<delete dir="output\bin" verbose="fa
<delete dir="output\classes" verbose
<delete dir="output\src" vez}
] i dir-W
' dir="outpd
Pk diyg (dirsiout

Maximizing Your

Java Application D

internet.com

[Maximizing Your Java Application Development]

While Java helps in fulfilling the promise of "write
once, use anywhere", there are practical concerns

developers need to address in developing their
code, whether its porting from another language,
working in the best IDE or optimizing for today's
multi-core computing environments. This eBook
will help you in understanding these issues and
how you can get the most out of your Java code.

Onward and Upward: Porting
Apps to Higher JDK Versions
by Rahul Kumar Gupta

Automate Your J2ME
Application Porting with
Preprocessing

by Bruno Delb

Eclipse, NetBeans, and
IntelliJ: Assessing the
Survivors of the

Java IDE Wars

by Jacek Furmankiewicz

The Work Manager API:
Parallel Processing Within a
J2EE Container

by Rahul Tyagi

Maximizing Your Java Application Development, an Internet.com Developer eBook.
Copyright 2008, Jupitermedia Corp.

1

[Maximizing Your Java Application Development]

Onward and Upward:
Porting Apps to Higher JDK Versions

Porting an existing Java-based application to a new JDK version is not as easy as many
assume. Learn a comprehensive, systematic approach that can ensure a smooth process

by Rahul Kumar Gupta

day sees some new software version or specifica-

tion released, which necessitates constant
upgrades. Programming professionals often must
upgrade business applica-
tions to the new versions of
the software upon which
they are built. To accommo-
date these rapidly changing
business requirements, Sun
Microsystems releases a JDK
version with some new
capabilities, enhancements,
and improvements nearly
every year.

T he IT industry is synonymous with change. Every

This article describes the
process of porting an exist-
ing Java-based application
to a new JDK version and
prescribes a porting process that ensures the function-
ality of the ported application will remain unchanged
(see Figure 1).

Porting is the process of making software that was writ-
ten for one operating environment work in another

Figure 1. Porting Process Diagram: Functionality of
both System A and System A' are exactly the same.

Porting System A’

Process

Platform X Platform Y

operating environment that offers new value-added fea-
tures and improved performance. Porting requires
changing the programming details, which can be done
at the binary (application) level or the source code level.
The target configuration may
include a new operating sys-
tem, compiler, database,
and/or other third-party soft-
ware that will be integrated
with the base product.

Before making the decision
to port, one must determine
the why, what, and how of
the task. Answering the fol-
lowing questions in the
given order will help:
Jupiterimages
1. Why migrate the existing
application and/or product?

2. What in the existing application and/or product
has to be migrated?

3. How do | migrate the application and/or product?

Why Port in the First Place?

What are the reasons or external events that necessi-
tate the porting process? One good reason for porting
is to take advantage of the new features and improved
functionality of a newer JDK, but you still must deter-
mine whether that's a real business requirement. If
none of your business applications require the new fea-

2 Maximizing Your Java Application Development, an Internet.com Developer eBook. Copyright 2008, Jupitermedia Corp.

[Maximizing Your Java Application Development]

tures the newer JDK version introduces, then spending the time and money to port your existing application may
not be a good idea. On the other hand, if you are in the business of developing software products, then it is
mandatory to constantly upgrade and support the latest functionality on the market in order to give customers
value for their money.

The following are some of the scenarios in which one should port an application or product:
1. When an existing application/product stops running on the targeted JDK [The changes introduced in the JDK,
which are mandatory for implementation, can cause this (e.g., changes in the existing interfaces, changes in

exception handling, introduction of new keywords such as assert in JDK 1.4, etc.)]

2. When you want to improve the performance of your existing application/product with the features introduced
in the targeted JDK

3. When you want to remove the application's dependency on third-party products/APls, which are now intro-
duced as features of the targeted JDK (e.g., using of logging APl instead of Log4j)

4. When a new feature replaces an old one and the new feature will be used in all forthcoming releases
5. When you want to use the new JDK compiler, and you want the program to compile cleanly

6. When you are in the business of product development or producing APls, then upgrading is a business need
for client requirements as well as for competitive edge

You may be thinking: if Java truly delivers "Write Once, Run Anywhere" (WORA) functionality, porting applica-
tions between JDKs should be so trivial as to make this article moot. True, but WORA is not always the reality.
Sure, when you move from a Windows to a Unix platform or vice-versa, your JDK version remains the same.
However, you have to keep some key points in mind while writing the code, including:

1. Naming conventions — Unix is case sensitive.

2. Use of appropriate separators (File.pathSeparator and File.separator) — Unix uses '/ and ":'" as file and path
separators, while Windows uses "\" and ';', respectively.

3. AWT GUI components — They need special attention. Nowadays, it is advised to use swings.

4. Threading model - In this arena, Java's WORA falls flat on its face. Making threading truly platform independ-
ent is a nightmare for programmers. For example, programmers are advised to break up thread-processing code
written in the run method into smaller chunks and, if necessary, to call yield() at the end of a loop iteration. In a
nutshell, they must keep the pre-emptive and co-operative models in mind while writing this code (Read this
article for more information: An Introduction to Java Thread Programming)

5. Internationalization — Character sets are different in Unix and Windows.

6. Proper path usage — Avoid using absolute paths, try to use relative paths instead. If that's not possible, try to
fetch from properties files.

So, with all these factors to consider, you very well may run into problems when you try to run or compile your
existing application on a newer JDK version.

3 Maximizing Your Java Application Development, an Internet.com Developer eBook. Copyright 2008, Jupitermedia Corp.

[Maximizing Your Java Application Development]

What Exactly Do | Need to Port?

Once you decide to go ahead with porting, your next step is to finalize what all needs to be migrated and deter-
mine their priorities. In order to ensure a smooth porting process, you must decide this and finalize your approach
during the early stages of the project.

To help sort out your priorities, JDK changes can be broadly classified into four categories:

* Incompatibilities

* Improvements

* Deprecated API

e New features in JDK

These changes can be introduced in Sun APIs as well as JDK APlIs. Ideally, you should not use sun.* packages
because Sun intends them only for their own usage. If you are using or extending a sun.* APl in your application,
be ready to port the changes or incompatibles introduced in it.

Incompatibilities

Sun technically classifies the compatibility between two JDK release versions as either binary compatibilities or
source compatibilities. Binary compatibilities exist when the compiled code can run with the other version of the
JDK. Source compatibility means the source code can comply and run with the other version of the JDK.

Binary compatibility has two types:

* Upward — when compiled code can run with a higher JDK version

* Downward — when compiled code can run with a lower JDK version

Similarly, source compatibility also has two types:

* Upward — when source code can comply and run with a higher version the JDK

* Downward — when source code can comply and run with a lower version of the JDK

In general, maintenance releases (e.g., JDK 1.4.1 and 1.4.2) support both upward and downward compatibility at
the binary and source levels. The functional releases (e.g., JDK 1.3 and 1.4) support upward compatibility at both
the binary and source levels, except for Sun's stated incompatibilities. However, they do not guarantee downward
compatibility at either level.

Removing the incompatibilities in the targeted JDK release is the top priority when porting your application, and it
qualifies as the only MUST DO activity. Some of the incompatibilities you'll find are changes in the existing interfaces,
constants, exception handling, introduction of keywords (e.g., JDK 1.4 introduced assert), and removal of some meth-
ods and constants (mainly in sun.* packages). In most cases, you can compile and run code written in JDK 1.1 with
JDK 1.2, 1.3, 1.4, and 1.5, as long as you don't use any statements/APIs listed as part of the incompatibilities.

For more details about incompatibilities visit java.sun.com. The following are some other helpful links:

® Incompatibilities in J2SE 1.4.1 (since 1.4.0)
* Incompatibilities in J2SE 1.4.0 (since 1.3)
e Incompatibilities in J2SE 1.3 (since 1.2)

e Incompatibilities in J2SE 1.2 (since 1.1)

Improvements

JDK improvements could be lumped in the new features category, but for a clear distinction and a better under-
standing of tasks, it's better to view them as a separate task. Although these activities aren't mandatory for making
your application portable, from the performance, optimization, and best practices points of view, all the changes in
this category are required. Before performing all the improvement changes, however, you must weigh the trade-off
between the time and effort they require and the improvement you expect to get out of them.

4 Maximizing Your Java Application Development, an Internet.com Developer eBook. Copyright 2008, Jupitermedia Corp.

[Maximizing Your Java Application Development]

A few of the suggested improvements for different JDK versions are:

* With JDK 1.1, use GregorianCalendar instead of java.util.Date for wider acceptability.

e With JDK 1.2, use Arraylist instead of Vectors, if you are not required to synchronize.

e With JDK 1.3, use the Timer class for scheduling future execution in a background thread instead of your own
implementation.

* With JDK 1.4, the Preference APl is better than the properties file for managing user preferences and configu-
ration data.

Deprecated API

Deprecation APls are those that have been restructured and modified with new classes and methods that provide
similar functionality. In general, whenever an APl is deprecated, an alternative implementation is provided and
information about it is offered in the API's javadoc. Sun warns its users to withdraw support for deprecated APIs in
future releases. Whenever possible, you should modify your application to remove references to deprecated meth-
ods/classes and to use the new alternatives. Deprecated APIs support methods and classes only for backward
compatibility, and your Java compiler will generate a warning whenever you use them.

Marking something as deprecated is only one aspect of documentation and is not part of the OO paradigm.
Deprecation also is not inherited, so you can still override a deprecated method without treating the subclass meth-
ods as deprecated methods. For example, say Class X has a deprecated method called getStringValue(), and Class
Y extends Class X, overriding the getStringValue () method. While compiling test client TestX, which creates an
instance of Class X and calls getStringValue(), the compiler generates a warning. However, while compiling test
client TestY, which creates an instance of Class Y and calls getStringValue (), it doesn't generate a warning.

You could treat a deprecated API as part of source compatibilities, but you should consider it a separate activity.
Currently, you don't have to eliminate the usage of deprecated APIs in order to port applications. In fact, the deprecated
APIs from JDK 1.1 are still available in JDK 1.5 (J2SE 5). However, Sun still may withdraw their support in future releases.

Click here for a complete list of deprecated APIs still available in JDK 1.5.

New Features in JDK

Every major JDK version release provides new features in the form of new APIs and/or extensions to existing APls.
The following are some of the major features introduced in respective JDK versions:

1. JDK 1.1 introduced inner classes.

2. JDK 1.2 introduced swings, JDBC 2.0, and changes in Java security.

3. JDK 1.3 introduced JNDI, RMI-IIOP, Java Sound, enhanced the Collection framework, and completed swings.
4. 1.4 introduced the JAAS Preferance API, the Logging API, JDBC 3.0, the assertion facility, and Regular expression.

5. 1.5 introduces major changes at the
language level including autoboxing/
unboxing, enhanced for loop, static
import, typesafe enums, and varargs.
For a list of new features in your tar-
geted JDK, refer to its javadoc.
Effectively using the targeted JDK's
new features, as well as its enhanced
existing features, in your existing appli-
cation is part of the porting process.
Sometimes, using newly added fea- 1995 1996 1997 1998 2000 2002 2004

Figure 2. JDK Releases and the Major Feature They Introduced

5 Maximizing Your Java Application Development, an Internet.com Developer eBook. Copyright 2008, Jupitermedia Corp.

tures ends your dependency on

third-party software/APIs (e.g.,

Maximizing Your Java Application Development

Figure 3. Porting Process Flow Diagram

Fum exdsting compiled code with

START

companies that previously used tageted IDK version

Y

Compile eistig souree oode and evemtte
with targeted JDE versim.

log4j for logging can now use the
logging facility in JDK 1.4
instead). However, if you use new
features just to enhance your
existing application, then it's an

Use appropriate javac
optons lke -sonce, -
target, and -deprecation
optons for conpdlation.

v

Havmg
trouble ?

Tes ¢

Ho

enhancement activity rather than
a porting activity. Enhancement

Fun unit, system , performance, and
arcept amce testoases by nming ner
code withtargeted JTDE wersion.

with targeted JOE version.

Femowe somre code mocmmpatibilties,
change the raquived code, and conpile

arceptancel system festoase results by

Baselineunit, systemn , perfonmance, and
mnnng existng code on supported JTDE

activities should not be included
as part of the porting process A
because they may lead to some
regressions in existing functionali-
ty, and then determining whether
these problems are because of
the porting activity or because of
the enhancement becomes very
difficult. Still, whether or not to go
for the new features is purely
dependent on your business
requirements. It is not a mandato-
ry part of the porting task.

f e

Do they
match ?

Compare baseline rasilts with new test
remlts.

|

Aftertlus, f
required, o can
also perfonm Java
compatibility
tests.

Ha

Make mmpmmverments m existing sorce
code as suggested by San andbor by
industry best practices.

¥

Eemove depricated AP froam your
existmg code.

Tse the ntwnduced faahives and
echancements of targeted JTDE

b, Thesa thres activites aw not mandaony as a part of porting

! task. The descisionto perfom them is based puwely on your
! business requirements.

Compare haseline resbts with newr test
rasults.

How Do | Port My

Fun uni, system , performance, and
arceptance tastoases by nming newr
code withtargeted TDE wersion.

Application?

Once you have identified the porting tasks that need to be performed, as well as their priorities, make an action
plan to execute the porting process. Testing plays a very important role in this execution. Create base line results
or use existing base line results for unit, system, performance, and acceptance testing of your current system for

each platform it supports. Figure 3 shows a porting process flow diagram.
Before starting the porting process, take the following steps:

1. Prepare a list of the following changes:

* Incompatibilities introduced in Java APl and Sun API for targeted JDK version

* Deprecated APls
* Suggested improvements
* Newly added features

Try to estimate the number of occurrences of each identified change in the entire application source code (i.e., what

is the approximate number of places you have to make changes corresponding to each JDK change introduced).
Also estimate the time required for each change. Table 1 offers a sample template for capturing these details.

Table 1. Template for Capturing Change Details

S. Priority Changes Complexity Sub Category Description | Changes Done | Remarks
No. (High, inttroduced | (high, (JDK feature) (API) (Source file
medium or to be medium -- Swings/ names, method
low) done low) AWT/Exception name, or
10, etc. method name
or line no.)
1.
2.
6 Maximizing Your Java Application Development, an Internet.com Developer eBook. Copyright 2008, Jupitermedia Corp.

[Maximizing Your Java Application Development]

2. Prepare baseline results. Table 2. Template for Capturing Test Results
Consider a scenario in which a CRM product — S
supports the following: No. ATG 'vm ATG T bl _
] | Pass [Fail [Skip | Pass | Fail | Skip | Pass | Fail | Skip | Pass | Fail | Skip
e ATG and BEA WeblLogic application N S S D S S SN S S S S— — —
servers é wl - | == = = [|) [|E=A)
* Windows, Linux, and Solaris operating T | == = | = | =
systems (OSs) . e —— | S Y S S ! S — ——)
° JDK 1.3] J==—feer paf i o o pe— fo—— — —
iu:e\latanoe TestClases ! | | | | | | | | | |
The product needs to be ported to JDK 1.4.] ===+ = e e e e e =
2 | | | | | | | | | | | |

As discussed previously, comparing the test
results on the ported platform with the original (baseline) test results is crucial. So the baseline results and actual
results must be captured. Table 2 offers a template for capturing test results.

Capture the test results for each of the supported OSs (Windows, Linux, and Solaris) separately. If all the base-
line results match the new test results of the ported application, then your porting process is almost complete.

Another advisable practice is performing Java compatibility tests as per your requirements [e.g., Pure Java Check
and J2EE CTS (Compatibility Test Suite)]. Such compatibility ensures that implementations of Java technology
meet Java specifications.

Table 3 presents some of the changes that you might have to perform while porting an application from JDK 1.3
to JDK 1.4.

Table 3. Changes When Porting an Application from JDK 1.3 to JDK 1.4

S. No API JDK 1.3 JDK 1.4

AWT/SWINGS

1 javax.swing.tree.DefaultTreeModel Sets the root to root, throwing an Sets the root to root; a null root implies
lllegalArgumentException if root is null the tree will display nothing and is legal

2 javax.swing.text.DefaultHighlighter. Non-final Now it is final, so make the changes if you

DefaultPainter are changing/overriding this value

3 java.awt.event.MouseEvent. MOUSE_LAST The value is 507 Now changed to 506

CORBA

4 Helper Classes All Helpers are now abstract public classes

5 java.util.Calender Now Calendar writes a Zonelnfo object in

its writeObject method. Similarly, it calls
readObject to read this. Based on Java
object serialization, when talking to an
older version, it expects the object not to
be there, so the stream will throw an
EOFException and keep the stream
position intact.

6 org.omg.CORBA.ORB ORB.init method is changed and now
requires explicit type casting:

orbObj=(com.sun.corba.se.internal.iiop.ORB)
ORB.init ((String []) null, orbProperties);

7 com.sun.corba.se.internal.CosNaming Earlier it was used like Now
TransientNameService
TransientNameService (mOrb) TransientNameService
((com.sun.corba.se.internal. POA.POAORB)
mOrb)

continued

7 Maximizing Your Java Application Development, an Internet.com Developer eBook. Copyright 2008, Jupitermedia Corp.

[Maximizing Your Java Application

S. No API

8 Helper classes

JDBC

9 java.sql. CallableStatement,
java.sgl. DatabaseMetaData,
java.sq|. PreparedStatement,
java.sql. ResultSet,
java.sgl. Statement

EXCEPTION HANDLING

10 java.awt.Toolkit
java.awt.GraphicsEnvironment
java.awt.Cursor
java.awt.print.PrinterJob javax.swing.
JOptionPane

1" java.applet
java.awt
java.awt.dnd
java.awt.print
javax.print
javax.swing

12 java.util.ResourceBundle

13 URLConnection.getlnputStream

LANGUAGE SPECS
14 Keyword introduced

15 Empty statements

16 Unnamed namespace

JDK 1.3

Some methods in these classes either
throw no exception or throw some other
exceptions

Constructors of some of the previous
classes throw no exception or throw
some other exceptions

Earlier, some methods like:

1.0bject getObject(String)

2.String getString(String)

3. String|[] getStringArray(String) throw
MissingResourceException

Throws FileNotFoundException

Works fine return ;;

Works fine import SomeClass ;

Development]

JDK 1.4

All Helpers are now abstract public classes.

New methods are being added in these

interfaces so as to provide at least blank

implementation like this:

public boolean execute(
String sqgl, String columnNames|])
throws java.sgl.SQLException

{

throw new java.sql.SQLException(
"JDBC 3.0 not implemented yet");

}

Now, they throw Headless Exception. So you
need to make the required changes in the
code to catch these exceptions.

Now, they throw a Headless Exception. So
you need to make the required changes in
the code to catch these exceptions.

Now, they throw no exception.

Now, throws |OException for all HTTP errors
regardless of the file type, and throws
FileNotFoundException if the response code
is 404 or 410.

Assert is now a keyword, so change the code
anywhere you used it as a method name,
variable, or class.

Now, compiler gives error as Unreachable
statement at second semicolon, so change
it to

return;

Now, this has to be changed to

import somepacke.SomeClass;

The specification is being clarified to state
clearly that you cannot have a simple name

in an import statement, nor can you import

from the unnamed namespace.
continued

Maximizing Your Java Application Development, an Internet.com Developer eBook. Copyright 2008, Jupitermedia Corp.

[Maximizing Your Java Application Development]

S. No API JDK 1.3 JDK 1.4

Sun packages (sun.*) - Only get effected when you are extending or using these packages

17 com.sun.tools.doclets Some new abstract methods are added in
com.sun.javadoc.PackageDoc these classes. So implement the body in leaf
com.sun.javadoc.Doc class.

com.sun.javadoc.DocErrorReporter
com.sun.javadoc.DocErrorReporter

18 com.sun.tools.doclets.standard isGeneratedDoc() is available [t is no more available, instead it is call:

Standard.configuration().isGeneratedDoc(cd));

19 com.sun.tools.doclets.standard.ClassWriter Constructor is changed

The areas where you'll notice the majority of changes across different JDK versions are security, AWT, swings, 1/O, exception
handling, RMI/CORBA, and the collection API.

A Systematic Approach Covers All the Bases

The process and strategy this article describes may not be the only way to handle JDK porting activities, but from
my experience with these types of project, it provides a comprehensive, systematic approach that can ensure a
smooth process.

Credits: The author wishes to thank his project manager Atul Jain and his colleague Saurabh Bhatnagar for their
valuable contributions as reviewers for this article.

Rahul Kumar Gupta has more than six years' experience in the IT industry, particularly working with EAI, J2EE,
design patterns, UML Java, RMI, Servlets, JSP, application servers, C, CORBA, WAF, and J2ME. He currently works
with Indian IT company HCL Technologies Limited, NOIDA (India).

This content was adapted from DevX.com's Web site.

9 Maximizing Your Java Application Development, an Internet.com Developer eBook. Copyright 2008, Jupitermedia Corp.

[Maximizing Your Java Application Development]

Automate Your J2ME Application Porting
with Preprocessing

Got porting nightmares? If you're considering automating the porting your J2ME applications,
you may want to think about using a preprocessor. Find out why it's the only technique
open-ended enough to handle porting to multiple device models.

by Bruno Delb

that when you develop a Java mobile application, it

should run correctly on all Java-enabled devices. Like
most things theoretical, this
just doesn't work in the real
world. During the short life of
J2ME mobile applications,
many developers have
expressed concerns that inter-
operability problems are not
going to be solved so easily by
new initiatives like MIDP 2.0 or
JTWI.

B ecause Java is theoretically portable, people assume

The reality is that J2ME may
be globally portable but
J2ME applications are not.
This means that byte-code
runs correctly on all Java
handsets but the behavior of an application must be
adapted for almost each handset. There are 1200
mobile devices, all of which have different capabilities,
support various Java platforms-including MIDP, and
support optional APIs and optional parts of APIs. Not
to mention that each of these implementations has its
own unique set of bugs (See the Sidebar: The
Fragmentation of device Characteristics and Features).

The result of this is that, in a typical development cycle,
porting and testing can consume from 40 to 80 percent
of your time, depending on your level of experience
and on the number of devices you need to support.
Testing your ported mobile applications on real mobile

phones isn't always easy. A good emulator should
reproduce all the bugs of the real device, but emulators
don't always exist and when they do, they're far from
reliable.

Bugs are another difficulty-
you either need resolve bugs
in your source code or deac-
tivate the problem features,
all of which can be different
depending on the firmware
version. Manufacturers face
difficulties when there are
bugs in their virtual
machines. This causes prob-
lems with the integration of
the VM in the handset at the
hardware level.

Jupiterimages

Mobile operators need to control the quality of the dis-
tributed midlets, because low-quality midlets affect
operator service. Operators also need to transpose
older, more successful midlets for newer device models
and for wider availability. This is why developers have
to be able to port their applications to these new
devices quickly.

Do You Need Automatic Porting?

The number of devices your application is able to sup-
port is the main question — and the one that most
effects your return on investment. Automating your
porting has many benefits:

® |t reduces the time to market and enables J2ME

10 Maximizing Your Java Application Development, an Internet.com Developer eBook. Copyright 2008, Jupitermedia Corp.

[Maximizing Your Java Application Development]

prototypes.

* |t automates tedious tasks.

* |t allows you to focus on your application logic instead of various device specs.
* |t allows you to produce optimized applications to each device.

First, you'll need take into account the specificities of each device model. Your application should use optional fea-
tures whenever available. Table 1 shows some examples of what functionalities your application should support
depending on the device.

In-house Porting Solutions

So, you've decided you do need to automate porting your application. Sure, you could outsource it, but if you're
thinking about doing it in-house, you've basically got four methods from which to choose.

1. Build one Version per Device Series: This approach is to simply develop an application for a specific series of
models, for example, the Nokia Serie40 Edition 1. The problem here is that the more APIs you support, or the
more your application stresses the device, the more you fragment the series since support for advanced APls high-
lights the small differences within the series. For example, two similar devices will have wildly varying performance
results due to the number of images on the screen.

2. Dynamic Detection of the Handset: This option involves testing your application during execution. For example,
suppose your model is a Nokia handset. Your application would detect the device model during execution and
select the appropriate behavior depending on the model.

This allows you to call methods only available on specific handsets - like fullscreen mode. You have to create one

class for each specific implementation (NokiaCanvas, SiemensCanvas, and StandardCanvas). The following code
demonstrates:

Table 1: Examples of the specificities of device models

If the device... ...Your application should

supports sounds play sounds

supports alpha-blending display the menu by varying opacity

has strong .jar file size limitations remove not mandatory images

supports fullscreen use fullscreen

has enough heap memory and supports use optional features like bitmap fonts

large .jar file sizes

supports camera control be able to customize games using snapshots
taken with the camera

supports Bluetooth use the SMS or HTTP connections to
communicate with others users (ie. chat, etc.)

supports SMS use it to pay to activate the current application

supports PDAP use it to access images in an internal gallery

can initiate a phone call make phone calls

supports running applications in background | run applications in the background

11 Maximizing Your Java Application Development, an Internet.com Developer eBook. Copyright 2008, Jupitermedia Corp.

[Maximizing Your Java Application Development]

try {
Class.forName("com.nokia.mid.ui.FullCanvas");
Class myClass = Class.forName("NokiaCanvas");
myCanvas = (ICanvas)(myClass.newlnstance());
} catch (Exception exception?) {
try {
Class.forName("com.siemens.mp.color_game.GameCanvas");
Class myClass = Class.forName("SiemensCanvas");
myCanvas = (ICanvas)(myClass.newlInstance());
} catch (Exception exception2) {
myCanvas = (ICanvas) new StandardCanvas();
}
}

You basically create an interface, Icanvas, and three implementations, one for Nokia devices, one for Siemens
devices, and another one for standard MIDP devices.

Then you use Class.forName in order to determine whether a proprietary APl is available. If no exception is thrown,
you use the NokiaCanvas. Otherwise, it means the current device doesn't support this API. In this case, you test
another AP (for example, Siemens). If another exception is thrown, it means you have to use the standard canvas.

Because this solution supposes the inclusion of the logic of the behavior of each the model of a device in each
application, it quickly becomes impossible.

3. Using Alteratives Like AOP or Extended Java: In his DevX article, Allen Lau discussed using AOP to solve the
problem of fragmentation. His idea is to concentrate the application logic in one location and to modify the code
of the application by adding or removing portions of code.

This approach solves some problems, but having to adapt the structure of your application to different platforms
may, in the end, force you to use another, complementary solution. This is because it can be very difficult to opti-
mize the application to each device model — especially to support optional APIs.

Additionally, this method does not solve the problem of adapting the content (images, sounds, etc.) to each
device model. You can use Java extensions to automatically transform your source code, which is an interesting
approach, but it really increases work load.

4. Using a Preprocessor: Using a preprocessor, your source code will be automatically activated or deactivated
depending on certain conditions.

For example, to set the full screen mode on a Nokia device, you have to extend FullCanvas, not Canvas. On a
MIDP 2 device, you have to call setFullScreenMode. On a MIDP 1 device, this isn't possible, so you stay in a non-
fullscreen mode.

//#ifdef NOKIA

extends com.nokia.mid.ui.FullCanvas
//#else

extends Canvas
//#endif

{

12 Maximizing Your Java Application Development, an Internet.com Developer eBook. Copyright 2008, Jupitermedia Corp.

[Maximizing Your Java Application Development]

//#ifndef MIDP2
setFullScreenMode(true);
//#endif
A preprocessor processes this source code, then you set the directives. So, to generate the application for a Nokia
device:

//#define NOKIA
The preprocessor produces:

extends com.nokia.mid.ui.FullCanvas

{
For a MIDP 2 device, ("//#define MIDP 2"), it produces:

extends Canvas

{

setFullScreenMode(true);

This solution allows for one body of source code to be adapted to each device model. You need only develop to
the reference source code, including the directives. All other modifications made to the processed files will be lost
after the next preprocessing.

Though this solution relies on the old concept of preprocessing, this is the only technique open-ended enough to
solve all the problems you'll encounter trying to port to multiple device models.

What's Involved in Porting with a Preprocessor?

The basic principle is to keep only one version of your source code, which is then preprocessed to generate code
adapted to each device model.

Here are some things to keep in mind:
* You'll need a thorough knowledge of the specific behavior of each device model.
* You'll need to know the Java features supported by each device model.
* You'll need to know which operations are more or less covered by pre-processing (things like deployment).
* Remember that pre-processing does not convert resources (things like images or sounds).
* You need to completely automate your solution — a parameterized solution is not sufficient.
* You'll need to invest in the development of an automated compilation and packaging process.

You'll need to use conversion tools to adapt resources like images and sounds to the capabilities of each device
model. The images will have to be optimized; for instance, you'll need to remove optional information in the head-
ers of .png images, group small images in big images, reduce the number of colors for each image, preload
resources, etc.

You may have to create a series of Java devices with the same characteristics, features, and behavior. Then, you
can produce one application for this series, not for each device model. The features of this series will depend
essentially on the features you want to use in your applications. The more optional features you use, the more
fragmentation you'll be dealing with.

You'll need to update the application in order to take into account unexpected resources. For example, if the

device supports big .jar files and has a high heap memory, you can store a background image for your app.
Otherwise, the image will not be included in your .jar file and you will need to draw the image simply. In this case,

13 Maximizing Your Java Application Development, an Internet.com Developer eBook. Copyright 2008, Jupitermedia Corp.

[Maximizing Your Java Application Development]

the .jar size will decrease and the heap memory will be less consumed.

Remember, screen size is an important issue when it comes to mobile programming, so don't hesitate to use all
the available techniques to reduce image size (like dynamic transformation of images or transformation before
packaging).

Another good practice is to manage the interactions with the system. For example, during an incoming call, stop
sounds and pause your midlet during the call.

A Concrete Example

Suppose you want to port the game MyGame on the following devices: MIDP 1, MIDP 2, MIDP 1 NokiaUl, and
MIDP 1 Motorola.

Here's a step-by-step overview of the process:
1. Download and install Ant and Antenna.

2. Create a specific class for the sound. This class will include the specific code to play sounds for each specific
device.

3. Create a series of Antenna XML files for each device model (ie MIDP 1, MIDP 2, MIDP 1, NokiaUl, and MIDP 1
Motorola). These files will:

* Preprocess the source files, retaining only the lines concerning the current device.

* Build the project by compiling the source files and pre-verifing the classes.

* Run the ported midlet in the emulator for testing.

Seems easy, right?

Creating the SoundManager Class

The SoundManager class contains the instructions to play a basic sound and to set the backlight. It supports the
following generic devices:

* MIDP 1: This device doesn't support sounds and backlight, so the methods will be empty.

* MIDP 2: This device supports sounds and backlight, so the lines of code between //#ifdef MIDP2 and //#endif
will be selected.

* MIDP 1 NokiaUl: This device supports sounds and backlight, so the lines of the code between //#ifdef NOKI-
AUl and //#endif will be selected.

* MIDP 1 Motorola: This device supports only backlight, so the method to play a sound will be empty.

Listing 1 shows the code.

Listing 1.

The SoundManager class.

//#itdef MIDP2

import javax.microedition.media.*;

import javax.microedition.media.control.*;

import javax.microedition.media.control.ToneControl;
//#endif

//#itdef NOKIAUI

14 Maximizing Your Java Application Development, an Internet.com Developer eBook. Copyright 2008, Jupitermedia Corp.

[Maximizing Your Java Application Development]

import com.nokia.mid.sound.*;
import com.nokia.mid.ui.*;
//#endif

//#itdef MOTOROLA

import com.motorola.multimedia.*;
//#endif

import javax.microedition.lcdui.*;
import java.io.*;

public class SoundManager {
Display display;

public SoundManager(Display display) {
this.display = display;
}

public void doLight() {
//#ifdef MIDP2
display.flashBacklight (duration);
//#endif
//#ifdef NOKIAUI
try {
DeviceControl.setLights (0,100);
} catch (Exception exception) {
}
//#endif
//#ifdef MOTOROLA
try {
Lighting.backlightOn();
} catch (Exception exception) {
}
//#endif

}

public void doSound() {
//#ifdef MIDP2
try {
InputStream is = getClass().getResourceAsStream("music.mid");
Player audioPlayer = Manager.createPlayer(is, "audio/midi");
audioPlayer.start();
} catch (IOException ioe) {
}
//#endif
//#ifdef NOKIAUI
Sound sound = new Sound (1000, 100);
sound.play(1);
//#endif
}
}

15 Maximizing Your Java Application Development, an Internet.com Developer eBook. Copyright 2008, Jupitermedia Corp.

[Maximizing Your Java Application Development]

Creating the BUILD.XML File

In the BUILD.XML file, you will select the appropriate directories. It's a manual operation, so, it's best to create the
XML files for each device and keep them.

In the case of the MIDP 2 profile, the preprocessing of the file SoundManager.java will produce this output:

import javax.microedition.media.*;

import javax.microedition.media.control.*;

import javax.microedition.media.control.ToneControl;
import javax.microedition.lcdui.*;

import java.io.*;

public class SoundManager {

Display display;

public SoundManager(Display display) {
this.display = display;
}

public void doLight() {
display.flashBacklight (duration);
}

public void doSound() {
try {
InputStream is = getClass().getResourceAsStream("music.mid");
Player audioPlayer = Manager.createPlayer(is, "audio/midi");
audioPlayer.start();
} catch (IOException ioe) {
}
}

}
For the MIDP 1 profile, it produces:

import javax.microedition.lcdui.*;
import java.io.*;

public class SoundManager {
Display display;
public SoundManager(Display display) {

this.display = display;
1

public void doLight() {
}

public void doSound() {
}
}

16 Maximizing Your Java Application Development, an Internet.com Developer eBook. Copyright 2008, Jupitermedia Corp.

[Maximizing Your Java Application Development]

You select the profile of the device in this line:
<wtkpreprocess srcdir="src" destdir="output\src" symbols="MIDP2" verbose="false"/>

Antenna takes the content of the attribute symbols (MIDP 2 in this example) and inserts //#define MIDP2 at the
beginning of each file, like this:

//#define MIDP2

//#ifdef MIDP2

import javax.microedition.media.*;

import javax.microedition.media.control.*;
import javax.microedition.media.control. ToneControl;
/1#endif

//#ifdef NOKIAUI

import com.nokia.mid.sound.*;

import com.nokia.mid.ui.*;

//#endif

//#ifdef MOTOROLA

import com.motorola.multimedia.*;
//#endif

import javax.microedition.lcdui.*;

import java.io.*;

Building the Preprocessed Source Code

Next, build the preprocessed source code, which means compiling the two files you've created.
The name of the .jad file and its content are specified in the tag:

<wtkjad jadfile="output\bin\${midlet.name}.jad"
jarfile="output\bin\${midlet.name}.jar"
name="${midlet.name}"
vendor="You"
version="1.0"
target="">
<midlet name="${midlet.name}" icon="/icon.png" class="game.${midlet.name}"/>
<attribute name="MIDlet-Icon" value="/icon.png"/>
</wtkjad>

It's advisable to always use the same name for the icon (for instance, icon.png).

To package the midlet, create the .jar file. Select the resources to be integrated in your .jad file. Here are some
simple guidelines for this process:

* Separate graphics for different types of screens (big screens, medium screens, small screens, etc.).
* Separate the icons of each size in a sub-directory (res_icon32x32, res_icon16x16, etc.).

* Separate the resources for sounds (res_midifiles, res_ottfiles, etc.).

In Table 3, the left column describes the code in the right column.

17 Maximizing Your Java Application Development, an Internet.com Developer eBook. Copyright 2008, Jupitermedia Corp.

Maximizing Your Java Application Development

Table 3. Building the Preprocessed Code

<?xml version="1.0"?>

Name the project. <project name="MyMidletProject" default="build" basedir=".">
Specify where to find WTK. <property name="wtk.home" value="c\WTK23\"/>
Specify the midlet name. <property name="midlet.name" value="MyFirstMidlet"/>

<property name="midlet.home" value="${wtk.nome}/apps/
${midlet.name}"/>

Specify the standards APIs you use <property name="wtk.wma.enabled" value="false"/>
(WMA, MMAPI, PDAP, 3D, Bluetooth, Web services). <property name="wtk.mmapi.enabled" value="true"/>
<property name="wtk.optionalpda.enabled" value="false"/>
<property name="wtk.java3d.enabled" value="false"/>
<property name="wtk.bluetooth.enabled" value="false"/>
<property name="wtk.j2mews.enabled" value="false"/>

Specify the CLDC version. <property name="wtk.cldc.version" value="1.0"/>

Specify the MIDP version (MIDP 1 or MIDP 2): <property name="wtk.midp.version" :value="2.0"/>

- <property name="wtk.midp.version" value="1.0"/>
- <property name="wtk.midp.version" value="2.0"/>

Specify the proprietary APls (Nokia Serie40,
Nokia Serieé0, ...).

- <property name="wtk.midpapi"
value="c:\libs\nokia_s40\classes.zip"/>

- <property name="wtk.midpapi"
value="c:\libs\nokia_s60v2\j2me-debug.zip"/>

<taskdef resource="antenna.properties"/>

Clean the classes directory. <target name="clean">

<delete failonerror="false" dir="classes"/>
<delete failonerror="false">

<fileset dir=".">

<exclude name="build.xml|"/>

</fileset>

</delete>

</target>

<target name="build">

Clean the output directories: output\bin, <delete dir="output\bin" verbose="false"/>
output\classes, output\src <delete dir="output\classes" verbose="false"/>
<delete dir="output\src" verbose="false"/>
<mkdir dir="output\bin"/>

<mkdir dir="output\classes"/>

<mkdir dir="output\src"/>

Launch the pre-processor process <wtkpreprocess srcdir="src" destdir="output\src"
symbols="MIDP2" verbose="false"/>

Launch the compilation process <wtkbuild sredir="output\src" destdir="output\classes"/>

Launch the packaging process <wtkjad jadfile="output\bin\${midlet.name}.jad"

jarfile="output\bin\${midlet.name}.jar"
name="${midlet.name}"

18 Maximizing Your Java Application Development, an Internet.com Developer eBook. Copyright 2008, Jupitermedia Corp.

[Maximizing Your Java Application Development]

Table 3. Building the Preprocessed Code continued

vendor="You"

version="1.0"

target="">

<midlet name="${midlet.name}" icon="/icon.png"
class="game.${midlet.name}"/>

<attribute name="MlIDlet-lcon" value="/icon.png"/>

</wtkjad>

<wtkpackage jarfile="output\bin\${midlet.name}.jar" jadfile="output\
bin\${midlet.name}.jad" obfuscate="false" preverify="false">
<fileset dir="output\classes" />

Include the resources (for the big screens or for <fileset dir="res_bigscreen"/>
the small screens).

- <fileset dir="res_bigscreen"/>
- <fileset dir="res_smallscreen"/>

Include the icon (format 32x32 or 16x16) : <fileset dir="res_icon_16x16"/>

- <fileset dir="res_icon_32x32"/>
- <fileset dir="res_icon_16x16"/>

Include the sounds files (midi files or ott files) : <fileset dir="res_midifiles"/>

- <fileset dir="res_midifiles"/>
- <fileset dir="res_ottfiles"/>

<preserve class="game.${midlet.name}"/>
</wtkpackage>

</target>
</project>

Creating the RUN.XML File

To run the emulator, you have to create a XML file. The emulators have to be installed in the directory wiklib\devices
of the WTK. You have to use the device name displayed in WTK (the directory name for the device) and specify it in
the following line in the attribute device:

<wtkrun jadfile="output\bin\${midlet.name}.jad" device="DefaultColorPhone"/>

Table 4's left column explains the code for the RUN.XML file, shown in the right column.

This example supports basic sounds and backlight for some devices. But in reality, you'd also have to support
other features like keyboard constants, fullscreen support, screen refresh loop, regulation of frame rate, and image
and sound formats.

Addressing the Complete Chain of Production

Remember that deployment and testing are also very important. Because each small, manual action has to be
repeated for each device model, mobile development can quickly become very tedious. Imagine renaming all the
Jad files, the .jar files, and modifying the content of each .jad file, which includes the name of the .jar file. Or imag-

ine that your upload to the test WAP server for test purposes is manual, forcing you to use your FTP client for 300
or 400 devices!

19 Maximizing Your Java Application Development, an Internet.com Developer eBook. Copyright 2008, Jupitermedia Corp.

[Maximizing Your Java Application Development]

Table 4. The left column explains the code for the RUN.XML file, shown in the right column.

<?xml version="1.0"?>

<project name="MyMidletProject" default="build"
basedir=".">

<property name="wtk.home" value="c:\WTK23\"/>

<property name="midlet.name" value="MyFirstMidlet"/>

<property name="midlet.home"
value="${wtk.home}/apps/${midlet.name}"/>

<property name="wtk.wma.enabled" value="false"/>

<property name="wtk.mmapi.enabled" value="true"/>

<property name="wtk.optionalpda.enabled"
value="false"/>

<property name="wtk.java3d.enabled" value="false"/>

<property name="wtk.bluetooth.enabled"
value="false"/>

<property name="wtk.j2mews.enabled"
value="false"/>

<property name="wtk.cldc.version" value="1.0"/>

<property name="wtk.midp.version" value="1.0"/>

<taskdef resource="antenna.properties"/>

<target name="build">

Run the emulator (WTK, Nokia Serie40 or
Nokia Serieé0) :

- For WTK : <wtkrun jadfile="output\bin\${midlet.
name}.jad" device="DefaultColorPhone"/>

- For Nokia Serie40 Edition 1 : <wtkrun jadfile="
output\bin\${midlet.name}.jad" device="
Nokia_7210_MIDP_SDK_v1_0"/>

- For Nokia Serie60 <wtkrun jadfile="output\
bin\${midlet.name}.jad" device="Series_60_MIDP_
SDK_for_Symbian_OS_v_1_2_1"/>

<wtkrunjadfile="output\bin\${midlet.name}.jad
" device="DefaultColorPhone"/>

</target>
</project>

As strategic as porting is, it's always good to take into account all the optional APIs (like Bluetooth, 3D, file connec-
tion, SMS, MMS, etc.) and the optional parts of APIs (like camera support, audio recording, .joeg, etc.). You shouldn't
continue to produce the same application on all the devices while some devices can propose more powerful features.

20

Maximizing Your Java Application Development, an Internet.com Developer eBook. Copyright 2008, Jupitermedia Corp.

[Maximizing Your Java Application Development]

Sidebar: The Fragmentation of device Characteristics and Features

DEVICE CHARACTERISTICS

® Screen size

® Maximum .jar size
® Heap memory

* Maximum RMS size

Device Capabilities

JAVA VERSIONS
Some platforms are
geographic region-specific

e MIDP 1, MIDP 2
(international)

e DoJa 1.5, DoJa 2.5
(for Europe)

e Brew J2ME (bridge),
iDEN (for the US)

e DoJa 1.0, DoJa 2.0, DoJa 3.0,

DoJa 4.0 (for Japan)

Java Platforms

MIDP 1
Lacks some important features
* No fullscreen support

* No image transparency
support (even if generally

implemented by manufacturers)

* No sound support
* No user components at the
low-level Ul

e No access to the environment

(camera, address book)

MIDP Platforms

OPTIONAL APIs

e WMA 1 (for SMS)

e WMA 2 (for MMS)

e BTAPI (for Bluetooth)

e | BS (for geolocalization)
* 3D

e JavaCard/J2ME bridge
(with JSR 177)

® \Web services

21

DEVICE FEATURES

* Bugs in the implementation
* Platforms: MIDP 1/MIDP 2/
DoJa 1.5/DoJa 2.5/ Applets
® Proprietary APls: VSCL,
NokiaUl, LG API

e optional APls: JSR 184,
JSR 82, JSR 205

PROPRIETARY APIs
Due to the lack of MIDP 1

e VVSCL

e NokiaUl

* Motorola
e Siemens
e |G

e Samsung
® Sprint

e Ftc ...

MIDP 2

New features

* Game API

* Applications signing

* Image transparency support
* Improvement in handling
key presses

* Sound support

e OTA (Over The Air) mandatory

e Push registry
* Enhancement graphics

(like alpha blending)

MOBILE OPERATOR CHARACTERISTICS

® Gateway characteristics

* opened ports

e Device-side restrictions (on APls access,
open/closed access to outside the network)

STANDARDS APIs
Some are optional or have optional parts

e Optional APIs: WMA 1 (for SMS),

WMA 2 (for MMS), BTAPI (for Bluetooth),
LBS (for geolocalization), 3D, JavaCard/
J2ME bridge (with JSR 177), Web services

* Optional parts of APls: MMAPI

(with optional camera control, audio control,
and video), WMA1 (with CBS support),
BTAPI (with the various protocols)

MIDP 3

Specifications is in progress,

some examples of requests

e Auto-launching midlets

® Inter-midlet communication

* Improved user interface

e Secure local storage

® Provisioning improvement

e Localization & internationalization
improvement

OPTIONAL PARTS OF OPTIONAL APIs

* MMAPI (with optional camera control,

audio control, and video)
e WMAT1 (with CBS support)

* BTAPI (with the various protocols)

Maximizing Your Java Application Development, an Internet.com Developer eBook. Copyright 2008, Jupitermedia Corp.

[Maximizing Your Java Application Development]

While porting is a fundamental problem, it's not a deal breaker for producing optimized and rich mobile applica-
tions. Ultimately, a completely interoperable mobile application is not possible due to mobile device structure. The
trend is to embed more and more increasingly complex software, which means that implementations will always
have problems.

Bruno Delb, the author of the first French book about J2ME, is the founder of Net Innovations and Unified
Mobiles. Unified Mobiles has created the concept of unified mobile applications development, based on UMAK
(Unified Mobile Application frameworK). UMAK is a complete framework to facilitate and accelerate the develop-
ment of multiplatform applications (J2ME, DoJa, and Web applets). It's based on a very detailed knowledge base

of devices, a Java testing suite, a productivity tools suite, and on a configuration engine to take into account each
feature of each device model.

This content was adapted from DevX.com's Web site.

22 Maximizing Your Java Application Development, an Internet.com Developer eBook. Copyright 2008, Jupitermedia Corp.

[Maximizing Your Java Application Development]

Eclipse, NetBeans, and IntelliJ: Assessing
the Survivors of the Java IDE Wars

Get a comprehensive comparison of the latest versions of the major IDEs in the Java develop-
ment space: NetBeans, Eclipse/MyEclipse, and IntelliJ IDEA. Find out how well each performs
in four common areas of development: Swing, JSP/Struts, JavaServer Faces, and J2EE/EJB 3.0.

by Jacek Furmankiewicz

ago, things have gotten very interesting for Java devel-

opers. With SWT and Swing toolkits both having their
own strengths and weaknesses
but none having any noticeable
lead over the others in terms of
pure performance or look-and-
feel, Eclipse focused the com-
petition among Java IDEs
where it belongs: features, ease
of use, and productivity. This
article explores what the past
few years of fierce competition
within the Java IDE space (and of
course indirectly with Microsoft
Visual Studio.NET) have deliv-
ered.

Ever since Edlipse burst out on the Java scene a few years

It reviews the three major

Java IDEs — NetBeans, IntelliJ IDEA, and Eclipse — from
the viewpoint of basic, common features (installation,
performance, editor, etc.), but it really focuses more on
their strengths in four common areas of development:
Swing, JSP/Struts, JavaServer Faces (JSF), and
J2EE/EJB 3.0. Wherever possible, it also evaluates JPA
(Java Persistence API) support, instead of hard-coded
JDBC queries or particular libraries (such as Hibernate
or Oracle TopLink).

Out of the three IDEs, Eclipse is the only one that exists
in multiple versions/distributions, starting from the base
distribution to pre-packaged ones with extra open-

source plugins (such as EasyEclipse) and open-
source/commercial hybrids such as Genuitec's
MyEclipse. In order to provide a fairly realistic review of
what Eclipse is capable of, | focused on the base distri-
bution (including default
Eclipse sub-projects such as
the Visual Editor and Web
Tools Project). Wherever | felt
it was lacking, | also consid-
ered what MyEclipse offers
as a commercial alternative.
Frankly, at a subscription
price of $49/year, I'd be hard
pressed to find any commer-
cial IDE with the functionality
that MyEclipse provides.

Up first, though, is NetBeans
5.5.

Jupiterimages

Author's Note: As an employee of Compuware Canada,
| use the Eclipse-based, Model-Driven Java develop-
ment tool Compuware OptimalJ. However, | have made
every effort to ensure a fair review for each IDE, with no
preferences to Eclipse.

NetBeans 5.5

Vendor: Sun Microsystems
Website: www.netbeans.org
Price: Free/Open source
Distribution: ~ Base + Enterprise Pack + Visual Web Pack

23 Maximizing Your Java Application Development, an Internet.com Developer eBook. Copyright 2008, Jupitermedia Corp.

[Maximizing Your Java Application Development]

NetBeans 5.5, as well as its additional packs (e.g., Enterprise Pack with UML/BPEL/SOA and Visual Web Pack for
JSF Development), is available as both ZIP downloads as well as cross-platform InstallShield installers. Under
Windows, the installer integrates seamlessly into the OS, including registering the proper desktop shortcuts and
adding an uninstaller in the Add/Remove Programs panel. Under Linux, it simply installs into the specified directory
and creates a startup icon on the GNOME or KDE desktop. Unfortunately, it does not come packaged as an RPM
or a .deb file, nor does it offer a standard repository, which would allow Linux users to install it as they do any
other application.

General Features

At one time, NetBeans was synonymous with everything that was wrong with Swing: slow, bloated, ugly, and just
plain unpleasant to work with. However, the NetBeans team has performed a massive overhaul of the entire IDE
starting with version 5, and the combination of NetBeans 5.5 and JDK 1.6 provides arguably a top-notch user
experience, in particular under Windows (Linux still has some Ul glitches that are supposed to be addressed in
NetBeans 6.0. In particular, version 5.5 lacks native GTK look and feel support).

The windowing system is about as advanced and flexible as one could imagine, with the ability to dock/hide/swap
nearly any panel/editor in any possible configuration with great ease. | also found the menu layout very logical and
easy to use, with all the most common functions being easily accessible (e.g., maintaining user libraries). All the
while, overall stability and performance were excellent.

The basic Java editor is decent though definitely not the Figure 1. Matisse with Custom JPanel Components

best in the field (in particular, code completion is some- 7[g Leginfarmjava® %| |0 LoginPaneljava x| Welcome x|

what slower than its competitors), but it is very workable. T e — W T—
. . P .) o Y . . Source | Design e — B

A basic set of refactoring functionality is also provided (in '

particular, the most commonly used rename/move fea- @ Move the companent inta its positian

tures), although in my testing | found it often somewhat
dangerous to use because it is not always context-aware.
For example, renaming the package of an Action class in

a Struts project does not update the corresponding entry E- mail:

in struts-config.xml (although it worked fine for refactor- [G — =
ing JSF backing beans and updating their entries in Password:

faces-config.xml, as well as J2EE 1.4 sessions beans and A T

their entries in ejb-jarxml).

oAy 1 | Luym

Swing Development

NetBeans's crown jewel is its famous new Matisse GUI
designer, based upon the new GroupLayout layout manager, which originally was developed by the NetBeans
team itself as an extension prior to being included in the base JDK. The combination of baseline support (i.e., the
ability of controls to align automatically based on the position of the actual text within a control) makes creating
professional looking Uls very easy. In fact, the powerful resizing and anchoring functionality make this the best Ul
designer | have seen for any language on any platform.

After installing version 5.5, | also grabbed the latest set of updates that were back ported to 5.5 from the newer
6.0 builds. These included some very productive features, such as automatic internationalization (with control per
each form/dialog/panel as to which ResourceBundle contains all the internationalized strings), as well as the ability
to use custom forms/panels (as long as they have been compiled at least once within your project). Matisse is a
fine example of what the NetBeans team can do when they are at their best. (See Figure 1 for a sample of Matisse
in action.)

24 Maximizing Your Java Application Development, an Internet.com Developer eBook. Copyright 2008, Jupitermedia Corp.

[Maximizing Your Java Application Development]

Figure 2. NetBeans Web Application Wizard Figure 3. Struts Support in NetBeans
New Web Application ™ 5| | LoginForm java* x| | LoginPanel java x| Welcome x L4 struts-contig xml %
> A & - @ @ E - . 4§ a - ¥
frameworks <Pl version=-1,0° encoding=-ulF-8° ¥»
Select the fram eworks vou want to use inyour web application, | IDOCTYPE struts-config PUBLIC
YA e e g0 Apache Software Founda y
| [¥] JawaServer Faces | f
| [v] Struts129 | — B Add Action
| | i or| Select in b Add Forward include Action
1 Reformm Code r-f Add Forward
| Check xmL t Add Exception
Struts 1.2 9 Configuration " Vakdate XML + Add Actionform Bean
p r glc Add ActionForm Bean Property
Action Serviet Mame: action t
Action URL Pattern iw'do L | o
i e |
iy — ——— — & 919 Toois »
Application Resource: |com devsx|struts ApplicationResource | path="/Melcome
ALk] ool
[agd strurs TLDS ! S
| AcTion paths" Ad e Torwards" jwe

For Swing developers, an additional benefit of using NetBeans is the ability to use its very powerful RCP (Rich
Client Platform) wizards for creating new, sophisticated Swing applications. In light of the popularity of Eclipse's
SWT-based RCP, the NetBeans team has gone to great lengths to provide a viable Swing-based alternative and,
dare | say, with impressive results (although the initial learning curve might be a bit steep for smaller projects).

JSP/Struts Development

NetBeans comes with a good JSP editor with all the basic features that one would expect and all the basic wizards
and plumbing to start a new Struts project. The inclusion of an embedded Tomcat container makes developing
and testing JSP apps particularly easy and fast. (Figure 2 shows the NetBeans Web application wizard.)

The NetBeans Web application wizard automatically configures Web.xml and struts-config.xml and enables adding
Tiles and Validator support. However, beyond that the only support it provides are some context menu options in
struts-config.xml and wizards to add ActionForms, Actions, and Forwards. It offered no visual editors to show the
page navigation within the application and provided absolutely no additional support for configuring Tiles and
Validators (outside of creating the original configuration files and including the required libraries).

Personally, | found Struts support in 5.5 quite decent but definitely not as polished as what Matisse delivers. Also,
no visual editor for JSP or HTML pages is available (not an issue for power coders, but a nice feature for more jun-
ior programmers). The lack of proper embedded JavaScript support for JSP editors along with only a basic CSS
editor (though much better if the Visual Web Pack is installed) are areas that could use some improvements as
well. (See Figure 3 for a sample of NetBeans's Struts support.)

JavaServer Faces Development

The NetBeans JSF support is pretty much identical to its Struts support. It provides a wizard to get a basic project
started, includes the libraries, configures all the required files, and even provides code completion for backing
beans' properties in the JSP editor, as well as a few wizards for navigation rules in faces-config.xml. No support for
Apache MyFaces is available (only JSF RI), so the initial project setup has to be hacked by hand to swap out the
JSF Rl and use MyFaces.

No visual editors are provided whatsoever to maintain the faces-config.xml file. Everything is pretty much done

through raw XML editing or the two or three basic context menu wizards. While this is workable and definitely suffi-
cient for power coders, it hardly achieves the ease of use or productivity that other IDEs deliver for JSF developers.

25 Maximizing Your Java Application Development, an Internet.com Developer eBook. Copyright 2008, Jupitermedia Corp.

[Maximizing Your Java Application Development]

However, the NetBeans Visual WebPack offers an alternate solution for building JSF applications by porting most
of the features from Sun Java Studio Creator directly into NetBeans. This includes a Matisse-style GUI builder for
Web pages, with a rich set of JSF controls (recently open-sourced as Project Woodstock) that extend the basic JSF
Rl set, as well as support for data binding (both directly against database queries and even via JPA/Hibernate).

Despite all of these first-class features, the Visual Web Pack has a few drawbacks that might stop many Java shops
from using it, namely:

1. It lacks support for page templates (although you can save a Page as a template and use it as a base for new
bases, but obviously changes to it do not cascade down). Support for either Facelets or the Tiles support from
MyFaces would be of great use here.

2. It lacks support for Apache MyFaces (potentially an issue when deploying to app servers that use MyFaces Rl
instead of Sun's implementation, such as JBoss).

3. It has inflexible auto-generation of backing beans (which basically mimic the structural context of each JSF
page in a straight ASP.NET fashion, making it unusable with conversation-oriented backing beans such as the
ones required by JBoss Seam).

A great-to-have feature would be support for Facelets, which many in the JSF community are pushing as the total
replacement for JSP (in particular, the JBoss Seam team has openly campaigned for it in all of its documentation).

Though if the NetBeans team addresses these deficiencies in the next release, | can't imagine any tool being as pro-
ductive as the Visual Web Pack for JSF development.

Enterprise Development

NetBeans 5.5 was the first IDE to offer support for JPA and EJB 3.0, and it delivered quite well in this area. In partic-
ular, the auto-generation of JPA entity classes with annotations (including proper setup of the persistence.xml file,
even with basic connection information) has saved me countless hours of boring, repetitive hand coding. The auto-
generated JPA code is very high quality and instantly usable. Frankly speaking, developing a Swing app with
Matisse and querying/updating a database via JPA was the first time my productivity has reached the level | worked
at in PowerBuilder many years ago (which | still remember as the most productive client/server Ul development tool
ever, even though it had more than its share of imperfections).

For pure enterprise development, NetBeans offers both top-notch J2EE 1.4 and Java EE 5 support. In particular, for
J2EE 1.4 projects, the EJB wizards take care of generating all the required code (including the business/home/remote
interfaces, as well as their stub implementations — not to mention wiring the ejb-jar.xml configuration file). In short,
NetBeans takes care of most of the verbosity related to J2EE 1.4 and provides polished out-of-the-box support for
Java EE 5 as well (the first IDE to do so, although IDEA followed quite quickly).

On the down side, NetBeans offers official support only for deploying enterprise applications to GlassFish/Sun
Application Server and JBoss. Nonetheless, the update site offers additional plugins for WebLogic and
WebSphere, although | am not sure if the NetBeans team officially supports them.

The free Enterprise packs also add powerful UML diagram features (including two-way editing and synchronization
with Java code), as well as BPEL/SOA editors. However, evaluating these was outside the scope of this review.

Suggestion to NetBeans

| really like NetBeans. Its underdog team came out fighting from a position where everyone thought Eclipse would
eat it alive, and it has delivered some amazing features in its latest release (and much more to come in NetBeans
6.0). However, it simply does not have the same size community that Eclipse does. This starts to detract from the
product when it comes to features that it does not offer out of the box (e.g., Google Web Toolkit, JBoss Seam,
Jasper Reports, Spring, Tapestry, XDoclet, Echo2, Apache MyFaces, etc).

26 Maximizing Your Java Application Development, an Internet.com Developer eBook. Copyright 2008, Jupitermedia Corp.

[Maximizing Your Java Application Development]

One of the smart things IBM did early on with Eclipse was give up control and create an Eclipse foundation, which
has attracted a lot of third-party developers. Maybe it's time Sun gave up its iron grip on NetBeans as well and cre-
ated an equivalent NetBeans Foundation. Eclipse has no technical advantage whatsoever over NetBeans at this
point (frankly speaking, | think NetBeans looks more like a native Windows application than Eclipse does, despite
the whole Swing vs. SWT debate). NetBeans simply needs more resources behind it to become number one in the
Java IDE space, and | don't think Sun can make that happen on its own.

IntelliJ IDEA 6.0.4

Vendor: JetBrains

Website: www.jetbrains.com/idea

Price: $499.00 ($299.00 upgrade)
Installation

Under Windows, IDEA provides a regular EXE installer. Under Linux, the installation is much more Spartan, consist-
ing of a single TAR.GZ file. Upon extracting the contents, you have to manually change to the "bin" subdirectory
and execute "./idea.sh". It fails if you do not have the $JDK_HOME variable set up correctly, preferably in your
.bashrc file as follows, for example:

JDK_HOME=/home/jacek/Dev/Java/JDK/jdk1.6.0_01
export JDK_HOME
JAVA_HOME=/home/jacek/Dev/Java/JDK/jdk1.6.0_01
export JAVA_HOME

export PATH=$JAVA_HOME/bin:$PATH

Unfortunately, JetBrains does not provide a standard .deb or RPM file for any of the major Linux distributions.
Therefore, the installation does not integrate into the desktop very well (e.g., no desktop shortcuts or K Menu
entries are created). Worse, double clicking on the "bin/idea.sh" file from the Konqueror file manager did not work
either (it was returning an error about JAVA_HOME not being set up, even though it was actually set up correctly).
The only option that seemed to work was to drop to command line and execute "./idea.sh" manually. The IDEA
installation experience under Linux needs some serious polish. It was the weakest of the three tested IDEs.

General Features

Just like NetBeans, IDEA comes with a very flexible layout, providing the ability to dock/pin/float panels in a variety
of configurations. However, it didn't seem quite as smooth and configurable as the NetBeans windowing system
(which IMHO is the one to beat).

However, this is a minor gripe in light of the outstanding IDEA editor, which has long been regarded as its crown
jewel. The editor is fast, with complex context-sensitive color highlighting, hints, and suggestion pop-ups - not to
mention an impressive array of refactoring options. The IDEA editor is any hardcore coder's dream. The more time |
spent in it, the more little touches | found that made programming that much more efficient. I'm sure | barely
explored all of its functionality during the limited time | had for reviewing. (See Figure 4 for a sample of IDEA's edi-
tor and its advanced coloring/syntax highlighting.)

Swing Development

IDEA provides a fairly powerful GUI editor. It doesn't quite live up to NetBeans Matisse's, but it arguably is the
next best thing. In particular, its support for JGoodies Forms (arguably the best layout manager available prior to
Grouplayout) places it well ahead of those that are still stuck on GridBaglLayout (like Eclipse's Visual Editor).

Interestingly, IDEA keeps the generated Ul layout in a separate ".form" file (similar to NetBeans), but it does not
generate the corresponding Swing code by default. It gets generated only during compilation via a proprietary GUI
compiler (which can also be packaged as a separate Ant task). If you prefer to have the IDE-generated code directly

27 Maximizing Your Java Application Development, an Internet.com Developer eBook. Copyright 2008, Jupitermedia Corp.

Maximizing Your Java Application Development

in your .java file, you have to Figure 4. IDEA Editor in Action
enable it via an option (which v
in my opinion is the preferable |’
approach, since | would prefer
not to have all of my Ul code ¢ i
hidden and available only after | riate vord s3ssetuunisso ¢

Inrel i) IDEA GUI Degignor

thod OR <al) 7T A veur codel

. |DE f d panell = mew IPanel ():
running a -SpeciTic coae- panel 1. setLayout Cnew ForaLayout(i1 max (d; 4px) inoGrow, Tert: Adlu:norow, ri11:513px:noGrow”, “center:d:noGrow, top:adlu
. h . panel 1, setBorder(BorderFactory, createl Tl ealorder(BorderFactory, createfeptyBerdor(g, 8, 8,), mnl))
generation meci anism). final Jabel 1aball = mew JLabel ()

labell.sexText("Email address: ")
CallConstraints cc = new CellConstrainesi);
panell.add{labell, cc.xw(3, 13);

JSP/Struts Development textFieldl = new JTextFiald0);
. . panel 1. add(lextField]l, ccoxy(3, 3, CellCenstraints.FILL, CellConstraints.BEFAULT))E
Struts support in IDEA is noth- rinal Jlabel label2 = mew JLabel ()
. . label 2. setText("Password: “);
ing short of outstandlng. Ina panell.add(1abel 2, cc.iv(3, 510
. Gt B0l 00 = new JPasswordrield();
ﬂne example Of the sort Of panel L. addl g rect 10 1, coowd, 7, CellCenstraints.FILL, CellConstraints, BEFAULT)Y;
. . . Ffinal JPana] panal? = mew JPamel{);
attention to detall that |DEA IS panel 2. setlayout (mew Foralavout("ri11 :d:poCrow, Teft:ddiu:noGrow, M1l smax (d; dpx) :noGrow”, "center:pax(d; 4px) noGrow”)3;
K for it d load panell. add(panel 2, cc.aw(3, 9, CellConstraints,RIGHT, CellConstraints.DEFAMLT));
nown T1or, It Can even downloa button? = new JButten();
") . but ton2, setText (“Button™);
all the requ|red Struts libraries panei . sciguend, c?iwel 1, CellConstraints.RIGHT, CellConstraints,CEFALLT));
huttonl = new JEutron();
for you! Not only does it auto- buttont setText (“But ton*):
i . panel 1. add(buttonl, ccoxvil, 9));
matically set up all the configu- IPasswordField passwordF ieldL;

ration files (including Tiles and
Validator), but it also provides a dedicated Struts panel called simply Struts Assistant, which provides graphical editors
and productivity wizards for all Struts configuration files, including tiles-config.xml and validation.xml.

IDEA has no visual editor for JSP/HTML pages, but the regular IDEA JSP/HTML editor is superb even without a
visual component. The support for embedded JavaScript (with full code completion!) especially will be a godsend
to anyone dealing with large amounts of DHTML or AJAX code. As another example of the type of attention to
detail others can only dream of, the JavaScript editor comes with support for browser-specific elements (IE,
Mozilla, and Opera), as well as popular AJAX frameworks such as Dojo, Bindows, and Prototype. (See Figure 5 and
Figure 6 for samples of IDEA's Struts support.)

For hardcore, cutting-edge Web 2.0 development, IDEA delivers full-blown support for GWT (Google Web Toolkit)
as one of its core features. | find that very impressive, especially considering how new GWT s (but since it is spon-
sored by Google, the odds are it will be a winner and it's good to see IDEA supporting it so early).

Figure 5. IDEA Struts Web Application Setup Figure 6. IDEA Struts Assistant

3 ———— L A——— s
Add Support for 5truts Features & ¥ ==

Struts Tiles YWalidatar
it St i f |

JI z &- &l struts-config. xml
Intellijil Select Struts features which suppart wou want to add to this module — & Form Beans

I
[¥] Struts taglib [struts-EL taglib i /& Global Exceptions

Global Forwards
¥ Tiles | » e

B £ Action Mappings
[#] validator — (@ Contraller

@ 2 Message Resources (1)

[Struts-Faces @ o Plug Ins (2}

[Scripting

] Extras

< Previaus | l Mext = I | name [value |

28 Maximizing Your Java Application Development, an Internet.com Developer eBook. Copyright 2008, Jupitermedia Corp.

[Maximizing Your Java Application Development]

Figure 7. IDEA JSF New Web Application Setup Figure 8. IDEA JSF Configuration
L |7 o o | oot |
[SF Wersion "B _f_ - Common Faces Semings
JavaServer Faces 1.0 # Faces Conflg) i Application
Javaserver Faces 1.1 o i View Handler: | -]
JavaServer Faces 12 & E Propeny Resoher |
J5F implementation ‘ ., ._ ki l'_' = :I
_) JavaServer Faces Reference Implementation W R State Manager; | |
@ Apache MyFaces ' i Default Locale |
|
Factory
| ' Render Kin Factory: |]
I Context Factory | -]
| < Brevious | et > L

JSF Development

Just like its Struts counterpart, the JSF project options are an exercise in flexibility: you can choose which JSF ver-
sion (1.0, 1.1, or 1.2) and implementation (JSF Rl or Apache MyFaces) you're going to use, and then IDEA can
even download the required libraries for you (and it displays productivity hints while downloading the JARs — now
that's attention to detail). NetBeans team take note: this is exactly the kind of broad support for all popular open-
source frameworks or implementations (instead of just Sun-sponsored ones) that is missing in your IDE. Also, the
JSF module provides out-of-the-box support for JBoss Seam, which by all accounts seems to be on the way to
becoming the standard framework for JSF development (similar to the way Struts was for JSP). This is further proof
that IntelliJ is well aware of cutting-edge development in the Java Web world.

Refactoring seemed fully JSF-aware (e.g., moving a managed bean to a different package properly updated faces-
config.xml). (See Figure 7 and Figure 8 for samples of IDEA JSF support.)

Enterprise Development

IDEA provides thorough support for the J2EE specifications. More importantly, it provides full-blown support for
EJB 3.0 and JPA, although not quite as well as NetBeans yet (which automatically adds entries for the JPA provider
in the persistence unit and generates code for named queries on all entity fields, something that | found missing in
IDEA after getting used to it in NetBeans 5.5). IDEA does come with the option to view the ER Diagram for a JPA
Persistence Unit, but unfortunately this seems available only in an EJB module. When using JPA in a regular Web
module, | was not able to invoke the ER Diagram option. Aside from this minor gripe, IDEA's overall J2EE/Java EE
5 support is top notch. It even offers an upgrade path from J2EE to the annotations-based approach of Java EE 5!

As far as application servers go, IDEA provides deployment plugins for all the major players, namely WebLogic,
WebSphere, JBoss, Geronimo, and Glassfish.

For unit testing, it supports JUnit4 and provides an integrated tool for measuring code coverage as well.

Eclipse 3.2.2 "Callisto"/ MyEclipse 5.1.0 GA

Vendor: Eclipse Foundation Vendor: Genuitec
Website: www.eclipse.org Website: www.myeclipseide.com
Price: Free (base distribution)/Open-Source Price: MyEclipse IDE

Distribution: ~ $49/year subscription

Installation

On Windows and Linux the base Eclipse distribution is just a simple .zip or .tar.gz file that you extract in whatever
directory you deem necessary. This provides you with a bare-bones IDE that is basically capable of creating a
"Hello World" program, but not much else. In order to turn Eclipse into a workable environment, one has to

29 Maximizing Your Java Application Development, an Internet.com Developer eBook. Copyright 2008, Jupitermedia Corp.

[Maximizing Your Java Application Development]

download extra plugins from the Eclipse Website (avail- ~ Figure 9. One of Eclipse's Unusually Collapsed View
able directly from within Eclipse via Help -> Software

Updates -> Find And Install). The ones | was most inter- 3 v :'_3;'-___5 ‘ ‘,\?‘l ol .‘_9 _qu 3" D
ested in were the Visual Editor (for SWING GUI build- L
ing)' the Web TOOlS ProjeCt <for JSP Support)’ the JSF Eile Edit Source Refactor Navigate Search Project Bunm Window Help
Tools, and Dali (for JPA support). The last two are offi-

cially declared as "preview" and not yet at version 1.0.

el @ te Qv Qe | LW G| T @]

E:g .
When it comes to installing new plugins, Windows was S :
. . . . package devx.java;
straightforward. Under Linux, it is possible to download
Eclipse from a standard repository (most Debian-based X .
. . . . Empty + gauthor jacek

or RPM-oriented distros feature Eclipse), which inte- i v

rates perfectly with the way Linux applications are usu- §F>
9 . P y . y pp . . Sphe b public class MainClass {
ally installed. However, this method installs Eclipse into here

a system directory (e.g., "/usr/lib/eclipse" under public void test() {
Ubuntu/Kubuntu), which can be updated only if running
as root or with root privileges via 'sudo’. Unfortunately,
Eclipse seems unaware of this and downloading the
plugins ended in an error since Eclipse did not prompt
me for the root password when attempting to install them under the restricted "/usr/lib/eclipse" folder. It would be
great if Eclipse enhanced this little detail in a future release. As a simple solution, | just copied the entire local
Eclipse installation to a folder in my home directory and was able to install all the additional plugins without any

further issues (I guess | could have just logged into a session as "root," but | prefer to avoid doing that).

¥

MyEclipse comes with a Java-based installer that under Windows integrates perfectly with the OS (including short-
cuts) and does an acceptable job under Linux (although it does not create any desktop shortcuts).

General Features
When Eclipse appeared on the scene, its amazing, fast, and feature-rich Java editor was quickly recognized as its
crown jewel. Among its attributes were:

* Fast performance

e Powerful refactoring

* Quick fixes for errors

* The ability to fix/organize imports

* Lots of polish seen in little details (e.g., attractive Javadoc pop-ups on code completion).

It indeed is a top-notch editor in every meaning of the term.

| was not as fond of Eclipse's windowing system, in particular its perspectives/views paradigm (I hated this same
system back in NetBeans 4.0 as well, but they were wise enough to replace it). | very much prefer the simple
approach of having all the relevant editors/palettes/panels configurable in a single window, without the confusion
of perspectives. Admittedly, that is a matter of personal preference though.

| also found some aspects of the windowing system to be illogical. For example, minimizing the "Package
Explorer/Hierarchy" view does not collapse it to the side (as | would expect from working with other IDEs, be it
NetBeans or even Visual Studio.NET). Instead, Eclipse just folds it up and leaves a large portion of the screen
unused — a very unusual design decision. (See Figure 9 for an example of this strange windowing behavior.) Besides
that, the overall windowing system is quite capable, but | prefer NetBeans's system much more.

30 Maximizing Your Java Application Development, an Internet.com Developer eBook. Copyright 2008, Jupitermedia Corp.

[Maximizing Your Java Application Development]

Figure 10. MyEclipse's struts-config.xml Editor

1 MyPanel java 1| MySessionBean java 4 index2. jsp ”ﬂ =0 I outline 2

b T data-sources
LY

Q- = [form-beans

m I Fiaat b 1 testForm

ad [olobal-exceptions

~a| name: testForm 37 testjsp .
- path: ftest input: 4) global-forwards
type: com.devx, struts. action Testaction url: form/test jsp

(-

d = [action-mappings
r_\]P Ttest .de b <y Mest
i‘

i‘

. b

@ message-resources

Swing Development

The Visual Editor in Eclipse was by far — at least a mile — the weakest GUI builder of any of the major Java IDEs,
mostly because the most advanced layout it supports is GridBagLayout. After working with NetBeans's Matisse, |
could never imagine myself going back to that ancient and cumbersome method of creating Swing Uls.
Fortunately, in what is a testament to the power of the community that has grown around Eclipse, MyEclipse
delivers the Matisse GUI builder integrated directly into Eclipse! And it works very well, although obviously it will
always be a few updates behind the cutting-edge enhancements that the NetBeans team is continuously adding
to it (such as the bean binding feature that is supposed to be delivered as part of NetBeans 6.0). Nevertheless,
the mere fact that Matisse is available on the Eclipse platform (even if it is part of a commercial solution) high-
lights why it is the 800lb. gorilla in the Java IDE space: none of its competitors have a similar community of plug-
in developers that are willing to complement (or sometimes replace entirely) Eclipse's base functionality.

JSP/Struts Development

The Web Tools Project (WTP) adds Web-development features to Eclipse. It is quite capable for basic JSP develop-
ment, offering a solid JSP editor. However, deploying your Web application seems to be somewhat flaky. It often
locked up with errors when | was deploying it to Tomcat. This was in direct contrast to the other IDEs, which did not
exhibit any of these issues.

The WTP also lacks any built-in support for Struts development, which seems to be a major hole in its functionality
(although a quick search at www.eclipseplugincentral.com revealed no less than 24(!) plugins for Struts support,
both commercial and open-source). To no surprise, MyEclipse fills this hole quite thoroughly with full Struts sup-
port, including graphical editors for struts-config.xml, as well as wizards for creating new Actions and FormBeans
(Figure 10 shows its Struts editor in action.).

Eclipse with MyEclipse added was also the only tool to provide a visual editor for creating JSP/Struts pages. (See
Figure 11 for a sample of the capabilities MyEclipse can

add to a Web project.) Unfortunately, | was not able to Figure 11. MyEclipse's Web Project Options
test it thoroughly due to an Eclipse bug that disabled it 5
. n As L]
under Linux. Deben e v
Profile As v
Taam »
JSF Development Compain Wi .
) .) . .) 3 Restore from Local History...
The base Eclipse distribution provides a preview version N A4 and Remoue Project Deployments.
. . . PDE Togls ® Add Web Service Capabilities.
of its upcoming support for JSF development. Despite i il | A — ers
its "preview" status, it is actually already quite usable e e ek —
and, dare | say, better than some of its c.:ompe.tit.ors' fompeibgprizagy
supposedly more mature JSF functionality. This includes Add Hibermate Capabiis...
a visual editor for the faces-config.xml, code completion : emeRe
in JSP pages for managed beans' properties, new man- wie) G e Fromveldation
aged bean wizards, as well as visual editors to set up Devstruts Ramers i Vehduion Harhors H

31 Maximizing Your Java Application Development, an Internet.com Developer eBook. Copyright 2008, Jupitermedia Corp.

[Maximizing Your Java Application Development]

Converters, RenderKits, and Validators. | am excited to
hear that the Eclipse team is planning to release a visual
JSP/JSF editor as well. MyEclipse's JSF functionality is
very similar in scope, but in my testing the base Eclipse
JSF support was more than adequate.

Enterprise Development

Eclipse does not provide official support for JPA yet. It
does have an incubation project called Dali that is
geared to deliver this functionality, but it's still in the fair-
ly early stages of development. Although | was able to
generate a working set of entities from a database with
it, however, even though the generated code wasn't
quite at the level that NetBeans currently generates
(e.g., it did not have any named queries created auto-
matically). If your shop has not moved to JPA yet and is
using straight Hibernate instead, then consider
MyEclipse an option as it has quite a rich level of
Hibernate support.

Figure 12. MyEclipse's EJB Code Generation

New Session Bean =

Session Bean
Create a new XDoclet-based Session Bean

Source folder: |MyEc|lpuE_lB!srt | Browse..

Package: |dev=~.=jh (. Browse... |

Name: |My‘5essionﬁur1

Superclass; |;a:l;_ln- ;q_ Object (Browsg..

Interfaces: O javax ejb. SessionBean (_Add.
| SN

Select the type of the EIB
(=) Stateless) Stateful

Select the access of the EJB

(=) Remote) Local {_J Both

Which method stubs would you like to create?
(R Constructors from superclass |R] Inherited abstract methods

([ejbCreate() method

For J2EE development, Eclipse supports creating EJB
and EAR modules, although in order to avoid J2EE's
complexity it seems to be focused on generating EJBs
via XDoclet, which admittedly was the best solution
available before Java EE 5 and EJB 3.0 dramatically
reduced enterprise application complexity. MyEclipse extends this functionality by providing additional wizards for
session beans, message-driven beans, and container manager persistence beans, also driven by XDoclet.

7 | FEinish 4 Cancel

Neither Eclipse nor MyEclipse currently seem to have Java EE 5 support, but considering it is still a fairly new spec-
ification | presume the Eclipse Foundation is busy adding this for a future release. (See Figure 12 to see
MyEclipse's J2EE 1.4 EJB wizards.)

IDE Strengths by Development Area

| will be the first one to admit that no review is perfect. The respective team behind each IDE probably could make
counterarguments to the many points in this article. It is simply impossible to evaluate all the possible develop-
ment needs (and this review barely covered topics such as RCP, UML, JUnit, and reporting support), so obviously
your choice of IDE should be based heavily on the particular Java technology with which you are most comfort-
able.

Each of the IDEs reviewed here can do an admirable job in pretty much every facet of Java development.
However, some are better than others, depending on whether you are doing Swing, Web, or enterprise develop-
ment. So | organized the review summary into these subject areas.

Swing Development

If your shop specializes in Swing development, NetBeans is definitely the way to go. Matisse is simply way ahead
of the competition. If for corporate reasons you have no choice but Eclipse, then | definitely suggest MyEclipse
with its Matisse4Eclipse builder. After those two choices, | would rate IDEA (due to its support for JGoodies Forms)
next and Eclipse's default Visual Editor dead last — way behind any competition. It should simply be avoided, peri-
od.

32 Maximizing Your Java Application Development, an Internet.com Developer eBook. Copyright 2008, Jupitermedia Corp.

[Maximizing Your Java Application Development]

JSP/Struts Development
Things are a lot more heated here. | would give a clear advantage to IDEA, followed by MyEclipse, and then
NetBeans. Due to lack of build-in Struts support, the base distribution of Eclipse isn't much of a contender.

JSF Development

The three are in quite a tight race in this category as well. Once again, | feel IDEA comes out on top here, fol-
lowed closely by Eclipse/MyEclipse, and the basic support offered by NetBeans in last place. Admittedly, this rank-
ing would look a lot different if you take the NetBeans Visual Web Pack into consideration (assuming its limitations
are acceptable), which would move it into the front of the pack.

Enterprise Development

For JPA support, | would rank NetBeans first (simply due to the quality of its generated code and support for prop-
erly setting up the persistence units), followed by IDEA, and lastly the still limited functionality of Eclipse's Dali
project. If you are willing to abandon the standard JPA approach and accept straight Hibernate as an alternative,
then MyEclipse becomes a worthwhile contender as well.

For enterprise development, I'd say IDEA wins out with its rich support for both J2EE and Java EE 5, followed
closely by NetBeans (which also does an impressive job here), and last is Eclipse/MyEclipse (mostly due to their
current lack of support for Java EE 5).

Ignore .NET at Your Own Peril

If Eclipse is the 800lb. gorilla of Java IDEs, Microsoft is a menacing 10-ton King Kong somewhere in the back-
ground. As someone who has done a lot of work in C#/.NET in the past few years, | keep quite up to date on what
Microsoft is doing in .NET 3.0 and its next version of Visual Studio (codenamed "Orcas"). | hope none of the Java
IDE vendors are getting too comfortable and resting on their laurels, because Microsoft is putting a massive
amount of R&D effort in both libraries and development tools. Thus, the Java ecosystem can remain healthy only if
it can match that (or even better, exceed it as in my humble opinion it has done with Matisse, JPA, and EJB 3.0).

Companies and technologies that have ignored Microsoft's impact have usually ended up in the dustbin of IT his-
tory (and | write that as an ex-Sybase/PowerBuilder developer who has seen a once great tool mercilessly crushed
under the weight of both its own mistakes and Microsoft's seemingly never-ending resources). | am very glad to
see that the mistaken old Java mentality of "release the APIs first and then wait for the development tools of vary-
ing quality to appear much later" is being aggressively replaced with "release the APIs and world-class develop-
ment tools for them as soon as possible", since that is exactly what Microsoft has been doing for years.

Jacek Furmankiewicz is a Senior Developer/Designer at Compuware Corporation of Canada. He has 12 years of
professional IT experience, ranging from UNIX, PowerBuilder, C#/Microsoft .NET, Java, PHP, as well as Microsoft
SQL Server and Oracle.

This content was adapted from DevX.com's Web site.

33 Maximizing Your Java Application Development, an Internet.com Developer eBook. Copyright 2008, Jupitermedia Corp.

[Maximizing Your Java Application Development]

The Work Manager API: Parallel Processing
Within a J2EE Container

The Work Manager API offers a solution for performing parallel processing directly
within a managed environment. You can leverage this offering to implement parallel
processing within a J2EE container

by Rahul Tyagi

orporations encounter various scenarios in

which they need parallel processing to achieve

high throughput and better response times. For
example, various financial institutions perform reconcili-
ation as batch jobs at the
end of each day. In these
cases, a company may need
to process millions of units
of work to reconcile its port-

ually, which is tedious and liable to add complexity to
your code.

Until relatively recently, performing parallel processing
directly within a managed
environment (J2EE container)
was not advisable. Thankfully,
IBM and BEA came up with a

joint specification that

resolves this problem. This

folio. These units of work g -

typically are processed in :

JSR is named "JSR-237:

parallel. This article demon-
strates how to accomplish

parallel processing within a
J2EE container. 3 .

Work Manager for
Application Servers". JSR-
237 specifies the Work
Manager API, which provides

The J2EE design revolves —

around the request/response ' <
paradigm. For a login

request, a user typically provides a user name and pass-
word to the server and waits for a response to get
access to the site. A J2EE container can serve multiple
users at the same time (in parallel) by managing a pool
of threads, but for various reasons opening independent
threads within a single J2EE container is not recom-
mended. Some containers' security managers will not
allow user programs to open threads. Moreover, if some
containers allowed opening threads, then they would
not manage those threads and therefore no container-
managed services would be available for the threads.
That would leave you to implement these services man-

L)

8. abstraction from the lower-
level APIs that enable an
application to access a con-

Jupiterimages

tainer-managed thread. Work
Manager API also provides a mechanism to join various
concurrent work items, so an application can program-
matically add the dependency of work completion as a
condition for starting other tasks. This can be useful for
implementing workflow types of application. These fea-
tures were difficult to implement prior to Work Manager.

This article discusses this specification and its design,
and presents some code snippets for implementing a
concurrent application for a managed environment.
First, it discusses the design of the Work Manager API
and its key interfaces.

34 Maximizing Your Java Application Development, an Internet.com Developer eBook. Copyright 2008, Jupitermedia Corp.

[Maximizing Your Java Application Development]

Work Manager Design

The Work Manager API defines Work as a unit of work, which you want to execute asynchronously. Work is an
abstraction of the lower-level java.lang.Runnable interface. Implementation of the Work interface requires you to
define a run() method and implement business logic for performing tasks/work in this method. The Work Manager

API has six key interfaces for implementation:

e \WorkManager

e Work

e WorkListener

e Workltem

e RemoteWorkltem
e WorkEvent

Figure 1 shows a class diagram for these interfaces.

J2EE container providers such as BEA and IBM must
implement the WorkManager interface, and server
administrators can create WorkManager by defining it
in their J2EE container configurations. Most leading
J2EE containers provide user interface (Ul) tools for
defining WorkManager. WorkManager encapsulates a
pool of threads. By invoking the schedule(Work work)
method of the WorkManager interface, a client can
schedule work for asynchronous execution. Behind the
scenes, the Work Manager implementation gets a con-
tainer-managed thread for executing the Work object.
So work is executed in parallel with the current thread.
A previously mentioned, the Work interface implements
a run method of the java.lang.Runnable interface, so a
thread can execute an object of type Work.

Work Lifecycle

Work has states in its lifecycle, as illustrated in Figure 2.

A Work lifecycle starts after the schedule method of
Work Manager is invocated. At any given time, Work
can be in any one of the following states:

* Accepted: Work Manager has accepted work for
further processing.

Figure 1: Work Manager Class Diagram

O O

— -

Runnable EventListener

*getPinnedWorkManager() 1

p irom tang) 3 {iram whif) ‘\"
O e S N
O
WorkManager *un() = e
Work
‘WaorkListener
SwaitForAll])
SwaitForAny() * 0
®schadule() #izDasman() SworkAccepted])
®schedule() SworkRejected()
SyorkStated()
SworkC ompleted()
O
T .
-)]
Comparable —— o
o lang) |0, WorkEvent
I ‘/;Woll:hem
ompareTof) VA— P
SgetStatus() :W\‘Wﬂdwmo
.// ‘gMResMU 'getException()
O
I
RemoteWorkitern
ik A
releasa) WorkC ion | | WorkRejectedException
1 F
I

Figure 2: Work Lifecycle

Completed

* Started: Work just started execution on a thread. You can assume this state just prior to entering the run

method of Work.

* Completed: Work just completed execution. You can assume this state to be just after exiting from run

method.

e Rejected: Work could be rejected at various stages. Work Manager can reject work in case it's unable to

process a request.

Work Manager provides a listener interface (WorkListener) that defines four callback methods associated with the

Work lifecycle:

35 Maximizing Your Java Application Development, an Internet.com Developer eBook. Copyright 2008, Jupitermedia Corp.

[Maximizing Your Java Application Development]

* workAccepted
* workStarted

* workCompleted
e workRejected

Work Manager invokes these methods at corresponding states of the Work lifecycle. The user can implement the
WorkListener interface and pass implementation of WorkListener to Work Manager while scheduling work. Work
Manager would invoke callback methods corresponding to each state.

Remote Processing of Work

A Work Manager implementation can execute work in a local JVM or transport work for execution by a remote
JVM. To process work on a remote JVM implementation, the Work interface needs to implement the
java.io.Serializable interface. A Work Manager implementation can check whether Work has implemented the
Serializable interface, and then send it to a remote JVM for execution. Processing work in a remote JVM is imple-
mentation specific, and some implementations can execute work locally even if Work has implemented
Serializable. Work Manager's design encapsulates the complexities of sending work to remote JVMs from a client.

App server providers could implement a scalable Work Manager framework by implementing a work manager
capable of executing work on remote JVMs.

Adding Dependency to Work Completion

Work Manager provides a simple mechanism for adding dependencies of work completion on to other tasks. Work
Manager provides a simple API for the common join operation. The current specification provides two methods for
accomplishing a simple join. Both take a collection of Workltem objects to check the status of Work objects and a
timeout parameter to timeout after a specified interval, even if the condition is not met:

e waitForAll(): An application waits for all tasks to complete before moving on to further steps. This is a blocking
call with configurable timeout value.

* waitForAny(): An application waits for any one of the work items to complete before moving on to the next
step.

Work Manager defines two constants that correspond to timeouts:

 WorManager.INDEFINITE: Wait indefinitely for Figure 3: WebLogic Administrative
any/all work to complete (Use this option with care,
because it could lead your application thread to wait

C @ A D rewes et B S-S E - dUe R

forever.) st [ten e s e ERTRTY
i | Gaogles B - ——]
* WorManager.IMMEDIATE: Check status of any/all g v s p——]
. . . Bandew charges arke. Thay mst 3 : =
work completion and return immediately e s | | [
Confguration | Tt and Ceplry i
=

Lz i page T configrs Reguest Claeses snd Constraints for e sseced Work Marager

Configuring Work Manager for J2EE
Container

A Nama: TustikorManager

o

4 Fair Shore Aeauest [FarShasregoiesd 5] 17 o o of time et ressis fom i
Closs: PRI o g mple roiie e wbar Rt

J2EE container providers that support the Work

Manager API normally provide a Ul-based tool for defin- : kf"r o o
ing Work Manager. WebLogic 9.0, for example, pro- how sai | P e g

[conbgured; =]

vides such a tool for configuring Work Manager (Figure : mm:;
3 shows a Weblogic 9.0 administrative console showing S

. .] Constrant: ([corbgund) 7]
a Work Manager configuration). The user needs to pro- s i

[

36 Maximizing Your Java Application Development, an Internet.com Developer eBook. Copyright 2008, Jupitermedia Corp.

[Maximizing Your Java Application Development]

vide a work manager name and point Work Manager to a target server or cluster. As an example, | have created
TestWorkManager.

An implementation also can provide features that are not part of a specification. For example, WebLogic allows
users to configure Work Manager with the following optional parameters:

® Minimum thread constraint: The minimum number of threads allocated to resolve deadlock

* Maximum thread constraint: The maximum number of threads that can be allocated to execute requests
* Capacity constraint: Total number of requests that can queue or execute before WebLogic starts rejecting
requests

Implementation of Work Manager-Based Application

Take the following steps to implement an application for parallel processing with WebLogic 9.0:

1. Implement the Work interface and define your business logic in the run() method. The current version of
WebLogic 9.0 does not support execution of work in remote JVMs, but it may in the future. So it's a good prac-
tice to implement java.io.Serializable as well for future enhancements to Work Manager.

2. Implement the WorkListener interface for listening to work lifecycle events. Although not necessary, this step is a
good practice.

3. JNDI lookup is the primary way of accessing Work Manager. Servlets and EJB can access Work Manager via
JNDI lookup within the local JVM. You can associate the Work Manager resource to an application by defining
resource-ref in the appropriate deployment descriptor. For a servlet to access Work Manager, you define the
resource-ref in web.xml. For EJB, you can define the resource-ref in ejb-jar.xml:

o

<resource-ref>
6. <res-ref-name>wm/TestWorkManager</
res-ref-name>
7. <res-type>commonj.work.WorkManager</
res-type>
8. <res-auth>Container</res-auth>
9. <res-sharing-scope>Shareable</
res-sharing-scope>
10. </resource-ref>
11. Now, look at a code snippet that invokes Work Manager and schedules work for execution on a container-
managed thread. The following snippet shows the code for using the Work Manager API:
12.
13. //#1. Get Work Manager from local JNDI
14. WorkManager workManager;
15. InitialContext ctx = new Initial Context();
16. this.workManager = (WorkManager)ctx.lookup("java:comp/env/wm/TestWorkManager");
17.
18. //#2. Create instance of Work and WorkListener implementation
19. Work work = new Workimpl("HelloWorld");
20. WorkListener workListener=new WorkListenerlmpl();
21.
22. //#3. Schedule work for execution, which would start in parallel to current thread
23. Workltem workltem = workManager.schedule(work, workListener);
24,
25. //#4. Create list of Workltem you want to wait for completion

37 Maximizing Your Java Application Development, an Internet.com Developer eBook. Copyright 2008, Jupitermedia Corp.

[Maximizing Your Java Application Development]

26. List workltemList=new ArrayList();
27. workltemList.add(workltem);
28.
29. //#5. Wait for completion of work
30. this.workManager.waitForAll(workltemList, WorkManager.INDEFINITE);
31.
32. //#6. You can get results from Work
implementation
33. Worklmpl workimpl= (Workimpl)workltem.getResult();

In this implementation, you assume Worklmpl and WorkListenerlmpl are implementations of the Work and
WorkListener interfaces.

The Takeaway

This article discussed a simple and powerful API for parallel execution of tasks within a managed environment. It
explained the high-level design of the Work Manager API and explored WebLogic 9.0's working implementation
of the Work Manager API.

With the Work Manager API, developers can design robust applications for executing tasks in parallel, listen to
work lifecycle events, and add the dependency of task completion to other tasks. Work Manager implementations
also could be highly scalable if app server providers implemented a work manager capable of executing work on
remote JVMs.

Rahul Tyagi has more than 12 years of IT experience designing medium- to large-scale enterprise applications. He
is also a member of expert groups for JSR-130 and JSR-241. Currently Rahul works as Technical Architect for

BearingPoint Inc.

This content was adapted from DevX.com's Web site.

38 Maximizing Your Java Application Development, an Internet.com Developer eBook. Copyright 2008, Jupitermedia Corp.

