Border Name="DeterminateRoot"
 Width="180">
 <Rectangle Name="ProgressBarIndicator"
 HorizontalAlignment="Left" />
 </Border>

 <Line RenderTransform=" 1.00 0.00 -0.00 1.00 0 0" />
 <Line RenderTransform=" 0.95 0.31 -0.31 0.95 0 0" />
 <Line RenderTransform=" 0.81 0.59 -0.59 0.81 0 0" />
 <Line RenderTransform=" 0.59 0.81 -0.81 0.59 0 0" />
 <Line RenderTransform=" 0.31 0.95 -0.95 0.31 0 0" />
 <Line RenderTransform=" 0.00 1.00 -1.00 0.00 0 0" />
 <Line RenderTransform="-0.31 0.95 0.95 0.31 0 0" />
 <Line RenderTransform="-0.59 0.81 0.81 0.59 0 0" />
 <Line RenderTransform="-0.81 0.59 0.59 0.81 0 0" />
 <Line RenderTransform="-0.95 0.31 0.31 0.95 0 0" />
 <Line RenderTransform="-1.00 0.00 0.00 1.00 0 0" />

 <TextBlock Text="0%" Canvas.Left="-115" Canvas.Top="-6" />
 <TextBlock Text="20%" Canvas.Left="-104" Canvas.Top="-65" />
 <TextBlock Text="40%" Canvas.Left="-42" Canvas.Top="-105" />
 <TextBlock Text="60%" Canvas.Left="25" Canvas.Top="-105" />
 <TextBlock Text="80%" Canvas.Left="82" Canvas.Top="-65" />
 <TextBlock Text="100%" Canvas.Left="100" Canvas.Top="-6" />

 <!-- Arrow to point to percentage -->
 <Polygon Points="5 5 5 -5 -75 0"
 Stroke="Black"
 Fill="Red">
 <Polygon.RenderTransform>
 <RotateTransform
 Angle="{Binding ElementName=ProgressBarIndicator,
 Path=Width}" />
 </Polygon.RenderTransform>
 </Polygon>
 </Canvas>
 </Border>
 </Grid>
 </ControlTemplate>
 </Page.Resources>

	 CHAPTER 11  The Three Templates	 529

 <Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="*" />
 </Grid.RowDefinitions>

 <ProgressBar Grid.Row="0"
 Template="{StaticResource progressTemplate}"
 Margin="48"
 Value="{Binding ElementName=slider, Path=Value}" />

 <Slider Name="slider"
 Grid.Row="1"
 Margin="48"
 VerticalAlignment="Center" />
 </Grid>
</Page>

The bottom of the XAML file instantiates a ProgressBar with this template and binds it to a Slider
for testing purposes:

The SpringLoadedSlider and SpeedometerProgressBar are based on XAML files I originally created
for WPF for an article in the January 2007 issue of MSDN Magazine. Although I needed to alter the
templates somewhat to account for the differences between WPF and the Windows Runtime, for the
most part they are quite similar. Although we don’t have complete portability between all XAML-
based environments, it is certainly the case that work done six years ago can be readily adapted to
newer platforms.

530	 PART 1  Elementals

Custom Controls

When you create a custom control in a Windows Runtime library, you probably want to make that
control available to a variety of applications and perhaps even market it to other programmers. In this
case, you should supply a default Style for that control, including a default ControlTemplate.

A library that contains custom control classes should also contain a file named generic.xaml in a
folder named Themes. Like the generic.xaml file you’ve already seen, this generic.xaml file has a root
element of ResourceDictionary and contains a Style definition with a TargetType indicating the custom
control name and no dictionary key. This Style should incorporate a default ControlTemplate.

Visual Studio will generate a skeleton generic.xaml file for you. In the
Petzold.ProgrammingWindows6.Chapter11 library I’ve been using for this chapter, I invoked the Add
New Item dialog box and selected Templated Control, giving it a name of NewToggle. Visual Studio
generated a NewToggle.cs file with a bunch of using directives and the following class definition:

namespace Petzold.ProgrammingWindows6.Chapter11
{
 public sealed class NewToggle : Control
 {
 public NewToggle()
 {
 this.DefaultStyleKey = typeof(NewToggle);
 }
 }
}

This is not a partial class definition! There is no corresponding NewToggle.xaml file, and the
constructor does not contain a call to InitializeComponent. The DefaultStyleKey property indicates the
type to use when searching for implicit styles.

Visual Studio also generated a Themes folder and a generic.xaml file containing this implicit style:

<ResourceDictionary
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="using:Petzold.ProgrammingWindows6.Chapter11">

 <Style TargetType="local:NewToggle">
 <Setter Property="Template">
 <Setter.Value>
 <ControlTemplate TargetType="local:NewToggle">
 <Border
 Background="{TemplateBinding Background}"
 BorderBrush="{TemplateBinding BorderBrush}"
 BorderThickness="{TemplateBinding BorderThickness}">
 </Border>
 </ControlTemplate>
 </Setter.Value>
 </Setter>
 </Style>
</ResourceDictionary>

	 CHAPTER 11  The Three Templates	 531

If your library has multiple custom controls, this same file will contain default Style definitions for
all of them. This file has a specific name and location for a reason: It will forever be associated with the
custom control defined in this library and doesn’t need to be referenced in any other way.

The NewToggle control is intended to implement toggle button functionality by showing two
different pieces of content at the same time, one associated with the unchecked state and the other
with the checked state. Tap one of those pieces of content to change the check state. How the visuals
change to reflect that change is the responsibility of the template.

I made NewToggle derive from ContentControl so that it inherits the Content and ContentTemplate
properties. The class defines two new dependency properties, CheckedContent and IsChecked:

Project: Petzold.ProgrammingWindows6.Chapter11 | File: NewToggle.cs

public class NewToggle : ContentControl
{
 public event EventHandler CheckedChanged;
 Button uncheckButton, checkButton;

 static NewToggle()
 {
 CheckedContentProperty = DependencyProperty.Register("CheckedContent",
 typeof(object),
 typeof(NewToggle),
 new PropertyMetadata(null));

 IsCheckedProperty = DependencyProperty.Register("IsChecked",
 typeof(bool),
 typeof(NewToggle),
 new PropertyMetadata(false, OnCheckedChanged));
 }

 public NewToggle()
 {
 this.DefaultStyleKey = typeof(NewToggle);
 }

 public static DependencyProperty CheckedContentProperty { private set; get; }

 public static DependencyProperty IsCheckedProperty { private set; get; }

 public object CheckedContent
 {
 set { SetValue(CheckedContentProperty, value); }
 get { return GetValue(CheckedContentProperty); }
 }

 public bool IsChecked
 {
 set { SetValue(IsCheckedProperty, value); }
 get { return (bool)GetValue(IsCheckedProperty); }
 }

 protected override void OnApplyTemplate()
 {

532	 PART 1  Elementals

 if (uncheckButton != null)
 uncheckButton.Click -= OnButtonClick;

 if (checkButton != null)
 checkButton.Click -= OnButtonClick;

 uncheckButton = GetTemplateChild("UncheckButton") as Button;
 checkButton = GetTemplateChild("CheckButton") as Button;

 if (uncheckButton != null)
 uncheckButton.Click += OnButtonClick;

 if (checkButton != null)
 checkButton.Click += OnButtonClick;

 base.OnApplyTemplate();
 }

 void OnButtonClick(object sender, RoutedEventArgs args)
 {
 this.IsChecked = sender == checkButton;
 }

 static void OnCheckedChanged(DependencyObject obj,
 DependencyPropertyChangedEventArgs args)
 {
 (obj as NewToggle).OnCheckedChanged(EventArgs.Empty);
 }

 protected virtual void OnCheckedChanged(EventArgs args)
 {
 VisualStateManager.GoToState(this,
 this.IsChecked ? "Checked" : "Unchecked",
 true);

 if (CheckedChanged != null)
 CheckedChanged(this, args);
 }
}

The OnApplyTemplate override assumes that the template has two Button controls with the names
“UncheckButton” and “CheckButton.” If so, these are saved as fields and Click handlers are attached. If
one of these buttons is then clicked, the IsChecked property is changed, the CheckedChanged event is
fired, and the static VisualStateManager.GoToState is called with states of “Checked” or “Unchecked.”

The template in generic.xaml contains the two buttons with these names as well as Storyboard
objects defined for the two states:

Project: Petzold.ProgrammingWindows11.Chapter11 | File: generic.xaml (excerpt)

<Style TargetType="local:NewToggle">
 <Setter Property="BorderBrush" Value="{StaticResource ApplicationForegroundThemeBrush}" />
 <Setter Property="BorderThickness" Value="1" />
 <Setter Property="Template">
 <Setter.Value>
 <ControlTemplate TargetType="local:NewToggle">

	 CHAPTER 11  The Three Templates	 533

 <Border Background="{TemplateBinding Background}"
 BorderBrush="{TemplateBinding BorderBrush}"
 BorderThickness="{TemplateBinding BorderThickness}">

 <VisualStateManager.VisualStateGroups>
 <VisualStateGroup x:Name="CheckStates">
 <VisualState x:Name="Unchecked" />

 <VisualState x:Name="Checked">
 <Storyboard>
 <ObjectAnimationUsingKeyFrames
 Storyboard.TargetName="UncheckButton"
 Storyboard.TargetProperty="BorderThickness">
 <DiscreteObjectKeyFrame KeyTime="0"
 Value="0" />
 </ObjectAnimationUsingKeyFrames>

 <ObjectAnimationUsingKeyFrames
 Storyboard.TargetName="CheckButton"
 Storyboard.TargetProperty="BorderThickness">
 <DiscreteObjectKeyFrame KeyTime="0"
 Value="8" />
 </ObjectAnimationUsingKeyFrames>
 </Storyboard>
 </VisualState>
 </VisualStateGroup>
 </VisualStateManager.VisualStateGroups>

 <local:UniformGrid Rows="1">
 <Button Name="UncheckButton"
 Content="{TemplateBinding Content}"
 ContentTemplate="{TemplateBinding ContentTemplate}"
 FontSize="{TemplateBinding FontSize}"
 BorderBrush="Red"
 BorderThickness="8"
 HorizontalAlignment="Stretch" />

 <Button Name="CheckButton"
 Content="{TemplateBinding CheckedContent}"
 ContentTemplate="{TemplateBinding ContentTemplate}"
 FontSize="{TemplateBinding FontSize}"
 BorderBrush="Green"
 BorderThickness="0"
 HorizontalAlignment="Stretch" />
 </local:UniformGrid>
 </Border>
 </ControlTemplate>
 </Setter.Value>
 </Setter>
</Style>

Keep in mind that in more extensive templates, the two buttons can themselves be templated.
Here they contain template bindings to the Content and CheckedContent properties and share the
same ContentTemplate of the control. The item that’s checked is highlighted with a thick border, red
for the left button and green for the right button.

534	 PART 1  Elementals

This NewToggle control is demonstrated by the NewToggleDemo project:

Project: NewToggleDemo | File: MainPage.xaml (excerpt)

<Page ... >
 <Page.Resources>
 <Style TargetType="ch11:NewToggle">
 <Setter Property="HorizontalAlignment" Value="Center" />
 <Setter Property="VerticalAlignment" Value="Center" />
 </Style>
 </Page.Resources>

 <Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="*" />
 <ColumnDefinition Width="*" />
 </Grid.ColumnDefinitions>

 <ch11:NewToggle Content="Don't do it!"
 CheckedContent="Let's go for it!"
 Grid.Column="0"
 FontSize="24" />

 <ch11:NewToggle Grid.Column="1">
 <ch11:NewToggle.Content>
 <Image Source="Images/MunchScream.jpg" />
 </ch11:NewToggle.Content>

 <ch11:NewToggle.CheckedContent>
 <Image Source="Images/BotticelliVenus.jpg" />
 </ch11:NewToggle.CheckedContent>
 </ch11:NewToggle>
 </Grid>
</Page>

The first NewToggle has content that consists of two text strings. It’s in an unchecked state. The
second NewToggle uses two famous images for the two states and is currently checked:

	 CHAPTER 11  The Three Templates	 535

In Chapter 13, “Touch, Etc.,” I have another example of a custom control called XYSlider.

If you’re using a custom control in a single application, you can define the control right in the
application project, and the default template can indeed go in a XAML file that contributes to a
partial class definition for the control.

Templates and Item Containers

Templating an ItemsControl derivative such as ListBox is very similar to templating any other type
of control except that the template contains an element named ItemsPresenter. This is basically a
placeholder that represents the list of items. It requires no template bindings. As you can see by
looking at the default template for ListBox, the bulk of the template is a ScrollViewer. You can replace
ScrollViewer in a ListBox if you find that you can code something better or more appropriate for your
application.

As you tap or click an item in a ListBox, or as you use the keyboard arrow keys to navigate through
the list, the selected item is highlighted. Where does that highlight come from? Who is responsible?

The class actually performing the highlighting belongs to a category of ContentControl derivatives
I haven’t discussed yet. These are controls that derive from SelectorItem:

Object
 DependencyObject
 UIElement
 FrameworkElement
 Control
 ContentControl
 SelectorItem (non-instantiable)
 ComboBoxItem
 FlipViewItem
 GridViewItem
 ListBoxItem
 ListViewItem

These five classes map to the five instantiable classes that derive from Selector, as shown earlier in this
chapter, and they are used to host the individual items in those items controls. ItemsControl has no
class for its items because the items can’t be selected.

You haven’t seen these classes yet because normally you don’t instantiate them on your own.
Instead, the Selector control itself is responsible for generating the items. Because these classes derive
from ContentControl they have their own default templates (defined in generic.xaml), and these
templates involve a ContentPresenter.

Suppose you want to provide a different type of selection highlighting. How is this done? How do
you apply a style to a ListBoxItem class that you don’t even see?

536	 PART 1  Elementals

ItemsControl defines an ItemContainerStyle property that you can set to a Style object. When
working with a ListBox, for example, you would provide a Style with a TargetType of ListBoxItem. That
Style can include a setting for the Template property.

If you look at the default ListBoxItem style in generic.xaml, you’ll see a visual state group named
SelectionStates that has six mutually exclusive states: Unselected, Selected, SelectedUnfocused,
SelectedDisabled, SelectedPointerOver, and SelectedPressed.

If you’d like all the selected states to be the same, you can define the template to reflect a selected
state, and then you can define a Storyboard for the Unselected state. This is the approach I took in the
CustomListBoxItemStyle project. This is similar to the ListBoxWithItemTemplate project except that it
also includes a Style set to the ItemContainerStyle property.

Project: CustomListBoxItemStyle | File: MainPage.xaml (excerpt)

<Page ... >
 <Page.Resources>
 <ch11:NamedColor x:Key="namedColor" />
 </Page.Resources>

 <Grid>
 <ListBox Name="lstbox"
 ItemsSource="{Binding Source={StaticResource namedColor},
 Path=All}"
 Width="380">
 <ListBox.ItemTemplate>
 <DataTemplate>
 ...
 </DataTemplate>
 </ListBox.ItemTemplate>

 <ListBox.ItemContainerStyle>
 <Style TargetType="ListBoxItem">
 <Setter Property="Background" Value="Transparent" />
 <Setter Property="TabNavigation" Value="Local" />
 <Setter Property="Padding" Value="8,10" />
 <Setter Property="HorizontalContentAlignment" Value="Left" />
 <Setter Property="Template">
 <Setter.Value>
 <ControlTemplate TargetType="ListBoxItem">
 <Border Background="{TemplateBinding Background}"
 BorderBrush="{TemplateBinding BorderBrush}"
 BorderThickness="{TemplateBinding BorderThickness}">

 <VisualStateManager.VisualStateGroups>
 <VisualStateGroup x:Name="SelectionStates">
 <VisualState x:Name="Unselected">
 <Storyboard>
 <ObjectAnimationUsingKeyFrames
 Storyboard.TargetName="ContentPresenter"
 Storyboard.TargetProperty="FontStyle">

	 CHAPTER 11  The Three Templates	 537

 <DiscreteObjectKeyFrame KeyTime="0"
 Value="Normal" />
 </ObjectAnimationUsingKeyFrames>

 <ObjectAnimationUsingKeyFrames
 Storyboard.TargetName="ContentPresenter"
 Storyboard.TargetProperty="FontWeight">
 <DiscreteObjectKeyFrame KeyTime="0"
 Value="Normal" />
 </ObjectAnimationUsingKeyFrames>
 </Storyboard>
 </VisualState>

 <VisualState x:Name="Selected" />
 <VisualState x:Name="SelectedUnfocused" />
 <VisualState x:Name="SelectedDisabled" />
 <VisualState x:Name="SelectedPointerOver" />
 <VisualState x:Name="SelectedPressed" />
 </VisualStateGroup>
 </VisualStateManager.VisualStateGroups>

 <Grid Background="Transparent">
 <ContentPresenter x:Name="ContentPresenter"
 FontStyle="Italic"
 FontWeight="Bold"
 Content="{TemplateBinding Content}"
 ContentTransitions=
 "{TemplateBinding ContentTransitions}"
 ContentTemplate=
 "{TemplateBinding ContentTemplate}"
 HorizontalAlignment=
 "{TemplateBinding HorizontalContentAlignment}"
 VerticalAlignment=
 "{TemplateBinding VerticalContentAlignment}"
 Margin="{TemplateBinding Padding}" />
 </Grid>
 </Border>
 </ControlTemplate>
 </Setter.Value>
 </Setter>
 </Style>
 </ListBox.ItemContainerStyle>
 </ListBox>

 <Grid.Background>
 <SolidColorBrush Color="{Binding ElementName=lstbox,
 Path=SelectedItem.Color}" />
 </Grid.Background>
 </Grid>
</Page>

538	 PART 1  Elementals

The Style set to the ItemContainerStyle of the ListBox can be defined as a resource of course. I
decided that I wanted a selected item to have text in bold italic, and that’s how the FontStyle and
FontWeight properties of the ContentPresenter are defined. When the item is unselected (which is
actually the normal case), the FontStyle and FontWeight are animated to normal. Here’s how it looks:

That’s a rather odd way to highlight an item, but for some applications an unusual highlighting
might be exactly what is desired.

The real purpose of templates is not to make controls more unusual (although that is certainly fun)
but to make them more usable—to adapt the visuals of the control to its functionality.

In the next chapter I’ll continue the discussion of items controls with the ListViewBase derivatives
(ListView and GridView) and explore the use of these controls with view models.

		 539

C H A P T E R 1 2

Pages and Navigation

Most Windows 8 applications are built around instances of the Page class. This is certainly not a
requirement, but it offers some conveniences such as the easy integration of application bars.

Up until this chapter, I’ve been focusing on programs that have only one instance of a Page deriva-
tive called MainPage, but now is the time to explore programs that allow Web-like navigation among
multiple Page derivatives.

Visual Studio has two project templates for applications with multiple pages called Grid App and
Split App. These templates are built around the powerful ListView and GridView controls and use
these controls with view models. These templates are also layout-aware, meaning that they respond
to changes in screen orientation and snap modes, so an exploration into window resizing issues offers
a convenient place to begin this chapter.

Responding to window size changes is not new to Windows programmers. Most traditional
Windows desktop programs have a sizing border that allows the user a great deal of control over
the size and aspect ratio of the application’s window. Windows programmers have been taught for
25 years to try to write their programs to adapt to whatever size the user selects. Of course, this is
not always feasible: What’s a spreadsheet program to do if the user shrinks the window down so far
that no cells are visible? Some programs—for example, the Windows Calculator—simply set a fixed
window size adequate to display all the program’s content. For traditional desktop applications, this is
suitable only when the window is guaranteed to be smaller than the screen.

Windows 8 applications mostly run in full screen mode and actually have a greater assurance of
getting a minimum screen size. However, Windows 8 applications are also susceptible to changes in
orientation and snap modes, and many applications should be aware of these changes.

Screen Resolution Issues

A computer screen has a particular horizontal and vertical size in pixels and also a physical size that
is usually specified as a diagonal measurement in inches. Using the Pythagorean Theorem, you can
combine these sizes and calculate a resolution in pixels per inch, also known as dots per inch (DPI).

For example, a 1024 × 768 pixel screen has a diagonal of 1280 pixels. If the screen measures 12
inches diagonally, that’s a resolution of 106 DPI. A 23-inch desktop monitor with a standard high-
definition size of 1920 × 1080 pixels has about 2203 pixels on the diagonal for a resolution of 96 DPI.
A 27-inch monitor with 2560 × 1440 pixels has a resolution of about 109 DPI.

540	 PART 1  Elementals

Early on in this book, I said that it’s proper to assume that the screen has a resolution of 96 pixels
per inch. As you can see, this is a good assumption for these three example monitors, although you
might encounter monitors where this rule is stretched somewhat: For much of this book I’ve been
using a Samsung tablet that has a pixel size of 1366 × 768, with a 11.6-inch diagonal of about 1567
pixels, for a resolution of 135 DPI. When I draw a 96-pixel square on this screen, I want it to be a
square inch, it’s closer to 7/10th inch square.

The 96 DPI assumption most commonly breaks down for small screens with lots of pixels. For
example, consider a 10.6-inch screen that crams in 1920 × 1080 pixels. Such a screen has a resolution
of 208 DPI, so what the programmer thinks is an inch actually shows up as less than half an inch. Text
gets tinier and although it might still be readable because of the high pixel density, it probably offers
an insufficiently large touch target.

For this reason, Windows 8 attempts to compensate for high-resolution screens in a manner that
is fairly transparent to applications: If a screen has a pixel size of 2560 × 1440 or above and a physical
size—for example, 12 inches—that results in a resolution of 240 DPI or greater, Windows adjusts all
pixel coordinates and dimensions used or encountered by the application by 180 percent. The 2560 ×
1440 screen appears to the application to have a size of 1422 × 800 pixels.

If a screen doesn’t have quite that high a pixel density but it does have a pixel size of 1920 × 1080
or greater and a physical size small enough to result in a resolution of 174 DPI or greater, Windows 8
adjusts all pixel dimensions by 140 percent, so a 1920 × 1080 display seems to have a size of 1371 ×
771 pixels.

Keep in mind that these automatic adjustments occur only for physically small screens with many
pixels. A physically large screen that has an actual resolution of under 174 DPI will not be adjusted,
and hence the application will see the full size.

The Windows Runtime refers to the assumed resolution of the video display as a logical DPI.
Normally, the logical DPI is 96, but for displays of high pixel density, logical DPI can be either 134.4
(that is, 96 DPI scaled by 140 percent) or 172.8 (96 DPI scaled by 180 percent).

Let’s see how this works. The WhatRes program is similar to the WhatSize program first introduced
in Chapter 3, “Basic Event Handling,” but in addition to displaying the size of the window (which is
also the size of the page), it obtains information about the resolution of the screen.

The XAML file in WhatRes simply instantiates a TextBlock:

Project: WhatRes | File: MainPage.xaml (excerpt)

<Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <TextBlock Name="textBlock"
 HorizontalAlignment="Center"
 VerticalAlignment="Center"
 FontSize="24" />
</Grid>

The code-behind file sets handlers for the SizeChanged event of the page and also the static
LogicalDpiChanged event from the DisplayProperties class defined in the Windows.Graphics.Display
namespace.

	 CHAPTER 12  Pages and Navigation	 541

Project: WhatRes | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 public MainPage()
 {
 this.InitializeComponent();

 this.SizeChanged += OnMainPageSizeChanged;
 DisplayProperties.LogicalDpiChanged += OnLogicalDpiChanged;

 Loaded += (sender, args) =>
 {
 UpdateDisplay();
 };
 }

 void OnMainPageSizeChanged(object sender, SizeChangedEventArgs args)
 {
 UpdateDisplay();
 }

 void OnLogicalDpiChanged(object sender)
 {
 UpdateDisplay();
 }

 void UpdateDisplay()
 {
 double logicalDpi = DisplayProperties.LogicalDpi;
 int pixelWidth = (int)Math.Round(logicalDpi * this.ActualWidth / 96);
 int pixelHeight = (int)Math.Round(logicalDpi * this.ActualHeight / 96);

 textBlock.Text =
 String.Format("Window size = {0} x {1}\r\n" +
 "ResolutionScale = {2}\r\n" +
 "Logical DPI = {3}\r\n" +
 "Pixel size = {4} x {5}",
 this.ActualWidth, this.ActualHeight,
 DisplayProperties.ResolutionScale,
 DisplayProperties.LogicalDpi,
 pixelWidth, pixelHeight);
 }
}

In real life, the DisplayProperties.LogicalDpiChanged event will not be fired very often because
video displays don’t change pixel size or physical size while a program is running. However, the event
could be fired if a second monitor is attached to a Windows 8 computer, the two monitors have
different logical DPI settings, and the program is moved from one display to another.

The WhatRes program obtains the window size by using the ActualWidth and ActualHeight
properties of the page, but then it calculates an actual pixel size based on the DisplayProperties
.LogicalDpi setting.

542	 PART 1  Elementals

Here’s how the program looks on the 1366 × 768 tablet I’ve been using for most of this book:

Like most of the other screen shots in this book, this screen shot has been scaled to 35 percent of its
pixel size for reproduction on this book page.

For writing this book, I’ve also been using a 1920 × 1080 monitor with a 21.5-inch diagonal and an
actual resolution of 102 DPI. Here’s how this program looks on that screen:

	 CHAPTER 12  Pages and Navigation	 543

This screen shot has a greater pixel dimension than the previous screen shot, so I had to size it to 25
percent to occupy the same area on this page of the book. In real life, the text is about the same size
whether the program is running on the tablet or the big screen, but the text is smaller relative to the
big screen, indicating the application has a bigger area in which to play.

WhatRes is a good program to run on the Windows 8 simulator that you can select from the
standard toolbar in Visual Studio. The simulator allows you to run the application in some common
display sizes. For example, here’s WhatRes running on a simulated 1920 × 1080 display with a 10.6-
inch diagonal:

Like the previous screen shot, this screen shot has been scaled to 25 percent to fit on this page. To the
Windows 8 application, the window appears to have a dimension of 1371 × 771, and all the text and
graphics it displays will be based on that size. The calculated pixel size matches the pixel dimensions
of the display. As you can see, the 18-point text appears to occupy about the same relative area of the
screen as the 1366 × 768 display.

544	 PART 1  Elementals

Here’s the same program running on a simulated 2560 × 1440 pixel 10.6-inch screen:

This screen shot has been scaled to 19 percent for reproduction on this book page, but notice again
that the application perceives a screen size that is quite close to 1366 × 768 and the text occupies the
same relative area of the screen.

Now let’s use the simulator to run on a monitor with a large physical size. The pixel dimension here
is also 2560 × 1440, but the simulated screen size is 27 inches, so no adjustment is made:

	 CHAPTER 12  Pages and Navigation	 545

Like the previous screen shot, I had to reduce the size to 19 percent, which makes the text appear
very tiny. However, this text has quite a reasonable size on a 27-inch monitor, and what the tiny text
here really indicates is how the application has a much roomier playground in which to stretch out.

Scaling Issues

As a Windows programmer, you’re accustomed to dealing with coordinates and sizes in units of pixels.
As you’ve seen, when your program runs on a physically small screen with a high pixel density, Win-
dows scales these coordinates and sizes by 140 percent or 180 percent, depending on the display size
and resolution.

So, instead of saying that we draw or size controls in pixels, we might more correctly say that
we deal in device-independent units (DIUs), or simply units. Some people refer to these units as
device-independent pixels, but that seems like too much of an oxymoron to my ears.

In the following table, the first column shows the units you use in a program for drawing and
sizing, and the other columns show how these translate to the actual pixels of the video display:

	 Resolution Scale

DIUs 100% 140% 180%

5 5 7 9

10 10 14 18

15 15 21 27

20 20 28 36

You can continue the chart yourself.

What this chart shows is that if you stick with sizes and coordinates that are multiples of five units,
these units convert to an integral number of pixels. This integral conversion can sometimes help in
preserving the fidelity of the graphics.

When Windows makes these adjustments, it scales text and vector graphics without loss of
resolution. For example, if you specify a FontSize of 20 and your program runs on a display with 180
percent resolution scale, you don’t get a 20-pixel-tall font scaled up by 180 percent with resultant
jaggies or blurring. You get a smooth authentic 36-pixel FontSize font.

But bitmaps are different. Bitmaps have particular pixel sizes, and if you display a 200-pixel-square
bitmap at its actual pixel size, there is no choice for Windows except to scale this image by 140 per-
cent or 180 percent to make it larger and hence fuzzier.

To avoid this problem, you can create bitmaps in three different sizes (for example, 200-pixel-
square, 280-pixel-square, and 360-pixel-square) for use by your application. It’s even possible to store
these images as program assets and have Windows automatically select the correct one!

546	 PART 1  Elementals

The AutoImageSelection project demonstrates how this is done. I started with a rather high-
resolution bitmap and cropped it to 2304 pixels square size. Working from that, I then resized the
image three times: to 640 pixels square, to 896 pixels square, and to 1152 pixels square. These cor-
respond to the three resolution scales: 896 pixels is 140 percent of 640, and 1152 pixels is 180 percent
of 640. I also used Windows Paint to embed some text in each image indicating the actual pixel size. I
had to use three different text sizes to make the text approximately the same size in all three images.

I then added these three images to the AutoImageSelection project twice in two different folders
with two different naming conventions, as shown here in the Visual Studio Solution Explorer:

In the Images1 folder, the three bitmaps have been given different names. Notice that periods
separate the “scale-100”, “scale-140”, and “scale-180” parts of the name from the “PetzoldTablet”
name and the “jpg” extension.

In the Images2 directory, the three bitmaps have identical names, but they reside in three different
subfolders indicating the scaling.

In both cases, the scale-100 bitmap is 640 pixels square, the scale-140 bitmap is 896 pixels square,
and the scale-180 bitmap is 1152 pixels square.

The MainPage.xaml file contains two Image elements that reference a bitmap in the Images1 and
Images2 directories. In both cases, the part of the filename or file path indicating the scaling is absent
from these paths:

Project: AutoImageSelection | File: MainPage.xaml (excerpt)

<Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="*" />
 <ColumnDefinition Width="*" />
 </Grid.ColumnDefinitions>

	 CHAPTER 12  Pages and Navigation	 547

 <Image Source="Images1/PetzoldTablet.jpg"
 Grid.Column="0"
 Width="640"
 Height="640"
 HorizontalAlignment="Center"
 VerticalAlignment="Center" />

 <Image Source="Images2/PetzoldTablet.jpg"
 Grid.Column="1"
 Width="640"
 Height="640"
 HorizontalAlignment="Center"
 VerticalAlignment="Center" />
</Grid>

Notice that the two Image elements are given explicit Width and Height settings corresponding
to the pixel size of the 100 percent bitmap. This is crucial! Don’t count on a Stretch mode of None to
force the Image element to perform the scaling correctly.

Let’s run this program on three different 10.6-inch diagonal (simulated) monitors. (When you’re
doing this with the Windows 8 simulator, don’t switch resolutions while the program is running.
Instead, terminate the program, switch resolutions, and then run the program again.) Here’s the
1366 × 768 display:

As usual, this 1366 × 768 screen shot is scaled to 35 percent for the page.

548	 PART 1  Elementals

Here’s the program running on a 1920 × 1080 monitor with a 10.6-inch diagonal:

This screen shot is sized to 25 percent to fit on the page. Even though a Windows 8 program per-
ceives this display to have a 1371 × 771 pixel size, the 896-pixel-square bitmap has been chosen and
effectively displayed in its native size: Each pixel of the bitmap corresponds to a pixel of the display.

And here’s the program running on a 2560 × 1440 monitor with a 10.6-inch diagonal:

The screen shot has been sized to 19 percent, but on a real display there will be a one-to-one
correspondence between the bitmap pixels and the screen pixels.

	 CHAPTER 12  Pages and Navigation	 549

When run on screens of the same physical size, the bitmaps should also have the same physical
size, as shown in these examples, but the rendition of the bitmap should be better for screens of
higher density, as is also the case. On displays of a larger physical size, the images will be much
smaller relative to the size of the screen but roughly the same physical size.

Snap Views

A Windows 8 machine requires a display of at least 1024 × 768 pixels to run Windows Store
applications. This display size has an aspect ratio of 4:3, consistent with movies before the advent of
widescreen in the early 1950s and consistent with classical television and computer displays prior to
widescreen.

On a tablet, the screen can switch between landscape and portrait modes, so a display size of
768 × 1024 will also be encountered by applications running on this machine. But on a display of this
size, these are the only two dimensions that a Windows Store application needs to handle.

The next step up is a display of 1366 × 768, which has an aspect ratio of approximately 16:9,
consistent with high-definition television. Such a display has a portrait mode of 768 × 1366.

In addition, 1366 × 768 is the smallest display size that supports snap modes. Snap modes allow
two programs to share the screen, but they are available only in the landscape orientation.

The Windows.UI.ViewManagement namespace contains an ApplicationView class with a static
property named Value that is of type ApplicationViewState, an enumeration that indicates the current
snap mode of an application. There is no event corresponding with this information. If your program
needs to be notified when the view changes, check the value during a SizeChanged handler.

The WhatSnap program is similar to WhatRes except that it includes a display of the
ApplicationView.Value property:

Project: WhatSnap | File: MainPage.xaml.cs (excerpt)

void UpdateDisplay()
{
 double logicalDpi = DisplayProperties.LogicalDpi;
 int pixelWidth = (int)Math.Round(logicalDpi * this.ActualWidth / 96);
 int pixelHeight = (int)Math.Round(logicalDpi * this.ActualHeight / 96);

 textBlock.Text =
 String.Format("ApplicationViewState = {0}\r\n" +
 "Window size = {1} x {2}\r\n" +
 "ResolutionScale = {3}\r\n" +
 "Logical DPI = {4}\r\n" +
 "Pixel size = {5} x {6}",
 ApplicationView.Value,
 this.ActualWidth, this.ActualHeight,
 DisplayProperties.ResolutionScale,
 DisplayProperties.LogicalDpi,
 pixelWidth, pixelHeight);
}

550	 PART 1  Elementals

In addition, the TextBlock is in a Viewbox so that it can still be viewed if the screen gets too narrow:

Project: WhatSnap | File: MainPage.xaml (excerpt)

<Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <Viewbox HorizontalAlignment="Center"
 VerticalAlignment="Center"
 StretchDirection="DownOnly"
 Margin="24">

 <TextBlock Name="textBlock"
 FontSize="24" />
 </Viewbox>
</Grid>

The ApplicationViewState enumeration has four members. In portrait mode, the only applicable
member is FullScreenPortrait:

	 CHAPTER 12  Pages and Navigation	 551

Snap modes play a role in landscape only. If the application occupies the full screen, the
ApplicationViewState has a value of FullScreenLandscape:

If you sweep your finger on the left edge of the screen just a bit and then go back, you can get a
columnar display of other applications. If you drag your finger farther, you can bring another program
into a partial view. At this point, the ApplicationViewState becomes Filled:

Notice that for a minimum size screen that supports snap modes—1366 × 768—the Filled size is
1024 × 768, which is the minimum size screen that runs Windows Store applications.

552	 PART 1  Elementals

Drag that bar farther to the right, and ApplicationViewState becomes Snapped:

Those are the only four possibilities. You get the same Snapped value if your application is on the
left rather than the right:

	 CHAPTER 12  Pages and Navigation	 553

Continue dragging that bar to the right, and your program goes into the Filled mode again:

The Snapped view is always 320 units wide. The Filled view is always the total screen width minus
320 units for the other application minus 22 units for the drag bar.

For example, if you run this program on a 2560 × 1440 pixel 10.6-inch diagonal display, the screen
has a total width of 1422 units, which separates into 1080 units for the Filled mode, 320 units for the
Snapped mode, and 22 units for the divider.

If you run the program on a 2560 × 1440 pixel 27-inch diagonal display, device-independent units
are the same as pixels. The screen has a total width of 2560 units, which separates into 2218 units for
the Filled mode, 320 units for the Snapped mode, and 22 units for the divider.

In the Filled mode, a program can determine the full size of the screen in device-independent units
by adding 320 and 22 to the width. By further incorporating the LogicalDpi setting, the program can
determine the full size of the screen in pixels.

Because there are a very limited number of display modes—and particularly because the Snapped
mode always has a width of 320 units—it is expected that applications will be tailored to do some-
thing intelligent for each mode. As you can see, the Bing Weather application reorients its display
of daily weather forecasts for the Snapped mode. However, it’s unlikely you’ll need to do something
different for the Filled mode.

Changing the orientation of a StackPanel is one simple way to deal with the Snapped mode.
Juggling rows and columns of a Grid is another, as I demonstrated in the OrientableColorScroll
program in Chapter 5, “Control Interaction.” Later in this chapter, you’ll see that it’s possible to switch
between a GridView and a ListView for displaying collections of items.

But obviously there is no solution that will be adequate for every application. This is really an issue
that needs to be addressed individually.

554	 PART 1  Elementals

The ApplicationView class has a static TryUnsnap method that attempts to unsnap a foreground
application, but using this method is discouraged and it’s hard to think of a reason to do so.

Orientation Changes

At the same time that you’re adapting your application to Filled and Snapped modes, you can also
adapt your application to landscape and portrait modes. Even if you believe that your application
will run only on a desktop and never a tablet, you should be aware that some desktop monitors are
capable of flipping into portrait mode and these monitors are much appreciated by people who tend
to do a lot of writing.

You’ve seen earlier in this chapter that the ApplicationView.Value property indicates portrait mode
with the ApplicationViewState.FullScreenPortrait enumeration member, but if you need more informa-
tion—and if you’d prefer an event that tells you when orientation changes—then you’ll want to use
the DisplayProperties class in the Windows.Graphics.Display namespace. This is the same class that
provides the logical DPI scaling information.

The Windows.Graphics.Display namespace defines a DisplayOrientations enumeration with five
members, shown here with their values in parentheses:

■■ None (0)   Used only for DisplayProperties.AutoRotationPreferences

■■ Landscape (1)   90 degrees clockwise rotation from PortraitFlipped

■■ Portrait (2)   90 degrees clockwise rotation from Landscape

■■ LandscapeFlipped (4)   90 degrees clockwise rotation from Portrait

■■ PortraitFlipped (8)   90 degrees clockwise rotation from LandscapeFlipped

The “90 degrees clockwise rotation” mentioned here refers to the user turning the tablet (or
computer screen) 90 degrees clockwise. As you’ve seen, Windows 8 automatically responds by
rotating the contents of the screen in the opposite direction so that it maintains the same orientation.

The static DisplayProperties.NativeOrientation property indicates the orientation of the screen
that is “native” or “most natural.” This can be either Landscape or Portrait, generally governed on the
location of buttons or logos on the device. The static DisplayProperties.CurrentOrientation can be any
of the non-zero values.

The DisplayProperties.OrientationChanged event is fired when CurrentOrientation changes (as
a result of the user turning the screen) or NativeOrientation changes, which happens more rarely
when an application is moved to another monitor. This OrientationChanged event is not fired
when an application starts up regardless of the initial orientation, so it’s a good idea to duplicate
OrientationChanged event handling during program initialization.

	 CHAPTER 12  Pages and Navigation	 555

The XAML file in the NativeUp program displays an arrow pointing up:

Project: NativeUp | File: MainPage.xaml (excerpt)

<Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <StackPanel HorizontalAlignment="Center"
 VerticalAlignment="Center"
 RenderTransformOrigin="0.5 0.5">
 <Path Data="M 100 0 L 200 100, 150 100, 150 500, 50 500, 50 100, 0 100 Z"
 Stroke="Yellow"
 StrokeThickness="12"
 Fill="Red"
 RenderTransformOrigin="0.5 0.5"
 HorizontalAlignment="Center" />

 <TextBlock Text="Native Up"
 FontSize="96" />

 <StackPanel.RenderTransform>
 <RotateTransform x:Name="rotate" />
 </StackPanel.RenderTransform>
 </StackPanel>
</Grid>

Normally, if you run such a program on a tablet and turn it around in your hands, Windows 8
would change the orientation of the display so that the arrow always points up, or nearly up given the
90 degree increments of rotation.

However, the code-behind file in this particular program uses the OrientationChanged event to
counteract that rotation. The result is that the arrow always points toward the top of the computer as
if the program were not subject to orientation changes:

Project: NativeUp | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 public MainPage()
 {
 this.InitializeComponent();

 SetRotation();
 DisplayProperties.OrientationChanged += OnOrientationChanged;
 }

 void OnOrientationChanged(object sender)
 {
 SetRotation();
 }

 void SetRotation()
 {
 rotate.Angle = 90 * (Log2(DisplayProperties.CurrentOrientation) -
 Log2(DisplayProperties.NativeOrientation));
 }

 int Log2(DisplayOrientations orientation)

556	 PART 1  Elementals

 {
 int value = (int)orientation;
 int log = 0;

 while (value > 0 && (value & 1) == 0)
 {
 value >>= 1;
 log += 1;
 }
 return log;
 }
}

For example, suppose you start the program in its native orientation. The arrow points up. Then
you turn the tablet 90 degrees clockwise. Windows reorients the program 90 degrees counterclock-
wise, but the OrientationChanged handler turns the text and arrow 90 degrees clockwise. You can still
see that there’s an orientation change occurring because the screen contracts slightly, but the arrow’s
orientation relative to the screen doesn’t change.

The program relies on the values of the DisplayOrientations enumeration members being 1, 2, 4,
and 8 in order of clockwise rotation. The base-2 logarithms of these values are 0, 1, 2, and 3, so each
increase by 1 is equivalent to a 90 degree clockwise change.

It is possible for an application to request a particular desired orientation. There are two ways to
do this. You can open the Package.appmanifest file in Visual Studio, select the Application UI tab, and
check one or more of the four orientations:

Whatever you select becomes the initial value of the static DisplayProperties
.AutoRotationPreferences property, but during program initialization you can set that property to one
or more DisplayOrientations enumeration members combined with the C# bitwise OR operator (|).

The key word here is preferences. Windows 8 is free to ignore what you request. For example, if
you request that your application run only in portrait mode but the program happens to be running
on a desktop computer with a landscape screen, the program will run in landscape mode. Even if the
application is running on a tablet but the tablet is in a docking station in landscape mode, it’s only
going to run in landscape.

In other words, Windows 8 overrides the program’s preferences if the preferences don’t make
sense in the current environment. This is reasonable: Regardless of what the program wants, the user
shouldn’t be required to look at the screen sideways.

I recommend that you avoid specifying orientation preferences and instead code your program
to accommodate all orientations. The only possible exceptions to this rule involve games that rely
upon bitmap graphics that must be oriented in a particular way, or programs that make use of the
orientation sensors such as those in Chapter 18, “Sensors and GPS.”

	 CHAPTER 12  Pages and Navigation	 557

But keep in mind that restricting your program to a particular orientation might cause user
confusion. For example, suppose you request that your program run only in landscape mode but
it’s running on a tablet that the user is holding in portrait mode. Normally, the user swipes a finger
on the left or right of the screen to invoke the application switcher or charms bar. If the program is
running in landscape mode, but the tablet is held in portrait mode, the user must swipe the top or
bottom of the screen to invoke the application switcher or charms bar, and these two features will be
displayed sideways because they have the same orientation as the current application.

Simple Page Navigation

Until this point, virtually all the applications in this book have been built around a single instance of
a class called MainPage that derives from Page. As a result, it hasn’t even been noticeable that this
instance of MainPage is set to the Content property of an object of type Frame, and this Frame object
is set to the Content property of an instance of the Window class.

You can see this hierarchy come together in the OnLaunched method in the standard App class.
The actual code (which you’ll see later in this chapter) checks for errors and ensures that initialization
occurs only once, but basically it does this in the simple case:

Frame rootFrame = new Frame();
Window.Current.Content = rootFrame;
rootFrame.Navigate(typeof(MainPage), args.Arguments);
Window.Current.Activate();

Frame derives from ContentControl, but the Content property isn’t set directly. Instead, the
Navigate method accepts a Type argument that references a Page derivative. The Navigate method
instantiates this type (in this case MainPage) and this instance becomes the Content property of the
Frame object and the main focus of user interaction.

Within your programs, you’ll use this same Navigate method to move from one page to another.
Navigate comes in two versions: The version in the OnLaunched method passes some data to the
Page object, but the other version does not. (You’ll see how this works later in this chapter.)

Very conveniently, the Page class defines a Frame property, so within a Page derivative you can call
Navigate like so:

this.Frame.Navigate(pageType);

Within a multipage application, Navigate is often called numerous times with various Page type
arguments. Internally, the Frame class maintains a stack of visited pages. The Frame class also defines
GoBack and GoForward methods, as well as CanGoBack and CanGoForward properties of type bool.

The SimplePageNavigation project contains two classes that derive from Page rather than just
one. I’ve continued to use the Blank App template for this project, so the MainPage class is created
by Visual Studio as usual. To add another Page derivative to a project, I selected Add New Item from
the Project menu and then Blank Page (not Basic Page) from the Add New Item dialog. I gave my new
page class a name of SecondPage.

558	 PART 1  Elementals

The SimplePageNavigation project demonstrates how pages can navigate to each other in a
variety of ways. MainPage.xaml instantiates a TextBlock to identify the page, a TextBox to enter some
text, and three buttons with the text “Go to Second Page,” “Go Forward,” and “Go Back”:

Project: SimplePageNavigation | File: MainPage.xaml (excerpt)

<Page ... >
 <Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <StackPanel>
 <TextBlock Text="Main Page"
 FontSize="48"
 HorizontalAlignment="Center"
 Margin="48" />

 <TextBox Name="txtbox"
 Width="320"
 HorizontalAlignment="Center"
 Margin="48" />

 <Button Content="Go to Second Page"
 HorizontalAlignment="Center"
 Margin="48"
 Click="OnGotoButtonClick" />

 <Button Name="forwardButton"
 Content="Go Forward"
 HorizontalAlignment="Center"
 Margin="48"
 Click="OnForwardButtonClick" />

 <Button Name="backButton"
 Content="Go Back"
 HorizontalAlignment="Center"
 Margin="48"
 Click="OnBackButtonClick" />
 </StackPanel>
 </Grid>
</Page>

The code-behind file uses the OnNavigatedTo override to enable the forward and back buttons
depending on the CanGoForward and CanGoBack properties defined by Frame. The three Click
handlers call Navigate (referencing the SecondPage object), GoForward, and GoBack:

Project: SimplePageNavigation | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 public MainPage()
 {
 this.InitializeComponent();
 }

	 CHAPTER 12  Pages and Navigation	 559

 protected override void OnNavigatedTo(NavigationEventArgs args)
 {
 forwardButton.IsEnabled = this.Frame.CanGoForward;
 backButton.IsEnabled = this.Frame.CanGoBack;
 }

 void OnGotoButtonClick(object sender, RoutedEventArgs args)
 {
 this.Frame.Navigate(typeof(SecondPage));
 }

 void OnForwardButtonClick(object sender, RoutedEventArgs args)
 {
 this.Frame.GoForward();
 }

 void OnBackButtonClick(object sender, RoutedEventArgs args)
 {
 this.Frame.GoBack();
 }
}

The SecondPage class is exactly the same except that it uses the OnGotoButtonClick method to
navigate to MainPage:

Project: SimplePageNavigation | File: SecondPage.xaml.cs (excerpt)

void OnGotoButtonClick(object sender, RoutedEventArgs args)
{
 this.Frame.Navigate(typeof(MainPage));
}

Here’s how the program appears when you first run it:

560	 PART 1  Elementals

Neither the forward nor the back button is enabled. When you click the “Go to Second Page”
button, the program navigates to that page:

Now the “Go Back” button is enabled, and it will take you back to MainPage. The “Go to Second
Page” will do that as well, but with a difference: When you press “Go Back” to go back to MainPage,
the “Go Forward” button will be enabled but “Go Back” will not be. When you press “Go to Second
Page,” “Go Back” will be enabled but “Go Forward” won’t be.

Before we begin exploring this in detail, I want to show you another way to enable the “Go
Forward” and “Go Back” buttons. The CanGoBack and CanGoForward properties of Frame can be
Binding sources, like so:

<Page ... Name="page">
 ...
 <Button Name="forwardButton"
 IsEnabled="{Binding ElementName=page, Path=Frame.CanGoForward}"
 ... />

 <Button Name="backButton"
 IsEnabled="{Binding ElementName=page, Path=Frame.CanGoBack}"
 ... />
 ...
</Page>

That would eliminate the need for the OnNavigatedTo method in this program, but any program that
implements page navigation will probably make other uses of that method as well as its companion,
OnNavigatedFrom.

You’ll discover an important characteristic of navigation if you experiment with
SimplePageNavigation by pressing the various buttons to navigate, go forward, and go back, all the
while typing a few characters into each TextBox that you encounter along the way. You will discover

	 CHAPTER 12  Pages and Navigation	 561

that whenever you move from one page to another—whether by means of calls to the Navigate,
GoForward, or GoBack methods—the TextBox is initially blank. What this means is that a new instance
of MainPage or SecondPage is being created on each Button click. Whatever you’ve typed into that
TextBox has been lost because the Page instance containing that TextBox has been abandoned.

This is likely surprising. You probably expect a new instance to be created when you press the
“Go to Main Page” or “Go to Second Page” button, but you probably also expect that pressing “Go
Forward” or “Go Back” navigates to a previous instance of the page. But this is not the case. New
instances are created regardless.

The Page class defines three virtual methods that assist the page in handling navigation. These
are named OnNavigatingFrom, OnNavigatedFrom—notice the tense difference in those two
method names!—and OnNavigatedTo. If you were to log calls to those three methods, as well as the
constructor of these Page classes and firings of the Loaded and Unloaded events, you would discover
the following sequence during the transition from one page to another:

From Page To Page

OnNavigatingFrom

Constructor

OnNavigatedFrom

OnNavigatedTo

Loaded

Unloaded

This sequence occurs regardless of whether the transition is a result of Navigate, GoForward, or
GoBack.

Up until this chapter, we’ve been treating MainPage as if it lasts for the duration of the application,
as it does if it’s the only Page derivative around. However, once you begin dealing with multipage
applications, you need to think about Page derivatives being created and discarded. It’s a good
idea to architect your Page derivatives so that they attach event handlers and obtain resources
during OnNavigatedTo or Loaded and detach those handlers and release those resources during
OnNavigatedFrom or Unloaded.

If you want a new instance of your Page derivatives created whenever that page is navigated to,
you’re obviously in good shape because this is what happens by default. If you prefer something a
little different, there are two alternatives, one of which is very easy and the other not quite so easy.

The easy alternative is setting the NavigationCacheMode property of the Page to something other
than the default Disabled enumeration member. For example:

public MainPage()
{
 this.InitializeComponent();
 this.NavigationCacheMode = NavigationCacheMode.Enabled;
}

562	 PART 1  Elementals

The other option is Required, but for this program Enabled and Required both work the same.
When you set Enabled or Required on a Page object, only one instance of each Page derivative is
created and cached, and that instance is reused every time the page is visited, regardless of whether
that occurs with Navigate, GoForward, or GoBack. The sequence of method calls and events that occur
is the same as the table shown earlier the first time a particular page type is navigated to; subse-
quently, it’s the same sequence but without the constructor. You can set the NavigationCacheMode
property differently for different Page classes.

This option might be ideal for a “hub” architecture where one MainPage can navigate to several
different secondary pages that can then go back to MainPage. The difference between Enabled and
Required is that Enabled might cause instantiated pages to be discarded if the number of cached
pages exceeds the CacheSize property of Frame, which is 10 by default but can be changed.

In the general case, however, you probably want a new instance to be created for a Navigate call
but existing instances to be used for GoForward and GoBack. This option is not provided with a simple
property setting, but I’ll show you how to do it shortly.

The Back Stack

Back in the dark ages, Web browsers had Back buttons but not Forward buttons. The browser
implemented the Back button in a very simple manner by storing visited pages in a familiar data
structure known as the stack. In the context of the browser, this was called the back stack: Whenever
the browser navigated to a new page, it pushed the previous page on the stack. Whenever the user
pressed the Back button, the browser popped a page off the stack and navigated to that. When the
stack became empty, the Back button was disabled.

Implementing a Forward button complicates this process somewhat. Rather than a stack to store
visited pages, the browser requires an ordered list. (This list is still often referred to as the back stack,
however.) This list includes the current page. Whenever the browser navigates to a new page, it adds
that new page to the end of the list. However, when the user presses the Back button, the page being
navigated from is not removed from the list. That page must remain in the list because the user might
then press the Forward button.

For example, perhaps the user begins at a page that I’ll call Page Zero and from there navigates
to Page One, then to Page Two, Page Three, Page Four, and Page Five. The back stack looks like this,
with the most recent new page at the top and the arrow pointing to the current page:

Page Five	 
Page Four
Page Three
Page Two

	 CHAPTER 12  Pages and Navigation	 563

Page One
Page Zero

Now suppose the user presses the Back button four times. The current page is now Page One:

Page Five
Page Four
Page Three
Page Two
Page One	 
Page Zero

Then the user presses the Forward button, and the current page is now Page Two:

Page Five
Page Four
Page Three
Page Two	 
Page One
Page Zero

Obviously, using the Back and Forward buttons, the user can navigate anywhere among these six
pages. When the current page reaches the bottom, the Back button is disabled. When the current
page reaches the top, the Forward button is disabled.

But now suppose that from Page Two the user instead navigates to Page Six. An entire section of
the list must be discarded. This discarded part of the list has previously been saved for presses of the
Forward button but those pages are no longer navigable following navigation to a new page:

Page Six	 
Page Two
Page One
Page Zero

The Forward button is now disabled. The Forward button will be re-enabled only when the user
presses the Back button.

The Frame class internally maintains this back stack of visited pages. However, the back stack is not
accessible by an application. You can’t even obtain the size of the back stack.

But you can obtain the position of the current page within the back stack from the get-only
BackStackDepth property. When an application begins running and navigates to the initial page,
BackStackDepth reports a value of zero. In the four examples shown earlier, BackStackDepth equals 5,
1, 2, and 3, respectively.

This BackStackDepth is important information, for it allows a particular page class to uniquely
identify a particular instance of itself. Let's see how.

564	 PART 1  Elementals

Navigation Events and Page Restoration

In the normal case, when a program calls GoBack or GoForward to return to a particular page, you
want the user to see the same content on the previously visited page. You’ve already seen that you
can’t get this automatically: When NavigationCacheMode is set to its default value of Disabled, the
GoBack and GoForward calls always result in a new instance of the particular Page class to be created.
When set to Enabled or Required, existing instances of the Page class are re-used but they’re re-used
for Navigate as well.

As I mentioned earlier, the Page class defines three virtual methods that involve navigation. The
OnNavigatingFrom call kicks off a navigation sequence. This method is not often used. The event
arguments are of type NavigatingCancelEventArgs that allows the navigation to be cancelled.

During navigation from one page to another—whether a result of a call to Navigate, GoBack, or
GoForward—the OnNavigatedFrom in the first page is followed shortly by a call to OnNavigatedTo in
the second page. These two methods both have event arguments of type NavigationEventArgs. These
event arguments are used in other contexts (such as the WebView class), so some of the properties are
irrelevant when used with these two overrides. Here are the important ones for the navigation events:

■■ The Parameter property of type object. This is set from the optional second argument of the
Navigate method, and it is used to pass data from one page to another. I’ll have more to say
about this process shortly.

■■ The Content and SourcePageType properties always refer to the page being navigated to. The
Content object is the actual instance of the Page derivative, and SourcePageType is the type of
that instance—in other words, the first argument to the Navigate call used to create that page.
This information is only of real value in an OnNavigatedFrom override. In an OnNavigatedTo
override, the Content property is equal to this and SourcePageType is equal to a call to
GetType.

■■ The NavigationMode property is a member of the NavigationMode enumeration, with
members New, Refresh, Back, and Forward. The value is New or Refresh for a navigation initiat-
ed by the Navigate method. The value is Refresh if the page is navigating to itself. The value is
Back or Forward for a navigation initiated by the GoBack or GoForward methods, respectively.

The NavigationMode property is the key to implementing an architecture where new page content
is created for Navigate calls (that is, when NavigationMode is New) but not when the page has been
previously visited and navigation occurs though Back or Forward.

The first step is for the Page derivative to define a field that allows it to save and restore its state:

Dictionary<string, object> pageState;

You use this dictionary in much the same way you use ApplicationData.LocalSettings dictionary that
I first demonstrated in connection with the PrimitivePad program in Chapter 7, “Asynchronicity.”
However, instead, of saving application settings during the Application.Suspending event and

	 CHAPTER 12  Pages and Navigation	 565

restoring them when the application runs again, you save page state into the dictionary during the
OnNavigatedFrom override and restore it in OnNavigatedTo.

What is page state? It’s generally input by the user and anything that results from that input: the
state of check boxes, radio buttons, sliders, and particularly text input. In the sample application
I’ve been using, the only really important page state is the content of the TextBox. You can save that
during OnNavigatedFrom with a made-up key name like so:

pageState.Add("TextBoxText", txtbox.Text);

You restore it during OnNavigatedTo:

txtbox.Text = pageState["TextBoxText"] as string;

There are conceivably other properties of the TextBox you might want to save and restore—for
example, SelectionStart and SelectionLength—but let’s keep it simple for now.

This process of saving and restoring page state in this dictionary is totally useless if the Page class
is being instantiated for every navigation event because a new instance of pageState is created as
part of the new page! What you need in addition is to save instances of this dictionary in another
dictionary that’s defined as static so that it’s shared among all the instances of that page:

static Dictionary<int, Dictionary<string, object>> pages;

The values in this dictionary are the instances of the Dictionary I’ve called pageState. The keys to
this dictionary are values of BackStackDepth, thus allowing different pageState dictionaries to be
associated with fixed locations of the page instance within the back stack.

If you have multiple page derivatives using this same technique, you’ll want to define both
dictionaries in a Page derivative that you’ll use as a base class for other pages. The static pages
dictionary can then be shared by all the pages in the application.

Let’s see how this works in the context of a simple application. The VisitedPageSave program
defines a class named SaveStatePage. I used the simple Class template to create this class; there is
no XAML file associated with it. The class derives from Page, and the two dictionaries are defined as
protected so that they can be accessed from derived classes:

Project: VisitedPageSave | File: SaveStatePage.cs (excerpt)

public class SaveStatePage : Page
{
 protected Dictionary<string, object> pageState;

 static protected Dictionary<int, Dictionary<string, object>> pages =
 new Dictionary<int, Dictionary<string, object>>();
 ...
}

The static dictionary is instantiated in its definition (or it could be instantiated in the stat-
ic constructor), and the instance dictionary is not. As you’ll see, it will be instantiated in the
OnNavigatedTo override when the NavigationMode is New.

566	 PART 1  Elementals

I created a SecondPage class just as in SimplePageNavigation, but in both the XAML files and code-
behind files for MainPage and SecondPage I changed the base class from Page to SaveStatePage.
Otherwise, the MainPage.xaml and SecondPage.xaml files are the same as in SimplePageNavigation.
The two code-behind files are basically identical to each other. Here’s MainPage.xaml.cs showing the
same implementations of the button Click handlers you’ve seen before:

Project: VisitedPageSave | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : SaveStatePage
{
 public MainPage()
 {
 this.InitializeComponent();
 }

 ...

 void OnGotoButtonClick(object sender, RoutedEventArgs args)
 {
 this.Frame.Navigate(typeof(SecondPage));
 }

 void OnForwardButtonClick(object sender, RoutedEventArgs args)
 {
 this.Frame.GoForward();
 }

 void OnBackButtonClick(object sender, RoutedEventArgs args)
 {
 this.Frame.GoBack();
 }
}

The NavigationCacheMode is left at its default setting of Disabled so that a new page object is
instantiated during all navigation events.

In the OnNavigatedTo override, the integer key for the static dictionary is the BackStackDepth
property. If the NavigationMode is not New, the method simply uses that key to obtain the pageState
dictionary corresponding to this location in the back stack, and then it uses that dictionary to initialize
the page, in this example the TextBox:

Project: VisitedPageSave | File: MainPage.xaml.cs (excerpt)

protected override void OnNavigatedTo(NavigationEventArgs args)
{
 // Enable buttons
 forwardButton.IsEnabled = this.Frame.CanGoForward;
 backButton.IsEnabled = this.Frame.CanGoBack;

 // Construct a dictionary key
 int pageKey = this.Frame.BackStackDepth;

 if (args.NavigationMode != NavigationMode.New)
 {

	 CHAPTER 12  Pages and Navigation	 567

 // Get the page state dictionary for this page
 pageState = pages[pageKey];

 // Get the page state from the dictionary
 txtbox.Text = pageState["TextBoxText"] as string;
 }

 base.OnNavigatedTo(args);
}

If the NavigationMode is New, however, we know that this page was reached with a call to
Navigate and should be regarded as a fresh uninitialized page. This additional logic occurs in the
implementation of OnNavigatedTo in SaveStatePage, which you’ll note is called at the end of the
OnNavigatedTo overrides in MainPage and SecondPage. This code creates a new pageState dictionary
and adds that to the static pages dictionary:

Project: VisitedPageSave | File: SaveStatePage.cs (excerpt)

public class SaveStatePage : Page
{
 ...
 protected override void OnNavigatedTo(NavigationEventArgs args)
 {
 if (args.NavigationMode == NavigationMode.New)
 {
 // Construct a dictionary key
 int pageKey = this.Frame.BackStackDepth;

 // Remove page key and higher page keys
 for (int key = pageKey; pages.Remove(key); key++) ;

 // Create a new page state dictionary and save it
 pageState = new Dictionary<string, object>();
 pages.Add(pageKey, pageState);
 }

 base.OnNavigatedTo(args);
 }
}

However, the static pages dictionary must also be cleared of any possible entries with equal or
higher BackStackDepth keys. These entries result from GoBack calls not balanced by GoForward calls.
The for statement that removes these entries is more comprehensible when you realize that the
Remove method of Dictionary returns false if the key does not exist:

for (int key = pageKey; pages.Remove(key); key++) ;

568	 PART 1  Elementals

In both MainPage and SecondPage, the OnNavigatedFrom override is much simpler and just saves
the page state in the existing pageState dictionary:

Project: VisitedPageSave | File: MainPage.xaml.cs (excerpt)

protected override void OnNavigatedFrom(NavigationEventArgs args)
{
 pageState.Clear();

 // Save the page state in the dictionary
 pageState.Add("TextBoxText", txtbox.Text);

 base.OnNavigatedFrom(args);
}

Also keep in mind that the pageState dictionary can store many more items—as many as you need
to re-create the state of the entire page.

Perhaps the easiest way to check whether this program is working correctly is to simply type 1, 2,
3, and so forth into the TextBox in consecutive pages. You’ll see those restored entries when you press
the “Go Forward” and “Go Back” buttons.

If you suspend and then resume the application from Visual Studio, you’ll see that everything is
restored correctly. However, the application is not saving anything when it’s suspended, so if the ap-
plication is terminated following suspension, the next time it is launched it will appear in a new and
pristine state. This is probably not what you desire, but it’s not hard to fix.

Saving and Restoring Application State

If an application such as VisitedPageSave is terminated and then relaunched, you probably want the
program to appear as if it had never been terminated. You probably want all the previously created
pages to be restored with their previous content, plus you want the application displaying the same
page that the user last visited.

In other words, not only do you need to save (and later restore) the state of each page, but you
need to save (and later restore) the state of the back stack. Restoring the state of each page is actually
useless without restoring the back stack because without that back stack there’s no record of what
pages must be restored!

I mentioned earlier that the back stack is entirely internal to the Frame object. Fortunately, Frame
provides two methods that let you save and restore the back stack state without knowing its internal
structure: The GetNavigationState returns a string that you can save in application settings; the next
time your program runs you can retrieve that string and pass it as an argument to SetNavigationState.

What is this string? Well, you can look at it if you want. You’ll find that it contains the class
names of the pages in the back stack with some numbers. What these numbers are is undocu-
mented and might change in the future, so you should really only use this string for passing from
GetNavigationState to SetNavigationState.

	 CHAPTER 12  Pages and Navigation	 569

GetNavigationState actually does a little more than just return a string that encodes the state of
the back stack. Calling this method causes the current page to get an OnNavigatedFrom call with a
NavigationMode of Forward. This allows the current page to save its page state, but it also means that
you just can’t call GetNavigationState any time you want. It should be called only when the applica-
tion is being suspended. An excellent place to do this is in the OnSuspending event handler in App
.xaml.cs.

Here’s what I’ve done in a program called ApplicationStateSave:

Project: ApplicationStateSave | File: App.xaml.cs (excerpt)

private void OnSuspending(object sender, SuspendingEventArgs e)
{
 var deferral = e.SuspendingOperation.GetDeferral();
 //TODO: Save application state and stop any background activity

 // Code added for ApplicationStateSave project
 ApplicationDataContainer appData = ApplicationData.Current.LocalSettings;
 appData.Values["NavigationState"] = (Window.Current.Content as Frame).GetNavigationState();
 // End of code added for ApplicationStateSave project

 deferral.Complete();
}

I’ve left the version of OnSuspending that Visual Studio generated intact and merely added two lines
of code surrounded by comments. This code obtains the GetNavigationState string from the Frame
and saves it in application settings with a name of “NavigationState.”

Some earlier programs in this book save application settings from MainPage. Why not do the same
thing here? Recall that Page derivatives in a multipage environment should attach any event handlers
they need during OnNavigatedTo or Loaded and detach them during OnNavigatedFrom or Unloaded,
which means that every Page derivative in your application would need to set a Suspending handler to
perform this job. But this is not really a job for the Page derivative. This job involves saving a naviga-
tion state that defines the navigational relationship among multiple pages, so it should really be the
responsibility of the application itself.

That’s one reason why the code goes in the App class. The other reason is that restoring the
navigation state also needs to go in the App class as well, and actually in a particular place in the App
class because it’s effectively overriding default logic encoded there.

To restore the back stack, you call SetNavigationState with the saved string originally obtained
from GetNavigationState. Calling SetNavigationState causes navigation to the previously current page.
The OnNavigatedTo method of that page is called with a NavigationMode of Back, allowing the page
to reload its own page settings without believing that it’s a new page.

570	 PART 1  Elementals

It is essential that SetNavigationState be called at a particular place in the OnLaunched method
in App.xaml.cs. Here it is in the ApplicationStateSave project. I’ve left all the generated code and
comments in OnLaunched intact:

Project: ApplicationStateSave | File: App.xaml.cs (excerpt)

protected override void OnLaunched(LaunchActivatedEventArgs args)
{
 Frame rootFrame = Window.Current.Content as Frame;

 // Do not repeat app initialization when the Window already has content,
 // just ensure that the window is active
 if (rootFrame == null)
 {
 // Create a Frame to act as the navigation context and navigate to the first page
 rootFrame = new Frame();

 if (args.PreviousExecutionState == ApplicationExecutionState.Terminated)
 {
 //TODO: Load state from previously suspended application

 // Code added for ApplicationStateSave project
 ApplicationDataContainer appData = ApplicationData.Current.LocalSettings;

 if (appData.Values.ContainsKey("NavigationState"))
 rootFrame.SetNavigationState(appData.Values["NavigationState"] as string);
 // End of code added for ApplicationStateSave project
 }

 // Place the frame in the current Window
 Window.Current.Content = rootFrame;
 }

 if (rootFrame.Content == null)
 {
 // When the navigation stack isn't restored navigate to the first page,
 // configuring the new page by passing required information as a navigation
 // parameter
 if (!rootFrame.Navigate(typeof(MainPage), args.Arguments))
 {
 throw new Exception("Failed to create initial page");
 }
 }
 // Ensure the current window is active
 Window.Current.Activate();

 ...
}

Again, I’ve used comments to identify the code I’ve added for this project. (Notice the ellipsis
down at the bottom. I’ll discuss the additional code I’ve added to App.xaml.cs in the next section.)

Toward the bottom of the OnLaunched method is a call to the Navigate method with the
MainPage class. You do not want this call to occur if you are restoring the back state because this
Navigate call will navigate away from the previously current page and possibly cause part of the back

	 CHAPTER 12  Pages and Navigation	 571

stack to be removed in the OnNavigatedTo method of MainPage. For this reason, the back stack must
be restored prior to this call, which ensures that the Content property of the Frame object is set to the
previously current page and the navigation to MainPage is skipped.

The code you’ve seen so far saves and restores the back stack. The second part of this job in-
volves saving and restoring all the page states. In the previous project, I defined a class named
SaveStatePage that maintained two dictionaries—one instance and one static—for saving page state.
Both MainPage and SecondPage derived from this class.

I’ve retained that architecture for this program. Indeed, MainPage and SecondPage are identical to
the classes in the previous project. But SaveStatePage has been enhanced to save all the settings for
all the pages in application local storage, and to retrieve them.

If a particular back stack references four instances of MainPage and three instances of SecondPage,
there is a total of seven settings with the key name “TextBoxText.” These must all be distinguished
from each other. Fortunately, the ApplicationDataContainer used for storing application settings has a
“container” feature, somewhat similar to folders or subdirectories. This feature seems ideal for isolat-
ing the settings for each page. The container is identified by a name, and the name I chose for each
Page instance indicates the location of that instance within the back stack, which is the same as the
integer key of the pages dictionary converted to a string.

Here’s both the static constructor and the Suspending handler in this enhanced version of
SaveStatePage. The handler for the Suspending event is attached by the static constructor so that it’s
only executed once to save the settings for all the pages, of course without knowing anything about
those settings:

Project: ApplicationStateSave | File: SaveStatePage.cs (excerpt)

public class SaveStatePage : Page
{
 protected Dictionary<string, object> pageState;

 static protected Dictionary<int, Dictionary<string, object>> pages =
 new Dictionary<int, Dictionary<string, object>>();

 static SaveStatePage()
 {
 // Set handler for Suspending event
 Application.Current.Suspending += OnApplicationSuspending;

 ApplicationDataContainer appData = ApplicationData.Current.LocalSettings;

 // Loop through containers, one for each page in the back stack
 foreach (ApplicationDataContainer container in appData.Containers.Values)
 {
 // Create a page state dictionary for that page
 Dictionary<string, object> pageState = new Dictionary<string, object>();

 // Fill it up with saved values
 foreach (string key in container.Values.Keys)
 {
 pageState.Add(key, container.Values[key]);

572	 PART 1  Elementals

 }

 // Save in static dictionary
 int pageKey = Int32.Parse(container.Name);
 pages[pageKey] = pageState;
 }
 }

 static void OnApplicationSuspending(object sender, SuspendingEventArgs args)
 {
 ApplicationDataContainer appData = ApplicationData.Current.LocalSettings;

 foreach (int pageKey in pages.Keys)
 {
 // Create container based on location within back state
 string containerName = pageKey.ToString();

 // Get container with that name and clear it
 ApplicationDataContainer container =
 appData.CreateContainer(containerName,
 ApplicationDataCreateDisposition.Always);
 container.Values.Clear();

 // Save settings for each page in that container
 foreach (string key in pages[pageKey].Keys)
 container.Values.Add(key, pages[pageKey][key]);
 }
 }
 ...
}

By the time the static constructor concludes, the pages dictionary contains one entry for each page
on the back stack. None of these individual pages has yet been instantiated. As each SaveStatePage
derivative is instantiated, however, it obtains its own pageState dictionary during the OnNavigatedTo
override, either by retrieving it from the pages dictionary or by creating a new one.

Navigational Accelerators and Mouse Buttons

Do you use a mouse that has five buttons rather than the usual three? Neither do I, but some people
do, and some of those people are accustomed to using the extra two buttons to navigate forward
and back in Internet Explorer. Other Internet Explorer users have become accustomed to using the
left and right arrow keys in conjunction with Alt to navigate back and forward. Some keyboards have
special keys to perform these operations.

You might want to implement these same shortcuts to allow users to navigate among the pages
of your application. To do this, you need two events that you haven’t seen yet: PointerPressed and
AcceleratorKeyActivated.

The AcceleratorKeyActivated event isn’t available in the Page or Frame classes or even the Window
class that underlies Frame. But it is available from CoreWindow, which is the object that supports input
events for Window, and you can obtain the CoreWindow object from the current Window object.

	 CHAPTER 12  Pages and Navigation	 573

The handler for AcceleratorKeyActivated gets first dibs on keystrokes, and if this handler identifies a
particular key as a command accelerator, it can inhibit further visibility of that key by the application
by setting the Handled property of the event arguments to true.

As you’ll learn in Chapter 13, “Touch, Etc.,” the PointerPressed event is fired for a mouse but-
ton press or a finger or pen touching the screen. This event is defined by UIElement and inherited
by Frame and Page, but for purposes of getting button clicks for page navigation, you can define a
handler for this event on the CoreWindow as well.

Because these keyboard and mouse accelerators function at a higher level than the page, it is
convenient to put them in the App class.

Earlier I showed you an OnLaunched method in the App class of the ApplicationStateSave project.
That method had an ellipsis at the bottom indicating that the method contains a bit more code. Here
it is:

Project: ApplicationStateSave | File: App.xaml.cs (excerpt)

protected override void OnLaunched(LaunchActivatedEventArgs args)
{
 ...
 // Code added for ApplicationStateSave project
 Window.Current.CoreWindow.Dispatcher.AcceleratorKeyActivated += OnAcceleratorKeyActivated;
 Window.Current.CoreWindow.PointerPressed += OnPointerPressed;
 // End of code added for ApplicationStateSave project
}

The PointerPressed event handler is the simpler of the two, so let’s look at that first. The states of
all five mouse buttons are available from the Properties property of the CurrentPoint property of the
event arguments. The two extra buttons commonly used for navigation are identified as XButton1
and XButton2. We’re only interested in cases where all the regular buttons are unpressed and only
one of these extra buttons is pressed—that is, their states aren’t equal to each other:

Project: ApplicationStateSave | File: App.xaml.cs (excerpt)

void OnPointerPressed(CoreWindow sender, PointerEventArgs args)
{
 PointerPointProperties props = args.CurrentPoint.Properties;

 if (!props.IsLeftButtonPressed &&
 !props.IsMiddleButtonPressed &&
 !props.IsRightButtonPressed &&
 props.IsXButton1Pressed != props.IsXButton2Pressed)
 {
 if (props.IsXButton1Pressed)
 GoBack();
 else
 GoForward();

 args.Handled = true;
 }
}

void GoBack()

574	 PART 1  Elementals

{
 Frame frame = Window.Current.Content as Frame;

 if (frame != null && frame.CanGoBack)
 frame.GoBack();
}

void GoForward()
{
 Frame frame = Window.Current.Content as Frame;

 if (frame != null && frame.CanGoForward)
 frame.GoForward();
}

If the event results in a call to the GoBack or GoForward method, the event handler sets the Handled
property of the event arguments to true.

For the keyboard accelerators, the event handler is able to use members of the VirtualKey
enumeration for the Left and Right arrow keys, but VirtualKey doesn’t have members for the special
browser keys. In the Win32 API, these are identified as VK_BROWSER_BACK and
VK_BROWSER_FORWARD and have values of 166 and 167, respectively:

Project: ApplicationStateSave | File: App.xaml.cs (excerpt)

void OnAcceleratorKeyActivated(CoreDispatcher sender, AcceleratorKeyEventArgs args)
{
 if ((args.EventType == CoreAcceleratorKeyEventType.SystemKeyDown ||
 args.EventType == CoreAcceleratorKeyEventType.KeyDown) &&
 (args.VirtualKey == VirtualKey.Left ||
 args.VirtualKey == VirtualKey.Right ||
 (int)args.VirtualKey == 166 ||
 (int)args.VirtualKey == 167))
 {
 CoreWindow window = Window.Current.CoreWindow;
 CoreVirtualKeyStates down = CoreVirtualKeyStates.Down;

 // Ignore key combinations where Shift or Ctrl is down
 if ((window.GetKeyState(VirtualKey.Shift) & down) == down ||
 (window.GetKeyState(VirtualKey.Control) & down) == down)
 {
 return;
 }

 // Get alt key state
 bool alt = (window.GetKeyState(VirtualKey.Menu) & down) == down;

 // Go back for Alt-Left key or browser left key
 if (args.VirtualKey == VirtualKey.Left && alt ||
 (int)args.VirtualKey == 166 && !alt)
 {
 GoBack();
 args.Handled = true;
 }

	 CHAPTER 12  Pages and Navigation	 575

 // Go forward for Alt-Right key or browser right key
 if (args.VirtualKey == VirtualKey.Right && alt ||
 (int)args.VirtualKey == 167 && !alt)
 {
 GoForward();
 args.Handled = true;
 }
 }
}

The Left and Right arrow keys function as accelerators only when the Alt key (also known as the
Menu key) is down but neither Shift nor Ctrl is down, and the special browser keys are accepted only
when no modifier key is down.

The GetKeyState method is a little clumsy to use because it can return one of three members of
the CoreVirtualKeyStates enumeration: None (equal to 0), Down (equal to 1), or Locked (equal to 2).
Internally, all the keys are treated as toggles, and the enumeration members are flags. A key that is up
begins with a key state of 0. When the key is pressed, it has a state of 3, and when it is released, it has
a state of 2. Press it down again for a state of 1, and release it to 0 again.

Passing and Returning Data

Very often pages need to share data. It’s common for pages to share a view model, for example.
A good place to maintain data shared among pages is the App class. Don’t hesitate about adding
methods and properties to this class. For example, you can add a public property named ViewModel
that has a public get accessor but a private set accessor so that the property can be initialized in the
App constructor.

On the other hand, under the philosophy that data should be visible only to classes that need to
know this data, don’t put everything in the App class. There are very structured ways for one page to
pass data to another page during navigation and for the second page to return data to the first page.

The DataPassingAndReturning project has two simple pages that demonstrate these techniques.
The first page is called MainPage as usual, and the second page is called DialogPage because it func-
tions much like a dialog box. MainPage can navigate only to DialogPage, and DialogPage can only go
back to MainPage.

Because the navigation between these two pages is limited, the pages don’t need to save page
state. To keep the program even simpler, it doesn’t save navigation state or page state during
suspension and it doesn’t implement keyboard or mouse shortcuts. Despite the simplicity of the
program, it illustrates basic data-passing techniques.

576	 PART 1  Elementals

The XAML file for DialogPage has three RadioButton controls for Red, Green, and Blue, and a
regular Button labeled “Finished”:

Project: DataPassingAndReturning | File: DialogPage.xaml (excerpt)

<Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <StackPanel>
 <TextBlock Text="Color Dialog"
 FontSize="48"
 HorizontalAlignment="Center"
 Margin="48" />

 <StackPanel Name="radioStack"
 HorizontalAlignment="Center"
 Margin="48">
 <RadioButton Content="Red" Margin="12">
 <RadioButton.Tag>
 <Color>Red</Color>
 </RadioButton.Tag>
 </RadioButton>

 <RadioButton Content="Green" Margin="12">
 <RadioButton.Tag>
 <Color>Green</Color>
 </RadioButton.Tag>
 </RadioButton>

 <RadioButton Content="Blue" Margin="12">
 <RadioButton.Tag>
 <Color>Blue</Color>
 </RadioButton.Tag>
 </RadioButton>
 </StackPanel>

 <Button Content="Finished"
 HorizontalAlignment="Center"
 Margin="48"
 Click="OnReturnButtonClick" />
 </StackPanel>
</Grid>

Notice that each RadioButton has its Tag property set to a Color value corresponding to that button.
The code-behind file for DialogPage is responsible for obtaining the selected Color from these
buttons and returning that back to MainPage.

Interestingly, MainPage.xaml is very similar to DialogPage.xaml, except that the Grid has a name,
the middle RadioButton is checked, and the Button is labeled “Get Color”:

Project: DataPassingAndReturning | File: MainPage.xaml (excerpt)

<Grid Name="contentGrid"
 Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <StackPanel>
 <TextBlock Text="Main Page"
 FontSize="48"

	 CHAPTER 12  Pages and Navigation	 577

 HorizontalAlignment="Center"
 Margin="48" />

 <StackPanel Name="radioStack"
 HorizontalAlignment="Center"
 Margin="48">
 <RadioButton Content="Red" Margin="12">
 <RadioButton.Tag>
 <Color>Red</Color>
 </RadioButton.Tag>
 </RadioButton>

 <RadioButton Content="Green" Margin="12"
 IsChecked="True">
 <RadioButton.Tag>
 <Color>Green</Color>
 </RadioButton.Tag>
 </RadioButton>

 <RadioButton Content="Blue" Margin="12">
 <RadioButton.Tag>
 <Color>Blue</Color>
 </RadioButton.Tag>
 </RadioButton>
 </StackPanel>

 <Button Content="Get Color"
 HorizontalAlignment="Center"
 Margin="48"
 Click="OnGotoButtonClick" />
 </StackPanel>
</Grid>

The idea here is that you use the RadioButton controls in MainPage to select an initial value for the
RadioButton controls in DialogPage, which means that MainPage needs to pass data to DialogPage.

The data that MainPage and DialogPage are passing between each other is only a Color value,
but for real applications it could be much, much more. Let’s reflect that possibility by defining
classes specifically for the purpose of passing data between pages. Here’s the class for the data that
MainPage passes to DialogPage:

Project: DataPassingAndReturning | File: PassData.cs

using Windows.UI;

namespace DataPassingAndReturning
{
 public class PassData
 {
 public Color InitializeColor { set; get; }
 }
}

578	 PART 1  Elementals

For this simple example, the data returned from DialogPage to MainPage is quite similar:

Project: DataPassingAndReturning | File: ReturnData.cs

using Windows.UI;

namespace DataPassingAndReturning
{
 public class ReturnData
 {
 public Color ReturnColor { set; get; }
 }
}

I could have used the same class in this example, of course, but in the general case you’ll be using
different classes for these two tasks.

Watch out! I’m going to be jumping back and forth between the MainPage and DialogPage
code-behind files in accordance with the flow of logic and data.

The easy transfer of data is from MainPage to DialogPage. When you click the “Get Color” button
in MainPage, the code-behind file creates an object of type PassData and then scans through the
collection of RadioButton controls to see which one is checked. That’s the Color value assigned to the
InitializeColor property of PassData. That PassData object then becomes the second argument to
Navigate:

Project: DataPassingAndReturning | File: MainPage.xaml.cs (excerpt)

void OnGotoButtonClick(object sender, RoutedEventArgs args)
{
 // Create PassData object
 PassData passData = new PassData();

 // Set the InitializeColor property from the RadioButton controls
 foreach (UIElement child in radioStack.Children)
 if ((child as RadioButton).IsChecked.Value)
 passData.InitializeColor = (Color)(child as RadioButton).Tag;

 // Pass that object to Navigate
 this.Frame.Navigate(typeof(DialogPage), passData);
}

When the OnNavigatedTo override in DialogPage is called, the Parameter property of the event
arguments is the object passed as the second argument to Navigate. DialogPage uses that to initialize
its own set of RadioButton controls:

Project: DataPassingAndReturning | File: DialogPage.xaml.cs (excerpt)

protected override void OnNavigatedTo(NavigationEventArgs args)
{
 // Get the object passed as the second argument to Navigate
 PassData passData = args.Parameter as PassData;

 // Use that to initialize the RadioButton controls
 foreach (UIElement child in radioStack.Children)
 if ((Color)(child as RadioButton).Tag == passData.InitializeColor)
 (child as RadioButton).IsChecked = true;

	 CHAPTER 12  Pages and Navigation	 579

 base.OnNavigatedTo(args);
}

Now you can click the three RadioButton controls to select a Color value. When satisfied with the
selection press the Finished button. The handler simply calls GoBack to return to MainPage.

Project: DataPassingAndReturning | File: DialogPage.xaml.cs (excerpt)

void OnReturnButtonClick(object sender, RoutedEventArgs args)
{
 this.Frame.GoBack();
}

It would be nice if GoBack had an optional parameter that you could set to return data to the
target page. But it does not. There is no mechanism for doing this, and another technique is required.

One possibility is this: After DialogPage calls GoBack, the OnNavigatedFrom override in DialogPage
is called. The Content property of the event arguments is the instance of MainPage about to be navi-
gated to. This means that MainPage could define a public property or method expressly for obtaining
information from DialogPage, and DialogPage could set that property or call that method during its
OnNavigatedFrom override.

Architecturally, though, it’s a little cheesy because DialogPage must be familiar with the page types
that are navigating to it. In general, this is not a good solution.

A much better solution is for DialogPage to define a Completed event with the type of the data it
needs to return:

Project: DataPassingAndReturning | File: DialogPage.xaml.cs (excerpt)

public sealed partial class DialogPage : Page
{
 public event EventHandler<ReturnData> Completed;
 ...
}

MainPage needs to set a handler for that event. The only place MainPage can do this is within
the OnNavigatedFrom method because the event arguments include a Content property that is the
instance of DialogPage that is being navigated to:

Project: DataPassingAndReturning | File: MainPage.xaml.cs (excerpt)

protected override void OnNavigatedFrom(NavigationEventArgs args)
{
 if (args.SourcePageType.Equals(typeof(DialogPage)))
 (args.Content as DialogPage).Completed += OnDialogPageCompleted;

 base.OnNavigatedFrom(args);
}

MainPage knows about DialogPage because it’s navigating to DialogPage. But it could be
navigating to other pages as well, so it checks the SourcePageType property of the event arguments
to make sure that it knows what type of page this particular OnNavigatedFrom event indicates.

580	 PART 1  Elementals

With this scheme, DialogPage doesn’t need to know about MainPage, and that’s how it should be.
Hiding a consumer of information from the provider of information is one of the primary purposes of
events within the context of object-oriented programming.

DialogPage could fire the Completed event in the Click handler for the Button, but I’ve chosen to
implement that logic in OnNavigatedFrom.

Project: DataPassingAndReturning | File: DialogPage.xaml.cs (excerpt)

protected override void OnNavigatedFrom(NavigationEventArgs args)
{
 if (Completed != null)
 {
 // Create ReturnData object
 ReturnData returnData = new ReturnData();

 // Set the ReturnColor property from the RadioButton controls
 foreach (UIElement child in radioStack.Children)
 if ((child as RadioButton).IsChecked.Value)
 returnData.ReturnColor = (Color)(child as RadioButton).Tag;

 // Fire the Completed event
 Completed(this, returnData);
 }

 base.OnNavigatedFrom(args);
}

If there is indeed a handler for the Completed event, DialogPage instantiates a ReturnData object and
then sets the ReturnColor property from the collection of RadioButton controls.

In the Completed handler, MainPage uses the data from DialogPage to set the Background
property of its Grid and check a RadioButton:

Project: DataPassingAndReturning | File: MainPage.xaml.cs (excerpt)

void OnDialogPageCompleted(object sender, ReturnData args)
{
 // Set background from returned color
 contentGrid.Background = new SolidColorBrush(args.ReturnColor);

 // Set RadioButton for returned color
 foreach (UIElement child in radioStack.Children)
 if ((Color)(child as RadioButton).Tag == args.ReturnColor)
 (child as RadioButton).IsChecked = true;

 (sender as DialogPage).Completed -= OnDialogPageCompleted;
}

The handler concludes by detaching itself from the sender.

But there’s a flaw in the code as I’ve presented it: By default, the instance of MainPage that sets
a handler for the Completed event in DialogPage is not the instance of MainPage that DialogPage
returns back to! To fix that little problem requires setting NavigationCacheMode to something other
than Disabled.

	 CHAPTER 12  Pages and Navigation	 581

Project: DataPassingAndReturning | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 public MainPage()
 {
 this.InitializeComponent();
 this.NavigationCacheMode = NavigationCacheMode.Enabled;
 }
 ...
}

You only need to do this in MainPage, and guaranteeing a single instance makes perfect sense for
a page that is architecturally the hub of the application. The instance of MainPage that invokes
DialogPage should be the same instance that gets data back from it.

Visual Studio Standard Templates

A confession: I’ve been coding page-navigation logic in various Windows environments for several
years now, and it never occurred to me to implement shortcuts with accelerator keys or mouse
buttons. The code I showed you earlier is adapted from a class generated by Visual Studio named
LayoutAwarePage that derives from Page and implements several helpful features.

LayoutAwarePage and other assorted classes are automatically added to your Visual Studio
projects when you invoke the Add New Item dialog box and add an item called Basic Page rather than
Blank Page. These files are also part of the Grid App and Split App templates. The page class created
by selecting Basic Page derives from LayoutAwarePage rather than just Page. LayoutAwarePage
defines virtual methods named SaveState and LoadState that allow the page instance to save and load
its state and that do much of the work for you in conjunction with another generated class named
SuspensionManager.

LayoutAwarePage also works in conjunction with SuspensionManager to save application state
(including the back stack) when a program is being suspended and reload that state when it’s
relaunched.

LayoutAwarePage is named as it is because it uses the SizeChanged method to check the
ApplicationView.Value property and call VisualStateManager.GoToState with strings corresponding to
the members of the ApplicationViewState enumeration: “FullScreenLandscape”, “FullScreenPortrait”,
“Filled”, and “Snapped”. These states allow XAML files to implement view changes themselves through
Visual State Manager markup.

It’s up to you whether you want to use these classes or implement these features (or similar
features) on your own. Whether you use them or not, it doesn’t hurt to study these classes and see
what you can learn from them.

When creating new projects in Visual Studio, I’ve been using Blank App, but there are two
alternatives: Grid App and Split App. These templates make use of LayoutAwarePage and
SuspensionManager, as well as a sample view model in the DataModel folder. These templates

582	 PART 1  Elementals

demonstrate a recommended approach to laying out data on the screen. Perhaps most important,
the Grid App and Split App templates demonstrate rudimentary use of the two remaining
ItemsControl derivatives: GridView and ListView.

Both GridView and ListView derive from ItemsControl by way of Selector and ListViewBase. Neither
GridView nor ListView defines any public properties or methods on its own, but they share many
properties and methods from ListViewBase. Also, if you check generic.xaml, you’ll discover that the
templates for GridView, ListView, GridViewItem, and ListViewItem are different. In particular, by default
GridView uses a WrapGrid for displaying its items, and ListView uses a VirtualizingStackPanel.

GridView and ListView are also suitable for grouping items. You define how the items are grouped,
and the appearance of a header that delimits the groups. You’ll see examples of this in the Grid App
and Split App templates.

The Windows 8 start screen itself is a GridView or something very similar to a GridView. As you
probably know, you can swipe items on the start screen to select them. This type of selection is
supported by ListViewBase (and hence by GridView and ListView), but it is disabled in the Visual
Studio templates.

The Windows 8 start screen allows you to move items around. This feature is also supported
by ListViewBase (but interestingly, not while items are grouped). The Windows 8 start screen also
supports semantic zoom: If you use your fingers to pinch the start screen, it collapses to give you
a broader view of the groups, and then you can select whole groups. You can do this in your own
application by using the SemanticZoom class.

For now, let’s take a closer look at the Grid App template. (You can study Split App on your own.)
The project contains three LayoutAwarePage derivatives.

Grid App initializes itself by displaying a GroupedItemsPage.

In a real application, those gray boxes would probably be pictures or other graphics.

	 CHAPTER 12  Pages and Navigation	 583

The page has a title and a GridView control with horizontal scrolling. The individual items
are defined by a DataTemplate resource named “Standard250x250ItemTemplate” defined in
StandardStyles.xaml. The appearance of the headers (“Group Title: 1 >” and so forth) is defined in the
GroupedItemsPage.xaml file by the HeaderTemplate property of the GroupStyle property of GridView.

The page has the same appearance in the Filled view, but in the Snapped view it switches to a
vertically scrollable ListView:

The ItemTemplate property is now the DataTemplate resource “Standard80ItemTemplate.” Notice
that the page title is also formatted differently. It’s a “SnappedPageHeaderTextStyle” rather than the
normal “PageHeaderTextStyle,” both defined in StandardStyles.xaml.

The switch between the GridView and ListView when the program is in a Snapped mode occurs in
the GroupedItemsPage.xaml file based on the calls to the VisualStateManager in LayoutAwarePage.
The GroupedItemsPage.xaml file contains a Visual State Manager section that responds to the
Snapped state as well as the FullScreenPortrait state.

584	 PART 1  Elementals

This is a GridView just as in the wider landscape views, but you might notice a little less margin
around the sides. Defining changes like these in XAML is one of the advantages of using the Visual
State Manager to signal different views.

If you click one of the header titles, you’ll navigate to a GroupDetailPage:

	 CHAPTER 12  Pages and Navigation	 585

Notice that the Back button is implemented as a circled arrow in the upper-left corner. The Button
has its Style set to the “BackButtonStyle” resources defined in StandardStyles.xaml. This is again a
GridView, except that the header is very large and appears at the left. The individual items are now
displayed with an ItemTemplate based on the “Standard500x130ItemTemplate” resources from
StandardStyles.xaml.

Again, the page switches to a ListView in the Snapped state:

586	 PART 1  Elementals

Notice that the Button has changed appearance as well. StandardStyles.xaml has a
SnappedBackButtonStyle as well as a PortraitBackButtonStyle. Here’s the portrait view:

	 CHAPTER 12  Pages and Navigation	 587

From either this GroupedItemsPage or the GroupDetailPage you can navigate to a page for the
individual item:

At first it appears to be a single item; however, you can horizontally scroll to see other items in the
same group. The bulk of the page is actually a FlipView. Each item in this FlipView is a ScrollViewer
containing a collection of RichTextBlock elements. I’ll discuss RichTextBlock in Chapter 16, “Rich Text.”
In the Grid App template, the RichTextBlock elements are generated by a RichTextColumns class that
you’ll find in the Common folder.

The item view also has a different appearance in the Snapped state:

588	 PART 1  Elementals

The Portrait view is also different:

Although I’ll continue to use the Blank App and Blank Page templates in the projects in this book,
I’ll implement some of the features from the more sophisticated templates in a simplified and (I hope)
more comprehensible manner.

View Models and Collections

As you saw in Chapter 11, “The Three Templates,” the Colors class provides a convenient source of
objects to display in an ItemsControl and ListBox. However, when graduating to the GridView and
ListView controls, it’s good to move to example data that is a little more sophisticated and a little
more real.

	 CHAPTER 12  Pages and Navigation	 589

For that purpose, the http://www.charlespetzold.com/Students directory of my website contains a
file named students.xml that contains information on 69 students of a high school. The directory also
contains lovely photographs of these students that originated in high school yearbooks from El Paso,
Texas, for the years 1912 through 1914. The yearbooks are in the public domain, and they were digi-
tized by the El Paso Public Library and made available to the public at http://www.elpasotexas.gov/
library/ourlibraries/main_library/yearbooks/yearbooks.asp.

The ElPasoHighSchool project is a library that accesses this XML file and constructs a view model
to make the information available to applications. The following Student class represents a single stu-
dent. Notice that the class implements INotifyPropertyChanged to make it suitable for data bindings:

Project: ElPasoHighSchool | File: Student.cs

using System.ComponentModel;
using System.Runtime.CompilerServices;

namespace ElPasoHighSchool
{
 public class Student : INotifyPropertyChanged
 {
 string fullName, firstName, middleName, lastName, sex, photoFilename;
 double gradePointAverage;

 public event PropertyChangedEventHandler PropertyChanged;

 public string FullName
 {
 set { SetProperty<string>(ref fullName, value); }
 get { return fullName; }
 }

 public string FirstName
 {
 set { SetProperty<string>(ref firstName, value); }
 get { return firstName; }
 }

 public string MiddleName
 {
 set { SetProperty<string>(ref middleName, value); }
 get { return middleName; }
 }

 public string LastName
 {
 set { SetProperty<string>(ref lastName, value); }
 get { return lastName; }
 }

 public string Sex
 {
 set { SetProperty<string>(ref sex, value); }
 get { return sex; }
 }

590	 PART 1  Elementals

 public string PhotoFilename
 {
 set { SetProperty<string>(ref photoFilename, value); }
 get { return photoFilename; }
 }

 public double GradePointAverage
 {
 set { SetProperty<double>(ref gradePointAverage, value); }
 get { return gradePointAverage; }
 }

 protected bool SetProperty<T>(ref T storage, T value,
 [CallerMemberName] string propertyName = null)
 {
 if (object.Equals(storage, value))
 return false;

 storage = value;
 OnPropertyChanged(propertyName);
 return true;
 }

 protected void OnPropertyChanged(string propertyName)
 {
 if (PropertyChanged != null)
 PropertyChanged(this, new PropertyChangedEventArgs(propertyName));
 }
 }
}

The StudentBody class shown next also implements INotifyPropertyChanged. The class contains the
name of the school and an ObservableCollection of type Student to store all the Student objects:

Project: ElPasoHighSchool | File: StudentBody.cs

using System.Collections.ObjectModel;
using System.ComponentModel;
using System.Runtime.CompilerServices;

namespace ElPasoHighSchool
{
 public class StudentBody : INotifyPropertyChanged
 {
 string school;
 ObservableCollection<Student> students = new ObservableCollection<Student>();

 public event PropertyChangedEventHandler PropertyChanged;

 public string School
 {
 set { SetProperty<string>(ref school, value); }
 get { return school; }
 }

 public ObservableCollection<Student> Students
 {

	 CHAPTER 12  Pages and Navigation	 591

 set { SetProperty<ObservableCollection<Student>>(ref students, value); }
 get { return students; }
 }

 protected bool SetProperty<T>(ref T storage, T value,
 [CallerMemberName] string propertyName = null)
 {
 if (object.Equals(storage, value))
 return false;

 storage = value;
 OnPropertyChanged(propertyName);
 return true;
 }

 protected void OnPropertyChanged(string propertyName)
 {
 if (PropertyChanged != null)
 PropertyChanged(this, new PropertyChangedEventArgs(propertyName));
 }
 }
}

ObservableCollection implements the INotifyCollectionChanged interface, which defines a
CollectionChanged event. ObservableCollection fires this event whenever an item is added to
or removed from the collection or existing items are reordered. When you set an object to the
ItemsSource property of an items control, the control checks whether the object implements
INotifyCollectionChanged. If so, it attaches a handler for the CollectionChanged event and modifies its
display when items are added, removed, or reordered.

The student.xml file on my website looks like this:

File: http://www.charlespetzold.com/Students/students.xml (excerpt)

<?xml version="1.0" encoding="utf-8" ?>
<StudentBody xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <School>El Paso High School</School>-<Students>
 <Student>
 <FullName>Adkins Bowden</FullName>
 <FirstName>Adkins</FirstName>
 <MiddleName/>
 <LastName>Bowden</LastName>
 <Sex>Male</Sex>
 <PhotoFilename>
 http://www.charlespetzold.com/Students/AdkinsBowden.png
 </PhotoFilename>
 <GradePointAverage>2.71</GradePointAverage>
 </Student>
 <Student>
 <FullName>Alfred Black</FullName>
 <FirstName>Alfred</FirstName>
 <MiddleName/>
 <LastName>Black</LastName>
 <Sex>Male</Sex>
 <PhotoFilename>
 http://www.charlespetzold.com/Students/AlfredBlack.png

592	 PART 1  Elementals

 </PhotoFilename>
 <GradePointAverage>2.87</GradePointAverage>
 </Student>
 <Student>
 <FullName>Alice Bishop</FullName>
 <FirstName>Alice</FirstName>
 <MiddleName/>
 <LastName>Bishop</LastName>
 <Sex>Female</Sex>
 <PhotoFilename>
 http://www.charlespetzold.com/Students/AliceBishop.png
 </PhotoFilename>
 <GradePointAverage>3.68</GradePointAverage>
 </Student>
 ...
 <Student>
 <FullName>William Sheley Warnock</FullName>
 <FirstName>William</FirstName>
 <MiddleName>Sheley</MiddleName>
 <LastName>Warnock</LastName>
 <Sex>Male</Sex>
 <PhotoFilename>
 http://www.charlespetzold.com/Students/WilliamSheleyWarnock.png
 </PhotoFilename>
 <GradePointAverage>1.82</GradePointAverage>
 </Student>
 </Students>
</StudentBody>

The Student and StudentBody element tags conveniently correspond to the Student and
StudentBody classes you’ve just seen. I created this XML file by using .NET serialization with
the XmlSerializer class, and it can be deserialized in the same way. This is the purpose of the
StudentBodyPresenter class, which again implements INotifyPropertyChanged but has just one
property of type StudentBody:

Project: ElPasoHighSchool | File: StudentBodyPresenter.cs (excerpt)

public class StudentBodyPresenter : INotifyPropertyChanged
{
 StudentBody studentBody;
 Random rand = new Random();
 Window currentWindow = Window.Current;

 public event PropertyChangedEventHandler PropertyChanged;

 public StudentBodyPresenter()
 {
 // Download XML file
 HttpClient httpClient = new HttpClient();
 Task<string> task =
 httpClient.GetStringAsync("http://www.charlespetzold.com/Students/students.xml");
 task.ContinueWith(GetStringCompleted);
 }

 async void GetStringCompleted(Task<string> task)
 {

	 CHAPTER 12  Pages and Navigation	 593

 if (task.Exception == null && !task.IsCanceled)
 {
 string xml = task.Result;

 // Deserialize XML
 StringReader reader = new StringReader(xml);
 XmlSerializer serializer = new XmlSerializer(typeof(StudentBody));

 await currentWindow.Dispatcher.RunAsync(CoreDispatcherPriority.Normal, () =>
 {
 this.StudentBody = serializer.Deserialize(reader) as StudentBody;

 // Set a timer for random changes
 DispatcherTimer timer = new DispatcherTimer
 {
 Interval = TimeSpan.FromMilliseconds(100)
 };
 timer.Tick += OnTimerTick;
 timer.Start();
 });
 }
 }

 public StudentBody StudentBody
 {
 set { SetProperty<StudentBody>(ref studentBody, value); }
 get { return studentBody; }
 }

 // Mimic changing grade point averages
 void OnTimerTick(object sender, object args)
 {
 int index = rand.Next(studentBody.Students.Count);
 Student student = this.StudentBody.Students[index];
 double factor = 1 + (rand.NextDouble() - 0.5) / 5;
 student.GradePointAverage =
 Math.Max(0.0,
 Math.Min(5.0, (int)(100 * factor * student.GradePointAverage) / 100.0));
 }

 protected bool SetProperty<T>(ref T storage, T value,
 [CallerMemberName] string propertyName = null)
 {
 if (object.Equals(storage, value))
 return false;

 storage = value;
 OnPropertyChanged(propertyName);
 return true;
 }

 protected void OnPropertyChanged(string propertyName)
 {
 if (PropertyChanged != null)
 PropertyChanged(this, new PropertyChangedEventArgs(propertyName));
 }
}

594	 PART 1  Elementals

This class caused me some problems. I wanted to initiate the loading and deserializing of the XML
file from the class’s constructor, but constructors cannot be declared as async, so I needed an explicit
continuation handler instead. However, the continuation handler does not run in the user-interface
thread. This is a problem because this method needs to set the StudentBody property, which causes a
PropertyChanged event to be fired and possibly an updating of a binding on a user-interface object.
The class needs to set the StudentBody property in the user-interface thread using a CoreDispatcher,
but where does this CoreDispatcher object come from? The class has no access to objects created in
the user-interface thread, which are the usual sources of CoreDispatcher.

Fortunately, the Window object has a Dispatcher property, and it’s easy to get the current
window through the Window.Current static property. The StudentBodyPresenter class also sets a
DispatcherTimer for simulating real-time changes in the students’ grade point averages to give the
PropertyChanged event a little workout.

Let’s create a new solution and project named DisplayHighSchoolStudents. To this solution add
the existing ElPasoHighSchool project. In the References section of the DisplayHighSchoolStudents
project, set a reference to the ElPasoHighSchool project, and in the MainPage.xaml file, create a new
XML namespace prefix:

xmlns:elpaso="using:ElPasoHighSchool"

You can then instantiate the StudentBodyPresenter class in the Resources section of MainPage.xaml:

<Page.Resources>
 <elpaso:StudentBodyPresenter x:Key="presenter" />
</Page.Resources>

And now you can begin experimenting with accessing items from this view model.

For example, the markup

<Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <TextBlock Text="{Binding Source={StaticResource presenter}}"
 FontSize="24" />
</Grid>

causes the TextBlock to display the fully qualified class name “ElPasoHighSchool.StudentBodyPre-
senter”. The markup

<TextBlock Text="{Binding Source={StaticResource presenter},
 Path=StudentBody}"
 FontSize="24" />

displays the fully qualified class name “ElPasoHighSchool.StudentBody”.

	 CHAPTER 12  Pages and Navigation	 595

Try going another property deeper, like so:

<TextBlock Text="{Binding Source={StaticResource presenter},
 Path=StudentBody.School}"
 FontSize="24" />

Now you get some real data: the value of the School property or “El Paso High School”.

The other property in StudentBody is Students. Try that in the markup:

<TextBlock Text="{Binding Source={StaticResource presenter},
 Path=StudentBody.Students}"
 FontSize="24" />

The displayed text is another fully qualified class name, this one quite lengthy: “System.Collections
.ObjectModel.ObservableCollection`1[ElPasoHighSchool.Student]”.

However, you can index the Students property in the markup:

<TextBlock Text="{Binding Source={StaticResource presenter},
 Path=StudentBody.Students[23]}"
 FontSize="24" />

The result is another fully qualified class name, “ElPasoHighSchool.Student”, but now we’re at the
point where we can see actual properties of that class.

One property of the Student class is FullName, so try this:

<TextBlock Text="{Binding Source={StaticResource presenter},
 Path=StudentBody.Students[23].FullName}"
 FontSize="24" />

The result is the student’s name: “Elizabeth Barnes”.

Try replacing that TextBlock with an Image element, and reference the PhotoFilename property of
Student:

<Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <Image Source="{Binding Source={StaticResource presenter},
 Path=StudentBody.Students[23].PhotoFilename}" />
</Grid>

596	 PART 1  Elementals

And there she is:

Now let’s try replacing that Image element with a GridView with the ItemsSource property set to
the Students property of StudentBody:

<Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <GridView ItemsSource="{Binding Source={StaticResource presenter},
 Path=StudentBody.Students}" />
</Grid>

The result is a display of Student objects:

	 CHAPTER 12  Pages and Navigation	 597

Although the Student objects are shown only as fully qualified class names, you can still detect some
workings of the GridView. The display bounces a bit if you try to scroll it, and you can select individual
items:

Let’s simplify the Binding by moving part of it to the Grid as a DataContext property:

<Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}"
 DataContext="{Binding Source={StaticResource presenter},
 Path=StudentBody}">
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="*" />
 </Grid.RowDefinitions>

 <TextBlock Text="{Binding School}"
 Grid.Row="0"
 Style="{StaticResource PageHeaderTextStyle}" />

 <GridView ItemsSource="{Binding Students}"
 Grid.Row="1" />
</Grid>

Anything within that Grid can now access properties of the StudentBody class with very simple
bindings. A TextBlock in the Grid references the School property.

Now all that’s necessary is to add a DataTemplate to the GridView for the Student items:

<Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}"
 DataContext="{Binding Source={StaticResource presenter},
 Path=StudentBody}">
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="*" />
 </Grid.RowDefinitions>

598	 PART 1  Elementals

 <TextBlock Text="{Binding School}"
 Grid.Row="0"
 Style="{StaticResource PageHeaderTextStyle}" />

 <GridView ItemsSource="{Binding Students}"
 Grid.Row="1">
 <GridView.ItemTemplate>
 <DataTemplate>
 <Border BorderBrush="{StaticResource ApplicationForegroundThemeBrush}"
 BorderThickness="1">
 <Grid Height="120">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="80" />
 <ColumnDefinition Width="200" />
 </Grid.ColumnDefinitions>

 <Image Source="{Binding PhotoFilename}"
 Grid.Column="0" />

 <TextBlock Text="{Binding FullName}"
 Grid.Column="1"
 VerticalAlignment="Center"
 Margin="5 0" />
 </Grid>
 </Border>
 </DataTemplate>
 </GridView.ItemTemplate>
 </GridView>
</Grid>

And here they are, horizontally scrollable, of course:

	 CHAPTER 12  Pages and Navigation	 599

ListViewBase differentiates between clicking an item as if it were a button and selecting an item.
Much of the selection support is inherited from Selector and is similar to ListBox. By default, when you
tap an item, that item is selected. The item is displayed with a colored background and a checkmark,
and the control fires a SelectionChanged event.

By default, item clicking is disabled, but you can enable this feature by setting a property and an
event handler:

<GridView ItemsSource="{Binding Students}"
 Grid.Row="1"
 IsItemClickEnabled="True"
 ItemClick="OnGridViewItemClick">

Now when you tap an item, the item is not selected and instead an ItemClick event is fired. The event
arguments to the ItemClick handler include the item, in this case an object of type Student.

However, the user can still select and unselect items by swiping them or right-clicking them. You
can turn off selection entirely by setting the SelectionMode to None:

<GridView ItemsSource="{Binding Students}"
 Grid.Row="1"
 SelectionMode="None"
 IsItemClickEnabled="True"
 ItemClick="OnGridViewItemClick">

You can also set SelectionMode to Multiple, but obviously you don’t want to implement selection at
all if the program can’t do anything with selected items.

Even when SelectionMode is set to None, you can still swipe items. The swiped item moves,
but nothing is selected. You probably want to keep swiping in effect if you’re going to implement
dragging and reordering with the AllowDrop and CanRecorderItems properties:

<GridView ItemsSource="{Binding Students}"
 Grid.Row="1"
 SelectionMode="None"
 AllowDrop="True"
 CanReorderItems="True"
 IsItemClickEnabled="True"
 ItemClick="OnGridViewItemClick">

However, if you’re not going to allow selection or reordering, it’s probably best to disable swiping
entirely:

<GridView ItemsSource="{Binding Students}"
 Grid.Row="1"
 SelectionMode="None"
 IsSwipeEnabled="False"
 IsItemClickEnabled="True"
 ItemClick="OnGridViewItemClick" />

600	 PART 1  Elementals

In the complete DisplayHighSchoolStudents project, I have attempted to emulate the general
layout of the Visual Studio standard Grid App while still using Blank App. The code-behind file for
MainPage uses the SizeChanged handler to set a visual state based on the current view:

Project: DisplayHighSchoolStudents | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 public MainPage()
 {
 this.InitializeComponent();
 SizeChanged += OnPageSizeChanged;
 }

 void OnPageSizeChanged(object sender, SizeChangedEventArgs args)
 {
 VisualStateManager.GoToState(this, ApplicationView.Value.ToString(), true);
 }
 ...
}

The XAML file has a GridView for all view states except Snapped, and a ListView for Snapped. The
two controls share a DataTemplate for displaying the items. This is defined in the Resources section of
the XAML file along with the view model:

Project: DisplayHighSchoolStudents | File: MainPage.xaml (excerpt)

<Page ... >
 <Page.Resources>
 <elpaso:StudentBodyPresenter x:Key="presenter" />

 <DataTemplate x:Key="studentTemplate">
 <Border Height="120"
 Width="280">
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="*" />
 <RowDefinition Height="*" />
 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition Width="*" />
 </Grid.ColumnDefinitions>

 <Image Grid.Row="0" Grid.Column="0" Grid.RowSpan="2"
 Source="{Binding PhotoFilename}"
 Height="120"
 Margin="5" />

 <TextBlock Text="{Binding FullName}"
 Grid.Row="0" Grid.Column="1"
 VerticalAlignment="Center"
 Margin="5 0" />

 <StackPanel Grid.Row="1" Grid.Column="1"

	 CHAPTER 12  Pages and Navigation	 601

 Orientation="Horizontal"
 VerticalAlignment="Center"
 Margin="5 0">
 <TextBlock Text="GPA = " />
 <TextBlock Text="{Binding GradePointAverage}" />
 </StackPanel>
 </Grid>
 </Border>
 </DataTemplate>
 </Page.Resources>
 ...
</Page>

Because this DataTemplate is shared between the GridView and ListView, and because the ListView
is used in Snapped mode, and because Snapped mode always implies a 320-unit width, a template
defined for Snapped needs to be narrower than 320 units. Of course, it’s always possible to use
different item templates for the two controls as the Grid App template does.

The page is divided into two rows, with the top row dedicated to an invisible Back button and
page title:

Project: DisplayHighSchoolStudents | File: MainPage.xaml (excerpt)

<Page ... >
 ...
 <Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}"
 DataContext="{Binding Source={StaticResource presenter},
 Path=StudentBody}">
 <Grid.RowDefinitions>
 <RowDefinition Height="140" />
 <RowDefinition Height="*" />
 </Grid.RowDefinitions>

 <Grid Grid.Row="0">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition Width="*" />
 </Grid.ColumnDefinitions>

 <Button Name="backButton"
 Grid.Column="0"
 Style="{StaticResource BackButtonStyle}"
 IsEnabled="False" />

 <TextBlock Name="pageTitle"
 Text="{Binding School}"
 Grid.Column="1"
 Style="{StaticResource PageHeaderTextStyle}" />
 </Grid>
 ...
 </Grid>
</Page>

602	 PART 1  Elementals

Notice that the Button is disabled because this is the main page. The standard style for this button
hides the button entirely when it’s disabled. The TextBlock is also based on a standard style, and it has
a binding to the School property.

The second row of the Grid contains both the GridView and ListView, but the ListView has its
Visibility property set to Collapsed:

Project: DisplayHighSchoolStudents | File: MainPage.xaml (excerpt)

<Page ... >
 ...
 <Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}"
 DataContext="{Binding Source={StaticResource presenter},
 Path=StudentBody}">
 <Grid.RowDefinitions>
 <RowDefinition Height="140" />
 <RowDefinition Height="*" />
 </Grid.RowDefinitions>
 ...
 <GridView Name="gridView"
 Grid.Row="1"
 ItemsSource="{Binding Students}"
 Padding="116 0 40 46"
 SelectionMode="None"
 IsSwipeEnabled="False"
 IsItemClickEnabled="True"
 ItemClick="OnGridViewItemClick"
 ItemTemplate="{StaticResource studentTemplate}" />

 <ListView Name="listView"
 Grid.Row="1"
 ItemsSource="{Binding Students}"
 Visibility="Collapsed"
 SelectionMode="None"
 IsSwipeEnabled="False"
 IsItemClickEnabled="True"
 ItemClick="OnGridViewItemClick"
 ItemTemplate="{StaticResource studentTemplate}" />
 ...
 </Grid>
</Page>

Obviously, the GridView and ListView share a bunch of properties. These could be defined in a Style
with a TargetType of ListViewBase. Selection has been disabled, but both controls have an ItemClick
event set to a handler in the code-behind file.

Finally, MainPage has a section for Visual State Manager markup. The primary purpose is to hide
the GridView and show the ListView when the application is in the Snapped state:

Project: DisplayHighSchoolStudents | File: MainPage.xaml (excerpt)

<Page ... >
 ...
 <Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}"
 DataContext="{Binding Source={StaticResource presenter},
 Path=StudentBody}">

	 CHAPTER 12  Pages and Navigation	 603

 ...
 <VisualStateManager.VisualStateGroups>
 <VisualStateGroup x:Name="ApplicationViewStates">

 <VisualState x:Name="FullScreenLandscape" />

 <VisualState x:Name="Filled" />

 <VisualState x:Name="FullScreenPortrait">
 <Storyboard>
 <ObjectAnimationUsingKeyFrames Storyboard.TargetName="backButton"
 Storyboard.TargetProperty="Style">
 <DiscreteObjectKeyFrame KeyTime="0"
 Value="{StaticResource PortraitBackButtonStyle}" />
 </ObjectAnimationUsingKeyFrames>

 <ObjectAnimationUsingKeyFrames Storyboard.TargetName="gridView"
 Storyboard.TargetProperty="Padding">
 <DiscreteObjectKeyFrame KeyTime="0" Value="96 0 10 56" />
 </ObjectAnimationUsingKeyFrames>
 </Storyboard>
 </VisualState>

 <VisualState x:Name="Snapped">
 <Storyboard>
 <ObjectAnimationUsingKeyFrames Storyboard.TargetName="gridView"
 Storyboard.TargetProperty="Visibility">
 <DiscreteObjectKeyFrame KeyTime="0" Value="Collapsed" />
 </ObjectAnimationUsingKeyFrames>

 <ObjectAnimationUsingKeyFrames Storyboard.TargetName="listView"
 Storyboard.TargetProperty="Visibility">
 <DiscreteObjectKeyFrame KeyTime="0" Value="Visible" />
 </ObjectAnimationUsingKeyFrames>

 <ObjectAnimationUsingKeyFrames Storyboard.TargetName="backButton"
 Storyboard.TargetProperty="Style">
 <DiscreteObjectKeyFrame KeyTime="0"
 Value="{StaticResource SnappedBackButtonStyle}" />
 </ObjectAnimationUsingKeyFrames>

 <ObjectAnimationUsingKeyFrames Storyboard.TargetName="pageTitle"
 Storyboard.TargetProperty="Style">
 <DiscreteObjectKeyFrame KeyTime="0"
 Value="{StaticResource SnappedPageHeaderTextStyle}" />
 </ObjectAnimationUsingKeyFrames>
 </Storyboard>
 </VisualState>
 </VisualStateGroup>
 </VisualStateManager.VisualStateGroups>
 </Grid>
</Page>

In addition to swapping the visibility of the GridView and ListView, this Visual State Manager section
also changes button and title styles and the GridView padding.

604	 PART 1  Elementals

Here’s the program running normally:

It won’t take long to see the grade point averages changing.

In Snapped mode, the program switches to a ListView with a smaller title:

	 CHAPTER 12  Pages and Navigation	 605

In portrait mode, the extra space at the sides closes up a bit:

Whenever an item is clicked, the GridView or ListView fires an ItemClick event. This initiates
navigation to a Page derivative of type StudentPage, passing to it the ClickedItem property of the
event arguments, which is an object of type Student:

Project: DisplayHighSchoolStudents | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 ...
 void OnGridViewItemClick(object sender, ItemClickEventArgs args)
 {
 this.Frame.Navigate(typeof(StudentPage), args.ClickedItem);
 }
}

606	 PART 1  Elementals

In the OnNavigatedTo override in StudentPage, this Student object is set to the DataContext of the
page:

Project: DisplayHighSchoolStudents | File: StudentPage.xaml.cs (excerpt)

public sealed partial class StudentPage : Page
{
 public StudentPage()
 {
 this.InitializeComponent();
 SizeChanged += OnPageSizeChanged;
 }

 void OnPageSizeChanged(object sender, SizeChangedEventArgs args)
 {
 VisualStateManager.GoToState(this, ApplicationView.Value.ToString(), true);
 }

 protected override void OnNavigatedTo(NavigationEventArgs args)
 {
 this.DataContext = args.Parameter;
 base.OnNavigatedTo(args);
 }

 void OnBackButtonClick(object sender, RoutedEventArgs args)
 {
 this.Frame.GoBack();
 }
}

Also notice the call to VisualStateManager.GoToState as well as a Click handler to go back to Main-
Page.

The StudentPage.xaml file simply displays a couple properties of the Student class:

Project: DisplayHighSchoolStudents | File: StudentPage.xaml (excerpt)

<Page ...
 Name="page"
 FontSize="24">

 <Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <Grid.RowDefinitions>
 <RowDefinition Height="140" />
 <RowDefinition Height="*" />
 </Grid.RowDefinitions>

 <Grid Grid.Row="0">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition Width="*" />
 </Grid.ColumnDefinitions>

 <Button Name="backButton"
 Grid.Column="0"
 Style="{StaticResource BackButtonStyle}"
 IsEnabled="{Binding ElementName=page, Path=Frame.CanGoBack}"

	 CHAPTER 12  Pages and Navigation	 607

 Click="OnBackButtonClick" />

 <TextBlock Name="pageTitle"
 Text="{Binding FullName}"
 Grid.Column="1"
 Style="{StaticResource PageHeaderTextStyle}" />
 </Grid>

 <StackPanel Grid.Row="1"
 HorizontalAlignment="Center">
 <Image Source="{Binding PhotoFilename}"
 Width="240" />

 <TextBlock Text="{Binding Sex}"
 HorizontalAlignment="Center"
 Margin="10" />

 <StackPanel Orientation="Horizontal"
 HorizontalAlignment="Center"
 Margin="10">
 <TextBlock Text="GPA = " />
 <TextBlock Text="{Binding GradePointAverage}" />
 </StackPanel>
 </StackPanel>

 <VisualStateManager.VisualStateGroups>
 <VisualStateGroup x:Name="ApplicationViewStates">

 <VisualState x:Name="FullScreenLandscape" />

 <VisualState x:Name="Filled" />

 <VisualState x:Name="FullScreenPortrait">
 <Storyboard>
 <ObjectAnimationUsingKeyFrames Storyboard.TargetName="backButton"
 Storyboard.TargetProperty="Style">
 <DiscreteObjectKeyFrame KeyTime="0"
 Value="{StaticResource PortraitBackButtonStyle}" />
 </ObjectAnimationUsingKeyFrames>
 </Storyboard>
 </VisualState>

 <VisualState x:Name="Snapped">
 <Storyboard>
 <ObjectAnimationUsingKeyFrames Storyboard.TargetName="backButton"
 Storyboard.TargetProperty="Style">
 <DiscreteObjectKeyFrame KeyTime="0"
 Value="{StaticResource SnappedBackButtonStyle}" />
 </ObjectAnimationUsingKeyFrames>

 <ObjectAnimationUsingKeyFrames Storyboard.TargetName="pageTitle"
 Storyboard.TargetProperty="Style">
 <DiscreteObjectKeyFrame KeyTime="0"
 Value="{StaticResource SnappedPageHeaderTextStyle}" />
 </ObjectAnimationUsingKeyFrames>
 </Storyboard>
 </VisualState>

608	 PART 1  Elementals

 </VisualStateGroup>
 </VisualStateManager.VisualStateGroups>
 </Grid>
</Page>

The Visual State Manager isn’t as elaborate as before because there’s no longer a GridView and
ListView to switch between. The only real issues involve styles. Here it is in portrait mode:

Grouping the Items

To group items in a GridView or ListView, your view model needs a property of type
ObservableCollection corresponding to the groups. The items within that collection are instances
of a class that includes a title to identify the group and its own ObservableCollection for the
items themselves. You’ll use this view model in conjunction with a proxy collection class called
CollectionViewSource.

My StudentBodyPresenter view model doesn’t have such a property, but it’s easy to create a new
class for this purpose.

	 CHAPTER 12  Pages and Navigation	 609

The GroupBySex project demonstrates how to group the students by male and female. This proj-
ect supplements the view model implemented in the ElPasoHighSchool project with a couple extra
classes. The first is called StudentGroup and has two just properties. The Title property serves as a title
for the group, and the Students property is a collection of Student objects:

Project: GroupBySex | File: StudentGroup.cs

public class StudentGroup : INotifyPropertyChanged
{
 string title;
 ObservableCollection<Student> students = new ObservableCollection<Student>();

 public event PropertyChangedEventHandler PropertyChanged;

 public StudentGroup()
 {
 this.Students = new ObservableCollection<Student>();
 }

 public string Title
 {
 set { SetProperty<string>(ref title, value); }
 get { return title; }
 }

 public ObservableCollection<Student> Students
 {
 set { SetProperty<ObservableCollection<Student>>(ref students, value); }
 get { return students; }
 }

 protected bool SetProperty<T>(ref T storage, T value,
 [CallerMemberName] string propertyName = null)
 {
 if (object.Equals(storage, value))
 return false;

 storage = value;
 OnPropertyChanged(propertyName);
 return true;
 }

 protected void OnPropertyChanged(string propertyName)
 {
 if (PropertyChanged != null)
 PropertyChanged(this, new PropertyChangedEventArgs(propertyName));
 }
}

The StudentGroups class (notice the plural) has only one getable property named Groups,
which is a collection of StudentGroup objects. It also has a set-only Source property of type
StudentBodyPresenter that constructs the StudentGroups and StudentGroup classes. I made Source a
property so that it can be set in XAML.

610	 PART 1  Elementals

Project: GroupBySex | File: StudentGroups.cs (excerpt)

public class StudentGroups : INotifyPropertyChanged
{
 StudentBodyPresenter presenter;
 ObservableCollection<StudentGroup> groups = new ObservableCollection<StudentGroup>();

 public event PropertyChangedEventHandler PropertyChanged;

 public StudentBodyPresenter Source
 {
 set
 {
 if (value != null)
 {
 presenter = value;
 presenter.PropertyChanged += OnHighSchoolPropertyChanged;
 }
 }
 }

 void OnHighSchoolPropertyChanged(object sender, PropertyChangedEventArgs args)
 {
 if (args.PropertyName == "StudentBody" && presenter.StudentBody != null)
 {
 this.Groups = new ObservableCollection<StudentGroup>();
 this.Groups.Add(new StudentGroup { Title = "Male" });
 this.Groups.Add(new StudentGroup { Title = "Female" });

 foreach (Student student in presenter.StudentBody.Students)
 if (student.Sex == "Male")
 this.Groups[0].Students.Add(student);
 else
 this.Groups[1].Students.Add(student);
 }
 }

 public ObservableCollection<StudentGroup> Groups
 {
 set { SetProperty<ObservableCollection<StudentGroup>>(ref groups, value); }
 get { return groups; }
 }

 protected bool SetProperty<T>(ref T storage, T value,
 [CallerMemberName] string propertyName = null)
 {
 if (object.Equals(storage, value))
 return false;

 storage = value;
 OnPropertyChanged(propertyName);
 return true;
 }

 protected void OnPropertyChanged(string propertyName)
 {
 if (PropertyChanged != null)
 PropertyChanged(this, new PropertyChangedEventArgs(propertyName));
 }
}

	 CHAPTER 12  Pages and Navigation	 611

When the Source property is set to an instance of StudentBodyPresenter, the set accessor attaches a
handler for the PropertyChanged event and waits for the StudentBody property to be set and avail-
able. At that time, it can create two instances of the StudentGroup class and fill those with the male
and female students.

For purposes of clarity I’ve kept the MainPage.xaml file to nearly the bare necessities: It has only a
GridView, and it doesn’t change the layout for different views. There is virtually no formatting aside
from the DataTemplate used to display each item, and I’ve excluded that template from this listing
because it’s the same as in the previous program.

The Resources section contains three classes that contribute to the collection used by the GridView.
The StudentBodyPresenter class is first, as in the previous project. Next, StudentGroups is instantiated
with its Source property set to the StudentBodyPresenter instance. Finally, a CollectionViewSource
(the proxy collection) has its Source property bound to the Groups property of StudentGroups.
This StudentGroups object is a collection of StudentGroup objects. The CollectionViewSource needs
to know that this source represents a collection of groups, and it also needs the property of the
StudentGroups class that contains the actual items, in this case Students:

Project: GroupBySex | File: MainPage.xaml (excerpt)

<Page ... >
 <Page.Resources>
 <elpaso:StudentBodyPresenter x:Key="presenter" />

 <local:StudentGroups x:Key="studentGroups"
 Source="{StaticResource presenter}" />

 <CollectionViewSource x:Key="collectionView"
 Source="{Binding Source={StaticResource studentGroups},
 Path=Groups}"
 IsSourceGrouped="True"
 ItemsPath="Students" />

 <DataTemplate x:Key="studentTemplate">
 ...
 </DataTemplate>
 </Page.Resources>

 <Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <GridView ItemsSource="{Binding Source={StaticResource collectionView}}"
 ItemTemplate="{StaticResource studentTemplate}">

 <!-- The Panel for the groups themselves -->
 <GridView.ItemsPanel>
 <ItemsPanelTemplate>
 <WrapGrid />
 </ItemsPanelTemplate>
 </GridView.ItemsPanel>

 <GridView.GroupStyle>
 <GroupStyle>
 <!-- The content of the header -->
 <GroupStyle.HeaderTemplate>
 <DataTemplate>

612	 PART 1  Elementals

 <TextBlock Text="{Binding Title}"
 Style="{StaticResource GroupHeaderTextStyle}" />
 </DataTemplate>
 </GroupStyle.HeaderTemplate>

 <!-- The panel for the items within each group -->
 <GroupStyle.Panel>
 <ItemsPanelTemplate>
 <VariableSizedWrapGrid Orientation="Vertical" />
 </ItemsPanelTemplate>
 </GroupStyle.Panel>
 </GroupStyle>
 </GridView.GroupStyle>
 </GridView>
 </Grid>
</Page>

The ItemsSource of the GridView is bound to that CollectionViewSource, but a few other properties
also set here: Two panels and a DataTemplate for the header. The first of these two panels—the
WrapGrid set to the ItemsPanel property—is the same as in the default template for GridView so that
markup isn’t required. However, it helps to show explicitly that there are two types of panel at work
here, one for the groups and another for the items within each group.

Here’s the result scrolled so that you can see the end of the boys and the start of the girls:

Although I’ve been instantiating view models in the XAML file, in the general case you probably
want to share a view model among multiple pages. A good place to instantiate a single instance
of the view model is in the App class, and from there you can make it available to the rest of the
application as a public property.

PART II

Specialties

CHAPTER 13 Touch, Etc. .615

CHAPTER 14 Bitmaps .683

CHAPTER 15 Going Native. .779

CHAPTER 16 Rich Text .845

CHAPTER 17 Share and Print .893

CHAPTER 18 Sensors and GPS. .953

CHAPTER 19 Pen (Also Known as Stylus). 1013

C13671768.indd 613C13671768.indd 613 1/9/2013 2:03:10 PM1/9/2013 2:03:10 PM

		 615

C H A P T E R 1 3

Touch, Etc.

One of the most forward-looking aspects of the Windows Runtime is the consolidation of touch,
mouse, and pen input. No longer is it necessary to add touch to an existing mouse-oriented

application, or add some mouse support to a touch application. From the very beginning, the pro-
grammer treats all these forms of input in a fairly interchangeable manner. In accordance with the
Windows Runtime programming interface, I will be using the word pointer to refer to input from
touch, mouse, and the pen (also known as the stylus) when it’s not necessary to distinguish the actual
input device.

The best way to handle pointer input is through the existing Windows Runtime controls. As you’ve
seen, standard controls such as Button, Slider, ScrollViewer, and Thumb all respond to pointer input
and use that to deliver higher-level input to your application.

In some cases, however, the programmer needs to obtain actual pointer input, and for that
purpose UIElement defines three different families of events:

■■ Eight low-level events beginning with the word Pointer

■■ Five higher-level events beginning with the word Manipulation

■■ Tapped, RightTapped, DoubleTapped, and Holding events

The Control class supplements these events with virtual protected methods beginning with the word
On and followed by the event name.

To receive pointer input, a FrameworkElement derivative must have its IsHitTestVisible property set
to true and its Visibility property set to Visible. A Control derivative must have its IsEnabled property
set to true. The element must have some kind of graphical representation on the screen; a Panel
derivative can have a Transparent background but not a null background.

All these events are associated with the element that is underneath your finger or mouse or pen
at the time of the event. The only exception is when a pointer has been “captured” by an element, as
you’ll see later in this chapter.

If you need to track individual fingers, you’ll want to use the Pointer events. Each event is
accompanied by an ID number that uniquely identifies either an individual finger or pen touching
the screen, or the mouse or pen. In this chapter I’ll demonstrate how to use Pointer events for a
finger-paint program and a piano keyboard (unfortunately without sound). Both these programs
obviously need to handle simultaneous input from multiple fingers.

616	 PART 2  Specialties

In a sense, the Pointer events are the only events you need. For example, if you wish to implement
a feature that allows the user to stretch a photograph with two fingers, you can track Pointer events
for those two fingers and measure how far they’re moving apart. But calculations of this sort are pro-
vided for you in the Manipulation events. The Manipulation events consolidate multiple fingers into a
single action, and they’re ideal for moving, stretching, pinching, and rotating visual objects.

For some applications you might be puzzled whether to use Pointer or Manipulation events. The
Manipulation events should probably be your first choice. Particularly if you think to yourself “I hope
the user’s not going to start using a second finger because I’ll just have to ignore it,” you probably
want to use the Manipulation events. Then, if the user does use two or more fingers when only one
finger is necessary, the multiple fingers will be averaged.

However, you’ll also discover that the Manipulation events have an intrinsic lag. A finger touching
the screen needs to move a bit before that finger is interpreted as contributing to a manipulation.
Manipulation events are not fired if a finger taps or holds. Sometimes this lag will be enough to
persuade you to use the Pointer events instead. The XYSlider custom control shown in this chapter
is a case in point. The version shown in this chapter is written with Manipulation events because it
wouldn’t know what to do with extra fingers. But the lag time is a definite problem, so I have another
version in Chapter 14, “Bitmaps,” that uses Pointer events.

Pointer events are generated on a window level by the CoreWindow object, and you can derive
Manipulation events on your own using the GestureRecognizer, but I’ll be ignoring those facilities in
this chapter and sticking with the events defined by UIElement and the virtual methods defined by
Control. I also won’t get into information about hardware input devices available from classes in the
Windows.Devices.Input namespace.

Input from the pen has some special considerations involving the selection, erasing, and storage of
pen strokes, as well as handwriting recognition. Those topics will be saved for Chapter 19, “Pen (Also
Known as Stylus).” The Microsoft Surface tablet introduced in October 2012 does not support pen
input.

A Pointer Roadmap

Of the eight Pointer events, five are very common. If you touch a finger to an enabled and visible
UIElement derivative, move it, and lift it, these five Pointer events are generated in the following
order:

■■ PointerEntered

■■ PointerPressed

■■ PointerMoved (multiple occurrences in the general case)

■■ PointerReleased

■■ PointerExited

	 CHAPTER 13  Touch, Etc.	 617

A finger generates Pointer events only when the finger is touching the screen or when it has just been
removed. There is no such thing as “hover” with touch.

The mouse is a little different. The mouse generates PointerMoved events even without the mouse
button pressed. Suppose you move the mouse pointer to a particular element, press the button,
move the mouse some more, release the button, and then move the mouse off the element. The
element generates the following series of events:

■■ PointerEntered

■■ PointerMoved (multiple)

■■ PointerPressed

■■ PointerMoved (multiple)

■■ PointerReleased

■■ PointerMoved (multiple)

■■ PointerExited

Multiple PointerPressed and PointerReleased events can also be generated if the user presses and
releases various mouse buttons.

Now let’s try a pen. The element begins reacting to the pen before it actually touches the
screen, so you’ll first see a PointerEntered event followed by PointerMoved. As the pen touches the
screen, a PointerPressed event is generated. Move the pen, and lift it. The element continues to fire
PointerMoved events after PointerReleased, but it culminates with a PointerExited when the pen is
moved farther away from the screen. It’s the same sequence of events as the mouse.

When the user spins the mouse wheel, the following event is generated:

■■ PointerWheelChanged

The remaining two events are rarer:

■■ PointerCaptureLost

■■ PointerCanceled

I’ll discuss pointer capture later in this chapter, at which time the PointerCaptureLost event becomes
much more important.

I have never seen a PointerCanceled event even when I’ve unplugged the mouse from the
computer, but the event exists to report an error of that sort.

All these events are accompanied by an instance of PointerRoutedEventArgs, defined in the
Windows.UI.Xaml.Input namespace. (Watch out: There’s also a PointerEventArgs class in the
Windows.UI.Core namespace, but that’s used for the processing of pointer input on the window
level.) As the name of this class indicates, these Pointer events are all routed events that travel up
the visual tree.

618	 PART 2  Specialties

PointerRoutedEventArgs defines two properties common for routed events:

■■ OriginalSource indicates the element that raised the event.

■■ Handled lets you stop further routing of the event up the visual tree.

Lots of other information is available from the PointerRoutedEventArgs object. The following
description covers only the highlights. The class also defines these members:

■■ Pointer property of type Pointer

■■ KeyModifiers property indicating the status of the Shift, Control, Menu (otherwise known as
Alt), and Windows keys

■■ GetCurrentPoint method that returns a PointerPoint object

Watch out: Already we’re dealing with classes named Pointer (defined in the
Windows.UI.Xaml.Input namespace) and PointerPoint (defined in Windows.UI.Input).

The Pointer class has just four properties:

■■ PointerId property is an unsigned integer identifying the mouse, or an individual finger or pen.

■■ PointerDeviceType is an enumeration value Touch, Mouse, or Pen.

■■ IsInRange is a bool that indicates whether the device is in range of the screen.

■■ IsInContact is a bool indicating whether the finger or pen is touching the screen, or whether
the mouse button is down.

The PointerId property is extremely important. This is what you use to track the movement of
individual fingers. Almost always, a program that handles Pointer events will define a dictionary in
which this PointerId property serves as a key.

The GetCurrentPoint method of PointerRoutedEventArgs sounds as if it returns the current
coordinate location of the pointer, and it does, except that it also provides a whole lot more.
Because it’s convenient to get the location relative to a particular element, GetCurrentPoint accepts
an argument of type UIElement. The PointerPoint object returned from this method duplicates
some information from Pointer (the PointerId and IsInContact properties) and provides some other
information:

■■ Position of type Point, the (x, y) location of the pointer at the time of the event

■■ Timestamp of type ulong

■■ Properties of type PointerPointProperties (defined in Windows.UI.Input)

The Position property is always relative to the upper-left corner of the element you pass to the
GetCurrentPoint method.

PointerRoutedEventArgs also defines a method named GetIntermediatePoints that is similar to
GetCurrentPoint except that it returns a collection of PointerPoint objects. Very often this collection
has just one item—the same PointerPoint returned from GetCurrentPoint—but for the PointerMoved

	 CHAPTER 13  Touch, Etc.	 619

event there could be more than one, particularly if the event handler isn’t very fast. I’ve particularly
noticed GetIntermediatePoints returning multiple PointerPoint objects on the Microsoft Surface.

The PointerPointProperties class defines 22 properties that provide detailed information about the
event, including which mouse buttons are pressed, whether the button on the pen barrel is pressed,
how the pen is tilted, the contact rectangle of the finger with the screen (if that’s available), the
pressure of a finger or pen against the screen (if that’s available), and MouseWheelDelta.

You can use as little or as much of this information as you need. Obviously, some of it will not be
applicable to every pointer device and will therefore have default values.

A First Dab at Finger Painting

Perhaps the archetypal multitouch application is one that lets you paint with your fingers on the
screen. You can write such a program handling just three Pointer events and examining just two
properties from the event arguments, but I’m afraid the result has a flaw not quite compensated for
by its simplicity.

The MainPage.xaml file of FingerPaint1 simply provides a name for the standard Grid:

Project: FingerPaint1 | File: MainPage.xaml (excerpt)

<Page ... >
 <Grid Name="contentGrid"
 Background="{StaticResource ApplicationPageBackgroundThemeBrush}" />
</Page>

The very first thing that the code-behind file does is define a Dictionary with a key of type uint.
I mentioned earlier that virtually every program that handles Pointer events has a Dictionary of this
sort. The type of the items you store in the Dictionary is dependent on the application; sometimes an
application will define a class or structure specifically for this purpose. In a rudimentary finger-painting
application, each finger touching the screen will be drawing a unique Polyline, so the Dictionary can
store that Polyline instance:

Project: FingerPaint1 | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 Dictionary<uint, Polyline> pointerDictionary = new Dictionary<uint, Polyline>();
 Random rand = new Random();
 byte[] rgb = new byte[3];

 public MainPage()
 {
 this.InitializeComponent();
 }

 protected override void OnPointerPressed(PointerRoutedEventArgs args)
 {
 // Get information from event arguments
 uint id = args.Pointer.PointerId;
 Point point = args.GetCurrentPoint(this).Position;

620	 PART 2  Specialties

 // Create random color
 rand.NextBytes(rgb);
 Color color = Color.FromArgb(255, rgb[0], rgb[1], rgb[2]);

 // Create Polyline
 Polyline polyline = new Polyline
 {
 Stroke = new SolidColorBrush(color),
 StrokeThickness = 24,
 };
 polyline.Points.Add(point);

 // Add to Grid
 contentGrid.Children.Add(polyline);

 // Add to dictionary
 pointerDictionary.Add(id, polyline);
 base.OnPointerPressed(args);
 }

 protected override void OnPointerMoved(PointerRoutedEventArgs args)
 {
 // Get information from event arguments
 uint id = args.Pointer.PointerId;
 Point point = args.GetCurrentPoint(this).Position;

 // If ID is in dictionary, add the point to the Polyline
 if (pointerDictionary.ContainsKey(id))
 pointerDictionary[id].Points.Add(point);

 base.OnPointerMoved(args);
 }

 protected override void OnPointerReleased(PointerRoutedEventArgs args)
 {
 // Get information from event arguments
 uint id = args.Pointer.PointerId;

 // If ID is in dictionary, remove it
 if (pointerDictionary.ContainsKey(id))
 pointerDictionary.Remove(id);

 base.OnPointerReleased(args);
 }
}

In the OnPointerPressed override, the program creates a Polyline and gives it a random color. The
first point is the location of the pointer. The Polyline is added to the Grid and also to the dictionary.

When subsequent OnPointerMoved calls occur, the PointerId property identifies the finger, so the
particular Polyline associated with that finger can be accessed from the dictionary and the new Point
value can be added to the Polyline. Because it’s the same instance as the Polyline in the Grid, the
on-screen object will seem to grow in length as the finger moves.

The OnPointerReleased processing simply removes the entry from the dictionary. That particular
Polyline is completed.

	 CHAPTER 13  Touch, Etc.	 621

When you run the program, of course the first thing you’ll want to do is sweep your whole hand
across the screen like the glaciers that created the Finger Lakes in upstate New York.

Each finger paints its own polyline as a single series of connected points of a particular color, and
you’ll discover that you can use the mouse and pen as well.

I mentioned that this code has a flaw. The OnPointerMoved and OnPointerReleased overrides are
very careful to check that the particular ID exists as a key in the dictionary before using it to access
the dictionary. This is very important for mouse and pen processing because these devices generate
PointerMoved events prior to OnPointerPressed.

But try this: Put the program in a snap mode, and with your finger, draw a line that goes outside
the page and then back in.

622	 PART 2  Specialties

Look at that straight line down the left side. That line is drawn when the finger reenters the page,
and it indicates that the program doesn’t get PointerMoved events during the time the finger strays
outside. Try it with the mouse. Same thing.

Now try this: Using a finger, draw a line from the inside of the page to the outside and lift your
finger. Now use your finger to draw inside the page again. This seems to work OK.

Now try it with the mouse. Press the mouse button over the FingerPaint1 page, move the mouse
to outside the page, and release the mouse button. Now move the mouse to the FingerPaint1 page
again. The program continues to draw the line even with the mouse button released! This is obviously
wrong (but I’m sure you’ve seen programs that get “confused” like this). Now press the mouse button,
and you’ll generate an exception when the OnPointerPressed method attempts to add an entry to the
dictionary using a key that already exists in the dictionary. Unlike touch or the pen, all mouse events
have the same ID.

Let’s fix these problems.

Capturing the Pointer

To allow me (and you) to get a better sense of the sequence of Pointer events, I wrote a pro-
gram called PointerLog that logs all the Pointer events on the screen. The core of the program is a
UserControl called LoggerControl. The Grid in the LoggerControl.xaml file has been given a name but
is otherwise initially empty:

Project: PointerLog | File: LoggerControl.xaml (excerpt)

<UserControl ... >

 <Grid Name="contentGrid" Background="Transparent" />

</UserControl>

The code-behind file has overrides of all eight Pointer methods, all of which call a method named
Log with the event name and event arguments. Like all Pointer programs, a Dictionary is defined, but
the values in this one are not simple objects. Instead, I defined a nested class named PointerInfo right
at the top of the LoggerControl class for storing per-finger information in this dictionary.

Project: PointerLog | File: LoggerControl.xaml.cs (excerpt)

public sealed partial class LoggerControl : UserControl
{
 class PointerInfo
 {
 public StackPanel stackPanel;
 public string repeatEvent;
 public TextBlock repeatTextBlock;
 };

 Dictionary<uint, PointerInfo> pointerDictionary = new Dictionary<uint, PointerInfo>();

	 CHAPTER 13  Touch, Etc.	 623

 public LoggerControl()
 {
 this.InitializeComponent();
 }

 public bool CaptureOnPress { set; get; }

 protected override void OnPointerEntered(PointerRoutedEventArgs args)
 {
 Log("Entered", args);
 base.OnPointerEntered(args);
 }

 protected override void OnPointerPressed(PointerRoutedEventArgs args)
 {
 if (this.CaptureOnPress)
 CapturePointer(args.Pointer);

 Log("Pressed", args);
 base.OnPointerPressed(args);
 }

 protected override void OnPointerMoved(PointerRoutedEventArgs args)
 {
 Log("Moved", args);
 base.OnPointerMoved(args);
 }

 protected override void OnPointerReleased(PointerRoutedEventArgs args)
 {
 Log("Released", args);
 base.OnPointerReleased(args);
 }

 protected override void OnPointerExited(PointerRoutedEventArgs args)
 {
 Log("Exited", args);
 base.OnPointerExited(args);
 }

 protected override void OnPointerCaptureLost(PointerRoutedEventArgs args)
 {
 Log("CaptureLost", args);
 base.OnPointerCaptureLost(args);
 }

 protected override void OnPointerCanceled(PointerRoutedEventArgs args)
 {
 Log("Canceled", args);
 base.OnPointerCanceled(args);
 }

 protected override void OnPointerWheelChanged(PointerRoutedEventArgs args)
 {
 Log("WheelChanged", args);
 base.OnPointerWheelChanged(args);
 }

624	 PART 2  Specialties

 void Log(string eventName, PointerRoutedEventArgs args)
 {
 uint id = args.Pointer.PointerId;
 PointerInfo pointerInfo;

 if (pointerDictionary.ContainsKey(id))
 {
 pointerInfo = pointerDictionary[id];
 }
 else
 {
 // New ID, so new StackPanel and header
 TextBlock header = new TextBlock
 {
 Text = args.Pointer.PointerId + " - " + args.Pointer.PointerDeviceType,
 FontWeight = FontWeights.Bold
 };
 StackPanel stackPanel = new StackPanel();
 stackPanel.Children.Add(header);

 // New PointerInfo for dictionary
 pointerInfo = new PointerInfo
 {
 stackPanel = stackPanel
 };
 pointerDictionary.Add(id, pointerInfo);

 // New column in the Grid for the StackPanel
 ColumnDefinition coldef = new ColumnDefinition
 {
 Width = new GridLength(1, GridUnitType.Star)
 };
 contentGrid.ColumnDefinitions.Add(coldef);
 Grid.SetColumn(stackPanel, contentGrid.ColumnDefinitions.Count - 1);
 contentGrid.Children.Add(stackPanel);
 }

 // Don't repeat PointerMoved and PointerWheelChanged events
 TextBlock txtblk = null;

 if (eventName == pointerInfo.repeatEvent)
 {
 txtblk = pointerInfo.repeatTextBlock;
 }
 else
 {
 txtblk = new TextBlock();
 pointerInfo.stackPanel.Children.Add(txtblk);
 }

 txtblk.Text = eventName + " ";

 if (eventName == "WheelChanged")
 {
 txtblk.Text += args.GetCurrentPoint(this).Properties.MouseWheelDelta;

	 CHAPTER 13  Touch, Etc.	 625

 }
 else
 {
 txtblk.Text += args.GetCurrentPoint(this).Position;
 }

 txtblk.Text += args.Pointer.IsInContact ? " C" : "";
 txtblk.Text += args.Pointer.IsInRange ? " R" : "";

 if (eventName == "Moved" || eventName == "WheelChanged")
 {
 pointerInfo.repeatEvent = eventName;
 pointerInfo.repeatTextBlock = txtblk;
 }
 else
 {
 pointerInfo.repeatEvent = null;
 pointerInfo.repeatTextBlock = null;
 }
 }

 public void Clear()
 {
 contentGrid.ColumnDefinitions.Clear();
 contentGrid.Children.Clear();
 pointerDictionary.Clear();
 }
}

The Log method seems rather complicated, but every time it encounters a new PointerId value in
the event arguments, it adds a new column to the Grid, puts a TextBlock at the top indicating the ID
and device type, and adds an entry to the dictionary. All subsequent events with that ID go in that
column, except that consecutive PointerMoved and PointerWheelChanged events don’t get extra
entries. There’s no scrolling facility and eventually there will be too many columns, but a public Clear
method restores everything to a pristine condition.

The LoggerControl only gets Pointer events for that control. To ease the examination of what
happens when fingers move between controls, I made LoggerControl part of a larger page with the
program name at the top and three buttons at the bottom:

Project: PointerLog | File: MainPage.xaml (excerpt)

<Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="*" />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>

 <TextBlock Text="Pointer Event Log"
 Grid.Row="0"
 Style="{StaticResource HeaderTextStyle}"

626	 PART 2  Specialties

 HorizontalAlignment="Center"
 Margin="12" />

 <local:LoggerControl x:Name="logger"
 Grid.Row="1"
 FontSize="{StaticResource ControlContentThemeFontSize}" />

 <Grid Grid.Row="2">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="*" />
 <ColumnDefinition Width="*" />
 <ColumnDefinition Width="*" />
 </Grid.ColumnDefinitions>

 <Button Content="Clear"
 Grid.Column="0"
 HorizontalAlignment="Center"
 Click="OnClearButtonClick" />

 <ToggleButton Name="captureButton"
 Content="Capture on Press"
 Grid.Column="1"
 HorizontalAlignment="Center"
 Checked="OnCaptureToggleButtonChecked"
 Unchecked="OnCaptureToggleButtonChecked" />

 <Button Content="Release Captures in 5 seconds"
 Grid.Column="2"
 IsEnabled="{Binding ElementName=captureButton, Path=IsChecked}"
 HorizontalAlignment="Center"
 Click="OnReleaseCapturesButtonClick" />
 </Grid>
</Grid>

Notice the final Button is enabled only when the ToggleButton is toggled on.

The code-behind file just handles the buttons (which I’ll discuss shortly):

Project: PointerLog | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 DispatcherTimer timer;

 public MainPage()
 {
 this.InitializeComponent();
 timer = new DispatcherTimer { Interval = TimeSpan.FromSeconds(5) };
 timer.Tick += OnTimerTick;
 }

 void OnClearButtonClick(object sender, RoutedEventArgs args)
 {
 logger.Clear();
 }

 void OnCaptureToggleButtonChecked(object sender, RoutedEventArgs args)

	 CHAPTER 13  Touch, Etc.	 627

 {
 ToggleButton toggle = sender as ToggleButton;
 logger.CaptureOnPress = toggle.IsChecked.Value;
 }

 void OnReleaseCapturesButtonClick(object sender, RoutedEventArgs args)
 {
 timer.Start();
 }

 void OnTimerTick(object sender, object args)
 {
 logger.ReleasePointerCaptures();
 timer.Stop();
 }
}

You can see from the screen that each new finger press gets a unique ID and generates only five
events. Each new series of pen events also gets its own ID (using the same numbering sequence as
touch) with a few more events. The mouse always has an ID of 1:

The letters C and R indicate true values of the IsInContact and IsInRange properties of the Pointer
object. As you can see, for the pen and mouse you can use the IsInRange property to distinguish
between PointerMoved events that occur when the pen is touching the screen or when the mouse
button is pressed.

By default, an element gets Pointer input only when the pointer is within the boundaries of
the element. This can sometimes result in a loss of information. To demonstrate this, I deliberately
designed the program so that LoggerControl does not extend to the full height of the screen. Above
it is an area for the program title, and below is the button area. These areas are the domain of
MainPage. This configuration allows you to experiment with input that moves from one element to
another.

628	 PART 2  Specialties

For example, touch the PointerLog screen somewhere in the middle, move your finger around,
and then move the finger to the top title area or the bottom button area. Lift it off the screen. The
program does not receive that PointerReleased event, and it has no idea that the pointer has been
released. It will never get another event with that particular ID number, but it’s living in a state of
ignorance. The entry in the dictionary is never removed.

Similarly, touch the screen in the top or bottom area and move your finger to the central area. The
program registers PointerEntered and PointerMoved events but not a PointerPressed event.

Often while tracking a particular pointer, you want to continue getting input even if it drifts
outside the element. Not getting that pointer input accounts for the flaws in the FingerPaint1
program.

You can get what you want with a process called “capturing the pointer,” which you do with
a call to the CapturePointer method defined by UIElement. The method has an argument of
type Pointer and returns a bool indicating if the pointer capture has been successful. When will
it not be successful? If you call CapturePointer during an event prior to PointerPressed or during
PointerReleased or later.

For this reason—and for the sake of program politeness—it really only makes sense to call
CapturePointer during a PointerPressed event. By pressing a finger (or pen or mouse button) on a
particular element, the user is generally indicating a desire to interact with that element even if the
finger sometimes drifts outside the element.

If you toggle on the “Capture on Press” button at the bottom of the PointerLog screen, the
program calls

CapturePointer(args.Pointer);

during the OnPointerPressed override.

Now if you press in the central area of the PointerLog program, move your finger to the
top or bottom, and then release, the program logs the PointerReleased event as well as a final
PointerCaptureLost event following PointerExited.

A program can get a list of all the captured pointers with a call to PointerCaptures and
release a particular capture with a ReleasePointerCapture call or release all pointer captures with
ReleasePointerCaptures.

In a real-life application it is tempting to simply ignore the PointerCaptureLost event, but it’s not a
good idea. If Windows needs to communicate something urgent to the user, it’s possible that pointer
capture will be snatched from a program involuntarily. I have not actually seen this happen under
Windows 8, but historically it occurs upon the display of a system modal dialog box—a dialog box
that considers itself so important that it gets all user input until it’s dismissed.

To demonstrate what happens in such a case, I’ve defined the third button to set a DispatcherTimer
for five seconds and then conclude by calling ReleasePointerCaptures for the LoggerControl. When
that happens, a pointer that has been captured fires a PointerCaptureLost event. The element

	 CHAPTER 13  Touch, Etc.	 629

continues to receive other Pointer events if the pointer is still over the element but not if it drifts
outside the element.

What an application should do when it receives an unexpected PointerCaptureLost depends
on the application. For a finger-paint program you might want to move PointerReleased logic into
PointerCaptureLost, for example, and treat both expected and unexpected losses of capture as the
same.

Or, it might make sense to entirely discard that particular drawing event.

In fact, you might want to build this feature into your program. Suppose you decide that the user
should be able to press the Esc key to jettison a drawing event that’s in progress. You could then
implement Esc-key processing with a simple call to ReleasePointerCaptures.

The FingerPaint2 program does precisely that. The XAML file is the same as FingerPaint1, and so is
the code-behind file with the following exceptions:

Project: FingerPaint2 | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 ...
 public MainPage()
 {
 this.InitializeComponent();
 this.IsTabStop = true;
 }

 protected override void OnPointerPressed(PointerRoutedEventArgs args)
 {
 ...
 // Capture the Pointer
 CapturePointer(args.Pointer);

 // Set input focus
 Focus(FocusState.Programmatic);

 base.OnPointerPressed(args);
 }
 ...
 protected override void OnPointerCaptureLost(PointerRoutedEventArgs args)
 {
 // Get information from event arguments
 uint id = args.Pointer.PointerId;

 // If ID is in dictionary, abandon the drawing operation
 if (pointerDictionary.ContainsKey(id))
 {
 contentGrid.Children.Remove(pointerDictionary[id]);
 pointerDictionary.Remove(id);
 }

 base.OnPointerCaptureLost(args);
 }

630	 PART 2  Specialties

 protected override void OnKeyDown(KeyRoutedEventArgs args)
 {
 if (args.Key == VirtualKey.Escape)
 ReleasePointerCaptures();

 base.OnKeyDown(args);
 }
}

In the constructor, the IsTabStop property must be set to true for the element to receive keyboard
input. Only one element can receive keyboard input at any time. This is called the element with key-
board “focus,” and some controls indicate they have keyboard focus with a special appearance, such
as a dotted line. Often an element can give itself keyboard focus by calling the Focus method when
the element is tapped or (in this case) during the OnPointerPressed event. That override concludes its
processing by calling the Focus method as well as CapturePointer.

The OnPointerCaptureLost method removes the Polyline in progress from the Grid and removes
the ID from the dictionary. However, the PointerCaptureLost event can occur normally after a finger
has been released from the screen, so this ID will still be in the dictionary only if the page didn’t get a
call to OnPointerReleased.

The OnKeyDown method gets keystrokes and calls ReleasePointerCaptures for Esc. This call has no
effect if no pointers are captured.

Try the problematic actions identified with the FingerPaint1, and you’ll find that they’re gone in
this version. Moreover, now you can be drawing on the screen and press Esc, and what you’re cur-
rently drawing will disappear and the finger will have no further effect until it’s released and pressed
again. (Let’s hope that’s what you want.)

Editing with a Popup Menu

Let’s add an editing feature to this program. If you click an existing Polyline with the right mouse
button—or you do something equivalent with a finger or pen—a little menu pops up with the op-
tions “Change color” and “Delete.”

In the previous two FingerPaint programs, the Polyline was created, initialized, and added to the
content Grid and touch dictionary like so:

// Create Polyline
Polyline polyline = new Polyline
{
 Stroke = new SolidColorBrush(color),
 StrokeThickness = 24,
};
polyline.Points.Add(point);

// Add to Grid
contentGrid.Children.Add(polyline);

// Add to dictionary
pointerDictionary.Add(id, polyline);

	 CHAPTER 13  Touch, Etc.	 631

For FingerPaint3 let’s add some additional code that sets two event handlers on this Polyline. The
goal here is to use the handler for the RightTapped event of the Polyline to display a popup menu:

Project: FingerPaint3 | File: MainPage.xaml.cs (excerpt)

protected override void OnPointerPressed(PointerRoutedEventArgs args)
{
 ...
 // Create Polyline
 Polyline polyline = new Polyline
 {
 Stroke = new SolidColorBrush(color),
 StrokeThickness = 24,
 };
 polyline.PointerPressed += OnPolylinePointerPressed;
 polyline.RightTapped += OnPolylineRightTapped;
 polyline.Points.Add(point);
 ...
}

Although we’re interested only in the RightTapped event for the Polyline, I’ve also set a handler for
the PointerPressed event. That handler is not very interesting, but it’s very important:

Project: FingerPaint3 | File: MainPage.xaml.cs (excerpt)

void OnPolylinePointerPressed(object sender, PointerRoutedEventArgs args)
{
 args.Handled = true;
}

You’ll definitely want to try this program without this particular handler, and here’s why: When
a PointerPressed event is fired, that event is associated with the topmost element that is enabled
for user input. If you’re clicking or right-clicking a Polyline rather than the surface of MainPage, the
PointerPressed event is fired for that Polyline.

However, PointerPressed is a routed event, and you’ll recall from Chapter 3, “Basic Event Handling,”
that routed events travel up the visual tree, which means that if the Polyline isn’t interested in this
event, it will go to MainPage, which will assume that you want to begin drawing a new figure. To
prevent that from happening in this program, the Polyline handles the PointerPressed event by set-
ting the Handled property on the event arguments to true. This prevents the event from reaching
MainPage.

The popup menu logic occurs in the RightTapped event:

Project: FingerPaint3 | File: MainPage.xaml.cs (excerpt)

async void OnPolylineRightTapped(object sender, RightTappedRoutedEventArgs args)
{
 Polyline polyline = sender as Polyline;
 PopupMenu popupMenu = new PopupMenu();
 popupMenu.Commands.Add(new UICommand("Change color", OnMenuChangeColor, polyline));
 popupMenu.Commands.Add(new UICommand("Delete", OnMenuDelete, polyline));
 await popupMenu.ShowAsync(args.GetPosition(this));
}

632	 PART 2  Specialties

As I demonstrated in Chapter 8, “App Bars and Popups,” it’s fairly easy to use PopupMenu. After
creating the object, you can add up to six items to the menu. Each item consists of a text label, a
callback, and an optional object to help the callback identify the event. The ShowAsync method
displays the menu at a particular location.

The handlers can obtain that last argument passed to the UICommand constructor by casting the
Id property of the callback method’s IUICommand argument:

Project: FingerPaint3 | File: MainPage.xaml.cs (excerpt)

void OnMenuChangeColor(IUICommand command)
{
 Polyline polyline = command.Id as Polyline;
 rand.NextBytes(rgb);
 Color color = Color.FromArgb(255, rgb[0], rgb[1], rgb[2]);
 (polyline.Stroke as SolidColorBrush).Color = color;
}

void OnMenuDelete(IUICommand command)
{
 Polyline polyline = command.Id as Polyline;
 contentGrid.Children.Remove(polyline);
}

I’m sure you already know how to use the mouse to right-click a Polyline. With touch, you’ll need
to hold your finger steady on a Polyline for a moment, and then release. You’ll see a square form
when you’ve held long enough. Similarly with a pen, hold it until you see a circle form, and then
release. The menu appears:

The square and circle you see when you hold your finger or the pen to the screen are actually
associated with the Holding event. If you set the IsHoldingEnabled property on the Polyline to false,

	 CHAPTER 13  Touch, Etc.	 633

they won’t appear and the user might be a little uncertain how long to press. The RightTapped event
isn’t fired until the user lifts the finger or pen from the screen.

The OnMenuDelete method in FingerPaint3 actually has a subtle bug. If one finger is drawing a
line while another finger invokes the menu for that line, OnMenuDelete removes the Polyline from
the screen but not the dictionary entry with that Polyline. Nothing bad will happen, but the diction-
ary might accumulate some abandoned entries. Logic to fix this would have to search through the
dictionary for the deleted Polyline and then remove the key for that entry.

As I demonstrated with routed events in Chapter 3, whenever you’re dealing with events
generated by different elements, you can structure your event handling in various ways. For
example, an OnPointerPressed override in MainPage can incorporate the logic that I put in
OnPolylinePointerPressed, and you can perform all the RightTapped handling in an OnRightTapped
override. All you need do is check the OriginalSource property on the event arguments to determine
whether the input is coming from the Polyline or MainPage.

The program now has a little drawback. You can’t draw a new line if you want to begin that line on
a point occupied by an existing line. Any PointerPressed event received by the Polyline is flagged as
Handled and essentially discarded.

What if you wanted to give the user both options? If the user presses an existing Polyline and starts
moving, a new figure is started. If the user presses and holds, that’s a menu.

Probably the easiest approach is abandoning the use of the RightTapped event and handling
everything through the Pointer logic. When OnPointerPressed occurs on an existing Polyline,
set a DispatcherTimer for one second, but cancel that timer (and start a drawing operation) if
OnPointerMoved occurs, indicating that the finger has moved a distance greater than some preset
criteria. If the timer fires, display the menu.

Pressure Sensitivity

The lines drawn by the various FingerPaint programs are of a uniform stroke thickness—24 pixels to
be precise—but some touch devices can differentiate heavier touches from lighter touches, and a
really good FingerPaint program would respond by varying the stroke thickness.

There are two properties that might influence line thickness in a finger-painting program, and
both are defined by the PointerPointProperties object returned from the Properties property of
the PointerPoint class (which in turn is obtained by a call to the GetCurrentPoint method of the
PointerRoutedEventArgs event arguments).

The first property is ContactRect, a Rect value that is intended to report the rectangular bounding
box of the contact area of a finger (or pen point) on the screen. This property will probably only apply
to rather esoteric touch devices. On the tablet I’ve been using for most of this book, this Rect always
has a Width and Height of zero regardless of the pointer device. On the first versions of the Microsoft
Surface tablet, the Width and Height values are low-value integers, such as 1, 2, and 3, that don’t
seem as if they can be used for much. (But I might be wrong.)

634	 PART 2  Specialties

The second property is Pressure, which is a float value that can take on values between 0 and 1.
On the tablet I’ve been using for most of this book, this Pressure value is the default value of 0.5 for
fingers and the mouse, but it is variable for the pen, and so I had the opportunity to try it out. (On the
first versions of the Microsoft Surface tablet, the Pressure value is always 0.5.)

For purposes of simplicity, the FingerPaint4 program does not include Esc-key processing or
the editing feature, but it does implement pointer capturing. The big difference is that the Polyline
approach to drawing must be abandoned because a Polyline has only a single StrokeThickness
property. In this new program each stroke must instead be composed of very short individual lines,
each a unique StrokeThickness that is calculated from the Pressure value, but all the same color. This
implies that the dictionary needs to contain values of type Color (or better yet, a Brush) and the
previous Point. This is now two items, so let’s define a custom structure for that purpose that I called
PointerInfo:

Project: FingerPaint4 | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 struct PointerInfo
 {
 public Brush Brush;
 public Point PreviousPoint;
 }

 Dictionary<uint, PointerInfo> pointerDictionary = new Dictionary<uint, PointerInfo>();
 Random rand = new Random();
 byte[] rgb = new byte[3];

 public MainPage()
 {
 this.InitializeComponent();
 }

 protected override void OnPointerPressed(PointerRoutedEventArgs args)
 {
 // Get information from event arguments
 uint id = args.Pointer.PointerId;
 Point point = args.GetCurrentPoint(this).Position;

 // Create random color
 rand.NextBytes(rgb);
 Color color = Color.FromArgb(255, rgb[0], rgb[1], rgb[2]);

 // Create PointerInfo
 PointerInfo pointerInfo = new PointerInfo
 {
 PreviousPoint = point,
 Brush = new SolidColorBrush(color)
 };

	 CHAPTER 13  Touch, Etc.	 635

 // Add to dictionary
 pointerDictionary.Add(id, pointerInfo);

 // Capture the Pointer
 CapturePointer(args.Pointer);

 base.OnPointerPressed(args);
 }

 ...

 protected override void OnPointerReleased(PointerRoutedEventArgs args)
 {
 // Get information from event arguments
 uint id = args.Pointer.PointerId;

 // If ID is in dictionary, remove it
 if (pointerDictionary.ContainsKey(id))
 pointerDictionary.Remove(id);

 base.OnPointerReleased(args);
 }

 protected override void OnPointerCaptureLost(PointerRoutedEventArgs args)
 {
 // Get information from event arguments
 uint id = args.Pointer.PointerId;

 // If ID is still in dictionary, remove it
 if (pointerDictionary.ContainsKey(id))
 pointerDictionary.Remove(id);

 base.OnPointerCaptureLost(args);
 }
}

The earlier PointerPressed handlers created a Polyline, gave it an initial point, and added it to the
Grid and Dictionary. In this program, only a PointerInfo value is created and added to the dictionary.
Much more work occurs in the PointerMoved handler, particularly because I’ve also decided to use
GetIntermediatePoints rather than GetCurrentPoint, resulting (at least theoretically) in smoother
strokes on the Microsoft Surface. But one oddity I discovered is that these points are in the collection
in reverse order!

636	 PART 2  Specialties

This code loops through the points. For each new point and the previous point, a Line element is
constructed and added to the Grid. The last point then replaces the previous point in the PointerInfo
value:

Project: FingerPaint4 | File: MainPage.xaml.cs (excerpt)

protected override void OnPointerMoved(PointerRoutedEventArgs args)
{
 // Get ID from event arguments
 uint id = args.Pointer.PointerId;

 // If ID is in dictionary, start a loop
 if (pointerDictionary.ContainsKey(id))
 {
 PointerInfo pointerInfo = pointerDictionary[id];
 IList<PointerPoint> pointerpoints = args.GetIntermediatePoints(this);

 for (int i = pointerpoints.Count - 1; i >= 0; i--)
 {
 PointerPoint pointerPoint = pointerpoints[i];

 // For each point, create a new Line element and add to Grid
 Point point = pointerPoint.Position;
 float pressure = pointerPoint.Properties.Pressure;

 Line line = new Line
 {
 X1 = pointerInfo.PreviousPoint.X,
 Y1 = pointerInfo.PreviousPoint.Y,
 X2 = point.X,
 Y2 = point.Y,
 Stroke = pointerInfo.Brush,
 StrokeThickness = pressure * 24,
 StrokeStartLineCap = PenLineCap.Round,
 StrokeEndLineCap = PenLineCap.Round
 };
 contentGrid.Children.Add(line);

 // Update PointerInfo
 pointerInfo.PreviousPoint = point;
 }
 // Store PointerInfo back in dictionary
 pointerDictionary[id] = pointerInfo;
 }
 base.OnPointerMoved(args);
}

Notice that the StrokeThickness is set to 24 times the Pressure value. This results in a maximum
stroke thickness of 24 and a stroke thickness of 12 for non-pressure-sensitive devices. Notice also that
the StrokeStartLineCap and StrokeEndLineCap properties are set to Round. Try commenting out these
property settings and see what happens when a stroke has sharp turns: Little gaps appear because
two short lines are at an angle to each other. The line caps cover those gaps.

	 CHAPTER 13  Touch, Etc.	 637

Here’s a little, umm, artwork I did entirely with the pen:

Notice the graceful subtlety of the strokes when rendered with a pressure-sensitive input device.

It is my experience that PointerMoved events can be fired as quickly as 100 times per second, which
is faster than the frame rate of the video display but not quite fast enough for extremely energetic
fingers.

Smoothing the Tapers

Have you ever noticed that solving one problem often reveals another problem? To my mind,
allowing for pressure sensitivity is an important feature in a finger-painting program. Yet, if you draw
something very fast with a pressure-sensitive pen in FingerPaint4, you might notice that lines don’t
seem to taper correctly. Instead, they increase or decrease in size with discrete jumps:

Well, of course. Each of those pieces in the lower-right portion of that squiggle is a separate Line
element with its own StrokeThickness. I drew the squiggle with such speed that the pressure varied
considerably between each event, which made the thickness jump in visible discontinuities.

638	 PART 2  Specialties

If you consider that a particular Line element can have only one constant StrokeThickness, it might
seem difficult to fix this problem. But the solution is actually quite easy (at least conceptually): Rather
than drawing a Line for each event, draw a filled Path consisting of two arcs with different radii
connected by two lines.

To make this job a little easier, you’ll want to make use of a Vector structure, which every modern
operating system should include but the Windows Runtime does not. Here’s a structure I call Vector2
(the “2” is for two dimensions) that is part of a larger library that you’ll encounter in Chapter 14.
Hence, the long namespace name:

Project: FingerPaint5 | File: Vector2.cs

using System;
using Windows.Foundation;
using Windows.UI.Xaml.Media;

namespace Petzold.Windows8.VectorDrawing
{
 public struct Vector2
 {
 // Constructors
 public Vector2(double x, double y)
 : this()
 {
 X = x;
 Y = y;
 }

 public Vector2(Point p)
 : this()
 {
 X = p.X;
 Y = p.Y;
 }

 public Vector2(double angle)
 : this()
 {
 X = Math.Cos(Math.PI * angle / 180);
 Y = Math.Sin(Math.PI * angle / 180);
 }

 // Properties
 public double X { private set; get; }
 public double Y { private set; get; }

 public double LengthSquared
 {
 get { return X * X + Y * Y; }
 }

 public double Length
 {
 get { return Math.Sqrt(LengthSquared); }
 }

 public Vector2 Normalized

	 CHAPTER 13  Touch, Etc.	 639

 {
 get
 {
 double length = this.Length;

 if (length != 0)
 {
 return new Vector2(this.X / length,
 this.Y / length);
 }
 return new Vector2();
 }
 }

 // Methods
 public Vector2 Rotate(double angle)
 {
 RotateTransform xform = new RotateTransform { Angle = angle };
 Point pt = xform.TransformPoint(new Point(X, Y));
 return new Vector2(pt.X, pt.Y);
 }

 // Static methods
 public static double AngleBetween(Vector2 v1, Vector2 v2)
 {
 return 180 * (Math.Atan2(v2.Y, v2.X) - Math.Atan2(v1.Y, v1.X)) / Math.PI;
 }

 // Operators
 public static Vector2 operator +(Vector2 v1, Vector2 v2)
 {
 return new Vector2(v1.X + v2.X, v1.Y + v2.Y);
 }

 public static Point operator +(Vector2 v, Point p)
 {
 return new Point(v.X + p.X, v.Y + p.Y);
 }

 public static Point operator +(Point p, Vector2 v)
 {
 return new Point(v.X + p.X, v.Y + p.Y);
 }

 public static Vector2 operator -(Vector2 v1, Vector2 v2)
 {
 return new Vector2(v1.X - v2.X, v1.Y - v2.Y);
 }

 public static Point operator -(Point p, Vector2 v)
 {
 return new Point(p.X - v.X, p.Y - v.Y);
 }

 public static Vector2 operator *(Vector2 v, double d)
 {
 return new Vector2(d * v.X, d * v.Y);
 }

640	 PART 2  Specialties

 public static Vector2 operator *(double d, Vector2 v)
 {
 return new Vector2(d * v.X, d * v.Y);
 }

 public static Vector2 operator /(Vector2 v, double d)
 {
 return new Vector2(v.X / d, v.Y / d);
 }

 public static Vector2 operator -(Vector2 v)
 {
 return new Vector2(-v.X, -v.Y);
 }

 public static explicit operator Point(Vector2 v)
 {
 return new Point(v.X, v.Y);
 }

 // Overrides
 public override string ToString()
 {
 return String.Format("({0} {1})", X, Y);
 }
 }
}

FingerPaint5 saves the previous radius (based on the pressure setting) along with the previous point.
In this diagram, I’ve represented two consecutive finger locations as circles with independent radii. The
smaller circle has a center c0 and radius r0, and the larger circle has a center c1 and radius r1:

The goal here is to derive a Path that encompasses those two circles and the area between them.
To do this, we must connect the two circles with lines that are tangent to both circles, and that’s a
little tricky (mathematically speaking). Let’s first connect the centers of the two circles with a line
labeled d:

	 CHAPTER 13  Touch, Etc.	 641

A Vector2 value lets us obtain the length of that line and a normalized vector representing its
direction:

Vector2 vCenters = new Vector2(c0) - new Vector2(c1);
double d = vCenters.Length;
vCenters = vCenters.Normalized;

Now let’s define another length named e based on d and the radii of the two circles. The point F is
e distance from c0 and in the same direction as the vector between the two centers:

double e = d * r0 / (r1 - r0);
Point F = c0 + e * vCenters;

Here it is:

I called that point F because I think of it as a “focal point.” I contend that there exist lines from F
that are tangent to both circles, meaning a right angle is formed with that line and a radius line:

I know this because of the way that e was defined. The ratio of e to r0 is the same as the ratio of d
plus e to r1. That angle α (toward the right of the figure) is simply calculated like so:

double alpha = 180 * Math.Asin(r0 / e) / Math.PI;

If the argument to the Math.Asin method is greater than 1, the method returns NaN (not a number).
This can happen only if r0 plus d is less than r1—that is, if the smaller circle is entirely enclosed in the
larger circle. That makes this problem easy to anticipate.

The lengths of those triangle legs from F to the tangent points can be calculated with the
Pythagorean theorem:

double leg0 = Math.Sqrt(e * e - r0 * r0);
double leg1 = Math.Sqrt((e + d) * (e + d) - r1 * r1);

The Vector2 structure has a convenient Rotate method that allows us to rotate the vCenters vector
by α and –α degrees:

Vector2 vRight = -vCenters.Rotate(alpha);
Vector2 vLeft = -vCenters.Rotate(-alpha);

642	 PART 2  Specialties

The “right” and “left” parts of the variable names are from the perspective of F. In the diagram, the
vRight vector corresponds to the tangent line on the top of the circles, and vLeft to the bottom. The
vectors and the lengths allow us to calculate the actual tangent points:

Point t0R = F + leg0 * vRight;
Point t0L = F + leg0 * vLeft;
Point t1R = F + leg1 * vRight;
Point t1L = F + leg1 * vLeft;

These points can then be used to construct a PathGeometry that consists of two ArcSegment
objects and two LineSegment objects, shown here as a heavy outline:

Notice that the ArcSegment on the smaller circle is always less than 180 degrees and the
ArcSegment on the larger circle is always greater than 180 degrees. These characteristics affect the
IsLargeArc property of ArcSegment. Also keep in mind that one of the two LineSegment objects can
be created implicitly by specifying that the figure should be closed.

Here’s the actual algorithm defined in FingerPaint5. Notice that it also must implement the
relatively simpler case where the two radii are the same, or where one circle is enclosed in the other:

Project: FingerPaint5 | File: MainPage.xaml.cs (excerpt)

Geometry CreateTaperedLineGeometry(Point c0, double r0, Point c1, double r1)
{
 // Swap the centers and radii so that c0 is
 // the center of the smaller circle.
 if (r1 < r0)
 {
 Point point = c0;
 c0 = c1;
 c1 = point;

 double radius = r0;
 r0 = r1;
 r1 = radius;
 }

 // Get vector from c1 to c0
 Vector2 vCenters = new Vector2(c0) - new Vector2(c1);

 // Get length and normalized version
 double d = vCenters.Length;
 vCenters = vCenters.Normalized;

 // Determine if one circle is enclosed in the other
 bool enclosed = r0 + d < r1;

	 CHAPTER 13  Touch, Etc.	 643

 // Define tangent points derived in both algorithms
 Point t0R = new Point();
 Point t0L = new Point();
 Point t1R = new Point();
 Point t1L = new Point();

 // Case for two circles of same size
 if (r0 == r1 || enclosed)
 {
 // Rotate centers vector 90 degrees
 Vector2 vLeft = new Vector2(-vCenters.Y, vCenters.X);

 // Rotate -90 degrees
 Vector2 vRight = -vLeft;

 // Find tangent points
 t0R = c0 + r0 * vRight;
 t0L = c0 + r0 * vLeft;
 t1R = c1 + r1 * vRight;
 t1L = c1 + r1 * vLeft;
 }
 // A bit more difficult for two circles of unequal size
 else
 {
 // Create focal point F extending from c0
 double e = d * r0 / (r1 - r0);
 Point F = c0 + e * vCenters;

 // Find angle and length of right-triangle legs
 double alpha = 180 * Math.Asin(r0 / e) / Math.PI;
 double leg0 = Math.Sqrt(e * e - r0 * r0);
 double leg1 = Math.Sqrt((e + d) * (e + d) - r1 * r1);

 // Vectors of tangent lines
 Vector2 vRight = -vCenters.Rotate(alpha);
 Vector2 vLeft = -vCenters.Rotate(-alpha);

 // Find tangent points
 t0R = F + leg0 * vRight;
 t0L = F + leg0 * vLeft;
 t1R = F + leg1 * vRight;
 t1L = F + leg1 * vLeft;
 }

 // Create PathGeometry with implied closing line
 PathGeometry pathGeometry = new PathGeometry();
 PathFigure pathFigure = new PathFigure
 {
 StartPoint = t0R,
 IsClosed = true,
 IsFilled = true
 };
 pathGeometry.Figures.Add(pathFigure);

 // Arc around smaller circle
 ArcSegment arc0Segment = new ArcSegment

644	 PART 2  Specialties

 {
 Point = t0L,
 Size = new Size(r0, r0),
 SweepDirection = SweepDirection.Clockwise,
 IsLargeArc = false
 };
 pathFigure.Segments.Add(arc0Segment);

 // Line connecting smaller circle to larger circle
 LineSegment lineSegment = new LineSegment
 {
 Point = t1L
 };
 pathFigure.Segments.Add(lineSegment);

 // Arc around larger circle
 ArcSegment arc1Segment = new ArcSegment
 {
 Point = t1R,
 Size = new Size(r1, r1),
 SweepDirection = SweepDirection.Clockwise,
 IsLargeArc = true
 };
 pathFigure.Segments.Add(arc1Segment);

 return pathGeometry;
}

The remainder of FingerPaint5 should be entirely comprehensible at this point. The
OnPointerReleased and OnPointerCaptureLost overrides are the same as FingerPaint4. The internal
PointerInfo class now includes a PreviousRadius field:

Project: FingerPaint5 | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 struct PointerInfo
 {
 public Brush Brush;
 public Point PreviousPoint;
 public double PreviousRadius;
 }

 Dictionary<uint, PointerInfo> pointerDictionary = new Dictionary<uint, PointerInfo>();
 Random rand = new Random();
 byte[] rgb = new byte[3];

 public MainPage()
 {
 this.InitializeComponent();
 }

 protected override void OnPointerPressed(PointerRoutedEventArgs args)
 {
 // Get information from event arguments
 uint id = args.Pointer.PointerId;
 PointerPoint pointerPoint = args.GetCurrentPoint(this);

	 CHAPTER 13  Touch, Etc.	 645

 // Create random color
 rand.NextBytes(rgb);
 Color color = Color.FromArgb(255, rgb[0], rgb[1], rgb[2]);

 // Create PointerInfo
 PointerInfo pointerInfo = new PointerInfo
 {
 PreviousPoint = pointerPoint.Position,
 PreviousRadius = 24 * pointerPoint.Properties.Pressure,
 Brush = new SolidColorBrush(color)
 };

 // Add to dictionary
 pointerDictionary.Add(id, pointerInfo);

 // Capture the Pointer
 CapturePointer(args.Pointer);
 base.OnPointerPressed(args);
 }

 protected override void OnPointerMoved(PointerRoutedEventArgs args)
 {
 // Get ID from event arguments
 uint id = args.Pointer.PointerId;

 // If ID is in dictionary, start a loop
 if (pointerDictionary.ContainsKey(id))
 {
 PointerInfo pointerInfo = pointerDictionary[id];
 IList<PointerPoint> pointerpoints = args.GetIntermediatePoints(this);

 for (int i = pointerpoints.Count - 1; i >= 0; i--)
 {
 PointerPoint pointerPoint = pointerpoints[i];

 // For each point, create a Path element and add to Grid
 Point point = pointerPoint.Position;
 float pressure = pointerPoint.Properties.Pressure;
 double radius = 24 * pressure;

 Geometry geometry =
 CreateTaperedLineGeometry(pointerInfo.PreviousPoint,
 pointerInfo.PreviousRadius,
 point,
 radius);
 Path path = new Path
 {
 Data = geometry,
 Fill = pointerInfo.Brush
 };
 contentGrid.Children.Add(path);

 // Update PointerInfo
 pointerInfo.PreviousPoint = point;
 pointerInfo.PreviousRadius = radius;
 }

646	 PART 2  Specialties

 // Store PointerInfo back in dictionary
 pointerDictionary[id] = pointerInfo;
 }
 base.OnPointerMoved(args);
 }

 protected override void OnPointerReleased(PointerRoutedEventArgs args)
 {
 ...
 }

 protected override void OnPointerCaptureLost(PointerRoutedEventArgs args)
 {
 ...
 }

 Geometry CreateTaperedLineGeometry(Point c0, double r0, Point c1, double r1)
 {
 ...
 }
}

And now when you draw even very quickly on a pressure-sensitive device, the lines taper smoothly
instead of as discrete steps:

How Do I Save My Drawings?

None of the finger-painting programs has any facility to save the drawings, but how would you
implement such a thing?

Each program draws by adding Polyline or Line or Path elements to a Grid. One way to save your
drawing would be to access those objects and save all the points and other information in a file,
perhaps in an XML format. You could then add a feature to load them back in and create new Polyline
or Line or Path elements from this information.

But you might be more inclined to save a bitmap of your drawing. (Traditionally, “draw” programs
work with vectors while “paint” programs work with bitmaps.) Indeed, it makes sense for a FingerPaint
program to perform all its painting on a bitmap.

This is possible, but it’s not as easy as you might think. The easiest approach is to use
WriteableBitmap, but you’d have to implement your own line-drawing logic to render lines on that
bitmap. I’ll show you how in Chapter 14. It’s also possible using DirectX with some C++ coding. That’s
coming in Chapter 15, “Going Native.”

	 CHAPTER 13  Touch, Etc.	 647

Real and Surreal Finger Painting

In recent years, paint programs have attempted to mimic real-life drawing materials, such as pencil,
chalk, and water colors. Of course, doing something like this requires combining visual sensitivity and
programming skill with some degree of randomness.

You can, of course, go in the opposite direction and render something on the screen that you’ll
never encounter in the real world. The Whirligig program is very similar in structure to the FingerPaint
series, but it renders spiraled lines that look like this:

The Whirligig program implements pointer capture but not Esc-key termination, so the
OnPointerReleased and OnPointerCaptureLost overrides are the same as in the past couple projects.
For each finger stroke, the program renders a single Polyline much like the early versions of the
program, except that Polyline is only one pixel in thickness and it turns around in circles:

Project: Whirligig | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 const double Radius = 24; // 1/4 inch
 const double AngleIncrement = 0.5; // radians per pixel

 class TouchInfo
 {
 public Point LastPoint;
 public Polyline Polyline;
 public double Angle;
 }

 Dictionary<uint, TouchInfo> pointerDictionary = new Dictionary<uint, TouchInfo>();

 public MainPage()

648	 PART 2  Specialties

 {
 this.InitializeComponent();
 }

 protected override void OnPointerPressed(PointerRoutedEventArgs args)
 {
 // Get information from event arguments
 uint id = args.Pointer.PointerId;
 Point point = args.GetCurrentPoint(this).Position;

 // Create Polyline
 Polyline polyline = new Polyline
 {
 Stroke = this.Resources["ApplicationForegroundThemeBrush"] as Brush,
 StrokeThickness = 1,
 };

 // Add to Grid
 contentGrid.Children.Add(polyline);

 // Create TouchInfo
 TouchInfo touchInfo = new TouchInfo
 {
 LastPoint = point,
 Polyline = polyline
 };

 // Add to dictionary
 pointerDictionary.Add(id, touchInfo);

 // Capture the Pointer
 CapturePointer(args.Pointer);
 base.OnPointerPressed(args);
 }

 protected override void OnPointerMoved(PointerRoutedEventArgs args)
 {
 // Get information from event arguments
 uint id = args.Pointer.PointerId;
 Point point = args.GetCurrentPoint(this).Position;

 // If ID is not in dictionary, don't do anything
 if (!pointerDictionary.ContainsKey(id))
 return;

 // Get TouchInfo objects
 Polyline polyline = pointerDictionary[id].Polyline;
 Point lastPoint = pointerDictionary[id].LastPoint;
 double angle = pointerDictionary[id].Angle;

 // Distance from last point to this point
 double distance = Math.Sqrt(Math.Pow(point.X - lastPoint.X, 2) +
 Math.Pow(point.Y - lastPoint.Y, 2));

 int divisions = (int)distance;

 for (int i = 0; i < divisions; i++)

	 CHAPTER 13  Touch, Etc.	 649

 {
 // Sub-divide the distance between the last point and the new
 double x = (i * point.X + (divisions - i) * lastPoint.X) / divisions;
 double y = (i * point.Y + (divisions - i) * lastPoint.Y) / divisions;
 Point pt = new Point(x, y);

 // Increase the angle
 angle += distance * AngleIncrement / divisions;

 // Rotate the point
 pt.X += Radius * Math.Cos(angle);
 pt.Y += Radius * Math.Sin(angle);

 // Add to Polyline
 polyline.Points.Add(pt);
 }

 // Save new information
 pointerDictionary[id].LastPoint = point;
 pointerDictionary[id].Angle = angle;

 base.OnPointerMoved(args);
 }
 ...
}

Along with the Polyline itself, the TouchInfo class saves a LastPoint value and an Angle value. For
each PointerMoved event, the program subdivides the distance from the current point to the previous
point into pixel-sized lengths. For each of these pixel-sized lengths, it appends approximately 30
degrees of the circular pattern. (The 30 degrees is a result of the AngleIncrement constant.) Instead of
rendering the actual point, it rotates the point by the accumulated angle and adds it to the Polyline.

A Touch Piano

Not all touch applications fall into the same pattern. For example, consider an on-screen piano
keyboard. Obviously, you want to be able to play chords with your fingers, so this is a job for the
Pointer events rather than the Manipulation events.

But what you also really want to do with an on-screen piano keyboard is run your fingers up and
down the keys making glissandi. If you couldn’t do that with an on-screen keyboard, you would
undoubtedly consider it broken. What that implies, however, is that you’re probably not exclusively
concerned with PointerPressed and PointerReleased. Yes, you can press down on one key and release
on another, but in between you could be playing many other keys just by sweeping your finger.

There are basically two ways to construct this piano keyboard. You can use one control for the
whole keyboard, or you can use many controls (and by “many” I really mean one control for each key).

A single control must draw all the keys and also evaluate PointerMoved events by comparing
pointer positions with the boundaries of these keys. You’ll be tracking each finger to determine
when a PointerMoved event indicates a key coming within a key boundary and when it leaves a key

650	 PART 2  Specialties

boundary. This is classic “hit testing”—you’re examining pointer positions to determine if they lie
within a boundary.

However, if each key is a separate control, that key doesn’t need to perform hit testing. If it’s
getting a Pointer event, the Pointer is within the boundaries of that control (unless the control has
captured the pointer, but pointer capturing makes no sense in this application).

What Pointer events are necessary to implement a piano key? Don’t start by thinking about presses
and releases. Think about glissandi. If we’re talking about a keyboard that reacts solely to touch, the
only two Pointer events that are necessary are PointerEntered and PointerExited.

However, you probably want the keyboard to respond reasonably to the mouse and pen as well.
A piano key will get PointerEntered and PointerExited events for a mouse when the mouse button is
not pressed, and that’s a problem. The PointerEntered handler will need to examine the IsInContact
property to correctly handle the mouse and pen. That property is always true for touch but only true
for a mouse if the button is down or for the pen if it’s in contact with the screen.

Moreover, when considering a single element, the mouse and pen generate PointerEntered events
before PointerPressed and PointerExited after PointerReleased, so PointerPressed and PointerReleased
must be handled as well.

Let’s construct a two-octave piano keyboard from the bottom up, starting with the keys. The
following Key class is a Control derivative without a default template, so it has no default visible
appearance. But it does define an IsPressed dependency property, and a property-changed handler
for IsPressed that toggles between two visual states called Normal and Pressed.

Project: SilentPiano | File: Key.cs (excerpt)

namespace SilentPiano
{
 public class Key : Control
 {
 static readonly DependencyProperty isPressedProperty =
 DependencyProperty.Register("IsPressed",
 typeof(bool), typeof(Key),
 new PropertyMetadata(false, OnIsPressedChanged));

 List<uint> pointerList = new List<uint>();

 public static DependencyProperty IsPressedProperty
 {
 get { return isPressedProperty; }
 }

 public bool IsPressed
 {
 set { SetValue(IsPressedProperty, value); }
 get { return (bool)GetValue(IsPressedProperty); }
 }

	 CHAPTER 13  Touch, Etc.	 651

 protected override void OnPointerEntered(PointerRoutedEventArgs args)
 {
 if (args.Pointer.IsInContact)
 AddToList(args.Pointer.PointerId);
 base.OnPointerEntered(args);
 }

 protected override void OnPointerPressed(PointerRoutedEventArgs args)
 {
 AddToList(args.Pointer.PointerId);
 base.OnPointerPressed(args);
 }

 protected override void OnPointerReleased(PointerRoutedEventArgs args)
 {
 RemoveFromList(args.Pointer.PointerId);
 base.OnPointerReleased(args);
 }

 protected override void OnPointerExited(PointerRoutedEventArgs args)
 {
 RemoveFromList(args.Pointer.PointerId);
 base.OnPointerExited(args);
 }

 void AddToList(uint id)
 {
 if (!pointerList.Contains(id))
 pointerList.Add(id);

 CheckList();
 }

 void RemoveFromList(uint id)
 {
 if (pointerList.Contains(id))
 pointerList.Remove(id);

 CheckList();
 }

 void CheckList()
 {
 this.IsPressed = pointerList.Count > 0;
 }

 static void OnIsPressedChanged(DependencyObject obj,
 DependencyPropertyChangedEventArgs args)
 {
 VisualStateManager.GoToState(obj as Key,
 (bool)args.NewValue ? "Pressed" : "Normal", false);
 }
 }
}

652	 PART 2  Specialties

Because you can use two fingers to play the same key, this control still needs to track individual
fingers. But it doesn’t need a Dictionary to retain information for each ID. It can simply use a List.
IDs are put into this List in the OnPointerEntered override (but only if IsInContact is true) and in
OnPointerPressed, and removed in OnPointerReleased and OnPointerExited, and that triggers the
change in visual state. The IsPressed property is true if the List contains at least one entry. The
PointerPressed and PointerReleased event handlers are only for the benefit of the mouse and pen.

Two templates—one for white keys and one for black keys—are defined in the Octave.xaml file.
The two templates differ only by the size of a Polygon that defines the key shape and the default
color. (The shape is a rectangle for both keys. Originally, I wanted to make the various white keys
different shapes as they are on a real piano, but the uniform approach was a lot easier and required
far fewer templates.) Both templates switch the color to red during a Pressed state:

Project: SilentPiano | File: Octave.xaml (excerpt)

<UserControl ... >
 <UserControl.Resources>
 <ControlTemplate x:Key="whiteKey" TargetType="local:Key">
 <Grid Width="80">
 <Polygon Points="2 0, 78 0, 78 320, 02 320">
 <Polygon.Fill>
 <SolidColorBrush x:Name="brush" Color="White" />
 </Polygon.Fill>
 </Polygon>

 <VisualStateManager.VisualStateGroups>
 <VisualStateGroup x:Name="CommonStates">
 <VisualState x:Name="Normal"/>
 <VisualState x:Name="Pressed">
 <Storyboard>
 <ColorAnimationUsingKeyFrames Storyboard.TargetName="brush"
 Storyboard.TargetProperty="Color">
 <DiscreteColorKeyFrame KeyTime="0" Value="Red" />
 </ColorAnimationUsingKeyFrames>
 </Storyboard>
 </VisualState>
 </VisualStateGroup>
 </VisualStateManager.VisualStateGroups>
 </Grid>
 </ControlTemplate>

 <ControlTemplate x:Key="blackKey" TargetType="local:Key">
 <Grid>
 <Polygon Points="0 0, 40 0, 40 220, 0 220">
 <Polygon.Fill>
 <SolidColorBrush x:Name="brush" Color="Black" />
 </Polygon.Fill>
 </Polygon>

	 CHAPTER 13  Touch, Etc.	 653

 <VisualStateManager.VisualStateGroups>
 <VisualStateGroup x:Name="CommonStates">
 <VisualState x:Name="Normal"/>
 <VisualState x:Name="Pressed">
 <Storyboard>
 <ColorAnimationUsingKeyFrames Storyboard.TargetName="brush"
 Storyboard.TargetProperty="Color">
 <DiscreteColorKeyFrame KeyTime="0" Value="Red" />
 </ColorAnimationUsingKeyFrames>
 </Storyboard>
 </VisualState>
 </VisualStateGroup>
 </VisualStateManager.VisualStateGroups>
 </Grid>
 </ControlTemplate>
 </UserControl.Resources>

 <Grid>
 <StackPanel Orientation="Horizontal">
 <local:Key Template="{StaticResource whiteKey}" />
 <local:Key Template="{StaticResource whiteKey}" />
 <local:Key Template="{StaticResource whiteKey}" />
 <local:Key Template="{StaticResource whiteKey}" />
 <local:Key Template="{StaticResource whiteKey}" />
 <local:Key Template="{StaticResource whiteKey}" />
 <local:Key Template="{StaticResource whiteKey}" />
 <local:Key x:Name="lastKey"
 Template="{StaticResource whiteKey}"
 Visibility="Collapsed" />
 </StackPanel>
 <Canvas>
 <local:Key Template="{StaticResource blackKey}"
 Canvas.Left="60" Canvas.Top="0" />
 <local:Key Template="{StaticResource blackKey}"
 Canvas.Left="140" Canvas.Top="0" />
 <local:Key Template="{StaticResource blackKey}"
 Canvas.Left="300" Canvas.Top="0" />
 <local:Key Template="{StaticResource blackKey}"
 Canvas.Left="380" Canvas.Top="0" />
 <local:Key Template="{StaticResource blackKey}"
 Canvas.Left="460" Canvas.Top="0" />
 </Canvas>
 </Grid>
</UserControl>

Eight white keys are arranged horizontally in a StackPanel, but the five black keys are in a Canvas. This
configuration allows the white keys to define the size of the control but lets the black keys sit on top
of the white keys and cover parts of them.

The eight white keys go from C to C. Very often small keyboards start with C and end with C as
well, but you don’t want a pair of adjacent C keys where two octaves meet up. That’s the reason why

654	 PART 2  Specialties

the last key has a Visibility of Collapsed. That Visibility property is set to Visible or Collapsed by the
code-behind file based on the setting of the LastKeyVisible dependency property:

Project: SilentPiano | File: Octave.xaml.cs (excerpt)

public sealed partial class Octave : UserControl
{
 static readonly DependencyProperty lastKeyVisibleProperty =
 DependencyProperty.Register("LastKeyVisible",
 typeof(bool), typeof(Octave),
 new PropertyMetadata(false, OnLastKeyVisibleChanged));

 public Octave()
 {
 this.InitializeComponent();
 }

 public static DependencyProperty LastKeyVisibleProperty
 {
 get { return lastKeyVisibleProperty; }
 }

 public bool LastKeyVisible
 {
 set { SetValue(LastKeyVisibleProperty, value); }
 get { return (bool)GetValue(LastKeyVisibleProperty); }
 }

 static void OnLastKeyVisibleChanged(DependencyObject obj,
 DependencyPropertyChangedEventArgs args)
 {
 (obj as Octave).lastKey.Visibility =
 (bool)args.NewValue ? Visibility.Visible : Visibility.Collapsed;
 }
}

All that’s left is to instantiate two Octave objects in the MainPage.xaml file, the second one with
LastKeyVisible set to true:

Project: SilentPiano | File: MainPage.xaml (excerpt)

<Page ... >
 <Grid Background="Gray">
 <StackPanel Orientation="Horizontal"
 HorizontalAlignment="Center"
 VerticalAlignment="Center">
 <local:Octave />
 <local:Octave LastKeyVisible="True" />
 </StackPanel>
 </Grid>
</Page>

	 CHAPTER 13  Touch, Etc.	 655

And here I am playing my favorite chord (consonant with a major programming language):

Manipulation, Fingers, and Elements

The great advantage of the Pointer events is that you can track individual fingers. The great
advantage of the Manipulation events is that you can’t track individual fingers.

The Manipulation events combine multiple fingers—and by “multiple” we’re really often talking
about “two”—into higher-level gestures such as pinch and rotate. These gestures correspond to
common graphics transforms: translation, scaling (although limited to equal scaling in the horizontal
and vertical directions), and rotation. Capture is intrinsic to manipulation. As a bonus, inertia is also
available.

Keep in mind that multiple fingers are combined into a single series of Manipulation events not
for the entire window, but for each element handling these events. What this means is that you can
use a finger or a pair of fingers to manipulate one element, while using another couple fingers to
manipulate a second element.

UIElement defines five Manipulation events that an element generally receives in the following
order (and take heed that the first two have extremely similar names):

■■ ManipulationStarting

■■ ManipulationStarted

■■ ManipulationDelta (many)

■■ ManipulationInertiaStarting

656	 PART 2  Specialties

■■ ManipulationDelta (more)

■■ ManipulationCompleted

The Control class defines virtual methods corresponding to these five events named
OnManipulationStarting, and so forth.

Although the mouse or pen can generate Manipulation events, these occur only when a mouse
button is pressed or when the pen is touching the screen. A ManipulationStarting event occurs when
a finger first touches an element, or the mouse button is pressed over an element, or the pen is
touched to an element.

The ManipulationStarted event generally occurs soon after ManipulationStarting (but, as I’ll discuss
shortly, the key word here is “generally”). What follows is usually a bunch of ManipulationDelta events
as the fingers move on the screen. When all fingers leave an element, ManipulationInertiaStarting
is fired. The element continues to generate ManipulationDelta events representing inertia, but
ManipulationCompleted indicates that the sequence is over.

Although the ManipulationStarting event occurs when a finger first touches an element (or a
mouse click or pen press occurs), this event is not necessarily followed by a ManipulationStarted event
and ManipulationStarted might be delayed a little. The problem is that the system must distinguish
between a tap or a hold and an actual manipulation. ManipulationStarted is fired when the finger (or
mouse or pen) moves a little bit.

For example, if you touch an element with a sweeping motion, ManipulationStarting is followed
very quickly by ManipulationStarted and multiple ManipulationDelta events. But put a finger down in
one place and hold it, and the ManipulationStarted event can be delayed quite some time.

If the user taps, or right-taps, or double-taps the screen, a ManipulationStarted event won’t occur
at all. However, it’s possible for a Holding event to be fired after ManipulationStarting and for the
user to then move the finger and generate ManipulationStarted and the rest of the events. Another
Holding event is then fired with a HoldingState property indicating Canceled.

By default, however, an element doesn’t generate any Manipulation events whatsoever! The
Manipulation events must first be enabled on a per-element basis. To allow a program to specify
exactly what types of manipulation it wants, UIElement defines a ManipulationMode property of
the enumeration type ManipulationModes. (The property name is singular; the enumeration name
is plural.) The default setting of ManipulationMode is ManipulationModes.System, which for an
application is equivalent to ManipulationModes.None. To enable an element for manipulation you’ll
need to set it to at least one other ManipulationModes member. The enumeration members are
defined as bit flags, so you can combine them with the bitwise OR operator (|).

Although some applications need to handle all five Manipulation events, it’s possible to write code
that only examines ManipulationDelta.

This is the case with the ManipulationTracker program. The program displays a bunch of CheckBox
controls for the members of the ManipulationModes enumeration and three Rectangle elements that

	 CHAPTER 13  Touch, Etc.	 657

you can manipulate. To ease some of the code and markup, a custom CheckBox derivative is used to
store and display the ManipulationModes members:

Project: ManipulationTracker | File: ManipulationModeCheckBox.cs

using Windows.UI.Xaml.Controls;
using Windows.UI.Xaml.Input;

namespace ManipulationTracker
{
 public class ManipulationModeCheckBox : CheckBox
 {
 public ManipulationModes ManipulationModes { set; get; }
 }
}

Ten instances of this custom CheckBox are arranged in a StackPanel in MainPage.xaml, each
identified both with the name of the enumeration member (with spaces inserted in the name to be
more readable) and the integer value:

Project: ManipulationTracker | File: MainPage.xaml (excerpt)

<Page ... >
 <Page.Resources>
 <Style TargetType="local:ManipulationModeCheckBox">
 <Setter Property="Margin" Value="12 6 24 6" />
 </Style>

 <Style TargetType="Rectangle">
 <Setter Property="Width" Value="144" />
 <Setter Property="Height" Value="144" />
 <Setter Property="HorizontalAlignment" Value="Left" />
 <Setter Property="VerticalAlignment" Value="Top" />
 <Setter Property="RenderTransformOrigin" Value="0.5 0.5" />
 </Style>
 </Page.Resources>

 <Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition Width="*" />
 </Grid.ColumnDefinitions>

 <StackPanel Name="checkBoxPanel"
 Grid.Column="0">
 <local:ManipulationModeCheckBox Checked="OnManipulationModeCheckBoxChecked"
 Unchecked="OnManipulationModeCheckBoxChecked"
 Content="Translate X (1)"
 ManipulationModes="TranslateX" />

 <local:ManipulationModeCheckBox Checked="OnManipulationModeCheckBoxChecked"
 Unchecked="OnManipulationModeCheckBoxChecked"
 Content="Translate Y (2)"
 ManipulationModes="TranslateY" />

658	 PART 2  Specialties

 <local:ManipulationModeCheckBox Checked="OnManipulationModeCheckBoxChecked"
 Unchecked="OnManipulationModeCheckBoxChecked"
 Content="Translate Rails X (4)"
 ManipulationModes="TranslateRailsX" />

 <local:ManipulationModeCheckBox Checked="OnManipulationModeCheckBoxChecked"
 Unchecked="OnManipulationModeCheckBoxChecked"
 Content="Translate Rails Y (8)"
 ManipulationModes="TranslateRailsY" />

 <local:ManipulationModeCheckBox Checked="OnManipulationModeCheckBoxChecked"
 Unchecked="OnManipulationModeCheckBoxChecked"
 Content="Rotate (16)"
 ManipulationModes="Rotate" />

 <local:ManipulationModeCheckBox Checked="OnManipulationModeCheckBoxChecked"
 Unchecked="OnManipulationModeCheckBoxChecked"
 Content="Scale (32)"
 ManipulationModes="Scale" />

 <local:ManipulationModeCheckBox Checked="OnManipulationModeCheckBoxChecked"
 Unchecked="OnManipulationModeCheckBoxChecked"
 Content="Translate Inertia (64)"
 ManipulationModes="TranslateInertia" />

 <local:ManipulationModeCheckBox Checked="OnManipulationModeCheckBoxChecked"
 Unchecked="OnManipulationModeCheckBoxChecked"
 Content="Rotate Inertia (128)"
 ManipulationModes="RotateInertia" />

 <local:ManipulationModeCheckBox Checked="OnManipulationModeCheckBoxChecked"
 Unchecked="OnManipulationModeCheckBoxChecked"
 Content="Scale Inertia (256)"
 ManipulationModes="ScaleInertia" />

 <local:ManipulationModeCheckBox Checked="OnManipulationModeCheckBoxChecked"
 Unchecked="OnManipulationModeCheckBoxChecked"
 Content="All (0xFFFF)"
 ManipulationModes="All" />
 </StackPanel>

 <Grid Name="rectanglePanel"
 Grid.Column="1">
 <Rectangle Fill="Red">
 <Rectangle.RenderTransform>
 <CompositeTransform />
 </Rectangle.RenderTransform>
 </Rectangle>

 <Rectangle Fill="Green">
 <Rectangle.RenderTransform>
 <CompositeTransform />
 </Rectangle.RenderTransform>
 </Rectangle>

	 CHAPTER 13  Touch, Etc.	 659

 <Rectangle Fill="Blue">
 <Rectangle.RenderTransform>
 <CompositeTransform />
 </Rectangle.RenderTransform>
 </Rectangle>
 </Grid>
 </Grid>
</Page>

In the larger cell of the Grid are three Rectangle elements, with the three colors of the state flag of
Computerstan: red, green, and blue.

In the code-behind file, any checking or unchecking of the custom CheckBox controls causes a
calculation of a new ManipulationModes value by combining enumeration members associated with
the checked check boxes with the bitwise OR operator. This composite ManipulationModes value is
then set to the ManipulationMode property of the three Rectangle elements:

Project: ManipulationTracker | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 public MainPage()
 {
 this.InitializeComponent();
 }

 void OnManipulationModeCheckBoxChecked(object sender, RoutedEventArgs args)
 {
 // Get composite ManipulationModes value of checked CheckBoxes
 ManipulationModes manipulationModes = ManipulationModes.None;

 foreach (UIElement child in checkBoxPanel.Children)
 {
 ManipulationModeCheckBox checkBox = child as ManipulationModeCheckBox;

 if ((bool)checkBox.IsChecked)
 manipulationModes |= checkBox.ManipulationModes;
 }

 // Set ManipulationMode property of each Rectangle
 foreach (UIElement child in rectanglePanel.Children)
 child.ManipulationMode = manipulationModes;
 }

 protected override void OnManipulationDelta(ManipulationDeltaRoutedEventArgs args)
 {
 // OriginalSource is always Rectangle because nothing else has its
 // ManipulationMode set to anything other than ManipulationModes.None
 Rectangle rectangle = args.OriginalSource as Rectangle;
 CompositeTransform transform = rectangle.RenderTransform as CompositeTransform;

660	 PART 2  Specialties

 transform.TranslateX += args.Delta.Translation.X;
 transform.TranslateY += args.Delta.Translation.Y;

 transform.ScaleX *= args.Delta.Scale;
 transform.ScaleY *= args.Delta.Scale;

 transform.Rotation += args.Delta.Rotation;

 base.OnManipulationDelta(args);
 }
}

The final part of the program is the OnManipulationDelta override, which is a virtual method defined
by the Control class that provides easier access to the ManipulationDelta event defined by UIElement.
ManipulationDelta is the primary Manipulation event and indicates in what kinds of manipulation the
user’s fingers are engaged.

Notice that the OnManipulationDelta override casts the OriginalSource property of the event
arguments to Rectangle without even checking if the cast is successful. In theory, the OriginalSource
property can be MainPage or any child of MainPage. However, only the Rectangle elements are
enabled for manipulation, so only the Rectangle elements can generate ManipulationDelta events.

The override obtains the CompositeTransform set to the RenderTransform property of that
particular Rectangle and adjusts five properties of the transform based on the Delta property of the
event arguments. This Delta property is of type ManipulationDelta, a structure with four proper-
ties. (Watch out! This structure has the same name as the event that delivers it!) The values indicate
change since the last ManipulationDelta event.

Three of the four ManipulationDelta properties are accessed by this code. The fourth is Expansion,
and it’s similar to Scale except expressed in pixels rather than a multiplicative scaling factor. The
Translation property of the ManipulationDelta structure indicates the average distance the fingers
have moved since the last ManipulationDelta event, so these are just added to the TranslateX and
TranslateY properties of the CompositeTransform. If there is no movement, these values are zero.

Similarly (but handled rather differently), the Scale property of the ManipulationDelta structure
indicates the increase in the distance between the fingers since the last event. The ScaleX and ScaleY
properties of the CompositeTransform are multiplied by this factor. (Because the Manipulation events
don’t provide separate scaling factors for horizontal and vertical scaling, all manipulation scaling
is necessarily isotropic—equal in both directions.) If there is no scaling (or scaling has not been
enabled), the Scale value is 1. The Rotate property of ManipulationDelta is a change in the rotation
angle caused by turning the fingers relative to each other, and this is added to the Rotation property
of CompositeTransform.

	 CHAPTER 13  Touch, Etc.	 661

Check a few check boxes, and you can indeed move the rectangles with the mouse or pen or use
multiple fingers to move, scale, and rotate the rectangles pretty much as you might expect, even
manipulating two or three at once:

For a program using Manipulation events, the rules are very simple: Always set the
ManipulationMode property to a non-default value on the element or elements that you want to
generate Manipulation events. Each element you do this to generates its own independent stream of
Manipulation events. You can set a handler for the ManipulationDelta event of the element itself, or
you can handle that event by an ancestor in the visual tree.

I said that this manipulation works pretty much as you might expect, but it’s not entirely correct.
You’ll notice that neither the code nor XAML has any reference to centers of scaling or rotation,
except that RenderTransformOrigin is set to the relative point (0.5, 0.5). Hence all scaling and rotation
are relative to the center of each particular rectangle.

This is not correct behavior. For example, suppose you put one finger near a corner of a rectangle
and hold it steady. You use a second finger to grab the opposite edge and pull it or rotate it. The
scaling and rotation that results should be relative to the first finger. In other words, the part of the
rectangle under that first finger should remain in place while the rest of the rectangle is scaled or
rotated around it.

It turns out that fixing this problem takes rather more complex logic, so I’m going to ignore it until
later in this chapter.

Meanwhile, you can play with some of the other types of manipulation. There are three types of
inertia—for translation, scaling, and rotation—and you can indeed flick or spin a rectangle right off
the screen. There are ways to control the extent of inertia that I’ll discuss later.

662	 PART 2  Specialties

You can set an equivalent ManipulationMode property shown in the preceding screen shot like this
in code:

rectangle.ManipulationMode = ManipulationModes.TranslateX |
 ManipulationModes.TranslateY |
 ManipulationModes.Scale |
 ManipulationModes.Rotate;

But not in XAML. Setting the ManipulationMode property in XAML is limited to just a single
enumeration member, and in a real-life application, that would probably be All.

If you want to restrict manipulation to horizontal movement only, you can specify the
ManipulationModes member TranslateX but not TranslateY:

rectangle.ManipulationMode = ManipulationModes.TranslateX;

Similarly, to restrict movement to the vertical, specify TranslateY but not TranslateX.

Two of the members of the ManipulationModes enumeration are called TranslateRailsX and
TranslateRailsY. These only work as they are intended if you also specify both TranslateX and
TranslateY. For example,

rectangle.ManipulationMode = ManipulationModes.TranslateX |
 ManipulationModes.TranslateY |
 ManipulationModes.TranslateRailsX;

This configuration still allows you to freely move the element in the horizontal and vertical directions.
However, if the manipulation begins with movement in the horizontal direction, the element gets
stuck in the rails (so to speak) and all further movement is restricted to the horizontal until you lift off
your finger and start over again.

Similarly, this configuration restricts movement to the vertical if the manipulation begins with
vertical movement:

rectangle.ManipulationMode = ManipulationModes.TranslateX |
 ManipulationModes.TranslateY |
 ManipulationModes.TranslateRailsY;

You can also specify both:

rectangle.ManipulationMode = ManipulationModes.TranslateX |
 ManipulationModes.TranslateY |
 ManipulationModes.TranslateRailsX |
 ManipulationModes.TranslateRailsY;

Begin dragging the element diagonally, and you can move it any which way. But begin with horizontal
or vertical movement, and the element gets stuck in the rails.

As you saw earlier in the code listing, the ManipulationTracker program uses the Delta property of
the ManipulationDeltaRoutedEventArgs argument to make changes to a CompositeTransform:

transform.TranslateX += args.Delta.Translation.X;

	 CHAPTER 13  Touch, Etc.	 663

transform.TranslateY += args.Delta.Translation.Y;

transform.ScaleX *= args.Delta.Scale;
transform.ScaleY *= args.Delta.Scale;

transform.Rotation += args.Delta.Rotation;

If you’ve examined the properties of ManipulationDeltaRoutedEventArgs, you’ll have discovered
that besides the Delta property there is a Cumulative property, also of type ManipulationDelta. The
Delta property indicates change since the last ManipulationDelta event, but Cumulative indicates
change since ManipulationStarted.

You might suspect that this Cumulative property is easier to work with than the Delta property
because you can just transfer the values to the corresponding properties of the CompositeTransform,
like this:

transform.TranslateX = args.Cumulative.Translation.X;
transform.TranslateY = args.Cumulative.Translation.Y;

transform.ScaleX = args.Cumulative.Scale;
transform.ScaleY = args.Cumulative.Scale;

transform.Rotation = args.Cumulative.Rotation;

With this code, the first time you manipulate an element, it seems to work just fine. But lift your
fingers off and try another manipulation on the same element. The element jumps back to its original
position in the upper-left corner of the screen!

The Cumulative property is not cumulative from the beginning of the program but only from a
particular ManipulationStarted event.

Working with Inertia

The Manipulation events support inertia for translation, scaling, and rotation, but if you don’t want
inertia, simply don’t specify those ManipulationModes.

If at any time you want to stop the manipulation or the inertia, the event arguments accompanying
the ManipulationStarted and ManipulationDelta events have a Complete method, which causes a
firing of the ManipulationCompleted event.

If you’d like to handle inertia on your own, you can do that as well. The event arguments
accompanying the ManipulationDelta and ManipulationInertiaStarting events have a Velocities
property that indicates the linear, scaling, and rotational velocities. For linear movement, the Velocities
property is in pixels per millisecond, which I suspect aren’t exactly intuitive units. As I experimented
with giving on-screen objects a good flick with my finger, I came close to 10 pixels per millisecond but
could never get it higher than that. That’s 10,000 pixels per second, which is equivalent to about 100
inches per second, or about 8 feet per second, or not quite 6 miles per hour.

664	 PART 2  Specialties

Default deceleration is provided, but if you’d like to set your own you need to handle the
ManipulationInertiaStarting event. The ManipulationInertiaStartingRoutedEventArgs class defines
these three properties:

■■ TranslationBehavior of type InertiaTranslationBehavior

■■ ExpansionBehavior of type InertiaExpansionBehavior

■■ RotationBehavior of type InertiaRotationBehavior

The InertiaTranslationBehavior class (for example) lets you set linear deceleration in two ways: with
a DesiredDisplacement property in units of pixels (which is how much farther you want the object to
travel) or a DesiredDeceleration property in units of pixels per millisecond squared. Both properties
have default values of NaN (not a number).

The DesiredDeceleration values are generally very small, but perhaps a physics review is in order
here.

From basic physics, we know that with a constant acceleration applied to an object at rest, the
distance the object travels in time t is

x at=
1
2

2

For example, an object in free fall near the surface of the Earth without air resistance experiences a
constant acceleration of 32 feet per second per second, or 32 feet per second squared. Set a to 32,
and you can calculate that the object falls 16 feet at the end of 1 second, a total of 64 feet at the end
of 2 seconds, and a total of 144 feet at the end of 3 seconds.

The velocity v is calculated as the first derivative of the distance with respect to time:

v dx
dt

at= =

Again, for an object in free fall, the velocity is 32 feet per second at the end of 1 second, 64 feet per
second at the end of 2 seconds, and 96 feet per second at the end of 3 seconds. Every second the
velocity increases by 32 feet per second.

Deceleration is the same process in reverse. From that second formula we know that

a v
t

=

If an object is traveling at velocity v, a constant deceleration a will bring it to rest in t seconds. If
an on-screen object is traveling at the rate of 5 pixels per millisecond, you can use this formula to
calculate a deceleration necessary to stop it in a fixed number of seconds, for example, 5 seconds or
5000 milliseconds:

a pixels msec= =
5

5000
0 001 2. /

	 CHAPTER 13  Touch, Etc.	 665

The FlickAndBounce project makes a similar calculation, except that the deceleration time is set
via a Slider and can range from 1 second to 60 seconds. The XAML file includes that Slider and also an
Ellipse with a ManipulationMode setting and three Manipulation events. Although ManipulationMode
is set to All (because there’s not much of an alternative in XAML), the program uses translation
only and moves the Ellipse by setting Canvas.Left and Canvas.Top attached properties rather than a
transform:

Project: FlickAndBounce | File: MainPage.xaml (excerpt)

<Page ... >
 <Grid Name="contentGrid"
 Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <Canvas>
 <Ellipse Name="ellipse"
 Fill="Red"
 Width="144"
 Height="144"
 ManipulationMode="All"
 ManipulationStarted="OnEllipseManipulationStarted"
 ManipulationDelta="OnEllipseManipulationDelta"
 ManipulationInertiaStarting="OnEllipseManipulationInertiaStarting" />
 </Canvas>

 <Slider x:Name="slider"
 Value="5" Minimum="1" Maximum="60"
 VerticalAlignment="Bottom"
 Margin="24 0" />
 </Grid>
</Page>

Of course, any deceleration would be wasted if the object just skittered off past the edge of the
screen. For that reason, the ManipulationDelta handler detects when the Ellipse has moved past the
edges of the screen. It moves the Ellipse back into view as if it’s bounced off the edge and reverses
further movement using the xDirection and YDirection fields.

Notice that this logic uses the IsInertial property for the bounce logic. It doesn’t stop you from
dragging the Ellipse past the edges of the screen:

Project: FlickAndBounce | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 int xDirection;
 int yDirection;

 public MainPage()
 {
 this.InitializeComponent();
 }

 void OnEllipseManipulationStarted(object sender, ManipulationStartedRoutedEventArgs args)
 {

666	 PART 2  Specialties

 // Initialize directions
 xDirection = 1;
 yDirection = 1;
 }

 void OnEllipseManipulationDelta(object sender, ManipulationDeltaRoutedEventArgs args)
 {
 // Find new position of ellipse regardless of edges
 double x = Canvas.GetLeft(ellipse) + xDirection * args.Delta.Translation.X;
 double y = Canvas.GetTop(ellipse) + yDirection * args.Delta.Translation.Y;

 if (args.IsInertial)
 {
 // Bounce it off the edges
 Size playground = new Size(contentGrid.ActualWidth - ellipse.Width,
 contentGrid.ActualHeight - ellipse.Height);

 while (x < 0 || y < 0 || x > playground.Width || y > playground.Height)
 {
 if (x < 0)
 {
 x = -x;
 xDirection *= -1;
 }
 if (x > playground.Width)
 {
 x = 2 * playground.Width - x;
 xDirection *= -1;
 }
 if (y < 0)
 {
 y = -y;
 yDirection *= -1;
 }
 if (y > playground.Height)
 {
 y = 2 * playground.Height - y;
 yDirection *= -1;
 }
 }
 }

 Canvas.SetLeft(ellipse, x);
 Canvas.SetTop(ellipse, y);
 }

 void OnEllipseManipulationInertiaStarting(object sender,
 ManipulationInertiaStartingRoutedEventArgs args)
 {
 double maxVelocity = Math.Max(Math.Abs(args.Velocities.Linear.X),
 Math.Abs(args.Velocities.Linear.Y));

 args.TranslationBehavior.DesiredDeceleration = maxVelocity / (1000 * slider.Value);
 }
}

	 CHAPTER 13  Touch, Etc.	 667

In the ManipulationInertiaStarting handler down at the bottom, the maximum of the absolute values
of the horizontal and vertical velocities is used to calculate a deceleration based on a Slider value in
seconds.

An XYSlider Control

An XYSlider control is similar to a Slider except that it allows you to select a point in a two-dimensional
surface by changing the location of a crosshair (or something similar). At first, it seems like the Pointer
events would be fine for this control, until you realize that the control really doesn’t want to deal with
multiple fingers. If it used the Manipulation events instead, it could avoid all that.

That was my original thought, anyway. But let’s try it.

I derived XYSlider from ContentControl so that it could display whatever you wanted as a
background simply by setting the Content property. Sitting on top of that is a crosshair that you
move around with a finger, mouse, or pen. The control has one property, Value of type Point, and
a ValueChanged event. The X and Y coordinates of the Point property are normalized to the range
0 to 1 relative to the content, which relieves the control of defining Minimum and Maximum val-
ues like RangeBase or an IsDirectionReversed property like Slider. (Actually, it would need a pair of
IsDirectionReversed properties for the X and Y axes.)

The control definition itself is templateless, but it wants two parts in the template: the customary
ContentPresenter normally found in a ContentControl template, and something that visually resembles
a cross-hair. This cross-hair is moved around by code using Canvas.Left and Canvas.Top attached
properties, strongly suggesting that the template needs to define this cross-hair in a Canvas.

Project: XYSliderDemo | File: XYSlider.cs

namespace XYSliderDemo
{
 public class XYSlider : ContentControl
 {
 ContentPresenter contentPresenter;
 FrameworkElement crossHairPart;

 static readonly DependencyProperty valueProperty =
 DependencyProperty.Register("Value",
 typeof(Point), typeof(XYSlider),
 new PropertyMetadata(new Point(0.5, 0.5), OnValueChanged));

 public event EventHandler<Point> ValueChanged;

 public XYSlider()
 {
 this.DefaultStyleKey = typeof(XYSlider);
 }

 public static DependencyProperty ValueProperty
 {
 get { return valueProperty; }

668	 PART 2  Specialties

 }

 public Point Value
 {
 set { SetValue(ValueProperty, value); }
 get { return (Point)GetValue(ValueProperty); }
 }

 protected override void OnApplyTemplate()
 {
 // Detach event handlers
 if (contentPresenter != null)
 {
 contentPresenter.ManipulationStarted -= OnContentPresenterManipulationStarted;
 contentPresenter.ManipulationDelta -= OnContentPresenterManipulationDelta;
 contentPresenter.SizeChanged -= OnContentPresenterSizeChanged;
 }

 // Get new parts
 crossHairPart = GetTemplateChild("CrossHairPart") as FrameworkElement;
 contentPresenter = GetTemplateChild("ContentPresenterPart") as ContentPresenter;

 // Attach event handlers
 if (contentPresenter != null)
 {
 contentPresenter.ManipulationMode = ManipulationModes.TranslateX |
 ManipulationModes.TranslateY;
 contentPresenter.ManipulationStarted += OnContentPresenterManipulationStarted;
 contentPresenter.ManipulationDelta += OnContentPresenterManipulationDelta;
 contentPresenter.SizeChanged += OnContentPresenterSizeChanged;
 }

 // Make cross-hair transparent to touch
 if (crossHairPart != null)
 {
 crossHairPart.IsHitTestVisible = false;
 }

 base.OnApplyTemplate();
 }

 void OnContentPresenterManipulationStarted(object sender,
 ManipulationStartedRoutedEventArgs args)
 {
 RecalculateValue(args.Position);
 }

 void OnContentPresenterManipulationDelta(object sender,
 ManipulationDeltaRoutedEventArgs args)
 {
 RecalculateValue(args.Position);
 }

 void OnContentPresenterSizeChanged(object sender, SizeChangedEventArgs args)

	 CHAPTER 13  Touch, Etc.	 669

 {
 SetCrossHair();
 }

 void RecalculateValue(Point absolutePoint)
 {
 double x = Math.Max(0,Math.Min(1, absolutePoint.X / contentPresenter.ActualWidth));
 double y = Math.Max(0,Math.Min(1, absolutePoint.Y / contentPresenter.ActualHeight));
 this.Value = new Point(x, y);
 }

 void SetCrossHair()
 {
 if (contentPresenter != null && crossHairPart != null)
 {
 Canvas.SetLeft(crossHairPart, this.Value.X * contentPresenter.ActualWidth);
 Canvas.SetTop(crossHairPart, this.Value.Y * contentPresenter.ActualHeight);
 }
 }

 static void OnValueChanged(DependencyObject obj,
 DependencyPropertyChangedEventArgs args)
 {
 (obj as XYSlider).SetCrossHair();
 (obj as XYSlider).OnValueChanged((Point)args.NewValue);
 }

 protected void OnValueChanged(Point value)
 {
 if (ValueChanged != null)
 ValueChanged(this, value);
 }
 }
}

When the Value property is set programmatically, the class must set the cross-hair to the correct
position by multiplying the width and height of the ContentPresenter by the relative coordinates. This
happens in the SetCrossHair method. The ManipulationStarted and ManipulationDelta event handlers
are set on the ContentPresenter object. Both call the RecalculateValue method to convert the absolute
coordinates of the pointer to relative coordinates for the Value property.

The ManipulationStarted and ManipulationDelta handlers both reference a property of the event
arguments named Position, which I haven’t mentioned yet. For a mouse or pen, this Position prop-
erty is simply the location of the mouse pointer or pen tip relative to the control generating these
Manipulation events—the ContentPresenter in this case. For touch, the Position property is the aver-
age location of all the fingers involved in the manipulation. It provides a convenient way to deal with
multiple fingers when you really want the position of only one finger.

670	 PART 2  Specialties

The MainPage.xaml file instantiates an XYSlider and references a flattened map of the Earth that I
obtained from a NASA website. But most of the XAML file is dedicated to defining a template for the
XYSlider and particularly the cross-hair. Notice that I put the ContentPresenter and the Canvas in a
Grid and assigned some properties to the Grid normally assigned to the ContentPresenter. This means
that the upper-left corners of the ContentPresenter and Canvas are aligned, which makes it easier to
convert between ContentPresenter coordinates and relative coordinates:

Project: XYSliderDemo | File: MainPage.xaml (excerpt)

<Page ... >
 <Page.Resources>
 <ControlTemplate x:Key="xySliderTemplate" TargetType="local:XYSlider">
 <Border BorderBrush="{TemplateBinding BorderBrush}"
 BorderThickness="{TemplateBinding BorderThickness}"
 Background="{TemplateBinding Background}">

 <Grid Margin="{TemplateBinding Padding}"
 HorizontalAlignment="{TemplateBinding HorizontalContentAlignment}"
 VerticalAlignment="{TemplateBinding VerticalContentAlignment}">

 <ContentPresenter Name="ContentPresenterPart"
 Content="{TemplateBinding Content}"
 ContentTemplate="{TemplateBinding ContentTemplate}" />
 <Canvas>
 <Path Name="CrossHairPart"
 Stroke="{TemplateBinding Foreground}"
 StrokeThickness="3"
 Fill="Transparent">
 <Path.Data>
 <GeometryGroup FillRule="Nonzero">
 <EllipseGeometry RadiusX="48" RadiusY="48" />
 <EllipseGeometry RadiusX="6" RadiusY="6" />
 <LineGeometry StartPoint="-48 0" EndPoint="-6 0" />
 <LineGeometry StartPoint="48 0" EndPoint="6 0" />
 <LineGeometry StartPoint="0 -48" EndPoint="0 -6" />
 <LineGeometry StartPoint="0 48" EndPoint="0 6" />
 </GeometryGroup>
 </Path.Data>
 </Path>
 </Canvas>
 </Grid>
 </Border>
 </ControlTemplate>

 <Style TargetType="local:XYSlider">
 <Setter Property="Template" Value="{StaticResource xySliderTemplate}" />
 </Style>
 </Page.Resources>

 <Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <Grid.RowDefinitions>
 <RowDefinition Height="*" />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>

	 CHAPTER 13  Touch, Etc.	 671

 <local:XYSlider x:Name="xySlider"
 Grid.Row="0"
 Margin="48"
 ValueChanged="OnXYSliderValueChanged">
 <!-- Image courtesy of NASN/JPL-Caltech (http://maps.jpl.nasa.gov) -->
 <Image Source="Images/ear0xuu2.jpg" />
 </local:XYSlider>

 <TextBlock Name="label"
 Grid.Row="1"
 Style="{StaticResource SubheaderTextStyle}"
 HorizontalAlignment="Center" />
 </Grid>
</Page>

The code-behind file has a handler for the ValueChanged event of XYSlider and uses that to display
the corresponding longitude and latitude. Just to check that the code works the other way, it also
uses the Geolocator class to obtain the current geographical location of the computer on which the
program is running:

Project: XYSliderDemo | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 bool manualChange = false;

 public MainPage()
 {
 this.InitializeComponent();

 // Initialize position of cross-hair in XYSlider
 Loaded += async (sender, args) =>
 {
 Geolocator geolocator = new Geolocator();

 // Might not have permission!
 try
 {
 Geoposition position = await geolocator.GetGeopositionAsync();

 if (!manualChange)
 {
 double x = (position.Coordinate.Longitude + 180) / 360;
 double y = (90 - position.Coordinate.Latitude) / 180;
 xySlider.Value = new Point(x, y);
 }
 }
 catch
 {
 }
 };
 }

 void OnXYSliderValueChanged(object sender, Point point)
 {
 double longitude = 360 * point.X - 180;
 double latitude = 90 - 180 * point.Y;

672	 PART 2  Specialties

 label.Text = String.Format("Longitude: {0:F0} Latitude: {1:F0}",
 longitude, latitude);
 manualChange = true;
 }
}

Using the Geolocator class requires that you edit the Package.appxmanifest class to request
Location capabilities. In Visual Studio, select the Package.appxmanifest file, select the Capabilities
tab, and click Location. At run time, Windows 8 will then ask the user if it’s OK for the program to
know the computer’s location. If the user denies permission, the GetGeopositionAsync call raises an
exception.

Here’s how it looks:

In an earlier version of this control that I wrote for Windows Phone 7, I used a templated Thumb for
the cross-hair. I wasn’t happy with that version because it required the user to drag the Thumb from
its current location to a new location. For this new version, I wanted the cross-hair to snap to a new
position with a simple touch.

But I’m not sure this version entirely succeeds either. As I mentioned earlier (and as you’ll
experience), simply touching a location does not snap the cross-hair to that point because some
movement is required before the ManipulationStarted event is fired.

At first I thought I could make it respond faster by substituting a PointerPressed event for the
ManipulationStarted event. However, apparently the simple act of calling GetCurrentPoint on the
PointerRoutedEventArgs object inhibits Manipulation events.

Perhaps this is a case where the Pointer events are really best, and if there are multiple fingers
attempting to move the crosshair they should just be averaged together. I wouldn’t be surprised if
there’s a better version of XYSlider in the next chapter, when it’s used for a color-selection control in a
bitmap-based finger-painting program.

	 CHAPTER 13  Touch, Etc.	 673

Centered Scaling and Rotation

When I first introduced the scaling and rotation features of the Manipulation events, I mentioned
that applying these transforms with reference to a center point was a little tricky. Yet, in many cases
it’s important. The satisfaction of a touch interface depends a lot on how close the connection feels
between a user’s fingers and on-screen objects.

There is a technique to determine the scaling and rotation center involving the Position property
that I used in the last section. This property is the average of the positions of all the fingers relative
to the element being manipulated. It is not the center of scaling and rotation, but it can be used to
derive that center.

The CenteredTransforms project has a XAML file that references a bitmap on my website:

Project: CenteredTransforms | File: MainPage.xaml (excerpt)

<Page ... >
 <Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <Image Name="image"
 Source="http://www.charlespetzold.com/pw6/PetzoldJersey.jpg"
 Stretch="None"
 HorizontalAlignment="Left"
 VerticalAlignment="Top">
 <Image.RenderTransform>
 <TransformGroup x:Name="xformGroup">
 <MatrixTransform x:Name="matrixXform" />
 <CompositeTransform x:Name="compositeXform" />
 </TransformGroup>
 </Image.RenderTransform>
 </Image>
 </Grid>
</Page>

Notice that the RenderTransform property is now set to a TransformGroup containing both a
MatrixTransform and a CompositeTransform.

The code-behind file enables all forms of Manipulation except those involving rails:

Project: CenteredTransforms | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 public MainPage()
 {
 this.InitializeComponent();
 image.ManipulationMode = ManipulationModes.All &
 ~ManipulationModes.TranslateRailsX &
 ~ManipulationModes.TranslateRailsY;
 }

 protected override void OnManipulationDelta(ManipulationDeltaRoutedEventArgs args)
 {
 // Make this the entire transform to date
 matrixXform.Matrix = xformGroup.Value;

674	 PART 2  Specialties

 // Use that to transform the Position property
 Point center = matrixXform.TransformPoint(args.Position);

 // That becomes the center of the new incremental transform
 compositeXform.CenterX = center.X;
 compositeXform.CenterY = center.Y;

 // Set the other properties
 compositeXform.TranslateX = args.Delta.Translation.X;
 compositeXform.TranslateY = args.Delta.Translation.Y;
 compositeXform.ScaleX = args.Delta.Scale;
 compositeXform.ScaleY = args.Delta.Scale;
 compositeXform.Rotation = args.Delta.Rotation;

 base.OnManipulationDelta(args);
 }
}

The OnManipulationDelta override juggles around the three transform objects defined in the
XAML file. At any time, the Value property of the TransformGroup (which is a Matrix value) represents
the entire transform, which is the product of the transforms represented by the MatrixTransform
and CompositeTransform objects. The ManipulationDelta handler first sets the Matrix value from
the TransformGroup to the MatrixTransform, which means that the MatrixTransform is now the
entire transform up to this point. This transform is also applied to the Position property, and
that becomes the CenterX and CenterY properties for the CompositeTransform. The new values
from the ManipulationDelta structure can then be set directly to the other properties of the
CompositeTransform.

Does it work? You’ll definitely want to try it out because you can’t tell from this screen shot:

Try holding one finger still on a corner and pulling the opposite corner away or rotate it, and you’ll
see that the image follows your fingers—given the restriction of the isotropic scaling, of course.

	 CHAPTER 13  Touch, Etc.	 675

To make this technique a little easier to use, I wrote a tiny class called ManipulationManager that
performs this calculation in its own private collection of transforms created in the constructor and
saved in fields:

Project: ManipulationManagerDemo | File: ManipulationManager.cs

using Windows.Foundation;
using Windows.UI.Input;
using Windows.UI.Xaml.Media;

namespace ManipulationManagerDemo
{
 public class ManipulationManager
 {
 TransformGroup xformGroup;
 MatrixTransform matrixXform;
 CompositeTransform compositeXform;

 public ManipulationManager()
 {
 xformGroup = new TransformGroup();
 matrixXform = new MatrixTransform();
 xformGroup.Children.Add(matrixXform);
 compositeXform = new CompositeTransform();
 xformGroup.Children.Add(compositeXform);
 this.Matrix = Matrix.Identity;
 }

 public Matrix Matrix { private set; get; }

 public void AccumulateDelta(Point position, ManipulationDelta delta)
 {
 matrixXform.Matrix = xformGroup.Value;
 Point center = matrixXform.TransformPoint(position);
 compositeXform.CenterX = center.X;
 compositeXform.CenterY = center.Y;
 compositeXform.TranslateX = delta.Translation.X;
 compositeXform.TranslateY = delta.Translation.Y;
 compositeXform.ScaleX = delta.Scale;
 compositeXform.ScaleY = delta.Scale;
 compositeXform.Rotation = delta.Rotation;
 this.Matrix = xformGroup.Value;
 }
 }
}

The public AccumulateDelta method accepts a ManipulationDelta value directly and calculates a new
Matrix property. This allows elements that must be manipulated in this way to have only a single
transform:

Project: ManipulationManagerDemo | File: MainPage.xaml (excerpt)

<Page ... >
 <Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <Image Name="image"
 Source="http://www.charlespetzold.com/pw6/PetzoldJersey.jpg"

676	 PART 2  Specialties

 Stretch="None"
 HorizontalAlignment="Left"
 VerticalAlignment="Top">
 <Image.RenderTransform>
 <MatrixTransform x:Name="matrixXform" />
 </Image.RenderTransform>
 </Image>
 </Grid>
</Page>

The code-behind file creates an instance of ManipulationManager and uses that to calculate a new
transform for the Image:

Project: ManipulationManagerDemo | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 ManipulationManager manipulationManager = new ManipulationManager();

 public MainPage()
 {
 this.InitializeComponent();

 image.ManipulationMode = ManipulationModes.All &
 ~ManipulationModes.TranslateRailsX &
 ~ManipulationModes.TranslateRailsY;
 }

 protected override void OnManipulationDelta(ManipulationDeltaRoutedEventArgs args)
 {
 manipulationManager.AccumulateDelta(args.Position, args.Delta);
 matrixXform.Matrix = manipulationManager.Matrix;
 base.OnManipulationDelta(args);
 }
}

If you had multiple manipulable objects on the screen, you’d need an instance of
ManipulationManager for each one. In the next chapter I’ll use a variation of ManipulationManager in
a PhotoScatter project that displays the images in your Pictures directory and lets you pore through
them with your fingers.

Single-Finger Rotation

Although the ManipulationStarting event doesn’t necessarily signal that a manipulation will actually
occur, it offers a few ways for a program to initialize the manipulation, all involving properties of
ManipulationStartingRoutedEventArgs:

■■ The Mode property is of the familiar enumeration type ManipulationModes, and here it lets
you set the types of manipulation you want to handle. But keep in mind that you’ll get a
ManipulationStarting event only if the element has its ManipulationMode property set to
something other than ManipulationModes.None or ManipulationModes.System.

	 CHAPTER 13  Touch, Etc.	 677

■■ The Container property is read-only in all the other Manipulation events but writeable
in the ManipulationStarting event. By default, the Container property is the same as the
OriginalSource property, but in later events it’s the element that the Position property
is relative to. If you want the Position property to be relative to an element other than
OriginalSource, set the Container property to that element.

■■ The Pivot property enables single-finger rotation, and that’s what I’ll show you here.

Suppose a photograph is sitting on a table. (I’m referring here to a real photograph sitting on a
real table.) You touch your finger to a corner and pull it toward you. Does the photograph stay in the
same orientation? Not necessarily. If you’re touching it fairly lightly, friction between the table and
photograph causes the photograph to rotate a bit and the rest of it drags behind the corner that
you’re pulling.

You get a similar effect with single-finger rotation, but you need to use the technique I just
showed you for rotating objects around a center. Indeed, this XAML file is basically the same as the
CenteredTransforms project:

Project: SingleFingerRotate | File: MainPage.xaml (excerpt)

<Page ... >
 <Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <Image Name="image"
 Source="http://www.charlespetzold.com/pw6/PetzoldJersey.jpg"
 Stretch="None"
 HorizontalAlignment="Left"
 VerticalAlignment="Top"
 RenderTransformOrigin="0 0">
 <Image.RenderTransform>
 <TransformGroup x:Name="xformGroup">
 <MatrixTransform x:Name="matrixXform" />
 <CompositeTransform x:Name="compositeXform" />
 </TransformGroup>
 </Image.RenderTransform>
 </Image>
 </Grid>
</Page>

The code-behind file is nearly identical as well with the exception of the OnManipulationStarting
override:

Project: SingleFingerRotate | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 public MainPage()
 {
 this.InitializeComponent();

 image.ManipulationMode = ManipulationModes.All &
 ~ManipulationModes.TranslateRailsX &
 ~ManipulationModes.TranslateRailsY;
 }

678	 PART 2  Specialties

 protected override void OnManipulationStarting(ManipulationStartingRoutedEventArgs args)
 {
 args.Pivot = new ManipulationPivot(new Point(image.ActualWidth / 2,
 image.ActualHeight / 2),
 50);
 base.OnManipulationStarting(args);
 }

 protected override void OnManipulationDelta(ManipulationDeltaRoutedEventArgs args)
 {
 // Make this the entire transform to date
 matrixXform.Matrix = xformGroup.Value;

 // Use that to transform the Position property
 Point center = matrixXform.TransformPoint(args.Position);

 // That becomes the center of the new incremental transform
 compositeXform.CenterX = center.X;
 compositeXform.CenterY = center.Y;

 // Set the other properties
 compositeXform.TranslateX = args.Delta.Translation.X;
 compositeXform.TranslateY = args.Delta.Translation.Y;
 compositeXform.ScaleX = args.Delta.Scale;
 compositeXform.ScaleY = args.Delta.Scale;
 compositeXform.Rotation = args.Delta.Rotation;

 base.OnManipulationDelta(args);
 }
}

The key here is setting the Pivot property of the ManipulationStartingRoutedEventArgs object to a
ManipulationPivot object. This object provides two things:

■■ A center of rotation, almost always the center of the object being manipulated

■■ A protection radius around the center, here set to 50 pixels

Without that second item your finger can get very close to the center of the element, whereupon just
a little movement can give it a big spin.

This is one of those programs you really have to try out for yourself to get a feel for how
single-finger rotation adds some realism to the dragging operation.

Remember the SliderSketch program from Chapter 5, “Control Interaction”? Remember how you
asked, “Shouldn’t these be dials rather than sliders?”? The DialSketch program that concludes this
chapter uses a Dial control that incorporates single-finger rotation.

To make the Dial class a little easier to define, I decided it should derive from RangeBase just like
Slider. This gives the control Minimum, Maximum, and Value properties all of type double, as well as

	 CHAPTER 13  Touch, Etc.	 679

a ValueChanged event. The double values in this control, however, are rotation angles, and the only
enabled manipulation mode is rotation:

Project: DialSketch | File: Dial.cs

using System;
using Windows.Foundation;
using Windows.UI.Xaml.Controls.Primitives;
using Windows.UI.Xaml.Input;

namespace DialSketch
{
 public class Dial : RangeBase
 {
 public Dial()
 {
 ManipulationMode = ManipulationModes.Rotate;
 }

 protected override void OnManipulationStarting(ManipulationStartingRoutedEventArgs args)
 {
 args.Pivot = new ManipulationPivot(new Point(this.ActualWidth / 2,
 this.ActualHeight / 2),
 48);
 base.OnManipulationStarting(args);
 }

 protected override void OnManipulationDelta(ManipulationDeltaRoutedEventArgs args)
 {
 this.Value = Math.Max(this.Minimum,
 Math.Min(this.Maximum, this.Value + args.Delta.Rotation));

 base.OnManipulationDelta(args);
 }
 }
}

That’s it! Of course, it doesn’t have a template yet, nor does it access any transforms. It just sets a
new Value property (which causes RangeBase to fire a ValueChanged event), and it expects everything
else to be implemented elsewhere.

Two of these Dial controls are instantiated in the XAML file for DialSketch. The Resources section
is devoted to supplying a Style for these two controls, including a ControlTemplate. The Dial control
require visuals that let the user know it’s rotating, so the template uses a dashed line with very short
dashes to simulate tick marks.

680	 PART 2  Specialties

Notice the Minimum and Maximum values set on the Dial. These imply that the Dial can be
rotated 10 full times between its minimum and maximum positions. To draw a line from one edge of
the DialSketch canvas to the opposite edge, you need to turn the dial 10 times:

Project: DialSketch | File: MainPage.xaml (excerpt)

<Page ... >
 <Page.Resources>
 <Style TargetType="local:Dial">
 <Setter Property="Minimum" Value="-1800" />
 <Setter Property="Maximum" Value="1800" />
 <Setter Property="RenderTransformOrigin" Value="0.5 0.5" />
 <Setter Property="Width" Value="144" />
 <Setter Property="Height" Value="144" />
 <Setter Property="Margin" Value="24" />
 <Setter Property="Template">
 <Setter.Value>
 <ControlTemplate>
 <Grid>
 <Ellipse Fill="DarkRed" />
 <Ellipse Stroke="Black"
 StrokeThickness="12"
 StrokeDashArray="0.1 1"
 Margin="3" />
 <Ellipse Fill="Black"
 Width="6"
 Height="6" />
 </Grid>
 </ControlTemplate>
 </Setter.Value>
 </Setter>
 </Style>
 </Page.Resources>

 <Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <Grid.RowDefinitions>
 <RowDefinition Height="*" />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition Width="*" />
 <ColumnDefinition Width="Auto" />
 </Grid.ColumnDefinitions>

 <Border Grid.Row="0"
 Grid.Column="0"
 Grid.ColumnSpan='3'
 BorderBrush="{StaticResource ApplicationForegroundThemeBrush}"
 BorderThickness="3 0 0 3"
 Background="#C0C0C0"
 Padding="24">

	 CHAPTER 13  Touch, Etc.	 681

 <Grid Name="drawingGrid">
 <Polyline Name="polyline"
 Stroke="#404040"
 StrokeThickness="3" />
 </Grid>
 </Border>

 <local:Dial x:Name="horzDial"
 Grid.Row="1"
 Grid.Column="0"
 Maximum="1800"
 ValueChanged="OnDialValueChanged">
 <local:Dial.RenderTransform>
 <RotateTransform />
 </local:Dial.RenderTransform>
 </local:Dial>

 <Button Content="Clear"
 Grid.Row="1"
 Grid.Column="1"
 HorizontalAlignment="Center"
 VerticalAlignment="Center"
 Click="OnClearButtonClick" />

 <local:Dial x:Name="vertDial"
 Grid.Row="1"
 Grid.Column="2"
 Maximum="1800"
 ValueChanged="OnDialValueChanged">
 <local:Dial.RenderTransform>
 <RotateTransform />
 </local:Dial.RenderTransform>
 </local:Dial>
 </Grid>
</Page>

You’ll notice that the Maximum settings are repeated on the individual Dial controls. In the version
of Windows 8 that I’m using, the settings in the Style didn’t seem to “take.” Also notice that each Dial
control has a RotateTransform attached to it.

The code-behind file initializes the Polyline to a point in the center. For each ValueChanged event
from a Dial, the RotateTranform on the control is set and a new Point is added to the Polyline:

Project: DialSketch | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 public MainPage()
 {
 this.InitializeComponent();

 Loaded += (sender, args) =>
 {
 polyline.Points.Add(new Point(drawingGrid.ActualWidth / 2,
 drawingGrid.ActualHeight / 2));
 };
 }

682	 PART 2  Specialties

 void OnDialValueChanged(object sender, RangeBaseValueChangedEventArgs args)
 {
 Dial dial = sender as Dial;
 RotateTransform rotate = dial.RenderTransform as RotateTransform;
 rotate.Angle = args.NewValue;

 double xFraction = (horzDial.Value - horzDial.Minimum) /
 (horzDial.Maximum - horzDial.Minimum);

 double yFraction = (vertDial.Value - vertDial.Minimum) /
 (vertDial.Maximum - vertDial.Minimum);

 double x = xFraction * drawingGrid.ActualWidth;
 double y = yFraction * drawingGrid.ActualHeight;
 polyline.Points.Add(new Point(x, y));
 }

 void OnClearButtonClick(object sender, RoutedEventArgs args)
 {
 polyline.Points.Clear();
 }
}

Of course, the program is still impossible to use, but it says “Hi” the best it can:

		 683

C H A P T E R 1 4

Bitmaps

We’ve been working with bitmap images since the early pages of this book: displaying them,
using them for brushes, stretching them, skewing them, and rotating them. But this chapter

is all about reaching into the inner soul of bitmaps and manipulating their pixel bits. Almost every
program in this chapter makes use of the WriteableBitmap class, which derives from ImageSource and
therefore can be used as a source for Image and ImageBrush:

Object
 DependencyObject
 ImageSource
 BitmapSource
 BitmapImage
 WriteableBitmap

From BitmapSource, WriteableBitmap inherits a SetSource method that you can use to load a bitmap
file through an object that implements IRandomAccessStream.

What makes WriteableBitmap different is that it defines a PixelBuffer property that gives you
access to the pixel bits. You can manipulate the pixels of an existing image or create an entire image
from scratch. This chapter also discusses reading and writing various formats of image files (such as
PNG and JPEG) based on arrays of pixel bits.

If you’re familiar with the Silverlight version of WriteableBitmap, you might be disappointed to
learn that the Windows Runtime version does not implement the Render method that allows you
to render any UIElement on the surface of the image. This greatly limits WriteableBitmap for several
common purposes.

For example, in Chapter 13, “Touch, Etc.,” you saw a number of finger-painting programs that
rendered pointer input with Line, Polyline, and Path elements. You probably noticed that I provided
no way for you to save a painting to a file. One very reasonable way to save a painting is to render
these Line, Polyline, and Path elements on a bitmap and then save this bitmap as a file. But the
absence of a Render method in WriteableBitmap greatly inhibits this process.

In this chapter I’ll show you how to draw lines on a bitmap algorithmically. This allows me to
present a FingerPaint program (without any number on the project name) that lets you store your
artwork as a bitmap. In Chapter 15, “Going Native,” I’ll show you how to use SurfaceImageSource,
which also derives from ImageSource and can be drawn upon using DirectX drawing operations from
C++ code.

684	 PART 2  Specialties

It is not my policy to discuss third-party libraries in books about APIs, but if you need to draw
complex graphics on bitmaps, you might find WriteableBitmapEx to be useful. This is available at
http://writeablebitmapex.codeplex.com.

Pixel Bits

A bitmap image has an integral number of rows and columns. For any instance of a class that derives
from BitmapSource, these dimensions are available from the PixelHeight and PixelWidth properties.

Conceptually, pixel bits are stored in a two-dimensional array with the two dimensions equal to
PixelHeight and PixelWidth. In reality, the array has just one dimension, but the big issue is the nature
of the individual pixels themselves. This is sometimes referred to as the bitmap’s “color format” and
could range from 1 bit per pixel (in a bitmap capable of only black and white) to 1 byte per pixel (in a
gray-shade bitmap or a bitmap with a 256-color palette) to 3 or 4 bytes per pixel (for full-color with
or without transparency) or even higher for more color resolution.

However, when working with WriteableBitmap, a uniform color format has been established. In
every WriteableBitmap, each pixel consists of four bytes. The total number of bytes in the bitmap’s
pixel array is therefore

PixelHeight * PixelWidth * 4

The image begins with the topmost row, and each row goes from left to right. There is no row
padding. For each pixel, the bytes are in this order:

Blue, Green, Red, Alpha

The bytes range from 0 to 255 just as in a Color value. The WriteableBitmap color values are assumed
to be in accordance with sRGB (“standard RGB”) and hence compatible with the Windows Runtime
Color value (except for Colors.Transparent, as I’ll discuss later).

The pixels in a WriteableBitmap are in a premultiplied-alpha format. I’ll discuss what that means
shortly.

The order Blue, Green, Red, Alpha might seem backward from how we usually refer to these color
bytes (and their order in the Color.FromArgb method), but it makes more sense if you consider that
a WriteableBitmap pixel is really a 32-bit unsigned integer with the Alpha value stored in the high
byte and the Blue value in the low byte. That integer is stored in the bitmap in the little-endian order
(lowest byte first) common in operating systems built around Intel microprocessors.

Let’s construct a custom image by creating a WriteableBitmap and filling it with pixels. Just to make
the math easy, this WriteableBitmap will have 256 rows and 256 columns. The upper-left corner will be
black, the upper-right corner will be blue, the lower-left corner will be red, and the lower-right corner
will be magenta, the combination of blue and red. This is a form of gradient, but it’s not like any
gradient available in the Windows Runtime.

	 CHAPTER 14  Bitmaps	 685

Here’s the XAML file with an Image element ready to receive an ImageSource derivative:

Project: CustomGradient | File: MainPage.xaml (excerpt)

<Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <Image Name="image" />
</Grid>

You cannot instantiate a WriteableBitmap in XAML because it doesn’t have a parameterless
constructor. The code-behind file creates and builds the WriteableBitmap in a handler for the Loaded
event. Here’s the complete file so that you can see the using directives as well. WriteableBitmap itself
is defined in the Windows.UI.Xaml.Media.Imaging namespace:

Project: CustomGradient | File: MainPage.xaml.cs

using System.IO;
using System.Runtime.InteropServices.WindowsRuntime;
using Windows.UI.Xaml;
using Windows.UI.Xaml.Controls;
using Windows.UI.Xaml.Media.Imaging;

namespace CustomGradient
{
 public sealed partial class MainPage : Page
 {
 public MainPage()
 {
 this.InitializeComponent();
 Loaded += OnMainPageLoaded;
 }

 async void OnMainPageLoaded(object sender, RoutedEventArgs args)
 {
 WriteableBitmap bitmap = new WriteableBitmap(256, 256);
 byte[] pixels = new byte[4 * bitmap.PixelWidth * bitmap.PixelHeight];

 for (int y = 0; y < bitmap.PixelHeight; y++)
 for (int x = 0; x < bitmap.PixelWidth; x++)
 {
 int index = 4 * (y * bitmap.PixelWidth + x);
 pixels[index + 0] = (byte)x; // Blue
 pixels[index + 1] = 0; // Green
 pixels[index + 2] = (byte)y; // Red
 pixels[index + 3] = 255; // Alpha
 }

 using (Stream pixelStream = bitmap.PixelBuffer.AsStream())
 {
 await pixelStream.WriteAsync(pixels, 0, pixels.Length);
 }
 bitmap.Invalidate();
 image.Source = bitmap;
 }
 }
}

686	 PART 2  Specialties

The WriteableBitmap constructor requires a pixel width and height. The program then allocates a
byte array for the pixels based on those dimensions:

byte[] pixels = new byte[4 * bitmap.PixelWidth * bitmap.PixelHeight];

The array size for a WriteableBitmap is always calculated like this.

The loops for the rows and columns touch every pixel in the bitmap. An index into the pixels array
to reference a particular pixel is calculated like this:

int index = 4 * (y * bitmap.PixelWidth + x);

Each pixel can then be set in the order blue, green, red, alpha.

In this particular example, the two loops are addressing the pixels in the order in which they’re
stored in the array, so index really doesn’t have to be recalculated for every pixel. It could be
initialized at zero and then incremented like so:

int index = 0;
for (int y = 0; y < bitmap.PixelHeight; y++)
 for (int x = 0; x < bitmap.PixelWidth; x++)
 {
 pixels[index++] = (byte)x; // Blue
 pixels[index++] = 0; // Green
 pixels[index++] = (byte)y; // Red
 pixels[index++] = 255; // Alpha
 }

This is almost assuredly somewhat faster than the approach I’ve used, but in general it’s less versatile.
You could also define one loop for index and then calculate x and y from that. What’s important (in
most cases) is to access every pixel.

After the byte array has been filled, the pixels must be transferred into the WriteableBitmap. This
process seems puzzling on first inspection. The PixelBuffer property defined by WriteableBitmap is
of type IBuffer, which defines only two properties: Capacity and Length. As I discussed in Chapter 7,
"Asynchronicity," an IBuffer object is usually an area of storage maintained within the operating sys-
tem that is reference counted so that it can be deleted when no longer needed. You need to transfer
bytes into this buffer.

Fortunately, an extension method named AsStream is defined to treat this IBuffer as a .NET Stream
object:

Stream pixelStream = bitmap.PixelBuffer.AsStream();

To use this extension method, you must include a using directive for the System.Runtime
.InteropServices.WindowsRuntime namespace. Without that using directive, IntelliSense won’t reveal
the method’s existence.

You can then use the normal Write method defined by Stream to write the byte array to the Stream
object, or you can use WriteAsync as I’ve done. Because this bitmap is not very large, and because

	 CHAPTER 14  Bitmaps	 687

the call merely transfers an array of bytes across the API, Write should be fast enough to justify doing
the job in the user-interface thread. You can dispose of the Stream “manually” or let it be disposed of
automatically, or you can put the Stream logic in a using statement as I’ve done:

using (Stream pixelStream = bitmap.PixelBuffer.AsStream())
{
 await pixelStream.WriteAsync(pixels, 0, pixels.Length);
}

Whenever you change the pixels of a WriteableBitmap, it’s a good idea to get into the habit of
calling Invalidate on the bitmap:

bitmap.Invalidate();

This call requests that the bitmap be redrawn. The call isn’t strictly required in this particular context,
but it’s important in others.

Finally, do not forget to display the final bitmap! This program simply sets it to the Source property
of the Image element in the XAML file:

image.Source = bitmap;

And here’s the result:

If you retain the Stream object and pixel array as a field for further manipulation of the bitmap—
perhaps the image changes over time—you’ll need to precede the WriteAsync call with a Seek call to
set the current position back to the beginning:

pixelStream.Seek(0, SeekOrigin.Begin);

688	 PART 2  Specialties

But notice also that you have the option of writing only part of the byte array to the bitmap. For
example, suppose you’ve only modified pixels corresponding to the pixel coordinate (x1, y1) up to but
not including (x2, y2). First find the byte indices corresponding to those two coordinates:

int index1 = 4 * (y1 * bitmap.PixelWidth + x1);
int index2 = 4 * (y2 * bitmap.PixelWidth + x2);

Then indicate that you want to update pixels at index1 up to index2:

pixelStream.Seek(index1, SeekOrigin.Begin);
pixelStream.Write(pixels, index1, index2 – index1);
bitmap.Invalidate();

Let’s try another custom gradient. This next program I call CircularGradient and the gradient is
based on the angle a particular pixel makes with the center of the bitmap. (The math is easier than
you might think.)

The XAML file defines an Ellipse with a thick outline and an ImageBrush for the Stroke property. An
animation rotates the Ellipse around its center:

Project: CircularGradient | File: MainPage.xaml (excerpt)

<Page ... >
 <Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <Ellipse Width="576"
 Height="576"
 StrokeThickness="48"
 RenderTransformOrigin="0.5 0.5">
 <Ellipse.Stroke>
 <ImageBrush x:Name="imageBrush" />
 </Ellipse.Stroke>

 <Ellipse.RenderTransform>
 <RotateTransform x:Name="rotate" />
 </Ellipse.RenderTransform>
 </Ellipse>
 </Grid>

 <Page.Triggers>
 <EventTrigger>
 <BeginStoryboard>
 <Storyboard>
 <DoubleAnimation Storyboard.TargetName="rotate"
 Storyboard.TargetProperty="Angle"
 From="0" To="360" Duration="0:0:3"
 RepeatBehavior="Forever" />
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger>
 </Page.Triggers>
</Page>

	 CHAPTER 14  Bitmaps	 689

The Loaded handler in the code-behind file is similar to the previous program. As the two loops
march through the rows and columns of the bitmap, each pixel has a position (x, y) relative to the
upper-left corner. The pixel in the center has the coordinate (bitmap.PixelWidth / 2,
bitmap.PixelHeight / 2). By subtracting that center from an individual pixel and dividing by the bitmap
width and height, the pixel coordinate is converted to values between –1/2 and 1/2, which can then
be passed to the Math.Atan2 method to get exactly the angle we need:

Project: CircularGradient | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 public MainPage()
 {
 this.InitializeComponent();
 Loaded += OnMainPageLoaded;
 }

 async void OnMainPageLoaded(object sender, RoutedEventArgs args)
 {
 WriteableBitmap bitmap = new WriteableBitmap(256, 256);
 byte[] pixels = new byte[4 * bitmap.PixelWidth * bitmap.PixelHeight];
 int index = 0;
 int centerX = bitmap.PixelWidth / 2;
 int centerY = bitmap.PixelHeight / 2;

 for (int y = 0; y < bitmap.PixelHeight; y++)
 for (int x = 0; x < bitmap.PixelWidth; x++)
 {
 double angle =
 Math.Atan2(((double)y - centerY) / bitmap.PixelHeight,
 ((double)x - centerX) / bitmap.PixelWidth);
 double fraction = angle / (2 * Math.PI);
 pixels[index++] = (byte)(fraction * 255); // Blue
 pixels[index++] = 0; // Green
 pixels[index++] = (byte)(255 * (1 - fraction)); // Red
 pixels[index++] = 255; // Alpha
 }

 using (Stream pixelStream = bitmap.PixelBuffer.AsStream())
 {
 await pixelStream.WriteAsync(pixels, 0, pixels.Length);
 }
 bitmap.Invalidate();
 imageBrush.ImageSource = bitmap;
 }
}

690	 PART 2  Specialties

That angle is then converted to a fraction between 0 and 1 for calculating the gradient. Here’s what
the bitmap looks like in its entirety used for an ImageBrush set to the Fill property of a Rectangle:

However, it looks much more interesting when it’s restricted to a circle and made to rotate. It
seems as if the gradient itself is rotating:

As you’ve seen, brushes in the Windows Runtime are generally stretched to the element they’re
coloring. An ImageBrush does that as well, so in one sense the size of the underlying bitmap doesn’t
matter. But of course it does matter. A bitmap that is too small might not have the desired detail, and
one that is too large is just a waste of pixels.

	 CHAPTER 14  Bitmaps	 691

Transparency and Premultiplied Alphas

When a bitmap is rendered on a surface such as the video display, the pixels of the bitmap are
generally not simply transferred to the video display surface. If the bitmap supports transparency, a
pixel must be combined with the color of the existing surface at that point based on the Alpha setting
of that pixel. It the Alpha value is 255 (opaque), the bitmap pixel can be simply copied to the surface.
If the Alpha value is 0 (transparent), it doesn’t need to be copied at all. If the Alpha value is 128, the
result is the average of the bitmap pixel and the surface color prior to the rendering.

The following formulas show this calculation for a single pixel. In reality the values A, R, G, and B
range from 0 to 255, but the following simplified formulas assume they’ve been normalized to values
0 through 1. The subscripts indicate the “result” of rendering a partially transparent “bitmap” pixel on
an existing “surface”:

R A R A Rresult bitmap surface bitmap bitmap= −() +1 • •

G A G A Gresult bitmap surface bitmap bitmap= −() +1 • •

B A B A Bresult bitmap surface bitmap bitmap= −() +1 • •

Notice that second multiplication in each line. That’s a multiplication that involves only the bitmap
pixel itself and not the surface. This implies that the entire process of rendering a bitmap on a surface
can be speeded up if the R, G, and B values of the pixel have already been multiplied by the A value:

R A R Rresult bitmap surface bitmap= −() +1 •

G A G Gresult bitmap surface bitmap= −() +1 •

B A B Bresult bitmap surface bitmap= −() +1 •

This convention is called “premultiplied alpha.”

For example, suppose a non-premultiplied alpha bitmap contains a pixel with the ARGB value
(192, 40, 60, 255). That alpha value of 192 indicates 75 percent opacity (192 divided by 255). The
equivalent pixel with a premultiplied alpha is (192, 30, 45, 192). The red, green, and blue values have
been multiplied by 75 percent.

When rendering a WriteableBitmap, the operating system assumes that the pixel data has
premultiplied alphas. For any pixel, none of the R, G, and B values should be greater than the A value.
Nothing will “blow up” if that’s not the case, but you won’t get the colors and level of transparency
you want.

Let’s look at some examples. Back in Chapter 10, “Transforms,” I showed you how to flip over
an image and make it fade out so that it looked like a reflection. However, because the Windows

692	 PART 2  Specialties

Runtime doesn’t support an opacity mask, I had to fade out the reflected image by covering it with a
partially transparent rectangle.

In the ReflectedAlphaImage project I take a different approach. The XAML file has two Image
elements occupying the same top cell of a two-row Grid. The second Image element has a
RenderTransformOrigin and ScaleTransform to flip it around its bottom edge, but no bitmap has been
specified:

Project: ReflectedAlphaImage | File: MainPage.xaml (excerpt)

<Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <Grid.RowDefinitions>
 <RowDefinition Height="*" />
 <RowDefinition Height="*" />
 </Grid.RowDefinitions>

 <Image Source="http://www.charlespetzold.com/pw6/PetzoldJersey.jpg"
 HorizontalAlignment="Center" />

 <Image Name="reflectedImage"
 RenderTransformOrigin="0 1"
 HorizontalAlignment="Center">
 <Image.RenderTransform>
 <ScaleTransform ScaleY="-1" />
 </Image.RenderTransform>
 </Image>
</Grid>

The same bitmap referenced by the first Image element must be loaded independently in the
code-behind file. (You might wonder if it’s possible to obtain a WriteableBitmap based on the object
that’s set to the Source property of the first Image object. But that’s an object of type BitmapSource,
and you can’t create a WriteableBitmap from a BitmapSource.) If it’s not necessary to modify that
downloaded bitmap, the code in the constructor might look something like this:

Loaded += async (sender, args) =>
 {
 Uri uri = new Uri("http://www.charlespetzold.com/pw6/PetzoldJersey.jpg");
 RandomAccessStreamReference streamRef = RandomAccessStreamReference.CreateFromUri(uri);
 IRandomAccessStreamWithContentType fileStream = await streamRef.OpenReadAsync();
 WriteableBitmap bitmap = new WriteableBitmap(1, 1);
 bitmap.SetSource(fileStream);
 reflectedImage.Source = bitmap;
 };

It’s necessary to put this code in the Loaded handler because some asynchronous processing is
involved. Notice that a WriteableBitmap can be created with essentially an “unknown” size if the data
is coming from the SetSource method. When the WriteableBitmap reads that JPEG stream, it can
figure out what the actual pixel dimensions are.

However, when that fileStream object is passed to the SetSource method of WriteableBitmap and
when that WriteableBitmap is set to the Source property of the Image element, the bitmap has not

	 CHAPTER 14  Bitmaps	 693

yet been downloaded. That downloading occurs asynchronously within WriteableBitmap. This means
that you can’t yet start modifying the pixels because the pixels have not yet arrived! It would be nice
if WriteableBitmap defined an event like BitmapImage does that indicates when SetSource completes
loading the bitmap file, but that’s not the case. Nor does the ImageOpened event of the Image
element provide this information for a WriteableBitmap.

So, we’re left with the job of loading in the bitmap file ourselves and then making the
modifications to it. Some of the code I’m going to show you can be simplified with other classes
covered later in this chapter, but let’s look at how it’s done without those classes. Here’s the process:

Project: ReflectedAlphaImage | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 public MainPage()
 {
 this.InitializeComponent();
 Loaded += OnMainPageLoaded;
 }

 async void OnMainPageLoaded(object sender, RoutedEventArgs args)
 {
 Uri uri = new Uri("http://www.charlespetzold.com/pw6/PetzoldJersey.jpg");
 RandomAccessStreamReference streamRef = RandomAccessStreamReference.CreateFromUri(uri);

 // Create a buffer for reading the stream
 Windows.Storage.Streams.Buffer buffer = null;

 // Read the entire file
 using (IRandomAccessStreamWithContentType fileStream = await streamRef.OpenReadAsync())
 {
 buffer = new Windows.Storage.Streams.Buffer((uint)fileStream.Size);
 await fileStream.ReadAsync(buffer, (uint)fileStream.Size, InputStreamOptions.None);
 }

 // Create WriteableBitmap with unknown size
 WriteableBitmap bitmap = new WriteableBitmap(1, 1);

 // Create a memory stream for transferring the data
 using (InMemoryRandomAccessStream memoryStream = new InMemoryRandomAccessStream())
 {
 await memoryStream.WriteAsync(buffer);
 memoryStream.Seek(0);

 // Use the memory stream as the Bitmap source
 bitmap.SetSource(memoryStream);
 }

694	 PART 2  Specialties

 // Now get the pixels from the bitmap
 byte[] pixels = new byte[4 * bitmap.PixelWidth * bitmap.PixelHeight];
 int index = 0;

 using (Stream pixelStream = bitmap.PixelBuffer.AsStream())
 {
 await pixelStream.ReadAsync(pixels, 0, pixels.Length);

 // Apply opacity to the pixels
 for (int y = 0; y < bitmap.PixelHeight; y++)
 {
 double opacity = (double)y / bitmap.PixelHeight;

 for (int x = 0; x < bitmap.PixelWidth; x++)
 for (int i = 0; i < 4; i++)
 {
 pixels[index] = (byte)(opacity * pixels[index]);
 index++;
 }
 }

 // Put the pixels back in the bitmap
 pixelStream.Seek(0, SeekOrigin.Begin);
 await pixelStream.WriteAsync(pixels, 0, pixels.Length);
 }
 bitmap.Invalidate();
 reflectedImage.Source = bitmap;
 }
}

The Buffer class needs a fully qualified name that includes the Windows.Storage.Streams namespace
because the System namespace also includes a class named Buffer.

One objective here is to pass an object of type IRandomAccessStream to the SetSource method of
the WriteableBitmap. However, immediately after this is done, we want to start working with the pixels
of the resultant bitmap. This can’t happen unless the file has been fully read.

That’s the rationale for creating a Buffer object for reading the fileStream object, and then using
that same Buffer object to write the contents to an InMemoryRandomAccessStream. As its name sug-
gests, the InMemoryRandomAccessStream class implements the IRandomAccessStream interface so
that it can be passed to the SetSource method of WriteableBitmap. (But notice that the stream posi-
tion must first be set back to zero.)

It’s important to realize that we’re working with two very different chunks of data here. The
fileStream references the PNG file, which in this case is 82,824 bytes of compressed image data. The
InMemoryRandomAccessStream is that same chunk of data. Once that stream has been passed to
the SetSource method of WriteableBitmap, it is decoded into rows and columns of pixels. The pixels
array is 512,000 bytes in size, and the pixelStream object references those decompressed pixels. The
pixelStream object is first used to read the pixels into the pixels array and then to write them back out
into the bitmap.

	 CHAPTER 14  Bitmaps	 695

Between those two calls is the actual application of the gradient opacity. If the pixels of a
WriteableBitmap were not assumed by the Windows Runtime to have a premultiplied alpha format,
only the Alpha byte would need to be modified. The premulitiplied format requires the color bytes to
be multiplied as well. Here’s the result:

If you want to see what happens if you adjust only the Alpha byte, substitute the following code
for the inner loop:

for (int i = 0; i < 4; i++)
{
 if (i == 3)
 pixels[index] = (byte)(opacity * pixels[index]);
 index++;
}

You get the transparency you want, but only if the background is white. If the background is black,
there’s no transparency at all! Look at the formulas and it all becomes clear.

Suppose you wanted to alter the CircularGradient project so that the gradient is from a solid color
to complete transparency. Here’s the altered code to set the four bytes:

pixels[index++] = (byte)(fraction * 255); // Blue
pixels[index++] = 0; // Green
pixels[index++] = 0; // Red
pixels[index++] = (byte)(fraction * 255); // Alpha

696	 PART 2  Specialties

The Blue component and the Alpha component get the same setting. With a non-premultiplied Alpha
format, the Blue component would always be 255. Here’s the result:

A Radial Gradient Brush

One of the many mysteriously missing pieces of the Windows Runtime is RadialGradientBrush, which
is generally used to color a circle with a gradient from a point within that circle to the perimeter. One
common use of RadialGradientBrush is to turn a circle into a three-dimensionalish “ball” that looks as
if some light is reflecting off an area near the upper-left corner.

I began writing my RadialGradientBrushSimulator class with an idea about animating
the GradientOrigin property of this class in a XAML file. For that reason, I made
RadialGradientBrushSimulator a FrameworkElement derivative even though it doesn’t display
anything on its own. By making it derive from FrameworkElement I could more easily instantiate the
class in XAML. And because I was thinking about animations and bindings, I defined all the properties
as dependency properties. Here’s the part of the class containing little more than the dependency
property overhead:

Project: RadialGradientBrushDemo | File: RadialGradientBrushSimulator.cs (excerpt)

public class RadialGradientBrushSimulator : FrameworkElement
{
 ...
 static readonly DependencyProperty gradientOriginProperty =
 DependencyProperty.Register("GradientOrigin",
 typeof(Point),
 typeof(RadialGradientBrushSimulator),
 new PropertyMetadata(new Point(0.5, 0.5), OnPropertyChanged));

	 CHAPTER 14  Bitmaps	 697

 static readonly DependencyProperty innerColorProperty =
 DependencyProperty.Register("InnerColor",
 typeof(Color),
 typeof(RadialGradientBrushSimulator),
 new PropertyMetadata(Colors.White, OnPropertyChanged));

 static readonly DependencyProperty outerColorProperty =
 DependencyProperty.Register("OuterColor",
 typeof(Color),
 typeof(RadialGradientBrushSimulator),
 new PropertyMetadata(Colors.Black, OnPropertyChanged));

 static readonly DependencyProperty clipToEllipseProperty =
 DependencyProperty.Register("ClipToEllipse",
 typeof(bool),
 typeof(RadialGradientBrushSimulator),
 new PropertyMetadata(false, OnPropertyChanged));

 public static DependencyProperty imageSourceProperty =
 DependencyProperty.Register("ImageSource",
 typeof(ImageSource),
 typeof(RadialGradientBrushSimulator),
 new PropertyMetadata(null));

 public RadialGradientBrushSimulator()
 {
 SizeChanged += OnSizeChanged;
 }

 public static DependencyProperty GradientOriginProperty
 {
 get { return gradientOriginProperty; }
 }

 public static DependencyProperty InnerColorProperty
 {
 get { return innerColorProperty; }
 }

 public static DependencyProperty OuterColorProperty
 {
 get { return outerColorProperty; }
 }

 public static DependencyProperty ClipToEllipseProperty
 {
 get { return clipToEllipseProperty; }
 }

 public static DependencyProperty ImageSourceProperty
 {
 get { return imageSourceProperty; }
 }

 public Point GradientOrigin
 {
 set { SetValue(GradientOriginProperty, value); }

698	 PART 2  Specialties

 get { return (Point)GetValue(GradientOriginProperty); }
 }

 public Color InnerColor
 {
 set { SetValue(InnerColorProperty, value); }
 get { return (Color)GetValue(InnerColorProperty); }
 }
 public Color OuterColor
 {
 set { SetValue(OuterColorProperty, value); }
 get { return (Color)GetValue(OuterColorProperty); }
 }
 public bool ClipToEllipse
 {
 set { SetValue(ClipToEllipseProperty, value); }
 get { return (bool)GetValue(ClipToEllipseProperty); }
 }

 public ImageSource ImageSource
 {
 private set { SetValue(ImageSourceProperty, value); }
 get { return (ImageSource)GetValue(ImageSourceProperty); }
 }

 void OnSizeChanged(object sender, SizeChangedEventArgs args)
 {
 this.RefreshBitmap();
 }

 static void OnPropertyChanged(DependencyObject obj, DependencyPropertyChangedEventArgs args)
 {
 (obj as RadialGradientBrushSimulator).RefreshBitmap();
 }
 ...
}

In the RefreshBitmap method shown later, the class uses the GradientOrigin, InnerColor, OuterColor,
and ClipToEllipse properties (as well as the ActualWidth and ActualHeight of the element) to create a
WriteableBitmap that the class exposes through the ImageSource property, allowing another element
in the XAML file to reference that through a binding to the ImageSource property of an ImageBrush.

It was then that I discovered that the algorithm to make an image of a radial gradient brush was
not exactly trivial. Conceptually, you’re dealing with an ellipse, although you can use the bitmap to
color a rectangle or anything else. The color at the boundary of the ellipse is the OuterColor property.
The GradientOrigin property of type Point is in relative coordinates. For example, a value of (0.5, 0.5)
would set the GradientOrigin to the center of the ellipse. The color at the GradientOrigin is the prop-
erty InnerColor.

For any point (x, y) within the bitmap, the algorithm needs to find an interpolation factor to cal-
culate a color between InnerColor and OuterColor. This interpolation factor is based on a straight line
from the GradientOrigin through the point (x, y) to the circumference of the ellipse. Where the point
(x, y) divides that line determines the value of the interpolation factor.

	 CHAPTER 14  Bitmaps	 699

For best performance I wanted to avoid trigonometry. Instead, my strategy involved finding the
intersection of the circumference of the ellipse with the line from the GradientOrigin to (x, y). This
involved solving a quadratic equation for every point in the bitmap.

Here’s the RefreshBitmap method:

Project: RadialGradientBrushDemo | File: RadialGradientBrushSimulator.cs (excerpt)

public class RadialGradientBrushSimulator : FrameworkElement
{
 WriteableBitmap bitmap;
 byte[] pixels;
 Stream pixelStream;
 ...
 void RefreshBitmap()
 {
 if (this.ActualWidth == 0 || this.ActualHeight == 0)
 {
 this.ImageSource = null;
 bitmap = null;
 pixels = null;
 pixelStream = null;
 return;
 }

 if (bitmap == null || (int)this.ActualWidth != bitmap.PixelWidth ||
 (int)this.ActualHeight != bitmap.PixelHeight)
 {
 bitmap = new WriteableBitmap((int)this.ActualWidth, (int)this.ActualHeight);
 this.ImageSource = bitmap;
 pixels = new byte[4 * bitmap.PixelWidth * bitmap.PixelHeight];
 pixelStream = bitmap.PixelBuffer.AsStream();
 }
 else
 {
 for (int i = 0; i < pixels.Length; i++)
 pixels[i] = 0;
 }

 double xOrigin = 2 * this.GradientOrigin.X - 1;
 double yOrigin = 2 * this.GradientOrigin.Y - 1;

 byte aOutsideCircle = 0;
 byte rOutsideCircle = 0;
 byte gOutsideCircle = 0;
 byte bOutsideCircle = 0;

 if (!this.ClipToEllipse)
 {
 double opacity = this.OuterColor.A / 255.0;
 aOutsideCircle = this.OuterColor.A;
 rOutsideCircle = (byte)(opacity * this.OuterColor.R);
 gOutsideCircle = (byte)(opacity * this.OuterColor.G);
 gOutsideCircle = (byte)(opacity * this.OuterColor.B);
 }

 int index = 0;

700	 PART 2  Specialties

 for (int yPixel = 0; yPixel < bitmap.PixelHeight; yPixel++)
 {
 // Calculate y relative to unit circle
 double y = 2.0 * yPixel / bitmap.PixelHeight - 1;

 for (int xPixel = 0; xPixel < bitmap.PixelWidth; xPixel++)
 {
 // Calculate x relative to unit circle
 double x = 2.0 * xPixel / bitmap.PixelWidth - 1;

 // Check if point is within circle
 if (x * x + y * y <= 1)
 {
 // relative length from gradient origin to point
 double length1 = 0;

 // relative length from point to unit circle
 // (length1 + length2 = 1)
 double length2 = 0;

 if (x == xOrigin && y == yOrigin)
 {
 length2 = 1;
 }
 else
 {
 // Remember: xCircle^2 + yCircle^2 = 1
 double xCircle = 0, yCircle = 0;

 if (x == xOrigin)
 {
 xCircle = x;
 yCircle = (y < yOrigin ? -1 : 1) * Math.Sqrt(1 - x * x);
 }
 else if (y == yOrigin)
 {
 xCircle = (x < xOrigin ? -1 : 1) * Math.Sqrt(1 - y * y);
 yCircle = y;
 }
 else
 {
 // Express line from origin to point as y = mx + k
 double m = (yOrigin - y) / (xOrigin - x);
 double k = y - m * x;

 // Now substitute (mx + k) for y into x^2 + y^2 = 1
 // x^2 + (mx + k)^2 = 1
 // x^2 + (mx)^2 + 2mxk + k^2 - 1 = 0
 // (1 + m^2)x^2 + (2mk)x + (k^2 - 1) = 0 is quadratic equation
 double a = 1 + m * m;
 double b = 2 * m * k;
 double c = k * k - 1;

 // Now solve for x
 double sqrtTerm = Math.Sqrt(b * b - 4 * a * c);
 double x1 = (-b + sqrtTerm) / (2 * a);

	 CHAPTER 14  Bitmaps	 701

 double x2 = (-b - sqrtTerm) / (2 * a);

 if (x < xOrigin)
 xCircle = Math.Min(x1, x2);
 else
 xCircle = Math.Max(x1, x2);

 yCircle = m * xCircle + k;
 }

 // Length from origin to point
 length1 = Math.Sqrt(Math.Pow(x - xOrigin, 2) +
 Math.Pow(y - yOrigin, 2));

 // Length from point to circle
 length2 = Math.Sqrt(Math.Pow(x - xCircle, 2) +
 Math.Pow(y - yCircle, 2));

 // Normalize those lengths
 double total = length1 + length2;
 length1 /= total;
 length2 /= total;
 }

 // Interpolate color
 double alpha = length2 * this.InnerColor.A + length1 * this.OuterColor.A;
 double red= alpha * (length2 * this.InnerColor.R +
 length1 * this.OuterColor.R) / 255;
 double green = alpha * (length2 * this.InnerColor.G +
 length1 * this.OuterColor.G) / 255;
 double blue = alpha * (length2 * this.InnerColor.B +
 length1 * this.OuterColor.B) / 255;

 // Store in array
 pixels[index++] = (byte)blue;
 pixels[index++] = (byte)green;
 pixels[index++] = (byte)red;
 pixels[index++] = (byte)alpha;
 }
 else
 {
 pixels[index++] = bOutsideCircle;
 pixels[index++] = gOutsideCircle;
 pixels[index++] = rOutsideCircle;
 pixels[index++] = aOutsideCircle;
 }
 }
 }
 pixelStream.Seek(0, SeekOrigin.Begin);
 pixelStream.Write(pixels, 0, pixels.Length);
 bitmap.Invalidate();
 }
}

With an eye toward making this animatable, the array of pixels and the Stream object used to transfer
the pixels into the bitmap are both saved as fields. No allocations from the heap are required in the

702	 PART 2  Specialties

RefreshBitmap method unless the WriteableBitmap needs to be re-created because the size of the
element has changed.

As it turned out, however, animation performance was very poor, even with rather small dimen-
sions. But if you avoid animating the gradient itself, you can surely animate an object colored with this
bitmap. The MainPage.xaml file instantiates both a RadialGradientBrushSimulator and an Ellipse with a
binding to the simulator, as well as a couple animations:

Project: RadialGradientBrushDemo | File: MainPage.xaml (excerpt)

<Page ... >
 <Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <Canvas SizeChanged="OnCanvasSizeChanged"
 Margin="0 0 96 96">

 <Grid Name="ballContainer"
 Width="96"
 Height="96">

 <Ellipse Name="ellipse">
 <Ellipse.Fill>
 <ImageBrush ImageSource="{Binding ElementName=brushSimulator,
 Path=ImageSource}" />
 </Ellipse.Fill>
 </Ellipse>

 <local:RadialGradientBrushSimulator x:Name="brushSimulator"
 InnerColor="White"
 OuterColor="Red"
 GradientOrigin="0.3 0.3" />
 </Grid>
 </Canvas>
 </Grid>

 <Page.Triggers>
 <EventTrigger>
 <BeginStoryboard>
 <Storyboard>
 <DoubleAnimation x:Name="leftAnima"
 Storyboard.TargetName="ballContainer"
 Storyboard.TargetProperty="(Canvas.Left)"
 From="0" Duration="0:0:2.51"
 AutoReverse="True"
 RepeatBehavior="Forever" />

 <DoubleAnimation x:Name="rightAnima"
 Storyboard.TargetName="ballContainer"
 Storyboard.TargetProperty="(Canvas.Top)"
 From="0" Duration="0:0:1.01"
 AutoReverse="True"
 RepeatBehavior="Forever" />
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger>
 </Page.Triggers>
</Page>

	 CHAPTER 14  Bitmaps	 703

Notice how I’ve put the Ellipse and the RadialGradientBrushSimulator in the same 96-pixel-square
Grid so that both elements have the same size and the simulator generates a bitmap of exactly the
same size as the Ellipse it’s used to color. The code-behind file simply adjusts the To values on the
animations based on the size of the Canvas:

Project: RadialGradientBrushDemo | File: MainPage.xaml.cs (excerpt)

void OnCanvasSizeChanged(object sender, SizeChangedEventArgs args)
{
 // Canvas.Left animation
 leftAnima.To = args.NewSize.Width;

 // Canvas.Top animation
 rightAnima.To = args.NewSize.Height;
}

The simulated light reflection makes the Ellipse come one step closer to looking like something
that might be found in the real world:

Loading and Saving Image Files

As you’ve seen, you can give the SetSource method of WriteableBitmap a stream referencing a PNG
file, and it will graciously decode that compressed file and convert it into an array of rows and col-
umns. You can get closer to this process with classes in the Windows.Graphics.Imaging namespace.
You can load a bitmap file as an array of pixel bits, and you can also go the other way: You can save
an array of pixel bits from a WriteableBitmap that’s been created in your program to a file in one of
several popular image formats.

Bitmap file formats are generally differentiated by the type of compression they use (including
none at all) and of course unique data structures, headers, and techniques for storing the compressed

704	 PART 2  Specialties

data. Code that knows how to read a specific file format and convert it into an array of pixels is known
as a decoder. Decoders allow you to load image files into an application. The BitmapDecoder class in
the Windows.Graphics.Imaging namespace supports the formats in the following table.

File Format MIME Types Filename Extensions

Windows Bitmap image/bmp .bmp
.dib
.rle

Windows Icon image/ico
image/x-icon

.ico

.icon

GIF files image/gif .gif

JPEG image/jpeg
image/jpe
image/jpg

.jpeg

.jpe

.jpg

.jfif

.exif

PNG image/png .png

TIFF image/tiff
image/tif

.tiff

.tif

WMPhoto image/vnd.ms-photo .wdp
.jxr

The BitmapDecoder class will determine what type of file it’s been asked to load and will raise an
exception if it can’t figure it out.

Code that creates a file of a particular format from an array of pixel bits is called an encoder, and in
the Windows Runtime it’s the BitmapEncoder class. Using an encoder is a little different from using a
decoder. A decoder can determine what type of file it’s being requested to load, but an encoder can’t
read your mind and determine the file format for a save. It must be told. The BitmapEncoder class
supports the same formats as the BitmapDecoder except for the Windows Icon file.

Sometimes encoders and decoders are referred to collectively as codecs, which conveniently stands
for either “coder/decoder” or “compressor/decompressor.”

The seven file formats shown in the preceding table are identified by global unique IDs (objects of
type Guid) defined as static properties in the BitmapEncoder and BitmapDecoder classes, but you re-
ally don’t need to hard-code these IDs in your program or, indeed, include much specific information
at all.

The ImageFileIO program demonstrates how to use the FileOpenPicker and a BitmapDecoder to
load a bitmap file into an application and how to use the FileSavePicker and a BitmapEncoder to select
a file format and save a bitmap file from an application. In between, it has a couple application bar
buttons to rotate the image by 90 degrees. Because this program uses the file pickers for obtaining
StorageFile objects, it does not require any special permission for accessing the user’s files.

	 CHAPTER 14  Bitmaps	 705

The XAML file defines an Image element, a TextBlock for displaying some information about the
loaded bitmap, and an AppBar:

Project: ImageFileIO | File: MainPage.xaml (excerpt)

<Page ... >
 <Grid Background="Gray">
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="*" />
 </Grid.RowDefinitions>

 <TextBlock Name="txtblk"
 Grid.Row="0"
 HorizontalAlignment="Center"
 FontSize="18" />

 <Image Name="image"
 Grid.Row="1" />
 </Grid>

 <Page.BottomAppBar>
 <AppBar IsOpen="True">
 <Grid>
 <StackPanel Orientation="Horizontal"
 HorizontalAlignment="Left">

 <Button Name="rotateLeftButton"
 IsEnabled="False"
 Style="{StaticResource AppBarButtonStyle}"
 Content="↶"
 AutomationProperties.Name="Rotate Left"
 Click="OnRotateLeftAppBarButtonClick" />

 <Button Name="rotateRightButton"
 IsEnabled="False"
 Style="{StaticResource AppBarButtonStyle}"
 Content="↷"
 AutomationProperties.Name="Rotate Right"
 Click="OnRotateRightAppBarButtonClick" />
 </StackPanel>

 <StackPanel Orientation="Horizontal"
 HorizontalAlignment="Right">

 <Button Style="{StaticResource OpenFileAppBarButtonStyle}"
 Click="OnOpenAppBarButtonClick" />

 <Button Name="saveAsButton"
 IsEnabled="False"
 Style="{StaticResource SaveLocalAppBarButtonStyle}"
 AutomationProperties.Name="Save As"
 Click="OnSaveAsAppBarButtonClick" />
 </StackPanel>

706	 PART 2  Specialties

 </Grid>
 </AppBar>
 </Page.BottomAppBar>
</Page>

Notice that the AppBar has its IsOpen property initialized to true. The program can’t do anything until
a file is loaded. All the other buttons on the AppBar are disabled.

To keep the program relatively simple, it doesn’t retain a lot of information. Any bitmap the
program loads from the disk is retained only as the Source property of the Image element. The only
fields defined in the code-behind file serve solely to store bitmap resolution information, and that’s
not crucial:

Project: ImageFileIO | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 double dpiX, dpiY;

 public MainPage()
 {
 this.InitializeComponent();
 }
 ...
}

When the user clicks the Open button on the AppBar, the program creates a FileOpenPicker
initialized to display the files in the Pictures folder:

Project: ImageFileIO | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 ...
 async void OnOpenAppBarButtonClick(object sender, RoutedEventArgs args)
 {
 // Create FileOpenPicker
 FileOpenPicker picker = new FileOpenPicker();
 picker.SuggestedStartLocation = PickerLocationId.PicturesLibrary;

 // Initialize with filename extensions
 IReadOnlyList<BitmapCodecInformation> codecInfos =
 BitmapDecoder.GetDecoderInformationEnumerator();

 foreach (BitmapCodecInformation codecInfo in codecInfos)
 foreach (string extension in codecInfo.FileExtensions)
 picker.FileTypeFilter.Add(extension);

 // Get the selected file
 StorageFile storageFile = await picker.PickSingleFileAsync();

	 CHAPTER 14  Bitmaps	 707

 if (storageFile == null)
 return;
 ...
 }
 ...
}

The static BitmapDecoder.GetDecoderInformationEnumerator is of enormous assistance here. It
returns a collection of seven BitmapCodecInformation objects corresponding to the seven file formats
in the table shown a few pages ago. Each of these contains a collection of MIME types and a collec-
tion of filename extensions. (This is what I used to obtain the information shown in that table.) Those
filename extensions can go right into the FileOpenPicker object, and the FileOpenPicker then displays
all the files with those extensions.

If the PickSingleFileAsync call returns a non-null StorageFile object, the next step is to create a
BitmapDecoder from that file:

Project: ImageFileIO | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 ...
 async void OnOpenAppBarButtonClick(object sender, RoutedEventArgs args)
 {
 ...
 // Open the stream and create a decoder
 BitmapDecoder decoder = null;

 using (IRandomAccessStreamWithContentType stream = await storageFile.OpenReadAsync())
 {
 string exception = null;

 try
 {
 decoder = await BitmapDecoder.CreateAsync(stream);
 }
 catch (Exception exc)
 {
 exception = exc.Message;
 }

 if (exception != null)
 {
 MessageDialog msgdlg =
 new MessageDialog("That particular image file could not be loaded. " +
 "The system reports an error of: " + exception);
 await msgdlg.ShowAsync();
 return;
 }
 ...
 }
 ...
}

708	 PART 2  Specialties

BitmapDecoder.CreateAsync method could raise an exception if it is given a non-image file or
something else it can’t handle.

As you might know, a GIF file can contain multiple images that in sequence play a rudimentary
animation. These individual images are known as frames, and they are supported by the Windows
Runtime. After you create a BitmapDecoder object, the next step is generally to start extracting
frames. However, if you don’t want to bother with multiframe GIF files—and I don’t blame you if
you don’t!—you can simply extract the first frame and call it a day. This is what I’ve done in the next
section of the code:

Project: ImageFileIO | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 ...
 async void OnOpenAppBarButtonClick(object sender, RoutedEventArgs args)
 {
 ...
 // Get the first frame
 BitmapFrame bitmapFrame = await decoder.GetFrameAsync(0);

 // Set information title
 txtblk.Text = String.Format("{0}: {1} x {2} {3} {4} x {5} DPI",
 storageFile.Name,
 bitmapFrame.PixelWidth, bitmapFrame.PixelHeight,
 bitmapFrame.BitmapPixelFormat,
 bitmapFrame.DpiX, bitmapFrame.DpiY);
 // Save the resolution
 dpiX = bitmapFrame.DpiX;
 dpiY = bitmapFrame.DpiY;

 // Get the pixels
 PixelDataProvider dataProvider =
 await bitmapFrame.GetPixelDataAsync(BitmapPixelFormat.Bgra8,
 BitmapAlphaMode.Premultiplied,
 new BitmapTransform(),
 ExifOrientationMode.RespectExifOrientation,
 ColorManagementMode.ColorManageToSRgb);

 byte[] pixels = dataProvider.DetachPixelData();
 ...
 }
 ...
 }
 ...
}

The method displays information about the first frame in the TextBlock at the top of the page and
saves the resolution settings as fields.

	 CHAPTER 14  Bitmaps	 709

The BitmapPixelFormat and BitmapAlphaMode properties of the BitmapFrame contain important
information about the format of the pixels. BitmapPixelFormat is an enumeration with the members
Rgba16 (red, green, blue, and alpha 16-bit values), Rgba8 (red, green, blue, and alpha 8-bit values), or
Bgra8 (blue, green, red, and alpha 8-bit values), the last of which is compatible with the format associ-
ated with WriteableBitmap. Pixel data from the file is always converted into one of these formats. The
BitmapAlphaMode property can indicate Ignore, Straight, or Premultiplied.

You can obtain a byte array of pixels in the pixel format of the frame simply by calling the
GetPixelDataAsync method with no arguments. However, if you want to use the bitmap data to create
a WriteableBitmap, you should call the longer version of GetPixelDataAsync as shown here to specify
the format compatible with WriteableBitmap.

After GetPixelDataAsync obtains an array of bytes in the same format supported by
WriteableBitmap, the code to create and display the bitmap is similar to what you’ve seen before:

Project: ImageFileIO | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 ...
 async void OnOpenAppBarButtonClick(object sender, RoutedEventArgs args)
 {
 ...
 // Create WriteableBitmap and set the pixels
 WriteableBitmap bitmap = new WriteableBitmap((int)bitmapFrame.PixelWidth,
 (int)bitmapFrame.PixelHeight);

 using (Stream pixelStream = bitmap.PixelBuffer.AsStream())
 {
 await pixelStream.WriteAsync(pixels, 0, pixels.Length);
 }

 // Invalidate the WriteableBitmap and set as Image source
 bitmap.Invalidate();
 image.Source = bitmap;
 }

 // Enable the other buttons
 saveAsButton.IsEnabled = true;
 rotateLeftButton.IsEnabled = true;
 rotateRightButton.IsEnabled = true;
 }
 ...
}

That concludes the processing of the Open button. In summary, the FileOpenPicker returns
a StorageFile object, this is opened and a stream is passed to BitmapDecoder.CreateAsync. The
BitmapDecoder object exposes the images as BitmapFrame objects, and the GetPixelDataAsync
method obtains an array of bytes that can be used to create a WriteableBitmap.

710	 PART 2  Specialties

Here’s the program displaying a bitmap I used in Chapter 13, “Touch, Etc.”:

The Save As button on the application bar executes the OnSaveAsAppBarButtonClick method,
which begins by creating a FileSavePicker object. The BitmapEncoder
.GetEncoderInformationEnumerator provides information about the file formats supported by
the BitmapEncoder class, but this information is used in a somewhat different way than with the
FileOpenPicker.

The FileSavePicker wants a list of file types accompanied by one or more filename extensions
for each type. The FriendlyName property of the BitmapCodecInformation object is unfortunately a
string like “JPEG Encoder,” so I use the Split method of String to extract just the first word (for example
“JPEG”), and I combine that with the accumulated filename extensions. The code also constructs a
dictionary of the supported MIME types and the Guid objects associated with those types:

Project: ImageFileIO | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 ...
 async void OnSaveAsAppBarButtonClick(object sender, RoutedEventArgs args)
 {
 FileSavePicker picker = new FileSavePicker();
 picker.SuggestedStartLocation = PickerLocationId.PicturesLibrary;

 // Get the encoder information
 Dictionary<string, Guid> imageTypes = new Dictionary<string, Guid>();
 IReadOnlyList<BitmapCodecInformation> codecInfos =
 BitmapEncoder.GetEncoderInformationEnumerator();

 foreach (BitmapCodecInformation codecInfo in codecInfos)
 {
 List<string> extensions = new List<string>();

	 CHAPTER 14  Bitmaps	 711

 foreach (string extension in codecInfo.FileExtensions)
 extensions.Add(extension);

 string filetype = codecInfo.FriendlyName.Split(' ')[0];
 picker.FileTypeChoices.Add(filetype, extensions);

 foreach (string mimeType in codecInfo.MimeTypes)
 imageTypes.Add(mimeType, codecInfo.CodecId);
 }

 // Get a selected StorageFile
 StorageFile storageFile = await picker.PickSaveFileAsync();

 if (storageFile == null)
 return;
 ...
 }
 ...
}

When the FileSavePicker displays itself, the user can select one of the file types from the popup
box:

The StorageFile object returned from the FileSavePicker has a ContentType field, which is a MIME
type string that identifies the file type that the user chose from that popup. The program can use this
with its own dictionary to obtain the Guid object associated with that type:

Project: ImageFileIO | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 ...
 async void OnSaveAsAppBarButtonClick(object sender, RoutedEventArgs args)
 {

712	 PART 2  Specialties

 ...
 // Open the StorageFile
 using (IRandomAccessStream fileStream =
 await storageFile.OpenAsync(FileAccessMode.ReadWrite))
 {
 // Create an encoder
 Guid codecId = imageTypes[storageFile.ContentType];
 BitmapEncoder encoder = await BitmapEncoder.CreateAsync(codecId, fileStream);

 // Get the pixels from the existing WriteableBitmap
 WriteableBitmap bitmap = image.Source as WriteableBitmap;
 byte[] pixels = new byte[4 * bitmap.PixelWidth * bitmap.PixelHeight];

 using (Stream pixelStream = bitmap.PixelBuffer.AsStream())
 {
 await pixelStream.ReadAsync(pixels, 0, pixels.Length);
 }

 // Write those pixels to the first frame
 encoder.SetPixelData(BitmapPixelFormat.Bgra8, BitmapAlphaMode.Premultiplied,
 (uint)bitmap.PixelWidth, (uint)bitmap.PixelHeight,
 dpiX, dpiY, pixels);

 await encoder.FlushAsync();
 }
 }
 ...
}

With the help of that Guid, the static BitmapEncoder.CreateAsync method returns a BitmapEncoder
object. That object has a SetPixelData method that can be used to transfer a byte array into the first
frame of the new image file. The Save As operation is complete.

The remainder of the program supports rotating the images by 90 degrees. This feature is actually
available in the BitmapEncoder class. The class defines a Transform property that you can use to scale,
flip, crop, or rotate the image in 90-degree increments as it’s being saved. However, if you want to see
the transformed image, you’ll have to perform the logic yourself.

Here are the three methods involved in rotating the image by 90 degrees:

Project: ImageFileIO | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 ...
 void OnRotateLeftAppBarButtonClick(object sender, RoutedEventArgs args)
 {
 Rotate((BitmapSource bitmap, int x, int y) =>
 {
 return 4 * (bitmap.PixelWidth * x + (bitmap.PixelWidth - y - 1));
 });
 }

	 CHAPTER 14  Bitmaps	 713

 void OnRotateRightAppBarButtonClick(object sender, RoutedEventArgs args)
 {
 Rotate((BitmapSource bitmap, int x, int y) =>
 {
 return 4 * (bitmap.PixelWidth * (bitmap.PixelHeight - x - 1) + y);
 });
 }

 async void Rotate(Func<BitmapSource, int, int, int> calculateSourceIndex)
 {
 // Get the source bitmap pixels
 WriteableBitmap srcBitmap = image.Source as WriteableBitmap;
 byte[] srcPixels = new byte[4 * srcBitmap.PixelWidth * srcBitmap.PixelHeight];

 using (Stream pixelStream = srcBitmap.PixelBuffer.AsStream())
 {
 await pixelStream.ReadAsync(srcPixels, 0, srcPixels.Length);
 }

 // Create a destination bitmap and pixels array
 WriteableBitmap dstBitmap =
 new WriteableBitmap(srcBitmap.PixelHeight, srcBitmap.PixelWidth);
 byte[] dstPixels = new byte[4 * dstBitmap.PixelWidth * dstBitmap.PixelHeight];

 // Transfer the pixels
 int dstIndex = 0;
 for (int y = 0; y < dstBitmap.PixelHeight; y++)
 for (int x = 0; x < dstBitmap.PixelWidth; x++)
 {
 int srcIndex = calculateSourceIndex(srcBitmap, x, y);

 for (int i = 0; i < 4; i++)
 dstPixels[dstIndex++] = srcPixels[srcIndex++];
 }

 // Move the pixels into the destination bitmap
 using (Stream pixelStream = dstBitmap.PixelBuffer.AsStream())
 {
 await pixelStream.WriteAsync(dstPixels, 0, dstPixels.Length);
 }
 dstBitmap.Invalidate();

 // Swap the DPIs
 double dpi = dpiX;
 dpiX = dpiY;
 dpiY = dpi;

 // Display the new bitmap
 image.Source = dstBitmap;
 }
}

714	 PART 2  Specialties

The bulk of both jobs is handled by the same Rotate method, except that this method has an
argument that is a function to calculate a source index based on x and y pixel locations of the destina-
tion bitmap. If you try this out on large files, you’ll find that they require a couple seconds to rotate,
strongly suggesting that routines like this should not be executed in the user-interface thread.

The rotation could be performed asynchronously by passing that block of nested for loops to Task
.Run and awaiting the return. However, the asynchronous code cannot access the WriteableBitmap
itself. You’ll need to obtain the width and height of the bitmap before executing the asynchronous
code and to redefine the calculateSourceIndex to accept a bitmap width and height rather than the
bitmap. It would also be prudent to disable the application bar buttons during this time to prevent
any interference with the job before it’s completed.

Posterize and Monochromize

Most image-processing programs have an option to “posterize” a bitmap. The color resolution is re-
duced to a limited palette, and this causes the image to resemble a poster rather than a photograph.
Another common option is to convert an image to monochrome. These two jobs represent perhaps
the simplest image-processing operations.

The Posterizer program has Open File and Save As buttons like ImageFileIO, but the page also
contains a “control panel”—a bunch of RadioButton controls that let you select a number of bits of
color resolution (independently for the three color channels) and a CheckBox to convert the image to
monochrome.

Suppose the user loads in a bitmap and clicks the CheckBox to convert it to monochrome and the
program dutifully combines the Red, Green, and Blue values of each pixel into a gray shade. Then the
user unchecks the CheckBox. Let’s hope your program has saved the original image! This is why the
Posterizer program maintains two entire pixel arrays, one with the original pixels (named srcPixels for
“source pixels”) and the other with modified pixels (named dstPixels for “destination pixels”).

The XAML file contains the control panel, an Image element and an application bar:

Project: Posterizer | File: MainPage.xaml (excerpt)

<Page ... >
 <Page.Resources>
 <Style TargetType="TextBlock">
 <Setter Property="FontSize" Value="18" />
 <Setter Property="TextAlignment" Value="Center" />
 </Style>
 </Page.Resources>

 <Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition Width="*" />
 </Grid.ColumnDefinitions>

	 CHAPTER 14  Bitmaps	 715

 <Grid Name="controlPanelGrid"
 Grid.Column="0"
 Margin="12 0"
 HorizontalAlignment="Center"
 VerticalAlignment="Center">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="*" />
 <ColumnDefinition Width="*" />
 <ColumnDefinition Width="*" />
 <ColumnDefinition Width="*" />
 </Grid.ColumnDefinitions>

 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>

 <TextBlock Text="Red" Grid.Row="0" Grid.Column="0" />
 <TextBlock Text="Green" Grid.Row="0" Grid.Column="1" />
 <TextBlock Text="Blue" Grid.Row="0" Grid.Column="2" />
 <TextBlock Text="All" Grid.Row="0" Grid.Column="3" />

 <CheckBox Name="monochromeCheckBox"
 Content="Monochrome"
 Grid.Row="9"
 Grid.Column="0"
 Grid.ColumnSpan="4"
 Margin="0 12"
 HorizontalAlignment="Center"
 Checked="OnCheckBoxChecked"
 Unchecked="OnCheckBoxChecked" />
 </Grid>

 <Image Name="image"
 Grid.Column="1" />
 </Grid>

 <Page.BottomAppBar>
 <AppBar>
 <Grid>
 <StackPanel Orientation="Horizontal"
 HorizontalAlignment="Right">
 <Button Style="{StaticResource OpenFileAppBarButtonStyle}"
 Click="OnOpenAppBarButtonClick" />

716	 PART 2  Specialties

 <Button Name="saveAsButton"
 IsEnabled="False"
 Style="{StaticResource SaveLocalAppBarButtonStyle}"
 AutomationProperties.Name="Save As"
 Click="OnSaveAsAppBarButtonClick" />
 </StackPanel>
 </Grid>
 </AppBar>
 </Page.BottomAppBar>
</Page>

However, the XAML file is missing the actual RadioButton controls. I decided I wanted to
independently control the three color channels but have a fourth column to change all three color
channels in one shot. The buttons are created in the Loaded handler with the convenient Tag property
used to identify them:

Project: Posterizer | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 ...
 public MainPage()
 {
 this.InitializeComponent();
 Loaded += OnLoaded;
 }

 void OnLoaded(object sender, RoutedEventArgs args)
 {
 // Create the RadioButton controls
 // NOTE: 'a' here means "All" not "Alpha"!
 string[] prefix = { "r", "g", "b", "a" };

 for (int col = 0; col < 4; col++)
 for (int row = 1; row < 9; row++)
 {
 RadioButton radio = new RadioButton
 {
 Content = row.ToString(),
 Margin = new Thickness(12, 6, 12, 6),
 GroupName = prefix[col],
 Tag = prefix[col] + row,
 IsChecked = row == 8
 };
 radio.Checked += OnRadioButtonChecked;

 Grid.SetColumn(radio, col);
 Grid.SetRow(radio, row);
 controlPanelGrid.Children.Add(radio);
 }
 }
 ...
}

	 CHAPTER 14  Bitmaps	 717

The file I/O is very similar to the ImageFileIO project, except that when an image is loaded, a
second array of pixels is created and a method named UpdateBitmap (which I’ll describe shortly) is
responsible for updating the WriteableBitmap with this second array of pixels. When a file is saved, the
dstPixels array is used:

Project: Posterizer | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 WriteableBitmap bitmap;
 Stream pixelStream;
 byte[] srcPixels;
 byte[] dstPixels;
 ...
 async void OnOpenAppBarButtonClick(object sender, RoutedEventArgs args)
 {
 // Create FileOpenPicker
 FileOpenPicker picker = new FileOpenPicker();
 picker.SuggestedStartLocation = PickerLocationId.PicturesLibrary;

 // Initialize with filename extensions
 IReadOnlyList<BitmapCodecInformation> codecInfos =
 BitmapDecoder.GetDecoderInformationEnumerator();

 foreach (BitmapCodecInformation codecInfo in codecInfos)
 foreach (string extension in codecInfo.FileExtensions)
 picker.FileTypeFilter.Add(extension);

 // Get the selected file
 StorageFile storageFile = await picker.PickSingleFileAsync();

 if (storageFile == null)
 return;

 // Open the stream and create a decoder
 BitmapDecoder decoder = null;

 using (IRandomAccessStreamWithContentType stream = await storageFile.OpenReadAsync())
 {
 string exception = null;

 try
 {
 decoder = await BitmapDecoder.CreateAsync(stream);
 }
 catch (Exception exc)
 {
 exception = exc.Message;
 }

 if (exception != null)
 {
 MessageDialog msgdlg =
 new MessageDialog("That particular image file could not be loaded. " +
 "The system reports on error of: " + exception);

718	 PART 2  Specialties

 await msgdlg.ShowAsync();
 return;
 }

 // Get the first frame
 BitmapFrame bitmapFrame = await decoder.GetFrameAsync(0);

 // Get the source pixels
 PixelDataProvider dataProvider =
 await bitmapFrame.GetPixelDataAsync(BitmapPixelFormat.Bgra8,
 BitmapAlphaMode.Premultiplied,
 new BitmapTransform(),
 ExifOrientationMode.RespectExifOrientation,
 ColorManagementMode.ColorManageToSRgb);

 srcPixels = dataProvider.DetachPixelData();
 dstPixels = new byte[srcPixels.Length];

 // Create WriteableBitmap and set as Image source
 bitmap = new WriteableBitmap((int)bitmapFrame.PixelWidth,
 (int)bitmapFrame.PixelHeight);
 pixelStream = bitmap.PixelBuffer.AsStream();
 image.Source = bitmap;

 // Update bitmap from masked pixels
 UpdateBitmap();
 }

 // Enable the Save As button
 saveAsButton.IsEnabled = true;
 }

 async void OnSaveAsAppBarButtonClick(object sender, RoutedEventArgs args)
 {
 FileSavePicker picker = new FileSavePicker();
 picker.SuggestedStartLocation = PickerLocationId.PicturesLibrary;

 // Get the encoder information
 Dictionary<string, Guid> imageTypes = new Dictionary<string, Guid>();
 IReadOnlyList<BitmapCodecInformation> codecInfos =
 BitmapEncoder.GetEncoderInformationEnumerator();

 foreach (BitmapCodecInformation codecInfo in codecInfos)
 {
 List<string> extensions = new List<string>();

 foreach (string extension in codecInfo.FileExtensions)
 extensions.Add(extension);

 string filetype = codecInfo.FriendlyName.Split(' ')[0];
 picker.FileTypeChoices.Add(filetype, extensions);

 foreach (string mimeType in codecInfo.MimeTypes)
 imageTypes.Add(mimeType, codecInfo.CodecId);
 }

	 CHAPTER 14  Bitmaps	 719

 // Get a selected StorageFile
 StorageFile storageFile = await picker.PickSaveFileAsync();

 if (storageFile == null)
 return;

 // Open the StorageFile
 using (IRandomAccessStream fileStream =
 await storageFile.OpenAsync(FileAccessMode.ReadWrite))
 {
 // Create an encoder
 Guid codecId = imageTypes[storageFile.ContentType];
 BitmapEncoder encoder = await BitmapEncoder.CreateAsync(codecId, fileStream);

 // Write the destination pixels to the first frame
 encoder.SetPixelData(BitmapPixelFormat.Bgra8, BitmapAlphaMode.Premultiplied,
 (uint)bitmap.PixelWidth, (uint)bitmap.PixelHeight,
 96, 96, dstPixels);

 await encoder.FlushAsync();
 }
 }
 ...
}

The RadioButton event handler turned out to be rather tricky because of that fourth column of
buttons. I wanted a click on a RadioButton in the fourth column to also check the other three buttons
in that row, but what I certainly didn’t want was multiple calls to UpdateBitmap. For this reason, an
array of three byte masks is maintained as a field, and these are set in the RadioButton event handler.
UpdateBitmap is called only if at least one of these mask values is changed:

Project: Posterizer | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 ...
 // Byte masks for blue, green, red
 byte[] masks = { 0xFF, 0xFF, 0xFF };
 ...
 void OnRadioButtonChecked(object sender, RoutedEventArgs args)
 {
 // Decode the RadioButton Tag property
 RadioButton radio = sender as RadioButton;
 string tag = radio.Tag as string;
 int maskIndex = -1;
 int bits = Int32.Parse(tag[1].ToString()); // 1 to 8
 byte mask = (byte)(0xFF << 8 - bits);
 bool needsUpdate;

720	 PART 2  Specialties

 // Find the index of the masks array
 switch (tag[0])
 {
 case 'r': maskIndex = 2; break;
 case 'g': maskIndex = 1; break;
 case 'b': maskIndex = 0; break;
 }

 // For "All", check all the other buttons in the row
 if (tag[0] == 'a')
 {
 needsUpdate = masks[0] != mask && masks[1] != mask && masks[2] != mask;

 if (needsUpdate)
 masks[0] = masks[1] = masks[2] = mask;

 foreach (UIElement child in (radio.Parent as Panel).Children)
 {
 if (child != radio &&
 Grid.GetRow(child as FrameworkElement) == Grid.GetRow(radio))
 {
 (child as RadioButton).IsChecked = true;
 }
 }
 }
 else
 {
 needsUpdate = masks[maskIndex] != mask;

 if (needsUpdate)
 masks[maskIndex] = mask;
 }

 if (needsUpdate)
 UpdateBitmap();
 }

 void OnCheckBoxChecked(object sender, RoutedEventArgs args)
 {
 UpdateBitmap();
 }
 ...
}

All that’s left is UpdateBitmap itself. The three mask values are applied to the blue, green, and red
components, and then these components are combined to create a gray shade if the Monochrome
button is checked. The weights for the gray shade are the standard conversion factors for the NTSC
and PAL color television standards:

Project: Posterizer | File: MainPage.xaml.cs (excerpt)

void UpdateBitmap()
{
 if (bitmap == null)
 return;

	 CHAPTER 14  Bitmaps	 721

 for (int index = 0; index < srcPixels.Length; index += 4)
 {
 // Mask source pixels
 byte B = (byte)(masks[0] & srcPixels[index + 0]);
 byte G = (byte)(masks[1] & srcPixels[index + 1]);
 byte R = (byte)(masks[2] & srcPixels[index + 2]);
 byte A = srcPixels[index + 3];

 // Possibly convert to gray shade
 if (monochromeCheckBox.IsChecked.Value)
 B = G = R = (byte)(0.30 * R + 0.59 * G + 0.11 * B);

 // Save destination pixels
 dstPixels[index + 0] = B;
 dstPixels[index + 1] = G;
 dstPixels[index + 2] = R;
 dstPixels[index + 3] = A;
 }

 // Update bitmap
 pixelStream.Seek(0, SeekOrigin.Begin);
 pixelStream.Write(dstPixels, 0, dstPixels.Length);
 bitmap.Invalidate();
}

If this were anything other than a sample program, I would put this processing in a second thread.
But only the loops that alter the pixel bits should be in that thread. Any modification to the Writeable-
Bitmap itself must be in the user-interface thread.

Here it is reducing the pixel resolution of an image to two bits, which means the entire image is
displayed with just 64 colors:

722	 PART 2  Specialties

Saving Finger Paint Artwork

The series of FingerPaint programs I discussed in the previous chapter all had a big drawback: You
couldn’t save your artwork. I suggested that one approach to saving the image is to enumerate the
Line or Polyline or Path elements in the Grid and create some kind of text file (probably in an XML
format) that would allow you to re-create all the elements when the file is reloaded.

Or you can draw on a bitmap and save that. The big problem here, however, is that the Windows
Runtime version of WriteableBitmap doesn’t support the rendering of elements such as Line and Path.
You basically have to implement your own line- and arc-drawing algorithms. For a set of line-drawing
coordinates and other parameters, these algorithms must figure out what pixels in the bitmap should
be set to render these graphical objects.

Let’s suppose you want to draw a line between two points:

A geometric line has zero width, but a rendered line must have a non-zero width, and in a
finger-painting program, the width might be considerable (for example, 24 pixels). We really want to
render this line by drawing a rectangle that extends on each side of the geometric line by half the
total line width, 12 pixels on each side in this example:

The four corners of that rectangle can be derived fairly easily by rotating the normalized vector
between the two geometric points by 90 and –90 degrees and multiplying by half the total line
thickness.

	 CHAPTER 14  Bitmaps	 723

But if you’re drawing one of these rectangles for each PointerMoved event, they’re not going to
join correctly for a curved line. Little gaps will appear. To avoid those gaps, you want to draw rounded
caps on this rectangle:

The radius of each of these arcs is half the total line thickness.

The overall shape consists of two arcs connected with two lines. (A similar shape is involved if the
line increases or decreases in width between the two points, as I showed in the previous chapter.)
But we don’t want to draw that outline as I’ve done here. We need to fill the interior, which means
coloring every pixel that appears within the overall shape.

From high school you are probably familiar with the equation for a line in the slope-intercept form:

y mx b= +

where m is the slope (“rise over run”) and b is the value of y where the line intercepts the Y axis.

In traditional computer graphics, however, areas are filled based on horizontal scan lines, also
known as raster lines. (The terms come from television technology.) The line equation should
represent x as a function of y:

x ay b= +

For a line from pt1 to pt2, you can calculate a and b like so:

a pt X pt X
pt Y pt Y

=
−
−

2 1
2 1
. .
. .

b pt X a pt Y= − ⋅1 1. .
For any y (that is, for any scan line), if y is between pt1.Y and pt2.Y, that value of y corresponds to a

point on the line. The x coordinate of that point can be calculated from the equation of the line.

Look at the most recent diagram, and imagine horizontal scan lines intercepting the figure. For any
y we can determine if the scan line crosses one or both of the outer two lines. If so, we can calculate

724	 PART 2  Specialties

x values for those two points. All the pixels between those x values must then be colored. This can be
repeated for each y.

The process gets a little messier if the scan line passes through the rounded caps, but not much
messier. A circle of radius r centered on the origin consists of all points (x, y) that satisfy the equation:

x y r2 2 2+ =

For a circle centered on the point (xc, yc), the equation is:

x x y y rc c−() + −() =2 2 2

Or, expressed as a function of y,

x x r y yc c= ± − −()2 2

For any y, if the expression in the square root is negative, then y is outside the circle entirely—
somewhere above or below the circle. Otherwise, there are (in general) two values of x for every y.
The only exception is when the square root is zero, which happens when y is exactly r units from yc ,
which are the top and bottom points of the circle.

When dealing with an arc that goes only partway around the circle, it gets a little more complex.
Any point on an arc forms an angle from the center of the circle. That angle can be calculated
with the Math.Atan2 method. If we know the start point and end point of the arc, Math.Atan2 can
calculate the angles corresponding to those two points. You can also use Math.Atan2 to calculate the
angle of any arbitrary point on the circle. If that point on the circle is between the start point and end
point, the point is on the arc.

In general, for any y we can examine the two lines and two arcs and determine all points (x, y) that
coincide with these four figures. At most, there will be only two such points: one where the scan line
enters the figure and one where it exits. For that scan line, all pixels between these two points can be
filled.

The FingerPaint solution contains a library project named Petzold.Windows8.VectorDrawing that
contains several structures to implement line drawing on bitmaps. (I made them structures rather
than classes because they will be instantiated and discarded very frequently.)

You’ve already seen the Vector2 structure included in this library. All the other structures
implement this little interface:

Project: Petzold.Windows8.VectorDrawing | File: IGeometrySegment.cs

using System.Collections.Generic;

namespace Petzold.Windows8.VectorDrawing
{
 public interface IGeometrySegment
 {
 void GetAllX(double y, IList<double> xCollection);

	 CHAPTER 14  Bitmaps	 725

 }
}

For any y, the GetAllX method adds items to a collection of x values. In actual practice, using
the structures in the library that implement this interface, often this collection is returned empty.
Sometimes it contains one item, and sometimes two.

Here’s the LineSegment structure:

Project: Petzold.Windows8.VectorDrawing | File: LineSegment.cs

using System.Collections.Generic;
using Windows.Foundation;

namespace Petzold.Windows8.VectorDrawing
{
 public struct LineSegment : IGeometrySegment
 {
 readonly Point point1, point2;
 readonly double a, b; // as in x = ay + b

 public LineSegment(Point point1, Point point2) : this()
 {
 this.point1 = point1;
 this.point2 = point2;

 a = (point2.X - point1.X) / (point2.Y - point1.Y);
 b = point1.X - a * point1.Y;
 }

 public void GetAllX(double y, IList<double> xCollection)
 {
 if ((point2.Y > point1.Y && y >= point1.Y && y < point2.Y) ||
 (point2.Y < point1.Y && y <= point1.Y && y > point2.Y))
 {
 xCollection.Add(a * y + b);
 }
 }
 }
}

Notice that the if statement in GetAllX checks if y is between point1.Y and point2.Y. It allows y
values that equal point1.Y but not those that equal point2.Y. In other words, it defines the line to be all
points from point1 (inclusive) up to but not including point2. It helps to exercise some strict rules and
caution in this regard. Otherwise, when dealing with connected lines and arcs, we’ll get duplicate x
values in the collection, and that makes the job harder.

No special consideration is given to horizontal lines, which are lines where point1.Y equals point2.Y
and a equals infinity. In that case, the if statement is never satisfied and the line is ignored. A scan line
never crosses a horizontal boundary line.

726	 PART 2  Specialties

The ArcSegment structure is a generalized arc on the circumference of a circle:

Project: Petzold.Windows8.VectorDrawing | File: ArcSegment.cs

using System;
using System.Collections.Generic;
using Windows.Foundation;

namespace Petzold.Windows8.VectorDrawing
{
 public struct ArcSegment : IGeometrySegment
 {
 readonly Point center, point1, point2;
 readonly double radius;
 readonly double angle1, angle2;

 public ArcSegment(Point center, double radius,
 Point point1, Point point2) :
 this()
 {
 this.center = center;
 this.radius = radius;
 this.point1 = point1;
 this.point2 = point2;
 this.angle1 = Math.Atan2(point1.Y - center.Y, point1.X - center.X);
 this.angle2 = Math.Atan2(point2.Y - center.Y, point2.X - center.X);
 }

 public void GetAllX(double y, IList<double> xCollection)
 {
 double sqrtArg = radius * radius - Math.Pow(y - center.Y, 2);

 if (sqrtArg >= 0)
 {
 double sqrt = Math.Sqrt(sqrtArg);
 TryY(y, center.X + sqrt, xCollection);
 TryY(y, center.X - sqrt, xCollection);
 }
 }

 void TryY(double y, double x, IList<double> xCollection)
 {
 double angle = Math.Atan2(y - center.Y, x - center.X);

 if ((angle1 < angle2 && (angle1 <= angle && angle < angle2)) ||
 (angle1 > angle2 && (angle1 <= angle || angle < angle2)))
 {
 xCollection.Add((float)x);
 }
 }
 }
}

The rather complex (but symmetrical) if clause in TryY accounts for the wrapping of angle values
from π to –π and back again. The comparison of angle with angle1 and angle2 implies that a scan line
is considered to intersect the arc when angle equals angle1 but not when angle equals angle2.

	 CHAPTER 14  Bitmaps	 727

The GetAllX method in LineSegment puts either zero or one x value in the collection. The GetAllX
method in ArcSegment can put zero, one, or two x values in the collection. The RoundCappedLine
structure combines two LineSegment instances and two ArcSegment instances for the case of a line
with uniform thickness:

Project: Petzold.Windows8.VectorDrawing | File: RoundCappedLine.cs

using System.Collections.Generic;
using Windows.Foundation;

namespace Petzold.Windows8.VectorDrawing
{
 public struct RoundCappedLine : IGeometrySegment
 {
 LineSegment lineSegment1;
 ArcSegment arcSegment1;
 LineSegment lineSegment2;
 ArcSegment arcSegment2;

 public RoundCappedLine(Point point1, Point point2, double radius) : this()
 {
 Vector2 vector = new Vector2(point2 - new Vector2(point1));
 Vector2 normVect = vector;
 normVect = normVect.Normalized;

 Point pt1a = point1 + radius * new Vector2(normVect.Y, -normVect.X);
 Point pt2a = pt1a + vector;
 Point pt1b = point1 + radius * new Vector2(-normVect.Y, normVect.X);
 Point pt2b = pt1b + vector;

 lineSegment1 = new LineSegment(pt1a, pt2a);
 arcSegment1 = new ArcSegment(point2, radius, pt2a, pt2b);
 lineSegment2 = new LineSegment(pt2b, pt1b);
 arcSegment2 = new ArcSegment(point1, radius, pt1b, pt1a);
 }

 public void GetAllX(double y, IList<double> xCollection)
 {
 arcSegment1.GetAllX(y, xCollection);
 lineSegment1.GetAllX(y, xCollection);
 arcSegment2.GetAllX(y, xCollection);
 lineSegment2.GetAllX(y, xCollection);
 }
 }
}

This structure implements GetAllX by calling the GetAllX methods in the two LineSegment
instances and two ArcSegment instances. It is the responsibility of the code calling GetAllX in this
structure to ensure that the collection has previously been cleared. The method returns a collection
with zero, one, or two x values. The case of zero or one x value can be ignored for filling purposes. For
two x values, the pixels between those two values can be filled.

728	 PART 2  Specialties

The RoundCappedPath structure is similar except that it allows a line to have a different thickness
at the beginning and at the end on a pressure-sensitive touch screen:

Project: Petzold.Windows8.VectorDrawing | File: RoundCappedPath.cs

using System;
using System.Collections.Generic;
using Windows.Foundation;

namespace Petzold.Windows8.VectorDrawing
{
 public struct RoundCappedPath : IGeometrySegment
 {
 LineSegment lineSegment1;
 ArcSegment arcSegment1;
 LineSegment lineSegment2;
 ArcSegment arcSegment2;

 public RoundCappedPath(Point point1, Point point2, double radius1, double radius2)
 : this()
 {
 Point c0 = point1;
 Point c1 = point2;
 double r0 = radius1;
 double r1 = radius2;

 // Get vector from c1 to c0
 Vector2 vCenters = new Vector2(c0) - new Vector2(c1);

 // Get length and normalized version
 double d = vCenters.Length;
 vCenters = vCenters.Normalized;

 // Create focal point F extending from c0
 double e = d * r0 / (r1 - r0);
 Point F = c0 + e * vCenters;

 // Find angle and length of right-triangle legs
 double alpha = 180 * Math.Asin(r0 / e) / Math.PI;
 double leg0 = Math.Sqrt(e * e - r0 * r0);
 double leg1 = Math.Sqrt((e + d) * (e + d) - r1 * r1);

 // Vectors of tangent lines
 Vector2 vRight = -vCenters.Rotate(alpha);
 Vector2 vLeft = -vCenters.Rotate(-alpha);

 // Find tangent points
 Point t0R = F + leg0 * vRight;
 Point t0L = F + leg0 * vLeft;
 Point t1R = F + leg1 * vRight;
 Point t1L = F + leg1 * vLeft;

 lineSegment1 = new LineSegment(t1R, t0R);
 arcSegment1 = new ArcSegment(c0, r0, t0R, t0L);
 lineSegment2 = new LineSegment(t0L, t1L);
 arcSegment2 = new ArcSegment(c1, r1, t1L, t1R);
 }

	 CHAPTER 14  Bitmaps	 729

 public void GetAllX(double y, IList<double> xCollection)
 {
 arcSegment1.GetAllX(y, xCollection);
 lineSegment1.GetAllX(y, xCollection);
 arcSegment2.GetAllX(y, xCollection);
 lineSegment2.GetAllX(y, xCollection);
 }
 }
}

I adapted some of this logic from the FingerPaint5 program in the previous chapter.

Using these structures in an actual program is not as easy as instantiating Line or Polyline or Path!
Here is the RenderOnBitmap method from FingerPaint. This method makes use of a WriteableBitmap
named bitmap, with a pixel array named pixels, and a Stream object named pixelStream. The method
begins by determining whether it should use RoundCappedLine or RoundCappedPath:

Project: FingerPaint | File: MainPage.Pointer.cs (excerpt)

public sealed partial class MainPage : Page
{
 ...
 bool RenderOnBitmap(Point point1, double radius1, Point point2, double radius2, Color color)
 {
 bool bitmapNeedsUpdate = false;

 // Define a line between the two points with rounded caps
 IGeometrySegment geoseg = null;

 // Adjust the points for any bitmap scaling
 Point center1 = ScaleToBitmap(point1);
 Point center2 = ScaleToBitmap(point2);

 // Find the distance between them
 double distance = Math.Sqrt(Math.Pow(center2.X - center1.X, 2) +
 Math.Pow(center2.Y - center1.Y, 2));

 // Choose the proper way to render the segment
 if (radius1 == radius2)
 geoseg = new RoundCappedLine(center1, center2, radius1);

 else if (radius1 < radius2 && radius1 + distance < radius2)
 geoseg = new RoundCappedLine(center1, center2, radius2);

 else if (radius2 < radius1 && radius2 + distance < radius1)
 geoseg = new RoundCappedLine(center1, center2, radius1);

 else if (radius1 < radius2)
 geoseg = new RoundCappedPath(center1, center2, radius1, radius2);

 else
 geoseg = new RoundCappedPath(center2, center1, radius2, radius1);

730	 PART 2  Specialties

 // Find the minimum and maximum vertical coordinates
 int yMin = (int)Math.Min(center1.Y - radius1, center2.Y - radius2);
 int yMax = (int)Math.Max(center1.Y + radius1, center2.Y + radius1);

 yMin = Math.Max(0, Math.Min(bitmap.PixelHeight, yMin));
 yMax = Math.Max(0, Math.Min(bitmap.PixelHeight, yMax));

 // Loop through all the y coordinates that contain part of the segment
 for (int y = yMin; y < yMax; y++)
 {
 // Get the range of x coordinates in the segment
 xCollection.Clear();
 geoseg.GetAllX(y, xCollection);

 if (xCollection.Count == 2)
 {
 // Find the minimum and maximum horizontal coordinates
 int xMin = (int)(Math.Min(xCollection[0], xCollection[1]) + 0.5f);
 int xMax = (int)(Math.Max(xCollection[0], xCollection[1]) + 0.5f);

 xMin = Math.Max(0, Math.Min(bitmap.PixelWidth, xMin));
 xMax = Math.Max(0, Math.Min(bitmap.PixelWidth, xMax));

 // Loop through the X values
 for (int x = xMin; x < xMax; x++)
 {
 {
 // Set the pixel
 int index = 4 * (y * bitmap.PixelWidth + x);
 pixels[index + 0] = color.B;
 pixels[index + 1] = color.G;
 pixels[index + 2] = color.R;
 pixels[index + 3] = 255;

 bitmapNeedsUpdate = true;
 }
 }
 }
 }
 // Update bitmap
 if (bitmapNeedsUpdate)
 {
 // Find the starting index and number of pixels
 int start = 4 * yMin * bitmap.PixelWidth;
 int count = 4 * (yMax - yMin) * bitmap.PixelWidth;

 pixelStream.Seek(start, SeekOrigin.Begin);
 pixelStream.Write(pixels, start, count);
 bitmap.Invalidate();
 }

 return bitmapNeedsUpdate;
 }

	 CHAPTER 14  Bitmaps	 731

 Point ScaleToBitmap(Point pt)
 {
 return new Point((pt.X - imageOffset.X) / imageScale,
 (pt.Y - imageOffset.Y) / imageScale);
 }
}

Notice that the RenderOnBitmap concludes by restricting the updating to only the scan lines
affected by this particular drawing operation. The ScaleToBitmap method adjusts points for bitmaps
that are larger or smaller than the program’s current page size.

To organize the source code files in the FingerPaint project in functional chunks, I’ve divided the
code-behind logic for MainPage into three files: the normal MainPage.xaml.cs; MainPage.Pointer.cs,
which contains all the Pointer event handling (including the RenderOnBitmap method I just showed
you); and MainPage.File.cs, which contains the file I/O. The remainder of MainPage.Pointer.cs should
look very familiar. Aside from the call to RenderOnBitmap, it’s mostly the same as FingerPaint5:

Project: FingerPaint | File: MainPage.Pointer.cs (excerpt)

public sealed partial class MainPage : Page
{
 struct PointerInfo
 {
 public Brush Brush;
 public Point PreviousPoint;
 public double PreviousRadius;
 }

 Dictionary<uint, PointerInfo> pointerDictionary = new Dictionary<uint, PointerInfo>();
 List<double> xCollection = new List<double>();

 protected override void OnPointerPressed(PointerRoutedEventArgs args)
 {
 // Get information from event arguments
 uint id = args.Pointer.PointerId;
 PointerPoint pointerPoint = args.GetCurrentPoint(this);

 // Create PointerInfo
 PointerInfo pointerInfo = new PointerInfo
 {
 PreviousPoint = pointerPoint.Position,
 PreviousRadius = appSettings.Thickness * pointerPoint.Properties.Pressure,
 Brush = new SolidColorBrush(appSettings.Color)
 };

 // Add to dictionary
 pointerDictionary.Add(id, pointerInfo);

 // Capture the Pointer
 CapturePointer(args.Pointer);

 base.OnPointerPressed(args);
 }

732	 PART 2  Specialties

 protected override void OnPointerMoved(PointerRoutedEventArgs args)
 {
 // Get ID from event arguments
 uint id = args.Pointer.PointerId;

 // If ID is in dictionary, start a loop
 if (pointerDictionary.ContainsKey(id))
 {
 PointerInfo pointerInfo = pointerDictionary[id];

 foreach (PointerPoint pointerPoint in args.GetIntermediatePoints(this).Reverse())
 {
 // For each point, get new position and pressure
 Point point = pointerPoint.Position;
 double radius = appSettings.Thickness * pointerPoint.Properties.Pressure;

 // Render and flag that it's modified
 appSettings.IsImageModified =
 RenderOnBitmap(pointerInfo.PreviousPoint, pointerInfo.PreviousRadius,
 point, radius,
 appSettings.Color);

 // Update PointerInfo
 pointerInfo.PreviousPoint = point;
 pointerInfo.PreviousRadius = radius;
 }

 // Store PointerInfo back in dictionary
 pointerDictionary[id] = pointerInfo;
 }
 base.OnPointerMoved(args);
 }

 protected override void OnPointerReleased(PointerRoutedEventArgs args)
 {
 // Get information from event arguments
 uint id = args.Pointer.PointerId;

 // If ID is in dictionary, remove it
 if (pointerDictionary.ContainsKey(id))
 pointerDictionary.Remove(id);

 base.OnPointerReleased(args);
 }

 protected override void OnPointerCaptureLost(PointerRoutedEventArgs args)
 {
 // Get information from event arguments
 uint id = args.Pointer.PointerId;

 // If ID is still in dictionary, remove it
 if (pointerDictionary.ContainsKey(id))
 pointerDictionary.Remove(id);

 base.OnPointerCaptureLost(args);
 }
 ...
}

	 CHAPTER 14  Bitmaps	 733

Both OnPointerPressed and OnPointerMoved reference a field named appSettings of type
AppSettings. This object saves settings in application local storage when the program is suspended,
and it loads them back in when the program starts up. The overall structure of this class should look
familiar by this point:

Project: FingerPaint | File: AppSettings.cs

using System.ComponentModel;
using System.Runtime.CompilerServices;
using Windows.Storage;
using Windows.UI;

namespace FingerPaint
{
 public class AppSettings : INotifyPropertyChanged
 {
 // Application settings initial values
 string loadedFilePath = null;
 string loadedFilename = null;
 bool isImageModified = false;
 Color color = Colors.Blue;
 double thickness = 16;

 public event PropertyChangedEventHandler PropertyChanged;

 public AppSettings()
 {
 ApplicationDataContainer appData = ApplicationData.Current.LocalSettings;

 if (appData.Values.ContainsKey("LoadedFilePath"))
 this.LoadedFilePath = (string)appData.Values["LoadedFilePath"];

 if (appData.Values.ContainsKey("LoadedFilename"))
 this.LoadedFilename = (string)appData.Values["LoadedFilename"];

 if (appData.Values.ContainsKey("IsImageModified"))
 this.IsImageModified = (bool)appData.Values["IsImageModified"];

 if (appData.Values.ContainsKey("Color.Red") &&
 appData.Values.ContainsKey("Color.Green") &&
 appData.Values.ContainsKey("Color.Blue"))
 {
 this.Color = Color.FromArgb(255,
 (byte)appData.Values["Color.Red"],
 (byte)appData.Values["Color.Green"],
 (byte)appData.Values["Color.Blue"]);
 }

 if (appData.Values.ContainsKey("Thickness"))
 this.Thickness = (double)appData.Values["Thickness"];

 }

 public string LoadedFilePath
 {
 set { SetProperty<string>(ref loadedFilePath, value); }
 get { return loadedFilePath; }

734	 PART 2  Specialties

 }

 public string LoadedFilename
 {
 set { SetProperty<string>(ref loadedFilename, value); }
 get { return loadedFilename; }
 }

 public bool IsImageModified
 {
 set { SetProperty<bool>(ref isImageModified, value); }
 get { return isImageModified; }
 }

 public Color Color
 {
 set { SetProperty<Color>(ref color, value); }
 get { return color; }
 }

 public double Thickness
 {
 set { SetProperty<double>(ref thickness, value); }
 get { return thickness; }
 }

 public void Save()
 {
 ApplicationDataContainer appData = ApplicationData.Current.LocalSettings;
 appData.Values.Clear();
 appData.Values.Add("LoadedFilePath", this.LoadedFilePath);
 appData.Values.Add("LoadedFilename", this.LoadedFilename);
 appData.Values.Add("IsImageModified", this.IsImageModified);
 appData.Values.Add("Color.Red", this.Color.R);
 appData.Values.Add("Color.Green", this.Color.G);
 appData.Values.Add("Color.Blue", this.Color.B);
 appData.Values.Add("Thickness", this.Thickness);
 }

 protected bool SetProperty<T>(ref T storage, T value,
 [CallerMemberName] string propertyName = null)
 {
 if (object.Equals(storage, value))
 return false;

 storage = value;
 OnPropertyChanged(propertyName);
 return true;
 }

 protected void OnPropertyChanged(string propertyName)
 {
 if (PropertyChanged != null)
 PropertyChanged(this, new PropertyChangedEventArgs(propertyName));
 }
 }
}

	 CHAPTER 14  Bitmaps	 735

One way you can use FingerPaint is to load in existing files, draw on them, and then save them.
If that’s what you’re doing, the filename and full file path are part of user settings. If instead you’ve
started with a blank canvas, the LoadedFilename and LoadedFilePath properties will both be null.
Regardless, the IsImageModified property is true if the image has been modified without being saved
to a named file.

In accordance with the concept of chromeless applications, the MainPage.xaml file simply
instantiates an Image element and implements an application bar:

Project: FingerPaint | File: MainPage.xaml (excerpt)

<Page ... >
 <Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">

 <Image Name="image" />

 <!-- Disable file I/O buttons in the Snapped state -->
 <VisualStateManager.VisualStateGroups>
 <VisualStateGroup x:Name="ApplicationViewStates">
 <VisualState x:Name="FullScreenLandscape" />
 <VisualState x:Name="Filled" />
 <VisualState x:Name="FullScreenPortrait" />

 <VisualState x:Name="Snapped">
 <Storyboard>
 <ObjectAnimationUsingKeyFrames Storyboard.TargetName="fileButtons"
 Storyboard.TargetProperty="Visibility">
 <DiscreteObjectKeyFrame KeyTime="0" Value="Collapsed" />
 </ObjectAnimationUsingKeyFrames>
 </Storyboard>
 </VisualState>
 </VisualStateGroup>
 </VisualStateManager.VisualStateGroups>
 </Grid>

 <Page.BottomAppBar>
 <AppBar>
 <Grid>
 <StackPanel Orientation="Horizontal"
 HorizontalAlignment="Left">

 <Button Style="{StaticResource AppBarButtonStyle}"
 AutomationProperties.Name="Color"
 Content="🌈"
 Click="OnColorAppBarButtonClick" />

 <Button Style="{StaticResource EditAppBarButtonStyle}"
 AutomationProperties.Name="Thickness"
 Click="OnThicknessAppBarButtonClick" />
 </StackPanel>

 <StackPanel Name="fileButtons"
 Orientation="Horizontal"
 HorizontalAlignment="Right">

736	 PART 2  Specialties

 <Button Style="{StaticResource OpenFileAppBarButtonStyle}"
 Click="OnOpenAppBarButtonClick" />

 <Button Style="{StaticResource SaveLocalAppBarButtonStyle}"
 AutomationProperties.Name="Save As"
 Click="OnSaveAsAppBarButtonClick" />

 <Button Style="{StaticResource SaveAppBarButtonStyle}"
 Click="OnSaveAppBarButtonClick" />

 <Button Style="{StaticResource AddAppBarButtonStyle}"
 Click="OnAddAppBarButtonClick" />
 </StackPanel>
 </Grid>
 </AppBar>
 </Page.BottomAppBar>
</Page>

Notice the Visual State Manager markup that makes all the file I/O buttons on the application bar
disappear when the application is in the Snapped state. This is actually rather more important than
just avoiding overlapping buttons: The file pickers don’t work in the Snapped state.

When putting this program together, I encountered a little issue involving file I/O and restarting
an application after it’s been terminated. Suppose the user invokes the FileOpenPicker to select an
existing file from the Pictures library. The program gets a StorageFile object back from FileOpenPicker,
uses that to open the file, and retains the StorageFile object as a field. Then, when the user presses
the Save button on the application bar, the program can simply use that existing StorageFile object to
save the file.

However, suppose the program is suspended, terminated, and later restarted. That StorageFile
object cannot be saved in local application storage! The program must abandon it and instead
compensate by saving the full file path of the file (as I’ve done in the AppSettings class). When
the program starts up again, and the user presses the Save button, the application doesn’t
have a StorageFile object for that file. Instead it must create one using the static StorageFile.
GetFileFromPathAsync method. But using this method means that the program is accessing the file
system without using a StorageFile object obtained from a file picker.

For this reason, the FingerPaint program needs permission to access the Pictures library. In Visual
Studio, I displayed the properties of Package.appxmanifest and selected the Capabilities tab and
checked Pictures Library. I didn’t want the program to need this special permission, but the only
alternative was forcing the user to save a previously loaded file by using FileSavePicker.

Here’s the MainPage.File.cs file. You’ll recognize some of the bitmap loading and saving logic
from previous programs in this chapter, as well as some logic from the XamlCruncher application in
Chapter 8, “App Bars and Popups,” for asking the user to save a picture that’s been modified:

Project: FingerPaint | File: MainPage.File.cs (excerpt)

public sealed partial class MainPage : Page
{
 WriteableBitmap bitmap;
 Stream pixelStream;

	 CHAPTER 14  Bitmaps	 737

 byte[] pixels;

 async Task CreateNewBitmapAndPixelArray()
 {
 bitmap = new WriteableBitmap((int)this.ActualWidth, (int)this.ActualHeight);
 pixels = new byte[4 * bitmap.PixelWidth * bitmap.PixelHeight];

 // Set whole bitmap to white
 for (int index = 0; index < pixels.Length; index++)
 pixels[index] = 0xFF;

 await InitializeBitmap();

 appSettings.LoadedFilePath = null;
 appSettings.LoadedFilename = null;
 appSettings.IsImageModified = false;
 }

 async Task LoadBitmapFromFile(StorageFile storageFile)
 {
 using (IRandomAccessStreamWithContentType stream = await storageFile.OpenReadAsync())
 {
 BitmapDecoder decoder = await BitmapDecoder.CreateAsync(stream);
 BitmapFrame bitmapframe = await decoder.GetFrameAsync(0);
 PixelDataProvider dataProvider =
 await bitmapframe.GetPixelDataAsync(BitmapPixelFormat.Bgra8,
 BitmapAlphaMode.Premultiplied,
 new BitmapTransform(),
 ExifOrientationMode.RespectExifOrientation,
 ColorManagementMode.ColorManageToSRgb);
 pixels = dataProvider.DetachPixelData();
 bitmap = new WriteableBitmap((int)bitmapframe.PixelWidth,
 (int)bitmapframe.PixelHeight);
 await InitializeBitmap();
 }
 }

 async Task InitializeBitmap()
 {
 pixelStream = bitmap.PixelBuffer.AsStream();
 await pixelStream.WriteAsync(pixels, 0, pixels.Length);
 bitmap.Invalidate();
 image.Source = bitmap;
 CalculateImageScaleAndOffset();
 }

 async void OnAddAppBarButtonClick(object sender, RoutedEventArgs args)
 {
 Button button = sender as Button;
 button.IsEnabled = false;

 await CheckIfOkToTrashFile(CreateNewBitmapAndPixelArray);

 button.IsEnabled = true;
 this.BottomAppBar.IsOpen = false;
 }

738	 PART 2  Specialties

 async void OnOpenAppBarButtonClick(object sender, RoutedEventArgs args)
 {
 Button button = sender as Button;
 button.IsEnabled = false;

 await CheckIfOkToTrashFile(LoadFileFromOpenPicker);

 button.IsEnabled = true;
 this.BottomAppBar.IsOpen = false;
 }

 async Task CheckIfOkToTrashFile(Func<Task> commandAction)
 {
 if (!appSettings.IsImageModified)
 {
 await commandAction();
 return;
 }

 string message =
 String.Format("Do you want to save changes to {0}?",
 appSettings.LoadedFilePath ?? "(untitled)");

 MessageDialog msgdlg = new MessageDialog(message, "Finger Paint");
 msgdlg.Commands.Add(new UICommand("Save", null, "save"));
 msgdlg.Commands.Add(new UICommand("Don't Save", null, "dont"));
 msgdlg.Commands.Add(new UICommand("Cancel", null, "cancel"));
 msgdlg.DefaultCommandIndex = 0;
 msgdlg.CancelCommandIndex = 2;
 IUICommand command = await msgdlg.ShowAsync();

 if ((string)command.Id == "cancel")
 return;

 if ((string)command.Id == "dont")
 {
 await commandAction();
 return;
 }

 if (appSettings.LoadedFilePath == null)
 {
 StorageFile storageFile = await GetFileFromSavePicker();

 if (storageFile == null)
 return;

 appSettings.LoadedFilePath = storageFile.Path;
 appSettings.LoadedFilename = storageFile.Name;
 }

 string exception = null;

 try
 {
 await SaveBitmapToFile(appSettings.LoadedFilePath);
 }

	 CHAPTER 14  Bitmaps	 739

 catch (Exception exc)
 {
 exception = exc.Message;
 }

 if (exception != null)
 {
 msgdlg = new MessageDialog("The image file could not be saved. " +
 "The system reports an error of: " + exception,
 "Finger Paint");
 await msgdlg.ShowAsync();
 return;
 }

 await commandAction();
 }

 async Task LoadFileFromOpenPicker()
 {
 // Create FileOpenPicker
 FileOpenPicker picker = new FileOpenPicker();
 picker.SuggestedStartLocation = PickerLocationId.PicturesLibrary;

 // Initialize with filename extensions
 IReadOnlyList<BitmapCodecInformation> codecInfos =
 BitmapDecoder.GetDecoderInformationEnumerator();

 foreach (BitmapCodecInformation codecInfo in codecInfos)
 foreach (string extension in codecInfo.FileExtensions)
 picker.FileTypeFilter.Add(extension);

 // Get the selected file
 StorageFile storageFile = await picker.PickSingleFileAsync();

 if (storageFile == null)
 return;

 string exception = null;

 try
 {
 await LoadBitmapFromFile(storageFile);
 }
 catch (Exception exc)
 {
 exception = exc.Message;
 }

 if (exception != null)
 {
 MessageDialog msgdlg =
 new MessageDialog("The image file could not be loaded. " +
 "The system reports an error of: " + exception,
 "Finger Paint");
 await msgdlg.ShowAsync();
 return;
 }

740	 PART 2  Specialties

 appSettings.LoadedFilePath = storageFile.Path;
 appSettings.LoadedFilename = storageFile.Name;
 appSettings.IsImageModified = false;
 }

 async void OnSaveAppBarButtonClick(object sender, RoutedEventArgs args)
 {
 Button button = sender as Button;
 button.IsEnabled = false;

 if (appSettings.LoadedFilePath != null)
 {
 await SaveWithErrorNotification(appSettings.LoadedFilePath);
 }
 else
 {
 StorageFile storageFile = await GetFileFromSavePicker();

 if (storageFile == null)
 return;

 await SaveWithErrorNotification(storageFile);
 }

 button.IsEnabled = true;
 }

 async void OnSaveAsAppBarButtonClick(object sender, RoutedEventArgs args)
 {
 StorageFile storageFile = await GetFileFromSavePicker();

 if (storageFile == null)
 return;

 await SaveWithErrorNotification(storageFile);
 }

 async Task<StorageFile> GetFileFromSavePicker()
 {
 FileSavePicker picker = new FileSavePicker();
 picker.SuggestedStartLocation = PickerLocationId.PicturesLibrary;
 picker.SuggestedFileName = appSettings.LoadedFilename ?? "MyFingerPainting";

 // Get the encoder information
 Dictionary<string, Guid> imageTypes = new Dictionary<string, Guid>();
 IReadOnlyList<BitmapCodecInformation> codecInfos =
 BitmapEncoder.GetEncoderInformationEnumerator();

 foreach (BitmapCodecInformation codecInfo in codecInfos)
 {
 List<string> extensions = new List<string>();

 foreach (string extension in codecInfo.FileExtensions)
 extensions.Add(extension);

 string filetype = codecInfo.FriendlyName.Split(' ')[0];

	 CHAPTER 14  Bitmaps	 741

 picker.FileTypeChoices.Add(filetype, extensions);

 foreach (string mimeType in codecInfo.MimeTypes)
 imageTypes.Add(mimeType, codecInfo.CodecId);
 }

 // Get a selected StorageFile
 return await picker.PickSaveFileAsync();
 }

 async Task<bool> SaveWithErrorNotification(string filename)
 {
 StorageFile storageFile = await StorageFile.GetFileFromPathAsync(filename);
 return await SaveWithErrorNotification(storageFile);
 }

 async Task<bool> SaveWithErrorNotification(StorageFile storageFile)
 {
 string exception = null;

 try
 {
 await SaveBitmapToFile(storageFile);
 }
 catch (Exception exc)
 {
 exception = exc.Message;
 }

 if (exception != null)
 {
 MessageDialog msgdlg =
 new MessageDialog("The image file could not be saved. " +
 "The system reports an error of: " + exception,
 "Finger Paint");
 await msgdlg.ShowAsync();
 return false;
 }

 appSettings.LoadedFilePath = storageFile.Path;
 appSettings.IsImageModified = false;
 return true;
 }

 async Task SaveBitmapToFile(string filename)
 {
 StorageFile storageFile = await StorageFile.GetFileFromPathAsync(filename);
 await SaveBitmapToFile(storageFile);
 }

 async Task SaveBitmapToFile(StorageFile storageFile)
 {
 using (IRandomAccessStream fileStream =
 await storageFile.OpenAsync(FileAccessMode.ReadWrite))
 {
 BitmapEncoder encoder =
 await BitmapEncoder.CreateAsync(BitmapEncoder.PngEncoderId, fileStream);

742	 PART 2  Specialties

 encoder.SetPixelData(BitmapPixelFormat.Bgra8, BitmapAlphaMode.Premultiplied,
 (uint)bitmap.PixelWidth, (uint)bitmap.PixelHeight,
 96, 96, pixels);
 await encoder.FlushAsync();
 }
 }
}

The MainPage.xaml.cs file shown next has several responsibilities. The code in this file saves
application settings during program suspension and restores them when the program starts up. It
also saves the current picture and reloads it. This logic makes use of methods in the MainPage.File.cs
file, but of course it must ignore any exceptions that might occur.

This file is also responsible for handling the SizeChanged event, both for setting the visual state
used in the XAML file and for setting the imageScale and imageOffset fields. Depending on the
original size of the bitmap, the screen orientation, and the snapped state, the bitmap currently
serving as the finger-painting canvas might be larger or smaller than the page. It’s always displayed as
large as possible without aspect ratio distortion, but touch coordinates must be converted to bitmap
coordinates for drawing on it.

Project: FingerPaint | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 AppSettings appSettings = new AppSettings();
 double imageScale = 1;
 Point imageOffset = new Point();

 public MainPage()
 {
 this.InitializeComponent();

 SizeChanged += OnMainPageSizeChanged;
 Loaded += OnMainPageLoaded;
 Application.Current.Suspending += OnApplicationSuspending;
 }

 void OnMainPageSizeChanged(object sender, SizeChangedEventArgs args)
 {
 VisualStateManager.GoToState(this, ApplicationView.Value.ToString(), true);

 if (bitmap != null)
 {
 CalculateImageScaleAndOffset();
 }
 }

 void CalculateImageScaleAndOffset()
 {
 imageScale = Math.Min(this.ActualWidth / bitmap.PixelWidth,
 this.ActualHeight / bitmap.PixelHeight);
 imageOffset = new Point((this.ActualWidth - imageScale * bitmap.PixelWidth) / 2,
 (this.ActualHeight - imageScale * bitmap.PixelHeight) / 2);
 }

	 CHAPTER 14  Bitmaps	 743

 async void OnMainPageLoaded(object sender, RoutedEventArgs args)
 {
 try
 {
 StorageFolder localFolder = ApplicationData.Current.LocalFolder;
 StorageFile storageFile = await localFolder.GetFileAsync("FingerPaint.png");
 await LoadBitmapFromFile(storageFile);
 }
 catch
 {
 // Ignore any errors
 }

 if (bitmap == null)
 await CreateNewBitmapAndPixelArray();
 }

 async void OnApplicationSuspending(object sender, SuspendingEventArgs args)
 {
 // Save application settings
 appSettings.Save();

 // Save current bitmap
 SuspendingDeferral deferral = args.SuspendingOperation.GetDeferral();

 try
 {
 StorageFolder localFolder = ApplicationData.Current.LocalFolder;
 StorageFile storageFile = await localFolder.CreateFileAsync("FingerPaint.png",
 CreationCollisionOption.ReplaceExisting);
 await SaveBitmapToFile(storageFile);
 }
 catch
 {
 // Ignore any errors
 }

 deferral.Complete();
 }
 ...
}

The MainPage.xaml.cs file is also responsible for handling the Color and Thickness application
bar buttons by displaying Popup objects with UserControl derivatives named ColorSettingDialog and
ThicknessSettingDialog.

Project: FingerPaint | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 ...
 void OnColorAppBarButtonClick(object sender, RoutedEventArgs args)
 {
 DisplayDialog(sender, new ColorSettingDialog());
 }

744	 PART 2  Specialties

 void OnThicknessAppBarButtonClick(object sender, RoutedEventArgs args)
 {
 DisplayDialog(sender, new ThicknessSettingDialog());
 }

 void DisplayDialog(object sender, FrameworkElement dialog)
 {
 dialog.DataContext = appSettings;

 Popup popup = new Popup
 {
 Child = dialog,
 IsLightDismissEnabled = true
 };

 dialog.SizeChanged += (dialogSender, dialogArgs) =>
 {
 // Get Button location relative to screen
 Button btn = sender as Button;
 Point pt = btn.TransformToVisual(null).TransformPoint(
 new Point(btn.ActualWidth / 2,
 btn.ActualHeight / 2));

 popup.HorizontalOffset = Math.Max(24, pt.X - dialog.ActualWidth / 2);

 if (popup.HorizontalOffset + dialog.ActualWidth > this.ActualWidth)
 popup.HorizontalOffset = this.ActualWidth - dialog.ActualWidth;

 popup.HorizontalOffset = Math.Max(0, popup.HorizontalOffset);

 popup.VerticalOffset = this.ActualHeight - dialog.ActualHeight
 - this.BottomAppBar.ActualHeight - 24;
 };

 popup.Closed += (popupSender, popupArgs) =>
 {
 this.BottomAppBar.IsOpen = false;
 };

 popup.IsOpen = true;
 }
}

The ThicknessSettingDialog is definitely the simpler of the two. It simply contains a ListBox with a
bunch of possible line-thickness values. I wanted powers of 2—such as 2, 4, 8, 16, 32—but I also want-
ed values between those as well, so basically the values increase by the cube root of 2 with rounding
and elimination of redundancy:

Project: FingerPaint | File: ThicknessSettingDialog.xaml (excerpt)

<Grid>
 <Border Background="White"
 BorderBrush="Black"
 BorderThickness="3"
 Padding="32">

	 CHAPTER 14  Bitmaps	 745

 <ListBox SelectedItem="{Binding Thickness, Mode=TwoWay}"
 Width="150">
 <x:Double>2</x:Double>
 <x:Double>3</x:Double>
 <x:Double>4</x:Double>
 <x:Double>5</x:Double>
 <x:Double>6</x:Double>
 <x:Double>8</x:Double>
 <x:Double>10</x:Double>
 <x:Double>13</x:Double>
 <x:Double>16</x:Double>
 <x:Double>20</x:Double>
 <x:Double>25</x:Double>
 <x:Double>32</x:Double>
 <x:Double>40</x:Double>

 <ListBox.Foreground>
 <SolidColorBrush Color="{Binding Color}" />
 </ListBox.Foreground>

 <ListBox.ItemTemplate>
 <DataTemplate>
 <Grid Height="{Binding}"
 Width="120">
 <Canvas VerticalAlignment="Center"
 HorizontalAlignment="Center">
 <Polyline Points="-36 0 36 0"
 Stroke="{Binding RelativeSource={RelativeSource TemplatedParent},
 Path=Foreground}"
 StrokeThickness="{Binding}"
 StrokeStartLineCap="Round"
 StrokeEndLineCap="Round" />
 </Canvas>
 </Grid>
 </DataTemplate>
 </ListBox.ItemTemplate>

 <ListBox.ItemContainerStyle>
 <Style TargetType="ListBoxItem">
 <Setter Property="Background" Value="Transparent" />
 <Setter Property="Template">
 <Setter.Value>
 <ControlTemplate TargetType="ListBoxItem">
 <Grid>
 <VisualStateManager.VisualStateGroups>
 <VisualStateGroup x:Name="SelectionStates">
 <VisualState x:Name="Unselected">
 <Storyboard>
 <ObjectAnimationUsingKeyFrames
 Storyboard.TargetName="border"
 Storyboard.TargetProperty="BorderBrush">
 <DiscreteObjectKeyFrame
 KeyTime="0"
 Value="Transparent" />
 </ObjectAnimationUsingKeyFrames>
 </Storyboard>
 </VisualState>

746	 PART 2  Specialties

 <VisualState x:Name="Selected" />
 <VisualState x:Name="SelectedUnfocused" />
 <VisualState x:Name="SelectedDisabled" />
 <VisualState x:Name="SelectedPointerOver" />
 <VisualState x:Name="SelectedPressed" />
 </VisualStateGroup>
 </VisualStateManager.VisualStateGroups>

 <Border Name="border"
 BorderBrush="Black"
 BorderThickness="1"
 Background="Transparent"
 Padding="12">

 <ContentPresenter Content="{TemplateBinding Content}" />

 </Border>
 </Grid>
 </ControlTemplate>
 </Setter.Value>
 </Setter>
 </Style>
 </ListBox.ItemContainerStyle>
 </ListBox>
 </Border>
</Grid>

Of course, all the “magic” occurs in the templates. (There is nothing in the code-behind file except
a call to InitializeComponent.) The ItemTemplate uses the value in the ListBox as a thickness for an
actual line, and the ItemContainerStyle causes a rectangle to be drawn around the selected value:

	 CHAPTER 14  Bitmaps	 747

When MainPage displays this dialog, the DataContext is set to the AppSettings instance, so the
value of the Thickness property in that class is updated through the data binding. That value is used in
all subsequent drawing operations until the next change.

HSL Color Selection

You’ve probably seen a few too many color selectors in the book built from sliders that let you pick
Red, Green, and Blue values. That’s an easy way to pick color because it’s the way that color is defined
in video displays and in the Windows Runtime.

However, it’s not really an intuitive way to select colors. People seem to prefer a system built
around values named Hue, Saturation, and Lightness. Hue is basically a color of the rainbow, named
by Isaac Newton as red, orange, yellow, green, blue, indigo, and violet. Using more “computerish”
colors, Hue ranges continuously from red, through yellow, green, cyan, blue, magenta, and back to
red. Notice the three additive primaries (red, green, and blue) and the three subtractive primaries
(yellow, cyan, and magenta), which are combinations of the pair of additive primaries surrounding
them.

The Hue is combined with a Saturation value. When the Saturation is a maximum value, the color is
most vivid. At a minimum saturation, the color is gray. Then Lightness comes into play. Increasing the
Lightness washes out the color and eventually turns it white at the maximum value. Decreasing the
Lightness from its medium value turns the color black.

Hue-Saturation-Lightness (or HSL) color selection is used in Windows Paint and Microsoft Word,
where a two-dimensional grid (similar to the XYSlider in Chapter 13) is used for the combination of
Hue and Saturation and a regular slider is used for Lightness.

To mimic this type of color selection, I created an HSL structure for representing an HSL color
value. This structure incorporates conversion routines between RGB and HSL:

Project: FingerPaint | File: HSL.cs

public struct HSL
{
 public HSL(byte hue, byte saturation, byte lightness) :
 this(360 * hue / 255.0, saturation / 255.0, lightness / 255.0)
 {
 }

 // Hue from 0 to 360, saturation and lightness from 0 to 1
 public HSL(double hue, double saturation, double lightness) : this()
 {
 this.Hue = hue;
 this.Saturation = saturation;
 this.Lightness = lightness;

 double chroma = saturation * (1 - Math.Abs(2 * lightness - 1));
 double h = hue / 60;

748	 PART 2  Specialties

 double x = chroma * (1 - Math.Abs(h % 2 - 1));
 double r = 0, g = 0, b = 0;

 if (h < 1)
 {
 r = chroma;
 g = x;
 }
 else if (h < 2)
 {
 r = x;
 g = chroma;
 }
 else if (h < 3)
 {
 g = chroma;
 b = x;
 }
 else if (h < 4)
 {
 g = x;
 b = chroma;
 }
 else if (h < 5)
 {
 r = x;
 b = chroma;
 }
 else
 {
 r = chroma;
 b = x;
 }

 double m = lightness - chroma / 2;
 this.Color = Color.FromArgb(255, (byte)(255 * (r + m)),
 (byte)(255 * (g + m)),
 (byte)(255 * (b + m)));
 }

 public HSL(Color color)
 : this()
 {
 this.Color = color;

 double r = color.R / 255.0;
 double g = color.G / 255.0;
 double b = color.B / 255.0;
 double max = Math.Max(r, Math.Max(g, b));
 double min = Math.Min(r, Math.Min(g, b));

 double chroma = max - min;
 this.Lightness = (max + min) / 2;

 if (chroma != 0)
 {
 if (r == max)

	 CHAPTER 14  Bitmaps	 749

 this.Hue = 60 * (g - b) / chroma;

 else if (g == max)
 this.Hue = 120 + 60 * (b - r) / chroma;

 else
 this.Hue = 240 + 60 * (r - g) / chroma;

 this.Hue = (this.Hue + 360) % 360;

 if (this.Lightness < 0.5)
 this.Saturation = chroma / (2 * this.Lightness);
 else
 this.Saturation = chroma / (2 - 2 * this.Lightness);
 }
 }

 public double Hue { private set; get; }

 public double Saturation { private set; get; }

 public double Lightness { private set; get; }

 public Color Color { private set; get; }
}

Notice the two different constructors, one using byte arguments and the other using double
arguments. For a particular call to an HSL constructor, the C# compiler needs to choose which
constructor to use, and it will choose the first one only if all the arguments are byte values. There’s no
such ambiguity with the third constructor, which converts a Color value to HSL.

I presented an XYSlider control in the previous chapter but indicated that it would be more usable
if it used Pointer events rather than Manipulation events. Here’s the revised version. Because it’s work-
ing with Pointer events, it needs to keep track of multiple fingers, but it simply averages the positions
of those fingers to create a composite position. Otherwise, the control is basically the same:

Project: FingerPaint | File: XYSlider.cs (excerpt)

public class XYSlider : ContentControl
{
 ContentPresenter contentPresenter;
 FrameworkElement crossHairPart;
 Dictionary<uint, Point> pointerDictionary = new Dictionary<uint, Point>();

 static readonly DependencyProperty valueProperty =
 DependencyProperty.Register("Value",
 typeof(Point), typeof(XYSlider),
 new PropertyMetadata(new Point(), OnValueChanged));

 public event EventHandler<Point> ValueChanged;

 public XYSlider()
 {
 this.DefaultStyleKey = typeof(XYSlider);

750	 PART 2  Specialties

 }

 public static DependencyProperty ValueProperty
 {
 get { return valueProperty; }
 }

 public Point Value
 {
 set { SetValue(ValueProperty, value); }
 get { return (Point)GetValue(ValueProperty); }
 }

 protected override void OnApplyTemplate()
 {
 // Detach event handlers
 if (contentPresenter != null)
 {
 contentPresenter.PointerPressed -= OnContentPresenterPointerPressed;
 contentPresenter.PointerMoved -= OnContentPresenterPointerMoved;
 contentPresenter.PointerReleased -= OnContentPresenterPointerReleased;
 contentPresenter.PointerCaptureLost -= OnContentPresenterPointerReleased;
 contentPresenter.SizeChanged -= OnContentPresenterSizeChanged;
 }

 // Get new parts
 crossHairPart = GetTemplateChild("CrossHairPart") as FrameworkElement;
 contentPresenter = GetTemplateChild("ContentPresenterPart") as ContentPresenter;

 // Attach event handlers
 if (contentPresenter != null)
 {
 contentPresenter.PointerPressed += OnContentPresenterPointerPressed;
 contentPresenter.PointerMoved += OnContentPresenterPointerMoved;
 contentPresenter.PointerReleased += OnContentPresenterPointerReleased;
 contentPresenter.PointerCaptureLost += OnContentPresenterPointerReleased;
 contentPresenter.SizeChanged += OnContentPresenterSizeChanged;
 }

 // Make cross-hair transparent to touch
 if (crossHairPart != null)
 {
 crossHairPart.IsHitTestVisible = false;
 }

 base.OnApplyTemplate();
 }

 void OnContentPresenterPointerPressed(object sender, PointerRoutedEventArgs args)
 {
 uint id = args.Pointer.PointerId;
 Point point = args.GetCurrentPoint(contentPresenter).Position;
 pointerDictionary.Add(id, point);
 contentPresenter.CapturePointer(args.Pointer);

 RecalculateValue();
 args.Handled = true;

	 CHAPTER 14  Bitmaps	 751

 }

 void OnContentPresenterPointerMoved(object sender, PointerRoutedEventArgs args)
 {
 uint id = args.Pointer.PointerId;
 Point point = args.GetCurrentPoint(contentPresenter).Position;

 if (pointerDictionary.ContainsKey(id))
 {
 pointerDictionary[id] = point;
 RecalculateValue();
 args.Handled = true;
 }
 }

 void OnContentPresenterPointerReleased(object sender, PointerRoutedEventArgs args)
 {
 uint id = args.Pointer.PointerId;

 if (pointerDictionary.ContainsKey(id))
 {
 pointerDictionary.Remove(id);
 RecalculateValue();
 args.Handled = true;
 }
 }

 void OnContentPresenterSizeChanged(object sender, SizeChangedEventArgs args)
 {
 SetCrossHair();
 }

 void RecalculateValue()
 {
 if (pointerDictionary.Values.Count > 0)
 {
 Point accumPoint = new Point();

 // Average all the current touch points
 foreach (Point point in pointerDictionary.Values)
 {
 accumPoint.X += point.X;
 accumPoint.Y += point.Y;
 }
 accumPoint.X /= pointerDictionary.Values.Count;
 accumPoint.Y /= pointerDictionary.Values.Count;

 RecalculateValue(accumPoint);
 }
 }

 void RecalculateValue(Point absolutePoint)
 {
 double x = Math.Max(0, Math.Min(1, absolutePoint.X / contentPresenter.ActualWidth));
 double y = Math.Max(0, Math.Min(1, absolutePoint.Y / contentPresenter.ActualHeight));
 this.Value = new Point(x, y);
 }

752	 PART 2  Specialties

 void SetCrossHair()
 {
 if (contentPresenter != null && crossHairPart != null)
 {
 Canvas.SetLeft(crossHairPart, this.Value.X * contentPresenter.ActualWidth);
 Canvas.SetTop(crossHairPart, this.Value.Y * contentPresenter.ActualHeight);
 }
 }

 static void OnValueChanged(DependencyObject obj, DependencyPropertyChangedEventArgs args)
 {
 (obj as XYSlider).SetCrossHair();
 (obj as XYSlider).OnValueChanged((Point)args.NewValue);
 }

 protected void OnValueChanged(Point value)
 {
 if (ValueChanged != null)
 ValueChanged(this, value);
 }
}

The next step is to build an HslColorSelector control. This is derived from UserControl and
instantiates an XYSlider, Slider, and TextBlock in the XAML file. The Resources section defines
ControlTemplate objects for the XYSlider and Slider. The XYSlider template is considerably simplified
from what I showed for the corresponding control in Chapter 13 because I knew exactly the visuals I
wanted and didn’t add anything else.

Project: FingerPaint | File: HslColorSelector.xaml (excerpt)

<UserControl ... >
 <UserControl.Resources>
 <ControlTemplate x:Key="xySliderTemplate" TargetType="local:XYSlider">
 <Border>
 <Grid>
 <ContentPresenter Name="ContentPresenterPart"
 Content="{TemplateBinding Content}" />
 <Canvas>
 <Path Name="CrossHairPart"
 Fill="{TemplateBinding Foreground}"
 Data="M 0 6 L -3 24 3 24 Z
 M 0 -6 L -3 -24 3 -24 Z
 M 6 0 L 24 -3 24 3 Z
 M -6 0 L -24 -2 -24 3 Z" />
 </Canvas>
 </Grid>
 </Border>
 </ControlTemplate>

 <ControlTemplate x:Key="sliderTemplate" TargetType="Slider">
 <Grid>
 <Grid Name="HorizontalTemplate"
 Background="Transparent"
 Height="48">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="*" />

	 CHAPTER 14  Bitmaps	 753

 <ColumnDefinition Width="Auto" />
 <ColumnDefinition Width="Auto" />
 </Grid.ColumnDefinitions>

 <Rectangle Name="HorizontalTrackRect"
 Grid.Column="0"
 Grid.ColumnSpan="3"
 Fill="{TemplateBinding Background}"
 Height="12"
 VerticalAlignment="Top" />

 <Thumb Name="HorizontalThumb"
 Grid.Column="1"
 DataContext="{TemplateBinding Value}">
 <Thumb.Template>
 <ControlTemplate TargetType="Thumb">
 <Path Fill="{TemplateBinding Foreground}"
 Data="M 0 24 L -3 48 3 48 Z" />
 </ControlTemplate>
 </Thumb.Template>
 </Thumb>

 <Rectangle Name="HorizontalDecreaseRect"
 Grid.Column="2"
 Fill="Transparent" />
 </Grid>

 <Grid Name="VerticalTemplate"
 Background="Transparent"
 Width="48">
 <Grid.RowDefinitions>
 <RowDefinition Height="*" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>

 <Rectangle Name="VerticalTrackRect"
 Grid.Row="0"
 Grid.RowSpan="3"
 Fill="{TemplateBinding Background}"
 Width="12"
 HorizontalAlignment="Left" />

 <Thumb Name="VerticalThumb"
 Grid.Row="1"
 DataContext="{TemplateBinding Value}">
 <Thumb.Template>
 <ControlTemplate TargetType="Thumb">
 <Path Fill="{TemplateBinding Foreground}"
 Data="M 24 0 L 48 -3 48 3 Z" />
 </ControlTemplate>
 </Thumb.Template>
 </Thumb>

 <Rectangle Name="VerticalDecreaseRect"
 Grid.Row="2"
 Fill="Transparent" />

754	 PART 2  Specialties

 </Grid>
 </Grid>
 </ControlTemplate>
 </UserControl.Resources>

 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>

 <local:XYSlider x:Name="xySlider"
 Grid.Row="0"
 Template="{StaticResource xySliderTemplate}"
 ValueChanged="OnXYSliderValueChanged">
 <Image Name="hsImage"
 Stretch="None" />
 </local:XYSlider>

 <Slider Name="slider"
 Grid.Row="1"
 Orientation="Horizontal"
 Template="{StaticResource sliderTemplate}"
 Width="256"
 Margin="0 12"
 ValueChanged="OnSliderValueChanged">
 <Slider.Background>
 <LinearGradientBrush StartPoint="0 0" EndPoint="1 0">
 <GradientStop Offset="0" Color="Black" />
 <GradientStop x:Name="sliderGradientStop" Offset="0.5" />
 <GradientStop Offset="1" Color="White" />
 </LinearGradientBrush>
 </Slider.Background>
 </Slider>

 <TextBlock Name="txtblk"
 Grid.Row="2"
 HorizontalAlignment="Center"
 TextAlignment="Center"
 FontSize="24" />
 </Grid>
</UserControl>

Notice that the ControlTemplate for the Slider basically colors the control with its Background
property. This Background property is defined on the Slider itself toward the bottom of the XAML file.
It’s a LinearGradientBrush that ranges from black to white with a color in the center settable from the
code-behind file. That color is based on the combination of Hue and Saturation the user selects from
the XYSlider.

	 CHAPTER 14  Bitmaps	 755

The code-behind file defines a DependencyProperty named Color of type Color. Obviously, as a
public property to be used in bindings, this Color property makes much more sense than a public
property of type HSL. The Loaded handler is responsible for creating a bitmap for the main
Hue-Saturation grid. It uses the HSL structure to convert from HSL (with an average Lightness value)
to obtain RGB values for the bitmap pixels.

Project: FingerPaint | File: HslColorSelector.xaml.cs (excerpt)

public partial class HslColorSelector : UserControl
{
 bool doNotSetSliders = false;

 static readonly DependencyProperty colorProperty =
 DependencyProperty.Register("Color",
 typeof(Color),
 typeof(HslColorSelector),
 new PropertyMetadata(new Color(), OnColorChanged));

 public event EventHandler<Color> ColorChanged;

 public HslColorSelector()
 {
 this.InitializeComponent();
 Loaded += OnLoaded;
 }

 async void OnLoaded(object sender, RoutedEventArgs args)
 {
 // Build bitmap for hue/saturation grid
 WriteableBitmap bitmap = new WriteableBitmap(256, 256);
 byte[] pixels = new byte[4 * 256 * 256];
 int index = 0;

 for (int y = 0; y < 256; y++)
 for (int x = 0; x < 256; x++)
 {
 HSL hsl = new HSL((byte)x, (byte)(255 - y), (byte)128);
 Color clr = hsl.Color;

 pixels[index++] = clr.B;
 pixels[index++] = clr.G;
 pixels[index++] = clr.R;
 pixels[index++] = clr.A;
 }

 using (Stream pixelStream = bitmap.PixelBuffer.AsStream())
 {
 await pixelStream.WriteAsync(pixels, 0, pixels.Length);
 }
 bitmap.Invalidate();
 hsImage.Source = bitmap;
 }

756	 PART 2  Specialties

 public static DependencyProperty ColorProperty
 {
 get { return colorProperty; }
 }

 public Color Color
 {
 set { SetValue(ColorProperty, value); }
 get { return (Color)GetValue(ColorProperty); }
 }

 // Event handlers for sliders
 void OnXYSliderValueChanged(object sender, Point point)
 {
 HSL hsl = new HSL(360 * point.X, 1 - point.Y, 0.5);
 sliderGradientStop.Color = hsl.Color;
 SetColorFromSliders();
 }

 void OnSliderValueChanged(object sender, RangeBaseValueChangedEventArgs args)
 {
 SetColorFromSliders();
 }

 void SetColorFromSliders()
 {
 Point point = xySlider.Value;
 double value = slider.Value;
 HSL hsl = new HSL(360 * point.X, 1 - point.Y, value / 100);

 doNotSetSliders = true;
 this.Color = hsl.Color;
 doNotSetSliders = false;
 }

 // Color property-changed handlers
 static void OnColorChanged(DependencyObject obj, DependencyPropertyChangedEventArgs args)
 {
 (obj as HslColorSelector).OnColorChanged((Color)args.NewValue);
 }

 protected void OnColorChanged(Color color)
 {
 HSL hsl = new HSL(color);

 if (!doNotSetSliders)
 {
 xySlider.Value = new Point(hsl.Hue / 360, 1 - hsl.Saturation);
 slider.Value = 100 * hsl.Lightness;
 }

	 CHAPTER 14  Bitmaps	 757

 txtblk.Text = String.Format("RGB = ({0}, {1}, {2})",
 this.Color.R, this.Color.G, this.Color.B);

 if (ColorChanged != null)
 ColorChanged(this, color);
 }
}

When a new Color property is set from outside the file, the OnColorChanged handler responds
by setting the XYSlider and Slider values as well as using the TextBlock to display the RGB color
value. When the user manipulates the XYSlider and Slider values, a new Color property is set and
OnColorChanged is called. Normally, recursive calls to property-changed handlers are OK, but not in
this case because a round-trip conversion—RGB to HSL to RGB—doesn’t result in exactly the same
value. That’s the reason for the Boolean doNotSetSliders field when the Color property is changed
from user input.

Finally, a ColorSettingDialog incorporates the HslColorSelector:

Project: FingerPaint | File: ColorSettingDialog.xaml (excerpt)

<Grid>
 <Border Background="White"
 BorderBrush="Black"
 BorderThickness="3"
 Padding="32">
 <StackPanel>
 <Path Data="M 0 50 C 80 0 160 100 256 0"
 StrokeStartLineCap="Round"
 StrokeEndLineCap="Round"
 StrokeThickness="{Binding Thickness}"
 Margin="0 12">
 <Path.Stroke>
 <SolidColorBrush Color="{Binding Color}" />
 </Path.Stroke>
 </Path>

 <local:HslColorSelector x:Name="hslColorSelector"
 Foreground="Black"
 Color="{Binding Path=Color, Mode=TwoWay}" />
 </StackPanel>
 </Border>
</Grid>

758	 PART 2  Specialties

For a preview, the control displays a squiggle based on the current thickness and color:

When you use Finger Paint on anything other than a very high resolution display, you’ll probably
notice that the drawing is a little grainier than the earlier FingerPaint programs from Chapter 13.
There’s a very good reason for this: When you render graphical objects with Line, Polyline, and
Path, you get antialiasing. The boundary lines are a combination of the fill color and the background
color, and perceptually the lines are smoother. But there is no antialiasing implemented in the
Petzold.Windows8.VectorDrawing library. Either a pixel is colored, or it is not.

Reverse Painting

I once saw a little movie of someone painting over a large colorful mural with white paint and a roller,
except that the movie was run in reverse so that it seemed as if the mural was being magically created
by painting with the roller over a white surface.

A similar technique is illustrated in the ReversePaint program. The XAML file accesses a bitmap on
my website and defines another Image element that lies on top:

Project: ReversePaint | File: MainPage.xaml (excerpt)

<Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <Image Source="http://www.charlespetzold.com/pw6/PetzoldJersey.jpg" />
 <Image Name="whiteImage" />
</Grid>

The bitmap for the second Image element is created in the Loaded handler to be the same size
as the downloaded bitmap and all white. Like FingerPaint, there’s a CalculateImageScaleAndOffset
method that calculates factors for scaling pointer input to the bitmap. To streamline the presentation

	 CHAPTER 14  Bitmaps	 759

of the code, I’ve removed a lot of comments from the pointer event handlers, but you’ve seen the
logic before. The OnPointerMoved method calls a simplified form of RenderOnBitmap with two points,
a fixed line thickness, and a Color value representing transparency:

Project: ReversePaint | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 Dictionary<uint, Point> pointerDictionary = new Dictionary<uint, Point>();
 List<double> xCollection = new List<double>();

 WriteableBitmap bitmap;
 byte[] pixels;
 Stream pixelStream;

 Point imageOffset = new Point();
 double imageScale = 1;

 public MainPage()
 {
 this.InitializeComponent();

 SizeChanged += OnMainPageSizeChanged;
 Loaded += OnMainPageLoaded;
 }

 void OnMainPageSizeChanged(object sender, SizeChangedEventArgs args)
 {
 if (bitmap != null)
 CalculateImageScaleAndOffset();
 }

 async void OnMainPageLoaded(object sender, RoutedEventArgs args)
 {
 bitmap = new WriteableBitmap(320, 400);
 pixels = new byte[4 * bitmap.PixelWidth * bitmap.PixelHeight];

 // Initialize pixels to white
 for (int index = 0; index < pixels.Length; index++)
 pixels[index] = 0xFF;

 pixelStream = bitmap.PixelBuffer.AsStream();
 await pixelStream.WriteAsync(pixels, 0, pixels.Length);
 bitmap.Invalidate();

 // Set to Image element
 whiteImage.Source = bitmap;
 CalculateImageScaleAndOffset();
 }

 void CalculateImageScaleAndOffset()
 {
 imageScale = Math.Min(this.ActualWidth / bitmap.PixelWidth,
 this.ActualHeight / bitmap.PixelHeight);

760	 PART 2  Specialties

 imageOffset = new Point((this.ActualWidth - imageScale * bitmap.PixelWidth) / 2,
 (this.ActualHeight - imageScale * bitmap.PixelHeight) / 2);
 }

 protected override void OnPointerPressed(PointerRoutedEventArgs args)
 {
 uint id = args.Pointer.PointerId;
 Point point = args.GetCurrentPoint(this).Position;
 pointerDictionary.Add(id, point);
 CapturePointer(args.Pointer);
 base.OnPointerPressed(args);
 }

 protected override void OnPointerMoved(PointerRoutedEventArgs args)
 {
 uint id = args.Pointer.PointerId;
 Point point = args.GetCurrentPoint(this).Position;

 if (pointerDictionary.ContainsKey(id))
 {
 Point previousPoint = pointerDictionary[id];

 // Render the line
 RenderOnBitmap(previousPoint, point, 12, new Color());

 pointerDictionary[id] = point;
 }
 base.OnPointerMoved(args);
 }

 protected override void OnPointerReleased(PointerRoutedEventArgs args)
 {
 uint id = args.Pointer.PointerId;

 if (pointerDictionary.ContainsKey(id))
 pointerDictionary.Remove(id);

 base.OnPointerReleased(args);
 }

 protected override void OnPointerCaptureLost(PointerRoutedEventArgs args)
 {
 uint id = args.Pointer.PointerId;

 if (pointerDictionary.ContainsKey(id))
 pointerDictionary.Remove(id);

 base.OnPointerCaptureLost(args);
 }

 void RenderOnBitmap(Point point1, Point point2, double radius, Color color)
 {
 bool bitmapNeedsUpdate = false;

	 CHAPTER 14  Bitmaps	 761

 // Adjust the points for any bitmap scaling
 Point center1 = ScaleToBitmap(point1);
 Point center2 = ScaleToBitmap(point2);

 // Create object to render the line
 RoundCappedLine line = new RoundCappedLine(center1, center2, radius);

 // Find the minimum and maximum vertical coordinates
 int yMin = (int)Math.Min(center1.Y - radius, center2.Y - radius);
 int yMax = (int)Math.Max(center1.Y + radius, center2.Y + radius);

 yMin = Math.Max(0, Math.Min(bitmap.PixelHeight, yMin));
 yMax = Math.Max(0, Math.Min(bitmap.PixelHeight, yMax));

 // Loop through all the y coordinates that contain part of the segment
 for (int y = yMin; y < yMax; y++)
 {
 // Get the range of x coordinates in the segment
 xCollection.Clear();
 line.GetAllX(y, xCollection);

 if (xCollection.Count == 2)
 {
 // Find the minimum and maximum horizontal coordinates
 int xMin = (int)(Math.Min(xCollection[0], xCollection[1]) + 0.5f);
 int xMax = (int)(Math.Max(xCollection[0], xCollection[1]) + 0.5f);

 xMin = Math.Max(0, Math.Min(bitmap.PixelWidth, xMin));
 xMax = Math.Max(0, Math.Min(bitmap.PixelWidth, xMax));

 // Loop through the X values
 for (int x = xMin; x < xMax; x++)
 {
 {
 // Set the pixel
 int index = 4 * (y * bitmap.PixelWidth + x);
 pixels[index + 0] = color.B;
 pixels[index + 1] = color.G;
 pixels[index + 2] = color.R;
 pixels[index + 3] = color.A;
 bitmapNeedsUpdate = true;
 }
 }
 }
 }
 // Update bitmap
 if (bitmapNeedsUpdate)
 {
 // Find the starting index and number of pixels
 int start = 4 * yMin * bitmap.PixelWidth;
 int count = 4 * (yMax - yMin) * bitmap.PixelWidth;

 pixelStream.Seek(start, SeekOrigin.Begin);

762	 PART 2  Specialties

 pixelStream.Write(pixels, start, count);
 bitmap.Invalidate();
 }
 }

 Point ScaleToBitmap(Point pt)
 {
 return new Point((pt.X - imageOffset.X) / imageScale,
 (pt.Y - imageOffset.Y) / imageScale);
 }
}

The RenderOnBitmap method is simpler than the one in FingerPaint because it’s only dealing with
a constant thickness and uses RoundCappedLine uniformly. Here’s the result after “painting” the white
bitmap with a few strokes of transparent pixels:

Notice that the PointerMoved method calls RenderOnBitmap like this:

RenderOnBitmap(previousPoint, point, 12, new Color());

The Color constructor creates a Color value with the A, R, G, and B properties all set to zero, a
color sometimes known as “transparent black.” For putting colors in a WriteableBitmap, this Color
constructor is much better than the static Colors.Transparent property. Colors.Transparent returns a
Color value with an A property equal to zero but R, G, B set to 255. This color is sometimes referred to
as “transparent white,” but it’s not a premultiplied-alpha transparent color! For WriteableBitmap you
need premultiplied-alpha colors, and that means that none of the R, G, and B properties should be
greater than A.

	 CHAPTER 14  Bitmaps	 763

Accessing the Pictures Library

It’s possible for an application to access the Pictures library directly and to enumerate all the
subfolders and files in those folders. The program can display those files on the screen most efficiently
as thumbnails but can then access the actual bitmaps.

This is demonstrated in the PhotoScatter program. This program constructs a ListBox at the left
of the page showing the directory structure of the Pictures library. Select a folder and the program
displays the contents of that folder as thumbnails. You can use your fingers to move, scale, and rotate
the images, at which time the real file is loaded so that it can be enlarged with more resolution.

Here’s what the program looks like. You might recognize some of the 200-odd images currently
stored in my Screenshots folder:

I wanted each of the items displayed here to be independently manipulable and to handle
its own manipulation. To do that, I created a general-purpose ContentControl derivative
named ManipulableContentControl. That control uses a somewhat fancier version of the
ManipulationManager class I presented in Chapter 13:

Project: PhotoScatter | File: ManipulationManager.cs

public class ManipulationManager
{
 TransformGroup xformGroup;
 MatrixTransform matrixXform;
 CompositeTransform compositeXform;

 public ManipulationManager() : this(new CompositeTransform())
 {
 }

764	 PART 2  Specialties

 public ManipulationManager(CompositeTransform initialTransform)
 {
 xformGroup = new TransformGroup();
 matrixXform = new MatrixTransform();
 xformGroup.Children.Add(matrixXform);
 compositeXform = initialTransform;
 xformGroup.Children.Add(compositeXform);
 this.Matrix = xformGroup.Value;
 }

 public Matrix Matrix { private set; get; }

 public void AccumulateDelta(Point position, ManipulationDelta delta)
 {
 matrixXform.Matrix = xformGroup.Value;
 Point center = matrixXform.TransformPoint(position);
 compositeXform.CenterX = center.X;
 compositeXform.CenterY = center.Y;
 compositeXform.TranslateX = delta.Translation.X;
 compositeXform.TranslateY = delta.Translation.Y;
 compositeXform.ScaleX = delta.Scale;
 compositeXform.ScaleY = delta.Scale;
 compositeXform.Rotation = delta.Rotation;
 this.Matrix = xformGroup.Value;
 }
}

The only additional feature is a constructor that lets the orientation of the item be initialized with a
CompositeTransform object that is then used within the class.

To create the ManipulableContentControl class, I created a new item in Visual Studio of type User
Control. In both the XAML file and the code-behind file I then changed UserControl to ContentControl.
In a UserControl derivative, normally the XAML file defines the content of the control. In this XAML file
the content is left undefined but the RenderTransform is set to a MatrixTransform that is set from the
code-behind file based on a ManipulationManager instance.

Project: PhotoScatter | File: ManipulableContentControl.xaml

<ContentControl
 x:Class="PhotoScatter.ManipulableContentControl"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="using:PhotoScatter">

 <ContentControl.RenderTransform>
 <MatrixTransform x:Name="matrixXform" />
 </ContentControl.RenderTransform>
</ContentControl>

	 CHAPTER 14  Bitmaps	 765

Here’s the code-behind file. Notice the constructor, which takes a CompositeTransform that it uses
to create a ManipulationManager object:

Project: PhotoScatter | File: ManipulableContentControl.xaml.cs (excerpt)

public sealed partial class ManipulableContentControl : ContentControl
{
 static int zIndex;
 ManipulationManager manipulationManager;

 public ManipulableContentControl(CompositeTransform initialTransform)
 {
 this.InitializeComponent();

 // Create the ManipulationManager and set MatrixTransform from it
 manipulationManager = new ManipulationManager(initialTransform);
 matrixXform.Matrix = manipulationManager.Matrix;

 this.ManipulationMode = ManipulationModes.All &
 ~ManipulationModes.TranslateRailsX &
 ~ManipulationModes.TranslateRailsY;
 }

 protected override void OnManipulationStarting(ManipulationStartingRoutedEventArgs args)
 {
 Canvas.SetZIndex(this, zIndex += 1);
 base.OnManipulationStarting(args);
 }

 protected override void OnManipulationDelta(ManipulationDeltaRoutedEventArgs args)
 {
 manipulationManager.AccumulateDelta(args.Position, args.Delta);
 matrixXform.Matrix = manipulationManager.Matrix;
 base.OnManipulationDelta(args);
 }
}

Notice also that the class maintains a static zIndex property that is incremented and used to bring the
touched item to the top of the pile as soon as the manipulation begins.

Normally, a directory structure is displayed using a control named TreeView or something similar
that provides visual indentation and an interface to expand and close up nodes of the tree. The
Windows Runtime doesn’t have a TreeView (yet), so I decided to use a plain old ListBox instead. There
is no expanding and closing of nodes, but there is indentation.

The items in the ListBox are of type FolderItem:

Project: PhotoScatter | File: FolderItem.cs

public class FolderItem
{
 public StorageFolder StorageFolder { set; get; }

 public int Level { set; get; }

766	 PART 2  Specialties

 public string Indent
 {
 get { return new string('\x00A0', this.Level * 4); }
 }

 public Grid DisplayGrid { set; get; }
}

Each FolderItem object represents a folder. The name of that folder is obtained from the
StorageFolder object, the nesting level is set by code to the Level property, and the Indent property
uses that value to construct a string of four blanks for each level.

FolderItem also defines a DisplayGrid property of type Grid. This Grid object is set the first time the
user selects that particular folder, and it is filled with a bunch of ManipulableContentControl objects
corresponding to the images in that folder. Retaining this Grid and everything in it avoids having the
program re-enumerate the contents of each folder if the user skips around among them. (However,
the program doesn’t install a file watcher, so if items are later added to a folder, the program doesn’t
know about them.)

The ItemTemplate for the ListBox is defined in MainPage.xaml and references properties in
FolderItem:

Project: PhotoScatter | File: MainPage.xaml (excerpt)

<Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition Width="*" />
 </Grid.ColumnDefinitions>

 <ListBox Name="folderListBox"
 Grid.Column="0"
 SelectionChanged="OnFolderListBoxSelectionChanged">
 <ListBox.ItemTemplate>
 <DataTemplate>
 <ContentControl FontSize="24">
 <StackPanel Orientation="Horizontal">
 <TextBlock Text="{Binding Indent}" />
 <TextBlock Text=""
 FontFamily="Segoe UI Symbol" />
 <TextBlock Text="{Binding StorageFolder.Name}" />
 </StackPanel>
 </ContentControl>
 </DataTemplate>
 </ListBox.ItemTemplate>
 </ListBox>

 <Border Name="displayBorder"
 Grid.Column="1" />
</Grid>

	 CHAPTER 14  Bitmaps	 767

Notice the 0xE188 codepoint in the Segoe UI Symbol font for displaying a little folder icon. That’s
preceded with the Indent string and followed by the Name property of the StorageFolder object in
FolderItem.

The PhotoScatter program requires permission to access the Pictures library in the Capabilities
section of Package.appxmanifest because during the Loaded event it obtains the complete directory
tree by recursive calls to the GetFoldersAsync method of StorageFolder, in the process creating the
FolderItem objects for the ListBox.

Project: PhotoScatter | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 ...

 public MainPage()
 {
 this.InitializeComponent();
 Loaded += OnMainPageLoaded;
 }

 void OnMainPageLoaded(object sender, RoutedEventArgs args)
 {
 StorageFolder storageFolder = KnownFolders.PicturesLibrary;
 BuildFolderListBox(storageFolder, 0);
 folderListBox.SelectedIndex = 0;
 }

 async void BuildFolderListBox(StorageFolder parentStorageFolder, int level)
 {
 FolderItem folderItem = new FolderItem
 {
 StorageFolder = parentStorageFolder,
 Level = level
 };
 folderListBox.Items.Add(folderItem);

 IReadOnlyList<StorageFolder> storageFolders =
 await parentStorageFolder.GetFoldersAsync();

 foreach (StorageFolder storageFolder in storageFolders)
 BuildFolderListBox(storageFolder, level + 1);
 }
 ...
}

The Loaded handler concludes by setting the SelectedIndex of the ListBox to 0, which selects the
first item, which is the Pictures folder itself. This triggers a call to the SelectionChanged handler,
which uses the GetFilesAsync method of StorageFolder to obtain all the files in that folder. But for
each StorageFile, the method calls GetThumbnailAsync to obtain the file’s thumbnail image. (Loading
thumbnails is much preferable to loading the actual images, which could take quite some time and
consume a lot of memory.) A call to a method in MainPage named LoadBitmapAsync (which I’ll

768	 PART 2  Specialties

describe shortly) creates an Image element and a ManipulableContentControl for displaying that
thumbnail:

Project: PhotoScatter | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 Random rand = new Random();
 ...
 async void OnFolderListBoxSelectionChanged(object sender, SelectionChangedEventArgs args)
 {
 FolderItem folderItem = (sender as ListBox).SelectedItem as FolderItem;

 if (folderItem == null)
 {
 displayBorder.Child = null;
 return;
 }

 if (folderItem.DisplayGrid != null)
 {
 displayBorder.Child = folderItem.DisplayGrid;
 return;
 }

 Grid displayGrid = new Grid();
 folderItem.DisplayGrid = displayGrid;
 displayBorder.Child = displayGrid;

 StorageFolder storageFolder = folderItem.StorageFolder;
 IReadOnlyList<StorageFile> storageFiles = await storageFolder.GetFilesAsync();

 foreach (StorageFile storageFile in storageFiles)
 {
 StorageItemThumbnail thumbnail =
 await storageFile.GetThumbnailAsync(ThumbnailMode.SingleItem);
 BitmapSource bitmap = await LoadBitmapAsync(thumbnail);

 if (bitmap == null)
 continue;

 // Create new Image element to display the thumbnail
 Image image = new Image
 {
 Source = bitmap,
 Stretch = Stretch.None,
 Tag = ImageType.Thumbnail
 };

 // Create an initial CompositeTransform for the item
 CompositeTransform xform = new CompositeTransform();
 xform.TranslateX = (displayBorder.ActualWidth - bitmap.PixelWidth) / 2;
 xform.TranslateY = (displayBorder.ActualHeight - bitmap.PixelHeight) / 2;
 xform.TranslateX += 256 * (0.5 - rand.NextDouble());
 xform.TranslateY += 256 * (0.5 - rand.NextDouble());

	 CHAPTER 14  Bitmaps	 769

 // Create the ManipulableContentControl for the Image
 ManipulableContentControl manipulableControl = new ManipulableContentControl(xform)
 {
 Content = image,
 Tag = storageFile
 };
 manipulableControl.ManipulationStarted += OnManipulableControlManipulationStarted;

 // Put it in the Grid
 displayGrid.Children.Add(manipulableControl);
 }
 }
 ...
}

Because of the await operators on GetThumbnailAsync and LoadBitmapAsync, these BitmapSource
objects, Image elements, and ManipulableContentControl instances are created sequentially, and
each is displayed as it’s created, which provides an entertaining show as the images are progressively
stacked in a big, slightly random pile. The other option is to let them all go at the same time, but in
most cases that would result in creating many more threads than processors to handle them.

The SelectionChanged handler for the ListBox is executed only once for each folder. The Tag
property of the ManipulableContentControl is set to the StorageFile object associated with each item.
This is later used to load the actual bitmap (if necessary). Also notice that the Tag property of each
Image element is set to ImageType.Thumbnail. That’s a member of the following enumeration:

Project: PhotoScatter | File: ImageType.cs (excerpt)

public enum ImageType
{
 Thumbnail,
 Full,
 Transitioning
}

That Tag property will change as the user begins manipulating a particular item. Although the
ManipulableContentControl handles the Manipulation events necessary to allow the item to be
moved, scaled, and rotated, a handler for the ManipulationStarted event is also attached by that
SelectionChanged handler. This handler is responsible for replacing the thumbnail with the actual
bitmap:

Project: PhotoScatter | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 ...
 async void OnManipulableControlManipulationStarted(object sender,
 ManipulationStartedRoutedEventArgs args)
 {
 ManipulableContentControl manipulableControl = sender as ManipulableContentControl;
 Image image = manipulableControl.Content as Image;

770	 PART 2  Specialties

 if ((ImageType)image.Tag == ImageType.Thumbnail)
 {
 // Set tag to transitioning
 image.Tag = ImageType.Transitioning;

 // Load the actual bitmap file
 StorageFile storageFile = manipulableControl.Tag as StorageFile;
 BitmapSource newBitmap = await LoadBitmapAsync(storageFile);

 // This is the case for a file that BitmapDecoder can't handle
 if (newBitmap != null)
 {
 // Get the thumbnail from the Image element
 BitmapSource oldBitmap = image.Source as BitmapSource;

 // Find a ScaleTransform between old and new
 double scale = 1;

 if (oldBitmap.PixelWidth > oldBitmap.PixelHeight)
 scale = (double)oldBitmap.PixelWidth / newBitmap.PixelWidth;
 else
 scale = (double)oldBitmap.PixelHeight / newBitmap.PixelHeight;

 // Set properties on the Image element
 image.Source = newBitmap;
 image.RenderTransform = new ScaleTransform
 {
 ScaleX = scale,
 ScaleY = scale,
 };
 }
 image.Tag = ImageType.Full;
 }
 }
 ...
}

The replacement of the thumbnail by the bitmap is perhaps the trickiest part of the program.
Because the ManipulationStarted handler contains asynchronous calls, it could be processing
overlapping events from several items if the user is manipulating more than one simultaneously. The
main logic takes place only if the Tag property of the Image is ImageType.Thumbnail. The Tag is then
set to ImageType.Transitioning (not strictly necessary but it was helpful for debugging), and a call to
LoadBitmapAsync obtains that image. When it finally replaces the thumbnail, the Tag property of the
Image element is set to ImageType.Full.

I wanted the process to be as visually seamless as I could manage, and hence the routine calculates
scaling factors that convert the size of the actual bitmap to the size of the thumbnail. The size and
orientation of the item doesn’t change, but the resolution improves.

Here, finally, are three overloads of LoadBitmapAsync, each of which returns a BitmapSource.
Somewhat different approaches are used to obtain IRandomAccessStream objects for the image and
its thumbnail, and then a common routine loads the file with code you’ve already seen.

	 CHAPTER 14  Bitmaps	 771

Project: PhotoScatter | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 ...
 async Task<BitmapSource> LoadBitmapAsync(StorageFile storageFile)
 {
 BitmapSource bitmapSource = null;

 // Open the StorageFile for reading
 using (IRandomAccessStreamWithContentType stream = await storageFile.OpenReadAsync())
 {
 bitmapSource = await LoadBitmapAsync(stream);
 }

 return bitmapSource;
 }

 async Task<BitmapSource> LoadBitmapAsync(StorageItemThumbnail thumbnail)
 {
 return await LoadBitmapAsync(thumbnail as IRandomAccessStream);
 }

 async Task<BitmapSource> LoadBitmapAsync(IRandomAccessStream stream)
 {
 WriteableBitmap bitmap = null;

 // Create a BitmapDecoder from the stream
 BitmapDecoder decoder = null;

 try
 {
 decoder = await BitmapDecoder.CreateAsync(stream);
 }
 catch
 {
 // Just skip ones that aren't valid
 return null;
 }

 // Get the first frame
 BitmapFrame bitmapFrame = await decoder.GetFrameAsync(0);

 // Get the pixels
 PixelDataProvider dataProvider =
 await bitmapFrame.GetPixelDataAsync(BitmapPixelFormat.Bgra8,
 BitmapAlphaMode.Premultiplied,
 new BitmapTransform(),
 ExifOrientationMode.RespectExifOrientation,
 ColorManagementMode.ColorManageToSRgb);

 byte[] pixels = dataProvider.DetachPixelData();

 // Create WriteableBitmap and set the pixels
 bitmap = new WriteableBitmap((int)bitmapFrame.PixelWidth,
 (int)bitmapFrame.PixelHeight);

772	 PART 2  Specialties

 using (Stream pixelStream = bitmap.PixelBuffer.AsStream())
 {
 pixelStream.Write(pixels, 0, pixels.Length);
 }

 bitmap.Invalidate();
 return bitmap;
 }
}

Capturing Camera Photos

You’ve seen how Windows Runtime applications can create WriteableBitmap objects from scratch
or load existing bitmaps from files. There are other ways that programs can obtain bitmaps. In
Chapter 17, “Share and Print,” for example, you’ll see how programs can obtain bitmaps from other
applications, either directly or through the clipboard.

Your application can also get a bitmap from the computer’s built-in camera. There are two
approaches, and if you’re willing to yield control to Windows 8 so that the operating system can
display its normal camera interface, this process is exceptionally easy.

To enable your application to use the computer’s camera, you must indicate that in the Package
.appxmanifest file. In Visual Studio, open that file, select the Capabilities tab, and click Webcam.

I’ve done that for the EasyCameraCapture program. Here’s the MainPage.xaml file:

Project: EasyCameraCapture | File: MainPage.xaml (excerpt)

<Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <Image Name="image" />

 <Button Content="Capture Photo!"
 FontSize="48"
 HorizontalAlignment="Left"
 VerticalAlignment="Top"
 Click="OnButtonClick" />
</Grid>

The Click handler for the Button instantiates the CameraCaptureUI class defined in the
Windows.Media.Capture namespace and calls CaptureFileAsync:

Project: EasyCameraCapture | File: MainPage.xaml.cs (excerpt)

async void OnButtonClick(object sender, RoutedEventArgs args)
{
 CameraCaptureUI cameraCap = new CameraCaptureUI();
 StorageFile storageFile = await cameraCap.CaptureFileAsync(CameraCaptureUIMode.Photo);

 if (storageFile != null)
 {
 IRandomAccessStreamWithContentType stream = await storageFile.OpenReadAsync();

	 CHAPTER 14  Bitmaps	 773

 BitmapImage bitmap = new BitmapImage();
 await bitmap.SetSourceAsync(stream);
 image.Source = bitmap;
 }
}

Prior to calling CaptureFileAsync a program can set various properties of CameraCaptureUI to
select a file format, select a pixel size, enable cropping, and so forth.

When your application calls CaptureFileAsync, Windows 8 switches to a screen that looks very
much like the normal Windows 8 Camera application. The only substantial differences are that the
Video Mode button is disabled (but that can be enabled by passing CameraCaptureUIMode
.PhotoOrVideo to the CaptureFileAsync method) and a circled left arrow appears in the upper-left
corner.

To return to the EasyCameraCapture application, you can press that circled left arrow, in which
case the returned StorageFile is null. Or you can capture a picture by tapping or clicking the screen
and then pressing a circled check mark at the bottom.

On return to the program, the StorageFile object references a file stored in the TempState directory
of the application’s local storage. The code in EasyCameraCapture simply displays the file:

Your application might want to invoke a FileSavePicker to let the user save the image, or you can
save it automatically somewhere in the Pictures library. Perhaps your application does something
unique with captured images and a special directory in the Pictures library would be convenient. (The
standard Windows 8 Camera application stores photos in the Camera Roll directory of Pictures.) For
doing this, you’ll need to set your application capabilities to allow access to the Pictures library, just as
the regular Windows 8 Camera application does.

774	 PART 2  Specialties

You can drop to a lower level of interface to the camera and basically write your own complete
camera application, including a video preview, selection of camera (if more than one), triggering the
photo capture, and so forth.

The HarderCameraCapture project shows the basics. The XAML file contains something you
haven’t seen before—a CaptureElement for previewing the video—as well as an old friend:

Project: HarderCameraCapture | File: MainPage.xaml (excerpt)

<Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <CaptureElement Name="captureElement" />
 <Image Name="image" />
</Grid>

The code-behind file uses the Loaded handler to perform initialization. The static
DeviceInformation.FindAllAsync method allows obtaining a collection of video capture devices. The
DeviceInformation object contains a string ID and an EnclosureLocation property that lets the program
determine where on the computer each camera is located. This code attempts to find the camera on
the front, but if it can’t, it settles for the first (or possibly only) camera in the collection:

Project: HarderCameraCapture | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 MediaCapture mediaCapture = new MediaCapture();
 ...

 public MainPage()
 {
 this.InitializeComponent();
 Loaded += OnMainPageLoaded;
 }

 async void OnMainPageLoaded(object sender, RoutedEventArgs args)
 {
 DeviceInformationCollection devInfos =
 await DeviceInformation.FindAllAsync(DeviceClass.VideoCapture);

 if (devInfos.Count == 0)
 {
 await new MessageDialog("No video capture devices found").ShowAsync();
 return;
 }

 string id = null;

 // Try to find the front webcam
 foreach (DeviceInformation devInfo in devInfos)
 {
 if (devInfo.EnclosureLocation != null &&
 devInfo.EnclosureLocation.Panel == Windows.Devices.Enumeration.Panel.Front)
 id = devInfo.Id;
 }

	 CHAPTER 14  Bitmaps	 775

 // If not available, just pick the first one
 if (id == null)
 id = devInfos[0].Id;

 // Create initialization settings
 MediaCaptureInitializationSettings settings = new MediaCaptureInitializationSettings();
 settings.VideoDeviceId = id;
 settings.StreamingCaptureMode = StreamingCaptureMode.Video;

 // Initialize the MediaCapture device
 await mediaCapture.InitializeAsync(settings);

 // Associate with the CaptureElement
 captureElement.Source = mediaCapture;

 // Start the preview
 await mediaCapture.StartPreviewAsync();
 }
 ...
}

Once a device ID has been obtained, the Loaded handler continues by creating a
MediaCaptureInitializationSettings object and uses this to initialize a MediaCapture object defined as
a field. This MediaCapture object is made the source of the CaptureElement instantiated in the XAML
file.

At the conclusion of the Loaded handler, the preview is working. If a camera was found located on
the front of the computer, you should be staring at a live video feed of yourself.

I’ve also implemented a Tapped handler for snapping a photo. The MediaCapture class has both
CapturePhotoToStorageFileAsync and CapturePhotoToStreamAsync methods. I’ve chosen to use the
stream approach and capture the photo to a memory stream. At that point a BitmapDecoder can
obtain the pixel bits. The program borrows the HSL structure from the FingerPaint program to in-
crease the saturation of all the pixels and then creates a WriteableBitmap from that:

Project: HarderCameraCapture | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 ...
 bool ignoreTaps = false;
 ...
 async protected override void OnTapped(TappedRoutedEventArgs args)
 {
 if (ignoreTaps)
 return;

 // Capture photo to memory stream
 ImageEncodingProperties imageEncodingProps = ImageEncodingProperties.CreateJpeg();
 InMemoryRandomAccessStream memoryStream = new InMemoryRandomAccessStream();
 await mediaCapture.CapturePhotoToStreamAsync(imageEncodingProps, memoryStream);

776	 PART 2  Specialties

 // Use BitmapDecoder to get pixels array
 BitmapDecoder decoder = await BitmapDecoder.CreateAsync(memoryStream);
 PixelDataProvider pixelProvider = await decoder.GetPixelDataAsync();
 byte[] pixels = pixelProvider.DetachPixelData();

 // Saturate the colors
 for (int index = 0; index < pixels.Length; index += 4)
 {
 Color color = Color.FromArgb(pixels[index + 3],
 pixels[index + 2],
 pixels[index + 1],
 pixels[index + 0]);
 HSL hsl = new HSL(color);
 hsl = new HSL(hsl.Hue, 1.0, hsl.Lightness);
 color = hsl.Color;

 pixels[index + 0] = color.B;
 pixels[index + 1] = color.G;
 pixels[index + 2] = color.R;
 pixels[index + 3] = color.A;
 }

 // Create a WriteableBitmap and initialize it
 WriteableBitmap bitmap = new WriteableBitmap((int)decoder.PixelWidth,
 (int)decoder.PixelHeight);
 Stream pixelStream = bitmap.PixelBuffer.AsStream();
 await pixelStream.WriteAsync(pixels, 0, pixels.Length);
 bitmap.Invalidate();

 // Display the bitmap
 image.Source = bitmap;

 // Set a timer for the image
 DispatcherTimer timer = new DispatcherTimer
 {
 Interval = TimeSpan.FromSeconds(2.5)
 };
 timer.Tick += OnTimerTick;
 timer.Start();
 ignoreTaps = true;

 base.OnTapped(args);
 }

 void OnTimerTick(object sender, object args)
 {
 // Disable the timer
 DispatcherTimer timer = sender as DispatcherTimer;
 timer.Stop();
 timer.Tick -= OnTimerTick;

	 CHAPTER 14  Bitmaps	 777

 // Get rid of the bitmap
 image.Source = null;
 ignoreTaps = false;
 }
}

I don’t want the picture to stick around forever, so the program sets a DispatcherTimer for 2.5
seconds. During this time, further taps are ignored, but after that period the photo is simply removed
from the screen and we’re back to the live video feed.

Of course, highly saturated colors can be somewhat frightening:

		 779

C H A P T E R 1 5

Going Native

In the world of Windows 8 programming, it is a sad truth that all languages are not created equal.
In theory, any programming language can access any class or function available to Windows Store

applications, but that’s only because the entire API is built on top of the Component Object Model
(COM). In the real world of sane programming, the ease of accessing certain areas of the Windows 8
API depends on what programming language you’re using.

For example, only programmers working with the managed languages of C# and Visual Basic have
direct access to the .NET APIs for Windows 8 applications—those namespaces beginning with the
word System. C++ programmers are expected to use C++ runtime libraries and classes in the Platform
namespace for equivalent functionality.

On the other hand, Windows 8 applications can access a subset of the Win32 and COM API, but
these functions and classes are only conveniently available to C++ programmers. To get at these same
APIs, C# programmers need to jump through hoops.

This is a chapter showing how to jump through those hoops. I’ll discuss two basic techniques. The
first is called Platform Invoke (also known as PInvoke or P/Invoke), which has existed from the very
beginning of .NET programming for accessing Win32 functions or functions in other dynamic-link
libraries (DLLs). P/Invoke is particularly suited for accessing a “flat” API—that is, one in which functions
are independent (or perhaps reference handles provided by other functions) rather than being
consolidated into classes.

The second technique involves writing a “wrapper” DLL in C++ and then accessing that DLL from a
C# program. This technique is more suited for object-oriented APIs and, in particular, the big chunk of
high-performance graphics and audio classes collectively known as DirectX.

In a Windows 8 application, a DLL written in one language and accessed by another must be in a
special format known as a Windows Runtime Component. Visual Studio lets you create a Windows
Runtime Component, but there are a bunch of rules and restrictions on what these libraries may do.

Keep in mind that you can’t use either of these techniques to give your program access to
functions that aren’t allowed in Windows Store applications. You can’t use these techniques to access
arbitrary Win32 functions. You’re restricted to those in the subset allowed for Windows 8 applications.
Nor can you call functions in DLLs that make calls to Win32 functions not in this subset.

780	 PART 2  Specialties

An Introduction to P/Invoke

Suppose you’re browsing through the subset of Win32 functions allowed for new Windows
8 applications and you encounter one that you’d like to use. Here’s the way it appears in the
documentation:

void WINAPI GetNativeSystemInfo(__out LPSYSTEM_INFO lpSystemInfo);

If you’re completely unfamiliar with the Win32 API, this is likely to look like gibberish.
The uppercase identifiers are generally defined using C #define or typedef statements in the
various Windows header files. You’ll find these header files in subdirectories of the
C:/Program Files (x86)/Windows Kits/8.0 directory on the machine on which you’ve installed
Visual Studio. The most basic are Windows.h, WinDef.h, WinBase.h, and winnt.h. The WINAPI
identifier is the same as __stdcall, which is the standard calling convention for C programs calling
Win32 functions. LPSYSTEM_INFO is a long pointer—“long” meaning wider than a 16-bit pointer such
as existed back when Windows was a wee child—to a SYSTEM_INFO structure. The SYSTEM_INFO
structure is defined like this:

typedef struct _SYSTEM_INFO {
 union {
 DWORD dwOemId;
 struct {
 WORD wProcessorArchitecture;
 WORD wReserved;
 };
 };
 DWORD dwPageSize;
 LPVOID lpMinimumApplicationAddress;
 LPVOID lpMaximumApplicationAddress;
 DWORD_PTR dwActiveProcessorMask;
 DWORD dwNumberOfProcessors;
 DWORD dwProcessorType;
 DWORD dwAllocationGranularity;
 WORD wProcessorLevel;
 WORD wProcessorRevision;
} SYSTEM_INFO;

The prefacing of field names with lowercase abbreviations of the data types is a form of simple
Hungarian notation, so called because it was invented by Hungarian-born Charles Simonyi. Hungarian
notation was popularized by the Windows API and some ancient books on Windows programming,
but it is no longer widely used in application programming.

In Windows parlance, a WORD is a 16-bit unsigned value, which C# programmers know as a
ushort. The DWORD is a double-WORD, or a 32-bit unsigned value or a uint. Watch out for references
to long, which is not a 64-bit C# long but instead a C++ long, which is the same size as an int, or
32 bits.

	 CHAPTER 15  Going Native	 781

LPVOID translates as a “long pointer to void” or, in standard C, void *, and DWORD_PTR is either
an unsigned 32-bit or 64-bit integer, depending on whether Windows is running on a 32-bit or 64-bit
processor. These are equivalent to the C# IntPtr.

The reason you need to know how these Windows API data types correspond to C# data types
is because to use this structure from a C# program you need to redefine it in C#. Fortunately, the
documentation of SYSTEM_INFO indicates that the dwOemId field is obsolete, which means that you
can ignore the union and simply create a straight C# structure with public fields, perhaps giving the
structure a more C#-ish name in the process:

struct SystemInfo
{
 public ushort wProcessorArchitecture;
 public ushort wReserved;
 public uint dwPageSize;
 public IntPtr lpMinimumApplicationAddress;
 public IntPtr lpMaximumApplicationAddress;
 public IntPtr dwActiveProcessorMask;
 public uint dwNumberOfProcessors;
 public uint dwProcessorType;
 public uint dwAllocationGranularity;
 public ushort wProcessorLevel;
 public ushort wProcessorRevision;
}

In C# the fields must be defined as public if you want to access them from outside the structure. If
you want, you can also rename all the fields (for example, ProcessorArchitecture and PageSize).

You can also specify different data types of the same size—for example, short rather than ushort
and int rather than uint—if you know that the actual values won’t overrun the signed types. To the
Windows API, all you’re doing is supplying a block of memory. The total structure occupies 36 bytes
of memory in 32-bit Windows and 48 bytes in 64-bit Windows.

Very often in P/Invoke code you’ll see such a structure preceded by the following attribute:

[StructLayout(LayoutKind.Sequential)]
struct SystemInfo
{
 ...
}

The StructLayoutAttribute class and the LayoutKind enumeration are defined in the System
.Runtime.InteropServices namespace, which has lots of other classes related to P/Invoke. This attribute
indicates explicitly that these fields should be treated as contiguous and aligned on byte boundaries.

Now that you have a structure to be passed to the GetNativeSystemInfo function, you must declare
the function itself. In doing so, you make use of the DllImportAttribute, also defined in System
.Runtime.InteropServices. At the very least you must indicate the dynamic-link library in which this

782	 PART 2  Specialties

function can be found. The documentation indicates that GetNativeSystemInfo is defined in
kernel32.dll. Here’s the function declaration:

[DllImport("kernel32.dll")]
static extern void GetNativeSystemInfo(out SystemInfo systemInfo);

This declaration must appear inside a C# class definition at the same level as the other methods.
The function must be declared as static, which is common in regular C# classes, but also as extern,
which is not common but means that the actual implementation of this function is external to the
class. If you want the function to be visible outside the class, give it a public keyword as well.

With the exception of extern, the function declaration otherwise appears to be a C# method. The
method returns void, and the single argument is a reference to a SystemInfo object. Many Windows
API calls require or return information in structures passed as arguments using pointers, and you’ll
define those arguments by using either out or ref. These are functionally identical, but with ref the C#
compiler checks to see that you’ve initialized the value type before calling the function.

In some other method of the class, you can define a value of type SystemInfo and call the function
as if it’s a normal static method:

SystemInfo systemInfo;
GetNativeSystemInfo(out systemInfo);

Let’s see how this works in the context of a complete program. The XAML file for
SystemInfoPInvoke uses a Grid to format the information available from GetNativeSystemInfo in a
table:

Project: SystemInfoPInvoke | File: MainPage.xaml (excerpt)

<Page ...
 FontSize="24">

 <Page.Resources>
 <Style x:Key="rightJustifiedText" TargetType="TextBlock">
 <Setter Property="TextAlignment" Value="Right" />
 <Setter Property="Margin" Value="12 0 0 0" />
 </Style>
 </Page.Resources>

 <Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <Grid HorizontalAlignment="Center"
 VerticalAlignment="Center">
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>

	 CHAPTER 15  Going Native	 783

 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition Width="Auto" />
 </Grid.ColumnDefinitions>

 <TextBlock Text="Processor Architecture: " Grid.Row="0" Grid.Column="0" />
 <TextBlock Name="processorArchitecture" Grid.Row="0" Grid.Column="1"
 Style="{StaticResource rightJustifiedText}" />

 <TextBlock Text="Page Size: " Grid.Row="1" Grid.Column="0" />
 <TextBlock Name="pageSize" Grid.Row="1" Grid.Column="1"
 Style="{StaticResource rightJustifiedText}" />

 <TextBlock Text="Minimum Application Addresss: " Grid.Row="2" Grid.Column="0" />
 <TextBlock Name="minAppAddr" Grid.Row="2" Grid.Column="1"
 Style="{StaticResource rightJustifiedText}" />

 <TextBlock Text="Maximum Application Addresss: " Grid.Row="3" Grid.Column="0" />
 <TextBlock Name="maxAppAddr" Grid.Row="3" Grid.Column="1"
 Style="{StaticResource rightJustifiedText}" />

 <TextBlock Text="Active Processor Mask: " Grid.Row="4" Grid.Column="0" />
 <TextBlock Name="activeProcessorMask" Grid.Row="4" Grid.Column="1"
 Style="{StaticResource rightJustifiedText}" />

 <TextBlock Text="Number of Processors: " Grid.Row="5" Grid.Column="0" />
 <TextBlock Name="numberProcessors" Grid.Row="5" Grid.Column="1"
 Style="{StaticResource rightJustifiedText}" />

 <TextBlock Text="Allocation Granularity: " Grid.Row="6" Grid.Column="0" />
 <TextBlock Name="allocationGranularity" Grid.Row="6" Grid.Column="1"
 Style="{StaticResource rightJustifiedText}" />

 <TextBlock Text="Processor Level: " Grid.Row="7" Grid.Column="0" />
 <TextBlock Name="processorLevel" Grid.Row="7" Grid.Column="1"
 Style="{StaticResource rightJustifiedText}" />

 <TextBlock Text="Processor Revision: " Grid.Row="8" Grid.Column="0" />
 <TextBlock Name="processorRevision" Grid.Row="8" Grid.Column="1"
 Style="{StaticResource rightJustifiedText}" />
 </Grid>
 </Grid>
</Page>

In the code-behind file, both the structure and the external function declaration are defined within
the MainPage class. The external function must be declared within a class definition, but the structure
need not be, and it can be in a different file entirely, just like any normal C# structure. Here’s the
complete code-behind file:

Project: SystemInfoPInvoke | File: MainPage.xaml.cs

using System;
using System.Runtime.InteropServices;
using Windows.UI.Xaml.Controls;

784	 PART 2  Specialties

namespace SystemInfoPInvoke
{
 public sealed partial class MainPage : Page
 {
 [StructLayout(LayoutKind.Sequential)]
 struct SystemInfo
 {
 public ushort wProcessorArchitecture;
 public byte wReserved;
 public uint dwPageSize;
 public IntPtr lpMinimumApplicationAddress;
 public IntPtr lpMaximumApplicationAddress;
 public IntPtr dwActiveProcessorMask;
 public uint dwNumberOfProcessors;
 public uint dwProcessorType;
 public uint dwAllocationGranularity;
 public ushort wProcessorLevel;
 public ushort wProcessorRevision;
 }

 [DllImport("kernel32.dll")]
 static extern void GetNativeSystemInfo(out SystemInfo systemInfo);

 enum ProcessorType
 {
 x86 = 0,
 ARM = 5,
 ia64 = 6,
 x64 = 9,
 Unknown = 65535
 };

 public MainPage()
 {
 this.InitializeComponent();

 SystemInfo systemInfo = new SystemInfo();
 GetNativeSystemInfo(out systemInfo);

 processorArchitecture.Text =
 ((ProcessorType)systemInfo.wProcessorArchitecture).ToString();
 pageSize.Text = systemInfo.dwPageSize.ToString();
 minAppAddr.Text = ((ulong)systemInfo.lpMinimumApplicationAddress).ToString("X");
 maxAppAddr.Text = ((ulong)systemInfo.lpMaximumApplicationAddress).ToString("X");
 activeProcessorMask.Text = ((ulong)systemInfo.dwActiveProcessorMask).ToString("X");
 numberProcessors.Text = systemInfo.dwNumberOfProcessors.ToString("X");
 allocationGranularity.Text = systemInfo.dwAllocationGranularity.ToString();
 processorLevel.Text = systemInfo.wProcessorLevel.ToString();
 processorRevision.Text = systemInfo.wProcessorRevision.ToString("X");
 }
 }
}

The documentation indicates that the wProcessorArchitecture field can take on values of 0 (for
x86 architectures), 6 (for Intel Itanium), 9 (for x64), and 0xFFFF for “unknown.” The value for ARM
processors (such as the first release of the Microsoft Surface) isn’t indicated in the documentation I’m

	 CHAPTER 15  Going Native	 785

seeing, but all the possible values are constants beginning with PROCESSOR_ARCHITECTURE defined
in winnt.h, and PROCESSOR_ARCHITECTURE_ARM is defined as 5.

To ease the formatting of the wProcessorArchitecture value, I defined a little enum called
ProcessorType and cast the wProcessorArchitecture value to that enumeration. For the IntPtr fields, I
cast to ulong and then displayed them as hexadecimal. Here’s the screen running on the tablet I’m
using to write this book:

That tablet has a 64-bit processor. Running on the Microsoft Surface, the program looks like this:

786	 PART 2  Specialties

Some Help

When you use P/Invoke to define structures and declare functions, you are taking on the
responsibility for getting it right. You must supply the correct filename of the DLL in which the
function is located, for example. (While I began developing the first project in this chapter I typed
“kernel32.lib” rather than “kernel32.dll” and couldn’t figure out why it wasn’t working.) If you’re
accessing something other than a system DLL, you must make sure the DLL is referenced by the
application. You must also spell the function name correctly and declare all the arguments correctly.
There’s no IntelliSense for P/Invoke!

These structures and function declarations can often be complex. To help out, there is a wiki
website www.pinvoke.net, to which many people have contributed structure definitions and function
declarations that you can just copy and paste into your own code. You’re even allowed to contribute
some of your own!

Time Zone Information

Suppose you’d like to write a Windows Store application that displays a bunch of clocks set for various
locations around the world, perhaps similar to the ClockRack program I wrote for PC Magazine back
in the year 2000. Perhaps the Windows 8 version would look something like this:

Such a program would let you add new clocks, set their locations and time zones, give them unique
colors, and retain this information in application settings.

It would be great to take advantage of the built-in support of Windows for computing the time in
various time zones and particularly for handling the problem of daylight saving time (known in some
places as “summer time”).

	 CHAPTER 15  Going Native	 787

You might be very enthusiastic upon finding the TimeZoneInfo class in the System namespace and
noting that the static GetSystemTimeZones method returns a collection of TimeZoneInfo objects for all
the time zones around the world. However, when you try to use this method, you’ll discover that it’s
not available for Windows 8 applications. The only TimeZoneInfo object you can obtain in a Windows
8 application is one that’s appropriate for the current system time zone setting or the trivial one for
Universal Coordinated Time (UTC), also known (more commonly but less accurately) as Greenwich
Mean Time.

However, a Windows 8 application does have access to several Win32 functions that provide much
of the information you’ll need. The Win32 EnumDynamicTimeZoneInformation function enumerates
all the time zones around the world in the form of DYNAMIC_TIME_ZONE_INFORMATION structures:

typedef struct _TIME_DYNAMIC_ZONE_INFORMATION {
 LONG Bias;
 WCHAR StandardName[32];
 SYSTEMTIME StandardDate;
 LONG StandardBias;
 WCHAR DaylightName[32];
 SYSTEMTIME DaylightDate;
 LONG DaylightBias;
 WCHAR TimeZoneKeyName[128];
 BOOLEAN DynamicDaylightTimeDisabled;
} DYNAMIC_TIME_ZONE_INFORMATION, *PDYNAMIC_TIME_ZONE_INFORMATION;

This is an extended version of the TIME_ZONE_INFORMATION structure:

typedef struct _TIME_ZONE_INFORMATION {
 LONG Bias;
 WCHAR StandardName[32];
 SYSTEMTIME StandardDate;
 LONG StandardBias;
 WCHAR DaylightName[32];
 SYSTEMTIME DaylightDate;
 LONG DaylightBias;
} TIME_ZONE_INFORMATION, *PTIME_ZONE_INFORMATION;

WCHAR is a wide 16-bit Unicode character, and arrays of these characters are essentially
zero-terminated strings. The StandardName is a string like “Eastern Standard Time”, and
DaylightName is a string like “Eastern Daylight Time”. The TimeZoneKeyName in the DYNAMIC_TIME_
ZONE_INFORMATION structure is a key used in the Windows registry. In Windows 8, these registry
entries can be found at HKEY_LOCAL_MACHINE/SOFTWARE/Microsoft/Windows NT/CurrentVersion/
Time Zones, and the registry key matches StandardName.

The Bias field is a number of minutes to subtract from Universal Coordinated Time to get local
time. For the eastern US time zone, that’s 300 minutes. The StandardBias is always zero, while
DaylightBias is the number of minutes to subtract from standard time to convert to summer time,
usually –60.

788	 PART 2  Specialties

The DaylightDate and StandardDate fields indicate when the switch to daylight saving time and
back to standard occurs, and they are of type SYSTEMTIME:

typedef struct _SYSTEMTIME {
 WORD wYear;
 WORD wMonth;
 WORD wDayOfWeek;
 WORD wDay;
 WORD wHour;
 WORD wMinute;
 WORD wSecond;
 WORD wMilliseconds;
} SYSTEMTIME, *PSYSTEMTIME;

The SYSTEMTIME structure is mostly used with the Win32 GetLocalTime and GetSystemTime
functions to obtain current local time and UTC, respectively. The SYSTEMTIME values in the
TIME_ZONE_INFORMATION structure are specially coded for the purpose of indicating a transition
date: The wHour and wMinute fields indicate the time of the transition, the wMonth field indicates
the month of the transition (for example, 3 for March), the wDayOfWeek field indicates the day of the
week of the transition (for example, 1 for Sunday), and the wDay field indicates the particular occur-
rence of that day of the week within the specified month (for example, 2 for the second Sunday of the
month or 5 for the last Sunday).

Windows makes a distinction between locales that switch between standard time and daylight
saving time on days indicated like that and those locales that dynamically change the date every year.
These latter are referred to as using Dynamic DST, but the information by year is not directly available.

A function named GetTimeZoneInformationForYear accepts a year argument and a pointer
to a DYNAMIC_TIME_ZONE_INFORMATION structure and returns a pointer to a
TIME_ZONE_INFORMATION structure with the information appropriate for that year. The
SystemTimeToTzSpecificLocalTime accepts a pointer to this TIME_ZONE_INFORMATION structure
and a pointer to a SYSTEMTIME structure probably obtained from the GetSystemTime function and
returns a SYSTEMTIME structure indicating local time for that time zone. Thus, it is not necessary for
programs to perform their own time conversions.

A program such as ClockRack needs a facility for the user to choose a time zone for a particular
locale. Most preferable would be something consistent with the facility that Windows 8 provides for
users to select a time zone.

Take a look at what Windows 8 provides for users: Invoke the Windows 8 charms, select Settings,
and tap the Change PC Settings label at the bottom. This invokes a program with the title PC Settings
and a list. Select General, and you’ll see a combo box at the top with the time zones. Each time zone is
identified by an offset from UTC, sometimes the name of the time zone, and often some sample cities.
For example, for Romance Standard Time, the combo box displays

(UTC+01:00) Brussels, Copenhagen, Madrid, Paris

In the Windows registry section for time zones, you’ll find these labels identified with a name of
“Display,” but this information is not provided by the Win32 functions. You’d need to access the

	 CHAPTER 15  Going Native	 789

registry to obtain it, and there are no Win32 functions available to Windows 8 applications to access
the registry.

Of course, nothing prevents you from writing a little desktop .NET program to access the full
TimeZoneInfo class and format the resultant strings so that they define a Dictionary object that you
can then include in a Windows 8 program. That’s what I’ve done here. The code in the .NET program I
used to generate this list is shown in the comment above the Dictionary definition:

Project: ClockRack | File: TimeZoneManager.Display.cs (excerpt)

namespace ClockRack
{
 public partial class TimeZoneManager
 {
 // Generated from tiny .NET program:
 // foreach (TimeZoneInfo info in TimeZoneInfo.GetSystemTimeZones())
 // Console.WriteLine("{{ \"{0}\", \"{1}\" }},", info.StandardName, info.DisplayName);
 static Dictionary<string, string> displayStrings = new Dictionary<string, string>
 {
 { "Dateline Standard Time", "(UTC-12:00) International Date Line West" },
 { "UTC-11", "(UTC-11:00) Coordinated Universal Time-11" },
 { "Hawaiian Standard Time", "(UTC-10:00) Hawaii" },
 { "Alaskan Standard Time", "(UTC-09:00) Alaska" },
 { "Pacific Standard Time (Mexico)", "(UTC-08:00) Baja California" },

 ...

 { "Kamchatka Standard Time", "(UTC+12:00) Petropavlovsk-Kamchatsky - Old" },
 { "Tonga Standard Time", "(UTC+13:00) Nuku'alofa" },
 { "Samoa Standard Time", "(UTC+13:00) Samoa" }
 };
 }
}

This dictionary is part of a class in the ClockRack project I called TimeZoneManager. This is the class
I’ve used to consolidate all the P/Invoke logic. No code outside of the TimeZoneManager accesses any
Win32 function or structure.

The TimeZoneManager class is designed to be instantiated only once and to be used for the
duration of the application. The class makes time zone data available to the rest of the program as a
collection of the following values:

Project: ClockRack | File: TimeZoneDisplayInfo.cs

namespace ClockRack
{
 public struct TimeZoneDisplayInfo
 {
 public int Bias { set; get; }
 public string TimeZoneKey { set; get; }
 public string Display { set; get; }
 }
}

790	 PART 2  Specialties

The Bias property is only used for sorting. The TimeZoneKey is the same string as the
TimeZoneKeyName in the DYNAMIC_TIME_ZONE_INFORMATION structure, and the Display property
is obtained from the displayStrings dictionary.

The portion of the TimeZoneManager class in the main TimeZoneManager.cs file begins by
defining the necessary Win32 structures and declaring three Win32 functions the class requires:

Project: ClockRack | File: TimeZoneManager.cs (excerpt)

public partial class TimeZoneManager
{
 [StructLayout(LayoutKind.Sequential)]
 struct SYSTEMTIME
 {
 public ushort wYear;
 public ushort wMonth;
 public ushort wDayOfWeek;
 public ushort wDay;
 public ushort wHour;
 public ushort wMinute;
 public ushort wSecond;
 public ushort wMilliseconds;
 }

 [StructLayout(LayoutKind.Sequential, CharSet = CharSet.Unicode)]
 struct TIME_ZONE_INFORMATION
 {
 public int Bias;
 [MarshalAs(UnmanagedType.ByValTStr, SizeConst = 32)]
 public string StandardName;
 public SYSTEMTIME StandardDate;
 public int StandardBias;
 [MarshalAs(UnmanagedType.ByValTStr, SizeConst = 32)]
 public string DaylightName;
 public SYSTEMTIME DaylightDate;
 public int DaylightBias;
 }

 [StructLayout(LayoutKind.Sequential, CharSet = CharSet.Unicode)]
 struct DYNAMIC_TIME_ZONE_INFORMATION
 {
 public int Bias;
 [MarshalAs(UnmanagedType.ByValTStr, SizeConst = 32)]
 public string StandardName;
 public SYSTEMTIME StandardDate;
 public int StandardBias;
 [MarshalAs(UnmanagedType.ByValTStr, SizeConst = 32)]
 public string DaylightName;
 public SYSTEMTIME DaylightDate;
 public int DaylightBias;
 [MarshalAs(UnmanagedType.ByValTStr, SizeConst = 128)]
 public string TimeZoneKeyName;
 public byte DynamicDaylightTimeDisabled;
 }

 [DllImport("Advapi32.dll")]

	 CHAPTER 15  Going Native	 791

 static extern uint EnumDynamicTimeZoneInformation(uint index,
 ref DYNAMIC_TIME_ZONE_INFORMATION dynamicTzi);

 [DllImport("kernel32.dll")]
 static extern byte GetTimeZoneInformationForYear(ushort year,
 ref DYNAMIC_TIME_ZONE_INFORMATION dtzi,
 out TIME_ZONE_INFORMATION tzi);

 [DllImport("kernel32.dll")]
 static extern byte SystemTimeToTzSpecificLocalTime(ref TIME_ZONE_INFORMATION tzi,
 ref SYSTEMTIME utc, out SYSTEMTIME local);
 ...
}

You’ll recall that several of the fields in the DYNAMIC_TIME_ZONE_INFORMATION and TIME_
ZONE_INFORMATION structures are defined as arrays of WCHAR. This wouldn’t work in C# because
a C# array is always a pointer to memory allocated from the heap. Instead, the MarshalAs attribute
allows indicating that these fields should be treated as C# strings of a particular maximum length.

The constructor of the TimeZoneManager class repeatedly calls EnumDynamicTimeZoneInformation
until it returns a nonzero value, indicating that it’s at the end of the list. The number of items might
change slightly with different versions of Windows, but I’m seeing a total of 101. Each item is stored in
a private dictionary, and each item is also turned into a TimeZoneDisplayInfo value and added to the
publicly available collection named DisplayInformation:

Project: ClockRack | File: TimeZoneManager.cs (excerpt)

public partial class TimeZoneManager
{
 ...
 // Internal dictionary for looking up DYNAMIC_TIME_ZONE_INFORMATION values from keys
 Dictionary<string, DYNAMIC_TIME_ZONE_INFORMATION> dynamicTzis =
 new Dictionary<string, DYNAMIC_TIME_ZONE_INFORMATION>();

 public TimeZoneManager()
 {
 uint index = 0;
 DYNAMIC_TIME_ZONE_INFORMATION tzi = new DYNAMIC_TIME_ZONE_INFORMATION();
 List<TimeZoneDisplayInfo> displayInformation = new List<TimeZoneDisplayInfo>();

 // Enumerate through time zones
 while (0 == EnumDynamicTimeZoneInformation(index, ref tzi))
 {
 dynamicTzis.Add(tzi.TimeZoneKeyName, tzi);

 // Create TimeZoneDisplayInfo for public property
 TimeZoneDisplayInfo displayInfo = new TimeZoneDisplayInfo
 {
 Bias = tzi.Bias,
 TimeZoneKey = tzi.TimeZoneKeyName
 };

 // Look up the display string
 if (displayStrings.ContainsKey(tzi.TimeZoneKeyName))
 {

792	 PART 2  Specialties

 displayInfo.Display = displayStrings[tzi.TimeZoneKeyName];
 }
 else if (displayStrings.ContainsKey(tzi.StandardName))
 {
 displayInfo.Display = displayStrings[tzi.StandardName];
 }
 // Or calculate one
 else
 {
 if (tzi.Bias == 0)
 displayInfo.Display = "(UTC) ";
 else
 displayInfo.Display = String.Format("(UTC{0}{1:D2}:{2:D2}) ",
 tzi.Bias > 0 ? '-' : '+',
 Math.Abs(tzi.Bias) / 60,
 Math.Abs(tzi.Bias) % 60);
 displayInfo.Display += tzi.TimeZoneKeyName;
 }

 // Add to collection
 displayInformation.Add(displayInfo);

 // Prepare for next iteration
 index += 1;
 tzi = new DYNAMIC_TIME_ZONE_INFORMATION();
 }

 // Sort the display information items
 displayInformation.Sort((TimeZoneDisplayInfo info1, TimeZoneDisplayInfo info2) =>
 {
 return info2.Bias.CompareTo(info1.Bias);
 });

 // Set to the publicly available property
 this.DisplayInformation = displayInformation;
 }

 // Public interface
 public IList<TimeZoneDisplayInfo> DisplayInformation { protected set; get; }
 ...
}

As you’ll see shortly, this DisplayInformation property is used as an ItemsSource for a ComboBox.

The only remaining method in TimeZoneManager converts a UTC time into local time based on a
time zone key value. This is the same string as the TimeZoneKeyName field of the DYNAMIC_TIME_
ZONE_INFORMATION structure and the TimeZoneKey property of the TimeZoneDisplayInfo structure:

Project: ClockRack | File: TimeZoneManager.cs (excerpt)

public partial class TimeZoneManager
{
 ...
 public DateTime GetLocalTime(string timeZoneKey, DateTime utc)
 {
 // Convert to Win32 SYSTEMTIME
 SYSTEMTIME utcSysTime = new SYSTEMTIME
 {

	 CHAPTER 15  Going Native	 793

 wYear = (ushort)utc.Year,
 wMonth = (ushort)utc.Month,
 wDay = (ushort)utc.Day,
 wHour = (ushort)utc.Hour,
 wMinute = (ushort)utc.Minute,
 wSecond = (ushort)utc.Second,
 wMilliseconds = (ushort)utc.Millisecond
 };

 // Convert to local time
 DYNAMIC_TIME_ZONE_INFORMATION dtzi = dynamicTzis[timeZoneKey];
 TIME_ZONE_INFORMATION tzi = new TIME_ZONE_INFORMATION();
 GetTimeZoneInformationForYear((ushort)utc.Year, ref dtzi, out tzi);

 SYSTEMTIME localSysTime = new SYSTEMTIME();
 SystemTimeToTzSpecificLocalTime(ref tzi, ref utcSysTime, out localSysTime);

 // Convert SYSTEMTIME to DateTime
 return new DateTime(localSysTime.wYear, localSysTime.wMonth, localSysTime.wDay,
 localSysTime.wHour, localSysTime.wMinute,
 localSysTime.wSecond, localSysTime.wMilliseconds);
 }
}

The method converts a .NET DateTime to a Win32 SYSTEMTIME, obtains a DYNAMIC_TIME_ZONE_
INFORMATION from the private dictionary, and then calls GetTimeZoneInformationForYear, which
returns information in the form of a TIME_ZONE_INFORMATION structure, which is then passed to
the SystemTimeToTzSpecificLocalTime function. The resultant SYSTEMTIME is converted back to a .NET
DateTime.

I’m not entirely happy with this method, and let me tell you why. The ClockRack program
displays multiple clocks and uses a CompositionTarget.Rendering method to obtain an updated
DateTime.UtcNow value, which it uses for all the clocks. (I figured this was probably more
efficient than for this GetLocalTime method to call the Win32 GetSystemTime function to obtain
a SYSTEMTIME value for UTC for each clock.) What I’m not happy about is repeatedly calling the
GetTimeZoneInformationForYear method. This function really only needs to be called once for each
time zone, and then the TIME_ZONE_INFORMATION can be reused in subsequent calls. However, if
the program is running from December 31 to January 1, it needs to be called again for the New Year. I
decided not to clutter up the class with logic of this sort.

The year passed to GetTimeZoneInformationForYear should be a local year, not a UTC year, and
that’s something else I’m not quite doing correctly. These two years are potentially only different
during a 24-hour period surrounding the UTC New Year, and it really shouldn’t matter in a program
like this because the transition between standard time and daylight saving time occurs much later in
the year.

However, if a particular locale in the southern hemisphere decided to observe daylight saving time
in one calendar year but not the next, or vice versa, that locale would experience a local time change
at midnight on December 31st, and the time would not be calculated incorrectly in the hours around
New Year in the transition between those two years.

But let’s move on.

794	 PART 2  Specialties

You’ll recognize much of the actual clock (a UserControl derivative called TimeZoneClock) from
the AnalogClock program from Chapter 10, “Transforms,” but I’ve converted it to use a view model
through data bindings. I’ve also reduced all the coordinates and sizes by a factor of 10. Because there
might be many clocks displayed in a very tiny space (such as a snapped view), the clocks must be
able to vary widely in size. The approach I’ve used here—involving a Viewbox and a custom panel—
worked best when the clocks had a defined size that was smaller than they would ever be.

Another difference is that the analog clock face is now surrounded by two TextBlock elements. The
top one displays a location, and the bottom one displays the current date and time. Without that text
time at the bottom, you might be a little confused about whether the time was before noon or after.

Each of the two TextBlock elements has a fixed height from the RowDefinition settings on the Grid,
but they are also each in a Viewbox—if the text gets too long, it is compressed to fit. Overall, the
entire clock is in a single-cell Grid with a Background property set to a binding. This Grid will occupy
the full area available for it. Within that Grid is a Viewbox, which will adjust the size of its contents.
Those contents are another Grid with a fixed size of 30 by 20, but the actual size is governed by the
Viewbox based on available space:

Project: ClockRack | File: TimeZoneClock.xaml (excerpt)

<UserControl ...
 Name="ctrl">

 <UserControl.Resources>
 <Style TargetType="TextBlock">
 <Setter Property="Margin" Value="12 0" />
 <Setter Property="TextAlignment" Value="Center" />
 </Style>

 <Style TargetType="Path">
 <Setter Property="StrokeThickness" Value="0.2" />
 <Setter Property="StrokeStartLineCap" Value="Round" />
 <Setter Property="StrokeEndLineCap" Value="Round" />
 <Setter Property="StrokeLineJoin" Value="Round" />
 <Setter Property="StrokeDashCap" Value="Round" />
 <Setter Property="Fill" Value="Gray" />
 </Style>
 </UserControl.Resources>

 <UserControl.Foreground>
 <SolidColorBrush Color="{Binding Foreground}" />
 </UserControl.Foreground>

 <Grid>
 <Grid.Background>
 <SolidColorBrush Color="{Binding Background}" />
 </Grid.Background>

 <Viewbox>
 <Grid Width="20"
 Height="30"
 HorizontalAlignment="Center"
 VerticalAlignment="Center">

	 CHAPTER 15  Going Native	 795

 <Grid.RowDefinitions>
 <RowDefinition Height="5" />
 <RowDefinition Height="20" />
 <RowDefinition Height="5" />
 </Grid.RowDefinitions>

 <Viewbox Grid.Row="0">
 <TextBlock Text="{Binding Location}" />
 </Viewbox>

 <Grid Grid.Row="1">

 <!-- Transform for entire clock -->
 <Grid.RenderTransform>
 <TranslateTransform X="10" Y="10" />
 </Grid.RenderTransform>

 <!-- Small tick marks -->
 <Path Fill="{x:Null}"
 Stroke="{Binding ElementName=ctrl, Path=Foreground}"
 StrokeThickness="0.3"
 StrokeDashArray="0 3.14159">
 <Path.Data>
 <EllipseGeometry RadiusX="90" RadiusY="90" />
 </Path.Data>
 </Path>

 <!-- Large tick marks -->
 <Path Fill="{x:Null}"
 Stroke="{Binding ElementName=ctrl, Path=Foreground}"
 StrokeThickness="0.6"
 StrokeDashArray="0 7.854">
 <Path.Data>
 <EllipseGeometry RadiusX="90" RadiusY="90" />
 </Path.Data>
 </Path>

 <!-- Hour hand pointing straight up -->
 <Path Data="M 0 -6 C 0 -3, 2 -3, 0.5 -2 L 0.5 0
 C 0.5 0.75, --/5 0.75, -0.5 0 L -0.5 -2
 C -2 -3, 0 -3, 0 -6"
 Stroke="{Binding ElementName=ctrl, Path=Foreground}">
 <Path.RenderTransform>
 <RotateTransform Angle="{Binding HourAngle}" />
 </Path.RenderTransform>
 </Path>

 <!-- Minute hand pointing straight up -->
 <Path Data="M 0 -8 C 0 -7.5, 0 -7, 0.25 -6 L 0.25 0
 C 0.25 0.5, -0.25 0.5, -0.25 0 L -0.255 -6
 C 0 -7, 0 -7.5, 0 -8.0"
 Stroke="{Binding ElementName=ctrl, Path=Foreground}">
 <Path.RenderTransform>
 <RotateTransform Angle="{Binding MinuteAngle}" />
 </Path.RenderTransform>
 </Path>

796	 PART 2  Specialties

 <!-- Second hand pointing straight up -->
 <Path Data="M 0 1 L 0 -8"
 Stroke="{Binding ElementName=ctrl, Path=Foreground}">
 <Path.RenderTransform>
 <RotateTransform Angle="{Binding SecondAngle}" />
 </Path.RenderTransform>
 </Path>
 </Grid>

 <Viewbox Grid.Row="2">
 <TextBlock Text="{Binding FormattedDateTime}" />
 </Viewbox>
 </Grid>
 </Viewbox>
 </Grid>
</UserControl>

Both TextBlock elements and all the RotateTransform elements have bindings to properties in
a view model. Toward the top of the TimeZoneClock.xaml file you‘ll see that this view model also
includes properties of type Color named Foreground and Background. The code-behind file has
nothing but a call to InitializeComponent.

To keep this program relatively simple, I decided to limit the colors for the background and
foreground of each clock to those 140 colors that have names and hence correspond to members
of the static Colors class. The view model for the TimeZoneClock class defines Foreground and
Background properties of type Color as you might expect, but it also defines ForegroundName and
BackgroundName properties, and whenever one of these properties is changed, the other changes as
well with a little reflection logic:

Project: ClockRack | File: TimeZoneClockViewModel.cs (excerpt)

public class TimeZoneClockViewModel : INotifyPropertyChanged
{
 string location = "New York City", timeZoneKey = "Eastern Standard Time";
 Color background = Colors.Yellow, foreground = Colors.Blue;
 string backgroundName = "Yellow", foregroundName = "Blue";
 DateTime dateTime;
 string formattedDateTime;
 double hourAngle, minuteAngle, secondAngle;
 TypeInfo colorsTypeInfo = typeof(Colors).GetTypeInfo();

 public event PropertyChangedEventHandler PropertyChanged;

 public string Location
 {
 set { SetProperty<string>(ref location, value); }
 get { return location; }
 }

 public string TimeZoneKey
 {
 set { SetProperty<string>(ref timeZoneKey, value); }
 get { return timeZoneKey; }
 }

	 CHAPTER 15  Going Native	 797

 public string BackgroundName
 {
 set
 {
 if (SetProperty<string>(ref backgroundName, value))
 this.Background = NameToColor(value);
 }
 get { return backgroundName; }
 }

 public Color Background
 {
 set
 {
 if (SetProperty<Color>(ref background, value))
 this.BackgroundName = ColorToName(value);
 }
 get { return background; }
 }

 public string ForegroundName
 {
 set
 {
 if (SetProperty<string>(ref foregroundName, value))
 this.Foreground = NameToColor(value);
 }
 get { return foregroundName; }
 }

 public Color Foreground
 {
 set
 {
 if (SetProperty<Color>(ref foreground, value))
 this.ForegroundName = ColorToName(value);
 }
 get { return foreground; }
 }

 public DateTime DateTime
 {
 set
 {
 if (SetProperty<DateTime>(ref dateTime, value))
 {
 this.FormattedDateTime = String.Format("{0:D} {1:t}", value, value);
 this.SecondAngle = 6 * (dateTime.Second + dateTime.Millisecond / 1000.0);
 this.MinuteAngle = 6 * dateTime.Minute + this.SecondAngle / 60;
 this.HourAngle = 30 * (dateTime.Hour % 12) + this.MinuteAngle / 12;
 }
 }
 get { return dateTime; }
 }

 public string FormattedDateTime
 {

798	 PART 2  Specialties

 set { SetProperty<string>(ref formattedDateTime, value); }
 get { return formattedDateTime; }
 }

 public double HourAngle
 {
 set { SetProperty<double>(ref hourAngle, value); }
 get { return hourAngle; }
 }

 public double MinuteAngle
 {
 set { SetProperty<double>(ref minuteAngle, value); }
 get { return minuteAngle; }
 }

 public double SecondAngle
 {
 set { SetProperty<double>(ref secondAngle, value); }
 get { return secondAngle; }
 }

 Color NameToColor(string name)
 {
 return (Color)colorsTypeInfo.GetDeclaredProperty(name).GetValue(null);
 }

 string ColorToName(Color color)
 {
 foreach (PropertyInfo property in colorsTypeInfo.DeclaredProperties)
 if (color.Equals((Color)property.GetValue(null)))
 return property.Name;

 return "";
 }

 protected bool SetProperty<T>(ref T storage, T value,
 [CallerMemberName] string propertyName = null)
 {
 if (object.Equals(storage, value))
 return false;

 storage = value;
 OnPropertyChanged(propertyName);
 return true;
 }

 protected void OnPropertyChanged(string propertyName)
 {
 if (PropertyChanged != null)
 PropertyChanged(this, new PropertyChangedEventArgs(propertyName));
 }
}

	 CHAPTER 15  Going Native	 799

This view model also includes a DateTime property, and whenever that changes, the HourAngle,
MinuteAngle, and SecondAngle properties also change, driving the three RotateTransform objects in
TimeZoneClock.xaml.

To display multiple clocks, I wanted a type of panel that would allow all the clocks to be displayed
within the confines of the page but that allocated optimum space for each child. The UniformGrid
panel I developed in Chapter 11, “The Three Templates,“ seemed close to what I wanted but not
exactly. For example, suppose there are seven clocks and the UniformGrid determines that they
should be displayed in two rows of five clocks each. UniformGrid would put five clocks in the first row
and two clocks in the second. It would be more aesthetically pleasing for the panel to distribute the
clocks among the two rows more equally—four clocks in one row and three clocks in the other.

The ClockRack program includes a reference to the Petzold.ProgrammingWindows6.Chapter11
library from Chapter 11 but derives from UniformGrid a panel named DistributedUniformGrid. The
logic in this new class allocates approximately an equal number of items to each row. Within each
row, the items are equally spaced:

Project: ClockRack | File: DistributedUniformGrid.cs

using System;
using Windows.Foundation;
using Windows.UI.Xaml.Controls;
using Petzold.ProgrammingWindows6.Chapter11;

namespace ClockRack
{
 public class DistributedUniformGrid : UniformGrid
 {
 protected override Size ArrangeOverride(Size finalSize)
 {
 int index = 0;
 double cellWidth = finalSize.Width / cols;
 double cellHeight = finalSize.Height / rows;
 int displayed = 0;

 if (this.Orientation == Orientation.Vertical)
 {
 for (int row = 0; row < rows; row++)
 {
 double y = row * cellHeight;
 int accumDisplay = (int)Math.Ceiling((row + 1.0) *
 this.Children.Count / rows);
 int display = accumDisplay - displayed;
 cellWidth = Math.Round(finalSize.Width / display);
 double x = 0;

 for (int col = 0; col < display; col++)
 {
 if (index < this.Children.Count)
 this.Children[index].Arrange(new Rect(x, y, cellWidth, cellHeight));

 x += cellWidth;
 index++;
 }

800	 PART 2  Specialties

 displayed += display;
 }
 }
 else
 {
 for (int col = 0; col < cols; col++)
 {
 double x = col * cellWidth;
 int accumDisplay =
 (int)Math.Ceiling((col + 1.0) * this.Children.Count / cols);
 int display = accumDisplay - displayed;
 cellHeight = Math.Round(finalSize.Height / display);
 double y = 0;

 for (int row = 0; row < display; row++)
 {
 if (index < this.Children.Count)
 this.Children[index].Arrange(new Rect(x, y, cellWidth, cellHeight));

 y += cellHeight;
 index++;
 }
 displayed += display;
 }
 }
 return finalSize;
 }
 }
}

The MainPage.xaml file consists of little more than a DistributedUniformGrid to hold the clock
controls:

Project: ClockRack | File: MainPage.xaml (excerpt)

<Page ... >
 <Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <Grid Name="contentGrid"
 Background="Transparent">

 <DistributedUniformGrid Name="uniformGrid"
 Orientation="Vertical" />
 </Grid>
 </Grid>
</Page>

The constructor of the MainPage class is responsible for populating the DistributedUniformGrid
from application settings. The program uses the ApplicationData class in the Windows.Storage
namespace for storing four text items per clock: the location name (selected by the user), the time
zone key identifying the time zone for the clock, a foreground color name, and a background color
name. For the first clock, these are stored using keys “0Location”, “0TimeZoneKey”, “0Foreground”,

	 CHAPTER 15  Going Native	 801

and “0Background”; the second clock has keys that begin with the number 1, and so forth. As each set
of settings is retrieved, a TimeZoneClock and TimeZoneClockViewModel are created and initialized:

Project: ClockRack | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 ...
 IPropertySet appSettings = ApplicationData.Current.LocalSettings.Values;

 public MainPage()
 {
 this.InitializeComponent();

 // Load application settings for clocks
 int index = 0;

 while (appSettings.ContainsKey(index.ToString() + "Location"))
 {
 string preface = index.ToString();

 TimeZoneClock clock = new TimeZoneClock
 {
 DataContext = new TimeZoneClockViewModel
 {
 Location = appSettings[preface + "Location"] as string,
 TimeZoneKey = appSettings[preface + "TimeZoneKey"] as string,
 ForegroundName = appSettings[preface + "Foreground"] as string,
 BackgroundName = appSettings[preface + "Background"] as string
 },
 };
 uniformGrid.Children.Add(clock);
 index += 1;
 }

 // If there are no settings, make a default Clock
 if (uniformGrid.Children.Count == 0)
 {
 TimeZoneClock clock = new TimeZoneClock
 {
 DataContext = new TimeZoneClockViewModel()
 };
 uniformGrid.Children.Add(clock);
 }

 // Set the Suspending handler
 Application.Current.Suspending += OnApplicationSuspending;

 // Start the Rendering event
 CompositionTarget.Rendering += OnCompositionTargetRendering;
 }

802	 PART 2  Specialties

 void OnApplicationSuspending(object sender, SuspendingEventArgs args)
 {
 appSettings.Clear();

 for (int index = 0; index < uniformGrid.Children.Count; index++)
 {
 TimeZoneClock timeZoneClock = uniformGrid.Children[index] as TimeZoneClock;
 TimeZoneClockViewModel viewModel =
 timeZoneClock.DataContext as TimeZoneClockViewModel;
 string preface = index.ToString();

 appSettings[preface + "Location"] = viewModel.Location;
 appSettings[preface + "TimeZoneKey"] = viewModel.TimeZoneKey;
 appSettings[preface + "Foreground"] = viewModel.ForegroundName;
 appSettings[preface + "Background"] = viewModel.BackgroundName;
 }
 }
 ...
}

As usual, these settings are saved during the Suspending event.

The constructor concludes by starting up a CompositionTarget.Rendering event. This is responsible
for using the TimeZoneManager instance to obtain a local time based on the current UTC time with
the time zone key for each clock:

Project: ClockRack | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 TimeZoneManager timeZoneManager = new TimeZoneManager();
 ...
 void OnCompositionTargetRendering(object sender, object args)
 {
 // Get the time once
 DateTime utc = DateTime.UtcNow;

 foreach (UIElement child in uniformGrid.Children)
 {
 TimeZoneClockViewModel viewModel =
 (child as FrameworkElement).DataContext as TimeZoneClockViewModel;
 string timeZoneKey = viewModel.TimeZoneKey;

 // Set the local time from the TimeZoneManager
 viewModel.DateTime = timeZoneManager.GetLocalTime(timeZoneKey, utc);
 }
 }
 ...
}

A right tap displays a PopupMenu with three items: Add, Edit, and Delete. The Edit and Delete
items pertain to the particular clock being tapped, so the OnRightTapped override begins by finding
that tapped clock. That object is passed to the handlers for these three items. Even for Add, the

	 CHAPTER 15  Going Native	 803

tapped clock is needed because the logic inserts the new clock after that tapped clock. The Delete
item appears on the menu only if there’s more than one clock:

Project: ClockRack | File: MainPage.xaml.cs (excerpt)

async protected override void OnRightTapped(RightTappedRoutedEventArgs args)
{
 // Check if the parent of the click element is a TimeZoneClock
 FrameworkElement element = args.OriginalSource as FrameworkElement;

 while (element != null)
 {
 if (element is TimeZoneClock)
 break;

 element = element.Parent as FrameworkElement;
 }

 if (element == null)
 return;

 // Create a PopupMenu
 PopupMenu popupMenu = new PopupMenu();
 popupMenu.Commands.Add(new UICommand("Add...", OnAddMenuItem, element));
 popupMenu.Commands.Add(new UICommand("Edit...", OnEditMenuItem, element));

 if (uniformGrid.Children.Count > 1)
 popupMenu.Commands.Add(new UICommand("Delete", OnDeleteMenuItem, element));

 args.Handled = true;
 base.OnRightTapped(args);

 // Display the menu
 await popupMenu.ShowAsync(args.GetPosition(this));
}

For the Add menu item, a new TimeZoneClock (with a corresponding TimeZoneClockViewModel)
must be created and inserted into the collection. This new clock is always inserted after the clock that
was tapped:

Project: ClockRack | File: MainPage.xaml.cs (excerpt)

void OnAddMenuItem(IUICommand command)
{
 // Create new TimeZoneClock
 TimeZoneClock timeZoneClock = new TimeZoneClock
 {
 DataContext = new TimeZoneClockViewModel()
 };

 // Insert after the tapped clock
 TimeZoneClock clickedClock = command.Id as TimeZoneClock;
 int index = uniformGrid.Children.IndexOf(clickedClock);
 uniformGrid.Children.Insert(index + 1, timeZoneClock);
}

804	 PART 2  Specialties

The Delete item is also fairly easy, but the program insists on getting a confirmation of the deletion
using a MessageDialog:

Project: ClockRack | File: MainPage.xaml.cs (excerpt)

async void OnDeleteMenuItem(IUICommand command)
{
 TimeZoneClock timeZoneClock = command.Id as TimeZoneClock;
 TimeZoneClockViewModel viewModel = timeZoneClock.DataContext as TimeZoneClockViewModel;

 MessageDialog msgdlg = new MessageDialog("Delete clock from collection?",
 viewModel.Location);
 msgdlg.Commands.Add(new UICommand("OK"));
 msgdlg.Commands.Add(new UICommand("Cancel"));
 msgdlg.DefaultCommandIndex = 0;
 msgdlg.CancelCommandIndex = 1;

 IUICommand msgDlgCommand = await msgdlg.ShowAsync();

 if (msgDlgCommand.Label == "OK")
 uniformGrid.Children.Remove(command.Id as TimeZoneClock);
}

Of course, the Edit option is more involved, and unless you’re entirely satisfied with a clock for New
York City with a blue foreground on a yellow background, you’re going to be invoking the Edit menu
right after you add a new clock. The Edit option instantiates a SettingsDialog (which you’ll see shortly)
as a child of a Popup object. Because SettingsDialog needs to access the TimeZoneManager instance,
the TimeZoneManager object is supplied to the SettingsDialog constructor. The bulk of this method
is responsible for positioning the Popup so that it is visually associated with the tapped clock but
doesn’t hang off the edge of the screen:

Project: ClockRack | File: MainPage.xaml.cs (excerpt)

void OnEditMenuItem(IUICommand command)
{
 TimeZoneClock timeZoneClock = command.Id as TimeZoneClock;
 SettingsDialog settingsDialog = new SettingsDialog(timeZoneManager);
 settingsDialog.DataContext = timeZoneClock.DataContext;

 // Create Popup with SettingsDialog child
 Popup popup = new Popup
 {
 Child = settingsDialog,
 IsLightDismissEnabled = true
 };

 settingsDialog.SizeChanged += (sender, args) =>
 {
 // Get clock center
 Point position = new Point(timeZoneClock.ActualWidth / 2,
 timeZoneClock.ActualHeight / 2);

 // Convert to Page coordinates
 position = timeZoneClock.TransformToVisual(this).TransformPoint(position);

 // Position popup so lower-left or lower-right corner

	 CHAPTER 15  Going Native	 805

 // aligns with center of edited clock
 if (position.X > this.ActualWidth / 2)
 position.X -= settingsDialog.ActualWidth;
 position.Y -= settingsDialog.ActualHeight;

 // Adjust for size of page
 if (position.X + settingsDialog.ActualWidth > this.ActualWidth)
 position.X = this.ActualWidth - settingsDialog.ActualWidth;

 if (position.X < 0)
 position.X = 0;

 if (position.Y < 0)
 position.Y = 0;

 // Set the Popup position
 popup.HorizontalOffset = position.X;
 popup.VerticalOffset = position.Y;
 };

 popup.IsOpen = true;
}

Here’s what the SettingsDialog looks like. The first field is an EditBox that simply allows you to type
in a label; the other three fields use a ComboBox to display the currently selected item. The ComboBox
opens up to display a list of items when the control receives input focus:

The DataContext of the SettingsDialog object is set to the DataContext of the TimeZoneClock being
edited. That DataContext property is an object of TimeZoneClockViewModel, and the XAML file has
bindings to the Location, TimeZoneKey, ForegroundName, and BackgroundName properties of that
class. Notice that the TextBox bound to the Location property has its TextChanged event set; this
allows the code-behind file to update the Location property in TimeZoneClockViewModel “manually,”
which then updates the display at the top of the popup.

806	 PART 2  Specialties

Project: ClockRack | File: SettingsDialog.xaml (excerpt)

<UserControl ... >
 <UserControl.Resources>
 <Style x:Key="DialogCaptionTextStyle"
 TargetType="TextBlock"
 BasedOn="{StaticResource CaptionTextStyle}">
 <Setter Property="FontSize" Value="14.67" />
 <Setter Property="FontWeight" Value="SemiLight" />
 <Setter Property="Margin" Value="0 16 0 8" />
 </Style>

 <DataTemplate x:Key="colorItemTemplate">
 <!-- Item is SettingsDialog.ColorItem -->
 <StackPanel Orientation="Horizontal">
 <Rectangle Width="96" Height="24" Margin="12 6">
 <Rectangle.Fill>
 <SolidColorBrush Color="{Binding Color}" />
 </Rectangle.Fill>
 </Rectangle>

 <TextBlock Text="{Binding Name}"
 VerticalAlignment="Center" />
 </StackPanel>
 </DataTemplate>
 </UserControl.Resources>

 <!-- DataContext is TimeZoneClockViewModel -->
 <Border Background="{StaticResource ApplicationPageBackgroundThemeBrush}"
 BorderBrush="{StaticResource ApplicationForegroundThemeBrush}"
 BorderThickness="1"
 Padding="7 0 0 0"
 Width="384">
 <StackPanel Margin="24">
 <TextBlock Text="ClockRack settings for"
 Style="{StaticResource SubheaderTextStyle}"
 TextAlignment="Center" />

 <TextBlock Text="{Binding Location}"
 Style="{StaticResource SubheaderTextStyle}"
 TextAlignment="Center"
 Margin="0 0 0 12" />

 <!-- Location -->
 <TextBlock Text="Location"
 Style="{StaticResource DialogCaptionTextStyle}" />

 <TextBox Name="locationTextBox"
 Text="{Binding Location}"
 TextChanged="OnLocationTextBoxTextChanged" />

 <!-- Time Zone -->
 <TextBlock Text="Time Zone"
 Style="{StaticResource DialogCaptionTextStyle}" />

 <ComboBox Name="timeZoneComboBox"
 SelectedValuePath="TimeZoneKey"

	 CHAPTER 15  Going Native	 807

 SelectedValue="{Binding TimeZoneKey, Mode=TwoWay}">
 <ComboBox.ItemTemplate>
 <!-- Data is TimeZoneDisplayInfo -->
 <DataTemplate>
 <TextBlock Text="{Binding Display}" />
 </DataTemplate>
 </ComboBox.ItemTemplate>
 </ComboBox>

 <!-- Foreground and Background Colors -->
 <TextBlock Text="Foreground Color"
 Style="{StaticResource DialogCaptionTextStyle}" />

 <ComboBox Name="foregroundComboBox"
 ItemTemplate="{StaticResource colorItemTemplate}"
 SelectedValuePath="Name"
 SelectedValue="{Binding ForegroundName, Mode=TwoWay}" />

 <TextBlock Text="Background Color"
 Style="{StaticResource DialogCaptionTextStyle}" />

 <ComboBox Name="backgroundComboBox"
 ItemTemplate="{StaticResource colorItemTemplate}"
 SelectedValuePath="Name"
 SelectedValue="{Binding BackgroundName, Mode=TwoWay}" />
 </StackPanel>
 </Border>
</UserControl>

The code-behind file (shown next) supplies collections for the three ComboBox controls. The
ComboBox for the time zone is filled from the DisplayInformation property of the TimeZoneManager,
and the markup for that first ComboBox references the TimeZoneKey and Display properties.

Because I was already using the Petzold.ProgrammingWindows6.Chapter11 library for
UniformGrid, I decided to use the NamedColor class to get a collection of NamedColor objects. As
you can see in the XAML file, the ItemTemplate used for those two ComboBox controls references the
Color and Name properties of NamedColor, and each ComboBox indicates that the SelectedValuePath
is the Name property.

Project: ClockRack | File: SettingsDialog.xaml.cs (excerpt)

public sealed partial class SettingsDialog : UserControl
{
 public SettingsDialog(TimeZoneManager timeZoneManager)
 {
 this.InitializeComponent();

 // Set ItemsSource for time zone ComboBox
 timeZoneComboBox.ItemsSource = timeZoneManager.DisplayInformation;

 // Set ItemsSource for foreground and background ComboBoxes
 foregroundComboBox.ItemsSource = NamedColor.All;
 backgroundComboBox.ItemsSource = NamedColor.All;
 }

808	 PART 2  Specialties

 void OnLocationTextBoxTextChanged(object sender, TextChangedEventArgs args)
 {
 (this.DataContext as TimeZoneClockViewModel).Location = (sender as TextBox).Text;
 }
}

That concludes the code for ClockRack.

A Windows Runtime Component Wrapper for DirectX

While P/Invoke is fine for accessing various functions in the flat Win32 API, getting at DirectX is a
different matter. DirectX is a bit awkward for P/Invoke and is best accessed from C++ code. If you
want to use DirectX from a C# program, you can write a Windows Runtime Component in C++
containing all the DirectX code and then access that library from the C# program. For some small
areas of DirectX, you might do this on your own, or you can pursue a more extensive solution such as
the open-source SharpDX library available at http://code.google.com/p/sharpdx.

However, you might ponder if you are deceiving yourself in some way by accessing DirectX from a
C# program through a wrapper library. One reason to use DirectX is for performance, and often that
involves not only the performance of the DirectX library itself (which is independent of the language
using it) but the performance of your application code. Your application code will generally run faster
if it’s coded in C++ rather than C# (even though you might code faster and with fewer errors using
C#). Consequently, you might want to make the choice to code some or all of your DirectX application
in C++.

The DirectXWrapper library I’ll be presenting here is extremely sparse. I’ve deliberately limited it
to three specific jobs: obtaining a list of fonts installed on the system, obtaining font metrics for a
particular font, and drawing lines on a SurfaceImageSource object. This SurfaceImageSource is actually
a bitmap except you don’t have to implement your own line-drawing algorithms as I did in Chapter
14, “Bitmaps.”

To create this library in Visual Studio, I made a new solution and project named DirectXWrapper.
In the left column of the New Project dialog box, I specified that it was a C++ Windows Store project.
The template I chose in the central area of the dialog box was Windows Runtime Component. This
is a type of Windows 8 library that can be coded in one language (C++ in this case) and accessed
from any other Windows Store application, including those written in C#, Visual Basic, and JavaScript.
Because of this flexibility, Windows Runtime Components have very stringent limitations. They can’t
do something that’s foreign to one of these languages.

The most significant of the limitations of a Windows Runtime Component are these:

■■ Public classes must be sealed or non-instantiable.

■■ Parameters and return values of public methods must be Windows Runtime types.

■■ Public C++ classes and structures must be defined as ref (meaning reference counted).

■■ Public members of structures are restricted to fields.

	 CHAPTER 15  Going Native	 809

Other limitations are described in the Windows 8 documentation. (Do a search for “Creating Windows
Runtime Components.”)

This DirectXWrapper project needs to reference some C++ libraries not included by default. In the
Solution Explorer, I right-clicked the project name and selected Properties. A dialog appears entitled
DirectXWrapper Property Pages. At the top of the dialog is a Platform combo box. In this I selected
All Platforms. At the left of the dialog I selected Configuration Properties, Linker, and Input. At the top
of the resultant list of items is a field titled Additional Dependencies. Click that field and select Edit.
You’ll see an Additional Dependencies dialog box. To the list I added three DirectX libraries:

■■ d2d1.lib

■■ d3d11.lib

■■ dwrite.lib

The first two of these are for 2D and 3D graphics and are required for drawing on a
SurfaceImageSource. The third is the library for DirectWrite.

The DirectXWrapper library also requires accessing some header files associated with these
libraries. In the pch.h (“precompiled headers”) file, I included the required header files:

Project: DirectXWrapper | File: pch.h

#pragma once

#include <wrl.h>
#include <d2d1_1.h>
#include <d3d11_1.h>
#include <dwrite.h>
#include <windows.ui.xaml.media.dxinterop.h>

The wrl.h header file stands for “Windows Runtime Library” and contains definitions useful for
working with COM in Windows 8 applications. The windows.ui.xaml.media.dxinterop.h header file has
a declaration for the ISurfaceImageSourceNative interface required for using the SurfaceImageSource
class.

DirectWrite and Fonts

DirectWrite is the subset of DirectX dedicated to the high-performance display of text. Even if you
don’t need that performance, DirectWrite provides a couple facilities missing from the Windows
Runtime, specifically obtaining a list of installed fonts and obtaining font metrics.

For accessing DirectWrite, I decided that I would define classes in my DirectXWrapper library in a
one-to-one correspondence with DirectWrite interfaces. These interfaces all begin with IDWrite: The
I is for “interface” and DWrite is for “DirectWrite.” My corresponding classes simply begin with Write.

810	 PART 2  Specialties

This is bound to be a little confusing at first, but here’s the correspondence in the order I’ll be
discussing them:

DirectWrite Interface DirectXWrapper Class

IDWriteFactory WriteFactory

IDWriteFontCollection WriteFontCollection

IDWriteFontFamily WriteFontFamily

IDWriteFont WriteFont

IDWriteLocalizedString WriteLocalizedStrings

In many cases, method names in the DirectWrite interfaces (for example, the GetMetrics method
in IDWriteFont) have simply been duplicated: My WriteFont class also has a GetMetrics method. I have
not attempted to duplicate all the methods in these interfaces.

A program that wishes to use DirectWrite begins by calling the DWriteCreateFactory function to
obtain an object of type IDWriteFactory. Among many other methods, this IDWriteFactory interface
defines GetSystemFontCollection for obtaining the fonts currently installed on the system.

I wrapped IDWriteFactory in my own class named WriteFactory. Here’s the C++ header file:

Project: DirectXWrapper | File: WriteFactory.h

#pragma once

#include "WriteFontCollection.h"

namespace DirectXWrapper
{
 public ref class WriteFactory sealed
 {
 private:
 Microsoft::WRL::ComPtr<IDWriteFactory> pFactory;

 public:
 WriteFactory();
 WriteFontCollection^ GetSystemFontCollection();
 WriteFontCollection^ GetSystemFontCollection(bool checkForUpdates);
 };
}

The class is defined with ref and sealed, which is required for public C++ classes in a Windows
Runtime Component. The ref indicates that the class must be instantiated with ref new rather than just
new, and the constructor returns a reference-counted handle rather than a pointer.

The IDWriteFactory object obtained from DWriteCreateFactory is stored as a private field as a
ComPtr, which is defined in the Microsoft.Wrl namespace (or Microsoft::WRL namespace using C++
syntax). ComPtr is short for “Common Object Model pointer”—it turns a pointer to a COM object
such as IDWriteFactory into a “smart pointer” that is reference counted and that properly releases its
own resources. This is the recommended way to maintain pointers to COM objects in your Windows 8
DirectX code.

	 CHAPTER 15  Going Native	 811

Three public methods are also defined in the header file: a constructor and two versions of a
GetSystemFontCollection method. These methods return a WriteFontCollection object. This is not a
DirectWrite type. It can’t be because public methods in a Windows Runtime Component can return
Windows Runtime types only. Instead, it is another class in the DirectXWrapper library. The hat (̂)
means that WriteFontCollection is a handle rather than a pointer, which means that it’s also defined
with the ref keyword and instantiated in C++ with ref new rather than just new.

The mention of the WriteFontCollection class in this header file requires the inclusion of the
WriteFontCollection.h header file at the top.

The implementation of the WriteFactory class is in the WriteFactory.cpp file:

Project: DirectXWrapper | File: WriteFactory.cpp

#include "pch.h"
#include "WriteFactory.h"

using namespace DirectXWrapper;
using namespace Platform;
using namespace Microsoft::WRL;

WriteFactory::WriteFactory()
{
 HRESULT hr = DWriteCreateFactory(DWRITE_FACTORY_TYPE_SHARED,
 __uuidof(IDWriteFactory),
 &pFactory);

 if (!SUCCEEDED(hr))
 throw ref new COMException(hr);
}

WriteFontCollection^ WriteFactory::GetSystemFontCollection()
{
 return GetSystemFontCollection(false);
}

WriteFontCollection^ WriteFactory::GetSystemFontCollection(bool checkForUpdates)
{
 ComPtr<IDWriteFontCollection> pFontCollection;

 HRESULT hr = pFactory->GetSystemFontCollection(&pFontCollection, checkForUpdates);

 if (!SUCCEEDED(hr))
 throw ref new COMException(hr);

 return ref new WriteFontCollection(pFontCollection);
}

The constructor calls the DWriteCreateFactory function to obtain the IDWriteFactory object. The
__uuidof operator obtains a GUID identifying this object. Very often DirectX functions and methods
return values of type HRESULT. This is simply a number indicating success or failure, but it’s important
not to ignore them. The standard approach in a Windows 8 program is to raise an exception of type
COMException if an error has occurred. Notice the ref new used to instantiate that COMException
class; that’s a Windows Runtime type.

812	 PART 2  Specialties

The GetSystemFontCollection method in my WriteFactory class uses the IDWriteFactory object
to call the GetSystemFontCollection method of that interface to obtain a pointer to a DirectWrite
IDWriteFontCollection interface. This is passed to the WriteFontCollection constructor. Again, notice
the ref new.

Here’s the WriteFontCollection header file:

Project: DirectXWrapper | File: WriteFontCollection.h

#pragma once

#include "WriteFontFamily.h"

namespace DirectXWrapper
{
 public ref class WriteFontCollection sealed
 {
 private:
 Microsoft::WRL::ComPtr<IDWriteFontCollection> pFontCollection;

 internal:
 WriteFontCollection(Microsoft::WRL::ComPtr<IDWriteFontCollection> pFontCollection);

 public:
 bool FindFamilyName(Platform::String^ familyName, int * index);
 int GetFontFamilyCount();
 WriteFontFamily^ GetFontFamily(int index);
 };
}

The constructor is defined as internal to the library. It can’t be private because then it couldn’t be
accessed from outside the class (and obviously the WriteFontFactory class needs to call it). But it can’t
be public because the constructor argument is not a Windows Runtime type. Also notice the use of
the String class defined in the Platform namespace. This String class is a Windows Runtime type, and it
is equivalent to the C# String class defined in the System namespace.

Here’s the implementation of WriteFontCollection:

Project: DirectXWrapper | File: WriteFontCollection.cpp

#include "pch.h"
#include "WriteFontCollection.h"
#include "WriteFontFamily.h"

using namespace DirectXWrapper;
using namespace Platform;
using namespace Microsoft::WRL;

WriteFontCollection::WriteFontCollection(ComPtr<IDWriteFontCollection> pFontCollection)
{
 this->pFontCollection = pFontCollection;
}

bool WriteFontCollection::FindFamilyName(String^ familyName, int * index)
{
 uint32 familyIndex;

	 CHAPTER 15  Going Native	 813

 BOOL exists;
 HRESULT hr = this->pFontCollection->FindFamilyName(familyName->Data(),&familyIndex,&exists);

 if (!SUCCEEDED(hr))
 throw ref new COMException(hr);

 *index = familyIndex;

 return exists != 0;
}

int WriteFontCollection::GetFontFamilyCount()
{
 return pFontCollection->GetFontFamilyCount();
}

WriteFontFamily^ WriteFontCollection::GetFontFamily(int index)
{
 ComPtr<IDWriteFontFamily> pfontFamily;

 HRESULT hr = pFontCollection->GetFontFamily(index, &pfontFamily);

 if (!SUCCEEDED(hr))
 throw ref new COMException(hr);

 return ref new WriteFontFamily(pfontFamily);
}

Obtaining a particular font family from this collection is a two-step process. First, FindFamilyName
must be called with a particular name (such as “Times New Roman”) to obtain an index within the
collection. That index is then passed to GetFontFamily to obtain an IDWriteFontFamily object (when
using DirectWrite) or a WriteFontFamily object (when using the DirectXWrapper library).

Alternatively, all the fonts in the collection can be enumerated by passing indices to GetFontFamily
up to the value returned from GetFontFamilyCount.

Here’s the WriteFontFamily header file:

Project: DirectXWrapper | File: WriteFontFamily.h

#pragma once

#include "WriteLocalizedStrings.h"
#include "WriteFont.h"

namespace DirectXWrapper
{
 public ref class WriteFontFamily sealed
 {
 private:
 Microsoft::WRL::ComPtr<IDWriteFontFamily> pFontFamily;

 internal:
 WriteFontFamily(Microsoft::WRL::ComPtr<IDWriteFontFamily> pFontFamily);

814	 PART 2  Specialties

 public:
 WriteLocalizedStrings^ GetFamilyNames();
 WriteFont^ GetFirstMatchingFont(Windows::UI::Text::FontWeight fontWeight,
 Windows::UI::Text::FontStretch fontStretch,
 Windows::UI::Text::FontStyle fontStyle);
 };
}

Look at those arguments to GetFirstMatchingFont: Those are Windows Runtime types because
they’re defined in the Windows.UI.Text namespace. FontWeight is a structure, which is the type of the
static properties in the FontWeights class, and FontStretch and FontStyle are both enumerations. In
the GetFirstMatchingFont method implemented by the IDWriteFontFamily interface, the arguments
are of type DWRITE_FONT_WEIGHT, DWRITE_FONT_STRETCH, and DWRITE_FONT_STYLE, all of which
are enumerations. Interestingly, the FontStretch and FontStyle values can be converted directly: The
two enumerations have the same values, strongly indicating that DirectWrite forms the foundation of
Windows Runtime text output.

Project: DirectXWrapper | File: WriteFontFamily.cpp

#include "pch.h"
#include "WriteFontFamily.h"

using namespace DirectXWrapper;
using namespace Platform;
using namespace Microsoft::WRL;
using namespace Windows::UI::Text;

WriteFontFamily::WriteFontFamily(ComPtr<IDWriteFontFamily> pFontFamily)
{
 this->pFontFamily = pFontFamily;
}

WriteLocalizedStrings^ WriteFontFamily::GetFamilyNames()
{
 ComPtr<IDWriteLocalizedStrings> pFamilyNames;

 HRESULT hr = pFontFamily->GetFamilyNames(&pFamilyNames);

 if (!SUCCEEDED(hr))
 throw ref new COMException(hr);

 return ref new WriteLocalizedStrings(pFamilyNames);
}

WriteFont^ WriteFontFamily::GetFirstMatchingFont(FontWeight fontWeight,
 FontStretch fontStretch,
 FontStyle fontStyle)
{
 // Convert font weight from Windows Runtime to DirectX
 DWRITE_FONT_WEIGHT writeFontWeight = DWRITE_FONT_WEIGHT_NORMAL;

	 CHAPTER 15  Going Native	 815

 if (fontWeight.Equals(FontWeights::Black))
 writeFontWeight = DWRITE_FONT_WEIGHT_BLACK;

 else if (fontWeight.Equals(FontWeights::Bold))
 writeFontWeight = DWRITE_FONT_WEIGHT_BOLD;

 else if (fontWeight.Equals(FontWeights::ExtraBlack))
 writeFontWeight = DWRITE_FONT_WEIGHT_EXTRA_BLACK;

 else if (fontWeight.Equals(FontWeights::ExtraBold))
 writeFontWeight = DWRITE_FONT_WEIGHT_EXTRA_BOLD;

 else if (fontWeight.Equals(FontWeights::ExtraLight))
 writeFontWeight = DWRITE_FONT_WEIGHT_EXTRA_LIGHT;

 else if (fontWeight.Equals(FontWeights::Light))
 writeFontWeight = DWRITE_FONT_WEIGHT_LIGHT;

 else if (fontWeight.Equals(FontWeights::Medium))
 writeFontWeight = DWRITE_FONT_WEIGHT_MEDIUM;

 else if (fontWeight.Equals(FontWeights::Normal))
 writeFontWeight = DWRITE_FONT_WEIGHT_NORMAL;

 else if (fontWeight.Equals(FontWeights::SemiBold))
 writeFontWeight = DWRITE_FONT_WEIGHT_SEMI_BOLD;

 else if (fontWeight.Equals(FontWeights::SemiLight))
 writeFontWeight = DWRITE_FONT_WEIGHT_SEMI_LIGHT;

 else if (fontWeight.Equals(FontWeights::Thin))
 writeFontWeight = DWRITE_FONT_WEIGHT_THIN;

 // Convert font stretch from Windows Runtime to DirectX
 DWRITE_FONT_STRETCH writeFontStretch = (DWRITE_FONT_STRETCH)fontStretch;

 // Convert font style from Windows Runtime to DirectX
 DWRITE_FONT_STYLE writeFontStyle = (DWRITE_FONT_STYLE)fontStyle;

 ComPtr<IDWriteFont> pWriteFont = nullptr;
 HRESULT hr = pFontFamily->GetFirstMatchingFont(writeFontWeight,
 writeFontStretch,
 writeFontStyle,
 &pWriteFont);
 if (!SUCCEEDED(hr))
 throw ref new COMException(hr);

 return ref new WriteFont(pWriteFont);
}

A font family usually has a name such as “Times New Roman,” but in DirectWrite a font family can
have several names that are specific to different locales and languages. The GetFamilyNames method

816	 PART 2  Specialties

returns not one name but a collection of names stored in an IDWriteLocalizedStrings. These strings are
identified by standard locale names—for example, “en-us” for United States English:

Project: DirectXWrapper | File: WriteLocalizedStrings.h

#pragma once

namespace DirectXWrapper
{
 public ref class WriteLocalizedStrings sealed
 {
 private:
 Microsoft::WRL::ComPtr<IDWriteLocalizedStrings> pLocalizedStrings;

 internal:
 WriteLocalizedStrings(Microsoft::WRL::ComPtr<IDWriteLocalizedStrings>
 pLocalizedStrings);
 public:
 int GetCount();
 Platform::String^ GetLocaleName(int index);
 Platform::String^ GetString(int index);
 bool FindLocaleName(Platform::String^ localeName, int * index);
 };
}

Here’s the implementation:

Project: DirectXWrapper | File: WriteLocalizedStrings.cpp

#include "pch.h"
#include "WriteLocalizedStrings.h"

using namespace DirectXWrapper;
using namespace Platform;
using namespace Microsoft::WRL;

WriteLocalizedStrings::WriteLocalizedStrings(ComPtr<IDWriteLocalizedStrings> pLocalizedStrings)
{
 this->pLocalizedStrings = pLocalizedStrings;
}

int WriteLocalizedStrings::GetCount()
{
 return this->pLocalizedStrings->GetCount();
}

String^ WriteLocalizedStrings::GetLocaleName(int index)
{
 UINT32 length = 0;
 HRESULT hr = this->pLocalizedStrings->GetLocaleNameLength(index, &length);

 if (!SUCCEEDED(hr))
 throw ref new COMException(hr);

	 CHAPTER 15  Going Native	 817

 wchar_t* str = new (std::nothrow) wchar_t[length + 1];

 if (str == nullptr)
 throw ref new COMException(E_OUTOFMEMORY);

 hr = this->pLocalizedStrings->GetLocaleName(index, str, length + 1);

 if (!SUCCEEDED(hr))
 throw ref new COMException(hr);

 String^ string = ref new String(str);
 delete[] str;
 return string;
}

String^ WriteLocalizedStrings::GetString(int index)
{
 UINT32 length = 0;
 HRESULT hr = this->pLocalizedStrings->GetStringLength(index, &length);

 if (!SUCCEEDED(hr))
 throw ref new COMException(hr);

 wchar_t* str = new (std::nothrow) wchar_t[length + 1];

 if (str == nullptr)
 throw ref new COMException(E_OUTOFMEMORY);

 hr = this->pLocalizedStrings->GetString(index, str, length + 1);

 if (!SUCCEEDED(hr))
 throw ref new COMException(hr);

 String^ string = ref new String(str);
 delete[] str;
 return string;
}

bool WriteLocalizedStrings::FindLocaleName(String^ localeName, int * index)
{
 uint32 localeIndex = 0;
 BOOL exists = false;
 HRESULT hr = this->pLocalizedStrings->FindLocaleName(localeName->Data(),
 &localeIndex, &exists);
 if (!SUCCEEDED(hr))
 throw ref new COMException(hr);

 *index = localeIndex;

 return exists != 0;
}

818	 PART 2  Specialties

Much of the “messiness” in this code involves allocating C++ strings (which are really arrays of
characters) for calling the DirectWrite methods, and then converting to Windows Runtime String
objects for returning from the DirectXWrapper implementation.

Here’s the WriteFont header file:

Project: DirectXWrapper | File: WriteFont.h

#pragma once

#include "WriteFontMetrics.h"

namespace DirectXWrapper
{
 public ref class WriteFont sealed
 {
 private:
 Microsoft::WRL::ComPtr<IDWriteFont> pWriteFont;

 internal:
 WriteFont(Microsoft::WRL::ComPtr<IDWriteFont> pWriteFont);

 public:
 bool HasCharacter(UINT32 unicodeValue);
 bool IsSymbolFont();
 WriteFontMetrics GetMetrics();
 };
}

And the implementation:

Project: DirectXWrapper | File: WriteFont.cpp

#include "pch.h"
#include "WriteFont.h"

using namespace DirectXWrapper;
using namespace Platform;
using namespace Microsoft::WRL;

WriteFont::WriteFont(ComPtr<IDWriteFont> pWriteFont)
{
 this->pWriteFont = pWriteFont;
}

WriteFontMetrics WriteFont::GetMetrics()
{
 DWRITE_FONT_METRICS fontMetrics;
 this->pWriteFont->GetMetrics(&fontMetrics);

 WriteFontMetrics writeFontMetrics =
 {
 fontMetrics.designUnitsPerEm,
 fontMetrics.ascent,
 fontMetrics.descent,
 fontMetrics.lineGap,
 fontMetrics.capHeight,

	 CHAPTER 15  Going Native	 819

 fontMetrics.xHeight,
 fontMetrics.underlinePosition,
 fontMetrics.underlineThickness,
 fontMetrics.strikethroughPosition,
 fontMetrics.strikethroughThickness
 };

 return writeFontMetrics;
}

bool WriteFont::HasCharacter(UINT32 unicodeValue)
{
 BOOL exists = 0;
 HRESULT hr = this->pWriteFont->HasCharacter(unicodeValue, &exists);

 if (!SUCCEEDED(hr))
 throw ref new COMException(hr);

 return exists != 0;
}

bool WriteFont::IsSymbolFont()
{
 return this->pWriteFont->IsSymbolFont() != 0;
}

The DirectWrite version of the GetMetrics method fills in a structure of type
DWRITE_FONT_METRICS. Of course, a Windows Runtime Component can’t return that directly, so I
defined my own version of this structure:

Project: DirectXWrapper | File: WriteFontMetrics.h

#pragma once

namespace DirectXWrapper
{
 public value struct WriteFontMetrics
 {
 UINT16 DesignUnitsPerEm;
 UINT16 Ascent;
 UINT16 Descent;
 INT16 LineGap;
 UINT16 CapHeight;
 UINT16 XHeight;
 INT16 UnderlinePosition;
 UINT16 UnderlineThickness;
 INT16 StrikethroughPosition;
 UINT16 StrikethroughThickness;
 };
}

You have now seen all the DirectWrite code implemented in the DirectXWrapper library. Obviously,
there is much more to DirectWrite than what I’ve attempted to make available to a C# program, but I
now have what I need for two basic jobs.

820	 PART 2  Specialties

Let’s enumerate the installed fonts. The EnumerateFonts project is a normal Windows 8 C# project,
except that in the Solution Explorer I right-clicked the solution name and selected Add and Existing
Project. The project I added was DirectXWrapper. As usual when referencing a library project, I also
right-clicked the References section in EnumerateFonts, selected Add Reference, and in the Add
Reference dialog box selected Projects at the left and DirectXWrapper.

The XAML file in EnumerateFonts contains a ListBox:

Project: EnumerateFonts | File: MainPage.xaml (excerpt)

<Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <ListBox Name="lstbox">
 <ListBox.ItemTemplate>
 <DataTemplate>
 <TextBlock Text="{Binding}"
 FontFamily="{Binding}"
 FontSize="24" />
 </DataTemplate>
 </ListBox.ItemTemplate>
 </ListBox>
</Grid>

The ItemTemplate obviously anticipates that the ListBox will be filled with font family names. Each
name is displayed with a font based on that family. That ListBox is filled from the constructor of the
code-behind file:

Project: EnumerateFonts | File: MainPage.xaml.cs

using Windows.UI.Xaml.Controls;
using DirectXWrapper;

namespace EnumerateFonts
{
 public sealed partial class MainPage : Page
 {
 public MainPage()
 {
 this.InitializeComponent();

 WriteFactory writeFactory = new WriteFactory();
 WriteFontCollection writeFontCollection =
 writeFactory.GetSystemFontCollection();

 int count = writeFontCollection.GetFontFamilyCount();
 string[] fonts = new string[count];

 for (int i = 0; i < count; i++)
 {
 WriteFontFamily writeFontFamily =
 writeFontCollection.GetFontFamily(i);

 WriteLocalizedStrings writeLocalizedStrings =
 writeFontFamily.GetFamilyNames();
 int index;

 if (writeLocalizedStrings.FindLocaleName("en-us", out index))

	 CHAPTER 15  Going Native	 821

 {
 fonts[i] = writeLocalizedStrings.GetString(index);
 }
 else
 {
 fonts[i] = writeLocalizedStrings.GetString(0);
 }
 }
 lstbox.ItemsSource = fonts;
 }
 }
}

As you can see, the classes and methods in DirectXWrapper are accessed and used as if they were
normal Windows Runtime classes. The program attempts to find a font with the locale named “en-us”;
if that’s not available, it just gets the first one in the collection. In reality, many Windows 8 fonts have
only one name, but some designed for languages of the Far East have alternative names in Chinese,
Korean, or Japanese.

Here’s the beginning of a list such as you might see on your own system:

Configurations and Platforms

The Visual Studio standard toolbar includes two drop-down combo boxes identified by the tooltips
“Solution Configurations” and “Solution Platforms.”

The Solution Configurations box has three options:

■■ Debug

■■ Release

822	 PART 2  Specialties

■■ Configuration Manager…

The first two items allow you to compile your program in two different ways, Normally, you’ll want
to use the Debug configuration during program development. But when most of the debugging has
been completed, you’ll want to switch over to the Release configuration for better code optimization
and performance.

In all the projects in this book prior to EnumerateFonts, the Solution Platforms box displays five
options:

■■ Any CPU

■■ ARM

■■ x64

■■ x86

■■ Configuration Manager…

In all the projects in this book prior to EnumerateFonts, that Solution Platforms box has probably
displayed the default for C# projects, which is Any CPU.

This is as it should be. When you compile a C# program in Visual Studio, your source code is
compiled into Intermediate Language, or IL. When the program runs, this IL is compiled into native
code appropriate for the processor on which the program is running. This is one of the big advan-
tages of using a managed language like C#: The distributable executable consists of Intermediate
Language that is independent of the processor that later runs the program. This is true even if your
program uses P/Invoke to access Win32 functions.

With a C# project, you have the ability to use the Solution Platforms combo box to change the
platform to ARM, x64, or x86. The compiler still generates Intermediate Language but the executable
will run only on specific processors. If you specify ARM, the program will run on machines with ARM
processors only. If you specify x64, the program will run on 64-bit Intel processors only. If you specify
x86, the program will run on both 32-bit and 64-bit Intel processors.

In general, unless you have a reason for doing so, you do not want to restrict your C# program to
specific processors. You want the Solution Platforms box to read Any CPU. (If you want your program
to do something a little different on Intel and ARM processors, you can use the GetNativeSystemInfo
function described earlier in this chapter.)

However, once you begin introducing C++ code into your application, everything changes. Visual
Studio does not compile C++ code to Intermediate Language; it’s compiled to native machine code
for a specific processor. That executable will run only on a processor of that sort—with the exception
that code compiled for a 32-bit Intel processor will also run on 64-bit Intel processors.

Moreover, if you have a multiproject application that consists of some C# code and some C++
code (such as the EnumerateFonts solution), the platforms of the multiple projects must be the same

	 CHAPTER 15  Going Native	 823

and they must match the platform on which you’re running the application. It might seem reasonable
that an “Any CPU” C# project can reference an “x64” C++ project, but that is not the case.

To see the platforms of the individual projects, you can invoke the Configuration Manager dialog
box by selecting Configuration Manager from either combo box. For the C# projects in the solution,
the platform options are

■■ Any CPU

■■ ARM

■■ x64

■■ x86

For C++ projects, the platform options are

■■ ARM

■■ Win32

■■ x64

The C++ Win32 platform option is equivalent to the C# x86 platform.

The only possible combinations of platform options that work are these:

■■ C# ARM and C++ ARM running on an ARM processor

■■ C# x64 and C++ x64 running on an Intel 64-bit processor

■■ C# x86 and C++ Win32 running on an Intel 32-bit or 64-bit processor

If you select ARM, x64, x86, or Win32 from the Solution Platforms combo box, you’ll get one of these
three combinations.

In any program in this book, try selecting ARM from the Solution Platforms combo box and then
pressing F5. The program will build just fine but it won’t deploy because you’re not running Visual
Studio on an ARM-based machine. I know this for a fact because Visual Studio does not run on ARM
processors.

If you have an ARM-based machine running Windows 8—such as the initial release of the
Microsoft Surface machines—you probably want to test your programs on it. However, you can’t run
Visual Studio on the Surface, so you have to get the application on that machine in another way.

For debugging and testing purposes, the easy way is remote deployment, which works over a WiFi
network and is described in a blog entry by Tim Heuer: http://timheuer.com/blog/archive/2012/10/26/
remote-debugging-windows-store-apps-on-surface-arm-devices.aspx. Once you have everything set
up and your Surface is running the Remote Debugger and it’s not asleep or displaying the lock screen,
make the following two selections:

■■ Select the platform of the remote machine from the Solution Platforms combo box.

824	 PART 2  Specialties

■■ Select Remote Machine from the drop-down to the left of the Solution Configurations
combo box.

It’s helpful to make these two selections in this order because the target machine is associated with
the platform. If you select Remote Machine first and then the platform, Visual Studio will switch back
to Local Machine.

If your solution consists solely of C# code, the Solution Platforms combo box should be Any CPU
regardless what machine you’re deploying to. If your solution has some C++ code and you’re deploy-
ing to an ARM-based machine such as Microsoft Surface, select ARM from the Solution Platforms
combo box.

For distribution purposes—whether you’re uploading an application to the Windows Store or
you’re putting together a program for deployment to other machines—another approach is involved.
This requires creating application packages in Visual Studio by selecting Create App Packages from
the Store menu.

During this process, you’ll encounter a dialog box with the heading “Select and Configure
Packages” with a table of architectures. If your project has only C# code, you can select an
architecture of “Neutral,” which is equivalent to Any CPU. However, if your project has C++ code,
you can’t select that. You must select one or more of the other options: x64, x86, and ARM. You’ll
probably want to select all three for deployment on any type of machine.

If you’re not uploading a package to the Windows Store but want to install it on another machine,
Visual Studio creates directories for the various architectures that you’ve selected. Each of these
directories contains a Windows PowerShell script—a file with the extension ps1—that you can run to
deploy the application. One approach is to copy the directory to a USB thumb drive (or have Visual
Studio create it there), bring the thumb drive to the other machine (such as a Microsoft Surface), and
run the script to install the application on that machine.

Interpreting Font Metrics

Font metrics is the term that refers to the sizes of characters and character strings in a particular
font. For most cases, you don’t need font metric information when working with text in a Windows 8
program. The TextBlock element determines a size for the particular text and font it’s being asked to
display, and usually that’s adequate. However, if you’re going to be doing sophisticated text layout,
font metrics are a necessity, and occasionally they are required for some unusual tasks.

I’m going to restrict this discussion to vertical measurements—heights rather than widths. These
vertical measurements vary by font, font style (italics), font weight (bold), and font size, but they are
independent of any particular character or string.

The LookAtFontMetrics program provides a visual demonstration of the correlation between
the size of a text string as calculated by the TextBlock element and the font metrics provided by

	 CHAPTER 15  Going Native	 825

DirectWrite. The project has the same references to the DirectXWrapper project as EnumerateFonts.
The XAML file has a similar ListBox but also includes a TextBlock in a Border with some semidefined
Line elements:

Project: LookAtFontMetrics | File: MainPage.xaml (excerpt)

<Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition Width="*" />
 </Grid.ColumnDefinitions>

 <ListBox Name="lstbox"
 Grid.Column="0"
 Width="300"
 SelectionChanged="OnListBoxSelectionChanged">
 <ListBox.ItemTemplate>
 <DataTemplate>
 <TextBlock Text="{Binding}"
 FontFamily="{Binding}"
 FontSize="24" />
 </DataTemplate>
 </ListBox.ItemTemplate>
 </ListBox>

 <Grid Grid.Column="1"
 HorizontalAlignment="Center"
 VerticalAlignment="Center">
 <Border BorderBrush="{StaticResource ApplicationForegroundThemeBrush}"
 BorderThickness="1">
 <Grid>
 <Grid.Resources>
 <Style TargetType="Line">
 <Setter Property="Stroke" Value="Red" />
 <Setter Property="StrokeThickness" Value="2" />
 <Setter Property="X1" Value="0" />
 </Style>
 </Grid.Resources>

 <TextBlock Name="txtblk"
 Text="Texting"
 FontSize="192"
 SizeChanged="OnTextBlockSizeChanged" />

 <Line x:Name="ascenderLine" Y1="0" Y2="0" />
 <Line x:Name="capsHeightLine" />
 <Line x:Name="xHeightLine" />
 <Line x:Name="baselineLine" Stroke="Blue" />
 <Line x:Name="descenderLine" />
 <Line x:Name="lineGapLine" />
 </Grid>
 </Border>
 </Grid>
</Grid>

826	 PART 2  Specialties

The constructor of this program is pretty much the same as the previous program in that it fills
up the ListBox with the available fonts. The program also handles a SelectionChanged event from the
ListBox by setting the FontFamily property of the TextBlock and obtaining a WriteFontMetrics value
from DirectXWrapper. The program then uses these font metrics to set the Y1 and Y2 properties of
the various Line elements:

Project: LookAtFontMetrics | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 WriteFactory writeFactory;
 WriteFontCollection writeFontCollection;

 public MainPage()
 {
 this.InitializeComponent();

 writeFactory = new WriteFactory();
 writeFontCollection = writeFactory.GetSystemFontCollection();
 int count = writeFontCollection.GetFontFamilyCount();
 string[] fonts = new string[count];

 for (int i = 0; i < count; i++)
 {
 WriteFontFamily writeFontFamily = writeFontCollection.GetFontFamily(i);
 WriteLocalizedStrings writeLocalizedStrings = writeFontFamily.GetFamilyNames();
 int nameCount = writeLocalizedStrings.GetCount();
 int index;

 if (writeLocalizedStrings.FindLocaleName("en-us", out index))
 {
 fonts[i] = writeLocalizedStrings.GetString(index);
 }
 }

 lstbox.ItemsSource = fonts;

 Loaded += (sender, args) =>
 {
 lstbox.SelectedIndex = 0;
 };
 }

 void OnListBoxSelectionChanged(object sender, SelectionChangedEventArgs args)
 {
 string fontFamily = (sender as ListBox).SelectedItem as string;

 if (fontFamily == null)
 return;

 txtblk.FontFamily = new FontFamily(fontFamily);

	 CHAPTER 15  Going Native	 827

 int index;
 if (writeFontCollection.FindFamilyName(fontFamily, out index))
 {
 WriteFontFamily writeFontFamily = writeFontCollection.GetFontFamily(index);
 WriteFont writeFont = writeFontFamily.GetFirstMatchingFont(FontWeights.Normal,
 FontStretch.Normal,
 FontStyle.Normal);
 WriteFontMetrics fontMetrics = writeFont.GetMetrics();
 double fontSize = txtblk.FontSize;
 double ascent = fontSize * fontMetrics.Ascent / fontMetrics.DesignUnitsPerEm;
 double capsHeight = fontSize * fontMetrics.CapHeight / fontMetrics.DesignUnitsPerEm;
 double xHeight = fontSize * fontMetrics.XHeight / fontMetrics.DesignUnitsPerEm;
 double descent = fontSize * fontMetrics.Descent / fontMetrics.DesignUnitsPerEm;
 double lineGap = fontSize * fontMetrics.LineGap / fontMetrics.DesignUnitsPerEm;

 baselineLine.Y1 = baselineLine.Y2 = ascent;
 capsHeightLine.Y1 = capsHeightLine.Y2 = ascent - capsHeight;
 xHeightLine.Y1 = xHeightLine.Y2 = ascent - xHeight;
 descenderLine.Y1 = descenderLine.Y2 = ascent + descent;
 lineGapLine.Y1 = lineGapLine.Y2 = ascent + descent + lineGap;
 }
 }

 void OnTextBlockSizeChanged(object sender, SizeChangedEventArgs args)
 {
 double width = txtblk.ActualWidth;
 ascenderLine.X2 = width;
 capsHeightLine.X2 = width;
 xHeightLine.X2 = width;
 baselineLine.X2 = width;
 descenderLine.X2 = width;
 lineGapLine.X2 = width;
 }
}

The DWRITE_FONT_METRICS in DirectWrite has a field named designUnitsPerEm that for most
fonts is a nice round number such as 256, 1024, 2048, or 4096 and only occasionally a peculiar value
like 1000. As the name implies, this is the height of the grid the typographer used to define the char-
acters of the font. All the other heights in the structure are relative to this design height. This is how
all the fields of the structure can be integers. To obtain pixel height values for a particular font and
font size, the fields of this structure must be multiplied by FontSize and divided by designUnitsPerEm.

This is what the LookAtFontMetrics program does in setting the Y1 and Y2 properties of all the
Line elements. For some fonts, the results won’t look quite right because those fonts are designed for

828	 PART 2  Specialties

non-Latin alphabets. But for the standard fonts used for languages based on Latin alphabets, the lines
calculated from the font metrics are dead on:

The line on which the characters sit—the blue line if you’re reading an electronic version of this
book—is the baseline. In many fonts, rounded characters (such as ‘e’) dip a tad below that line. The
next line up from the baseline is the x-height, which is the height of lowercase letters. Again, some
rounded characters go slightly above that line. Next up is the caps height, which indicates the height
of capital letters. The ascent line is even higher—at the very top of the rectangle that the TextBlock
calculates for itself—and accounts for diacritical marks that might appear on some letters, such as the
umlaut (Ü). Below the baseline is the area for descenders of those letters that go below the baseline.
At the very bottom is a line gap, which is zero for many fonts. Here’s a diagram using the names
defined in the original DWRITE_FONT_METRICS structure:

The height that TextBlock calculates for itself is based on the sum of the ascent, descent, and lineGap
fields.

	 CHAPTER 15  Going Native	 829

In Chapter 10, I showed a program that displayed a tilted shadow of a text string:

At the time I indicated that it’s not possible to do something similar for an arbitrary font where the
shadow tilts back from baseline. You need to know the font metrics, and now that we have those, let’s
try it.

Here’s the XAML file for BaselineTiltedShadow. There’s another ListBox for the system fonts, and
there’s some XAML for text and a shadow:

Project: BaselineTiltedShadow | File: MainPage.xaml (excerpt)

<Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition Width="*" />
 </Grid.ColumnDefinitions>

 <ListBox Name="lstbox"
 Grid.Column="0"
 Width="300"
 SelectionChanged="OnListBoxSelectionChanged">
 <ListBox.ItemTemplate>
 <DataTemplate>
 <TextBlock Text="{Binding}"
 FontFamily="{Binding}"
 FontSize="24" />
 </DataTemplate>
 </ListBox.ItemTemplate>
 </ListBox>

 <Grid Grid.Column="1"
 HorizontalAlignment="Center"
 VerticalAlignment="Center">

830	 PART 2  Specialties

 <TextBlock Name="shadowTextBlock"
 Text="shadow"
 FontSize="192"
 Foreground="Gray">
 <TextBlock.RenderTransform>
 <CompositeTransform ScaleY="1.5" SkewX="-60" />
 </TextBlock.RenderTransform>
 </TextBlock>

 <TextBlock Name="foregroundTextBlock"
 Text="shadow"
 FontSize="192" />
 </Grid>
</Grid>

Those two TextBlock elements are missing FontFamily properties, which are set from the
code-behind file to the font selected in the ListBox. The TextBlock for the shadow is also missing a
RenderTransformOrigin property. The constructor of the code-behind file that initializes the ListBox is
the same as in the previous program; the crucial part of the SelectionChanged property calculates this
RenderTransformOrigin for the shadow based on the fractional percentage of the font height above
the baseline:

Project: BaselineTiltedShadow | File: MainPage.xaml.cs (excerpt)

void OnListBoxSelectionChanged(object sender, SelectionChangedEventArgs args)
{
 string fontFamily = (sender as ListBox).SelectedItem as string;

 if (fontFamily == null)
 return;

 foregroundTextBlock.FontFamily = new FontFamily(fontFamily);
 shadowTextBlock.FontFamily = foregroundTextBlock.FontFamily;

 int index;
 if (writeFontCollection.FindFamilyName(fontFamily, out index))
 {
 WriteFontFamily writeFontFamily = writeFontCollection.GetFontFamily(index);
 WriteFont writeFont = writeFontFamily.GetFirstMatchingFont(FontWeights.Normal,
 FontStretch.Normal,
 FontStyle.Normal);
 WriteFontMetrics fontMetrics = writeFont.GetMetrics();

 double fractionAboveBaseline = (double)fontMetrics.Ascent /
 (fontMetrics.Ascent + fontMetrics.Descent + fontMetrics.LineGap);

 shadowTextBlock.RenderTransformOrigin = new Point(0, fractionAboveBaseline);
 }
}

	 CHAPTER 15  Going Native	 831

And here it is:

Drawing on a SurfaceImageSource

There is only one other class in DirectXWrapper. I called it SurfaceImageSourceRenderer, and it takes a
rather different architectural approach than the classes in the library that wrap the DirectWrite classes.
The SurfaceImageSourceRenderer class instantiates a whole bunch of DirectX objects and uses those
to provide a high-level interface to drawing lines on an object of type SurfaceImageSource.

SurfaceImageSource derives from ImageSource and hence can be set to the Source property of
Image or to the ImageSource property of ImageBrush. It is basically a bitmap. However, you can use
DirectX to draw graphics (or text) on this bitmap. The SurfaceImageSourceRenderer class performs all
the necessary overhead and exposes three public methods: Clear, DrawLine, and Update. Obviously, it
could be expanded to include a lot more.

Here’s the header file:

Project: DirectXWrapper | File: SurfaceImageSourceRenderer.h

#pragma once

namespace DirectXWrapper
{
 public ref class SurfaceImageSourceRenderer sealed
 {
 private:
 int width, height;
 Microsoft::WRL::ComPtr<ID2D1Factory> pFactory;
 Microsoft::WRL::ComPtr<ID3D11Device> pd3dDevice;
 Microsoft::WRL::ComPtr<ID3D11DeviceContext> pd3dContext;
 Microsoft::WRL::ComPtr<ISurfaceImageSourceNative> sisNative;

832	 PART 2  Specialties

 Microsoft::WRL::ComPtr<IDXGIDevice> pDxgiDevice;
 Microsoft::WRL::ComPtr<ID2D1BitmapRenderTarget> bitmapRenderTarget;
 Microsoft::WRL::ComPtr<ID2D1Bitmap> bitmap;
 Microsoft::WRL::ComPtr<ID2D1SolidColorBrush> solidColorBrush;
 Microsoft::WRL::ComPtr<ID2D1StrokeStyle> strokeStyle;
 bool needsUpdate;

 public:
 SurfaceImageSourceRenderer(
 Windows::UI::Xaml::Media::Imaging::SurfaceImageSource^ surfaceImageSource,
 int width, int height);
 void Clear(Windows::UI::Color color);
 void DrawLine(Windows::Foundation::Point pt1, Windows::Foundation::Point pt2,
 Windows::UI::Color color, double thickness);
 void Update();

 private:
 ID2D1RenderTarget * CreateRenderTarget(Microsoft::WRL::ComPtr<IDXGISurface> pSurface);
 D2D1::ColorF ConvertColor(Windows::UI::Color color);
 };
}

The public constructor requires an instance of the SurfaceImageSource class. This is allowed in a
public constructor because it’s a Windows Runtime type defined in the Windows.UI.Xaml.Media
.Imaging namespace. This constructor contains code that really can’t be written from scratch by
anyone who’s not a DirectX wizard. I am certainly not, so I lifted much of this code from other sample
projects intended to illustrate how to use SurfaceImageSource:

Project: DirectXWrapper | File: SurfaceImageSourceRenderer.cpp (excerpt)

SurfaceImageSourceRenderer::SurfaceImageSourceRenderer(SurfaceImageSource^ surfaceImageSource,
 int width, int height)
{
 // Save the image width and height
 this->width = width;
 this->height = height;

 // Create Factory
 D2D1_FACTORY_OPTIONS options = { D2D1_DEBUG_LEVEL_NONE };

 HRESULT hr = D2D1CreateFactory(D2D1_FACTORY_TYPE_SINGLE_THREADED,
 __uuidof(ID2D1Factory),
 &options,
 &pFactory);
 if (!SUCCEEDED(hr))
 throw ref new COMException(hr);

 // Create ISurfaceImageSourceNative object
 IInspectable* sisInspectable = (IInspectable*)
 reinterpret_cast<IInspectable*>(surfaceImageSource);
 sisInspectable->QueryInterface(__uuidof(ISurfaceImageSourceNative), (void **)&sisNative);

 // Create Device and Device Context
 D3D_FEATURE_LEVEL featureLevels[] =
 {
 D3D_FEATURE_LEVEL_11_1,

	 CHAPTER 15  Going Native	 833

 D3D_FEATURE_LEVEL_11_0,
 D3D_FEATURE_LEVEL_10_1,
 D3D_FEATURE_LEVEL_10_0,
 D3D_FEATURE_LEVEL_9_3,
 D3D_FEATURE_LEVEL_9_2,
 D3D_FEATURE_LEVEL_9_1,
 };

 hr = D3D11CreateDevice(nullptr,
 D3D_DRIVER_TYPE_HARDWARE,
 0,
 D3D11_CREATE_DEVICE_SINGLETHREADED |
 D3D11_CREATE_DEVICE_BGRA_SUPPORT,
 featureLevels,
 ARRAYSIZE(featureLevels),
 D3D11_SDK_VERSION,
 &pd3dDevice,
 nullptr,
 &pd3dContext);

 if (!SUCCEEDED(hr))
 throw ref new COMException(hr);

 // Get DXGIDevice
 hr = pd3dDevice.As(&pDxgiDevice);

 if (!SUCCEEDED(hr))
 throw ref new COMException(hr);

 sisNative->SetDevice(pDxgiDevice.Get());

 // Begin drawing
 RECT update = { 0, 0, width, height };
 POINT offset;
 IDXGISurface * dxgiSurface;
 hr = sisNative->BeginDraw(update, &dxgiSurface, &offset);

 if (!SUCCEEDED(hr))
 throw ref new COMException(hr);

 ID2D1RenderTarget * pRenderTarget = CreateRenderTarget(dxgiSurface);

 // But only go far enough to create compatible BitmapRenderTarget
 // and get the Bitmap for updating the surface
 pRenderTarget->CreateCompatibleRenderTarget(&bitmapRenderTarget);
 bitmapRenderTarget->GetBitmap(&bitmap);

 // End drawing
 sisNative->EndDraw();
 pRenderTarget->Release();
 dxgiSurface->Release();

 // Create a SolidColorBrush for drawing lines
 bitmapRenderTarget->CreateSolidColorBrush(D2D1::ColorF(0, 0, 0, 0), &solidColorBrush);

 // Create StrokeStyle for drawing lines
 D2D1_STROKE_STYLE_PROPERTIES strokeStyleProperties =

834	 PART 2  Specialties

 {
 D2D1_CAP_STYLE_ROUND,
 D2D1_CAP_STYLE_ROUND,
 D2D1_CAP_STYLE_ROUND,
 D2D1_LINE_JOIN_ROUND,
 10,
 D2D1_DASH_STYLE_SOLID,
 0
 };

 hr = pFactory->CreateStrokeStyle(&strokeStyleProperties, nullptr, 0, &strokeStyle);

 if (!SUCCEEDED(hr))
 throw ref new COMException(hr);
}

This constructor makes use of a private method that also comes into play during drawing
operations. This method creates an object of type ID2D1RenderTarget on which the actual drawing
takes place:

Project: DirectXWrapper | File: SurfaceImageSourceRenderer.cpp (excerpt)

ID2D1RenderTarget* SurfaceImageSourceRenderer::CreateRenderTarget(ComPtr<IDXGISurface> pSurface)
{
 D2D1_PIXEL_FORMAT format =
 {
 DXGI_FORMAT_UNKNOWN,
 D2D1_ALPHA_MODE_PREMULTIPLIED
 };

 float dpiX, dpiY;
 pFactory->GetDesktopDpi(&dpiX, &dpiY);

 D2D1_RENDER_TARGET_PROPERTIES properties =
 {
 D2D1_RENDER_TARGET_TYPE_DEFAULT,
 format,
 dpiX,
 dpiY,
 D2D1_RENDER_TARGET_USAGE_NONE,
 D2D1_FEATURE_LEVEL_DEFAULT
 };

 ID2D1RenderTarget * pRenderTarget;
 HRESULT hr = pFactory->CreateDxgiSurfaceRenderTarget(pSurface.Get(),
 &properties, &pRenderTarget);

 if (!SUCCEEDED(hr))
 throw ref new COMException(hr);

 return pRenderTarget;
}

	 CHAPTER 15  Going Native	 835

Notice that in the constructor and this method I’ve defined two pointers to DirectX objects (named
dxgiSurface and pRenderTarget) for which I did not use the ComPtr wrapper. This is because I was
using these objects only for a very short period of time and released them “manually” with calls to the
Release method.

The Clear method essentially calls the Clear method of the ID2D1BitmapRenderTarget object saved
as a field:

Project: DirectXWrapper | File: SurfaceImageSourceRenderer.cpp (excerpt)

void SurfaceImageSourceRenderer::Clear(Color color)
{
 bitmapRenderTarget->BeginDraw();
 bitmapRenderTarget->Clear(ConvertColor(color));
 bitmapRenderTarget->EndDraw();
 needsUpdate = true;
}

Because this is a public method, the argument must be a Windows Runtime type, and so it is.
However, the Color structure defined in the Windows Runtime is the not the same as the various color
structures in DirectX, which means that the color must be converted in this private method:

Project: DirectXWrapper | File: SurfaceImageSourceRenderer.cpp (excerpt)

D2D1::ColorF SurfaceImageSourceRenderer::ConvertColor(Color color)
{
 D2D1::ColorF colorf(color.R / 255.0f,
 color.G / 255.0f,
 color.B / 255.0f,
 color.A / 255.0f);
 return colorf;
}

Points must be converted as well. The public DrawLine method that I’ve defined renders a line
between two points, but the method begins by converting those Windows Runtime Point values to
DirectX D2D1_POINT_2F values for passing to the DrawLine method of the ID2D1BitmapRenderTarget
object:

Project: DirectXWrapper | File: SurfaceImageSourceRenderer.cpp (excerpt)

void SurfaceImageSourceRenderer::DrawLine(Point point1, Point point2,
 Color color, double thickness)
{
 // Convert the points
 D2D1_POINT_2F pt1 = { (float)point1.X, (float)point1.Y };
 D2D1_POINT_2F pt2 = { (float)point2.X, (float)point2.Y };

 // Convert the color for the SolidColorBrush
 solidColorBrush->SetColor(ConvertColor(color));

836	 PART 2  Specialties

 // Draw the line
 bitmapRenderTarget->BeginDraw();
 bitmapRenderTarget->DrawLine(pt1, pt2, solidColorBrush.Get(),
 (float)thickness,
 strokeStyle.Get());
 bitmapRenderTarget->EndDraw();
 needsUpdate = true;
}

Obviously, the ID2D1BitmapRenderTarget interface defines many other methods besides DrawLine,
but if you’re going to make extensive use of these other methods in your application, it might start
making more sense to move at least some of the application into C++.

Both Clear and DrawLine draw on an ID2D1BitmapRenderTarget, and the SurfaceImageSource
object must be updated from that. This occurs in the Update method:

Project: DirectXWrapper | File: SurfaceImageSourceRenderer.cpp (excerpt)

void SurfaceImageSourceRenderer::Update()
{
 // Check if needs update
 if (!needsUpdate)
 return;

 needsUpdate = false;

 // Begin drawing
 RECT update = { 0, 0, width, height };
 POINT offset;
 IDXGISurface * dxgiSurface;
 HRESULT hr = sisNative->BeginDraw(update, &dxgiSurface, &offset);

 if (!SUCCEEDED(hr))
 throw ref new COMException(hr);

 ID2D1RenderTarget * renderTarget = CreateRenderTarget(dxgiSurface);
 renderTarget->BeginDraw();

 // Draw the bitmap to the surface
 D2D1_RECT_F rect = { 0, 0, (float)width, (float)height };
 renderTarget->DrawBitmap(bitmap.Get(), &rect);

 // End drawing
 renderTarget->EndDraw();
 sisNative->EndDraw();

 // Release update resources
 renderTarget->Release();
 dxgiSurface->Release();
}

That concludes the SurfaceImageSourceRenderer source code. The class is demoed in the SpinPaint
project. This program displays a spinning disk on which you can draw simply by holding your finger

	 CHAPTER 15  Going Native	 837

still on the screen or by moving it around. But what gets drawn is also drawn three additional times as
mirror images, creating an interesting pattern with a minimum of effort:

I wrote the first version of SpinPaint for the coffee-table-sized computers now known as Microsoft
PixelSense. I then ported the program to Silverlight using WriteableBitmap and Windows Phone 7
using XNA.

In the Windows 8 version of SpinPaint, the XAML file defines a Grid called referencePanel that sits
in the center of the page. During the Loaded event this Grid is given square dimensions the same size
as the SurfaceImageSource that it also creates. Within this Grid is another Grid named rotatingPanel
that (as the name implies) rotates. This inner Grid consists of some background shading simply to
make it obvious that something is spinning prior to anything being drawn on it. On top of that is an
Image element for displaying the SurfaceImageSource bitmap and a clipping circle:

Project: SpinPaint | File: MainPage.xaml (excerpt)

<Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <Grid Name="referencePanel"
 Margin="24"
 HorizontalAlignment="Center"
 VerticalAlignment="Center">

 <Grid Name="rotatingPanel">
 <Grid.RenderTransform>
 <RotateTransform x:Name="rotate" />
 </Grid.RenderTransform>

 <Ellipse>
 <Ellipse.Fill>
 <LinearGradientBrush>
 <GradientStop Offset="0" Color="Black" />
 <GradientStop Offset="1" Color="White" />
 </LinearGradientBrush>

838	 PART 2  Specialties

 </Ellipse.Fill>
 </Ellipse>

 <Image Name="image"
 Stretch="None" />

 <!-- Cover all but a circle (poor man's clipping) -->
 <Path Fill="{StaticResource ApplicationPageBackgroundThemeBrush}"
 Stretch="Uniform">
 <Path.Data>
 <GeometryGroup>
 <RectangleGeometry Rect="0 0 100 100" />
 <EllipseGeometry Center="50 50" RadiusX="50" RadiusY="50" />
 </GeometryGroup>
 </Path.Data>
 </Path>
 </Grid>
 </Grid>

 <TextBlock x:Name="pageTitle"
 Text="Spin Paint"
 FontSize="48"
 Margin="24">
 <TextBlock.Foreground>
 <SolidColorBrush />
 </TextBlock.Foreground>
 </TextBlock>

 <Button Content="clear"
 HorizontalAlignment="Right"
 VerticalAlignment="Bottom"
 FontSize="48"
 Margin="24"
 Click="OnClearButtonClick" />
</Grid>

The Loaded handler determines a good size for the SurfaceImageSource object based
on the dimensions of the screen and the view state. The Loaded handler also creates a
SurfaceImageSourceRenderer from the DirectXWrapper library:

Project: SpinPaint | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{

 ...

 int dimension;
 SurfaceImageSourceRenderer surfaceImageSourceRenderer;
 RotateTransform inverseRotate = new RotateTransform();

 public MainPage()
 {
 InitializeComponent();
 Loaded +=OnMainPageLoaded;
 }

	 CHAPTER 15  Going Native	 839

 void OnMainPageLoaded(object sender, RoutedEventArgs args)
 {
 // Find the dimension of the square bitmap
 if (ApplicationView.Value == ApplicationViewState.FullScreenPortrait)
 {
 dimension = (int)(this.ActualWidth - referencePanel.Margin.Left
 - referencePanel.Margin.Right);
 }
 else
 {
 dimension = (int)(this.ActualHeight - referencePanel.Margin.Top
 - referencePanel.Margin.Bottom);
 }

 // Set this size to the reference panel so it doesn't get distorted in Snapped view
 referencePanel.Width = dimension;
 referencePanel.Height = dimension;

 // Create the SurfaceImageSource and renderer
 SurfaceImageSource surfaceImageSource = new SurfaceImageSource(dimension, dimension);
 surfaceImageSourceRenderer = new SurfaceImageSourceRenderer(surfaceImageSource,
 dimension, dimension);
 image.Source = surfaceImageSource;

 // Set rotation centers
 rotate.CenterX = dimension / 2;
 rotate.CenterY = dimension / 2;

 inverseRotate.CenterX = dimension / 2;
 inverseRotate.CenterY = dimension / 2;

 // Start the event
 CompositionTarget.Rendering += OnCompositionTargetRendering;
 }

 ...

 void OnClearButtonClick(object sender, RoutedEventArgs e)
 {
 SurfaceImageSource surfaceImageSource = new SurfaceImageSource(dimension, dimension);
 surfaceImageSourceRenderer = new SurfaceImageSourceRenderer(surfaceImageSource,
 dimension, dimension);
 image.Source = surfaceImageSource;
 }
}

The Clear button simply creates a new SurfaceImageSource and SurfaceImageSourceRenderer of that
predetermined size.

Similar to the FingerPaint series of programs, you can draw on SpinPaint using multiple fingers.
However, conceptually you’re painting on a spinning disk, and you can simply hold your finger still on
the screen and paint. In other words, your finger can paint without moving and without generating
any PointerMoved events!

840	 PART 2  Specialties

This requires a somewhat different approach to handling Pointer events. A dictionary is
maintained, of course, and the FingerInfo values it contains have LastPosition and ThisPosition fields.
However, in the OnPointerPressed override, LastPosition is initialized to infinite coordinates, and in
both OnPointerPressed and OnPointerMoved, the ThisPosition field is set to the current finger position.
Aside from the initialization of the LastPosition field, these overrides never set that field to anything
else:

Project: SpinPaint | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 class FingerInfo
 {
 public Point LastPosition;
 public Point ThisPosition;
 }

 Dictionary<uint, FingerInfo> fingerTouches = new Dictionary<uint, FingerInfo>();
 ...
 protected override void OnPointerPressed(PointerRoutedEventArgs args)
 {
 uint id = args.Pointer.PointerId;
 Point pt = args.GetCurrentPoint(referencePanel).Position;

 if (fingerTouches.ContainsKey(id))
 fingerTouches.Remove(id);

 FingerInfo fingerInfo = new FingerInfo
 {
 LastPosition = new Point(Double.PositiveInfinity, Double.PositiveInfinity),
 ThisPosition = pt
 };

 fingerTouches.Add(id, fingerInfo);
 CapturePointer(args.Pointer);
 base.OnPointerPressed(args);
 }

 protected override void OnPointerMoved(PointerRoutedEventArgs args)
 {
 uint id = args.Pointer.PointerId;
 Point pt = args.GetCurrentPoint(referencePanel).Position;

 if (fingerTouches.ContainsKey(id))
 fingerTouches[id].ThisPosition = pt;

 base.OnPointerMoved(args);
 }

 protected override void OnPointerReleased(PointerRoutedEventArgs args)
 {
 uint id = args.Pointer.PointerId;

	 CHAPTER 15  Going Native	 841

 if (fingerTouches.ContainsKey(id))
 fingerTouches.Remove(id);

 base.OnPointerReleased(args);
 }

 protected override void OnPointerCaptureLost(PointerRoutedEventArgs args)
 {
 uint id = args.Pointer.PointerId;

 if (fingerTouches.ContainsKey(id))
 fingerTouches.Remove(id);

 base.OnPointerCaptureLost(args);
 }
 ...
}

All the really interesting activity occurs in the CompositionTarget.Rendering event handler. Based
on the current elapsed time of the application, a rotation angle is calculated to spin the Grid named
rotatingPanel and to calculate a painting color. This color is also applied to the TextBlock displaying
the name of the application at the upper-left corner of the page:

Project: SpinPaint | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
void OnCompositionTargetRendering(object sender, object args)
{
 // Get elapsed seconds since app began
 TimeSpan timeSpan = (args as RenderingEventArgs).RenderingTime;
 double seconds = timeSpan.TotalSeconds;

 // Calculate rotation angle
 rotate.Angle = (360 * seconds / 5) % 360;

 // Calculate color and brush
 Color clr;
 double fraction = 6 * (seconds % 10) / 10;

 if (fraction < 1)
 clr = Color.FromArgb(255, 255, (byte)(fraction * 255), 0);
 else if (fraction < 2)
 clr = Color.FromArgb(255, (byte)(255 - (fraction - 1) * 255), 255, 0);
 else if (fraction < 3)
 clr = Color.FromArgb(255, 0, 255, (byte)((fraction - 2) * 255));
 else if (fraction < 4)
 clr = Color.FromArgb(255, 0, (byte)(255 - (fraction - 3) * 255), 255);
 else if (fraction < 5)
 clr = Color.FromArgb(255, (byte)((fraction - 4) * 255), 0, 255);
 else
 clr = Color.FromArgb(255, 255, 0, (byte)(255 - (fraction - 5) * 255));

 (pageTitle.Foreground as SolidColorBrush).Color = clr;

842	 PART 2  Specialties

 // All done if nobody's touching
 if (fingerTouches.Count == 0)
 return;

 ...
}

Then, for each finger currently touching the screen, the ThisPosition field of FingerInfo is rotated
so that the point is no longer in screen coordinates but relative to the rotated Image element. It is
this point along with the LastPosition field of FingerInfo that is used for drawing. The four calls to the
DrawLine method of SurfaceImageSourceRenderer draw four separate lines in the four quadrants of
the bitmap:

Project: SpinPaint | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
void OnCompositionTargetRendering(object sender, object args)
{
 ...

 bool bitmapNeedsUpdate = false;

 foreach (FingerInfo fingerInfo in fingerTouches.Values)
 {
 // Find point relative to rotated bitmap
 inverseRotate.Angle = -rotate.Angle;
 Point point1 = inverseRotate.TransformPoint(fingerInfo.ThisPosition);

 if (!Double.IsPositiveInfinity(fingerInfo.LastPosition.X))
 {
 Point point2 = fingerInfo.LastPosition;
 float thickness = 12;

 // Draw the lines
 surfaceImageSourceRenderer.DrawLine(point1, point2, clr, thickness);
 surfaceImageSourceRenderer.DrawLine(new Point(dimension - point1.X, point1.Y),
 new Point(dimension - point2.X, point2.Y),
 clr, thickness);
 surfaceImageSourceRenderer.DrawLine(new Point(point1.X, dimension - point1.Y),
 new Point(point2.X, dimension - point2.Y),
 clr, thickness);
 surfaceImageSourceRenderer.DrawLine(new Point(dimension - point1.X,
 dimension - point1.Y),
 new Point(dimension - point2.X,
 dimension - point2.Y),
 clr, thickness);
 bitmapNeedsUpdate = true;
 }
 fingerInfo.LastPosition = point1;
 }

	 CHAPTER 15  Going Native	 843

 // Update bitmap
 if (bitmapNeedsUpdate)
 {
 surfaceImageSourceRenderer.Update();
 }
}

It is also this rotated finger position that is stored back into the FingerInfo object as LastPosition.
This is how a finger sitting on the screen without moving can draw: Even if the finger hasn’t moved
at all, the current position of that finger was obtained in the OnPointerPressed override and remains
stored in the ThisPosition field of FingerInfo. During every call to CompositionTarget.Rendering, the
ThisPosition field is rotated with a new angle and a line is drawn from the LastPosition field. The
rotated position value is then stored back into FingerInfo as LastPosition in preparation for the next
iteration.

It’s interesting that I first conceived the SpinPaint program for Microsoft PixelSense, where I could
use a static Contacts class to obtain the current positions of all the fingers touching the screen without
any touch event handling. Because I could treat finger touches as state rather than events, processing
those fingers in a CompositionTarget.Rendering handler seemed very natural.

When porting the SpinPaint program to environments with only events for processing touch, I had
to mimic the touch state of the Contacts class. The ThisPosition field of FingerInfo is precisely that: At
any time, these FingerInfo objects in the dictionary indicate the current locations of all the fingers on
the screen. But I’m not sure I would have even conceived of this program if I hadn’t had experience
with an environment in which touch was available as a state rather than just events.

This reinforces my belief that the more you know, the better you’re able to think outside the box.

		 845

C H A P T E R 1 6

Rich Text

The term “rich text” once meant text displayed with different fonts, sizes, and styling, but now
that those features are commonplace, rich text has come to refer more vaguely to something

somewhat beyond the ordinary. The bulk of this chapter focuses on the RichTextBlock element and
the RichEditBox control, which (as their names suggest) are souped-up versions of TextBlock and
TextBox. But this chapter also provides a few hints that might help get you started on more extensive
text-processing jobs.

The terminology that surrounds fonts has changed somewhat over the years with the switch to
digital typography. The word typeface traditionally indicated a particular design style of character
glyphs. Common typefaces are Times New Roman and Helvetica. These typeface designs often have
variations, most commonly italic and boldface, so a typeface family might include Times New Roman,
Times New Roman Italic, and Times New Roman Bold.

A font is a physical implementation of a particular typeface with a particular style and a particular
size: in predigital typography, for example, 10-point Helvetica Bold. Each character in a particular font
was a unique chunk of metal type.

As people began working with text on computers, two trends resulted in the blurring of this
terminology. First, users preferred thinking of italic or boldface as an attribute rather than an intrinsic
part of a typeface. For example, rather than changing a particular word from Times New Roman
to Times New Roman Italic, it was more convenient to apply an Italic attribute to the word regard-
less of the underlying typeface. Second, with the advent of digital outline font technologies such
as TrueType, the size of font characters became a fairly trivial scaling process, so people no longer
thought of size as constituting a crucial part of a font specification.

To help accommodate this different way of thinking, the term font family became common. A font
family is much like a traditional typeface. It has a name such as Times New Roman or Helvetica. The
font family is implemented in the Windows Runtime with a FontFamily class and in the TextBlock and
Control classes with a FontFamily property. A Windows 8 program uses the FontFamily in connection
with the other font-related properties (FontSize, FontStyle, FontWeight, and FontStretch) for a
complete font specification.

846	 PART 2  Specialties

The underlying technology, however, takes a more traditional approach. In Windows, fonts are
implemented with font files, usually with the extension .TTF (“TrueType font”). These can be found in
the /Windows/Fonts directory. Many of these files were probably installed along with Windows; some
of them may have been added to the collection by various applications. Windows Explorer manages
this directory a little differently from conventional directories, so you don’t directly see the filenames.
(Also in this directory are some bitmap fonts of particular sizes, but these are used for command-line
windows.)

What’s listed in the /Windows/Fonts directory instead of filenames are font family names, such as
Georgia:

Notice that this appears to be several documents. If you double-tap this stack, you’ll see another
screen that displays the individual font files that are members of this font family:

If you now right-click one of these and bring up a Properties screen, you’ll see that these are each a
separate file: in order, georgiab.ttf, georgiaz.ttf, georgiai.ttf, and georgia.ttf. Each file contains scalable
outlines for many characters—not all Unicode characters but a substantial subset.

Some font families contain variations other than Italic and Bold, for example, Oblique or Light or
Demibold, and some font families contain Compressed or Expanded variations. It is the responsibility
of Windows to reference a suitable font file when a particular combination of FontStyle, FontWeight,
and FontStretch properties are specified.

Some font families do not contain Italic or Bold variations. For those font families, these styles can
be simulated: by tilting the characters toward the right or making the character strokes a bit wider.

	 CHAPTER 16  Rich Text	 847

Private Fonts

Your Windows Store program can use any of the outline fonts in the /Windows/Fonts directory, but as
I discussed in Chapter 15, “Going Native,” DirectWrite is required to actually enumerate the available
font family names.

Sometimes programs need to use fonts that might not be installed under Windows. One
traditional solution is to provide the fonts along with the application and have the user install them,
but in some cases the program might want the fonts to remain private. Perhaps the fonts have been
licensed by the font manufacturer strictly for use by the particular application. In this case, the fonts
should remain private for the application’s exclusive use.

In such cases, these private font files can be treated as application content and effectively
embedded in the application executable. The PrivateFonts project demonstrates how this is done. I
created a folder named Fonts in this project, and then I added eight TrueType files, as shown here:

Each of these font files has its Build Action set to the default value of Content.

If you are creating such a program in Visual Studio for other people to run, you cannot simply add
arbitrary font files to the project. Because these font files will be distributed to a user as part of the
application, you must have permission to distribute them. For many font files—including many of the
fonts that come with Windows and Windows applications—distributing the files with your application
requires that you license the fonts for this purpose from the font manufacturer.

However, the particular font files I added to my PrivateFonts project have no such restrictions. If
you’re an XNA programmer, you might recognize these font files as the ones that Microsoft licensed
from the Ascender Corporation for purposes of free distribution with applications.

A TextBlock element in a XAML file can access these fonts with a little different format of the
FontFamily attribute. Normally, you set FontFamily to a font family name such as “Times New Roman”

848	 PART 2  Specialties

or “Segoe UI.” To use a private font, you must specify a URI indicating the location of the font file,
followed by a hash (or number) sign, followed by the font family name, as shown here:

Project: PrivateFonts | File: MainPage.xaml (excerpt)

<Page ... FontSize="36">
 <Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="*" />
 <ColumnDefinition Width="*" />
 <ColumnDefinition Width="*" />
 <ColumnDefinition Width="*" />
 </Grid.ColumnDefinitions>

 <StackPanel Grid.Column="0">
 <TextBlock Text="Kootenay"
 FontFamily="ms-appx:///Fonts/Kooten.ttf#Kootenay" />

 <TextBlock Text="Lindsey"
 FontFamily="ms-appx:///Fonts/Linds.ttf#Lindsey" />

 <TextBlock Text="Miramonte"
 FontFamily="ms-appx:///Fonts/Miramo.ttf#Miramonte" />

 <TextBlock Text="Miramonte Bold"
 FontFamily="ms-appx:///Fonts/Miramob.ttf#Miramonte" />

 <TextBlock Text="Pericles"
 FontFamily="ms-appx:///Fonts/Peric.ttf#Pericles" />

 <TextBlock Text="Pericles Light"
 FontFamily="ms-appx:///Fonts/Pericl.ttf#Pericles" />

 <TextBlock Text="Pescadero"
 FontFamily="ms-appx:///Fonts/Pesca.ttf#Pescadero" />

 <TextBlock Text="Pescadero Bold"
 FontFamily="ms-appx:///Fonts/Pescab.ttf#Pescadero" />

 <TextBlock Text="Pescadero Bold*"
 FontFamily="ms-appx:///Fonts/Pesca.ttf#Pescadero"
 FontWeight="Bold" />

 <TextBlock Text="Pescadero Italic*"
 FontFamily="ms-appx:///Fonts/Pesca.ttf#Pescadero"
 FontStyle="Italic" />
 </StackPanel>
 ...
 </Grid>
</Page>

These FontFamily strings include the ms-appx prefix for referencing embedded content of the
application file, followed by the Fonts folder and the filename within the Fonts folder. Here’s the URI
of the Kooten.ttf file:

ms-appx:///Fonts/Kooten.ttf

	 CHAPTER 16  Rich Text	 849

It’s possible to remove the “ms-appx:///” prefix and the program will work the same.

The URI is followed by a hash sign, and the family name of the font in this font file:

FontFamily="ms-appx:///Fonts/Kooten.ttf#Kootenay"

Obviously, this font family name is not the name of the file (but it could be). To obtain the font family
name of an arbitrary TrueType font file not stored in the /Windows/Fonts directory, you can right-click
the font file in Windows Explorer and choose Properties or Preview.

The Miramo.ttf file is the regular version of Miramonte; the bold version is in the Miramob.ttf file.
Notice that in both cases the font family name specified in the markup is “Miramonte.” If these two
font files were installed under Windows, you’d reference either of them by setting the FontFamily
attribute to “Miramonte”, and you’d get the bold version by setting FontWeight to Bold. When you’re
using the syntax that includes the font file, the font family name is the same but you don’t need to set
FontWeight.

Similarly, the Peric.ttf file has the regular Pericles font and Pericl.ttf file contains the Light version;
the regular Pescadero font is in Pesca.ttf, while the Bold version is in Pescab.ttf.

Notice that the last two TextBlock elements both reference the file containing the regular version
of Pescadero, but the FontWeight and FontStyle attributes are set to Bold and Italic, respectively.
Because these attributes are applied to a regular font, these styles are simulated, as I indicate with an
asterisk and footnote.

The PrivateFonts program actually displays four columns of text. Here’s only the first column
generated from the XAML you’ve just seen:

Notice how the actual boldface font is different from the simulated boldface. (Also, notice how the
Pericles font displays lowercase letters with small capitals!)

850	 PART 2  Specialties

To reference a private font in code, you create a FontFamily object by using the same string you
use in XAML:

txtblk.FontFamily = new FontFamily("ms-appx:///Fonts/Linds.ttf#Lindsey");

The PrivateFonts program displays four columns of very similar text, and you’ve seen only the first,
so we’re not quite finished with this program.

A Taste of Glyphs

An alternative to the TextBlock element is an element called Glyphs. It is harder to use than TextBlock,
but it includes a facility to space individual characters.

The second column of text in PrivateFonts is displayed with the following markup:

Project: PrivateFonts | File: MainPage.xaml (excerpt)

<Grid Grid.Column="1">
 <Glyphs UnicodeString="Kootenay"
 FontUri="ms-appx:///Fonts/Kooten.ttf"
 FontRenderingEmSize="36"
 Fill="Black"
 OriginX="0"
 OriginY="45" />

 <Glyphs UnicodeString="Lindsey"
 FontUri="ms-appx:///Fonts/Linds.ttf"
 FontRenderingEmSize="36"
 Fill="Black"
 OriginX="0"
 OriginY="90" />

 <Glyphs UnicodeString="Miramonte"
 FontUri="ms-appx:///Fonts/Miramo.ttf"
 FontRenderingEmSize="36"
 Fill="Black"
 OriginX="0"
 OriginY="135" />

 <Glyphs UnicodeString="Miramonte Bold"
 FontUri="ms-appx:///Fonts/Miramob.ttf"
 FontRenderingEmSize="36"
 Fill="Black"
 OriginX="0"
 OriginY="180" />

 <Glyphs UnicodeString="Pericles"
 FontUri="ms-appx:///Fonts/Peric.ttf"
 FontRenderingEmSize="36"
 Fill="Black"
 OriginX="0"
 OriginY="225" />

	 CHAPTER 16  Rich Text	 851

 <Glyphs UnicodeString="Pericles Light"
 FontUri="ms-appx:///Fonts/Pericl.ttf"
 FontRenderingEmSize="36"
 Fill="Black"
 OriginX="0"
 OriginY="270" />

 <Glyphs UnicodeString="Pescadero"
 FontUri="ms-appx:///Fonts/Pesca.ttf"
 FontRenderingEmSize="36"
 Fill="Black"
 OriginX="0"
 OriginY="315" />

 <Glyphs UnicodeString="Pescadero Bold"
 FontUri="ms-appx:///Fonts/Pescab.ttf"
 FontRenderingEmSize="36"
 Fill="Black"
 OriginX="0"
 OriginY="360" />

 <Glyphs UnicodeString="Pescadero Bold*"
 FontUri="ms-appx:///Fonts/Pesca.ttf"
 StyleSimulations="BoldSimulation"
 FontRenderingEmSize="36"
 Fill="Black"
 OriginX="0"
 OriginY="405" />

 <Glyphs UnicodeString="Pescadero Italic*"
 FontUri="ms-appx:///Fonts/Pesca.ttf"
 StyleSimulations="ItalicSimulation"
 FontRenderingEmSize="36"
 Fill="Black"
 OriginX="0"
 OriginY="450" />
</Grid>

Rather than a Text property, Glyphs defines a UnicodeString property. Three other properties are
required: The FontUri property is (as the name suggests) a URI of the font file. Notice that it’s only the
URI; there is no need to supply the font family name. Glyphs works at a low level with the font file; it
doesn’t know about family names. The FontRenderingEmSize is equivalent to the FontSize property,
but there is no default. Nor is there a default for the Fill property.

Notice that the last two items reference the regular Pescadero font file but set StyleSimulations to
BoldSimulation and ItalicSimulation, respectively. The StyleSimulations enumeration also includes a
BoldItalicSimulation member.

The OriginX and OriginY properties indicate the location of the text relative to its parent—or, more
precisely, relative to where the parent places the element. The parent here is simply a single-cell Grid
rather than a StackPanel as I used for the first column. (Very often the parent of a collection of Glyphs
elements is a Canvas.) The origin specifies the left of the baseline, not the top of the text. I’ve simply

852	 PART 2  Specialties

set the first OriginY to 45 and incremented each by 45, which is approximately correct, as you can see
with a visual comparison of the first two columns displayed by PrivateFonts:

In a real program, you would be using font metrics to position each Glyphs element.

If you need to set the FontUri property in code, just create a Uri object and use the same string
that you’ve seen in the XAML file:

glyphs.FontUri = new Uri("ms-appx:///Fonts/Linds.ttf");

The Glyphs element does not automatically wrap text in multiple lines. However, there is a
property not shown in my examples called Indices that lets you provide additional offsets to space
the individual characters with great precision. You can also use the Indices string to indicate substitute
characters, such as ligatures, which are stylistic combinations of two or more letters in a single glyph.

Font Files in Local Storage

The Glyphs element is found most commonly in documents created using the XML Paper
Specification (XPS) that Microsoft developed in connection with WPF. XPS is a fixed-page document
format. That is, all the pages of the document are fixed in size and layout, much like Adobe Portable
Document Format (PDF).

A file containing an XPS document is a “package,” which is basically a ZIP file containing font files,
bitmaps, and separate files for each page of the document. Each page of the document is a XAML file

	 CHAPTER 16  Rich Text	 853

with a root element of FixedPage (a class not defined in the Windows Runtime), generally containing
some Path elements for displaying graphics and bitmaps in the form of ImageBrush objects and con-
taining Glyphs elements for displaying text. The Glyphs elements have their FontUri attributes set to a
URI referencing a font file in the XPS package. These Glyphs elements already have all their properties
set to correctly position the text within the page.

A WPF program can render an XPS file without too much bother. A Windows 8 program would
have considerably more work to do. The program would need to open up the XPS package and parse
the individual FixedPage files. For each page, the program would need to instantiate the various Path,
ImageBrush, and Glyphs objects in code—all the time taking care to compensate for any XPS features
not supported under the Windows Runtime.

Within the XPS package, the URIs of the ImageBrush and Glyphs elements reference bitmap files
and font file within the package. These bitmaps and font files would need to be copied to application
local storage, and the URIs modified to point to that storage.

The PrivateFonts program demonstrates the feasibility of this process. The first time you run the
program, the third column displays text using the Windows 8 default font rather than any of the
private fonts and the fourth column is absent:

854	 PART 2  Specialties

The subsequent times you run the program, the third and fourth columns match the first two:

This difference is a fluke based on the structuring of the program. What happens when you first
run the program is that the font files are copied to application local storage:

Project: PrivateFonts | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 public MainPage()
 {
 this.InitializeComponent();
 Loaded += OnLoaded;
 }

 async void OnLoaded(object sender, RoutedEventArgs args)
 {
 StorageFolder localFolder = ApplicationData.Current.LocalFolder;
 bool folderExists = false;

 try
 {
 StorageFolder fontsFolder = await localFolder.GetFolderAsync("Fonts");
 folderExists = true;
 }
 catch (Exception)
 {
 }

 if (!folderExists)
 {
 StorageFolder fontsFolder = await localFolder.CreateFolderAsync("Fonts");

 string[] fonts = { "Kooten.ttf", "Linds.ttf", "Miramo.ttf", "Miramob.ttf",
 "Peric.ttf", "pericl.ttf", "Pesca.ttf", "Pescab.ttf" };

	 CHAPTER 16  Rich Text	 855

 foreach (string font in fonts)
 {
 // Copy from application content to IBuffer
 string uri = "ms-appx:///Fonts/" + font;
 IBuffer buffer = await PathIO.ReadBufferAsync(uri);

 // Copy from IBuffer to local storage
 StorageFile fontFile = await fontsFolder.CreateFileAsync(font);
 await FileIO.WriteBufferAsync(fontFile, buffer);
 }
 }
 }
}

The Loaded handler checks if a directory named Fonts exists in local storage. If not, it creates
one and then copies all the font files into that directory with the same names. (If this job could be
performed synchronously, I would have done it in the constructor prior to InitializeComponent so that
the files would be available to the XAML parser the first time the program is run.)

The markup for referencing the files in local storage is pretty much the same as referencing
program content except the prefix is ms-appdata and the Fonts directory needs to be preceded with
local. I’m sure you don’t need to see them all to get the general idea:

Project: PrivateFonts | File: MainPage.xaml (excerpt)

<Page ... FontSize="36">
 <Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="*" />
 <ColumnDefinition Width="*" />
 <ColumnDefinition Width="*" />
 <ColumnDefinition Width="*" />
 </Grid.ColumnDefinitions>

 ...

 <StackPanel Grid.Column="2">
 <TextBlock Text="Kootenay"
 FontFamily="ms-appdata:///local/Fonts/Kooten.ttf#Kootenay" />

 ...

 <TextBlock Text="Pescadero Italic*"
 FontFamily="ms-appdata:///local/Fonts/Pesca.ttf#Pescadero"
 FontStyle="Italic" />
 </StackPanel>

 <Grid Grid.Column="3">
 <Glyphs UnicodeString="Kootenay"
 FontUri="ms-appdata:///local/Fonts/Kooten.ttf"
 FontRenderingEmSize="36"
 Fill="Black"
 OriginX="0"
 OriginY="45" />

856	 PART 2  Specialties

 ...

 <Glyphs UnicodeString="Pescadero Italic*"
 FontUri="ms-appdata:///local/Fonts/Pesca.ttf"
 StyleSimulations="ItalicSimulation"
 FontRenderingEmSize="36"
 Fill="Black"
 OriginX="0"
 OriginY="450" />
 </Grid>

 <TextBlock Text="*simulated"
 Grid.ColumnSpan="4"
 VerticalAlignment="Bottom"
 HorizontalAlignment="Center" />
 </Grid>
</Page>

Again, if you need to do this in code, you’ll be using the same strings you’ve seen in the XAML file:

txtblk.FontFamily = new FontFamily("ms-appdata:///local/Fonts/Linds.ttf#Lindsey");

glyphs.FontUri = new Uri("ms-appdata:///local/Fonts/Linds.ttf");

Of all the sophisticated document formats in existence that might be rendered under Windows 8,
XPS is almost certainly the easiest because the contents are similar to elements found in the Windows
Runtime, all the pages have already been constructed, and all the graphics and Glyphs elements have
been positioned precisely within those pages. Much more challenging would be a reflow-page format
like EPUB, where the job of positioning words on the page is the responsibility of the program. This
job requires a more intimate familiarity with font metrics.

The simple approach to font metrics involves subjecting a TextBlock to a Measure call and
obtaining its width and height. This would allow you to determine the placement of individual words
in a paragraph, where lines break within a paragraph, and where paragraphs break between pages.
However, if you ever need to align separate TextBlock elements of different font sizes or font families
on the baseline, you’ll need more information.

At that point, you’ll need to either examine the internals of the font files themselves to extract font
metrics or begin using DirectWrite. Once you start using DirectWrite for font metrics, quite possibly
you’ll also see that it’s the best tool for laying out pages as well.

Typographical Enhancements

The Typography class in the Windows.UI.Xaml.Documents namespace contains nothing but a
collection of attached properties for enhancing text. You can insert these attached properties in the
root element of a page or in a TextBlock or Run element to control various aspects of how text is
displayed. The catch is: You can’t guarantee that these features work for all fonts. Indeed, you might
find yourself searching a long time for a font that responds to some of these attached properties!

	 CHAPTER 16  Rich Text	 857

In the following examples, I’ve relied heavily on the documentation of the WPF version of the
Typography class, which matches up some of these attached properties with particular fonts. Some of
these examples involve the Lindsey, Miramonte, Pescadero, and Pericles fonts, which are included as
program content:

Project: TypographyDemo | File: MainPage.xaml (excerpt)

<Page ... >
 <Page.Resources>
 <Style TargetType="TextBlock">
 <Setter Property="FontSize" Value="48" />
 <Setter Property="Margin" Value="6 6 6 0" />
 </Style>
 </Page.Resources>

 <Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <StackPanel>
 <TextBlock Text="Small Caps are Nice for Titles"
 Typography.Capitals="SmallCaps" />

 <TextBlock Text="Some random contextual alternates make script look more natural"
 FontFamily="ms-appx:///Fonts/Linds.ttf#Lindsey"
 Typography.ContextualAlternates="True" />

 <TextBlock Text="Stacked fractions: 1/2 1/4 1/8 1/3 2/3"
 FontFamily="Palatino Linotype"
 Typography.Fraction="Stacked" />

 <TextBlock Text="Historical forms: Four score and seven years ago"
 FontFamily="Palatino Linotype"
 Typography.HistoricalForms="True" />

 <TextBlock Text="Numeral alignment for tables: 0123456789"
 FontFamily="ms-appx:///Fonts/Miramo.ttf#Miramonte"
 Typography.NumeralAlignment="Tabular" />

 <TextBlock Text="Old-style numbers: 0123456789"
 FontFamily="Palatino Linotype"
 Typography.NumeralStyle="OldStyle" />

 <TextBlock Text="Standard Swashes With The Pescadero Font"
 FontFamily="ms-appx:///Fonts/Pesca.ttf#Pescadero"
 Typography.StandardSwashes="1" />

 <TextBlock Text="Slashed Zero: 0"
 FontFamily="ms-appx:///Fonts/Miramo.ttf#Miramonte"
 Typography.SlashedZero="True" />

 <TextBlock Text="STYLISTIC ALTERNATES WITH THE PERICLES FONT"
 FontFamily="ms-appx:///Fonts/Peric.ttf#Pericles"
 Typography.StylisticAlternates="1" />

858	 PART 2  Specialties

 <TextBlock FontFamily="Palatino Linotype">
 Sucrose is C<Run Typography.Variants="Inferior">12</Run
 >H<Run Typography.Variants="Inferior">22</Run
 >O<Run Typography.Variants="Inferior">11</Run>
 </TextBlock>
 </StackPanel>
 </Grid>
</Page>

And here’s the result:

RichTextBlock and Paragraphs

Although TextBlock continues to be preferred for text up to a paragraph in length, the RichTextBlock
offers several enhancements. RichTextBlock does not have a Text property; nor does it have an Inlines
property for specifying text in the form of Inline derivatives. What RichTextBlock defines instead is
a property named Blocks, which is a collection of Block derivatives. Like Inline, Block derives from
TextElement, from which it acquires a bunch of text-related properties. In addition, Block defines
these properties:

•	 LineHeight

•	 LineStackingStrategy

•	 Margin

•	 TextAlignment

	 CHAPTER 16  Rich Text	 859

Also, like Inline, Block itself is not instantiable. The only class that currently derives from Block is
Paragraph, which defines two properties:

•	 Inlines, a collection of Inline derivatives, and

•	 TextIndent, for setting an indentation of the first line of the paragraph.

So, basically, a RichTextBlock is a collection of paragraphs. The Margin property is useful for defining
space between the paragraphs, and TextIndent can indent the first line.

The MadTeaParty project uses a RichTextBlock inside a ScrollViewer to let you peruse Chapter 7 of
Lewis Carroll’s Alice’s Adventures in Wonderland, including three of John Tenniel’s illustrations. Here’s
an excerpt of the XAML file:

Project: MadTeaParty | File: MainPage.xaml (excerpt)

<Page ... >
 <Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <ScrollViewer Width="720"
 Padding="40 20">

 <!-- Text and images from http://ebooks.adelaide.edu.au/c/carroll/lewis/alice/ -->

 <RichTextBlock FontFamily="Cambria"
 FontSize="24">
 <Paragraph Margin="0 12" TextAlignment="Center" FontSize="40">
 <Italic>Alice’s Adventures in Wonderland</Italic>
 <LineBreak/>
 by
 <LineBreak/>
 Lewis Carroll
 </Paragraph>

 <Paragraph Margin="0 24 0 36" TextAlignment="Center" FontSize="30">
 Chapter VII
 <LineBreak />
 A Mad Tea-Party
 </Paragraph>

 <Paragraph Margin="0 6">
 There was a table set out under a tree in front of the
 house, and the March Hare and the Hatter were having tea at
 it: a Dormouse was sitting between them, fast asleep, and
 the other two were using it as a cushion, resting their
 elbows on it, and talking over its head. ‘Very uncomfortable
 for the Dormouse,’ thought Alice; ‘only, as it’s asleep, I
 suppose it doesn’t mind.’
 </Paragraph>

 <Paragraph Margin="0 6" TextIndent="48">
 The table was a large one, but the three were all crowded
 together at one corner of it: ‘No room! No room!’ they
 cried out when they saw Alice coming. ‘There’s
 <Italic>plenty</Italic> of room!’ said Alice indignantly,
 and she sat down in a large arm-chair at one end of the table.
 </Paragraph>

860	 PART 2  Specialties

 <Paragraph Margin="0 6" TextIndent="48">
 ‘Have some wine,’ the March Hare said in an encouraging tone.
 </Paragraph>

 <Paragraph Margin="0 6" TextIndent="48">
 Alice looked all round the table, but there was nothing on it
 but tea. ‘I don’t see any wine,’ she remarked.
 </Paragraph>

 <Paragraph Margin="0 6" TextIndent="48">
 ‘There isn’t any,’ said the March Hare.
 </Paragraph>

 ...

 <Paragraph Margin="0 6" TextIndent="48">
 ‘It
 <Italic>is</Italic> the same thing with you,’ said the
 Hatter, and here the conversation dropped, and the party sat
 silent for a minute, while Alice thought over all she could
 remember about ravens and writing-desks, which wasn’t much.
 </Paragraph>

 <Paragraph Margin="0 6" TextAlignment="Center">
 <InlineUIContainer>
 <Image Source="Images/ChapterVII-1.png" Stretch="None" />
 </InlineUIContainer>
 </Paragraph>

 <Paragraph Margin="0 6" TextIndent="48">
 The Hatter was the first to break the silence. ‘What day of
 the month is it?’ he said, turning to Alice: he had taken
 his watch out of his pocket, and was looking at it uneasily,
 shaking it every now and then, and holding it to his ear.
 </Paragraph>

 ...

 <Paragraph Margin="0 6" TextIndent="48">
 Just as she said this, she noticed that one of the trees
 had a door leading right into it. ‘That’s very curious!’
 she thought. ‘But everything’s curious today. I think I
 may as well go in at once.’ And in she went.
 </Paragraph>

 <Paragraph Margin="0 6" TextIndent="48">
 Once more she found herself in the long hall, and close to
 the little glass table. ‘Now, I’ll manage better this time,’
 she said to herself, and began by taking the little golden
 key, and unlocking the door that led into the garden. Then
 she went to work nibbling at the mushroom (she had kept a
 piece of it in her pocket) till she was about a foot high:
 then she walked down the little passage: and
 <Italic>then</Italic> — she found herself at last in the
 beautiful garden, among the bright flower-beds and the cool
 fountains.

	 CHAPTER 16  Rich Text	 861

 </Paragraph>
 </RichTextBlock>
 </ScrollViewer>
 </Grid>
</Page>

Paragraph doesn’t derive from FrameworkElement, so it doesn’t have a Style property. If you want
to set the same properties on a bunch of Paragraph objects, they need to be explicit. Most of the
paragraphs in “A Mad Tea-Party” have a Margin property for a 12-pixel interparagraph spacing and a
TextIndent property to indent the first line 48 pixels.

The InlineUIContainer doesn’t work with TextBlock, but it does with RichTextBlock. This allows you
to embed a UIElement derivative in text. The possibilities include TextBlock, so this facility provides
a way to embed text in a paragraph that contains a binding on its Text property. However, this
embedded TextBlock element can’t itself wrap text.

In the MadTeaParty program, the Image elements become part of the RichTextBlock. This requires
that they go inside an InlineUIContainer object, which then needs to be inside a Paragraph. There is
no facility to wrap the text of a paragraph around an image. If you want to do something like that
with C# and XAML, you’ll need to start measuring individual words of text and positioning them
yourself.

Here’s the chapter scrolled down to a point where you can see the third of the three images:

862	 PART 2  Specialties

RichTextBlock Selection

When the MadTeaParty program is running, tap a word with your finger. The word is selected with
two circular handles at each end. You can then grab those handles and extend the selection. Tap the
selection and a little menu comes up to copy the selection to the clipboard.

Or, if you don’t have a touch screen, use the mouse with the button pressed to select some text.
Then right-click to bring up the context menu with the Copy item.

RichTextBlock implements a SelectionChanged event, a SelectedText property to obtain the selected
text—but not to replace it or delete it—and SelectionStart and SelectionEnd properties. These latter
two properties are of type TextPointer, which not only provides an offset of the selected text within
the TextBlock but also indicates the pixel location of the selection relative to the TextBlock.

There is also a ContextMenuOpening event that occurs right before the context menu is displayed.
If you set the Handled property of the event arguments to true, the menu is not displayed, which
means that you can display your own context menu.

If you’d prefer that the RichTextBlock not allow text to be selected, set IsTextSelectionEnabled to
false.

RichTextBlock and Overflow

Throughout the history of books and reading, there have been two basic ways of presenting
extended text: a scroll of continuous text—common in ancient Egypt, China, and the Mediterranean
cultures of Greece and Rome—or a collection of individual pages, a form that began emerging in
Europe during the first several centuries of the common era.

These two formats are also common on the computer: Most webpages use scrolling, but most e-
book readers separate the text into pages.

I’ve just demonstrated that RichTextBlock can present text that is scrolled, but RichTextBlock takes a
giant step beyond previous text-display elements by its ability to paginate a document. These pages
can then be displayed sequentially, as in an e-book reader, or displayed in adjacent columns.

Here’s how it works: You put all the text you want to display in a RichTextBlock and then give
it a finite size, which means to subject it to a Measure pass, either manually or as part of normal
page layout. If the RichTextBlock contains more text than it can display in the space allotted for
it, its HasOverflowContent property becomes true. To display the second page of text beyond the
RichTextBlock, create an instance of the RichTextBlockOverflow class and set that instance to the
OverflowContentTarget property of the RichTextBlock.

RichTextBlockOverflow also defines HasOverflowContent and OverflowContentTarget properties,
so you can create additional RichTextBlockOverflow objects for each additional page and string them
in a chain. The RichTextBlockOverflow elements inherit all the text-related properties—FontFamily,
FontSize, and so forth—from the parent RichTextBlock.

	 CHAPTER 16  Rich Text	 863

If you can estimate the maximum number of pages you’ll need to display a document, you can
do this chaining job entirely in XAML by using data bindings. The YoungGoodmanBrown project
demonstrates how it’s done. The text is Nathaniel Hawthorne’s unnerving short story “Young
Goodman Brown” that I lifted from Project Gutenberg. Just as for “A Mad Tea-Party,” I put the entire
text in a single RichTextBlock, but I gave the OverflowContentTarget property of that RichTextBlock to
a RichTextBlockOverflow element, and so on down the chain:

Project: YoungGoodmanBrown | File: MainPage.xaml (excerpt)

<Page ... >
 <Page.Resources>
 <local:BooleanToVisibilityConverter x:Key="booleanToVisibility" />

 <Style TargetType="RichTextBlock">
 <Setter Property="Width" Value="480" />
 <Setter Property="Margin" Value="24 0 24 0" />
 <Setter Property="FontSize" Value="18" />
 <Setter Property="TextAlignment" Value="Justify" />
 </Style>

 <Style TargetType="RichTextBlockOverflow">
 <Setter Property="Width" Value="480" />
 <Setter Property="Margin" Value="24 0 24 0" />
 </Style>
 </Page.Resources>

 <Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <ScrollViewer HorizontalScrollBarVisibility="Hidden"
 VerticalScrollBarVisibility="Disabled">
 <StackPanel Orientation="Horizontal">

 <!-- Text from http://www.gutenberg.org/files/512/512-h/512-h.htm -->

 <RichTextBlock Name="richTextBlock"
 OverflowContentTarget="{Binding ElementName=overflow1}">
 <Paragraph TextAlignment="Center">
 YOUNG GOODMAN BROWN
 </Paragraph>

 <Paragraph TextAlignment="Center" Margin="0 12">
 by
 <LineBreak />
 Nathaniel Hawthorne
 </Paragraph>

 <Paragraph Margin="0 6" TextIndent="48">
 Young Goodman Brown came forth at sunset into the street at Salem
 village; but put his head back, after crossing the threshold, to
 exchange a parting kiss with his young wife. And Faith, as the wife was
 aptly named, thrust her own pretty head into the street, letting the
 wind play with the pink ribbons of her cap while she called to Goodman
 Brown.
 </Paragraph>

864	 PART 2  Specialties

 <Paragraph Margin="0 6" TextIndent="48">
 "Dearest heart," whispered she, softly and rather sadly, when her lips
 were close to his ear, "prithee put off your journey until sunrise and
 sleep in your own bed to-night. A lone woman is troubled with such
 dreams and such thoughts that she’s afeard of herself sometimes. Pray
 tarry with me this night, dear husband, of all nights in the year."
 </Paragraph>
 ...
 </RichTextBlock>

 <RichTextBlockOverflow Name="overflow1"
 Visibility="{Binding ElementName=richTextBlock,
 Path=HasOverflowContent,
 Converter={StaticResource booleanToVisibility}}"
 OverflowContentTarget="{Binding ElementName=overflow2}" />

 <RichTextBlockOverflow Name="overflow2"
 Visibility="{Binding ElementName=overflow1,
 Path=HasOverflowContent,
 Converter={StaticResource booleanToVisibility}}"
 OverflowContentTarget="{Binding ElementName=overflow3}" />

 <RichTextBlockOverflow Name="overflow3"
 Visibility="{Binding ElementName=overflow2,
 Path=HasOverflowContent,
 Converter={StaticResource booleanToVisibility}}"
 OverflowContentTarget="{Binding ElementName=overflow4}" />

 <RichTextBlockOverflow Name="overflow4"
 Visibility="{Binding ElementName=overflow3,
 Path=HasOverflowContent,
 Converter={StaticResource booleanToVisibility}}"
 OverflowContentTarget="{Binding ElementName=overflow5}" />

 <RichTextBlockOverflow Name="overflow5"
 Visibility="{Binding ElementName=overflow4,
 Path=HasOverflowContent,
 Converter={StaticResource booleanToVisibility}}"
 OverflowContentTarget="{Binding ElementName=overflow6}" />

 <RichTextBlockOverflow Name="overflow6"
 Visibility="{Binding ElementName=overflow5,
 Path=HasOverflowContent,
 Converter={StaticResource booleanToVisibility}}"
 OverflowContentTarget="{Binding ElementName=overflow7}" />

 <RichTextBlockOverflow Name="overflow7"
 Visibility="{Binding ElementName=overflow6,
 Path=HasOverflowContent,
 Converter={StaticResource booleanToVisibility}}"
 OverflowContentTarget="{Binding ElementName=overflow8}" />

 <RichTextBlockOverflow Name="overflow8"
 Visibility="{Binding ElementName=overflow7,
 Path=HasOverflowContent,
 Converter={StaticResource booleanToVisibility}}"
 OverflowContentTarget="{Binding ElementName=overflow9}" />

	 CHAPTER 16  Rich Text	 865

 <RichTextBlockOverflow Name="overflow9"
 Visibility="{Binding ElementName=overflow8,
 Path=HasOverflowContent,
 Converter={StaticResource booleanToVisibility}}"
 OverflowContentTarget="{Binding ElementName=overflow10}" />

 <RichTextBlockOverflow Name="overflow10"
 Visibility="{Binding ElementName=overflow9,
 Path=HasOverflowContent,
 Converter={StaticResource booleanToVisibility}}"
 OverflowContentTarget="{Binding ElementName=overflow11}" />

 <RichTextBlockOverflow Name="overflow11"
 Visibility="{Binding ElementName=overflow10,
 Path=HasOverflowContent,
 Converter={StaticResource booleanToVisibility}}"
 OverflowContentTarget="{Binding ElementName=overflow12}" />

 <RichTextBlockOverflow Name="overflow12"
 Visibility="{Binding ElementName=overflow11,
 Path=HasOverflowContent,
 Converter={StaticResource booleanToVisibility}}"
 OverflowContentTarget="{Binding ElementName=overflow13}" />

 <RichTextBlockOverflow Name="overflow13"
 Visibility="{Binding ElementName=overflow12,
 Path=HasOverflowContent,
 Converter={StaticResource booleanToVisibility}}"
 OverflowContentTarget="{Binding ElementName=overflow14}" />

 <RichTextBlockOverflow Name="overflow14"
 Visibility="{Binding ElementName=overflow13,
 Path=HasOverflowContent,
 Converter={StaticResource booleanToVisibility}}"
 OverflowContentTarget="{Binding ElementName=overflow15}" />

 <RichTextBlockOverflow Name="overflow15"
 Visibility="{Binding ElementName=overflow14,
 Path=HasOverflowContent,
 Converter={StaticResource booleanToVisibility}}"
 OverflowContentTarget="{Binding ElementName=overflow16}" />

 <RichTextBlockOverflow Name="overflow16"
 Visibility="{Binding ElementName=overflow15,
 Path=HasOverflowContent,
 Converter={StaticResource booleanToVisibility}}"
 OverflowContentTarget="{Binding ElementName=overflow17}" />

 <RichTextBlockOverflow Name="overflow17"
 Visibility="{Binding ElementName=overflow16,
 Path=HasOverflowContent,
 Converter={StaticResource booleanToVisibility}}"
 OverflowContentTarget="{Binding ElementName=overflow18}" />

866	 PART 2  Specialties

 <RichTextBlockOverflow Name="overflow18"
 Visibility="{Binding ElementName=overflow17,
 Path=HasOverflowContent,
 Converter={StaticResource booleanToVisibility}}"
 OverflowContentTarget="{Binding ElementName=overflow19}" />

 <RichTextBlockOverflow Name="overflow19"
 Visibility="{Binding ElementName=overflow18,
 Path=HasOverflowContent,
 Converter={StaticResource booleanToVisibility}}"
 OverflowContentTarget="{Binding ElementName=overflow20}" />

 <RichTextBlockOverflow Name="overflow20"
 Visibility="{Binding ElementName=overflow19,
 Path=HasOverflowContent,
 Converter={StaticResource booleanToVisibility}}"
 OverflowContentTarget="{Binding ElementName=overflow21}" />

 <RichTextBlockOverflow Name="overflow21"
 Visibility="{Binding ElementName=overflow20,
 Path=HasOverflowContent,
 Converter={StaticResource booleanToVisibility}}" />
 </StackPanel>
 </ScrollViewer>
 </Grid>
</Page>

Each RichTextBlockOverflow is hidden if the previous one doesn’t have any overflow content,
and each except the very last spills its overflow content into the next one through a binding. All the
RichTextBlockOverflow elements share a horizontal StackPanel in a ScrollViewer with the original
RichTextBlock, so the text forms columns that can be horizontally scrolled:

	 CHAPTER 16  Rich Text	 867

These columns are more readable than text that extends to the full width of the landscape screen.

Of course, if you don’t provide a sufficient number of RichTextBlockOverflow elements, the text
will be truncated and you’ll never be able to read the end of the story. For that reason, it’s probably
better to generate the RichTextBlockOverflow elements in code.

When you create a project of type Grid App or Split App in Visual Studio, you get a
RichTextColumns class in the Common folder. This class derives from Panel and generates
RichTextBlockOverflow elements in its MeasureOverride method.

I’ll show you another approach. Like the two previous projects, the MainPage.xaml file in the next
project contains a complete text in a RichTextBlock element. This time it’s F. Scott Fitzgerald’s tale of
Jazz Age teenagers in “Bernice Bobs Her Hair”:

Project: BerniceBobsHerHair | File: MainPage.xaml (excerpt)

<Page ... >
 <Page.Resources>
 <Style TargetType="RichTextBlock">
 <Setter Property="Width" Value="480" />
 <Setter Property="Margin" Value="24 0 24 0" />
 <Setter Property="FontSize" Value="18" />
 <Setter Property="TextAlignment" Value="Justify" />
 </Style>

 <Style TargetType="RichTextBlockOverflow">
 <Setter Property="Width" Value="480" />
 <Setter Property="Margin" Value="24 0 24 0" />
 </Style>
 </Page.Resources>

 <Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <ScrollViewer HorizontalScrollBarVisibility="Hidden"
 VerticalScrollBarVisibility="Disabled">
 <StackPanel Name="stackPanel"
 Orientation="Horizontal">
 <RichTextBlock SizeChanged="OnRichTextBlockSizeChanged">
 <Paragraph TextAlignment="Center" FontSize="36" Margin="0 0 0 12">
 "Bernice Bobs Her Hair"
 <LineBreak />
 by
 <LineBreak />
 F. Scott Fitzgerald
 </Paragraph>

868	 PART 2  Specialties

 <Paragraph Margin="0 6">
 After dark on Saturday night one could stand on the first tee of
 the golf-course and see the country-club windows as a yellow
 expanse over a very black and wavy ocean. The waves of this
 ocean, so to speak, were the heads of many curious caddies, a few
 of the more ingenious chauffeurs, the golf professional’s deaf
 sister—and there were usually several stray, diffident waves who
 might have rolled inside had they so desired. This was the
 gallery.
 </Paragraph>
 ...
 <Paragraph TextIndent="48" Margin="0 6">
 Then picking up her staircase she set off at a half-run down the
 moonlit street.
 </Paragraph>
 </RichTextBlock>
 </StackPanel>
 </ScrollViewer>
 </Grid>
</Page>

Notice the SizeChanged handler set on the RichTextBlock. That handler begins by getting rid of all
the previous RichTextBlockOverflow elements it might have created during previous size changes, and
then it creates a whole new batch:

Project: BerniceBobsHerHair | File: MainPage.xaml.cs (excerpt)

void OnRichTextBlockSizeChanged(object sender, SizeChangedEventArgs args)
{
 RichTextBlock richTextBlock = sender as RichTextBlock;

 if (richTextBlock.ActualHeight == 0)
 return;

 // Get rid of all previous RichTextBlockOverflow objects
 while (stackPanel.Children.Count > 1)
 stackPanel.Children.RemoveAt(1);

 if (!richTextBlock.HasOverflowContent)
 return;

 // Create first RichTextBlockOverflow
 RichTextBlockOverflow richTextBlockOverflow = new RichTextBlockOverflow();
 richTextBlock.OverflowContentTarget = richTextBlockOverflow;
 stackPanel.Children.Add(richTextBlockOverflow);

 // Measure it
 richTextBlockOverflow.Measure(new Size(richTextBlockOverflow.Width, this.ActualHeight));

	 CHAPTER 16  Rich Text	 869

 // If it has overflow content, repeat the process
 while (richTextBlockOverflow.HasOverflowContent)
 {
 RichTextBlockOverflow newRichTextBlockOverflow = new RichTextBlockOverflow();
 richTextBlockOverflow.OverflowContentTarget = newRichTextBlockOverflow;
 richTextBlockOverflow = newRichTextBlockOverflow;
 stackPanel.Children.Add(richTextBlockOverflow);
 richTextBlockOverflow.Measure(new Size(richTextBlockOverflow.Width, this.ActualHeight));
 }
}

Notice the calls to the Measure method of RichTextBlock and RichTextBlockOverflow. This is
necessary to force the element to determine how much text can fit within that rectangle, and to set
the HasOverflowContent property appropriately. Here’s the result:

870	 PART 2  Specialties

The Perils of Pagination

Now that we’ve seen RichTextBlock and RichTextBlockOverflow take on a couple of short stories, the
question naturally poses itself: Can this same technique work for a whole novel?

Let’s try it. But let’s try it for a reasonably short novel, for example, George Eliot’s Silas Marner.
Rather than displaying columns of text, the SilasMarner program displays actual pages, and it uses a
FlipView for displaying the RichTextBlock and RichTextBlockOverflow elements.

It’s amazing how nicely FlipView gives the program the look and feel of an authentic e-book
reader. Each page can occupy the whole screen (or nearly the whole screen) and you can navigate
back and forth among the pages with swipes of your finger. In addition, I’ve put a Slider at the bottom
of the page that provides a visual representation of your progress through the book, and lets you
navigate to any page very quickly.

Perhaps more than any other program in this book, SilasMarner is much more suited for portrait
mode rather than landscape. In landscape, the line lengths are simply too wide to read comfortably,
as you can see:

	 CHAPTER 16  Rich Text	 871

Turn it sideways, and the reading experience is rather better:

However, I have resisted giving the program a programmatic preference for portrait mode. In a
real e-book reader—and I’m using the term broadly to describe any facility in a program for read-
ing a large chunk of text—efficient pagination is crucial. Even if the user can’t change the size of the
screen, most e-book readers allow the user to change fonts or font sizes, and that affects the pagina-
tion of the book.

When running SilasMarner on a tablet, you can rotate it, try out snap views, and observe firsthand
how long it takes for the RichTextBlock and RichTextBlockOverflow elements to repaginate the
document.

One of the notorious problems of e-book readers involves maintaining and displaying a
meaningful page number. Any time a document is repaginated, it has a different number of pages.
The SilasMarner program saves information in local storage that lets you continue reading where
you last left off, but it doesn’t save a page number for that purpose. Instead, it maintains a fraction

872	 PART 2  Specialties

calculated by dividing the current page by the total number of pages. This is the only value that is
maintained between launchings of the program:

Project: SilasMarner | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 double fractionRead;

 public MainPage()
 {
 this.InitializeComponent();

 // Save and reload fraction read
 IPropertySet propertySet = ApplicationData.Current.LocalSettings.Values;

 Application.Current.Suspending += (sender, args) =>
 {
 propertySet["FractionRead"] = fractionRead;
 };

 if (propertySet.ContainsKey("FractionRead"))
 fractionRead = (double)propertySet["FractionRead"];
 }
 ...
}

If the new page size isn’t exactly the same as it was when the program last saved this value, you
won’t end up on exactly the same page, of course, but at least you’ll be close.

A real e-book reader would probably download books. For this demonstration program, I’ve
included the Project Gutenberg file as a program resource. Separating this book into paragraphs is
the responsibility of the code-behind file.

Thus, there’s no book text in the XAML file. Instead, the XAML file has a FlipView in the center and
also displays a heading with the book’s title, current page, and page count. This header isn’t strictly
necessary, of course, but I wanted a clear indication of the number of pages and current page. A Slider
sits at the bottom:

Project: SilasMarner | File: MainPage.xaml (excerpt)

<Page ... >
 <Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="*" />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>

 <StackPanel Grid.Row="0"
 Orientation="Horizontal"
 HorizontalAlignment="Center">
 <StackPanel.Resources>
 <Style TargetType="TextBlock">
 <Setter Property="FontSize" Value="24" />
 </Style>
 </StackPanel.Resources>

	 CHAPTER 16  Rich Text	 873

 <TextBlock Text="“Silas Marner” by George Eliot" />
 <TextBlock Text=" — Page " />
 <TextBlock Name="pageNumber" />
 <TextBlock Text=" of " />
 <TextBlock Name="pageCount" />
 </StackPanel>

 <FlipView Name="flipView"
 Grid.Row="1"
 Background="White"
 SizeChanged="OnFlipViewSizeChanged"
 SelectionChanged="OnFlipViewSelectionChanged">
 <FlipView.ItemsPanel>
 <ItemsPanelTemplate>
 <StackPanel Orientation="Horizontal" />
 </ItemsPanelTemplate>
 </FlipView.ItemsPanel>
 </FlipView>

 <Slider Name="pageSlider"
 Grid.Row="2"
 Margin="24 12 24 0"
 ValueChanged="OnPageSliderValueChanged" />
 </Grid>
</Page>

The crucial processing in this program is the SizeChanged handler for the FlipView. Based on
the size of the FlipView, the program must generate the proper number of RichTextBlockOverflow
elements.

The first time this SizeChanged event is fired after the program is launched, the handler must
access the book file and divide it into paragraphs. In Project Gutenberg plain-text files, each
paragraph consists of a sequence of lines with hard carriage returns. Paragraphs are delimited by
blank lines. The handler must process this text in creating Paragraph objects that it adds to the
RichTextBlock element:

Project: SilasMarner | File: MainPage.xaml.cs (excerpt)

async void OnFlipViewSizeChanged(object sender, SizeChangedEventArgs args)
{
 // Get the size of the FlipView
 Size containerSize = args.NewSize;

 // Actual value gets modified during processing here, so save it
 double saveFractionRead = fractionRead;

 // First time through after program is launched
 if (flipView.Items.Count == 0)
 {
 // Load book resource
 IList<string> bookLines =
 await PathIO.ReadLinesAsync("ms-appx:///Books/pg550.txt",
 UnicodeEncoding.Utf8);

874	 PART 2  Specialties

 // Create RichTextBlock
 RichTextBlock richTextBlock = new RichTextBlock
 {
 FontSize = 22,
 Foreground = new SolidColorBrush(Colors.Black)
 };

 // Create paragraphs
 Paragraph paragraph = new Paragraph();
 paragraph.Margin = new Thickness(12);
 richTextBlock.Blocks.Add(paragraph);

 foreach (string line in bookLines)
 {
 // End of paragraph, make new Paragraph
 if (line.Length == 0)
 {
 paragraph = new Paragraph();
 paragraph.Margin = new Thickness(12);
 richTextBlock.Blocks.Add(paragraph);
 }
 // Continue the paragraph
 else
 {
 string textLine = line;
 char lastChar = line[line.Length - 1];

 if (lastChar != ‘ ‘)
 textLine += ‘ ‘;

 if (line[0] == ‘ ‘)
 paragraph.Inlines.Add(new LineBreak());

 paragraph.Inlines.Add(new Run { Text = textLine });
 }
 }

 // Make RichTextBlock the same size as the FlipView
 flipView.Items.Add(richTextBlock);
 richTextBlock.Measure(containerSize);

 // Generate RichTextBlockOverflow elements
 if (richTextBlock.HasOverflowContent)
 {
 // Add the first one
 RichTextBlockOverflow richTextBlockOverflow = new RichTextBlockOverflow();
 richTextBlock.OverflowContentTarget = richTextBlockOverflow;
 flipView.Items.Add(richTextBlockOverflow);
 richTextBlockOverflow.Measure(containerSize);

	 CHAPTER 16  Rich Text	 875

 // Add subsequent ones
 while (richTextBlockOverflow.HasOverflowContent)
 {
 RichTextBlockOverflow newRichTextBlockOverflow = new RichTextBlockOverflow();
 richTextBlockOverflow.OverflowContentTarget = newRichTextBlockOverflow;
 richTextBlockOverflow = newRichTextBlockOverflow;
 flipView.Items.Add(richTextBlockOverflow);
 richTextBlockOverflow.Measure(containerSize);
 }
 }
 }
 ...
}

In subsequent firings of the SizeChanged handler, the program could just clear out the
FlipView and start over again, but I decided to attempt a little more efficiency by adding new
RichTextBlockOverflow elements if some are needed or removing any that are no longer required:

Project: SilasMarner | File: MainPage.xaml.cs (excerpt)

async void OnFlipViewSizeChanged(object sender, SizeChangedEventArgs args)
{
 ...
 // Subsequent SizeChanged events
 else
 {
 // Resize all the items in the FlipView
 foreach (object obj in flipView.Items)
 {
 (obj as FrameworkElement).Measure(containerSize);
 }

 // Generate new RichTextBlockOverflow elements if needed
 while ((flipView.Items[flipView.Items.Count - 1]
 as RichTextBlockOverflow).HasOverflowContent)
 {
 RichTextBlockOverflow richTextBlockOverflow =
 flipView.Items[flipView.Items.Count - 1] as RichTextBlockOverflow;
 RichTextBlockOverflow newRichTextBlockOverflow = new RichTextBlockOverflow();
 richTextBlockOverflow.OverflowContentTarget = newRichTextBlockOverflow;
 richTextBlockOverflow = newRichTextBlockOverflow;
 flipView.Items.Add(richTextBlockOverflow);
 richTextBlockOverflow.Measure(args.NewSize);
 }
 // Remove superfluous RichTextBlockOverflow elements
 while (!(flipView.Items[flipView.Items.Count - 2]
 as RichTextBlockOverflow).HasOverflowContent)
 {
 flipView.Items.RemoveAt(flipView.Items.Count - 1);
 }
 }
 ...
}

876	 PART 2  Specialties

However, I discovered (as you’ll probably discover) that this logic seems to calculate an insufficient
number of RichTextBlockOverflow elements. The whole novel is preserved, but some of the licensing
information toward the end of the file is truncated. I do not know why this happens.

The SizeChanged processing concludes with initializing the heading text and the Slider and then
setting the SelectedIndex property of the FlipView to a value based on the fractionRead value:

Project: SilasMarner | File: MainPage.xaml.cs (excerpt)

async void OnFlipViewSizeChanged(object sender, SizeChangedEventArgs args)
{
 ...
 // Initialize the header and Slider
 int count = flipView.Items.Count;
 pageNumber.Text = "1"; // probably modified soon
 pageCount.Text = count.ToString();
 pageSlider.Minimum = 1;
 pageSlider.Maximum = flipView.Items.Count;
 pageSlider.Value = 1; // probably modified soon

 // Go to approximate page
 fractionRead = saveFractionRead;
 flipView.SelectedIndex = (int)Math.Min(count - 1, fractionRead * count);
}

That’s the bulk of the program. The SelectionChanged handler for the FlipView changes the
heading and Slider, and the ValueChanged handler for the Slider changes the SelectedIndex property
of the FlipView:

Project: SilasMarner | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 ...
 void OnFlipViewSelectionChanged(object sender, SelectionChangedEventArgs args)
 {
 int pageNum = flipView.SelectedIndex + 1;
 pageNumber.Text = pageNum.ToString();
 fractionRead = (pageNum - 1.0) / flipView.Items.Count;
 pageSlider.Value = pageNum;
 }

 void OnPageSliderValueChanged(object sender, RangeBaseValueChangedEventArgs args)
 {
 flipView.SelectedIndex = Math.Min(flipView.Items.Count, (int)args.NewValue) - 1;
 }
}

Now that the program is finished, how does it work?

	 CHAPTER 16  Rich Text	 877

Not very well, I think. A few seconds are required every time the SizeChanged handler executes,
and this is code that cannot be moved to a secondary thread because virtually all of it involves
user interface objects. Moreover, I’ve experienced some shifting around of the text contents of the
elements, indicating to me that I’m pushing the envelope of RichTextBlock pagination.

What these problems imply is that RichTextBlock must be abandoned for performing pagination
for larger documents. The program itself must take on these tasks, most efficiently based on text
metric information. If you’re interested in exploring some of the issues—and possible solutions—
check out a series of articles I wrote for the June through November 2011 issues of MSDN Magazine
(http://msdn.microsoft.com/en-us/magazine, and select Issues and Downloads). These articles describe
code for Windows Phone 7, but the principles are very similar to working with Windows 8.

In particular, it’s extremely helpful to divide a large document into chapters. In traditional
typesetting as well as e-book readers, chapters represent points where pagination can begin anew.
Within a particular chapter, pagination can be performed “on demand” as the need arises for each
new page.

Rich Editing with RichEditBox

Just as there is an enhanced version of TextBlock called RichTextBlock, there is an enhanced version of
TextBox called…no, it’s not called RichTextBox. It’s actually RichEditBox.

If you think of TextBox as the “engine” of the traditional Windows Notepad program, RichEditBox
might be regarded as the engine of the Windows WordPad program. RichEditBox lets you program-
matically select ranges of text—or (more commonly) allow the user to select ranges of text—and
apply unique character and paragraph formatting to that selection. RichEditBox also has a built-in file
loading and saving option, but unfortunately this option supports only the rather quaint Rich Text
Format (RTF).

The following discussion just scratches the surface of RichEditBox. You’ll want to begin exploring
the unique features of this class through the portal of the Document property. This Document
property is set internally to an object that implements the ITextDocument interface, defined in
the Windows.UI.Text namespace. That interface supports loading and saving to streams, as well as
methods to set and obtain default character and paragraph formatting, and to set the formatting for
ranges of text within the document.

ITextDocument also supports a Selection property that refers to the area of the document selected
by the user. This Selection property is of type ITextSelection, which also implements the ITextRange
interface. The ITextRange interface supports clipboard copies and pastes, as well as defining
CharacterFormat and ParagraphFormat properties, which reference objects that implement the
ITextCharacterFormat and ITextParagraphFormat interfaces, respectively.

878	 PART 2  Specialties

Let’s use RichEditBox to construct a rudimentary rich-text editor called RichTextEditor. This
program has an application bar at the top to apply character formatting (at the left) and paragraph
formatting (at the right) and an application bar at the bottom for loading and saving files:

As soon as you start putting together a program of this sort, you start realizing that the hard part
is not the RichEditBox programming interface—it’s figuring out how to organize the user interface.
I’ve used eight button styles from StandardStyles.xaml, but StandardStyles.xaml contains styles for
buttons for font, font color, and font size. If you use those buttons, however, they’ll need to invoke
popup dialog boxes, and I wanted to avoid that in this program. For that reason, the size and font
family are implemented as ComboBox controls right on the application bar, and there is no color
selection. Like I said, I’m only scratching the surface here.

Here’s the XAML file. As you can see, the markup for the RichEditBox is dwarfed by the two AppBar
definitions:

Project: RichTextEditor | File: MainPage.xaml (excerpt)

<Page
 x:Class="RichTextEditor.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="using:RichTextEditor"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d">

 <Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <RichEditBox Name="richEditBox" />
 </Grid>

	 CHAPTER 16  Rich Text	 879

 <Page.TopAppBar>
 <AppBar Opened="OnTopAppBarOpened">
 <Grid>
 <StackPanel Orientation="Horizontal"
 HorizontalAlignment="Left">
 <!-- For CheckBox’s, need to comment out BackgroundCheckedGlyph in
 AppBarButtonStyle in StandardStyles.xaml -->
 <CheckBox Name="boldAppBarCheckBox"
 Style="{StaticResource BoldAppBarButtonStyle}"
 Checked="OnBoldAppBarCheckBoxChecked"
 Unchecked="OnBoldAppBarCheckBoxChecked" />

 <CheckBox Name="italicAppBarCheckBox"
 Style="{StaticResource ItalicAppBarButtonStyle}"
 Checked="OnItalicAppBarCheckBoxChecked"
 Unchecked="OnItalicAppBarCheckBoxChecked" />

 <CheckBox Name="underlineAppBarCheckBox"
 Style="{StaticResource UnderlineAppBarButtonStyle}"
 Checked="OnUnderlineAppBarCheckBoxChecked"
 Unchecked="OnUnderlineAppBarCheckBoxChecked" />

 <ComboBox Name="fontSizeComboBox"
 Width="72"
 Margin="12 12 24 36"
 SelectionChanged="OnFontSizeComboBoxSelectionChanged">
 <x:Int32>8</x:Int32>
 <x:Int32>9</x:Int32>
 <x:Int32>10</x:Int32>
 <x:Int32>11</x:Int32>
 <x:Int32>12</x:Int32>
 <x:Int32>14</x:Int32>
 <x:Int32>16</x:Int32>
 <x:Int32>18</x:Int32>
 <x:Int32>20</x:Int32>
 <x:Int32>22</x:Int32>
 <x:Int32>24</x:Int32>
 <x:Int32>26</x:Int32>
 <x:Int32>28</x:Int32>
 <x:Int32>36</x:Int32>
 <x:Int32>48</x:Int32>
 <x:Int32>72</x:Int32>
 </ComboBox>

 <ComboBox Name="fontFamilyComboBox"
 Width="240"
 Margin="12 12 24 36"
 SelectionChanged="OnFontFamilyComboBoxSelectionChanged" />
 </StackPanel>
 <StackPanel Orientation="Horizontal"
 HorizontalAlignment="Right">

 <StackPanel Name="alignmentPanel"
 Orientation="Horizontal">
 <RadioButton Name="alignLeftAppBarRadioButton"
 Style="{StaticResource AlignLeftAppBarButtonStyle}"
 Checked="OnAlignAppBarRadioButtonChecked" />

880	 PART 2  Specialties

 <RadioButton Name="alignCenterAppBarRadioButton"
 Style="{StaticResource AlignCenterAppBarButtonStyle}"
 Checked="OnAlignAppBarRadioButtonChecked" />

 <RadioButton Name="alignRightAppBarRadioButton"
 Style="{StaticResource AlignRightAppBarButtonStyle}"
 Checked="OnAlignAppBarRadioButtonChecked" />
 </StackPanel>
 </StackPanel>
 </Grid>
 </AppBar>
 </Page.TopAppBar>
 <Page.BottomAppBar>
 <AppBar>
 <Grid>
 <StackPanel Orientation="Horizontal"
 HorizontalAlignment="Left" />

 <StackPanel Orientation="Horizontal"
 HorizontalAlignment="Right">
 <Button Style="{StaticResource OpenFileAppBarButtonStyle}"
 Click="OnOpenAppBarButtonClick" />

 <Button Style="{StaticResource SaveAppBarButtonStyle}"
 AutomationProperties.Name="Save As"
 Click="OnSaveAsAppBarButtonClick" />
 </StackPanel>
 </Grid>
 </AppBar>
 </Page.BottomAppBar>
</Page>

A CheckBox is used for the three buttons labeled Bold, Italic, and Underline. These items can
be either off or on. The ComboBox for the font size is initialized with explicit values. Usually text
editors provide a facility to enter a custom value, but for reasons of simplicity I eliminated that. The
ComboBox for the font family is initialized in the code-behind file. The three buttons for the text
alignment are a group of RadioButton controls.

Because this project wants to fill up the second ComboBox with a list of fonts installed on the
system, it includes the DirectXWrapper project from Chapter 15, “Going Native.” That ComboBox is
initialized in the Loaded handler. The Loaded handler also loads a document-in-progress from local
storage and two settings involving the selection the user last made of that document. That document
and those settings are saved in the Suspending handler:

Project: RichTextEditor | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 public MainPage()
 {
 this.InitializeComponent();
 Loaded += OnLoaded;
 Application.Current.Suspending += OnAppSuspending;
 }

	 CHAPTER 16  Rich Text	 881

 async void OnLoaded(object sender, RoutedEventArgs args)
 {
 // Get fonts from DirectXWrapper library
 WriteFactory writeFactory = new WriteFactory();
 WriteFontCollection writeFontCollection =
 writeFactory.GetSystemFontCollection();

 int count = writeFontCollection.GetFontFamilyCount();
 string[] fonts = new string[count];

 for (int i = 0; i < count; i++)
 {
 WriteFontFamily writeFontFamily =
 writeFontCollection.GetFontFamily(i);

 WriteLocalizedStrings writeLocalizedStrings =
 writeFontFamily.GetFamilyNames();
 int index;

 if (writeLocalizedStrings.FindLocaleName("en-us", out index))
 fonts[i] = writeLocalizedStrings.GetString(index);
 else
 fonts[i] = writeLocalizedStrings.GetString(0);
 }

 Array.Sort<string>(fonts);
 fontFamilyComboBox.ItemsSource = fonts;

 // Load current document
 StorageFolder localFolder = ApplicationData.Current.LocalFolder;

 try
 {
 StorageFile storageFile = await localFolder.CreateFileAsync("RichTextEditor.rtf","
 CreationCollisionOption.OpenIfExists);
 IRandomAccessStream stream = await storageFile.OpenAsync(FileAccessMode.Read);
 richEditBox.Document.LoadFromStream(TextSetOptions.FormatRtf, stream);
 }
 catch
 {
 // Ignore exceptions here
 }

 // Load selection settings
 IPropertySet propertySet = ApplicationData.Current.LocalSettings.Values;

 if (propertySet.ContainsKey("SelectionStart"))
 richEditBox.Document.Selection.StartPosition = (int)propertySet["SelectionStart"];

 if (propertySet.ContainsKey("SelectionEnd"))
 richEditBox.Document.Selection.EndPosition = (int)propertySet["SelectionEnd"];
 }

 async void OnAppSuspending(object sender, SuspendingEventArgs args)
 {
 SuspendingDeferral deferral = args.SuspendingOperation.GetDeferral();

882	 PART 2  Specialties

 // Save current document
 StorageFolder localFolder = ApplicationData.Current.LocalFolder;

 try
 {
 StorageFile storageFile = await localFolder.CreateFileAsync("RichTextEditor.rtf",
 CreationCollisionOption.ReplaceExisting);
 IRandomAccessStream stream = await storageFile.OpenAsync(FileAccessMode.ReadWrite);
 richEditBox.Document.SaveToStream(TextGetOptions.FormatRtf, stream);
 }
 catch
 {
 // Ignore exceptions here
 }

 // Save selection settings
 IPropertySet propertySet = ApplicationData.Current.LocalSettings.Values;
 propertySet["SelectionStart"] = richEditBox.Document.Selection.StartPosition;
 propertySet["SelectionEnd"] = richEditBox.Document.Selection.EndPosition;

 deferral.Complete();
 }
 ...
}

The LoadFromStream and SaveToStream methods defined by the ITextDocument interface require
the FormatRtf enumeration member to load and save RTF files. Otherwise, the methods just load and
save plain text.

The Suspending handler saves only the StartPosition and EndPosition properties of the
ITextSelection object exposed as the Selection property of ITextDocument. If no text is actually
selected, these values are the same and indicate the current cursor position in the document—the
current insertion point where typed text is next inserted.

The program does not save any formatting information because the program doesn’t maintain any
default formatting that is applicable to new documents or to plain-text files. Those formatting items
on the application bar are applicable only to a particular selection (or insertion point) of a document.
All those formatting specifications are internal to the document that RichEditBox maintains. (Of
course, it’s possible for a program to allow a user to select default formatting for an entire document,
but that’s another user interface problem.)

Because the program does not maintain any formatting information, it must initialize all the
text-formatting items on the top application bar when that application bar appears, which it signals
with the Opened event. These items are initialized based on the current selection or insertion point

	 CHAPTER 16  Rich Text	 883

in the document. The current settings are available from the CharacterFormat and ParagraphFormat
properties of the ITextSelection object exposed as the Selection property of ITextDocument:

Project: RichTextEditor | File: MainPage.xaml.cs (excerpt)

void OnTopAppBarOpened(object sender, object args)
{
 // Get the character formatting at the current selection
 ITextCharacterFormat charFormat = richEditBox.Document.Selection.CharacterFormat;

 // Set the CheckBox app bar buttons
 boldAppBarCheckBox.IsChecked = charFormat.Bold == FormatEffect.On;
 italicAppBarCheckBox.IsChecked = charFormat.Italic == FormatEffect.On;
 underlineAppBarCheckBox.IsChecked = charFormat.Underline == UnderlineType.Single;

 // Set the two ComboBox’s
 fontSizeComboBox.SelectedItem = (int)charFormat.Size;
 fontFamilyComboBox.SelectedItem = charFormat.Name;

 // Get the paragraph alignment and set the RadioButton’s
 ParagraphAlignment paragraphAlign =
 richEditBox.Document.Selection.ParagraphFormat.Alignment;
 alignLeftAppBarRadioButton.IsChecked = paragraphAlign == ParagraphAlignment.Left;
 alignCenterAppBarRadioButton.IsChecked = paragraphAlign == ParagraphAlignment.Center;
 alignRightAppBarRadioButton.IsChecked = paragraphAlign == ParagraphAlignment.Right;
}

The ITextCharacterFormat object defines Bold, Italic, and Underline properties (as you can see) but
also supplements those with a familiar FontStyle property and a Weight property that is a numeric
value corresponding to properties of the FontWeights class.

FormatEffect is an enumeration with values On, Off, Toggle, and Undefined. If the current selection
contains some italicized and nonitalicized text, the value of the Italic property is FormatEffect
.­Undefined and the corresponding application bar button should probably be set to an indeterminate
state, but with the standard application bar style, that state looks the same as the unchecked state, so
I didn’t bother.

Notice that the font family applicable to the selection is provided by the string Name property of
the ITextCharacterFormat object. The property has such an innocuous name that it’s easy to overlook.

The Bold, Italic, and Underline buttons are all handled similarly. The Bold, Italic, and Underline
properties of the ITextCharacterFormat object are set based on the CheckBox state, so these settings
apply to the current selection or insertion point:

Project: RichTextEditor | File: MainPage.xaml.cs (excerpt)

void OnBoldAppBarCheckBoxChecked(object sender, RoutedEventArgs args)
{
 richEditBox.Document.Selection.CharacterFormat.Bold =
 (sender as CheckBox).IsChecked.Value ? FormatEffect.On : FormatEffect.Off;
}

884	 PART 2  Specialties

void OnItalicAppBarCheckBoxChecked(object sender, RoutedEventArgs args)
{
 richEditBox.Document.Selection.CharacterFormat.Italic =
 (sender as CheckBox).IsChecked.Value ? FormatEffect.On : FormatEffect.Off;
}

void OnUnderlineAppBarCheckBoxChecked(object sender, RoutedEventArgs args)
{
 richEditBox.Document.Selection.CharacterFormat.Underline =
 (sender as CheckBox).IsChecked.Value ? UnderlineType.Single : UnderlineType.None;
}

The handlers of the two ComboBox controls are just about as simple:

Project: RichTextEditor | File: MainPage.xaml.cs (excerpt)

void OnFontSizeComboBoxSelectionChanged(object sender, SelectionChangedEventArgs args)
{
 ComboBox comboBox = sender as ComboBox;
 if (comboBox.SelectedItem != null)
 {
 richEditBox.Document.Selection.CharacterFormat.Size = (int)comboBox.SelectedItem;
 }
}

void OnFontFamilyComboBoxSelectionChanged(object sender, SelectionChangedEventArgs args)
{
 ComboBox comboBox = sender as ComboBox;
 if (comboBox.SelectedItem != null)
 {
 richEditBox.Document.Selection.CharacterFormat.Name = (string)comboBox.SelectedItem;
 }
}

The final formatting item on the application bar applies to paragraphs. The Alignment property
of the ITextParagraphFormat object is set to one of the ParagraphAlignment enumeration members
based on the checked RadioButton:

Project: RichTextEditor | File: MainPage.xaml.cs (excerpt)

void OnAlignAppBarRadioButtonChecked(object sender, RoutedEventArgs args)
{
 ParagraphAlignment paragraphAlign = ParagraphAlignment.Undefined;

 if (sender == alignLeftAppBarRadioButton)
 paragraphAlign = ParagraphAlignment.Left;

 else if (sender == alignCenterAppBarRadioButton)
 paragraphAlign = ParagraphAlignment.Center;

 else if (sender == alignRightAppBarRadioButton)
 paragraphAlign = ParagraphAlignment.Right;

 richEditBox.Document.Selection.ParagraphFormat.Alignment = paragraphAlign;
}

	 CHAPTER 16  Rich Text	 885

The only remaining code in MainPage handles the Open File and Save As buttons in the bottom
application bar. The program allows loading and saving files with both .txt and .rtf extensions. This
code should be fairly clear after the similar code in the Loaded and Suspending handlers that pertain
to the current document:

Project: RichTextEditor | File: MainPage.xaml.cs (excerpt)

async void OnOpenAppBarButtonClick(object sender, RoutedEventArgs args)
{
 FileOpenPicker picker = new FileOpenPicker();
 picker.FileTypeFilter.Add(".txt");
 picker.FileTypeFilter.Add(".rtf");
 StorageFile storageFile = await picker.PickSingleFileAsync();

 // If user presses Cancel, result is null
 if (storageFile == null)
 return;

 TextSetOptions textOptions = TextSetOptions.None;

 if (storageFile.ContentType != "text/plain")
 textOptions = TextSetOptions.FormatRtf;

 string message = null;

 try
 {
 IRandomAccessStream stream = await storageFile.OpenAsync(FileAccessMode.Read);
 richEditBox.Document.LoadFromStream(textOptions, stream);
 }
 catch (Exception exc)
 {
 message = exc.Message;
 }

 if (message != null)
 {
 MessageDialog msgdlg = new MessageDialog("The file could not be opened. " +
 "Windows reports the following error: " +
 message, "RichTextEditor");
 await msgdlg.ShowAsync();
 }
}

async void OnSaveAsAppBarButtonClick(object sender, RoutedEventArgs args)
{
 FileSavePicker picker = new FileSavePicker();
 picker.DefaultFileExtension = ".rtf";
 picker.FileTypeChoices.Add("Rich Text Document", new List<string> { ".rtf" });
 picker.FileTypeChoices.Add("Text Document", new List<string> { ".txt" });
 StorageFile storageFile = await picker.PickSaveFileAsync();

 // If user presses Cancel, result is null
 if (storageFile == null)
 return;

886	 PART 2  Specialties

 TextGetOptions textOptions = TextGetOptions.None;

 if (storageFile.ContentType != "text/plain")
 textOptions = TextGetOptions.FormatRtf;

 string message = null;

 try
 {
 IRandomAccessStream stream = await storageFile.OpenAsync(FileAccessMode.ReadWrite);
 richEditBox.Document.SaveToStream(textOptions, stream);
 }
 catch (Exception exc)
 {
 message = exc.Message;
 }

 if (message != null)
 {
 MessageDialog msgdlg = new MessageDialog("The file could not be saved. " +
 "Windows reports the following error: " +
 message, "RichTextEditor");
 await msgdlg.ShowAsync();
 }
}

The two methods determine whether to use the TextSetOptions.FormatRtf and TextGetOptions
.FormatRtf flags based on the MIME type of the StorageFile returned from the file picker. My
experience reveals that these file pickers indicate that the MIME type of the selected file is either
“text/plain” for files with the .txt extensions or “application/msword” for files with .rtf extensions, but I
was somewhat wary of hard-coding that latter MIME type into the program given that MIME types of
“text/rtf” and “application/rtf” are also associated with RTF files.

If the FormatRtf flag is not specified, the RichEditBox methods save and load plain-text files.
However, the SaveToStream method saves plain text using the Unicode (or UTF-16) encoding, where
each character in the file occupies two bytes. This encoding is rather uncommon for plain-text files,
and the files contain no Byte-Order Mark (BOM) at the beginning to indicate the encoding. Windows
Notepad can load these files—apparently it determines the encoding from an examination of the file
content—but the PrimitivePad program in Chapter 7, “Asynchronicity,” cannot. It stops reading at the
first zero encountered in the stream.

Files saved from PrimitivePad have UTF-8 encoding, but they have no BOM either, so the
LoadFromStream method of RichEditBox assumes that the encoding is UTF-16. This means that
RichTextEditor cannot properly load files saved from PrimitivePad. Each pair of bytes in the file is
treated as comprising a single Unicode character, and hence pairs of characters of the Latin alphabet
are displayed mostly as Chinese ideograms.

Perhaps a better solution to saving and loading plain-text files with RichEditBox is making use of
the GetText and SetText methods and the regular Windows Runtime file I/O facilities.

	 CHAPTER 16  Rich Text	 887

Your Own Text Input

Certainly, the TextBox and RichEditBox controls provide the best ways for your program to get text
input from the computer’s keyboard. But what if you wanted to implement your own text input?

The UIElement class defines KeyDown and KeyUp events, and the Control class supplements these
with OnKeyDown and OnKeyUp virtual methods. However, the information is delivered to your
program in the form of VirtualKey values. VirtualKey is a large enumeration with members for all the
possible keys on your keyboard. This information is fine for obtaining activity involving the function
keys or cursor movement keys, but it’s not so great for alphanumeric input. It’s difficult to derive
characters from keys in a language-independent and device-independent manner.

A better event for obtaining character input is called CharacterReceived, but this event is not
defined by UIElement. It is instead defined by CoreWindow, which you can easily obtain from the
Window object associated with your application.

The GettingCharacterInput project has a simple demonstration of this technique. The XAML file
contains a TextBlock for displaying the typed characters:

Project: GettingCharacterInput | File: MainPage.xaml (excerpt)

<Page ... >
 <Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <TextBlock Name="txtblk"
 FontSize="24"
 TextWrapping="Wrap" />
 </Grid>
</Page>

The code-behind file attaches a handler for the CharacterReceived event defined by CoreWindow
and gets all the character input to that window. Characters are unsigned integer values that are cast
to char values. The only special processing involves the Backspace key:

Project: GettingCharacterInput | File: MainPage.xaml.cs

using Windows.UI.Core;
using Windows.UI.Xaml;
using Windows.UI.Xaml.Controls;

namespace GettingCharacterInput
{
 public sealed partial class MainPage : Page
 {
 public MainPage()
 {
 this.InitializeComponent();

 Window.Current.CoreWindow.CharacterReceived += OnCoreWindowCharacterReceived;
 }

 void OnCoreWindowCharacterReceived(CoreWindow sender, CharacterReceivedEventArgs args)
 {

888	 PART 2  Specialties

 // Process Backspace key
 if (args.KeyCode == 8 && txtblk.Text.Length > 0)
 {
 txtblk.Text = txtblk.Text.Substring(0, txtblk.Text.Length - 1);
 }
 // All other keys
 else
 {
 txtblk.Text += (char)args.KeyCode;
 }
 }
 }
}

That Backspace key is the only “editing” facility I’ve provided. The KeyUp and KeyDown events
would need to be handled for implementing the use of cursor movement keys to go back and
forth within the typed text string. You’d probably also want to add a way to select text involving
the keyboard or pointer. For a more professional implementation, you’d need to draw a cursor and
independently color text characters and backgrounds to indicate selection. This means you’ll probably
be displaying typed text by using individual TextBlock elements for each character (and I bet TextBox
and RichEditBox are looking mighty fine about now).

The big problem with the GettingCharacterInput project is that it obtains input only from physical
keyboards. If you need to get input from the touch keyboard that pops up on the screen for TextBox
and RichEditBox, the process is more involved. Here are the basics:

The MainPage.xaml file in the BetterCharacterInput project instantiates a custom control named
RudimentaryTextBox:

Project: BetterCharacterInput | File: MainPage.xaml (excerpt)

<Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <local:RudimentaryTextBox Background="DarkBlue"
 Width="320"
 Height="320" />
</Grid>

The RudimentaryTextBox class derives from UserControl, and the visuals consist mostly of a
TextBlock that will display the typed text:

Project: BetterCharacterInput | File: RudimentaryTextBox.xaml

<UserControl
 x:Class="BetterCharacterInput.RudimentaryTextBox"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">
 <Grid Background="DarkBlue">
 <TextBlock Name="txtblk"
 Foreground="Yellow"
 FontSize="24"
 TextWrapping="Wrap" />
 </Grid>
</UserControl>

	 CHAPTER 16  Rich Text	 889

The CharacterReceived event handler in the RudimentaryTextBox code-behind file is identical to the
one in the previous project, except that the handler is attached only when the control has input focus.
The class defines a simple Text property for the typed input:

Project: BetterCharacterInput | File: RudimentaryTextBox.xaml.cs

using Windows.UI.Core;
using Windows.UI.Xaml;
using Windows.UI.Xaml.Automation.Peers;
using Windows.UI.Xaml.Controls;
using Windows.UI.Xaml.Input;

namespace BetterCharacterInput
{
 public sealed partial class RudimentaryTextBox : UserControl
 {
 public RudimentaryTextBox()
 {
 this.InitializeComponent();
 this.IsTabStop = true;
 this.Text = "";
 }

 public string Text { set; get; }

 protected override void OnTapped(TappedRoutedEventArgs args)
 {
 this.Focus(FocusState.Programmatic);
 base.OnTapped(args);
 }

 protected override void OnGotFocus(RoutedEventArgs args)
 {
 Window.Current.CoreWindow.CharacterReceived += OnCoreWindowCharacterReceived;
 base.OnGotFocus(args);
 }

 protected override void OnLostFocus(RoutedEventArgs args)
 {
 Window.Current.CoreWindow.CharacterReceived -= OnCoreWindowCharacterReceived;
 base.OnLostFocus(args);
 }

 protected override AutomationPeer OnCreateAutomationPeer()
 {
 return new RudimentaryTextBoxPeer(this);
 }

 void OnCoreWindowCharacterReceived(CoreWindow sender, CharacterReceivedEventArgs args)
 {
 // Process Backspace key
 if (args.KeyCode == 8 && txtblk.Text.Length > 0)
 {
 txtblk.Text = txtblk.Text.Substring(0, txtblk.Text.Length - 1);
 }

890	 PART 2  Specialties

 // All other keys
 else
 {
 txtblk.Text += (char)args.KeyCode;
 }
 }
 }
}

In a real application with multiple custom controls that obtain keyboard input, you might want the
page rather than the controls themselves to determine when they get keyboard input.

The only really peculiar part of RudimentaryTextBox is the override of the OnCreateAutomationPeer
method. Automation peers provide programmatic control to the user input functions of controls,
and they are generally used to implement assistive technologies and application testing. For a con-
trol to be able to invoke the on-screen touch keyboard when it obtains input focus, it must have a
custom automation peer that derives from FrameworkElementAutomationPeer and implements the
IValueProvider and ITextProvider interfaces.

This custom automation peer class must also override the FrameworkElementAutomationPeer
constructor and the GetPatternCore method. Implementing IValueProvider requires two properties
and one method. Implementing ITextProvider requires two more properties and four methods, but if
you’re doing this only to provide your custom control with input from the touch keyboard, you can
define these methods and properties in very simple ways.

This example code is not quite as simple as possible, but it’s close:

Project: BetterCharacterInput | File: RudimentaryTextBoxPeer.cs

using Windows.Foundation;
using Windows.UI.Xaml.Automation;
using Windows.UI.Xaml.Automation.Peers;
using Windows.UI.Xaml.Automation.Provider;

namespace BetterCharacterInput
{
 public sealed class RudimentaryTextBoxPeer : FrameworkElementAutomationPeer,
 IValueProvider, ITextProvider
 {
 RudimentaryTextBox rudimentaryTextBox;

 public RudimentaryTextBoxPeer(RudimentaryTextBox owner)
 : base(owner)
 {
 this.rudimentaryTextBox = owner;
 }

	 CHAPTER 16  Rich Text	 891

 // Override
 protected override object GetPatternCore(PatternInterface patternInterface)
 {
 if (patternInterface == PatternInterface.Value ||
 patternInterface == PatternInterface.Text)
 {
 return this;
 }
 return base.GetPatternCore(patternInterface);
 }

 // Required for IValueProvider
 public string Value
 {
 get { return rudimentaryTextBox.Text; }
 }

 public bool IsReadOnly
 {
 get { return false; }
 }

 public void SetValue(string value)
 {
 rudimentaryTextBox.Text = value;
 }

 // Required for ITextProvider
 public SupportedTextSelection SupportedTextSelection
 {
 get { return SupportedTextSelection.None; }
 }

 public ITextRangeProvider DocumentRange
 {
 get { return null; }
 }

 public ITextRangeProvider RangeFromPoint(Point pt)
 {
 return null;
 }

 public ITextRangeProvider RangeFromChild(IRawElementProviderSimple child)
 {
 return null;
 }

 public ITextRangeProvider[] GetVisibleRanges()
 {
 return null;
 }

892	 PART 2  Specialties

 public ITextRangeProvider[] GetSelection()
 {
 return null;
 }
 }
}

You can simplify this even further by returning null from the Value property and removing the
body from the SetValue property.

Now when you tap the dark blue RudimentaryTextBox control, the virtual keyboard pops up
(although getting a screen shot of that momentous event is a whole other story).

		 893

C H A P T E R 1 7

Share and Print

Sweep your finger into the right edge of the Windows 8 screen (or press Windows+C), and you’ll
see not only the current date and time pop up but also the column of five icons known as charms:

The charm in the center navigates straight to the start screen, but the others are intended to provide
services for your application. Each of them is associated with a “pane” that appears when the user taps
the charm. When your application is on the screen—except when it’s in the thin Snapped state—it
can support functionality that is associated with these other four charms.

This chapter first examines how you can handle the Settings and Share charms before focusing
more extensively on the Devices charm, which is primarily intended to give your programs access
to printers.

894	 PART 2  Specialties

Settings and Popups

Press the Settings charms for any program shown so far in this book, and you’ll see only one
item. This Permissions item is provided by Windows and lists the permissions your application has
requested in the Capabilities section of the Package.appxmanifest file. At run time, your application
can add items to this Settings list, and the items you add push the Permissions item down to the
bottom. Commonly, these additional items are intended to provide information about your program
and might have labels like About, Credits, Terms of Use, or Privacy Statement. Other items can obtain
input from the user and might be labeled Options or Feedback.

Usually you implement each of the items you add to the Settings list in a very familiar manner: a
Popup with a UserControl child. By convention, this is positioned on the right edge of the application
and extends to the entire height of the screen.

Let me demonstrate by adding a traditional About box to the FingerPaint project. Because I intend
to submit this program to the Windows Store, I’d like this About box to display a cover of this book
with a link to buy the book from the website of Microsoft Press’s distributor. I first added a new
UserControl item to the FingerPaint project and called the class AboutBox. Here’s the XAML file:

Project: FingerPaint | File: AboutBox.xaml (excerpt)

<UserControl ... Width="400">
 <UserControl.Transitions>
 <TransitionCollection>
 <EntranceThemeTransition FromHorizontalOffset="400" />
 </TransitionCollection>
 </UserControl.Transitions>

 <Grid>
 <Border BorderBrush="Black"
 BorderThickness="1"
 Background="#404040"
 Margin="0 12"
 Padding="0 24">
 <StackPanel>
 <StackPanel Orientation="Horizontal">
 <Button Style="{StaticResource PortraitBackButtonStyle}"
 Foreground="Black"
 Click="OnBackButtonClick" />

 <TextBlock Text="About"
 Style="{StaticResource HeaderTextStyle}" />
 </StackPanel>

	 CHAPTER 17  Share and Print	 895

 <TextBlock FontSize="24"
 FontWeight="Light"
 TextWrapping="Wrap"
 Margin="24">
 This program was written by Charles Petzold
 and is just one of many example programs in
 his book
 <Italic>Programming Windows</Italic>,
 6th edition.
 <LineBreak />
 <LineBreak />
 You can purchase a copy at many bookstores
 or directly from the O'Reilly website.
 </TextBlock>

 <HyperlinkButton HorizontalAlignment="Center"
 NavigateUri="http://shop.oreilly.com/product/0790145369079.do">
 <StackPanel>
 <Image Source="Assets/BookCover.gif"
 Stretch="None" />
 <TextBlock TextAlignment="Center">
 <Italic>Programming Windows</Italic>,
 6th edition
 </TextBlock>
 </StackPanel>
 </HyperlinkButton>
 </StackPanel>
 </Border>
 </Grid>
</UserControl>

I have given this control a specific width but not a specific height because it will be stretched
to the height of the window in which it’s displayed. I’ve left a little margin on the top and bottom
and supplied a transition so that it seems to slide in from the right. It has a Back button with a Click
handler and a HyperlinkButton with the URL of the catalog page for this book at the O’Reilly website.
The content of that HyperlinkButton includes an Image element that references a bitmap I added to
the Assets folder.

The Click handler for the Back button is pretty sure that the parent of this control is a Popup, so it
sets the IsOpen property of that Popup to false:

Project: FingerPaint | File: AboutBox.xaml.cs (excerpt)

void OnBackButtonClick(object sender, RoutedEventArgs args)
{
 // Dismiss Popup
 Popup popup = this.Parent as Popup;

 if (popup != null)
 popup.IsOpen = false;
}

This is one way of dismissing the popup.

896	 PART 2  Specialties

The impact to the FingerPaint program of implementing this About box is very slight.
The MainPage constructor obtains a SettingsPane object and attaches a handler for the
CommandsRequested event:

Project: FingerPaint | File: MainPage.xaml.cs (excerpt)

public MainPage()
{
 ...
 // Install a handler for the Settings pane
 SettingsPane settingsPane = SettingsPane.GetForCurrentView();
 settingsPane.CommandsRequested += OnSettingsPaneCommandsRequested;
 ...
}

SettingsPane and related classes and enumeration are the occupants of the Windows
.UI.ApplicationSettings namespace. Conceptually, the SettingsPane object refers to the pane that
Windows displays when the user presses the Settings charm. That’s why you obtain the SettingsPane
object rather than creating it. When it displays itself, the pane requests the application to add
additional items. That’s what the CommandsRequested handler does.

Hooking into the other charms is similar. SettingsPane also has a Show method that displays the
settings pane programmatically, but for most purposes you’ll just want to install a handler for the
CommandsRequested event. You don’t need to retain the SettingsPane object, so you can combine
the two statements in the MainPage constructor into one:

SettingsPane.GetForCurrentView().CommandsRequested += OnSettingsPaneCommandsRequested;

The CommandsRequested event is fired when your program is active and the user presses the
Settings charm. This is your opportunity to add additional commands to the Settings pane. Because
you’re doing this every time the Settings charm is pressed, you can tailor these additional commands
for the current application state.

FingerPaint processes this CommandsRequested event by adding one SettingsCommand object to
the list:

Project: FingerPaint | File: MainPage.xaml.cs (excerpt)

void OnSettingsPaneCommandsRequested(SettingsPane sender,
 SettingsPaneCommandsRequestedEventArgs args)
{
 SettingsCommand aboutCommand = new SettingsCommand(0, "About", OnAboutInvoked);
 args.Request.ApplicationCommands.Add(aboutCommand);
}

This command has an ID (which I’ve set to 0 because I’m not using it), a text label, and a
method that’s called when the user selects that command. After the program returns from the
CommandsRequested handler, the pane is displayed with that new “About” item.

	 CHAPTER 17  Share and Print	 897

Here’s the method that processes that command:

Project: FingerPaint | File: MainPage.xaml.cs (excerpt)

void OnAboutInvoked(IUICommand command)
{
 AboutBox aboutBox = new AboutBox();
 aboutBox.Height = this.ActualHeight;

 Popup popup = new Popup
 {
 IsLightDismissEnabled = true,
 Child = aboutBox,
 IsOpen = true,
 HorizontalOffset = this.ActualWidth - aboutBox.Width
 };
}

Because the Popup appears at a fixed location on the right side of the page, the code to set the
Height of the AboutBox and the HorizontalOffset of the Popup is very simple, and here it is:

The IsLightDismissEnabled property setting ensures that the Popup is dismissed when the user
presses anywhere outside the Popup, and the Back button within AboutBox provides dismissal as well.
If the user presses the Hyperlink button, the Popup is dismissed as Internet Explorer is launched.

898	 PART 2  Specialties

Sharing Through the Clipboard

Sharing data through the Share charm involves classes in the Windows.ApplicationModel.DataTransfer
and Windows.ApplicationModel.DataTransfer.ShareTarget namespaces. That first namespace also
includes a very traditional mechanism for transferring data among Windows applications: the clipboard.

I want to first add clipboard support to FingerPaint before tackling the Share charm. Adding this
support to a program that works with bitmaps is potentially complex. You might want to implement
a selection API that allows the user to carve out a rectangular area of the painting and copy that to
the clipboard. You might also want to implement a paste API that allows an incoming bitmap to be
positioned somewhere on the current image.

But I’m going to take the simple route: The Copy command will copy the entire artwork to the
clipboard, and the Paste command will treat the incoming bitmap as a new image, just as if it had
been loaded from a file but without a filename.

The first job is to add Copy and Paste buttons to the application bar:

Project: FingerPaint | File: MainPage.xaml (excerpt)

<Page.BottomAppBar>
 <AppBar>
 <Grid>
 <StackPanel Orientation="Horizontal"
 HorizontalAlignment="Left">
 ...
 <Button Style="{StaticResource CopyAppBarButtonStyle}"
 Click="OnCopyAppBarButtonClick" />

 <Button Name="pasteAppBarButton"
 Style="{StaticResource PasteAppBarButtonStyle}"
 Click="OnPasteAppBarButtonClick" />
 </StackPanel>
 ...
 </Grid>
 </AppBar>
</Page.BottomAppBar>

The Paste button needs a name because it must be enabled and disabled from code based on the
presence of actual bitmap data in the clipboard.

I decided to implement all the data-sharing code in another partial class implementation of
MainPage with a filename of MainPage.Share.cs. The MainPage constructor calls a method in that
class:

Project: FingerPaint | File: MainPage.xaml.cs (excerpt)

public MainPage()
{
 ...
 // Call a method in MainPage.Share.cs
 InitializeSharing();
 ...
}

	 CHAPTER 17  Share and Print	 899

In part, that method checks if the Paste button should be initially enabled and then sets an event
handler that’s called when the content of the clipboard changes:

Project: FingerPaint | File: MainPage.Share.cs (excerpt)

public sealed partial class MainPage : Page
{
 void InitializeSharing()
 {
 // Initialize the Paste button and provide for updates
 CheckForPasteEnable();
 Clipboard.ContentChanged += OnClipboardContentChanged;
 ...
 }
 ...
 void OnClipboardContentChanged(object sender, object args)
 {
 CheckForPasteEnable();
 }

 void CheckForPasteEnable()
 {
 pasteAppBarButton.IsEnabled = CheckClipboardForBitmap();
 }

 bool CheckClipboardForBitmap()
 {
 DataPackageView dataView = Clipboard.GetContent();
 return dataView.Contains(StandardDataFormats.Bitmap);
 }
 ...
}

Clipboard is a small static class with only four methods and one event. The two most crucial
methods are GetContent and SetContent. GetContent returns a DataPackageView object that provides
a convenient way to check the current contents of the clipboard to determine whether a bitmap is
present.

SetContent requires a DataPackage object, which has a bunch of methods to put various forms of
data into the clipboard, including one named SetBitmap. The handler for the clipboard Copy button
creates a DataPackage and sets the operation to Move, meaning that the program is not interested in
any further involvement with the bitmap that it’s putting into the clipboard:

Project: FingerPaint | File: MainPage.Share.cs (excerpt)

async void OnCopyAppBarButtonClick(object sender, RoutedEventArgs args)
{
 DataPackage dataPackage = new DataPackage
 {
 RequestedOperation = DataPackageOperation.Move,
 };
 dataPackage.SetBitmap(await GetBitmapStream(bitmap));

 Clipboard.SetContent(dataPackage);
 this.BottomAppBar.IsOpen = false;
}

900	 PART 2  Specialties

However, that SetBitmap method does not want something as mundane as a BitmapSource.
Instead, it wants a RandomAccessStreamReference that references an encoded bitmap image. You can
create a RandomAccessStreamReference from an InMemoryRandomAccessStream. That’s the job of the
GetBitmapStream method referenced in the call to SetBitmap.

Notice that the argument to the GetBitmapStream call is the WriteableBitmap stored as a field in
MainPage. I made the GetBitmapStream somewhat generalized in that it creates its own pixels array
from that argument, but there’s no reason why it couldn’t access the existing pixels array also stored
as a field in MainPage:

Project: FingerPaint | File: MainPage.Share.cs (excerpt)

async Task<RandomAccessStreamReference> GetBitmapStream(WriteableBitmap bitmap)
{
 // Get a pixels array for this bitmap
 byte[] pixels = new byte[4 * bitmap.PixelWidth * bitmap.PixelHeight];
 Stream stream = bitmap.PixelBuffer.AsStream();
 await stream.ReadAsync(pixels, 0, pixels.Length);

 // Create a BitmapEncoder associated with a memory stream
 InMemoryRandomAccessStream memoryStream = new InMemoryRandomAccessStream();
 BitmapEncoder encoder = await BitmapEncoder.CreateAsync(BitmapEncoder.PngEncoderId,
 memoryStream);

 // Set the pixels into that encoder
 encoder.SetPixelData(BitmapPixelFormat.Bgra8, BitmapAlphaMode.Premultiplied,
 (uint)bitmap.PixelWidth, (uint)bitmap.PixelHeight, 96, 96, pixels);
 await encoder.FlushAsync();

 // Return a RandomAccessStreamReference
 return RandomAccessStreamReference.CreateFromStream(memoryStream);
}

The Paste logic is a bit more complex, and not only because the button must be enabled based
on the existence of bitmap content in the clipboard. If the current painting hasn’t been saved and the
user presses the Paste button, the program should request whether that artwork should be saved or
abandoned, just as if the user had elected to load a new file.

That means that the handler for the Paste button should call the CheckIfOkToTrashFile method
in MainPage.File.cs, passing to it a method that should be executed if the Paste operation should
proceed. It was unclear to me how much processing of the incoming bitmap I should do before
calling CheckIfOkToTrashFile. I was worried that the user might elect to save the existing picture and
somehow the contents of the clipboard would change during that time. I avoid that problem by
getting the pixels array right away. However, the code doesn’t create the WriteableBitmap just yet.
Delaying that job required that several items associated with the new bitmap be saved as fields:

Project: FingerPaint | File: MainPage.Share.cs (excerpt)

public sealed partial class MainPage : Page
{
 int pastedPixelWidth, pastedPixelHeight;
 byte[] pastedPixels;
 ...

	 CHAPTER 17  Share and Print	 901

 async void OnPasteAppBarButtonClick(object sender, RoutedEventArgs args)
 {
 // Temporarily disable the Paste button
 Button button = sender as Button;
 button.IsEnabled = false;

 // Get the Clipboard contents and check for a bitmap
 DataPackageView dataView = Clipboard.GetContent();

 if (dataView.Contains(StandardDataFormats.Bitmap))
 {
 // Get the stream reference and a stream
 RandomAccessStreamReference streamRef = await dataView.GetBitmapAsync();
 IRandomAccessStreamWithContentType stream = await streamRef.OpenReadAsync();

 // Create a BitmapDecoder for reading the bitmap
 BitmapDecoder decoder = await BitmapDecoder.CreateAsync(stream);
 BitmapFrame bitmapFrame = await decoder.GetFrameAsync(0);
 PixelDataProvider pixelProvider =
 await bitmapFrame.GetPixelDataAsync(BitmapPixelFormat.Bgra8,
 BitmapAlphaMode.Premultiplied,
 new BitmapTransform(),
 ExifOrientationMode.RespectExifOrientation,
 ColorManagementMode.ColorManageToSRgb);

 // Save information sufficient for creating WriteableBitmap
 pastedPixelWidth = (int)bitmapFrame.PixelWidth;
 pastedPixelHeight = (int)bitmapFrame.PixelHeight;
 pastedPixels = pixelProvider.DetachPixelData();

 // Check if it's OK to replace the current painting
 await CheckIfOkToTrashFile(FinishPasteBitmapAndPixelArray);
 }

 // Re-enable the button and close the app bar
 button.IsEnabled = true;
 this.BottomAppBar.IsOpen = false;
 }

 async Task FinishPasteBitmapAndPixelArray()
 {
 bitmap = new WriteableBitmap(pastedPixelWidth, pastedPixelHeight);
 pixels = pastedPixels;

 // Transfer pixels to bitmap, among other chores
 await InitializeBitmap();

 // Set AppSettings properties for new image
 appSettings.LoadedFilePath = null;
 appSettings.LoadedFilename = null;
 appSettings.IsImageModified = false;
 }
 ...
}

902	 PART 2  Specialties

There’s just one more job that needs to be done to implement this clipboard support: Many users
are familiar with using Ctrl+C and Ctrl+V for performing Copy and Paste operations, so I added that
support to MainPage.Share.cs as well, piggy-backing off the existing button handlers.

Project: FingerPaint | File: MainPage.Share.cs (excerpt)

public sealed partial class MainPage : Page
{
 ...
 void InitializeSharing()
 {
 ...
 // Watch for accelerator keys for Copy and Paste
 Window.Current.CoreWindow.Dispatcher.AcceleratorKeyActivated +=
 OnAcceleratorKeyActivated;
 ...
 }
 ...
 void OnAcceleratorKeyActivated(CoreDispatcher sender, AcceleratorKeyEventArgs args)
 {
 if ((args.EventType == CoreAcceleratorKeyEventType.SystemKeyDown ||
 args.EventType == CoreAcceleratorKeyEventType.KeyDown) &&
 (args.VirtualKey == VirtualKey.C || args.VirtualKey == VirtualKey.V))
 {
 CoreWindow window = Window.Current.CoreWindow;
 CoreVirtualKeyStates down = CoreVirtualKeyStates.Down;

 // Only want case where Ctrl is down
 if ((window.GetKeyState(VirtualKey.Shift) & down) == down ||
 (window.GetKeyState(VirtualKey.Control) & down) != down ||
 (window.GetKeyState(VirtualKey.Menu) & down) == down)
 {
 return;
 }

 if (args.VirtualKey == VirtualKey.C)
 {
 OnCopyAppBarButtonClick(null, null);
 }
 else if (args.VirtualKey == VirtualKey.V)
 {
 OnPasteAppBarButtonClick(pasteAppBarButton, null);
 }
 }
 }
}

	 CHAPTER 17  Share and Print	 903

The Share Charm

A program can use the Share charm in two ways. What I’ll be showing you here is how a program
can provide data to other applications. It is rather more difficult for an application to function as a
target for data from other applications. This second job requires that an application assert itself as a
Share Target in the Declarations section of Package.appxmanifest, be activated in a unique state, and
provide a special user interface for that purpose.

A program can be a Share provider by setting an event handler for a DataTransferManager
instance, and a program that provides a bitmap to another application does so with the same
RandomAccessStreamReference used to copy a bitmap to the clipboard. With the GetBitmapStream
method already defined in MainPage.Share.cs, the additional code to support the Share charm is
nearly trivial:

Project: FingerPaint | File: MainPage.Share.cs (excerpt)

public sealed partial class MainPage : Page
{
 ...
 void InitializeSharing()
 {
 ...
 // Hook into the Share pane for providing data
 DataTransferManager.GetForCurrentView().DataRequested += OnDataTransferDataRequested;
 }

 async void OnDataTransferDataRequested(DataTransferManager sender,
 DataRequestedEventArgs args)
 {
 DataRequestDeferral deferral = args.Request.GetDeferral();

 // Get a stream reference and hand it over
 RandomAccessStreamReference reference = await GetBitmapStream(bitmap);
 args.Request.Data.SetBitmap(reference);
 args.Request.Data.Properties.Title = "Finger Paint";
 args.Request.Data.Properties.Description = "Share this painting with another app";

 deferral.Complete();
 }
}

Now when the user selects the Share charm when FingerPaint is running, instead of the pane
derisively reporting that “This app can’t share,” it says “Finger Paint” and “Share this painting with
another app.” Obviously, the DataRequested event handler has already been called and Windows has
the RandomAccessStreamReference, so what follows in the Share pane is a list of those applications
that can accept bitmap data. There is no further interaction required of the program because it has
already provided the bitmap.

904	 PART 2  Specialties

Basic Printing

For any program shown so far in this book, if you invoke the charms and press the Devices charm,
you’ll get a Devices pane that won’t mention anything about printers. Your application needs to
register with Windows 8 that it is capable of printing.

Three namespaces play a role in printing:

■■ The Windows.UI.Xaml.Printing namespace has the PrintDocument class and support for its
events. As the name suggests, a PrintDocument represents something that the user of your
program wishes to print.

■■ The Windows.Graphics.Printing namespace has PrintManager, which is the interface to the
pane that Windows 8 provides that lists printers and printer options; and the PrintTask,
PrintTaskRequest, and PrintTaskOptions classes. A print “task” is the same thing as a print
“job”—a particular use of the printer to print a particular document.

■■ The Windows.Graphics.Printing.OptionDetails namespace contains classes you’ll use for
customizing printing options.

Much of the printer API involves overhead rather than the process of actually defining text and
graphics for the printer page. Indeed, a Windows 8 application prints on a printer page in the same
way that it draws on the screen: with a visual tree of instances of classes that derive from UIElement.
Generally, the root element is a Border or a Panel of some sort with children. This visual tree can be
defined in XAML but is probably more often constructed in code.

When defining elements to be displayed on the screen, one useful guideline is to treat the video
display as if it has a resolution of 96 pixels per inch. For the printer, you do the same except that the
equivalence is exact. Regardless of the actual resolution of the printer, you always treat it as a 96 DPI
device.

To persuade Windows 8 to list printers when the user taps the Devices charm, the first task is to set
an event handler:

PrintManager printManager = PrintManager.GetForCurrentView();
printManager.PrintTaskRequested += OnPrintManagerPrintTaskRequested;

Those two lines can be combined into one:

PrintManager.GetForCurrentView().PrintTaskRequested += OnPrintManagerPrintTaskRequested;

The static GetForCurrentView method obtains a PrintManager instance that is associated with
your program’s window. By setting a handler for the PrintTaskRequested event, your program is
announcing its availability for printing. The handler looks like this:

void OnPrintManagerPrintTaskRequested(PrintManager sender, PrintTaskRequestedEventArgs args)
{
 ...
}

	 CHAPTER 17  Share and Print	 905

That handler is called when the user clicks the Devices charm (or presses Windows+K), but (as you’ll
see shortly) it needs to call another method with a callback function in order for Windows to display
the list of printers.

This PrintTaskRequested handler should be attached only when the application is in a position to
actually print something. If the application requires some preliminary information from the user or
needs to load a document before it can legitimately print, the handler should not be attached to the
PrintTaskRequested event. The handler should be detached when the program finds itself again in a
position where it doesn’t make any sense to print anything:

PrintManager.GetForCurrentView().PrintTaskRequested -= OnPrintManagerPrintTaskRequested;

In the sample programs in this chapter, I mostly attach and detach this event handler in the
OnNavigatedTo and OnNavigatedFrom overrides as a symbolic representation of this process.

The handler for the PrintTaskRequested event is one of five callback methods and event handlers
required of a program that performs simple printing. All five are required. Moreover, before the
PrintTaskRequested event is even fired, your program needs to have prepared itself for printing by
creating a PrintDocument object and attaching three event handlers to it.

So, let’s look at a complete program that prints a one-page document consisting of a single
TextBlock announcing “Hello, Printer!” The XAML file in the HelloPrinter project doesn’t play a role in
the program logic and simply informs a new user how to print something:

Project: HelloPrinter | File: MainPage.xaml (excerpt)

<Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <TextBlock FontSize="48"
 HorizontalAlignment="Center"
 VerticalAlignment="Center"
 TextAlignment="Center">
 Hello, Printer!
 <LineBreak />
 <Run FontSize="24">
 (Invoke charms, select Devices and a printer)
 </Run>
 </TextBlock>
</Grid>

The code-behind file defines three fields, one of which is the TextBlock that the program prints:

Project: HelloPrinter | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 PrintDocument printDocument;
 IPrintDocumentSource printDocumentSource;

906	 PART 2  Specialties

 // UIElement to print
 TextBlock txtblk = new TextBlock
 {
 Text = "Hello, Printer!",
 FontFamily = new FontFamily("Times New Roman"),
 FontSize = 48,
 Foreground = new SolidColorBrush(Colors.Black)
 };
 ...
}

The PrintDocument object represents what your application prints. Generally, a program will create
just one PrintDocument object and use it for every print task. In some cases, it might make sense for
a program to maintain multiple PrintDocument objects—perhaps one to print the whole document,
another to print a document outline, and a third to print thumbnails—but you shouldn’t be creating
new PrintDocument objects for every print task. (As you’ll see, by the time a print task is requested,
it’s actually too late to create the PrintDocument!) If it’s convenient, you can derive a class from
PrintDocument to encapsulate some printing logic, but there’s nothing in PrintDocument to override.

For a program that deals with a single type of document, you’ll probably define the PrintDocument
and IPrintDocumentSource as fields as I’ve done and create the PrintDocument object during program
initialization:

Project: HelloPrinter | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 ...
 public MainPage()
 {
 this.InitializeComponent();

 // Create PrintDocument and attach handlers
 printDocument = new PrintDocument();
 printDocumentSource = printDocument.DocumentSource;
 printDocument.Paginate += OnPrintDocumentPaginate;
 printDocument.GetPreviewPage += OnPrintDocumentGetPreviewPage;
 printDocument.AddPages += OnPrintDocumentAddPages;
 }
 ...
}

The second field—the object of type IPrintDocumentSource—is obtained from the PrintDocument
object. In addition, three events defined by PrintDocument require handlers. These event handlers
are responsible for supplying a page count as well as the actual pages for print preview and actual
printing.

The HelloPrinter program attaches a handler for the PrintTaskRequested event of the PrintManager
during OnNavigatedTo and detaches it during OnNavigatedFrom, using two statements in the first
case and one statement in the second just for a little variety.

	 CHAPTER 17  Share and Print	 907

Project: HelloPrinter | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 ...
 protected override void OnNavigatedTo(NavigationEventArgs args)
 {
 // Attach PrintManager handler
 PrintManager printManager = PrintManager.GetForCurrentView();
 printManager.PrintTaskRequested += OnPrintManagerPrintTaskRequested;

 base.OnNavigatedTo(args);
 }

 protected override void OnNavigatedFrom(NavigationEventArgs e)
 {
 // Detach PrintManager handler
 PrintManager.GetForCurrentView().PrintTaskRequested -= OnPrintManagerPrintTaskRequested;

 base.OnNavigatedFrom(e);
 }
 ...
}

In a real-life program, you’ll be attaching this handler when your program is capable of printing, and
detaching it when it has nothing to print.

When your program has this handler attached and the user sweeps a finger on the right side of the
screen and then selects Devices, the PrintTaskRequested event handler is called. Here’s the standard
way to respond to that event:

Project: HelloPrinter | File: MainPage.xaml.cs (excerpt)

void OnPrintManagerPrintTaskRequested(PrintManager sender, PrintTaskRequestedEventArgs args)
{
 args.Request.CreatePrintTask("Hello Printer", OnPrintTaskSourceRequested);
}

The event arguments to the PrintTaskRequested event include a property of type Request, and the
program usually responds by calling the CreatePrintTask method of that Request object, passing to it
the name of the printer task—this could be the name of the application or the name of a document
being printed by the application—and a callback function. The CreatePrintTask method returns a
PrintTask object, but it’s not usually necessary to retain that object here.

908	 PART 2  Specialties

Windows 8 then displays a list of printers. Here’s what comes up on my screen (your mileage
may vary):

The only real printer here is the first one on the list. The second two items cause printing output to be
saved in files. The last item isn’t a printer at all and instead configures the second monitor attached to
my tablet.

The callback I’ve named OnPrintTaskSourceRequested is called when the user selects one of the
printers on the list. In the simplest case, the handler can respond by calling SetSource on the event
arguments, passing to it the IPrintDocumentSource object obtained earlier from the PrintDocument
object:

Project: HelloPrinter | File: MainPage.xaml.cs (excerpt)

void OnPrintTaskSourceRequested(PrintTaskSourceRequestedArgs args)
{
 args.SetSource(printDocumentSource);
}

	 CHAPTER 17  Share and Print	 909

When this method returns control back to Windows, a printer-specific pane is displayed:

The name of the printer at the top of the screen might look a little odd. This particular printer isn’t
actually attached to the tablet on which I’m working but is instead on a computer in the guest room
of the house where I’m writing this chapter, and what you’re seeing there is part of that computer’s
name.

Over at the right is a box to specify the number of copies and a drop-down to select Portrait or
Landscape. These are standard settings for printers. (For the “Send To OneNote 2010” and “Microsoft
XPS Document Writer” options, only the Orientation option is shown in this area.) Pressing “More
settings” makes available an option to select page size as well as some printer-specific options.

At the left of this pane is a preview of the page to be printed. If the document has more than
one page, you can select the page to view by using the little box below it. But the page preview is a
FlipView control, and it’s easiest just to sweep it from side to side.

The total number of pages comes from the handler for the Paginate event, which is one of the
three events defined by PrintDocument. Handlers for all three of these events were attached in the
MainPage constructor. In HelloPrinter the Paginate handler is implemented simply like this:

Project: HelloPrinter | File: MainPage.xaml.cs (excerpt)

void OnPrintDocumentPaginate(object sender, PaginateEventArgs args)
{
 printDocument.SetPreviewPageCount(1, PreviewPageCountType.Final);
}

This Paginate handler is the application’s opportunity to prepare all the pages for printing and
then call a PrintDocument method indicating the number of pages available and whether this is a
preliminary or final count. (If it’s not possible or convenient to do all that work in one shot, things get
a little more complex.)

910	 PART 2  Specialties

The preview of the print page is supplied by the handler for the GetPreviewPage event also defined
by PrintDocument and also set earlier in the MainPage constructor:

Project: HelloPrinter | File: MainPage.xaml.cs (excerpt)

void OnPrintDocumentGetPreviewPage(object sender, GetPreviewPageEventArgs args)
{
 printDocument.SetPreviewPage(args.PageNumber, txtblk);
}

The PageNumber property of the event arguments is one-based and can range from 1 to the number
specified in the SetPreviewPageCount call. For this particular program, it will always equal 1. The pro-
gram responds to this event by calling the SetPreviewPage method of PrintDocument, passing to it the
page number and the TextBlock that I defined as a field. That’s what’s displayed in the print preview.

When the Print button is pressed, the final event handler is called:

Project: HelloPrinter | File: MainPage.xaml.cs (excerpt)

void OnPrintDocumentAddPages(object sender, AddPagesEventArgs args)
{
 printDocument.AddPage(txtblk);
 printDocument.AddPagesComplete();
}

The handler for the AddPages event is responsible for calling AddPage for every page in the
document. In the usual case, these are the same objects passed to the SetPreviewPage method,
but you do have an opportunity to make them different if you wish. It concludes with a call to
AddPagesComplete. The printing pane disappears, and (with any luck) you’ll hear the familiar sound of
a printer kicking into action.

Watch out! The Paginate handler can be called more than once, particularly if the user starts
playing around with various printer options. If your program is actually performing a lot of work to
paginate the document, you’ll probably want to avoid repeating it when the actual layout of the page
doesn’t change. In a real-life program generally you’ll assemble all your pages in a List object during
the Paginate handler and then deliver them up in the GetPreviewPage and AddPages handlers.

The TextBlock that HelloPrinter prints is given a FontSize of 48. That TextBlock might appear to
have somewhat different sizes when it’s seen on video displays of different sizes and resolutions. But
when it’s printed, that FontSize of 48 is an exact measurement and means 48/96 inch, which is half an
inch or 36 points.

You’ll notice I specified that the Foreground property of that printable TextBlock is black. Because
this program uses a dark theme, the default Foreground property is white, and without an explicit
Foreground setting, this TextBlock gets the default and would be invisible on white paper. This is the
type of thing that can have you baffled for days! When experimenting with printer code, it might
be helpful to get in the habit of using colors such as Red and Blue so that there’s less of a chance of
printing white text.

As you look over the code in HelloPrinter, you might think you see a couple ways to simplify it. For
example, you might think you don’t need to create a PrintDocument initially and save it as a field. You

	 CHAPTER 17  Share and Print	 911

could simply create it in the OnPrintTaskSourceRequested method, set the three event handlers, and
extract the IPrintDocumentSource object. The various PrintDocument event handlers can get access to
the PrintDocument from the sender argument.

But this will not work. The PrintDocument needs to be created and accessed in the user-interface
thread, and the PrintTaskRequested handler and the callback I’ve named OnPrintTaskSourceRequested
do not run in the user-interface thread. If you wait until the PrintTaskRequested event is fired to create
the PrintDocument, it’s too late.

Printable and Unprintable Margins

Even with the caution of printing the TextBlock in black, it’s not printed correctly on my printer, and
it’s probably not printed correctly on your printer either. The TextBlock is aligned smack against the
upper-left corner of the page, and most printing mechanisms simply can’t reach to the edge of the
paper, which means that part of the text is sheared off.

If you try to solve this problem by setting the HorizontalAlignment and VerticalAlignment
properties of the TextBlock to Center, you’ll discover these properties don’t work in this case. The
alignment values are relative to a parent element, and this TextBlock has no parent because it’s
the top-level element on the printer page. Margin won’t work either for the same reason. Setting
the Padding property on the TextBlock will work, however, because that’s something the TextBlock
handles itself.

A much better general-purpose solution is for every printer page to be a visual tree that begins
with a top-level Border object. When printed, this Border will occupy the entire size of the paper, but
the Border can include a nonzero Padding property that effectively provides a margin for the entire
page.

Both PaginateEventArgs and AddPagesEventArgs include a property named PrintTaskOptions of
type PrintTaskOptions. Most of the properties of this object correspond to the printer properties that
the user can set manually. These properties have names like Collation, NumberOfCopies, Orientation,
and PrintQuality. A program can access these properties to customize printing, but this is generally
not necessary. I’ll show you later in this chapter how a program can initialize these properties and add
some custom options.

PrintTaskOptions also has a method named GetPageDescription. The argument is a zero-based
page number under the assumption that each page can be a different size. The PrintPageDescription
structure returned from this method has DpiX and DpiY properties, which report the actual resolution
of the printer (very often values like 600 or 1200) and a PageSize of type Size in units of 1/96 inch.
For American standard letter size 8½ × 11” paper in portrait mode, the PageSize properties are 816
and 1056.

The PrintPageDescription structure also includes an ImageableRect property of type Rect that
indicates the rectangular area of the page where the printer can actually print. For letter size paper
on my printer, this rectangle has an upper-left corner at (12.48, 11.35748) and a size of (791.04,
988.1575), all in units of 1/96 inch. Compare this with the PageSize of 816 by 1056. Perform a few

912	 PART 2  Specialties

subtractions and you’ll conclude that the printer can’t print on the 12.48 units on the left and right
edges, 11.35748 units on the top, and 56.48502 units (over ½ inch) on the bottom. In landscape
mode, both PageSize and ImageableRect reflect the particular orientation of the page.

Let’s examine how accurate these numbers are. The PrintPrintableArea program announces the
name of itself in its XAML file:

Project: PrintPrintableArea | File: MainPage.xaml (excerpt)

<Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <TextBlock Text="Print Printable Area"
 FontSize="24"
 HorizontalAlignment="Center"
 VerticalAlignment="Center" />
</Grid>

The code-behind file is structured very much like HelloPrinter except that the element to be
printed by the program is rather more extensive, consisting of a Border with a red background, a
nested Border with a white background and a black outline, and a centered TextBlock.

You’ll notice also that instead of a separate callback method passed to the CreatePrintTask method,
I’ve defined it as an anonymous lambda function. This is a common practice, but I’ve become less
enamored of it for more complex printing logic:

Project: PrintPrintableArea | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 PrintDocument printDocument;
 IPrintDocumentSource printDocumentSource;

 // Element to print
 Border border = new Border
 {
 Background = new SolidColorBrush(Colors.Red),

 Child = new Border
 {
 Background = new SolidColorBrush(Colors.White),
 BorderBrush = new SolidColorBrush(Colors.Black),
 BorderThickness = new Thickness(1),
 Child = new TextBlock
 {
 Text = "Print Printable Area",
 FontFamily = new FontFamily("Times New Roman"),
 FontSize = 24,
 Foreground = new SolidColorBrush(Colors.Black),
 HorizontalAlignment = HorizontalAlignment.Center,
 VerticalAlignment = VerticalAlignment.Center
 }
 }
 };

 public MainPage()
 {
 this.InitializeComponent();

	 CHAPTER 17  Share and Print	 913

 // Create PrintDocument and attach handlers
 printDocument = new PrintDocument();
 printDocumentSource = printDocument.DocumentSource;
 printDocument.Paginate += OnPrintDocumentPaginate;
 printDocument.GetPreviewPage += OnPrintDocumentGetPreviewPage;
 printDocument.AddPages += OnPrintDocumentAddPages;
 }

 protected override void OnNavigatedTo(NavigationEventArgs args)
 {
 // Attach PrintManager handler
 PrintManager.GetForCurrentView().PrintTaskRequested += OnPrintManagerPrintTaskRequested;

 base.OnNavigatedTo(args);
 }

 protected override void OnNavigatedFrom(NavigationEventArgs e)
 {
 // Detach PrintManager handler
 PrintManager.GetForCurrentView().PrintTaskRequested -= OnPrintManagerPrintTaskRequested;

 base.OnNavigatedFrom(e);
 }

 void OnPrintManagerPrintTaskRequested(PrintManager sender, PrintTaskRequestedEventArgs args)
 {
 args.Request.CreatePrintTask("Print Printable Area", (requestArgs) =>
 {
 requestArgs.SetSource(printDocumentSource);
 });
 }

 void OnPrintDocumentPaginate(object sender, PaginateEventArgs args)
 {
 PrintPageDescription printPageDescription = args.PrintTaskOptions.GetPageDescription(0);

 // Set Padding on outer Border
 double left = printPageDescription.ImageableRect.Left;
 double top = printPageDescription.ImageableRect.Top;
 double right = printPageDescription.PageSize.Width
 - left - printPageDescription.ImageableRect.Width;
 double bottom = printPageDescription.PageSize.Height
 - top - printPageDescription.ImageableRect.Height;
 border.Padding = new Thickness(left, top, right, bottom);

 printDocument.SetPreviewPageCount(1, PreviewPageCountType.Final);
 }

 void OnPrintDocumentGetPreviewPage(object sender, GetPreviewPageEventArgs args)
 {
 printDocument.SetPreviewPage(args.PageNumber, border);
 }

 void OnPrintDocumentAddPages(object sender, AddPagesEventArgs args)
 {
 printDocument.AddPage(border);

914	 PART 2  Specialties

 printDocument.AddPagesComplete();
 }
}

The other big difference is the handler for the Paginate event of PrintDocument. The handler
obtains the PrintPageDescription structure and calculates a Padding value that it applies to the outer
Border of the element to be printed. As you can see, the preview displays the red background of the
outer border to the edge of the paper:

When the preview is displayed, try switching between Portrait and Landscape. Each change causes
another call to the Paginate handler and a recalculation of the Padding value for the outer Border.

The preview obviously doesn’t reflect the limitations of the printer in printing to the paper’s edge.
Otherwise, that red area wouldn’t be visible at all. I was pleased to discover that the page that actually
came out of the printer displayed the black inner Border just fine with only a tiny trace of the red
background of the outer Border, indicating that the ImageableRect values for this printer are accurate.

Although a program that prints pictures and other bitmaps might want to print as large as possible
on the page, most printing applications prefer to set a larger margin—perhaps an inch, more or
less—either of a fixed size or customizable by the user. In these cases it’s usually not necessary for the
ImageableRect property to be accessed at all.

I’ll have an example of user-supplied margins coming up.

The Pagination Process

In the general case, a Windows application prints more than a single page, and the number of pages
might depend on many factors, for example, the length of a document, font sizes, paper size, page
margins, and whether the page is in portrait or landscape mode.

	 CHAPTER 17  Share and Print	 915

It is the purpose of the Paginate event handler not only to prepare these pages for preview and
printing, but to report the number of pages in the document. In some cases pagination might require
some time, and there are ways to avoid doing it all at once, but it’s easiest if you can do it in one shot.

Let’s examine a fairly short pagination job by resurrecting the DependencyObjectClassHierarchy
program from Chapter 4, “Presentation with Panels,” and adding a print option to it. As you
might recall, DependencyObjectClassHierarchy created a TextBlock for every class that derived
from DependencyObject and put them all in a StackPanel in a ScrollViewer. The XAML file for the
PrintableClassHierarchy program is the same as in the previous version:

Project: PrintableClassHierarchy | File: MainPage.xaml (excerpt)

<Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <ScrollViewer>
 <StackPanel Name="stackPanel" />
 </ScrollViewer>
</Grid>

I also decided to use a StackPanel containing TextBlock children for printing as well, but with a
profound difference: For the screen, there’s only one StackPanel because it’s in a ScrollViewer. For
printing, there must be a StackPanel for each page containing only the TextBlock elements for that
page.

It is tempting to use the same TextBlock elements for the screen and the printer. In theory you can
print elements already displayed on the screen, but it is my experience that this technique never really
works as well as might be hoped. One major restriction is that a particular element cannot have two
parents. In this example, a printed TextBlock must be a child of a StackPanel for the printer page, so it
can’t also be a child of a StackPanel on the screen.

For that reason, the revised version of the class hierarchy program creates a whole separate
collection of TextBlock elements that it stores in a field named printerTextBlocks. This portion of the
MainPage class is very similar to the code-behind file in DependencyObjectClassHierarchy except that
the TextBlock creation code has been split into a separate method for the convenience of creating two
parallel sets of TextBlock elements. Notice that the printer TextBlock elements are given an explicit
Foreground of black in the DisplayAndPrinterPrep method (renamed from the earlier Display method).
Most of the printing support is not shown in this excerpt:

Project: PrintableClassHierarchy | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 Type rootType = typeof(DependencyObject);
 TypeInfo rootTypeInfo = typeof(DependencyObject).GetTypeInfo();
 List<Type> classes = new List<Type>();
 Brush highlightBrush;

 // Printing support
 List<TextBlock> printerTextBlocks = new List<TextBlock>();
 Brush blackBrush = new SolidColorBrush(Colors.Black);
 ...
 public MainPage()
 {

916	 PART 2  Specialties

 this.InitializeComponent();
 highlightBrush =
 new SolidColorBrush(new UISettings().UIElementColor(UIElementType.Highlight));

 // Accumulate all the classes that derive from DependencyObject
 AddToClassList(typeof(Windows.UI.Xaml.DependencyObject));

 // Sort them alphabetically by name
 classes.Sort((t1, t2) =>
 {
 return String.Compare(t1.GetTypeInfo().Name, t2.GetTypeInfo().Name);
 });

 // Put all these sorted classes into a tree structure
 ClassAndSubclasses rootClass = new ClassAndSubclasses(rootType);
 AddToTree(rootClass, classes);

 // Display the tree using TextBlocks added to StackPanel
 DisplayAndPrinterPrep(rootClass, 0);
 ...
 }
 ...
 void AddToClassList(Type sampleType)
 {
 Assembly assembly = sampleType.GetTypeInfo().Assembly;

 foreach (Type type in assembly.ExportedTypes)
 {
 TypeInfo typeInfo = type.GetTypeInfo();

 if (typeInfo.IsPublic && rootTypeInfo.IsAssignableFrom(typeInfo))
 classes.Add(type);
 }
 }

 void AddToTree(ClassAndSubclasses parentClass, List<Type> classes)
 {
 foreach (Type type in classes)
 {
 Type baseType = type.GetTypeInfo().BaseType;

 if (baseType == parentClass.Type)
 {
 ClassAndSubclasses subClass = new ClassAndSubclasses(type);
 parentClass.Subclasses.Add(subClass);
 AddToTree(subClass, classes);
 }
 }
 }

 void DisplayAndPrinterPrep(ClassAndSubclasses parentClass, int indent)
 {
 TypeInfo typeInfo = parentClass.Type.GetTypeInfo();

 // Create TextBlock and add to StackPanel
 TextBlock txtblk = CreateTextBlock(typeInfo, indent);
 stackPanel.Children.Add(txtblk);

	 CHAPTER 17  Share and Print	 917

 // Create TextBlock and add to printer list
 txtblk = CreateTextBlock(typeInfo, indent);
 txtblk.Foreground = blackBrush;
 printerTextBlocks.Add(txtblk);

 // Call this method recursively for all subclasses
 foreach (ClassAndSubclasses subclass in parentClass.Subclasses)
 DisplayAndPrinterPrep(subclass, indent + 1);
 }

 TextBlock CreateTextBlock(TypeInfo typeInfo, int indent)
 {
 // Create TextBlock with type name
 TextBlock txtblk = new TextBlock();
 txtblk.Inlines.Add(new Run { Text = new string(' ', 8 * indent) });
 txtblk.Inlines.Add(new Run { Text = typeInfo.Name });

 // Indicate if the class is sealed
 if (typeInfo.IsSealed)
 txtblk.Inlines.Add(new Run
 {
 Text = " (sealed)",
 Foreground = highlightBrush
 });

 // Indicate if the class can't be instantiated
 IEnumerable<ConstructorInfo> constructorInfos = typeInfo.DeclaredConstructors;
 int publicConstructorCount = 0;

 foreach (ConstructorInfo constructorInfo in constructorInfos)
 if (constructorInfo.IsPublic)
 publicConstructorCount += 1;

 if (publicConstructorCount == 0)
 txtblk.Inlines.Add(new Run
 {
 Text = " (non-instantiable)",
 Foreground = highlightBrush
 });

 return txtblk;
 }
 ...
}

The remainder of the printing support is very similar to what you’ve seen before, except that
there’s more than one page to print. The Paginate method takes on the brunt of the work and stores
the formatted pages in the printerPages field. Each of these objects is a Border with Padding set to 96
(one inch) and a child StackPanel with a page worth of the TextBlock elements created earlier.

Keep in mind that the Paginate handler might be called multiple times as the user waffles between
Portrait or Landscape mode, and letter or legal page sizes. Because the program is working with a
fixed collection of TextBlock elements, and because elements are prohibited from having multiple

918	 PART 2  Specialties

parents, it’s essential for the Paginate method to begin by ensuring that none of these TextBlock
elements is still a child of a previously created StackPanel.

Project: PrintableClassHierarchy | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 ...
 PrintDocument printDocument;
 IPrintDocumentSource printDocumentSource;
 List<UIElement> printerPages = new List<UIElement>();

 public MainPage()
 {
 ...
 // Create PrintDocument and attach handlers
 printDocument = new PrintDocument();
 printDocumentSource = printDocument.DocumentSource;
 printDocument.Paginate += OnPrintDocumentPaginate;
 printDocument.GetPreviewPage += OnPrintDocumentGetPreviewPage;
 printDocument.AddPages += OnPrintDocumentAddPages;
 }

 protected override void OnNavigatedTo(NavigationEventArgs args)
 {
 // Attach PrintManager handler
 PrintManager.GetForCurrentView().PrintTaskRequested += OnPrintManagerPrintTaskRequested;

 base.OnNavigatedTo(args);
 }

 protected override void OnNavigatedFrom(NavigationEventArgs e)
 {
 // Detach PrintManager handler
 PrintManager.GetForCurrentView().PrintTaskRequested -= OnPrintManagerPrintTaskRequested;

 base.OnNavigatedFrom(e);
 }
 ...
 void OnPrintManagerPrintTaskRequested(PrintManager sender, PrintTaskRequestedEventArgs args)
 {
 args.Request.CreatePrintTask("Dependency Property Class Hierarchy", (requestArgs) =>
 {
 requestArgs.SetSource(printDocumentSource);
 });
 }

 void OnPrintDocumentPaginate(object sender, PaginateEventArgs args)
 {
 // Verbosely set some variables for the page margin
 double leftMargin = 96;
 double topMargin = 96;
 double rightMargin = 96;
 double bottomMargin = 96;

	 CHAPTER 17  Share and Print	 919

 // Clear out previous printerPage collection
 foreach (UIElement printerPage in printerPages)
 ((printerPage as Border).Child as Panel).Children.Clear();

 printerPages.Clear();

 // Initialize page construction
 Border border = null;
 StackPanel stackPanel = null;
 double maxPageHeight = 0;
 double pageHeight = 0;

 // Look through the list of TextBlocks
 for (int index = 0; index < printerTextBlocks.Count; index++)
 {
 // A null Border object signals a new page
 if (border == null)
 {
 // Calculate the height available for text
 uint pageNumber = (uint)printerPages.Count;
 maxPageHeight =
 args.PrintTaskOptions.GetPageDescription(pageNumber).PageSize.Height;
 maxPageHeight -= topMargin + bottomMargin;
 pageHeight = 0;

 // Create StackPanel and Border
 stackPanel = new StackPanel();
 border = new Border
 {
 Padding = new Thickness(leftMargin, topMargin, rightMargin, bottomMargin),
 Child = stackPanel
 };

 // Add to the list of pages
 printerPages.Add(border);
 }

 // Get the TextBlock and measure it
 TextBlock txtblk = printerTextBlocks[index];
 txtblk.Measure(Size.Empty);

 // Check if OK to add TextBlock to this page
 if (stackPanel.Children.Count == 0 ||
 pageHeight + txtblk.ActualHeight < maxPageHeight)
 {
 stackPanel.Children.Add(txtblk);
 pageHeight += Math.Ceiling(txtblk.ActualHeight);
 }

920	 PART 2  Specialties

 // Otherwise, it's the end of the page
 else
 {
 // No longer working with this Border object
 border = null;

 // Reprocess this TextBlock
 index--;
 }
 }

 // Notify about the final page count
 printDocument.SetPreviewPageCount(printerPages.Count, PreviewPageCountType.Final);
 }

 void OnPrintDocumentGetPreviewPage(object sender, GetPreviewPageEventArgs args)
 {
 printDocument.SetPreviewPage(args.PageNumber, printerPages[args.PageNumber - 1]);
 }

 void OnPrintDocumentAddPages(object sender, AddPagesEventArgs args)
 {
 foreach (UIElement printerPage in printerPages)
 printDocument.AddPage(printerPage);

 printDocument.AddPagesComplete();
 }
}

The strategy for pagination involves calculating a maxPageHeight number from the height of the
paper page minus one-inch margins on the top and bottom. Another variable named pageHeight is
increased for every TextBlock added to the StackPanel for that page. The method calls the Measure
method on each TextBlock to calculate its size, and if the height of the TextBlock added to pageHeight
exceeds maxPageHeight, a new page is required.

The GetPreviewPage handler uses the one-based PageNumber property in the event arguments to
access the corresponding element in the printerPages list. The AddPages handler calls AddPage on all
the pages.

In the preview, you can examine different pages before printing the whole list:

	 CHAPTER 17  Share and Print	 921

You might have noticed that the pagination logic increases the pageHeight based on each Text-
Block height with the following code:

pageHeight += Math.Ceiling(txtblk.ActualHeight);

I originally wasn’t using the Math.Ceiling call. The default FontSize is 11, and ActualHeight was
reporting 13.2, and with that my program was giving each StackPanel 65 lines of text to display in the
9 inches available in portrait mode. However, in the preview, and coming out of the printer, only 62
lines were visible. The line spacing used to stack the text in the StackPanel was obviously greater than
13.2, resulting in three TextBlock elements per page being clipped because the resultant StackPanel
was larger than the space allocated for it.

Using Math.Ceiling in this case resulted in 61 lines of text per page, which is a little off in the other
direction, but at least none of the text disappears.

Still, it’s a little odd. On a video display, of course, it makes perfect sense to align text with pixel
boundaries for purposes of readability and that’s why coordinates are rounded up to the next highest
pixel. On a printer, however, there are 600 pixels (or so) to the inch, so the rounding doesn’t need to
be based on a 96 DPI device.

Pagination can be very complex, particularly when text is involved. If you encounter chronic
problems with elements not appearing precisely where you want them on the printer page, you might
want to switch to using a Canvas. The use of Glyphs rather than TextBlock is popular for sophisticated
text layout needs, and if you run into a wall using Glyphs, you’ll probably want to explore DirectWrite
to render to both the screen and the printer page.

If you prefer going in the other direction—having the Windows Runtime do more of the work in
determining how text is displayed—then using RichTextBlock (which I discussed in Chapter 16, “Rich
Text”) might be useful.

922	 PART 2  Specialties

Custom Printing Properties

The one-inch margins in PrintableClassHierarchy are hard coded. Suppose you want to allow the user
to select the margins. While we’re at it, let’s give the user the option of setting the font size used for
printing.

It is possible without too much trouble to customize the printer setup pane, and to have the
Windows Runtime do most of the work in creating the appropriate controls and managing input.

The place to perform this customization is in the handler for the PrintTaskRequested event of the
PrintManager. So far, this handler has looked like this:

void OnPrintManagerPrintTaskRequested(PrintManager sender, PrintTaskRequestedEventArgs args)
{
 args.Request.CreatePrintTask("My Print Task Title", OnPrintTaskSourceRequested);
}

Or, it’s used an anonymous lambda function for the callback:

void OnPrintManagerPrintTaskRequested(PrintManager sender, PrintTaskRequestedEventArgs args)
{
 args.Request.CreatePrintTask("My Print Task Title", (requestArgs) =>
 {
 requestArgs.SetSource(printDocumentSource);
 });
}

Whichever way you do it, the CreatePrintTask call actually returns an object of type PrintTask, so
that object can be saved in a local variable:

void OnPrintManagerPrintTaskRequested(PrintManager sender, PrintTaskRequestedEventArgs args)
{
 PrintTask printTask = args.Request.CreatePrintTask("My Print Task Title", ...);
}

From that PrintTask object you can get an object of type PrintTaskOptionDetails via a roundabout
static call that will probably resist becoming habitual:

PrintTaskOptionDetails optionDetails =
 PrintTaskOptionDetails.GetFromPrintTaskOptions(printTask.Options);

PrintTaskOptionDetails and related classes are defined in the Windows.Graphics.Printing.OptionDetails
namespace.

If you want, you can then remove all the options from the first page of the printer setup pane:

optionDetails.DisplayedOptions.Clear();

	 CHAPTER 17  Share and Print	 923

Now you won’t see the option to change the number of copies or the orientation. You could
optionally put these back in, perhaps in reverse order:

optionDetails.DisplayedOptions.Add(StandardPrintTaskOptions.Orientation);
optionDetails.DisplayedOptions.Add(StandardPrintTaskOptions.Copies);

StandardPrintTaskOptions is a static class, and the properties represent standard printer
options identified with string IDs. StandardPrintTaskOptions.Orientation is actually the string
“PageOrientation” and StandardPrintTaskOptions.Copies is the string “JobCopiesAllDocuments”. You
can initialize these options if that is appropriate for your program:

optionDetails.Options[StandardPrintTaskOptions.Orientation].TrySetValue(
 PrintOrientation.Landscape);

PrintOrientation is one of eleven similar enumerations in Windows.Graphics.Printing.

You can add a less common option if you think it might be appropriate for your application:

optionDetails.DisplayedOptions.Add(StandardPrintTaskOptions.Collation);

You can also add your own items. You’re limited to two types of custom options: a text field, or an
expanding list of items like the Orientation option.

Let’s create a new project named CustomizableClassHierarchy. This program is mostly the same as
PrintableClassHierarchy but defines some customizable values as fields initialized with values that the
program considers appropriate:

Project: CustomizableClassHierarchy | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 ...
 // Initial values of custom printer settings
 double fontSize = new TextBlock().FontSize;
 double leftMargin = 96; // 1 inch
 double topMargin = 72; // 3/4 inch
 double rightMargin = 96;
 double bottomMargin = 72;
 ...
}

924	 PART 2  Specialties

These fields are accessed in the handler for the PrintTaskRequested event of the PrintManager.
You’ll recall that this event is fired when the user taps the Devices charm, probably in the process of
selecting a printer:

Project: CustomizableClassHierarchy | File: MainPage.xaml.cs (excerpt)

void OnPrintManagerPrintTaskRequested(PrintManager sender, PrintTaskRequestedEventArgs args)
{
 PrintTask printTask = args.Request.CreatePrintTask("Dependency Property Class Hierarchy",
 (requestArgs) =>
 {
 requestArgs.SetSource(printDocumentSource);
 });

 PrintTaskOptionDetails optionDetails =
 PrintTaskOptionDetails.GetFromPrintTaskOptions(printTask.Options);

 // Add item for font size
 optionDetails.CreateTextOption("idFontSize", "Font size (in points)");
 optionDetails.DisplayedOptions.Add("idFontSize");
 optionDetails.Options["idFontSize"].TrySetValue((72 * fontSize / 96).ToString());

 // Add items for page margins
 optionDetails.CreateTextOption("idLeftMargin", "Left margin (in inches)");
 optionDetails.DisplayedOptions.Add("idLeftMargin");
 optionDetails.Options["idLeftMargin"].TrySetValue((leftMargin / 96).ToString());

 optionDetails.CreateTextOption("idTopMargin", "Top margin (in inches)");
 optionDetails.DisplayedOptions.Add("idTopMargin");
 optionDetails.Options["idTopMargin"].TrySetValue((topMargin / 96).ToString());

 optionDetails.CreateTextOption("idRightMargin", "Right margin (in inches)");
 optionDetails.DisplayedOptions.Add("idRightMargin");
 optionDetails.Options["idRightMargin"].TrySetValue((rightMargin / 96).ToString());

 optionDetails.CreateTextOption("idBottomMargin", "Bottom margin (in inches)");
 optionDetails.DisplayedOptions.Add("idBottomMargin");
 optionDetails.Options["idBottomMargin"].TrySetValue((bottomMargin / 96).ToString());

 // Set handler for the option changing
 optionDetails.OptionChanged += OnOptionDetailsOptionChanged;
}

Each custom option requires at least two steps and possibly three. First the option must be
created, in the process giving it an ID string and a label that appears on the printer settings pane. The
custom option is then added to the DisplayedOptions collection. The third step is optional but sets an
initial value. In my code, the fields storing these values are converted from pixels into points (for the
font size) and inches (for the margin values).

The method concludes by setting an event handler for the OptionChanged event. This event will be
fired for changes to all the printer options, not just the custom options. For text items like these, the

	 CHAPTER 17  Share and Print	 925

event is not fired with every keystroke but only with a press of the Enter key, loss of input focus, or a
press of the Print button. Here’s what the customized settings pane looks like:

See the five new items? I know it looks like we’ve gone beyond the limit of the size available for
custom options, but the list is scrollable.

Here’s the implementation of the OptionChanged event handler. This is where validation
occurs, and where you signal that the preview needs to be refreshed with new values, which
forces your Paginate handler to be called again. The PrintTaskOptionChangedEventArgs class
defines just one property—named OptionId of type object (but it’s really a string) indicating the
option that’s changed—but you’ll need to make use of the sender argument as well. That’s the
PrintTaskOptionDetails object you used during the customization in the PrintTaskRequested handler:

Project: CustomizableClassHierarchy | File: MainPage.xaml.cs (excerpt)

async void OnOptionDetailsOptionChanged(PrintTaskOptionDetails sender,
 PrintTaskOptionChangedEventArgs args)
{
 if (args.OptionId == null)
 return;

 string optionId = args.OptionId.ToString();
 string strValue = sender.Options[optionId].Value.ToString();
 string errorText = String.Empty;
 double value = 0;

 switch (optionId)
 {
 case "idFontSize":
 if (!Double.TryParse(strValue, out value))
 errorText = "Value must be numeric";

926	 PART 2  Specialties

 else if (value < 4 || value > 36)
 errorText = "Value must be between 4 and 36";
 break;

 case "idLeftMargin":
 case "idTopMargin":
 case "idRightMargin":
 case "idBottomMargin":
 if (!Double.TryParse(strValue, out value))
 errorText = "Value must be numeric";

 else if (value < 0 || value > 2)
 errorText = "Value must be between 0 and 2";
 break;
 }

 sender.Options[optionId].ErrorText = errorText;

 // If there's no error, then invalidate the preview
 if (String.IsNullOrEmpty(errorText))
 {
 await this.Dispatcher.RunAsync(CoreDispatcherPriority.Normal, () =>
 {
 printDocument.InvalidatePreview();
 });
 }
}

If there’s a problem with the input on one of the options, this method needs to set the ErrorText
property for that option to a short but helpful text string. That string is displayed in red to the user. If
the ErrorText of any option is set, the Print button also becomes disabled. Here’s what it looks like:

	 CHAPTER 17  Share and Print	 927

Notice how everything below the error message has been shifted down. If the error message you
supply is longer than a line, it will be wrapped.

If there’s no error, the InvalidatePreview method of the PrintDocument object should be called.
Notice that a CoreDispatcher is required to force that call to occur in the user-interface thread. This
OptionChanged handler runs in a secondary thread.

The InvalidatePreview call causes a new Paginate event to be fired on the PrintDocument. This new
version of the Paginate handler begins by obtaining all the custom values and converting them into
numbers that it can use. The font size is applied to all the TextBlock elements stored for printing, and
the margin values are used as in the previous version of this method:

Project: CustomizableClassHierarchy | File: MainPage.xaml.cs (excerpt)

void OnPrintDocumentPaginate(object sender, PaginateEventArgs args)
{
 // Get values of custom settings
 PrintTaskOptionDetails optionDetails =
 PrintTaskOptionDetails.GetFromPrintTaskOptions(args.PrintTaskOptions);
 fontSize = 96 * Double.Parse(optionDetails.Options["idFontSize"].Value.ToString()) / 72;
 leftMargin = 96 * Double.Parse(optionDetails.Options["idLeftMargin"].Value.ToString());
 topMargin = 96 * Double.Parse(optionDetails.Options["idTopMargin"].Value.ToString());
 rightMargin = 96 * Double.Parse(optionDetails.Options["idRightMargin"].Value.ToString());
 bottomMargin = 96 * Double.Parse(optionDetails.Options["idBottomMargin"].Value.ToString());

 // Set FontSize of stored TextBlocks
 foreach (TextBlock txtblk in printerTextBlocks)
 txtblk.FontSize = fontSize;
 ...
}

With a little more work, you can check that the margin values entered by the user are high enough
to avoid text appearing in the unprintable area of the page. In the OptionChanged handler you can
easily access the page description from the PrintTaskOptionDetails object:

Rect imageableRect = sender.GetPageDescription(0).ImageableRect;

928	 PART 2  Specialties

Printing a Monthly Planner

Sometimes when I’m working on a long project I like to use printed monthly calendars taped up to
the wall. These calendars don’t need any fancy features—just a lot of white space to write stuff in for
each day.

The sole purpose of the PrintMonthlyPlanner program is to print a bunch of monthly calendars in a
range specified by the user. The main page looks like this:

Each month and year is selectable via a FlipView control. The button is enabled only if the start month
is less than or equal to the end month. The Click handler for the button is implemented with just a
single line of code:

await PrintManager.ShowPrintUIAsync();

Although the user normally invokes the charms and Devices pane, a program can do so as well.
Generally, this option is reserved for programs that print only on special occasions, for example, “Print

	 CHAPTER 17  Share and Print	 929

Ticket Confirmation.” Interestingly, calling ShowPrintUIAsync brings up a slightly different pane than
the Devices charm:

Because the PrintMonthlyPlanner program is dedicated to printing, the pages that it prints are not
otherwise displayed by the program and are only visible on screen in the printing pane:

Notice that the Orientation is set to Landscape. The program sets that initial value under the
assumption that the calendar pages are better formatted in landscape. Each page is printed to the
very edge of the printable margins.

930	 PART 2  Specialties

I created a custom control for the user to pick a month and year. This is called MonthYearSelect,
and the XAML file reveals two templated FlipView controls, both with a horizontal StackPanel as the
ItemsPanel:

Project: PrintMonthlyPlanner | File: MonthYearSelect.xaml (excerpt)

<UserControl ... >
 <UserControl.Resources>
 <Style TargetType="FlipView">
 <Setter Property="ItemsPanel">
 <Setter.Value>
 <ItemsPanelTemplate>
 <StackPanel Orientation="Vertical" />
 </ItemsPanelTemplate>
 </Setter.Value>
 </Setter>

 <Setter Property="ItemTemplate">
 <Setter.Value>
 <DataTemplate>
 <TextBlock Text="{Binding}" VerticalAlignment="Center" />
 </DataTemplate>
 </Setter.Value>
 </Setter>
 </Style>
 </UserControl.Resources>

 <Grid>
 <StackPanel Orientation="Horizontal">
 <FlipView x:Name="monthFlipView"
 SelectionChanged="OnMonthYearSelectionChanged" />

 <TextBlock Text=" " />

 <FlipView x:Name="yearFlipView"
 SelectionChanged="OnMonthYearSelectionChanged" />
 </StackPanel>
 </Grid>
</UserControl>

Partially to make use of new features in the Windows Runtime, I decided to make the public
interface to this class a Calendar object rather than a traditional .NET DateTime. I was hoping to
make the program generalized for any type of calendar, but the Calendar class doesn’t seem to be
documented sufficiently to go beyond the standard Gregorian. I couldn’t even discover a way to
determine if the day of the week should begin on a Sunday (the standard in most places) or Monday
(used in France, for example).

I also discovered that Calendar is a class rather than a structure, and it bothered me to be
generating new Calendar objects with every spin of the FlipView. I decided that the control would
create just one Calendar object and change the Month and Year properties of that single object.
But in that case it made no sense for Calendar to be exposed as a dependency property, which is

	 CHAPTER 17  Share and Print	 931

customary with controls, so that’s why the property of type Calendar is a plain old property named
MonthYear supplemented with a MonthYearChanged event to indicate new values of Month or Year:

Project: PrintMonthlyPlanner | File: MonthYearSelect.xaml.cs (excerpt)

public sealed partial class MonthYearSelect : UserControl
{
 public event EventHandler MonthYearChanged;

 public MonthYearSelect()
 {
 this.InitializeComponent();

 // Create Calendar with current date
 Calendar calendar = new Calendar();
 calendar.SetToNow();

 // Fill the first FlipView with the abbreviated month names
 DateTimeFormatter monthFormatter =
 new DateTimeFormatter(YearFormat.None, MonthFormat.Abbreviated,
 DayFormat.None, DayOfWeekFormat.None);

 for (int month = 1; month <= 12; month++)
 {
 string strMonth = monthFormatter.Format(
 new DateTimeOffset(2000, month, 15, 0, 0, 0, TimeSpan.Zero));
 monthFlipView.Items.Add(strMonth);
 }

 // Fill the second FlipView with years (5 years before current, 25 after)
 for (int year = calendar.Year - 5; year <= calendar.Year + 25; year++)
 {
 yearFlipView.Items.Add(year);
 }

 // Set the FlipViews to the current month and year
 monthFlipView.SelectedIndex = calendar.Month - 1;
 yearFlipView.SelectedItem = calendar.Year;
 this.MonthYear = calendar;
 }

 public Calendar MonthYear { private set; get; }

 void OnMonthYearSelectionChanged(object sender, SelectionChangedEventArgs args)
 {
 if (this.MonthYear == null)
 return;

 if (monthFlipView.SelectedIndex != -1)
 this.MonthYear.Month = (int)monthFlipView.SelectedIndex + 1;

 if (yearFlipView.SelectedIndex != -1)
 this.MonthYear.Year = (int)yearFlipView.SelectedItem;

932	 PART 2  Specialties

 // Fire the event
 if (MonthYearChanged != null)
 MonthYearChanged(this, EventArgs.Empty);
 }
}

The MainPage.xaml file instantiates two of these MonthYearSelect controls:

Project: PrintMonthlyPlanner | File: MainPage.xaml (excerpt)

<Page ...
 FontSize="48">

 <Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <Grid HorizontalAlignment="Center"
 VerticalAlignment="Center">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition Width="*" />
 <ColumnDefinition Width="Auto" />
 </Grid.ColumnDefinitions>

 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>

 <local:MonthYearSelect x:Name="monthYearSelect1"
 Grid.Row="0" Grid.Column="0"
 Height="144"
 VerticalAlignment="Center"
 MonthYearChanged="OnMonthYearChanged" />

 <TextBlock Text=" to "
 Grid.Row="0" Grid.Column="1"
 VerticalAlignment="Center" />

 <local:MonthYearSelect x:Name="monthYearSelect2"
 Grid.Row="0" Grid.Column="2"
 Height="144"
 VerticalAlignment="Center"
 MonthYearChanged="OnMonthYearChanged" />

 <Button Name="printButton"
 Content="Print 1 Month"
 Grid.Row="1" Grid.Column="0" Grid.ColumnSpan="3"
 FontSize="24"
 HorizontalAlignment="Center"
 Margin="0 24"
 Click="OnPrintButtonClick" />
 </Grid>
 </Grid>
</Page>

This program is a little different from the others in this chapter in that printing is not enabled
for the duration of the application. Printing is enabled only if the two MonthYearSelect controls are

	 CHAPTER 17  Share and Print	 933

dialed in to an actual range of months. With each change of these two controls, the program needs
to generate a new label for the Button, determine whether the button should be enabled or disabled,
and determine whether to attach or detach the PrintTaskRequested event. That logic is much of what’s
going on in this initial section of the MainPage class:

Project: PrintMonthlyPlanner | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 PrintDocument printDocument;
 IPrintDocumentSource printDocumentSource;
 List<UIElement> calendarPages = new List<UIElement>();
 bool printingEnabled;

 public MainPage()
 {
 this.InitializeComponent();

 // Create PrintDocument and attach handlers
 printDocument = new PrintDocument();
 printDocumentSource = printDocument.DocumentSource;
 printDocument.Paginate += OnPrintDocumentPaginate;
 printDocument.GetPreviewPage += OnPrintDocumentGetPreviewPage;
 printDocument.AddPages += OnPrintDocumentAddPages;
 }

 void OnMonthYearChanged(object sender, EventArgs args)
 {
 // Calculate number of months and check if it's non-negative
 int printableMonths = GetPrintableMonthCount();
 printButton.Content = String.Format("Print {0} Month{1}", printableMonths,
 printableMonths > 1 ? "s" : "");
 printButton.IsEnabled = printableMonths > 0;

 // Attach or detach PrintManager handler
 if (printingEnabled != printableMonths > 0)
 {
 PrintManager printManager = PrintManager.GetForCurrentView();

 if (printableMonths > 0)
 printManager.PrintTaskRequested += OnPrintManagerPrintTaskRequested;
 else
 printManager.PrintTaskRequested -= OnPrintManagerPrintTaskRequested;

 printingEnabled = printableMonths > 0;
 }
 }

 int GetPrintableMonthCount()
 {
 Calendar cal1 = monthYearSelect1.MonthYear;
 Calendar cal2 = monthYearSelect2.MonthYear;
 return cal2.Month - cal1.Month + 1 + 12 * (cal2.Year - cal1.Year);
 }

934	 PART 2  Specialties

 async void OnPrintButtonClick(object sender, RoutedEventArgs args)
 {
 await PrintManager.ShowPrintUIAsync();
 }

 void OnPrintManagerPrintTaskRequested(PrintManager sender, PrintTaskRequestedEventArgs args)
 {
 // Create PrintTask
 PrintTask printTask = args.Request.CreatePrintTask("Monthly Planner",
 OnPrintTaskSourceRequested);

 // Set orientation to landscape
 PrintTaskOptionDetails optionDetails =
 PrintTaskOptionDetails.GetFromPrintTaskOptions(printTask.Options);

 PrintOrientationOptionDetails orientation =
 optionDetails.Options[StandardPrintTaskOptions.Orientation] as
 PrintOrientationOptionDetails;

 orientation.TrySetValue(PrintOrientation.Landscape);
 }

 void OnPrintTaskSourceRequested(PrintTaskSourceRequestedArgs args)
 {
 args.SetSource(printDocumentSource);
 }
 ...
}

Notice also that the PrintTaskRequested handler accesses the Orientation option and initializes it
to Landscape. This will happen every time the user opens the printer pane. It could be that the user
really doesn’t want to print these calendar months in landscape mode. You might want to keep track
of what setting the user ultimately uses by obtaining it, saving it in a field during the Paginate han-
dler, and then using that the next time the printer pane comes up. The user’s preference could even
be saved in user settings for the next time the program is run.

Creating the pages is the responsibility of the Paginate handler, which saves them in a field for the
GetPreviewPage and AddPages handlers. These pages are built around a Grid with seven columns for
the seven days of the week, a number of rows based on the number of weeks in the particular month
(which could range from four in February to six in other months), and one more row for the month
and year title at the top:

Project: PrintMonthlyPlanner | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 ...
 void OnPrintDocumentPaginate(object sender, PaginateEventArgs args)
 {
 // Prepare to generate pages
 uint pageNumbers = 0;
 calendarPages.Clear();
 Calendar calendar = monthYearSelect1.MonthYear.Clone();
 calendar.Day = 1;
 Brush black = new SolidColorBrush(Colors.Black);

	 CHAPTER 17  Share and Print	 935

 // For each month
 do
 {
 PrintPageDescription printPageDescription =
 args.PrintTaskOptions.GetPageDescription(pageNumber);

 // Set Padding on outer Border
 double left = printPageDescription.ImageableRect.Left;
 double top = printPageDescription.ImageableRect.Top;
 double right = printPageDescription.PageSize.Width
 - left - printPageDescription.ImageableRect.Width;
 double bottom = printPageDescription.PageSize.Height
 - top - printPageDescription.ImageableRect.Height;
 Border border = new Border { Padding = new Thickness(left, top, right, bottom) };

 // Use Grid for calendar cells
 Grid grid = new Grid();
 border.Child = grid;
 int numberOfWeeks = (6 + (int)calendar.DayOfWeek + calendar.LastDayInThisMonth) / 7;

 for (int row = 0; row < numberOfWeeks + 1; row++)
 grid.RowDefinitions.Add(new RowDefinition
 {
 Height = new GridLength(1, GridUnitType.Star)
 });

 for (int col = 0; col < 7; col++)
 grid.ColumnDefinitions.Add(new ColumnDefinition
 {
 Width = new GridLength(1, GridUnitType.Star)
 });

 // Month and year display at top
 Viewbox viewbox = new Viewbox
 {
 Child = new TextBlock
 {
 Text = calendar.MonthAsSoloString() + " " + calendar.YearAsString(),
 Foreground = black,
 FontSize = 96,
 HorizontalAlignment = HorizontalAlignment.Center
 }
 };
 Grid.SetRow(viewbox, 0);
 Grid.SetColumn(viewbox, 0);
 Grid.SetColumnSpan(viewbox, 7);
 grid.Children.Add(viewbox);

 // Now loop through the days of the month
 for (int day = 1, row = 1, col = (int)calendar.DayOfWeek;
 day <= calendar.LastDayInThisMonth; day++)
 {
 Border dayBorder = new Border
 {
 BorderBrush = black,

936	 PART 2  Specialties

 // Avoid double line drawing
 BorderThickness = new Thickness
 {
 Left = day == 1 || col == 0 ? 1 : 0,
 Top = day - 7 < 1 ? 1 : 0,
 Right = 1,
 Bottom = 1
 },

 // Put day of month in upper-left corner
 Child = new TextBlock
 {
 Text = day.ToString(),
 Foreground = black,
 FontSize = 24,
 HorizontalAlignment = HorizontalAlignment.Left,
 VerticalAlignment = VerticalAlignment.Top
 }
 };
 Grid.SetRow(dayBorder, row);
 Grid.SetColumn(dayBorder, col);
 grid.Children.Add(dayBorder);

 if (0 == (col = (col + 1) % 7))
 row += 1;
 }
 calendarPages.Add(border);
 calendar.AddMonths(1);
 pageNumber += 1;
 }
 while (calendar.Year < monthYearSelect2.MonthYear.Year ||
 calendar.Month <= monthYearSelect2.MonthYear.Month);

 printDocument.SetPreviewPageCount(calendarPages.Count, PreviewPageCountType.Final);
 }

 void OnPrintDocumentGetPreviewPage(object sender, GetPreviewPageEventArgs args)
 {
 printDocument.SetPreviewPage(args.PageNumber, calendarPages[args.PageNumber - 1]);
 }

 void OnPrintDocumentAddPages(object sender, AddPagesEventArgs args)
 {
 foreach (UIElement calendarPage in calendarPages)
 printDocument.AddPage(calendarPage);

 printDocument.AddPagesComplete();
 }
}

	 CHAPTER 17  Share and Print	 937

Printing a Range of Pages

The next program in this chapter is an experiment that got completely out of control. I wanted to
demonstrate how to add an option to the printing pane to allow the user to select a variable range
of pages to print. At the same time, I wanted to show how to share UIElement instances between the
screen and the printer.

For this demonstration I chose to revamp the program from Chapter 4 that presented Beatrix
Potter’s The Tale of Tom Kitten. To allow the pages of this book to be easily printed, I decided that
each book page should be a separate UserControl derivative. For the on-screen rendition, these
separate UserControl pages could simply be assembled in a single scrollable StackPanel.

There’s nothing really wrong with this scheme except that I ended up with 57 UserControl
derivatives named TomKitten03 through TomKitten59, the number indicating the page from the
original book. But it turned out I really couldn’t use the same instances of these controls on the screen
and the printer unless I wanted the text or image from each page of the book to be printed in the
upper-left corner of the printer page, and that was unacceptable.

Elements that are displayed on the screen are subjected to a layout process that defines their
relationship to their parent, and in the general case you simply can’t lift these elements out of a visual
tree and expect that they will render satisfactorily on the printer. And you can’t mess around with
these elements either. You can’t set new properties on them just for the printer because those prop-
erties will affect how they’re displayed on the screen. And you can’t put them into another container
because that violates the rule that an element can have only one parent.

I finally realized that I could use the same 57 UserControl derivatives for the screen and printer, but
only if they were separate instances, which means that each of these controls is instantiated twice: one
in MainPage.xaml for the screen, and again in MainPage.xaml.cs for the printer.

So, in one sense the experiment was a failure because I couldn’t simply reuse the instances, but the
experiment also illuminated the awkwardness of a Visual Studio project that contains 57 UserControl
derivatives! Visual Studio shakes in its boots loading and compiling all these XAML files, and we
programmers should be nervous as well. This is not the way to make an e-book!

On the other hand, the program does demonstrate how to add a facility to the printer options to
select a range of pages to print.

To allow a uniform set of styles to be applied to the UserControl derivatives in MainPage.xaml
and as well as the UserControl derivatives instantiated in MainPage.xaml.cs, I moved all the Style
definitions to App.xaml. This makes them available throughout the application.

Project: PrintableTomKitten | File: App.xaml

<Application
 x:Class="PrintableTomKitten.App"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="using:PrintableTomKitten">

938	 PART 2  Specialties

 <Application.Resources>
 <ResourceDictionary>
 <ResourceDictionary.MergedDictionaries>
 <ResourceDictionary Source="Common/StandardStyles.xaml"/>
 </ResourceDictionary.MergedDictionaries>

 <Style x:Key="commonTextStyle" TargetType="TextBlock">
 <Setter Property="FontFamily" Value="Century Schoolbook" />
 <Setter Property="FontSize" Value="36" />
 <Setter Property="Foreground" Value="Black" />
 <Setter Property="Margin" Value="0 12" />
 </Style>

 <Style x:Key="paragraphTextStyle" TargetType="TextBlock"
 BasedOn="{StaticResource commonTextStyle}">
 <Setter Property="TextWrapping" Value="Wrap" />
 </Style>

 <Style x:Key="frontMatterTextStyle" TargetType="TextBlock"
 BasedOn="{StaticResource commonTextStyle}">
 <Setter Property="TextAlignment" Value="Center" />
 </Style>

 <Style x:Key="imageStyle" TargetType="Image">
 <Setter Property="Stretch" Value="None" />
 <Setter Property="HorizontalAlignment" Value="Center" />
 </Style>
 </ResourceDictionary>
 </Application.Resources>
</Application>

The MainPage.xaml file does little more than list all the individual pages of the book in a
StackPanel. The following listing leaves out the middle section:

Project: PrintableTomKitten | File: MainPage.xaml (excerpt)

<Page
 x:Class="PrintableTomKitten.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="using:PrintableTomKitten">

 <Grid Background="White">
 <ScrollViewer>
 <StackPanel Name="bookPageStackPanel"
 MaxWidth="640"
 HorizontalAlignment="Center">

 <local:TomKitten03 />
 <local:TomKitten04 />
 <local:TomKitten05 />
 <local:TomKitten06 />
 <local:TomKitten07 />
 <local:TomKitten08 />
 <local:TomKitten09 />

 <local:TomKitten10 />

	 CHAPTER 17  Share and Print	 939

 <local:TomKitten11 />
 <local:TomKitten13 />
 <local:TomKitten12 />

 <local:TomKitten14 />
 <local:TomKitten15 />
 <local:TomKitten17 />
 <local:TomKitten16 />
 ...
 <local:TomKitten50 />
 <local:TomKitten51 />
 <local:TomKitten53 />
 <local:TomKitten52 />

 <local:TomKitten54 />
 <local:TomKitten55 />
 <local:TomKitten56 />
 <local:TomKitten57 />

 <local:TomKitten59 />
 <local:TomKitten58 />
 </StackPanel>
 </ScrollViewer>
 </Grid>
</Page>

Some of these are seemingly out of sequence. As I discussed in Chapter 4, I found it necessary to
swap some of the text and picture pages to provide a more coherent reading experience.

The pages containing only an image are quite small:

Project: PrintableTomKitten | File: TomKitten20.xaml

<UserControl
 x:Class="PrintableTomKitten.TomKitten20"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">

 <Image Source="Images/tom20.jpg" Style="{StaticResource imageStyle}" />
</UserControl>

Many pages have only one paragraph of text, like the following:

Project: PrintableTomKitten | File: TomKitten21.xaml

<UserControl
 x:Class="PrintableTomKitten.TomKitten21"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">

 <Grid VerticalAlignment="Center"
 MaxWidth="640">
 <TextBlock Style="{StaticResource paragraphTextStyle}">
   Tom Kitten was very fat, and he had grown;
 several buttons burst off. His mother sewed them on again.
 </TextBlock>
 </Grid>
</UserControl>

940	 PART 2  Specialties

Notice the VerticalAlignment and MaxWidth settings on the Grid. These settings are for the benefit
of the printer. The VerticalAlignment setting has no effect when the control is displayed on the
screen because it’s a child of a StackPanel with a vertical orientation, and the StackPanel itself has a
MaxWidth setting of 640.

Those pages with more than a paragraph of text require a StackPanel:

Project: PrintableTomKitten | File: TomKitten21.xaml

<UserControl
 x:Class="PrintableTomKitten.TomKitten22"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">

 <Grid VerticalAlignment="Center"
 MaxWidth="640">
 <StackPanel>
 <TextBlock Style="{StaticResource paragraphTextStyle}">
   When the three kittens were ready, Mrs.
 Tabitha unwisely turned them out into the garden, to be
 out of the way while she made hot buttered toast.
 </TextBlock>

 <TextBlock Style="{StaticResource paragraphTextStyle}">
   "Now keep your frocks clean, children! You
 must walk on your hind legs. Keep away from the dirty
 ash-pit, and from Sally Henny Penny, and from the
 pig-stye and the Puddle-Ducks."
 </TextBlock>
 </StackPanel>
 </Grid>
</UserControl>

That’s all the XAML you’ll see from this project.

As you know, it’s very common these days for programs to offer options to print all or part of a
document. These options are often labeled something like All, Selection, and Custom Range. Because
I have no concept of selection in the PrintableTomKitten project, my options are limited to “Print all
pages” and “Print custom range.”

It’s also become common for this custom range to contain both individual pages and continuous
page ranges separated by commas, such as 2-4, 7, 9-11. The constructor of the following
CustomPageRange class accepts a string with such a custom page range and resolves the information
into a list of consecutive pages. For the string “2-4, 7, 9-11”, the PageMapping property is set to the
list of integers 2, 3, 4, 7, 9, 10, 11. If the string is invalid in some way, then PageMapping is null and
IsValid returns false:

Project: PrintableTomKitten | File: CustomPrintRange.cs

using System;
using System.Collections.Generic;

namespace PrintableTomKitten
{

	 CHAPTER 17  Share and Print	 941

 public class CustomPageRange
 {
 // Structure used internally
 struct PageRange
 {
 public PageRange(int from, int to) : this()
 {
 this.From = from;
 this.To = to;
 }

 public int From { private set; get; }
 public int To { private set; get; }
 }

 public CustomPageRange(string str, int maxPageNumber)
 {
 List<PageRange> pageRanges = new List<PageRange>();
 string[] strRanges = str.Split(',');

 foreach (string strRange in strRanges)
 {
 int dashIndex = strRange.IndexOf('-');

 // Just one page number
 if (dashIndex == -1)
 {
 int page;

 if (Int32.TryParse(strRange.Trim(), out page) &&
 page > 0 && page <= maxPageNumber)
 {
 pageRanges.Add(new PageRange(page, page));
 }
 else
 {
 return;
 }
 }
 // Two page numbers separated by a dash
 else
 {
 string strFrom = strRange.Substring(0, dashIndex);
 string strTo = strRange.Substring(dashIndex + 1);
 int from, to;

 if (Int32.TryParse(strFrom.Trim(), out from) &&
 Int32.TryParse(strTo.Trim(), out to) &&
 from > 0 && from <= maxPageNumber &&
 to > 0 && to <= maxPageNumber &&
 from <= to)
 {
 pageRanges.Add(new PageRange(from, to));
 }
 else
 {
 return;

942	 PART 2  Specialties

 }
 }
 }

 // If we made it to this, the input string is valid
 this.PageMapping = new List<int>();

 // Define a mapping to page numbers
 foreach (PageRange pageRange in pageRanges)
 for (int page = pageRange.From; page <= pageRange.To; page++)
 this.PageMapping.Add(page);
 }

 // Zero-based in, one-based out
 public IList<int> PageMapping { private set; get; }

 public bool IsValid
 {
 get { return this.PageMapping != null; }
 }
 }
}

The PrintableTomKitten program uses this class in two places: when it’s validating input that the
user has entered in the printer options pane, and later in the Paginate event handler. In the second
case, the CustomPageRange object is stored as a field for use by the GetPreviewPage and AddPages
handlers.

Here’s the MainPage.xaml.cs file through the OnPrintTaskSourceRequested override. Notice the big
array at the top containing additional instances of all the book pages solely for printing:

Project: PrintableTomKitten | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 PrintDocument printDocument;
 IPrintDocumentSource printDocumentSource;
 CustomPageRange customPageRange;
 UIElement[] bookPages =
 {
 new TomKitten03(), new TomKitten04(), new TomKitten05(), new TomKitten06(),
 new TomKitten07(), new TomKitten08(), new TomKitten09(), new TomKitten10(),
 new TomKitten11(), new TomKitten12(), new TomKitten13(), new TomKitten14(),
 new TomKitten15(), new TomKitten16(), new TomKitten17(), new TomKitten18(),
 new TomKitten19(), new TomKitten20(), new TomKitten21(), new TomKitten22(),
 new TomKitten23(), new TomKitten24(), new TomKitten25(), new TomKitten26(),
 new TomKitten27(), new TomKitten28(), new TomKitten29(), new TomKitten30(),
 new TomKitten31(), new TomKitten32(), new TomKitten33(), new TomKitten34(),
 new TomKitten35(), new TomKitten36(), new TomKitten37(), new TomKitten38(),
 new TomKitten39(), new TomKitten40(), new TomKitten41(), new TomKitten42(),
 new TomKitten43(), new TomKitten44(), new TomKitten45(), new TomKitten46(),
 new TomKitten47(), new TomKitten48(), new TomKitten49(), new TomKitten50(),
 new TomKitten51(), new TomKitten52(), new TomKitten53(), new TomKitten54(),
 new TomKitten55(), new TomKitten56(), new TomKitten57(), new TomKitten58(),
 new TomKitten59()
 };

	 CHAPTER 17  Share and Print	 943

 public MainPage()
 {
 this.InitializeComponent();

 // Create PrintDocument and attach handlers
 printDocument = new PrintDocument();
 printDocumentSource = printDocument.DocumentSource;
 printDocument.Paginate += OnPrintDocumentPaginate;
 printDocument.GetPreviewPage += OnPrintDocumentGetPreviewPage;
 printDocument.AddPages += OnPrintDocumentAddPages;
 }

 protected override void OnNavigatedTo(NavigationEventArgs args)
 {
 // Attach PrintManager handler
 PrintManager.GetForCurrentView().PrintTaskRequested += OnPrintManagerPrintTaskRequested;

 base.OnNavigatedTo(args);
 }

 protected override void OnNavigatedFrom(NavigationEventArgs e)
 {
 // Detach PrintManager handler
 PrintManager.GetForCurrentView().PrintTaskRequested -= OnPrintManagerPrintTaskRequested;

 base.OnNavigatedFrom(e);
 }

 void OnPrintManagerPrintTaskRequested(PrintManager sender, PrintTaskRequestedEventArgs args)
 {
 PrintTask printTask = args.Request.CreatePrintTask("The Tale of Tom Kitten",
 OnPrintTaskSourceRequested);

 // Get PrintTaskOptionDetails for making changes to options
 PrintTaskOptionDetails optionDetails =
 PrintTaskOptionDetails.GetFromPrintTaskOptions(printTask.Options);

 // Create the custom item
 PrintCustomItemListOptionDetails pageRange =
 optionDetails.CreateItemListOption("idPrintRange", "Print range");
 pageRange.AddItem("idPrintAll", "Print all pages");
 pageRange.AddItem("idPrintCustom", "Print custom range");

 // Add it to the options
 optionDetails.DisplayedOptions.Add("idPrintRange");

 // Create a page-range edit item also, but this only
 // comes into play when user selects "Print custom range"
 optionDetails.CreateTextOption("idCustomRangeEdit", "Custom Range");

944	 PART 2  Specialties

 // Set a handler for the OptionChanged event
 optionDetails.OptionChanged += OnOptionDetailsOptionChanged;
 }

 void OnPrintTaskSourceRequested(PrintTaskSourceRequestedArgs args)
 {
 args.SetSource(printDocumentSource);
 }
 ...
}

Earlier you saw how to create custom text-entry fields using the CreateTextOption method of
PrintTaskOptionDetails. The only alternative to a text-entry field involves the CreateItemListOption
method shown here. This results in a list of mutually exclusive options similar to the Orientation
option. Give the method a string ID and a label. The method returns an object of type
PrintCustomItemListOptionDetails. To that you’ll need to add the individual items with ID strings
and labels and then add those same IDs to the DisplayedOptions collection. Here’s what it looks like
initially:

But notice also that the PrintTaskRequested handler also calls CreateTextOption to create a
text-entry field for the custom page range:

optionDetails.CreateTextOption("idCustomRangeEdit", "Custom Range");

This is created but it’s not added to the DisplayedOptions collection yet. You want this item displayed
only when the user selects “Print custom range.”

	 CHAPTER 17  Share and Print	 945

This logic occurs in the OptionChanged handler. If the option ID string is “idPrintCustom”, you then
want to add the text-entry field identified by the string “idCustomRangeEdit” to the DisplayedOptions
collection, and if the ID string is “idPrintAll”, it must be removed from DisplayedOptions:

 Project: PrintableTomKitten | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 ...
 async void OnOptionDetailsOptionChanged(PrintTaskOptionDetails sender,
 PrintTaskOptionChangedEventArgs args)
 {
 if (args.OptionId == null)
 return;

 string optionId = args.OptionId.ToString();
 string strValue = sender.Options[optionId].Value.ToString();
 string errorText = String.Empty;

 switch (optionId)
 {
 case "idPrintRange":
 switch (strValue)
 {
 case "idPrintAll":
 if (sender.DisplayedOptions.Contains("idCustomRangeEdit"))
 sender.DisplayedOptions.Remove("idCustomRangeEdit");
 break;

 case "idPrintCustom":
 sender.DisplayedOptions.Add("idCustomRangeEdit");
 break;
 }
 break;

 case "idCustomRangeEdit":
 // Check to see if CustomPageRange accepts this
 if (!new CustomPageRange(strValue, bookPages.Length).IsValid)
 {
 errorText = "Use the form 2-4, 7, 9-11";
 }
 break;
 }

 sender.Options[optionId].ErrorText = errorText;

 // If no error, then invalidate the preview
 if (String.IsNullOrEmpty(errorText))
 {
 await this.Dispatcher.RunAsync(CoreDispatcherPriority.Normal, () =>
 {
 printDocument.InvalidatePreview();
 });
 }
 }
 ...
}

946	 PART 2  Specialties

If the “idCustomRangeEdit” control is visible, you can also receive notifications from that. To
determine whether the range is valid, the CustomPageRange constructor is called and a possible error
text is set. Here’s a page range that is successfully parsed:

Notice that the page numbers underneath the preview indicate the number of pages that should be
printed but don’t indicate the actual page numbers the user has selected. I’m not sure that problem
can really be fixed unless a page range selection is moved into the standard options, and that’s
something beyond our control.

Also, notice that the OptionChanged handler does not save the CustomPageRange object as a
field. You don’t need to save it in this handler, and you should probably avoid doing so. As the user
bounces back and forth among the options, it can be tricky to keep track of what’s actually selected
and visible and what’s not.

Instead, you can obtain the final settings of the options in the three handlers for the
PrintDocument events. In this example, the Paginate handler obtains the settings and saves a
CustomPageRange object as a field, which is then accessed by the other two methods:

Project: PrintableTomKitten | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 ...
 void OnPrintDocumentPaginate(object sender, PaginateEventArgs args)
 {
 // Obtain the print range option
 PrintTaskOptionDetails optionDetails =
 PrintTaskOptionDetails.GetFromPrintTaskOptions(args.PrintTaskOptions);

 string strValue = optionDetails.Options["idPrintRange"].Value as string;

 if (strValue == "idPrintCustom")
 {

	 CHAPTER 17  Share and Print	 947

 // Parse the print range for GetPreviewPage and AddPages
 string strPageRange = optionDetails.Options["idCustomRangeEdit"].Value as string;
 customPageRange = new CustomPageRange(strPageRange, bookPages.Length);
 }
 else
 {
 // Make sure field is null if printing all pages
 customPageRange = null;
 }

 int pageCount = bookPages.Length;

 if (customPageRange != null && customPageRange.IsValid)
 pageCount = customPageRange.PageMapping.Count;

 printDocument.SetPreviewPageCount(pageCount, PreviewPageCountType.Final);
 }

 void OnPrintDocumentGetPreviewPage(object sender, GetPreviewPageEventArgs args)
 {
 int oneBasedIndex = args.PageNumber;

 if (customPageRange != null && customPageRange.IsValid)
 oneBasedIndex = customPageRange.PageMapping[args.PageNumber - 1];

 printDocument.SetPreviewPage(args.PageNumber, bookPages[oneBasedIndex - 1]);
 }

 void OnPrintDocumentAddPages(object sender, AddPagesEventArgs args)
 {
 if (customPageRange != null && customPageRange.IsValid)
 {
 foreach (int oneBasedIndex in customPageRange.PageMapping)
 printDocument.AddPage(bookPages[oneBasedIndex - 1]);
 }
 else
 {
 foreach (UIElement bookPage in bookPages)
 printDocument.AddPage(bookPage);
 }

 printDocument.AddPagesComplete();
 }
}

I mentioned that I started this printable version of The Tale of Tom Kitten to determine whether
I could share elements between the screen and printer. If you’d like to see what happens when
you print those instances of the UserControl derivatives displayed from MainPage, simply replace
bookPages with bookPageStackPanel.Children in the OnPrintDocumentGetPreviewPage and
OnPrintDocumentAddPages methods.

948	 PART 2  Specialties

Where to Do the Big Jobs?

A program that has the potential of printing many pages might encounter nontrivial pagination
issues. Perhaps it takes some time to determine exactly how many pages are to be printed.

In the callback method that you pass to CreatePrintTask (this is the method I’ve been calling
OnPrintTaskSourceRequested), after calling SetSource on the event arguments, you can use the event
arguments to obtain a deferral for performing an asynchronous job:

PrintTaskSourceRequestedDeferral deferral = args.GetDeferral();
await BigJobInvolvingPrintingAsync();
deferral.Complete();

In this case, the printing pane with the name of the selected printer is displayed, but under that
printer name spins a progress ring accompanied by the text “App preparing to print.” The user might
not enjoy the experience, but it’s a valid way for the application to gain a little time without hanging
the user-interface thread.

Also keep in mind that the second argument of the SetPreviewPageCount method of
PrintDocument is a member of the PreviewPageCountType enumeration, either Intermediate or
Final. You don’t need to restrict calls of this method to the body of the Paginate handler. You
can call it initially with a preliminary page count and then have a background task continu-
ing with the pagination. A Dispatcher to the user-interface thread can make additional calls to
SetPreviewPageCount to keep the count updated.

To assist your application in keeping the user informed of the progress of a long print job,
PrintTask defines events named Previewing, Submitting, Progressing, and Completed.

Printing FingerPaint Art

Ever since you first started using the various FingerPaint programs in this book, I’m sure you’ve been
eager to print out your artwork and display it on the refrigerator door. Of course, you can always
make a screen shot of the FingerPaint screen and print that, but let’s incorporate printing support
right into FingerPaint itself.

To have as small an impact as possible on existing FingerPaint code, I decided to derive a class
from PrintDocument called BitmapPrintDocument. I mentioned earlier that you can do such a thing,
and although the resultant class has no overridable methods, it does make some object references a
bit easier.

	 CHAPTER 17  Share and Print	 949

The BitmapPrintDocument class is instantiated in the MainPage constructor:

Project: FingerPaint | File: MainPage.xaml.cs (excerpt)

public MainPage()
{
 ...
 // Create a PrintDocument derivative for handling printing
 new BitmapPrintDocument(() => { return bitmap; });
}

Notice that odd argument to the BitmapPrintDocument constructor! The problem is that the
BitmapPrintDocument class definitely requires a reference to the WriteableBitmap field named bitmap
if it is to print that bitmap, but it can’t simply be passed to the BitmapPrintDocument constructor. That
bitmap field changes whenever the program loads an image from a file or the clipboard or when it
creates a new canvas. For that reason, I’ve defined the constructor of BitmapPrintDocument with a
parameter of type Func<BitmapSource> so that whenever the BitmapPrintDocument needs the cur-
rent bitmap, it can simply call back into MainPage.

BitmapPrintDocument saves that argument in a field and performs the standard initialization:

Project: FingerPaint | File: BitmapPrintDocument.cs (excerpt)

public class BitmapPrintDocument : PrintDocument
{
 Func<BitmapSource> getBitmap;
 IPrintDocumentSource printDocumentSource;

 // Element to print
 Border border = new Border
 {
 Child = new Image()
 };

 public BitmapPrintDocument(Func<BitmapSource> getBitmap)
 {
 this.getBitmap = getBitmap;

 // Get IPrintDocumentSource and attach event handlers
 printDocumentSource = this.DocumentSource;
 this.Paginate += OnPaginate;
 this.GetPreviewPage += OnGetPreviewPage;
 this.AddPages += OnAddPages;

 // Attach PrintManager handler
 PrintManager.GetForCurrentView().PrintTaskRequested +=
 OnPrintDocumentPrintTaskRequested;
 }
 ...
}

950	 PART 2  Specialties

The PrintTaskRequested handler is the first place where the bitmap is required because it sets the
initial orientation of the printer page to be consistent with the orientation of the bitmap:

Project: FingerPaint | File: BitmapPrintDocument.cs (excerpt)

async void OnPrintDocumentPrintTaskRequested(PrintManager sender,
 PrintTaskRequestedEventArgs args)
{
 PrintTaskRequestedDeferral deferral = args.Request.GetDeferral();

 // Obtain PrintTask
 PrintTask printTask = args.Request.CreatePrintTask("Finger Paint",
 OnPrintTaskSourceRequested);

 // Probably set orientation to landscape
 PrintTaskOptionDetails optionDetails =
 PrintTaskOptionDetails.GetFromPrintTaskOptions(printTask.Options);

 PrintOrientationOptionDetails orientation =
 optionDetails.Options[StandardPrintTaskOptions.Orientation] as
 PrintOrientationOptionDetails;

 bool bitmapIsLandscape = false;

 await border.Dispatcher.RunAsync(CoreDispatcherPriority.Normal, () =>
 {
 BitmapSource bitmapSource = getBitmap();
 bitmapIsLandscape = bitmapSource.PixelWidth > bitmapSource.PixelHeight;
 });

 orientation.TrySetValue(bitmapIsLandscape ? PrintOrientation.Landscape :
 PrintOrientation.Portrait);

 deferral.Complete();
}

Notice that a CoreDispatcher object must be used to access the bitmap in the user-interface
thread. The other event handlers should look familiar at this point, except that references to the
PrintDocument methods are simply references to methods of this:

Project: FingerPaint | File: BitmapPrintDocument.cs (excerpt)

void OnPrintTaskSourceRequested(PrintTaskSourceRequestedArgs args)
{
 args.SetSource(printDocumentSource);
}

void OnPaginate(object sender, PaginateEventArgs args)
{
 PrintPageDescription pageDesc = args.PrintTaskOptions.GetPageDescription(0);

	 CHAPTER 17  Share and Print	 951

 // Get the Bitmap
 (border.Child as Image).Source = getBitmap();

 // Set Padding on the Border
 double left = pageDesc.ImageableRect.Left;
 double top = pageDesc.ImageableRect.Top;
 double right = pageDesc.PageSize.Width - left - pageDesc.ImageableRect.Width;
 double bottom = pageDesc.PageSize.Height - top - pageDesc.ImageableRect.Height;
 border.Padding = new Thickness(left, top, right, bottom);

 this.SetPreviewPageCount(1, PreviewPageCountType.Final);
}

void OnGetPreviewPage(object sender, GetPreviewPageEventArgs args)
{
 this.SetPreviewPage(args.PageNumber, border);
}

void OnAddPages(object sender, AddPagesEventArgs args)
{
 this.AddPage(border);
 this.AddPagesComplete();
}

The Image element has its default Stretch mode of Uniform, which lets the bitmap be displayed as
large as possible while still respecting the aspect ratio. In addition, the OnPaginate method sets the
Padding property of the Border to avoid only the unprintable area of the page because of course you
want your finger paintings printed as large as the printer will allow.

		 953

C H A P T E R 1 8

Sensors and GPS

In recent years, computers have evolved to develop new sensory organs. This isn’t the plot of a
new movie! Many of our computers—and particularly tablets and other mobile devices—contain

hardware that lets the machine know its orientation in 3D space, its location on the face of the Earth,
the amount of ambient light in the vicinity, and even the speed that the computer is turning in the
user’s hands.

These pieces of hardware are referred to collectively as sensors, and the software interface to
them can be found largely in the Windows.Devices.Sensors namespace, while the classes that help
a program determine its geographical location are in the Windows.Devices.Geolocation namespace.
The hardware that facilities this latter job is often referred to informally as GPS (after the Global
Positioning System implemented with satellites), but a computer can also often determine its
geographic location through a network connection.

This chapter focuses on the information available from the SimpleOrientationSensor, Accelerometer,
Compass, Inclinometer, OrientationSensor, and Geolocator classes, but I’m afraid I’ll be skipping the less
commonly used LightSensor and Gyrometer classes, the latter of which measures the angular velocity
of the computer.

To get the full benefit from this chapter, you’ll need to grab the computer running these
sample programs and move it around in space, even holding it over your head. If your Windows 8
development machine is pretty much anchored to a desk like mine is, you’ll want to get a tablet such
as the Microsoft Surface and deploy programs on it remotely, as Tim Heuer discusses in his blog entry,
http://timheuer.com/blog/archive/2012/10/26/remote-debugging-windows-store-apps-on-surface-
arm-devices.aspx.

Some of the sample programs in this chapter are adapted from articles I wrote about Windows
Phone 7.5 sensors in the June through December 2012 issues of MSDN Magazine.

Orientation and Orientation

As its name declares, the simplest of the sensors that I’ll be discussing is SimpleOrientationSensor,
which gives your program a rough idea how the computer is oriented in 3D space but without details.
To instantiate the SimpleOrientationSensor class, you call a static method:

SimpleOrientationSensor simpleOrientationSensor = SimpleOrientationSensor.GetDefault();

954	 PART 2  Specialties

You’ll only do this once in an application, so this code can appear as a field definition to allow
access to that object within the whole class. If the SimpleOrientationSensor.GetDefault method returns
null, the computer doesn’t have a facility to determine its orientation.

At any time, you can obtain a value indicating the current orientation from the
SimpleOrientationSensor object:

SimpleOrientation simpleOrientation = simpleOrientationSensor.GetCurrentOrientation();

SimpleOrientation is an enumeration with six members:

■■ NotRotated

■■ Rotated90DegreesCounterclockwise

■■ Rotated180DegreesCounterclockwise

■■ Rotated270DegreesCounterclockwise

■■ Faceup

■■ Facedown

The limitation of the information to these six members is the “simple” part of the
SimpleOrientationSensor.

You can also be notified through an event when the orientation changes. Set a handler for the
OrientationChanged event like so:

simpleOrientationSensor.OrientationChanged += OnSimpleOrientationChanged;

This event fires only when the orientation changes, which won’t happen if the computer remains
relatively still. If you need an initial value, call the GetCurrentOrientation method in addition to setting
the event handler.

This event handler runs in its own thread, so to interact with the user-interface thread you’ll need
to use a CoreDispatcher object:

async void OnSimpleOrientationChanged(SimpleOrientationSensor sender,
 SimpleOrientationSensorOrientationChangedEventArgs args)
{
 await this.Dispatcher.RunAsync(CoreDispatcherPriority.Normal, () =>
 {
 ...
 });
}

The event argument with the excessively long name has an Orientation property of the
SimpleOrientation enumeration type and a Timestamp property of type DateTimeOffset.

You might be asking: Don’t I already have this orientation information? Isn’t it provided
by the Windows.Graphics.Display namespace? Don’t I use the DisplayProperties class and its
NativeOrientation and CurrentOrientation static properties and the OrientationChanged event

	 CHAPTER 18  Sensors and GPS	 955

for orientation information? You’ll recall that those two static properties return members of the
DisplayOrientations enumeration type:

■■ Landscape

■■ Portrait

■■ LandscapeFlipped

■■ PortraitFlipped

The SimpleOrientationSensor and DisplayProperties classes are certainly related, but it’s important
to understand how: The SimpleOrientationSensor class indicates how the computer is oriented in 3D
space. The DisplayProperties.CurrentOrientation property indicates how Windows has compensated
for this computer orientation by automatically reorienting your program’s window. In other words,
SimpleOrientationSensor reports a hardware orientation, and DisplayProperties.CurrentOrientation
reports a software orientation that has occurred in response to the hardware orientation.

The OrientationAndOrientation project is intended to help differentiate between the two types
of orientation. The XAML file defines just a few TextBlock elements for labels and to display some
information:

Project: OrientationAndOrientation | Project: MainPage.xaml (excerpt)

<Page ... FontSize="24">
 <Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <Grid HorizontalAlignment="Center"
 VerticalAlignment="Center">
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition Width="Auto" />
 </Grid.ColumnDefinitions>

 <TextBlock Text="SimpleOrientationSensor: "
 Grid.Row="0"
 Grid.Column="0" />

 <TextBlock Name="orientationSensorTextBlock"
 Grid.Row="0"
 Grid.Column="1"
 TextAlignment="Right" />

 <TextBlock Text="DisplayProperties.CurrentOrientation: "
 Grid.Row="1"
 Grid.Column="0" />

 <TextBlock Name="displayOrientationTextBlock"
 Grid.Row="1"
 Grid.Column="1"
 TextAlignment="Right" />
 </Grid>
 </Grid>
</Page>

956	 PART 2  Specialties

The code-behind file defines two methods for the sole purpose of setting the two TextBlock
elements in the second column of the Grid. These two methods are called both from the constructor
to set initial values and from two event handlers:

Project: OrientationAndOrientation | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 SimpleOrientationSensor simpleOrientationSensor = SimpleOrientationSensor.GetDefault();

 public MainPage()
 {
 this.InitializeComponent();

 // SimpleOrientationSensor initialization
 if (simpleOrientationSensor != null)
 {
 SetOrientationSensorText(simpleOrientationSensor.GetCurrentOrientation());
 simpleOrientationSensor.OrientationChanged += OnSimpleOrientationChanged;
 }

 // DisplayProperties initialization
 SetDisplayOrientationText(DisplayProperties.CurrentOrientation);
 DisplayProperties.OrientationChanged += OnDisplayPropertiesOrientationChanged;
 }

 // SimpleOrientationSensor handler
 async void OnSimpleOrientationChanged(SimpleOrientationSensor sender,
 SimpleOrientationSensorOrientationChangedEventArgs args)
 {
 await this.Dispatcher.RunAsync(CoreDispatcherPriority.Normal, () =>
 {
 SetOrientationSensorText(args.Orientation);
 });
 }

 void SetOrientationSensorText(SimpleOrientation simpleOrientation)
 {
 orientationSensorTextBlock.Text = simpleOrientation.ToString();
 }

 // DisplayProperties handler
 void OnDisplayPropertiesOrientationChanged(object sender)
 {
 SetDisplayOrientationText(DisplayProperties.CurrentOrientation);
 }

 void SetDisplayOrientationText(DisplayOrientations displayOrientation)
 {
 displayOrientationTextBlock.Text = displayOrientation.ToString();
 }
}

Notice that the SimpleOrientationSensor is instantiated as a field but the constructor checks for a
non-null value before accessing the object.

	 CHAPTER 18  Sensors and GPS	 957

If you run this program on a tablet that has a native landscape orientation—that is, the
DisplayProperties.NativeOrientation property returns DisplayOrientations.Landscape—and if you
haven’t done anything to prohibit Windows 8 from making orientation changes (such as putting the
tablet in a docking station), then you’ll generally find the following correspondence between the two
orientation indicators as you progressively rotate the tablet in a clockwise direction:

SimpleOrientationSensor DisplayProperties.CurrentOrientation

NotRotated Landscape

Rotated270DegreesCounterClockwise Portrait

Rotated180DegreesCounterClockwise LandscapeFlipped

Rotated90DegreesCounterClockwise PortraitFlipped

The SimpleOrientationSensor also reports Faceup and Facedown values, which have no
correspondences in the DisplayOrientations enumeration.

While the preceding table is roughly true for a tablet that has a native landscape orientation, a
mobile device that has a native portrait orientation will have the following correspondences:

SimpleOrientationSensor DisplayProperties.CurrentOrientation

NotRotated Portrait

Rotated270DegreesCounterClockwise LandscapeFlipped

Rotated180DegreesCounterClockwise PortraitFlipped

Rotated90DegreesCounterClockwise Landscape

Moreover, an application can request that Windows not make any compensation for
the orientation of the computer, either in the Package.appxmanifest file or in software by
setting the DisplayProperties.AutoRotationPreferences property. In that case it’s likely that
DisplayProperties.CurrentOrientation will never change while the application is running. Some
tablets also have a hardware switch that users can toggle to stop Windows from automatically
rotating the display. In such cases, you might even see something like this:

SimpleOrientationSensor DisplayProperties.CurrentOrientation

NotRotated PortraitFlipped

Rotated270DegreesCounterClockwise PortraitFlipped

Rotated180DegreesCounterClockwise PortraitFlipped

Rotated90DegreesCounterClockwise PortraitFlipped

If you want to perform your own compensation for orientation, you can do so. You can instruct
Windows not to perform any orientation changes, and then use the SimpleOrientationSensor to
determine how the computer is really oriented. However, keep in mind that what you are giving
Windows in the Package.appxmanifest file and the DisplayProperties.AutoRotationPreferences is
only what you prefer and not what Windows will actually do, so you might need to make a further
adjustment if Windows has oriented the display contrary to your preferences.

958	 PART 2  Specialties

Probably the safest approach to prevent auto-rotation is to set
DisplayProperties.AutoRotationPreferences to DisplayProperties.NativeOrientation, as
I’ll begin doing later in this chapter.

Acceleration, Force, Gravity, and Vectors

Internally, the SimpleOrientationSensor undoubtedly has access to a piece of hardware called an
accelerometer. An accelerometer is a device that measures acceleration, and at first it might seem as if
knowing the acceleration of the computer is not very useful. However, we know from basic physics—
specifically, Isaac Newton’s second law of motion—that

F ma=

Force equals mass times acceleration, and one force that is very hard to escape is the force of gravity.
Most of the time the computer’s accelerometer measures gravity and answers the basic question,
“Which way is down?”

You can get at the accelerometer hardware more directly through the Accelerometer class. To
instantiate the Accelerometer class, you’ll use a static method with the same name as the one in
SimpleOrientationSensor:

Accelerometer accelerometer = Accelerometer.GetDefault();

If the Accelerometer.GetDefault method returns null, the computer doesn’t have an accelerometer or
Windows 8 doesn’t know about it. If your application can’t run right without an accelerometer, you’ll
need to notify the user that it’s missing.

At any time, you can obtain a current value of the Accelerometer:

AccelerometerReading accelerometerReading = accelerometer.GetCurrentReading();

The similar method in SimpleOrientationSensor is named GetCurrentOrientation.

It’s probably a good idea to check if the value returned from GetCurrentReading is null.
AccelerometerReading defines four properties:

■■ AccelerationX of type double

■■ AccelerationY of type double

■■ AccelerationZ of type double

■■ Timestamp of type DateTimeOffset

The three double values together constitute a 3D vector that points toward the Earth relative to the
device. More on this shortly.

	 CHAPTER 18  Sensors and GPS	 959

You can also attach an event handler to the Accelerometer object:

accelerometer.ReadingChanged += OnAccelerometerReadingChanged;

The similar event in SimpleOrientationSensor is named OrientationChanged. Like OrientationChanged,
the ReadingChanged handler runs in a separate thread, so it’s likely you’ll be handling it like so:

async void OnAccelerometerReadingChanged(Accelerometer sender,
 AccelerometerReadingChangedEventArgs args)
{
 await this.Dispatcher.RunAsync(CoreDispatcherPriority.Normal, () =>
 {
 ...
 });
}

The AccelerometerReadingChangedEventArgs defines a property named Reading of type
AccelerometerReading, the same as the object returned from GetCurrentReading.

How often can you expect the ReadingChanged handler to be called? If the computer is still, it
might not be called at all! For that reason, if you need an initial Accelerometer reading, you should call
GetCurrentReading at the outset.

If the computer is being moved and changing orientation in space, the ReadingChanged handler
is called when the value changes (within certain criteria) but no more frequently than an interval in
milliseconds that you can obtain from the ReportInterval property of Accelerometer. I see a default
value of 112, which means that the ReadingChanged method is called no faster than about nine times
a second.

You can set ReportInterval to another value if you’d like, but no lower than the value returned
from the MinimumReportInterval property, which I’ve found is 16 milliseconds, or about 60 times
per second. Set ReportInterval to MinimumReportInterval to get the maximum amount of data; set
ReportInterval to zero to return to the default setting.

All the other sensor classes in Windows.Devices.Sensors have the same software interface as
Accelerometer. They all have the following members:

■■ static GetDefault method

■■ GetCurrentReading instance method

■■ ReportInterval property

■■ get-only MinimumReportInterval property

■■ ReadingChanged event

Only SimpleOrientationSensor is different from the others.

If the computer is still, the AccelerationX, AccelerationY, and AccelerationZ properties of the
AccelerometerReading class define a vector that points toward the center of the Earth. Vectors are
generally notated with boldface coordinates such as (x, y, z) to differentiate them from points (x, y, z)

960	 PART 2  Specialties

in 3D space. A point is a location in space; a vector is a direction and a magnitude. Vectors and points
are related, of course: The direction of the vector (x, y, z) is the direction from the point (0, 0, 0) to
the point (x, y, z), and the magnitude of the vector is the length of that line. But the vector is not the
line itself and has no location.

The magnitude of a vector can be calculated with the three-dimensional form of the Pythagorean
Theorem:

Magnitude x y z= + +2 2 2

Any three-dimensional vector must be relative to a particular three-dimensional coordinate
system, and the vector obtained from the AccelerometerReading object is no exception. For a tablet
with a native landscape orientation, that coordinate system is imposed on the hardware of the device,
as shown here:

Notice that the direction of increasing Y is up, which is opposite of the convention when working
with two-dimensional graphics. The positive Z axis points out of the screen. This convention is often
referred to as a “right-hand” coordinate system. If you point the index finger of your right hand in the
direction of positive X and your middle finger in the direction of positive Y, your thumb points toward
positive Z.

Or, if you curl the fingers of your right hand in the direction necessary to rotate the positive X
axis into the positive Y axis, your thumb points in the direction of the positive Z axis. This works with
any pair of axes in the order X, Y, Z: Curl your right-hand fingers to rotate the positive Y axis into the
positive Z axis, and your thumb points toward positive X. Or curl your right-hand fingers to rotate the
positive Z axis into the positive X axis, and your thumb points toward positive Y.

The right-hand rule can also be used to determine the direction of rotations around the axis. For
rotations around the X axis (for example), point your right-hand thumb in the direction of positive X,
and your fingers curl in the direction of positive rotation angles around that axis.

	 CHAPTER 18  Sensors and GPS	 961

For devices with a native portrait orientation, the coordinate system is the same from the user’s
perspective:

Although I haven’t been able to confirm this, the coordinate system for conventional laptops is
documented as being based on the keyboard rather than the screen. The X axis is along the width
of the keyboard, the Y axis is along the height of the keyboard, and the Z axis points out of the
keyboard.

This coordinate system is fixed to the hardware of the device, and the Accelerometer vector points
toward the center of the Earth relative to that coordinate system. For example, when a tablet is held
upright in its native orientation, the acceleration vector points in the –Y direction. The magnitude of
the vector is approximately 1, so the vector is somewhere in the region (0, –1, 0). When the device is
lying on a flat surface like a table with the screen pointing up, the vector is somewhere in the region
of (0, 0, –1).

The magnitude of 1 indicates that the vector is in units of g, which is the acceleration caused by the
force of gravity on the surface of the Earth, or about 32 feet per second squared. Take your tablet to
the moon, and the magnitude will instead be in the vicinity of 0.17. Put your tablet into free fall (if you
dare), and the magnitude of the acceleration vector will drop to zero until it hits the ground.

962	 PART 2  Specialties

Here’s a program called AccelerometerAndSimpleOrientation that displays values from the
Accelerometer and the SimpleOrientationSensor. The XAML file contains a bunch of TextBlock elements
for labels and awaiting values from the code-behind file:

Project: AccelerometerAndSimpleOrientation | File: MainPage.xaml (excerpt)

<Page ... >
 <Page.Resources>
 <Style TargetType="TextBlock">
 <Setter Property="FontSize" Value="24" />
 <Setter Property="Margin" Value="24 12 24 12" />
 </Style>
 </Page.Resources>

 <Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">

 <Grid HorizontalAlignment="Center"
 VerticalAlignment="Center">
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition Width="Auto" />
 </Grid.ColumnDefinitions>

 <TextBlock Grid.Row="0" Grid.Column="0" Text="Accelerometer X:" />
 <TextBlock Grid.Row="1" Grid.Column="0" Text="Accelerometer Y:" />
 <TextBlock Grid.Row="2" Grid.Column="0" Text="Accelerometer Z:" />
 <TextBlock Grid.Row="3" Grid.Column="0" Text="Magnitude:"
 Margin="24 24" />
 <TextBlock Grid.Row="4" Grid.Column="0" Text="Simple Orientation:" />

 <TextBlock Grid.Row="0" Grid.Column="1" Name="accelerometerX"
 TextAlignment="Right" />
 <TextBlock Grid.Row="1" Grid.Column="1" Name="accelerometerY"
 TextAlignment="Right"/>
 <TextBlock Grid.Row="2" Grid.Column="1" Name="accelerometerZ"
 TextAlignment="Right"/>
 <TextBlock Grid.Row="3" Grid.Column="1" Name="magnitude"
 TextAlignment="Right"
 VerticalAlignment="Center" />
 <TextBlock Grid.Row="4" Grid.Column="1" Name="simpleOrientation"
 TextAlignment="Right" />
 </Grid>
 </Grid>
</Page>

	 CHAPTER 18  Sensors and GPS	 963

The code-behind file has a couple more amenities than the previous one. If the Accelerometer or
SimpleOrientationSensor cannot be instantiated, the program reports that to the user. Also, it’s a good
idea not to have an Accelerometer running when a program isn’t using it because it could contribute
to battery drain. To symbolize application politeness, this program attaches the handlers in the
OnNavigatedTo override and detaches them in OnNavigatedFrom. Otherwise, it’s structurally quite
similar to the previous program:

Project: AccelerometerAndSimpleOrientation | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 Accelerometer accelerometer = Accelerometer.GetDefault();
 SimpleOrientationSensor simpleOrientationSensor = SimpleOrientationSensor.GetDefault();

 public MainPage()
 {
 this.InitializeComponent();
 this.Loaded += OnMainPageLoaded;
 }

 async void OnMainPageLoaded(object sender, RoutedEventArgs args)
 {
 if (accelerometer == null)
 await new MessageDialog("Cannot start Accelerometer").ShowAsync();

 if (simpleOrientationSensor == null)
 await new MessageDialog("Cannot start SimpleOrientationSensor").ShowAsync();
 }

 // Attach event handlers
 protected override void OnNavigatedTo(NavigationEventArgs args)
 {
 if (accelerometer != null)
 {
 SetAccelerometerText(accelerometer.GetCurrentReading());
 accelerometer.ReadingChanged += OnAccelerometerReadingChanged;
 }

 if (simpleOrientationSensor != null)
 {
 SetSimpleOrientationText(simpleOrientationSensor.GetCurrentOrientation());
 simpleOrientationSensor.OrientationChanged += OnSimpleOrientationChanged;
 }
 base.OnNavigatedTo(args);
 }

964	 PART 2  Specialties

 // Detach event handlers
 protected override void OnNavigatedFrom(NavigationEventArgs args)
 {
 if (accelerometer != null)
 accelerometer.ReadingChanged -= OnAccelerometerReadingChanged;

 if (simpleOrientationSensor != null)
 simpleOrientationSensor.OrientationChanged -= OnSimpleOrientationChanged;

 base.OnNavigatedFrom(args);
 }

 // Accelerometer handler
 async void OnAccelerometerReadingChanged(Accelerometer sender,
 AccelerometerReadingChangedEventArgs args)
 {
 await this.Dispatcher.RunAsync(CoreDispatcherPriority.Normal, () =>
 {
 SetAccelerometerText(args.Reading);
 });
 }

 void SetAccelerometerText(AccelerometerReading accelerometerReading)
 {
 if (accelerometerReading == null)
 return;

 accelerometerX.Text = accelerometerReading.AccelerationX.ToString("F2");
 accelerometerY.Text = accelerometerReading.AccelerationY.ToString("F2");
 accelerometerZ.Text = accelerometerReading.AccelerationZ.ToString("F2");
 magnitude.Text =
 Math.Sqrt(Math.Pow(accelerometerReading.AccelerationX, 2) +
 Math.Pow(accelerometerReading.AccelerationY, 2) +
 Math.Pow(accelerometerReading.AccelerationZ, 2)).ToString("F2");
 }

 // SimpleOrientationSensor handler
 async void OnSimpleOrientationChanged(SimpleOrientationSensor sender,
 SimpleOrientationSensorOrientationChangedEventArgs args)
 {
 await this.Dispatcher.RunAsync(CoreDispatcherPriority.Normal, () =>
 {
 SetSimpleOrientationText(args.Orientation);
 });
 }

 void SetSimpleOrientationText(SimpleOrientation simpleOrientation)
 {
 this.simpleOrientation.Text = simpleOrientation.ToString();
 }
}

	 CHAPTER 18  Sensors and GPS	 965

Here’s the program running on the tablet I’m using to write this book while the tablet sits in its
docking station:

Don’t be alarmed at seeing magnitudes that are not precisely equal to 1. It doesn’t mean that
you’ve unknowingly drifted away from the surface of the Earth but only that accelerometer hardware
is not always as precise as we’d prefer.

Both the Y and Z components are negative, indicating that the tablet is tilted back somewhat. As
I mentioned earlier, if the tablet is sitting straight up, the vector is theoretically (0, –1, 0), and if it’s
sitting on the desk with the screen pointing straight up, the vector is theoretically (0, 0, –1). Between
those two positions, the tablet is being rotated around its X axis. Pass the Y and Z values to the
Math.Atan2 method, and you’ll get that angle of rotation.

If you run this program on a handheld device, you can twist the device around in different
orientations to see the effect. Generally, you’ll see the following correspondence between the
SimpleOrientationSensor and the Accelerometer:

SimpleOrientationSensor Accelerometer Vector

NotRotated ~ (0, –1, 0)

Rotated90DegreesCounterClockwise ~ (–1, 0, 0)

Rotated180DegreesCounterClockwise ~ (0, 1, 0)

Rotated270DegreesCounterClockwise ~ (1, 0, 0)

Faceup ~ (0, 0, –1)

Facedown ~ (0, 0, 1)

That “approximately equal to” symbol (~) should be interpreted very liberally. The Accelerometer
vectors obviously show quite a bit of variation before they reach a value that precipitates a change to
SimpleOrientationSensor.

966	 PART 2  Specialties

This AccelerometerAndSimpleOrientation program doesn’t indicate any preferred orientations, so
as you’re moving the tablet around in space, Windows automatically changes the display orientation
under the assumption that you don’t want to read numbers that are upside down. You should see a
correspondence between the SimpleOrientationSensor values and the orientation of the screen, but
this is only because Windows changes the display orientation based on these values! If you inhibit
Windows from changing the screen orientation (by whatever means), the information displayed by
this program is not affected.

In fact, you might find the continual display orientation changes to be rather annoying. As each
one occurs, the updating of the screen pauses for a moment and the contents contract to signal this
change. Think about it for a little while, and you’ll probably come to the conclusion that programs
that use the Accelerometer to alter screen content probably should also inhibit automatic display
orientation changes.

For this reason, all of the programs in the remainder of this chapter include a simple statement in
the program’s constructor to set the preferred orientation to the native orientation:

DisplayProperties.AutoRotationPreferences = DisplayProperties.NativeOrientation;

You’ll discover that if you run the AccelerometerAndSimpleOrientation program on a handheld
device and move it rapidly, the direction and magnitude of the acceleration vector also change to no
longer indicate 1g force coming from the center of the Earth. For example, if you jerk the device to
the left, the acceleration vector points right—but only when the device is accelerating. If you manage
to keep moving it at a steady velocity, the acceleration vector will settle down and resume pointing
to the Earth. Suddenly stop the device from moving, and the acceleration vector also indicates that
change in velocity.

The Accelerometer class also defines an event named Shaken with no other information. This
event is useful for a program that needs to “throw” a pair of dice, or propose another restaurant
recommendation, or perhaps erase a drawing or undo an accidental erasure.

One common application of an Accelerometer is a bubble level. This XAML file instantiates four
Ellipse elements. Three are drawn as concentric outlines, and the fourth is the bubble itself:

Project: BubbleLevel | File: MainPage.xaml (excerpt)

<Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <Grid Name="centeredGrid"
 HorizontalAlignment="Center"
 VerticalAlignment="Center">
 <Ellipse Name="outerCircle"
 Stroke="{StaticResource ApplicationForegroundThemeBrush}" />

 <Ellipse Name="halfCircle"
 Stroke="{StaticResource ApplicationForegroundThemeBrush}" />

 <Ellipse Width="24"
 Height="24"
 Stroke="{StaticResource ApplicationForegroundThemeBrush}" />

	 CHAPTER 18  Sensors and GPS	 967

 <Ellipse Fill="Red"
 Width="24"
 Height="24"
 HorizontalAlignment="Center"
 VerticalAlignment="Center">
 <Ellipse.RenderTransform>
 <TranslateTransform x:Name="bubbleTranslate" />
 </Ellipse.RenderTransform>
 </Ellipse>
 </Grid>
</Grid>

The code-behind file sets DisplayProperties.AutoRotationPreferences to
DisplayProperties.NativeOrientation. There is simply no reason for Windows to be
automatically changing the display orientation of this program. The program also processes
the SizeChanged handler to set the dimensions of outerCircle and halfCircle:

Project: BubbleLevel | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 Accelerometer accelerometer = Accelerometer.GetDefault();

 public MainPage()
 {
 this.InitializeComponent();
 DisplayProperties.AutoRotationPreferences = DisplayProperties.NativeOrientation;
 Loaded += OnMainPageLoaded;
 SizeChanged += OnMainPageSizeChanged;
 }

 async void OnMainPageLoaded(object sender, RoutedEventArgs args)
 {
 if (accelerometer != null)
 {
 accelerometer.ReportInterval = accelerometer.MinimumReportInterval;
 SetBubble(accelerometer.GetCurrentReading());
 accelerometer.ReadingChanged += OnAccelerometerReadingChanged;
 }
 else
 {
 await new MessageDialog("Accelerometer is not available").ShowAsync();
 }
 }

 void OnMainPageSizeChanged(object sender, SizeChangedEventArgs args)
 {
 double size = Math.Min(args.NewSize.Width, args.NewSize.Height);
 outerCircle.Width = size;
 outerCircle.Height = size;
 halfCircle.Width = size / 2;
 halfCircle.Height = size / 2;
 }

968	 PART 2  Specialties

 async void OnAccelerometerReadingChanged(Accelerometer sender,
 AccelerometerReadingChangedEventArgs args)
 {
 await this.Dispatcher.RunAsync(CoreDispatcherPriority.Normal, () =>
 {
 SetBubble(args.Reading);
 });
 }

 void SetBubble(AccelerometerReading accelerometerReading)
 {
 if (accelerometerReading == null)
 return;

 double x = accelerometerReading.AccelerationX;
 double y = accelerometerReading.AccelerationY;

 bubbleTranslate.X = -x * centeredGrid.ActualWidth / 2;
 bubbleTranslate.Y = y * centeredGrid.ActualHeight / 2;
 }
}

The SetBubble method looks too simple: It just takes the X and Y components of the acceleration
vector and uses those to set the X and Y coordinates of that center bubble, scaled to the radius of the
outer circle. But consider a tablet sitting face up or face down on a table. The Z component of the
acceleration vector is 1 or –1, and the X and Y components are both zero, meaning the bubble sits in
the center of the screen. That’s correct.

Now hold the tablet so that the screen is perpendicular to the Earth. The Z component becomes
zero. This means that the magnitude of the acceleration vector results entirely from the X and Y
components. In other words:

x y2 2 21+ =

That’s the equation for a circle in two dimensions, so the bubble sits somewhere on that outer circle.
Where exactly it sits is based on the current rotation of the tablet around its Z axis.

The acceleration vector points down toward the center of the Earth, and bubbles travel up, which
means we need to swap the signs of the X and Y components of the acceleration vector to convert to
two-dimensional screen coordinates. But recall that the Y axis of the acceleration vector is reversed
from screen coordinates anyway, so only the X component needs to have its sign swapped, as you can
see in the last two lines of code in the program.

	 CHAPTER 18  Sensors and GPS	 969

Here’s the program running on a Microsoft Surface tablet:

Of course, this screen shot doesn’t quite capture how jittery the bubble is in real life. The
Accelerometer values are rather raw, and in a real-life application you’ll want to smooth them out a
bit. I do this in the next two programs.

Follow the Rolling Ball

Using the Accelerometer is common in games for handheld devices. For example, if you have a game
that simulates the driving of a car, the user might steer the car by tilting the computer to the left or
right.

The following two programs simulate a ball rolling around the screen. If you hold the screen of
your tablet parallel to the Earth and balance a real ball on top, you can make that ball roll around by
tilting the screen. The greater the tilt, the greater the acceleration of the ball. The virtual ball in the
next two programs moves in a similar way. Like the bubble level program, these programs ignore
the Z component of the Accelerometer vector and use only the X and Y components to govern
acceleration on the two-dimensional surface of the screen.

In the TiltAndRoll program, when the ball strikes one of the edges, it loses all its velocity in the
direction perpendicular to the edge, continuing to roll along the edge if it still has velocity in that

970	 PART 2  Specialties

direction. The XAML file defines the ball. An EllipseGeometry allows the ball to be positioned at a
particular coordinate by setting the Center property:

Project: TiltAndRoll | File: MainPage.xaml (excerpt)

<Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <Path Fill="Red">
 <Path.Data>
 <EllipseGeometry x:Name="ball" />
 </Path.Data>
 </Path>
</Grid>

The code-behind file begins by defining a constant for GRAVITY in units of pixels per second
squared. Theoretically, a sliding ball without friction is subject to the full force of gravity, but the
acceleration of a rolling ball is 2/3 of gravitational acceleration. (See A. P. French, Newtonian Mechan-
ics, W. W. Norton, 1971, pages 652–3, for the gory details.) This means you can calculate a value for
GRAVITY by multiplying 32 feet per second squared by 12 inches per foot and 96 pixels per inch and
2/3 and get a value about 25,000, but I slowed it down considerably.

A two-dimensional vector value is very useful in calculations involving two-dimensional
acceleration, velocity, and position, so I included the Vector2 structure from Chapter 13, “Touch, Etc.”

Because the ball needs to keep rolling regardless of the firing of the ReadingChanged event
of the Accelerometer, the program doesn’t install a handler for that event and instead uses
CompositionTarget.Rendering to obtain the current value and apply it to the ball. Notice that the X
and Y components of the Accelerometer readings are used to create a Vector2 value, which is then
averaged with the previous value, which itself is an average of its previous value, and so forth. This is
an extremely simple form of smoothing:

Project: TiltAndRoll | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 const double GRAVITY = 5000; // pixels per second squared
 const double BALL_RADIUS = 32;

 Accelerometer accelerometer = Accelerometer.GetDefault();
 TimeSpan timeSpan;
 Vector2 acceleration;
 Vector2 ballPosition;
 Vector2 ballVelocity;

 public MainPage()
 {
 this.InitializeComponent();
 DisplayProperties.AutoRotationPreferences = DisplayProperties.NativeOrientation;

 ball.RadiusX = BALL_RADIUS;
 ball.RadiusY = BALL_RADIUS;

 Loaded += OnMainPageLoaded;
 }

	 CHAPTER 18  Sensors and GPS	 971

 async void OnMainPageLoaded(object sender, RoutedEventArgs args)
 {
 if (accelerometer == null)
 {
 await new MessageDialog("Accelerometer is not available").ShowAsync();
 }
 else
 {
 CompositionTarget.Rendering += OnCompositionTargetRendering;
 }
 }

 void OnCompositionTargetRendering(object sender, object args)
 {
 AccelerometerReading reading = accelerometer.GetCurrentReading();

 if (reading == null)
 return;

 // Get elapsed time since last event
 TimeSpan timeSpan = (args as RenderingEventArgs).RenderingTime;
 double elapsedSeconds = (timeSpan - this.timeSpan).TotalSeconds;
 this.timeSpan = timeSpan;

 // Convert accelerometer reading to display coordinates
 double x = reading.AccelerationX;
 double y = -reading.AccelerationY;

 // Get current X-Y acceleration and smooth it
 acceleration = 0.5 * (acceleration + new Vector2(x, y));

 // Calculate new velocity and position
 ballVelocity += GRAVITY * acceleration * elapsedSeconds;
 ballPosition += ballVelocity * elapsedSeconds;

 // Check for hitting edge
 if (ballPosition.X - BALL_RADIUS < 0)
 {
 ballPosition = new Vector2(BALL_RADIUS, ballPosition.Y);
 ballVelocity = new Vector2(0, ballVelocity.Y);
 }
 if (ballPosition.X + BALL_RADIUS > this.ActualWidth)
 {
 ballPosition = new Vector2(this.ActualWidth - BALL_RADIUS, ballPosition.Y);
 ballVelocity = new Vector2(0, ballVelocity.Y);
 }
 if (ballPosition.Y - BALL_RADIUS < 0)
 {
 ballPosition = new Vector2(ballPosition.X, BALL_RADIUS);
 ballVelocity = new Vector2(ballVelocity.X, 0);
 }
 if (ballPosition.Y + BALL_RADIUS > this.ActualHeight)
 {
 ballPosition = new Vector2(ballPosition.X, this.ActualHeight - BALL_RADIUS);
 ballVelocity = new Vector2(ballVelocity.X, 0);
 }
 ball.Center = new Point(ballPosition.X, ballPosition.Y);
 }
}

972	 PART 2  Specialties

The two crucial calculations are these:

 ballVelocity += GRAVITY * acceleration * elapsedSeconds;
 ballPosition += ballVelocity * elapsedSeconds;

Keep in mind that acceleration, ballVelocity, and ballPosition are all Vector2 values, so they all have X
and Y components. The velocity is increased by the acceleration times elapsed time, and the posi-
tion is increased by the velocity times elapsed time. Then it’s only a matter of checking whether the
new position is outside the bounds of the page. If so, it’s moved back within the page and one of the
components of the velocity is set to zero.

The physics are fairly realistic. As you increase and decrease the tilt, the magnitude of the
acceleration of the ball increases and decreases. Moreover, because the program is dealing with
actual formulas for velocity and position, it becomes fairly easy to add some bounce. One easy way
is to not set the velocity component to zero when the ball hits the edge but to make that velocity
component the negative of its previous value. However, that means the ball has the same velocity
magnitude after the bounce, and that’s unrealistic. It makes more sense to include an attenuation
factor that I called BOUNCE. Everything in this TiltAndBounce program is the same as TiltAndRoll
except for that BOUNCE constant and different ball-moving logic in the CompositionTarget.Rendering
handler:

Project: TiltAndBounce | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 ...
 const double BOUNCE = -2.0 / 3; // fraction of velocity
 ...
 void OnCompositionTargetRendering(object sender, object args)
 {
 AccelerometerReading reading = accelerometer.GetCurrentReading();

 if (reading == null)
 return;

 // Get elapsed time
 TimeSpan timeSpan = (args as RenderingEventArgs).RenderingTime;
 double elapsedSeconds = (timeSpan - this.timeSpan).TotalSeconds;
 this.timeSpan = timeSpan;

 // Convert accelerometer reading to display coordinates
 double x = reading.AccelerationX;
 double y = -reading.AccelerationY;

 // Get current X-Y acceleration and smooth it
 acceleration = 0.5 * (acceleration + new Vector2(x, y));

 // Calculate new velocity and position
 ballVelocity += GRAVITY * acceleration * elapsedSeconds;
 ballPosition += ballVelocity * elapsedSeconds;

 // Check for bouncing off edge
 bool needAnotherLoop = true;

	 CHAPTER 18  Sensors and GPS	 973

 while (needAnotherLoop)
 {
 needAnotherLoop = false;

 if (ballPosition.X - BALL_RADIUS < 0)
 {
 ballPosition = new Vector2(-ballPosition.X + 2 * BALL_RADIUS, ballPosition.Y);
 ballVelocity = new Vector2(BOUNCE * ballVelocity.X, ballVelocity.Y);
 needAnotherLoop = true;
 }
 else if (ballPosition.X + BALL_RADIUS > this.ActualWidth)
 {
 ballPosition = new Vector2(-ballPosition.X + 2 *
			 (this.ActualWidth - BALL_RADIUS),
 ballPosition.Y);
 ballVelocity = new Vector2(BOUNCE * ballVelocity.X, ballVelocity.Y);
 needAnotherLoop = true;
 }
 else if (ballPosition.Y - BALL_RADIUS < 0)
 {
 ballPosition = new Vector2(ballPosition.X, -ballPosition.Y + 2 * BALL_RADIUS);
 ballVelocity = new Vector2(ballVelocity.X, BOUNCE * ballVelocity.Y);
 needAnotherLoop = true;
 }
 else if (ballPosition.Y + BALL_RADIUS > this.ActualHeight)
 {
 ballPosition = new Vector2(ballPosition.X,
 -ballPosition.Y + 2 *
						 (this.ActualHeight - BALL_RADIUS));
 ballVelocity = new Vector2(ballVelocity.X, BOUNCE * ballVelocity.Y);
 needAnotherLoop = true;
 }
 }
 ball.Center = new Point(ballPosition.X, ballPosition.Y);
 }
}

In the TiltAndRoll program, it was possible for the ball to go beyond two adjacent edges during
the same event, but those cases were handled with a series of if statements. In this program, bouncing
the ball off one edge could make it go beyond another edge, which means that a loop is necessary to
test the position of the ball repeatedly until there are no more bounces.

The Two Norths

Although the Accelerometer tells you which way is down, it doesn’t reveal the complete orientation of
the device in 3D space. To see what I mean, run the AccelerometerAndSimpleOrientation program on
a handheld device. Stand up, and hold the device in some odd configuration. The Accelerometer tells
you which way is down. Now turn your whole body around in a circle. The tablet has rotated 360 de-
grees in space, but the Accelerometer has reported pretty much the same value because the direction
of down has remained the same relative to the device.

974	 PART 2  Specialties

When you turn the tablet in a circle around the acceleration vector, what changes? One answer
is: The direction of north relative to the tablet. This is why a Compass sensor is so important: It
provides a missing factor in determining the tablet’s orientation. By combining the Compass and
the Accelerometer, you can derive a complete orientation of the tablet in 3D space. Or you can let
Windows do it for you.

The Compass class is structured much like Accelerometer, and the CompassReading class has two
properties: HeadingMagneticNorth and HeadingTrueNorth. These are both angles in degrees, and
they indicate the angle of the computer relative to north. The angles should be close to zero if you
hold your tablet screen parallel to the Earth and point the top of the screen toward north. (By “top”
I’m referring to the direction of the positive Y axis in the diagrams shown earlier in this chapter.) As
you turn the tablet screen toward the east, the angles increase.

Of course, these angles shouldn’t be the same except in certain locations around the world.
The tablet contains a magnetometer that responds to magnetic north (which is aligned with the
Earth’s magnetic field); true north refers to the axis around which the Earth rotates. Interestingly, the
HeadingMagneticNorth property is of type double, but HeadingTrueNorth is of type nullable double,
which ominously suggests that the value might not be available.

Let’s try it. The XAML file for the SimpleCompass project defines two graphical arrows that have
origins in the center of the screen and point straight up:

Project: SimpleCompass | File: MainPage.xaml (excerpt)

<Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <Canvas HorizontalAlignment="Center"
 VerticalAlignment="Center">
 <Path Fill="Magenta"
 Data="M -10 0 L 10 0, 10 -300, 0 -350, -10 -300 Z">
 <Path.RenderTransform>
 <RotateTransform x:Name="magNorthRotate" />
 </Path.RenderTransform>
 </Path>

 <Path Name="trueNorthPath"
 Fill="Blue"
 Data="M -10 0 L 10 0, 10 -300, 0 -350, -10 -300 Z">
 <Path.RenderTransform>
 <RotateTransform x:Name="trueNorthRotate" />
 </Path.RenderTransform>
 </Path>
 </Canvas>
</Grid>

The two mnemonic colors are Magenta for Magnetic north and Blue for True north.

	 CHAPTER 18  Sensors and GPS	 975

The code-behind file hides the second Path if the value of HeadingTrueNorth is null:

Project: SimpleCompass | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 Compass compass = Compass.GetDefault();

 public MainPage()
 {
 this.InitializeComponent();
 DisplayProperties.AutoRotationPreferences = DisplayProperties.NativeOrientation;
 Loaded += OnMainPageLoaded;
 }

 async void OnMainPageLoaded(object sender, RoutedEventArgs args)
 {
 if (compass != null)
 {
 ShowCompassValues(compass.GetCurrentReading());
 compass.ReportInterval = compass.MinimumReportInterval;
 compass.ReadingChanged += OnCompassReadingChanged;
 }
 else
 {
 await new MessageDialog("Compass is not available").ShowAsync();
 }
 }

 async void OnCompassReadingChanged(Compass sender, CompassReadingChangedEventArgs args)
 {
 await this.Dispatcher.RunAsync(CoreDispatcherPriority.Normal, () =>
 {
 ShowCompassValues(args.Reading);
 });
 }

 void ShowCompassValues(CompassReading compassReading)
 {
 if (compassReading == null)
 return;

 magNorthRotate.Angle = -compassReading.HeadingMagneticNorth;

 if (compassReading.HeadingTrueNorth.HasValue)
 {
 trueNorthPath.Visibility = Visibility.Visible;
 trueNorthRotate.Angle = -compassReading.HeadingTrueNorth.Value;
 }
 else
 {
 trueNorthPath.Visibility = Visibility.Collapsed;
 }
 }
}

976	 PART 2  Specialties

Notice that the rotation angles of the two arrows are set to the negatives of the
HeadingMagneticNorth and HeadingTrueNorth properties. These values indicate the rotation of the
computer relative to north, so the arrows need to be rotated oppositely and show the direction of
north relative to the computer.

On both tablets I’ve been using for this book—including a Microsoft Surface machine—the results
are disappointing. The HeadingTrueNorth value is always null on both machines. On the Microsoft
Surface, the value for magnetic north is quite erratic. On the Samsung tablet, values only range from
0 to 180 degrees! On my Technical Editor’s tablet, HeadingMagneticNorth is always 0.

In theory, true north can be calculated from magnetic north knowing the location of the computer,
but enabling Location capabilities in Package.appxmanifest doesn’t help.

Nevertheless, we can cross our fingers and hope that the compass hardware works sufficiently well
to be combined with accelerometer data and provide complete orientation information.

Inclinometer = Accelerometer + Compass

The Inclinometer sensor is one of two classes that internally combines accelerometer and compass
data and smooths the result somewhat. This class provides information in the form of yaw, pitch, and
roll angles, which are terms used in flight dynamics.

The yaw, pitch, and roll angles are often referred to as Euler angles, after 18th-century
mathematician Leonhard Euler, who explored the mathematics of three-dimensional rotation. If you’re
flying a plane, yaw indicates the compass direction that the nose of the plane is facing. As the plane
veers left or right, the yaw changes. Pitch indicates the angle of the nose of the plane. As the nose
goes up for a climb and down for a dive, the pitch changes. Roll is achieved by banking left or right.

To understand how these apply to the computer, you might want to visualize yourself “flying”
your tablet like a magic carpet. Assume a sitting position on the screen facing toward the top (in
the tablet’s native orientation, of course) and take off. In the coordinate system shown earlier in this
chapter, yaw is rotation around the Z axis, pitch is rotation around the X axis, and roll is rotation
around the Y axis.

The YawPitchRoll program also helps you visualize these angles. The XAML file contains some
Rectangle elements used for lines, some Ellipse elements used as rolling balls, and some text:

Project: YawPitchRoll | File: MainPage.xaml (excerpt)

<Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <!-- Pitch -->
 <Rectangle Fill="Blue"
 Width="3"
 HorizontalAlignment="Center"
 VerticalAlignment="Stretch" />

 <Path Name="pitchPath"
 Stroke="Blue">
 <Path.Data>

	 CHAPTER 18  Sensors and GPS	 977

 <EllipseGeometry x:Name="pitchEllipse" RadiusX="20" RadiusY="20" />
 </Path.Data>
 </Path>

 <!-- Roll -->
 <Rectangle Fill="Red"
 Height="3"
 HorizontalAlignment="Stretch"
 VerticalAlignment="Center" />

 <Path Name="rollPath"
 Stroke="Red"
 Fill="Red">
 <Path.Data>
 <EllipseGeometry x:Name="rollEllipse" RadiusX="20" RadiusY="20" />
 </Path.Data>
 </Path>

 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="*" />
 <RowDefinition Height="*" />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="*" />
 <ColumnDefinition Width="*" />
 </Grid.ColumnDefinitions>

 <!-- Pitch -->
 <TextBlock Text="PITCH"
 Grid.Row="0"
 Grid.Column="0"
 Foreground="Blue"
 HorizontalAlignment="Right"
 Margin="0 0 24 0" />

 <TextBlock Name="pitchValue"
 Grid.Row="0"
 Grid.Column="1"
 Foreground="Blue"
 HorizontalAlignment="Left"
 Margin="24 0 0 0" />

 <!-- Roll -->
 <TextBlock Text="ROLL"
 Grid.Row="1"
 Grid.Column="0"
 Foreground="Red"
 HorizontalAlignment="Left"
 VerticalAlignment="Top"
 Margin="0 108 0 0">
 <TextBlock.RenderTransform>
 <RotateTransform Angle="-90" />
 </TextBlock.RenderTransform>
 </TextBlock>

978	 PART 2  Specialties

 <TextBlock Name="rollValue"
 Grid.Row="0"
 Grid.Column="0"
 Foreground="Red"
 HorizontalAlignment="Left"
 VerticalAlignment="Bottom">
 <TextBlock.RenderTransform>
 <RotateTransform Angle="-90" />
 </TextBlock.RenderTransform>
 </TextBlock>

 <!-- Yaw -->
 <Grid Grid.Row="0"
 Grid.Column="1"
 HorizontalAlignment="Stretch"
 VerticalAlignment="Bottom"
 RenderTransformOrigin="0 1">
 <StackPanel Orientation="Horizontal"
 HorizontalAlignment="Center">
 <TextBlock Text="YAW = " Foreground="Green" />
 <TextBlock Name="yawValue" Foreground="Green" />
 </StackPanel>

 <Rectangle Fill="Green"
 Height="3"
 HorizontalAlignment="Stretch"
 VerticalAlignment="Bottom" />

 <Grid.RenderTransform>
 <TransformGroup>
 <RotateTransform Angle="-90" />
 <RotateTransform x:Name="yawRotate" />
 </TransformGroup>
 </Grid.RenderTransform>
 </Grid>
 </Grid>
</Grid>

As you can see from the code-behind file, the Inclinometer class is instantiated and used much like
Accelerometer and Compass:

Project: YawPitchRoll | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 Inclinometer inclinometer = Inclinometer.GetDefault();

 public MainPage()
 {
 this.InitializeComponent();
 DisplayProperties.AutoRotationPreferences = DisplayProperties.NativeOrientation;
 Loaded += OnMainPageLoaded;
 }

 async void OnMainPageLoaded(object sender, RoutedEventArgs args)
 {

	 CHAPTER 18  Sensors and GPS	 979

 if (inclinometer == null)
 {
 await new MessageDialog("Cannot obtain Inclinometer").ShowAsync();
 }
 else
 {
 ShowYawPitchRoll(inclinometer.GetCurrentReading());
 inclinometer.ReportInterval = inclinometer.MinimumReportInterval;
 inclinometer.ReadingChanged += OnInclinometerReadingChanged;
 }
 }

 async void OnInclinometerReadingChanged(Inclinometer sender,
 InclinometerReadingChangedEventArgs args)
 {
 await this.Dispatcher.RunAsync(CoreDispatcherPriority.Normal, () =>
 {
 ShowYawPitchRoll(args.Reading);
 });
 }

 void ShowYawPitchRoll(InclinometerReading inclinometerReading)
 {
 if (inclinometerReading == null)
 return;

 double yaw = inclinometerReading.YawDegrees;
 double pitch = inclinometerReading.PitchDegrees;
 double roll = inclinometerReading.RollDegrees;

 yawValue.Text = yaw.ToString("F0") + "°";
 pitchValue.Text = pitch.ToString("F0") + "°";
 rollValue.Text = roll.ToString("F0") + "°";

 yawRotate.Angle = yaw;

 if (pitch <= 90 && pitch >= -90)
 {
 pitchPath.Fill = pitchPath.Stroke;
 pitchEllipse.Center = new Point(this.ActualWidth / 2,
 this.ActualHeight * (pitch + 90) / 180);
 }
 else
 {
 pitchPath.Fill = null;

 if (pitch > 90)
 pitchEllipse.Center = new Point(this.ActualWidth / 2,
 this.ActualHeight * (270 - pitch) / 180);
 else // pitch < -90
 pitchEllipse.Center = new Point(this.ActualWidth / 2,
 this.ActualHeight * (-90 - pitch) / 180);
 }
 rollEllipse.Center = new Point(this.ActualWidth * (roll + 90) / 180,
 this.ActualHeight / 2);
 }
}

980	 PART 2  Specialties

There’s no secret source of compass data providing information for the Inclinometer. The
YawDegrees property is just as erratic (or limited) as the Compass reading, except that they’re
complements: The sum of the YawDegrees and the Compass reading always approximately equals
360. When the tablet is lying with its screen up on a level surface, the yaw line points toward north (or
thereabouts) and the balls for pitch and roll both sit in the center. As you tilt the top of the tablet up
or down, PitchDegrees ranges from 90 degrees when the tablet is upright to –90 when the top of the
tablet points down. RollDegrees ranges from 90 degrees to –90 degrees as the tablet is tilted right or
left. Here’s a view when the top and left sides of the tablet are elevated:

When the screen faces down, YawDegrees points south, and PitchDegrees takes on values ranging
from 90 degrees to 180 degrees, and from –90 degrees to –180 degrees. The program symbolizes
these values with a hollow red ball.

If you’re working with a program where something is flying around the screen, these Euler angles
might be exactly what you need. However, you might want something more mathematically oriented.
That’s the purpose of the next class.

OrientationSensor = Accelerometer + Compass

You can represent rotation in three-dimensional space several ways, all of which can be converted
among each other. The OrientationSensor class is very similar to Inclinometer in the sense that it
combines information from the accelerometer and compass to provide a complete orientation in 3D
space. OrientationSensor provides this orientation in instances of two classes:

■■ SensorQuaternion

■■ SensorRotationMatrix

	 CHAPTER 18  Sensors and GPS	 981

Quaternions are mathematically quite interesting. Just as an imaginary number can represent
a rotation in two-dimensional space, a quaternion represents rotation in three-dimensional space.
Game programmers particularly like representing rotations as quaternions because quaternions
can be smoothly interpolated. (I discuss quaternions in Chapter 8 of my book 3D Programming for
Windows [Microsoft Press, 2007].)

A rotation matrix is a regular transform matrix missing the last row and last column. A regular
three-dimensional transform matrix has 4 rows and 4 columns. The SensorRotationMatrix class defines
3 rows and 3 columns. Such a matrix is incapable of representing translation or perspective, and by
convention it incorporates no scaling or skew. But it can easily be used to rotate objects in 3D space.

On the Samsung tablet I’m using to write this book, the SensorRotationMatrix contains all zeroes,
so none of the programs in this book that use that matrix will work. Better results are available on the
Microsoft Surface.

When you’re working with this rotation matrix, a change in perspective might be helpful. I’ve been
describing how the values from the Accelerometer and Compass are relative to the 3D coordinate
system I presented in the early pages of this chapter. When working with the rotation matrix from the
OrientationSensor class, it helps to visualize two 3D coordinate systems, one for the device and the
other for the Earth:

■■ In the computer’s 3D coordinate system, positive Y points to the top of the screen, positive X
points to the right, and positive Z comes out of the screen, just as I showed earlier.

■■ In the Earth’s coordinate system, positive Y points north, positive X points east, and positive Z
comes out of the ground.

These two coordinate systems are aligned when the computer is lying on a level surface with its
screen pointing up and the top pointing north. The SensorRotationMatrix becomes (theoretically) the
identity matrix: 1s in the diagonal and 0s otherwise. Otherwise, the matrix describes how the Earth
is rotated relative to the computer, which is the opposite of the rotation described by the Euler angles.

 This difference is demonstrated by the AxisAngleRotation program, which computes yet another
method of representing rotation in three-dimensional space—as a rotation around a 3D vector. The
XAML file is a not-very-interesting assemblage of TextBlock elements, some functioning as labels and
the others awaiting text:

Project: AxisAngleRotation | File: MainPage.xaml (excerpt)

<Page ... >
 <Page.Resources>
 <Style x:Key="DefaultTextBlockStyle" TargetType="TextBlock">
 <Setter Property="FontFamily" Value="Lucida Sans Unicode" />
 <Setter Property="FontSize" Value="36" />
 <Setter Property="Margin" Value="0 0 48 0" />
 </Style>

 <Style x:Key="rightText" TargetType="TextBlock"
 BasedOn="{StaticResource DefaultTextBlockStyle}">
 <Setter Property="TextAlignment" Value="Right" />
 <Setter Property="Margin" Value="48 0 0 0" />
 </Style>
 </Page.Resources>

982	 PART 2  Specialties

 <Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <StackPanel HorizontalAlignment="Center"
 VerticalAlignment="Center">

 <!-- Grid showing Pitch, Roll, and Yaw -->
 <Grid HorizontalAlignment="Center">
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition Width="Auto" />
 </Grid.ColumnDefinitions>

 <Grid.Resources>
 <Style TargetType="TextBlock"
 BasedOn="{StaticResource DefaultTextBlockStyle}" />
 </Grid.Resources>

 <TextBlock Text="Pitch: " Grid.Row="0" Grid.Column="0" />
 <TextBlock Name="pitchText" Grid.Row="0" Grid.Column="1"
 Style="{StaticResource rightText}" />

 <TextBlock Text="Roll: " Grid.Row="1" Grid.Column="0" />
 <TextBlock Name="rollText" Grid.Row="1" Grid.Column="1"
 Style="{StaticResource rightText}" />

 <TextBlock Text="Yaw: " Grid.Row="2" Grid.Column="0" />
 <TextBlock Name="yawText" Grid.Row="2" Grid.Column="1"
 Style="{StaticResource rightText}" />
 </Grid>

 <!-- Grid for RotationMatrix -->
 <Grid HorizontalAlignment="Center"
 Margin="0 48">
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition Width="Auto" />
 </Grid.ColumnDefinitions>

 <Grid.Resources>
 <Style TargetType="TextBlock" BasedOn="{StaticResource rightText}" />
 </Grid.Resources>

 <TextBlock Name="m11Text" Grid.Row="0" Grid.Column="0" />
 <TextBlock Name="m12Text" Grid.Row="0" Grid.Column="1" />
 <TextBlock Name="m13Text" Grid.Row="0" Grid.Column="2" />

	 CHAPTER 18  Sensors and GPS	 983

 <TextBlock Name="m21Text" Grid.Row="1" Grid.Column="0" />
 <TextBlock Name="m22Text" Grid.Row="1" Grid.Column="1" />
 <TextBlock Name="m23Text" Grid.Row="1" Grid.Column="2" />

 <TextBlock Name="m31Text" Grid.Row="2" Grid.Column="0" />
 <TextBlock Name="m32Text" Grid.Row="2" Grid.Column="1" />
 <TextBlock Name="m33Text" Grid.Row="2" Grid.Column="2" />
 </Grid>

 <!-- Axis/Angle rotation display -->
 <Grid HorizontalAlignment="Center">
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition Width="Auto" />
 </Grid.ColumnDefinitions>

 <Grid.Resources>
 <Style TargetType="TextBlock"
 BasedOn="{StaticResource DefaultTextBlockStyle}" />
 </Grid.Resources>

 <TextBlock Text="Angle:" Grid.Row="0" Grid.Column="0" />
 <TextBlock Name="angleText" Grid.Row="0" Grid.Column="1" 			
			 TextAlignment="Center"/>
 <TextBlock Text="Axis:" Grid.Row="1" Grid.Column="0" />
 <TextBlock Name="axisText" Grid.Row="1" Grid.Column="1"
			 TextAlignment="Center" />
 </Grid>
 </StackPanel>
 </Grid>
</Page>

The code-behind file instantiates both an Inclinometer to obtain the yaw, pitch, and roll angles,
and an OrientationSensor to obtain (and display) the rotation matrix and convert it to an axis/angle
rotation:

Project: AxisAngleRotation | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 Inclinometer inclinometer = Inclinometer.GetDefault();
 OrientationSensor orientationSensor = OrientationSensor.GetDefault();

 public MainPage()
 {
 this.InitializeComponent();
 DisplayProperties.AutoRotationPreferences = DisplayProperties.NativeOrientation;
 Loaded += OnMainPageLoaded;
 }

984	 PART 2  Specialties

 async void OnMainPageLoaded(object sender, RoutedEventArgs args)
 {
 if (inclinometer == null)
 {
 await new MessageDialog("Inclinometer is not available").ShowAsync();
 }
 else
 {
 // Start the Inclinometer events
 ShowYawPitchRoll(inclinometer.GetCurrentReading());
 inclinometer.ReadingChanged += OnInclinometerReadingChanged;
 }

 if (orientationSensor == null)
 {
 await new MessageDialog("OrientationSensor is not available").ShowAsync();
 }
 else
 {
 // Start the OrientationSensor events
 ShowOrientation(orientationSensor.GetCurrentReading());
 orientationSensor.ReadingChanged += OrientationSensorChanged;
 }
 }

 async void OnInclinometerReadingChanged(Inclinometer sender,
 InclinometerReadingChangedEventArgs args)
 {
 await this.Dispatcher.RunAsync(CoreDispatcherPriority.Normal, () =>
 {
 ShowYawPitchRoll(args.Reading);
 });
 }

 void ShowYawPitchRoll(InclinometerReading inclinometerReading)
 {
 if (inclinometerReading == null)
 return;

 yawText.Text = inclinometerReading.YawDegrees.ToString("F0") + "°";
 pitchText.Text = inclinometerReading.PitchDegrees.ToString("F0") + "°";
 rollText.Text = inclinometerReading.RollDegrees.ToString("F0") + "°";
 }

 async void OrientationSensorChanged(OrientationSensor sender,
 OrientationSensorReadingChangedEventArgs args)
 {
 await this.Dispatcher.RunAsync(CoreDispatcherPriority.Normal, () =>
 {
 ShowOrientation(args.Reading);
 });
 }

 void ShowOrientation(OrientationSensorReading orientationReading)
 {
 if (orientationReading == null)
 return;

	 CHAPTER 18  Sensors and GPS	 985

 SensorRotationMatrix matrix = orientationReading.RotationMatrix;

 if (matrix == null)
 return;

 m11Text.Text = matrix.M11.ToString("F3");
 m12Text.Text = matrix.M12.ToString("F3");
 m13Text.Text = matrix.M13.ToString("F3");

 m21Text.Text = matrix.M21.ToString("F3");
 m22Text.Text = matrix.M22.ToString("F3");
 m23Text.Text = matrix.M23.ToString("F3");

 m31Text.Text = matrix.M31.ToString("F3");
 m32Text.Text = matrix.M32.ToString("F3");
 m33Text.Text = matrix.M33.ToString("F3");

 // Convert rotation matrix to axis and angle
 double angle = Math.Acos((matrix.M11 + matrix.M22 + matrix.M33 - 1) / 2);
 angleText.Text = (180 * angle / Math.PI).ToString("F0");

 if (angle != 0)
 {
 double twoSine = 2 * Math.Sin(angle);
 double x = (matrix.M23 - matrix.M32) / twoSine;
 double y = (matrix.M31 - matrix.M13) / twoSine;
 double z = (matrix.M12 - matrix.M21) / twoSine;

 axisText.Text = String.Format("({0:F2} {1:F2} {2:F2})", x, y, z);
 }
 }
}

Here’s a screen shot from the Microsoft Surface showing the three Euler angles at the top, the
rotation matrix in the middle, and a derived axis/angle rotation at the bottom:

986	 PART 2  Specialties

For this screen shot, I’m holding the tablet roughly toward north so that the yaw angle is nearly
zero. The tablet is tilted a tiny bit to the left, and that makes the roll angle a bit negative. But I have
elevated the top of the tablet by a whopping 46 degrees. That same angle is displayed at the bottom
as derived from the rotation matrix. But look at the axis: That’s very nearly the vector (–1, 0, 0), which
is the negative X axis. Using the right-hand rule, point your thumb in the direction of the negative X
axis. The curl of your fingers indicates the direction for rotations of positive angles (which this is), so it
confirms what I said: The rotation matrix describes a rotation of the Earth relative to the computer.

This means that if you want a rotation matrix that represents a rotation of the computer relative to
the Earth, you need to invert the matrix. The SensorRotationMatrix class has no facility to invert itself,
but the Matrix3D structure does. (You’ll recall that Matrix3D is defined in the Windows.UI.Xaml.Media
.Media3D namespace and used in connection with Matrix3DProjection.) It’s a simple matter to create
a Matrix3D value from a SensorRotationMatrix object and then invert it.

I’m going to use that technique to create yet another representation of an orientation in 3D space.

Azimuth and Altitude

Conceptually, we live inside a celestial sphere. If you need to describe a location of an object in 3D
space relative to yourself where distance doesn’t matter, points relative to this celestial sphere are
very convenient. This celestial sphere is particularly suitable for programs that let you use a computer
screen for viewing a world of virtual reality or augmented reality. In such programs you hold a tablet
as if you’re using it to take a photograph from the camera on the back, but what you see on the
screen is generated (in full or in part) by the program based on the screen’s orientation. By panning
the screen in arcs, you can view different parts of this world.

The celestial sphere has a familiar analogue in the terrestrial realm. When we need to identify a
location on the Earth, we do so with longitude and latitude, both of which are angles with a vertex in
the Earth’s center. Conceptually, we divide the Earth’s sphere in half at the equator. Lines of latitude
are parallel to the equator and measured by positive angles north of the equator (to a maximum of
90 degrees at the North Pole) and negative angles south of the equator (to –90 degrees at the South
Pole). Angles of longitude are based on great circles that pass through these two poles measured
from the Prime Meridian, which is the longitude line that passes through Greenwich, England.

We can describe points on the celestial sphere in much the same way, but we’re at the center of
the sphere looking out and the terminology is different.

Point your outstretched arm in any direction. How can we identify that location? First, swing your
arm up or down so that it becomes horizontal—that is, parallel to the surface of the Earth. The angle
your arm has swung during this movement is called the altitude.

Positive altitude values are above the horizon; negative values are below the horizon. Straight up is
the zenith, an altitude of 90 degrees. Straight down is the nadir, an altitude of –90 degrees.

You’re still pointing your outstretched arm toward the horizon, right? Now swing your arm so
that it’s pointing north. The angle your arm has just swung this second time is called the azimuth.

	 CHAPTER 18  Sensors and GPS	 987

Together, the altitude and azimuth constitute a horizontal coordinate, so named because the horizon
divides the celestial sphere in half—similar to the equator in terrestrial coordinates.

The horizontal coordinate has no information about distance. During a solar eclipse, the sun and
moon have the same horizontal coordinate. The horizontal coordinate is not a location in 3D space;
it’s a direction in 3D space from a viewer. In that sense the horizontal coordinate is like a 3D vector
except that a vector is expressed in rectangular coordinates and the horizontal coordinate is spherical.

To make the job of deriving a horizontal coordinate a little easier, let’s first define a Vector3
structure for encapsulating a 3D vector:

Project: EarthlyDelights | File: Vector3.cs

using System;
using Windows.Foundation;
using Windows.UI.Xaml.Media;
using Windows.UI.Xaml.Media.Media3D;

namespace Petzold.Windows8.VectorDrawing
{
 public struct Vector3
 {
 // Constructors
 public Vector3(double x, double y, double z)
 : this()
 {
 X = x;
 Y = y;
 Z = z;
 }

 // Properties
 public double X { private set; get; }
 public double Y { private set; get; }
 public double Z { private set; get; }

 public double LengthSquared
 {
 get { return X * X + Y * Y + Z * Z; }
 }

 public double Length
 {
 get { return Math.Sqrt(LengthSquared); }
 }

 public Vector3 Normalized
 {
 get
 {
 double length = this.Length;

 if (length != 0)

988	 PART 2  Specialties

 {
 return new Vector3(this.X / length,
 this.Y / length,
 this.Z / length);
 }
 return new Vector3();
 }
 }

 // Static properties
 public static Vector3 UnitX
 {
 get { return new Vector3(1, 0, 0); }
 }

 public static Vector3 UnitY
 {
 get { return new Vector3(0, 1, 0); }
 }

 public static Vector3 UnitZ
 {
 get { return new Vector3(0, 0, 1); }
 }

 // Static methods
 public static Vector3 Cross(Vector3 v1, Vector3 v2)
 {
 return new Vector3(v1.Y * v2.Z - v1.Z * v2.Y,
 v1.Z * v2.X - v1.X * v2.Z,
 v1.X * v2.Y - v1.Y * v2.X);
 }

 public static double Dot(Vector3 v1, Vector3 v2)
 {
 return v1.X * v2.X + v1.Y * v2.Y + v1.Z * v2.Z;
 }

 public static double AngleBetween(Vector3 v1, Vector3 v2)
 {
 return 180 / Math.PI * Math.Acos(Vector3.Dot(v1, v2) /
 v1.Length * v2.Length);
 }

 public static Vector3 Transform(Vector3 v, Matrix3D m)
 {
 double x = m.M11 * v.X + m.M21 * v.Y + m.M31 * v.Z + m.OffsetX;
 double y = m.M12 * v.X + m.M22 * v.Y + m.M32 * v.Z + m.OffsetY;
 double z = m.M13 * v.X + m.M23 * v.Y + m.M33 * v.Z + m.OffsetZ;
 double w = m.M14 * v.X + m.M24 * v.Y + m.M34 * v.Z + m.M44;
 return new Vector3(x / w, y / w, z / w);
 }

	 CHAPTER 18  Sensors and GPS	 989

 // Operators
 public static Vector3 operator +(Vector3 v1, Vector3 v2)
 {
 return new Vector3(v1.X + v2.X, v1.Y + v2.Y, v1.Z + v2.Z);
 }

 public static Vector3 operator -(Vector3 v1, Vector3 v2)
 {
 return new Vector3(v1.X - v2.X, v1.Y - v2.Y, v1.Z - v2.Z);
 }

 public static Vector3 operator *(Vector3 v, double d)
 {
 return new Vector3(d * v.X, d * v.Y, d * v.Z);
 }

 public static Vector3 operator *(double d, Vector3 v)
 {
 return new Vector3(d * v.X, d * v.Y, d * v.Z);
 }

 public static Vector3 operator /(Vector3 v, double d)
 {
 return new Vector3(v.X / d, v.Y / d, v.Z / d);
 }

 public static Vector3 operator -(Vector3 v)
 {
 return new Vector3(-v.X, -v.Y, -v.Z);
 }

 // Overrides
 public override string ToString()
 {
 return String.Format("({0} {1} {2})", X, Y, Z);
 }
 }
}

This structure has lots of goodies, including a traditional dot product and cross product, as well as
a Transform method that multiplies the Vector3 value by a Matrix3D value. In practice, this Matrix3D
value probably represents a rotation, so the multiplication effectively rotates the vector in 3D space.

When we hold our tablet up in the air and look at the screen, we are looking in a direction rela-
tive to the computer’s coordinate system—specifically, in the direction of the vector coming out the
back of the screen, which is the negative Z axis or (0, 0, –1). We need to convert that to a horizontal
coordinate.

Let’s create a Matrix3D value called matrix based on the SensorRotationMatrix object that
OrientationSensor provides. That value can be inverted to represent a transform from the computer’s
coordinate system to the Earth’s coordinate system:

matrix.Invert();

990	 PART 2  Specialties

Use that matrix to transform the (0, 0, –1) vector (which is the negative of the static UnitZ property
provided by the Vector3 structure) to Earth rectangular coordinates:

Vector3 vector = Vector3.Transform(-Vector3.UnitZ, matrix);

This vector is in rectangular coordinates, and we need to convert it to a horizontal coordinate.
Recall that in the Earth’s coordinate system, the Z coordinate points out of the Earth. If the tablet is
held upright, the axis coming from the back of the device transformed to Earth coordinates has a Z
component of zero. This means that the azimuth can be calculated with the well-known conversion
from two-dimensional Cartesian coordinates to polar coordinates, and let’s convert it from radians to
angles as well:

double azimuth = 180 * Math.Atan2(vector.X, vector.Y) / Math.PI;

That formula is actually valid regardless of the Z component of the transformed vector. Because
the altitude ranges only between negative and positive 90 degrees, it can be calculated with the
inverse sine function:

double altitude = 180 * Math.Asin(vector.Z) / Math.PI;

But we’re missing something. We’ve converted a three-dimensional rotation matrix into a
coordinate that has only two components because it’s confined to the interior surface of a sphere.
What happens when you point your tablet at something on the celestial sphere and then rotate the
tablet around that axis? It’s the same altitude and azimuth, but the view on the computer’s screen
should definitely change through rotation. This missing component is sometimes called tilt. It’s a little
more difficult to compute, but the math is shown in this HorizontalCoordinate structure:

Project: EarthlyDelights | File: HorizontalCoordinate.cs

using System;
using Windows.UI.Xaml.Media.Media3D;

namespace Petzold.Windows8.VectorDrawing
{
 public struct HorizontalCoordinate
 {
 public HorizontalCoordinate(double azimuth, double altitude, double tilt)
 : this()
 {
 this.Azimuth = azimuth;
 this.Altitude = altitude;
 this.Tilt = tilt;
 }

 public HorizontalCoordinate(double azimuth, double altitude)
 : this(azimuth, altitude, 0)
 {
 }

	 CHAPTER 18  Sensors and GPS	 991

 // Eastward from north
 public double Azimuth { private set; get; }

 public double Altitude { private set; get; }

 public double Tilt { private set; get; }

 public static HorizontalCoordinate FromVector(Vector3 vector)
 {
 double altitude = 180 * Math.Asin(vector.Z) / Math.PI;
 double azimuth = 180 * Math.Atan2(vector.X, vector.Y) / Math.PI;

 return new HorizontalCoordinate(azimuth, altitude);
 }

 public static HorizontalCoordinate FromMotionMatrix(Matrix3D matrix)
 {
 // Invert the matrix
 matrix.Invert();

 // Transform (0, 0, -1) -- the vector extending from the lens
 Vector3 zAxisTransformed = Vector3.Transform(-Vector3.UnitZ, matrix);

 // Get the horizontal coordinates
 HorizontalCoordinate horzCoord = FromVector(zAxisTransformed);

 // Find the theoretical HorizontalCoordinate for the transformed +Y vector
 // if the device is upright
 double yUprightAltitude = 0;
 double yUprightAzimuth = 0;

 if (horzCoord.Altitude > 0)
 {
 yUprightAltitude = 90 - horzCoord.Altitude;
 yUprightAzimuth = 180 + horzCoord.Azimuth;
 }
 else
 {
 yUprightAltitude = 90 + horzCoord.Altitude;
 yUprightAzimuth = horzCoord.Azimuth;
 }
 Vector3 yUprightVector =
 new HorizontalCoordinate(yUprightAzimuth, yUprightAltitude).ToVector();

 // Find the real transformed +Y vector
 Vector3 yAxisTransformed = Vector3.Transform(Vector3.UnitY, matrix);

 // Get the angle between the upright +Y vector and the real transformed +Y vector
 double dotProduct = Vector3.Dot(yUprightVector, yAxisTransformed);
 Vector3 crossProduct = Vector3.Cross(yUprightVector, yAxisTransformed);
 crossProduct = crossProduct.Normalized;

992	 PART 2  Specialties

 // Sometimes dotProduct is slightly greater than 1, which
 // raises an exception in the angleBetween calculation, so....
 dotProduct = Math.Min(dotProduct, 1);
 double angleBetween = 180 * Vector3.Dot(zAxisTransformed, crossProduct)
 * Math.Acos(dotProduct) / Math.PI;
 horzCoord.Tilt = angleBetween;

 return horzCoord;
 }

 public Vector3 ToVector()
 {
 double x = Math.Cos(Math.PI * this.Altitude / 180) *
 Math.Sin(Math.PI * this.Azimuth / 180);
 double y = Math.Cos(Math.PI * this.Altitude / 180) *
 Math.Cos(Math.PI * this.Azimuth / 180);
 double z = Math.Sin(Math.PI * this.Altitude / 180);

 return new Vector3((float)x, (float)y, (float)z);
 }

 public override string ToString()
 {
 return String.Format("Azi: {0} Alt: {1} Tilt: {2}",
 this.Azimuth, this.Altitude, this.Tilt);
 }
 }
}

With this conversion, you’re well on your way to making an astronomy program that displays
a particular segment of the night sky depending how you orient the screen, much like I did for
Windows Phone 7.5 in the October 2012 issue of MSDN Magazine. But let’s do something here a bit
less ambitious.

What if you wanted to look at a bitmap that was much larger than the computer screen, and you
didn’t want to shrink it to fit? One traditional solution involves scrollbars. A more modern solution
allows you to move it around with your fingers.

But another approach involves putting this bitmap on the interior of the celestial sphere. You
can then view this image by holding the tablet aloft and changing the orientation of the screen. Of
course, we don’t want to actually stretch a bitmap so that it conforms to the interior of a sphere!
Instead, we’ll simply use the azimuth for horizontal scrolling and the altitude for vertical scrolling.

	 CHAPTER 18  Sensors and GPS	 993

The EarthlyDelights program lets you view a large (7,793 by 4,409 pixels) bitmap of Hieronymus
Bosch’s 500-year-old painting, The Garden of Earthly Delights. The program downloads the image
from Wikipedia. Here’s one part of it as displayed by the program running on Microsoft Surface:

The program has no touch interface for scanning or zooming the image. Everything is based on
changing the orientation of the screen. However, if you tap the screen, the program applies scaling to
bring the whole image into view with a rectangle showing the section viewed in regular mode:

This feature rather complicates the program, but I find it essential.

994	 PART 2  Specialties

The most crucial part of the XAML file is obviously the Image element. Notice that the Stretch
property of Image is set to None, and it contains a BitmapImage object with no URI source (as yet).
The Grid containing that Image is in a Canvas so that it won’t be clipped if it’s larger than the screen
(and it will be):

Project: EarthlyDelights | File: MainPage.xaml (excerpt)

 <Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <!-- Two items displayed only during downloading -->
 <ProgressBar Name="progressBar"
 VerticalAlignment="Center"
 Margin="96 0" />

 <TextBlock Name="statusText"
 Text="downloading image..."
 HorizontalAlignment="Center"
 VerticalAlignment="Center" />
 <Canvas>
 <Grid>
 <Image Stretch="None">
 <Image.Source>
 <BitmapImage x:Name="bitmapImage"
 DownloadProgress="OnBitmapImageDownloadProgress"
 ImageFailed="OnBitmapImageFailed"
 ImageOpened="OnBitmapImageOpened" />
 </Image.Source>
 </Image>

 <Border Name="outlineBorder"
 BorderBrush="White"
 HorizontalAlignment="Left"
 VerticalAlignment="Top">

 <Rectangle Name="outlineRectangle"
 Stroke="Black" />

 <Border.RenderTransform>
 <CompositeTransform x:Name="borderTransform" />
 </Border.RenderTransform>
 </Border>

 <Grid.RenderTransform>
 <CompositeTransform x:Name="imageTransform" />
 </Grid.RenderTransform>
 </Grid>
 </Canvas>

 <TextBlock Name="titleText"
 Margin="2 "/>
 </Grid>

The Border with the embedded Rectangle is used in the zoomed out view to show the part of the
image that normally occupies the whole screen, but you can see that rectangle in the normal view
as well. The outer CompositeTransform applies to both the Image and Border. In the normal view, this

	 CHAPTER 18  Sensors and GPS	 995

transform does nothing. The inner CompositeTransform orients the Border to the same area of the
picture that’s viewable in normal mode.

The Loaded handler checks whether the OrientationSensor is available and, if so, starts a download
going by simply setting the UriSource property of the BitmapImage object. If the bitmap downloads
OK, the pixel dimensions can be obtained, and these along with page dimensions are saved as fields:

Project: EarthlyDelights | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 ...
 OrientationSensor orientationSensor = OrientationSensor.GetDefault();
 double pageWidth, pageHeight, maxDimension;
 int imageWidth, imageHeight;
 string title = "The Garden of Earthly Delights by Hieronymus Bosch";
 double zoomInScale;
 double rotation;
 bool isZoomView;

 public MainPage()
 {
 this.InitializeComponent();
 DisplayProperties.AutoRotationPreferences = DisplayProperties.NativeOrientation;
 Loaded += OnMainPageLoaded;
 SizeChanged += OnMainPageSizeChanged;
 }
 ...
 async void OnMainPageLoaded(object sender, RoutedEventArgs args)
 {
 if (orientationSensor == null)
 {
 await new MessageDialog("OrientationSensor is not available",
 "Earthly Delights").ShowAsync();

 progressBar.Visibility = Visibility.Collapsed;
 statusText.Visibility = Visibility.Collapsed;
 }
 else
 {
 bitmapImage.UriSource =
 new Uri("http://upload.wikimedia.org/ ... Bosch_High_Resolution_2.jpg");
 }
 }

 void OnMainPageSizeChanged(object sender, SizeChangedEventArgs args)
 {
 // Save the page dimensions
 pageWidth = this.ActualWidth;
 pageHeight = this.ActualHeight;
 maxDimension = Math.Max(pageWidth, pageHeight);

996	 PART 2  Specialties

 // Initialize some values
 outlineBorder.Width = pageWidth;
 outlineBorder.Height = pageHeight;
 borderTransform.CenterX = pageWidth / 2;
 borderTransform.CenterY = pageHeight / 2;
 }

 void OnBitmapImageDownloadProgress(object sender, DownloadProgressEventArgs args)
 {
 progressBar.Value = args.Progress;
 }

 async void OnBitmapImageFailed(object sender, ExceptionRoutedEventArgs args)
 {
 progressBar.Visibility = Visibility.Collapsed;
 statusText.Visibility = Visibility.Collapsed;

 await new MessageDialog("Could not download image: " + args.ErrorMessage,
 "Earthly Delights").ShowAsync();
 }

 void OnBitmapImageOpened(object sender, RoutedEventArgs args)
 {
 progressBar.Visibility = Visibility.Collapsed;
 statusText.Visibility = Visibility.Collapsed;

 // Save image dimensions
 imageWidth = bitmapImage.PixelWidth;
 imageHeight = bitmapImage.PixelHeight;
 titleText.Text = String.Format("{0} ({1}\x00D7{2})", title, imageWidth, imageHeight);

 // Initialize image transforms
 zoomInScale = Math.Min(pageWidth / imageWidth, pageHeight / imageHeight);

 // Start OrientationSensor going
 if (orientationSensor != null)
 {
 ProcessNewOrientationReading(orientationSensor.GetCurrentReading());
 orientationSensor.ReportInterval = orientationSensor.MinimumReportInterval;
 orientationSensor.ReadingChanged += OnOrientationSensorReadingChanged;
 }
 }

 async void OnOrientationSensorReadingChanged(OrientationSensor sender,
 OrientationSensorReadingChangedEventArgs args)
 {
 await this.Dispatcher.RunAsync(CoreDispatcherPriority.Normal, () =>
 {
 ProcessNewOrientationReading(args.Reading);
 });
 }
 ...
}

	 CHAPTER 18  Sensors and GPS	 997

The ProcessNewOrientationReading method creates a Matrix3D object from the
SensorRotationMatrix and uses that to derive a HorizontalCoordinate value:

Project: EarthlyDelights | File: MainPage.xaml.cs (excerpt)

void ProcessNewOrientationReading(OrientationSensorReading orientationReading)
{
 if (orientationReading == null)
 return;

 // Get the rotation matrix & convert to horizontal coordinates
 SensorRotationMatrix m = orientationReading.RotationMatrix;

 if (m == null)
 return;

 Matrix3D matrix3d = new Matrix3D(m.M11, m.M12, m.M13, 0,
 m.M21, m.M22, m.M23, 0,
 m.M31, m.M32, m.M33, 0,
 0, 0, 0, 1);
 if (!matrix3d.HasInverse)
 return;

 HorizontalCoordinate horzCoord = HorizontalCoordinate.FromMotionMatrix(matrix3d);

 // Set the transform center on the Image element
 imageTransform.CenterX = (imageWidth + maxDimension) *
 (180 + horzCoord.Azimuth) / 360 - maxDimension / 2;
 imageTransform.CenterY = (imageHeight + maxDimension) *
 (90 - horzCoord.Altitude) / 180 - maxDimension / 2;

 // Set the translation on the Border element
 borderTransform.TranslateX = imageTransform.CenterX - pageWidth / 2;
 borderTransform.TranslateY = imageTransform.CenterY - pageHeight / 2;

 // Get rotation from Tilt
 rotation = -horzCoord.Tilt;
 UpdateImageTransforms();
}

That method is responsible for setting some of the transforms; the others are set in the
UpdateImageTransforms method (a call to which you’ll see right at the end of that method). When the
azimuth is 0 (which occurs when the tablet is pointed north) and the altitude is 0 (when the tablet is
upright), the CenterX and CenterY properties are set to the center of the bitmap. Otherwise, they are
set to values along the whole width and height, including a margin so that there’s a wrapping area
where no part of the image can be seen. (Otherwise, the program would need to show both the right
edge of the bitmap at the left of the screen and the left edge at the right of the screen.)

998	 PART 2  Specialties

I wanted the zooming operation to be animated, so I gave MainPage a dependency property that
is the target of an animation when the screen is tapped:

Project: EarthlyDelights | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 // Dependency property for zoom-in transition animation
 static readonly DependencyProperty interpolationFactorProperty =
 DependencyProperty.Register("InterpolationFactor",
 typeof(double),
 typeof(MainPage),
 new PropertyMetadata(0.0, OnInterpolationFactorChanged));
 ...
 // Interpolation Factor property
 public static DependencyProperty InterpolationFactorProperty
 {
 get { return interpolationFactorProperty; }
 }

 public double InterpolationFactor
 {
 set { SetValue(InterpolationFactorProperty, value); }
 get { return (double)GetValue(InterpolationFactorProperty); }
 }
 ...
 protected override void OnTapped(TappedRoutedEventArgs e)
 {
 // Animate the InterpolationFactor property
 DoubleAnimation doubleAnimation = new DoubleAnimation
 {
 EnableDependentAnimation = true,
 To = isZoomView ? 0 : 1,
 Duration = new Duration(TimeSpan.FromSeconds(1))
 };
 Storyboard.SetTarget(doubleAnimation, this);
 Storyboard.SetTargetProperty(doubleAnimation, "InterpolationFactor");
 Storyboard storyboard = new Storyboard();
 storyboard.Children.Add(doubleAnimation);
 storyboard.Begin();
 isZoomView ^= true;
 base.OnTapped(e);
 }

 static void OnInterpolationFactorChanged(DependencyObject obj,
 DependencyPropertyChangedEventArgs args)
 {
 (obj as MainPage).UpdateImageTransforms();
 }
 ...
}

	 CHAPTER 18  Sensors and GPS	 999

That OnInterpolationFactorChanged method also calls UpdateImageTransforms, which does the
bulk of the heavy lifting:

Project: EarthlyDelights | File: MainPage.xaml.cs (excerpt)

void UpdateImageTransforms()
{
 // If being zoomed out, set scaling
 double interpolatedScale = 1 + InterpolationFactor * (zoomInScale - 1);
 imageTransform.ScaleX =
 imageTransform.ScaleY = interpolatedScale;

 // Move transform center to screen center
 imageTransform.TranslateX = pageWidth / 2 - imageTransform.CenterX;
 imageTransform.TranslateY = pageHeight / 2 - imageTransform.CenterY;

 // If being zoomed out, adjust for scaling
 imageTransform.TranslateX -= InterpolationFactor *
 (pageWidth / 2 - zoomInScale * imageTransform.CenterX);
 imageTransform.TranslateY -= InterpolationFactor *
 (pageHeight / 2 - zoomInScale * imageTransform.CenterY);

 // If being zoomed out, center image in screen
 imageTransform.TranslateX += InterpolationFactor *
 (pageWidth - zoomInScale * imageWidth) / 2;
 imageTransform.TranslateY += InterpolationFactor *
 (pageHeight - zoomInScale * imageHeight) / 2;

 // Set border thickness
 outlineBorder.BorderThickness = new Thickness(2 / interpolatedScale);
 outlineRectangle.StrokeThickness = 2 / interpolatedScale;

 // Set rotation on image and border
 imageTransform.Rotation = (1 - InterpolationFactor) * rotation;
 borderTransform.Rotation = -rotation;
}

This method is called when there’s a new OrientationSensor value, or when the InterpolationFactor
property changes for the zooming operation. If you’re interested in understanding how this method
works, you might want to clean it up by eliminating all the interpolation code. Set InterpolationFactor
to 0 and then to 1, and you’ll see that it’s rather straightforward.

Bing Maps and Bing Map Tiles

The Geolocator class is not considered to be a sensor, and it’s in another namespace entirely:
Windows.Devices.Geolocation. Yet it’s similar in that you start it going and it tells you when the
computer has changed geographic location and what that location is.

You need to specifically indicate in the Capabilities section of the Package.appxmanifest file that
your application requires Location information. Windows 8 then gets a confirmation from the user the
first time the program runs.

1000	PART 2  Specialties

Generally, you’ll use the Geolocator location in connection with maps. A Bing Maps control is not
built into Windows 8, but you can download a toolkit that lets you add it to your application. You’ll
need a credentials key that you can get from visiting www.bingmapsportal.com.

But I’m going to take a somewhat different approach for the last program in this chapter. I’m going
to show you a map that rotates based on the orientation of the tablet. This rotation allows north on
the map to be aligned with actual north (or whatever the tablet believes north to be). To do this, I
don’t use the Bing Maps control; instead, I’ll use the Bing Maps SOAP service to download individual
tiles and stitch them together into a composite map. A credentials key is still required.

When you run the RotatingMap program, you’re going to want to use your fingers to scan and
scale the map. It won’t work. The program has no touch interface! To keep things simple, the program
simply centers the map at the current location and reorients the map if the location changes. The
program does provide application bar buttons for zooming in and zooming out, and for switching
between road and aerial views, but that’s it.

Here’s the XAML file. All the tiles constituting the map go into the Canvas named imageCanvas.
Notice the RotateTransform to rotate the Canvas around its center.

Project: RotatingMap | File: MainPage.xaml (excerpt)

<Page ... >
 <Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <Canvas Name="imageCanvas"
 HorizontalAlignment="Center"
 VerticalAlignment="Center">
 <Canvas.RenderTransform>
 <RotateTransform x:Name="imageCanvasRotate" />
 </Canvas.RenderTransform>
 </Canvas>

 <!-- Circle to show location -->
 <Ellipse Name="locationDisplay"
 Width="24"
 Height="24"
 Stroke="Red"
 StrokeThickness="6"
 HorizontalAlignment="Center"
 VerticalAlignment="Center"
 Visibility="Collapsed" />

 <!-- Arrow to show north -->
 <Border HorizontalAlignment="Left"
 VerticalAlignment="Top"
 Margin="12"
 Background="Black"
 Width="36"
 Height="36"
 CornerRadius="18">
 <Path Stroke="White"
 StrokeThickness="3"
 Data="M 18 4 L 18 24 M 12 12 L 18 4 24 12">
 <Path.RenderTransform>
 <RotateTransform x:Name="northArrowRotate"

	 CHAPTER 18  Sensors and GPS	 1001

 CenterX="18"
 CenterY="18" />
 </Path.RenderTransform>
 </Path>
 </Border>

 <!-- "powered by bing" display -->
 <Border Background="Black"
 HorizontalAlignment="Center"
 VerticalAlignment="Bottom"
 Margin="12"
 CornerRadius="12"
 Padding="3">

 <StackPanel Name="poweredByDisplay"
 Orientation="Horizontal"
 Visibility="Collapsed">
 <TextBlock Text=" powered by "
 Foreground="White"
 VerticalAlignment="Center" />
 <Image Stretch="None">
 <Image.Source>
 <BitmapImage x:Name="poweredByBitmap" />
 </Image.Source>
 </Image>
 </StackPanel>
 </Border>
 </Grid>

 <Page.BottomAppBar>
 <AppBar Name="bottomAppBar"
 IsEnabled="False">
 <StackPanel Orientation="Horizontal"
 HorizontalAlignment="Right">

 <!-- Must remove reference to BackgroundCheckedGlyph in
 AppBarButtonStyle to use it for a CheckBox -->

 <CheckBox Name="streetViewAppBarButton"
 Style="{StaticResource StreetAppBarButtonStyle}"
 AutomationProperties.Name="Street View"
 Checked="OnStreetViewAppBarButtonChecked"
 Unchecked="OnStreetViewAppBarButtonChecked" />

 <Button Name="zoomInAppBarButton"
 Style="{StaticResource ZoomInAppBarButtonStyle}"
 Click="OnZoomInAppBarButtonClick" />

 <Button Name="zoomOutAppBarButton"
 Style="{StaticResource ZoomOutAppBarButtonStyle}"
 Click="OnZoomOutAppBarButtonClick" />
 </StackPanel>
 </AppBar>
 </Page.BottomAppBar>
</Page>

1002	PART 2  Specialties

It’s possible to use the Bing Maps SOAP service “manually” by transferring hairy XML files back and
forth, but a much saner approach is using the Web service through a proxy class that Visual Studio
generates. This proxy class makes the Web service appear to be a bunch of structures, enumerations,
and asynchronous method calls. To add this proxy to the RotatingMap program, I right-clicked the
project name in the Solution Explorer in Visual Studio and selected Add Service Reference from the
menu. When the dialog box requested an address, I pasted in the URL for the Imagery Service (which
you can find at http://msdn.microsoft.com/en-us/library/cc966738.aspx with URLs for three other Web
services connected with Bing Maps). I gave it a name of ImageryService, which means that Visual
Studio generates code using the namespace RotatingMap.ImageryService.

This service has two types of requests: GetMapUriAsync and GetImageryMetadataAsync. The first
allows obtaining a static map of a particular location, but I gravitated toward the other, which allows
you to obtain information necessary for downloading individual map tiles that you can then assemble
into a complete map.

Let’s begin looking at RotatingMap code with the MainPage constructor. You see that it saves only
two values as application settings: the map style (a member of the MapStyle enumeration, which is
among the code generated for the web service, indicating road or aerial view) and an integer zoom
level:

Project: RotatingMap | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 ...
 // Saved as application settings
 MapStyle mapStyle = MapStyle.Aerial;
 int zoomLevel = 12;

 public MainPage()
 {
 this.InitializeComponent();
 DisplayProperties.AutoRotationPreferences = DisplayProperties.NativeOrientation;
 Loaded += OnMainPageLoaded;
 SizeChanged += OnMainPageSizeChanged;

 // Get application settings (and later save them)
 IPropertySet propertySet = ApplicationData.Current.LocalSettings.Values;

 if (propertySet.ContainsKey("ZoomLevel"))
 zoomLevel = (int)propertySet["ZoomLevel"];

 if (propertySet.ContainsKey("MapStyle"))
 mapStyle = (MapStyle)(int)propertySet["MapStyle"];

 Application.Current.Suspending += (sender, args) =>
 {
 propertySet["ZoomLevel"] = zoomLevel;
 propertySet["MapStyle"] = (int)mapStyle;
 };
 }
 ...
}

	 CHAPTER 18  Sensors and GPS	 1003

The Web service is accessed solely in the Loaded handler. Two calls must be made: one to get maps
metadata for the road view, and the other for the aerial view. The information is saved in two instanc-
es of a local class named ViewParams. The most important part of this metadata is a URI template for
downloading individual map tiles. The ViewParams class also has fields for the minimum and maxi-
mum zoom levels, but I know the zoom level ranges from 1 to 21 and you’ll see that other parts of
the code assume an upper limit of 21:

Project: RotatingMap | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 ...
 // Storage of parameters for two views
 class ViewParams
 {
 public string UriTemplate;
 public int MinimumLevel;
 public int MaximumLevel;
 }
 ViewParams aerialParams;
 ViewParams roadParams;

 Geolocator geolocator = new Geolocator();
 Inclinometer inclinometer = Inclinometer.GetDefault();
 ...
 async void OnMainPageLoaded(object sender, RoutedEventArgs args)
 {
 // Initialize the Bing Maps imagery service
 ImageryServiceClient imageryServiceClient =
 new ImageryServiceClient(
 ImageryServiceClient.EndpointConfiguration.BasicHttpBinding_IImageryService);

 // Make two requests for road and aerial views
 ImageryMetadataRequest request = new ImageryMetadataRequest
 {
 Credentials = new Credentials
 {
 ApplicationId = "put your own credentials string here"
 },
 Style = MapStyle.Road
 };
 Task<ImageryMetadataResponse> roadStyleTask =
 imageryServiceClient.GetImageryMetadataAsync(request);

 request = new ImageryMetadataRequest
 {
 Credentials = new Credentials
 {
 ApplicationId = "put your own credentials string here"
 },
 Style = MapStyle.Aerial
 };
 Task<ImageryMetadataResponse> aerialStyleTask =
 imageryServiceClient.GetImageryMetadataAsync(request);

1004	PART 2  Specialties

 // Wait for both tasks to complete
 Task.WaitAll(roadStyleTask, aerialStyleTask);

 // Check if everything is OK
 if (!roadStyleTask.IsCanceled && !roadStyleTask.IsFaulted &&
 !aerialStyleTask.IsCanceled && !aerialStyleTask.IsCanceled)
 {
 // Get the "powered by" bitmap
 poweredByBitmap.UriSource = roadStyleTask.Result.BrandLogoUri;
 poweredByDisplay.Visibility = Visibility.Visible;

 // Get the URIs and min/max zoom levels
 roadParams = CreateViewParams(roadStyleTask.Result.Results[0]);
 aerialParams = CreateViewParams(aerialStyleTask.Result.Results[0]);

 // Get the current location
 Geoposition geoPosition = await geolocator.GetGeopositionAsync();
 GetLongitudeAndLatitude(geoPosition.Coordinate);
 RefreshDisplay();

 // Get updated locations
 geolocator.PositionChanged += OnGeolocatorPositionChanged;

 // Enable the application bar
 bottomAppBar.IsEnabled = true;
 streetViewAppBarButton.IsChecked = mapStyle == MapStyle.Road;

 // Get the current yaw
 if (inclinometer != null)
 {
 SetRotation(inclinometer.GetCurrentReading());
 inclinometer.ReadingChanged += OnInclinometerReadingChanged;
 }
 }
 }

 ViewParams CreateViewParams(ImageryMetadataResult result)
 {
 string uri = result.ImageUri;
 uri = uri.Replace("{subdomain}", result.ImageUriSubdomains[0]);
 uri = uri.Replace("&token={token}", "");
 uri = uri.Replace("{culture}", "en-us");

 return new ViewParams
 {
 UriTemplate = uri,
 MinimumLevel = result.ZoomRange.From,
 MaximumLevel = result.ZoomRange.To
 };
 }
 ...
}

Two asynchronous calls are required to obtain the metadata for the two views, yet the two calls
aren’t dependent on each other, so they can proceed at the same time. This seemed like a perfect
application of the Task.WaitAll method, which waits until multiple Task items have completed.

	 CHAPTER 18  Sensors and GPS	 1005

When both Web service calls have completed successfully, the Geolocator and Inclinometer are
started up. The Inclinometer is used solely to obtain a yaw value used for rotating the map and for
rotating an arrow indicating north:

Project: RotatingMap | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 ...
 async void OnInclinometerReadingChanged(Inclinometer sender,
 InclinometerReadingChangedEventArgs args)
 {
 await this.Dispatcher.RunAsync(CoreDispatcherPriority.Normal, () =>
 {
 SetRotation(args.Reading);
 });
 }

 void SetRotation(InclinometerReading inclinometerReading)
 {
 if (inclinometerReading == null)
 return;

 imageCanvasRotate.Angle = inclinometerReading.YawDegrees;
 northArrowRotate.Angle = inclinometerReading.YawDegrees;
 }
 ...
}

Following completion of the Loaded handler, the program has two URI templates that it can use to
download individual map tiles. The tiles that form the basis of Bing Maps are bitmaps that are always
256 pixels square. Each tile is associated with a particular longitude, latitude, and zoom level and
contains an image of part of the world flattened using the common Mercator projection.

In Level 1, the entire Earth—or, rather, that part of the Earth with latitudes between positive and
negative 85.05 degrees—is covered by four tiles:

1006	PART 2  Specialties

I’ll discuss the numbers in these tiles shortly. The tiles are 256 pixels square, so at the equator each
pixel covers about 49 miles.

In Level 2, 16 tiles cover the Earth:

These tiles are also 256 pixels square, so at the equator each pixel is about 24 miles.

Each tile in Level 1 covers the same area as four tiles in Level 2, and the trend continues in this way:
Level 3 has 64 tiles, Level 4 has 256 tiles, and up and up to Level 21, which (in principle, anyway) cov-
ers the Earth with more than 4 trillion tiles—2 million horizontally and 2 million vertically for a resolu-
tion at the equator of 3 inches per pixel.

How can so many tiles possibly be organized in a coherent manner? Keep in mind that three
dimensions are involved—longitude, latitude, and zoom level—and for maximum efficiency in
providing these tiles through a Web service, tiles covering the same area should be stored near each
other on the servers.

Obviously, a very clever numbering scheme is called for, and it’s called a quadkey. Each tile has
a unique quadkey. The URI templates just obtained from the Bing Maps Web service contain a
placeholder “{quadkey}” that you replace to reference an actual tile. The two diagrams indicate the
quadkeys for these particular tiles in the upper left corner. Leading zeroes are important! The number
of digits in the quadkey is equal to the zoom level. The tiles in Level 21 are identified with 21-digit
quadkeys.

The digits in a quadkey are always 0, 1, 2, or 3, which indicates that quadkeys are actually base-4
numbers. In binary, the digits 0, 1, 2, and 3 are 00, 01, 10, and 11. The first bit is a vertical coordinate,
and the second bit is a horizontal coordinate. Thus, the bits correspond to an interleaved longitude
and latitude.

As you’ve seen, each tile in Level 1 corresponds to four tiles in Level 2, so you can think of tiles as
having parent and child relationships. The quadkey of a child tile always begins with the same digits

	 CHAPTER 18  Sensors and GPS	 1007

as its parent but adds another digit, depending on its location relative to its parent. You can obtain a
parent quadkey from a child quadkey by simply lopping off the last digit.

To use the Bing Maps Web service, it’s necessary to derive a quadkey from a longitude and
latitude. The code in the following GetLongitudeAndLatitude method shows the first step, which is to
convert the longitude and latitude from the Geolocator into relative double values ranging from 0 to
1, and then into integer values:

Project: RotatingMap | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 const int BITRES = 29;
 ...
 int integerLongitude = -1;
 int integerLatitude = -1;
 ...
 async void OnGeolocatorPositionChanged(Geolocator sender, PositionChangedEventArgs args)
 {
 await this.Dispatcher.RunAsync(CoreDispatcherPriority.Normal, () =>
 {
 GetLongitudeAndLatitude(args.Position.Coordinate);
 RefreshDisplay();
 });
 }

 void GetLongitudeAndLatitude(Geocoordinate geoCoordinate)
 {
 locationDisplay.Visibility = Visibility.Visible;

 // Calculate integer longitude and latitude
 double relativeLongitude = (180 + geoCoordinate.Longitude) / 360;
 integerLongitude = (int)(relativeLongitude * (1 << BITRES));

 double sinTerm = Math.Sin(Math.PI * geoCoordinate.Latitude / 180);
 double relativeLatitude = 0.5 - Math.Log((1 + sinTerm) / (1 - sinTerm)) / (4 * Math.PI);
 integerLatitude = (int)(relativeLatitude * (1 << BITRES));
 }
 ...
}

The BITRES value is 29 to account for the 21 bits in a Level 21 quadkey plus 8 bits for the pixel
size of the tile, which means that these integer values identify a longitude and latitude precise to
the nearest pixel of a tile at the highest zoom level. The calculation of integerLongitude is trivial, but
integerLatitude is more complex because the Mercator map projection compresses latitudes as you
get farther from the equator.

An example: The center of Central Park in New York City has a longitude of –73.965368 and
a latitude of 40.783271. The relative double values (to just a few decimal places) are 0.29454 and
0.37572. The 29-bit integer values (shown in binary and grouped in fours for easy readability) are:

0 1001 0110 1100 1110 0000 1000 0000
0 1100 0000 0101 1110 1011 0000 0000

1008	PART 2  Specialties

Suppose you want a tile for this longitude and latitude in a Level 12 zoom. You need the top 12
bits of these integer longitudes and latitudes. (Watch out! The resultant digits are grouped a little
differently.)

0100 1011 0110
0110 0000 0010

These are two binary numbers, but to form a quadkey they need to be combined into a base-4
number. You can’t do this in code without actually looping through the bits, but for illustrative pur-
poses, you can simply double all the bits in the latitude and add the two values as if they were base-4
values:

 0100 1011 0110
+ 0220 0000 0020

 0320 1011 0130

And that’s the quadkey you’ll need to substitute for the “{quadkey}” placeholder in the URI
templates obtained from the Web service. The resultant URI references a 256-pixel-square bitmap.

Here’s the routine in RotatingMap that constructs a quadkey from the truncated integer longitudes
and latitudes. For clarity, the logic has been separated to show first the derivation of a long integer
and then a string:

Project: RotatingMap | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 ...
 StringBuilder strBuilder = new StringBuilder();
 ...
 string ToQuadKey(int longitude, int latitude, int level)
 {
 long quadkey = 0;
 int mask = 1 << (level - 1);

 for (int i = 0; i < level; i++)
 {
 quadkey <<= 2;

 if ((longitude & mask) != 0)
 quadkey |= 1;

 if ((latitude & mask) != 0)
 quadkey |= 2;

 mask >>= 1;
 }

 strBuilder.Clear();

	 CHAPTER 18  Sensors and GPS	 1009

 for (int i = 0; i < level; i++)
 {
 strBuilder.Insert(0, (quadkey & 3).ToString());
 quadkey >>= 2;
 }

 return strBuilder.ToString();
 }
 ...
}

The quadkey references a tile containing the desired longitude and latitude, but the location of
the precise longitude and latitude is actually somewhere within the tile. The pixel location within the
tile can be determined by the next 8 digits of the integer longitude and latitude following the digits
required for the quadkey.

We’re in the home stretch now. Because the whole page must be covered with 256-pixel-square
tiles, because this array of tiles is rotatable, and because the current location of the user is positioned
in the center of the screen somewhere within the central tile, the SizeChanged handler determines
how many tiles are required and hence how many Image elements need to be created. The field
named sqrtNumTiles means “the square root of the number of tiles.” For a 1366 by 768 pixel display,
it’s calculated as 9. The total number of tiles (and Image elements) is the square of that, or 81.

Project: RotatingMap | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 ...
 int sqrtNumTiles; // always an odd number
 ...
 void OnMainPageSizeChanged(object sender, SizeChangedEventArgs args)
 {
 // Clear out the existing Image elements
 imageCanvas.Children.Clear();

 // Determine how many Image elements are needed
 double diagonal = Math.Sqrt(Math.Pow(args.NewSize.Width, 2) +
 Math.Pow(args.NewSize.Height, 2));

 sqrtNumTiles = 1 + 2 * (int)Math.Ceiling((diagonal / 2) / 256);

 // Create Image elements for a sqrtNumTiles x sqrtNumTiles array
 for (int i = 0; i < sqrtNumTiles * sqrtNumTiles; i++)
 {
 Image image = new Image
 {
 Source = new BitmapImage(),
 Stretch = Stretch.None
 };
 imageCanvas.Children.Add(image);
 }
 RefreshDisplay();
 }
 ...
}

1010	PART 2  Specialties

The RefreshDisplay method does the real work. It loops through all the Image elements and
determines the quadkey (and hence a URI) for each one:

Project: RotatingMap | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 ...
 void RefreshDisplay()
 {
 if (roadParams == null || aerialParams == null)
 return;

 if (integerLongitude == -1 || integerLatitude == -1)
 return;

 // Get coordinates and pixel offsets based on current zoom level
 int croppedLongitude = integerLongitude >> BITRES - zoomLevel;
 int croppedLatitude = integerLatitude >> BITRES - zoomLevel;
 int xPixelOffset = (integerLongitude >> BITRES - zoomLevel - 8) % 256;
 int yPixelOffset = (integerLatitude >> BITRES - zoomLevel - 8) % 256;

 // Prepare for the loop
 string uriTemplate = (mapStyle == MapStyle.Road ? roadParams : aerialParams).		
		 UriTemplate;
 int index = 0;
 int maxValue = (1 << zoomLevel) - 1;

 // Loop through the array of Image elements
 for (int row = -sqrtNumTiles / 2; row <= sqrtNumTiles / 2; row++)
 for (int col = -sqrtNumTiles / 2; col <= sqrtNumTiles / 2; col++)
 {
 // Get the Image and BitmapImage
 Image image = imageCanvas.Children[index] as Image;
 BitmapImage bitmap = image.Source as BitmapImage;
 index++;

 // Check if we've gone beyond the bounds
 if (croppedLongitude + col < 0 ||
 croppedLongitude + col > maxValue ||
 croppedLatitude + row < 0 ||
 croppedLatitude + row > maxValue)
 {
 bitmap.UriSource = null;
 }
 else
 {
 // Calculate a quadkey and set URI to bitmap
 int longitude = croppedLongitude + col;
 int latitude = croppedLatitude + row;
 string strQuadkey = ToQuadKey(longitude, latitude, zoomLevel);
 string uri = uriTemplate.Replace("{quadkey}", strQuadkey);
 bitmap.UriSource = new Uri(uri);
 }

	 CHAPTER 18  Sensors and GPS	 1011

 // Position the Image element
 Canvas.SetLeft(image, col * 256 - xPixelOffset);
 Canvas.SetTop(image, row * 256 - yPixelOffset);
 }
 }
 ...
}

The only part left involves the application bar buttons. The increase and decrease zoom buttons
are carefully enabled and disabled based on the minimum and maximum zoom levels for the cur-
rently selected view although (as I’ve said) other parts of the program are apparently quite certain
that the maximum zoom level is 21:

Project: RotatingMap | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 ...
 void OnStreetViewAppBarButtonChecked(object sender, RoutedEventArgs args)
 {
 ToggleButton btn = sender as ToggleButton;
 ViewParams viewParams = null;

 if (btn.IsChecked.Value)
 {
 mapStyle = MapStyle.Road;
 viewParams = roadParams;
 }
 else
 {
 mapStyle = MapStyle.Aerial;
 viewParams = aerialParams;
 }

 zoomLevel = Math.Max(viewParams.MinimumLevel,
 Math.Min(viewParams.MaximumLevel, zoomLevel));

 RefreshDisplay();
 RefreshButtons();
 }

 void OnZoomInAppBarButtonClick(object sender, RoutedEventArgs args)
 {
 zoomLevel += 1;
 RefreshDisplay();
 RefreshButtons();
 }

 void OnZoomOutAppBarButtonClick(object sender, RoutedEventArgs args)
 {
 zoomLevel -= 1;
 RefreshDisplay();
 RefreshButtons();
 }

 void RefreshButtons()

1012	PART 2  Specialties

 {
 ViewParams viewParams =
 streetViewAppBarButton.IsChecked.Value ? roadParams : aerialParams;
 zoomInAppBarButton.IsEnabled = zoomLevel < viewParams.MaximumLevel;
 zoomOutAppBarButton.IsEnabled = zoomLevel > viewParams.MinimumLevel;
 }
}

We’re not quite accustomed to seeing familiar regions of a map rotated, so the island of
Manhattan looks a little odd in this view:

But if you’re standing in a strange neighborhood with your tablet trying to figure out where you
are, having the map rotate in accordance with reality can be very helpful. Maybe someday the labels
showing cities and streets can be rotated as well.

		 1013

C H A P T E R 1 9

Pen (Also Known as Stylus)

An aura of controversy surrounds this chapter. The subject is an input device that has an uncertain
future in computing, and passions are strong on each side of the issue: In 2010, Steve Jobs

discussed the possibility of other tablets attempting to compete with the iPad and declared, “If you
see a stylus, they blew it.”1

Yet, anyone who’s tried to use a traditional mouse-based application on a touch screen would
certainly disagree. The stylus is not quite as convenient as a finger or as versatile as multiple fingers,
but it’s nearly as precise as a mouse and usually works much better than fingers for picking items
from menus and selecting and erasing input. The Samsung 700T that I’ve been using for most of this
book has a stylus, and I consider it essential for using Visual Studio on the machine when a mouse
isn’t attached.

I was therefore in great suspense awaiting the introduction of the first Microsoft Surface devices.
Would a stylus be included? I was even contemplating that the answer to that question would govern
whether a chapter on the stylus would be included in this book!

By Steve Jobs’s criterion, the Microsoft Surface certainly did not “blow it.” The first Surface
computers do not include a stylus. I was disappointed, but I elected to include this chapter in the
book regardless.

I personally prefer the word stylus for referring to these input devices, but from here on the
terminology in this chapter will be consistent with the Windows Runtime programming interface,
where it’s called a pen. Often the pen input and rendered graphical output is referred to as ink.

By virtue of having read Chapter 13, “Touch, Etc.,” you already know how to process and render
pen input. However, the Windows.UI.Input.Inking namespace provides additional facilities when
working with pens. These features include

■■ Erasure and selection modes in addition to inking

■■ Converting polyline input to Bézier curves for smoother rendition

■■ Handwriting recognition

1	 David Pogue, “On Touch Screens, Rest Your Finger by Using a Stylus,” New York Times, August 1, 2012.
http://www.nytimes.com/2012/08/02/technology/personaltech/on-touch-screens-rest-your-finger-by-using-a-stylus-
state-of-the-art.html

1014	PART 2  Specialties

■■ Saving ink to files and loading ink from files

I won’t be exploring handwriting recognition in this chapter, however.

Interestingly, none of these facilities actually requires a pen! Theoretically, you can do everything
in this chapter with touch or mouse input. However, touch or mouse input is awkward for handwrit-
ing because text drawn with fingers is often too large, while text drawn with the mouse is often too
jittery. The pen is just right. That’s to be expected from a device of a size and shape used for writing
for at least two millennia.

The article from the New York Times that I cited earlier was all about capacitance pens. These are
pens designed to supplement fingers on capacitance touch screens. They offer no real advantages
over fingers except in precision and maneuverability.

Of much more versatility is an electromagnetic pen, sometimes referred to as a digitizer or digital
stylus, but these pens require a screen that can respond to this type of pen input. Such is the case
with the Samsung 700T tablet I’m using for this book. The pen has a small tip (about 1 mm in diam-
eter), an “eraser” at the opposite end, and a button on the barrel. The PointerPointProperties class
defines two properties, IsEraser and IsInverted, that are both true if the eraser is touching the screen
rather than the pen tip. This is generally used for erasing earlier input. The IsBarrelButtonPressed
property is true if the tip is being used and the barrel button is pressed. This is generally used for
selection.

Unless you’re writing a program specifically for electromagnetic pen users, you’ll want to
supplement the erase and selection facilities of the pen with software options, but to streamline the
sample projects I’ll skip that amenity in this chapter.

The InkManager Collections

The Windows.UI.Input.Inking namespace revolves around the InkManager class. This class is your
application’s portal into many of the features associated with pen use.

An InkManager instance maintains all the ink for a particular page of input. If your program
implements a pad of sorts—as the last program in this chapter does—then each page of that pad will
have its own InkManager.

An InkManager object maintains a collection of objects of type InkStroke. Each InkStroke is a
continuous curve generally created by touching the pen to the screen, moving it, and lifting it. An
InkStroke is associated with a particular InkDrawingAttributes object, the primary purpose of which is
to indicate the color of the stroke and the shape and size of the pen tip, although (as you’ll see) the
InkManager and InkStroke don’t really do anything with these drawing attributes.

Each InkStroke contains a collection of InkStrokeRenderingSegment objects. An
InkStrokeRenderingSegment is a single Bézier curve with a particular pen pressure, tilt, and twist. The
pressure is often used for computing a line thickness when rendering strokes. The value can range

	 CHAPTER 19  Pen (Also Known as Stylus)	 1015

from 0 to 1 just like the Pressure property of PointerPointProperties. Pens that support tilt and twist
are rather rare.

With help from your program, the InkManager can accumulate pen input and smooth it into Bézier
curves, but it does no rendering on its own. Rendering is entirely your responsibility, and it’s generally
a two-step operation:

■■ Render lines using Polyline, Line, or Path as the user is drawing or writing with the pen.

■■ Replace these elements with Bézier curves as each stroke is completed.

You’ve already seen the first rendering step in connection with the FingerPaint programs. To clarify
the basics of using InkManager, let me focus on the second rendering step in the first sample project,
SimpleInking. The SimpleInking program is so simple that you don’t see what you’re actually drawing
until you lift the pen from the screen!

Here’s the XAML file. Notice that I’ve colored the Grid white, which is generally the convention for
pen input:

Project: SimpleInking | File: MainPage.xaml (excerpt)

<Page ... >

 <Grid Name="contentGrid"
 Background="White" />
</Page>

By default, pen input is black.

I’ve used a single InkManager object for the duration of the program:

Project: SimpleInking | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 InkManager inkManager = new InkManager();
 bool hasPen;

 public MainPage()
 {
 this.InitializeComponent();

 // Check if there’s a pen among the pointer input devices
 foreach (PointerDevice device in PointerDevice.GetPointerDevices())
 hasPen |= device.PointerDeviceType == PointerDeviceType.Pen;
 }
 ...
}

The constructor determines whether the machine supports a pen, and if it does, the hasPen field
is set to true. For this program, I’ve decided to ignore all nonpen pointer input for computers that
support a pen, but I’ll accept all pointer input for computers that don’t support a pen. This allows the
program to be used on the Microsoft Surface.

1016	PART 2  Specialties

The InkManager defines three methods that you use in conjunction with the Pointer events. These
methods allow the InkManager object to accumulate pointer input. They are

■■ ProcessPointerDown, which you'll call from the PointerPressed event handler

■■ ProcessPointerUpdate, called multiple times from the PointerMoved event handler

■■ ProcessPointerUp, called from the PointerReleased event handler

The argument to each method is a PointerPoint object that you can obtain from
PointerRoutedEventArgs by calling GetCurrentPoint or GetIntermediatePoints. As you’ll recall, the
PointerPoint object includes not only the position of the pointer but the pointer ID (which allows the
InkManager to track multiple pointers) and PointerPointProperties, including pressure and tilt.

Here’s the OnPointerPressed override in SimpleInking:

Project: SimpleInking | File: MainPage.xaml.cs (excerpt)

protected override void OnPointerPressed(PointerRoutedEventArgs args)
{
 if (args.Pointer.PointerDeviceType == PointerDeviceType.Pen || !hasPen)
 {
 PointerPoint pointerPoint = args.GetCurrentPoint(this);
 inkManager.ProcessPointerDown(pointerPoint);
 }
 base.OnPointerPressed(args);
}

The if statement checks for a device type of Pen but allows other pointer devices if the computer
doesn’t support a pen. You can remove the entire if statement if you want to support all pointer input
devices regardless. In any case, simply pass the PointerPoint object to the ProcessPointerDown method
of the InkManager. Processing OnPointerMoved is just a little more complex:

Project: SimpleInking | File: MainPage.xaml.cs (excerpt)

protected override void OnPointerMoved(PointerRoutedEventArgs args)
{
 if ((args.Pointer.PointerDeviceType == PointerDeviceType.Pen || !hasPen) &&
 args.Pointer.IsInContact)
 {
 IEnumerable<PointerPoint> points = args.GetIntermediatePoints(this).Reverse();

 foreach (PointerPoint point in points)
 inkManager.ProcessPointerUpdate(point);
 }
 base.OnPointerMoved(args);
}

Calls to ProcessPointerUpdate allow the InkManager to accumulate pieces of the total ink stroke. For
maximum fidelity to pen input, the code uses GetIntermediatePoints rather than GetCurrentPoint,
reversed with the LINQ Reverse operator.

Notice that the if statement for OnPointerMoved now also includes a check for the IsInContact
property. As you’ll recall, the pen begins generating OnPointerMoved events when the pen comes

	 CHAPTER 19  Pen (Also Known as Stylus)	 1017

within the vicinity of the screen before actually touching the screen. If the if statement did not
check IsInContact, it would call the ProcessPointerUpdate method of InkManager before first calling
ProcessPointerDown, and that would raise an exception.

So far, the program hasn’t been doing any drawing. Any reasonable program would have been
drawing all along. This program reserves all the drawing for the OnPointerReleased method, but let’s
look at the InkManager overhead first:

Project: SimpleInking | File: MainPage.xaml.cs (excerpt)

protected override void OnPointerReleased(PointerRoutedEventArgs args)
{
 if (args.Pointer.PointerDeviceType != PointerDeviceType.Pen && hasPen)
 return;

 inkManager.ProcessPointerUp(args.GetCurrentPoint(this));

 // Render the most recent InkStroke
 ...

 base.OnPointerReleased(args);
}

Before rendering the new InkStroke object, you’ll need to know about InkDrawingAttributes.

The Ink Drawing Attributes

Although InkManager doesn’t perform any rendering on its own, it maintains information about
attributes involved with rendering ink. This information is encapsulated in the InkDrawingAttributes
class, which has the following properties and default values:

Property Value

Color Black (0xFF000000)

PenTip Circle

Size (2, 2)

FitToCurve true

IgnorePressure false

These are the default values when you create a new instance of InkDrawingAttributes on your own,
and these are the default values for the InkDrawingAttributes that InkManager creates and retains
internally.

These properties are strictly for the benefit of application programs that need to render ink
strokes! They do not affect the operation of InkManager because the InkManager does no rendering
on its own.

1018	PART 2  Specialties

The only other option for PenTip is Rectangle, in which case the Size property (of type Size)
describes the dimensions of the pen tip. For the default Circle tip, you can use the Width property of
the Size value for determining the thickness of rendered lines.

The FitToCurve property indicates if ink should be rendered as Bézier curves; regardless of the
setting, InkManager converts the pointer input to Bézier curves. The IgnorePressure property indi-
cates that ink should be rendered without regard to pressure information, but the InkManager still
includes this pressure information regardless of the setting.

The InkManager creates an InkDrawingAttributes object with these default properties and
maintains it internally. However, your program can’t get access to that object. If you want to set dif-
ferent default properties for the InkManager object, you must do so like this:

InkDrawingAttributes inkDrawingAttributes = new InkDrawingAttributes();
inkDrawingAttributes.Color = Colors.Red;
inkDrawingAttributes.Size = new Size(6, 6);
inkManager.SetDefaultDrawingAttributes(inkDrawingAttributes);

When you create a new InkDrawingAttributes object and pass it to InkManager, don’t assume that
your program and InkManager now share this object and any changes to it by your application will
be reflected in the internal object that InkManager maintains. If you make further changes to this
InkDrawingAttributes, you must then call the SetDefaultDrawingAttributes method again for these
changes to take effect.

As you’ve seen, a program using the InkManager processes a normal sequence of PointerPressed,
multiple PointerMoved, and PointerReleased events by calling the InkManager methods
ProcessPointerDown, ProcessPointerUpdate (multiple times), and ProcessPointerUp. When this se-
quence of calls has completed, the InkManager creates a new InkStroke and adds it to its collection.

This InkStroke object represents a continuous stroke of ink from the time the pointer
touched the screen to the time it was lifted. InkStroke has a DrawingAttributes property of type
InkDrawingAttributes that InkManager created based on its internal default InkDrawingAttributes
object.

For example, suppose you create a new InkManager and handle pointer input by calling
ProcessPointerDown, ProcessPointerUpdate multiple times, and ProcessPointerUp. The resultant
InkStroke object has an InkDrawingAttributes object indicating a black pen with a size of (2, 2).
Now your program creates a new InkDrawingAttributes object, sets a couple properties, and
calls SetDefaultDrawingAttributes using the code I showed earlier. The next sequence of calls to
ProcessPointerDown, ProcessPointerUpdate, and ProcessPointerUp results in a second InkStroke object,
but this one has a DrawingAttributes property indicating a red pen with a size of (6, 6).

But none of this is set in stone. You can create new InkDrawingAttributes objects and set
those to the individual InkStroke objects, and you can alter any of the properties of the existing
InkDrawingAttributes object referenced from the DrawingAttributes property of an InkStroke object.

Following the call to the ProcessPointerUp method, the InkManager converts all the points
accumulated internally for this new stroke into one or more Bézier curves that make up a new

	 CHAPTER 19  Pen (Also Known as Stylus)	 1019

InkStroke object. This new InkStroke is added to its internal collection, which is available from the
GetStrokes method.

Because the SimpleInking program renders each stroke when the stroke is completed, it’s only
interested in the most recent InkStroke in this collection, which it can obtain like so:

IReadOnlyList<InkStroke> inkStrokes = inkManager.GetStrokes();
InkStroke inkStroke = inkStrokes[inkStrokes.Count - 1];

This InkStroke has a DrawingAttributes property and a collection of InkStrokeRenderingSegment
objects that represent a series of connected Bézier splines. A program can obtain this collection of
segments by calling GetRenderingSegments.

Each InkStrokeRenderingSegment contains three properties of type Point:

■■ BezierControlPoint1

■■ BezierControlPoint2

■■ Position

In the first InkStrokeRenderingSegment object in the collection, these three points are the same.
This is the first point of the complete curve. Each subsequent InkStrokeRenderingSegment continues
from that point with two control points and an end point.

In addition, each InkStrokeRenderingSegment also contains four properties of type float:

■■ Pressure

■■ TiltX

■■ TiltY

■■ Twist

These are obviously for much fancier pen systems than I’ve been using! When I use a pen on the
Samsung 700T, I see Pressure values ranging from 0 to 1, but the other three properties have default
values of 0.5. In theory, the TiltX and TiltY properties indicate how the body of the pen is tilted
relative to the screen; the Twist property applies only to rectangular pen tips and indicates how the
rectangular tip is rotated relative to the axes of the screen.

Throughout this chapter I will be taking Pressure values into account. As you’ll recall in the
FingerPaint programs, a Polyline was suitable for rendering a connected curve if pressure is ignored,
but taking pressure into account requires individual Line elements, each with a potentially different
line thickness, or individual Path elements to mimic a straight line with a varying thickness.

The code in SimpleInking draws each InkStrokeRenderingSegment (except the first) as a Path
element with a PathGeometry consisting of a single PathFigure with a single BezierSegment.
The Stroke property of that Path is a SolidColorBrush created from the Color property of the
DrawingAttributes property of the InkStroke. The StrokeThickness property is the product of the Size

1020	PART 2  Specialties

property of the DrawingAttributes for the InkStroke and the Pressure property of the particular Ink-
StrokeRenderingSegment:

Project: SimpleInking | File: MainPage.xaml.cs (excerpt)

protected override void OnPointerReleased(PointerRoutedEventArgs args)
{
 ...
 // Render the most recent InkStroke
 IReadOnlyList<InkStroke> inkStrokes = inkManager.GetStrokes();
 InkStroke inkStroke = inkStrokes[inkStrokes.Count - 1];

 // Create SolidColorBrush used for all segments in the stroke
 Brush brush = new SolidColorBrush(inkStroke.DrawingAttributes.Color);

 // Get the segments
 IReadOnlyList<InkStrokeRenderingSegment> inkSegments = inkStroke.GetRenderingSegments();

 // Notice loop starts at 1
 for (int i = 1; i < inkSegments.Count; i++)
 {
 InkStrokeRenderingSegment inkSegment = inkSegments[i];

 // Create a BezierSegment from the points
 BezierSegment bezierSegment = new BezierSegment
 {
 Point1 = inkSegment.BezierControlPoint1,
 Point2 = inkSegment.BezierControlPoint2,
 Point3 = inkSegment.Position
 };

 // Create a PathFigure that begins at the preceding Position
 PathFigure pathFigure = new PathFigure
 {
 StartPoint = inkSegments[i - 1].Position,
 IsClosed = false,
 IsFilled = false
 };
 pathFigure.Segments.Add(bezierSegment);

 // Create a PathGeometry with that PathFigure
 PathGeometry pathGeometry = new PathGeometry();
 pathGeometry.Figures.Add(pathFigure);

 // Create a Path with that PathGeometry
 Path path = new Path
 {
 Stroke = brush,
 StrokeThickness = inkStroke.DrawingAttributes.Size.Width *
 inkSegment.Pressure,
 StrokeStartLineCap = PenLineCap.Round,
 StrokeEndLineCap = PenLineCap.Round,
 Data = pathGeometry
 };

	 CHAPTER 19  Pen (Also Known as Stylus)	 1021

 // Add it to the Grid
 contentGrid.Children.Add(path);
 }
 ...
}

The for loop starts at 1 in the collection of InkStrokeRenderingSegment objects because the first
object represents only a start point, whereas each subsequent InkStrokeRenderingSegment is a single
Bézier curve. In each PathGeometry, the StartPoint in the PathFigure is the Position property from the
previous InkStrokeRenderingSegment.

Despite not being able to see what I’m drawing until I lift the pen, I managed this message:

InkManager converts a polyline to a series of Bézier curves not just to render a smoother line but
also to reduce the quantity of data. This particular example consists of five InkStroke objects: two
for the H, one for the rest of Hello, one for P, and the last for the rest of Pen. You might be inter-
ested in knowing the number of raw polyline segments InkManager was given and the number of
InkStrokeRenderingSegment objects it created:

Stroke Polyline
Segments Bézier Segments

0 44 9

1 75 14

2 213 29

3 96 16

4 105 16

1022	PART 2  Specialties

Even considering that each polyline segment is one point and each Bézier segment (after the first) is
three points, this is still a significant reduction in data.

If you want to ignore pressure, you can use a single Path element for the entire InkStroke and
create the geometry with a single instance of PolyBezierSegment, filling the Points collection with the
points from each InkStrokeRenderingSegment but using the first one only for setting the StartPoint
property of PathFigure. This alternative approach looks like this:

// Render the most recent InkStroke
IReadOnlyList<InkStroke> inkStrokes = inkManager.GetStrokes();
InkStroke inkStroke = inkStrokes[inkStrokes.Count - 1];

// Create a PolyBezierSegment for all the segments in that stroke
IReadOnlyList<InkStrokeRenderingSegment> inkSegments = inkStroke.GetRenderingSegments();
PolyBezierSegment polyBezierSegment = new PolyBezierSegment();

for (int i = 1; i < inkSegments.Count; i++)
{
 InkStrokeRenderingSegment inkSegment = inkSegments[i];

 polyBezierSegment.Points.Add(inkSegment.BezierControlPoint1);
 polyBezierSegment.Points.Add(inkSegment.BezierControlPoint2);
 polyBezierSegment.Points.Add(inkSegment.Position);
}

// Create a PathFigure that begins at first point
PathFigure pathFigure = new PathFigure
{
 StartPoint = inkSegments[0].Position,
 IsClosed = false,
 IsFilled = false
};
pathFigure.Segments.Add(polyBezierSegment);

// Create a PathGeometry with that PathFigure
PathGeometry pathGeometry = new PathGeometry();
pathGeometry.Figures.Add(pathFigure);

// Create a Path with that PathGeometry
Path path = new Path
{
 Stroke = new SolidColorBrush(inkStroke.DrawingAttributes.Color),
 StrokeThickness = inkStroke.DrawingAttributes.Size.Width,
 StrokeStartLineCap = PenLineCap.Round,
 StrokeEndLineCap = PenLineCap.Round,
 Data = pathGeometry
};

// Add it to the Grid
contentGrid.Children.Add(path);

	 CHAPTER 19  Pen (Also Known as Stylus)	 1023

It’s easy to confirm that InkManager does not attempt to capture the pointer. This is something
you’ll have to do on your own. However, if the pen drifts outside the control while you’re
accumulating pointer input and you lift the pen, InkManager graciously recovers. It doesn’t raise an
exception getting a call to ProcessPointerDown if it never finished up its last sequence with a call to
ProcessPointerUp.

Erasing and Other Enhancements

One obvious enhancement to the SimpleInking program is to render a polyline as you’re actually
drawing with the pen. (That actually qualifies as a minimum standard rather than an enhancement!)
This polyline is probably either an actual Polyline element if you’re ignoring pen pressure or a
collection of Line or Path elements if you’re not. But once that logic is implemented, you have a
choice: You can replace that polyline with the Bézier curves as the stroke is completed, or you can
leave the polyline on the screen.

You might be inclined to leave the polyline on the screen if you’ve been experimenting with
varying the pen pressure with the SimpleInking program. If you look closely at the rendered Bézier
curves, you might not like what you see, and I don’t blame you. Sometimes it’s easy to see where
one Bézier curve ends and the next begins because there’s a discontinuity in the line thickness. This
is particularly noticeable at the beginning and end of a stroke. (In the earlier screen shot, look at the
ends of the two strokes for the word “Pen.”)

As you start contemplating this problem, it becomes evident that these Bézier curves should not
have uniform line thickness. For example, if a stroke consists of four InkStrokeRenderingSegment
objects with Pressure values of 0.25, 0.5, 0.6, 0.4, the first Bézier curve should have a variable thickness
starting with a thickness based on 0.25 and increasing to a thickness based on 0.5, the second
Bézier curve should also have an increasing thickness based on a range from 0.5 to 0.6, and the final
Bézier curve should decrease in thickness based on 0.6 to 0.4.

This means that you can’t just set BezierSegment properties from the InkStrokeRenderingSegment
objects. You probably want to use the Bézier curve points and pressure values to synthesize an outline
of the stroke and then use Path to fill it, much like I did for lines in FingerPaint5. But, obviously, this
job is much more algorithmically complex for a Bézier spline than for a straight line.

Another issue: The SimpleInking program renders each new stroke as it’s completed and adds
the Path elements to the Grid named contentGrid. If you’re drawing polylines as the stroke is being
created and then replacing them with the Bézier curves, those earlier elements need to be removed
from the Grid. And, if you implement erasing, at some point you probably need to remove some
Bézier curves from the Grid, but you won’t be quite sure which ones need to come out unless you tag
them in some way.

These two problems suggest that it might be easier just clearing the Children collection of the
Grid during OnPointerReleased and rendering everything from scratch. It’s usually necessary to do
this if something has been erased, but you don’t need to do it all the time, particularly if you define
separate Grid elements for rendering the preliminary lines and rendering the final Bézier curves.

1024	PART 2  Specialties

The InkManager has a Mode property of type InkManipulationMode, an enumeration with three
members:

■■ Inking

■■ Erasing

■■ Selecting

The default value is obviously Inking. To enable erasing, you’ll set the property to Erasing during
OnPointerPressed and proceed normally but without rendering anything. Then, in subsequent calls
to the ProcessPointerUpdate method of InkManager, whenever the movement of the pen crosses an
existing stroke, the InkManager removes that stroke from its collection.

Although you can re-render all the remaining InkStroke objects during OnPointerReleased, the
stroke is actually removed during OnPointerMoved, so you don’t need to wait until OnPointerReleased
to give the user feedback that a stroke has been erased.

The new project is called InkAndErase. To simplify the removal of preliminary Line elements
created during the process of drawing a new stroke, the XAML file contains two sibling Grid elements:

Project: InkAndErase | File: MainPage.xaml (excerpt)

<Page ... >

 <Grid Background="White">
 <Grid Name="contentGrid" />
 <Grid Name="newLineGrid" />
 </Grid>
</Page>

The contentGrid is for the completed strokes rendered with Bézier splines, while the newLineGrid is
for the Line elements created while a stroke is in progress. This separation makes it easy to get rid of
those Line segments by just clearing the Children collection of newLineGrid.

The code-behind file creates an InkDrawingAttributes object and sets it to the InkManager with
nondefault values (for the sake of variety), but it also maintains the InkDrawingAttributes object as
a field for the benefit of the line-drawing code in the OnPointerMoved override. Because this pro-
gram is performing some processing of pointer input on its own, it defines a Dictionary for storing
information related to each pointer:

Project: InkAndErase | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 InkManager inkManager = new InkManager();
 InkDrawingAttributes inkDrawingAttributes = new InkDrawingAttributes();
 bool hasPen;

 Dictionary<uint, Point> pointerDictionary = new Dictionary<uint, Point>();

 public MainPage()
 {
 this.InitializeComponent();

	 CHAPTER 19  Pen (Also Known as Stylus)	 1025

 // Check if there’s a pen among the pointer input devices
 foreach (PointerDevice device in PointerDevice.GetPointerDevices())
 hasPen |= device.PointerDeviceType == PointerDeviceType.Pen;

 // Default drawing attributes
 inkDrawingAttributes.Color = Colors.Blue;
 inkDrawingAttributes.Size = new Size(6, 6);
 inkManager.SetDefaultDrawingAttributes(inkDrawingAttributes);
 }
 ...
}

The Bézier rendering code in InkAndErase is virtually identical to that in the previous program,
but I’ve separated it into two methods to allow the entire assemblage of ink to be redrawn or for
individual InkStroke objects to be drawn:

Project: InkAndErase | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 ...
 void RenderAll()
 {
 contentGrid.Children.Clear();

 foreach (InkStroke inkStroke in inkManager.GetStrokes())
 RenderStroke(inkStroke);
 }

 void RenderStroke(InkStroke inkStroke)
 {
 Brush brush = new SolidColorBrush(inkStroke.DrawingAttributes.Color);
 IReadOnlyList<InkStrokeRenderingSegment> inkSegments = inkStroke.GetRenderingSegments();

 for (int i = 1; i < inkSegments.Count; i++)
 {
 InkStrokeRenderingSegment inkSegment = inkSegments[i];

 BezierSegment bezierSegment = new BezierSegment
 {
 Point1 = inkSegment.BezierControlPoint1,
 Point2 = inkSegment.BezierControlPoint2,
 Point3 = inkSegment.Position
 };

 PathFigure pathFigure = new PathFigure
 {
 StartPoint = inkSegments[i - 1].Position,
 IsClosed = false,
 IsFilled = false
 };
 pathFigure.Segments.Add(bezierSegment);

 PathGeometry pathGeometry = new PathGeometry();
 pathGeometry.Figures.Add(pathFigure);

1026	PART 2  Specialties

 Path path = new Path
 {
 Stroke = brush,
 StrokeThickness = inkStroke.DrawingAttributes.Size.Width *
 inkSegment.Pressure,
 StrokeStartLineCap = PenLineCap.Round,
 StrokeEndLineCap = PenLineCap.Round,
 Data = pathGeometry
 };
 contentGrid.Children.Add(path);
 }
 }
}

Aside from code to interact with the InkManager object, much of the Pointer event processing
is very similar to the pressure-sensitive FingerPaint4 program in Chapter 13. The OnPointerPressed
override is the only place the program checks that the pointer device is a pen. The subsequent Pointer
overrides use the presence of the pointer ID key in pointerDictionary to determine if a drawing
operation is in progress.

The OnPointerPressed override is where the InkManager is put into erasing mode based on the
IsEraser property, which means that the user is touching the screen with the eraser end of the pen.
A real program would probably have an application bar button to put the InkManager into erasing
mode for those users who don’t have quite so fancy pens:

Project: InkAndErase | File: MainPage.xaml.cs (excerpt)

protected override void OnPointerPressed(PointerRoutedEventArgs args)
{
 if (args.Pointer.PointerDeviceType == PointerDeviceType.Pen || !hasPen)
 {
 // Get information
 PointerPoint pointerPoint = args.GetCurrentPoint(this);
 uint id = pointerPoint.PointerId;

 // Initialize for inking or erasing
 if (!pointerPoint.Properties.IsEraser)
 {
 inkManager.Mode = InkManipulationMode.Inking;
 }
 else
 {
 inkManager.Mode = InkManipulationMode.Erasing;
 }

 // Give PointerPoint to InkManager
 inkManager.ProcessPointerDown(pointerPoint);

 // Add an entry to the dictionary
 pointerDictionary.Add(args.Pointer.PointerId, pointerPoint.Position);

	 CHAPTER 19  Pen (Also Known as Stylus)	 1027

 // Capture the pointer
 CapturePointer(args.Pointer);
 }
 base.OnPointerPressed(args);
}

The OnPointerPressed override concludes by capturing the pointer.

The OnPointerMoved override creates and renders a Line element just like the FingerPaint4
program, but only if we’re not erasing. When erasing, the return value from ProcessPointerUpdate is
checked. If a stroke has been deleted from the collection, this return value is a nonempty Rect object
indicating the area of the screen that must be repainted. The method responds by re-rendering the
entire collection of strokes, now missing the deleted stroke:

Project: InkAndErase | File: MainPage.xaml.cs (excerpt)

protected override void OnPointerMoved(PointerRoutedEventArgs args)
{
 // Get information
 PointerPoint pointerPoint = args.GetCurrentPoint(this);
 uint id = pointerPoint.PointerId;

 if (pointerDictionary.ContainsKey(id))
 {
 foreach (PointerPoint point in args.GetIntermediatePoints(this).Reverse())
 {
 // Give PointerPoint to InkManager
 object obj = inkManager.ProcessPointerUpdate(point);

 if (inkManager.Mode == InkManipulationMode.Erasing)
 {
 // See if something has actually been removed
 Rect rect = (Rect)obj;

 if (rect.Width != 0 && rect.Height != 0)
 {
 RenderAll();
 }
 }
 else
 {
 // Render the line
 Point point1 = pointerDictionary[id];
 Point point2 = pointerPoint.Position;

 Line line = new Line
 {
 X1 = point1.X,
 Y1 = point1.Y,
 X2 = point2.X,
 Y2 = point2.Y,
 Stroke = new SolidColorBrush(inkDrawingAttributes.Color),
 StrokeThickness = inkDrawingAttributes.Size.Width *

1028	PART 2  Specialties

 pointerPoint.Properties.Pressure,
 StrokeStartLineCap = PenLineCap.Round,
 StrokeEndLineCap = PenLineCap.Round
 };
 newLineGrid.Children.Add(line);
 pointerDictionary[id] = point2;
 }
 }
 }
 base.OnPointerMoved(args);
}

Notice that the Line elements are put into the newLineGrid but the rendering of Bézier strokes
involves the contentGrid.

By the time OnPointerReleased is called, all erasing should have been completed. However,
any inking operation needs to be completed by rendering the new stroke in the contentGrid and
removing the preliminary Line elements from the newLineGrid:

Project: InkAndErase | File: MainPage.xaml.cs (excerpt)

protected override void OnPointerReleased(PointerRoutedEventArgs args)
{
 // Get information
 PointerPoint pointerPoint = args.GetCurrentPoint(this);
 uint id = pointerPoint.PointerId;

 if (pointerDictionary.ContainsKey(id))
 {
 // Give PointerPoint to InkManager
 inkManager.ProcessPointerUp(pointerPoint);

 if (inkManager.Mode == InkManipulationMode.Inking)
 {
 // Get rid of the little Line segments
 newLineGrid.Children.Clear();

 // Render the new stroke
 IReadOnlyList<InkStroke> inkStrokes = inkManager.GetStrokes();
 InkStroke inkStroke = inkStrokes[inkStrokes.Count - 1];
 RenderStroke(inkStroke);
 }
 pointerDictionary.Remove(id);
 }
 base.OnPointerReleased(args);
}

Because this program has captured the pointer, it should also have a handler for the
PointerCaptureLost event. It processes this event by deleting the preliminary lines from the
newLineGrid and re-rendering everything else:

Project: InkAndErase | File: MainPage.xaml.cs (excerpt)

protected override void OnPointerCaptureLost(PointerRoutedEventArgs args)
{
 uint id = args.Pointer.PointerId;

	 CHAPTER 19  Pen (Also Known as Stylus)	 1029

 if (pointerDictionary.ContainsKey(id))
 {
 pointerDictionary.Remove(id);
 newLineGrid.Children.Clear();
 RenderAll();
 }
 base.OnPointerCaptureLost(args);
}

Selecting Strokes

The third of the InkManipulationMode members is Selecting. With an electromagnetic pen, you’ll want
to put the InkManager into selection mode during a PointerPressed event when the barrel button is
pressed. The sample program coming up does that, but a real application should also have a program
option so that the user can manually put the InkManager into selection mode.

In this mode, the points that you pass to the ProcessPointerUpdate method are interpreted as
defining an enclosed area. You’ll probably want to render this line but in a way that differentiates it
from ink input. When this enclosure line has completed, ProcessPointerUp returns a nonempty Rect
value that indicates the bounding rectangle of the selected strokes. If no strokes are selected, the
Rect is empty. If strokes have been selected, the selected InkStroke objects in the collection have their
Selected property set to true.

In actual use, selection using this enclosure line seems a little “cranky” to me. Often I have to try
several times to get it to work.

It’s also possible to select strokes programmatically using the SelectWithLine or SelectWithPolyLine
methods of InkManager and to manually toggle the Selected property of InkStroke, but I won’t be
demonstrating these techniques. They allow you to implement your own selection protocol indepen-
dent of InkManager, in which case you simply don’t make any calls to InkManager methods while the
selection operation is in progress.

After the user has selected one or more InkStroke objects, they should be highlighted in some
way. You’ll also need to provide program options to do something with these selected items. The
InkManager class itself defines methods named DeleteSelected, CopySelectedToClipboard, and
MoveSelected. This last method translates the strokes with a particular offset from their current
position. You can also paste strokes from the clipboard into the InkManager.

You’ll probably also want to define application bar controls to change the color or stroke width
of the selected strokes. You might want these same application bar controls to set default colors and
stroke widths when strokes are not selected. A lot of the hard stuff here is not the use of InkManager,
but the design of the user interface surrounding InkManager.

1030	PART 2  Specialties

The following project is named InkEraseSelect and demonstrates all three modes. Like
InkAndErase, it contains two Grid elements for rendering ink and preliminary lines:

Project: InkEraseSelect | File: MainPage.xaml (excerpt)

<Page ... >
 <Grid Background="White">
 <Grid Name="contentGrid" />
 <Grid Name="newLineGrid" />
 </Grid>

 <Page.BottomAppBar>
 <AppBar Name="bottomAppBar"
 Opened="OnAppBarOpened">
 <StackPanel Orientation="Horizontal"
 HorizontalAlignment="Left">

 <Button Name="copyAppBarButton"
 Style="{StaticResource CopyAppBarButtonStyle}"
 Click="OnCopyAppBarButtonClick" />

 <Button Name="cutAppBarButton"
 Style="{StaticResource CutAppBarButtonStyle}"
 Click="OnCutAppBarButtonClick" />

 <Button Name="pasteAppBarButton"
 Style="{StaticResource PasteAppBarButtonStyle}"
 Click="OnPasteAppBarButtonClick" />

 <Button Name="deleteAppBarButton"
 Style="{StaticResource DeleteAppBarButtonStyle}"
 Click="OnDeleteAppBarButtonClick" />
 </StackPanel>
 </AppBar>
 </Page.BottomAppBar>
</Page>

The XAML file also has an array of application bar buttons for the standard options Copy, Cut, Paste,
and Delete.

The code-behind file starts off the same as in the previous program, except that a Brush is defined
for coloring the enclosure line for selected items:

Project: InkEraseSelect | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 InkManager inkManager = new InkManager();
 InkDrawingAttributes inkDrawingAttributes = new InkDrawingAttributes();
 bool hasPen;

 Dictionary<uint, Point> pointerDictionary = new Dictionary<uint, Point>();
 Brush selectionBrush = new SolidColorBrush(Colors.Red);

	 CHAPTER 19  Pen (Also Known as Stylus)	 1031

 public MainPage()
 {
 this.InitializeComponent();

 // Check if there’s a pen among the pointer input devices
 foreach (PointerDevice device in PointerDevice.GetPointerDevices())
 hasPen |= device.PointerDeviceType == PointerDeviceType.Pen;

 // Default drawing attributes
 inkDrawingAttributes.Color = Colors.Blue;
 inkDrawingAttributes.Size = new Size(6, 6);
 inkManager.SetDefaultDrawingAttributes(inkDrawingAttributes);
 }
 ...
}

The OnPointerPressed override now also checks for the barrel button. If it’s pressed, the selection
mode is set. (In a real program, you’ll want an option for setting this mode in the absence of a barrel
button.) When in selection mode, the program draws a simple enclosure of uniform thickness, so it
creates a Polyline for this purpose and adds it to newLineGrid:

Project: InkEraseSelect | File: MainPage.xaml.cs (excerpt)

protected override void OnPointerPressed(PointerRoutedEventArgs args)
{
 if (args.Pointer.PointerDeviceType == PointerDeviceType.Pen || !hasPen)
 {
 // Get information
 PointerPoint pointerPoint = args.GetCurrentPoint(this);
 uint id = pointerPoint.PointerId;

 // Initialize for erasing, selecting, or inking
 if (pointerPoint.Properties.IsEraser)
 {
 inkManager.Mode = InkManipulationMode.Erasing;
 }
 else if (pointerPoint.Properties.IsBarrelButtonPressed)
 {
 inkManager.Mode = InkManipulationMode.Selecting;

 // Create Polyline for showing enclosure
 Polyline polyline = new Polyline
 {
 Stroke = selectionBrush,
 StrokeThickness = 1
 };
 polyline.Points.Add(pointerPoint.Position);
 newLineGrid.Children.Add(polyline);
 }
 else
 {
 inkManager.Mode = InkManipulationMode.Inking;
 }

1032	PART 2  Specialties

 // Give PointerPoint to InkManager
 inkManager.ProcessPointerDown(pointerPoint);

 // Add an entry to the dictionary
 pointerDictionary.Add(args.Pointer.PointerId, pointerPoint.Position);

 // Capture the pointer
 CapturePointer(args.Pointer);
 }
 base.OnPointerPressed(args);
}

In the OnPointerMoved override the erase and inking modes are the same as the previous
program. For selection, the Polyline is simply continued as in the FingerPaint1 program in Chapter 13:

Project: InkEraseSelect | File: MainPage.xaml.cs (excerpt)

protected override void OnPointerMoved(PointerRoutedEventArgs args)
{
 // Get information
 PointerPoint pointerPoint = args.GetCurrentPoint(this);
 uint id = pointerPoint.PointerId;

 if (pointerDictionary.ContainsKey(id))
 {
 foreach (PointerPoint point in args.GetIntermediatePoints(this).Reverse())
 {
 Point point1 = pointerDictionary[id];
 Point point2 = pointerPoint.Position;

 // Give PointerPoint to InkManager
 object obj = inkManager.ProcessPointerUpdate(point);

 if (inkManager.Mode == InkManipulationMode.Erasing)
 {
 // See if something has actually been removed
 Rect rect = (Rect)obj;

 if (rect.Width != 0 && rect.Height != 0)
 {
 RenderAll();
 }
 }
 else if (inkManager.Mode == InkManipulationMode.Selecting)
 {
 Polyline polyline = newLineGrid.Children[0] as Polyline;
 polyline.Points.Add(point2);
 }
 else // inkManager.Mode == InkManipulationMode.Inking
 {
 // Render the line
 Line line = new Line
 {
 X1 = point1.X,
 Y1 = point1.Y,
 X2 = point2.X,
 Y2 = point2.Y,
 Stroke = new SolidColorBrush(inkDrawingAttributes.Color),

	 CHAPTER 19  Pen (Also Known as Stylus)	 1033

 StrokeThickness = inkDrawingAttributes.Size.Width *
 pointerPoint.Properties.Pressure,
 StrokeStartLineCap = PenLineCap.Round,
 StrokeEndLineCap = PenLineCap.Round
 };
 newLineGrid.Children.Add(line);
 }
 pointerDictionary[id] = point2;
 }
 }
 base.OnPointerMoved(args);
 }

Of course, in the FingerPoint1 program there were potentially multiple Polyline elements
associated with multiple fingers touching the screen, and these multiple Polyline elements are stored
in a dictionary. Although the InkManager can handle multiple fingers, it cannot handle multiple pens,
and because selection is enabled only for a pen in this program, it is not possible for multiple Polyline
elements to exist. A program that allows alternate means of selection involving touch input might
need to deal with multiple simultaneous selection areas being defined!

For selection, the OnPointerReleased override removes the Polyline defining an enclosure and calls
RenderAll. The rendering logic is responsible for rendering selected strokes differently:

Project: InkEraseSelect | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 ...
 protected override void OnPointerReleased(PointerRoutedEventArgs args)
 {
 // Get information
 PointerPoint pointerPoint = args.GetCurrentPoint(this);
 uint id = pointerPoint.PointerId;

 if (pointerDictionary.ContainsKey(id))
 {
 // Give PointerPoint to InkManager
 inkManager.ProcessPointerUp(pointerPoint);

 if (inkManager.Mode == InkManipulationMode.Inking)
 {
 // Get rid of the little line segments
 newLineGrid.Children.Clear();

 // Render the new stroke
 IReadOnlyList<InkStroke> inkStrokes = inkManager.GetStrokes();
 InkStroke inkStroke = inkStrokes[inkStrokes.Count - 1];
 RenderStroke(inkStroke);
 }
 else if (inkManager.Mode == InkManipulationMode.Selecting)
 {
 // Get rid of the encircling line
 newLineGrid.Children.Clear();

 // Render everything so selected items are identified
 RenderAll();

1034	PART 2  Specialties

 }
 pointerDictionary.Remove(id);
 }
 base.OnPointerReleased(args);
 }

 protected override void OnPointerCaptureLost(PointerRoutedEventArgs args)
 {
 uint id = args.Pointer.PointerId;

 if (pointerDictionary.ContainsKey(id))
 {
 pointerDictionary.Remove(id);
 newLineGrid.Children.Clear();
 RenderAll();
 }
 base.OnPointerCaptureLost(args);
 }
 ...
}

Here’s what it looks like right before the selection enclosure is completed and the pen lifts up, at
which point the enclosure line is removed from the screen:

For this program I’ve separated the rendering logic into three methods. The RenderStroke method
now calls RenderBeziers, but for selected strokes, it’s done twice, the first time with a silver color and a
thicker pen width so that it surrounds the real stroke:

Project: InkEraseSelect | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 ...
 void RenderAll()

	 CHAPTER 19  Pen (Also Known as Stylus)	 1035

 {
 contentGrid.Children.Clear();

 foreach (InkStroke inkStroke in inkManager.GetStrokes())
 RenderStroke(inkStroke);
 }

 public void RenderStroke(InkStroke inkStroke)
 {
 Color color = inkStroke.DrawingAttributes.Color;
 double penSize = inkStroke.DrawingAttributes.Size.Width;

 if (inkStroke.Selected)
 RenderBeziers(contentGrid, inkStroke, Colors.Silver, penSize + 24);

 RenderBeziers(contentGrid, inkStroke, color, penSize);
 }

 static void RenderBeziers(Panel panel, InkStroke inkStroke, Color color, double penSize)
 {
 Brush brush = new SolidColorBrush(color);
 IReadOnlyList<InkStrokeRenderingSegment> inkSegments = inkStroke.GetRenderingSegments();

 for (int i = 1; i < inkSegments.Count; i++)
 {
 InkStrokeRenderingSegment inkSegment = inkSegments[i];

 BezierSegment bezierSegment = new BezierSegment
 {
 Point1 = inkSegment.BezierControlPoint1,
 Point2 = inkSegment.BezierControlPoint2,
 Point3 = inkSegment.Position
 };

 PathFigure pathFigure = new PathFigure
 {
 StartPoint = inkSegments[i - 1].Position,
 IsClosed = false,
 IsFilled = false
 };
 pathFigure.Segments.Add(bezierSegment);

 PathGeometry pathGeometry = new PathGeometry();
 pathGeometry.Figures.Add(pathFigure);

 Path path = new Path
 {
 Stroke = brush,
 StrokeThickness = penSize * inkSegment.Pressure,
 StrokeStartLineCap = PenLineCap.Round,

1036	PART 2  Specialties

 StrokeEndLineCap = PenLineCap.Round,
 Data = pathGeometry
 };
 panel.Children.Add(path);
 }
 }
 ...
}

I made RenderBeziers static just to demonstrate exactly what parameters the method needs to
render a single stroke.

Here are the selected strokes identified using this technique:

That’s certainly one way to indicate selected strokes, but you might want to consider others.

When the application bar is opened, the Opened handler enables or disables the four buttons.
Three of the buttons are enabled based on the presence of selected strokes in the InkManager; the
Paste button is enabled based on the CanPasteFromClipboard property of InkManager:

Project: InkEraseSelect | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 ...
 void OnAppBarOpened(object sender, object args)
 {
 bool isAnythingSelected = false;

 foreach (InkStroke inkStroke in inkManager.GetStrokes())
 isAnythingSelected |= inkStroke.Selected;

	 CHAPTER 19  Pen (Also Known as Stylus)	 1037

 copyAppBarButton.IsEnabled = isAnythingSelected;
 cutAppBarButton.IsEnabled = isAnythingSelected;
 pasteAppBarButton.IsEnabled = inkManager.CanPasteFromClipboard();
 deleteAppBarButton.IsEnabled = isAnythingSelected;
 }

 void OnCopyAppBarButtonClick(object sender, RoutedEventArgs args)
 {
 inkManager.CopySelectedToClipboard();

 foreach (InkStroke inkStroke in inkManager.GetStrokes())
 inkStroke.Selected = false;

 RenderAll();
 bottomAppBar.IsOpen = false;
 }

 void OnCutAppBarButtonClick(object sender, RoutedEventArgs args)
 {
 inkManager.CopySelectedToClipboard();
 inkManager.DeleteSelected();
 RenderAll();
 bottomAppBar.IsOpen = false;
 }

 void OnPasteAppBarButtonClick(object sender, RoutedEventArgs args)
 {
 inkManager.PasteFromClipboard(new Point());
 RenderAll();
 bottomAppBar.IsOpen = false;
 }

 void OnDeleteAppBarButtonClick(object sender, RoutedEventArgs args)
 {
 inkManager.DeleteSelected();
 RenderAll();
 bottomAppBar.IsOpen = false;
 }
}

The Copy logic assumes that you don’t want the strokes still selected after they’ve been copied to
the clipboard. The Cut and Delete handlers don’t need to do something similar because the selected
strokes are now gone.

Interestingly, when copying ink to the clipboard, the InkManager also converts the ink to a
bitmap and an enhanced metafile, so those clipboard formats are available as well for pasting. Some
programs—most notably, Microsoft Word—can read ink from the clipboard directly, but programs
that can paste bitmaps from the clipboard are very common.

All the coordinates in the ink that is copied to the clipboard are normalized to a minimum
rendering coordinate of (0, 0). This is why the PasteFromClipboard method requires a Point argument.
If no Point is specified (which is my approach here), the pasted ink appears in the upper-left corner.
A real program that implements pasting would need to give the user some way to specify where the

1038	PART 2  Specialties

pasted ink should go on the page. Similar logic might also be used to implement the MoveSelected
method supported by InkManager.

The Yellow Pad

I use a lot of narrow-ruled yellow legal pads when I’m writing a book. It’s my favorite medium for
taking notes, writing down ideas, sketching out code interrelationships, and figuring out the math
problems. I’m not sure I’ll ever move to an electronic yellow pad for this work, but I’ll give the
alternative a fair chance by coding an application that lets me try it out.

The YellowPad program is not commercial grade, but it does have a few more features than the
programs presented so far in this chapter:

YellowPad supports multiple pages viewable in a FlipView control. Thus, you can go from page to
page with a sweep of your finger. The program ensures that the FlipView never reaches the end of the
collection by always creating a new page when that’s about to happen.

YellowPad also demonstrates the LoadAsync and SaveAsync methods defined by InkManager by
saving the contents of all pages in local application storage during the Suspending event and loading
them the next time the program is run.

YellowPad has the application bar items you’ve just seen and adds items that let you set a pen
width and color for the current page or for selected strokes.

To consolidate some of this logic away from the user interface, I defined a class named
InkFileManager. If InkManager were not sealed, InkFileManager would derive from InkManager, but
instead InkFileManager instantiates an InkManager as well as a default InkDrawingAttributes object
and exposes those as public properties. It also includes a method to update the InkManager with new
drawing attribute values:

Project: YellowPad | File: InkFileManager.cs (excerpt)

public class InkFileManager
{
 string id;
 ...

 public InkFileManager(string id)
 {
 this.id = id;
 this.InkManager = new InkManager();
 this.InkDrawingAttributes = new InkDrawingAttributes();
 }

 public InkManager InkManager
 {
 private set;
 get;
 }

	 CHAPTER 19  Pen (Also Known as Stylus)	 1039

 public InkDrawingAttributes InkDrawingAttributes
 {
 private set;
 get;
 }

 ...

 public void UpdateAttributes()
 {
 this.InkManager.SetDefaultDrawingAttributes(this.InkDrawingAttributes);
 }

 ...

}

InkFileManager also contains a couple small routines involving selection:

Project: YellowPad | File: InkFileManager.cs (excerpt)

public class InkFileManager
{
 ...
 public bool IsAnythingSelected
 {
 get
 {
 bool isAnythingSelected = false;

 foreach (InkStroke inkStroke in this.InkManager.GetStrokes())
 isAnythingSelected |= inkStroke.Selected;

 return isAnythingSelected;
 }
 }

 public void UnselectAll()
 {
 if (IsAnythingSelected)
 {
 foreach (InkStroke inkStroke in this.InkManager.GetStrokes())
 inkStroke.Selected = false;

 RenderAll();
 }
 }
 ...
}

I have also moved all the Bézier rendering logic into this file. Aside from the InkManager object
itself, the only thing the rendering logic needs is a Panel to which to add Path elements. This vital

1040	PART 2  Specialties

information is provided through a public property named RenderTarget. The rendering of selected
strokes is the same as in the previous program:

Project: YellowPad | File: InkFileManager.cs (excerpt)

public class InkFileManager
{
 ...
 public Panel RenderTarget
 {
 set;
 get;
 }
 ...

 public void RenderAll()
 {
 this.RenderTarget.Children.Clear();

 foreach (InkStroke inkStroke in this.InkManager.GetStrokes())
 RenderStroke(inkStroke);
 }

 public void RenderStroke(InkStroke inkStroke)
 {
 Color color = inkStroke.DrawingAttributes.Color;
 double penSize = inkStroke.DrawingAttributes.Size.Width;

 if (inkStroke.Selected)
 RenderBeziers(this.RenderTarget, inkStroke, Colors.Silver, penSize + 24);

 RenderBeziers(this.RenderTarget, inkStroke, color, penSize);
 }

 static void RenderBeziers(Panel panel, InkStroke inkStroke, Color color, double penSize)
 {
 Brush brush = new SolidColorBrush(color);
 IReadOnlyList<InkStrokeRenderingSegment> inkSegments = inkStroke.GetRenderingSegments();

 for (int i = 1; i < inkSegments.Count; i++)
 {
 InkStrokeRenderingSegment inkSegment = inkSegments[i];

 BezierSegment bezierSegment = new BezierSegment
 {
 Point1 = inkSegment.BezierControlPoint1,
 Point2 = inkSegment.BezierControlPoint2,
 Point3 = inkSegment.Position
 };

 PathFigure pathFigure = new PathFigure
 {
 StartPoint = inkSegments[i - 1].Position,
 IsClosed = false,
 IsFilled = false
 };
 pathFigure.Segments.Add(bezierSegment);

	 CHAPTER 19  Pen (Also Known as Stylus)	 1041

 PathGeometry pathGeometry = new PathGeometry();
 pathGeometry.Figures.Add(pathFigure);

 Path path = new Path
 {
 Stroke = brush,
 StrokeThickness = penSize * inkSegment.Pressure,
 StrokeStartLineCap = PenLineCap.Round,
 StrokeEndLineCap = PenLineCap.Round,
 Data = pathGeometry
 };
 panel.Children.Add(path);
 }
 }
 ...
}

Finally, InkFileManager has two public methods that help justify the “File” part of its name. The
LoadAsync method loads previously saved ink and settings, or it sets default values if the page
is newly created. The SaveAsync method saves the current contents of the InkManager to local
application storage, as well as the pen thickness and color currently associated with that InkManager.
Both make use of an ID string originally passed to the constructor and saved as a field. This ID string is
unique for every InkFileManager object the program maintains. As you’ll see, it is simply an index (0,
1, 2, and so forth) converted to a string.

Project: YellowPad | File: InkFileManager.cs (excerpt)

public class InkFileManager
{
 ...
 bool isLoaded;
 ...

 public async Task LoadAsync()
 {
 if (isLoaded)
 return;

 // Load previously saved ink
 StorageFolder storageFolder = ApplicationData.Current.LocalFolder;

 try
 {
 StorageFile storageFile =
 await storageFolder.GetFileAsync("Page" + id + ".ink");

 using (IRandomAccessStream stream =
 await storageFile.OpenAsync(FileAccessMode.Read))
 {
 await this.InkManager.LoadAsync(stream.GetInputStreamAt(0));
 }
 }
 catch
 {

1042	PART 2  Specialties

 // Do nothing if an exception occurs
 }

 // Load saved settings
 IPropertySet appData = ApplicationData.Current.LocalSettings.Values;

 // Pen size setting
 double penSize = 4;

 if (appData.ContainsKey("PenSize" + id))
 penSize = (double)appData["PenSize" + id];

 this.InkDrawingAttributes.Size = new Size(penSize, penSize);

 // Color setting
 if (appData.ContainsKey("Color + id"))
 {
 byte[] argb = (byte[])appData["Color + id"];
 this.InkDrawingAttributes.Color =
 Color.FromArgb(argb[0], argb[1], argb[2], argb[3]);
 }

 // Set default drawing attributes
 UpdateAttributes();
 isLoaded = true;
 }

 public async Task SaveAsync()
 {
 if (!isLoaded)
 return;

 // Save the ink
 StorageFolder storageFolder = ApplicationData.Current.LocalFolder;

 try
 {
 StorageFile storageFile =
 await storageFolder.CreateFileAsync("Page" + id + ".ink",
 CreationCollisionOption.ReplaceExisting);

 using (IRandomAccessStream stream =
 await storageFile.OpenAsync(FileAccessMode.ReadWrite))
 {
 await this.InkManager.SaveAsync(stream.GetOutputStreamAt(0));
 }
 }
 catch
 {
 // Do nothing if an exception occurs
 }

 // Save settings
 IPropertySet appData = ApplicationData.Current.LocalSettings.Values;

 // Save pen size
 appData["PenSize" + id] = this.InkDrawingAttributes.Size.Width;

	 CHAPTER 19  Pen (Also Known as Stylus)	 1043

 // Save color
 Color color = this.InkDrawingAttributes.Color;
 byte[] argb = { color.A, color.R, color.G, color.B };
 appData["Color" + id] = argb;
 }
}

In the YellowPad program, each InkFileManager is associated with a UserControl derivative named
YellowPadPage. Here’s the XAML file for that class, including the visual mimicking of a legal pad with a
yellow background and two red vertical lines toward the left of the page.

Project: YellowPad | File: YellowPadPage.xaml

<UserControl
 x:Class="YellowPad.YellowPadPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="using:YellowPad">

 <Grid>
 <Viewbox>
 <Grid Name="sheetPanel"
 Width="816" Height="1056"
 Background="#FFFF80">

 <Line Stroke="Red" X1="132" Y1="0" X2="132" Y2="1056" />
 <Line Stroke="Red" X1="138" Y1="0" X2="138" Y2="1056" />

 <Grid Name="contentGrid" />
 <Grid Name="newLineGrid" />
 </Grid>
 </Viewbox>
 </Grid>
</UserControl>

The control incorporates a Viewbox so that it adapts to any size window.

As you can guess from seeing the names of the two inner Grid elements, the code-behind file
handles all the pointer input. However, I discovered that trying to make this program run on a nonpen
device was problematic. Keep in mind that instances of YellowPadPage are in a FlipView, and the
FlipView wants its own touch input for changing the selected items. I decided to eliminate the logic
that allows the program to run without a pen. YellowPad insists that you be using a real pen.

The YellowPadPage constructor is responsible for drawing the blue rule lines on the page:

Project: YellowPad | File: YellowPadPage.xaml.cs (excerpt)

public YellowPadPage()
{
 this.InitializeComponent();

 // Draw horizontal lines in blue
 Brush blueBrush = new SolidColorBrush(Colors.Blue);

1044	PART 2  Specialties

 for (int y = 120; y < sheetPanel.Height; y += 24)
 sheetPanel.Children.Add(new Line
 {
 X1 = 0,
 Y1 = y,
 X2 = sheetPanel.Width,
 Y2 = y,
 Stroke = blueBrush
 });
}

The YellowPadPage control also defines a new dependency property of type InkFileManager.
Here’s the overhead:

Project: YellowPad | File: YellowPadPage.xaml.cs (excerpt)

public sealed partial class YellowPadPage : UserControl
{
 static readonly DependencyProperty inkFileManagerProperty =
 DependencyProperty.Register("InkFileManager",
 typeof(InkFileManager),
 typeof(YellowPadPage),
 new PropertyMetadata(null, OnInkFileManagerChanged));
 ...

 // Overhead for InkFileManager dependency property
 public static DependencyProperty InkFileManagerProperty
 {
 get { return inkFileManagerProperty; }
 }

 public InkFileManager InkFileManager
 {
 set { SetValue(InkFileManagerProperty, value); }
 get { return (InkFileManager)GetValue(InkFileManagerProperty); }
 }

 static void OnInkFileManagerChanged(DependencyObject obj,
 DependencyPropertyChangedEventArgs args)
 {
 (obj as YellowPadPage).OnInkFileManagerChanged(args);
 }

 async void OnInkFileManagerChanged(DependencyPropertyChangedEventArgs args)
 {
 contentGrid.Children.Clear();
 newLineGrid.Children.Clear();

 if (args.NewValue != null)
 {
 await this.InkFileManager.LoadAsync();
 this.InkFileManager.RenderTarget = contentGrid;
 this.InkFileManager.RenderAll();
 }
 }
 ...
}

	 CHAPTER 19  Pen (Also Known as Stylus)	 1045

When this InkFileManager property is set to a new InkFileManager instance, the property-changed
handler calls LoadAsync to load any existing ink and settings, sets the RenderTarget to its own
contentGrid, and then has the InkFileManager render all the ink that existed previously.

The remainder of YellowPadPage assumes this InkFileManager property has already been set and is
dedicated to processing the Pointer events. This logic here is virtually the same as what you’ve seen in
the previous program, except that it uses the InkFileManager property to obtain the InkManager and
InkDrawingAttributes objects associated with this page and for rendering the strokes:

Project: YellowPad | File: YellowPadPage.xaml.cs (excerpt)

public sealed partial class YellowPadPage : UserControl
{
 ...
 Dictionary<uint, Point> pointerDictionary = new Dictionary<uint, Point>();
 Brush selectionBrush = new SolidColorBrush(Colors.Red);
 ...
 protected override void OnPointerPressed(PointerRoutedEventArgs args)
 {
 if (args.Pointer.PointerDeviceType == PointerDeviceType.Pen)
 {
 // Get information
 PointerPoint pointerPoint = args.GetCurrentPoint(sheetPanel);
 uint id = pointerPoint.PointerId;
 InkManager inkManager = this.InkFileManager.InkManager;

 // Initialize for inking, erasing, or selecting
 if (pointerPoint.Properties.IsEraser)
 {
 inkManager.Mode = InkManipulationMode.Erasing;
 this.InkFileManager.UnselectAll();
 }
 else if (pointerPoint.Properties.IsBarrelButtonPressed)
 {
 inkManager.Mode = InkManipulationMode.Selecting;

 // Create Polyline for showing enclosure
 Polyline polyline = new Polyline
 {
 Stroke = selectionBrush,
 StrokeThickness = 1
 };
 polyline.Points.Add(pointerPoint.Position);
 newLineGrid.Children.Add(polyline);
 }
 else
 {
 inkManager.Mode = InkManipulationMode.Inking;
 this.InkFileManager.UnselectAll();
 }

 // Give PointerPoint to InkManager
 inkManager.ProcessPointerDown(pointerPoint);

 // Add an entry to the dictionary
 pointerDictionary.Add(args.Pointer.PointerId, pointerPoint.Position);

1046	PART 2  Specialties

 // Capture the pointer
 this.CapturePointer(args.Pointer);
 }
 base.OnPointerPressed(args);
 }

 protected override void OnPointerMoved(PointerRoutedEventArgs args)
 {
 // Get information
 PointerPoint pointerPoint = args.GetCurrentPoint(sheetPanel);
 uint id = pointerPoint.PointerId;
 InkManager inkManager = this.InkFileManager.InkManager;
 InkDrawingAttributes inkDrawingAttributes =
 this.InkFileManager.InkDrawingAttributes;

 if (pointerDictionary.ContainsKey(id))
 {
 foreach (PointerPoint point in args.GetIntermediatePoints(sheetPanel).Reverse())
 {
 Point point1 = pointerDictionary[id];
 Point point2 = pointerPoint.Position;

 // Give PointerPoint to InkManager
 object obj = inkManager.ProcessPointerUpdate(point);

 if (inkManager.Mode == InkManipulationMode.Erasing)
 {
 // See if something has actually been removed
 Rect rect = (Rect)obj;

 if (rect.Width != 0 && rect.Height != 0)
 {
 this.InkFileManager.RenderAll();
 }
 }
 else if (inkManager.Mode == InkManipulationMode.Selecting)
 {
 Polyline polyline = newLineGrid.Children[0] as Polyline;
 polyline.Points.Add(point2);
 }
 else // inkManager.Mode == InkManipulationMode.Inking
 {
 // Render the line
 Line line = new Line
 {
 X1 = point1.X,
 Y1 = point1.Y,
 X2 = point2.X,
 Y2 = point2.Y,
 Stroke = new SolidColorBrush(inkDrawingAttributes.Color),
 StrokeThickness = inkDrawingAttributes.Size.Width *
 pointerPoint.Properties.Pressure,
 StrokeStartLineCap = PenLineCap.Round,
 StrokeEndLineCap = PenLineCap.Round
 };
 newLineGrid.Children.Add(line);

	 CHAPTER 19  Pen (Also Known as Stylus)	 1047

 }
 pointerDictionary[id] = point2;
 }
 }
 base.OnPointerMoved(args);
 }

 protected override void OnPointerReleased(PointerRoutedEventArgs args)
 {
 // Get information
 PointerPoint pointerPoint = args.GetCurrentPoint(sheetPanel);
 uint id = pointerPoint.PointerId;
 InkManager inkManager = this.InkFileManager.InkManager;

 if (pointerDictionary.ContainsKey(id))
 {
 // Give PointerPoint to InkManager
 inkManager.ProcessPointerUp(pointerPoint);

 if (inkManager.Mode == InkManipulationMode.Inking)
 {
 // Get rid of the little line segments
 newLineGrid.Children.Clear();

 // Render the new stroke
 IReadOnlyList<InkStroke> inkStrokes = inkManager.GetStrokes();
 InkStroke inkStroke = inkStrokes[inkStrokes.Count - 1];
 this.InkFileManager.RenderStroke(inkStroke);
 }
 else if (inkManager.Mode == InkManipulationMode.Selecting)
 {
 // Get rid of the enclosure line
 newLineGrid.Children.Clear();

 // Render everything so selected items are identified
 this.InkFileManager.RenderAll();
 }
 pointerDictionary.Remove(id);
 }
 base.OnPointerReleased(args);
 }

 protected override void OnPointerCaptureLost(PointerRoutedEventArgs args)
 {
 uint id = args.Pointer.PointerId;

 if (pointerDictionary.ContainsKey(id))
 {
 pointerDictionary.Remove(id);
 newLineGrid.Children.Clear();
 this.InkFileManager.RenderAll();
 }
 base.OnPointerCaptureLost(args);
 }
}

1048	PART 2  Specialties

YellowPadPage gets an instance of InkFileManager through a data binding. The FlipView control in
MainPage contains a collection of InkFileManager objects—one for each page—so the ItemTemplate
for the FlipView is dominated (in appearance though not markup) with a YellowPadPage with a
binding to the item in the control’s ItemsSource collection:

Project: YellowPad | File: MainPage.xaml (excerpt)

<Page ... >
 <Page.Resources>
 <local:IndexToPageNumberConverter x:Key="indexToPageNumber" />
 </Page.Resources>

 <Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <FlipView Name="flipView"
 SelectionChanged="OnFlipViewSelectionChanged">
 <FlipView.ItemTemplate>
 <DataTemplate>
 <Grid HorizontalAlignment="Center"
 VerticalAlignment="Center">

 <local:YellowPadPage InkFileManager="{Binding}" />

 <TextBlock Name="pageNumTextBlock"
 HorizontalAlignment="Right"
 VerticalAlignment="Top"
 FontSize="12"
 Foreground="Black"
 Margin="6"
 Text="{Binding ElementName=flipView,
 Path=SelectedIndex,
 Converter={StaticResource indexToPageNumber}}" />
 </Grid>
 </DataTemplate>
 </FlipView.ItemTemplate>
 </FlipView>
 </Grid>

 <Page.BottomAppBar>
 ...
 </Page.BottomAppBar>
</Page>

The TextBlock defined in the DataTemplate along with YellowPadPage displays the current page
number. This binding on the Text property references an ad hoc binding converter that converts a
zero-based index to a text label:

Project: YellowPad | File: IndexToPageNumberConverter.cs

using System;
using Windows.UI.Xaml.Data;

namespace YellowPad
{
 public class IndexToPageNumberConverter : IValueConverter
 {

	 CHAPTER 19  Pen (Also Known as Stylus)	 1049

 public object Convert(object value, Type targetType, object parameter, string language)
 {
 return String.Format("Page {0}", (int)value + 1);
 }

 public object ConvertBack(object value, Type targetType, object parameter, string lang)
 {
 return value;
 }
 }
}

As you’ve seen, each InkFileManager instance saves and restores application settings associated
with that page, including the ink content of that page. The MainPage code saves and restores settings
associated with the application itself. This is just two integer items: the number of pages (which is the
number of items in the collection of InkFileManager objects), and the current page index (which is the
SelectedIndex property of the FlipView):

Project: YellowPad | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 ObservableCollection<InkFileManager> inkFileManagers =
 new ObservableCollection<InkFileManager>();
 public MainPage()
 {
 this.InitializeComponent();
 Loaded += OnMainPageLoaded;
 Application.Current.Suspending += OnApplicationSuspending;
 }

 void OnMainPageLoaded(object sender, RoutedEventArgs args)
 {
 // Load application settings
 IPropertySet appData = ApplicationData.Current.LocalSettings.Values;

 // Get the page count
 int pageCount = 1;

 if (appData.ContainsKey("PageCount"))
 pageCount = (int)appData["PageCount"];

 // Create that many InkFileManager objects
 for (int i = 0; i < pageCount; i++)
 inkFileManagers.Add(new InkFileManager(i.ToString()));

 // Set the collection to the FlipView
 flipView.ItemsSource = inkFileManagers;

 // Set the SelectedIndex of the PageView
 if (appData.ContainsKey("PageIndex"))
 flipView.SelectedIndex = (int)appData["PageIndex"];
 }

1050	PART 2  Specialties

 async void OnApplicationSuspending(object sender, SuspendingEventArgs args)
 {
 SuspendingDeferral deferral = args.SuspendingOperation.GetDeferral();

 // Save all the InkFileManager contents
 foreach (InkFileManager inkFileManager in inkFileManagers)
 await inkFileManager.SaveAsync();

 // Save the page count and current page index
 IPropertySet appData = ApplicationData.Current.LocalSettings.Values;
 appData["PageCount"] = inkFileManagers.Count;
 appData["PageIndex"] = flipView.SelectedIndex;

 deferral.Complete();
 }

 void OnFlipViewSelectionChanged(object sender, SelectionChangedEventArgs args)
 {
 // If at the end of the FlipView, add another item!
 if (flipView.SelectedIndex == flipView.Items.Count - 1)
 inkFileManagers.Add(new InkFileManager(flipView.Items.Count.ToString()));
 }
 ...
}

Notice that the Loaded handler creates all the InkFileManager objects for the current number
of pages, but the InkFileManager constructor does nothing beyond creating InkManager and
InkDrawingAttributes instances. In particular, it doesn’t yet load in any previously saved ink. This
happens later when the InkFileManager instance is actually bound to a YellowPadPage. Keep in mind
that the items panel for the FlipView is a VirtualizingStackPanel, which creates visual trees for the
items only as they’re needed. This means that the loading of previously saved ink is spread out over
a longer period of time and occurs as the user is actively flipping through the various pages. Some
pages might not be loaded at all, and those that aren’t loaded don’t need to be saved again.

The remainder of the program is dedicated to handling buttons on the application bar, including
the flawed Paste logic that you’ve already seen. In addition to the four clipboard-related buttons, the
application bar also includes two very similarly templated ComboBox controls, one for the pen width
and the other for the pen color:

Project: YellowPad | File: MainPage.xaml (excerpt)

<AppBar Name="bottomAppBar"
 Opened="OnAppBarOpened">
 <Grid>
 <StackPanel Orientation="Horizontal"
 HorizontalAlignment="Left">

 <Button Name="copyAppBarButton"
 Style="{StaticResource CopyAppBarButtonStyle}"
 Click="OnCopyAppBarButtonClick" />

	 CHAPTER 19  Pen (Also Known as Stylus)	 1051

 <Button Name="cutAppBarButton"
 Style="{StaticResource CutAppBarButtonStyle}"
 Click="OnCutAppBarButtonClick" />

 <Button Name="pasteAppBarButton"
 Style="{StaticResource PasteAppBarButtonStyle}"
 Click="OnPasteAppBarButtonClick" />

 <Button Name="deleteAppBarButton"
 Style="{StaticResource DeleteAppBarButtonStyle}"
 Click="OnDeleteAppBarButtonClick" />
 </StackPanel>

 <StackPanel Orientation="Horizontal"
 HorizontalAlignment="Right">
 <ComboBox Name="penSizeComboBox"
 SelectionChanged="OnPenSizeComboBoxSelectionChanged"
 Width="200"
 Margin="20 0">
 <x:Double>2</x:Double>
 <x:Double>3</x:Double>
 <x:Double>4</x:Double>
 <x:Double>5</x:Double>
 <x:Double>7</x:Double>
 <x:Double>10</x:Double>

 <ComboBox.ItemTemplate>
 <DataTemplate>
 <Path StrokeThickness="{Binding}"
 Stroke="Black"
 StrokeStartLineCap="Round"
 StrokeEndLineCap="Round"
 Data="M 0 0 C 50 20 100 0 150 20" />
 </DataTemplate>
 </ComboBox.ItemTemplate>
 </ComboBox>

 <ComboBox Name="colorComboBox"
 SelectionChanged="OnColorComboBoxSelectionChanged"
 Width="200"
 Margin="20 0">
 <Color>#FF0000</Color>
 <Color>#800000</Color>
 <Color>#FFFF00</Color>
 <Color>#808000</Color>
 <Color>#00FF00</Color>
 <Color>#008000</Color>
 <Color>#00FFFF</Color>
 <Color>#008080</Color>
 <Color>#0000FF</Color>
 <Color>#000080</Color>
 <Color>#FF00FF</Color>
 <Color>#800080</Color>
 <Color>#C0C0C0</Color>

1052	PART 2  Specialties

 <Color>#808080</Color>
 <Color>#404040</Color>
 <Color>#000000</Color>

 <ComboBox.ItemTemplate>
 <DataTemplate>
 <Path StrokeThickness="6"
 StrokeStartLineCap="Round"
 StrokeEndLineCap="Round"
 Data="M 0 0 C 50 20 100 0 150 20">
 <Path.Stroke>
 <SolidColorBrush Color="{Binding}" />
 </Path.Stroke>
 </Path>
 </DataTemplate>
 </ComboBox.ItemTemplate>
 </ComboBox>
 </StackPanel>
 </Grid>
</AppBar>

To keep the program simple, I have not implemented any adjustments for portrait or snapped
modes. These modes result in overlapping buttons and combo boxes.

The application bar items are all applicable to the current page displayed in the FlipView.
Moreover, the two ComboBox controls might be applicable to the page—that is, to the default
InkDrawingAttributes object associated with the current InkFileManager for this page—or to
selected items on the page. When the application bar is opened, these controls must be initialized
appropriately:

Project: YellowPad | File: MainPage.xaml.cs (excerpt)

void OnAppBarOpened(object sender, object args)
{
 InkFileManager inkFileManager = (InkFileManager)flipView.SelectedItem;

 copyAppBarButton.IsEnabled = inkFileManager.IsAnythingSelected;
 cutAppBarButton.IsEnabled = inkFileManager.IsAnythingSelected;
 pasteAppBarButton.IsEnabled = inkFileManager.InkManager.CanPasteFromClipboard();
 deleteAppBarButton.IsEnabled = inkFileManager.IsAnythingSelected;

 if (!inkFileManager.IsAnythingSelected)
 {
 // Set initial selected item
 Size size = inkFileManager.InkDrawingAttributes.Size;
 penSizeComboBox.SelectedItem = (size.Width + size.Height) / 2;
 colorComboBox.SelectedItem = inkFileManager.InkDrawingAttributes.Color;
 }
 else
 {
 penSizeComboBox.SelectedItem = null;
 colorComboBox.SelectedItem = null;
 }
}

	 CHAPTER 19  Pen (Also Known as Stylus)	 1053

A more sophisticated version of this method would loop through the selected strokes and
determine whether they all had the same color or width. If so, those values could be used to initialize
the two ComboBox controls. As it is now, each ComboBox is given no selected value when strokes are
selected.

The handling of the four clipboard items is very similar to the previous program except that the
InkManager must be accessed through the InkFileManager available from the SelectedItem property
of the FlipView:

Project: YellowPad | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 ...
 void OnCopyAppBarButtonClick(object sender, RoutedEventArgs args)
 {
 InkFileManager inkFileManager = (InkFileManager)flipView.SelectedItem;
 inkFileManager.InkManager.CopySelectedToClipboard();

 foreach (InkStroke inkStroke in inkFileManager.InkManager.GetStrokes())
 inkStroke.Selected = false;

 inkFileManager.RenderAll();
 bottomAppBar.IsOpen = false;
 }

 void OnCutAppBarButtonClick(object sender, RoutedEventArgs args)
 {
 InkFileManager inkFileManager = (InkFileManager)flipView.SelectedItem;
 inkFileManager.InkManager.CopySelectedToClipboard();
 inkFileManager.InkManager.DeleteSelected();
 inkFileManager.RenderAll();
 bottomAppBar.IsOpen = false;
 }

 void OnPasteAppBarButtonClick(object sender, RoutedEventArgs args)
 {
 InkFileManager inkFileManager = (InkFileManager)flipView.SelectedItem;
 inkFileManager.InkManager.PasteFromClipboard(new Point());
 inkFileManager.RenderAll();
 bottomAppBar.IsOpen = false;
 }

 void OnDeleteAppBarButtonClick(object sender, RoutedEventArgs args)
 {
 InkFileManager inkFileManager = (InkFileManager)flipView.SelectedItem;
 inkFileManager.InkManager.DeleteSelected();
 inkFileManager.RenderAll();
 bottomAppBar.IsOpen = false;
 }
 ...
}

1054	PART 2  Specialties

The processing of the two ComboBox controls is very similar. In both cases, either the
InkDrawingAttributes object of the InkFileManager is given new values for future drawing or the
selected strokes are updated with new values:

Project: YellowPad | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
 ...
 void OnPenSizeComboBoxSelectionChanged(object sender, SelectionChangedEventArgs args)
 {
 if (penSizeComboBox.SelectedItem == null)
 return;

 InkFileManager inkFileManager = (InkFileManager)flipView.SelectedItem;

 double penSize = (double)penSizeComboBox.SelectedItem;
 Size size = new Size(penSize, penSize);

 if (!inkFileManager.IsAnythingSelected)
 {
 inkFileManager.InkDrawingAttributes.Size = size;
 inkFileManager.UpdateAttributes();
 }
 else
 {
 foreach (InkStroke inkStroke in inkFileManager.InkManager.GetStrokes())
 if (inkStroke.Selected)
 {
 InkDrawingAttributes drawingAttrs = inkStroke.DrawingAttributes;
 drawingAttrs.Size = size;
 inkStroke.DrawingAttributes = drawingAttrs;
 }
 inkFileManager.RenderAll();
 }
 }

 void OnColorComboBoxSelectionChanged(object sender, SelectionChangedEventArgs args)
 {
 if (colorComboBox.SelectedItem == null)
 return;

 InkFileManager inkFileManager = (InkFileManager)flipView.SelectedItem;

 Color color = (Color)colorComboBox.SelectedItem;

 if (!inkFileManager.IsAnythingSelected)
 {
 inkFileManager.InkDrawingAttributes.Color = color;
 inkFileManager.UpdateAttributes();
 }
 else
 {

	 CHAPTER 19  Pen (Also Known as Stylus)	 1055

 foreach (InkStroke inkStroke in inkFileManager.InkManager.GetStrokes())
 if (inkStroke.Selected)
 {
 InkDrawingAttributes drawingAttrs = inkStroke.DrawingAttributes;
 drawingAttrs.Color = color;
 inkStroke.DrawingAttributes = drawingAttrs;
 }
 inkFileManager.RenderAll();
 }
 }
}

This program certainly has some flaws. For example, you can set color and pen width attributes for
the current page or for selected strokes, but you can’t set values that apply to all new pages created
in the future. Each new page starts out with defaults hard-coded in the InkFileManager class.

What the program really needs is a GridView control that displays all the pages as thumbnails and
lets you move them around, or select them for deletion or printing, or even group them.

But that’s the nature of software. It’s never really finished because it never needs to be finished,
and it’s quite unlike books in that respect.

Index

	 1057

A
About box,  894–897
abstract classes,  117
acceleration

calculating,  972
two-dimensional,  970

acceleration vectors
of bubble level,  968
converting to 2D coordinates,  968
magnitude,  968
of rapid movement,  966
X and Y components,  968–969

AcceleratorKeyActivated events,  572–573
AcceleratorKeyActivated handler,  573
AccelerometerAndSimpleOrientation program,  962–969
Accelerometer class

GetCurrentReading method,  958
GetDefault method,  958
instantiating,  958
MinimumReportInterval property,  959
ReadingChanged handler,  959
Shaken event,  966
SimpleOrientationSensor, correspondence
between,  965

AccelerometerReadingChangedEventArgs,  959
AccelerometerReading class,  958

AccelerationX, AccelerationY, and AccelerationZ
properties,  959–960

accelerometers,  958–969
compass data and,  976–986
current value, obtaining,  958
vector readings,  959–960

AcceptsReturn property,  185
AccumulateDelta method,  675
Action delegates,  214

Action<object> delegate,  214
ActualHeight property,  85–86
ActualWidth property,  85–86

Add buttons,  320–321
AddCharacterCommand property,  215–216
AddHandler method,  79
Add method,  468
AddPagesComplete events,  910
AddPagesEventArgs,  911
AddPages handler,  910, 920
affine transforms,  379. See also transforms

angles between lines,  406
parallel line preservation,  406
standard matrix representation,  414
two-dimensional,  437

Alice’s Adventures in Wonderland (Carroll),  345, 859
Alignment property,  884
AllColorsItemsControl project,  493–495

snap view,  495
AllowDrop property,  599
All property,  474
AlphabetBlocks program,  187–192
Alt+F4 key combination,  245–246
altitude,  986–999
AnalogClock program,  401–405

angles, calculating,  405
path markup syntax,  403
positioning on screen,  401–402
second hand,  405–406

AngleIncrement constant,  649
Angle property

of RotateTransform class,  378
setting in XAML,  380
setting with data binding,  380–381

AngleX and AngleY properties,  406–409
AnimateDashOffset project,  343–345
AnimatedPieSlice project,  364–367
AnimateStrokeThickness project,  342–343
animation classes,  91
AnimationEaseGrapher project,  351–358

code-behind file,  354–357
XAML file,  352–354

animations

1058

animations,  329–376
all-XAML animations,  359–363
of attached properties,  347–350
autoreversing,  335
in background threads,  330
basic animations,  330–333
on button visual states,  516
code, defining in,  338–340
of colors,  92–96
completion, notification of,  338
CompositionTarget.Rendering events,  91–92
control appearance, changing,  329
of custom classes,  364–367
of dependency properties,  94–95
double animations,  340–347
duration,  332, 369
easing functions,  336–337, 350–359
of Ellipse class,  341–342
event handling,  89–96
of fill,  371–372
flicker-free,  83
frame-based animations,  330
on gradients,  702
heap allocations and,  94
jiggling,  386–387
key frame animations,  367–371
linear,  329, 333–336, 350
manual,  329
of Object class,  371–372
objects, creating in XAML file,  93–94
on Opacity property,  345
predefined,  373–376
repeating,  335–336
restarting,  333, 334
in secondary threads,  331
speed,  330
speeding up,  338
springiness,  337
target,  330, 339
target property, releasing,  334
time-based,  330
transfer functions,  351–358
triggering,  387, 436–437
triggering in Loaded event,  339, 341, 359–363
Triggers section, defining in,  372
in user-interface thread,  331
values outside From and To settings,  357–358
of visibility,  371–372
on visual state elements,  513
Windows.UI.Xaml.Media.Animation
namespace,  329–330
zooming,  998

anonymous methods,  288

antialiasing,  758
AppBarButtonStyle style,  271–276

Setter object,  271
TargetType,  283

AppBar class,  261, 268–271. See also application bars
BottomAppBar property,  268
Content property,  268–269
height,  269
IsOpen property,  705–706
IsSticky property,  270
Opened and Closed events,  271, 292
TopAppBar property,  268
in visual tree,  270

AppBarPad project,  286–293
file I/O logic,  292–293
font size increases and decreases,  288–289
Wrap Options button,  289
Wrap Options button handler,  290–291

App class,  16, 30
keyboard events,  573
mouse accelerators,  573
navigation state, saving and restoring,  569
OnLaunched method,  557
page shared data,  575
view models, instantiating,  612

application bars,  261, 268–271. See also AppBar class
buttons,  282–283, 286–293
buttons, positioning,  287
button styles,  271–276
button styles, listing,  273–276
CheckBox controls on,  283–286
coloring,  270
controls on,  269–270
dismissing,  270–271, 292
height,  269
in Internet Explorer,  269
location,  268
New (or Add) buttons,  287
PopupMenu and Popup with,  285–286, 289–290
program options, positioning,  287
RadioButton controls on,  283–286
Segoe UI Symbol font for,  276–283
visibility,  268

Application class,  47
LoadComponent method,  25
Resources dictionary,  46
Resources property,  43
Resuming events,  246–247
Suspending events,  246–247

ApplicationData class,  234, 800
LocalFolder, RoamingFolder, and TemporaryFolder
properties,  234
LocalSettings and RoamingSettings properties,  234

	 Asin method

	 1059

ApplicationDataContainer,  234
container feature,  571
Values property,  240

ApplicationForegroundThemeBrush color,  520
ApplicationForegroundThemeBrush resource
identifier,  47
application isolated storage,  249, 308
application local storage,  234

font files in,  852–856
InkManager contents, saving,  1041–1043
page state, saving,  571–572
saving unsaved data in,  246
settings, saving,  733
TempState directory,  773

application packages,  824
ApplicationPageBackgroundThemeBrush color,  520
ApplicationPageBackgroundThemeBrush resource
identifier,  16, 47
applications

About box,  894–897
Application derivative,  16
business logic,  193, 206
code,  31. See also code
content,  193
CoreWindow objects,  184
data providers,  193
deploying,  824
display modes,  549–554
event processing,  221
full screen mode,  539
images, binding to,  12
language interoperability,  129
layers of,  193
layout,  7
libraries, referencing,  128, 130
library projects in,  127
lifecycle issues,  245–249
markup,  31. See also markup
multipage,  561–562
orientation awareness,  539, 554–557
orientation preferences,  556
Page derivative,  16
page-navigation structure,  5
page structure,  5
permissions,  894
presentation layer,  193
private fonts,  847
registering for printing,  904
separation of concerns,  193, 200
settings, locating,  240
settings, saving,  288, 308–311, 742, 802
settings, storing,  234, 240, 308
Share providers,  903

Share Targets,  903
snap mode awareness,  539
snap modes,  549–554
suspension,  246–247
termination,  245–246
termination, abnormal,  246
themes, setting,  128
unsaved data, saving,  245–248
windows,  5

application state
restoring,  568–572
saving,  568–572

ApplicationStateSave project,  569–572
OnLaunched method,  573

ApplicationView class
TryUnsnap method,  554
Value property,  549

ApplicationViewState enumeration,  550–551
Filled value,  551, 553
FullScreenLandscape value,  551
FullScreenPortrait value,  550
Snapped value,  552, 553

application view transitions,  329
AppSettings class,  308, 733–734, 736

AutoParsing property,  316
bindings to,  325
EditOrientation property,  308
Orientation property,  311
properties of program settings,  308–311
SwapEditAndDisplay property,  311

App.xaml.cs files,  16
OnLaunched override,  29

App.xaml files,  16
resources, defining,  46
style definitions,  937

architectural patterns,  193
arcs

algorithms for WriteableBitmap,  722–747
rendering,  101

ArcSegment class,  55
IsLargeArc property,  642
Point type properties,  361

ArcSegment structure,  726–727
ARGB colors,  17
ARM-based machines,  823
Arrange method,  485
ArrangeOverride method,  485, 487, 492

finalSize method return,  493
arrow keys as accelerators,  575
AsAsyncAction method,  243
Ascender Corporation,  847
Asin method,  641

aspect ratio

1060

aspect ratio
Grid, responding to changes in,  295
ignoring,  11, 58
layout, adjusting,  152–154
maintaining,  10
preserving,  396
properties backed by dependency properties,  296

Assembly objects,  115–116
Assets folder,  9, 13
AsStream method,  686
AsTask method,  243
asynchronous methods,  221–222

cancellation in,  231–233, 252, 260
custom,  250–260
data, returning to program,  225
for disk access,  233
error trapping,  230
for file I/O,  243–245
for file picker display,  234
interface hierarchy,  226
OpenReadAsync method,  238
page initialization, calling during,  231
progress reporting in,  231, 252–254, 260
RunAsync method,  225

asynchronous processing,  222
application lifecycle issues,  245–249
Async calls, consolidating,  241–243
await operator,  229–231
callbacks as lambda expressions,  228
cancelling operations,  231–233
errors and,  231
exception handling,  240–241
file I/O,  233–235
MessageDialog examples,  222–227
.NET support,  242–243
progress reporting,  231

async keyword,  230
in lambda functions,  251, 256

Async method calls,  222–223
asyncOp objects, saving as field,  232
AsyncStatus enumeration,  224, 232
Async suffix,  221, 222
Atan2 method,  724
attached properties,  132–136

animating,  347–350
AutomationProperties class,  272
creating,  168
in custom panels,  484
Grid.Row and Grid.Column properties,  147, 149
Grid.RowSpan and Grid.ColumnSpan
properties,  147, 150
text-enhancing,  856–857
ZIndex,  136–137

AttachedPropertyAnimation project,  347–350
audio files,  22
AutoImageSelection project,  546–549
automation peers,  890
AutomationProperties class,  272
AutoReverse property,  335, 341
AutoRotationPreferences property,  556, 957
availableSize argument,  486, 487

finite Width and Height properties,  493
infinite Height property,  496

await operator,  229–231
callback method creation,  241
deferral objects,  230
flagging methods for,  230
for long-running jobs,  250–251
restrictions on,  230
in Task.Run,  256
in Task.Yield,  259–260
in try blocks,  232

AxisAngleRotation program,  981–986
azimuth,  986–999

calculating,  990

B
Back buttons,  562–563, 585

Click handler,  895–896
disabled,  601–602

BackButtonStyle,  585
BackEase class,  357
background

colors contrasting with,  47
of Grid,  7, 16
light,  16
of margins,  101

BackgroundCheckedGlyph,  283
Background property,  31

null default value,  82
of Slider controls,  754
TemplateBinding on,  508
Transparent setting,  82

background threads. See also secondary threads
animations running in,  330

Backspace key processing,  887–888
back stack,  562–563

saving and restoring,  568–571
BackStackDepth property,  563, 566
bar charts,  497–499
BareBonesSlider project,  522–524

TemplateBinding,  524
BasedOn property,  63, 65
BaselineTiltedShadow project,  829–831

	 bitmaps

	 1061

base method calls,  76
Begin method,  332, 433
BeginStoryboard class,  360
BeginTime property,  359
BerniceBobsHerHair project,  867–869
BetterBorderedText project,  99–100
BetterCharacterInput project,  888–892
BezierControlPoint1 property,  1019
BezierControlPoint2 property,  1019
Bézier curves

connecting,  344–345
Cubic Bézier,  345
ink as,  1018
InkStrokeRenderingSegment objects,  1014–1015
line thickness,  1023
Polyline, converting from,  1021
quarter-circle,  344–345
rendering,  101, 1025–1026, 1034–1035, 1039–1041
skewing,  406
Smooth Bézier,  345

BezierSegment class,  55–56, 361
BezierSegment properties,  1023
Bézier splines,  371
BindableBase class,  201–202
binding. See data bindings
Binding class

ConverterLanguage property,  110
ConverterParameter property,  110
Converter property,  109–111
ElementName property,  67
Mode property,  199
Path property,  68
syntax,  112

binding converters,  154
BooleanToVisibilityConverter binding
converter,  461–462

Binding markup extension,  66, 88, 112, 474
on Fill property,  452
in property-element syntax,  67

Bing Maps
map tiles,  1005–1006
quadkey numbering,  1006–1007

Bing Maps SOAP service,  1000
manual use,  1002
quadkey, obtaining,  1007

BitmapAlphaMode property,  709
BitmapCodecInformation objects FriendlyName
property,  710
BitmapDecoder class,  704

CreateAsync method,  708
creating,  707–708
file format GUIDs,  704
GetDecoderInformationEnumerator,  707

BitmapEncoder class,  704
CreateAsync method,  712
file format GUIDs,  704
GetEncoderInformationEnumerator method,  710
SetPixelData method,  712

BitmapFrame class
BitmapAlphaMode property,  709
BitmapPixelFormat property,  709

BitmapImage class,  27, 683
creating in code,  28

BitmapPixelFormat property,  709
BitmapPrintDocument class,  948–951

current bitmap, obtaining,  949
instantiating,  949

bitmaps,  683–777. See also images
Alpha setting,  691
A, R, G, and B value formulas,  691
in buttons,  450
camera photos, capturing,  772–777
in celestial sphere,  992–999
clipboard support,  898
color format,  684
creating,  12
displaying,  9–13, 687
displaying from code,  27–29
file formats,  703–704
HSL color selection,  747–758
images on top of,  758
invalidating,  687
larger than screen, viewing,  992–999
line drawing on,  724–747
loading,  692–694, 703–714, 736–742
monochromizing,  714–721
Pictures library,  763–772
pixel bits,  684–690
pixel dimensions,  104
pixel dimensions, calculating,  692
pixel formats,  709
pixel sizes,  545–546
posterizing,  714–721
premultiplied alphas,  684, 691–696
printing,  948–951
program logo bitmaps,  13
radial gradient brush,  696–703
resetting,  687–688
resolution scale, autoselection of,  546–549
resolution settings, saving,  706, 708
reverse painting,  758–762
saving,  646, 703–714, 736–742
stretching,  58–60
transparency,  691–696
updating pixels,  688
zooming,  998

BitmapSource class

1062

BitmapSource class,  683, 692
PixelHeight and PixelWidth properties,  684

BITRES value,  1007
Blank App template,  3, 557
Block class,  41
Blocks property,  858
Bold class,  42
BooleanToVisibilityConverter binding converter,  461–
462
BorderBrush,  505

predefined identifiers,  128
Border element,  97–101

Child property,  98
for context menus,  268
in ControlTemplate,  504–505
Grid in,  146
HorizontalAlignment and VerticalAlignment
properties,  99
Loaded handler on,  267
Padding property,  100–101
for printer pages,  911
RadioButton controls in,  161
for StackPanel,  266
TextBlock elements in,  165
width,  165

BorderThickness property,  98, 505
Bosch, Hieronymus,  993
BottomAppBar property,  268
BOUNCE constant,  972
browser keys,  574–575
Brush class

RelativeTransform property,  422
Transform property,  422

brushes
animating,  423–427
class hierarchy of,  31
defining with styles,  62
ImageBrush,  690
radial gradient brush,  696–703
sharing,  43–47
SpreadMethod setting,  425
ToString representation,  451
transforms on,  422–427
for visual states,  521

Brush type,  31
BubbleLevel program,  966–969
Buffer class fully qualified name,  694
bulk access,  235, 237
business logic,  193

isolating,  206
ButtonBase class

classes deriving from,  159
Click events,  140, 161

ClickMode property,  161
CommandParameter property,  212
Command property,  212
Content property,  162
HorizontalAlignment and VerticalAlignment
properties,  160
Margin property,  160

Button controls,  139, 159–167
appearance, manipulating,  162
on application bars,  271–276, 286–293
BorderBrush property,  505
BorderThickness property,  505
Cancel buttons,  238, 318
Click handlers,  166, 237–238, 258, 566
Command bindings on,  218–219
Command property,  212–213
content of,  141
Content property,  450–459
ContentTemplate property,  451–452
Copy and Paste buttons,  898
custom, defining,  222
data content,  450–459
default appearances and functions,  159–162,
223–224
dependency properties, defining,  167–177
Don’t Save buttons,  318
enabling and disabling,  258, 933–934, 1011
EntranceThemeTransition,  512
forward and back buttons,  558–559
images in,  162
implicit style,  165–166
JiggleButton,  386–387
keyboard input focus,  513
MVVM pattern and,  212–213
names, displaying,  272
OnCharButtonClick event handler,  167
Open buttons,  320–321
Paste buttons,  898–899
RenderTransformOrigin property,  387
RenderTransform property,  387
Resources property,  387
Save As buttons,  318–319
Save buttons,  318–319
Segoe UI Symbol font for,  271–272
static visuals,  504
style, overriding,  165
View Model, calling into,  212–213
visual states,  513–520
in visual tree,  503

ButtonVarieties program,  159–162
By property,  337
ByteToHexStringConverter converter,  470

	 charms

	 1063

C
C#

anonymous methods support,  228
async keyword,  230
in code-behind files,  6
data type equivalence to Windows API,  780–781
function declarations,  782
.NET API access,  779
platforms for,  823
platforms, selecting,  822
property initialization,  24–25
public fields,  781
static functions,  782
structures, defining,  781
Tapped event,  70
wrapper DLLs, accessing,  779

C++
native machine code, compiling to,  822
Platform namespace runtime libraries and
classes,  779
platforms for,  823
public classes,  810
wrapper DLLs,  779

CalculateImageScaleAndOffset method,  758
CalculateNewTransform method,  445
Calendar class,  930–931
calendars,  928–936
callback methods,  223, 224

IUICommand object, obtaining,  229
as lambda expressions,  228
running in UI thread,  227

callbacks,  83–84
CallerMemberName attribute,  202
camera application, creating,  774–777
CameraCaptureUI class,  772
camera, capturing photos from,  772–777
Cancel buttons,  238, 318
CancelCommandIndex property,  224
CancellationToken type,  252–253, 255
Cancel method,  223

of IAsyncInfo interface,  231–232
CanExecuteCalculate method,  215
CanExecuteChanged handler,  213
CanExecuteDeleteCharacter method,  218
CanExecute method,  213, 215

Func<object, bool> delegate,  214
CanGoBack and CanGoForward properties,  557, 558

as binding sources,  560
CanRecorderItems property,  599
Canvas,  132–136

animating,  347–350
attached properties,  132–136

Canvas.Left and Canvas.Top attached properties,
animating,  347–350, 358–359
Canvas.Left and Canvas.Top attributes,  133
Canvas.SetLeft and Canvas.SetTop static
methods,  135
children, arrangement of,  97
children, size of,  137
clipping, avoiding,  137–138
DependencyProperty property,  135
element-positioning properties,  132
HorizontalAlignment and VerticalAlignment
properties,  137
layout in,  137–138
pagination and,  921
SetLeft and SetTop methods,  135, 136
TextBlock, positioning,  306
ZIndex property,  136–137, 435, 436

capacitance pens,  1014
CaptureFileAsync method,  772–773
CapturePhotoToStorageFileAsync method,  775
CapturePhotoToStreamAsync method,  775
CapturePointer method,  628
Carroll, Lewis,  345, 859
Ceiling method,  921
celestial sphere,  986

altitude,  986
azimuth,  986
bitmaps in,  992–999
horizontal coordinate,  987
nadir,  986

CenteredTransforms project,  673–674
center of rotation,  378, 398. See also rotation

protection radius around,  678
for single-finger rotation,  678
specifying,  383–386, 391–396
for touch interfaces,  673–676

CenterOfRotationX, CenterOfRotationY,
CenterOfRotationZ properties,  434
CenterX and CenterY properties

handlers for,  385
of RotateTransform class,  383–384
of ScaleTransform class,  398

CharacterFormat property,  877
CharacterReceived events,  184, 887

handling,  889–890
char data type,  277
charms,  893

Devices charm,  904–911
displaying,  286
hooking into,  896
program invocation,  928
Settings charms,  894–897
Share charm,  898–902

Char structure

1064

Char structure,  277
ConvertFromUtf32,  281

char values,  887
CheckBox controls,  161

styling,  285
Checked and Unchecked events,  161
Checked handlers,  180–181, 265, 274
CheckIfOkToTrashFile method,  320, 900–901
CheshireCat project,  345–347
children

dependency property, setting on,  135–136
and parents, balancing needs,  97
size of, calculating,  490
stacking,  103–104

Children property,  24, 103
of Storyboard class,  337
of TransformGroup class,  391

ChildrenTransitions property, animating,  376
CircleAnimation project,  358–359
circles. See also Ellipse class

quarter-circle arcs,  344–345
rendering,  102, 105

CircularGradient project,  688–690
Class1.cs files,  127
classes

abstract classes,  117
attached properties, creating,  168
content properties,  38–41
dependency properties, defining,  168–177
nesting,  42
order of elements in code,  172
protected constructors,  117

class hierarchies,  114–118
Class Library template,  129
Click handlers,  166, 212, 928

animations, triggering,  387
for Back buttons,  895–896
for buttons,  566
in context menus,  265
for file picker Open button,  237–238
lambda functions in,  228
null values,  242
for Start buttons,  258

clicking, enabling,  599
ClickMode property,  161
clipboard

bitmaps, copying and pasting,  898
contents, checking,  899
copies and pastes,  877
Ctrl+C and Ctrl+V support,  902
ink, copying to,  1037
pasting into InkManager,  1029
sharing data with,  898–902

Clipboard class,  899
GetContent method,  899
SetContent method,  899

ClockButton project,  456–459
Clock class,  456–459
ClockRack program,  786–808

Add menu item,  803
clock size,  794
Delete item,  804–805
DistributedUniformGrid class,  799–800
Edit and Delete options,  802–803
Edit option,  804–805

Closed event handler,  327
Close method,  223
code,  31

animations, defining in,  338
application bars, dismissing,  270–271
attached properties, setting,  133
Auto or star sizes, specifying,  147
Binding object, creating,  67–68
callback methods,  223
element properties, changing,  69
font files, referencing,  856
FontUri property, setting,  852
gradient brush,  31–33
Grid, accessing,  28
images, displaying,  27–29
items, generating,  467–468
ItemsSource property, setting,  471–472
Path element in,  56–57
PopupMenu objects, constructing,  262
private fonts, referencing,  850
queuing,  225
RichTextBlockOverflow, generating,  867
styles, defining,  62
test, setting,  184
TextBlock, creating,  24–27
View Model, instantiating,  205

code-behind files,  6
elements, accessing,  69
event handlers in,  71
Grid, accessing from,  23
minimizing use of,  194
of XamlCruncher,  313–315

codecs,  704
CollectionChanged events,  475, 591
collection controls,  463–474
collections,  474

Dictionary<TKey, TValue> collections,  474–475
displaying,  141
of groups,  611
items, accessing,  474
items, adding and removing,  591

	 content

	 1065

collections (continued)
items, displaying,  449, 464, 477–478, 596–597, 600
items, grouping,  608–611
ItemsSource property, binding to,  473
List<T> collections,  474–475
movement of items,  329
selecting items,  475–480

CollectionViewSource class,  611
ColorAnimation class,  361
ColorAnimationUsingKeyFrames class,  369–370
ColorItems project,  467–469
ColorItemsSource project,  470–472
ColorItemsSourceWithBinding project,  473–474
ColorKeyFrame class,  369
ColorList1 project,  122–124
ColorList2 project,  124–126
ColorList3 project,  127–129
Color property,  157

animating,  331
binding on,  453
public,  755
setting from outside,  757

colors
animating,  92–96, 331
color format of bitmaps,  684
gradients between,  32
highlight colors,  47
HSL color selection,  747–758
Hue,  747
Lightness,  747
listing,  122–124
Saturation,  747
specifying,  16–17
transparent black,  762
transparent white,  762

color schemes,  16
Colors class,  17, 588

using directive,  23
ColorScrollWithDataContext project,  202–206
ColorScrollWithValueConverter project,  155–157
ColorScrollWithViewModel project,  196–201
COLORSCR program,  148
ColorSettingDialog class,  743–744, 757
Color structure,  835
ColorTextBoxes project,  206–208
ColorTextBoxesWithEvents project,  209–211
ColorToContrastColorConverter,  494
ColorWrap project,  130–131
ColumnDefinition objects,  146
ColumnDefinitions collection,  146
columns,  131
COM API,  779

ComboBox controls,  464, 805, 807
processing,  1054–1056

ComboBoxItem class,  535
COM (Component Object Model),  779
commanding, MVVM architecture and,  193
command interface,  212–213
CommandParameter property,  212
Command property,  212–213, 218–219
commands

on application bars,  268
in context menus,  264
navigating with Tab key,  268
processing,  897
sharing,  218
for View and View Model interactions,  194
in View Model,  213–219

CommandsRequested handler,  896
Common folder

RichTextColumns class,  867
StandardStyles.xaml file,  46

CommonMatrixTransforms project,  417–418
Compass class,  974–976, 980

accelerometer data and,  976–986
CompassReading class,  974
Completed callback method,  224
Completed events,  338, 579
Completed handler,  226, 580

running,  228
Completed property,  223
Complete method,  663
CompositeTransform class,  379, 419–421
composite transforms,  418–421
CompositionTarget.Rendering events,  91–96, 329, 802,
841–843
ComPtr,  810
computers

geographical location,  671–672, 999–1012
screen resolution,  539–545
sensory hardware,  953–1012

ConditionalClockButton project,  460–463
conditional execution in XAML,  460–463
constructor

defining,  126
DependencyProperty objects, creating,  168
initializing components in,  150
Loaded processing,  86
public parameterless,  474

ContactRect property,  633
Container property,  677
containers, filling with images,  11–12
content,  193. See also data

docking in Grid,  158

ContentControl class

1066

ContentControl class,  141, 472
AppBar,  261
ContentPresenter class,  509, 667–669
Content property,  141, 509
ContentTemplate property,  451, 467

ContentPresenter class,  509–510, 667–669
bindings on,  510
Content property,  509
ContentTemplate property,  510
ContentTransitions property,  512
HorizontalAlignment and VerticalAlignment
properties,  511
Margin property,  510
positioning within parent,  512

content properties,  37–41
definition,  39
TextBlock content property,  41–43

Content property,  28, 38, 97, 564
of AppBar class,  268–269
of Button class,  162–163, 450–459
of ContentControl class,  141, 509
of ContentPresenter class,  509
of RadioButton controls,  160
of UserControl,  125

ContentProperty attribute,  38
ContentPropertyAttribute class,  38
ContentTemplate property,  451–452, 467

of ContentPresenter,  510
DataTemplate on,  459

ContentTransitions property
animating,  375
bindings on,  512

ContextMenuOpening events,  862
context menus,  261–264

Border for,  268
commands in,  264
creating,  631
dismissing,  267
displaying,  267, 632
horizontal lines,  263
keyboard interface,  264
location,  263–264, 266
navigating with Tab key,  268
positioning,  267
of TextBox control,  262

continuation handlers,  594
Control class,  139–141

classes deriving from,  139–141
event interface,  75
Focus method,  140
FontFamily property,  845
Foreground property,  162
HorizontalContentAlignment property,  140, 511

IsEnabledChanged event,  140
IsEnabled property,  140
IsTabStop, TabIndex, and TabNavigation
properties,  140
OnGotFocus and OnLostFocus virtual methods,  140
On methods,  615, 656
Padding property,  510
properties of,  140
protected virtual methods,  140
Template property,  139, 502, 503
VerticalContentAlignment property,  140, 511

controls
appearance, defining,  329
appearance, redefining,  139, 140
on application bars,  270
automation peers,  890
bindings to elements,  506–508
buttons,  159–167. See also Button controls
chrome,  502–503
collection controls,  463–474
in context menus,  261
custom. See custom controls
dependency properties and,  167–177
disabled visual state,  516
vs. elements,  14
event handlers, sharing,  167, 177
hit testing,  649–650
identifying,  177
input focus,  140, 144, 184, 516
interaction with user,  139, 140
items in collections, accessing,  474
keyboard input,  184–187
pointer input, handling,  615
RadioButton,  177–183. See also RadioButton
controls
separate instances of,  937
Setter objects on,  503
size, defining,  653
Slider,  141–145, 154–159. See also Slider controls
Style definitions,  521
templates on,  502–512
TextBox,  184–187
Thumb,  187–192
in View, binding to properties,  196
visual appearance,  14
visuals, customizing,  449

ControlTemplate class,  449, 502–512
of AppBarButtonStyle,  271
Border in,  504–505
button visual states,  513–520
definitions in generic.xaml,  520
hard coding in,  508
as a resource,  503

	 custom panels

	 1067

ControlTemplate class (continued)
for Slider controls,  754
as a Style,  506–507
TargetType property,  503
TemplateBinding,  506

converter class,  155–157
ConverterLanguage property,  110
Converter property,  109–110
Convert method

parameter and language arguments,  110–111
TargetType argument,  110
value argument,  110

coordinate systems
device,  981
Earth's,  981
hardware,  960–961
right-hand rule,  960
translating between,  989–990
of windowing environment,  33, 49

Copy buttons,  898–899
Ctrl+C support,  902

Copy command,  898
CopySelectedToClipboard property,  1029
CoreDispatcher class,  225

callbacks,  228
RunAsync method,  225

CoreDispatcher objects,  594, 950
user-interface thread, interacting with,  954

CoreVirtualKeyStates enumeration,  575
CoreWindow class,  184, 616

AcceleratorKeyActivated event,  572–573
CharacterReceived events,  887

CornerRadius property,  508
C Programming Language, The (Kernighan and
Ritchie),  3
CreateAsync method,  708, 712
CreateFileAsync method call,  248
CreateItemListOption method,  944
CreatePrintTask method,  907, 948
CreateTextOption method,  944
CreationCollisionOption,  248
.cs extension,  4
Ctrl+C and Ctrl+V support,  902
Cubic Bézier,  345
CubicEase class,  357
Cumulative property,  663
CurrentOrientation property,  87, 554

of DisplayProperties,  955
Current property,  234
cursor position, obtaining,  307, 882
curves,  53. See also Bézier curves

rendering,  101
CustomButtonTemplate project,  517–520

custom classes
animating,  364–367
BitmapPrintDocument class,  948–951
Clock class,  456–459
Dial class,  678–682
InkFileManager class,  1038–1039
Key class,  650–655
ManipulationManager class,  675–676
NamedColor class,  469–470
PieSlice class,  364–367
PointerInfo class,  622
RadialGradientBrushSimulator class,  696–702
SaveStatePage class,  565–568
SecondPage class,  557–559, 566
StudentBody class,  590–591
StudentGroup class,  609
StudentGroups class,  609–610
SurfaceImageSourceRenderer class,  831–843
TimeZoneManager class,  789
TwelveHourClock class,  460–463
YellowPadPage class,  1043

custom controls,  530–535
application projects, defining in,  535
arranging code,  172
creating,  141
default ControlTemplate,  530
default Style,  530
dependency properties in,  167–177
existing controls, adapting,  502–503
HslColorSelector control,  752–754
keyboard input,  184
library,  531
local prefix,  174
LoggerControl control,  622–624
ManipulableContentControl control,  763
ManipulationModeCheckBox control,  657–659
MonthYearSelect control,  930, 932
NewToggle control,  530–535
property-changed handlers,  173
RudimentaryTextBox,  889–892
UserControl, deriving from,  125, 175–177
XYSlider control,  667–672

CustomGradient project,  685–689
code-behind file,  685

CustomizableClassHierarchy project,  923–927
CustomListBoxItemStyle project,  536–538
CustomPageRange class,  940–942
custom panels,  484–497

Arrange method,  485
ArrangeOverride method,  485
attached properties in,  484
finalSize argument,  492
layout passes,  485, 489

custom panels (continued)

1068

custom panels (continued)
Margin property,  490
Measure method,  485
MeasureOverride method,  485
properties handled automatically,  485
scrolling,  484
size, calculating,  490–491

D
data

automatically saving,  249
in buttons,  450–459
displaying,  194
notifications of updates,  194
passing and returning among pages,  575–581
sharing through clipboard,  898–902
updating upon input focus change,  208–209

data bindings,  66–68
Angle property, setting,  380–381
between dialogs and applications,  268
binding converters, sharing,  111–112
Button calls into View Model,  212–213
changing values, tracking,  144
Command property targets,  212
DataContext property of target,  204–206
data conversion, customizing,  109–111
in DataTemplate,  452–454
dependency property target,  89
document pages, chaining,  863–864
double types,  198
elements to controls,  506–508
items, accessing with,  597
ItemsSource property to collections,  473
MVVM architecture and,  193
notifications,  194–196
Path=,  205
RelativeSource bindings,  480, 506
to Run property,  87–89
source,  67, 177, 194–195
source, specifying,  194, 199, 200, 204–206
source, updating,  199
target,  67, 108–109, 157, 194
target, updating,  199
TemplateBinding bindings,  506
in templates,  449, 452–454
two-way,  506
View and View Model interactions,  194
in View Model,  194–196
on Visibility property,  462
XAML resources, referencing,  198–199

DataContext property,  204–206
bindings on,  805
propagation down visual tree,  204

data conversions, customizing,  109–111
data entry validation,  210–211
DataPackage objects,  899

SetBitmap method,  899–900
DataPackageView objects,  899
DataPassingAndReturning project,  575–581
Data property,  53, 56

null,  57
data providers,  193
DataReader class,  237

IDisposable interface,  238
DataRequested handler,  903
DataTemplate class,  449

adding,  597–598
bar charts,  497–499
on ContentTemplate property,  451–452, 459
data bindings in,  452–454
for ItemsControl controls,  463–474
ItemTemplate property, setting to,  466–467
for ListBox controls,  479–480
object rendering, controlling,  458–459
property changes, responding to,  475
Resource section, defining in,  454
sharing,  600–601

DataTransferManager class,  903
DataWriter class,  237

StoreAsync method,  239
DataWriteStoreOperation objects,  239
DateTime property,  799
decoders,  704
DefaultCommandIndex property,  224
DefaultStyleKey property,  530
deferral objects,  230
DelegateCommand class,  213–219

RaiseCanExecuteChanged method,  214
delegates, predefined,  214
DeleteCharacterCommand property,  215–216
DeleteSelected method,  1029
Delta property,  660
DependencyObject class,  15

accessing from thread of execution,  225
Dispatcher property,  225
SetValue method,  135
thread safety,  224–225

DependencyObjectClassHierarchy project,  114–118
dependency properties,  15, 25–26

animating,  94
attached properties,  132–136
as backing for data binding targets,  89, 194
binding sources,  194

	 DisplayMemberPath

	 1069

dependency properties (continued)
as binding targets,  67
children, setting on,  135–136
for controls,  167–177
on Canvas,  135
default value,  15
defining,  26, 167–177
defining as private static fields,  169
existing types for,  297
in RadialGradientBrushSimulator,  696–698
Matrix3D type,  443
properties, specifying independently of class,  62
property changes,  96
target properties of animations,  330

DependencyProperties namespace,  174
DependencyPropertiesWithBindings project,  176–177
DependencyPropertyChangedEventArgs objects
Property property,  171
DependencyProperty class,  15

RegisterAttached method,  168
Register method,  168

DepthText project,  390–391
designUnitsPerEm field,  827
DesiredDeceleration property,  664
DesiredDisplacement property,  664
DeviceInformation objects,  774
devices. See also printers; tablets

orientation changes,  9
Devices charm,  904–911

program invocation,  928
Dial class,  678–682
Dial controls,  678–682

Minimum and Maximum values,  680–681
RotateTransform,  681

dialog boxes
for file opens and saves,  234–235
Popup class for,  265–268

DialogPage class,  575–581
Completed event,  579–580

DialSketch project,  679–682
dictionary

abandoned entries,  633
back stack information,  572
Color type values,  634
instantiating,  565
of MIME types,  710
page state information,  564–567
per-finger information,  622–627
Pointer IDs,  618, 619, 621–622, 627
Pointer IDs, removing,  630
pointer information,  634, 1024
removing entries,  567–568
static pages dictionary,  565, 567

Win32 function conversions in,  789
Dictionary class,  255

Remove method,  567
Dictionary<TKey, TValue> collections,  474–475
DigitalClock project,  90
digital stylus,  1014. See also pens
digitizers,  1014. See also pens
Direct3D,  380
directory structure, displaying,  765–766
DirectWrite,  809–821

DWRITE_FONT_METRICS,  827
font family names,  815
font metrics,  825–831, 856
fonts, enumerating,  847
pages, rendering,  921

DirectX,  48
DirectWrite,  809–821
drawing on bitmaps,  831–843
HRESULT values,  811
libraries,  809
SharpDX library,  808

DirectXWrapper library,  808–809
correspondence with DirectWrite interfaces,  809–
810
fonts, enumerating,  820–822
referencing,  820
SurfaceImageSourceRenderer class,  831–843
WriteFactory class header file,  810

DirectXWrapper project,  808–809, 880
DiscreteObjectKeyFrame class,  371

Value property,  372
DiscretePointKeyFrame class,  368, 369
Dispatcher property,  225, 594
DispatcherTimer class,  89, 232

interval,  405
for long-running jobs,  250
timer interval,  90

DisplayAndPrinterPrep method,  915–916
DisplayGrid property,  766
DisplayHighSchoolStudents project,  594–608

Back button,  601–602
GridView,  602
ItemClick events,  605–606
ListView,  602
portrait mode,  605–606, 608
Snapped mode,  604
StudentPage.xaml file,  606–608
Visual State Manager markup,  602–603
visual state, setting,  600

DisplayInformation collection,  791
DisplayInformation property,  792
DisplayMatrix3D class,  442–444
DisplayMemberPath,  477

DisplayOrientations enumeration

1070

DisplayOrientations enumeration,  87, 955
LandscapeFlipped value,  554
Landscape value,  554
members, order of,  556
None value,  554
PortraitFlipped value,  554
Portrait value,  554

DisplayProperties class,  16, 87, 540, 554–557
AutoRotationPreferences property,  556, 957
CurrentOrientation property,  554, 955
LogicalDpiChanged event,  540
LogicalDpi setting,  541
NativeOrientation property,  554, 957
OrientationChanged events,  554
SimpleOrientationSensor correspondence,  957

DisplayText property,  215
display, themes,  520
DistributedUniformGrid class,  799–800

populating,  800–801
DIUs (device-independent units),  545
DllImportAttribute,  781–782
Document property,  877
doNotSetSliders field,  757
Don’t Save buttons,  318
dot products and cross products,  989
DoubleAnimation class,  330–331, 340–347

AutoReverse property,  335, 348
BeginTime property,  359
By property,  337
class hierarchy,  337
Duration property,  339
EasingFunction property,  336–337
EnableDependentAnimation property,  337
FillBehavior property,  334
From value,  333–335, 348
RepeatBehavior attribute,  335, 348
reusing in animations,  339
To value,  334–335, 349

DoubleAnimation objects,  387
for brush animations,  427
duration,  433
From value,  410
grouping,  396
To value,  409, 424

DoubleAnimationUsingKeyFrames class,  369, 410, 436
Double.IsPositiveInfinity method,  486
DoubleKeyFrame class,  369
DoubleTapped events,  615
DoubleToStringHexByteConverter class,  278
double values

animating,  331, 340–347
converting to hexadecimal,  155–157

DPI (dots per inch),  539
logical DPI,  540

DragCompleted events,  187
DragDelta events,  187, 190
DragEnter events,  70
DragLeave events,  70
DragOver events,  70
DragStarted events,  187
drawing. See also FingerPaint projects; pens

redraw methods for,  303
DrawingAttributes property,  1019
drawings. See also FingerPaint projects; pens

saving,  646
DrawLine method,  835
Drop events,  70
Duration property

overriding,  351
setting,  339

DWORD_PTR,  781
DWORD values,  780
DWriteCreateFactory function,  810
dynamic layout system,  97. See also panels
DYNAMIC_TIME_ZONE_INFORMATION structures

TimeZoneKeyName field,  792

E
Earth

coordinate system,  981
coordinate system, transforming to rectangular
coordinates,  990–999
longitude and latitude,  986

EarthlyDelights program,  987–999
Matrix3D inversion,  989–990
tilt, calculating,  990–992
zooming operation,  998

Ease function,  351
Ease method,  350
EasingColorKeyFrame,  371
EasingDoubleKeyFrame,  371
EasingFunctionBase class,  336–337

EasingMode property,  337
EasingFunction property,  336–337
easing functions

elapsed time,  351
SineEase function,  358
values outside range of 0 and 1,  357–358
visual representation,  351

EasingMode function,  387
EasingMode property,  337, 358
EasingPointKeyFrame class,  369, 371
EasyCameraCapture program,  772–774

	 event handlers

	 1071

e-book readers,  870–877
page numbers,  871–873

e-books,creating,  119–122
EditBox controls,  805
EditOrientation enumeration,  322
EditOrientation property,  308
EditOrientationRadioButton controls,  322–327
ElasticEase animation,  387

EaseInOut mode,  393
ElasticEase class,  336, 357

Oscillations property,  337
Springiness property,  337

electromagnetic pens,  1014. See also pens
ElementName property,  67, 194, 204
elements

accessing from code-behind,  69
binding to controls,  506–508
centering,  107–108
clipping, avoiding,  137–138
vs. controls,  14
fading in and out,  345–347
flipping horizontally or vertically,  398
interaction with user,  139
jiggling,  386–387
keyboard focus,  630
layout of,  937
location, finding,  427–430
manipulation, enabling,  656
margins,  100–101
naming,  126
natural size, calculating,  490
offsetting from original position,  388–391
organizing,  20
overlapping,  19–20, 136–137
overlapping, preventing,  20–22
padding,  101
vs. panels,  14
pointer capture,  615, 622–630
pointer input,  627
positioning precisely,  132–136
Position property,  618
properties, linking,  66
rendered size,  85
rendering of,  83
resources, sharing,  43–47
reusing,  937
shearing,  406
size, increasing and decreasing,  396
spinning in space,  431–434
stacking,  19–20
stretching to parent size,  98
styles,  60–65

transforms on,  377. See also transforms
visual state elements,  513
in visual tree, accessing,  143
visual tree of,  14
width and height values,  98
Z order,  20

Eliot, George,  870
EllipseBlobAnimation project,  340–341
Ellipse class,  101–103

animating,  341–342
Height and Width values,  102, 104
rendering,  101–102
Stretch property,  105
StrokeDashArray property,  343
StrokeDashCap property,  343
StrokeDashOffset property,  343–344

EllipseGeometry class
animating,  361–363
positioning element,  970

ElPasoHighSchool project,  589–608
student.xml file,  591–592

El Paso Public Library,  589
EnableDependentAnimation property,  331–332, 337

leaving out,  348
EnclosureLocation property,  774
encoders,  704
EndPoint property,  33
EntranceThemeTransition,  512
EnumDynamicTimeZoneInformation function,  787, 791
EnumerateFonts project,  820–822
enumeration types,  24
EPUB,  856
erasing,  1014, 1023–1029

enabling,  1024
ErrorCode property,  232
ErrorText property,  926–927
error trapping in asynchronous methods,  230
Esc key

button triggered by,  224
processing,  629–630

Euler angles,  976–981
Euler, Leonhard,  976
event handlers

attaching to events,  72
in code-behind file,  71
naming,  71
private keyword,  71
properties and methods of event,  70, 72
sharing,  72–73, 142, 167, 177
source of event,  70, 72
strings, differentiating,  178
for Thumb controls,  300–301

event handling

1072

event handling,  69–96
AddHandler method,  79
for animations,  89–96
Handled property,  78
Handled property override,  78–79
for orientation changes,  87
routed event handling,  72–78
routed input handling,  74–75
for size changes,  83–87
structuring,  633
timer events,  89–96

events,  69, 83–84
application suspension,  246–247
hiding consumer from provider with,  580
processing,  221
routing up visual tree,  78
source of,  74–75
Tapped event,  69–72
virtual methods for,  75

EventTrigger class,  360
exception handling

in file pickers,  240–241
operation cancellation,  253
in XamlCruncher,  316–318

exceptions, while saving files,  319
ExecuteAddCharacter method,  218
ExecuteCalculate method,  215
Execute method,  213, 215

Action<object> delegate,  214
add argument,  212

ExpandingText project,  91–92
ExpansionBehavior property,  664
Expansion property,  660
ExponentialEase function,  351

F
F5 key,  8
FastNotFluid project,  371–372
Figures property,  53
FileInformation class,  235
file I/O,  233–235

file pickers and,  235–240
streamlining,  243–245
in XamlCruncher,  318–321

FileIO class,  243–245
ReadLinesAsync method,  243
ReadTextAsync method,  243
WriteTextAsync method,  319

FileIO methods,  292–293
FileOpenPicker class,  234–240

invoking,  237

objects, creating,  706–707
file pickers,  235–240

async calls, consolidating,  241–243
Cancel button,  238
exception handling,  240–241
MIME type, indicating,  886
Open buttons,  237–238
permissions for file access,  704
Snapped state,  736

files
automatically saving,  249
canceling opening,  318
canceling save option,  318
loading,  238
reading,  244–245, 254–260
saving,  239, 318
storing,  308
uploading and downloading,  244

FileSavePicker class,  234–240
objects, creating,  710

fileStream objects,  692–693
reading,  694

FileTypeFilter collection,  237
FillBehavior property

HoldEnd setting,  334
Stop setting,  334

Fill property,  101
animating,  371–372
Binding markup extension on,  452
of Glyphs,  851

FindAllAsync method,  774
FingerPaint projects,  619–646

About box,  894–897
AppSettings class,  733–734
blank canvas,  735
Color and Thickness buttons,  743–744
ColorSettingDialog,  757
CreateTaperedLineGeometry,  642–644
Dictionary definition,  619
editing features,  630–633
Esc-key processing,  629–630
existing files, drawing on,  735
Grid name,  619
HSL structure,  747–749
input outside page,  622
ItemTemplate,  746
line taper, smoothing,  637–646
MainPage.File.cs file,  736–742
MainPage.Pointer.cs file,  731–732
MainPage.xaml.cs file,  742–744
MainPage.xaml file,  735
multiple-finger polylines,  621
OnMenuDelete method,  633

	 ForeverColorAnimation project

	 1073

FingerPaint projects (continued)
OnPointerReleased and OnPointerCaptureLost
overrides,  644–646
Pictures library access,  736
pointer capturing,  634–635
PointerInfo structure,  634–635
PointerPressed event handler,  631
popup menu logic,  631
pressure sensitivity,  633–637
printing,  948–951
RenderOnBitmap method,  729–731
RightTapped event handler,  631
saving,  722–747
Share charm support,  903
snap mode,  621–622
ThicknessSettingDialog,  743–746
Vector2 structure,  638–646
Visual State Manager markup,  736

fingers
consolidating input with Manipulation events,  616,
655
contact area bounding box,  633
multiple, drawing with,  839–843
multiple polylines from,  621
multiple, tracking,  669, 749–752
single-finger rotation,  676–682
tracking movement,  615, 618, 652–653

FitToCurve property,  1017–1018
Fitzgerald, F. Scott,  867
FixedPage class,  853
FlickAndBounce project,  665–667
flip panels,  434–437
FlipViewColors project,  500–502
FlipView controls,  464, 500–502

for calendar pages,  928, 930
Height and Width properties,  501
for pages,  587, 870–877, 1038, 1043, 1048–1049
SelectionChanged handler,  876
SizeChanged handler,  873–876

FlipViewItem class,  535
Focus method,  140, 630
FolderInformation class,  235
FolderPicker class,  234–235
font families,  845–846

font files in,  846
name,  849
obtaining,  813–821

FontFamily class,  845
FontFamily property,  24, 845, 847–848

ms-appx prefix,  848
font metrics,  824–831

text, positioning precisely,  856

font-related properties,  41, 845
setting in code,  26–27
setting in XAML,  7–8

FontRenderingEmSize property,  851
fonts

ascent line,  828
baseline,  828
boldface and simulated boldface,  849
caps height line,  828
defined,  845
descenders area,  828
design height,  15
enumerating,  820–822, 847
fixed-pitch,  315
in local storage,  852–856
permission to distribute,  847
pixel height values,  827
pixels and points, equivalence,  15
points,  15
private fonts,  847–850
referencing in local storage,  855–856
size,  845
size at printing,  910
style simulations,  851
terminology,  845
text-enhancing attached properties,  856–858
typographical enhancements,  856–858
URIs of,  848–849, 851
Windows font files,  846

Fonts directory,  855–856
FontSize property,  15

animating,  330–333
as dependency property,  15
inheritance of,  21

FontSizeProperty property,  15
FontStretch enumeration,  814
FontStyle enumeration,  814
FontStyle property,  849, 883

defining,  26
using directive,  23

FontUri property,  851
setting in code,  852

FontWeight property,  849
FontWeights class,  814
FontWeight structure,  814
foreach blocks,user interface interaction in,  259
Foreground property,  24, 31, 189

color names,  16–17
of Control class,  162
default value,  16
setting in code,  26–27
setting in XAML,  7–8

ForeverColorAnimation project,  360–361

FormatEffect enumeration

1074

FormatEffect enumeration,  883
FormatRtf flag,  886
FormattedStringConverter class,  154
FormatText method,  166
formatting

converting from decimal to hexadecimal,  155
paragraph,  858–861, 872–875
text,  19, 882–883

Forward buttons,  562–563
fractionRead values,  876
Frame class,  29, 557

back stack, maintaining,  563
CanGoBack and CanGoForward properties,  557,
558, 560
Content property,  557
GoBack and GoForward methods,  557
stack of visited pages,  557

Frame property,  557
FrameworkElementAutomationPeer class,  184
FrameworkElementAutomationPeer constructor,  890

overriding,  890
FrameworkElement class,  14

ActualWidth and ActualHeight properties,  85–86
classes deriving from,  139
IsHitTestVisible property,  615
layout properties,  139
Loaded events,  86
Name attribute,  23
Resources property,  43
Tag property,  167
Visibility property,  615
Width and Height properties,  86

FrameworkTemplate class, classes deriving from,  449
French, A. P.,  970
FriendlyName property,  710
FromArgb method,  24
FullName property,  595
Func delegates,  214

Func<BitmapSource> parameter,  949
Func<object, bool> delegate,  214

future objects,  223

G
Garden of Earthly Delights, The,  993
GeneralTransform class

TransformBounds method,  427
TransformPoint method,  427

generated files,  25
generic.xaml file,  520–521

ListBoxItem style,  536
in Themes folder,  530

Geolocator class,  671–672, 999–1012
starting sensor,  1005

Geometry class,  53, 421–422
Transform property,  421

geometry, defining,  56
geometry transforms,  421–422
GestureRecognizer,  616
get accessor,  170
GetAllX method,  725–727
GetBitmapStream method,  900, 903
GetContent method,  899
GetCurrentOrientation method,  954
GetCurrentPoint method,  618, 1016
GetCurrentReading method,  958
GetDecoderInformationEnumerator method,  707
GetDefault method

of Accelerometer class,  958
of SimpleOrientationSensor,  954

GetEncoderInformationEnumerator method,  710
GetFamilyNames method,  815
GetFileAsync method,  248
GetFilesAsync method,  767
GetFirstMatchingFont method,  814
GetForCurrentView method,  904
GetGeopositionAsync call,  672
GetImageryMetadataAsync method,  1002
GetIntermediatePoints method,  618, 1016
GetKeyState method,  575
GetLongitudeAndLatitude method,  1007
GetMapUriAsync method,  1002
GetMetrics method,  819
GetNativeSystemInfo method,  781–782
GetNavigationState method,  568–569
GetPageDescription method,  911
GetPatternCore override,  890
GetPixelDataAsync method,  709
GetPositionFromIndex method,  307
GetPreviewPage handler,  910, 920
GetRenderingSegments method,  1019
GetResults method,  224

on Completed operations,  232
GetSystemFontCollection method,  810–812
GetTemplateChild method,  521
GetThumbnailAsync method,  767
GetTimeZoneInformationForYear function,  788
GettingCharacterInput project,  887–888
GetTypeInfo method,  114
GetWordFrequenciesAsync method,  255–260

return value,  255
GIF files. See also images

frames, extracting,  708
GlobalOffset properties,  434

animating,  436

	 GroupName property

	 1075

Glyphs element,  850–852
Fill property,  851
FontRenderingEmSize property,  851
FontUri property,  851
Indices property,  852
OriginX and OriginY properties,  851–852
parent,  851
for text layout,  921
UnicodeString property,  851

GoBack and GoForward methods,  557, 564, 579
GotFocus events,  70
GoToState method,  513, 516, 606
GPS,  953
GradientBrushCode program,  32–33

constructor of the code-behind file,  32–33
GradientBrushMarkup project,  39–41
GradientBrushPointAnimation project,  370–371
GradientButton class property definitions,  170
GradientOrigin property,  698
gradients,  32

animating,  702
calculation of,  33
CircularGradient project,  688–690
CustomGradient project,  685–688
GradientOrigin property,  698
interpolation factor,  698
offset,  33
OuterColor property,  698
solid color to transparency,  695–696
transforms on,  424–427

GradientStop class,  33, 37
animating,  361
Offset property,  94–95

GradientStopCollection type,  36
GradientStops property,  33, 36
graphics

antialiasing,  758
negative coordinates,  400–401
scan lines,  723–724

graphics composition system
negative coordinates,  401
retained mode,  83
transforms, rendering in,  382

graphics transforms,  377. See also transforms
three-dimensional,  430–438
two-dimensional,  414, 437

gravity
effect on rolling ball,  970
measuring,  958

GRAVITY constant,  970
Grid App projects,  539, 581–582, 867

item templates,  601
GridLength type,  147

Grid panel,  7
accessing from code,  28
accessing from code-behind file,  23
animations in,  340
arrays, defining,  278–280
aspect ratio changes, responding to,  295
asterisk (or star) values,  146, 158
Auto value,  147
background,  289
Background property,  31, 82
in Border,  146
buttons in,  163–167
centering,  163
children,  146, 149
children, arrangement of,  97
Children property,  24, 37
contents size, adjusting to fit,  794
docking content,  158
Grid.Row and Grid.Column properties,  147, 149, 153
Grid.RowSpan and Grid.ColumnSpan
properties,  147, 150
interaction with user,  146–151
MaxWidth setting for printing,  940
naming,  23
nesting,  147, 152
orientation changes,  9
Path elements in,  59–60
RowDefinition and ColumnDefinition objects,  146
RowDefinitions and ColumnDefinitions
collections,  146, 152
rows and columns,  7
rows and columns, defining,  149, 158
rows and columns, sizing,  146, 147
rows and columns, specifying,  146
single-cell,  7
SizeChanged handler,  190–192, 303
spinning,  837–843
styles, defining,  148
TextBlock children,  19
Transparent Background property,  82
VerticalAlignment setting for printing,  940
in Viewbox,  401–402
visual objects, places for,  9

GridView controls,  582–588, 596–608
grouping items,  608–612
ItemsSource property,  612
ObservableCollection type,  608–611
with view models,  539

GridViewItem class,  535
GroupBySex project,  609–611
GroupedItemsPage.xaml file,  583
grouping items,  608–612
GroupName property,  161

Handled property

1076

H
Handled property,  78, 618

overriding,  78–79
HarderCameraCapture project,  774–777
hardware coordinate systems,  960–961
HasOverflowContent property,  862, 869
HasThreadAccess property,  225
Hawthorne, Nathaniel,  863
Header property,  325
HeadingMagneticNorth property,  974–976
HeadingTrueNorth property,  974–976
heap allocations,  94
Height property,  86
HelloAudio project,  22
HelloCode project,  23–27

constructor of MainPage class,  24
HelloImageCode project,  27–28
HelloImage project,  9–13

image source,  9
HelloLocalImageCode project,  28–29
HelloLocalImage project,  12–13
HelloPrinter project,  905–911
Hello project,  3–9

App.xaml and App.xaml.cs files,  16
MainPage.xaml.cs file,  4–5
MainPage.xaml file,  6, 14
TextBlock class,  7–8

HelloVectorGraphicsPath project,  56–58
HelloVectorGraphics project,  54–55
HelloVideo program,  22
Heuer, Tim,  823, 953
hexadecimal

displaying values in,  148–151
double values, converting to,  155–157

Highlight color,  47
hit testing,  650

elements, location and orientation,  427
positioning of elements and,  383

HoldEnd enumeration,  334
Holding events,  69, 615, 632–633
homogenous coordinates,  414
HorizontalAlignment property,  8, 11, 97–101

of Border element,  99
of Canvas,  137
Center setting,  108
cropping shapes,  103
default Stretch value,  98
default value,  81
of Ellipse,  102

HorizontalContentAlignment property,  140, 511
horizontal coordinate,  987–999
HorizontalCoordinate values,  997

HorizontalListBox project,  482–484
HorizontalScrollBarVisibility property,  113
HowToAsync1 project,  222, 226–227
HowToAsync2 project,  228
HowToAsync3 program,  229–231

ShowAsync method call,  232
HowToCancelAsync program,  232–233
HRESULT values,  811
HslColorSelector control,  752–754
HSL (Hue, Saturation, Lightness) color selection,  747–
758
HSL structure,  747–749
HttpClient class,  244
Hungarian notation,  780
HyperlinkButton controls,  161, 895

I
IAsyncAction interface,  225

AsTask method,  243
Completed handler,  226

IAsyncInfo interface,  225
Cancel method,  223, 231–232
Close method,  223
ErrorCode property,  223, 232
Id property,  223
interface hierarchy,  226
Status property,  223, 231

IAsyncOperation interface,  223, 232
objects, obtaining,  229
Status property,  224

IAsyncOperation<T> interface,  223
IBuffer objects,  244, 686
ICommand interface,  212

command validity,  212
ID2D1BitmapRenderTarget interface,  835–836
idCustomRangeEdit controls,  945–946
IDelegateCommand interface,  214
Identity property,  416
IDictionary<TKey, TValue> interface,  475
IDisposable interface,  238
IDWriteFactory interface,  810
IEnumerable interface,  464, 474
IEnumerable<T> interface,  474
IFormattable interface,  110
IGeometrySegment interface,  724–725
Ignorable attribute,  7
IgnorePressure property,  1017–1018
IIterable<T> interface,  474
IL (Intermediate Language),  822
IList interface,  464
IList<T> interface,  475

	 InkManager class

	 1077

ImageableRect property,  911
ImageBrush class,  31, 52

gradients in,  690
ImageSource property,  52
Stretch property,  52
Transform property,  53

ImageBrushedSpiral project,  52–53
Image element,  10

class derivation,  14
defining,  705–706
instantiating in XAML,  28
in StackPanel panels,  119–122
Stretch property,  10–11, 58, 104, 994
Width and Height settings,  547

ImageFileIO program,  704–714
file I/O,  717–719
Open button,  706–709
rotating images at save,  712–714
Save As button,  710–712
UpdateBitmap method,  720–721

ImageRotate program,  392–393
Imagery Service,  1002
images. See also bitmaps

applications, binding to,  12
in buttons,  162
capturing to memory stream,  775–776
codecs,  704
decoders,  704
displaying,  9–13
displaying from code,  27–29
displaying in pixel dimensions,  11
encoders,  704
formats,  12
larger than screen, viewing,  992–999
layout on page,  11
loading,  703–714
raster lines,  723
rotating,  392–393
rotating on save,  712–714
saving,  703–714, 773
scaling,  993
scan lines,  723–724
size and page size,  10
Source property,  13, 27, 28
storing with projects,  12
stretching,  10–11, 442–447

Images directory,  12
ImageSource class,  27

class hierarchy,  683
ImageSource property,  52, 831
ImageType Thumbnail property,  769
IMap<K, V> interface,  475
ImplicitStyle project,  64–65

implicit styles,  64–65, 459, 530. See also styles
inhibiting,  68

implicit typing,  25
Inclinometer class,  976–980

instantiating,  978, 983
starting sensor,  1005

Indeterminate events,  161
Indices property,  852
inertia,  187, 661, 663–667

acceleration,  664
deceleration,  664–665
stopping,  663
velocity,  663

InertiaTranslationBehavior class,  664
inheritance of properties,  21, 63–64
InitializeComponent method,  5

code, placing after,  25
ink,  1013

continuous strokes,  1018
copying,  1037
loading,  1041–1043, 1050
maintaining,  1014–1017
saving,  1049

InkAndErase project,  1024–1029
Bézier rendering code,  1025–1026
OnPointerMoved override,  1027–1028
OnPointerPressed override,  1026–1027
OnPointerReleased call,  1028
PointerCaptureLost handler,  1028–1029

InkDrawingAttributes class,  1014, 1017–1024
default values,  1017
properties,  1017

InkEraseSelect project,  1030–1038
application bar buttons,  1036–1037
Brush definition,  1030–1031
Copy logic,  1037
Grid elements,  1030
ink, pasting,  1037–1038
OnPointerMoved override,  1032
OnPointerPressed method,  1031–1032
OnPointerReleased override,  1033–1034

InkFileManager class,  1038–1039
hard-coded default values,  1055
LoadAsync and SaveAsync methods,  1041–1043
RenderTarget property,  1040

InkFileManager property,  1044–1047
InkManager class,  1014–1017

CopySelectedToClipboard property,  1029
default properties, setting,  1018
DeleteSelected method,  1029
erasing mode, setting,  1026–1027
ink, copying to clipboard,  1037
InkDrawingAttributes objects,  1014

InkManager class (continued)

1078

InkManager class (continued)
InkStroke objects,  1014, 1018–1019
methods,  1018
Mode property,  1024
MoveSelected property,  1029
multiple pointers, tracking,  1016
overhead,  1017
pen input, collecting,  1015, 1016
pen thickness and color, saving,  1041
ProcessPointerDown property,  1016
ProcessPointerUpdate property,  1016
ProcessPointerUp property,  1016
saving contents,  1041–1043
selection mode,  1029–1038
SelectWithLine method,  1029
SelectWithPolyLine method,  1029

InkManipulationMode enumeration,  1024
InkStroke objects,  1014, 1018

Selected property,  1029
InkStrokeRenderingSegment objects,  1014–1015, 1019
Inline class,  41
InlineCollection type,  41
Inlines property,  41, 859
InlineUIContainer class,  43

RichTextBlock and,  861
InMemoryRandomAccessStream class,  694
INotifyCollectionChanged interface,  475
INotifyPropertyChanged interface,  196, 308, 456, 475,
589–591

definition,  195
implementing,  196–198, 202–204

input devices,  615. See also keyboard input; mouse;
pens
input focus,  140, 184

changing,  144
data updates and,  208–209

InputScope property,  185
InputString property,  215
instances, accessing,  171
integerLatitude,  1007–1008
integerLongitude,  1007
IntelliSense,  8, 27

enumeration member options,  183
event handler name suggestions,  70
events suggestions,  70
properties suggestions,  70

interfaces,  474–475
InternationalHelloWorld program,  20–22
Internet Explorer application bars,  269
InvalidateArrange method,  489
InvalidateMeasure method,  489
InvalidatePreview method,  927
Inverse property,  427

IObservableVector interface,  464
IOrderedEnumerable type,  255
IPrintDocumentSource interface,  906
IProgress<T> type,  253
IProgress type,  255
IRandomAccessStream objects,  238, 683

passing to SetSource method,  694
IsBarrelButtonPressed property,  1014
IsChecked property,  161
IsEnabledChanged events,  140
IsEnabled property,  140
IsEraser property,  1014
IsHitTestVisible property,  615
IsHoldingEnabled property,  632–633
IsIdentity property,  416
IsImageModified property,  735
IsInContact property,  618, 627, 650, 1016–1017
IsInertial property,  665
IsInRange property,  618, 627
IsInverted property,  1014
IsLargeArc property,  642
IsLightDismissEnabled property,  267, 897
IsModified property,  307, 308
isolated storage,  234
IsPressed property,  650–652

property-changed handler,  650–652
IsReadOnly property,  185
IsSticky property,  270
IsTextSelectionEnabled,  862
IsThreeState property,  161
ISurfaceImageSourceNative interface,  809
ItemClick events,  599, 602, 605–606
ItemCollection class,  464

Add method,  468
ItemContainerStyle property,  536

Style on,  536
ItemContainerTransitions property, animating,  376
items

displaying,  600
grouping,  582, 608–612

ItemsControl class,  141, 464
class hierarchy,  463
ItemContainerStyle property,  536
ItemsPanel property,  481
ItemsSource property,  472–473
in ScrollViewer,  465–466
templates for,  535–538

items controls,  464
bar charts,  497–499
changes to collection, recognizing,  475
items, adding,  468–469
items, displaying,  466–467
objects, adding,  464

	 LinearGradientBrush class

	 1079

items controls (continued)
panels, specifying,  481
SelectorItem derivatives and,  535
String items in,  465
tap or click interfaces,  476

ItemsPanel property,  481
ItemsPanelTemplate class,  449, 481–484, 500–502
ItemsPresenter element,  535
ItemsSource property

binding to collections,  473
setting,  471
setting in code,  472–473

ItemTemplate property,  479
DataTemplate, setting to,  466–467

ITextCharacterFormat interface,  877, 883
ITextDocument interface,  877

Selection property,  877
ITextParagraphFormat interface,  877

Alignment property,  884
ITextProvider interface,  184, 890
ITextRange interface,  877
IUICommand interface,  222–223
IUICommand objects,  222

obtaining with await operator,  229
IValueConverter interface,  110, 155
IValueProvider interface,  184, 890
IVector<T> interface,  475

J
JiggleButton class,  386–387
JiggleButtonDemo program,  386–387
Jobs, Steve,  1013

K
Kernighan, Brian,  3
keyboard accelerators,  572–575
keyboard focus,  140
keyboard input,  184–187, 630, 887–892

button appearance and,  513
touch keyboard,  184

keyboard interface
of context menus,  264
SmallChange property,  145

Key class,  650–655
Key events,  69
key frame animations,  367–371

Discrete item,  368
KeyModifiers property,  618
KeypadWithViewModel project,  214–219
KeyTime property,  369

KeyUp and KeyDown events,  184, 887
KeyUp events,  887
key values collections,  474

L
lambda functions

for Action arguments,  250
async declarations,  251, 256
for callback methods,  228, 254
nesting,  228
in printing logic,  912, 922

LanguageFontGroup class,  315
language interoperability,  129
laptop coordinate system,  961
LargeChange property,  145
LastKeyVisible property,  654
layout

aspect ratio, adjusting to,  152–154
change events,  86
changes, and animation,  331
Grid for,  146
invalidating,  489
margins in panels,  490
orientation changes, adjusting to,  152–154
Panel child classes,  7
process of,  937
templates aware of,  539

LayoutAwarePage class,  581
LayoutKind enumeration,  781
layout properties,  139
layout system

in Canvas,  137–138
child-driven,  97, 98
dynamic nature,  97
parent-driven,  97, 98

LayoutTransform property,  382–383
LayoutUpdated events,  86
Left and Right arrow keys as accelerators,  575
libraries,  127–129

Class1.cs files,  127
Class Library template,  129
implicit styles in,  530
name,  127
rebuilding,  130
referencing,  128, 130, 820
sharing,  127, 130–131
user controls, adding,  127

LinearGradientBrush class,  31–32
animating,  370–371
element size and,  52
EndPoint property,  33

LinearGradientBrush class (continued)

1080

LinearGradientBrush class (continued)
GradientStops property,  33, 36, 39
sharing,  44–47
StartPoint property,  33
in XAML,  36

LinearPointKeyFrame class,  368, 369
LineBreak element,  43
LineCapsAndJoins project,  178–181
LineCapsAndJoinsWithCustomClass project,  182–183
Line element,  101, 305

antialiasing,  758
erasing,  1024
stroke thickness based on pressure,  636
visible discontinuities,  637
Y1 and Y2 properties,  826–827

LineHeight property,  858
lines

algorithms for WriteableBitmap,  722–747
bitmaps, drawing on,  724–747
dashed lines,  345
dotted lines,  513–514
drawing on SurfaceImageSource,  831–843
rendered,  722–723
rendering,  101
slope-intercept equation,  723
spiraled lines,  647
StrokeStartLineCap, StrokeEndLineCap, and
StrokeLineJoin properties,  177
stroke thickness,  633–637
tapers, smoothing,  637–646

LineSegment class
closing figures with,  642
Point type properties,  361

LineSegment structure,  725
LineStackingStrategy property,  858
ListBox controls,  464

background,  480
horizontal,  482–483
ItemsPanel property,  481
ItemTemplate property,  479
multiple selection,  480
ScrollViewer in,  477–478, 483–484
UniformGrid in,  495–497
virtualization of,  481
width,  477

ListBoxItem class,  535
ListBoxItem style,  536
ListBoxWithItemTemplate project,  479–480, 482–483

debugging code,  481
ListBoxWithUniformGrid project,  495–497
List controls, event IDs in,  652
lists, displaying items in,  791
List<T> collections,  474–475

ListViewBase class,  582
selection support,  599

ListView controls,  582–588, 600–608
grouping items,  608–612
ObservableCollection type,  608–611
with view models,  539

ListViewItem class,  535
LoadAsync method,  238
LoadBitmapAsync method overloads,  770–772
Loaded events,  86

animations, triggering in,  339, 341, 359
of MainPage,  247–248
saving unsaved data during,  248

Loaded handler,  315
anonymous method, defining as,  231
asynchronous methods, calling in,  231
button creation in,  716
controls, initializing,  180
properties, setting,  181
rotate transforms in,  384
Storyboard, starting,  349
translation tags, setting,  394–395

LoadFileAsync method,  241–242
LoadFileFromOpenPicker method,  320
LoadFromStream method,  882, 886
Load method,  293
LoadState method,  581
local namespace declaration,  327
LocalOffset properties,  434
local prefix,  7, 174, 198
local settings, precedence of,  63
local storage

application local storage,  234. See also application
local storage
font files in,  852–856
locating,  240
saving unsaved data in,  245–248

local time,  787–788
obtaining,  802
UTC time, converting,  792

Location capabilities,  672
Location property, bindings on,  805
LoggerControl control,  622–626
logical DPI,  540
LogicalDpiChanged handler,  540–541
Log method,  622–625
LookAtAppBarButtonStyles program,  273–276
LookAtFontMetrics program,  824–831
LostFocus events,  70
LPVOID,  781

	 Matrix property

	 1081

M
MadTeaParty project,  859–861
Main method,  25, 30
MainPage class,  4, 5

Content property,  28, 557
data-sharing code,  898–899
InitializeComponent method,  5
navigating to,  559–560
partial keyword,  5
single instances of,  557, 561

MainPage.g.cs and MainPage.g.i.cs files,  25
Connect method,  72

MainPage.xaml.cs files,  4–5
namespace definitions,  5
using directives,  5

MainPage.xaml files,  4, 6
ManipulableContentControl control,  763
ManipulationCompleted events,  656, 663
ManipulationDelta events,  655, 656

handling,  661, 669
overriding,  660

ManipulationDelta properties,  660
ManipulationDeltaRoutedEventArgs argument,  662–
663

Cumulative property,  663
ManipulationDelta structure,  660

edge-of-screen detection,  665
Expansion property,  660
Scale property,  660
Translation property,  660

Manipulation events,  69, 187, 615, 655–663
centers of scaling and rotation,  661, 673
Container property,  677
cumulative manipulation,  663
horizontal movement,  662
inertia,  663–667
inhibiting,  672
lag time,  616
multiple fingers, consolidating,  616
Pivot property,  677
sequence of,  655–656
Velocities property,  663
vertical movement,  662

ManipulationInertiaStarting events,  655–656
deceleration calculation,  667

ManipulationInertiaStartingRoutedEventArgs class,  664
ManipulationManager class,  675–676, 763–764

creating objects,  765
ManipulationModeCheckBox control,  657–659
ManipulationMode property,  656, 659

All setting,  662, 665
non-default values for,  661

setting,  662, 676
ManipulationModes enumeration,  656

TranslateRailsX and TranslateRailsY,  662
ManipulationStarted events,  655, 656

handling,  669
movement required for,  672

ManipulationStarting events,  655
Container property,  677
manipulations, initializing,  676–677

ManipulationStartingRoutedEventArgs objects,  678
ManipulationTracker program,  656–660
manual animations,  91, 94
ManualBrushAnimation project,  92–93
maps. See also Bing Maps

rotating with orientation of device,  1000–1012
Margin property,  100–101, 121, 858

of ButtonBase class,  160
in custom panels,  490
spacing between paragraphs,  859
TemplateBinding on,  510

margins,  100–101
printable and unprintable areas,  911–914
for printable pages,  922

markup,  31
null, specifying,  68
property settings in,  34–37

markup extensions,  44, 67
Binding,  66–68
RelativeSource,  68
StaticResource,  44, 46, 61
TemplateBinding,  68
x:Null,  68

MarshalAs attribute,  791
Math class

Atan2 method,  724
Ceiling method,  921
Cos static method,  50
Sin static method,  50

Matrix3DHelper class,  430
Matrix3DProjection class,  379, 380

ProjectionMatrix property,  439
transform formulas,  440

Matrix3D structure,  430, 437–447
fields of,  438
inverting,  986, 989–990
mapping to video display,  439
multiplication operator,  447
numbers, specifying,  439
Z values, retaining,  439

matrix multiplication,  413–416
order of multiplication,  415
in TransformGroup class,  418

Matrix property,  427

Matrix structure

1082

Matrix structure,  416
fields of,  437
identity matrix,  416
Identity property,  416
IsIdentity property,  416
OffsetX and OffsetY properties,  416
Transform method,  418
for two-dimensional affine transform,  437

MatrixTransform class,  379
matrix transforms,  377. See also transforms
MatrixTransform structure,  416–417
maxPageHeight value,  920
MaxWidth property,  121
Measure method,  305, 485, 490, 869
MeasureOverride method,  485–486, 489–490

availableSize argument,  486
validity checks,  489
Width and Height, testing for infinity,  486

MediaCapture class
CapturePhotoToStorageFileAsync method,  775
CapturePhotoToStreamAsync method,  775

MediaCaptureInitializationSettings objects,  775
MediaCapture objects,  775
MediaElement class,  22
memory allocations for objects,  366
menus

context menus,  261–264. See also context menus
in previous versions of Windows,  261

MergedDictionaries collection,  47
MergedDictionaries property,  273
message boxes,  221

cancelling,  231–233
MessageDialog class,  221–227

CancelCommandIndex property,  224
cancelling,  232–233
DefaultCommandIndex property,  224
displaying,  223
invoking,  226–227
ShowAsync method,  221

method calls, await operator in,  230
methods

asynchronous,  221–222. See also asynchronous
methods
renaming,  71

Microsoft Expression Blend,  7, 449
Microsoft PixelSense,  837, 843
Microsoft Prism framework,  213
Microsoft Surface,  635, 953, 1013

AxisAngleRotation on,  985
compass direction detection,  976
pointer input,  1015
remote deployment of applications on,  823
SensorRotationMatrix,  981

Microsoft Systems Journal,  83, 148
Microsoft Word, ink capabilities,  1037
MinimumReportInterval property,  959
MinWidth and MaxWidth properties,  147
Möbius, August,  414
Model layer,  193–194
Mode property,  676, 1024

OneTime setting,  199
OneWay setting,  199–200
TwoWay setting,  199

monthly calendars,  928–936
MonthYearSelect control,  930, 932
mouse

buttons, navigating with,  572–575
button states, obtaining,  573
input, distinguishing,  650
Manipulation events from,  656
PointerEntered events,  650
PointerMoved events,  617
Position property,  669
text selection,  862

mouse wheel,  617
movement, smoothing,  970
MoveSelected property,  1029
ms-appdata prefix,  244, 249
MVVM (Model-View-ViewModel) pattern,  193–194

buttons and,  212–213
calling hierarchy,  194
command interface,  212
events,  194
Model layer,  193
for small programs,  193, 200
View,  193
View Model,  193. See also View Model

N
NaiveBorderedText project,  98–99
Name attribute,  23, 69
NamedColor class,  469–470, 807

constructor,  474
IEnumerable interface,  474

namespace declarations,  6–7
local prefix,  7, 198
“x” prefix,  7

namespaces
discovering,  5
System.*,  779
System.* namespaces,  5
using directives,  5
Windows.* namespaces,  5

native code, compiling programs in,  822

	 OnPointerPressed method

	 1083

NativeOrientation property,  554, 957
NativeUp program,  555–556
Navigate method

calling,  570–571
in OnLaunched method,  557
Page Type argument,  557

NavigatingCancelEventArgs,  564
navigation

accelerators,  572–575
back stack,  562–563
cancelling,  564
events,  564–568
forward and back buttons,  558–560
with mouse buttons,  572–575
new page instances, creation of,  561
of pages,  557–562
page shared data,  575–581
state, saving,  568–571
Visual Studio templates,  581–588

NavigationCacheMode property,  561–562
Disabled setting,  564, 566
Enabled setting,  564, 580–581
Required setting,  564

NavigationEventArgs,  564
NavigationMode property,  564
.NET Framework

APIs, access to,  779
asynchronous processing support,  242–243
Dictionary objects,  255
serialization,  592
Stream objects,  244, 686
StreamReader objects,  255
Task-based Asynchronous Pattern,  222

New (file) operations,  318
NewToggle control,  530–535

class definition,  530
DefaultStyleKey property,  530
dependency properties,  531–532

NewToggleDemo project,  534
Newtonian Mechanics (French),  970
Newton, Isaac,  747, 958
NextBytes method,  71
NonAffineStretch project,  442–447
non-affine transforms,  440–447
notifications of data updates,  194–195

O
ObjectAnimationUsingKeyFrames class,  371

commenting out,  283
Object class animations,  331, 371–372

objects,  35
defining as fields,  170
items, controls, adding to,  464
memory allocations for,  366
moving in circles,  358–359
releasing manually,  835
re-using or caching vs. re-creating,  366
setting to properties,  34–37
sharing,  43–47
sharing through data binding,  66–68
transforming,  377. See also transforms

ObservableCollection type,  590–591, 608–611
Octave.xaml file,  652–653
Offset property,  94–95
OffsetX and OffsetY properties,  416
OLED (organic light-emitting diode) technology,  16
OnApplyTemplate override,  521, 532
OnCharButtonClick handler,  167
OnColorChanged handler,  757
OnColorChanged method,  171
OnCreateAutomationPeer override,  184, 890
OnDragThumbDelta method,  300
OnGotFocus adn OnLostFocus virtual method,  516
OnGotFocus and OnLostFocus virtual methods,  140
OnGotoButtonClick method,  559
OnInterpolationFactorChanged method,  999
OnKeyDown method,  184, 307, 630, 887
OnKeyUp method,  184, 887
OnLaunched method,  557

Navigate call,  570–571
SetNavigationState call,  570

OnLaunched override,  29–30
OnLoaded method,  315
OnManipulationDelta method,  660
OnManipulationStarting override,  677–678
OnMenuDelete method,  633
OnMessageDialogShowAsyncCompleted method,  225
On methods,  75–76, 615
OnNavigatedFrom method,  5, 561, 564
OnNavigatedTo method,  5, 84, 561, 564

overriding,  558, 566
OnNavigatingFrom method,  5, 561, 564

overriding,  568
OnPageTapped handler,  79
OnPointerCaptureLost method,  630

overriding,  644–646
OnPointerMoved method,  620, 733, 759

overriding,  621, 1027–1028, 1032
processing,  1016

OnPointerPressed method,  733
keyboard focus,  630
overriding,  620, 1016, 1026–1027, 1031–1032

OnPointerReleased method

1084

OnPointerReleased method
overriding,  621, 644–646, 1033–1034
processing,  620

OnPrintTaskSourceRequested method
handler,  908–909
overriding,  942

OnPropertyChanged method,  196, 198
OnSaveAsAppBarButtonClick method,  710
OnSuspending method,  569
OnTapped method,  140

overriding,  76–78, 133
OnTextBlockTapped method,  78
OnThumbDragStarted method,  300
Opacity property,  17

animating,  345–347
Open buttons,  320–321
open (file) operations,  318
OpenIfExists enumeration,  248
OpenIfExists method,  248
OpenReadAsync method,  238
OperationCanceledException exceptions,  253
OppositelyScaledText project,  397–398
OptionChanged events,  924–925
OptionChanged handler,  925–926, 946
OptionId property,  925
OrderByDescending function,  255
Organize Usings command,  24
OrientableColorScroll project,  152–154
OrientationAndOrientation project,  955–958
OrientationChanged events,  87, 554–556, 954
OrientationChanged handler,  954
orientation, hardware

rotating maps with,  1000–1012
SimpleOrientationSensor,  953–958
Windows compensation for,  955, 957, 966

Orientation property,  297, 311, 954
Horizontal setting,  106, 496–497
of Slider controls,  143
of UniformGrid class,  487, 493
Vertical setting,  130–131

OrientationSensor class,  980–986
instantiating,  983
rotation matrix,  981

orientation, software,  9, 955
application awareness,  554–557
auto-rotation, preventing,  958
of book pages,  870–871
detecting,  958–969
event handling,  87
layout, adjusting,  152–154
maintaining,  554
native,  554
portrait mode,  550

preferences for,  957, 966
preferences, requesting,  556
saving settings,  308
Slider control templates and,  521
of StackPanel,  553
text reformatting for changes,  19

OriginalSource property,  74–75, 618
Oscillations property,  337
OuterColor property,  698
OverflowContentTarget property,  862–863
OverlappedStackedText project,  19–20
override keyword,  76

P
Package.appxmanifest file,  235

application permissions,  894
Location capabilities,  672, 999
Webcam,  772

Padding property,  100–101, 911
TemplateBinding on,  510

Page class,  5
abandoning instances,  561
adding to project,  557
attributes set to,  14
Content property,  37, 97
event handlers, attaching and detaching,  561
Frame property,  557
Loaded events,  86
multiple derivatives,  539
NavigationCacheMode property,  561–562
new instances,  561
OnNavigatedFrom method,  561, 564
OnNavigatedTo method,  561
OnNavigatingFrom method,  561
resources, obtaining and releasing,  561
state, saving and restoring,  564
TopAppBar and BottomAppBar properties,  268

PageHeaderTextStyle,  583
pageHeight value,  920
PageMapping property,  940–942
page-navigation structure,  5
PageNumber property,  910
pages,  539–612

ActualWidth and ActualHeight properties,  541
back stack,  562–563
back stack, position in,  563
Border objects,  911
data, passing and returning,  575–581
dictionary, sharing,  565
events, sequence of,  86
FlipView controls for,  587, 1038, 1043, 1048–1049

	 PathSegment class

	 1085

pages (continued)
initialization,  231
InkManager for,  1014
maxPageHeight value,  920
navigating,  557–562
new instances,  561
orientation for printing,  950
pageHeight value,  920
pagination,  862–877
pagination for printing,  915–921
printable and unprintable areas,  911–914
print margins,  922
print preview,  909–910, 920
ranges of, printing,  937–947
restoration of,  564–568
scaling issues,  545–549
screen resolution issues,  539–545
size, images and,  10
snap views,  549–554
state, saving and restoring,  564
transforms on load,  409–410
transition between,  561
uninitialized,  567
visual tree on,  97

page state
restoring,  568
saving,  564–565, 568–572

PaginateEventArgs,  911
Paginate handler,  909, 914, 915, 934–936

multiple calls to,  910, 917
printer settings, obtaining,  946–947

Paginate method,  917–918
pagination,  862–877

Canvas for,  921
maxPageHeight value calculation,  920
pageHeight value,  920
of print documents,  915–921

Panel class
Children property,  97, 103
classes deriving from,  7, 484–497
class hierarchy,  103
transforms on,  377
visual children,  450

panels,  97–138
Border element,  97–101
Canvas,  132–136. See also Canvas
columns in,  131
custom panels,  484–497
desired height, calculating,  118–119
vs. elements,  14
Ellipse class in,  101–103
flip panels,  434–437
horizontal stacking,  106–108

items, displaying in,  481
library projects,  127–129
nesting,  104, 147
orientation changes and,  97
overlapping elements, preventing,  137
page size changes and,  97
Rectangle class in,  101–103
scrolling,  112–118
StackPanel class,  103–106. See also StackPanel
panel
VariableSizedWrapGrid panel,  130–131
virtualizing,  481–484

ParagraphAlignment enumeration,  884
Paragraph class,  41, 859–861, 873–875
ParagraphFormat property,  877
parallel processing,  222, 243
Parameter property,  564
Parent property,  47
parents

and children, balancing needs,  97
layout relationship,  937

partial keyword,  5
PassData class,  577–578
PasswordBox controls,  184, 187
Paste buttons,  898–899

Ctrl+V support,  902
logic,  900–901

Paste command,  898
PasteFromClipboard method,  1037–1038
Path element,  53–57, 101

antialiasing,  758
brushes, applying,  424
in code,  56–57
Data property,  53
drawing smooth lines with,  640–646
in Grid,  59–60
as ink stroke rendering elements,  1019–1020, 1022
Path=,  453
Stretch property,  55
tick marks,  403–404
transforms, applying,  421–422

PathFigure objects,  53, 54
PathGeometry class,  53

constructing,  642
PathIO class,  243–245

string URIs, passing,  244
path markup syntax

in analog clock program,  403
geometry, defining,  55–57

PathMarkupSyntaxCode project,  56–57
Path property,  68
PathSegment class,  53

Point type properties,  361

Pause method

1086

Pause method,  433
pch.h (precompiled headers) file,  809
PC Settings,  788
pen input,  616

black ink color,  1015
color of stroke,  1014
distinguishing,  650
erasing,  1014, 1023–1029
erasing, enabling,  1024
Grid for preliminary lines and Bézier curves,  1023
PointerEntered events,  650
Pointer events,  617
rendering,  1015
rendering logic,  1033–1034
text,  1014
white background,  1015

PenLineCap enumeration,  178
RadioButton custom control for,  182

PenLineJoin enumeration,  178
RadioButton custom control for,  182

pens,  1013–1056
capacitance pens,  1014
electromagnetic pens,  1014
existing ink and settings, loading,  1045
hold-and-release for right-clicking,  632
InkDrawingAttributes class,  1017–1023
InkManager class,  1014–1017
IsInContact property,  1016–1017
Manipulation events from,  656
polylines, rendering while drawing,  1023
Position property,  669
pressure,  1014–1015, 1019
pressure, ignoring,  1022
rendering segments, obtaining,  1019
selection,  1029–1038
shape and size of tip,  1014
tilt and twist support,  1014
versatility and precision,  1013–1014
YellowPad program,  1038–1056

PenTip property,  1017
Permissions item,  894
Petzold, Charles

3D Programming for Windows,  981
Windows Phone 7.5 astronomy program,  992
Windows Phone 7.5 sensors articles,  953
Windows Phone 7 pagination issues,  877

Petzold.ProgrammingWindows6.Chapter11 library
ArrangeOverride,  492
ByteToHexStringConverter converter,  470
CheckedContent and IsChecked properties,  531
ColorToContrastColorConverter,  494
Measure call,  490
MeasureOverride method,  489–490

NamedColor class,  469–470, 807
namespace declaration,  471
panel size calculations,  491–492
property-changed handler,  487–488
property definitions,  487–488
using directive,  471

Petzold.Windows8.VectorDrawing library
antialiasing,  758
ArcSegment structure,  726–727
IGeometrySegment interface,  724–725
line drawing on bitmap structures,  724–725
LineSegment structure,  725
RoundCappedLine structure,  727–728
RoundCappedPath structure,  728–730
Vector2 structure,  638–646

PhotoFilename property,  595
photos, capturing,  772–777
PhotoScatter program,  763–772

directory structure, displaying,  765–766
ItemTemplate,  766
Manipulation events,  769–770
orientation of items,  764
Picture library access, permission for,  767
thumbnails, replacing with bitmaps,  770–772
Thumbnail type,  769
zIndex property,  765

PickSingleFileAsync method,  237–238, 707
Pictures library,  763–772

access permissions,  767
Camera Roll directory,  773

PieSlice class
animating,  364–367
UpdateValues method,  366

pinch gesture,  112, 655
P/Invoke (Platform Invoke),  779–785

argument definition,  782
data structure equivalence between C# and
Win32,  780–781
extern functions,  782, 783
function declarations,  781–782
LayoutKind enumeration,  781
MarshalAs attribute,  791
StructLayoutAttribute class,  781
structure definition,  782–783
wiki website www.pinvoke.net,  786
wProcessorArchitecture field,  784–785

PitchDegrees property,  980
Pivot property,  677, 678
pixel bits,  684–690

accessing,  683, 686
array size,  686
index,  686
position of,  689

	 Polyline element

	 1087

pixel bits (continued)
premultiplied-alpha format,  684
saving as field,  701
updating,  688

PixelBuffer property,  683, 686
PixelHeight and PixelWidth properties,  684
pixels

device-independent,  545
and points, equivalence,  15

pixels per inch,  539
pixelStream objects,  694
Placement enumeration,  264
PlacementTarget property,  499
PlaneProjection class,  379, 430–434

CenterOfRotationX, CenterOfRotationY,
CenterOfRotationZ properties,  434
GlobalOffset properties,  434
LocalOffset properties,  434

PointAnimationUsingKeyFrames class,  368, 370–371
KeyFrames property,  369

PointCollection,  49
PointerCanceled events,  617
PointerCaptureLost events,  617

responding to,  628–629
PointerCaptureLost handler,  1028
PointerCaptures method,  628
Pointer class,  618
PointerDeviceType property,  618
PointerEntered events,  616, 617, 650–655
PointerEventArgs class,  617
Pointer events,  69, 615, 616–619

dictionary for,  618–619. See also dictionary
for finger touches,  616–617
ID number,  615
logging sequence of,  622–628
missing data,  628
for pen input,  617
tracking fingers with,  615–616
for XYSlider control,  749–752

PointerExited events,  616, 617, 650–655
PointerId property,  618
PointerInfo class,  622
PointerInfo structure,  634–635
pointer input,  615. See also mouse; pen input; touch

all, supporting,  1016
Bézier curves,  1018
on elements,  627
receiving,  615
tracking,  628

PointerLog program,  622–628
PointerMoved events,  616, 617

Angle value,  649
distinguishing between mouse and pen input,  627

finger outside page,  622
frequency,  637
LastPoint value,  649

PointerMoved method, RenderOnBitmap calls,  762
PointerPoint class,  618
PointerPoint objects,  1016
PointerPointProperties class,  619, 633–634, 1014

IsBarrelButtonPressed property,  1014
IsEraser property,  1014
IsInverted property,  1014

PointerPressed events,  572–573, 616, 617
CapturePointer calls,  628
topmost element, association with,  631

PointerPressed handler,  573, 631
Pointer property,  618
PointerReleased events,  616, 617

missing,  628
PointerRoutedEventArgs,  617–618, 1016

GetCurrentPoint method,  618
GetIntermediatePoints method,  618
Handled property,  618
KeyModifiers property,  618
members,  618
OriginalSource property,  618
Pointer property,  618

pointers. See also mouse; pens; touch
capture by elements,  615, 622–630, 634–635
capturing,  1023, 1027
to COM objects,  810
dictionary information,  1024
to DirectX objects,  835
position, calculating,  669
position, returning,  618

PointerWheelChanged events,  617
PointKeyFrame class,  369
Point property

animating,  331, 361–363
of XYSlider,  667

points, coordinate,  960
specifying,  135

Points property,  49–50
Point structure,  49
points, typeface, equivalence to pixels,  15
Point type,  33
PolyBezierSegment,  1022
Polygon class,  101, 188
Polyline element,  48–49, 101

antialiasing,  758
Bézier curves, converting to,  1021
creating,  630
dictionary, adding to,  630
in finger-painting projects,  619–646
intializing,  630

Polyline element (continued)

1088

Polyline element (continued)
Points property,  49–50
for selection,  1031–1032
Stretch property,  51
StrokeThickness property,  634
whirligig functionality,  647–649

Popup class,  261, 265–268, 286–293
with application bars,  285–286, 289–290
as child of UserControl,  268
Closed event handler,  327
dismissing,  267
displaying popup,  267
HorizontalOffset and VerticalOffset properties,  267
IsLightDismissEnabled property,  267, 897
Opened and Closed events,  292
positioning,  267
for Settings list items,  894
UIElement Child property,  265

PopupMenu class,  261–264, 632
with application bars,  285–286, 289–290
constructing in code,  262
Opened and Closed events,  292

popups
context menus,  261–264. See also context menus
dismissing,  267, 292, 895, 897
Popup class,  265–268
PopupMenu class,  261–264
positioning,  291

PortraitBackButtonStyle,  586
position

calculating,  972
two-dimensional,  970

Position property,  618, 669, 1019
scaling and rotation centers, determining,  673

Posterizer program,  714–721
application bar,  714–716
control panel,  714–716
Image element,  714–716
pixel arrays,  714
RadioButton event handler,  719–720

Potter, Beatrix,  119, 937
PowerEase class,  357
Power property,  357
PreconfiguredAnimations project,  373–376
presentation layer,  193
Pressure property,  634

of InkStrokeRenderingSegment,  1019
stroke thickness based on,  636

pressure, touch,  1014–1015, 1019
ignoring,  1022

PreviewPageCountType enumeration,  948

PrimitivePad program,  235–240
Click handler for Open button,  237–238
file-saving logic,  238–239, 244
text wrapping option,  239–240

primitive types,  24, 44
PrintableClassHierarchy program,  915–921
PrintableTomKitten program,  942–947
PrintCustomItemListOptionDetails,  944
PrintDocument class,  904, 906

deriving classes from,  948
event handlers,  906
InvalidatePreview method,  927

PrintDocument method,  909
printers

listing,  905, 908
number of copies,  923
page orientation,  923
printable area,  911–912
printer-specific panes,  909
resolution,  904, 911
settings,  909
setup customization,  922–923
text-entry fields for,  944–945

printing,  904–911
application registration,  904
asynchronous jobs,  948
big jobs,  948
bitmaps,  948–951
Border objects for pages,  911
custom properties,  911, 922–927
enabling,  932–933
FingerPaint projects,  948–951
font size,  910
margins,  911–914
monthly calendars,  928–936
number of pages,  909
page orientation,  950
page preview,  909–910, 920
page ranges,  937–947
pagination process,  915–921
printable and unprintable areas,  911–914
StackPanel on pages,  915
text color,  910

PrintManager,  904
obtaining current instance,  904

PrintMonthlyPlanner program,  928–936
PrintOrientation enumeration,  923
PrintPageDescription structure,  911

ImageableRect property,  911
PrintPrintableArea program,  912–914
PrintTask class,  904

saving as local variable,  922

	 QuinticEase class

	 1089

PrintTaskOptionChangedEventArgs class,  925
PrintTaskOptionDetails objects,  922–923
PrintTaskOptions class,  904

GetPageDescription method,  911
PrintTaskOptions property,  911
PrintTaskRequest class,  904
PrintTaskRequested events,  907
PrintTaskRequested handler,  904–907, 924, 934, 950

printer setup customization in,  922–923
private fonts,  847–850
PrivateFonts project,  847–850

first column,  849
font file location, specifying,  848
referencing files in local storage,  855–856
second column,  850–852
third column,  853–854

private keyword,  71
private methods,  834
procedural method calls, interaction between MVVM
layers,  194
ProcessNewOrientationReading method,  997
ProcessorType enum,  785
ProcessPointerDown method,  1016
ProcessPointerUpdate method,  1016

enclosure line,  1029
ProcessPointerUp method,  1016
program logo bitmaps,  13
programs

compiling and running,  8
running in simulator,  9
running outside debugger,  9
Settings charms,  894–897
startup,  29–30
structure of,  221
terminating,  9

ProgressBar controls,  527
Value property,  141–142

Progress objects,  254
ProgressRing controls,  142
Project Gutenberg,  119, 346
Projection class, classes deriving from,  379
ProjectionMatrix property,  439
Projection property,  377

setting to derivatives of Projection class,  379
projection transforms,  380, 430–437
projects, Visual Studio

Assets folder,  9, 13
bare essentials for,  29–30
files in,  4
images, adding,  12
Images directory,  12
platform options,  823
platform, specifying,  822–824

in solutions,  3
promises (future objects),  223
Propeller project,  395–396
properties

attached properties,  132–136
dependency properties,  15. See also dependency
properties
handlers,  223
linking,  66
propagating in visual tree,  14
recursive changes in,  200–201
setting,  15
specifying independently of class,  62
static get-only,  15

property attributes,  35
PropertyChangedEventArgs class,  195
PropertyChanged events,  195–198

ignoring while setting properties,  211
property-changed handlers,  173, 195, 209–210,
487–489

avoiding,  175–176
calls to instance handler,  297–299

property-changed methods,  171
property elements,  35

content before or after,  40–41
Tag property,  178

property-element syntax,  34–37
quotation marks,  67
start and end tags,  35
with Value property,  62

property inheritance,  21, 63–64
property initialization,  33

C# 3.0 style,  24–25
properties, accessing,  170

PropertyMetadata constructor,  168–169
PropertyName property,  195
Property property,  171, 173
protected constructors,  117
pseudo-3D transforms,  380. See also projection
transforms
public constructors,  832
public methods,  835

Q
quadkey numbering,  1006–1009
QuadraticBezierSegment class,  361
QuadraticEase class,  357
QuarticEase class,  357
quaternions,  981
QuickNotes project,  249
QuinticEase class,  357

RadialGradientBrushDemo project

1090

R
RadialGradientBrushDemo project,  696–703

dependency properties,  696–698
MainPage.xaml file,  702
RefreshBitmap method,  699–701

RadialGradientBrushSimulator class,  696–702
animating,  702
instantiating,  702

radians variable,  50
RadioButton controls,  161, 177–183

in Border,  161
Checked handlers,  265, 274
Content property,  160
creating,  716
customizing,  182–183
GroupName property,  161
managing,  325–327
properties, setting,  180–181
styling,  285
Tag property,  576
in UserControl,  289

RainbowAnimation project,  369–370
RainbowEightTransform project,  423–427
RaiseCanExecuteChanged method,  214
RandomAccessStreamReference,  244

creating,  900
Random objects, NextBytes method,  71
RangeBase controls,  141
RangeBaseValueChangedEventArgs,  143
ranges, Slider controls for,  142–145
raster lines,  723
ReadBufferAsync method,  244
ReadingChanged handler,  959
ReadLinesAsync method,  243
Read methods,  238
ReadTextAsync method,  243
ReadTextAsync method calls,  248
RecalculateValue method,  669
Rectangle class,  101–103

properties of,  103
RectangleGeometry transforms,  421–422
redraw methods,  303
RedrawRuler,  305
reentrancy,  319
ref keyword,  810–811
ReflectedAlphaImage project,  692–695
ReflectedFadeOutImage project,  398–400
reflection,  113–114

in easing animations,  354
obtaining properties,  468
simplifying,  129
updating properties when properties change,  796

ref new keyword,  810–812
RefreshBitmap method,  698–701
RefreshDisplay method,  1010–1011
RegisterAttached method,  168
Register method,  168
RelativeSource bindings,  506

syntax,  480
RelativeSource markup extension,  68, 204
RelativeTransform property,  422
ReleasePointerCapture method,  628
ReleasePointerCaptures events,  629–630
ReleasePointerCaptures method,  628
Remove method,  567
Remove Unused Usings command,  24
RenderAll method,  1033
RenderBeziers method,  1034–1036
Rendering events,  329, 802

handling,  841
for long-running jobs,  250

Rendering handler,  92–93, 95–96
RenderOnBitmap method,  729–731, 759–762
RenderStroke method,  1034–1036
RenderTarget property,  1040
RenderTransformOrigin property,  377, 384, 387, 396,
400

specifying,  420–421
RenderTransform property,  377, 382, 387

setting to Transform derivative,  378, 379
TransformGroup setting,  673

RepeatBehavior attribute,  335–336, 341
RepeatButton controls,  161
RequestedTheme attribute,  16
resolution

of printers,  904, 911
scaling and,  545
for snap modes,  551

Resolve command,  23
ResourceDictionary class,  43

as root element,  46
resources

binding converters,  111–112
ControlTemplate as,  503
defining,  46
including in projects,  47
predefined,  47
referencing in bindings,  198–199
sharing,  43–48
templates as,  449
View Model as,  198, 206

Resources collection, accesing objects in,  204
Resources dictionary

keys,  46
placement in XAML file,  46

	 rotation

	 1091

Resources dictionary (continued)
referencing from code,  47
retrieving items,  47
x:Key attribute,  44

Resources property,  43–44, 44, 387
Resources section

animation definitions in,  330
classes in,  198
DataTemplate definition in,  454
MergedDictionaries property,  273
StandardStyles.xaml,  271

Resume method,  433
Resuming events,  246–247

logging,  247–248
retained mode graphics system,  83
ReturnData class,  578
reverse painting,  758–762
ReversePaint program,  758–762
RgbBarChart project,  497–499
RGB (red, green, blue) color,  17

HSL, conversion routines,  747–749, 755–756
RgbViewModel class,  198
RichEditBox controls,  184, 877–886

file loading and saving option,  877
rich text,  845. See also text

Glyphs element,  850–852
paginating,  862–877
paragraph formatting,  858–861, 872–875
private fonts,  847–850
RichEditBox,  877–886
RichTextBlock,  858–861
text input,  887–892
text selection,  862
typographical enhancements,  856–858

RichTextBlock element
Blocks property,  858
ContextMenuOpening events,  862
HasOverflowContent property,  862
InlineUIContainer and,  861
Measure pass,  862, 869
OverflowContentTarget property,  862–863
pagination and overflow,  862–869
paragraphs,  858–861
repaginating on orientation changes,  871
in ScrollViewer,  859–861
SelectedText property,  862
SelectionChanged events,  862
SelectionEnd property,  862
SelectionStart property,  862
SizeChanged handler,  868

RichTextBlockOverflow element,  862–869
adding and removing as needed,  875
generating in code,  867

HasOverflowContent property,  862
hidden,  866
OverflowContentTarget property,  862
repaginating on orientation changes,  871

RichTextColumns class,  867
RichTextEditor project,  878–887

Bold, Italic, and Underline properties,  883
ComboBox handler,  884
file-saving and loading logic,  885–887
FontStyle property,  883
FormatRtf flag,  886
LoadFromStream and SaveToStream methods,  882
paragraph formatting,  882, 884
Suspending handler,  880, 882
text formatting buttons,  880
text-formatting items, initializing,  882–883

right-hand rule,  960
RightTapped events,  69, 262, 615
RightTapped handler,  262, 265–267, 631
Ritchie, Dennis,  3
RotateAroundCenter project,  384–386
rotate gesture,  655
RotateTheText project,  381–384
RotateTransform class,  379

Angle property,  378, 380
CenterX and CenterY handlers,  385
CenterX and CenterY properties,  383–384
RenderTransform property,  382
transform formulas,  415

RotatingMap program,  1000–1012
longitude and latitude calculations,  1007–1008
MainPage constructor,  1002
map tiles,  1000–1002
number of tiles to display,  1009
quadkey construction,  1008–1009
Web service access,  1003–1004
zoom buttons,  1011–1012

rotation,  380–386
2D elements in 3D space,  378, 431
angle of, calculating,  841
Angle property, bindings on,  380–381
around Z axis,  968
centered,  673–676
center of rotation,  378, 383–386, 391–396
composite transforms,  391
direction of,  431
of images,  392–393
of images at save,  712–714
MatrixTransform for,  417
origin,  383
RenderTransformOrigin property,  384
single-finger,  676–682

rotation (continued)

1092

rotation (continued)
three-dimensional,  379, 976–986. See also three-
dimensional rotation
transform formulas,  411–412

rotation axis,  379–380, 431
RotationBehavior property,  664
RotationCenterDemo project,  394–395
rotation matrices,  981
rotation of device, counteracting,  555
RotationX, RotationY, RotationZ properties,  431

animating,  431–434
RoundCappedLine structure,  727–728
RoundCappedPath structure,  728–730
RoutedEventArgs class,  75
routed event handling,  72–78

OriginalSource property,  75
RoutedEvent property,  360
routed events

Pointer events,  617
PointerPressed events,  631

RoutedEvents projects,  72–83
AddHandler method,  79
event handlers, sharing,  72–73
Grid background color changes,  76–77
HorizontalAlignment and VerticalAlignment, default
values,  81–82
no event handlers in XAML file,  75
OnTapped method,  76
OnTextBlockTapped method Handled property,  78
separate processing for events,  80–81
Tapped events on TextBlocks,  77
Tapped handler on parent element,  74

RoutedEvent type,  79
routed input handling,  74–75
RowDefinition objects,  146

MinHeight and MaxHeight properties,  147
RowDefinitions collection,  146
RTF files,  877

loading and saving,  882
RudimentaryTextBox control,  888–892

OnCreateAutomationPeer override,  890
RulerContainer controls,  301

Child property,  301
RunAsync method,  225
Run class,  42

mimicking with TextBlock elements,  108–110
Text property,  41–42

Run method,  250
Run property, bindings on,  87–89

S
Samsung 700T tablet,  1013–1014

SensorRotationMatrix,  981
Save As buttons,  318–319
Save As dialog box,  318
Save buttons,  318–319
SaveState method,  581
SaveStatePage class,  565–568
SaveToStream method,  882, 886
ScalableInternationalHelloWorld program,  87
Scale property,  660
ScaleToBitmap method,  731
ScaleTransform class,  379, 396–400

CenterX and CenterY properties,  398, 411
ScaleX and ScaleY properties,  396, 411
transform formulas,  411, 415

scale transforms,  396–400
center point,  398
composite scaling formulas,  411
negative scaling factors,  398
skew, combining with,  419–421

ScaleX and ScaleY properties,  396
scaling,  545–549, 993

centered,  673–676
isotropic scaling,  660, 674

scaling center,  398, 411
for touch elements,  673–676

scan lines,  723–724
horizontal boundary lines,  725
updating,  731

screen resolution,  539–545
scRGB color space,  17
ScrollBar controls,  112

template for,  142
Value property,  141–142
visibility,  113

scrolling
horizontal,  113, 131, 496, 598
ScrollViewer for,  114
vertical,  113, 119, 496

ScrollViewer,  112–118
Content property,  112
desired height, calculating,  118–119
HorizontalAlignment setting,  123
inertia and bounce,  114
ItemsControl in,  465–466
in ListBox controls,  477–478, 483–484
pinch interface,  112
RichTextBlock in,  859–861
in TextBox controls,  185

sealed keyword,  129

	 Settings charms

	 1093

secondary threads,  221, 224
animations in,  331
long-running jobs in,  250
transform animations in,  382

SecondPage class,  557–559, 566
Seek calls,  687
Segments property,  53
SegoeSymbols project,  277–283

characters, specifying,  282
DoubleToStringHexByteConverter class,  278
Grid,  278–280
ValueChanged handler,  281

Segoe UI Symbol font,  271–272, 276–283
emoji characters,  276
emoticon characters,  277
folder icon,  767
miscellaneous symbols,  276
Style definitions,  272
transportation and map symbols,  277

SelectedIndex property,  476
SelectedItem objects,  479
SelectedItem property,  476

as binding source,  477
Selected property,  1029
SelectedText property,  184, 862
SelectedValuePath property,  478–479
SelectedValue property,  477, 479
selection

highlighting,  535
item clicking, enabling,  599
in ListViewBase,  599
of pen input,  1029–1038
selected items, highlighting,  1029
by swiping,  582
vs. tapping,  476
turning off,  599

SelectionChanged events,  185, 477, 862
handling,  876
of RichTextBlock,  862

SelectionEnd property,  862
SelectionMode property

Extended setting,  480
Multiple setting,  480, 599
None setting,  599

Selection property,  877
SelectionStart and SelectionLength properties,  184–
185, 862
SelectionStates group,  536
Selector class,  464, 535

SelectedIndex property,  476
SelectedItem property,  476
SelectedValue property,  477
SelectionChanged events,  477

SelectorItem class,  535
SelectWithLine method,  1029
SelectWithPolyLine method,  1029
semantic zoom,  582
sender argument, casting,  72, 73, 151
SensorQuaternion class,  980–981
SensorRotationMatrix class,  980–981

as identity matrix,  981
sensors,  953–1012

accelerometer,  958–969
Compass,  974–976
Geolocator,  999–1012
of horizontal coordinate,  987–999
inclinometer,  976–980
of magnetic north and true north,  974–976
members,  959
OrientationSensor,  980–986
SimpleOrientationSensor,  953–958
software interface,  959

serialization,  592
set accessors,  26, 170

functionality,  201
protected,  198, 200, 311
public,  202–204
SetProperty calls,  202

SetBinding method,  67
SetBitmap method,  899–900
SetBubble method,  968
SetContent method,  899
SetCrossHair method,  669
SetDefaultDrawingAttributes method,  1018
SetDefaultXamlFile method,  315
SetNavigationState method,  568–569
SetPixelData method,  712
SetPreviewPageCount method,  910, 948
SetPreviewPage method,  910
SetProperty method,  202
SetSource method,  683, 692

IRandomAccessStream objects, passing in,  694–695
SetTarget property,  339
Setter class

for controls,  503
tags,  61
Value property,  62

settings
precedence of,  63
storing,  308. See also applications

SettingsAppBarButtonStyle style,  286
Settings button,  286
Settings charms,  894–897

commands, adding to Settings pane,  896
PC Settings program,  520
Permissions item,  894

SettingsDialog class

1094

SettingsDialog class,  322–327, 804–807
SettingsPane class,  896

Show method,  896
SetValue method,  26

calling,  135
Shaken events,  966
Shape class,  48

classes deriving from,  101
Fill property,  101
Stretch property,  51, 58, 102
Stroke property,  101
StrokeStartLineCap, StrokeEndLineCap, and
StrokeLineJoin properties,  177
StrokeThickness property,  101

shapes, filling,  723–724
Shapes library,  48
Share charm,  898–902

hooking into,  903
Share providers,  903

SharedBrush project,  44–47
SharedBrushWithBinding project,  66–68
SharedBrushWithStyle project,  60–64

Resources section,  60–61
SharedStyleWithDataTemplate project,  455–456
Share Targets,  903
SharpDX library,  808
shearing,  406
ShowAsync method,  221–223, 263, 632

Point value,  263
ShowForSelectionAsync method,  264
Show method,  896
ShowPrintUIAsync calls,  929–930
SilasMarner program,  870–877

page fraction,  872
Simonyi, Charles,  780
SimpleAnimationCode project

Click handler,  339
XAML file,  338

SimpleAnimation project,  330–333
SimpleColorScroll project,  148–151
SimpleCompass project,  974–976
SimpleContextDialog project,  265–268
SimpleContextMenu project,  262–264
SimpleEllipse project,  101–102
SimpleHorizontalStack program,  106–108
SimpleInking program,  1015–1022
SimpleKeyFrameAnimation project,  367–369
SimpleKeypad project,  163–167
SimpleListBox project,  477–478
SimpleOrientation enumeration,  954
SimpleOrientationSensor class,  953–958

Accelerometer, correspondence between,  965
current orientation,  954

DisplayProperties.CurrentOrientation,
correspondence between,  957
GetDefault method,  954
instantiating,  953–954
instantiating as field,  956

SimplePageNavigation project,  557–562
forward and back buttons,  558–559

SimpleProjection project,  379–380
SimpleRotate project,  378
SimpleVerticalStack program,  103–105
SineEase function,  358
SingleFingerRotate project,  677–678
singleton pattern,  474
SizeChangedEventArgs,  85
SizeChanged events,  84–85
SizeChanged handler,  84, 190, 540–541, 742–743,
873–876

in code,  85
for Grid,  303

SkewPlusSkew project,  407–409
SkewSlideInText project,  409–410
SkewTransform class,  379, 406–409

AngleX and AngleY properties,  406–409
transform formulas,  412, 415

skew transforms,  406–409
scaling, combining with,  419–421
transform formulas,  412

SliderBindings project,  144–145
Slider controls,  139, 141–145, 154–157

Background and Foreground properties,  145, 754
barebones template,  522–524
bindings to Value properties,  144–145
ControlTemplate,  754
default height and width,  143
default manifestation,  142
default range,  143
IsDirectionReversed property,  145
LargeChange property,  145
manipulating,  143–144
Margin properties,  158
Minimum and Maximum properties,  143, 158, 278
Orientation property,  143
sketching with,  157–159
SmallChange property,  145
spring-loaded slider,  524–527
StepFrequency property,  145
template for,  521–529
thickness,  143
Thumb,  523
ThumbToolTipValueConverter property,  155–157
TickFrequency and TickPlacement properties,  145
tooltips,  154–157
ValueChanged event,  140, 143

	 storage

	 1095

Slider controls (continued)
ValueChanged event handler,  142, 151, 156, 281
Value property,  141–142, 142, 143
width,  523

SliderEvents project,  142–143
SmallChange property,  145
smart pointers,  810
Smooth Bézier,  345
smoothing

line taper,  637–646
movement,  970

SnappedBackButtonStyle,  586
SnappedPageHeaderTextStyle,  583
snap views,  495, 549–554, 604

adjusting to,  154
landscape mode,  551
Snapped state,  583

SolidColorBrush,  31
animating,  361
bindings on,  472, 478
Color property,  157
definitions in themeresources.xaml,  520
Highlight color,  47
in XAML,  34

Solution Explorer
library projects, adding,  127
project files,  3

solutions, Visual Studio
Intermediate Language, compiling in,  822
libraries, adding,  127, 130–131
projects in,  3
referencing,  470–471
Solution Name,  3

SourcePageType property,  564, 579
Source property,  13, 27, 28, 199, 200, 609–611, 831
Span class

Inlines property,  42
shortcut classes,  42–43

SpeedometerProgressBar project,  527–529
SpeedRatio property,  337–338
SpinPaint project,  836–843
Spiral program,  49–51
SplineColorKeyFrame class,  371
SplineDoubleKeyFrame class,  371
SplinePointKeyFrame class,  369, 371
Split App projects,  539, 581, 867
SplitContainer class,  295

bindings to the Orientation and
SwapEditAndDisplay properties,  313

Split method,  710
SpreadMethod setting,  425
Springiness property,  337
SpringLoadedSlider project,  524–527

SquaringTheCircle project,  361–363
sRGB (standard RGB) color space,  17
stack,  562
StackPanel panel,  103–106

background,  105
border,  266
building,  123–124
Buttons in,  265–266
centering,  123
children, arrangement of,  97, 105
children, sizing,  487
desired height, calculating,  118–119
displaying items in,  482
height,  107–108
HorizontalAlignment and VerticalAlignment
properties,  105–106, 108
horizontal stacking,  106–108
Image elements in,  119–122
lists, displaying,  258–260
MaxWidth property,  121
nesting,  123–124
orientation,  553
Orientation property,  106–107
RadioButtons in,  266
scrolling,  112–118
text wrapping,  119
vertical stacking,  103–105
width,  106

StackPanelWithScrolling project,  113–115, 118
StackPanel in ScrollViewer,  113

StandardPrintTaskOptions class,  923
StandardStyles.xaml file,  46, 60, 271

application bar button styles, listing,  273–276
BackButtonStyle,  585
font, font color, and font size styles,  878
PageHeaderTextStyle,  583
PortraitBackButtonStyle,  586
SettingsAppBarButtonStyle style,  286
SnappedBackButtonStyle,  586
SnappedPageHeaderTextStyle,  583
TextBlock styles,  65

Start Debugging command,  8
StartPoint property,  33
StaticResource markup extension,  44, 46, 61
StepFrequency property,  145
Stop Debugging command,  9
Stop method,  433
storage

application isolated storage,  249, 308
application local storage,  234. See also application
local storage
bulk access,  235

StorageFile objects

1096

StorageFile objects,  234, 237
ContentType field,  711
creating,  249, 736

StorageFolder class,  234
GetFilesAsync method,  767

StoreAsync method,  239
Storyboard class

animating children of,  331
AutoReverse property,  350
Begin method,  433
Children property,  337
class hierarchy,  337
duration,  350
Pause method,  433
RepeatBehavior property,  350
Resume method,  433
reusing in animations,  339
SetTarget property,  339
Stop method,  433
TargetName property,  331, 337
TargetProperty property,  331, 337
TargetProperty property, animating,  347–350
triggering,  332, 359
Triggers section, defining in,  372
in visual states,  516

Stream objects,  237
disposal,  238
loading and saving to,  877
saving as field,  701
writing byte array to,  686–687

StreamReader objects,  255
StretchDirection property,  59
StretchedSpiral project,  51–52
Stretch property,  10–11, 51, 52, 55, 58

None setting,  11, 104, 994
of Shape class,  102
Uniform setting,  10–11, 102, 104–105
UniformToFill setting,  11–12, 102

Stretch settings,  98
String class,  812

Split method,  710
strings, special characters,  17–18
StrippedDownHello project,  29–30
StrokeDashArray property,  343, 403
StrokeDashCap property,  343
StrokeDashOffset property, animating,  343–344
StrokeEndLineCap property,  177–183, 636
StrokeLineJoin property,  177–183
Stroke property,  49, 101
strokes

rendering,  1033–1036
selecting,  1029–1038

StrokeStartLineCap property,  177–183, 636

StrokeThickness property,  49, 101, 634
animating,  342–343
calculating,  345

StructLayoutAttribute class,  781
StudentBody class,  590–591

accessing through bindings,  597
Students property,  595

StudentBodyPresenter class,  592–594, 611
instantiating,  594
StudentBody property,  594

StudentBody property,  594
Student class

FullName property,  595
PhotoFilename property,  595

StudentGroup class,  609
StudentGroups class,  609–611
Student objects, displaying,  596
Students property,  595
Style class,  60

BasedOn property,  63
for controls,  141
ControlTemplate as,  506–507
for custom controls,  530
default,  520
on ItemContainerStyle property,  536
for ListBox items,  536
Setter tags,  61
TargetType attribute,  61
Template property, defining,  503
templates defined in,  455
templates, referencing,  500
x:Key attribute,  61, 64

styles,  60–65
AppBarButtonStyle style,  271–276
App.xaml, definitions in,  937
brushes, defining with,  62
defining in code,  62
dependency properties, targeting,  63
for images,  120–121
for text,  120–121
implicit styles,  64–65, 68, 459, 530
inheritance of property settings,  63–64
keys,  64
referencing,  61
SettingsAppBarButtonStyle,  286
sharing,  43
TextBlock styles,  65

StyleSimulations enumeration,  851
stylus,  1013. See also pens
SurfaceImageSource class,  808

line drawing on,  831–843
SurfaceImageSourceRenderer class,  831–836, 838
surrogates,  277, 281

	 text. See also fonts; rich text

	 1097

SuspendingDeferral objects,  248
Suspending events,  246–247, 288

logging,  247–248
Suspending handler,  571–572, 880
SuspendResumeLog program,  247–248
SuspensionManager class,  581
suspension, saving settings on,  742
SwapEditAndDisplay property,  311
swiping,  599

disabling,  599
SystemInfoPInvoke project,  782–785
SYSTEM_INFO structure,  780
System.IO namespace,  233

Path class,  57
System.* namespaces,  5, 779
System.Runtime.InteropServices namespace,  781
System.Runtime
.InteropServices.WindowsRuntime namespace,  686
System.Threading.Tasks namespace,  222
SYSTEMTIME structure,  788
SystemTimeToTzSpecificLocalTime function,  788

T
TabbableTextBox class,  306–307

GetPositionFromIndex method,  307
IsModified property,  307

Tab key
detecting press of,  306
keyboard input focus,  144
navigating with,  140, 268

tablets
compass orientation,  974–976
coordinate system,  960
display sizes,  549
geographic location,  999–1012
orientation indicators, correspondence
between,  957
SensorRotationMatrix,  981
sensory hardware,  953–1012
yaw, pitch, and roll angles,  976–980

TabSpaces property,  307, 325
Tag property,  167, 177–183

as property element,  178
setting,  182

TapAndShowPoint project,  133–136
TappedEventHandler,  70
TappedEvent property,  79
Tapped events,  69–72, 615
Tapped handler,  72–73, 475–476
TappedRoutedEventArgs class,  74–75

OriginalSource property,  74

tapping
positioning elements at,  133–135
vs. selecting,  476

TAP (Task-based Asynchronous Pattern),  222
TapTextBlock program,  70–72
TapToFlip project,  434–437

Storyboard definitions,  435–436
TargetName property,  331, 337
target properties of animations,  330

releasing,  334
TargetProperty property,  331, 337

animating,  347–350
TargetType property,  61, 65, 503, 504
TaskCanceledException exceptions,  232
Task class,  222, 242

AsAsyncAction method,  243
Run method,  250–251
Run method with await operator,  256
WaitAll method,  1004
Yield property,  259–260

tasks
cancelling,  252
progress, reporting,  253–254

Task<string> type,  242
TemplateBinding markup extension,  68, 506

on Background property,  508
Templated Control projects,  530
TemplatedParent,  480
Template property

of Control class,  139, 502, 503
as property element,  503

templates,  329, 449
binding converters in,  462
button visual states,  513–520
ControlTemplate class,  502–512
default,  520
empty tags in,  515
generic.xaml file,  520–521
for ItemsControl derivatives,  535–538
layout-aware,  539
named parts,  521
selected states, defining,  536
sharing,  454
for Slider controls,  521–529
Style, defining in,  455
Style, referencing in,  500
visuals, dynamically updating,  456
Windows Runtime Component,  808–809

Tenniel, John,  345, 859
text. See also fonts; rich text

animating,  330–333
ASCII character codes,  277
centering,  8–9

text (continued)

1098

text (continued)
character formatting,  880
characters, spacing,  850, 852
columns,  866
compressing to fit,  794
as content,  18–19
cut, copy, and paste interaction,  185
displaying,  7
font metrics,  824–831
font-related properties,  845
font size increases and decreases,  288–289
formatting,  41–43
high-performance display,  809–821
indentation,  121
indenting first line,  859
line breaks,  19, 43
listing,  273–276
orientation changes, reformatting for,  19
overlapping,  19–20
page numbers,  871–873
paginating,  862–877
paragraph formatting,  858–861, 872–875
pasting into Visual Studio,  17
precise layout,  921
rich text,  845
scaling,  397–398, 545
scrolling,  859–861
selecting,  862
shadowing,  829–831
spacing between paragraphs,  859
stacking,  19–20
text-enhancing attached properties,  856–858
tilting,  829–831
translation effects,  388–391
underlining,  278, 285
validating,  210
wrapping,  119, 239–240, 861

TextAlignment property,  18, 82, 858
Center setting,  84

TextBlock content property,  41–43
TextBlock element,  7

ActualWidth and ActualHeight properties,  305–306
aligning,  856
background,  71
bindings on,  472
in Border,  98–101, 165
class derivation,  14
in constructor of MainPage class,  24
documentation,  15
embedding,  861
FontFamily property,  845, 847–848
Foreground property,  16, 31
formatting features,  42–43

height,  58
HorizontalAlignment attribute,  8, 81
with Inlines collection,  42
Inlines property,  41
IsHitTestVisible property,  72
IsTapEnabled property,  72
Margin property,  100–101, 121
Measure method,  305
orientation changes,  9
Padding property,  101, 911
paragraphs in,  119–122
positioning,  306
rendered size, obtaining,  305
Run objects, mimicking,  108–110
TextAlignment property,  82
text as content,  18
text string size, calculation of,  824, 828
TextWrapping property,  119
VerticalAlignment attribute,  8–9, 81
in Viewbox,  494
Visibility property,  72
Width and Height properties,  9

TextBox controls,  184–187
AcceptsReturn property,  185
binding behavior,  208–209
context menu,  262
InputScope property,  185
IsReadOnly property,  185
multiline,  185–187
page state, saving,  565
read-only,  247
ScrollViewer in,  185
SelectedText property,  184
SelectionChanged events,  185
SelectionStart and SelectionLength
properties,  184–185
TextChanged events,  140, 185
Text property,  184–185
TextWrapping property,  185
updating with event handlers,  209–211

TextBoxInputScopes program,  185–187
TextChanged events,  185
TextChanged handler,  209–211, 308
text characters

hexadecimal specification,  17
Unicode specification,  17

TextEffects project,  388–390
TextElement class,  41
TextFormattingAppBar project,  283–286
TextFormatting project,  42–43
TextIndent property,  859
text input,  887–892
Text objects,  307

	 touch

	 1099

TextOnCanvas project,  132–133
TextPointer type,  862
Text property,  18, 41–42, 184–185
TextWrapping property,  18, 289–290

Wrap setting,  119, 185
ThemeAnimation animations,  373
themeresources.xaml file,  520
themes,  128
Themes folder,  530
TheTaleOfTomKitten project,  119–122
ThicknessSettingDialog class,  743–746
Thickness type,  100
this prefix,  27
ThreadPool class,  250
threads

for execution,  221, 224
UI thread,  221, 223–225. See also UI thread (user-
interface thread)

ThreeDeeSpinningText program,  431–434
three-dimensional graphics,  379, 438–447

coordinate system,  960–961
fade-out,  398–400
light source,  388
perspective,  438
reflection effects,  398

three-dimensional rotation,  980–986
around 3D vector,  981–986
yaw, pitch, and roll angles,  976–980

3D Programming for Windows (Petzold),  981
ThrowIfCancellationRequested method,  252
Thumb controls,  187–192

DragStarted and DragDelta event handlers,  188
DragStarted, DragDelta, and DragCompleted
events,  187–188, 190
event handlers for,  300–301
in non-affine transforms,  444–446
in XamlCruncher,  295

Thumbnail property,  769
ThumbToolTipValueConverter property,  155–157
Tick events,  89
TickFrequency and TickPlacement properties,  145
Tick handler,  91
tiles, program,  9
tilt

calculating,  990–992
effect on acceleration, velocity, position,  969–972

TiltAndBounce program,  972–973
TiltAndRoll program,  969–972
TiltedShadow program,  419–421
TiltX and TiltY properties,  1019
time

conversions between time zones,  788
converting between programming platforms,  793

local time,  787–788
local time, obtaining,  802
UTC time, converting to local,  792

time, elapsed,  92
Timeline class

AutoReverse property,  349
Completed event,  338
properties of,  337
RepeatBehavior property,  349
SpeedRatio property,  337–338

TimelineCollection type,  337
timer events, handling,  89–96
TimeZoneClock class,  794–797
TimeZoneInfo class,  789
TIME_ZONE_INFORMATION structure,  787

SYSTEMTIME structure,  788
TimeZoneKeyName field,  792
TimeZoneManager class,  789–791

constructor,  791
time zones

enumerating,  787
registry settings,  788
Windows 8 settings,  788

ToggleButton controls,  161, 239–240
Checked and Unchecked events,  161
indeterminate state,  161
IsChecked property,  161
IsThreeState property,  161

ToggleSwitch controls,  161
Header property,  325
OnContent and OffContent properties,  325

ToolTip controls,  499
PlacementTarget property,  499

tooltips
formatting,  155–157
in Slider controls,  524

TopAppBar property,  268
ToString,  451
touch

centered scaling and rotation,  673–676
contact area bounding box,  633
editing features,  630–633
finger movement, tracking,  618
FingerPaint projects,  619–646
inertia,  187, 661, 663–667
line tapers, smoothing,  637–646
Manipulation events,  655–663
pointer capture,  622–630, 634–635
Pointer events,  616–619
pointer input,  615. See also pointer input
Position property,  669
pressure sensitivity,  633–637
right-clicking equivalent,  632

touch (continued)

1100

touch (continued)
saving drawings,  646
single-finger rotation,  676–682
surreal renderings,  647–649
text selection,  862
touch piano project,  649–655
XYSlider control,  667–672

TouchInfo class
Angle value,  649
LastPoint value,  649

touch keyboard,  184
input from,  888
invoking,  890
types,  185

To value
adjusting on Canvas size,  703
of DoubleAnimation,  424

TransformBounds method,  427, 430
Transform class

animating,  347
classes deriving from,  379

TransformGroup class,  379, 391–396
Children property,  391
matrix multiplication,  418
Matrix value,  427
Value property,  674

Transform method,  418
TransformPoint method,  427
Transform property,  53

of Brush class,  422
of Geometry class,  421

transforms,  377–447
affine transforms,  379
analog clock project,  400–405
brush transforms,  422–427
cascading,  401
composite transform formulas,  411
composite transforms,  418–421
final location,  409–410
flip panels,  434–437
geometry transforms,  421–422
grouping,  391–396
homogenous coordinates,  414
mathematics,  410–418, 437–447
Matrix3D,  437–447
matrix multiplication,  413–416, 437–447
matrix transform formulas,  414, 437–447
matrix transform, specifying,  416
non-affine transforms,  440–447
order of,  418–421
origin,  400
on page load,  409–410

projection transforms,  430–437
rotation,  380–386
rotation axis,  378, 379–380
rotation transform formulas,  411–413, 415
scale transform formulas,  415
scale transforms,  396–400
in secondary threads,  382
skew,  406–409
skew transform formulas,  412, 413, 415
standard matrix representation,  414
three-dimensional effects,  379
translation,  388–391
translation formulas,  413–415
two-dimensional affine transforms,  440
as visual feedback,  386–387

TransformToVisual method,  291, 427–430
Transition class, animations deriving from,  375–376
TransitionCollection type,  375
Transitions property, animating,  375
TranslateTransform class,  379, 388–393

To value of DoubleAnimation,  424
transform formulas and translation factors,  411, 415
X and Y properties,  388, 394

translation,  388–391
TranslationBehavior property,  664
Translation property,  660
transparency, bitmap,  691–696
Triggers property,  359–360

defining on Path,  361
Triggers section

animation definition in,  372
Storyboard definition in,  372

try and catch blocks,  233
await operator in,  230, 232
file access in,  258

TryParse method,  211
TryUnsnap method,  554
.TTF (TrueType font) extension,  846
TwelveHourClock class,  460–463
Twist property,  1019
typefaces,  845

attributes of,  845
TypeInfo objects,  114
Typography class,  856–858

U
UICommand class

buttons, defining,  222
context menu commands,  263

UICommandInvokedHandler type,  227
UICommandSeparator objects,  263

	 velocity

	 1101

UIElement,  14
CapturePointer method,  628
ManipulationMode property,  656
pointer-input events,  615
Projection property,  377
RenderTransformOrigin property,  377, 384
RenderTransform property,  377
TransformToVisual method,  427
user-input events,  69, 140

UIElementCollection class,  24, 38
UI thread (user-interface thread),  224–225

animation callback methods in,  329
animations in,  331
callback methods, running in,  227
PrintDocument object, creating and accessing,  911
queuing methods to run,  225
WriteableBitmap modifications in,  721

UnconventionalAppBar project,  269–271
underlining,  278, 285
UnhandledException event handler,  317
Unicode,  277

surrogates,  277, 281
UnicodeString property,  851
UniformGrid panel,  487

columns, calculating number,  496
in ListBox,  495–497
Orientation property,  487, 493

units
device-independent,  545
screen size in,  553

Unloaded events,  86
UpdateBitmap method,  717, 719–721
UpdateImageTransforms method,  997, 999
Update method,  836
UpdateValues method,  366
UserControl class

classes deriving from,  188
Content property,  38, 125
custom controls, deriving from,  175–177
deriving from,  124–126, 141
Popup child instances,  268
with RadioButton controls,  289

user input
consolidation of touch, mouse, and pen input,  615
from margin area,  101
pen input,  616
pointer input,  615. See also pointer input; touch
transferring to View Model,  194

user-input events,  69, 80–83
controls, processing of,  140
routed input handling,  74–75
Tapped event,  69–72

virtual methods for,  75
user interface

controls and elements of, accessing,  224–225
dependency properties,  15
threads for,  221, 223–225

user settings, saving,  934
using directives,  5

organizing,  23–24
removing unused,  23–24

UTF-8 encoding,  277, 886
UTF-16 encoding,  277, 886
UTF-32 (32-bit Unicode Transformation Format),  277

V
Validate method,  211
ValueChanged events,  143, 667

handler,  671
ValueChanged handler,  142, 151, 281
Value property,  62

of DiscreteObjectKeyFrame,  372
of PointKeyFrame class,  369
of TransformGroup,  674

VariableSizedWrapGrid panel,  130–131
children, arrangement of,  97
Orientation property,  130–131

var keyword,  25
Vector2 structure,  638–646

Rotate method,  641–642
vector graphics,  48–57

centering objects,  50
curves,  53
element height and width,  49
filling screen with object,  51
HorizontalAlignment and VerticalAlignment,  49, 51
image brushes,  52–53
negative coordinates,  400
Path element,  53–57
PathGeometry element,  53–57
scaling,  545
stretching,  58–60

vectors
acceleration vectors,  966, 968
accelerometer readings,  959–960
defined,  959–960
magnitude,  960, 961, 965
two-dimensional,  970

Velocities property,  663
velocity

calculating,  972
two-dimensional,  970

VerticalAlignment property

1102

VerticalAlignment property,  8–9, 11, 97–101
of Border element,  99
of Canvas,  137
Center setting,  108
cropping shapes,  103
default Stretch value,  98
default value,  81
of Ellipse,  102

VerticalContentAlignment property,  140, 511
VerticalScrollBarVisibility property,  113
video display

resolution,  15–16
updating,  91

videos, playing,  22
View,  193–194
Viewbox,  58–60

Grid in,  401–402
StretchDirection property,  59
Stretch property,  58
stroke width,  60
TextBlock in,  494

View Model,  193–194
AddCharacterCommand property,  215–216
application settings, saving,  308–311
Button calls into,  212–213
commands in,  213
commands, processing,  213–219
data bindings in,  194–196
DataContext property,  205
data entry validation,  210–211
DeleteCharacterCommand property,  215–216
DisplayText property,  215
Execute and CanExecute methods, defining,  213
ExecuteCalculate and CanExecuteCalculate
methods,  215
InputString property,  215
instantiating in code,  205
instantiating in Resources collection,  206
as resource, defining,  198, 218
updates, blocking,  211

view model classes,  474
view models

creating,  594
with data bindings,  794–797
defining,  600–601
instantiating,  612
items, accessing,  594
ObservableCollection type,  608–611

ViewParams class,  1003
virtualization of panels,  481–484
VirtualizingStackPanel,  260, 482, 501, 1050
VirtualKey enumeration,  574

VirtualKey values,  887
virtual methods

overriding,  76, 461
for user-input events,  75

virtual protected methods,  615
Visibility property,  72, 461

animating,  371–372
bindings on,  462–463
Collapsed setting,  516, 654
Visible setting,  615

VisitedPageSave program,  565–568
Visual Basic, .NET API access,  779
visual feedback, transforms for,  386–387
visuals, control, defining,  125–126
VisualStateGroups section,  514–515
Visual State Manager,  513–520

markup for,  602–603
Snapped state, responding to,  583
views, responding to,  583–584

VisualStateManager class
empty tags,  515
GoToState method,  513, 516, 606
VisualStateGroups section,  514–515

visual states,  513–520
brushes for,  521
empty tags,  515–516
SelectionStates group,  536
triggering,  652

Visual Studio
application packages, creating,  824
Blank App,  581
Configuration Manager,  823
design view,  8
generic.xaml file generation,  530
Get Started tab,  3
Grid App projects,  539
IntelliSense feature,  8. See also IntelliSense
intermediate files,  25
multiple instances,  130
navigation classes,  581–588
New Project dialog box,  3
proxy classes for Web services,  1002
sample view model,  581
Simulator,  9
Solution Configurations box,  821–822
Solution Platforms box,  822
Split App projects,  539
Suspend, Resume, or Suspend And Shutdown
commands,  246, 248
text, pasting into,  17
virtual methods, overriding,  76

	 Windows Store, uploading packages to

	 1103

Visual Studio debugger,  8
application suspension and resumption,  246
data, saving and restoring,  248
exceptions, reporting on,  318

Visual Studio Toolbox,  8
visual tree,  14

AppBar in,  270
Button in,  503
climbing,  47
DataContext property, propagation down,  204
defining,  139–140, 451–452
elements, accessing,  143
events routing up,  78
generating for items,  467, 473
implicit styles, propagation of,  64–65
Loaded events,  86
parent-child hierarchy,  97
precedence of settings,  63
for printing,  904
properties propagating through,  15
visual state elements,  513

VisualTreeHelper class,  47

W
WaitAll method,  1004
Web browsers

Back and Forward buttons,  562
Internet Explorer,  269

Web services, proxy classes for,  1002
WebViewBrush class,  31
WhatRes program,  540–545
WhatSize program,  84–86
WHATSIZE program,  83–84
WhatSizeWithBindingConverter project,  110–112
WhatSizeWithBindings project,  108–110
WhatSnap program,  549–554
WheresMyElement project,  427–430
Whirligig program,  647–649
Width property,  86
Win32 API

accessing,  779. See also P/Invoke (Platform Invoke)
data type equivalence to C#,  780–781
EnumDynamicTimeZoneInformation function,  787
functions, documentation of,  780
Hungarian notation,  780

WinBase.h header file,  780
Window class,  557

Current property,  594
Dispatcher property,  594

windowing coordinate system,  33, 49

windows
application,  5
size changes,  539
size, obtaining,  541
UI thread,  224–225

Windows 8
accessing, programming language and,  779
documentation,  5
retained mode graphics system,  83
screen resolution adjustments,  540
Windows Runtime Components,  779

Windows 8 simulator, testing display sizes in,  543–544
Windows 8 Sound Recorder,  22
Windows 8 start screen

moving items,  582
selecting items,  582
width and height,  97
zooming items,  582

Windows.ApplicationModel.DataTransfer
namespace,  898
Windows.ApplicationModel.DataTransfer.ShareTarget
namespace,  898
Windows.Devices.Geolocation namespace,  953
Windows.Devices.Sensors namespace,  953
/Windows/Fonts directory,  846
Windows.Graphics.Display namespace,  554
Windows.Graphics.Imaging namespace,  703
Windows.Graphics.Printing namespace,  904
Windows.Graphics.Printing.OptionDetails
namespace,  904
Windows header files,  780
Windows.* namespaces,  5
Windows operating system

font files,  846
returning programmatic control to,  230

Windows Paint,  12
Windows Runtime

class hierarchy,  13
public classes, structures, and enumerations,  6–7

Windows Runtime Components,  129, 779
limitations on,  808

Windows.Storage namespaces,  233
Windows.Storage.BulkAccess namespace,  235
Windows.Storage.Pickers namespace,  234

Windows.Storage.Streams namespace,  694
Windows Store applications,  779

display resolution for,  549
fonts,  847
minimum screen size,  551
Windows Runtime Component template,  808–809
writing,  786–808

Windows Store, uploading packages to,  824

Windows.UI.Input.Inking namespace

1104

Windows.UI.Input.Inking namespace,  1013, 1014
Windows.UI.Xaml.Controls namespace,  140
Windows.UI.Xaml.Controls.Primitives namespace,  140
Windows.UI.Xaml.Media.Animation namespace,  329–
330

using directive,  333
windows.ui.xaml.media.dxinterop.h header file,  809
Windows.UI.Xaml.Media.Media3D namespace,  430
Windows.UI.Xaml namespaces,  5
Windows.UI.Xaml.Printing namespace,  904
Windows.UI.Xaml.Shapes namespace,  57
winnt.h header file,  780
WordFreq project,  254–260

cancellation and progress reporting,  257–258
error reporting,  256–257
Start and Cancel buttons,  256–257

WORD values,  780
WPF (Windows Presentation Foundation),  6
wProcessorArchitecture field,  784–785

formatting,  785
WrapOptionsDialog objects,  290
WrappedText project,  18–19
wrapper DLLs,  779. See also DirectXWrapper library

Windows Runtime Components,  779
WriteableBitmap class,  646, 683

array size,  686
Color constructor,  762
color format,  684
constructor,  686
instantiating,  685
invalidating,  687
line- and arc-drawing algorithms,  722–747
PixelBuffer property,  683, 686
pixel formats,  709
premultiplied alphas,  684, 691, 762
SetSource method,  683, 692
sRGB color values,  684
updating pixels,  717

WriteAsync method,  686
WriteBufferAsync method,  244
WriteFactory class

GetSystemFontCollection method,  812
header file,  810

WriteFont class,  818–819
header file,  818

WriteFontCollection class,  811–813
WriteFontCollection.h header file,  811, 812
WriteFontFamily class header file,  813–814
WriteTextAsync method,  248, 249, 319
wrl.h (Windows Runtime Library) header file,  809

X
XAML

Angle property, setting,  380
animations in,  359–363
conditional execution,  460–463
experimenting with,  293. See also XamlCruncher
local namespace declaration,  327

XamlCruncher,  293–308
Add button,  320
animations in,  361
application bar,  294
AppSettings class,  308–311
bindings in,  313
Button definitions,  313
CheckIfOkToTrashFile method,  320
code-behind file,  313–315
constructor,  313–315
dependency property definitions,  301–302
editor,  293
EditOrientation enumeration,  308
EditOrientationRadioButton controls,  322–327
exception handling,  316–318
file I/O,  318–321
file-saving logic,  307–308
Grid,  313
limitations,  327
Loaded handler,  313–315
MainPage.xaml,  311–315
Open button,  320
Orientation property,  297
page configuration,  293
property-changed handlers,  297–300, 303–305
Refresh button,  294
ruler and grid lines,  294, 301
Save and Save As buttons,  318–319
saving documents,  318–319
SetDefaultXamlFile method definition,  315
Settings dialog,  322–327
SplitContainer,  295, 313
status bar,  313
TabbableTextBox class,  306–307
Thumb control,  295

XAML (eXtensible Application Markup Language),  6
attribute names,  133
content properties,  37–41
data bindings,  66–68
elements and controls, coding,  23–27
for layout and appearance of page,  69
markup extensions,  44, 67
MVVM pattern,  193
object elements,  35
Path Markup Syntax,  55–57

	 ﻿

	 1105

XAML (eXtensible Application Markup Language)
(continued)

property attributes,  35
property elements,  35
property-element syntax,  34–37
resource sharing,  43–47
stretching graphics,  58–60
styles,  60–65
syntax,  19, 31–68
TextBlock content property,  41–43
vector graphics,  48–57

XAML files
compatibility,  6
control updating logic,  144
control visuals, defining,  125
elements, instantiating,  38
images, referencing,  12
names in,  23
parsing,  25
resource definitions,  46
resources section,  44
root tags, placing content between,  177
templates in,  467–469
View and View Model interactions,  194
visual elements, defining,  6
visual tree of elements,  14

XAML parser,  24
XamlReader class,  293, 316–317
XamlReader.Load method,  56
XAML resources,  43–47
x:Boolean type,  44
x:Class attribute,  6, 7
x:Double type,  44
x:Int32 type,  44
x:Key attribute,  44, 61, 62
XML (eXtensible Markup Language) character
escaping,  17
XmlSerializer class,  592–594
x:Name attributes,  23, 69

on VisualStateGroup and VisualState tags,  515
x:Null markup extension,  68
“x” prefix,  7, 23, 44, 68
XPS packages,  852–853
XPS (XML Paper Specification),  852–853, 856
x:String type,  44
x:Uid type,  68

XYSlider controls,  667–672
with Pointer events,  749–752
Point property,  667
SetCrossHair method,  669
template, defining,  670–671
ValueChanged event handler,  671

XYSliderDemo project,  670–672

Y
YawDegrees property,  980
YawPitchRoll program,  976–980
YellowPadPage class,  1043

blue rule lines,  1043–1044
InkFileManager property,  1044

YellowPad project,  1038–1056
application bar items,  1038
Bézier rendering logic,  1039–1041
blue rule lines,  1043–1044
buttons, handling,  1050–1052
controls, initializing,  1052–1053
copy, cut, paste, and delete functions,  1053
current page index,  1049–1050
FlipView control,  1038, 1043
LoadAsync and SaveAsync methods,  1038
number of pages,  1049–1050
page numbers,  1048–1049
Paste logic,  1050–1052
pen width and color selection,  1050–1052

Yield property,  259–260
YoungGoodmanBrown project,  863–866

Z
Z axis,  413

rotation around,  431
z equals 1,  414

z-index, incrementing,  190
ZIndex property,  136–137, 190, 435
ZoomMode property Disabled setting,  112
zoom, semantic,  582
Z order,  20

About the Author

CHARLES PETZOLD began programming for Windows 28
years ago with beta versions of Windows 1. He wrote the first
articles about Windows programming to appear in a magazine
and wrote one of the first books on the subject, Programming
Windows, first published in 1988. Over the past decade, he has
written seven books on .NET programming, including the recent
Programming Windows Phone 7 (Microsoft Press, 2010), and he
currently writes the DirectX Factor column for MSDN Magazine
about DirectX programming in Windows 8. Petzold’s books also
include Code: The Hidden Language of Computer Hardware and
Software (Microsoft Press, 1999), a unique exploration of digital
technologies, and The Annotated Turing: A Guided Tour through
Alan Turing’s Historic Paper on Computability and the Turing
Machine (Wiley, 2008). His website is www.charlespetzold.com.

What do
you think of
this book?
We want to hear from you!
To participate in a brief online survey, please visit:

Tell us how well this book meets your needs—what works effectively, and what we can
do better. Your feedback will help us continually improve our books and learning
resources for you.

Thank you in advance for your input!

microsoft.com/learning/booksurvey

SurvPage_Corp_02.indd 1 5/19/2011 4:18:12 PM

	Cover
	Copyright page

	Contents at a Glance
	Table of Contents
	Introduction
	The Versions of Windows 8
	The Focus of This Book
	The Approach
	Source Code
	My Setup
	The Programming Windows Heritage
	More in the Future
	Behind the Scenes
	Errata & Book Support
	We Want to Hear from You
	Stay in Touch

	Part I: Elementals
	Chapter 1: Markup and Code
	The First Project
	Graphical Greetings
	Variations in Text
	Media As Well
	The Code Alternatives
	Images in Code
	Not Even a Page

	Chapter 2: XAML Syntax
	The Gradient Brush in Code
	Property-Element Syntax
	Content Properties
	The TextBlock Content Property
	Sharing Brushes (and Other Resources)
	Resources Are Shared
	Exploring Vector Graphics
	Stretching with Viewbox
	Styles
	A Taste of Data Binding

	Chapter 3: Basic Event Handling
	The Tapped Event
	Routed Event Handling
	Overriding the Handled Setting
	Input, Alignment, and Backgrounds
	Size and Orientation Changes
	Bindings to Run?
	Timers and Animation

	Chapter 4: Presentation with Panels
	The Border Element
	Rectangle and Ellipse
	The StackPanel
	Horizontal Stacks
	WhatSize with Bindings (and a Converter)
	The ScrollViewer Solution
	Layout Weirdness or Normalcy?
	Making an E-Book
	Fancier StackPanel Items
	Deriving from UserControl
	Creating Windows Runtime Libraries
	The Wrap Alternative
	The Canvas and Attached Properties
	The Z-Index
	Canvas Weirdness

	Chapter 5: Control Interaction
	The Control Difference
	The Slider for Ranges
	The Grid
	Orientation and Aspect Ratios
	Slider and the Formatted String Converter
	Tooltips and Conversions
	Sketching with Sliders
	The Varieties of Button Experience
	Defining Dependency Properties
	RadioButton Tags
	Keyboard Input and TextBox
	Touch and Thumb

	Chapter 6: WinRT and MVVM
	MVVM (Brief and Simplified)
	Data Binding Notifications
	A View Model for ColorScroll
	Syntactic Shortcuts
	The DataContext Property
	Bindings and TextBox
	Buttons and MVVM
	The DelegateCommand Class

	Chapter 7: Asynchronicity
	Threads and the User Interface
	Working with MessageDialog
	Callbacks as Lambda Functions
	The Amazing await Operator
	Cancelling an Asynchronous Operation
	Approaches to File I/O
	Application Local Storage
	File Pickers
	Bulk Access

	File Pickers and File I/O
	Handling Exceptions
	Consolidating Async Calls
	Streamlined File I/O
	Application Lifecycle Issues
	Your Own Asynchronous Methods

	Chapter 8: App Bars and Popups
	Implementing Context Menus
	The Popup Dialog
	Application Bars
	The Application Bar Button Style
	Inside the Segoe UI Symbol Font
	App Bar CheckBox and RadioButton
	An App Bar for a Note Pad
	Introducing XamlCruncher
	Application Settings and View Models
	The XamlCruncher Page
	Parsing the XAML
	XAML Files In and Out
	The Settings Dialog
	Beyond the Windows Runtime

	Chapter 9: Animation
	The Windows.UI.Xaml.Media.Animation Namespace
	Animation Basics
	Animation Variation Appreciation
	Other Double Animations
	Animating Attached Properties
	The Easing Functions
	All-XAML Animations
	Animating Custom Classes
	Key Frame Animations
	The Object Animation
	Predefined Animations and Transitions

	Chapter 10: Transforms
	A Brief Overview
	Rotation (Manual and Animated)
	Visual Feedback
	Translation
	Transform Groups
	The Scale Transform
	Building an Analog Clock
	Skew
	Making an Entrance
	Transform Mathematics
	The Composite Transform
	Geometry Transforms
	Brush Transforms
	Dude, Where’s My Element?
	Projection Transforms
	Deriving a Matrix3D

	Chapter 11: The Three Templates
	Data in a Button
	Making Decisions
	Collection Controls and the Real Use of DataTemplate
	Collections and Interfaces
	Tapping and Selecting
	Panels and Virtualizing Panels
	Custom Panels
	The Item Template Bar Chart
	The FlipView Control
	The Basic Control Template
	The Visual State Manager
	Using generic.xaml
	Template Parts
	Custom Controls
	Templates and Item Containers

	Chapter 12: Pages and Navigation
	Screen Resolution Issues
	Scaling Issues
	Snap Views
	Orientation Changes
	Simple Page Navigation
	The Back Stack
	Navigation Events and Page Restoration
	Saving and Restoring Application State
	Navigational Accelerators and Mouse Buttons
	Passing and Returning Data
	Visual Studio Standard Templates
	View Models and Collections
	Grouping the Items

	Part II: Specialties
	Chapter 13: Touch, Etc.
	A Pointer Roadmap
	A First Dab at Finger Painting
	Capturing the Pointer
	Editing with a Popup Menu
	Pressure Sensitivity
	Smoothing the Tapers
	How Do I Save My Drawings?
	Real and Surreal Finger Painting
	A Touch Piano
	Manipulation, Fingers, and Elements
	Working with Inertia
	An XYSlider Control
	Centered Scaling and Rotation
	Single-Finger Rotation

	Chapter 14: Bitmaps
	Pixel Bits
	Transparency and Premultiplied Alphas
	A Radial Gradient Brush
	Loading and Saving Image Files
	Posterize and Monochromize
	Saving Finger Paint Artwork
	HSL Color Selection
	Reverse Painting
	Accessing the Pictures Library
	Capturing Camera Photos

	Chapter 15: Going Native
	An Introduction to P/Invoke
	Some Help
	Time Zone Information
	A Windows Runtime Component Wrapper for DirectX
	DirectWrite and Fonts
	Configurations and Platforms
	Interpreting Font Metrics
	Drawing on a SurfaceImageSource

	Chapter 16: Rich Text
	Private Fonts
	A Taste of Glyphs
	Font Files in Local Storage
	Typographical Enhancements
	RichTextBlock and Paragraphs
	RichTextBlock Selection
	RichTextBlock and Overflow
	The Perils of Pagination
	Rich Editing with RichEditBox
	Your Own Text Input

	Chapter 17: Share and Print
	Settings and Popups
	Sharing Through the Clipboard
	The Share Charm
	Basic Printing
	Printable and Unprintable Margins
	The Pagination Process
	Custom Printing Properties
	Printing a Monthly Planner
	Printing a Range of Pages
	Where to Do the Big Jobs?
	Printing FingerPaint Art

	Chapter 18: Sensors and GPS
	Orientation and Orientation
	Acceleration, Force, Gravity, and Vectors
	Follow the Rolling Ball
	The Two Norths
	Inclinometer = Accelerometer + Compass
	OrientationSensor = Accelerometer + Compass
	Azimuth and Altitude
	Bing Maps and Bing Map Tiles

	Chapter 19: Pen (Also Known as Stylus)
	The InkManager Collections
	The Ink Drawing Attributes
	Erasing and Other Enhancements
	Selecting Strokes
	The Yellow Pad

	Index
	About the Author
	Survey page

