
Learning PHP, Part 1

Presented by developerWorks, your source for great tutorials

ibm.com/developerWorks

Table of contents
If you're viewing this document online, you can click any of the topics below to link directly to that
section.

1. Before you start ... 2
2. Basic PHP syntax.. 4
3. PHP and forms .. 8
4. Functions... 21
5. Connecting to and using MySQL... 26
6. Cleaning up: including files.. 33
7. Summary and resources ... 38

Learning PHP, Part 1 Page 1 of 40

Section 1. Before you start

About this tutorial

This tutorial walks you through building a simple workflow application with PHP.
Users will register for an account, upload files for approval, and view and
download files that have already been approved. Users designated as
administrators can view uploaded files and approve them to make the files
available to all users. Parts 2 and 3 of this series will explore HTTP password
protection and other relevant issues.

This tutorial covers the following:

° Creating a basic page
° Variables, loops, and if-then statements
° Functions
° Connecting to a database
° Using include files
° Tools

Who should take this tutorial?

If you're a programmer who wants to learn how to use PHP to build Web-based
applications, start here with Part 1 of a three-part series of tutorials. PHP is a
script-based language that is easy to learn, but still enables you to build
complex applications with robust functionality. This tutorial walks you through
creating a basic PHP page using HTML forms and also covers accessing
databases.

This tutorial assumes you have no PHP experience. In fact, while it's useful for
you to be familiar with the concepts of HTML, no other programming is
necessary for this tutorial.

Prerequisites

To follow along, you need to have a Web server, PHP, and a database installed
and available. If you have a hosting account, you can use it as long as the
server has PHP V5 installed and has access to a MySQL database. Otherwise,
download and install the following packages:

Web server -- Whether you're on Windows® or Linux® (or Mac OS X, for that
matter), you have the option of using the Apache Web server. Feel free to

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 2 of 40 Learning PHP, Part 1

choose either V1.3 or 2.0, but the instructions in this tutorial concentrate on
V2.0. You can download Apache from http://www.apache.org. If you're on
Windows, you also have the option of using Internet Information Services, which
is part of Windows.

PHP -- Of course, you will also need a distribution of PHP. Both PHP V4 and V5
are in use at the time of this writing, but because of changes in V5, we'll
concentrate on that version. (The version isn't terribly important in this tutorial,
but it makes a difference for later parts of this series.) You can download PHP
from http://us4.php.net/downloads.php.

Database -- Part of this project involves saving data to a database, so you'll
need one of those, as well. In this tutorial, we'll concentrate on MySQL because
it's so commonly used with PHP. You can download MySQL from
http://dev.mysql.com/downloads/.

About the authors

Tyler Anderson graduated with a degree in computer science from Brigham
Young University in 2004 and is currently in his last year as a master's of
science student in computer engineering. In the past, he worked as a database
programmer for DPMG.COM, and he is currently an engineer for Stexar Corp.
in Beaverton, Ore. He can be reached at tyleranderson5@yahoo.com.

Nicholas Chase has been involved in Web-site development for companies
such as Lucent Technologies, Sun Microsystems, Oracle, and the Tampa Bay
Buccaneers. He has been a high school physics teacher, a low-level-
radioactive waste facility manager, an online science fiction magazine editor, a
multimedia engineer, an Oracle instructor, and the chief technology officer of an
interactive communications company. He is the author of several books,
including XML Primer Plus (Sams, 2002). He loves to hear from readers and
can be reached at ibmquestions@nicholaschase.com.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Learning PHP, Part 1 Page 3 of 40

http://www.apache.org/
http://us4.php.net/downloads.php
http://dev.mysql.com/downloads/
mailto:tyleranderson5@yahoo.com
mailto:ibmquestions@nicholaschase.com

Section 2. Basic PHP syntax

A basic PHP page

Let's take a look at the basics of creating a page with PHP. In the next section,
you'll look at using an HTML form to submit information to PHP, but first you
need to know how to do some of the basic tasks.

Start by creating the most basic PHP page:

<html>
<title>Workflow Registration</title>
<body>

<p>You entered:</p>
<p><?php echo "Some Data"; ?></p>

</body>
</html>

Overall, you have a simple HTML page with a single PHP section in bold. When
the server encounters the <?php symbol, it knows to evaluate the commands
that follow, rather than simply send them out to the browser. It keeps following
instructions -- which will be discussed in a moment -- until the end of the
section, as indicated by the ?> symbol.

In this case, you have just one command, echo, which tells the server to output
the indicated text. That means that if you save the page and call it with your
browser, the browser receives:

<html>
<title>Workflow Registration</title>
<body>

<p>You entered:</p>
<p>Some Data</p>

</body>
</html>

To see this in action, save the file as registration_action.php and move it to the
document root of your server. For Apache, this will likely be /var/www/html. For
Internet Information Services, it will be C:\Inetpub\wwwroot.

Open your browser and point it to http://localhost/registration_action.php. You
should see something similar to Figure 1.

Figure 1. Output from echo command

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 4 of 40 Learning PHP, Part 1

You've now written your first PHP page.

Variables

A variable is a placeholder for data. You can assign a value to it, and from then
on, any time PHP encounters your variable, it will use the value instead. For
example, change your page to read:

<html>
<title>Workflow Registration</title>
<body>

<p>You entered:</p>

<?php
$username = "tyler";
$password = "mypassword";

echo "<p>Username = " . $username . "</p>";
echo "<p>Password = " . $password . "</p>";

?>

</body>
</html>

Save the file (and upload it if necessary) and refresh your browser. You should
see something similar to Figure 2.

Figure 2. Browser after refresh

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Learning PHP, Part 1 Page 5 of 40

First, notice that each line must end with a semicolon. Also, notice that you use
a period to concatenate text, or put it together. You can put together any
number of strings, or chunks of text, this way.

One more note about variables: In PHP, variable names are case-sensitive, so
$UserName is a different variable from $username.

A consistent naming convention, such as deciding that all variables will be
lowercase, can go a long way in preventing hard-to-catch errors.

Before moving on, let's look at a special kind of variable.

Constants

You can change the value of a variable as many times as you want, but
sometimes you want to set up a variable with the expectation that the value will
not change. These items are not called variables -- they're constants. For
example, you might want to define a constant that represents the title of each
page:

<?php

define("PAGE_TITLE", "Workflow Registration");

?>

<html>
<title><?php echo PAGE_TITLE ?></title>
<body>

<p>You entered:</p>
...

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 6 of 40 Learning PHP, Part 1

(It may seem a little trivial now, but later you'll see how this definition can be
used on multiple pages.)

Notice that you're defining the name of the constant and its value. If you try to
change its value after it's been defined, you'll get an error.

Notice also that when you reference the constant, as in the title element, you
don't use a dollar sign, just the name of the constant. You can name a constant
anything you like, but it's customary to use all capital letters.

Easier output

Up to now, you've used the echo command to output information, but when you
have just one piece of data to output, this command can be a little cumbersome.

Fortunately, PHP provides a simpler way. By using the output operator <?= ?>
construct, you can specify information to output:

<?php
define("PAGE_TITLE", "Workflow Registration");

?>
<html>
<title><?= PAGE_TITLE ?></title>
<body>

<p>You entered:</p>
...

Notice that when you use the output operator, you don't follow the information
with a semicolon.

Later, you'll learn about other basic PHP constructs, such as if-then statements,
because you'll need them in building the application.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Learning PHP, Part 1 Page 7 of 40

Section 3. PHP and forms

Creating and using forms in PHP

Developers created PHP as a Web programming language. In fact, while you
can run PHP from the command line, it's rare for anyone to use the language
outside of the Web application arena. The upshot is that one of your most
common tasks as a PHP programmer will be to use Web forms.

You create Web forms using HTML, and when a user submits the form, the
browser sends an array of information to the server.

In this section, you'll look at arrays, and you'll look at the ways in which you can
work with form data. You'll also look at ways of controlling the flow of a PHP
script, such as loops and if-then statements.

Creating a form in HTML

Start by creating the registration page for your application. Ultimately, users will
enter their information, and you'll validate it, or check it for completeness, before
saving it in a database. For now, just create the basic form. Create a new file
called registration.php and add the following:

<html>
<head><title>Workflow System</title></head>
<body>
<h1>Register for an Account:</h1>
<form action="registration_action.php" method="GET">

Username: <input type="text" name="name" />

Email: <input type="text" name="email" />

Password: <input type="password" name="pword" />

<input type="submit" value="GO" />
</form>

</body>
</html>

Here you have a simple form (contained within the form element) with two text
inputs: a password input, and a submit button. If you save the file in the
document root (with registration_action.php) and type in each of the fields, you
should see something like Figure 3.

Figure 3. Register for an Account form

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 8 of 40 Learning PHP, Part 1

Notice that the password box does not display the actual content you're typing.
But what happens when you click the GO button?

Submitting a form

When you created the form, you created the actual form element as:

<form action="registration_action.php" method="GET">

The element has two pieces of information. The first, action, tells the browser
where to send the information. In this case, it's going to the page you created
earlier, registration_action.php. The second, method, tells the browser how to
send the data.

Let's see how it works. Fill in some data and click the GO button. You should
see something similar to Figure 4.

Figure 4. Outputting the data

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Learning PHP, Part 1 Page 9 of 40

In this case, you didn't submit the information it's saying you did, but that's
because you haven't yet adjusted that page to look at the data being submitted.
But take a look at the URL.

http://localhost/registration_action.php?name=roadnick&email=
ibmquestions%40nicholaschase.com&pword=supersecretpassword

Notice that for each form element that has a name, you have a name-value pair
in the URL, separated by ampersands. The URL looks like this because you
used the GET method. You'll also look at Using POST on page 18, but first take
a look at actually retrieving this data from within a PHP page.

Accessing form data

Now that you've submitted the form, you've got to get the data into the actual
response page, registration_action.php. Make the following changes to that file:

...
<body>

<p>You entered:</p>

<?php
$username = $_GET['name'];
$password = $_GET['pword'];

echo "<p>Username = " . $username . "</p>";
echo "<p>Password = " . $password . "</p>";

?>

</body>
</html>

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 10 of 40 Learning PHP, Part 1

What you're doing is pulling the named value out of the $_GET array. There will
be more about arrays in a moment, but for now notice that if you refresh the
browser, your actual answers appear, as shown in Figure 5.

Figure 5. Correct information in the browser

You can pull any piece of submitted information by its name, but because this is
an array, you also have other options.

Arrays

PHP enables you to create arrays, or lists of values, which allow you to move a
group of values at one time fairly easily. For example, you can create an array
of values and output them to the page:

$formnames = array("name", "email", "pword");
echo "0=".$formnames[0]."
";
echo "1=".$formnames[1]."
";
echo "2=".$formnames[2]."
";

The array() function returns a value that, in this case, happens to be an
array. (Functions will be dealt with later, but for now, understand that you call it
and it returns a value you assign to a variable.)

This script produces the output:

0=name

1=email

2=pword

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Learning PHP, Part 1 Page 11 of 40

Notice that the first value has an index of 0, rather than 1. Notice also that you
specified which value you wanted by adding the index in brackets after the
name of the array variable. This action is similar to the way in which you access
the form values, and that's no accident. The $_GET variable is a special kind of
an array called an associative array, which means that instead of a numeric
index, each value has a key.

When you submit the form, you're essentially creating an array like so:

$_GET = array("name" => "roadnick",
"email" => "ibmquestions@nicholaschase.com",
"pword" => "supersecretpassword");

That's what enables you to extract individual values, such as $_GET["name"].
It doesn't have to be done individually, however.

Getting array information

Associative arrays can be extremely handy in dealing with data, but situations
frequently arise in which you don't actually know what the structure of the array
looks like. For example, you might be building a generic database routine that
receives an associative array from a query.

Fortunately, PHP provides two functions that make your life a little easier:

<body>
<p>You entered:</p>

<?php
$form_names = array_keys($_GET);
$form_values = array_values($_GET);

echo "<p>" . $form_names[0] . " = " . $form_values[0] . "</p>";
echo "<p>" . $form_names[1] . " = " . $form_values[1] . "</p>";
echo "<p>" . $form_names[2] . " = " . $form_values[2] . "</p>";

?>

</body>
</html>

The array_keys() and array_values() functions each return regular
numeric arrays of information, so you can use those arrays to pull the data out
using the numeric indexes, as shown in Figure 6.

Figure 6. Arrays to pull out data using numeric indexes

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 12 of 40 Learning PHP, Part 1

Still, there's got to be a more convenient way. For example, what if you don't
actually know how many values there are? PHP provides several ways of
dealing with associative arrays, the most convenient being determined by what
information you already have. Let's look at two other ways of accomplishing this
same task next.

Using a for-next loop

One very common task in PHP is looping through a number of values. You can
accomplish that easily using a for-next loop. A for-next loop runs through a
number of values based on its definition. For example, the loop:

for ($i = 0; $i < 10; $i++) {
echo $i . " ";

}

produces the output:

0 1 2 3 4 5 6 7 8 9

PHP initially assigns a value of 0 to $i because that is what's specified at the
beginning of the loop. The loop continues as long as $i is less than 10, and
each time the loop executes, PHP increments the value of $i by one.

What this means is that if you can find out how many values are in the $_GET
array -- which you can do -- you can easily loop through all of the values
provided by the form:

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Learning PHP, Part 1 Page 13 of 40

<body>
<p>You entered:</p>

<?php
$form_names = array_keys($_GET);
$form_values = array_values($_GET);

for ($i = 0; $i < sizeof($_GET); $i++) {
echo "<p>".$form_names[$i]." = " . $form_values[$i] . "</p>";

}
?>

</body>
</html>

The sizeof() function gives you the number of values in the $_GET array.
You can use that data to tell you when to stop the loop, as shown in Figure 7.

Figure 7. Using the sizeof function to stop the loop

With $_GET as an associative array, you actually have yet another option: the
foreach loop.

Using a foreach loop

Associative arrays are so common in PHP that the language also provides an
easy way to get at the data without having to go through the process of
extracting the keys and values. Instead, you can use a foreach loop, which
directly manipulates the array. Consider, for example, this code:

...
<?php

foreach ($_GET as $value) {

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 14 of 40 Learning PHP, Part 1

echo "<p>" . $value . "</p>";
}

?>

The first time PHP executes the loop, it takes the first value in the $_GET array
and assigns that value to $value, which it then outputs. It then returns to the
top of the loop and assigns the next value to $value, doing this for each value
in $_GET (hence, the name). The end result is the output:

<p>roadnick</p>
<p>ibmquestions@nicholaschase.com</p>
<p>supersecretpassword</p>

Even more handy, however, is the ability to extract the value and the key:

...
<?php

foreach ($_GET as $key=>$value) {
echo "<p>".$key." = " . $value . "</p>";

}
?<
...

This brings us back to our original result:

Figure 8. The original result

Multiple form values

While on the subject of form values, you need to deal with a situation that

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Learning PHP, Part 1 Page 15 of 40

comes up occasionally: when you have multiple form values with a single name.
For example, since the users can't see what they are typing for the password,
you may want to make them type it twice to confirm that they haven't made a
mistake:

...
Username: <input type="text" name="name" />

Email: <input type="text" name="email" />

Password: <input type="password" name="pword[]" />

Password (again): <input type="password" name="pword[]" />

<input type="submit" value="GO" />
...

Notice that the name of the pword field has changed slightly. Because you're
going to retrieve multiple values, you need to treat the password itself as an
array. Yes, that means you have an array value that is another array. So, if you
submit the form now, it creates a URL of:

http://localhost/registration_action.php?name=roadnick&email=ibmquestions%40nicholas
chase.com&pword[]=supersecretpassword&pword[]=supersecretpassword

Submitting the form is the same as creating arrays, such as:

$passwords = array("supersecretpassword", "supersecretpassword");
$_POST = array("name"=>"roadnick",

"email"=>"ibmquestions@nicholaschase.com",
"pword"=>$passwords);

All this means that if you want to see the password values, you'll need to
access them as a numeric array, as in:

...
foreach ($_GET as $key=>$value) {

echo "<p>".$key." = " . $value . "</p>";
}

$passwords = $_GET["pword"];
echo "First password = ".$passwords[0];
echo "
";
echo "Second password = ".$passwords[1];

...

If you submit the form (or refresh the page), you can see the difference, as
shown in Figure 9.

Figure 9. Submitting the form

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 16 of 40 Learning PHP, Part 1

Notice that the password field is now output as Array, but you can access its
values directly.

GET vs. POST

So far, you've been using the GET method for submitting data, which, as you
have seen, places the data right in the URL. Now, sometimes this is
appropriate, and sometimes it's not. For example, you can use this technique to
simulate submitting a form using a link, but if you have a large amount of data --
coming, say, from a textarea in which users can enter comments -- this
technique isn't the best way to accomplish your goal. For one thing, Web
servers typically limit the number of characters that they'll accept in a GET
request.

For another thing, good technique and standards requirements say that you
never use GET for an operation that has "side effects," or that actually does
something. For example, right now you're just looking at data, so no side effects
affect the operation. But, ultimately, you're going to add the data to the
database, which is, by definition, a side effect.

Many Web programmers aren't aware of this particular restriction, which can
lead to problems. Using GET, particularly as a URL, can lead to situations in
which systems perform operations multiple times because a user has
bookmarked the page, or because a search engine is indexing the URL, not
knowing it's actually updating a database or performing some other action.

So, in these instances, you'll have to use POST instead.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Learning PHP, Part 1 Page 17 of 40

Using POST

Using the POST method instead of the GET method is actually pretty
straightforward. First you need to change the registration.php page:

...
<h1>Register for an Account:</h1>
<form action="registration_action.php" method="POST">

Username: <input type="text" name="name" />

...

Now when you submit the form, the URL is bare:

http://localhost/registration_action.php

To retrieve the data, you need to use the $_POST array rather than the $_GET
array in registration_action.php:

...
<body>

<p>You entered:</p>

<?php

foreach ($_POST as $key=>$value) {
echo "<p>".$key." = " . $value . "</p>";

}

$passwords = $_POST["pword"];
echo "First password = ".$passwords[0];
echo "
";
echo "Second password = ".$passwords[1];

?>

</body>
</html>

You can work with the $_POST array in exactly the same way you worked with
the $_GET array.

Error checking: The if-then statement

Before moving on, it doesn't make any sense to request that the user type the
password twice if you don't make sure that both attempts match. To do that,
you'll use an if-then statement:

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 18 of 40 Learning PHP, Part 1

...
$passwords = $_POST["pword"];
echo "First password = ".$passwords[0];
echo "
";
echo "Second password = ".$passwords[1];

if ($passwords[0] == $passwords[1]) {
echo "<p>Passwords match. Thank you.</p>";

} else {
echo "<p>Passwords don't match. Please try again.</p>";

}
...

In an if-then statement, if the expression in the parentheses (in this example,
$passwords[0] == $passwords[1]) is true, PHP executes the statements
in the first set of brackets. If it's false, it doesn't. In this case, you've also
included an alternate course of action to take if the statement is false.

Notice that rather than saying $passwords[0] = $passwords[1] with a
single equals sign, you said $passwords[0] == $passwords[1] with a
double equals sign. The double equals sign is the comparative operator. It
actually detects whether the two are equal. The single equals sign is the
assignment operator. With a single equals sign, when you executed the
statement, PHP would assign the value of $passwords[1] to
$passwords[0], which is clearly not what you wanted.

In this case, the page gives the user a warning if the passwords don't match, as
shown in Figure 10.

Figure 10. Warning issued if passwords don't match

Two more handy operators are the and operator (&&) and the or operator (||).

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Learning PHP, Part 1 Page 19 of 40

For example, you could say:

if (($today == "Monday") && ($status == "Not a holiday")) {
echo "GO TO WORK!!!";

}

In this case, the expression is true only if today is Monday and it's not a holiday.
The or operator returns true if any of the components are true.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 20 of 40 Learning PHP, Part 1

Section 4. Functions

Creating a function

When you're building an application of any significant size, it's common to run
across actions, calculations, or other sections of code you use over and over. In
those cases, it's helpful to take the code and use it to create a function. For
example, you can take the password validation and put it into a separate
function, like so:

...
<body>

<p>You entered:</p>

<?php

function checkPasswords($firstPass, $secondPass){

if ($firstPass == $secondPass) {
echo "<p>Passwords match. Thank you.</p>";

} else {
echo "<p>Passwords don't match. Please try again.</p>";

}

}

foreach ($_POST as $key=>$value) {
echo "<p>".$key." = " . $value . "</p>";

}

$passwords = $_POST["pword"];
echo "First password = ".$passwords[0];
echo "
";
echo "Second password = ".$passwords[1];

?>
</body>
</html>

When the server processes this page, it gets to the function keyword and
knows that it shouldn't execute that section of code until specifically requested.
Therefore, the foreach loop is still the first thing executed on this page, as you
can see in Figure 11.

Figure 11. Executing the foreach loop

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Learning PHP, Part 1 Page 21 of 40

So, how do you actually use the function?

Calling a function

To call a function, you use its name and follow it with a pair of parentheses. If
you expect any arguments, as in this case, they go in the parentheses, like so:

...
<body>

<p>You entered:</p>

<?php

function checkPasswords($firstPass, $secondPass){

if ($firstPass == $secondPass) {
echo "<p>Passwords match. Thank you.</p>";

} else {
echo "<p>Passwords don't match. Please try again.</p>";

}

}

foreach ($_POST as $key=>$value) {
echo "<p>".$key." = " . $value . "</p>";

}

$passwords = $_POST["pword"];

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 22 of 40 Learning PHP, Part 1

echo "First password = ".$passwords[0];
echo "
";
echo "Second password = ".$passwords[1];

checkPasswords($passwords[0], $passwords[1]);

?>
</body>
</html>

When PHP executes this page, it starts with the foreach loop, outputs the
password, then executes the checkPasswords() function, passing as
arguments the two password attempts. (You could also have passed the array
and pulled out the individual values from within the function.)

Figure 12. Executing the checkPasswords() function after the foreach
loop

If you've programmed in certain other languages, you may consider this more of
a subroutine because the objective is to execute a chunk of code, rather than to
return a value. You can use functions either way, as you'll see next.

Returning a value

In addition to using a function to execute a chunk of code, it's often helpful to
use a function to perform some sort of action and return a value. For example,
you can create a validation function that performs a number of actions, then
returns a value indicating whether there's a problem:

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Learning PHP, Part 1 Page 23 of 40

...
<body>

<p>You entered:</p>

<?php
function validate($allSubmitted){

$message = "";

$passwords = $allSubmitted["pword"];
$firstPass = $passwords[0];
$secondPass = $passwords[1];
$username = $allSubmitted["name"];

if ($firstPass != $secondPass) {
$message = $message."Passwords don't match
";

}
if (strlen($username) < 5 || strlen($username) > 50){

$message = $message."Username must be between 5 and 50 characters
";
}

if ($message == ""){
$message = "OK";

}

return $message;

}
...

The function takes as an argument the $_POST array, and pulls out the
information it needs to look at. You start out with an empty $message string,
and if the passwords don't match, or if the length of the username (as returned
by the strlen(), or string length, function) is wrong, you add text to the
$message string. If the passwords match and the username length is correct,
you wind up with an empty string, which you assign a value of "OK" so you can
check for it in the body of the page, which is next.

Validating the data

You've created a function that returns a value based on whether the user's input
is appropriate, so now you can test for that value:

...
echo "
";
echo "Second password = ".$passwords[1];

if (validate($_POST) == "OK") {
echo "<p>Thank you for registering!</p>";

} else {
echo "<p>There was a problem with your registration:</p>";
echo validate($_POST);
echo "<p>Please try again.</p>";

}

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 24 of 40 Learning PHP, Part 1

?>
...

In the if-then statement, the value returned by the validate() function is
checked. If it equals "OK", a simple thank-you message is provided; otherwise,
the message itself is displayed, as shown in Figure 13.

Figure 13. Warning message displayed

Note first that this technique is much more convenient for testing for a specific
result. Can you imagine the chaos if you'd tried to put all those conditions in the
if-then statement? Also, note that the function is being called twice here, which
isn't efficient. In a production application, you'd assign the return value to a
variable, then check against that rather than unnecessarily repeating
operations.

Now that you know the data is all right, you can enter it into the database.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Learning PHP, Part 1 Page 25 of 40

Section 5. Connecting to and using MySQL

Setting up

Before going any further, you need to do a little preparation in MySQL. You
need to create a database, add a table, and create a new user who has access
to it.

From the MySQL console, type the following:

create database workflow;

use workflow;

create table users (id int auto_increment primary key, username
varchar(50), email varchar(255), password varchar(50));

show tables;

The final output should look something like this:

+--------------------+
| Tables_in_workflow |
+--------------------+
| users |
+--------------------+
1 row in set (0.00 sec)

Finally, add the new user, wfuser, with a password of wfpass:

GRANT ALL PRIVILEGES ON *.* TO 'wfuser'@'localhost'
IDENTIFIED BY 'wfpass' WITH GRANT OPTION;

Now you can move on to actually using the database.

Connecting to MySQL

It's virtually impossible to create a Web application of any significant size
without having to interact with a database of some sort. In your sample
application, you'll be using a MySQL database to store username and password
information. In this section, you'll add functionality to the registration action page
so that it checks that the submitted username is unique and inserts the data into
the table if it is. You'll also look at displaying information that's already in a
database. Finally, you'll create the application's login page.

You'll start by connecting to the database. PHP has a number of functions that
exist solely for dealing with MySQL databases, and you'll use them in this
section.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 26 of 40 Learning PHP, Part 1

The first step is to create a function that connects to the workflow database you
created in Setting up on page 26:

...
return $message;

}

function db_connect($user='wfuser',
$password='wfpass', $db='workflow'){

mysql_connect('localhost', $user, $password)
or die('I cannot connect to db: ' . mysql_error());

}

foreach ($_POST as $key=>$value) {
echo "<p>".$key." = " . $value . "</p>";

}

...
if (validate($_POST) == "OK") {

echo "<p>Thank you for registering!</p>";

db_connect();

} else {
echo "<p>There was a problem with your registration:</p>";

...

Here, you're creating a function, db_connect(), which attempts to open a
connection between PHP and the MySQL database. Notice that in the definition
of the function, you included values for the arguments. These are default
values, which means that if you don't provide a username, password, and
database name, PHP will use these values. (In fact, you'll do just that in a
moment.)

The function attempts to connect to the database on the local machine,
localhost. Note that in this case, "local machine" means local to the PHP
server, so you're talking about the Web server and not the client.

If PHP can't open a connection, processing stops (or dies), and PHP simply
displays a message explaining what's happened.

Assuming all goes well, this connection will stay open until you close it, or until
the page is finished processing. Any other database commands you issue will
be directed at that connection.

Finally, the function is called to make all this happen.

Selecting a database

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Learning PHP, Part 1 Page 27 of 40

One MySQL database server can house multiple databases, so once you've
opened a connection to the server, you'll need to specify which database you
want:

...
function db_connect($user='wfuser',

$password='wfpass', $db='workflow'){

mysql_connect('localhost', $user, $password)
or die('I cannot connect to db: ' . mysql_error());

mysql_select_db($db);

}
...

At this point, you have a function you can reuse to connect to any MySQL
database on the local server. In fact, one nice thing about this function is that it
is, in a sense, database-independent; you could easily change not only the
name but the type of database you're accessing, and this function is the only
place you'd have to make alterations.

Now you're ready to insert the user data.

Inserting the record

Now it's time to add data to the users table you created previously. To add data,
you're going to create a SQL statement that inserts the data into that table, then
you're going to execute that statement.

The statement has the form:

insert into users (username, email, password) values
('roadnick', 'ibmquestions@nicholaschase.com', 'supersecretpassword')

Now, if you were paying particular attention when you created the table, you
might be wondering what happened to the id column. You specified that first
column as AUTO_INCREMENT, so if you leave it out, as you're doing here,
MySQL will automatically fill it in with the next available integer. So, all you have
to do here is substitute the user-submitted data for your placeholders and
execute the statement:

...
if (validate($_POST) == "OK") {

echo "<p>Thank you for registering!</p>";

db_connect();

$sql = "insert into users (username, email, password) values
('".$_POST["name"]."', '".$_POST["email"]."', '".$passwords[0]."')";

$result = mysql_query($sql);

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 28 of 40 Learning PHP, Part 1

if ($result){
echo "It's entered!";

} else {
echo "There's been a problem: ".mysql_error();

}

} else {
echo "<p>There was a problem with your registration:</p>";

...

Notice that when you call the mysql_query() function, it returns a value that
is being stored in the $result variable. That value will be true if the operation
went smoothly and false if any problems arose. You can then use that value as
the expression in an if-then statement to take action depending on the results.

If any problems came up, MySQL will set a value for the mysql_error()
function to return, which you can then output to the page.

Now that you've added information to the database, it's time to look at getting it
back out.

Selecting records

At this point, you can add data to the database, but how do you know that the
username is unique? At the moment, you don't, but you can remedy that by
checking the users table before you do the actual insert:

...
if (validate($_POST) == "OK") {

echo "<p>Thank you for registering!</p>";

db_connect();

$sql = "select * from users where username='".$_POST["name"]."'";
$result = mysql_query($sql);
if (!$result) {

$sql = "insert into users (username, email, password) values
('".$_POST["name"]."', '".$_POST["email"]."', '".$passwords[0]."')";
$result = mysql_query($sql);

if ($result){
echo "It's entered!";

} else {
echo "There's been a problem: ".mysql_error();

}
} else {

echo "There is already a user with that name:
";
$sqlAll = "select * from users";
$resultsAll = mysql_query($sqlAll);

}

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Learning PHP, Part 1 Page 29 of 40

} else {
echo "<p>There was a problem with your registration:</p>";

...

Start by creating a SQL statement that selects any records that have a
username matching the one you're thinking of inserting. You can then execute
that statement against the database, just as you did with the insert statement. If
the statement returns any results, mysql_query() returns a value that
evaluates as true, and if not, it returns false.

Now, what you want is no results for this username, so you want the value of
$result to be false. But when you use an if-then statement, you're looking for
a true statement, not a false one. So, you're using the negation operator, the
exclamation point, to say, in essence, "If the opposite of this value is true, then
do this." And the "this" in this case is insert the data into the database.

But what if $result is true to start with? Then the opposite of $result will be
false, and you'll execute the else statement. Ultimately, you'll list the existing
usernames and e-mail addresses, so start by creating and executing that SQL
statement.

You'll retrieve the results next.

Retrieving the results

Of course, in the real world, you would never show all of the existing usernames
if someone entered one that already existed, but you're going to do it here so
you can see how this kind of thing is done.

In the previous panel, you created a SQL statement that selects all of the
records in the users table and represents those results in the $resultsAll
variable. Now you're going to retrieve the data from that variable:

...
} else {

echo "There is already a user with that name:
";
$sqlAll = "select * from users";
$resultsAll = mysql_query($sqlAll);
$row = mysql_fetch_array($resultsAll);

echo $row["username"]." -- ".$row["email"]."
";

}
...

The first step in retrieving the data is to extract a single row from
$resultsAll, which is actually a resource representing the entire data set.
The mysql_fetch_array() function, as the name implies, returns an
associative array that includes the data for a single row. The keys are the same

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 30 of 40 Learning PHP, Part 1

as the column names, so you can output the data for that row very easily by
requesting the appropriate values from the $row array.

But this example is just a single row. How do you access all the data?

Seeing all the results: The while loop

If, during the first retrieval, there is at least one row to retrieve, $row will
represent true in an if-then statement -- or while loop, which you're using here.
PHP gets to the while ($row) statement and says, "OK, the value of this
expression is true, so go ahead and execute the statements in this block." It
outputs the data for that row, then attempts to fetch another row. It then goes
back to the top of the loop.

...
} else {

echo "There is already a user with that name:
";
$sqlAll = "select * from users";
$resultsAll = mysql_query($sqlAll);
$row = mysql_fetch_array($resultsAll);
while ($row) {

echo $row["username"]." -- ".$row["email"]."
";

$row = mysql_fetch_array($result);
}

}
...

If that attempt to retrieve another row is successful, $row will once again
evaluate as true, and the loop executes again. This goes on until no more rows
remain, and mysql_fetch_array() returns false. At that point, PHP knows
to skip the loop and move on with the rest of the script.

One handy note: If you leave out the last step, in which you try to retrieve
another row, $row will always be true, and your server will keep running the
loop until it runs out of memory or times out. So, when you create a loop like
this, the very first statement you should add to it is the one that increments
whatever it is you're looking at.

Close the database connection

Before moving on, you need to make sure that the database connection you
opened gets closed again:

...

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Learning PHP, Part 1 Page 31 of 40

if (validate($_POST) == "OK") {
echo "<p>Thank you for registering!</p>";

db_connect();

$sql = "select * from users where username='".$_POST["name"]."'";
$result = mysql_query($sql);
if (!$result) {

...
}

mysql_close();

} else {
...

Now it's time to clean things up a bit.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 32 of 40 Learning PHP, Part 1

Section 6. Cleaning up: including files

Why include files?

So far, each script you've written has been self-contained, with all of the code in
a single PHP file. In this section, you'll look at organizing your code into multiple
files. You'll take sections of code that you use on multiple pages and place them
into a separate file, which you'll then include in the original pages.

PHP provides two ways to include files. One is for including support files, such
as interface elements, and the other is for crucial files, such as functions called
within the page.

Including the definitions

Start by creating the files you'll eventually include. Whenever you create a Web
site, one of the first things you need to do is create a header and footer file that
contains the major interface elements. That way, you can build as many pages
as you want without worrying about what the page looks like until the coding
work is done. At that point, you can create the interface just once, in the include
files, and the entire site will be instantly updated.

So, to start, create a file called top.txt and add the following:

<html>
<head>
<title>Workflow System</title>
</head>
<body>
<table>
<tr><td colspan="2"><h2>The Workflow System</h2></td></tr>

<tr>
<td width="30%">

<h3>Navigation</h3>

<p>Register</p>

</td>
<td>

In a separate file called bottom.txt, add the following:

</td>
</tr>
</table>
</body>
</html>

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Learning PHP, Part 1 Page 33 of 40

Save both files in the same directory as registration.php.

Including the files

Now go ahead and add these files to the registration page. Edit registration.php
to look like this:

<?php

include("top.txt");

?>

<h1>Register for an Account:</h1>
<form action="registration_action.php" method="POST">

Username: <input type="text" name="name" />

Email: <input type="text" name="email" />

Password: <input type="password" name="pword[]" />

Password (again): <input type="password" name="pword[]" />

<input type="submit" value="GO" />

</form>

<?php

include("bottom.txt");

?>

Notice that you've removed the HTML that normally surrounds the content of
the page and replaced it with a command to include the files you just created.
Now it's time to see what that action does.

The results

If you now point your browser back to the registration page, you're going to see
a much different look, as shown in Figure 14.

Figure 14. New look of registration page

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 34 of 40 Learning PHP, Part 1

If you do a "view source" on the page, you can see that all three files have now
been merged in the output:

<html>
<head>
<title>Workflow System</title>
</head>
<body>
<table>
<tr><td colspan="2"><h2>The Workflow System</h2></td></tr>

<tr>
<td width="30%">

<h3>Navigation</h3>

<p>Register</p>

</td>
<td>

<h1>Register for an Account:</h1>
<form action="registration_action.php" method="POST">

Username: <input type="text" name="name" />

Email: <input type="text" name="email" />

Password: <input type="password" name="pword[]" />

Password (again): <input type="password" name="pword[]" />

<input type="submit" value="GO" />

</form>

</td>

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Learning PHP, Part 1 Page 35 of 40

</tr>
</table>
</body>
</html>

If you go ahead and make the same changes to registration_action.php and
submit the form, you'll see that the changes take place immediately.

Now, this page isn't a work of art, and that's OK. Later, you can get a designer
to make it look nice, and you'll have to make the changes only once -- to the
included files -- rather than to every page on the site.

Requiring files

If PHP can't find interface files, it's a problem, but it isn't necessarily a
catastrophe, especially if all you're worried about is the functionality of the
application. As a result, if PHP can't find a file specified by the include()
function, it displays a warning and continues processing the page.

In some cases, however, not being able to find an include file is a catastrophe.
For example, you can pull the validate() and db_connect() scripts out
into a separate file and include them in the registration_action.php file. If PHP
can't find that file, that's a problem because you're calling those functions within
the page. So, to avoid that, you can use the require() function, instead of
include():

<?php

include("top.txt");
require("scripts.txt");

?>

<p>You entered:</p>

<?php

foreach ($_POST as $key=>$value) {
echo "<p>".$key." = " . $value . "</p>";

}

$passwords = $_POST["pword"];
echo "First password = ".$passwords[0];
echo "
";
echo "Second password = ".$passwords[1];

if (validate($_POST) == "OK") {
echo "<p>Thank you for registering!</p>";

...

If PHP can't find a page that's required, it sends a fatal error and stops
processing.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 36 of 40 Learning PHP, Part 1

Avoiding duplicates

There's nothing to stop you from including a file in a file that is itself included in
another file. In fact, with all of these include files floating around, it can get
confusing, and you may inadvertently include the same file more than once.
This duplication can result in interface elements appearing multiple times, or
errors due to the redefinition of functions or constants. To avoid that, PHP
provides special versions of the include() and require() functions. For
example, you can be sure that the registration_action.php file will load the files
only once:

<?php

include_once("top.txt");
require_once("scripts.txt");

?>

<p>You entered:</p>

<?php

foreach ($_POST as $key=>$value) {
echo "<p>".$key." = " . $value . "</p>";

}
...

When PHP encounters the include_once() or require_once() function, it
checks to see if the file has already been included in the page before including it
again.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Learning PHP, Part 1 Page 37 of 40

Section 7. Summary and resources

Summary

In this tutorial, you began the process of building a Web-based application using
PHP. You looked at the basic syntax of a PHP script, using it to build a page
that accepts input from an HTML form. In processing the form, you reviewed
basic structures, such as variables, if-then statements, and loops. You also
examined numeric and associative arrays, and how to access their data. You
then moved on to looking at and moving data into and out of a MySQL database
by creating a SQL statement and executing it, then working with the arrays that
represent each row of data. Finally, you looked at using include files.

The purpose of this series of tutorials is to teach you how to use PHP through
building a workflow application. Here in Part 1, you began the process by
enabling users to sign up for a new account, which you then stored in a
database. Subsequent parts of this series will explore HTTP password
protection and other important issues that will help you on your path to
becoming a PHP developer.

Resources

This tutorial barely scratches the surface of PHP's capabilities. Here are some
resources where you can find more information.

Official documentation:

° PHP documentation (http://us4.php.net/docs.php) is available in many
languages.

° MySQL documentation (http://dev.mysql.com/doc/) is also available.

This tutorial deals with using PHP and MySQL, but check out these resources
for working with other databases:

° "Connecting PHP applications to IBM DB2 Universal Database"
(developerWorks, July 2001)

° "Connecting PHP Applications to Apache Derby" (developerWorks,
September 2004)

° "Develop IBM Cloudscape and DB2 Universal Database applications with
PHP" (developerWorks, February 2005)

You might also want to check out these resources for improving your PHP skills:

° "Develop rock-solid code in PHP: Lay the foundation, Part 1"
(developerWorks, August 2002), "Use variables effectively, Part 2"

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 38 of 40 Learning PHP, Part 1

http://us4.php.net/docs.php
http://dev.mysql.com/doc/
http://www.ibm.com/developerworks/db2/library/techarticle/scott/0614_scott.html
http://www.ibm.com/developerworks/db2/library/techarticle/dm-0409casey/
http://www.ibm.com/developerworks/db2/library/techarticle/dm-0502scott/index.html
http://www.ibm.com/developerworks/db2/library/techarticle/dm-0502scott/index.html
http://www.ibm.com/developerworks/linux/library/wa-phprock1/
http://www.ibm.com/developerworks/opensource/library/wa-phprock2/

(developerWorks, September 2002), and "Write reusable functions, Part 3"
(developerWorks, November 2002)

° "Creating dynamic Web sites with PHP and MySQL" (developerWorks, May
2001)

° "Using HTML forms with PHP" (developerWorks, August 2002) covers some
additional issues not discussed in this tutorial.

° Find complete listings of the articles, tutorials, project info, and news you
need to stay up to date on developing with PHP at the developerWorks PHP
top projects resources page.

Downloads:

° Download PHP from http://us4.php.net/downloads.php.
° Download MySQL from http://dev.mysql.com/downloads/index.html.

Miscellaneous:

° Visit the developerWorks Open source zone
(http://www.ibm.com/developerworks/opensource) for extensive how-to
information, tools, and project updates to help you develop with open source
technologies and use them with IBM's products.

° Innovate your next open source development project with IBM trial software,
available for download or on DVD.

° Find hundreds of discounted books on open source topics in the Open
source section of The Developer Bookstore, including many books on PHP.

° Get involved in the developerWorks community by participating in
developerWorks blogs (http://www.ibm.com/developerworks/blogs/) .

Feedback

Please let us know whether this tutorial was helpful to you and how we could
make it better. We'd also like to hear about other tutorial topics you'd like
developerWorks to cover.

For questions about the content of this tutorial, contact the authors, Nicholas
Chase, at: ibmquestions@nicholaschase.com, or Tyler Anderson, at:
tyleranderson5@yahoo.com.

Colophon

This tutorial was written entirely in XML, using the developerWorks Toot-O-Matic tutorial
generator. The open source Toot-O-Matic tool is an XSLT stylesheet and several XSLT
extension functions that convert an XML file into a number of HTML pages, a zip file, JPEG
heading graphics, and two PDF files. Our ability to generate multiple text and binary formats
from a single source file illustrates the power and flexibility of XML. (It also saves our

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Learning PHP, Part 1 Page 39 of 40

http://www.ibm.com/developerworks/web/library/wa-phprock3/
http://www.ibm.com/developerworks/edu/l-dw-linuxphp-i.html
http://www.ibm.com/developerworks/web/library/wa-phpform/
http://www.ibm.com/developerworks/opensource/top-projects/php.html
http://www.ibm.com/developerworks/opensource/top-projects/php.html
http://us4.php.net/downloads.php
http://dev.mysql.com/downloads/index.html
http://www.ibm.com/developerworks/opensource
http://www.ibm.com/developerworks/downloads/?S_TACT=105AGX44
http://devworks.krcinfo.com/WebForms/ProductList.aspx?Search=Category&id=1400
http://devworks.krcinfo.com/WebForms/ProductList.aspx?search=FreeText&SearchT=Keyword&txtSearch=php
http://www.ibm.com/developerworks/blogs/
ibmquestions@nicholaschase.com
mailto:tyleranderson5@yahoo.com

production team a great deal of time and effort.)

For more information about the Toot-O-Matic, visit
www-106.ibm.com/developerworks/xml/library/x-toot/ .

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 40 of 40 Learning PHP, Part 1

http://www-106.ibm.com/developerworks/xml/library/x-toot/

	Table of contents
	Before you start
	About this tutorial
	Who should take this tutorial?
	Prerequisites
	About the authors

	Basic PHP syntax
	A basic PHP page
	Variables
	Constants
	Easier output

	PHP and forms
	Creating and using forms in PHP
	Creating a form in HTML
	Submitting a form
	Accessing form data
	Arrays
	Getting array information
	Using a for-next loop
	Using a foreach loop
	Multiple form values
	GET vs. POST
	Using POST
	Error checking: The if-then statement

	Functions
	Creating a function
	Calling a function
	Returning a value
	Validating the data

	Connecting to and using MySQL
	Setting up
	Connecting to MySQL
	Selecting a database
	Inserting the record
	Selecting records
	Retrieving the results
	Seeing all the results: The while loop
	Close the database connection

	Cleaning up: including files
	Why include files?
	Including the definitions
	Including the files
	The results
	Requiring files
	Avoiding duplicates

	Summary and resources
	Summary
	Resources
	Feedback

