
Learning PHP, Part 3

Presented by developerWorks, your source for great tutorials

ibm.com/developerWorks

Table of contents
If you're viewing this document online, you can click any of the topics below to link directly to that
section.

1. Before you start ... 2
2. The story so far.. 4
3. Using HTTP authentication.. 7
4. Using streams.. 15
5. Using objects ... 20
6. Handling exceptions .. 28
7. Putting it together .. 34
8. Summary and resources ... 45

Learning PHP, Part 3 Page 1 of 46

Section 1. Before you start

About this tutorial

This tutorial finishes the simple workflow application you began in the first part
of this series about learning PHP. You will add HTTP authentication, the ability
to stream documents from a non-Web-accessible location, and exception
handling. You'll also organize some of the application into objects.

Overall, you will add the ability for an administrator to approve a file, making it
generally available to users. Along the way, the following topics will be
discussed:

° Enabling and using browser-based HTTP authentication
° Streaming data from a file
° Creating classes and objects
° Using object methods and properties
° Creating and handling exceptions
° Using XML ID attributes
° Validating an XML document using a Document Type Definition (DTD)
° Controlling access to data based on the requesting page

Who should take this tutorial?

This tutorial is Part 3 of a three-part series designed to teach you the basics of
programming in PHP while building a simple workflow application. It is for
developers who want to learn more about advanced topics, such as using PHP
for object-oriented programming. This tutorial also touches on HTTP
authentication, streaming, classes and objects, and exception handling, as well
as provides another look at manipulating XML.

This tutorial assumes familiarity with the basic concepts of PHP, such as
syntax, form handling, and accessing a database. You can get all the
information you will need by taking "Learning PHP, Part 1" and "Learning PHP,
Part 2," and by checking the Resources on page45 .

Prerequisites

To follow along with the sample code, you need to be sure the following tools
are installed and tested:

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 2 of 46 Learning PHP, Part 3

http://www.ibm.com/developerworks/edu/os-dw-os-phptut1-i.html
http://www.ibm.com/developerworks/edu/os-dw-os-phptut2-i.html
http://www.ibm.com/developerworks/edu/os-dw-os-phptut2-i.html

HTTP server -- You can install PHP on a variety of HTTP servers, such as
Apache and Microsoft IIS, and on Windows, Linux, UNIX, Mac OSX, and other
platforms. In general, your choice of server doesn't matter, but this tutorial will
cover some configurational issues regarding HTTP authentication using Apache
2.X as an example. You can download the Apache HTTP server from Apache
(http://httpd.apache.org/download.cgi) .

PHP -- Of course, you will also need a distribution of PHP. Both PHP V4 and V5
are in use at the time of this writing, but this tutorial concentrates on V5
because of its enhancements. Download PHP
(http://us4.php.net/downloads.php) .

Database -- Part of this project involves saving data to a database, so of course
you'll need one of those, as well. This tutorial covers MySQL because it's so
commonly used with PHP. You can download MySQL from
http://dev.mysql.com/downloads/index.html.

About the authors

Tyler Anderson graduated with a degree in computer science from Brigham
Young University in 2004 and is currently in his last year as a master's student
studying computer engineering. In the past, he has worked as a database
programmer for DPMG.COM, and he is currently an engineer for Stexar Corp.
in Beaverton, Ore. He can be reached at tyleranderson5@yahoo.com.

Nicholas Chase (http://www.chaosmagnet.com?ibm) has been involved in
Web-site development for companies such as Lucent Technologies, Sun
Microsystems, Oracle, and the Tampa Bay Buccaneers. He has been a high
school physics teacher, a low-level-radioactive-waste facility manager, an online
science fiction magazine editor, a multimedia engineer, an Oracle instructor,
and the chief technology officer of an interactive communications company. He
is the author of several books, including XML Primer Plus (Sams, 2002). He
loves to hear from readers and can be reached at
ibmquestions@nicholaschase.com.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Learning PHP, Part 3 Page 3 of 46

http://httpd.apache.org/download.cgi
http://us4.php.net/downloads.php
http://dev.mysql.com/downloads/index.html
mailto:tyleranderson5@yahoo.com
http://www.chaosmagnet.com?ibm
mailto:ibmquestions@nicholaschase.com

Section 2. The story so far

Where things stand right now

You've been building a simple workflow application through the course of these
tutorials. The application enables users to upload files to the system and to see
those files, as well as files approved by an administrator. So far, you've built:

° A registration page that enables a user to use an HTML form to sign up for
an account by entering a unique username, e-mail address, and password.
You built the PHP page that analyzes the submitted data, checks the
database to make sure the username is unique, and saves the registration in
the database.

° A login page that takes a username and password, checks them against the
database, and, if they're valid, creates a session on the server so the server
knows which files to display.

° Simple interface elements that detect whether the user is logged in to
display appropriate choices.

° An upload page that enables users to send a file to the server via a browser.
You also built the page that takes this uploaded file and saves it to the
server, then adds information about it to an XML file for later retrieval, using
the Document Object Model (DOM).

° A display function that reads the XML file and displays the information using
the Simple API for XML (SAX).

You can download the files that represent where the application left off in
"Learning PHP, Part 2."

What you're going to do

Before you're through with this tutorial, you'll have a complete -- though
extremely simple, of course -- workflow application. In this tutorial, you will:

° Add HTTP authentication, controlled by the Web server. You'll also integrate
your registration process so it adds new users to the Web server.

° Add links to the function that displays the available files so users can
download them. You'll create a function that streams these files to the
browser from the non-Web-accessible location.

° Confirm that users download files from the appropriate page. You'll use the
fact that files must be streamed by the application, instead of simply served
by the HTTP server, to enable control over the circumstances in which users
download files.

° Create a class that represents a document, and use object-oriented methods
to access and download it.

° Create and use custom exceptions to help pinpoint problems.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 4 of 46 Learning PHP, Part 3

http://www.ibm.com/developerworks/edu/os-dw-os-phptut2-i.html

° Add information to the XML file that will enable you to uniquely identify each
file. This step will enable you to add check boxes to the display form that
administrators can use to determine which files to approve.

° Manage the approval process, adjusting your XML file so you can request
specific fileInfo elements directly.

Let's start by putting a public face on what you already have.

The welcome page

Up to now, you've concentrated on building the individual pieces of your
application. Now it's time to start putting them together, so start with a simple
welcome page you can use as a "landing strip" for visitors. Create a new file
called index.php and add the following:

<?php

include ("top.txt");
include ("scripts.txt");

display_files();

include ("bottom.txt");

?>

The first include() function loads the top interface elements for the page and
sets up a session, if applicable. The second loads all the scripts you've created
so far, including the display_files() function you created in "Learning
PHP, Part 2," which lists all the files uploaded by the current user or approved
by an administrator. The final include is just the bottom of the HTML page.

Save the file in the same directory the other files you've created are in. For
example, you could put the file in the document root of your server, so once
you've started the HTTP server, you could see the page by pointing your
browser to http://localhost/index.php.

As you can see in Figure 1, the page is pretty simple, and, in fact, if you've been
following along, you shouldn't see any files unless you're logged in because
none have been approved yet. The files here have been approved for
demonstration purposes.

Figure 1. The basic listing page

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Learning PHP, Part 3 Page 5 of 46

http://www.ibm.com/developerworks/edu/os-dw-os-phptut2-i.html
http://www.ibm.com/developerworks/edu/os-dw-os-phptut2-i.html

If you've just started up your browser, you should see the Register and Login
links because you're not logged in. In the next section, you'll look at another
way to handle that process.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 6 of 46 Learning PHP, Part 3

Section 3. Using HTTP authentication

HTTP authentication

Up to now, you've used a login system in which the user enters a username and
password into a form, and when the user submits the form, that information is
checked against the MySQL database. If it matches, the application creates a
session within PHP and assigns a username to the $_SESSION array for later
use.

While this process works just fine, you run into a problem when you integrate
with other systems. For example, if your workflow application was part of an
intranet in which users might be logging in with usernames from other systems,
you may not want to require them to log in again. Instead, you want them to
already be logged in when they get there, if they've already logged in
elsewhere. This is known as a single sign-on system.

To accomplish that here, you're going to switch over to a system in which the
Web server actually controls the login process. Instead of simply serving the
page, the server checks for a username and password within the request from
the browser, and if it doesn't see them, it tells the browser to pop up a
username and password box so you can enter that information. Once you enter
the information, you won't have to do it again because the browser sends it with
subsequent requests.

Let's start by setting up the server.

Enabling HTTP authentication

Before you get started, be aware that if you use a server other than Apache 2.X,
you should check the documentation for HTTP authentication to see what you
need to do to set it up. (Alternatively, you can simply skip this section. You'll
build in the appropriate steps so the application works with either type of
authentication.)

But how does HTTP authentication actually work? First of all, the server knows
what kind of security it needs to provide for each directory. One way to change
that for a particular directory is to set things up in the main configuration for the
server. Another way is to use an .htaccess file, which contains instructions for
the directory in which it resides.

For example, you want the server to make sure all users who access your
user-specific files have valid usernames and passwords, so first create a
directory called loggedin inside the directory in which you currently have your
files. For example, if your files reside in /usr/local/apache2/htdocs, you would
create /usr/local/apache2/htdocs/loggedin.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Learning PHP, Part 3 Page 7 of 46

Now you need to tell the server that you're going to override the overall security
for that directory, so open the httpd.conf file and add the following to it:

<Directory /usr/local/apache2/htdocs/loggedin>
AllowOverride AuthConfig

</Directory>

(You should, of course, use the correct directory for your own setup.)

Now it's time to prepare the actual directory.

Setting authentication

Next, create a new text file and save it in the loggedin directory with the name
.htaccess. Add the following to it:

AuthName "Registered Users Only"
AuthType Basic
AuthUserFile /usr/local/apache2/password/.htpasswd
Require valid-user

Let's take this from the top. The AuthName is the text that appears at the top of
the username and password box. The AuthType specifies that you're using
Basic authentication, which means that you'll send the username and
password in clear text. The AuthUserFile is the file that contains the
allowable usernames and passwords. (You'll create that file in a moment.)
Finally, the Require directive lets you specify who actually gets to see this
content. Here, you're saying that you will show it to any valid user, but you also
have the option to require specific users or user groups.

Restart the HTTP server so these changes can take effect.

(For Apache V2.0, call <APACHE_HOME>/bin/apachectl stop, followed by
<APACHE_HOME>/bin/apachectl start.)

Next, you'll create the password file.

Creating the password file

For all this to work, you need to have a password file the server can check. In
Adding new users to the password file on page 13, you'll look at manipulating
this file from within PHP, but for now, if you have access to the command line,
you can create the file directly.

First, choose a location for your .htpasswd file. It should not be in a directory
that's Web accessible. It's not very secure if someone can simply download and
analyze it. It should also be in a location where PHP can write to it. For

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 8 of 46 Learning PHP, Part 3

example, you might create a password directory in your apache2 directory.
Whichever location you choose, make sure you have the correct information in
your .htaccess file.

To create the password file, execute the following command, substituting your
own directory and username:

htpasswd -c /usr/local/apache2/password/.htpasswd roadnick

You are then prompted to type, then repeat the password, as in:

htpasswd -c /usr/local/apache2/password/.htpasswd roadnick
New password:
Re-type new password:
Adding password for user roadnick

The -c switch tells the server to create a new file, so after you've added the
new user, the file looks something like this:

roadnick:IpoRzCGnsQv.Y

Note that this version of the password is encrypted, and you have to keep that
in mind when you add passwords from your application.

Now let's see it in action.

Logging in

To see this in action, you need to access a file in the protected directory. Move
the uploadfile.php and uploadfile_action.php files into the loggedin directory,
and copy index.php into the loggedin directory as display_files.php.

In each of the three files, change the include() statements to account for the
new location, as in:

<?php

include ("../top.txt");
include ("../scripts.txt");

echo "Logged in user is ".$_SERVER['PHP_AUTH_USER'];

display_files();

include ("../bottom.txt");

?>

In this case, you fix the references to the included files, but you also reference a
variable that should be set when the browser sends the username and
password. Point your browser to http://localhost/loggedin/display_files.php to
see this in action. As you can see in Figure 2, you should get a username and

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Learning PHP, Part 3 Page 9 of 46

password box.

Figure 2. Username and password box

Enter the username and password you used in Creating the password file on
page 8 to see the actual page.

Using the login information

At this point, you've entered the username and login, so you can see the page.
But as you can see in Figure 3, despite the message saying the user has
logged in, the actual content doesn't seem to agree. You still see the Register
and Login links, and the list of files still shows only those that an administrator
has approved -- and not those that the current user has uploaded and are still
pending.

Figure 3. Logged in ... sort of

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 10 of 46 Learning PHP, Part 3

To solve these problems, you have two choices. The first is to go back and
recode every instance in which the application references the username to look
for the $_SERVER['PHP_AUTH_USER'], instead of
$_SESSION["username"]. Good programmers are inherently lazy, however,
so that's not a particularly attractive option.

The second choice is to simply set $_SESSION["username"] based on
$_SERVER['PHP_AUTH_USER'] so everything will continue to work as it did
before. You can do this in top.txt, right after you start a new session or join the
existing one:

<?
session_start();
if (isset($_SESSION["username"])){

//Do nothing
} elseif (isset($_SERVER['PHP_AUTH_USER'])) {

$_SESSION["username"] = $_SERVER['PHP_AUTH_USER'];
}

?>
<html>
<head>
<title>Workflow System</title>
</head>
<body>

First off, the only way to make the browser "forget" the username and password

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Learning PHP, Part 3 Page 11 of 46

you entered is to close the browser so you give the $_SESSION["username"]
variable precedence. That way, you have the option to enable users to log in as
someone else. (You won't do that here, but you do have the option.)

Next, if neither the $_SESSION nor $_SERVER variable is set, nothing happens,
and the page continues on as though the user isn't logged in -- which happens
to be the case. Making this one simple change fixes your login problem, as you
can see in Figure 4.

Figure 4. The corrected page

Fixing the interface

Before you move on to adding a new user, you need to make a couple of quick
fixes to top.txt to accommodate the new structure. For one thing, you need to
change the Login link so that rather than pointing to your old login.php page, it
points to the newly secured display_files.php file. When the user attempts to
access it, the browser will provide a way to log in:

...
<tr>

<td width="30%" valign="top">

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 12 of 46 Learning PHP, Part 3

<h3>Navigation</h3>

<?php
if (isset($_SESSION["username"]) || isset($username)){

?>
<p>You are logged in as <?=$_SESSION["username"].$username?>. <!--

You can logout to login as a different user.--></p>

<p>Upload a file</p>
<p>Display files</p>

<?php
} else {

?>
<p>Register</p>
<p>Login</p>

<?php
}

?>
</td>

Notice that in addition to fixing the login reference and adding a new option for
displaying the list of files, we commented out the message about logging out,
only because that subject is beyond the scope of this tutorial.

Now you just need to integrate the registration process with the password file.

Adding new users to the password file

The last step in this process is to integrate your registration with the .htpasswd
file. To do that, you simply need to add a new entry once you have saved the
user to the database. Open registration_action.php and add the following:

...
$passwords = $_POST["pword"];
$sql = "insert into users (username, email, password) values ('"

.$_POST["name"]."', '".$_POST["email"]

."', '".$passwords[0]."')";
$result = mysql_query($sql);

if ($result){
echo "It's entered!";

$pwdfile = '/usr/local/apache2/password/.htpasswd';
if (is_file($pwdfile)){

$opencode = "a";
} else {

$opencode = "w";
}
$fp = fopen($pwdfile, $opencode);
$pword_crypt = crypt($passwords[0]);
fwrite($fp, $_POST['name'].":".$pword_crypt."\n");
fclose($fp);

} else {
echo "There's been a problem: ".mysql_error();

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Learning PHP, Part 3 Page 13 of 46

}
} else {

echo "There is already a user with that name. Please try again.
";
...

Before you start, if you have a .htpasswd file already, make sure the user can
write to it on your Web server. If not, make sure the user can write to the
appropriate directory.

First off, check to see if the file exists and use that information to determine
whether you're going to write a new file or append information to an existing file.
Once you know, go ahead and open the file.

As you saw in Creating the password file on page 8, the password is stored in
encrypted form, so you can use the crypt() function to get that string. Finally,
write the username and password out to the file and close the file.

To test this, quit the browser to clear out any cached passwords, then open
http://localhost/index.php.

Click Register and create a new account. When you're finished creating the
account, quit the browser again and try to access a protected page. Your new
username and password should work.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 14 of 46 Learning PHP, Part 3

Section 4. Using streams

What are streams?

Now that you've got the system set up, you're ready to enable the user to
actually download the available files. From the very beginning, however, these
files have been stored in a non-Web-accessible directory, so a simple link to
them is out of the question.

Instead, in this section, you're going to create a function that streams the file
from its current location to the browser.

Now, the way in which you actually access a resource, such as a file, depends
on where and how it's stored. Accessing a location file is very different from
accessing one on a remote server via HTTP or FTP.

Fortunately, however, PHP provides stream wrappers. In other words, you
make a call to a resource, wherever it is, and if PHP has an available wrapper, it
will figure out just how to make that call.

You can find out which wrappers are available by printing the contents of the
array returned by the stream_get_wrappers() function, like so:

<?php

print_r(stream_get_wrappers());

?>

The print_r() function is extremely handy for seeing the contents of an
array. For example, your system might give you:

Array
(

[0] => php
[1] => file
[2] => http
[3] => ftp

)

This would enable you to easily store your files on a remote Web server or FTP
server as an alternative to storing them as files on the local server, and the
code you use in this section will still work.

Let's take a look.

Downloading the file

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Learning PHP, Part 3 Page 15 of 46

For the user to be able to see a file, the browser has to receive it. It also has to
know what the file is in order to display it properly. You can take care of both of
these issues. Create a new file called download_file.php and save it in the
loggedin directory. Add the following:

<?php

include ("../scripts.txt");

$filetype = $_GET['filetype'];
$filename = $_GET['file'];
$filepath = UPLOADEDFILES.$filename;

if($stream = fopen($filepath, "rb")){
$file_contents = stream_get_contents($stream);
header("Content-type: ".$filetype);
print($file_contents);

}

?>

Despite its power, the process here is actually quite straightforward. First, you
open the file for reading and for buffering. What you're actually doing with the
fopen() function is creating a resource that represents the file. You can then
pass that resource to stream_get_contents(), which reads the entire file
out into a single string.

Now that you have the content, you can send it to the browser, but the browser
won't know what to do with it and will likely display it as text. That's fine for a
text file, but not so good for an image, or even an HTML file. So, rather than just
sending it raw, you first send a header to the browser with information on the
Content-type of the file, such as image/jpeg.

Finally, you simply output the contents of the file to the browser. Having
received the Content-type header, the browser will know not to simply treat it
as a Web page (unless, of course, it is a Web page).

As far as deciding which file and type to actually use, you're reading these from
the $_GET array, so you can add them right to the URL, as in:

http://localhost/loggedin/download_file.php?file=timeone.jpg&filetype=image/jpeg

Enter this URL (with an appropriate file name and type, of course) into your
browser to see the results shown in Figure 5.

Figure 5. Downloading a file

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 16 of 46 Learning PHP, Part 3

Adding a link to the file

Because all the information the download page needs can be added to the
URL, it's simple to add a link enabling the user to download a file. You create
the display of available files using a SAX stream, which means that the actual
output is controlled by a content handler class called, in this case,
Content_Handler. Open the scripts.txt file and add the following code to the
Content_Handler class:

class Content_Handler{

private $available = false;
private $submittedBy = "";
private $status = "";

private $currentElement = "";

private $fileName = "";
private $fileSize = "";
private $fileType = "";

function start_element($parser, $name, $attrs){
...

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Learning PHP, Part 3 Page 17 of 46

}

function end_element($parser, $name){

if ($name == "workflow"){
echo "</table>";

}

if ($name == "fileInfo"){
echo "<tr><td>fileName."

&filetype=".$this->fileType."'>"
.$this->fileName."</td>".

"<td>".$this->submittedBy."</td>".
"<td>".$this->fileSize."</td>".
"<td>".$this->status."</td></tr>";

$this->fileName = "";
$this->submittedBy = "";
$this->fileSize = "";
$this->status = "";
$this->fileType = "";

$this->available = false;
}

$this->currentElement = "";

}

function chars($parser, $chars){

if ($this->available){
if ($this->currentElement == "fileName"){

$this->fileName = $this->fileName . $chars;
}
if ($this->currentElement == "fileType"){

$this->fileType = $this->fileType . $chars;
}
if ($this->currentElement == "size"){

$this->fileSize = $this->fileSize . $chars;
}

}

}
}

In addition to the information you were already tracking for each fileInfo
element, you now need to track the fileType, so you need to add a property
for that. (We talk more about properties in on page .)

Down in the chars() function, you store the value when you get to it. When
you get to the end of the fileInfo element and it's time to display the
information, you use it, along with the fileName, to create a link that points to
the download page. You can see the results in Figure 6.

Figure 6. Linking to the file

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 18 of 46 Learning PHP, Part 3

Click a link to verify the file.

Next, you'll look at encapsulating this process into an object.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Learning PHP, Part 3 Page 19 of 46

Section 5. Using objects

What are objects, anyway?

In this section, you're going to look at the use of objects. So far, almost
everything you've done has been procedural, meaning you have a script that
pretty much runs from beginning to end. Now you're going to move away from
that.

The central concept of object-oriented programming is the idea that you can
represent "things" as a self-sufficient bundle. For example, an electric kettle has
properties, such as its color and maximum temperature, and capabilities, such
as heating the water and turning itself off.

If you were to represent that kettle as an object, it would also have properties,
such as color and maximumTemperature, and capabilities -- or methods --
such as heatWater() and turnOff(). If you were writing a program that
interfaced with the kettle, you would simply call the kettle object's
heatWater() method, rather than worrying about how it's actually done.

To make things a bit more relevant, you're going to create an object that
represents a file to be downloaded. It will have properties, such as the name
and type of the file, and methods, such as download().

Having said all that, however, we need to point out that you don't actually define
an object. Instead, you define a class of objects. A class acts as a kind of
"template" for objects of that type. You then create an instance of that class,
and that instance is the object.

Let's start by creating the actual class.

Creating the WFDocument class

The first step in dealing with objects is to create the class on which they are
based. You could add this definition to the scripts.txt file, but you're trying to
make the code more maintainable, not less. So, create a separate file,
WFDocument.php, and save it in the main directory. Add the following:

<?php

include_once("scripts.txt");

class WFDocument {

function download($filename, $filetype) {

$filepath = UPLOADEDFILES.$filename;

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 20 of 46 Learning PHP, Part 3

if($stream = fopen($filepath, "rb")){
$file_contents = stream_get_contents($stream);
header("Content-type: ".$filetype);
print($file_contents);

}
}

}

?>

First, you need the UPLOADEDFILES constant, so you include the scripts.txt file.
Next, you create the actual class. The WFDocument class has only a single
method, download(), which is the same as the code in download_file.php,
with the exception of receiving the file name and type as inputs to the function
rather than directly extracting them from the $_GET array.

Now let's look at instantiating this class.

Calling the WFDocument-type object

You've actually already instantiated several objects when you were working with
DOM in Part 2 of this series, but we didn't say much about why or how. We will
remedy that now.

Open the download_file.php page and change the code so it reads as follows:

<?php

include ("../WFDocument.php");

$filetype = $_GET['filetype'];
$filename = $_GET['file'];

$wfdocument = new WFDocument();
$wfdocument->download($filename, $filetype);

?>

First off, rather than including the scripts.txt file, you're including the definition of
the WFDocument class, which you put into the WFDocument.php file. (Some
developers find it useful to simply create a page that includes all their classes,
then include that page rather than including individual classes all over the
place.)

Now you're ready to create a new object, which you do using the new keyword.
This line creates a new object of the type WFDocument and assigns it to the
$wfdocument variable.

Once you have a reference to that object, you can call any of its public
methods. In this case, there's only one method, download(), and you call it
using the -> operator. Basically, this symbol says, "Use the method (or
property) that belongs to this object."

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Learning PHP, Part 3 Page 21 of 46

http://www.ibm.com/developerworks/edu/os-dw-os-phptut2-i.html

Save the file and test it by clicking one of the links on your page. The code is
exactly the same as it was before. The only difference is how you're calling it.

Creating properties

Of course, methods are only part of the story. The whole point of an object is
that it's encapsulated. In other words, it should contain all its own information,
so rather than feeding the name and file type to the download() method, you
can set them as properties on the object. But first you have to create them in
the class:

<?php

include_once("../scripts.txt");

class WFDocument {

public $filename;
public $filetype;

function download() {

$filepath = UPLOADEDFILES.$this->filename;

if($stream = fopen($filepath, "rb")){
$file_contents = stream_get_contents($stream);
header("Content-type: ".$this->filetype);
print($file_contents);

}
}

}

?>

Notice that you declare the variables outside the function; they're part of the
class and not the function. You're also declaring them as public, which means
you can access them from outside the class itself. You can also set a property
as private, which means you can use it only within the class itself, or
protected, which means you can use it only within the class or any classes
based on this one. (If you're unfamiliar with this idea, hang on for a little while.
We will talk more about this concept, inheritance, in Creating a custom
exception on page29 .)

Finally, to reference an object property, you have to know which object it
belongs to. Within an object itself, you can just use the keyword $this, which
refers to the object itself. This way, you can use $this->filename to refer to
the filename property of the object executing this code.

Now let's look at setting values for these properties.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 22 of 46 Learning PHP, Part 3

Setting properties

Rather than passing information to an object, you want to actually set the
properties of the object:

<?php

include ("../WFDocument.php");

$filetype = $_GET['filetype'];
$filename = $_GET['file'];

$wfdocument = new WFDocument();
$wfdocument->filename = $filename;
$wfdocument->filetype = $filetype;
$wfdocument->download();

?>

Notice the notation here. You're using the object name, $wfdocument, the ->
operator, and the name of the property. Once these properties have been set,
they're available from inside the object, so you don't have to pass them to the
download() method.

Now, having done all that, there is actually a better way to handle this kind of
thing, so let's look at an alternative.

Hiding properties

Although it's certainly possible to set the value of a property directly, as you did
in the previous panel, it's not the best way to handle things. Instead, the general
practice is to hide the actual properties from the public and use getters and
setters to get and set their values, like so:

<?php

include_once("../scripts.txt");

class WFDocument {

private $filename;
private $filetype;

function setFilename($newFilename){
$this->filename = $newFilename;

}
function getFilename(){

return $this->filename;
}

function setFiletype($newFiletype){
$this->filetype = $newFiletype;

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Learning PHP, Part 3 Page 23 of 46

}
function getFiletype(){

return $this->filetype;
}

function download() {

$filepath = UPLOADEDFILES.$this-> getFilename()

if($stream = fopen($filepath, "rb")){
$file_contents = stream_get_contents($stream);
header("Content-type: ".$this->getFiletype())
print($file_contents);

}
}

}

?>

First, you define the properties as private. That means that if you try to set
them directly, as you've been doing, you'll get an error. But you still have to set
these values, so instead you use the getFilename(), setFilename(),
getFiletype(), and setFiletype() methods. Notice that you use them
here in the download() method, just as you would have used the original
property.

Using getters and setters is handy because it gives you more control over
what's happening to your data. For example, you might want to perform certain
validation checks before you allow a particular value to be set for a property.

Calling hidden properties

Now that you've hidden the properties, you need to go back and modify the
download_file.php page so you don't get an error:

<?php

include ("../WFDocument.php");

$filetype = $_GET['filetype'];
$filename = $_GET['file'];

$wfdocument = new WFDocument();
$wfdocument->setFilename($filename);
$wfdocument->setFiletype($filetype);
$wfdocument->download();

?>

Handy as this approach is, there are easier ways to set properties on an object.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 24 of 46 Learning PHP, Part 3

Creating a constructor

If an object has a constructor, it gets called every time you create a new
instance of that particular class. For example, you could create a simple
constructor:

...
function getFiletype(){

return $this->filetype;
}

function __construct(){
echo "Creating new WFDocument";

}

function download() {

$filepath = UPLOADEDFILES.$this->filename;
...

If you try to run this script as is, you'll see an error because the object outputs
the text (Creating new WFDocument) before it outputs the headers, as you
can see in Figure 7.

Figure 7. Error after running script

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Learning PHP, Part 3 Page 25 of 46

So, even though you never explicitly called the __construct() method, the
application called it as soon as the object was instantiated. You can use that to
your advantage by adding information to the constructor.

Creating an object with information

One of the most common uses for a constructor is to provide a way to initialize
various values when you create the object. For example, you can set up the
WFDocument class so that you set the filename and filetype properties
when you create the object:

...
function getFiletype(){

return $this->filetype;
}

function __construct($filename = "", $filetype = ""){
$this->setFilename($filename);
$this->setFiletype($filetype);

}

function download() {

$filepath = UPLOADEDFILES.$this->filename;

...

When you create the object, PHP carries out any instructions in the constructor
before moving on. In this case, that constructor is looking for the filename and
filetype. If you don't supply them, you still won't get an error, because you've
specified default values to use if no value is given when the function is called.

But how do you explicitly call the __construct() function?

Creating the object: Calling the constructor

You don't actually call the constructor method explicitly. Instead, you call it
implicitly every time you create an object. That means you use that specific
moment to pass information for the constructor:

<?php

include ("../WFDocument.php");

$filetype = $_GET['filetype'];
$filename = $_GET['file'];

$wfdocument = new WFDocument($filename, $filetype);
$wfdocument->download();

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 26 of 46 Learning PHP, Part 3

?>

Any information passed to the class when you create the new object gets
passed to the constructor. This way, you can simply create the object and use it
to download the file.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Learning PHP, Part 3 Page 27 of 46

Section 6. Handling exceptions

A generic exception

Because exceptions come into play when something is not quite right with an
application, they are often confused with errors. Exceptions are, however, much
more flexible. In this section, you'll see how to define different types of
exceptions and use them to determine what's going on with the application.

Let's start with a simple generic exception in the definition of the WFDocument
class:

<?php

include_once("../scripts.txt");

class WFDocument {
...

function download() {

$filepath = UPLOADEDFILES.$this->filename;

try {

if(file_exists($filepath)){
if ($stream = fopen($filepath, "rb")){

$file_contents = stream_get_contents($stream);
header("Content-type: ".$this->filetype);
print($file_contents);

}
} else {
throw new Exception ("File '".$filepath."' does not exist.");

}

} catch (Exception $e) {

echo "<p style='color: red'>".$e->getMessage()."</p>";

}
}

}

?>

First off, exceptions don't just happen, they are thrown. And, of course, if you
throw something, you have to catch it, so you create a try-catch statement. In
the try section, you put your code. If something untoward happens, such as, in
this case, a file doesn't exist, and you throw an exception, PHP moves
immediately to the catch block to catch the exception.

An exception has many properties, such as the line and file from which the
exception was thrown, and a message. Typically, the application sets the
message when it throws the exception, as you see here. The exception itself,
$e, can then provide that text using the getMessage() method. For example,
if you try to download a file that doesn't exist, you'll see the message displayed,

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 28 of 46 Learning PHP, Part 3

in red, as in Figure 8.

Figure 8. The basic exception

The real power of exceptions, though, comes from creating your own.

Creating a custom exception

In the last section, you examined objects, but we left out one very important
aspect of them: inheritance. Let's look at that now.

One advantage to using classes is the ability to use one class as the basis for
another. For example, you can create a new exception type,
NoFileExistsException, which extends the original Exception class:

class NoFileExistsException extends Exception {

public function informativeMessage(){
$message = "The file, '".$this->getMessage()."', called on line ".

$this->getLine()." of ".$this->getFile().", does not exist.";
return $message;

}

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Learning PHP, Part 3 Page 29 of 46

}

(For simplicity's sake, we added this code to the WFDocument.php file, but you
can add it wherever it's accessible when you need it.)

Here, you've created a new class, NoFileExistsException, with a single
method: informativeMessage(). In actuality, this class is also an
Exception, so all the public methods and properties for an Exception object
are also available.

For example, notice that within the informativeMessage() function, you call
the getLine() and getFile() methods, even though they're not defined
here. They're defined in the base class, Exception, so you can use them.

Now let's see it in action.

Catching a custom exception

The easiest way to use the new exception type is to simply throw it just as you
would throw a generic Exception:

function download() {

$filepath = UPLOADEDFILES.$this->filename;

try {

if(file_exists($filepath)){
if ($stream = fopen($filepath, "rb")){

$file_contents = stream_get_contents($stream);
header("Content-type: ".$this->filetype);
print($file_contents);

}
} else {
throw new NoFileExistsException ($filepath);

}

} catch (NoFileExistsException $e) {

echo "<p style='color: red'>".$e->informativeMessage()."</p>";

}
}

Notice that even though you pass only the $filepath when you create the
exception, you get the full message back, as shown in Figure 9.

Figure 9. Using a custom exception

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 30 of 46 Learning PHP, Part 3

Working with multiple exceptions

One reason to create custom exception classes is so you can use PHP's ability
to distinguish between them. For example, you can create multiple catch
blocks for a single try:

...
function download() {

$filepath = UPLOADEDFILES.$this->filename;

try {

if(file_exists($filepath)){
if ($stream = fopen($filepath, "rb")){

$file_contents = stream_get_contents($stream);
header("Content-type: ".$this->filetype);
print($file_contents);

} else {
throw new Exception ("Cannot open file ".$filepath);

}
} else {
throw new NoFileExistsException ($filepath);

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Learning PHP, Part 3 Page 31 of 46

}

} catch (NoFileExistsException $e) {

echo "<p style='color: red'>".$e->informativeMessage()."</p>";

} catch (Exception $e){

echo "<p style='color: red'>".$e->getMessage()."</p>";
}

}
}

In this case, you attempt to catch problems before they happen by checking for
the existence of the file and throwing a NoFileExistsException. If you get
past that hurdle and something else keeps you from opening the file, you throw
a generic exception. PHP detects which type of exception you throw and
executes the appropriate catch block.

All of this might seem a little overboard for simply outputting messages, but
there's nothing that says that's all you can do. You can create custom methods
for your exception that, for example, send notifications for particular events. You
can also create custom catch blocks that perform different actions depending
on the situation.

Of course, just because you defined all these different exceptions doesn't mean
you have to catch each one individually, as you'll see next.

Propagating exceptions

Another handy feature of inheritance is the ability to treat an object as though it
were a member of its base class. For example, you can throw a
NoFileExistsException and catch it as a generic Exception:

...
function download() {

$filepath = UPLOADEDFILES.$this->filename;

try {

if(file_exists($filepath)){
if ($stream = fopen($filepath, "rb")){

$file_contents = stream_get_contents($stream);
header("Content-type: ".$this->filetype);
print($file_contents);

} else {
throw new Exception ("Cannot open file ".$filepath);

}
} else {
throw new NoFileExistsException ($filepath);

}

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 32 of 46 Learning PHP, Part 3

} catch (Exception $e){

echo "<p style='color: red'>".$e->getMessage()."</p>";
}

}
}

In this case, when you throw the exception, PHP works its way down the list of
catch blocks, looking for the first one that applies. Here you have only one, but
it will catch any Exception, as shown in Figure 10.

Figure 10. Propagating exceptions

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Learning PHP, Part 3 Page 33 of 46

Section 7. Putting it together

What you need to do

Now that you've got the file download process in place, it's time to put
everything together and finish off the application. In this section, you're going to
take care of some miscellaneous tasks that still need doing:

° Creating individual file identifiers
° Detecting administrators
° Creating the form that enables an administrator to approve files
° Checking downloads to make sure they're not being called from another

server

Start by creating a Counter class.

Identifying individual documents

So far, you haven't been at all concerned about identifying specific files, except
when you're downloading them, but now you need to pay a bit more attention.
Ultimately, you'll be processing a form that enables an administrator to approve
specific files, so it would be helpful to have an easy way to refer to them.

What you're going to do here is create a Counter class that lets you generate
a unique key for each file. You then add that key to the XML file, enabling you to
directly request the appropriate fileInfo element. You start by creating the
Counter class definition. You might, for example, put it in the scripts.txt file:

class Counter{

function getNextId(){
$filename = "/usr/local/apache2/htdocs/counter.txt";
$handle = fopen($filename, "r+");
$contents = fread($handle, filesize($filename));

$nextid = $contents + 1;
echo $nextid;
rewind($handle);
fwrite($handle, $nextid);
fclose($handle);

return $nextid;
}

}

Here you have a single function, getNextId(), that reads an existing file,
counter.txt, and increments the contents by 1. (So, before you start, create the

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 34 of 46 Learning PHP, Part 3

file with the single entry 0.) It then goes back to the beginning of the file and
writes the new value so it will be present the next time you call the function.

You use this class when you add the file information to the XML file.

Adding the identifier to the XML file

Ultimately, you want to be able to retrieve a single fileInfo element by its ID
attribute, so go ahead and add this information to the docinfo.xml file created in
"Learning PHP, Part 2."

function save_document_info($fileInfo){

$xmlfile = UPLOADEDFILES."docinfo.xml";
...

$filename = $fileInfo['name'];
$filetype = $fileInfo['type'];
$filesize = $fileInfo['size'];

$fileInfo = $doc->createElement("fileInfo");

$counter = new Counter();
$fileInfo->setAttribute("id", "_".$counter->getNextId());

$fileInfo->setAttribute("status", "pending");

$fileInfo->setAttribute("submittedBy", getUsername());
...

$doc->save($xmlfile);

}

Every time a new document's information is saved, you create a Counter
object and use its getNextId() method to provide a unique value for the id
attribute. Because you're later going to specify this attribute as being of type ID,
you're preceding the value with an underscore (_) because these values can't
start with a number.

The results look something like the following (we added spacing to make it a bit
easier to read):

<fileInfo id="_13" status="pending" submittedBy="roadnick">
<approvedBy/>
<fileName>timeone.jpg</fileName>
<location>/var/www/hidden/</location>
<fileType>image/jpeg</fileType>
<size>2020</size>

</fileInfo>

Note that this process does not affect any of your existing data, so you need to
manually add id attributes to all your fileInfo elements or delete the
docinfo.xml file and start again, uploading files to work with.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Learning PHP, Part 3 Page 35 of 46

http://www.ibm.com/developerworks/edu/os-dw-os-phptut2-i.html

Now you're ready to approve files, but first you need to set up the administrators
who are going to do it.

Detecting administrators

When you originally created the users table in the database, you didn't take into
consideration the fact that you needed to distinguish between regular users and
administrators, so you have to take care of that now. Log into MySQL and
execute the following commands:

alter table users add status varchar(10) default 'USER';
update users set status = 'USER';
update users set status = 'ADMIN' where id=3;

The first command adds the new column, status, to the users table. You didn't
specify the user type on the registration page, so you simply specify a default
value of USER for any new users added to the system. The second command
sets this status for the existing users. Finally, you choose a user to make into an
administrator. (Make sure to use the appropriate id value for your data.)

Now that you have the data, you can create a function that returns the current
user's status:

function getUserStatus(){
$username = $_SESSION["username"];
db_connect();
$sql = "select * from users where username='".$username."'";

$result = mysql_query($sql);
$row = mysql_fetch_array($result);

$status = "";

if ($row) {
$status = $row["status"];

} else {
$status = "NONE";

}

mysql_close();

return $status;

}

Let's review how this process works. First, you create a connection to the
appropriate database using the script you created: db_connect(). You can
then create a SQL statement using the username, stored in the $_SESSION
variable. Next, you execute that statement and attempt to get the first (and
presumably only) row of data.

If a row exists, you set the status equal to the value of the status column. If
not, you set the status equal to NONE. Finally, close the connection and return

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 36 of 46 Learning PHP, Part 3

the value.

Place this function in the scripts.txt file so you can access it when you display
the file list.

Approving the file: The form

Now you're ready to add approval capabilities to the form. What you want is to
display a check box for pending files if the user viewing the list of files is an
administrator. The Content_Handler class handles this display:

class Content_Handler{

private $available = false;
private $submittedBy = "";
private $status = "";

private $currentElement = "";

private $fileId = "";
private $fileName = "";
private $fileSize = "";
private $fileType = "";

private $userStatus = "";

function start_element($parser, $name, $attrs){

if ($name == "workflow"){

$this->userStatus = getUserStatus($_SESSION["username"]);

if ($this->userStatus == "ADMIN"){
echo "<form action='approve_action.php' method='POST'>";

}

echo "<h3>Available files</h3>";
echo "<table width='100%' border='0'><tr>".

"<th>File Name</th><th>Submitted By</th>".
"<th>Size</th><th>Status</th>";

if ($this->userStatus == "ADMIN"){
echo "<th>Approve</th>";

}
echo "</tr>";

}

if ($name == "fileInfo"){
if ($attrs['status'] == "approved" ||

$attrs['submittedBy'] == $this->username){
$this->available = true;

}
if ($this->available){

$this->submittedBy = $attrs['submittedBy'];
$this->status = $attrs['status'];
$this->fileId = $attrs['id'];

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Learning PHP, Part 3 Page 37 of 46

}
}

$this->currentElement = $name;

}

function end_element($parser, $name){

if ($name == "workflow"){
echo "</table>";

if ($this->userStatus == "ADMIN"){

echo "<input type='submit' value='Approve Checked Files' />";

echo "</form>";
}

}

if ($name == "fileInfo"){
echo "<tr>";
echo "<td><a href='download_file.php?file=".

$this->fileName."&filetype=".
$this->fileType."'>".

$this->fileName."</td>".
"<td>".$this->submittedBy."</td>".
"<td>".$this->fileSize."</td>".
"<td>".$this->status."</td><td>";

if ($this->userStatus == "ADMIN"){
if ($this->status == "pending") {

echo "<input type='checkbox' name='toapprove[]' value='".
$this->fileId."' checked='checked' />";

}
}

echo "</td></tr>";

$this->fileId = "";
$this->fileName = "";
$this->submittedBy = "";
$this->fileSize = "";
$this->status = "";
$this->fileType = "";

$this->available = false;
}

$this->currentElement = "";

}

function chars($parser, $chars){
...
}

}

Starting at the top, you have two new properties to define: $fileId and
$userStatus. The latter, you set once, when you process the start of the
workflow element and, thus, the document. At this point, if the user is an

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 38 of 46 Learning PHP, Part 3

administrator, you want to add a form element to the page and an Approve
column to the table.

You close the form at the end of the document, when the content handler
receives notification of the end of the workflow element.

As for the actual check boxes, you output those when you display the actual
row of information, at the end of each fileInfo element. Because you have
the potential for multiple entries, you name the field toapprove[].

The result is a form with the appropriate boxes, as you can see in Figure 11.

Figure 11. The approval form

Setting up IDs

Now you've got the form, but to access the fileInfo elements by their id
attributes, you need to take one more step. Unlike in an HTML document, just
naming an attribute "id" isn't enough to make it act like an identifier. In an XML
file, you have to provide some sort of schema (note the small "s") that defines
the attribute. In this case, you'll add a Document Type Definition (DTD). First,

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Learning PHP, Part 3 Page 39 of 46

you add a reference to it in the actual document:

function save_document_info($fileInfo){

$xmlfile = UPLOADEDFILES."docinfo.xml";

if(is_file($xmlfile)){
$doc = DOMDocument::load($xmlfile);
$workflowElements = $doc->getElementsByTagName("workflow");
$root = $workflowElements->item(0);

$statistics = $root->getElementsByTagName("statistics")->item(0);
$total = $statistics->getAttribute("total");
$statistics->setAttribute("total", $total + 1);

} else{

$domImp = new DOMImplementation;
$dtd = $domImp->createDocumentType('workflow', '', 'workflow.dtd');

$doc = $domImp->createDocument("", "", $dtd);

$root = $doc->createElement('workflow');
$doc->appendChild($root);

$statistics = $doc->createElement("statistics");
$statistics->setAttribute("total", "1");
$statistics->setAttribute("approved", "0");
$root->appendChild($statistics);

}
...
}

Instead of creating the document directly by instantiating the DOMDocument
class, you create a DOMImplementation, from which you create a DTD
object. You then assign that DTD to the new document you're creating.

If you remove the docinfo.xml file and upload a new document, you'll see the
new information:

<?xml version="1.0"?>
<!DOCTYPE workflow SYSTEM "workflow.dtd">
<workflow><statistics total="3" approved="0"/>
...

Now you need to create the workflow.dtd file.

The DTD

Explaining all the nuances of XML validation is well beyond the scope of this
tutorial, but you do need to have a DTD that describes the structure of the
docinfo.xml file. To do that, create a file and save it as workflow.dtd in the same
directory docinfo.xml is in. Add the following:

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 40 of 46 Learning PHP, Part 3

<!ELEMENT workflow (statistics, fileInfo*) >
<!ELEMENT statistics EMPTY>
<!ATTLIST statistics total CDATA #IMPLIED

approved CDATA #IMPLIED >
<!ELEMENT fileInfo (approvedBy, fileName, location, fileType, size)>
<!ATTLIST fileInfo id ID #IMPLIED>
<!ATTLIST fileInfo status CDATA #IMPLIED>
<!ATTLIST fileInfo submittedBy CDATA #IMPLIED>
<!ELEMENT approvedBy (#PCDATA)>
<!ELEMENT fileName (#PCDATA)>
<!ELEMENT location (#PCDATA)>
<!ELEMENT fileType (#PCDATA)>
<!ELEMENT size (#PCDATA)>

Simply put, you define each element and its "content" model. For example, the
workflow element must have one statistics element child and zero or
more fileInfo children.

You also define attributes and their types. For example, the statistics
element has two optional attributes, total and approved, and they're both
character data.

The key here is the definition of the fileInfo element's id value, which
you've defined as type ID.

Now you can use this information.

Approving the file: Updating the XML

The actual form page that accepts the approval check boxes,
approve_action.php, is very simple:

<?php

include "../scripts.txt";

$allApprovals = $_POST["toapprove"];
foreach ($allApprovals as $thisFileId) {

approveFile($thisFileId);
}
echo "Files approved.";

?>

For each toapprove check box, you simply call the approveFile() function,
in scripts.txt:

function approveFile($fileId){

$xmlfile = UPLOADEDFILES."docinfo.xml";

$doc = new DOMDocument();
$doc->validateOnParse = true;
$doc->load($xmlfile);

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Learning PHP, Part 3 Page 41 of 46

$statisticsElements = $doc->getElementsByTagName("statistics");
$statistics = $statisticsElements->item(0);

$approved = $statistics->getAttribute("approved");
$statistics->setAttribute("approved", $approved+1);

$thisFile = $doc->getElementById($fileId);
$thisFile->setAttribute("status", "approved");

$approvedByElements = $thisFile->getElementsByTagName("approvedBy");
$approvedByElement = $approvedByElements->item(0);
$approvedByElement->appendChild($doc->createTextNode($_SESSION["username"]));

$doc->save($xmlfile);

}

Before you even load the document, you specify that you want the parser to
validate it or check it against the DTD. This sets the nature of the id attribute.
Once you've loaded the file, you get a reference to the statistics element
so you can increment the number of approved files.

Now you're ready to actually approve the file. Because you set the id attribute
as an ID-type value, you can use getElementById() to request the
appropriate fileInfo element. When you have that element, you can set its
status to approved.

You also need to get a reference to this element's approvedBy child. When
you have that reference, you can add a new Text node child with the
administrator's username.

Finally, save the file.

Note that while you did it this way for simplicity's sake, in a production
application, it's more efficient to open and load the file just once, make all the
changes, then save the file.

Security checks on download

As the last step, you add a security check to the download process. Because
you control this process entirely through the application, you can use whichever
checks you want. For this example, you'll check to make sure that the user
clicked the link for a file on a page that is on your local server, preventing
someone from linking to it from an external site, or even from bookmarking the
link or sending someone else a raw link.

You start by creating a new exception, just for this occasion, in the
WFDocument.php file:

<?php

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 42 of 46 Learning PHP, Part 3

include_once("../scripts.txt");

class NoFileExistsException extends Exception {

public function informativeMessage(){
$message = "The file, '".$this->getMessage()."', called on line ".

$this->getLine()." of ".$this->getFile().", does not exist.";
return $message;

}

}

class ImproperRequestException extends Exception {

public function logDownloadAttempt(){
//Additional code here
echo "Notifying administrator ...";

}

}

class WFDocument {

private $filename;
private $filetype;

function setFilename($newFilename){
$this->filename = $newFilename;

}
function getFilename(){

return $this->filename;
}

function setFiletype($newFiletype){
$this->filetype = $newFiletype;

}
function getFiletype(){

return $this->filetype;
}

function __construct($filename = "", $filetype = ""){
$this->setFilename($filename);
$this->setFiletype($filetype);

}

function download() {

$filepath = UPLOADEDFILES.$this->filename;

try {

$referer = $_SERVER['HTTP_REFERER'];
$noprotocol = substr($referer, 7, strlen($referer));
$host = substr($noprotocol, 0, strpos($noprotocol, "/"));
if ($host != 'boxersrevenge' &&

$host != 'localhost'){
throw new ImproperRequestException("Remote access not allowed.

Files must be accessed from the intranet.");
}

if(file_exists($filepath)){
if ($stream = fopen($filepath, "rb")){

$file_contents = stream_get_contents($stream);

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Learning PHP, Part 3 Page 43 of 46

header("Content-type: ".$this->filetype);
print($file_contents);

} else {
throw new Exception ("Cannot open file ".$filepath);

}
} else {
throw new NoFileExistsException ($filepath);

}
} catch (ImproperRequestException $e){

echo "<p style='color: red'>".$e->getMessage()."</p>";
$e->logDownloadAttempt();

} catch (Exception $e){

echo "<p style='color: red'>".$e->getMessage()."</p>";

}
}

}

?>

First off, in the ImproperRequestException, you create a new method,
logDownloadAttempt(), that can send an e-mail or perform some other
action. You use that method in this exception type's catch block.

In the actual download() function, the first thing you do is get the
HTTP_REFERER. This optional header is sent with a Web request identifying the
page from which the request was made. For example, if you link to
developerWorks (http://www.ibm.com/developerworks) from your blog, and you
click that link, the IBM logs would show the URL of your blog as the
HTTP_REFERER for that access.

In your case, you want to make sure the request is coming from your
application, so you first strip off the "http://" string at the beginning, then save all
the text up to the first slash (/). This is the hostname in the request.

For an external request, this hostname might be something along the lines of
boxersrevenge.nicholaschase.com, but you're looking for only internal requests,
so you accept boxersrevenge or localhost. If the request comes from
anywhere else, you throw the ImproperRequestException, which is caught
by the appropriate block.

Note that this method is not foolproof as far as security is concerned. Some
browsers don't send referrer information properly because either they don't
support it or the user has altered what's being sent. But this example should
give you an idea of the types of things you can do to help control your content.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 44 of 46 Learning PHP, Part 3

http://www.ibm.com/developerworks

Section 8. Summary and resources

Summary

This tutorial wrapped up the three-part series on "Learning PHP" while you built
a simple workflow application. Earlier parts focused on the basics, such as
syntax, form handling, database access, file uploading, and XML. In this part,
you took all that a step further and put it together by creating a form through
which an administrator could approve various files. We discussed the following
topics:

° Using HTTP authentication
° Streaming files
° Creating classes and objects
° Object properties and methods
° Using object constructors
° Using exceptions
° Creating custom exceptions
° Using XML ID attributes
° Performing additional security checks for downloads

Resources

Access parts 1 and 2 of this series: "Learning PHP, Part 1" and "Learning PHP,
Part 2."

In these tutorials, you've just scratched the surface of what you can do with
PHP. Following are some good places to go for more information:

° PHP Manual (http://www.php.net/manual/en)
° PHP Manual: Classes and Objects (PHP 4)

(http://www.php.net/manual/en/language.oop.php)
° PHP Manual: Classes and Objects (PHP 5)

(http://www.php.net/manual/en/language.oop5.php)
° PHP Manual: Exceptions
° PHP Manual: Security (http://www.php.net/manual/en/security.php)
° PHP Manual: HTTP authentication with PHP
° PHP Manual: DOM Functions (http://www.php.net/manual/en/ref.dom.php)
° PHP Manual: Stream Functions

(http://www.php.net/manual/en/ref.stream.php)
° PHP Manual: String Functions

(http://www.php.net/manual/en/ref.strings.php)
° PHP Manual: Streams API for PHP Extension Authors

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Learning PHP, Part 3 Page 45 of 46

http://www.ibm.com/developerworks/edu/os-dw-os-phptut1-i.html
http://www.ibm.com/developerworks/edu/os-dw-os-phptut2-i.html
http://www.ibm.com/developerworks/edu/os-dw-os-phptut2-i.html
http://www.php.net/manual/en
http://www.php.net/manual/en/language.oop.php
http://www.php.net/manual/en/language.oop5.php
http://www.php.net/manual/en/language.exceptions.php
http://www.php.net/manual/en/security.php
http://www.php.net/manual/en/features.http-auth.php
http://www.php.net/manual/en/ref.dom.php
http://www.php.net/manual/en/ref.stream.php
http://www.php.net/manual/en/ref.strings.php
http://www.php.net/manual/en/streams.php

(http://www.php.net/manual/en/streams.php)
° Apache HTTP Server Version 1.3 Authentication, Authorization, and Access

Control (http://httpd.apache.org/docs/howto/auth.html)
° Apache HTTP Server Version 2.0 Authentication, Authorization and Access

Control (http://httpd.apache.org/docs-2.0/howto/auth.html)
° Apache HTTP Server Version 2.0 tutorial: .htaccess files
° HTTP Authentication and WebSphere Application Server 4 Web applications

(developerWorks)
° Visit the developerWorks Open source zone

(http://www.ibm.com/developerworks/opensource) for extensive how-to
information, tools, and project updates to help you develop with open source
technologies and use them with IBM products.

° Innovate your next open source development project with IBM trial software,
available for download or on DVD.

° Get involved in the developerWorks community by participating in
developerWorks blogs (http://www.ibm.com/developerworks/blogs/) .

Feedback

Please let us know whether this tutorial was helpful to you and how we could
make it better. We'd also like to hear about other tutorial topics you'd like
developerWorks to cover.

For questions about the content of this tutorial, contact the authors, Nicholas
Chase, at: ibmquestions@nicholaschase.com, or Tyler Anderson, at:
tyleranderson5@yahoo.com.

Colophon

This tutorial was written entirely in XML, using the developerWorks Toot-O-Matic tutorial
generator. The open source Toot-O-Matic tool is an XSLT stylesheet and several XSLT
extension functions that convert an XML file into a number of HTML pages, a zip file, JPEG
heading graphics, and two PDF files. Our ability to generate multiple text and binary formats
from a single source file illustrates the power and flexibility of XML. (It also saves our
production team a great deal of time and effort.)

For more information about the Toot-O-Matic, visit
www-106.ibm.com/developerworks/xml/library/x-toot/ .

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 46 of 46 Learning PHP, Part 3

http://httpd.apache.org/docs/howto/auth.html
http://httpd.apache.org/docs/howto/auth.html
http://httpd.apache.org/docs-2.0/howto/auth.html
http://httpd.apache.org/docs-2.0/howto/auth.html
http://httpd.apache.org/docs-2.0/howto/htaccess.html
http://www.ibm.com/developerworks/websphere/library/summaries/300067.html
http://www.ibm.com/developerworks/opensource
http://www.ibm.com/developerworks/downloads/?S_TACT=105AGX44
http://www.ibm.com/developerworks/blogs/
mailto:ibmquestions@nicholaschase.com
mailto:tyleranderson5@yahoo.com
http://www-106.ibm.com/developerworks/xml/library/x-toot/

	Table of contents
	Before you start
	About this tutorial
	Who should take this tutorial?
	Prerequisites
	About the authors

	The story so far
	Where things stand right now
	What you're going to do
	The welcome page

	Using HTTP authentication
	HTTP authentication
	Enabling HTTP authentication
	Setting authentication
	Creating the password file
	Logging in
	Using the login information
	Fixing the interface
	Adding new users to the password file

	Using streams
	What are streams?
	Downloading the file
	Adding a link to the file

	Using objects
	What are objects, anyway?
	Creating the WFDocument class
	Calling the WFDocument-type object
	Creating properties
	Setting properties
	Hiding properties
	Calling hidden properties
	Creating a constructor
	Creating an object with information
	Creating the object: Calling the constructor

	Handling exceptions
	A generic exception
	Creating a custom exception
	Catching a custom exception
	Working with multiple exceptions
	Propagating exceptions

	Putting it together
	What you need to do
	Identifying individual documents
	Adding the identifier to the XML file
	Detecting administrators
	Approving the file: The form
	Setting up IDs
	The DTD
	Approving the file: Updating the XML
	Security checks on download

	Summary and resources
	Summary
	Resources
	Feedback

