& Microsoft

Programming

Windows

Sixth Edition

Writing Windows 8 Apps
with C# and XAML

Charles Petzold

PUBLISHED BY

Microsoft Press

A Division of Microsoft Corporation
One Microsoft Way

Redmond, Washington 98052-6399

Copyright © 2013 by Charles Petzold

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any
means without the written permission of the publisher.

Library of Congress Control Number: 2012955549
ISBN: 978-0-7356-7176-8

Printed and bound in the United States of America.
First Printing

Microsoft Press books are available through booksellers and distributors worldwide. If you need support related
to this book, email Microsoft Press Book Support at mspinput@microsoft.com. Please tell us what you think of
this book at http://www.microsoft.com/learning/booksurvey.

Microsoft and the trademarks listed at http://www.microsoft.com/about/legal/en/us/IntellectualProperty/
Trademarks/EN-US.aspx are trademarks of the Microsoft group of companies. All other marks are property of
their respective owners.

The example companies, organizations, products, domain names, email addresses, logos, people, places, and
events depicted herein are fictitious. No association with any real company, organization, product, domain name,
email address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without
any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or
distributors will be held liable for any damages caused or alleged to be caused either directly or indirectly by
this book.

Acquisitions Editor: Devon Musgrave
Developmental Editor: Devon Musgrave
Project Editor: Devon Musgrave

Editorial Production: Waypoint Press
Technical Reviewer: Marc Young

Indexer: Christina Yeager

Cover: Twist Creative e Seattle and Joel Panchot

Contents at a Glance

Introduction XV
CHAPTER 1 Markup and Code 3
CHAPTER 2 XAML Syntax 31
CHAPTER 3 Basic Event Handling 69
CHAPTER 4 Presentation with Panels 97
CHAPTER 5 Control Interaction 139
CHAPTER 6 WinRT and MVVM 193
CHAPTER 7 Asynchronicity 221
CHAPTER 8 App Bars and Popups 261
CHAPTER 9 Animation 329
CHAPTER10 Transforms 377
CHAPTER 11 The Three Templates 449
CHAPTER12 Pages and Navigation 539
CHAPTER 13 Touch, Etc. 615
CHAPTER 14 Bitmaps 683
CHAPTER15 Going Native 779
CHAPTER16 Rich Text 845
CHAPTER 17 Share and Print 893
CHAPTER 18 Sensors and GPS 953
CHAPTER 19 Pen (Also Known as Stylus) 1013

Index 1057

Table of Contents

Introduction

XV

Chapter 1 Markup and Code

The First Project.
Graphical Greetings
Variationsin Text.
Media AsWell
The Code Alternatives ...,
ImagesinCode ...

NotEvenaPage i

Chapter 2 XAML Syntax

The Gradient BrushinCode,
Property Element Syntax........... ...,
Content Properties. ...
The TextBlock Content Property.......... ...,
Sharing Brushes (and Other Resources)
Resources Are Shared.o i

Exploring Vector Graphics.,

What do you think of this book? We want to hear from you!

Microsoft is interested in hearing your feedback so we can continually improve our books and learning

resources for you. To participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey

vi

Contents

Chapter 3

Chapter 4

Sty lES . 60
ATasteof Data Binding ...t 66
Basic Event Handling 69
The Tapped Event 69
Routed Event Handling o i 72
Overriding the Handled Setting............. 78
Input, Alignment, and Backgrounds oL 80
Size and Orientation Changeso i 83
Bindings to RUN? . ..o 87
Timersand Animation i 89
Presentation with Panels 97
The Border Element 97
Rectangle and Ellipseo 101
The StackPanel. 103
Horizontal Stacks 106
WhatSize with Bindings (and a Converter).......................... 108
The ScrollViewer Solution o i 112
Layout Weirdness or Normalcy?. 118
Making an E-Book 119
Fancier StackPanel Items o i 122
Deriving from UserControl 124
Creating Windows Runtime Libraries 127
The Wrap Alternative 130
The Canvas and Attached Properties oot 132
The Z-INdeX . ..ot 136
Canvas Weirdnesst 137

Chapter 5 Control Interaction 139

The Control Difference. ... 139
The Slider for RaNgesot 141
The Grid 146
Orientation and Aspect Ratios i, 152
Slider and the Formatted String Converter 154
Tooltips and CONVErsiONS.ttt 154
Sketching with Sliders. 157
The Varieties of Button Experiencecoviiiieiiiiinn.... 159
Defining Dependency Properties. 167
RadioBULtON Tags . ..ot 177
Keyboard Input and TextBox.coouiiiiiiii .. 184
Touchand Thumb e 187
Chapter 6 WinRT and MVVM 193
MVVM (Brief and Simplified) 193
Data Binding Notifications i 194
A View Model for ColorScroll o 196
Syntactic Shortcuts. ... 201
The DataContext Propertyot 204
Bindings and TextBOXouuiui 206
Buttonsand MVVM ... 212
The DelegateCommand Classc. i .. 213
Chapter 7 Asynchronicity 221
Threads and the User Interface o i, 221
Working with MessageDialog............. 222
Callbacks as Lambda Functions oL, 228
The Amazing await Operator ..., 229
Cancelling an Asynchronous Operation............................ 231

Contents vii

viii

Contents

Chapter 8

Chapter 9

Approachesto File I/O. o 233

Application Local Storage. o 234

File Pickers. 234

BUIK ACCESS . .o 235
File Pickersand File I/O i 235
Handling Exceptions. 240
Consolidating Async Calls 241
Streamlined File 1/O o 243
Application Lifecycle Issues. 245
Your Own Asynchronous Methods 250
App Bars and Popups 261
Implementing Context Menus 261
The Popup Dialogo 265
Application Bars 268
The Application Bar Button Style., 271
Inside the Segoe Ul Symbol Font................ 276
App Bar CheckBox and RadioButtonc.c..c..c. ... 283
AnAppBarforaNotePadco ... 286
Introducing XamlICruncher ... 293
Application Settings and View Models. 308
The XamlICruncherPage ... 311
Parsing the XAML 316
XAMLFilesInand OQut. ... 318
The Settings Dialog. 322
Beyond the Windows Runtime................. 327
Animation 329
The Windows.Ul. Xaml.Media.Animation Namespace. 329
Animation Basics. 330
Animation Variation Appreciation. ... 334

Other Double Animations.o 340

Animating Attached Properties 347
The Easing FUNCLIONSot 350
AlI-XAML ANImMations.ot e 359
Animating Custom Classesiiiiiiiii i 364
Key Frame Animations 367
The Object AniMation ... 371
Predefined Animations and Transitions 373
Chapter 10 Transforms 377
ABrief OVErvIEW 377
Rotation (Manual and Animated). 380
Visual Feedback. 386
Translation 388
Transform Groups 391
The Scale Transform 396
Building an Analog Clocko i 400
KW 406
Making an Entrancet 409
Transform Mathematics. 410
The CompositeTransform, 418
Geometry Transforms. o 421
Brush Transforms. 422
Dude, Where's My Element?. i 427
Projection Transforms 430
Deriving a Matrix3D 437
Chapter 11 The Three Templates 449
DatainaButton 450
Making DecCiSioNnst 460

Contents ix

X

Contents

Collection Controls and the Real Use of DataTemplate 463

Collections and Interfaces. i, 474
Tapping and Selecting . ..o 475
Panels and Virtualizing Panels L. 481
Custom Panels. 484
The Item Template Bar Chart i 497
The FlipView Control. 500
The Basic Control Template. 502
The Visual State Managert 513
Using generic.xaml. 520
Template Parts.o 521
Custom Controls 530
Templates and Item Containers ..., 535
Chapter 12 Pages and Navigation 539
Screen Resolution Issues i i i 539
Scaling ISSUES . .« oot 545
SNAP VIBWS . . o 549
Orientation Changesc. i 554
Simple Page Navigation......... o i il 557
The Back Stack. 562
Navigation Events and Page Restoration........................... 564
Saving and Restoring Application State 568
Navigational Accelerators and Mouse Buttons...................... 572
Passing and Returning Data i 575
Visual Studio’s Standard Templates................. 581
View Models and Collectionsco ... 588
Grouping the ltems. 608

PART Il SPECIALTIES

Chapter 13 Touch, Etc. 615
A Pointer Roadmap.ttt 616
A First Dab at Finger Painting. i i 619
Capturing the Pointer. i 622
Editing witha Popup Menu. i 630
Pressure Sensitivity 633
Smoothing the Tapers 637
How Do | Save My Drawings?.ouuuiiieeeiiiiiii e 646
Real and Surreal Finger Painting i, 647
ATouch Pianoo 649
Manipulation, Fingers, and Elements 655
Working with Inertia. o 663
An XYSlider Control ... 667
Centered Scaling and Rotation.o o 673
Single-Finger Rotation........ i 676

Chapter 14 Bitmaps 683
Pixel Bits . ..o 684
Transparency and Premultiplied Alphas......................... ... 691
A Radial Gradient Brush. i i 696
Loading and Saving Image Files.o i i 703
Posterize and Monochromize.......... i i 714
Saving Finger Paint Artwork i 722
HSL Color Selection ... 747
Reverse Painting oot 758
Accessing the Pictures Libraryo i 763
Capturing Camera Photos ... 772

Contents Xi

Chapter 15 Going Native 779

An Introductionto P/Invoke oo 780
Some Help .o 786
Time Zone Information 786
A Windows Runtime Component Wrapper for DirectX............... 808
DirectWriteand Fontso i 809
Configurations and Platforms. i i 821
Interpreting Font Metrics. 824
Drawing on a SurfacelmageSource.c....c i 831
Chapter 16 Rich Text 845
Private Fonts 847
ATaste of Glyphs. 850
Font Filesin Local Storage. 852
Typographical Enhancements. i 856
RichTextBlock and Paragraphs ...t 858
RichTextBlock Selection i i, 862
RichTextBlock and Overflow i .. 862
The Perils of Pagination............... i 870
Rich Editing with RIChEdItBOXo 877
Your Own Text Input. 886
Chapter 17 Share and Print 893
Settings and POpUPS.o 894
Sharing Through the Clipboard 898
The Share Charm. 903
Basic Printing 904
Printable and Unprintable Margins......... 911
The Pagination Processo 915
Custom Printing Properties. 922

xii Contents

Chapter 18

Chapter 19

Printing a Monthly Planner....... i i 928

Printinga Range of Pages. ..., 937
Where To Do the Big Jobs? 948
Printing FingerPaint Art. 948
Sensors and GPS 953
Orientation and Orientation.......... i 953
Acceleration, Force, Gravity, and Vectors. 958
Follow the Rolling Ball 969
The Two NoOrths. . ..o 973
Inclinometer = Accelerometer + Compass.c.c.ovviun... 976
OrientationSensor = Accelerometer + Compass. 980
Azimuth and Altitude. 986
Bing Maps and BingMap Tiles......... o i 999
Pen (Also Known as Stylus) 1013
The InkManager Collections. 1014
The Ink Drawing Attributes. oo 1017
Erasing and Other Enhancements it 1023
Selecting Strokes. 1029
The Yellow Pado 1038
Index 1057

What do you think of this book? We want to hear from you!

Microsoft is interested in hearing your feedback so we can continually improve our books and learning
resources for you. To participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey

Contents

xiii

http://msdn.microsoft.com/windows/apps

Introduction

his book—the 6th edition of Programming Windows—is a guide to writing
applications that run under Microsoft Windows 8.

To use this book, you'll need a computer running Windows 8, on which you can
install the Windows 8 development tools and software development kit (SDK), most
conveniently in the form of the free download of Microsoft Visual Studio Express 2012
for Windows 8. That download is accessible from the Windows 8 developer portal:

http://msdn.microsoft.com/windows/apps

To install Visual Studio, follow the "Downloads for developers" link on that page and
then the "“Download the tools and SDK" link on the following page. This page also
provides information on obtaining a Windows 8 developer account that lets you upload
new applications to the Windows Store.

The Versions of Windows 8

For the most part, Windows 8 is intended to run on the same class of personal
computers as Windows 7, which are machines built around the 32-bit or 64-bit Intel
x86 microprocessor family. Windows 8 is available in a regular edition called simply
Windows 8 and also a Windows 8 Pro edition with additional features that appeal to
tech enthusiasts and professionals.

Both Windows 8 and Windows 8 Pro run two types of programs:
m Desktop applications
= New Windows 8 applications, often called Windows Store applications

Desktop applications are traditional Windows programs that currently run under
Windows 7 and that interact with the operating system through the Windows
application programming interface, known familiarly as the Win32 API. To run these
desktop applications, Windows 8 includes a familiar Windows desktop screen.

Xvi

The new Windows Store applications represent a radical break with traditional
Windows. The programs generally run in a full-screen mode—although two programs
can share the screen in a “snap” mode—and many of these programs will probably be
optimized for touch and tablet use. These applications are purchasable and installable
only from the application store run by Microsoft. (As a developer, you can deploy and
test applications directly from Visual Studio.)

In addition to the versions of Windows 8 that run on x86 processors, there is also a
version of Windows 8 that runs on ARM processors, most commonly found in low-cost
tablets and other mobile devices. This version of Windows 8 is called Windows RT,
and it only comes preinstalled on these machines. One of the first computers running
Windows RT is the initial release of the Microsoft Surface.

Aside from some preinstalled desktop applications, Windows RT runs new Windows
Store applications only. You cannot run existing Windows 7 applications under
Windows RT. You cannot run Visual Studio under Windows RT, and you cannot develop
Windows 8 applications under Windows RT.

The Windows 8 user interface incorporates a new design paradigm that is likely to
be reflected in Windows Store applications. Somewhat inspired by signage in urban
environments, this design paradigm emphasizes content over program “chrome” and is
characterized by the use of unadorned fonts, clean open styling, a tile-based interface,
and transitional animations.

Many developers were first introduced to the Windows 8 design paradigm with
Windows Phone 7, so it's interesting to see how Microsoft’s thinking concerning large
and small computers has evolved. In years gone by, Microsoft attempted to adapt the
design of the traditional Windows desktop to smaller devices such as hand-held com-
puters and phones. Now a user-interface design for the phone is being moved up to
tablets and the desktop.

One important characteristic of this new environment is an emphasis on multitouch,
which has dramatically changed the relationship between human and computer. In
fact, the term "multitouch” is now outmoded because virtually all new touch devices
respond to multiple fingers. The simple word “touch” is now sufficient. Part of the
new programming interface for Windows 8 applications treats touch, mouse, and
pen input in a unified manner so that applications are automatically usable with all
three input devices.

Introduction

The Focus of This Book

This book focuses exclusively on writing Windows Store applications. Plenty of other
books already exist for writing Win32 desktop applications, including the 5t edition

of Programming Windows. I'll occasionally make reference to Win32 APl and desktop
applications, but this book is really all about writing new Windows 8 applications.

For writing these applications, a new object-oriented API has been introduced called
the Windows Runtime or WinRT (not to be confused with the version of Windows 8 that
runs on ARM processors, called Windows RT). Internally, the Windows Runtime is based
on COM (Component Object Model) with interfaces exposed through metadata files
with the extension .winmd located in the /Windows/System32/WinMetadata directory.
Externally, it is very object-oriented.

From the application programmer’s perspective, the Windows Runtime resembles
Silverlight, although internally it is not a managed API. For Silverlight programmers,
perhaps the most immediate difference involves namespace names: the Silverlight
namespaces beginning with System.Windows have been replaced with namespaces
beginning with Windows.UIl. Xaml.

Most Windows 8 applications will be built not only from code but also markup,
either the industry-standard HyperText Markup Language (HTML) or Microsoft’s
eXtensible Application Markup Language (XAML). One advantage of splitting an
application between code and markup is potentially splitting the development of the
application between programmers and designers.

Currently there are three main options for writing Windows 8 applications, each of
which involves a programming language and a markup language:

m C++ with XAML
m C# or Visual Basic with XAML
m JavaScript with HTML5

The Windows Runtime is common to all these options, but the Windows Runtime is
also supplemented by another programming interface appropriate for the particular
language. Although you can’t mix languages within a single application, you can create
libraries (called Windows Runtime Components) with their own .winmd files that can be
accessed from any other Windows 8 language.

Introduction Xvii

The C++ programmer uses a dialect of C++ called C++ with Component
Extensions, or C++/CX, that allows the language to make better use of WinRT. The C++
programmer also has direct access to a subset of the Win32 and COM APIs, as well as
DirectX. C++ programs are compiled to native machine code.

Programmers who use the managed languages C# or Visual Basic .NET will find
WinRT to be very familiar territory. Windows 8 applications written in these languages
can't access Win32, COM, or DirectX APIs with as much ease as the C++ programmer,
but it is possible to do so, and some sample programs in Chapter 15, “Going Native,”
show how. A stripped-down version of .NET is also available for performing low-level
tasks.

For JavaScript, the Windows Runtime is supplemented by a Windows Library for
JavaScript, or WinJS, which provides a number of system-level features for Windows 8

apps.

After much consideration (and some anguish), | decided that this book would focus
almost exclusively on the C# and XAML option. For at least a decade | have been con-
vinced of the advantages of managed languages for development and debugging, and
for me C# is the language that has the closest fit to the Windows Runtime. | hope C++
programmers find C# code easy enough to read to derive some benefit from this book.

| also believe that a book focusing on one language option is more valuable than
one that tries for equal coverage among several languages. There will undoubtedly be
plenty of other Windows 8 books that show how to write Windows 8 applications using
the other options.

With that said, | have greatly enjoyed the renewed debate about the advantages of
C++ and native code in crafting high-performance applications. No single tool is best
for every problem, and | will be exploring C++ and DirectX development for Windows 8
more in the future, both in my blog and the pages of MSDN Magazine. As a modest
start, the companion content for this book includes all the program samples converted
to C++.

xviii Introduction

http://www.charlespetzold.com/dotnet

The Approach

In writing this book, I've made a couple assumptions about you, the reader. | assume
that you are comfortable with C#. If not, you might want to supplement this book with
a C# tutorial. If you are coming to C# from a C or C++ background, my free online book
.NET Book Zero: What the C or C++ Programmer Needs to Know About C# and the .NET
Framework might be adequate. This book is available in PDF or XPS format at
www.charlespetzold.com/dotnet.

| also assume that you know the rudimentary syntax of XML (eXtensible Markup
Language) because XAML is based on XML. But | assume no familiarity with XAML or
any XAML-based programming interface.

This is an APl book rather than a tools book. The only programming tool | use in this
book is Microsoft Visual Studio Express 2012 for Windows 8 (which I'll generally simply
refer to as Visual Studio).

Markup languages are generally much more toolable than programming code.
Indeed, some programmers even believe that markup such as XAML should be entirely
machine-generated. Visual Studio has a built-in interactive XAML designer that
involves dragging controls to a page, and many programmers have come to know and
love Microsoft Expression Blend for generating complex XAML for their applications.
(Expression Blend is included among the free download of the development tools and
SDK I mentioned earlier.)

While such design tools are great for experienced programmers, | think that the
programmer new to the environment is better served by learning how to write XAML
by hand. That's how I'll approach XAML in this book. The XAML Cruncher tool featured
in Chapter 8, "App Bars and Popups,” is very much in keeping with this philosophy: it
lets you type in XAML and interactively see the objects that are generated, but it does
not try to write XAML for you.

On the other hand, some programmers become so skilled at working with XAML
that they forget how to create and initialize certain objects in code! | think both skills
are important, and consequently | often show how to do similar tasks in both code
and markup.

Introduction Xix

http://shop.oreilly.com/product/0790145369079.do

XX

As | began working on this book, | contemplated different approaches to how a
tutorial about the Windows Runtime can be structured. One approach is to start with
rather low-level graphics and user input, demonstrate how controls can be built, and
then describe the controls that have already been built for you.

| have instead chosen to focus initially on those skills | think are most important for
most mainstream programmers: assembling the predefined controls in an application
and linking them with code and data. This is the focus of the 12 chapters of the book's
Part I, “Elementals.” One of my goals in Part | is to make comprehensible all the code
and markup that Visual Studio generates in the various project templates it supports.

Part II, “Specialities,” covers more low-level and esoteric tasks, such as touch, bitmap
graphics, rich text, printing, and working with the orientation and GPS sensors.

Source Code

Learning a new API is similar to learning how to play basketball or the oboe: You don't
get the full benefit by watching someone else do it. Your own fingers must get involved.
The source code in these pages is downloadable via the “Companion Content” link here:

http://shop.oreilly.com/product/0790145369079.do

But you'll learn better by actually typing in the code yourself.

My Setup

For writing this book, | used the special version of the Samsung 700T tablet that was
distributed to attendees of the Microsoft Build Conference in September 2011. (For
that reason, it's sometimes called the Build Tablet.) This machine has an Intel Core i5
processor running at 1.6 GHz with 4 GB of RAM and a 64-GB hard drive. The screen
(from which most of the screenshots in the book were taken) has 8 touch points and a
resolution of 1366 x 768 pixels, which is the lowest resolution for which snap views are
supported.

Although the Build Tablets were originally distributed with the Windows 8 Developer
Preview installed, | progressively replaced that with the Consumer Preview (build 8250)
in March 2012 and the Release Preview (build 8400) in June 2012, and eventually the
official release of Windows 8 Pro. Except when testing orientation sensors, | generally
used the tablet in the docking port with an external 1920x1080 HDMI monitor, and an
external keyboard and mouse.

Introduction

When the Microsoft Surface first became available, | purchased one for testing my
applications. For deploying and debugging applications on the Surface, | used the
technique discussed by Tim Heuer in his blog entry:

http://timheuer.com/blog/archive/2012/10/26/remote-debugging-windows-store-
apps-on-surface-arm-devices.aspx

This technique is more formally described in the documentation topic "Running
Windows Store apps on a remote machine":

http://msdn.microsoft.com/en-us/library/hh441469.aspx

The Surface became particularly vital for testing programs that access the orientation
sensors.

For the most part, however, I'm still using the Build Tablet in the docking station. The
external keyboard, mouse, and monitor lets me run Visual Studio and Microsoft Word
as I'm accustomed to, while my Windows 8 programs run on the tablet's touch screen.
This is a fine development environment, particularly compared with the setup | used to
write the first edition of Programming Windows.

But that was 25 years ago.

The Programming Windows Heritage

This is the 6t edition of Programming Windows, a book that was first conceived by
Microsoft Press in the fall of 1986. The project came to involve me because at the time
| was writing articles about Windows programming for Microsoft Systems Journal (the
predecessor to MSDN Magazine).

I still get a thrill when | look at my very first book contract:

Introduction xxi

xxii

Perhaps the most amusing part of this contract occurs further down the first page:

The reference to "typescript” means that the pages must as least resemble something
that came out of a typewriter. A double-spaced manuscript page with a fixed-pitch font
has about 250 words, as the description indicates. A book page is more in the region of
400 words, so Microsoft Press obviously wasn't expecting a very long book.

For writing the book | used an IBM PC/AT with an 80286 microprocessor running
at 8 MHz with 512 KB of memory and two 30 MB hard drives. The display was an IBM
Enhanced Graphics Adapter, with a maximum resolution of 640x350 with 16 simultane-
ous colors. | wrote some of the early chapters using Windows 1 (introduced over a year
earlier in November 1985), but beta versions of Windows 2 soon became available.

In those years, editing and compiling a Windows program occurred outside of
Windows in MS-DOS. For editing source code, | used WordStar 3.3, the same word
processor | used for writing the chapters. From the MS-DOS command line, you would
run the Microsoft C compiler and then launch Windows with your program to test it
out. It was necessary to exit Windows and return to MS-DOS for the next edit-compile-
run cycle.

As | got deeper into writing the book over the course of 1987, much of the rest of
my life faded away. | stayed up later and later into the night. | didn’t have a television
at the time, but the local public radio station, WNYC-FM, was on almost constantly with
classical music and programming from National Public Radio. For a while, | managed
to shift my day to such a degree that | went to bed after Morning Edition but awoke in
time for All Things Considered.

As the contract stipulated, | sent chapters to Microsoft Press on diskette and
paper. (We all had email, of course, but email didn't support attachments at the
time.) The edited chapters came back to me by mail decorated with proofreading
marks and numerous sticky notes. | remember a page on which someone had drawn

Introduction

a thermometer indicating the increasing number of pages | was turning in with the
caption "Temperature’s Rising!”

Along the way, the focus of the book changed. Writing a book for “Programmers
and Other Advanced Users” proved to be a flawed concept. | don't know who came up
with the title Programming Windows.

The contract had a completion date of April, but | didn't finish until August and the
book wasn't published until early 1988. The final page total was about 850. If these
were normal book pages (that is, without program listings or diagrams) the word count
would be about 400,000 rather than the 100,000 indicated in the contract.

The cover of the first edition of Programming Windows described it as “The
Microsoft Guide to Programming for the MS-DOS Presentation Manager: Windows
2.0 and Windows/386.” The reference to Presentation Manager reminds us of the days
when Windows and the OS/2 Presentation Manager were supposed to peacefully
coexist as similar environments for two different operating systems.

The first edition of Programming Windows went pretty much unnoticed by the
programming community. When MS-DOS programmers gradually realized they needed
to learn about the brave new environment of Windows, it was mostly the 2" edition
(published in 1990 and focusing on Windows 3) and the 3" edition (1992, Windows 3.1)
that helped out.

When the Windows API graduated from 16-bit to 32-bit, Programming Windows
responded with the 4t edition (1996, Windows 95) and 5th edition (1998, Windows
98). Although the 5t edition is still in print, the email | receive from current readers
indicates that the book is most popular in India and China.

From the 1%t edition to the 5%, | used the C programming language. Sometime
between the 3" and 4th editions, my good friend Jeff Prosise said that he wanted to
write Programming Windows with MFC, and that was fine by me. | didn’t much care for
the Microsoft Foundation Classes, which seemed to me a fairly light wrapper on the
Windows API, and | wasn't that thrilled with C++ either.

As the years went by, Programming Windows acquired the reputation of being the
book for programmers who needed to get close to the metal without any extraneous
obstacles between their program code and the operating system.

But to me, the early editions of Programming Windows were nothing of the sort. In
those days, getting close to the metal involved coding in assembly language, writing
character output directly into video display memory, and resorting to MS-DOS only
for file 1/0. In contrast, programming for Windows involved a high-level language,

Introduction

xxiii

http://www.charlespetzold.com
mailto:cp@charlespetzold.com
http://msdn.microsoft.com/magazine

completely unaccelerated graphics, and accessing hardware only through a heavy layer
of APIs and device drivers.

This switch from MS-DOS to Windows represented a deliberate forfeit of speed
and efficiency in return for other advantages. But what advantages? Many veteran
programmers just couldn't see the point. Graphics? Pictures? Color? Fancy fonts? A
mouse? That's not what computers are all about! The skeptics called it the WIMP
(window-icon-menu-pointer) interface, which was not exactly a subtle implication
about the people who chose to use such an environment or code for it.

If you wait long enough, a high-level language becomes a low-level language,
and multiple layers of interface seemingly shrink down (at least in lingo) to a native
API. Some C and C++ programmers of today reject a managed language like C# on
grounds of efficiency, and Windows has even sparked some energetic controversy
once again. Windows 8 is easily the most revolutionary updating to Windows since its
very first release in 1985, but many old-time Windows users are wondering about the
wisdom of bringing a touch-based interface tailored for smartphones and tablets to the
mainstream desktop, and they grumble when they can't find familiar features.

| suppose that Programming Windows could only be persuaded to emerge from
semi-retirement with an exciting and controversial new user interface on Windows, and
an APl and programming language suited to its modern aspirations.

More in the Future

I suspect that Windows 8 will dominate my programming life for a while, which
means that I'm likely to be posting blog entries about various aspects of Windows 8
programming. You can access my blog and subscribe to the RSS feed at
www.charlespetzold.com.

| always enjoy solving a thorny programming problem and posting a blog entry
about it, so if you have a Windows 8 programming issue that you'd like me to take a
look at and possibly figure out, write me at cp@charlespetzold.com.

Beginning with the January 2013 issue of MSDN Magazine, | will be writing a
monthly column called "DirectX Factor,” focusing specifically on using DirectX from
Windows 8 and Windows Phone 8 applications. MSDN Magazine is available for free
perusal at http://msdn.microsoft.com/magazine.

XXiv Introduction

http://www.charlespetzold.com/pw6
http://microsoftpress.oreilly.com
mailto:mspinput@microsoft.com

Behind the Scenes

This book exists only because Ben Ryan and Devon Musgrave at Microsoft Press
developed an interesting way to release early content to the developer community and
get advance sales of the final book simultaneously.

Part of the job duties of Devon and my technical reviewer Marc Young is to protect
me from embarrassment by identifying blunders in my prose and code, and | thank
them both for finding quite a few.

Thanks also to Andrew Whitechapel for giving me feedback on the C++ sample
code; Brent Rector for an email with a crucial solution for an issue involving touch, as
well as some background into /Buffer; Robert Levy for reflections about touch; Jeff
Prosise for always seeming to have a dead-on answer when I'm puzzled; Larry Smith for
finding numerous flaws in my prose; and Admiral for prodding me to make the book as
useful as possible to C++ programmers.

The errors that remain in these chapters are my own fault, of course. Later in this
Introduction is an email address for reporting errors to the publisher, but I'll also try to
identify the most egregious issues on my website at www.charlespetzold.com/pwé.

Finally, | want to thank my wife Deirdre Sinnott for love and support and making the
necessary adjustments to our lives that writing a book inevitably entails.

Charles Petzold
Roscoe, NY and New York City
December 31, 2012

Errata & Book Support

We've made every effort to ensure the accuracy of this book and its companion
content. Any errors that have been reported since this book was published are

listed on our Microsoft Press site at oreilly.com. Search for the book at
http://microsoftpress.oreilly.com, and then click the "View/Submit Errata” link. If you
find an error that is not already listed, you can report it to us through the same page.

If you need additional support, email Microsoft Press Book Support at
mspinput@microsoft.com.

Please note that product support for Microsoft software is not offered through the
addresses above.

Introduction

We Want to Hear from You

At Microsoft Press, your satisfaction is our top priority, and your feedback our most
valuable asset. Please tell us what you think of this book at

http.//aka.ms/tellpress

The feedback form is very short, and we read every one of your comments and
ideas. Thanks in advance for your input.

Stay in Touch

Let's keep the conversation going! We're on Twitter: http.//twitter.com/MicrosoftPress

xxvi Introduction

PART |

Elementals

CHAPTER 1

CHAPTER 2

CHAPTER 3

CHAPTER 4

CHAPTER 5

CHAPTER 6

CHAPTER 7

CHAPTER 8

CHAPTER 9

CHAPTER 10

CHAPTER 11

CHAPTER 12

MarkupandCode ..., 3
XAMLSyntax. ...t 31
Basic Event Handling............... 69
Presentation with Panels.................... ... 97
Control Interaction 139
WinRTand MVVM. ... i 193
Asynchronicity 221
App Barsand Popups ... 261
Animationo 329
Transforms. ... 377
The Three Templates................ ..., 449

Pages and Navigation........................ 539

Markup and Code

ver since the publication of Brian Kernighan and Dennis Ritchie’s classic book The C Programming
Language (Prentice Hall, 1978), it has been customary for programming tutorials to begin with
a simple program that displays a short text string such as “hello, world.” Let's create a few similar
programs for the new world of Windows 8.

I'll assume you have Windows 8 installed as well as a recent version of Microsoft Visual Studio that
supports the creation of Windows 8 applications.

Launch Visual Studio from the Windows 8 start screen, and let's get coding.

The First Project

On the opening screen in Visual Studio, the Get Started tab should already be selected. Over at the
left you'll see a New Project option. Click that item, or select New Project from the File menu.

When the New Project dialog box opens, select Templates in the left panel, then Visual C#, and the
option for creating a new Windows Store project. From the list of available templates in the central
area, select Blank App. Toward the bottom of the dialog box, type a project name in the Name field:
Hello, for example. Let the Solution Name be the same. Use the Browse button to select a directory
location for this program, and click OK. (I'll generally use mouse terminology such as “click” when re-
ferring to Visual Studio, but I'll switch to touch terminology such as "tap” for the applications you'll be
creating. A version of Visual Studio that is optimized for touch is probably at least a few years away.)

Visual Studio creates a solution named Hello and a project within that solution named Hello, as
well as a bunch of files in the Hello project. These files are listed in the Solution Explorer on the far
right of the Visual Studio screen. Every Visual Studio solution has at least one project, but a solution
might contain additional application projects and library projects.

The list of files for this project includes one called MainPage.xaml, and if you click the little
arrowhead next to that file, you'll see a file named MainPage.xaml.cs indented underneath
MainPage.xaml:

Solution Explorer : w0
@ e-eudipm o &
el

Search Solution Explorer (Ctrl+;)

a1 Solution 'Hello' (1 project)
4 Hello
I J Properties
P =B References
b Assets
b @l Commen
b D Appxaml
& Hello_TemporaryKey.pfx
4 Iy MainPagexaml
b) MainPagexaml.cs
Package.appxmanifest

You can view either of these two files by double-clicking the file name or by right-clicking the file
name and choosing Open.

The MainPage.xaml and MainPage.xaml.cs files are linked in the Solution Explorer because they
both contribute to