
an Developer eBook

The Road
to Ruby

1

contents
While Java helps in fulfilling the promise of "write
once, use anywhere", there are practical concerns
developers need to address in developing their
code, whether its porting from another language,
working in the best IDE or optimizing for today's
multi-core computing environments. This eBook
will help you in understanding these issues and
how you can get the most out of your Java code.

The Road to Ruby, an Internet.com Developer eBook.
Copyright 2008, Jupitermedia Corp.

2 A Java Developer’s
Guide to Ruby
Mark Watson

12 Ruby for C# Geeks
Dave Dolan

21 The Road to Ruby from C++
By Michael Voss

31 Five Essentials For Your
Ruby Toolbox
Peter Cooper

34 10 Minutes to Your First
Ruby Application
James Britt

12

2

21

31 34

The Road to Ruby[]

As a Java developer, why should you learn Ruby?
Because Ruby's versatility and flexibility complement
Java well, and you will be a more effective and effi-

cient developer if you use both languages. In fact, I use
Java, Ruby, and Common Lisp
for all my development and
Ruby has become a core part
of my work life. Specifically, the
following reasons make Ruby
compelling for Java develop-
ers:

• As a scripting language,
Ruby is an effective tool
for small projects. When I
need to write utilities for
data conversion and text
processing quickly, I
almost always use Ruby.
• Ruby is a dynamic and
terse language.
• Using Ruby will often offer a different perspective
on problem solving.
• JRuby is still a work-in-progress but I believe it
eventually will provide an excellent Ruby deployment

platform using the Java VM. Currently, IntelliJ,
NetBeans, and Eclipse all provide excellent Ruby
support.
• As the cost of software maintenance is roughly pro-

portional to the number of
lines of code, and Ruby pro-
grams are short and concise,
they tend to be easier to
read, understand, and main-
tain.
• The Ruby on Rails Web
development framework is
great for small and medium-
sized database-backed web
applications. You need to
know Ruby if you want to
use Ruby on Rails.

To demonstrate why Ruby is
a good fit for Java develop-

ers, this article introduces the language features that
will make you more efficient (see Table 1. Ruby and
Java Feature Comparison) and then shows short pro-
gram examples in both languages.

2 The Road to Ruby, an Internet.com Developer eBook. Copyright 2008, Jupitermedia Corp.

The Road to Ruby[]

A Java Developer’s Guide to Ruby

By Mark Watson

Jupiterimages

Because Ruby's versatility and flexibility complement Java well, and you
will be a more effective and efficient developer if you use both languages.

“
”

What You Need
To follow along with the rest of the article, you need to install external Ruby libraries. The RubyGems library system
makes this easy. Download it from RubyForge and follow the installation instructions for your operating system. (If
you already have Ruby set up, you can verify that your setup includes RubyGems—many Ruby install packages
do—by typing gem in a command shell to check for installation.) Having a central repository for libraries and a
standard tool like RubyGems will save you a lot of time: no searching for the libraries you need, installing them,
and using them in multiple projects.

Use the following commands to install the required gems:

gem query --remote # if you want to see all available remotely installable gems
sudo gem install activerecord
sudo gem install mysql # if you want to use MySQL
sudo gem install postgres-pr # optional: install "pure ruby" PostgreSQL interface
sudo gem install postgres # optional: install native PostgreSQL interface
sudo gem install ferret # a search library like Lucene (same API)
sudo gem install stemmer # a word stemming library for demonstrating extending a
class
gem query # to show gems locally installed
gem specification activerecord # info on gem (ActiveRecord in this example)

Under Mac OS X and Linux, you will need to run the gem installs using sudo; if you are a Windows user, remove
"sudo" from the previous commands.

This article also assumes that you will open a Ruby irb shell as follows and keep it open while you're reading:

markw$ irb
>> s = "a b c"
=> "a b c"
>>

The example programs and code snippets are short enough to copy and paste into an irb interactive session.

3 The Road to Ruby, an Internet.com Developer eBook. Copyright 2008, Jupitermedia Corp.

The Road to Ruby[]
Language Features Ruby Java

Extending All Classes Yes Non Final Classes Only

Duck Typing Yes No

Code Blocks Yes No

Regular Expressions Native Standard Library Support

Supports Using External Programs Yes Yes, but not as easily as Ruby

Network Programming Standard Library Support Standard Library Support

Typing Dynamic Static

Class Inheritance Support mix-ins from multiple classes Single

String Handling Yes Yes

Table 1. Ruby and Java Feature Comparison

Ruby String Handling
The Ruby String class provides a large set of string-processing methods that are more flexible than Java's string
handling capabilities. This section shows a useful subset of Ruby's string processing. This code snippet shows how
to combine strings, take them apart with slices, and then search for substrings (the examples to follow use the #
character to make the rest of a line a program comment):

require 'pp' # use the "pretty print" library. Defines the function 'pp'

define some strings to use in our examples:

s1 = "The dog chased the cat down the street"
s2 = "quickly"

puts s1
puts s1[0..6] # a substring slice up to and including character at index==6
puts s1[0...6] # a substring slice up to (but not including) the character at
index==6

puts "He is a #{s2} dog #{1 + 6} days a week." # expressions inside #{} are
inserted into a double quote string

puts " test ".strip # create a copy of the string: the new copy has white
space removed

puts s1 + ' ' + s2 # string literals can also be formed with single quotes
puts s2 * 4

puts s1.index("chased") # find index (zero based) of a substring

s1[4..6] = 'giant lizard' # replace a substring (/dog/ -> /giant lizard/)
puts s1

s2 = s2 << " now" # the << operator, which also works for arrays and other col-
lections, copies to then end
puts s2

puts "All String class methods:"
pp s1.methods # the method "methods" returns all methods for any object

The output would be:

The dog chased the cat down the street
The dog
The do
He is a quickly dog 7 days a week.
test
The dog chased the cat down the street quickly
quicklyquicklyquicklyquickly
8
The giant lizard chased the cat down the street
quickly now
All String class methods:

4 The Road to Ruby, an Internet.com Developer eBook. Copyright 2008, Jupitermedia Corp.

The Road to Ruby[]

["send",
"%",
"index",
"collect",
"[]=",
"inspect",] # most methods not shown for brevity--try this in irb

The << operator in the above example is really a method call. When evaluating expressions, Ruby translates infix
operators into method calls. For example, the << operator in the following code adds the value of the expression
on its right side to the value on the left side:

>> "123" << "456"
=> "123456"
>> "123".<<("456")
=> "123456"
>> 1 + 2
=> 3
>> 1.+(2)
=> 3

In the above example, using the form ".<<" is a standard method call.
Many classes use the << operator to add objects to a class-specific collection. For example, you will later see how
the Ferret search library (a Ruby gem you have installed) defines the << operator to add documents to an index.

Modifying an Existing Class
The key to Ruby's versatility is the ability to extend all its classes by adding methods and data. I frequently extend
core Ruby classes in my application, not in the original class source code. This likely seems strange to Java or even
C++ developers, but this technique lets you keep resources for a project in one place and enables many developers
to add application-specific functionality without "bloating" the original class. As a Java programmer, think how the
limitations of Java constrain you: if you want to add functionality and data to an existing class, you must subclass.

The following listing shows how to add the method stem to the String class:

begin
puts "The trips will be longer in the future".downcase.stem # stem is undefined

at this point
rescue

puts 'Error:' + $!
end

require "rubygems"
require_gem 'stemmer'

class String # you will extend the String class
include Stemmable # add methods and data defined in module Stemmable

end

puts "The trips will be longer in the future".downcase.stem

You will also find it useful to add methods and perhaps new class instance variables to existing classes in your
application.

5 The Road to Ruby, an Internet.com Developer eBook. Copyright 2008, Jupitermedia Corp.

The Road to Ruby[]

The next section looks at "duck typing," another example of the extreme flexibility that Ruby offers.

Ruby Duck Typing
In Java, you can call a method only on an object that is defined (with public, package, etc. visibility) in the object's
class hierarchy. Suppose that you have a collection of objects and you want to iterate over each element in the col-
lection, calling one or more methods. In Java, the objects would need to be part of the same class hierarchy or
implement interfaces defining the methods that you want to call.

As you have probably already guessed, Ruby is much more flexible. Specific data types and classes are not
required in Ruby's runtime method-calling scheme. Suppose you call method foo on an object obj, and then call
method bar on the resulting object of this first method call as follows (the example shows two equivalent calls;
when there are no method arguments, you can leave off the ()):

obj.foo.bar
obj.foo().bar()

The result of calling obj.foo will be some object, and whatever the class of this new object is, you would attempt
to call method bar on it.

As another example, suppose you want to call the method name on each object in a collection. One element in
this collection happens to be of an instance of class MyClass2 that does not have a method name defined. You will
get a runtime error when you first try applying method name to this object. You can fix this by dynamically adding
the method as follows:

class MyClass2
def name

"MyClass2: #{this}"
end

end

Developers who are used to a strongly type checked language like Java likely will expect this "unsafe" flexibility to
make their programs less reliable because the compiler or interpreter is not statically checking all type uses.
However, any program bugs due to runtime type checking will be found quickly in testing, so there is no decrease
in software reliability. Yet you get the benefits of a more flexible language: shorter programs and shorter develop-
ment time.

Dealing with Missing Methods
Still skeptical about duck typing? Hang on, because now you are going to see another Ruby trick: how to handle
missing methods for any Ruby class, starting with this simple example that applies two methods to a string object,
one that is defined (length) and one that is undefined (foobar):

markw$ irb
>> s = "this is a string"
=> "this is a string"
>> s.length
=> 16
>> s.foobar
NoMethodError: undefined method `foobar' for "this is a string":String

from (irb):3

6 The Road to Ruby, an Internet.com Developer eBook. Copyright 2008, Jupitermedia Corp.

The Road to Ruby[]

You'll see an error thrown for the undefined method. So "patch" the String class by writing your own
method_missing method:

>> class String
>> def method_missing(method_name, *arguments)
>> puts "Missing #{method_name} (#{arguments.join(', ')})"
>> end
>> end
=> nil
>> s.foobar
Missing foobar ()
=> nil
>> s.foobar(1, "cat")
Missing foobar (1, cat)
=> nil
>>

Whenever the Ruby runtime system cannot find a method for an object, it calls the method method_missing that is
initially inherited and simply raises a NoMethodError exception. This example overrode this inherited method with
one that does not throw an error, and it prints out the name and arguments of the method call. Now, redefine this
method again, this time checking to see if the method name (after converting it to a string with to_s) is equal to
foobar:

>> class String
>> def method_missing(method_name, *arguments)
>> if method_name.to_s=='foobar'
>> arguments.to_s.reverse # return a value
>> else
?> raise NoMethodError, "You need to define #{method_name}"
>> end
>> end
>> end
=> nil
>> s.foobar(1, "cat")
=> "tac1"
>> s.foobar_it(1, "cat")
NoMethodError: You need to define foobar_it

from (irb):38:in `method_missing'
from (irb):43
from :0

>>

If the method name is equal to foobar, this example calculates a return value. Otherwise, it throws an error.

Ruby Code Blocks
Ruby uses code blocks as an additional way to iterate over data. These blocks offer more flexibility and power than
the limited iteration functionality built into the Java language. The previous example showing basic string function-
ality used the stemmer gem to find the word stems of a string containing English words. The following example
uses the String split method to tokenize a string using the space character as a word delimiter and then passes a
code block defined using the { and } characters to mark the beginning and end of a code block (you also can use
begin and end). Local variables in a block are listed between two | characters:

7 The Road to Ruby, an Internet.com Developer eBook. Copyright 2008, Jupitermedia Corp.

The Road to Ruby[]

8 The Road to Ruby, an Internet.com Developer eBook. Copyright 2008, Jupitermedia Corp.

The Road to Ruby[]
puts "longs trips study studying banking".split(' ')
puts "longs trips study studying banking".split(' ').each {|token| puts
"#{token} : #{token.stem}"

This code snippet produces the following:

longs
trips
study
studying
banking

longs : long
trips : trip
study : studi
studying : studi
banking : bank

You can see another good use of code blocks in the following example, which uses the Array collect method. The
collect method processes each array element and then passes it to a code block:

require 'pp'
pp ["the", "cat", "ran", "away"].collect {|x| x.upcase}
pp ["the", "cat", "ran", "away"].collect {|x| x.upcase}.join(' ')

In this example, the code block assumes that the elements are strings and calls the upcase method on each ele-
ment. The collect method returns the collected results in a new array. It also uses the method join to combine all
the resulting array elements into a string, separating the elements with the space character. This is the output:

["THE", "CAT", "RAN", "AWAY"]
"THE CAT RAN AWAY"

Writing Methods That Use Code Blocks

You can use the yield method to call a code block passed to a method or function call. The following example
uses the method block_given? to call yield conditionally if a code block is supplied. The method yield returns a
value that is printed:

def cb_test name
puts "Code block test: argument: #{name}"
s = yield(name) if block_given?
puts "After executing an optional code block, =#{s}"

end

This example calls function cb_test, first without a code block and then with one:

>> puts cb_test("Mark")
Code block test: argument: Mark
After executing an optional code block, =
nil
=> nil
>> puts cb_test("Mark") {|x| x + x}

Code block test: argument: Mark
After executing an optional code block, =MarkMark
nil
=> nil
>>

The string value Mark is passed as an argument to yield, and inside the code block the local variable x is assigned
the value Mark. The return value from the code block is MarkMark.

Ruby Regular Expressions
Ruby has built-in support for handling regular expressions using the class Regexp. Java's java.util.regex APIs offer
similar functionality but regular expression support in Ruby definitely has a more native feel to it. You can create a
regular expression object by either directly using a method call like Regexp.new("[a-e]og") or enclosing a regular
expression between slash characters like /[a-e]og/. You can find good tutorials on both regular expressions and on
Ruby's regular expression support on the web; this simple example shows only using the =~ operator:

=> 4
>> "the dog ran" =~ /[a-e]og/
=> 4
>> "the zebra ran" =~ /[a-e]og/
=> nil

Ruby Network Programming
Ruby has a great standard library for network programming as well. I frequently use Ruby for collecting data from
the Internet, parsing it, and then storing it in XML or a database.

Ruby Document Indexing and Search Using the Ferret Library
By now, you have installed the Ruby gem called ferret. Ferret is the fastest indexing and search library based on
Java Lucene (even faster than the Common Lisp version, Montezuma). One interesting fact about the Ferret library
is that during development the author David Balmain eventually wrote most of it in C with a Ruby wrapper. The
lesson is that if you start to use Ruby and have performance problems, you can always recode the time-critical
parts in C or C++. Ferret defines a few classes that you will use in your own applications once you adopt Ruby:

• Document represents anything that you want to search for: a local file, a web URL, or (as you will see in the
next section) text data in a relational database.
• Field represents data elements stored in a document. Fields can be indexed or non-indexed. Typically, I use a
single indexed (and thereby searchable) text field and then several "meta data" fields that are not indexed.
Original file paths, web URLs, etc. can be stored in non-indexed fields.
• Index represents the disk files that store an index.
• Query provides APIs for search.

Indexing and Searching Microsoft Word Documents
The following is the Ruby class I use for reading Microsoft Word documents and extracting the plain text, which is
an example of using external programs in Ruby:

class ReadWordDoc
attr_reader :text
def initialize file_path

9 The Road to Ruby, an Internet.com Developer eBook. Copyright 2008, Jupitermedia Corp.

The Road to Ruby[]

@text = `antiword #{file_path}` # back quotes to run external program
end

end

The "trick" here is that I use the open source antiword utility to actually process Word document files. You can run
any external program and capture its output to a string by wrapping the external command in back quotes. Try the
following under Linux or OS X (for Windows try `dir`):

puts `ls -l`

This example prints the result of executing the external ls (Unix list directory) command.
The following Ruby script enters a Word document into an index (plain text files are easier—try that as an exer-
cise):

require 'rubygems'
require 'ferret'
include Ferret
include Ferret::Document
require 'read_word_doc' # read_word_doc.rb defines class ReadWordDoc

index = Index::Index.new(:path => './my_index_dir') # any path to a directory

doc_path = 'test.doc' # path to a Microsoft Word
doc_text = ReadWord.new(doc_path).text # get the plain text from the Word file

doc = Document.new
doc << Field.new("doc_path", doc_path, Field::Store::YES, Field::Index::NO)
doc << Field.new("text", doc_text, Field::Store::YES, Field::Index::TOKENIZED)
index << doc

index.search_each('text:"Ruby"') do |doc, score| # a test search
puts "result: #{index[doc]['doc_path']} : #{score}" # print doc_path meta

data
puts "Original text: #{index[doc]['text']}" # print original text

end

index.close # close the index when you are done with it

Notice how short this example is. In 24 lines (including the class to use antiword for extracting text from Word doc-
uments), you have seen an example that extracts text from Word, creates an index, performs a search, and then
closes the index when you are done with it. Using Ruby enabled you to get complex tasks done with very few lines
of code. Had you coded this example in Java using the very good Lucene library (which I've done!), the Java pro-
gram would be much longer. Shorter programs are also easier and less expensive to maintain.

This example uses Word documents, but OpenOffice.org documents are simple enough to be read. With about
30 lines of pure Ruby code, you can unzip a document and extract the text from the content.xml element in the
unzipped XML data stream. (XML processing is simple in Ruby, but it is beyond the scope of this article.)

10 The Road to Ruby, an Internet.com Developer eBook. Copyright 2008, Jupitermedia Corp.

The Road to Ruby[]

Ruby Complements Java
The cost of software development and maintenance is usually the largest expense for a company's IT budget—
much more expensive than servers, Internet connectivity, etc. The use of Ruby can greatly reduce the cost of build-
ing and maintaining systems, mostly because programs tend to be a lot shorter (For me, the time spent per line of
code is similar for most programming languages I use).

OK, so when should you use Java? I have used the Java platform for building systems for my consulting customers
for over 10 years, and I certainly will continue using Java. A well-built, Java-based web application will run forev-
er—or at least until servers fail or have to be rebooted for hardware maintenance. My confidence comes from see-
ing systems run unattended for months on end with no problems. My advice is to continue using Java on the serv-
er side for large systems and to start using Ruby for small utility programs. For my work, I view Java and Ruby as
complementary, and not as competitors. Use the best tool for each task.

11 The Road to Ruby, an Internet.com Developer eBook. Copyright 2008, Jupitermedia Corp.

The Road to Ruby[]

Attention C# developers: C# is good for a great many
things, but it's not the best language for everything.
In fact, there is no such thing as "the best language."

It all depends on what you're trying to do, and your personal
preference and familiarity with the languages you have avail-
able. Although the Church-Turing Thesis suggests that any-
thing you can do in one complete language, you can also
do in another, the truth is not all languages are created
equal. You can accomplish
simple tasks with complex
code in some languages and
complex tasks with simple
code in others. C# sometimes
falls into both categories, but
more often than not, it requires
a bit more than its fair share of
effort. Strangely enough, a lan-
guage that allows you to
accomplish simple tasks with
simple code is rare. Enter
Ruby, an interpreted, dynami-
cally typed language that
enables just that.

Many would say that the main difference between
Ruby and C# is that Ruby is a dynamic language
whereas C# isn't. However, referring to C# as a static
language really isn't right because you wouldn't apply
that term to an entire language as you would to one
of the dynamic variety. Ruby really differs from C# in
that its code is not actually compiled into an interme-
diate executable form before it is run. Instead, Ruby
has at its heart a text-driven interpreter. This means

that the expressions and statements in a Ruby pro-
gram are evaluated as the interpreter passes over
them. In C#, you must first compile the code to an
.exe or .dll file to be able to run it.

In requiring compilation, C# encapsulates an opportu-
nity to check syntax and optimize the runtime efficiency
of the code before it's ever run. On the other hand, all

of the declaration and speci-
fication that goes into setting
up your code with all of the
necessary information to
allow the compiler to per-
form these tricks will slow
you down when these fea-
tures aren't necessary or
desired. You might use a lan-
guage like Ruby, with looser
guidelines, to test your algo-
rithmic theories or rapidly
prototype an application.
Sometimes you just need to
format a couple of text files,
and C# isn't exactly friendly

in cases where you just want to automate something as
simple as a command line.

This article offers a brief introduction to the Ruby lan-
guage from the perspective of a C# developer. You'll
learn the differences between the languages' features
through line-by-line examinations of identical programs
built in each one.

12 The Road to Ruby, an Internet.com Developer eBook. Copyright 2008, Jupitermedia Corp.

The Road to Ruby[]

Ruby for C# Geeks

By Dave Dolan

Jupiterimages

Same Results, Simpler Code
Every programming language tutorial I've ever read has what is (often sardonically) known as the "obligatory Hello
World! example." I'm not very fond of that terminology, so I've spruced up the sample application for this article to
the "slightly interesting Hello Foo! example." The snippets to follow show two programs (one in C#, the other in
Ruby) that produce exactly the same output for my Hello Foo! example.

First, here's the C# version:

// Hello Foo! in C#

using System ;

namespace TestCSharp
{

class MainClass
{

public static void Main(string[] args)
{

Console.WriteLine("Hello Foo!"); //say hello
}

}
}

As you can see, C# requires you to specify a lot of structure and actually tell the compiler that you're going to
write a class. Specifically, here you tell it you're going to write a class with a well-known method called Main that a
console application will use as the first method to call (known as an entry point) when the program executes. The
required verbosity is somewhat mitigated by Visual Studio or any other syntax-helping editor that allows for tem-
plates and IntelliSense; however, the level of code complexity is still there regardless of whether or not you have to
actually type every letter.

First, compile the C# program (If you're using Visual Studio or MonoDevelop, you can simply press F5.), and then
you can run it:

Hello Foo! in Ruby

puts "Hello Foo!" # say hello

Running this little snippet requires that you simply invoke the interpreter and then provide the name of the script
file (hellofoo.rb):

C:\>ruby hellofoo.rb
Hello Foo!

C:\>

Since the Ruby interpreter assumes all of the structural information is there, you don't have to write it like you
would in C#. The interpreter assumes that the first bunch of code you write without an enclosing class or module
declaration is analogous to it appearing within the Main method of the entry point class. Very handy.

13 The Road to Ruby, an Internet.com Developer eBook. Copyright 2008, Jupitermedia Corp.

The Road to Ruby[]

Note the differences in syntax between the languages as well:
• Semi-colons aren't used to delimit the end of a statement in Ruby.
• Ruby's built-in puts method is actually like C#'s Console.Writeline in that it will display the result of the .to_s
method of the parameter object, which in C# you would write as .ToString().
• Parentheses are optional for method calls in Ruby. Most of the time, you simply omit them—particularly when
you don't pass any parameters.
• The // style of commenting in C# is replaced by the # notation in Ruby. Authors Note: Because its syntax is
regarded as self-explanatory, a common belief is that Ruby rarely requires comments. I'm a little skeptical of this
idea, but I will admit that it's often notably easier to understand Ruby code as a human reader than it is the C#
equivalent.

Dynamically Typed Means Faster Coding
Not only is Ruby an interpreted (i.e., dynamically evaluated) language , it is also dynamically typed. So the vari-
ables in Ruby do not require the specification of their types before you use them. The interpreter will infer variable
types as they are assigned values. To add another twist, you don't have to declare variables at all! This is a com-
mon feature of many interpreted languages, and even a few compiled languages. To see what I'm talking about,
consider the following Ruby snippet:

#Ruby

abc = 1 #abc is a Fixnum (integer)
puts abc

abc = "Rubber Baby Buggy Bumpers" # now it's a string!
puts abc

You can see that you have to declare neither the variables nor their types in Ruby, and you can change the type by
assigning it a different value—right in the middle of the running program. Very dynamic! If you tried to do some-
thing like that in C#, the program wouldn't even compile. C# requires statically defining types for variables, which
allows the compiler to catch any errors that may arise when types don't match the ways in which they are used.
However, it's faster and easier to throw together a script that doesn't go to all of this trouble in Ruby. Both
approaches may have a time and a place, but you can choose the one that best suits the problem you're trying to
solve.

The Ruby vs. C# Feature Rundown
The following is a simple example program in Ruby that demonstrates a variety of the features often seen in C#
programs. (It's another "classic" example program used in many programming tutorials.) It is chock full of new stuff
I haven't discussed yet, but I'll explain the entire program snippet by snippet afterwards. If it's still opaque after
that, fear not because I provide a structurally similar C# version so you can compare lines for yourself:

#gessnum.rb
class Game

def initialize(maxNum)
@num = rand(maxNum)
puts ["\n\nMagic Number Game!\n",

"------------------\n\n",
"I'm thinking of a magic number between 0 and #{maxNum}\n",
"Would you like to guess my number? (y/n) [n]:"]

playNow = gets or "n"
if playNow.chop == "y"

14 The Road to Ruby, an Internet.com Developer eBook. Copyright 2008, Jupitermedia Corp.

The Road to Ruby[]

play
else

puts "OK, Bye!"
end

end

def play
loop do # infinite loop!

puts "\nNumber?!?"
attempt = gets or break

case attempt.to_i <=> @num
when 1 # attempt > @num

puts "Guess Lower!"
when -1 # attempt < @num

puts "Think Bigger, Mac."
else # only have == left... so...

puts "Spot on! That's it! Bye!"
break # hop out of our loop!

end
end

end
end

Game.new(100)

Here's a sample run:

C:\proj\ruby>ruby sample.rb

Magic Number Game!

I'm thinking of a magic number between 0 and 100
Would you like to guess my number? (y/n) [n]:
y

Number?!?
50
Guess Lower!

Number?!?
25
Think Bigger, Mac.

Number?!?
37
Spot on! That's it! Bye!

15 The Road to Ruby, an Internet.com Developer eBook. Copyright 2008, Jupitermedia Corp.

The Road to Ruby[]

At the very beginning of the code, I define a class. Notice how it's just the word "class" followed by the class
name—no curly anything, and I haven't set a namespace.

The Game class contains two methods: initialize, the constructor, and play, the main body of the game. Methods
are designated simply by the def keyword, and are terminated by the end keyword. In Ruby, all constructors are
called initialize, and they are called when an object is instantiated (more on this in a minute).

The following snippet designated a variable called @num in the constructor. The variable was set to a random
number between 0 and maxNum:

@num = rand(maxNum)

Any variable inside a class that starts with a @ sign is known as an instance variable (like a field in C#). Just like in
C#, the default for an instance variable is to be private, meaning that folks outside the class cannot see it or read
its value. Why would I bother putting it in a field instead of a local variable? Well, for the same reasons that I'd do
so in C#; I need to access it from other methods, namely the play method.

This command printed an array as a string:

puts ["\n\nMagic Number Game!\n",
"------------------\n\n",

"I'm thinking of a magic number between 0 and #{maxNum}\n",
"Would you like to guess my number? (y/n) [n]:"]

It's much easier to just declare an array of strings and issue a single puts command for it to make a puts for each one.

The #{maxNum} portion is a Ruby trick known as string interpolation. The value of maxNum will be substituted for
the occurrence of #{maxNum} in the string. This is roughly analogous to the String.Format() idiom in C#.

I set the value of a local variable 'playNow' to the result of the gets function, which reads a string from the input
stream:

playNow = gets
if playNow.chop == "y"

play
else

puts "OK, Bye!"
end

I had to compare playNow to "y" (for yes) to make sure the user actually wants to play the game. But wait, you
say, what's that .chop business? That extension will drop the last character from the value, which would be the
newline character, because gets records the newline generated by the enter key when it reads the input stream.
So, if the program gets a "y" it invokes the play method, otherwise it kindly says goodbye.

Normally, trying to run code from within the constructor may not be such a great idea or most objects, but for the
sake of this paltry example game, it's no big deal:

def play
loop do # infinite loop!

puts "\nNumber?!?"

16 The Road to Ruby, an Internet.com Developer eBook. Copyright 2008, Jupitermedia Corp.

The Road to Ruby[]

attempt = gets or break

case attempt.to_i <=> @num
when 1 # attempt > @num

puts "Guess Lower!"
when -1 # attempt < @num

puts "Think Bigger, Mac."
else # only have == left... so...

puts "Spot on! That's it! Bye!"
break # hop out of our loop!

end
end

end

The play method is an infinite loop, meaning that it will continue to execute until the process is terminated or
something inside the loop issues a break statement. I prompt the user for a number and store it in the local vari-
able attempt.

17 The Road to Ruby, an Internet.com Developer eBook. Copyright 2008, Jupitermedia Corp.

The Road to Ruby[]

Listing 1. The C# Version of the Guess the Number Game
using System;

namespace GuessMe
{
class Game
{
int num;

public Game(int maxNum)
{
Random r = new System.Random();
num = r.Next(maxNum);

Console.Out .WriteLine(
String.Join("\n", new string[] {
"\n\nMagic Number Game!",
"------------------\n",
String.Format("I'm thinking of a magic number between 0 and {0}", maxNum),
"Would you like to guess my number? (y/n) [n]:"}
)
);

string playNow = Console.In.ReadLine();

if (playNow == "y")
{
play();
}
else
{
Console.Out.WriteLine("OK, Bye!");
} continued

18 The Road to Ruby, an Internet.com Developer eBook. Copyright 2008, Jupitermedia Corp.

The Road to Ruby[]
The next bit is a little strange for a C# fan, but it actually is not all that different from a switch statement. The
expression it is case-ing on (switching on) is attempt.to_i <=> @num. The first part, attempt.to_I, converts the
string value attempt to an integer. (The Ruby class of objects holding small integer values is actually called
Fixnum.) It's a built-in method of the %(String) class, which itself is a built-in type. The <=> operator is analogous
to the C# idiom of CompareTo(). If the values are equal, <=> returns the integer 0. If the left is less than the right,
an integer value of -1 is returned, and a 1 is returned if the left side of the expression is greater than the right.
Basically, this is a switch for the three possible values, but instead of the C# way (switch… case), it's the Ruby way
(case…when):

The very last line is the actual body of the main program:

Game.new(100)

The only thing that happens here is that an instance of the Game class is created by calling the .new method with
the parameter of 100. In Ruby, .new is a special method that will invoke the initialize method, the constructor of
the object. Notice the object isn't assigned. Nobody needs to see the object, so it's not stored.

Listing 1. The C# Version of the Guess the Number Game

}

void play()
{
string attempt = null;
while(true)
{

Console.Out.WriteLine("\nNumber?!?");
attempt = Console.In .ReadLine ();

switch(Convert.ToInt32(attempt).CompareTo(num))
{
case -1:
Console.Out.WriteLine("Think Bigger, Mac.");
break;
case 1:
Console.Out .WriteLine("Guess Lower!");
break;
default:
Console.Out .WriteLine("Spot on! That's it! Bye!");
return;
}
}
}

}
class GuessGame
{
public static void Main(string[] args)
{
new Game(100);

The Ruby Mixin Feature
One trick I haven't covered is the ability of Ruby to change an existing class that has already been defined. This is
called a mixin because it allows you to mix in your code with code that already exists. You can even create mixins
that alter the built-in types in Ruby, effectively altering the way the entire language operates. To add even more
variability, mixins allow you to import classes, methods, or extend classes with features of a Module (like a static
class in C# 2.0) by modifying either the classes themselves or just particular instances of the classes!

You also can re-open an existing class definition and inject your own methods in, or override ones that are already
there. For example, I could redefine the .to_s method of the Fixnum class, which is the class that all integers take
on by default, to return something like "I, for one, welcome our robot overlords" every time. (The wisdom of
doing something like this is of course questionable.) For the sake of demonstrating how very open the entire struc-
ture of Ruby is, here's how you can do this:

Fixnum.class_eval do
def to_s

"I, for one, welcome our robot overlords."
end

end

q = 123
puts q.to_s

Of course, don't try this at home, or at least don't do it in production code.

For Further Study
The Ruby language offers many more features and goodies than I could cover in one article, but absorbing them a
few at a time from here on will be no harder than what this tutorial has shown. For a quick perusal of how Ruby
generally compares to C# and Java, see Table 2.

19 The Road to Ruby, an Internet.com Developer eBook. Copyright 2008, Jupitermedia Corp.

The Road to Ruby[]

Language Feature Ruby C# Java

Object Oriented Yes Yes Yes

Compiled/Interpreted Interpreted Compiled Both (usually compiled)

Variable Typing Dynamic Static Static

Native Mixins Yes No No (some add-on
libraries offer limited
support)

Closures Yes In version 2.0 + No

Reflection Yes Yes Yes

Multi-Threading Yes Yes Yes

Regular Expressions Native Standard library Standard library
support support

Static and Instance Methods Yes Yes Yes

Type Inference Yes No No

Strong Typing Yes* Yes Yes

* Ruby is still strongly typed, but the type can be inferred and easily changed at run-time. Note that this is not the
same as statically typed.

One of the particularly nice things about Ruby is the voluminous mass of documentation generated by the ever-
expanding Ruby user community. If you would like to learn some more about Ruby, you should check out the
industry standard tongue-in-cheek guide known as Why's (Poignant) Guide to Ruby. If humor isn't your ideal way to
learn a language, then you might want to see the more formal Programming Ruby, which is actually quite authori-
tative on the subject. No matter what your preferences are, you can get wherever you want to go with Ruby from
the official Ruby Language site (http://www.ruby-lang.org/).

20 The Road to Ruby, an Internet.com Developer eBook. Copyright 2008, Jupitermedia Corp.

The Road to Ruby[]

If you're a C++ developer who's curious about all of the
hype surrounding the Ruby programming language, this
article is for you. It provides a high-level overview of the

key differences between C++ and Ruby, and then presents a
small, complete example application implemented with each
language.

Be forewarned, however: learn-
ing Ruby can be a very frustrat-
ing experience! Because once
you become familiar with this
powerfully concise language,
you might find returning to
C++ a bitter pill to swallow.

A High-Level
Language
Comparison and a
Running Example
C++ is a statically typed, com-
piled language that has hybrid
object orientation. Its static typing means that the type
of every expression and variable is known at compile-
time, allowing significant correctness checking before
the program executes. Its hybrid object orientation
means that it defines non-object primitive types such as
int and float, and functions can exist outside of objects.
The Ruby programming language is designed to let
you write code quickly and concisely. Unlike C++, it is a
very dynamic, interpreted language that includes a
powerful set of libraries. While it is often referred to as
a scripting language, it is a pure objected-oriented lan-

guage that has sufficient expressiveness for general-
purpose applications.
In Ruby, variables do not need to be declared and are
free to change type from statement to statement. So
the following code, where the variable x changes from
a FixNum (an integer that fits within a native machine
word) to a String to an Array, is a perfectly legal

sequence of Ruby code:

x = 10
x += 4
x = "My String"
x = [1, "My String",
Hash.new]

A significant downside of Ruby's
dynamism is its use of an inter-
preter. Ruby's runtime perform-
ance just can't compare to a
compiled language like C++. So
even if you find yourself in love
with the features of Ruby, you're
likely better off sticking with

C++ if you really need runtime efficiency.

Having digested some of the key differences between
C++ and Ruby, you're now ready to examine the small,
complete example application implemented with each
language. The application calculates the total number
of occurrences for each word found in a set of files with
a given directory, and generates an XML file that sum-
marizes these occurrences as output. Listing 1 shows
the C++ implementation, and Listing 2 shows the Ruby
implementation.

21 The Road to Ruby, an Internet.com Developer eBook. Copyright 2008, Jupitermedia Corp.

The Road to Ruby[]

The Road to Ruby from C++

By Michael Voss

Get the code for this article at: http://assets.devx.com/sourcecode/19155.zip

Jupiterimages

The Basics of Classes and Variables
Both versions define the following three classes:

1. A class that represents the total number of occurrences of a word across all files
2. A class that is derived from this class and extended to also maintain the occurrences of each word by file
3. A counter class that reads and parses the files, creates and updates the word counts, and outputs the XML file

The first class is defined in Listing 1 at line 22 and in Listing 2 at line 4. Both implementations maintain a string
word and a total_count variable. In Ruby, instance variables are preceded by a "@" symbol, and therefore Listing 2
has @word and a @total_count. Local variables have no prefix and global variables have a "$" symbol as a prefix.

The C++ code uses a struct to declare this class. Therefore, the variables word and a total_count are public by
default. Ruby, however, does not allow access to instance variables from outside of the object; all instance vari-
ables are private. You'll learn more about access control later, but for now focus on adding the needed accessor
methods. Luckily, as the statement at line 7 of Listing 1 demonstrates, adding these methods is no chore. You can
automatically generate the needed get accessor methods by listing the variables after attr_reader.

Both implementations of this class also define a constructor that takes the word string, a method add that incre-

22 The Road to Ruby, an Internet.com Developer eBook. Copyright 2008, Jupitermedia Corp.

The Road to Ruby[]

Listing 1. The C++ Implementation
This C++ application calculates the total number of occurrences for each word found in a set of files with a
given directory, and generates an XML file that summarizes these occurrences as output.

// for directory manipulation
#include <unistd.h>
#include <sys/types.h>
#include <dirent.h>

// streams and strings
#include <iostream>
#include <fstream>
#include <string>

// STL collections
#include <map>
#include <set>

struct my_compare {
bool operator() (const std::pair<std::string, int> &f1,

const std::pair<std::string, int> &f2) {
return f1.second < f2.second;

}
};

struct word_count {
std::string word;
int total_count;
typedef std::multiset< std::pair<std::string, int>, my_compare >

file_set_t;

word_count(std::string _word) : word(_word), total_count(0) {}

virtual void add(std::string filename) {

continued

ments the counters, and a method file_occurrences that returns a data structure that holds per-file information. As
shown on line 9 of Listing 2, the class constructors in Ruby are named initialize.
If you ignore the "include Comparable" in the Ruby code until later, the remainder of the implementation for this
base class is then fairly straightforward for both languages.

Inheritance and Polymorphism
The next class defined in both files inherits from this simple base class, extending it to also track the total number
of occurrence for the word in each file. The C++ implementation uses ": public word_count" to indicate the inheri-
tance. The Ruby implementation uses "< WordCount". In both cases, the extended class adds a hash map to store
the occurrence count associated with each processed file. The method add is extended to update the hash map,
and the method file_occurrences returns this information.

There are few key differences between inheritance in C++ and inheritance in Ruby. Ruby, unlike C++, does not
support multiple inheritance but does support mixins. The "include Comparable" found on line 16 of Listing 2 is
an example. A Module is a set of function definitions. You can't create an instance of Module; you can only include
it into class definitions. In this case, Module Comparable defines the comparison operators (<, >, ==) in terms of

23 The Road to Ruby, an Internet.com Developer eBook. Copyright 2008, Jupitermedia Corp.

The Road to Ruby[]

Listing 1. The C++ Implementation
total_count += 1;

}

virtual file_set_t file_occurrences() {
return file_set_t();

}
};

bool operator< (const std::pair<std::string, word_count *> &wc1,
const std::pair<std::string, word_count *> &wc2) {

return wc1.second->total_count < wc2.second->total_count;
}

bool operator< (const word_count &wc1, const word_count &wc2) {
return wc1.total_count < wc2.total_count;

}

struct word_and_file_count : public word_count {
std::map<std::string,int> file_count;

word_and_file_count(std::string _word)
: word_count(_word) {}

void add(std::string filename) {
if (file_count.find(filename) == file_count.end())

file_count[filename] = 0;
file_count[filename] += 1;
total_count += 1;

}

word_count::file_set_t file_occurrences() {
return word_count::file_set_t (file_count.begin(),

file_count.end());
}

continued

the <=> operator. So by defining <=> and including Module Comparable, you get the other comparison opera-
tors for free.

In C++, you sometimes rely on inheritance combined with virtual functions to enable polymorphism. A pointer x of
type T * can point to an object of type T or any object with a type below T in the class hierarchy. A virtual method
invoked through x is resolved by walking up the class hierarchy, starting from the type of the object pointed to by
x.
Ruby on the other hand uses duck typing—if something looks like a duck, swims like a duck, and quacks like a
duck, then it's a duck. Take the following code for example:

def my_method(x)
x.print_hello

end

For Ruby, it doesn't matter what type x is. If the object x has a method print_hello, the code will work. So unlike
C++, which would require the objects to inherit from a common base type, you can pass objects of unrelated
types to my_method, as long as they all implement print_hello.

24 The Road to Ruby, an Internet.com Developer eBook. Copyright 2008, Jupitermedia Corp.

The Road to Ruby[]

Listing 1. The C++ Implementation
};

template <typename W>
class word_counter {
private:

std::map<std::string, word_count *> word_counts;
const std::string directory_name;

void count_words_in_file(const std::string &filename) {
int i = 0;
std::ifstream file(filename.c_str());

if (file.is_open()) {
while (file.good()) {

std::string line;
getline(file,line);
char c = line[i=0];
while (c != '\0') {

std::string buffer;
while (c != '\0' && !isalpha(c)) {

c = line[++i];
}
while (c != '\0' && isalpha(c)) {

buffer += c;
c = line[++i];

}
if (buffer.length()) {

if (word_counts.find(buffer) == word_counts.end())
word_counts[buffer] = new W(buffer);

word_counts[buffer]->add(filename);
}

}
}

}
continued

Visibility and Access Control
The final class in the example applications is implemented starting at line 67 in Listing 1 and line 54 in Listing 2.
This class iterates through all of the files in the provided directory, breaking the file into tokens and counting the
occurrences of each word. It also defines a method to dump the XML output.
Both C++ and Ruby support public, protected, and private members. In the example, the method
count_words_in_file is declared as private in both implementations.
In both C++ and Ruby, public methods can be called by anyone, and protected methods can be called only by
objects of the same class or objects that inherit from the defining class. The semantics of private differ between
C++ and Ruby, however. In C++, methods are private to the class, while in Ruby they are private to the instance.
In other words, you can never explicitly specify the receiver for a private method call in Ruby.

Blocks and Closures
One feature of Ruby for which C++ has no good counterpart is its support of blocks. The most common use for
blocks is iteration. You'll find examples of iteration with blocks in Listing 2's implementation of the WordCounter
class at lines 65, 73, and 76.

25 The Road to Ruby, an Internet.com Developer eBook. Copyright 2008, Jupitermedia Corp.

The Road to Ruby[]

Listing 1. The C++ Implementation
}

public:
word_counter(const std::string &_directory_name)

: directory_name(_directory_name) {}

void count_words() {
char *cwd = getcwd(NULL,0);

if (chdir(directory_name.c_str())) {
std::cerr << "Could not open directory" << std::endl;
exit(1);

}

DIR *d = opendir(".");
if (!d) {

std::cerr << "Could not open directory" << std::endl;
exit(1);

}

while (struct dirent *e = readdir(d)) {
std::string filename = e->d_name;
count_words_in_file(filename);

}
chdir(cwd);
delete cwd;

}

void dump_results() {
typedef std::multiset< std::pair< std::string, word_count * > >

wc_set_t;
std::cout << "<counts>" << std::endl;
wc_set_t wc_set(word_counts.begin(), word_counts.end());
for (wc_set_t::const_reverse_iterator it = wc_set.rbegin();

continued

Consider the code at line 65 for example:

Dir.foreach(".") { |filename|
count_words_in_file filename

}

The class Dir is used to inspect directories. The method foreach is passed two arguments: the string "." and the
block of code in parentheses, which in turn specifies an argument filename within the vertical bars. The method
foreach iteratively invokes the block, passing in the names of each file found in the current working directory ".".
This simple feature can save significant keystrokes and also leads to very readable code.

Blocks also are useful for more than just iteration. Line 48 uses a block to specify the comparison function to use
for sorting an array of pairs:

def file_occurrences
return @file_hash.sort { |x,y| –(x[1]<=>y[1]) }

end

26 The Road to Ruby, an Internet.com Developer eBook. Copyright 2008, Jupitermedia Corp.

The Road to Ruby[]

Listing 1. The C++ Implementation
it != wc_set.rend(); it++) {

std::cout << "<word occurences=\"" << it->second->total_count
<< "\">" << std::endl << it->second->word << std::endl;

word_count::file_set_t file_set = it->second->file_occurrences();
for (word_count::file_set_t::const_reverse_iterator

fit = file_set.rbegin(); fit != file_set.rend(); fit++) {
std::cout << "<file occurences=\"" << fit->second << "\">"

<< fit->first << "</file>" << std::endl;
}
std::cout << "</word>" << std::endl;
delete it->second;

}
std::cout << "</counts>" << std::endl;

}

void run() {
count_words();
dump_results();

}
};

int main(int argc, char *argv[]) {
char *dir = argv[1];

if (!strcmp(argv[1],"--no-file-info")) {
word_counter<word_count>(argv[2]).run();

} else {
word_counter<word_and_file_count>(argv[1]).run();

}
return 0;

}

The expression x <=> y is -1 if x < y, 0 if x == y, and 1 if x > y. The above code returns an array of pairs, where
each pair consists of a String and a FixNum. The block specifies that the second element of each pair (the FixNum)
should be compared using the negation of the <=> operator. This method therefore returns the word occurrences
pairs in decreasing order of occurrences.

At line 15 of Listing 1, the C++ example code also specifies a comparison function to be used for ordering pairs.
However, lacking support for anonymous functions, the comparison is implemented as a function object, later used
to define the STL multiset at line 25.
The blocks in Ruby are so useful in part because they are closures. A closure captures the context in which it is
defined, so it can refer to local variables found within the scope of the definition. Take for example the code at line
76 of Listing 2:

wc.file_occurrences.each { |pair|
f = e.add_element "file", {"occurrences"=>"#{pair[1]}"}
f.add_text pair[0]

}

The expression wc.file_occurrences returns an array of pairs. The array's method each is then invoked with the sub-
sequent block as an argument. It's important to note that the block will be invoked from within the method each.
However, because the block is a closure, it can still access the object e (which represents an XML element) that was
in the local scope of the method where the block was defined.

While you can use C++ function objects to implement much of the functionality described above, I believe that
the elegance and readability of blocks speak for themselves.

27 The Road to Ruby, an Internet.com Developer eBook. Copyright 2008, Jupitermedia Corp.

The Road to Ruby[]

Language Feature C++ Java Ruby

Type System Static Mostly static Dynamic

Object Orientation Hybrid Pure (with Pure
primitive types)

Inheritance Multiple Single and interfaces Single and mixins

Overloading Method and Operator Method Operator

Polymorphism Yes Yes Yes

Visibility/Access Controls Public, protected, Public, protected, Public, protected,
private, and friends package, and private private (instance)

Garbage Collection No Yes Yes

Generics Yes (templates) Yes (generics) No

Closures No (function objects) Yes, with some Yes (blocks)
limitations (inner classes)

Exceptions Yes Yes Yes

Table 1. A Comparison of Features in C++, Java, and Ruby

A Wide Range of Libraries, Regular Expressions
Another clear advantage that Ruby has over C++ is the vast collection of libraries that come with the standard dis-
tribution, as well as its support for regular expressions. For example, compare the ad-hoc implementation of an
XML generator in method dump_results in Listing 1 to the use of the REXML library in Listing 2. Next, note the use
of the pseudo-standard dirent.h for working with directories in C++ to that of the class Dir in the Ruby implemen-
tation. Finally, compare the ad-hoc parsing of the files at line 77 of Listing 1 to the much more concise code at line
90 of Listing 2.

While many available C++ libraries, such as Boost, provide a wide range of utilities, Ruby provides many of these
features as part of the standard distribution. So out-of-the-box, the Ruby programming language and its standard
libraries simplify many of the more common programming tasks when compared to C++.
A Summary of Language Features

To summarize, Table 1 presents some of the key features of C++ and Ruby discussed in this article (with Java
included for comparison).

28 The Road to Ruby, an Internet.com Developer eBook. Copyright 2008, Jupitermedia Corp.

The Road to Ruby[]

Listing 2. The Ruby Implementation
This Ruby application calculates the total number of occurrences for each word found in a set of files with a
given directory, and generates an XML file that summarizes these occurrences as output.

require 'rexml/document'
require 'set'

class WordCount

read-only attributes
attr_reader :word, :total_count

def initialize(word)
@word = word
@total_count = 0
end

Use a mixin of Comparable module to get comparisons for free
we must define <=>
include Comparable

def <=>(other)
return @total_count <=> other.total_count

end

def add(filename)
@total_count += 1

end

def file_occurrences
return []

end
continued

Listing 2. The Ruby Implementation
end

class WordAndFileCount < WordCount

read-only attributes
attr_reader :file_hash

def initialize(word)
super(word)
@file_hash = Hash.new
end

def add(filename)
@total_count += 1
v = @file_hash[filename]
@file_hash[filename] = (v == nil) ? 1 : v + 1
end

def file_occurrences
return @file_hash.sort { |x,y| –(x[1]<=>y[1]) }

end

end

class WordCounter

def initialize(directory_name)
@directory_name = directory_name
@word_count = Hash.new

end

def count_words
pwd = Dir.pwd
Dir.chdir @directory_name
Dir.foreach(".") { |filename|

count_words_in_file filename
}
Dir.chdir pwd

end

def dump_results
root = REXML::Element.new "counts"
@word_count.values.sort.reverse.each { |wc|

e = root.add_element "word", {"occurences"=>"#{wc.total_count}"}
e.add_text wc.word
wc.file_occurrences.each { |pair|

f = e.add_element "file", {"occurences"=>"#{pair[1]}"}
f.add_text pair[0]

}

29 The Road to Ruby, an Internet.com Developer eBook. Copyright 2008, Jupitermedia Corp.

The Road to Ruby[]

continued

Listing 2. The Ruby Implementation
}

doc = REXML::Document.new
doc << REXML::XMLDecl.new
doc.add_element root
doc.write $stdout

end

private

def count_words_in_file(filename)
return if File.directory? filename

File.open(filename) { |file|
file.each_line { |line|

words = line.split(/[^a-zA-Z]/)
words.each { |w|

next if w.size == 0
@word_count[w] = $count_gen.call(w) if @word_count[w] == nil
@word_count[w].add filename

}
}

}
end

end

if ARGV.include?("--no-file-info") then
ARGV.delete("--no-file-info")
$count_gen = lambda { |word| WordCount.new word }
else
$count_gen = lambda { |word| WordAndFileCount.new word }
end

counter = WordCounter.new ARGV[0]
counter.count_words
counter.dump_results

30 The Road to Ruby, an Internet.com Developer eBook. Copyright 2008, Jupitermedia Corp.

The Road to Ruby[]

Ruby, the dynamic, interpreted programming lan-
guage that adopts a pure object-oriented
approach, has been gaining popularity among pro-

grammers. While many of Ruby's new converts are pri-
marily developing Web applications, Ruby has a great
history (much of it in Japan) as a
separate language in its own
right. Only recently are develop-
ers in the West beginning to
understand the significant
advantages Ruby has over other
scripting languages such as Perl
and Python, or even more estab-
lished enterprise-level languages
such as Java.

If you are one of those who
recently boarded the Ruby
bandwagon, you may not be
sure which of the many available
Ruby tools and libraries are most
helpful to your development.
This article looks at five essential
tools and libraries that Ruby developers should have in
their arsenal to be able to get the most out of the lan-
guage.

1. RubyGems
In general, RubyGems provides a standard way to pub-
lish, distribute, and install Ruby libraries. It allows library
developers to package their products so that installation
becomes a one-line process. The resulting packages are
simply called "gems." Likewise, RubyGems makes it
easy for developers to get up and running with a whole
swath of libraries quickly.

Like many packaging and installation systems for other
languages (and even operating systems), RubyGems will
detect dependencies and install them before installing
the desired library, making it a no-brainer process to get
a certain library running.

RubyGems currently isn't a standard
part of the Ruby installation, but it
likely will be in the future. For now,
you have to download it separately,
but the process is extremely simple.
You need only open an archive and
run a single Ruby file inside.

Beyond basic installation of most
third-party Ruby libraries, RubyGems
also makes managing the libraries
installed on your computer simple. It
provides a basic command line
interface for uninstalling and
upgrading libraries. You can even
use this interface to install multiple
versions of the same library on a sin-

gle machine, enabling you then to address these sepa-
rately (specifically by version, if necessary) by applica-
tions. This makes RubyGems even more powerful than,
say, the popular CPAN system for Perl.

The primary reference and documentation site for
RubyGems is rubygems.org.

2. A Good IDE or Text Editor
As with developing in other programming languages,
Ruby developers rely on a myriad of different IDEs and
text editors for development work. Because of the dif-
ferent platforms and preferences of each developer, it's

31 The Road to Ruby, an Internet.com Developer eBook. Copyright 2008, Jupitermedia Corp.

The Road to Ruby[]

Five Essentials For Your Ruby Toolbox

By Peter Cooper

Jupiterimages

impossible to recommend a single option, so this article
quickly covers a few alternatives.

RADRails
RADRails was one of the first serious Ruby-specific IDEs.
Despite the name, RADRails is not only for Rails applica-
tions. It, in fact, is generally useful for developing Ruby
applications (see Figure 1). Based upon the popular
Eclipse IDE, RADRails is cross-platform (Windows, Linux,
and OS X) and open source. Although other IDEs have
now become popular, RADRails is still a good Ruby-spe-
cific choice.

jEdit
Like RADRails, jEdit is an open source, cross-platform
IDE. Unlike RADRails, it isn't Ruby-specific at all. It is a
general programmer's text editor. What earns jEdit a

spot on this list is its "Ruby Editor Plugin," a plugin that
adds a number of Ruby- (and Rails-) specific abilities to
the editor, including syntax and error highlighting, inte-
grated documentation, and auto-indentation (see Figure
2).

Ruby In Steel
Ruby In Steel is a professional-grade Ruby IDE for
Microsoft Visual Studio (MSVS) 2005. It features not only
code completion, but also full Microsoft-style
IntelliSense features on Ruby code (see Figure 3). While
it's not cheap ($199), a free limited-feature edition and a
free thirty-day trial make Ruby In Steel appealing to new
Ruby developers who particularly appreciate the MSVS
IDE.

TextMate
TextMate is an editor available only on Mac OS X. Its
use by most of the core team of Rails developers has
led to its strong adoption among OS X-based Ruby
developers. Like jEdit, TextMate is a general program-
mer's text editor with a significant number of available
Ruby-specific extensions. Depending on the current
exchange rate, TextMate costs approximately $50US.
TextMate's developer, Allan Odgaard, has been helping
another developer produce a Windows clone called E

32 The Road to Ruby, an Internet.com Developer eBook. Copyright 2008, Jupitermedia Corp.

The Road to Ruby[]
Figure 1 Figure 2

Figure 3

Figure 4

(a.k.a. E-TextEditor).

3. Instant Rails
Most Ruby developers who have Ruby on Rails Web
application framework installed went through the
lengthy process of installing RubyGems, installing the
Rails gems, and then setting up their environments. It
doesn't need to be such a complex procedure, howev-
er. Two tools enable you to install a Rails application on
a new computer quickly.

For Windows users, a single application called Instant
Rails enables them to install and run an Apache Web
server, Ruby, the MySQL database engine, and the Rails
framework all at once (see Figure 4).

Instant Rails gets a Rails application up and running with
only a couple of clicks. This can be ideal if you need to
deploy a Rails application to a client or on a remote
machine where installing Ruby and Rails is not appropri-
ate.

There are plans to port Instant Rails to Linux, BSD, and
Mac OS X in the future, but currently Mac OS X users
have an alternative called Locomotive. Like Instant Rails,
Locomotive provides an all-in-one Rails deployment sys-
tem within a single application.

4. Mongrel – A HTTP Server Library
Mongrel is an HTTP server tool and library for Ruby. On
the surface, it doesn't sound particularly exciting, but its
benefits are compelling. Ruby already comes with a
HTTP server library known as WEBrick, but it's extremely
slow. Mongrel's speed and reliability are head and
shoulders above WEBrick and other alternatives, so
installing it allows your Rails applications to run much
faster. In fact, Mongrel is now used in the majority of
Rails deployments, so it's a useful tool to learn.
Additionally, you can use Mongrel directly from your
Ruby code to develop your own HTTP server programs.

Installing Mongrel takes only a minute with RubyGems
(using a mere gem install mongrel command). It has
separate builds for Windows- and UNIX-related plat-
forms due to the need to compile some external C
code.

Of the five tools this article covers, Mongrel is the only
library. As such, it serves as a great example of how to
package, market, and document a library. Mongrel's

popularity rests not just on its performance, but also on
the way creator Zed Shaw has engaged the community
and thoroughly documented the library. If you view
Mongrel's source code, you'll find almost as many com-
ments as lines of code.

5. An RSS Feed Reader for Community Interaction
One of the interesting things about Ruby is its commu-
nity. As a language that gained widespread popularity in
the West in only the past few years, Ruby developers
have taken advantage of new technologies like blogs to
build the community and share their knowledge.
Most of the best Ruby developers have blogs and read-
ing them can extend the knowledge of a novice Ruby
developer substantially. Indeed, the strong, evangelical
blogging community is one of the main reasons Rails
has taken off in the past couple of years. So having a
quick and easy way to keep up with several Ruby blogs
is key. As nearly all blogs publish an RSS feed, an RSS
application or access to an online RSS reader provides a
lot of value for any Ruby developer.

The most popular online RSS reader is Google Reader,
but client-side readers exist for all platforms. On
Windows, a good, free RSS reader is SharpReader. On
Mac OS X, NewsFire is a good one. A good place to
find Ruby blogs worth reading regularly is Ruby Inside.
Visit the site and subscribe to the blogs in the "Choice
Blogs" sidebar.

Keeping up to date with Ruby blogs means you'll not
only come across the best tutorials and Ruby posts as
they're written, but you'll also begin to connect with
the community and get a feel for how to extract value
from it.

33 The Road to Ruby, an Internet.com Developer eBook. Copyright 2008, Jupitermedia Corp.

The Road to Ruby[]

So you've discovered the grace and power of Ruby
and you're ready to explore the subtle but impor-
tant ideas behind its elegance. Follow this tutorial

to create a small, useful Ruby application. As Ruby is pri-
marily an object-oriented lan-
guage with classes and objects,
you can jump right in and create
a class to encapsulate behavior.
The instructions begin with a
simple version of the applica-
tion, and then expand it. Along
the way, you will learn what
makes Ruby tick.

The example application will
serve two purposes:

1. Demonstrate some fea-
tures of Ruby.
2. Do something useful in the
process.

A word on the title: Were you to write this code your-
self, assuming some moderate Ruby knowledge, it
probably wouldn't take more than 10 minutes. Once
you learn how Ruby works and understand what sort of
code it enables, you'll find that you can whip up useful
utilities in short order. Of course, a walkthrough of such
code will take a bit more than 10 minutes if you're new
to the language.

Target Problem: Simplifying File
Launching
Ruby is primarily a text-based, command-line-oriented

language. Some GUI libraries
are available, as well as multiple
Web application frameworks,
but exploring GUI development
with Ruby is beyond the scope
this article. The goal here is to
write something that works from
the command line.
The example task is simplifying
file launching. Given a text file
(maybe a Ruby source code
file), suppose you want to cre-
ate a way to launch it in some
associated application from the
command line. And you want to
launch it without having to keep

track of file types and application associations. Yes,
Windows already does this, but your application will
have additional features that go beyond this simple
behavior.

Version 0: The Launcher Code
First, create a sparse Ruby file. Ruby files end with .rb
and have the pivotal line that defines the path to your
Ruby interpreter up top. Call the file launcher.rb:

34 The Road to Ruby, an Internet.com Developer eBook. Copyright 2008, Jupitermedia Corp.

The Road to Ruby[]

10 Minutes to Your First Ruby Application

By James Britt

This tutorial assumes that you already have a current version of Ruby installed, and you have a code editor handy.
You don't need a fancy IDE to code in Ruby; Vim, Emacs, and TextMate are great choices. NetBeans and Eclipse
work fine as well.

Jupiterimages

#!/usr/local/bin/ruby

Example application to demonstrate some basic Ruby features
This code loads a given file into an associated application

class Launcher
end

Notice you can use a pound sign (#) to start a line-level comment. Everything to the right of the # is hidden from
the interpreter. Ruby has a means for commenting multiple lines of code, too. Class names begin with a capital let-
ter; classes are constants, and all Ruby constants start with a capital letter. (For a more complete overview of Ruby
syntax, please see "Ruby—A Diamond of a Programming Language?", Part 1 and Part 2.)

While this code seemingly does nothing, it is executable. If you're playing along at home, you should see that your
copy of the code executes. A simple way to run a Ruby script is to simply call the ruby interpreter and pass the
name of the file, like this (see Sidebar 1. Instructions for Executing launcher.rb in Unix and Windows):

$ ruby launcher.rb

When you run the file, you should see nothing—unless there's an error of some sort in the code. So, nothing is
good. It doesn't mean nothing is happening; when the ruby interpreter parses your file, it encounters your class
definition and makes it available for creating objects. The following code adds the class definition to your code:

#!/usr/local/bin/ruby

Example application to demonstrate some basic Ruby features
This code loads a given file into an associated application

class Launcher

35 The Road to Ruby, an Internet.com Developer eBook. Copyright 2008, Jupitermedia Corp.

The Road to Ruby[]

Instructions for Executing launcher.rb in
Unix and Windows
On Unix systems you can set the file as executable and call it directly:

$ chmod u+x launcher.rb
$./launcher.rb

Windows users have a leg up here if they used the so-called One-Click Ruby Installer. It takes a few more clicks
than one, but in the end it sets up an association for .rb files. So a Windows user should be able to execute the
app straight off as follows:

C:\some\dir> launcher.rb

However, Windows users should also know that though they can launch a Ruby file by double clicking on it from
the Windows file explorer, the results are fleeting: code will execute in a command shell, which will remain visi-
ble only so long as the application is running. For the sake of this demonstration, it's best to run the file from a
command shell.

end

launcher = Launcher.new

The code first creates a variable (launcher) that is assigned a reference to a new instance of the class Launcher. You
do not have to declare the type of the variable. Ruby uses strong, dynamic typing, and variables can hold refer-
ences to objects of any type. Pretty much everything in Ruby is an object, including strings, numbers, and regular
expressions. Each of these has a formal creation method (e.g., String.new), but Ruby tries to make it easy and fluid
to work with the common cases.

Secondly, Ruby creates the object instance by invoking new on your Launcher class. New is a class method; it's
analogous to constructor methods in Java. Of course, an empty object won't get you far, so you must add some
behavior.

Adding Behavior
The essence of your application takes a given file name and passes it to an associated application for processing
of some sort. The launcher code will need to know how to do this mapping, so when you create an instance of a
Launcher class, you must pass in some sort of mapping. You've seen that you can use the class method new to
create an instance of a class. To create an instance that starts life with some set of data, you can pass in arguments
to new. To handle this, you of course will have to add some code to Launcher:

def initialize(app_map)
@app_map = app_map

end

You define methods in Ruby using the def keyword, followed by the method name, and then the augment list, if
any. The argument list is in parentheses for clarity, though Ruby will allow you to omit them when the meaning of
the code is unambiguous (see Sidebar 2. Why You Add initialize Method When Passing Arguments to new
Method).

It's worth noting then that Ruby objects begin life with assorted built-in behavior. You can use these as is, or opt to
override them.

Instance Variables
Your initialize method takes one argument, app_map. Again, as with the earlier variable, you do not give the types
of method arguments. You just say that the method takes one argument (app_map), and in the body of the
method this argument gets assigned to the variable @app_map. The @ symbol indicates that the variable is an
instance variable (i.e., it is available to all the code in this object). You create this instance variable when you create
your object, and it will be available to any other methods you add to your code.

36 The Road to Ruby, an Internet.com Developer eBook. Copyright 2008, Jupitermedia Corp.

The Road to Ruby[]

Why You Add initialize Method When Passing
Arguments to 'new' Method
You're probably thinking, why am I adding a method named "initialize" when I want to pass arguments to a
method named "new"? The reason has to do with how Ruby creates objects from classes. All classes (such as
Launcher) inherit from the class Object, and part of the deal is that the objects they create have a default initial-
ize method. When the class method new is called, it first allocates some resources for the desired object, and
then invokes the fresh object's initialize method. If you wish to provide creation parameters via new, you must
define your own initialize method to handle the arguments in the newly created instance.

To have your application execute a given file using the associated application, drop some more code into it:

class Launcher

def initialize(app_map)
@app_map = app_map

end

Execute the given file using the associate app
def run(file_name)

application = select_app(file_name)
system("#{application} #{file_name}")
end

Given a file, look up the matching application
def select_app(file_name)

ftype = file_type(file_name)
@app_map[ftype]

end

37 The Road to Ruby, an Internet.com Developer eBook. Copyright 2008, Jupitermedia Corp.

The Road to Ruby[]

A Few Words About Objects, Types, and Behavior
Ruby follows a message-passing model of object-oriented programming. When you see code like foo.bar, it
means that the message "bar" is being passed to the object referenced by foo. Most of the time, that object
will have a method bar, and when you see such code you may be tempted to think of it as calling foo's bar
method. However, while that is convenient (and common), it is important to know what's happening under the
hood.

When an object receives a message, it first looks for a corresponding method. The search will work its way up
the inheritance hierarchy, starting with the object's own class, until it reaches the Object class. If no match is
found, then the method method_missing is called. As you may have guessed, there's a default implementation
of method_missing, and it does nothing more than raise an exception. But just as you were able to override the
default definition of initialize, you also can alter method_missing. You are free to redefine it so your object might
apply some smarts to handling arbitrary message requests, making it appear that the object implements many
more methods than it actually does.

This flexibility is at the core of one of the most appealing aspects of Ruby, but it also points to an important
aspect that may trouble some people. You've seen that you do not declare data types when creating variables
or defining method argument lists. If you want to check data types, you can. Code can ask for an object's type,
and act accordingly. For example, you may want to write a method that accepts either a file name (e.g., a String
object) or a file handle (e.g., a File object). But Ruby code rarely checks an object's type simply for defensive
measures, refusing to continue unless given an object that asserts itself to be a certain type. Because classes
and objects are mutable at run-time, the notion of type in Ruby is essentially defined as the behavior of an
object at any given time. Type is defined by which methods an object responds to, not which class it comes
from. As Rubyist Logan Capaldo once said, "In Ruby, no one cares who your parents were. All they care about is
if you know what you are talking about."

The general term for this is duck typing, from the phrase, "If it walks like a duck and quacks like a duck, then it's
a duck."

Return the part of the file name string after the last '.'
def file_type(file_name)

File.extname(file_name).gsub(/^\./, '').downcase
end

end

The method run takes a file name as its argument, passes it to select_app to find out which application to execute,
and then uses Ruby's system method to invoke that application, passing the file name. The system method simply
kicks the given command into a sub-shell. While select_app takes the file name, calls file_type to get a
'normalized' file extension, and then uses that as a key into @app_map to see which application to run.

Finally, file_type takes the file name and uses a class method on Ruby's File class to get the extension. The string
returned by extname includes the period (.) that precedes the file extension. You don't need that, so the code uses
gsub (or global substitute) to strip it; it then converts what remains to all lowercase letters with downcase.

For compactness, all these method calls are chained together. The string returned from File.extname is the receiv-
er of the gsub request; the string returned from gsub then becomes the receiver of the call to downcase.

The example code so far has used objects that you expect to be Strings and Hashes, but what you really care
about is that these objects will respond to particular messages in an appropriate way. (Before delving into how to
call your shiny new object, see Sidebar 3. A Few Words About Objects, Types, and Behavior.) For such a small
application, the subtlety and power of an object system based on messages and run-time behavior may not be
critical, but it is important to understand this as you go on to write larger Ruby applications.

38 The Road to Ruby, an Internet.com Developer eBook. Copyright 2008, Jupitermedia Corp.

The Road to Ruby[]

The Smarts Behind Launching Logic
Where you were mapping a file extension to a particular application name, you now want to add associations
with Ruby code. Specifically, you want Ruby classes custom-coded for each type of file you want to process.

First, create a new Ruby source file named launcherx.rb (the x is for extended) in the directory as launcher.rb:

#!/usr/local/bin/ruby
File launcherx.rb
require 'launcher'
class Launcher
def handler(file)
get_handler(file) || build_handler(file)
end
def build_handler file
handler = Class.new
application = select_app(file)
eval "def handler.run
system('#{application} #{file}')
end"
handler
end
def get_handler(file)

continued

Rounding Out Version 0
Finish up this first version by putting it to use. You can add the following code to the end of the file to create an
instance of Launcher and use it to run an application:

def help
print "
You must pass in the path to the file to launch.

Usage: #{__FILE__} target_file
"
end

if ARGV.empty?
help
exit

else
app_map = {

'html' => 'firefox',
'rb' => 'gvim',
'jpg' => 'gimp'

}

l = Launcher.new(app_map)
target = ARGV.join(' ')
l.run(target)

end

39 The Road to Ruby, an Internet.com Developer eBook. Copyright 2008, Jupitermedia Corp.

The Road to Ruby[]

The Smarts Behind Launching Logic
begin
here = File.expand_path(File.dirname(__FILE__))
ftype = file_type(file)
require "#{here}/handlers/#{ftype }"
Object.const_get(ftype.capitalize).new
rescue Exception
nil
end
end
Execute the given file using he associate app
def run(file, args = nil)
handler(file).run(file, args)
end
end

The first thing to note is that the code is calling require to load the existing definition of Launcher. Yet your new
code also defines a class named Launcher. What gives? When Ruby encounters a class definition that uses the
name of an existing class, it updates the existing class with the new class. The methods defined in your first ver-
sion of Launcher are still there; new methods defined in the additional code get added. And, as in the case of
run, when new code uses the same name as existing code, the new code replaces the old. The upshot of this is
that you do not have to duplicate the code from your first version; you need only add to or modify it.

continued

The method help will render instructions if needed. ARGV is the argument vector; it is a built-in Ruby object that
holds all the parameters passed to your program. If it's empty, then your program has nothing to work with, so it
displays the help and exits. Otherwise, it creates a hash object and assigns it to the variable app_map.

The { ... } notation is Ruby's literal syntax for creating a Hash object. You could have used Hash.new, but it's ver-
bose. Using the literal notation, you map hash keys to values using =>. The hash is used to populate your
Launcher instance, while the command-line arguments are collected into a single string stored in the variable tar-
get, which is passed into run.

Before trying this code, you need to change the application values used in app_map so that they refer to the
proper executable. Assuming you have "rb" mapped to a text editor, you can try the code like this:

$ ruby launcher.rb launcher.rb

This should open your source code in your editor.

Bulking Up to Version 1 with Dynamic Loading
So far, so good with Version 0, but you can do better. Rather than having a simple, direct mapping of file types to
the application, you could map file types to execution handlers. That is, you can define code for your file types
that can then decide which application to run, and with which arguments, depending on additional command-line
arguments.

For example, if you are doing web development and have created an HTML file, you most often want to view it in
a browser. So your application as it is works OK. But sometimes you want to view it using a particular browser.
Right now, Launcher only allows a single application association. What you may want is the ability to launch

40 The Road to Ruby, an Internet.com Developer eBook. Copyright 2008, Jupitermedia Corp.

The Road to Ruby[]

The Smarts Behind Launching Logic
Not so incidentally, this also works on core Ruby classes. For example, you can add to or alter the behavior of
String by defining a String class with your own methods. If your code is frequently altering strings (perhaps to
replace special characters), you can make your code clearer with something like this:

class String
def amp_escape
self.gsub('&', '&')
end
end

Which then enables your code to do this:

"This & that".amp_escape

Your new application file now needs to handle the new behavior. The run method changes because this new
version will be invoking Ruby code instead of directly calling a shell command, and you want the option of pass-
ing in additional arguments. Therefore, this version expects a file name and an optional array of arguments. It's
optional because in the methods argument list you're giving it a default value of nil. Arguments pre-assigned
this way must always come last in the argument list.

Whereas your first version simply used the file extension to pull an application name from a hash, this code uses
continued

myfile.html in the Opera web browser:

$./launcher myfile.html opera

Or you my want to perform some syntax checking on the HTML:

$./launcher myfile.html syntax

In other words, you want to add some smarts (see Sidebar 4. The Smarts Behind Launching Logic).

Dynamic Loading
To add those smarts, you will change your program so that you can associate file types with Ruby code rather than
associating a particular application. That Ruby code will handle the launching logic, allowing you to decide just
how clever to be when launching an application for a given file type (see Sidebar 5. Dynamic Class Loading with
Defined Custom Ruby Classes).

Before doing this, make one small change. Having all your code in one place is handy, but it's not a good practice
for anything but the smallest apps. For the sake of better organization, split out the general class code from the
code that interacts with the user. Do this by creating a file, go.rb, and moving all but the actual Launcher code into
that file (i.e, that last chunk of code you just added):

#!/usr/local/bin/ruby

require 'launcher'

41 The Road to Ruby, an Internet.com Developer eBook. Copyright 2008, Jupitermedia Corp.

The Road to Ruby[]

The Smarts Behind Launching Logic
handler to create a corresponding Ruby class to handle the given file name. The handler method is short; it first
calls get_handler to see if it can locate a matching handler class. The || method is Ruby's logical OR. Should
get_handler return false (or nil, which Ruby treats as false), then the code to the right of || is invoked. If there is
no defined handler class, then the code makes one.

Recall that your new version of run will expect get_handler to return an object that responds to the run mes-
sage. The build_handler method therefore needs to define a class with this behavior. There are a variety of ways
you could do this. Here, you're going to first create a generic instance of the class Class and then dynamically
add a run method that knows how to handle the particular file type in question.

Your new Launcher class retained the application map code from the original. This mapping serves as a fallback
for handling files in the absence of any special Ruby code, meaning that your new version still does what the
first version did. Your code can still call select_app to get the default application. The trick now is to get that
into a method on your new class.

Perhaps the simplest way to do this is to build a string with the code you might write if you did know which
application to invoke. You then have Ruby eval (i.e., evaluate) this string, making it part of the current process.
(Note: capricious use of eval on arbitrary strings is not wise. It works well for the sample application and helps
demonstrate an interesting feature of Ruby, but use it with care in more serious applications--especially any
code that allows input from users.)

Just like that, build_handler can now return an object (albeit sparse) that knows how to do the one thing that
matters: respond to a run request.

Script to invoke launcher using command-line args
def help

print "
You must pass in the path to the file to launch.

Usage: #{__FILE__} target_file
"
end

unless ARGV.size > 0
help
exit

else
app_map = {

'html' => 'firefox',
'txt' => 'gvim',
'jpg' => 'gimp'

}

l = Launcher.new(app_map)
target = ARGV.join(' ')
l.run(target)

end

Note the extra line of code near the top:

require 'launcher'

You need this line to make your Launcher available to the current script. The require method looks for a file match-
ing the given string. The file extension is omitted, so Ruby first will assume you want a .rb file but also will look for
a compiled library (e.g., .so) if it doesn't find a Ruby file. (Ruby searches a pre-defined load-path, which includes

42 The Road to Ruby, an Internet.com Developer eBook. Copyright 2008, Jupitermedia Corp.

The Road to Ruby[]

Dynamic Class Loading
The real fun is in defining custom Ruby classes that have more interesting implementations of run. First, assume
all these classes will live in files named after the file extension they handle. For example, a handler class
designed to process HTML files will go into a file named html.rb. Also, all such files will go into a relative subdi-
rectory named handlers. Asserting these two conventions allows the get_handler code to know just what to look
for and where to look for it, bypassing a need for lengthy configuration settings.

When get_handler is called, it:

1. Uses some built-in File methods to figure out the current file-path location (__FILE__ is a special Ruby vari-
able that refers to the actual file containing the current code).
2. Appends your pre-defined handlers directory to the current path.
3. Uses the file extension of the target file name to derive the name of the file holding the handler class code.

All of this is passed to require with the expectation that such a file exists and that it will be loaded. If all goes
well, Ruby will load and parse this file, making the desired class available to your code.

continued

the current directory, so if you keep launcher.rb in the same place as go.rb, you're good. If you move it, you have
to be more explicit about were Ruby can find it.)

Writing a Handler Class
Now that you have a simple framework for routing file names to Ruby code, create a handler class for HTML files.
The class needs to implement a run method that accepts at least one argument for the target file name, and an
optional array of additional parameters. The class name must be Html in a file named html.rb, and placed in a han-
dlers subdirectory:

class Html

DEFAULT_BROWSER = 'firefox'

def run file, args
if args.empty?

system("#{DEFAULT_BROWSER} #{file}")
else

dispatch_on_parameters file, args
end

end

def dispatch_on_parameters file, args
cmd = args.shift
send("do_#{cmd}", file, args)

end

def do_opera file, args=nil
system("opera #{file} #{args}")

end

def do_konq file, args=nil

43 The Road to Ruby, an Internet.com Developer eBook. Copyright 2008, Jupitermedia Corp.

The Road to Ruby[]

Dynamic Class Loading
Now, without knowing the name of the class you want to instantiate in advance, you again need to do a bit of
dynamic invocation. You could again use eval, but you can also reach into Ruby's list of constants (remember,
classes are Ruby constants) and call new. Again, if all has gone well, Object.const_get will return the class
desired, and new will then return an instance.

Should something go wrong (perhaps there is no such file to load, or the code in the file is malformed) and
Ruby raises an exception, the code uses rescue to handle things. You could use rescue with more specific
exceptions for more targeted error handling, but for the purposes of this example, you simply want to trap all
exceptions and quietly return nil.

You may have noticed that get_handler does not explicitly specify which value to return. Indeed, none of your
methods have done so. In Ruby, the return value of a method (with some exceptions) is the value of the last
expression executed. get_handler has one top-level expression: begin/rescue/end. Its value will be either the
value of the last expression in the begin/rescue section or the value created in rescue/end. Ruby does define
return, which exits a method returning the provided value, but method flow control is sufficient to define an
unambiguous return in most cases.

system("konqueror #{file} #{args}")
end

end

The code defines a constant for a default browser. In the absence of any extra arguments, then, you can have the
target file launched in Firefox. (Note that you may have to change this so that it defines an executable command.
On my Ubuntu machine I can run firefox with no explicit path and have a browser come up. On Windows, for
example, the full path to the executable may be needed.)

If there are additional arguments, run calls out to dispatch_on_parameters, which extracts the first item from the
args array and uses it to dynamically construct a message string. The send method is built in to all Ruby objects. It
allows you to explicitly send a message to an object. When used by itself (as you are doing here), the receiver
object is assumed to be the current object. So the code is sending a message to itself.

You prepend do_ to the actual argument value as a safeguard against method name collision. (For example, if the
first argument were exit, you probably would not want to invoke Ruby's exit method. You'd call do_exit, which
would then decide what the correct behavior should be).

This handler code has some fairly trivial examples of possible parameter handling. As is, you can launch a target
HTML file in either some default browser or specify a particular browser:

$./go index.html opera
$./go index.html konq

A Little Overtime for Coolness
You've received an educational and practical example, but can you push things a little further? Of course you can.
Mind you, this will take you past the 10-minute mark, but it should be worth it.

The standard Ruby distribution includes a wealth of libraries for all sorts of tasks. One of the most interesting is
REXML, an XML parser written in pure Ruby. Developer Sean Russell wrote REXML to allow the manipulation of
XML using a Ruby-style API rather than the usual W3C DOM API. Before too long, Sean's work became part of the
Ruby standard library.

For the sake of simplicity, your HTML files in this example must use XHTML because REXML handles only XML.
(There are very good Ruby tools for processing near-arbitrary HTML, one being Hpricot. However, they require
installing additional libraries, the explanation of which is beyond the scope of this article.) Trusting that you are
working with well-formed XHTML source, you can have your HTML handler do some file analysis. Add this code to
the end of your Html class and you'll be able to run some simple reports on your XHTML:

def do_report(file, args=nil)
require 'rexml/document'
begin

dom = REXML::Document.new(IO.read(file))
if args.empty?

puts basic_xhtml_report(dom)
else

puts report_on(dom, args.first)
end

rescue Exception

44 The Road to Ruby, an Internet.com Developer eBook. Copyright 2008, Jupitermedia Corp.

The Road to Ruby[]

warn "There was a problem reading '#{file}':\n#{$!}"
end

end

def report_on dom, element
els = dom.root.elements.to_a("//#{element}")
"The document has #{els.size} '#{element}' elements"

end

def basic_xhtml_report(dom)
report = []
css = dom.root.elements.to_a('//link[@rel="stylesheet"]')
unless css.empty?

report << "The file references #{css.size} stylesheets"
css.each do |el|

file_name = el.attributes['href']
file_name.gsub!(/^\//, '')
unless File.exist?(file_name)

report << "*** Cannot find stylesheet file '#{file_name}'"
end

end
end

js = dom.root.elements.to_a('//script')
unless js.empty?

report << "The file references #{js.size} JavaScript files"
js.each do |el|

file_name = el.attributes['src']
file_name.gsub!(/^\//, '')
unless File.exist?(file_name)

report << "*** Cannot find JavaScript file '#{file_name}'"
end

end
end

report.join("\n")
end

There's a lot going on here, but key method is do_report. The code creates a REXML Document object and
assigns it to dom. If there are no extra arguments, you get back a basic report. Otherwise, the code does some
cursory examination of a particular element.

The report_on method takes a document argument and an element name, and uses REXML's XPath features to
find out how often that element is used. Although it's rudimentary, it certainly can serve as a demonstration and
starting point for you to keep hacking.

The basic_xhtml_report method is similar, but focuses on a particular set of elements. It uses REXML to find all the
CSS and JavaScript references, and then uses the File class to check that the referenced files exist. Again, not
deep, but adding additional logic makes for a nice project.

45 The Road to Ruby, an Internet.com Developer eBook. Copyright 2008, Jupitermedia Corp.

The Road to Ruby[]

Clean, Expressive Code with Minimal Scaffolding
You now should have a better understanding of some of the features that make Ruby so special, namely:

• Ruby is primarily an object-oriented language, where a key concept is objects responding to messages.
• Ruby uses strong, dynamic typing, where the notion of "type" is based on what an object can do more than
on a particular class name or inheritance hierarchy. An object's behavior is not confined to a literal mapping of
messages to methods, and behavior may be constructed dynamically at run time.
• Ruby classes are open; you are free to alter their behavior for what you deem appropriate for a given applica-
tion.

This combination of open classes and dynamic behavior enables you to write clean, expressive code with a mini-
mum of boilerplate scaffolding. Ruby gets out of the way and lets you get coding.

46 The Road to Ruby, an Internet.com Developer eBook. Copyright 2008, Jupitermedia Corp.

The Road to Ruby[]

