
Using Dynamic Storage Tiering

The Veritas Storage Foundation Dynamic Storage Tiering facility takes advantage of multi-tier storage by constantly
aligning files’ storage physical locations with policies that express changing business needs, without recurring adminis-
trative overhead or “time to first byte” penalties when files are accessed. The case for Dynamic Storage Tiering is simple:

Opportunity: Multiple online storage tiers create an opportunity for enterprises to reduce their overall cost of
storage by relegating less critical or less active data to lower cost storage devices.

Feasibility: The hardware technology and virtualization options available today make it possible to tailor online
storage to enterprise data requirements, whether they are expressed in terms of cost, availability, and performance,
or in terms of other business criteria such as organizational responsibility or profitability.

Paradigm: Files are an obvious unit for managing relationships between data and storage tiers. Effective utilization of
multi-tier storage means that files are created on the most appropriate type of storage, and relocated as their properties
change during their lifecycles.

Limitations of conventional mechanisms: The two conventional mechanisms for utilizing multi-tier storage are
ad hoc relocation and hierarchical storage management (HSM). Ad hoc relocation is labor-intensive and fragile. HSM
is limited to inactivity-based policies and incurs run-time delays when applications access migrated files.

This book describes how Dynamic Storage Tiering works, shows how administrators can use it to automatically optimize
online storage utilization, and presents some common use cases. It is a must for architects and administrators concerned
with controlling storage cost without sacrificing the quality of service delivered to applications and users.

Symantec Yellow Books deliver skills and know-how to our partners and customers as well as to the technical

community in general. They show how Symantec solutions handle real-world business and technical problems, provide

product implementation and integration know-how, and enhance the ability of IT staff and consultants to install and

configure Symantec products efficiently.

About Symantec Yellow Books™

www.symantec.com

Ganesh Karche

Murthy Mamidi

Paul Massiglia

Using Dynamic
Storage Tiering
How the Veritas Storage Foundation helps you
get the most from multi-tier online storage

S
ym

an
tec Yello

w
 B

o
o

ks™

Copyright © 2006 Symantec Corporation. All rights reserved. 03/06 10568547

U
sin

g D
yn

am
ic S

to
rage T

ierin
g

Copyright © 2006 Symantec Corporation.

All rights reserved.

Symantec and the Symantec Logo are trademarks or registered trademarks of

Symantec Corporation or its affiliates in theU.S. and other countries. Other names

may be trademarks of their respective owners.

No part of the contents of this bookmay be reproduced or transmitted in any form

or by any means without the written permission of the publisher.

THE DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED

CONDITIONS, REPRESENTATIONS ANDWARRANTIES, INCLUDING ANY

IMPLIEDWARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR

PURPOSEORNON-INFRINGEMENT,AREDISCLAIMED,EXCEPTTOTHEEXTENT

THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID. SYMANTEC

CORPORATION SHALL NOT BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL

DAMAGES IN CONNECTIONWITH THE FURNISHING OR USE OF THIS

DOCUMENTATION.THEINFORMATIONCONTAINEDINTHISDOCUMENTATION

IS SUBJECT TO CHANGEWITHOUT NOTICE.

Symantec Corporation 20330 Stevens Creek Blvd. Cupertino, CA 95014 USA

http://www.symantec.com

ISBN 0-321-446100

Acknowledgments
Trying to describe a technology to potential users while it is still evolving is

particularly challenging, especially when the evolution is occurring across

continents. We are grateful to Prasanta Dash, Samir Desai, Scott Kaiser, Manish

Parekh, Chuck Silvers, andTriet Vo of Symantec’s Storage andServerManagement

Group for keeping us on track as the Dynamic Storage Tiering facility and this

book developed concurrently.

Our goal inwriting this bookhas been to describe a completely newandunfamiliar

storage management capability to storage architects and administrators in the

large enterprises that stand to benefit from it. To that end, our thanks go to Chris

Naddeo, then of the sales engineering organization for his incisive reviews of the

manuscript from his unique user-oriented perspective.

Thanks also to Chris Santilli, of Copan Systems Corporation for opening our eyes

to the potential benefits of massive arrays of idle disk (MAID) technology, and its

unique benefits when combined with the Storage Foundation Dynamic Storage

Tiering facility. Finally, we are grateful toMarianne Lent of the SSMGTechnology

StrategyOffice for her painstaking critique of the finalmanuscript andher lessons

in how to speak to the priesthood of UNIX administrators.

As anyone who has done it knows, the content of a book is only part of the

challenge. Sarah Connell-Smith of the Symantec Infodev organization exhibited

remarkable patience and forebearance in editing a manuscript that was growing

chaotically eight time zones away from her office. To help us make the words in

this book clearer, we have included a number of graphics, and for these we would

like to thank LMA Associates, who made our rough sketches into the finished

articlewith great skill. Finally, our thanks to our projectmanagerKristineMitchell,

whose persistence and good humor as she “worked the system” to get this book

from manuscript to finished product were responsible in large measure for it

finding its way into your hands. If despite the extraordinary efforts of this team,

errors and omissions remain, responsibility for them lies solely with the authors.

Ganesh Karche

Murthy Mamidi

Paul Massiglia

Mountain View, CA

April, 2006

Chapter 1 The challenge in using multi-tier storage
effectively . 7

Part I The technology: VxFS multi-volume file

systems and the Dynamic Storage Tiering

facility

Chapter 2 Using multi-tier storage . 21

Chapter 3 The VxFS file placement policy grammar . 25

Chapter 4 Using the Storage Foundation Dynamic Storage
Tiering facility . 57

Chapter 5 Advanced Dynamic Storage Tiering usage . 69

Chapter 6 Storage Foundation built-in file placement policies
. 93

Part II The applications: using the Dynamic

Storage Tiering facility

Chapter 7 Using Dynamic Storage Tiering: file relocation
based on I/O activity . 111

Chapter 8 UsingDynamic Storage Tiering: efficient backup of
large numbers of inactive files . 121

Chapter 9 Using Dynamic Storage Tiering: placing data for
business reasons . 127

Contents

Chapter 10 UsingDynamic Storage Tiering: storage reclamation
. 135

Chapter 11 Using Dynamic Storage Tiering: managing storage
for databases . 145

Chapter 12 Using Dynamic Storage Tiering: exploiting
MAID-based storage . 161

Part III Appendixes

Appendix A Sample XML for a built-in file placement policy 171

Appendix B A file placement policy example . 179

Appendix C XML document type definition (DTD) for the VxFS
file placement policy document type . 185

Contents4

The challenge in using

multi-tier storage

effectively

This chapter includes the following topics:

■ About this book

■ Multi-tier storage economics and mechanics

■ Storage tiers

■ Requirements for multi-tier storage

■ The challenge in using multi-tier storage effectively

■ Conventional multi-tier storage techniques

■ Advantages and limitations of ad hoc data relocation

■ Advantages and limitations of hierarchical storage management

About this book
This Symantec Yellow Book™, Using Dynamic Storage Tiering, examines the

question of how enterprises can effectively exploit available technology and

configuration options to substantially reduce the cost of online storage for the

Linux®, Solaris™, HP-UX™, and AIX® systems in their data centers without

incurring offsetting administrative cost. The book addresses the needs of data

centers with upwards of a terabyte of online data facility in one or more data

centers. It describes the multi-tier storage value proposition, the Storage

1Chapter

Foundation solution, the Dynamic Storage Tiering (DST) facility, and provides

best practices, recommendations for use, and detailed technical guidelines.

Following this introduction, the main body of the book is presented in three

parts. Part I, consisting of Chapters 2 through 6, describes the Veritas
multi-volume file system andDST technologies. Part II, consisting of Chapters
7 through 12, describes how DST can be used to solve common enterprise data

management problems. Part III includes appendixes that contain the XML

document type descriptor (DTD) for DST, as well as comprehensive policy

examples.

The book is intended for data center architects and administrators responsible

for designing and implementing online digital data storage strategies for their

enterprises’ data centers, Symantec businesspartnerswhodeploy storage solutions

for their customers, and Symantec employees who support both groups.

Read Using Dynamic Storage Tiering to learn more about:

■ The value proposition for multiple tiers of online storage

■ Barriers to deriving benefit from deploying multiple storage tiers

■ The capabilities of Storage Foundation multi-volume file systems and the

Dynamic Storage Tiering facility that manages them

■ HowDynamic Storage Tiering automates the placement and relocation of files

in multi-volume file systems

■ Common problems in the management of data center storage that are solved

by Dynamic Storage Tiering

■ Best practices for implementing a multi-tier storage strategy

■ Sample policies for automating data placement in a multi-tier storage

installation

Multi-tier storage economics and mechanics
Multi-tier storage—the use of virtual or physical storage devices with different

I/O performance, data availability, and relative cost characteristics to provide

differentiated online storage for computer systems—is currently amuch-discussed

storage management technique, both in the press and among enterprise users.

The introduction and aggressive promotion of Serial ATA (SATA)-based disk

arrays has precipitated user interest in multi-tier storage. But multiple tiers of

storage have been available to users since there have been disk arrays and volume

managers. Table 1-1 lists three ways in which the cost of usable online storage

can differ, even if the same underlying device technology is used to implement

it.

The challenge in using multi-tier storage effectively
Multi-tier storage economics and mechanics

8

Table 1-1 Cost factors in the online storage hierarchy

DifferencesCost factor

Even when configured using identical physical storage devices,

a mirrored LUN presented by a disk array or a mirrored virtual

volume costs more per usable byte than a RAID-5 or

non-redundant one.

Configuration

A volume or LUN configured using older, lower-capacity disk

drives typically costsmore per usable byte than one of equivalent

usable capacity and availability configured from newer,

higher-capacity devices of the same performance class.

Age of hardware

LUNs presented by enterprise-class disk arrays typically have a

higher hardware cost per usable byte than functionally identical

volumes constructed fromdirectly connected disks of equivalent

capacity and performance.

Type of hardware

The introduction of SATA-based arrays may actually have been a catalyst rather

than an enabler for multi-tier storage, heightening user awareness of the many

online data storage options for their applications, each with its own availability

and performance characteristics and associated cost.

Software-based virtualization technology in the form of volume managers

implementsmulti-tier storage in the form of virtual volumes configured from the

hardware devices at hand. Multiple tiers of storage hardware simply add to the

number of options available to users—any type of software-based virtual volume

can be created from any type of storage device or LUN presented by disk arrays.

Storage tiers
Information technology professionals tend to think of multi-tier online storage

as a one-dimensional hierarchy—better quality storage costsmore. To some extent

this is accurate, but it is an oversimplification. In reality, the hierarchy is

multi-dimensional. For example, mirrored, RAID-5, and striped LUNs or volumes

of equivalent capacity form an availability hierarchy, with higher availability

costing more. But different mirrored, RAID-5, and striped volumes may have

different widths, or numbers of columns, resulting in different performance

characteristics (and minor differences in failure protection), so there is a

performance dimension to multi-tier storage as well.

Overlaid on this availability and performance hierarchy are storage hardware

technology differences—volumes configured from enterprise disk array LUNs,

mid-range disk array LUNs, and disks connected directly to their host systems.

Even more complex configurations, such as mirrored volumes configured from

9The challenge in using multi-tier storage effectively
Storage tiers

RAID-5 LUNs presented by two disk arrays, further complicate the multi-tier

storage picture.

Moreover, many enterprises create storage hierarchies for non-technical reasons.

For example, databases of business transactions or human resources recordsmay

be segregated from files containing engineering drawings for security reasons.

The organization that owns a set of data, the applications that process it, and the

I/O patterns to which it is typically subjected are also sometimes used as criteria

for creating different storage tiers on which different types of data are placed.

All of this leads to the conclusion that there is more to multi-tier storage than

simply an availability-based or performance-based differential cost hierarchy.

Storage tiersmay also be enterprise-specific, data center-specific, and potentially

even application-specific. Any storage management facility that incorporates

mechanisms for dealing with multi-tier storage must be sufficiently general to

allow enterprise users to define ‘hierarchies’ that meet their particular business

needs.

Requirements for multi-tier storage
Even if all storage devices cost the same and performed identically, there would

be reasons to maintain and manage multiple tiers of storage.

Controlling the placement of data objects within two or more tiers of storage can

be useful to enterprises for five principal reasons listed in Table 1-2.

Table 1-2 Reasons for implementing multi-tier storage

DescriptionReason

Different types of data have different I/O performance needs.

High data transfer performance is important for streams, but

moderate I/O request rates are acceptable. By contrast, high I/O

request rates are essential for most transactional data.

Expected access

patterns

Applications that run concurrently may compete unnecessarily

for I/O resources unless their data is placed on separate storage

devices with separate access paths.

Load balancing

Different data sets have different availability requirements.

Typically, enterprises can conduct business if their human

resources systems are down for a day or two, but not if their

point-of-sale or customer relationshipmanagement systems are

down.

Availability

The challenge in using multi-tier storage effectively
Requirements for multi-tier storage

10

Table 1-2 Reasons for implementing multi-tier storage (continued)

DescriptionReason

Different data sets have different values. Losing a day’s business

transactions is significant to an enterprise, but probably

survivable. Losing quarterly or annual closing figures, on the

other hand, might be catastrophic. Losing an entire day’s work

would be a significant setback for an animator, but losing the

finished product would be a much more serious setback for the

animation company.

Data protection

Enterprise accounting, security, and regulatory compliance

policies may require that certain storage devices be restricted to

containing specific files or types of files.

General business

Differences among storage devices

Storage I/O performance is influenced by both hardware cost and configuration.

More expensive devices typically outperform less expensive ones. But it is also

true that virtual volumes with more columns (separate disks or LUNs) tend to

outperform volumes with fewer columns, and the cost per usable byte of the two

is equal.

In contrast, data reliability and availability always have a strong cost component.

For example, mirrored volumes cost about twice as much per usable byte as

non-redundant ones; triply mirrored volumes cost three times as much, and so

forth.

Storage tiers created from physically similar components may also have

significantly different costs based on the functionality they provide. For example,

a tier of storage may be configured to take periodic full-size snapshots or to

replicate itself remotely, while another utilizing the same basic hardware

components is not. Intuitively, only files whose business value justifies keeping

multiple copies readily available should be stored on a (more expensive)

periodically replicated storage tier.

Today, enterprises can exploit different storage components, configurations, and

capabilities to create tiers of storage that match cost with data value, and I/O

performance with data access needs, while meeting business application

requirements for data availability and security.

11The challenge in using multi-tier storage effectively
Requirements for multi-tier storage

The challenge in using multi-tier storage effectively
Fundamentally, enterprises organize their digital information as hierarchies

(directories) of files. Files are usually closely associated with business

purpose—documents, tables of transaction records, images, audio tracks, and

other digital business objects are all conveniently represented as files, each with

a business value. Files are therefore obvious objects around which to optimize

storage and I/O cost and performance.

The key to deriving value from multiple tiers of storage is to place each file on

the appropriate type of storage device. More critical files should be placed on

higher-performing, more reliable (and therefore more expensive) devices; less

critical files can be placed on less costly ones.

The problem of matching a file to the ‘right’ types of storage device is not

technically challenging. Administrators can cause files to be created on the right

type of storage, for example by assigning users or applications to specific devices.

The challenge lies in the numbers, however. Getting millions of files placed on

the right devices is far too time-consuming to do effectively without some form

of automation.

Moreover, the right type of storage for a file changes over time. As a file ages, is

accessed more or less frequently, grows or shrinks, or moves around within its

file system logical name space, the right type of storage device changes. Manually

relocatingmillions of files between tiers of storage deviceswould be anever-ending

task.

Automation is a necessity for utilizing multiple tiers of storage effectively, and

themore files an enterprise has, themore of a necessity it becomes. Formost files,

both access requirements and value to the enterprise change over time. For

example, newly created transaction records are typically accessed frequently as

orders are processed, confirmed, scheduled for shipment, and billed, and as

customer inquiries are handled. As these records age, access tends to become less

frequent, but they must nevertheless remain online for occasional inquiries,

monthly and quarterly closings,mining, and other ancillary applications. Inmost

cases, a data center’s average storage cost can be reduced substantially bymoving

data to lower performance, less expensive storage devices as it ages and is accessed

less frequently.

The challenge in using multi-tier storage effectively
The challenge in using multi-tier storage effectively

12

Conventional multi-tier storage techniques
Enterprises typically utilize one of the two techniques listed inTable 1-3 to exploit

multi-tier storage.

Table 1-3 Techniques for utilizing multi-tier storage

DescriptionTechnique

It is common system management practice to create multiple

file systems on storage devices of different types and move files

between them to meet business needs. For example, a database

application might keep current transactions in a file system on

top-tier storage, and move 30-day old transactions to another

file system on a second-tier device. As another example, when

software or web page development completes, executable files

or finishedwebpageswould ordinarily bemoved fromdevelopers’

storage to production devices. A third example: as production

storage devices grow dangerously close to full, large, inactive

files might be relocated to larger, slower, less expensive devices.

Ad hoc relocation

HSM software scans a file system periodically andmigrates files

thatmeet certain criteria (usually inactivity) to alternate storage

devices (usually tape). HSM leaves stubs in the file system to

indicate the locations of migrated files so that they can be

restored to file system storage automatically when applications

or users access them.

Hierarchical storage

management (HSM)

The advantages and limitations of these techniques are discussed in the sections

that follow.

Advantages and limitations of ad hoc data relocation
Ad hoc policies for relocating files to optimize storage utilization have two

important advantages that are listed in Table 1-4.

Table 1-4 Advantages of ad hoc data relocation

DescriptionAdvantage

With custom-designed scripts that execute periodically, an IT

organization can meet virtually any requirement for file

relocation. If a requirement can be expressed as a sequence of

operating system commands, it can be enforced by scripts that

run automatically from authorized accounts.

Precision

13The challenge in using multi-tier storage effectively
Conventional multi-tier storage techniques

Table 1-4 Advantages of ad hoc data relocation (continued)

DescriptionAdvantage

Applications and utilities access relocated files directly from

wherever they reside with no hidden overheads as are incurred

with HSM. Impact on applications from the processing and

bandwidth overhead inherent in file relocation can be mitigated

by controlling the times at which scripts run. When relocated

files are used, I/O performance is determined by the devices on

which they are located. Not infrequently, lack of interference

from production data access outweighs the lower performance

of second-tier storage devices.

In-place use

But there are disadvantages to ad hoc data relocation as well. Table 1-5 lists two

significant properties of ad hoc data relocation that limit its usefulness.

Table 1-5 Limitations of ad hoc data relocation

DescriptionLimitation

While ad hoc file placement policies are flexible, each one must

be created and maintained individually. A simple policy change,

such as relocating transaction data after 45 rather than 30 days

of inactivity, can ripple through database stored procedures and

applications as well as scripts that relocate and operate on

relocated data. Each time an application’s data configuration

changes, or the target devices for relocation change, all

applications and scripts that are affected by the change must be

adjusted and tested as well.

Administrative effort

When files are relocated to alternate file systems, they are no

longer accessible by applications and management processes

designed to workwith the original name space. Applications and

operating procedures must be modified to use relocated files,

and the modifications must be verified (and possibly altered)

after every relocation policy change.

Procedural complexity

Thus, by employing custom-designed techniques for locating files on the right

type of storage, an enterprise can effectively utilize two or more tiers of online

storage devices, but at the cost of operational complexity and susceptibility to

procedural errors, especially when changes in the operating environment occur.

The challenge in using multi-tier storage effectively
Advantages and limitations of ad hoc data relocation

14

Advantages and limitations of hierarchical storage
management

Hierarchical storagemanagement does not suffer fromeither of the disadvantages

of ad hoc file relocation. HSM policies are standardized (move files that haven’t

been accessed for x days to location y, where location y is typically, but not

necessarily, tape storage), andHSMfile systemscanners run on regular schedules.

Stubs of relocated files remain in the file system metadata, so applications and

operating procedures can typically run without modification unless they are

sensitive to initial access performance, sometimes called time to first byte. Backup

managers are typically HSM-aware, so that, for example, migrated files are not

backed up redundantly, and so that backup of migrated files does not result in

upward migration.

The three properties listed in Table 1-6 limit the general applicability of HSM,

however.

Table 1-6 Limitations of HSM

DescriptionLimitation

When a user or application accesses a migrated file, it must be

migrated back into the file system name space before the access

request can be satisfied. SomeHSMsoftware attempts tomitigate

the impact of reverse migration, for example by signaling

completion of an application request to open amigrated file after

relocating the first few blocks, and continuing to migrate data

in the background. Nevertheless, there is inevitable delay and

run-timeoverhead, particularly ifmigrated filesmust be retrieved

from tape storage.

Access time

Generally, the policy options available with HSM packages are

limited to migration based on complete inactivity. Policies can

be configured to migrate files that have not been accessed for a

designated period, but migration based on renaming, size and

ownership changes, and so forth, is typically not possible.

Inflexible policies

A file system from which files have been migrated must retain

adequate free space to hold migrated files that are accessed by

applications. This imposes a burden on system administrators

because there is no automatic advance warning that space is

required for migration of one or more large files.

Space management

Thus, the two conventional techniques for utilizing multi-tier storage have both

attractions and shortcomings. Ad hoc relocation policies are precise, but fragile

and maintenance intensive. HSM is typically limited to inactivity-based policies,

15The challenge in using multi-tier storage effectively
Advantages and limitations of hierarchical storage management

can incur significant delays when applications access relocated files, and requires

management of online space to accommodate restoration of migrated files.

Hardware-based multi-tier storage facilities

Recently, storage hardware vendors have introduced facilities for relocating the

contents of disk array logical units to other logical units with different properties,

either on demand or on regular schedules. While these facilities are attractive

because they incur little or no host I/O overhead, they are somewhat inflexible in

that relocation is based on logical units (LUN) presented by the disk array. Disk

arrays have no visibility of individual files or directories. To use hardware-based

relocation, administrators must organize their data so that files to be relocated

reside on LUNs for which relocation schedules are in effect. The administrative

effort required and the susceptibility to changes in operating procedures are

similar to those required for purely ad hoc multi-tier storage management.

An ideal multi-tier storage facility

It is relatively easy to acquire and configure multiple tiers of online storage. As

this chapter demonstrates, however, deriving benefit from a multi-tier storage

strategy requires that each data object be located on the appropriate tier of storage

at all timeswithout incurring excessive administrative cost or imposing functional

or performance limitations on IT operations. An ideal facility for utilizingmultiple

storage tiers effectively would have the characteristics listed in Table 1-7.

Table 1-7 Characteristics of an ideal multi-tier storage facility

DescriptionCharacteristic

More flexible than those offered by HSM packagesPolicy options

Completely automatable, including scheduling of file relocation

among tiers so that production application disruption isminimal

Automation

No functional or latency effects such as time to first byte delay

when applications access relocated files

Transparency

No limitation imposed on advanced storage device functions such

as snapshots and remote replication

Function

These are precisely the properties of the VxFS Dynamic Storage Tiering facility,

a feature of the Storage Foundation that represents an evolution of the former

Quality of Storage Service (QoSS) feature.

Part I of this book describes the properties and usage of the Dynamic Storage
Tiering facility.

The challenge in using multi-tier storage effectively
Advantages and limitations of hierarchical storage management

16

Part II describes how the Dynamic Storage Tiering facility can be employed to

solve common multi-tier storage management problems in data centers.

17The challenge in using multi-tier storage effectively
Advantages and limitations of hierarchical storage management

The challenge in using multi-tier storage effectively
Advantages and limitations of hierarchical storage management

18

The technology: VxFS

multi-volume file systems

and the Dynamic Storage

Tiering facility

■ Using multi-tier storage

■ The VxFS file placement policy grammar

■ Using the Storage Foundation Dynamic Storage Tiering facility

■ Advanced Dynamic Storage Tiering usage

■ Storage Foundation built-in file placement policies

IPart

20

Using multi-tier storage

This chapter includes the following topics:

■ The Dynamic Storage Tiering facility

The Dynamic Storage Tiering facility
The VxFS File System enables effective exploitation of multi-tier storage through

its Dynamic Storage Tiering (DST) facility. DST has two parts: support for

multi-volume file systems and automatic policy-based placement of files within

the storage managed by a file system.

Multi-volume file systems, as the name implies, are file systems that occupy two

or more virtual storage volumes. A VxFS multi-volume file system presents a

single name space,making the existence ofmultiple volumes transparent to users

and applications. But VxFS remains aware of each volume’s identity, making it

possible to control the locations at which individual files are stored.

Properties of multi-volume file systems

VxFS is able to construct file systems whose logical name spaces are distributed

across multiple VxVM virtual volumes. The volumes on which a file system is

constructed are known as its volume set. The volumes in a volume set are

configured fromdisks or disk array LUNs that belong to a single VxVMdisk group.

Volumes may be of different types (for example, striped, RAID-5, mirrored, and

so forth) and may be based on different hardware technologies such as Fibre

Channel disk array LUNs, SATA disk array LUNs, parallel SCSI JBOD, and so forth.

The fact that a VxFS multi-volume file system occupies multiple volumes is

transparent to applications. All files in the file system are part of the same name

space and are accessed and manipulated as though they all occupied a single

volume.

2Chapter

Basing storage tiers on virtual volumes offers an important advantage over

hardware-based multi-tier storage approaches. Unlike hardware-based solutions

whose tiers are based on LUNs presented by disk arrays, Storage Foundation

virtual volumes can be of any required capacity and configuration, even spanning

multiple disk arrays if required for I/O performance or failure tolerance reasons.

Using placement classes to manage file locations

Administrators of multi-volume VxFS file systems can control the locations of

fileswithin volume sets by defining file placement policies that control both initial

file location and the circumstances under which existing files are relocated. A

VxFS file placement policy consists of rules that restrict the locations of files to

administrator-defined subsets of the volumes in a file system’s volume set. These

subsets are called placement classes. A placement class is typically identifiedwith

a storage tier. Policy rules cause files to be created and extended within specified

placement classes, and to be relocated to other placement classes when theymeet

certain naming, activity, access rate, and size-related qualifications.

As an example, Figure 2-1 represents a VxFS multi-volume file system whose

volume set consists of three placement classes called tier1, tier2, and tier3.

Such a volume setmight be suitable for a file system containing a few critical files

(tier1), a larger number of files of average importance (tier2), and a still larger

number of inactive files (tier3).

Figure 2-1 Example volume set for a multi-volume file system

Volume Set

Volume with tag tier1 Volumes with tag tier2

Volume_F Volume_E

Volume_D

Volumes with tag tier3

Volume_C

Volume_B

Volume_A

An administrator assigns VxVM volumes to placement classes by associating

character strings called volume tags with them. In Figure 2-1 Volume_F is tagged

tier1, Volume_D and Volume_E are tagged tier2, and Volume_A, Volume_B, and

Volume_C are tagged tier3. For file placement purposes, VxFS treats all of the

Using multi-tier storage
The Dynamic Storage Tiering facility

22

volumes in a single placement class as equivalent, and balances space allocation

approximately equally across them.

To the VxFS file system, a volume tag is simply a character string used to classify

a volume. Any storage tiermay be taggedwith any convenient name. For example,

some enterprises name their storage tiers after preciousmetals—gold (uppermost

tier), silver (middle tier), and bronze (lowest tier).

VxFS imposes no capacity, performance, availability, or other constraints on

placement classes. Any volumemay be added to any placement class by assigning

to it the tag that identifies the class, no matter what its type or the types of other

volumes in the class. Practically speaking, however, it is good practice to place

only volumes with identical, or at least very similar, I/O performance and

availability characteristics in a single placement class; in other words, to identify

a placement class with a physical storage tier.

File placement policies

VxFS places files among the volumes of a file system’s volume set in accordance

with the file system’s active file placement policy. A file placement policy consists

of rules that govern the initial location and subsequent relocation of designated

sets of files. A rulemay designate the files towhich it applies by name, by directory,

by ownership, or by combinations of the three.

Policy rules specify where files should be placed in terms of placement classes

rather than specific volumes. This makes it unnecessary to change a file system’s

active placement policy when volumes are added to or removed from its volume

set. Moreover, because the volume tags that define placement classes need not

be unique, one placement policy can be used for any number of file systems with

similar requirements and storage complements.

Policy rules specify both initial allocation destinations and relocation destinations

as priority-ordered lists of placement classes. Files are allocated in the first

placement class in the list if free space permits, in the second class if no free space

is available in the first, and so forth.

File placement policy enforcement

File relocation is performed when a policy is enforced, either on-demand or

periodically, and is similar to initial allocation. Files are relocated to the first

placement class listed in the rule that selects them if space is available, to the

second class if no space is available in the first, and so forth.

File relocation may be unconditional, or it may be based on qualifications such

as time sincemost recent access ormodification, intensity of access by applications

(I/O temperature), and file size. A file system’s policy for allocating and relocating

23Using multi-tier storage
The Dynamic Storage Tiering facility

files is expressed in a set of internal data structures called its active file placement

policy.

Administrators write file placement policies in the XML language, according to a

Document Type Description (DTD) supplied with VxFS. The Storage Foundation

graphical management console includes wizards that create four popular types

of policies in accordance with user-supplied parameters.

File placement policies are not inherently bound to specific file systems. An

administrator assigns a policy to a file system, making it the file system’s active

policy. A file system may have only one active policy at a time. When assigned to

a file system, a file placement policy allocates and relocates files among the

placement classes that are named in the policy and represented by tags assigned

to the volumes.

Using multi-tier storage
The Dynamic Storage Tiering facility

24

The VxFS file placement

policy grammar

This chapter includes the following topics:

■ VxFS file placement principles

■ VxFS file placement policies

VxFS file placement principles
VxFS allocates and relocates files among the volumes of amulti-volume file system

based on properties expressed in file system metadata. Initial allocation may be

based on any or all of file name, logical locationwithin the name space (directory),

and file ownership. Relocationmay be based on the same criteria, and in addition,

on qualifications such as time since most recent access or modification, intensity

with which they are being accessed by applications (I/O temperature), and file

size. A file system’s policy for allocating and relocating files is expressed in a set

of internal data structures called its active file placement policy.

VxFS file placement policies
A VxFS file system may have one active file placement policy. A file system’s

active policy defines the desired placement of files on the volumes that comprise

its volume set. A file placement policy specifies the placement classes of volumes

onwhich files should be placedwhen they are created and conditions underwhich

the files should be deleted or relocated to other placement classes. Using an XML

editor, a text editor, or a VEA graphical console wizard, administrators create file

placement policy documents, which are text files in the XML markup language.

An administrator uses a console command or graphical interface to assign a file

placement policy to a file system, making it the file system’s active policy, and

3Chapter

superseding the previous active policy if there was one. For example, illustrates

the use of the fsppadm assign command to assign an active file placement policy.

Dialog 3-1 Assigning a file system’s active file placement policy

/opt/VRTS/bin/fsppadm assign /vsb /tmp/policy1.xml[1]

The command in Dialog 3-1 assigns the placement policy in /tmp/policy1.xml

as the active policy for the file system mounted at /vsb.

Fragment 3-1 shows the general structure of a VxFS file placement policy

document.

Fragment 3-1 General form of a VxFS file placement policy

<?xml version="1.0"?>
<!DOCTYPE FILE_PLACEMENT_POLICY SYSTEM "/opt/VRTSfspro/config/placement_policy.dtd">

[1]
[2]

<FILE_PLACEMENT_POLICY Version="5.0">[3]
<RULE Name=rule_name>[4]
<SELECT>...selection criterion...</SELECT>[5]
<SELECT>...repeated as necessary...</SELECT>[6]
<CREATE><ON>...creation placement class(es)... </ON></CREATE>[7]
<DELETE><FROM>...source placement class(es)...</FROM>[8]

<WHEN>...deletion qualifiers...</WHEN>[9]
</DELETE>[10]
<DELETE>...repeated as necessary...</DELETE>[11]
<RELOCATE><FROM>...source placement class(es)...</FROM>[12]

<TO>...destination placement class(es)...</TO>[13]
<WHEN>...relocation qualifiers...</WHEN>[14]

</RELOCATE>[15]
<RELOCATE>...repeated as necessary...</RELOCATE>[16]

</RULE>[17]
<RULE Name=rule_name>...repeated as necessary...</RULE>

</FILE_PLACEMENT_POLICY>
[18]
[19]

A VxFS file placement policy contains rules according to which VxFS creates,

relocates, anddeletes selected sets of files, but does not refer to specific file systems

or specific volumes. AVxFS file systemmayhave atmost one active file placement

policy at any time, although the policy may contain an unlimited number of rules

that apply to different sets of files. A file systemmayhave no active file placement

policy assigned to it, in which case VxFS controls space allocation for new files,

and no file relocation occurs.

The VxFS file placement policy grammar
VxFS file placement policies

26

File placement policies and Storage Foundation Management Server

File placement policies can be administered either directly on the system towhich

they apply, or centrally for an entire data center or enterprise using the Storage

Foundation Management Server (SFMS). SFMS is a client-server suite for

consolidated management of storage on multiple platforms. For systems with

SFMS client software installed, file placement policies can be stored in the

Management Server’s database alongwith lists of file systems inwhich each policy

is active. When a policy is updated, SFMS can assign the updated policy to file

systems whose active policies are based on it. By default, however, SFMS does not

update active policies that have been created or modified locally at their file

systems’ hosts. If a SFMS administrator forces assignment of a policy from its

database to a file system, that file system’s prior active policy is overwritten and

any local changes that had been made to it are lost.

File placement policy rules

AsFragment 3-1 suggests, aVxFS file placement policy (lines [3]-[19]) essentially

consists of one or more rules (lines [4]-[17]). Each rule consists of statements

that apply to a part of the file system’s name space. The files towhich a rule applies

are specified in one or more SELECT statements within the rule (lines [5]-[6]).

Files specified in a SELECT statement are said to be selected by the rule. A SELECT

statement specifies files according to one or more of four properties: their names

or naming patterns, the directories in which they reside, and the user or group

names of their owners.

A file may be selected by more than one rule. For example, if one rule selects files

in directory /dir, and another selects files owned by user1, a file in /dir that is

owned by user1 is selected by both rules. In this situation, only the rule that

appears first in the policy is applied.

It is possible to define policies that do not encompass an entire file system name

space. When an application creates a file that is not selected by any rule in its file

system’s active policy, VxFS chooses the file’s location. To maintain full control

over file placement, administrators should include a ‘catchall’ rule as the final

rule in each policy, with a SELECT statement containing a <PATTERN>*</PATTERN>

clause, that selects all files in the file system. Such a rule selects all files that

have not already been selected by some rule appearing earlier in the policy.

The SELECT statement

A SELECT statement in a policy rule specifies the file or files to which the rule

applies. A policy rule must contain one ormore SELECT statements. Fragment 3-2

illustrates the general form of the SELECT statement.

27The VxFS file placement policy grammar
VxFS file placement policies

Fragment 3-2 General form of the SELECT statement

<SELECT>
(optional) <DIRECTORY Flags=directory_flag_value>...value...</DIRECTORY>

[1]
[2]

...(optional) additional directory specifications...[3]
optional) <PATTERN>...value...</PATTERN>[4]
...(optional) additional pattern specifications...[5]
optional) <USER>...value...</USER>[6]
...(optional) additional owner’s username specifications...[7]
(optional) <GROUP>...value...</GROUP>[8]
...(optional) additional owner’s groupname specifications...

</SELECT>
[9]
[10]

As Fragment 3-2 suggests, a SELECT statement may designate files by any or all

of the four selection criteria listed in Table 3-1.

Table 3-1 SELECT statement file selection criteria

DescriptionCriterion

Specifies a full pathname relative to the file systemmount point.

The value of the required Flags attribute of the <DIRECTORY>
tag must either be nonrecursive,meaning that only files in
the specified directory are selected, orrecursive, meaning that
files in all subdirectories of the specified directory are selected.

<DIRECTORY>

Specifies either a file name or a pattern that includes a single

wildcard character (*)representing don’t care characters in a

name. The first * character that appears in the pattern is

interpreted as the wildcard; others are interpreted as elements

of the file name. For example:

■ The pattern abc* denotes all files whose names begin with
abc, whether or not the names have extensions

■ The pattern abc.* denotes all files whose names are exactly
abc followed by a period and any extension

■ The pattern *abc denotes all files whose names end in abc,
whether it is all or part of an extension or not

■ The pattern *.abc denotes files of any name whose name
extension (following the last period) is exactly abc

■ The pattern ab*c denotes all files whose names start with
ab and end with c

■ The pattern abc*.* denotes all files whose names start with
abc andwhose extensions following the last period are exactly
the character *

<PATTERN>

Owning username (user number may not be specified).<USER>

The VxFS file placement policy grammar
VxFS file placement policies

28

Table 3-1 SELECT statement file selection criteria (continued)

DescriptionCriterion

Owning groupname (group number may not be specified).<GROUP>

One or more instances of any or all of the file selection criteria listed in Table 3-1

may be specifiedwithin a single SELECT statement. If two ormore selection criteria

of different types are specified in a single statement, a file must satisfy one

criterion of each type in order to be selected. A file that meets one of each of the

types of criteria specified in a SELECT statement is said to be selected by the rule.

SELECT statement examples

For example, Fragment 3-3 shows a single SELECT statement that specifies both

<USER> and <DIRECTORY> file selection criteria.

Fragment 3-3 SELECT statement containing multiple selection criteria

<SELECT>
<DIRECTORY Flags="nonrecursive">ora/db</DIRECTORY>

[1]
[2]

<DIRECTORY Flags="nonrecursive">crash/dump</DIRECTORY>[3]
<USER>user1</USER>[4]
<USER>user2</USER>

</SELECT>
[5]
[6]

Only files that both reside in one of the specified directories and are owned by

one of the specified users are selected by the rule ofwhich this statement is a part.

For example, a file in the ora/db directory whose owner is user1 is selected, but

a file in crash/dump that is owned by user3 is not.

A rule may include multiple SELECT statements. If a file satisfies the selection

criteria of one of the SELECT statements, it is selected by the rule. For example, if

one SELECT statement specifies file owners (<USER>) and another specifies

directories (<DIRECTORY>), as in Fragment 3-4, files owned by specified users, no

matter which directories they reside in, as well as all files in specified directories,

no matter which users own them, are selected by the rule containing the SELECT

statements.

Fragment 3-4 Two SELECT statements in a file placement policy rule

<SELECT>
<DIRECTORY Flags="nonrecursive">ora/db</DIRECTORY>

[1]
[2]

<DIRECTORY Flags="nonrecursive">crash/dump</DIRECTORY>[3]
</SELECT>[4]
<SELECT>[5]
<USER>user1</USER>[6]

29The VxFS file placement policy grammar
VxFS file placement policies

Fragment 3-4 Two SELECT statements in a file placement policy rule (continued)

[7]
[8]

<USER>user2</USER>
</SELECT>

When VxFS creates new files, it applies the rules in the file system’s active policy

in the order of their occurrence. The first rule bywhich a file is selected determines

the file’s placement; no later rules apply. Similarly, when VxFS relocates files, it

evaluates the file system’s active policy rules in order on behalf of each file,

stoppingwhen it reaches the first rule that selects the file, even if that rule results

in no action. For example, if a rule specifies that .dat files should be relocated to

tier2 volumes if they are not accessed for 30 days, and a later rule indicates that

.dat files should be relocated to tier3 volumes if they are larger than 10

megabytes, a 20megabyte .dat file that was accessed 10 days ago is not relocated,

because the earlier rule selects it, so the later rule is never evaluated on its behalf.

A policy rule’s action statements apply to all files selected by any of its SELECT

statements. If there is no rule in a file system’s active policy that selects an

already-existing file, the Dynamic Storage Tiering facility does not relocate or

delete the file. If an application creates a file that is not selected by any rule in

the file system’s active policy, VxFS chooses the file’s initial location. If this

behavior is inappropriate, the last rule in the file system’s policy should select all

files by using the <PATTERN>*</PATTERN> clause as the only criterion in its SELECT

statement, and should include a CREATE action statement naming the desired

placement class(es) for files not selected by rules appearing earlier in the policy.

File placement policy enforcement

VxFS follows a file system’s active policy when applications create new files, by

allocating space for them in placement classes designated by the applicable policy

rule. To enforce the file relocation and deletion aspects of the active placement

policy administrators can run the fsppadm enforce console command at any

time. The fsppadm enforce command is typically scheduled to run automatically

from an authorized user account at regular intervals, for example at off-peak

times for production applications that use the target file system. The command

may also be run interactively by authorized userswhenever file systemconditions

warrant it. In this book, phrases such as enforce the active policy denote running

the fsppadm enforce command to enforce file relocation and deletion policy

rules.

The VxFS file placement policy grammar
VxFS file placement policies

30

The action statements in file placement policy rules

A file placement policy rule governs the files specified in one of its SELECT

statements throughout the parts of their lifecycles that are spent within the file

system. (Most files of importance spend the latter parts of their lifecycles as

archives outside the file systems in which they were created and processed.

Dynamic Storage Tiering does not affect that part of the lifecycle.)

A rule designates the placement class(es) of volumes on which selected files may

be created, circumstances under which they qualify for automatic deletion, and

circumstances underwhich they qualify for relocation to other placement classes,

using the CREATE (line [7] in Fragment 3-1), DELETE (lines [8]-[11] in

Fragment 3-1), and RELOCATE (lines [12]-[16] in Fragment 3-1) statements

respectively. A file placement policy may contain zero or one CREATE statements,

and any number (including zero) of DELETE and RELOCATE statements.

The actions performed by each of the three placement policy action statements

are regulated by clauses whose functions are summarized in Table 3-2.

Table 3-2 Policy rule action statement clauses

DescriptionClause

Must contain one<ON> clause, which lists one ormore placement
classes in priority order. VxFS creates files selected by the rule

in the placement classes named in this clause. If VxFS cannot

allocate space for a new file in one of the designated placement

classes, file creation fails unless the Flags=any attribute is
specified in the <ON> clause.

If a rule does not contain a CREATE statement, its only effect is
to relocate or delete existing files when the policy is enforced.

CREATE statement

31The VxFS file placement policy grammar
VxFS file placement policies

Table 3-2 Policy rule action statement clauses (continued)

DescriptionClause

May contain a <FROM> clause listing the placement classes of
volumes containing files selected by the rule. If no<FROM> clause
is present, VxFS deletes qualifying files located anywhere in the

file system’s volume set when the policy is enforced.

May contain a <WHEN> clause defining circumstances under
which files qualify for deletion. If no <WHEN> clause is present,
all files that are selected by the rule and that reside in placement

classes specified in the<FROM> clause are deletedwhen thepolicy
is enforced.

If a DELETE statement contains neither a <FROM> clause nor a
<WHEN> clause, all files to which the containing rule applies are
deleted.

A rulemay contain anynumber ofDELETE statements, including
zero. During policy enforcement, VxFS only acts upon the first

DELETE or RELOCATE statement that applies to a file.

DELETE statement

May contain a <FROM> clause listing the placement classes of
volumes containing files selected by the rule. If no<FROM> clause
is present, VxFS relocates qualifying files from anywhere in the

file system’s volume set.

Must contain one <TO> clause listing in priority order the
placement classes of volumes towhichVxFS relocates qualifying

files when the policy is enforced.

May contain a <WHEN> clause defining circumstances under
which files qualify for relocation. If no <WHEN> clause is present,
VxFS relocates all files that are selected by the rule and that

reside on volumes specified in the <FROM> clause.

A rule may contain any number of RELOCATE statements,

including zero, but during policy enforcement, VxFS only acts

upon the first RELOCATE or DELETE statement that applies to
each file.

RELOCATE statement

The sections that follow describe the three policy rule action statements in more

detail.

The CREATE statement

A file placement policy rulemay contain a CREATE statement. If present, the CREATE

statement specifies one or more placement classes in which VxFS creates files

The VxFS file placement policy grammar
VxFS file placement policies

32

selected by the rule. Only placement classes may be specified in a CREATE

statement, not individual volume names. This property makes it possible to add

volumes to a file system’s volume set without changing its active file placement

policy. Moreover, the property makes it possible for Storage Foundation

Management Server to apply a single policy to multiple file systems on different

hosts, promoting storage management policy standardization throughout large

data centers.

A rule may contain at most one CREATE statement. VxFS places new files selected

by a rule that does not contain a CREATE statement according to internal

algorithms.

Fragment 3-5 shows the general form of the CREATE statement.

Fragment 3-5 General form of the CREATE statement

<CREATE>
<ON Flags=...flag_value...>

[1]
[2]

<DESTINATION>[3]
<CLASS>...placement_class_name...</CLASS>[4]
<BALANCE_SIZE Units="units_specifier">...chunk_size...</BALANCE_SIZE>[5]

</DESTINATION>[6]
<DESTINATION>...additional placement class specifications...</DESTINATION>[7]

</ON>
</CREATE>

[8]
[9]

The <ON> clause

A CREATE statement must include a single <ON> clause (line [2] in Fragment 3-5).

The <ON> clause contains one or more <DESTINATION> elements that, together

with their<CLASS> sub-elements, specify placement classes for initial file allocation

in order of decreasing preference. VxFS allocates space for new files in the first

listed placement class that has sufficient free space available.

If space cannot be allocated in any placement class in the list, file creation fails

with an ENOSPC indication, even if adequate space is available elsewhere in the

file system’s volume set. Allocation failure can be averted by specifying the

Flags=any attribute in the <ON> clause. If a CREATE statement specifies <ON

Flags=any>, VxFS first attempts to allocate space for new files on one of the

specified placement classes. Failing that, it allocates space elsewhere in the file

system’s volume set, so file allocation does not fail unless there is no available

space anywhere in the file system’s volume set.

The Flags=any attribute differs from the catchall rule described earlier in that it

applies only to files selected by the rule in which it appears, whereas the file

selection specification of the catchall rule includes all files not selected by earlier

rules.

33The VxFS file placement policy grammar
VxFS file placement policies

The <BALANCE_SIZE> sub-element

In addition to the <CLASS> sub-element, a <DESTINATION> element may contain a

<BALANCE_SIZE> sub-element. When an <ON> clause contains a <BALANCE_SIZE>

sub-element, VxFS allocates extents of the indicated size (rounded up to the

nearest multiple of the file system block size) for files selected by the rule,

distributing its allocations approximately uniformly across the volumes in the

placement class. Distributing a large file across multiple volumes may provide

performance benefits for both transactional and streaming access.

For example, a balance size of onemegabyte for a <DESTINATION> placement class

containing three volumes causes VxFS to allocate space for new files in

one-megabyte chunks, randomly distributed across the three volumes in the

placement class.

VxFS supports one balance size per placement class. The first <BALANCE_SIZE>

sub-element in a policy becomes the balance size for the placement class to which

it applies. Using the Units attribute of the <BALANCE_SIZE> sub-element, balance

size may be specified in bytes (Units=bytes), kilobytes (Units=KB), megabytes

(Units=MB), or gigabytes (Units=GB).

Balancing space allocation across the volumes in a placement class has an effect

similar to virtual volume block address striping. Distributing a file’s data storage

across multiple volumes makes it possible to use multiple I/O resources

concurrently, potentially improving I/O performance for both transactional and

streaming applications. Balanced allocation is particularly useful with database

management systems and other applications that allocate storage in the form of

small numbers of large files. Fragment 3-6 illustrates a sample file placement

policy CREATE statement that includes the <BALANCE_SIZE> sub-element in one

of its two placement class specifications.

Fragment 3-6 Sample CREATE statement

<CREATE><ON>
<DESTINATION><CLASS>tier1</CLASS></DESTINATION>

[1]
[2]

<DESTINATION>[3]
<CLASS>tier2</CLASS>[4]
<BALANCE_SIZE Units="MB">1</BALANCE_SIZE>[5]

</DESTINATION>
</ON></CREATE>

[6]
[7]

The CREATE statement in Fragment 3-6 specifies that files selected by the rule be

created on tier1 volumes if space is available, and on tier2 volumes if not.

Because the <ON> clause does not include Flags=any, file creation fails if no space

is available on any tier1 or tier2 volume, even if space is available elsewhere in

the file system’s volume set.

The VxFS file placement policy grammar
VxFS file placement policies

34

The balance size of one megabyte applies only to allocations on tier2 volumes.

VxFS does not balance files placed on tier1 volumes. For files placed on tier2,

VxFS allocates successive one-megabyte extents randomly among the tier2

volumes.

The RELOCATE statement

The DELETE and RELOCATE action statements specify actions that VxFS takes on

qualifying files during policy enforcement, as well as the circumstances that

qualify files to be acted upon. The two statements are quite similar in form and

function; indeed, DELETE can be thought of as RELOCATE with the null device as a

destination.

During policy enforcement, VxFS scans file systems in path name order, stopping

when it calculates that already-scheduled relocations would result in destination

volumes being fully occupied. For each file, VxFS identifies the first applicable

rule in the active policy as determined by the rules’ SELECT statements. If the file

resides in a placement class specified in the <FROM> clause of one of the rule’s

RELOCATE statements, and if it meets the qualifications for relocation specified in

the statement’s <WHEN> clause, VxFS relocates it to the first placement class listed

in the <TO> clause that has space available for it. Only placement classes may be

specified in <FROM> and <TO> clauses, not individual volume names.

Fragment 3-7 shows the general form of the RELOCATE statement. Table 3-3 lists

and describes the RELOCATE statement’s action clauses.

Fragment 3-7 General form of the RELOCATE statement

<RELOCATE>
<FROM>

[1]
[2]

<SOURCE><CLASS>...placement_class_name...</CLASS></SOURCE>[3]
<SOURCE>...additional placement class specifications...</SOURCE>[4]

</FROM>[5]
<TO>[6]
<DESTINATION>[7]
<CLASS>...placement_class_name...</CLASS>[8]
<BALANCE_SIZE Units="units_specifier">...chunk_size...</BALANCE_SIZE>[9]

</DESTINATION>[10]
<DESTINATION>...additional placement class specifications...</DESTINATION>[11]

</TO>[12]
<WHEN>...relocation conditions...</WHEN>

</RELOCATE>
[13]
[14]

35The VxFS file placement policy grammar
VxFS file placement policies

Table 3-3 Clauses in the RELOCATE statement

DescriptionClause

The optional <FROM> clause specifies the placement class or classes

fromwhich files selected by the rule should be relocated. If a file selected

by the rule is located in any specified placement class, VxFS relocates

it, provided that it meets the qualifications specified in the <WHEN>
clause.

<FROM>clause
(lines [2]-[5])

The required<TO> clause specifies a priority ordered list of one ormore

placement classes to which VxFS relocates qualifying files. VxFS

relocates files to the first specified placement class if space permits, to

the second if not, and so forth.

<TO> clause
(lines[6]-[12])

The optional <WHEN> clause specifies additional qualifications for

relocation. Files may be relocated when they have been inactive or

unmodified for specified periods, when they reach a specified size, or

when their I/O temperatures or access temperatures (levels of recent

application I/O activity) reach a specified level. If aRELOCATE statement
does not contain a<WHEN> clause, files selected by the rule are relocated

unconditionally.

<WHEN> clause
(line [13])

If a RELOCATE statement contains a <FROM> clause, VxFS relocates qualifying files

only if they reside in placement classes specified in the <FROM> clause. If no <FROM>

clause is present, VxFS relocates qualifying files regardless of their locations.

The required <TO> clause of the RELOCATE statement contains a priority-ordered

list of <DESTINATION> elements specifying placement classes to which VxFS

relocates qualifying files selected by the rule. VxFS relocates files to the first

specified placement class if space is available, to the second specified class if no

space is available in the first, and so forth.

The <BALANCE_SIZE> sub-element

A <DESTINATION> element in a <TO> clause may contain an optional

<BALANCE_SIZE> sub-element. The <BALANCE_SIZE> sub-element causes VxFS to

distribute space for relocated files approximately evenly across destination

placement class volumes in extents of the indicated size. VxFS supports one

balance size per placement class. The first <BALANCE_SIZE> sub-element in a policy

becomes the balance size for the placement class to which it applies. Using the

Units attribute in its XML tag, the <BALANCE_SIZE> value may be specified in

bytes (Units=bytes), kilobytes (Units=KB), megabytes (Units=MB), or gigabytes

(Units=GB).

The VxFS file placement policy grammar
VxFS file placement policies

36

Specifying a <BALANCE_SIZE>has an effect similar to virtual volumeblock striping.

The capability is particularly useful with databases and other applications that

store data in the form of small numbers of large files. Striping files allows

concurrent use of multiple physical I/O resources, potentially improving

performance for both transactional and streaming applications.

The <WHEN> clause in a RELOCATE statement

An optional <WHEN> clause may be included in a RELOCATE statement. The <WHEN>

clause restricts relocation to selected files that meet certain qualifications.

Fragment 3-8 shows the general form of the WHEN clause in a RELOCATE statement.

Fragment 3-8 General form of the WHEN clause in a RELOCATE statement

<WHEN>
<ACCAGE Units="...units_value...">

[1]
[2]

<MIN Flags="...comparison_operator...">...min_access_age...</MIN>[3]
<MAX Flags="...comparison_operator...">...max_access_age...</MAX>[3]

</ACCAGE>[4]
<MODAGE Units="...units_value...">[5]
<MIN Flags="...comparison_operator...">...min_modification_age...</MIN>[6]
<MAX Flags="...comparison_operator...">...max_modification_age...</MAX>[7]

</MODAGE>[8]
<SIZE " Units="...units_value...">[9]
<MIN Flags="...comparison_operator...">...min_size...</MIN>[10]
<MAX Flags="...comparison_operator...">...max_size...</MAX>[11]

</SIZE>[12]
<IOTEMP Type="...read_write_preference...">[13]
<MIN Flags="...comparison_operator...">...min_I/O_temp...</MIN>[14]
<MAX Flags="...comparison_operator...">...max_I/O_temp...</MAX>[15]
<PERIOD>...days_of_interest...</PERIOD>[16]

</IOTEMP>[17]
<ACCESSTEMP Type="...read_write_preference...">[18]
<MIN Flags="...comparison_operator...">...min_access_temp...</MIN>[19]
<MAX Flags="...comparison_operator...">...max_access_temp...</MAX>[20]
<PERIOD>...days_of_interest...</PERIOD>[21]

</ACCESSTEMP>
</WHEN>

[22]
[23]

Relocation qualifiers

If a RELOCATE statement contains a <WHEN> clause, files selected by the rule qualify

for relocation only if they satisfy all of the qualifications that are specified in the

<WHEN> clause. Table 3-4 lists the five qualifications that may be specified in a

<WHEN> clause.

37The VxFS file placement policy grammar
VxFS file placement policies

Table 3-4 Relocation qualifiers in theWHENclause of theRELOCATE statement

DescriptionQualifier

Qualifies files that have not been accessed for a specified period

immediately prior to the time at which the policy is enforced.

<ACCAGE>

Qualifies files that have not been modified for a specified period

immediately prior to the time at which the policy is enforced.

<MODAGE>

Qualifies files that exceed or drop below a specified size or fall within

a specified size range.

<SIZE>

Qualifies files that exceed or drop below a specified average I/O

temperature, or fall within a specified I/O temperature range. A file’s

I/O temperature, described in The <IOTEMP> (I/O temperature)

relocation qualifier , is a measure of the average I/O activity against

it, measured in bytes transferred, during a specified period

immediately prior to policy enforcement.

<IOTEMP>

Qualifies files that exceed or drop below a specified average access

temperature, or fall within a specified access temperature range. A

file’s access temperature is similar to its I/O temperature, except that

it is computed using the number of I/O requests to the file rather than

the number of bytes transferred.

<ACCESSTEMP>

The sections that follow discuss these five qualifiers in more detail.

The access age (<ACCAGE>) relocation qualifier

A file’s access age is the interval between the policy enforcement time and the

last application access to the file. VxFS computes access age by subtracting a file’s

time of most recent access (its POSIX atime) from the time at which the policy is

enforced. The <MIN> and <MAX> sub-elements denote theminimumandmaximum

access age thresholds for relocation. At least one of <MIN> and <MAX>must be

specified. Files selected by the rule qualify for relocation if their access ages are

greater than the <MIN> value (if one is specified) and less than the <MAX> value (if

one is specified).

If specified, the <MIN> and <MAX> sub-elements require Flags attributes to define

their operation. For <MIN>, any of Flags=gt, Flags=eq, and Flags=gteqmay be

specified, with the obvious meanings. For <MAX>, either Flags=lt or Flags=lteq

maybe specified.Using the Units attribute, access age thresholdsmaybe specified

in seconds (Units=seconds), minutes (Units=minutes), hours (Units=hours), or

days (Units=days), where a day is a 24 hour period immediately preceding the

start of policy enforcement.

The VxFS file placement policy grammar
VxFS file placement policies

38

The <MIN> sub-element can be used to relocate inactive files to lower tiers in a

storage hierarchy. Conversely, the <MAX> sub-element can be used to relocate

recently active files to upper storage tiers.

The modification age <MODAGE> relocation qualifier

Themodification age relocation qualifier (<MODAGE>) is identical to the access age

one, except that files’ POSIX mtime values are used in qualifying computations.

The same <MIN> and <MAX> sub-elements, and Flags and Units attributes are used.

Administratorsmight specify the <MODAGE>qualifier to relocate recentlymodified

files to higher storage tiers in anticipation that they would be accessed again in

the near future.

The <SIZE> relocation qualifier

The <SIZE> relocation qualifier enables files selected by the rule to be relocated

if they are larger than the <MIN> or smaller than the <MAX> threshold when the

policy is enforced. Specifying both <MIN> and <MAX> causes VxFS to relocate files

selected by the rule whose sizes lie between the two. Using the Units attribute,

threshold file sizesmay be specified in bytes (Units=bytes), kilobytes (Units=KB),

megabytes (Units=MB), or gigabytes (Units=GB).

The <IOTEMP> (I/O temperature) relocation qualifier

The <IOTEMP> relocation qualifier enables files selected by the rule to be relocated

if their average I/O temperatures rise above or drop below specified values over

a specified period immediately prior to policy enforcement. Calculation of a file’s

I/O temperature is discussed in “Calculating a file’s I/O temperature and access

temperature ” on page 47., but generally speaking, a file’s I/O temperature is a

smoothed measure of recent read, write, or total data transfer activity against it.

VxFS computes a file’s average I/O temperature by calculating the averagenumber

of bytes per day transferred to or from it (or both) during the specified period,

and dividing that number by the file’s size. Higher I/O temperatures indicate

higher levels of sustained application activity; lower temperatures indicate less

activity.

Aswith other file relocationqualifiers, a lower<IOTEMP> thresholdmaybe specified

by using the <MIN> sub-element, an upper threshold with the <MAX> sub-element,

or a range by using both. I/O temperature is dimensionless so the <MIN> and <MAX>

sub-elementshavenounits attribute. The required<PERIOD> sub-element specifies

the number of days over which VxFS computes average I/O temperature.

Using the Type attribute of the <IOTEMP> element, an administrator can constrain

I/O temperature calculations to include only read activity (Type=nrbytes), write

39The VxFS file placement policy grammar
VxFS file placement policies

activity (Type=nwbytes), or both (Type=nrwbytes) as appropriate for the

application.

Average daily I/O temperature is a smoothed measure of I/O activity compared

to access or modification age. Whereas a single access to a file resets its atime to

the time of the access, a file’s I/O temperature decreases gradually as time passes

without access, and increases gradually if it is accessed more often.

Figure 3-1 illustrates the gradual decrease in I/O temperature.

Figure 3-1 Contributors to I/O temperature calculation

Total I/O for day

Sunday: no IO
Time

23:59 Monday:
Policy enforcement

Contribute to Tuesday:

IO TEMP calculation

Monday:
50 megabytes
read or write

23:59 Tuesday:
Policy enforcement

23:59 Wednesday:
Policy enforcement

Contribute to Monday:

IO TEMP calculation

Contribute to Wednesday:

IO TEMP calculation

Tuesday:
10 megabytes

read

Wednesday:
10 megabytes

read

Figure 3-1 represents a ten megabyte file that is not accessed on Sunday, but is

read or written completely five times on Monday. The file system’s policy is

enforced at 23:59 on Monday, when the file’s two-day average I/O temperature is

2.5 and its access age in days is zero. If the entire file is read once on Tuesday, its

access age in days at 23:59 on Tuesday is zero, but its two-day average I/O

temperature is 3.0. If it is read once more on Wednesday, its access age at 23:59

on Wednesday is still zero, but its two-day I/O temperature drops to 1.0 because

the influence of Monday’s heavy I/O has disappeared from the calculation.

If the goal is to keep files in place as long as they are being accessed at all, then

access age is the more appropriate relocation qualifier. If, however, the goal is to

relocate files as I/O decreases rather than ceases entirely, then I/O temperature

is more appropriate.

Upward relocation is similar. If files that have been relocated to lower-tier volumes

due to infrequent access experience intensified application activity, it may be

appropriate to relocate them to upper-tier devices. A policy rule that relocates

based on access age, and that has a <MAX> value comparable to the interval between

successive scheduled policy enforcements, relocates files that have been accessed

The VxFS file placement policy grammar
VxFS file placement policies

40

even once during the <ACCAGE> interval. By contrast, a policy that uses I/O

temperaturewith a<MIN>value only relocates files that have experienced sustained

activity over the period of interest.

The <ACCESSTEMP> (access temperature) relocation qualifier

The <ACCESSTEMP> relocation qualifier enables files selected by the rule to be

relocated if their average access temperatures rise above or drop below specified

values over a specified period immediately prior to policy enforcement. A file’s

access temperature is the averagenumber of recent read andwrite requests against

it. As with I/O temperature, higher access temperatures indicate higher levels of

sustained application activity; lower temperatures indicate lower levels.

A lower <ACCESSTEMP> thresholdmaybe specified byusing the <MIN> sub-element,

an upper thresholdwith the <MAX> sub-element, or a range by using both. Average

access temperature is always expressed in accesses per day, so the <MIN> and

<MAX> sub-elements have no units attribute. The number of 24-hour periods

immediately prior to policy enforcement over which access temperature is

computed is specified by the required <PERIOD> sub-element.

Using the Type attribute of the <ACCESSTEMP> element, access temperature

calculations can be constrained to include only read requests (Type=nreads), write

requests (Type=nwrites), or both (Type=nrws) as appropriate for the application.

Average daily access temperature is a smoothedmeasure of I/O activity compared

to access or modification age. Whereas a single access to a file resets its atime to

the current time, a file’s access temperature decreases gradually as time passes

without activity, and increases gradually as activity increases. For example, if

there are no read requests to a file on Sunday and 5,000 requests on Monday, and

the file system policy is enforced just prior to midnight on Monday, the file’s

two-day average access temperature is 2,500 and its access age in days is zero. If

there are 1,000 additional read requests to it on Tuesday, its access age in days

just prior to midnight on Tuesday is zero, but its two-day average access

temperature is 3,000. If there are 1,000 additional read requests on Wednesday,

the file’s access age in days just prior to midnight on Wednesday is still zero, but

its two-day access temperature drops to 1,000 because the influence of Monday’s

I/O disappears from the calculation.

Unlike I/O temperature, access temperature is independent of file size and amount

of data transfer. It is generally the more appropriate relocation qualifier for files

that are accessed with many small I/O requests rather than complete data

transfers.

41The VxFS file placement policy grammar
VxFS file placement policies

The <PERIOD> sub-element

The value of the <PERIOD> sub-element is interpreted as a number of consecutive

24-hour periods immediately prior to policy enforcement. VxFS computes files’

average daily I/O temperatures and access temperatures over the period between

the time of policy enforcement and the number of 24-hour periods in the past

specified in the <PERIOD> sub-element. For example, if the policy is enforced at

14:00 onWednesdaywith a <PERIOD> value of 2, VxFSuses file I/O activity between

14:00 onMonday and14:00 onWednesday to compute average daily temperatures.

Although a different <PERIOD> value can be specified in every <IOTEMP> clause,

VxFS currently uses only the largest value in its calculations.

RELOCATE statement example: unconditional relocation

Fragment 3-9 illustrates the simplest form of the RELOCATE policy rule

statement—unconditional relocation.

Fragment 3-9 Unconditional RELOCATE statement

<RELOCATE>
<FROM><SOURCE><CLASS>tier1</CLASS></SOURCE></FROM>

[1]
[2]

<TO><DESTINATION><CLASS>tier2</CLASS></DESTINATION></TO>
</RELOCATE>

[3]
[4]

VxFS relocates files selected by this rule that reside in placement class tier1 to

placement class tier2 as long as space permits. This type of rule might be used

with applications that create and access new files but seldom access existing files

once they have been processed. A CREATE statement would specify creation on

tier1 volumes (presumably high performance or high availability, or both). Each

enforcement of the policy would relocate files created since the previous

enforcement to tier2 volumes.

RELOCATE statement example: access age-based relocation

Fragment 3-10 illustrates a more elaborate form of the RELOCATE statement—one

that uses access age as the qualifier for relocating files from tier1 volumes to

tier2 volumes.

Fragment 3-10 Inactivity-based downward RELOCATE statement

<RELOCATE>
<FROM><SOURCE><CLASS>tier1</CLASS></SOURCE></FROM>

[1]
[2]

<TO><DESTINATION><CLASS>tier2</CLASS></DESTINATION></TO>[3]
<WHEN><ACCAGE Units="days"><MIN Flags="gt">30</MIN></ACCAGE></WHEN>

</RELOCATE>
[4]
[5]

The VxFS file placement policy grammar
VxFS file placement policies

42

This statement causes VxFS to relocate files selected by the rule from tier1

volumes to tier2 volumes if they have not been accessed for more than 30 days.

A rule containing such a statement as this would have the effect of maintaining

free space on tier1 volumes by relocating files that are inactive for more than

30 days to tier2 volumes.

RELOCATE statement example: I/O temperature-based
relocation

Fragment 3-11 illustrates a companion rule that relocates files from tier2 volumes

to tier1 volumes based on their I/O temperatures.

Fragment 3-11 Upward RELOCATE statement

<RELOCATE>
<FROM><SOURCE><CLASS>tier2</CLASS></SOURCE></FROM>

[1]
[2]

<TO><DESTINATION><CLASS>tier1</CLASS></DESTINATION></TO>[3]
<WHEN>[4]
<IOTEMP Type="nrwbytes "><MIN Flags="gt">5</MIN><PERIOD>2</PERIOD></IOTEMP>[5]

</WHEN>
</RELOCATE>

[6]
[7]

I/O temperature is a measure of data transfer activity relative to file size. This

rule relocates a file only if it has experienced average daily I/O activity greater

than five times its size during the 48 hour period immediately preceding policy

enforcement. This rule might be used to return files that had been relocated to

tier2 volumes due to inactivity back to tier1 volumes when application activity

against resumes. Using I/O temperature rather than access age as the relocation

qualifier reduces the chance of relocating files that are not actually being used

frequently by applications.

RELOCATE statement example: multiple destinations

By specifying multiple <DESTINATION> elements in the <TO> clause of a RELOCATE

statement, an administrator can direct VxFS to relocate files to a secondary

placement class if adequate space is not available on the primary class.

Fragment 3-12 illustrates a rule for relocating files with low I/O temperatures

from tier1 volumes to tier2 volumes, and to tier3 volumeswhen tier2 volumes

are fully occupied.

Fragment 3-12 Two-tier RELOCATE statement

<RELOCATE>
<FROM><SOURCE><CLASS>tier1</CLASS></SOURCE><FROM>

[1]
[2]

<TO> [3][3]
<DESTINATION><CLASS>tier2</CLASS></DESTINATION>[4]

43The VxFS file placement policy grammar
VxFS file placement policies

Fragment 3-12 Two-tier RELOCATE statement (continued)

[5]
[6]

<DESTINATION><CLASS>tier3</CLASS></DESTINATION>
</TO>

[7] <WHEN>
[8] <IOTEMP Type="nrbytes"><MAX Flags="lt">4</MAX><PERIOD>3</PERIOD></IOTEMP>
[9]
[10]

</WHEN>
</RELOCATE>

The rule in Fragment 3-12 relocates qualifying files (those whose 3-day average

I/O temperatures are less than 4, as specified in the <WHEN> clause) that reside on

tier1 volumes as it encounters them in its scan of the file system directory tree.

When it calculates that already-relocated files would completely fill tier2, VxFS

relocates qualifying files to tier3 instead.

RELOCATE statement example: specified source locations

The optional <FROM> clause in the RELOCATE statement restricts the source

placement classes from which files are relocated. If a RELOCATE statement does

not contain a <FROM> clause, VxFS relocates qualifying files selected by the rule

no matter where they reside when the policy is enforced.

Fragment 3-13 illustrates a part of a policy rule that relocates files according to

their sizes, no matter what volumes they reside on when the policy is enforced.

Fragment 3-13 RELOCATE statements with no <FROM> clauses

<RELOCATE>
<TO><DESTINATION><CLASS>tier1</CLASS></DESTINATION></TO>

[1]
[2]

<WHEN><SIZE Units=MB><MAX Flags="lt">10</MAX></SIZE></WHEN>
</RELOCATE>

[3]
[4]

<RELOCATE>
<TO><DESTINATION><CLASS>tier2</CLASS></DESTINATION></TO>

[5]
[6]

<WHEN>[7]
<SIZE Units=MB><MIN Flags="gteq">10</MIN><MAX Flags="lt">100</MAX></SIZE>[8]

</WHEN>
</RELOCATE>

[9]
[10]

<RELOCATE>
<TO><DESTINATION><CLASS>tier3</CLASS></DESTINATION></TO>

[11]
[12]

<WHEN><SIZE Units=MB><MIN Flags="gteq">100</MIN></SIZE></WHEN>
</RELOCATE>

[13]
[14]

The RELOCATE statement in lines [1]-[4] of Fragment 3-13 relocates files smaller

than 10 megabytes to tier1 volumes. The statement in lines [5]-[10] relocates

files of between 10 and 100 megabytes to tier2 volumes, and the statement in

lines [11]-[14] relocates files larger than 100megabytes to tier3 volumes.When

The VxFS file placement policy grammar
VxFS file placement policies

44

the policy is enforced, VxFS relocates all qualifying files that do not already reside

in their destination placement classes.

The DELETE statement

The DELETE statement is very similar to the RELOCATE statement in both form

and function, lacking only the <TO> clause. File placement policy-based deletion

may be thought of as relocation to the null device. As with any irreversible

operation on data, it is good practice to back up data prior to enforcing file

placement policies that contain <DELETE> statements.

Fragment 3-14 shows the general form of the DELETE statement.

Fragment 3-14 General form of the DELETE statement

<DELETE>
<FROM>

[1]
[2]

<SOURCE>[3]
<CLASS>...placement_class_name...</CLASS>[4]

</SOURCE>[5]
<SOURCE>...additional placement class specifications...</SOURCE>[6]

</FROM>[7]
<WHEN>...deletion conditions...</WHEN>

</DELETE>
[8]
[9]

As Fragment 3-14 indicates, a DELETE statement contains the two clauses listed

in Table 3-5.

Table 3-5 Clauses in the DELETE statement

DescriptionClause

An optional clause (lines [2]-[7]) that contains a list of placement
classes from which VxFS deletes files if they meet the qualifying

conditions specified in the <WHEN> clause. No priority is associated
with the ordering of placement classes in a <FROM> clause. If a
qualifying file selected by the rule is located in any specified placement

class, VxFSdeletes it. If aDELETE statement doesnot contain a<FROM>
clause, VxFS deletes qualifying files no matter which volumes they

reside on.

<FROM>

45The VxFS file placement policy grammar
VxFS file placement policies

Table 3-5 Clauses in the DELETE statement (continued)

DescriptionClause

An optional clause (line [8]) indicating the conditions under which
files selected by the rule should be deleted. The form of the <WHEN>
clause in aDELETE statement is identical to that of the<WHEN> clause
in a RELOCATE statement (Fragment 3-8). If a DELETE statement

does not contain a <WHEN> clause, VxFS deletes all files selected by
the rule. If a <FROM> clause is present, VxFS deletes files only from
the placement classes it specifies.

<WHEN>

VxFS enforces placement policies file by file. Only the first rule that selects a file

applies to it. Similarly, within a rule, only the first statement for which a file

qualifies applies to it. Thus, if a file is selected by two different rules, whichever

rule occurs first in the policy applies to it, even if the rule results in no action.

Similarly, if a file qualifies for relocation and deletion under the same rule,

whichever statement occurs first in the policy will be the operative one.

DELETE statement examples

Fragment 3-15 shows two examples of DELETE statements.

Fragment 3-15 Sample DELETE statements

<DELETE>
<FROM><SOURCE><CLASS>tier3</CLASS></SOURCE></FROM>

</DELETE>

[1]
[2]
[3]

<DELETE>
<FROM><SOURCE><CLASS>tier2</CLASS></SOURCE></FROM>

[4]
[5]

<WHEN><ACCAGE Units=days><MIN Flags=gt>120</MIN></ACCAGE></WHEN>
</DELETE>

[6]
[7]

The first DELETE statement (lines [1]-[3]) in Fragment 3-15 deletes files that

reside on tier3 volumes when the policy is enforced. The absence of a <WHEN>

clause in the DELETE statement indicates that deletion of files selected by the rule

is unconditional. This type of rule might be used, for example, when an entire

storage tier is to be retired.

The second DELETE statement (lines [4]-[7]) deletes files selected by the rule that

reside on tier2 volumes when policy is enforced, provided that they have not

been accessed for the 120 days immediately prior to policy enforcement.

The VxFS file placement policy grammar
VxFS file placement policies

46

Calculating a file’s I/O temperature and access temperature

One important application of the VxFS Dynamic Storage Tiering facility is

automating the relocation of inactive files to lower-cost storage. On the surface,

this seems simple enough. If a file has not been accessed for a certain period of

time (specified in the <ACCAGE> element introduced in Fragment 3-7), enforcement

of the file system’s placement policy should relocate it to a lower storage tier.

But access age is inadequate as the only qualifier for activity-based relocation for

the two reasons listed in Table 3-6.

Table 3-6 Shortcomings of access age-based file relocation

DescriptionShortcoming

The access age of a file is computed by subtracting the time at which

policy enforcement starts from the file’s POSIX atime. If a file is
opened the day before the policy is enforced, its access age is one day,

even though it may have been inactive for themonth preceding. If the

intent of a policy rule is to relocate inactive files to lower-tier volumes,

it will perform badly with files that are accessed, however casually,

within the interval specified by the value of the <ACCAGE> element.

It is a binary

measure

Using access age as the qualifier for relocating inactive files to

lower-tier volumes may fail to schedule some relocations that should

be performed, but at least it results in less relocation activity than

necessary. Using ACCAGE as the qualifier for relocating previously
inactive files that have become active is likely to schedule unwarranted

relocation activity. For example, a rule that specifies relocation of

files on tier2 that have been accessed within the last three days to
tier1, no distinction is made between a file whose ownership was
changed and one that was read or written intensively by applications.

It is not the best

indicator of

resumption of

significant activity

The VxFS Dynamic Storage Tiering facility implements the concepts of average

I/O temperature and average access temperature to overcome these deficiencies.

A file’s I/O temperature is calculated as the number of bytes transferred to or

from it over a specified period of time divided by its size. For example, if a file

occupies one megabyte of storage at the time of policy enforcement, and the data

in it has been completely read or written 15 times within the last three days, VxFS

calculates its 3-day average I/O temperature to be 5 (15 megabytes of I/O ÷ 1

megabyte file size ÷ 3 days).

Similarly, a file’s average access temperature is the number of read or write

requests made to it over a specified number of 24-hour periods divided by the

number of periods. Unlike I/O temperature, access temperature is unrelated to

file size; a large file to which 20 I/O requests are made over a 2-day period has the

47The VxFS file placement policy grammar
VxFS file placement policies

same average access temperature as a small file accessed 20 times over a 2-day

period.

If a file system’s active placement policy includes any <IOTEMP> or <ACCESSTEMP>

clauses, VxFS begins policy enforcement by using information in the file system’s

File Change Log (FCL) to calculate average I/O activity against all files in the file

system during the longest <PERIOD> specified in the policy (if shorter periods are

specified, they are ignored). It uses these calculations to qualify files for I/O

temperature-based relocation and deletion.

Figure 3-2 depicts the I/O temperature computation graphically.

Figure 3-2 I/O temperature computation

Times at which

iostats are

recorded in FCL

Time

(start of policy

enforcement)

T enforce-T period T period T enforce

(Max value specified in a <PERIOD>

sub-element)

Voldest

Vnewest

I/O counts in oldest record in interval

[Tenforce - Tperiod]

I/O counts in newest record in interval

[Tenforce - Tperiod]

V (represents FCL

counter values)
IO TEMP=[(Vnewest-Voldest)÷File Size]÷Tperiod

As its name implies, the File Change Log records information about changesmade

to files in a VxFS file system. In addition to recording creations, deletions,

extensions, and so forth, the FCL can be configured to periodically capture the

cumulative amount of I/O activity (number of bytes read and written and number

of reads and writes) against active files. When configured to collect I/O statistics,

VxFS records file I/O activity counters in the FCL each time a file’s inode enters

or leaves the VxFS inode cache, as well as at user-specifiable intervals when a file

is actually experiencing I/O activity. (The latter captures periodic information

about files that remain open for long periods).

The period of interest in I/O temperature calculations is the interval between the

time at which enforcement occurs (Tenforce in Figure 3-2) and that time minus

the largest interval specified in any <PERIOD> element in the active policy (Tperiod

in Figure 3-2).

The VxFS file placement policy grammar
VxFS file placement policies

48

The I/O temperature calculation

For files with I/O activity during Tperiod, VxFS computes an approximation of

the amount of data read, data written, and total data transfer (the sum of data

read and data written), effectively by subtracting the I/O levels in the file’s oldest

FCL I/O statistics record within the period of interest from those in the file’s

newest record (Vnewest - Voldest in Figure 3-2). It then computes each file’s total

I/O temperature by dividing its I/O activity by its size at Tenforce. Average I/O

temperature for the period is computed by dividing total I/O temperature by

Tperiod. Dividing by file size normalizes the result, so that a file’s temperature is

proportional to its size. I/O temperature is the ratio of the number of bytes of I/O

experienced by a file during the period to the file’s size. If data transfer activity

is not the primary consideration, <ACCESSTEMP> is a more appropriate qualifier,

because it measures file access events without regard to the amount of data

transferred.

While these computations are approximations in several ways, they represent

easy to compute, and more important, unbiased, estimates of relative recent I/O

activity upon which relocation decisions can be based.

File relocation based on <IOTEMP>

File relocation and deletion decisions can be based on read, write, or total I/O

activity. Fragment 3-16 illustrates the use of IOTEMP in a policy rule to specify

relocation of low-activity files from tier1 volumes to tier2 volumes.

Fragment 3-16 Sample IOTEMP clause

<RELOCATE>
<FROM><SOURCE><CLASS>tier1</CLASS></SOURCE></FROM>

[1]
[2]

<TO><DESTINATION><CLASS>tier2</CLASS></DESTINATION></TO>[3]
<WHEN>[4]
<IOTEMP Type="nrwbytes "><MAX Flags="lt">3</MAX><PERIOD>4</PERIOD></IOTEMP>[5]

</WHEN>
</RELOCATE>

[6]
[7]

Fragment 3-16 specifies that files selected by the rule should be relocated from

tier1 volumes to tier2 volumes if their average I/O temperatures fall below 3

over a period of 4 days. The Type=nrwbytes attribute specifies that total data

transfer activity (the sum of bytes read and bytes written) is to be used in the

computation. For example, a 50 megabyte file that experienced less than 150

megabytes of data transfer per day over the 4-day period immediately preceding

policy enforcementwouldhave an I/O temperature less than3, andwould therefore

be relocated, whereas a 40 megabyte file with the same amount of I/O activity

would have an I/O temperature of 3.75, and would not be relocated. A file that

experiences no activity during a period of interest has an I/O temperature of zero

49The VxFS file placement policy grammar
VxFS file placement policies

for the period. VxFS relocates qualifying files in the order in which it encounters

them as it scans the file system directory tree.

Using average I/O temperature or access temperature rather than a binary

indication of activity (POSIX atime or mtime) minimizes the chances of failing to

relocate files that are nearly inactive during the period of interest. A large file

that experiences only a few bytes of I/O or a few requests during the period would

have a low temperature, and would therefore become a candidate for relocation

to tier2 volumes, even if the activity was recent.

A possiblymore important use of I/O temperature-based file relocation is upward

relocation—the relocation of files previously placed on lower storage tiers because

of inactivity or low temperature back to higher tiers in the hierarchy.

Fragment 3-17 shows a sample RELOCATE statement for relocating files from tier2

volumes to tier1 when read activity level against them increases.

Fragment 3-17 Using IOTEMP for upward relocation of active files

<RELOCATE>
<FROM><SOURCE><CLASS>tier2</CLASS></SOURCE></FROM>

[1]
[2]

<TO><DESTINATION><CLASS>tier1</CLASS></DESTINATION></TO>[3]
<WHEN>[4]
<IOTEMP Type="nrbytes">[5]
<MAX Flags="gt">5</MAX><PERIOD>2</PERIOD>[6]

</IOTEMP>[7]
</WHEN>

</RELOCATE>
[8]
[9]

The RELOCATE statement in Table 3-6 relocates files on tier2 volumes whose

two-day average I/O temperatures (calculated using the number of bytes read)

are greater than 5 to tier1 volumes. Bytes written to the file during the two-day

period of interest do not contribute to the calculation.

Using average I/O temperature or access temperature rather than access age as

a file relocation qualifier gives administrators a precise control over automated

file relocation that can be used to adjust file placement policies to application

requirements. For example, a larger maximum <PERIOD> element in a rule tends

to prevent files from being relocated unless I/O activity against them is sustained

over that period. Alternatively, specifying a higher temperature and a shorter

maximumperiod tends to relocate files based on short-term I/O intensity, ignoring

activity that is further in the past.

The VxFS file placement policy grammar
VxFS file placement policies

50

Multiple selection criteria and qualifiers in file placement policy rule
statements

There are four cases in which file placement policy statements may contain

multiple clauses of the same type. The sections that followdescribe policy behavior

in these four cases.

Case 1: multiple file selection criteria in SELECT statement
clauses

Within a single SELECT statement, all the selection criteria clauses of a single type

are treated as a selection list. A file need only satisfy a single criterion of a given

type to be designated. For example, in Fragment 3-18, files in any of the

db/datafiles, db/indexes, and db/logs directories (all relative to the file system

mount point) would be selected.

Fragment 3-18 SELECT statement specifying multiple <DIRECTORY> criteria

<SELECT>
<DIRECTORY Flags="nonrecursive">db/datafiles</DIRECTORY>

[1]
[2]

<DIRECTORY Flags="nonrecursive">db/indexes</DIRECTORY>[3]
<DIRECTORY Flags="nonrecursive">db/logs</DIRECTORY>

</SELECT>
[4]
[5]

When a SELECT statement includes multiple types of file selection criteria, a file

must satisfy one criterion of each included type in order for the rule’s action

statements to apply to it. For example, in the SELECT statement in Fragment 3-19,

a file must reside in one of db/datafiles, db/indexes, or db/logs and be owned

by one of DBA_Manager, MFG_DBA, or HR_DBA in order to be designated for possible

action.

Fragment 3-19 SELECT Statement specifying multiple selection criteria types

<SELECT>
<DIRECTORY Flags="nonrecursive">db/datafiles</DIRECTORY>

[1]
[2]

<DIRECTORY Flags="nonrecursive">db/indexes</DIRECTORY>[3]
<DIRECTORY Flags="nonrecursive">db/logs</DIRECTORY>[4]
<USER>DBA_Manager</USER>[5]
<USER>MFG_DBA</USER>[6]
<USER>HR_DBA</USER>

</SELECT>
[7]
[8]

If a rule includes multiple SELECT statements, a file need only satisfy one of them

to be selected by the rule. This property can be used to specify alternative

conditions for file selection. For example, in the SELECT statement in

Fragment 3-20, a file need only reside in one of db/datafiles, db/indexes, or

51The VxFS file placement policy grammar
VxFS file placement policies

db/logs or be owned by one of DBA_Manager, MFG_DBA, or HR_DBA in order to be

selected by the rule. It need not satisfy both criteria.

Fragment 3-20 Multiple SELECT statements

<SELECT>
<DIRECTORY Flags="nonrecursive">db/datafiles</DIRECTORY>

[1]
[2]

<DIRECTORY Flags="nonrecursive">db/indexes</DIRECTORY>[3]
<DIRECTORY Flags="nonrecursive">db/logs</DIRECTORY>

</SELECT>
[4]
[5]

<SELECT>
<USER>DBA_Manager</USER>

[6]
[7]

<USER>MFG_DBA</USER>[8]
<USER>HR_DBA</USER>

</SELECT>
[9]
[10]

Case 2:multiple placement classes in CREATE statement <ON>
clauses and in RELOCATE statement <TO> clauses

Both the <ON> clause of the CREATE statement and the <TO> clause of the RELOCATE

statement can specify priority ordered lists of placement classes by usingmultiple

<DESTINATION> elements. VxFS creates or relocates files in the first placement

class listed if possible. If the first listed class has insufficient free space (or if the

file system’s volume set does not include any volumes in that class), VxFS uses

the second listed class. If the second listed class has insufficient free space, VxFS

tries the third listed class, and so forth. Fragment 3-21 gives an example of three

placement classes specified in the <ON> clause of a CREATE statement.

Fragment 3-21 Multiple placement classes in a CREATE statement <ON> clause

<CREATE>
<ON>

[1]

<DESTINATION><CLASS>tier1</CLASS></DESTINATION>[2]
<DESTINATION><CLASS>tier2</CLASS></DESTINATION>[3]
<DESTINATION><CLASS>tier3</CLASS></DESTINATION>[4]
</ON>
</CREATE>

[5]
[6]

In the example of Fragment 3-21, VxFS allocates space for newly-created files

selected by the rule on tier1 volumes if space is available. If no tier1 volume

has sufficient free space, VxFS attempts to allocate space on a tier2 volume. If

no tier2 volume has sufficient free space, VxFS attempts allocation on a tier3

volume. If VxFS cannot allocate sufficient space for the new file in any of the three

specified placement classes, allocationwould fail with an ENOSPC error indication,

even if the file system’s volume set included other placement classes that did have

sufficient space. (The Flags=any attribute can be specified in the <ON> tag to cause

The VxFS file placement policy grammar
VxFS file placement policies

52

VxFS to allocate space elsewhere in the file system’s volume set if all of the listed

placement classes are fully occupied.)

The <TO> clause in the RELOCATE statement behaves similarly. VxFS relocates

qualifying files to the first placement class specified if space permits, to the second

specified class if not, and so forth. If none of the destination placement classes

have available space, qualifying files are not relocated, but no error is signaled.

Case 3: multiple placement classes in <FROM> clauses of
DELETE and RELOCATE statements

The <FROM> clause in RELOCATE and DELETE statements can includemultiple source

placement classes. Unlike the <ON> and <TO> clauses, no priority is implied by the

order in which <SOURCE> elements appear in <FROM> clauses. If a qualifying file

resides in any of the placement classes specified in a <FROM> clause, VxFS deletes

or relocates it, space permitting.

Case 4: multiple qualifiers in <WHEN> clauses of RELOCATE
and DELETE statements

The <WHEN> clause in a DELETE or RELOCATE statement may include multiple

qualifications. Each of <ACCAGE>, <MODAGE>, <SIZE>, <IOTEMP>, and <ACCESSTEMP>

maybe specified once in a single clause.Whenmultiple qualifications are specified,

all must be satisfied in order for a selected file to be relocated or deleted. For

example, in the <WHEN> clause in Fragment 3-22, a selected file would have to be

both inactive (not accessed) formore than 30 days and larger than 100megabytes

to be eligible for relocation or deletion.

Fragment 3-22 Multiple qualifiers in a <WHEN> clause

<WHEN>
<ACCAGE Units="days"><MIN Flags="gt">30</MIN></ACCAGE>

[1]
[2]

<SIZE Units="MB"><MIN Flags="gt">100</MIN></SIZE>
</WHEN>

[3]
[4]

Because an active policy enforcement scan against a given file ends at the first

rule that selects the file, and because a RELOCATE or DELETE statementmay contain

only one <WHEN> clause, it is not possible to write rules to relocate or delete files

that meet any one of two or more relocation or deletion qualifiers.

File placement policy rule and statement ordering

Administrators can use the Dynamic Storage Tiering graphical console to create

and assign file placement policies of any of four built-in types. Alternatively, they

53The VxFS file placement policy grammar
VxFS file placement policies

can use text editors or XML editors to create XML placement policy documents,

and assign the policies to file systems using the fsppadm assign command. The

graphical interface orders rule statements for the policies it creates in the correct

order to achieve the behavior described in Chapter 6 . With policies created using

a text or XML editor, the creator is responsible for ordering rules and the

statements in them correctly.

The rules comprising a policy may occur in any order, but during both initial file

allocation and policy enforcement, the first rule that selects a file is the only rule

that applies to that file. Thus, rules whose purpose is to supersede a general

behavior for a certain set of files must precede the more general rules in a file

placement policy if they are to be effective. To illustrate this point, shows an

example of faulty rule placement with potentially unintended consequences.

Fragment 3-23 Example of ineffective rule ordering

<RULE Name=GeneralRule>
<SELECT><PATTERN>*</PATTERN></SELECT>

[1]
[2]

<CREATE><ON><DESTINATION><CLASS>tier2</CLASS></DESTINATION></ON></CREATE>[3]
...other statements...
</RULE>

[4]
[5]

[6]
[7]

<RULE Name=DatabaseRule >
<SELECT><PATTERN>*.db</PATTERN></SELECT>

[8] <CREATE><ON><DESTINATION><CLASS>tier1</CLASS></DESTINATION></ON></CREATE>
[9]
[10]

...other statements...
</RULE>

The GeneralRule in Fragment 3-23 specifies that all new files created in the file

system (specified by <PATTERN>*</PATTERN>) are to be created on tier2 volumes.

The DatabaseRule specifies that files whose names have an extension of db

following the period are to be created on tier1 volumes. The GeneralRule applies

to all files created in the file system, including those whose names have an

extension of db following the period, so DatabaseRule never applies to any file.

This fault can be remedied by exchanging the order of the two rules. If

DatabaseRule occurs first in the policy, VxFS encounters it firstwhendetermining

where to place new files whose names follow the pattern *.db, and correctly

allocates space for them on tier1 volumes. For files to which DatabaseRule does

not apply, VxFS continues scanning the policy and allocates tier2 space according

to the specification in the CREATE statement of GeneralRule.

A similar consideration applies to the statements within a policy rule. When it is

enforcing a policy against a file, VxFS scans the statements within a rule in order

of their occurrence until it encounters an applicable one. This can result in

unintendedbehavior. For example, Fragment 3-24 illustrates a RELOCATE statement

The VxFS file placement policy grammar
VxFS file placement policies

54

and a DELETE statement in a rule that is intended to relocate if they have not been

accessed in 30 days, and delete them if they have not been accessed in 90 days.

Fragment 3-24 Misplaced statements in a file placement policy rule

<RELOCATE>
<TO><DESTINATION><CLASS>tier2</CLASS></DESTINATION></TO>

[1]
[2]

<WHEN><ACCAGE Units="days"><MIN Flags="gt">30</MIN></ACCAGE>
</RELOCATE>

[3]
[4]

<DELETE>
<WHEN><ACCAGE Units="days"><MIN Flags="gt">90</MIN></ACCAGE>

</DELETE>

[5]
[6]
[7]

If the rule is written as in Fragment 3-24, with the RELOCATE statement preceding

the DELETE statement, files are never deleted, because the <WHEN> clause in the

RELOCATE statement applies to all selected files that have not been accessed for

at least 30 days, including those that have not been accessed for 90 days. VxFS

ceases its enforcement scan against a file when it identifies a statement for which

the file qualifies, so deletion based on the rule in lines [5]-[7] can never occur.

This example illustrates thegeneral principle thatRELOCATEandDELETE statements

specifying less inclusive qualifications should precede statements that specify

more inclusive ones. Symantec-supplied graphical interfaces for creating built-in

policies automatically produce the correct statement order for the policies they

create.

File placement policies and extending files

In a VxFS file system with an active file placement policy, the placement class of

the volume on which a file resides is part of the file’s metadata, attached when

the file is created, and updated whenever VxFS relocates it. When an application

extends a file, VxFS allocates space for the extension on the volume occupied by

the file if possible, and on another volume in the same placement class if not. For

example, if a file is created on a tier1 volume, extensions that occur prior to any

relocation are also on a tier1 volume. If the file is later relocated to a tier2

volume, extensions that occur after the relocation are also in tier2.

Summary: key properties of multi-volume file systems

The VxFS Dynamic Storage Tiering (DST) facility is an easy-to-implement

mechanism for achieving the reduced average hardware cost and quality of service

improvements inherent in multi-tier online storage without incurring excessive

offsetting administrative cost. A key benefit resulting of Dynamic Storage Tiering

is the ability to place files on the best type of storage without the need to manage

55The VxFS file placement policy grammar
VxFS file placement policies

a separate file system for each tier. With Dynamic Storage Tiering, correct file

placement occurs automatically at the three levels listed in Table 3-7.

Table 3-7 Automatic online storage administration with the Dynamic Storage

Tiering facility

DescriptionLevel

DST placement policy rules automatically ensure that newly created

files are placed on the right type of storage, whether right is defined

either by business requirements such as criticality to the enterprise

or by technical ones such as need for high transactional I/O

performance.

Creation

DST file placement policy rules automatically relocate files to new

right storage devices when their properties (size, access frequency,

I/O temperature, ownership, or logical position in the name space)

change, without administrative intervention. Moreover, as storage

capacity requirements grow and volumes are added to a file system’s

volume set, DST automatically applies its active placement policy to

them, maintaining correct placement according to policy within the

expanded volume set, again, without administrative intervention.

Changing

circumstances

BecauseDSTplacement policies specify placement classes rather than

specific volumes, a single general policy canbe assigned to anynumber

of hosts that have similar data management requirements and

hardware configurations. This promotes standardization across the

data center and the enterprise, and tends to result in fewer

administrative errors.

Across file systems

Dynamic Storage Tiering provides the twin keys to successful exploitation of

multi-tier storage—flexibility and automation. VxFS administrators can define a

variety of rules for placing and relocating files within multiple storage tiers.

Automation makes relocation unobtrusive, both in terms of administrative effort

and in terms of real-time performance impact on applications.

The VxFS file placement policy grammar
VxFS file placement policies

56

Using the Storage

Foundation Dynamic

Storage Tiering facility

This chapter includes the following topics:

■ Implementing Dynamic Storage Tiering

■ Tagging volumes

■ Creating volume sets and multi-volume file systems

■ Assigning file placement policies

■ Enforcing the active file placement policy

■ File placement reports

Implementing Dynamic Storage Tiering
Use of the Storage Foundation Dynamic Storage Tiering facility requires that file

systems and volumes be properly prepared for it. File systems must be

multi-volume file systems, whose volume sets consist of volumes that are tagged

with the placement classes named in any policies that will be assigned to them.

These preparations can be made using Storage Foundation Command Line

Interpreter (CLI) commands issued on the host that controls the target file system

and its volume set, or they can be performed centrally by the Storage Foundation

Management Server on behalf of systemswithManagement Server client software

installed.

This chapter describes the use of Storage Foundation Command Line Interpreter

(CLI) commands to create a multi-volume VxFS file system, assign a Dynamic

4Chapter

Storage Tiering file placement policy to it, and manage file placement within the

file system.

Chapter 11 describes how to convert a single-volume VxFS file system into a

multi-volume one.

Figure 4-1 illustrates four virtual volumes that might be made into a volume set

to house a file system providing four levels of service.

Figure 4-1 Volumes for a multi-volume file system

tier1 volume

4-mirror enterprise

storage

Volume Set vsa

tier2 volume

2-mirror enterprise

storage

tier3 volume

2-mirror low-cost

storage

tier4 volume

Low-cost RAID

storage

vsavola vsavolb vsavolc vsavold

The volume, vsavola, consists of four mirrors, perhaps constructed from two

2-mirror LUNs presented by two disk arrays. The vsavolb volume is built on a

single 2-mirror LUN that is protected against disk failure but not against complete

disk array failure. The vsavolc volume is also built on a 2-mirror LUN, but one

presented by a lower-cost mid-range disk array. The vsavold volume is also built

on a mid-range disk array LUN, but in this case, a parity RAID-5 one for still

lower-cost failure protection.

These volumes can be created using any of the three VxVM volume creation

mechanisms: administrator-directed configuration, the vxassist utility, or

intelligent provisioning storage templates. Each is optimized for a specific purpose.

The vsavola volume is configured for highest availability, and would presumably

be used to store its hosting system’s most critical data. The vsavolb and vsavolc

volumes can tolerate disk failure, but not complete failure of the arrays that

present them. The primary difference between the two is likely to lie in the I/O

performance they deliver. The vsavold volume tolerates fewer failure modes, but

provides more economical storage, and would probably bemost useful for storing

online archives of infrequently-updated data with minimal application

performance implications.

Using the Storage Foundation Dynamic Storage Tiering facility
Implementing Dynamic Storage Tiering

58

Tagging volumes
The first step in preparing to use Dynamic Storage Tiering is to tag these volumes

so that they are distinguishable by DST. VxVM can assign one or more character

strings, called tags, to a volume. Storage Foundation as well as other applications

can use volume tags to represent extrinsic volume properties.

VxVM organizes volume tags as a hierarchical name space in which the levels of

the hierarchy are separated by period characters. By convention, the uppermost

level in the volume tag hierarchy denotes the Storage Foundation component or

application that uses a tag, the second level denotes the tag’s purpose, and the

third level is the tag’s actual value.

For example, the VxFS Dynamic Storage Tiering facility recognizes volume tags

of the form vxfs.placement_class.class_name. The prefix vxfs identifies a tag

as being used by the VxFS file system. The placement_class part identifies the

tag as a file placement class recognized by the Dynamic Storage Tiering facility.

The class_namepart represents the user-defined nameof the file placement class

to which the tagged volume belongs. For example, a volume having the tag

vxfs.placement_class.tier1 is said to belong to placement class tier1. Only

the tier1 part of the volume tag appears in file placement policies.

Administrators use thevxvoladm volume settag command to associate tagswith

volumes, as Dialog 4-1 illustrates.

Dialog 4-1 Setting volume tags for Dynamic Storage Tiering facility use

vxvoladm -g dstdg settag vsavola vxfs.placement_class.tier1
vxvoladm -g dstdg settag vsavolb vxfs.placement_class.tier2

[1]
[2]

vxvoladm -g dstdg settag vsavolc vxfs.placement_class.tier3
vxvoladm -g dstdg settag vsavold vxfs.placement_class.tier4

[3]
[4]

VxFS policy rules specify file placement in terms of placement classes rather than

in terms of specific volumes. All volumes that belong to a particular placement

class are interchangeable with respect to placement policy operations. VxFS

balances space allocation approximately equally across all the volumes in a

placement class. Specifying file placement in terms of placement classes rather

than in terms of specific volumes simplifies multi-tier storage administration in

the two important ways listed in Table 4-1.

59Using the Storage Foundation Dynamic Storage Tiering facility
Tagging volumes

Table 4-1 Advantages of file placement classes over volumes

DescriptionAdvantage

If a volume with a tag value of vxfs.placement_class.tier2 is
added to a file system’s volume set, all policies that refer to tier2
immediately apply to the newly-added volumewith no administrative

action. Similarly, volumes can be evacuated (have data removed from

them) and removed from a file system without a policy change. The

active policy continues to apply to the file system’s remaining volumes.

Adding or

removing volumes

does not require a

file placement

policy change.

Using the Storage Foundation Management Server, a single file

placement policy can be assigned to any file system in a data center

whose volume set includes volumes taggedwith theplacement classes

named in the policy. This property makes it possible for enterprises

with large numbers of servers to define standard placement policies

and apply themuniformly tomany serverswith a single administrative

action.

File placement

policies are not

specific to

individual file

systems.

Creating volume sets and multi-volume file systems
Once volumes are tagged for Dynamic Storage Tiering use, a volume set can be

created and amulti-volume file systemcanbe formatted on it. Dialog 4-2 illustrates

the creation of a volume set called vsa using vsavola as the first volume, called

volume 0, and the addition of vsavolb, vsavolc, and vsavold to it.

Dialog 4-2 Creating a volume set and a multi-volume file system

vxvset -g dstdg make vsa vsavola
vxvset -g dstdg addvol vsa vsavolb

[1]
[2]

vxvset -g dstdg addvol vsa vsavolc
vxvset -g dstdg addvol vsa vsavold

[3]
[4]

mkfs -F vxfs /dev/vx/rdsk/dstdg/vsa
mkdir /vsa
mount -F vxfs /dev/vx/dsk/dstdg/vsa /vsa /vsa

[5]
[6]
[7]

The configuration of volume 0 in a volume set is critical because it is where VxFS

stores key file system metadata structures. For this reason, volume 0 cannot be

designated dataonly or ineligible to contain metadata. Because volume 0 must

be present in order for a file system to be mounted, it should be a failure-tolerant

volume. By default, VxFS stores all file system metadata on volume 0, and treats

all other volumes in its volume set as dataonly. The eligibility of any volume

other than volume 0 to store metadata can be changed by using the fsvoladm

clearflags command.

Using the Storage Foundation Dynamic Storage Tiering facility
Creating volume sets and multi-volume file systems

60

From an administrator’s standpoint, a volume set resembles a single volume in

most respects. It appears as a single volume in the output of the vxprint command,

for example. To create a multi-volume file system, an administrator uses the

POSIX mkfs command, specifying device path name that leads to a volume set as

the command target (line [5]).

Policies that use I/O temperature as a file relocation qualifier

The next step in preparing to use the Dynamic Storage Tiering facility depends

upon whether the policy that will be assigned to the file system uses average I/O

temperature or access temperature (defined Relocation qualifiers) as a relocation

or deletion qualification. VxFS stores the file activity statistics used in IOTEMP

and ACCESSTEMP calculations in its File Change Log (FCL). To minimize overhead

in file systems that do not use the statistics, VxFS does not store them in the FCL

by default. When a file placement policy containing IOTEMP or ACCESSTEMP

qualifiers is assigned to a file system, VxFS automatically starts the FCL and

causes statistics to be stored in it. Dialog 4-3 shows the maximal set of VxFS

responses to an assignment of a policy containing temperature-based deletion or

relocation statements.

Dialog 4-3 Enabling File Change Log statistics collection

fsppadm assign /dst /opt/FSPROtest/bin/iotemp.xml
UX:fsppadm:Warning: V-175-50999-159: File Change Log was not on for /dst

[1]
[2]

UX:fsppadm:Warning: V-175-50999-164: File Change Log has been turned on for /dst[3]
UX:fsppadm:Warning: V-175-34615-185: File Change Log filestats set for /dst[4]
UX:fsppadm:Warning: V-175-34615-205: The fcl_keeptime for /dst is 2 days, policy[5]
requires 5 days of filestats, Some IOTEMP based reloction and deletion may not occur
vxtunefs -o fcl_keeptime=432000 /dst

[6]
[7]

Thewarnings in lines [2]-[4]ofDialog 4-3 simply indicates thatVxFSdiscovered

that FCL records were not being collected at the time of policy assignment, and

responded by enabling the FCL and directing that filestats be stored in it. The

warning in lines [5]-[6] indicates that the current setting of the VxFS tunable

fcl_keeptime, which determines how long FCL records are retained, is inadequate

for the requirements of the policy being assigned. VxFS does not automatically

adjust fcl_keeptime.

The vxtunefs command on line [7] increases the maximum number of seconds

for which VxFS retains I/O statistics and other records in the FCL. The example

specifies retention of five days (432,000 seconds). The fcl_keeptime should be

set at or slightly larger than the largest value specified in any <PERIOD> element

in the policy.

61Using the Storage Foundation Dynamic Storage Tiering facility
Creating volume sets and multi-volume file systems

File Change Log considerations

The storage space used by an FCL depends primarily upon the number of file

change events during the fcl_keeptime, and must ultimately be determined

experimentally. Typically, however, policies that include IOTEMP or ACCESSTEMP

as a relocation qualifier result in substantially larger fcl_keeptime values than

other applications of the FCL such as backup. Since fcl_keeptime applies to all

FCL records, not just I/O statistics, an FCL’s size is roughly proportional to the

length of time for which records are kept, at least in a file system whose activity

pattern is relatively constant. The space required by an FCL when a

temperature-based policy is in effect can be estimated by recording the FCL size

and the fcl_keeptime value before file placement policy assignment, and

multiplying the pre-assignment FCL size by the ratio of the post- and

pre-assignment fcl_keeptimes. For example, if an FCL occupies 10 megabytes

with a pre-assignment fcl_keeptime of 1 day, and the post-assignment

fcl_keeptime is 8 days, the FCL can be expected to grow to 80 megabytes with

the policy in effect.

The growth of an FCL that may be required by temperature-based policies can be

particularly significant because VxFS treats FCLs asmetadata, meaning that they

cannot be stored on dataonly volumes. A file system’s metadataok storage capacity

should be increased if necessary when a policy containing <IOTEMP> or

<ACCESSTEMP> qualifiers is assigned.

During enforcement of a policy that contains <IOTEMP>or <ACCESSTEMP>qualifiers,

VxFS creates a file called .__fsppadm_fcliotemp.db in the file system’s

lost+found directory. If the size of the file is less than 50 megabytes, it remains

after enforcement for possible use by fsppadm query operations, otherwise it is

deleted. Each policy enforcement deletes the .__fsppadm_fcliotemp.db file if it

is present and creates a new one.

Temperature-based relocation and deletion is not possible until the FCL has been

running at least as long as the longest <PERIOD> specified in any RELOCATE or

DELETE statement. It may occasionally be desirable for an administrator to start

the FCL and enable statistics collection prior to policy enforcement using a

command sequence similar to that shown in Dialog 4-4.

Dialog 4-4 Enabling File Change Log statistics collection

fcladm on /dst
fcladm set filestats /dst

[1]
[2]

The fcladm on command in line [1] of Dialog 4-4 enables basic File Change Log

data collection on the file system mounted at /dst. I/O activity statistics are not

stored persistently in the FCL by default, so the command in line [2] is required

Using the Storage Foundation Dynamic Storage Tiering facility
Creating volume sets and multi-volume file systems

62

to store them (filestats) for the /dst file system. When persistent filestats

storing is enabled for a file system, data about I/O activity is appended to certain

key event records recorded in the FCL, and additional statistics-only records are

recorded periodically.

If a file system’s active file placement policy does not include IOTEMP or ACCESSTEMP

as a relocation qualifier, the Dynamic Storage Tiering facility does not require

FCL and persistent storage of file I/O statistics to be enabled.

Assigning file placement policies
When its volumes have been tagged with placement classes and its FCL has been

tuned (if necessary), a multi-volume file system is ready for use by the Dynamic

Storage Tiering facility. To use DST with such a file system, an administrator

creates a file placement policy using the grammar described in Chapter 3 , and

assigns it to the file system using the fsppadm assign command in a fashion

similar to that shown in Dialog 4-5. Alternatively, facilities of the Veritas

Enterprise Administrator (VEA) graphical management console can be used to

create one of the four built-in policies described in Chapter 6. The VEA console’s

policy creation wizards automatically assign each policy they create as the active

policy for the file system in whose context they are operating.

Dialog 4-5 Analyzing a file system with an active file placement policy

fsppadm assign /vsa /tmp/policy.xml
... applications use file system...

[1]

fsppadm analyze -l /vsa[2]
/vsa/NODE0001/SQL00001/SQL1.DAT Database_class1[3]

Will be relocated to - tier1[4]
/vsa/suzi/inst01/NODE0000/SQL00001/SQL1.DAT Database_class1A[5]

Will be relocated to - tier1[6]
/vsa/suzi/inst01/NODE0000/SQL00001/SQL11.DAT Database_class1A[7]

Will be relocated to - tier1[8]
Files (to be) moved : 3[9]

Bytes (to be) moved : 11027456[10]

Tier Name Size (bytes) Space Before (bytes) Space After (bytes)[11]
tier4 268435456 210195456 221222912[12]
tier3 268435456 268419072 268419072[13]
tier2 268435456 268419072 268419072
tier1 268435456 250970112 239942656

[14]
[15]

Until a file placement policy has been refined through experience, the relocation

component in particular may have unintended implications, such as unexpected

file relocations due to SELECT statements that are written too inclusively. But

adjusting a policy and enforcing it when a file system is busy with application I/O,

63Using the Storage Foundation Dynamic Storage Tiering facility
Assigning file placement policies

can affect application performance adversely. To minimize the impact of file

relocation on application performance, administrators can analyzemulti-volume

file systems with active file placement policies to determine which files would be

relocated, how much data would be moved, and what the resulting occupancy

level on each storage tier would be if the active policy were enforced. Line [2] in

Dialog 4-5 illustrates the use of the fsppadm analyze command to determine the

impact of enforcing a file system’s active policy. Lines [3]-[9] (reformatted

slightly from the actual report for readability) list the files that would be relocated

if the policy were to be enforced, along with their destination placement classes

and thenames of the rules underwhich theywould be enforced. Line [10] contains

the total number of bytes that would be relocated, and lines [11]-[15] list the

estimated total and allocated space on each of the file system’s placement classes

when the fsppadm analyze command is issued and as it would be if the active

policy were enforced immediately.

Enforcing the active file placement policy
AVxFSmulti-volume file system enforces the new file allocation part of its active

file placement policy when files are created. Existing files are not relocated

automatically, however. To relocate existing files, the active policy must be

enforced by an authorized administrator using the fsppadm enforce command,

as illustrated in Dialog 4-6.

Dialog 4-6 Enforcing a file system’s active file placement policy

fsppadm enforce -r /tmp/new/rep /vsa[1]

Files moved : 3[2]
Bytes moved : 11027456[3]

Tier Name Size (bytes) Space Before (bytes) Space After (bytes)[4]
tier4 268435456 210195456 221222912[5]
tier3 268435456 268419072 268419072[6]
tier2 268435456 268419072 268419072
tier1 268435456 250970112 239937536

[7]
[8]

The −r switch in the fsppadm enforce command causes the detailed relocation

report to be written to the file /tmp/new/rep. This report lists files that were

relocated as a result of policy enforcement.

File placement policy enforcement is typically scheduled as a cron job to run at

regular intervals (daily, for example) to keep actual file locations in reasonable

accord with the administrative intent for the file system as expressed in its active

file placement policy. To minimize the effect of file relocation on application

performance, the command should be scheduled to run at timeswhen application

Using the Storage Foundation Dynamic Storage Tiering facility
Enforcing the active file placement policy

64

activity against the file system is low. The frequency with which it should be

scheduled depends upon the type of activity a file system experiences over time.

File systems in which events that can make relocation desirable are frequent

should have policy enforcement scheduled more frequently than less dynamic

file systems.

File placement reports
If a report is generated during file placement policy enforcement, a listing of

relocated files, the placement classes towhich theywere relocated, and the reasons

for relocation is available for inspection. Dialog 4-7 illustrates the content of the

fsppadm enforce report (reformatted slightly for readability).

Dialog 4-7 Report produced by the fsppadm enforce command

cat /tmp/new/rep[1]

Sun Nov 20 22:09:38 2005 - Database_class1
/vsa/NODE0001/SQL00001/SQL1.DAT - Relocated to - tier1

[2]
[3]

Sun Nov 20 22:09:41 2005 - Database_class1A[4]
/vsa/suzi/inst01/NODE0000/SQL00001/SQL1.DAT - Relocated to - tier1[5]
Sun Nov 20 22:09:42 2005 - Database_class1A
/vsa/suzi/inst01/NODE0000/SQL00001/SQL11.DAT - Relocated to - tier1

[6]
[7]

The report in Dialog 4-7 indicates that VxFS relocated file SQL1.DAT in directory

/vsa/NODE0001/SQL00001/ to tier1 in accordance with rule Database_class1,

and so forth.

Placement policy enforcement is typically scheduled to run from an authorized

account at regular intervals, but it can also be run by an authorized administrator

whenever necessary to cause immediate relocation and deletion according to the

rules of the active file placement policy. In addition to entire file systems, the

command can be run against specific files or sets of files. Unscheduled policy

enforcement against a specific set of files can be particularly useful after an

administrative action such as renaming a group of files changes conditions in

such a way that identifiable sets of files are no longer located in accordance with

the active policy.

The fsppadm query command

The fsppadm query command can be used by an authorized administrator to

determine the locations of some or all of the files in a multi-volume file system

and the placement policy rules that resulted in those locations, as Dialog 4-8

illustrates.

65Using the Storage Foundation Dynamic Storage Tiering facility
File placement reports

Dialog 4-8 Querying a file system to determine file locations

fsppadm query /vsa/NODE0001 /vsa/suzi

Created Current Relocated
Class Class Class Rule File

[1]
[2]

tier1 tier1 tier1 Database_class1[3]
/vsa/NODE0001/SQL00001/SQL1.DAT[4]

tier1 tier1 tier1 Database_class1A[5]
/vsa/suzi/inst01/NODE0000/SQL00001/SQL1.DAT[6]

tier1 tier1 tier1 Database_class1A[7]
/vsa/suzi/inst01/NODE0000/SQL00001/SQL11.DAT[8]

tier4[9]
/vsa/suzi/inst01/NODE0000/SQL00001/passwd[10]

tier4[11]
/vsa/suzi/inst01/NODE0000/SQL00001/my.DAT[12]

tier4[13]
/vsa/suzi/inst01/NODE0001/SQL00001/passwd[14]

tier4
/vsa/suzi/inst01/NODE0001/SQL00001/SQL1.DAT

[15]
[16]

In this example, slightly reformatted for readability, the fsppadm query command

only reports on files residing in directory /suzi (relative to the file system’smount

point, /vsa). The columns in the report indicate the placement classes on which

files were initially created, the classes on which they reside when the command

was issued, the classes to which they would be relocated if the policy were to be

enforced, and the rule that determined their current locations. Lines [9]-[16] in

Dialog 4-8 pertain to files that have not been relocated (their current placement

class, tier4, is the same as the placement class upon which they were created),

and would not be relocated if the active policy were to be enforced.

The fsppadm list command

Either the name or the contents of a file system’s active file placement policy can

be ascertained at any time. Dialog 4-9 illustrates the fsppadm list and fsppadm

print commands, which list the name and content of a file system’s active file

placement policy respectively.

Dialog 4-9 Listing and printing file placement policies

fsppadm list /vsa
MOUNT_POINT PLACEMENT_POLICY
/vsa DBED_database_policy

[1]
[2]
[3]

fsppadm print /vsa
<!DOCTYPE PLACEMENT_POLICY SYSTEM "/opt/VRTSfspro/config/placement.dtd">
<PLACEMENT_POLICY Version="5.0" Name="DBED_database_policy" >

[4]
[5]
[6]

......File placement policy rules.......

Using the Storage Foundation Dynamic Storage Tiering facility
File placement reports

66

Dialog 4-9 Listing and printing file placement policies (continued)

</PLACEMENT_POLICY>[7]

67Using the Storage Foundation Dynamic Storage Tiering facility
File placement reports

Using the Storage Foundation Dynamic Storage Tiering facility
File placement reports

68

AdvancedDynamic Storage

Tiering usage

This chapter includes the following topics:

■ Advanced DST features

■ Volume accessibility: a key assumption behind multi-tier storage

■ Using VxFS dataonly volumes

■ Discovering file and volume relationships

■ Placing data restored from file-based backups

■ Distributed file allocation

■ VxFS-directed file placement

■ The effect of statement ordering on file relocation

■ Overlapping placement classes

■ Unconditional file deletion

■ Additional policy rule ordering considerations

■ Enterprise-wide file placement policies

■ Summary: considerations for enterprise-wide file placement policies

5Chapter

Advanced DST features
The Dynamic Storage Tiering facility has several advanced features that increase

its utility and applicability. This chapter describes these unique features and their

implications on multi-volume file system and DST behavior.

The DST value proposition

The primary value proposition of the VxFS Dynamic Storage Tiering facility is a

reduction in average online storage hardware cost without an offsetting increase

in administrative complexity. The reduction in hardware cost stems from placing

files on storage devices commensurate with their business value. Critical files are

placed on highly available, high-performance (and therefore expensive) storage

devices; less critical files are placed on lower cost devices with lesser performance

and availability specifications. The more non-critical data an enterprise must

keep online, the greater the fraction of its online storage that can be purchased

and configured to keep cost low.

The conventional strategy for utilizingmulti-tier storage is to create separate file

systems for each type of storage in the data center, and to copy files from one to

another as business needs change. For example, files containing database tables

of transactions can be moved to lower cost storage devices as the transactions

age, because aged transactions are backed up, and applications and users access

them infrequently if at all.

But as a data center grows, the number of file systems and administrative

operations required to implement strategies of this sort becomes unwieldy. Each

change in the way data is stored and organized must be accompanied by

corresponding changes in application configurations and operating procedures.

The VxFS Dynamic Storage Tiering facility automates the relocation of files to

the right types of storage devices without changing their logical locations in the

file system name space. Because physically relocated files remain at the same

logical locations,DSTeliminates theneed for changes in applications andoperating

procedures. To applications and users, DST file relocation is transparent.

Volume accessibility: a key assumption behind
multi-tier storage

An important, but usually unvoiced, assumption behindmulti-tier storage is that

not all storage devices need be accessible all the time for a system to function. By

storing data on less failure-tolerant devices, an enterprise implicitly acknowledges

that that data is less critical to its operation than other data stored on more

failure-tolerant devices. In the extreme, an enterprise that stores data on devices

Advanced Dynamic Storage Tiering usage
Advanced DST features

70

that are not failure-tolerant implicitly acknowledges that it can function

satisfactorily without that data, at least for the period required to install

replacement storage devices and restore it from a backup copy.

If a storage device in a conventional data center is unavailable, the file system on

it cannot bemounted, and applications that use that file system cannot run.With

amulti-volume file system, however, only themost critical datamust be accessible

for the file system to function; storage devices containing non-critical data need

not be accessible.

Like any commercial file system, a VxFS multi-volume file system must be able

to access all of its metadata in order to function. But a VxFS file system does not

require access to any particular user files’ data in order to mount and run. If

certain files’ data is inaccessible, for example, because the volume containing it

has failed, applications that require those files cannot run, but otherwise the file

system functions as usual.

The conclusion from this is that a multi-volume file system’s metadata should be

placed on the most failure-tolerant volumes in its volume set, while user files’

data can be placed on volumes that are commensurate with the files’ business

value.

VxFS metadata placement

VxFS provides administrative control over metadata placement with a dataonly

flag for each volume in a file system’s volume set. If a volume’s dataonly flag is

set, VxFS only stores user file data on it, not metadata. Volumes whose dataonly

flag is not set are eligible to store metadata as well as user data.

The first volume in a VxFS file system’s volume set (added when the vxvset make

command is executed) is necessarily eligible to store metadata, a property known

as metadataok. By default, VxFS sets all other volumes’ dataonly flags at file

system creation time, or as volumes are added to a volume set. If necessary, an

administrator can use the metadataok flag, illustrated in Dialog 5-1, to clear a

volume’s dataonly flag when adding it to a file system’s volume set, making the

volume eligible to store metadata as well as user data.

Dialog 5-1 Adding a metadata-eligible volume to a volume set

fsvoladm add -f metadataok /vsb vsavola 100m[1]

The command in Dialog 5-1 adds volume vsavola to the volume set for the file

system mounted at /vsb, and clears its dataonly flag, making it eligible to hold

metadata as well as user data.

71Advanced Dynamic Storage Tiering usage
Volume accessibility: a key assumption behind multi-tier storage

A volume’s eligibility to hold metadata can also be changed after it is already part

of amounted file system’s volume set. Dialog 5-2 shows the fsvoladm clearflags

and fsvoladm setflags commands that make volumes eligible and ineligible to

hold metadata respectively.

Dialog 5-2 Changing a volume’s metadata eligibility

fsvoladm clearflags dataonly /vsb vsavolb
fsvoladm setflags dataonly /vsb vsavolc

[1]
[2]

Whenan administrator sets the dataonly flag of a volume that containsmetadata,

as in Line [2] inDialog 5-2, VxFS removes allmetadata from the volume (provided

that there is sufficient free space elsewhere in the file system’s volume set to

relocate the metadata).

VxFS dataonly volume configuration considerations

By designating volumes as dataonly, administrators prevent VxFS from storing

any file system metadata on them. Only a file system’s most failure-tolerant

volumes should be made eligible to store metadata. A best practice for large file

systems is to build a file system around a highly failure-tolerant volume sized to

accommodate the expected amount of metadata, and not make that volume part

of any placement class named in the file system’s file placement policy. Volumes

in placement classes that are named in the policy should be allowed to default to

being dataonly, with their failure tolerance and performance properties dictated

by the business requirements of the user data directed to them by the policy. If

metadata space becomes dangerously full, the critical volume can be expanded

as needed.

Similar considerations apply to multi-volume file systems that are created by

upgrading single-volume file systems. Volume0 (the file system’s original volume)

should be made failure-tolerant, for example by the addition of mirrors, sized

appropriately, and not specified in any file placement policy rules. With

appropriately specified rules, policy enforcement will relocate files away from

volume0, eventually resulting in it holding onlymetadata. If other volumes added

to the volume set are allowed to default to being dataonly, the resultwill ultimately

be the same as for a file system originally created as a multi-volume one.

Partially accessible file systems

A VxFS multi-volume file system can be mounted and accessed if some,or even

all, of its dataonly volumes are inaccessible. The data in files stored on inaccessible

volumes cannot be accessed, although pure metadata operations on them, such

as ownership or permission changes, are still possible. But files whose data is

Advanced Dynamic Storage Tiering usage
Volume accessibility: a key assumption behind multi-tier storage

72

located on available volumes are accessible, and VxFS can manipulate all file

system metadata.

Allocation of new files can fail because no free space is available for metadata,

even though there may be adequate space available on dataonly volumes.

Administrators should therefore allocate adequate space on metadataok volumes

to meet anticipated needs, and should monitor free space on them on an ongoing

basis. VxVM facilities can expand the capacity of metadataok volumes without

disrupting file system access.

The dataonly designation has meaning only at the file system level. It is a

completely distinct property from file placement class. Because VxFS treats all

volumes in a placement class as equivalent when making initial allocation and

relocation decisions, all volumes in a given placement class should be of

comparable failure tolerance and I/O performance, and should have the same

dataonly or metadataok property.

Using VxFS dataonly volumes
Thedataonlydesignation is independent of volume type.Volumeswhosedataonly

flags are set can store user file data regardless of how such data is defined. For

example, a policy might specify that an enterprise’s most critical data be stored

on highly redundant dataonly volumes, and relocated to lower-cost, but still

redundant dataonly volumes as it becomes inactive.

Other rules might specify that temporary (*.tmp) files be stored on a low-cost

non-redundant dataonly volume and never relocated. Because a VxFS file system

does not require dataonly volumes to be present in order to mount, failure of the

dataonly volume containing tmp files would prevent access to them, but would

not affect other uses of the file system.

Similarly, a policy rule might relocate inactive files to non-redundant volumes.

As long as the files have been backed up, there is little apparent need to keep them

on expensive storage devices. Failure of a volume containing inactive files would

not impact applications at all unless the files were accessed, at which time they

could be restored from backup copies. In the meantime, other data in the file

system would be fully accessible by applications.

Inaccessible dataonly volumes and file placement policies

Whenenforcing file placementpolicies, VxFS treats inaccessibledataonlyvolumes

as though they were present, but fully occupied. If, according to a policy rule, a

new, extended, or relocated file should be allocated on an inaccessible dataonly

73Advanced Dynamic Storage Tiering usage
Using VxFS dataonly volumes

volume, actual placement of that file depends onother conditions in the file system

and policy as indicated in Table 5-1.

Table 5-1 File placement when target volume is inaccessible

ResultCondition

The file is placed on the alternate volume.Space is available on another volume in

the inaccessible volume’s placement class

The file is placed on a volume in the

lower-priority placement class.

The rule also specifies a lower-priority

placement class with adequate free space

VxFS chooses the volume onwhich to allocate

the new file.

For file creation only, Flags=any is
specified in the <ON> clause of the rule’s
CREATE statement

New file allocation fails with an ENXIO
indication,making it possible for applications

to distinguish between inaccessible volumes

and placement classes that are actually fully

occupied.

Existing files are not relocated, but there is no

error indication.

None of the above conditions is the case

Discovering file and volume relationships
In a multi-volume file system, knowing which volume holds a file can be an

important piece of information for an administrator. For example, application

performance problems can sometimes be diagnosed by noticing that two heavily

accessed files occupy the samevolume, and relocating one of them to an alternate.

Failure of applications to initialize can often be traced to files that are inaccessible,

for example, because they reside on inaccessible dataonly volumes.

The fsmap command

VxFS administrators can either use facilities of the Storage Foundation

Management Server or run the fsmap command on the host that has a file system

mounted to discover the volumes on which files are located, as Dialog 5-3

illustrates.

Dialog 5-3 Determining which volumes contain a given file

fsmap -q /vsb/suzi/inst01/NODE0000/SQL00001/*
vsbvola Data /vsb/suzi/inst01/NODE0000/SQL00001/SQL11.DAT

[1]
[2]

Advanced Dynamic Storage Tiering usage
Discovering file and volume relationships

74

Dialog 5-3 Determining which volumes contain a given file (continued)

[3]
[4]

vsbvola Data /vsb/suzi/inst01/NODE0000/SQL00001/SQL2.DAT
vsbvolb Data /vsb/suzi/inst01/NODE0000/SQL00001/SQL4.IN1

The fsmap command in line [1] of Dialog 5-3 requests the locations of all files in

directory /vsb/suzi/inst01/NODE0000/SQL00001/. The response indicates that

the database data files (.DAT) are on vsbvola and the initialization file (.INI) is

on vsbvolb.

The fsvmap command

Likewise, it can be equally important to know which files occupy a particular

volume, for example, to assess the impact of administrative operations such as

volume expansion or relocation on production applications. Administrators of

VxFS file systems can use the fsvmap command to determine which files and

directories reside on a particular volume. Dialog 5-4 illustrates the use of the

fsvmap command to list the files in themulti-volume file systemmounted at /vsb

that occupy space on volume vsbvola.

Dialog 5-4 Determining which files are located on a given volume

fsvmap /vsb vsbvola
/

[1]
[2]

/lost+found/[3]
/dir/dir1/dir2/[4]
/dir/dir1/dir2/A.DAT[5]
/dir/dir1/dir2/B.UXT[6]
/dir/dir1/dir2/SQLTAG.NAM[7]
/dir/dir1/dir2/SQL00057.INX[8]
/dir/dir1/dir3/SQL00057.INX[9]
/dir/dir1/dir3/SQLTAG.NAM[10]
/dir/dir1/dir3/nomove[11]
/dir/dir1/dir4/SQLBP.2[12]
/dir/dir1/dir4/SQLBP.1[13]
/dir/dir1/dir4/core[14]
/suzi/inst01/NODE0000/SQL00001/.[15]
/suzi/inst01/NODE0000/SQL00001/SQLa.INX[16]
/suzi/inst01/NODE0000/SQL00001/SQL4.INI[17]
/suzi/inst01/NODE0000/SQL00001/SQL11.DAT[18]
/suzi/inst01/NODE0000/SQL00001/SQL2.DAT[19]
/suzi/inst01/NODE0000/SQL00001/SQL6.INX[20]
/suzi/inst01/NODE0000/SQL00001/SQL6.LB[21]
/suzi/inst01/NODE0000/SQL00001/SQL7.LB
/suzi/inst01/NODE0000/SQL00001/SQL8.LB

[22]
[23]

The fsvmap command can be used to evaluate the effectiveness or appropriateness

of the active file placement policy. It is also useful for determining which files

75Advanced Dynamic Storage Tiering usage
Discovering file and volume relationships

would be affected by a volume size or layout change, or alternatively, which files

are inaccessible when a dataonly volume fails. In the latter case, the output of

the fsvmap command can be edited for use as input to NetBackup’s BPRESTORE

program to restore files that are lost as a result of a dataonly volume failure onto

alternative or replacement volumes in the file system’s volume set. A useful

byproduct of this capability is that by comparing files’ atimes in the file system

metadata (still accessible, because they are not stored on the failed dataonly

volume) with the atimes recorded in the backup image, administrators can

determinewhich files restored from the backup are actually out-of-date andwhich

have been restored to their states at the time of the volume failure.

Placing data restored from file-based backups
From a placement policy standpoint, restoring a file is equivalent to creating a

new file. VxFS places files restored from backups according to the file system’s

active placement policy rules expressed in CREATE statements. Restored files are

not relocated until the policy is next enforced. This may have unexpected effects

under certain circumstances. For example, if a file system containing a large

number of inactive files that have been relocated to second-tier storage experiences

a second-tier volume failure, files from the failed volume are restored to the

placement classes on which they were originally allocated, rather than those to

which they had been relocated due to inactivity. Restoring many such files might

result in top tier storage filling up with data that is actually inactive. Allocation

may even fail for some restored files if the Flags=any does not appear in the <ON>

clauses of CREATE statements. Moreover, there may be significant time and

bandwidth consumption during the first few policy enforcements following the

restore as inactive restored files are relocated to second-tier volumes.

Distributed file allocation
Distributing data across two or more storage devices is a well-known technique

for improving I/O performance. The sequential access typical of streaming

applications tends to improve because large I/O requests are broken up into parts

which transfer data to or from multiple devices concurrently. Random access,

typical of transaction processing applications, also tends to improve because

multiple I/O requests to a data set tend to execute concurrently using separate

physical resources.

Striping iswell-knownas a technique for distributing virtual volumeor LUNblock

addresses across physical storage devices. When a volume’s block addresses are

striped across multiple disks or LUNs, the larger files stored on it tend to have

their data striped across multiple devices.

Advanced Dynamic Storage Tiering usage
Placing data restored from file-based backups

76

Striping at the volume level distributes data for all files in the file system on the

volume. But it can also be useful to select the files whose blocks should be

distributed, rather than indiscriminately striping all files that occupy a volume.

For example, the predominant processing mode for some database tables is

sequential. The files that contain these tables would benefit from concurrent

execution of large read requests, whereas other files in the same file systemmight

be more suitably placed on individual volumes.

The Dynamic Storage Tiering facility can distribute the storage space occupied

by selected files across the volumes in a placement class. A <DESTINATION>

specification within the <ON> clause of a CREATE statement or within the <TO>

clause of a RELOCATE statement may optionally specify a <BALANCE_SIZE>

sub-element. If a <BALANCE_SIZE> is specified, and if the destination placement

class contains more than one volume, VxFS allocates storage for files on the

placement class (both at creation time and when the file is extended) in extents

of <BALANCE_SIZE> size, distributing them randomly across all of the volumes in

the placement class.

Fragment 5-1 illustrates the use of <BALANCE_SIZE> to distribute the space

allocated to selected files across the volumes in a placement class.

Fragment 5-1 Distributed space allocation

<RULE Name=DistributedRule>
<SELECT><PATTERN>*.db</PATTERN></SELECT>

[1]
[2]

<CREATE><ON>[3]
<DESTINATION>[4]
<CLASS>tier1</CLASS>[5]
<BALANCE_SIZE Units="MB">8</BALANCE_SIZE>[6]

</DESTINATION>[7]
<DESTINATION><CLASS>tier2</CLASS></DESTINATION>[8]

</ON></CREATE>
</RULE>

[9]
[10]

In this example, files whose names follow the pattern *.db are allocated on tier1

volumes in extents of 8megabytes distributed randomly across the tier1 volumes.

If a selected file cannot be allocated on tier1 volumes because they are full, it is

allocated on a tier2 volume, but the space allocated to it is not distributed across

multiple tier2 volumes.

Figure 5-1 illustrates two potential allocations of 32-megabyte files on tier1 and

tier2 volumes according to the rule in Fragment 5-1.

77Advanced Dynamic Storage Tiering usage
Distributed file allocation

Figure 5-1 VxFS Distributed space allocation

Volume Set

tier1 volumes tier2 volumes

Extents distributed randomly across volumes in the placement class

0-32MB

Vol4

Vol5

Vol6

Vol1
0-8MB
24-32MB

Vol3

40-48-32MB
16-24-8MB

Vol2
8-16MB

32-40MB

As Figure 5-1 illustrates, a 32megabyte file would be allocated in four 8-megabyte

extents distributed randomly across the three tier1 volumes. Because the

<DESTINATION> specification for tier2 in Fragment 5-1 does not contain a

<BALANCE_SIZE> sub-element, a 32-megabyte file forced to tier2 because tier1

volumes were fully occupied would be allocated on a single volume.

VxFS-directed file placement
When a multi-volume file system has an active file placement policy, VxFS

attempts to allocate space for new files in the placement classes specified in the

<ON> clause of the CREATE statement of the applicable rule for each file. If allocation

fails because no destination has sufficient free space, file creation fails with an

ENOSPC indication, even though there may be adequate space in other placement

classes. In some cases, this may be the desired behavior. In others, it may be

preferable to permit VxFS to use any free space available to allocate a new file as

a last resort, rather than fail allocation because no space is available in any of the

designated destination placement classes.

Including the Flags=any attribute in the <ON> clause of a CREATE statement causes

VxFS to use any available free space to allocate or extend selected files if no

designated destination placement class has adequate free space. The rule in lines

[1]-[7] of Fragment 5-2 illustrates the use of the any attribute to cause allocation

of files whose names follow the pattern *.db to succeed even if no tier1 or tier2

space is available.

Advanced Dynamic Storage Tiering usage
VxFS-directed file placement

78

Fragment 5-2 Example of VxFS-determined file placement

<RULE Name=AllocateAnywhereRule>
<SELECT><PATTERN>*.db</PATTERN></SELECT>

[1]
[2]

<CREATE><ON Flags=any>[3]
<DESTINATION><CLASS>tier1</CLASS></DESTINATION>[4]
<DESTINATION><CLASS>tier2</CLASS></DESTINATION>[5]

</ON> </CREATE>
</RULE>

[6]
[7]

<RULE Name=RestrictedAllocationRule>
<SELECT><PATTERN>*</PATTERN></SELECT>[8]
<CREATE><ON>[9]

<DESTINATION><CLASS>tier1</CLASS></DESTINATION>[10]
<DESTINATION><CLASS>tier2</CLASS></DESTINATION>[12]

</ON></CREATE>
</RULE>

[13]
[14]

By the first rule, files whose names follow the pattern are allocated on tier1

volumes if possible, tier2 volumes if no tier1 space is available, and at locations

elsewhere in the file system’s volume set chosen by VxFS if neither tier1 nor

tier2 space is available. Allocation of *.db files only fails if there is no free space

anywhere in the file system’s volume set. The rule in lines [8]-[14], does not

include the Flags=any attribute, so allocation of files whose names do not follow

the pattern *.db fails with an ENOSPC indication if sufficient space is not available

on tier1 or tier2 volumes.

Some dataonly volumesmaybeunavailable to amounted file system, for example,

because they have failed. When a rule’s CREATE statement indicates that space

for a newor extended file should be allocated on an inaccessible dataonly volume,

VxFS treats the file as though the volume were accessible but fully occupied. The

file is allocated on another volume in the same placement class if possible, in a

lower-priority destination placement class if not, and allocation failurewith ENXIO

unless the CREATE statement’s <ON> clause contains the Flags=any attribute. VxFS

returns the ENXIO failure code to permit applications to distinguish between failed

volumes and fully occupied placement classes. In the latter case, ENOSPC is

returned.

The effect of statement ordering on file relocation
The order in which RELOCATE and DELETE statements appear in a file placement

policy rule can affect the rule’s behavior. A VxFS policy rule may contain one or

more RELOCATE statements, each of which may include any or all of the optional

elements listed in Table 5-2.

79Advanced Dynamic Storage Tiering usage
The effect of statement ordering on file relocation

Table 5-2 Elements specified in a RELOCATE statement

DescriptionElement

Anunordered list of placement classes fromwhich qualifying files

selected by the rule are relocated

Source placement

classes

A priority-ordered list of placement classes to which qualifying

files selected by the rule are relocated

Destinationplacement

classes

Up to five relocation qualifiers which, if met, qualify files selected

by the rule to be relocated

Relocation qualifiers

If a rule does not contain any RELOCATE statements, files to which it applies are

never relocated, even if other rules occurring later in the policy would result in

their relocation. Fragment 5-3 illustrates this scenario.

Serial application of policy rules

Fragment 5-3 illustrates the serial application of the rules in a file placement

policy.

Fragment 5-3 Example of a VxFS selective relocation policy

<RULE Name=DatafileRule>
<SELECT><PATTERN>*.dat</PATTERN></SELECT>

[1]
[2]

<CREATE><ON>[3]
<DESTINATION><CLASS>tier1</CLASS></DESTINATION>[4]
<DESTINATION><CLASS>tier2</CLASS></DESTINATION>[5]

</ON></CREATE>
</RULE>

[6]
[7]

<RULE Name=CatchallRule>
<SELECT><PATTERN>*</PATTERN></SELECT>

[8]
[9]

<CREATE><ON><DESTINATION><CLASS>tier2</CLASS></DESTINATION></ON></CREATE>[10]
<RELOCATE>[11]
<TO><DESTINATION><CLASS>tier3</CLASS></DESTINATION></TO>[12]
<WHEN>......relocation qualifiers......</WHEN>[13]

</RELOCATE>
</RULE>

[14]
[15]

In the first rule of this example (lines [1]-[7]), files with a name extension of dat

following the period are allocated on tier1 volumes if possible, and on tier2

volumes if no tier1 space is available. This rule contains no relocation clause, so

dat files are never relocated.

The catchall rule (lines [8]-[15]) causes all other files to be allocated on tier2

volumes until those volumes are fully occupied, after which allocation fails. This

rule specifies relocation of selected files to tier3 volumes if the qualifications

Advanced Dynamic Storage Tiering usage
The effect of statement ordering on file relocation

80

specified in the <WHEN> clause are met. Because dat files are selected by the first

rule, the second rule never applies to them. Since the first rule contains no relocate

statements, dat files are never relocated.

Ordering of RELOCATE and DELETE statements

VxFS qualifies each file to which a rule applies against the rule’s RELOCATE and

DELETE statements in order of occurrence, stoppingwhen an applicable statement

is encountered. Thus, the order of occurrence of RELOCATE and DELETE statements

can affect their behavior. For example, Fragment 5-4 illustrates a rule for which

the order of RELOCATE statements might lead to unintended results.

Fragment 5-4 Example of an ineffective file relocation policy statement

<RULE Name=LargeFilesRule>
<SELECT><PATTERN>*</PATTERN></SELECT>

[1]
[2]

<CREATE><ON><DESTINATION><CLASS>tier1</CLASS></DESTINATION></ON></CREATE>[3]
<RELOCATE>[4]
<FROM><SOURCE><CLASS>tier1</CLASS></SOURCE></FROM>[5]
<TO><DESTINATION><CLASS>tier2</CLASS></DESTINATION></TO>[6]
<WHEN><SIZE Units="MB"><MIN Flags="gt">50</MIN></SIZE></WHEN>

</RELOCATE>
[7]
[8]

<RELOCATE>
<FROM><SOURCE><CLASS>tier1</CLASS></SOURCE></FROM>

[9]
[10]

<TO><DESTINATION><CLASS>tier3</CLASS></DESTINATION></TO>[11]
<WHEN><SIZE Units="MB"><MIN Flags="gt">100</MIN></SIZE></WHEN>[12]

</RELOCATE>
</RULE>

[13]
[14]

The first RELOCATE statement in lines [4]-[8]of Fragment 5-4 relocates files on

tier1 volumes that are larger than 50 megabytes to tier2 volumes. The second

RELOCATE statement in lines [9]-[13] relocates files on tier1 volumes that are

larger than 100 megabytes to tier3 volumes. But since a file that is larger than

100megabytes is necessarily larger than50megabytes, any file thatwould qualify

for the second RELOCATE statement also qualifies for the first. Therefore, the

second rule never applies to any file.

In Fragment 5-4, the intent is clearly to create all files on tier1 volumes, and

relocate them from tier1 to tier2 volumes when they grow larger than 50

megabytes, or from tier1 to tier3 volumes when they grow larger than 100

megabytes. The desired intent can be achieved by reversing the order of the two

RELOCATE statements.

Placement policy enforcement relocates files selected by a rule that reside in a

placement class specified in the <FROM> clause of a RELOCATE statement andmeet

the qualifications specified in the <WHEN> clause. If a relocate statement does not

81Advanced Dynamic Storage Tiering usage
The effect of statement ordering on file relocation

include a <FROM> clause, qualifying files residing anywhere in the file system’s

volume set are eligible for relocation.

Files are relocated the highest-priority placement class listed in the <TO> clause

on which space is available. Relocation may not occur if free space on destination

volumes is consumed by other applications between the time a file is selected for

relocation and the time that an enforcement thread actually attempts to relocate

it.

Overlapping placement classes
The same placement class may appear in both <FROM> and <TO> clauses of a

RELOCATE statement. Fragment 5-5 illustrates a RELOCATE statement in which

tier2 and tier3 appear as both sources and destinations for file relocation.

Fragment 5-5 Overlapping storage classes in a RELOCATE statement

<RELOCATE>
<FROM>

[1]
[2]

<SOURCE><CLASS>tier1</CLASS></SOURCE>[3]
<SOURCE><CLASS>tier2</CLASS></SOURCE>[4]
<SOURCE><CLASS>tier3</CLASS></SOURCE>[5]

</FROM>[6]
<TO>[7]
<DESTINATION><CLASS>tier4</CLASS></DESTINATION>[8]
<DESTINATION><CLASS>tier3</CLASS></DESTINATION>[9]
<DESTINATION><CLASS>tier2</CLASS></DESTINATION>[10]

</TO>[11]
<WHEN><ACCAGE Units="Days"><MIN Flags="gt">30</MIN></ACCAGE></WHEN>

</RELOCATE>
[12]
[13]

In the <FROM> clause in Fragment 5-5, the order in which the placement classes

appear is immaterial. VxFS relocates files in any of the listed placement classes

if theymeet the qualification in the statement’s <WHEN> clause. In the <TO> clause,

however, the placement class list is priority-ordered, with the most desirable

destination listed first. Policy enforcement does not relocate a file from a

placement class that is higher in the destination placement class list than the

highest priority class with available space. Referring to the RELOCATE statement

in Fragment 5-5, for example, if tier4 volumes were fully occupied, VxFS would

not relocate files from tier3 volumes to tier2 volumes because their current

location (tier3) has a higher priority than placement class tier2.

Advanced Dynamic Storage Tiering usage
Overlapping placement classes

82

Unconditional file deletion
Fragment 5-6 illustrates a policy rule that unconditionally deletes .mp3 files

belonging to user user1 each time the rule is enforced.

Fragment 5-6 VxFS unconditional deletion policy rule

<RULE Name=NoMP3Rule>
<SELECT><PATTERN>*.mp3</PATTERN><USER>user1</USER></SELECT>

[1]
[2]

<DELETE></DELETE>
</RULE>

[3]
[4]

This rule deletes all mp3 files owned by user1, regardless of their locations,

whenever VxFS enforces the active policy.

Additional policy rule ordering considerations
Fragment 5-7 contains a series of policy rules that illustrate certain additional

subtleties of policy rule ordering.

Fragment 5-7 The effect of rule order in a file placement policy

<RULE Name=DatafilesRule>
<SELECT><PATTERN>*.dat</PATTERN></SELECT>

[1]
[2]

<CREATE><ON><DESTINATION><CLASS>tier2</CLASS></DESTINATION></ON></CREATE>
</RULE>

[3]
[4]

<RULE Name=User1FilesRule>
<SELECT><USER>user1</USER></SELECT>

[5]
[6]

<CREATE><ON><DESTINATION><CLASS>tier1</CLASS></DESTINATION></ON></CREATE>
</RULE>

[7]
[8]

<RULE Name=User1FilesRule>
<SELECT><USER>user2</USER></SELECT>

[9]
[10]

<CREATE><ON><DESTINATION><CLASS>tier2</CLASS></DESTINATION></ON></CREATE>
</RULE>

[11]
[12]

<RULE Name=TempFilesRule>
<SELECT><PATTERN>*.tmp</PATTERN></SELECT>

[13]
[14]

<CREATE><ON><DESTINATION><CLASS>tier3</CLASS></DESTINATION></ON></CREATE>
</RULE>

[15]
[16]

The rule in lines [1]-[4] of Fragment 5-7 causes files whose names follow the

pattern *.dat to be created on tier2 volumes. The rules in lines [5]-[12] specify

that all files owned by user1 and user2 are to be created on tier1 and tier2

volumes respectively. But because files are created according to the first applicable

rule in the policy, any dat files created by user1 are created on tier2 volumes,

which may not have been the administrative intention.

83Advanced Dynamic Storage Tiering usage
Unconditional file deletion

The rule in lines [13]-[16] causes files whose names follow the pattern *.tmp to

be created on tier3 volumes. But since the second and third rules apply to all

files created by user1 and user2, including tmp files, VxFS places tmp files that

belong to these users on tier1 and tier2 volumes respectively. Again, this may

not be the intention of the policy.

Placing the second and third rules ahead of the first would result in user1 and

user2’s dat files being created on tier1 and tier2 volumes respectively. Similarly,

placing the second and third rules after the fourth rule would cause user1 and

user2’s tmp files to be created on tier3 volumes. In this case, however, user1’s

dat files would be created on tier2 volumes.

There is no right or wrong answer in this example. Its point is to emphasize that

administrators must understand their storage management goals clearly and

express them precisely when they define file placement policies. Combinations

of the fsmap, fsvmap, and fsppadm query utilities can help determine both the

initial state of a file system and the effect that enforcement of the active policy

would have.

Enterprise-wide file placement policies
While the VxFS Dynamic Storage Tiering facility can be administered on the

serverwhose file systems it controls, a very significant additional benefit for large

data centers andenterprises is promotionof consistent online storagemanagement

across all of a data center’s (and indeed, an enterprise’s) computer systems. In

data centers that have the Storage Foundation Management Server installed, a

storage architect can create a master file placement policy, store it in the SFMS

database, and propagate it from the management server to any number of file

systems across the enterprise provided that they use the same vxfs.placement

class volume tag values. A master policy is syntactically identical to a policy

created for a single file system. It becomes a master by virtue of being assigned

to multiple file systems by the Storage Foundation Management Server.

Standardizing volume tags

File placement policies specify the allocation and relocation of files between

different placement classes. Volumes’ placement classes are defined by the values

of vxfs.placement_class volume tags assigned to them. For a policy to be

applicable to a file system, the volumes in its volume set must have tags that

appear in the policy. Unlike volume names, volume tags need not be unique. The

recommended practice is for a data center to define standard volume tags that

correspond to specific sets of performance and availability properties, and assign

tags to volumes based on the volumes’ properties. Because file placement policies

Advanced Dynamic Storage Tiering usage
Enterprise-wide file placement policies

84

refer only to placement classes, and not to specific volume names, a policy can

be applied to any file systemwhose volume set is assigned tags that appear in the

policy.

Because DST treats the conditions all volumes in placement class X fully occupied

and no volumes of placement class X in volume set, identically, it is not necessary

for all placement classes named in a policy to be represented in the volume sets

of all file systems to which the policy is assigned.

Policies for file systems with different placement class sets

Fragment 5-8, Fragment 5-9, and the diagrams that follow use a file placement

policy that names four placement classes to illustrate this point.

Fragment 5-8 Four-class file placement policy: Database_Rule

<?xml version="1.0"?>
<!DOCTYPE FILE_PLACEMENT_POLICY SYSTEM "placement.dtd">

[1]
[2]

<FILE_PLACEMENT_POLICY Name="Universal_Policy" Version="5.0">[3]
<RULE Name=Database_Rule>[4]
<SELECT>[5]
<PATTERN>*.db</PATTERN>[6]
<PATTERN>*.ora</PATTERN>[7]
<PATTERN>*.dblog</PATTERN>[8]
<PATTERN>*.oralog</PATTERN>[9]

</SELECT>[10]
<CREATE><ON Flags=Any>[11]
<DESTINATION><CLASS>database</CLASS></DESTINATION>[12]
<DESTINATION><CLASS>tier2</CLASS></DESTINATION>[13]

</ON></CREATE>[14]
<RELOCATE>[15]
<TO><DESTINATION><CLASS>tier3</CLASS></DESTINATION></TO>[16]
<WHEN><ACCAGE Units="days"><MIN Flags="gt">45</MIN></ACCAGE></WHEN>[17]

</RELOCATE>[18]
<RELOCATE>[19]
<TO><DESTINATION><CLASS>database</CLASS></DESTINATION></TO>[20]
<WHEN><ACCAGE Units="days"><MAX Flags="lt">3</MAX></ACCAGE></WHEN>[21]

</RELOCATE>
</RULE>

[22]
[23]

Fragment 5-8 shows the policy rule that applies to certain database files, which

are selected by naming pattern. Selected files are created on database volumes

if space permits, on tier2 volumes if not, and elsewhere within the file system’s

volume set if both database and tier2 volumes are fully occupied. Selected files

are relocated to tier3 volumes if they are not accessed for 45 days, and back to

database volumes if they reside in other placement classes andhave been accessed

within three days of the time at which the policy is enforced.

85Advanced Dynamic Storage Tiering usage
Enterprise-wide file placement policies

Fragment 5-9 shows the catchall policy rule for all other files in the file system.

Files are created on tier1 volumes if space permits, on tier2 volumes if not, on

tier3 volumes if neither tier1 volumes nor tier2 volumes have sufficient free

space. If files cannot be allocated on tier1, tier2, or tier3 volumes, allocation

fails with an ENOSPC indication.

Fragment 5-9 Four-class file placement policy rule: Ordinary_Files_Rule

<RULE Name=Ordinary_Files_Rule>
<SELECT><PATTERN>*</PATTERN></SELECT>

[1]
[2]

<CREATE><ON>[3]
<DESTINATION><CLASS>tier1</CLASS></DESTINATION>[4]
<DESTINATION><CLASS>tier2</CLASS></DESTINATION>[5]
<DESTINATION><CLASS>tier3</CLASS></DESTINATION>

</ON></CREATE>
[6]
[7]

<RELOCATE>
<TO>[8]
<DESTINATION><CLASS>tier3</CLASS></DESTINATION>[9]
<DESTINATION><CLASS>tier2</CLASS></DESTINATION>[10]

</TO>[12]
<WHEN><ACCAGE Units="days"><MIN Flags="gt">30</MIN></ACCAGE>[13]
</WHEN>
</RELOCATE>

[14]
[15]

<RELOCATE>
<TO><DESTINATION><CLASS>tier1</CLASS></DESTINATION></TO>

[16]
[17]

<WHEN><IOTEMP>[18]
<MIN Flags="gt">6</MIN>[19]
<PERIOD>3</PERIOD>[20]

</IOTEMP></WHEN>[21]
</RELOCATE>[22]

</RULE>
</FILE_PLACEMENT_POLICY>

[23]
[24]

According to the rule in Fragment 5-9, selected files that are not accessed for

more than30days are relocated to tier3 volumes if possible, and to tier2 volumes

if not. Files whose three-day average I/O temperatures rise above 6 are relocated

to tier1 volumes.

This policy is suitable for enterprise-class servers with three distinct tiers of

volumes for general use (for example, based on mirrored LUNs presented by an

enterprise disk array,mirroredmid-rangeLUNs, and low-cost SATA-basedRAID-5

LUNs, respectively) as well as a fourth class of volumes specifically for database

use. Other types of systemsmight not have volumes in all four placement classes.

For example, systems that do not routinely run database applications might not

have dedicated database volumes. Similarly, smaller systemsmight be configured

with only two classes of storage for general use.

TheDynamic StorageTiering facility only relocates fileswithin placement classes

specified in a file system’s active policy. Placement classes in a file system’s volume

Advanced Dynamic Storage Tiering usage
Enterprise-wide file placement policies

86

set that are not named in its active policy may be used for initial allocation if the

keyword any is specified in one ormore CREATE statement <ON> clauses, but VxFS

does not relocate files to such volumes. (It may relocate files from them if the

active policy contains RELOCATE statementswithout <FROM> clauses.) The examples

that follow illustrate how the policy shown in Fragment 5-8 and Fragment 5-9

workswithmulti-volume file systemswhose volume sets have different placement

class configurations.

Applying a policy to file systems with different placement class sets

Figure 5-2 begins the discussion by illustrating a volume set that contains volumes

in all four of the placement classes named in the policy.

Figure 5-2 Multi-volume file system with four placement classes

Volume Set

Tier1 volume

other volume

Tier3 volumes

Volume_C

Volume_B

Volume_A

Tier2 volumes

Volume_E

Volume_Ddatabase volumes

Volume_G

Volume_H

Volume_F

Volume_J

The volume set illustrated in Figure 5-2 contains all placement classes listed in

the policy, plus an additional other class. No files are relocated to the other

volume. Database files may be created on it (because the any keyword is specified

in the <ON> clause for database files), but other files cannot, because the policy

rule in Fragment 5-9 completely specifies permissible locations for newly-created

files, and the other placement class is not among the specifications.

File systems with three placement classes

The point of presenting this policy is to illustrate that it can be applied to file

systems whose volume sets do not contain volumes in all placement classes

mentioned in the policy. For file creation and relocation purposes, DST treats

placement classes that are not present in a file system’s volume set as though

87Advanced Dynamic Storage Tiering usage
Enterprise-wide file placement policies

their volumes were completely occupied. To illustrate this principle, Figure 5-3

shows a file system whose volume set contains three placement classes, with the

same names as the three general-purpose classes in Figure 5-2, but no volumes

in the database placement class.

Figure 5-3 Multi-volume file system with three placement classes

Volume Set

Volume with tag tier1 Volumes with tag tier2

Volume_F Volume_E

Volume_D

Volumes with tag tier3

Volume_C

Volume_B

Volume_A

The placement class configuration shown in Figure 5-3 might be an installation

standard for file systems that do not routinely host databases. If database files

were to be allocated in a file system with this volume set configuration, VxFS

would place them on tier2 volumes according to the database policy rule

(Fragment 5-8, line [13]). VxFS treats the (absent) database class as though all

of its volumes were full. If tier2 volumes fill, VxFS would allocate database files

on other storage tiers because the <ON> clause of the rule’s CREATE statement has

the any attribute.

With this storage configuration, database fileswould be relocated to tier3 volumes

if they were not accessed for 45 days, but because there are no database volumes,

theywouldnever be relocatedback fromtier3volumes. This (possibly unintended)

side effect could be remedied by specifying a secondary destination in the RELOCATE

statement (following line [20] in Fragment 5-8).

The Ordinary_Files_Rule of this policywould causeVxFS to create non-database

files on the tier1 volume and relocate them to the tier3 and tier2 volumes based

on inactivity, and back to the tier1 volume based on increased average I/O

temperature.

Advanced Dynamic Storage Tiering usage
Enterprise-wide file placement policies

88

File systems with two placement classes

Carrying the concept further, the policy in Fragment 5-8 and Fragment 5-9 can

also be applied to file systems whose volume sets contain only tier2 and tier3

placement classes, as illustrated in Figure 5-4.

Figure 5-4 Multi-volume file systemwith two placement classes (alternative 1)

Volume Set

tier2 volumes

Volume_E

Volume_D

tier3 volumes

Volume_C

Volume_B

Volume_A

File systems on volume sets like that shown in Figure 5-4 might be configured on

smaller systems that are not connected to enterprise-class (tier1) disk arrays.

On such systems, database files would be created on tier2 volumes because there

are no database volumes, and relocated to tier3 volumes if they went 45 days

without being accessed. Once relocated to tier3 volumes, database files would

not be relocated again. This possibly unintended behavior could be altered by

specifying a secondary destination in the <TO> clause of the relocation statement

in lines [19]-[22] of Fragment 5-8. Non-database files would be allocated on

tier2 or tier3 volumes, because there are no tier1 volumes. Inactive files would

be relocated from tier2 volumes to tier3 ones, and files with increased average

I/O temperatures would be relocated from tier3 volumes to tier2.

Figure 5-5 illustrates another file two-class volume set configuration to which

this policy can be applied.

89Advanced Dynamic Storage Tiering usage
Enterprise-wide file placement policies

Figure 5-5 Multi-volume file systemwith two placement classes (alternative 2)

Volume Set

tier1 volumes

Volume_F

tier3 volumes

Volume_C

Volume_B

Volume_A

The volume set shown in Figure 5-5 contains only tier1 and tier3 volumes. It

might be representative of a file system on a small system connected to a limited

amount of enterprise disk array storage (tier1), and a larger complement of

lower-cost (tier3) storage. Assigning the policy in Fragment 5-8 and Fragment 5-9

to a file system with this volume set configuration would result in VxFS choosing

the locations for any new database files, because there are no database or tier2

volumes. Database files could be relocated to tier3 volumes, but relocationwould

be one-way, because there are no database volumes. With this configuration,

adding tier2 as a secondary destination in the RELOCATE statement in lines

[19]-[22] of Fragment 5-8 would have no effect, because there are no tier2

volumes in the file system’s volume set.

VxFS would allocate non-database files on the tier1 volume or one of the tier3

volumes in this volume set, depending on space availability. Access age-based

relocationwould occur from tier1 to tier3 volumes, and I/O load-based relocation

would occur from tier3 volumes to tier1 ones.

Figure 5-6 illustrates the third possible volume set configuration using only the

general-purpose placement classes, one that contains only tier1 and tier2

volumes. This configuration, too, is consistentwith the policy in and Fragment 5-9.

Advanced Dynamic Storage Tiering usage
Enterprise-wide file placement policies

90

Figure 5-6 Multi-volume file systemwith two placement classes (alternative 3)

Volume Set

tier1volume tier2 volumes

Volume_F Volume_E

Volume_D

Assigning the policy in Fragment 5-8 and Fragment 5-9 to a file system with a

placement class configuration like the one illustrated in Figure 5-6 would result

in database files being allocated on tier2 volumes if space were available, and on

the tier1 volume if not, because VxFS would choose locations for database files

if no tier2 space were available. Database files would never be relocated, because

there are no tier3 volumes to serve as destinations. VxFS would allocate

non-database files on tier1 or tier2 volumes, depending on space availability.

Inactive files would be relocated from tier1 volumes to tier2 volumes, and files

with increased average I/O temperatures would be relocated from tier2 volumes

to tier1 volumes, when the policy was enforced.

The policy in Fragment 5-8 and Fragment 5-9 can also be used with a file system

whose volume set contains a single class of general storage volumes and the

database class. For example, if tier1 and database volumes were present on a

system, both files and databases could be allocated, but no relocationwould occur.

Summary: considerations for enterprise-wide file
placement policies

Collectively, these examples illustrate the importance of coordinating thedefinition

of a file placement policy for use with multiple file systems and placement class

configurations for those file systems’ volume sets, so that the desired behavior

results wherever the policy is assigned. If enterprise-wide placement policies are

coordinated with volume set configurations, the result is data center or even

enterprise standards for file placement. This outcome supports the largermulti-tier

storage goal of simplifying online storage management across a data center by

introducing storage configuration consistency across largenumbers of file systems.

91Advanced Dynamic Storage Tiering usage
Summary: considerations for enterprise-wide file placement policies

Advanced Dynamic Storage Tiering usage
Summary: considerations for enterprise-wide file placement policies

92

Storage Foundation built-in

file placement policies

This chapter includes the following topics:

■ The built-in placement policy subset

■ An example of built-in policy creation

■ Summary: built-in file placement policies

The built-in placement policy subset
The Veritas Enterprise Administrator (VEA) graphical management console

includes a set of wizards that administrators can use to create and assign any of

the four types of file placement policies listed in Table 6-1.

Table 6-1 VxFS built-in file placement policy types

DescriptionFile placement policy

type

This policy uses file access age (time since last access) to qualify

files for downward relocation within the storage hierarchy. Files

with larger access ages are relocated to lower tiers. This policy

uses average I/O temperature to qualify files for upward location

within the hierarchy. Files with higher average I/O temperatures

are relocated to higher storage tiers.

Access age-based

This policy uses files’ modification age (time since last

modification) to qualify files for both downward and upward

relocation within the storage hierarchy. Files with larger

modification ages are relocated to lower storage tiers; files with

smaller modification ages are relocated upward.

Update age-based

6Chapter

Table 6-1 VxFS built-in file placement policy types (continued)

DescriptionFile placement policy

type

This policy uses files’ average I/O temperatures to qualify them

for relocation both downward and upward within the storage

hierarchy. Files with lower average I/O temperatures are

relocated to lower tiers; files with higher average I/O

temperatures are relocated upward.

I/O activity-based

This policy is identical to the access age-based policy, except that

a specified set of files is placed in a dedicated placement class

rather than in the top-tier placement class. This policy provides

a means of reserving certain volumes in a file system’s volume

set for a preferred class of files, such as database files.

Access-age-based with

preferred files

Templates for the four built-in policy types listed in Table 6-1 are part of the

Storage Foundation. All four policies relocate files up and down a conceptual

hierarchy of between two and five storage tiers (placement classes) based on

different relocation qualifiers. The policy types listed inTable 6-1 that use average

I/O temperature as a relocation qualifier all use both read and write activity to

calculate I/O temperature. All four policies include provision for pinning

designated sets of files to either the highest or the lowest placement class in the

hierarchy or both.

Launching the built-in policy wizard

Administrators use the VEA graphical management console to launch the VxFS

File Placement Policy Wizard to create or modify any of these policies, supplying

parameters such as placement class names for the storage tiers and specifications

for files to be exempted frompolicy rules. Thewizard generates a placement policy

XML document based on the parameters supplied, and when running locally (not

under the control of Storage Foundation Management Server), assigns the policy

as the file system’s active policy. When running under the control of the

Management Server, the wizards store the resulting policy in the Management

Server database. Figure 6-1 illustrates the use of the VEA console to invoke the

file placement policy wizard to create a new file placement policy and assign it as

the active placement policy for the selected file system (at mount point /volset).

Storage Foundation built-in file placement policies
The built-in placement policy subset

94

Figure 6-1 Invoking the VEA file placement policy wizard to create a new policy

The primary pop-up menu in Figure 6-1 lists the actions that can be taken on

VxFS file system objects from the VEA console. The second-level menu lists the

file placement policy actions, which are described in Table 6-2.

Table 6-2 VEA commands for file placement policies

DescriptionCommand

This command invokes the File Placement Policy CreationWizard

to create one of the four types of built-in policies and assign it

as the active policy for the selected file system.

Create...

This command invokes the File Placement Policy CreationWizard

and populates it with the selected file system’s current active

policy, provided that it is one of the four built-in policy types. (If

it is not, the command fails). Using the wizard, an administrator

can edit the policy, and assign the edited version to the selected

file system as a new active policy.

Modify...

95Storage Foundation built-in file placement policies
The built-in placement policy subset

Table 6-2 VEA commands for file placement policies (continued)

DescriptionCommand

This command deletes the selected file system’s current active

placement policy, whether or not it is one of the four built-in

types. This command leaves a file systemwithout a file placement

policy, so after it executes, VxFS chooses locations within the

volume set for newly created files, and no file relocation occurs.

Delete...

This command is equivalent to the fsppadm analyze CLI
command. It scans all or part of the selected file system’s

directory tree against its active placement policy and creates a

report describing the actions that would be taken if the

Enforce... command were invoked. This command does not
relocate any files.

Analyze...

This command is equivalent to the fsppadm enforce console
command. It enforces the selected file system’s active policy

against some or all of its files by scanning the directory tree and

relocating or deleting files as indicated by the policy rules.

Enforce...

This command produces a report similar to that shown in

Dialog 4-8. The report provides file-by-file information on

original, current, and policy-directed locations, and the rules

under which files will be relocated during the next Enforce
operation.

Query

An example of built-in policy creation
The remainder of this appendix describes the use of the File Placement Policy

Creation Wizard to create an access age-based with preferred files placement

policy on a file system with three tiers (placement classes) of volumes for normal

files, a fourth tier reserved for preferred files, and two additional tiers that are

not used in this example. The file system’s volume set and placement class

configuration for the example is represented in Figure 6-2.

Storage Foundation built-in file placement policies
An example of built-in policy creation

96

Figure 6-2 File system for policy creation example

Volume Set

Placement class T2

Volume_D

Volume_C

Placement class T3

Volume_F

Volume_E

Placement class T1

Volume_A

Placement class Tp

Volume_B

Volume_G

Volume_H

Placement class T5
(not used in example)

Placement class T4
(not used in example)

Thevolume set represented in Figure 6-2has three tiers of volumeswith placement

classes T1, T2, and T3. The built-in policy treats these as a three-level hierarchy.

Additionally, the policy reserves a fourth placement class called Tp as top storage

tier for a specified set of preferred files.

The access age-based with preferred files policy allocates new non-preferred files

on the T1 volume if free space permits, on one of the T2 volumes if not, and on

one of the T3 volumes if neither the T1 volume nor the T2 volumes have adequate

free space. The policy relocates non-preferred files on the T1 volume that are

inactive for a designated period to one of the T2 volumes, free space permitting,

and to one of the T3 volumes if the T2 volumes are filled to capacity. Similarly,

the policy relocates files on the T2 volumes that remain inactive for a (longer)

designated period to one of the T3 volumes, again if free space permits.

The policy relocates non-preferred files from T2 and T3 volumes to the T1 volume

if their average I/O temperatures, calculated using both read and write activity,

rise above a specified level. Similarly, it relocates files on T3 volumes whose

temperatures rise to a (lower) designated level to T2 volumes.

The policy treats preferred files (as designated in a policy rule SELECT statement)

identically with non-preferred ones, except that initial allocation is on the Tp

volume rather than the T1 volume, and I/O temperature-based upward relocation

is to the Tp volume rather than to the T1 volume. Under this policy, no

non-preferred files are ever allocated on or relocated to the Tp volume, and no

preferred files are allocated on or relocated to the T1 volume. Thus, the Tp volume

is effectively reserved for files specified as preferred.

97Storage Foundation built-in file placement policies
An example of built-in policy creation

Choosing the policy type

When the Create... command is invoked from the VEA console, VEA displays

the introductory wizard page shown in Figure 6-3.

Figure 6-3 Choosing the file placement policy type

Administrators use this introductory page to select the type of policy to be created.

This example describes the access age-based with preferred files policy because

it is the most complex of the four built-in policy types. Wizards for other built-in

policy types are similar, with the exception that no provision ismade for preferred

files.

Choosing applicable storage tiers

When the policy type has been selected and theNext button clicked, the placement

class selection page shown in Figure 6-4 appears.

Storage Foundation built-in file placement policies
An example of built-in policy creation

98

Figure 6-4 Choosing storage tiers for a file placement policy

This page is used to select the placement classes to be used by the policy being

created. In the case of the access age-based with preferred files policy, this page

is used to select the placement classes that are to be used for non-preferred files.

Other built-in policies make no distinction for preferred files, so their

corresponding pages define the placement classes to be used for all files.

When the placement policy creation wizard is invoked through VEA on the local

host, it queries the selected file system’s volume set to determine the placement

classes it contains. Thus, the list of placement classes that appears in the left

panel is the complete list of placement classes in the file system’s volume set.

Under normal circumstances, all classes except the one to be reserved for preferred

files should be selected. (The other three built-in policy types donot have preferred

files, so all available placement classes should normally be selected for them.)

When policy creation is complete, and the resulting policy is assigned as the file

system’s active policy, volumes belonging to any placement classes that have not

been selected on this page are not used to store files.

When thewizard is invoked through the Storage FoundationManagement Server,

there is no connection to a particular file system. The list of placement classes

displayed in this panel includes all placement classes contained in theManagement

Server database. Placement classes that are present in the volume sets of file

systems to which the policy being created will be applied should be selected in

this case.

99Storage Foundation built-in file placement policies
An example of built-in policy creation

Policies created using the Storage Foundation Management Server

Because file placement policies stored in the Management Server database may

be assigned to any file system on any host on which Management Server client

software is installed, a file system’s active policy may refer to placement classes

that are not present in its volume set. When this occurs, the Dynamic Storage

Tiering facility treats the missing placement classes as though they were

completely occupied. This makes it possible to use Management Server to assign

a single policy to multiple file systems, even though not all placement classes

named in the policy are present in all file systems’ volume sets. For example, if

this wizard were run under the control of Management Server, placement classes

T4 and T5, although in the database, might not be present on any of the systems

to which the policy being created will be applied.

The placement classes selected using the page shown in Figure 6-4 are listed in

hierarchical order. The policy created by this wizard treats the placement class

listed first as the top (most desirable) storage tier, the second listed class as the

second tier, and so forth. The position of a placement class in the selected listmay

be changed by selecting it and using the two vertical arrow buttons on the right

side of the page.

When the placement classes for non-preferred files have been selected and the

Next button clicked, the page shown in Figure 6-5 appears. This page is used to

select the placement class to be reserved as top-tier storage for preferred files.

Figure 6-5 Choosing the placement class for preferred files

In this example, placement class Tp is selected as the top-most storage tier for

preferred files, which are designated at a later stage in the policy. As Figure 6-2

Storage Foundation built-in file placement policies
An example of built-in policy creation

100

shows, the Tp placement class represents a single volume in this example.

Designating the volume’s placement class rather than its name has a powerful

advantage, however. Additional volumes can be added to a file system’s volume

set. If these are tagged as Tp volumes, VxFS uses them as top-tier storage for

preferred files automatically. No policy change is required.

Volume tags are not unique within a file system’s volume set. Any number of

volumes can be tagged with the value Tp. This makes it possible to use one single

policywith a number of similar systems of different capacities. As long as volumes

that should be reserved for storing preferred files are tagged Tp, the policy

produces the desired behavior nomatter howmany or how few of them there are.

This reduces administrative effort and introduces a level of uniformity on data

center operations that is likely to improve the quality of service delivered to

business applications.

Designating preferred files

The next step in policy creation is to specify which files should be treated as

preferred files. Preferred filesmay be designated by name or pattern, by directory,

or by owner name or owner’s group name. Figure 6-6 shows the wizard page used

to specify the files that the access age-based with preferred files policy treats as

preferred.

Figure 6-6 Designating preferred files

Any or all of the four preferred file selection criteria shown in Figure 6-6 may be

specified. Multiple values may be specified for any single criterion by separating

values with commas. Thus for example in Figure 6-6, files owned by any of users

dbadmin, chiefdba, and hrdbamay be treated as preferred.

101Storage Foundation built-in file placement policies
An example of built-in policy creation

Ifmultiple criteria are specified, a filemust satisfy all of them in order to be treated

as preferred. In this example, a file must have a name extension of db, reside in

directory database (relative to the file system mount point) or one of its

subdirectories, and be owned by one of users dbadmin, chiefdba, and hrdba in

order to be eligible for preferred treatment. All files that are not designated as

preferred on this page are treated as non-preferred, and are allocated on and

relocated to the T1 volume rather than the Tp one.

Defining relocation qualifiers

Figure 6-7 Choosing upward and downward relocation thresholds

The next step in policy definition is to specify the parameters that control

relocation of both preferred and non-preferred files using the wizard page shown

in Figure 6-7. On this page, the administrator enters the numeric thresholds for

downward and upward relocation of files (both non-preferred and preferred)

within thepreviously chosen storage tiers. Themiddle columncontains thenumber

of days of inactivity that trigger downward migration from tier to tier. In

Figure 6-7, relocation from the T1 volume to a T2 volume after 20 days of inactivity

has been specified, as has relocation from T2 volumes to T3 volumes after 40 days

of inactivity. The wizard requires that the list of downward relocation qualifiers

bemonotonically increasing. In this example,with three storage tiers, the inactivity

level for relocating files from T2 volumes to T3 volumesmust be greater than that

for relocating files from T1 volumes to T2 volumes.

The rightmost column of the page is used to specify numeric qualifications for

upward relocation. In Figure 6-7, an average I/O temperature of 5 over a period

Storage Foundation built-in file placement policies
An example of built-in policy creation

102

of five days is specified for relocating files on T3 volumes to T2 volumes, and an

average I/O temperature of 10 over the same period is specified for migrating

files on T2 volumes to the T1 volume. The wizard requires that the list of numeric

qualifications for upward relocation bemonotonically decreasing. In this example,

the I/O temperature for relocating files from T3 volumes to T2 volumes must be

less than that for relocating files to T1 volumes.

Function vs. simplicity

All four of the VxFS built-in file placement policies restrict functionality in the

interest of simplicity. For example, in the access age-based with preferred files

policy of this example, both preferred and non-preferred files are relocated on

the same schedule—20 and 40 days of inactivity for downward relocation, and

average I/O temperatures of 10 and 5 for upward relocation over the same five-day

period. The Dynamic Storage Tiering facility policy definition XML grammar

supports greater generality, which in the case of built-in policies has been

sacrificed in the name of simplicity. The policy definition wizard described in this

example produces XML documents which can be edited by a text or XML editor.

Once edited, however, the documents can no longer be imported into the wizard

for modification by the Modify... VEA command.

Pinned files

The final input step in wizard-based built-in policy creation is the optional

specification of files to be exempt from relocation. Designated sets of files can be

pinned to the top-most and lowest tiers specified on the page illustrated in

Figure 6-4, and not subject to relocation under normal circumstances. Figure 6-8

illustrates the wizard pages used to designate files that should remain on the

highest and lowest tiers in the hierarchy.

103Storage Foundation built-in file placement policies
An example of built-in policy creation

Figure 6-8 Specifying exceptions in the access age-based with preferred files

policy

The entries in Figure 6-8 specify that files in directory etc (and all of its

subdirectories, as indicated by the Include Subdirectories check box) that are

named special-file.dat or whose names have the extension conf following the

period are to be placed on the T1 volume and not be relocated. Similarly, files in

the directory tmp (but not its subdirectories) are to be placed on T3 volumes (the

lowest tier specified on the Figure 6-4) and not relocated. The built-in policies

produced by thesewizards are designed so that if newly-created exempt filesmust

be placed elsewhere than their target placement classes due to lack of free space,

they are relocated to their target placement classes when space becomes available

on them.

The policy summary

Specification of exempt files concludes the input phase of built-in policy creation.

The final step is a review of the policy that the wizard will create based on the

input supplied. Figure 6-9 and Figure 6-10 illustrate the policy summary display

as presented for review.

Storage Foundation built-in file placement policies
An example of built-in policy creation

104

Figure 6-9 Summary of built-in policy part 1

Figure 6-9 shows the part of the textual summary that describes the rules for

creation and relocation of both non-preferred and preferred files. Each statement

in this panel corresponds to a rule in the policy that the wizard creates.

The two views shown in Figure 6-10 illustrate the part of the summary that

describes exceptions to the relocation rules in Figure 6-9. These include both

preferred files, which are subject to relocation, but which are targeted for the

preferred placement class (Tp in this example), and files that are pinned to the

highest (T1 in this example) and lowest (T3 in this example) placement classes

respectively. The summary display gives an administrator the opportunity for

common-sense validation of the policy that the wizard will save and possibly

assign upon completion.

Figure 6-10 Summary of built-in policy part 2

105Storage Foundation built-in file placement policies
An example of built-in policy creation

Naming and assignment

The final step in executing the built-in policy wizard, illustrated in Figure 6-11,

is to name the policy and assign it to the selected file system (if the wizard is

executed through the local VEA interface) or save it in the Storage Foundation

Management Server database (if the wizard is invoked through the Management

Server framework). The name entered in this step is used to locate the policy for

editing when the Modify... wizard is invoked. Additionally, a free-form text

description of the policymaybe supplied. This description is savedwith the policy

and displayed when the Query... command is executed. If the periods specified

for average I/O temperature in Figure 6-7 require an increase in the fcl_keeptime

tunable, checking the box in the lower right corner of the screen permits VxFS to

change the value to one large enough to permit IOTEMP-based relocations to occur.

(The fcl_keeptime tunable is discussed in Policies that contain I/O temperature

.)

Figure 6-11 Saving and assigning newly-created policy

Summary: built-in file placement policies
The VxFS built-in file placement policy wizards can construct policies for as few

as two or asmany as five storage tiers (placement classes). Additionally, the access

age with preferred files policy requires a reserved placement class on which

preferred files are placed. No matter how many placement classes are specified,

any exempt files specified are pinned to the highest and lowest classes (those at

the top andbottomof the list specified on the page illustrated in Figure 6-4. Exempt

files are optional. If none are specified, all files are subject to relocation according

to the numeric qualifications entered on the page shown in Figure 6-7.

Storage Foundation built-in file placement policies
Summary: built-in file placement policies

106

The access age-based with preferred files policy illustrated in this example and

the access age-based policy both use access age (the interval between a file’s POSIX

atime and the time at which the policy is enforced) as the qualifier for relocating

files from higher tiers to lower ones. Both policies use average I/O temperature,

calculated using both read and write activity, as their qualifier for upward

relocation.

The update age-based built-in policy uses modification age (the interval between

a file’s POSIX mtime and the time at which the policy is enforced) to qualify files

for both downward and upward relocation. To eliminate the possibility of endless

relocation cycles, the wizard for creating this policy fills in the qualifying

modification age values for upward relocation as the administrator supplies values

for downward relocation.

The I/O activity-based policy uses average I/O temperature, calculated using both

read and write activity, to qualify files for both downward and upward relocation.

To eliminate the possibility of endless relocation cycles, the wizard for creating

this policy fills in valid qualifying average I/O temperature values for upward

relocation as the administrator supplies values for downward relocation.

The four built-in policy types represent a small subset of the full capability of the

Dynamic Storage Tiering facility’s file placement management capabilities. They

do, however, cover a substantial fraction of typical use cases, and can literally be

created andassigned to file systems inminutes. Thepolicy documents theyproduce

can be edited to add capabilities not provided by the built-in policies themselves,

but once edited by a text editor, the documents cannot be edited using the

Modify...menu command from the VEA console.

107Storage Foundation built-in file placement policies
Summary: built-in file placement policies

Storage Foundation built-in file placement policies
Summary: built-in file placement policies

108

The applications: using the

Dynamic Storage Tiering

facility

■ Using Dynamic Storage Tiering: file relocation based on I/O activity

■ Using Dynamic Storage Tiering: efficient backup of large numbers of inactive

files

■ Using Dynamic Storage Tiering: placing data for business reasons

■ Using Dynamic Storage Tiering: storage reclamation

■ Using Dynamic Storage Tiering: managing storage for databases

■ Using Dynamic Storage Tiering: exploiting MAID-based storage

IIPart

110

Using Dynamic Storage

Tiering: file relocation

based on I/O activity

This chapter includes the following topics:

■ The value proposition revisited

■ The multi-tier storage challenge

■ Using file activity analysis to define placement policies

The value proposition revisited
Perhaps themost broadly applicable benefit of the VxFSDynamic Storage Tiering

facility is reduction of average online storage cost by relocating infrequently

accessed files to the less-expensive tiers of storage in a multi-tier hierarchy.

Inactivity-based file relocation is predicated on two assumptions about storage

cost and data value that are listed in Table 7-1.

Table 7-1 Storage and data assumptions for inactivity-based file relocation

DescriptionAssumption

Storage in a lower tier in the hierarchy has significantly (50% or

more) lower per-byte cost than storage in the next higher tier.

Unit cost of storage

7Chapter

Table 7-1 Storage and data assumptions for inactivity-based file relocation

(continued)

DescriptionAssumption

Thepotential consequences of storing infrequently accessed data

on lower-performance, less fault-tolerant devices are longer

recovery times and older recovery points. These consequences

are outweighed by the cost savings fromdeploying less expensive

storage hardware.

Consequences of

unavailable data

The unit cost of storage

The cost differential betweendifferent types of online storage creates the economic

justification formulti-tier storage strategies. For example, if top-quality enterprise

storage hardware costs $20 per gigabyte and mid-range storage costs $10 per

gigabyte, an enterprise whose online data is 50% inactive could save 25% of its

storage acquisition cost by keeping its inactive data on mid-range storage. Larger

percentages of inactive data result in greater savings, as Figure 7-1 illustrates.

Figure 7-1 Potential capital cost reduction from using two-tier storage

Cost reduction using two-tier storage for inactive data in a 10 terabyte data center

0

50000

100000

150000

200000

250000

0 10 20 30 40 50 60 70 80 90 100

Percentage of inactive data

S
to
ra
g
e
c
a
p
it
a
l
c
o
st

Of course no enterprise actually purchases its entire complement of storage

hardware capacity at one time. The graph in Figure 7-1 might more properly be

thought of as a continuum of possible end states resulting from a process of

gradually adding second-tier storagehardware and configurations and reclaiming

top-tier storage by relocating inactive data to second tier volumes. Second-tier

storage can be added by purchasing mid-range disk arrays, or by reconfiguring

existing unused capacity, for example by replacing mirrored LUNs with RAID-5

ones.

Using Dynamic Storage Tiering: file relocation based on I/O activity
The value proposition revisited

112

Figure 7-1 represents a pure storage hardware-based cost comparison for a data

center with 10 terabytes of online storage. Volume (LUN) configurations are

assumed to be the same for both first and second tier hardware. In reality, the

typical cost differential is even greater due to configuration differences. The

mirrored LUNs typically configured on enterprise-class arrays require more

storage hardware per usable byte, but protect against more failure modes and

provide faster recovery than the RAID-5 or simple LUN configurations that tend

to be found on mid-range arrays. Mirrored LUNs are commonly configured for

an enterprise’s most critical data, while RAID-5 or non-redundant LUNs serve

less-critical applications. Differences like these in configuration accentuate the

potential savings from a multi-tier storage strategy.

For example, using the samebasic parameters as Figure 7-1 (10 terabytes of usable

data, $20 per gigabyte for enterprise storage hardware, $10 per gigabyte for

mid-range storage hardware), configuring enterprise storage as two-mirror LUNs

(100%overhead) andmid-range storage as five-diskRAID-5 LUNs (25%overhead)

would result in the cost differential curve shown in Figure 7-2.

Figure 7-2 Potential capital cost reduction using two-tier storage in mirrored

and RAID-5 configurations

450000

Cost reduction using two-mirror enterprise LUNs for active data and
mid-range RAID LUNs for inactive data

Percentage of inactive data

0 10 20 30 40 50 60 70 80 90
100

S
to

ra
ge

ca
pi

ta
lc

os
t

350000

400000

300000

250000

200000

150000

100000

50000

0

As Figure 7-2 demonstrates, a not uncommon 75% of infrequently accessed data

results in storage hardware cost savings of 50% under these configuration

assumptions. Taking into account typical enterprise practices of makingmultiple

copies of critical data, the storage hardware savings fromplacing less critical data

on volumes that cost less, both because of the hardware that implements them

and the way they are configured, can be even more dramatic.

113Using Dynamic Storage Tiering: file relocation based on I/O activity
The value proposition revisited

The value of available data

The second value premise of multi-tier storage is that storing inactive data on

storage devices of lesser quality does not affect IT operations adversely. From an

I/O performance standpoint, if data is inactive or seldom-accessed, the

performance of the storage devices that hold it is irrelevant. From an availability

standpoint, it is practical to recover inactive data from backup copies, because

time to restore from an offline backup does not delay operations if the files being

restored are largely inactive.

In summary, for enterprises that must keep a significant amount of non-critical

data online, amulti-tier storage strategy can offer substantial cost savingswithout

adverse effects on business operations.

The multi-tier storage challenge
The challenge in attaining the benefits ofmulti-tier storage is to get the right files

on the right storage tier at the right times. Capital savings can easily be

overwhelmed by the administrative cost and complexity of relocating application

data and the increased chances of operational error that accompany complexity.

The purpose of the Dynamic Storage Tiering facility is to eliminate any

administrative cost and complexity by automating the relocation of files as levels

of I/O activity against them rise and fall, as well as when their sizes, owners, or

logical positions in the file system name space change.

Limitations of conventional techniques

The two conventional techniques for utilizing multi-tier storage are ad hoc data

relocation using administrator-defined and maintained procedures, and

pre-packaged hierarchical storage management. Both of these have limitations,

as Part I (Conventional multi-tier storage techniques) explains. Ad hoc
relocation is labor-intensive and susceptible to changes in the IT environment.

Hierarchical storage management policies are inflexible, and in addition, there

is an inherent time-to-first-byte latency that makes HSM unsuitable for use with

many applications. Moreover, when HSM is in use, administrators must ensure

that file systems have adequate free space for restoration of migrated files when

applications access them. The limitations of both techniques stem from the fact

that they relocate files logically as well as physically—file data is moved outside

the storage space controlled by the file system. With ad hoc data relocation,

applications and operating procedures must be set up to access files in alternate

file systems, and the setup must be changed each time files’ logical locations

change. HSM leaves “stubs” of relocated files in the file system name space, but

must retrieve file data from backing store when applications access files.

Using Dynamic Storage Tiering: file relocation based on I/O activity
The multi-tier storage challenge

114

The VxFS Dynamic Storage Tiering facility has neither of these limitations. Files

relocated by DST remain on volumes controlled directly by the file system. When

accessed by applications, they are instantly available with no time-to-first-byte

latency. Except for any noticeable I/O performance differences between storage

tiers, DST file relocation is transparent to applications.

Matching policies to usage

To derive maximum benefit from the Dynamic Storage Tiering facility, a file

system’s placement policy should match both application usage of files and

available storage resources. For example, if 25% of the storage managed by a file

system is occupied by files deemed active by somemeasure, and the rest by inactive

files, then 25% of the file system’s storage resources should be purchased and

configured to meet the I/O performance and data availability needs of the active

data. The remaining 75% can be purchased and configured to minimize cost.

Discovering file characteristics

The challenge lies in determining what constitutes an inactive file for purposes

of relocation by the DST facility. For some applications, this may be obvious—last

month’s transaction files are relocated at the end of the month, for example. But

in most file systems, setting a file placement policy should be preceded by an

analysis of actual file system activity. The Command Central Storage component

of the Storage Foundation can generate file utilization reports that provide some

guidance on configuring storage to match utilization patterns, as Figure 7-3

illustrates.

115Using Dynamic Storage Tiering: file relocation based on I/O activity
The multi-tier storage challenge

Figure 7-3 Command Central Storage file activity summary

Figure 7-3 illustrates the first few summary lines of the CommandCentral Storage

File Details tab for a single server. This page summarizes file creation, access,

and modification activity, file sizes, and file types for a file system. The report

contains both the number of files that fit the various categories and the amount

of storage capacity they occupy. Almost at a glance, this report canhelp determine

appropriate file selection criteria, as well as relocation qualifiers, thatmatch both

actual file utilization patterns and the storage complement of a multi-volume file

system.

If Command Central Storage is not available, one analysis technique is to take

periodic listings of all files in a file system, sort them by POSIX atime or mtime,

and from the distribution of results, determine the appropriate access age to be

part of a downward relocation policy rule. For example, if analysis shows that

75% of files have not been accessed for 30 days ormore, 30 daysmay be a suitable

downward relocation threshold.

This analysis can also be used to assess the adequacy of the storage devoted to a

file system. For example, if 25% of files are judged to be active (for example, have

been accessed within the last 30 days), but those 25% comprise only 10% of the

storage capacity occupied by the file system, a redistribution of storage resources

Using Dynamic Storage Tiering: file relocation based on I/O activity
The multi-tier storage challenge

116

in the data center may be appropriate. Conversely, if the active files comprise a

greater percentage of total file system storage capacity than is available on top-tier

storage, then some active files necessarily occupy second-tier storage, and an

increase in the amount of top-tier storage is probably warranted.

Using file activity analysis to define placement
policies

If analysis shows a single sharp delineation point between inactive and active

files, the same delineation point may also be used in a policy rule for upward

relocation. Fragment 7-1 illustrates upward and downward file relocation

statements that might have been based on such an analysis of file activity.

Fragment 7-1 Activity-based policy rules

<RELOCATE>
<FROM><SOURCE><CLASS>top_tier</CLASS></SOURCE></FROM>

[1]
[2]

<TO><DESTINATION><CLASS>second_tier</CLASS></DESTINATION></TO>[3]
<WHEN>[4]
<ACCAGE Units="days"><MIN Flags="gt">30</MIN></ACCAGE>[5]

</WHEN>
</RELOCATE>

[6]
[7]

<RELOCATE>
<FROM><SOURCE><CLASS>second_tier</CLASS></SOURCE></FROM>

[8]
[9]

<TO><DESTINATION><CLASS>top_tier</CLASS></DESTINATION></TO>[10]
<WHEN>[11]
<ACCAGE Units="days"><MAX Flags="lteq">30</MAX></ACCAGE>[12]

</WHEN>
</RELOCATE>

[13]
[14]

Time since last access (<ACCAGE>) may not always be a suitable qualifier for file

relocation. For example, an application may open a file and read a few bytes,

determine that the file is not of interest, and close it again. If the application runs

daily, the file’s access age is always less than a day, so it would never be relocated

if the applicable policy rule were similar to that shown in Fragment 7-1, even

though there is little reason for it to remain on top tier storage.

Conversely, a file that has been relocated to second-tier storage may be accessed

once on the day before a policy enforcement, with no intention of accessing it

again for months. Again, such a file’s access age is small, so it is likely to be

relocated upward if the rule for upward relocation is <ACCAGE>-based.

Neither of these results is desirable. The problem with them stems from the fact

that access age is sometimes inadequate as an indicator of file activity. Any access

to a file effectively zeros its access age. The DST average I/O temperature

117Using Dynamic Storage Tiering: file relocation based on I/O activity
Using file activity analysis to define placement policies

relocation qualifier is often a better indicator of consistent I/O activity against a

file over a period of time.

Policies that contain I/O temperature

Using the <IOTEMP>or <ACCESSTEMP> relocationqualifiers can reduce or eliminate

the undesirable effects of <ACCAGE>-based relocation in file systems that are

susceptible to them. VxFS computes a file’s average I/O temperature or access

temperature based on I/O statistics records that are periodically written to its file

system’s File Change Log (FCL). If a file system’s active placement policy includes

RELOCATE statements that use <IOTEMP> as a relocation qualifier, the FCL and I/O

statistics collectionmust both be activated, andmoreover, the fcl_keeptimemust

be larger than the largest <PERIOD> specified in any policy rule. If a file system’s

placement policy contains one or more <IOTEMP> or <ACCESSTEMP> relocation

qualifiers, and the FCL is not active when the policy is enforced, no I/O

temperature-based file relocations are performed.

When a file placement policy is assigned to a file system, VxFS automatically

activates both the FCL and the collection of I/O statistics. If the FCL is deactivated

for any reason, it must be reactivated again in order for policy enforcement to

performtemperature-based relocations.Dialog7-1 illustrates a commandsequence

that can be issued by an authorized administrator to reactivate the FCL, enabling

the I/O statistics collection required to enforce I/O temperature based relocation

rules, and increasing the maximum time for which FCL records are retained.

Dialog 7-1 Enabling File Change Log statistics collection

fcladm on /vsa
fcladm set filestats /vsa

[1]
[2]

vxtunefs -o fcl_keeptime=432000 /vsa
vxtunefs -o fcl_winterval=12h /vsa

[3]
[4]

The fcladm on command in Dialog 7-1 starts File Change Log data collection on

the file system mounted at /vsa. VxFS does not store I/O activity statistics

persistently in the FCL by default, so the fcladm set filestats command in

line [2] is required to start collection. If required, the vxtunefs command in line

[3] extends the time for which FCL records are retained so that <IOTEMP> and

<ACCESSTEMP> relocation and deletion qualifiers can be calculated.

When filestats storage is enabled, recordswritten to theFCL include information

about the number of bytes read from and written to files between the times that

their inodes enter and leave the file system cache. VxFS also writes periodic

statistics-only records for files that remain open for long periods during which

no other FCL records are written on their behalf. The period is adjustable by

Using Dynamic Storage Tiering: file relocation based on I/O activity
Using file activity analysis to define placement policies

118

adjusting the fcl_winterval file system tunable as in line [4] of Dialog 7-1.

Because the DST average I/O temperature computation requires only the oldest

and newest I/O statistics records in the FCL, a fcl_winterval that is about 25%

of the interval between regularly scheduled policy enforcements is usually

adequate. For example, if policy enforcement is scheduled daily, afcl_winterval

value of 6 hours is nornmally adequate.

Average I/O temperature and access temperature are application-dependent file

relocation qualifiers. Application knowledge is required to determine, for example,

whether bytes read, bytes written, or both are most appropriate for temperature

calculations, what the optimal <PERIOD> for measuring temperature is, and what

constitutes an appropriate temperature to justify the I/O load of relocating large

files. For example, files containing event history for a customer relationship

management system might be appropriately located on top-tier storage if they

are read or written five times or more per day (an average I/O temperature of 5),

and more appropriately moved to second-tier storage if accessed less frequently.

In other instances, files might only merit relocation to top-tier storage if they are

being modified frequently, so only write statistics would figure in temperature

calculation.

Unlike access and modification age, which use only file system metadata and

require less application-specific knowledge, temperature-based relocation may

require awareness of how users and applications access files, and even some

experimentation to determine the most appropriate values for <PERIOD>, <MIN>,

and <MAX>.

Modification age-based relocation

The third activity-related file relocation qualifier is modification age (<MODAGE>),

computed as the difference between a file’s POSIX mtime and the time at which

the active policy is enforced.Modification age is an appropriate relocation qualifier

when updates to a file rather than read access make it appropriate to keep it on

a top storage tier. This might be the case, for example, if protecting recently

modified files from loss due to storage device failure is critical, but read

performance of unmodified files is not. As another example, if modification of a

previously inactive file is a signal of upcoming regular accesses, a small

modification age might qualify a file for relocation from a lower storage tier to a

higher one.

A policy may use different qualifiers for relocation from lower storage tiers to

higher ones than are used to relocate files from higher tiers to lower. Two of the

four file placement policy types built into the Storage Foundation do this, using

minimum access age to qualify files for relocation from higher storage tiers to

lower ones, and average I/O temperature as the qualifier for relocation from lower

119Using Dynamic Storage Tiering: file relocation based on I/O activity
Using file activity analysis to define placement policies

tiers to higher. Another combination of qualifiers that may be appropriate for

someapplications is access age as adownward relocationqualifier andmodification

age for upward relocation.

IOTEMP and ACCESSTEMP vs. ACCAGE and MODAGE

Average I/O temperature and access temperature are “softer” qualifiers for

activity-based relocation than access or modification age. If minimum access or

modification age is used to qualify files for downward relocation, a single access

to a file between successive policy enforcements prevents relocation. Conversely,

using maximum access age as an upward relocation qualifier means that a single

access to an inactive file qualifies it for relocation, even if it is never accessed

again. For a file to be relocated based on its average I/O temperature, it must

experiencemore than aminimum (for upward relocation) or less than amaximum

(for downward relocation) level of I/O activity over a period of time. Bothminimum

andmaximum thresholds, as well as the period over which they are observed can

be set to meet application and operational requirements.

Using Dynamic Storage Tiering: file relocation based on I/O activity
Using file activity analysis to define placement policies

120

Using Dynamic Storage

Tiering: efficient backup of

large numbers of inactive

files

This chapter includes the following topics:

■ File systems with millions of files

■ Characteristics of the two-tier volume level backup technique

File systems with millions of files
Some file systems are characterized by very large numbers (millions) of small

files, most of which eventually become inactive. In many cases, inactive files can

only be identified by examining their POSIX atimes, and not by other properties,

such as the directories in which they reside, or their owners. The “working set”

of such file systems is relatively small—10-20%of the total number of files. Amail

server that stores eachmessage as a file, a documentmanagement system, or any

database application using opaque data objects stored as separate files might all

have this characteristic.

Challenges in backing up large numbers of inactive files

Such file systems can typically benefit greatly from two-tier storage, with files

being relocated to the lower of the two tiers based on one of the four inactivity

qualifiers (access age, modification age, average I/O temperature, and average

access temperature). If 80-90% of the files are inactive, then 80-90% of the file

8Chapter

system’s storage could consist of low-cost devices. But there is a further important

benefit as well. Backing up a file system with many files (millions or tens of

millions) is time-consuming, with much of the time consumed in the processing

of inactive filemetadata. If themajority of files are inactive, not only is processing

time wasted during backup, but I/O time and media are consumed needlessly as

well, making copies of inactive files that have not changed since the previous

backup cycle.

Advantages of volume-level backup

Properly configured, the Dynamic Storage Tiering facility can facilitate a

significant reduction in the time and resources required to back up file systems

of this type for disaster recovery. The reduction results from a scheme predicated

upon the practicality of making volume-level backups of individual volumes in

the file system’s volume set (hence the limit of its applicability to disaster recovery:

volume-level backups are generally unsuitable for individual file recovery).

The essence of the scheme is to make less frequent image backups of volumes

that contain inactive data, and more frequent image backups of volumes that

contain active data. This saves time and resources in two ways. First, inactive

data need not be backed up as frequently as active data. For example, a schedule

of daily backups of active data and weekly backups of inactive data can save 85%

of the time and media consumed in backing up the inactive portion of a file

system’s data. Second, volume-level backup with efficient large I/O requests and

zero overhead for metadata processing can be significantly faster than file-level

backup for very large numbers of files (assuming that a large percentage of volume

capacity is occupied by data so that more data than unoccupied space is backed

up).

To use this scheme, second-tier volumes on which inactive data is to be stored

must be designated as dataonly volumes so that no VxFS metadata is placed on

them. All file system metadata will reside on top-tier volumes, along with active

data. During normal operation, second-tier volumes are made read-only, except

during file placement policy enforcement, when they are made read-write so that

inactive files can be relocated to them.

At any time while second-tier volumes are read-only, image backups of them can

be made, for example using the UNIX dd utility program. Applications can read

data on second-tier volumes during backup, but because the volumes are read-only,

data on them cannot change. Because second-tier volumes are dataonly, all

metadata that describes the files stored on them remains online along with the

file system’s active data on top-tier volumes.

Using Dynamic Storage Tiering: efficient backup of large numbers of inactive files
File systems with millions of files

122

Restoring data from a volume-level backup

If a second-tier volume fails, a replacement volume of the same capacity can be

added to the file system’s volume set at the same relative position, and the backup

image restored onto it. As long as the failed volume remained write-locked from

the time of the backup until the time of the restore, data blocks on the restored

image will be properly mapped by the metadata on the file system’s top-tier

volumes.

This scheme requires that second-tier volumes be made writable periodically so

that files on top-tier volumes that have become inactive can be relocated to them.

During policy enforcement, no valid backup exists, because the data on second-tier

volumes changes as newly inactive files are relocated to them. It is important,

therefore, that the window during which inactive files are writable be as short as

possible. Ideally, second-tier volumes should bemadewritable immediately before

thepolicy is enforced, andmade read-only again as soonas enforcement completes.

To provide a measure of protection against data loss during this window, the

volume level backups should be augmented by periodic file level backups.

A variation of this scheme incorporatingmultiple second-tier volumes can shorten

backup time for inactive data bymaking it possible tomakemultiple image backups

concurrently.Withmultiple second-tier volumes, several dd-type copy operations

can be run concurrently, shortening elapsed time for backup of second-tier data.

Characteristics of the two-tier volume level backup
technique

The volume-level backup scheme has the greatest benefit for file systems that

arewell-populated (so that volume-level backups back up a preponderance of user

data rather than a preponderance of unoccupied space), and file systems in which

a large percentage of the files are inactive and have been relocated to second-tier

storage before backup runs.

The key benefits of volume-level backup of multi-volume file systems containing

large numbers of inactive files are summarized in Table 8-1.

123Using Dynamic Storage Tiering: efficient backup of large numbers of inactive files
Characteristics of the two-tier volume level backup technique

Table 8-1 Benefits of volume-level backup of large numbers of inactive files

DescriptionBenefit

Backup time and resource savings result from the higher

speed of volume-level (compared to file-level) backup as

well as from the elimination of redundant backups of

unchanging inactive data. Additionally, backup media and

library slot costs are reduced because inactive data can be

backed up less frequently. The larger the percentage of

inactive files in a file system, the more effective this

volume-level backup scheme will be in saving backup time,

bandwidth, backup media and online storage cost.

Significantly reduced backup

timeand resources compared

to full file system backups

Identifying inactive datamakes it possible to use lower-cost

storage resources for the majority of a file system’s storage.

The application consequences ofwaiting for a failed volume

containing only inactive data to be restored are generally

minimal.

Reduced online storage cost

without sacrificing data

integrity

As long as administrators can manage individual volume

backups, the volume-level backup scheme does not require

explicit support from backup managers.

Universal applicability

Quantitative benefits

Table 8-2 presents a simple example of the volume-level backup scheme that

quantifies the cost savings for a one terabyte file system formatted on ten 100

gigabyte volumes under a range of inactive data assumptions.

Table 8-2 Simple benefit analysis for differential volume backup schedules

Media

consumed

(tapes/week)

Elapsed

backup time

(hr/week)

Backup

traffic

(TB/week)

Online

storage cost

Number of

dataonly

volumes

Number of

active data

volumes

70707$50,000010

64646.4$46,80019

58585.8$43,60028

52525.2$40,40037

46464.6$37,20046

40404$34,00055

34343.4$30,80064

Using Dynamic Storage Tiering: efficient backup of large numbers of inactive files
Characteristics of the two-tier volume level backup technique

124

Table 8-2 Simple benefit analysis for differential volume backup schedules

(continued)

Media

consumed

(tapes/week)

Elapsed

backup time

(hr/week)

Backup

traffic

(TB/week)

Online

storage cost

Number of

dataonly

volumes

Number of

active data

volumes

28282.8$27,60073

22222.2$24,40082

16161.6$21,20091

The example in Table 8-2 is based on the assumptions listed in Table 8-3

Table 8-3 Assumptions for per-volume backup example

DescriptionAssumption

The file system occupies ten 100-gigabyte volumes. The

volumes are either based on enterprise-classmirrored LUNs

with a raw hardware cost of $25 per gigabyte, or mid-range

five-disk RAID-5 LUNs with a raw hardware cost of $15 per

gigabyte.

File system volume

configuration

Active files are stored on top-tier mirrored enterprise

volumes; less active files are stored on second-tiermid-range

RAID-5 volumes.

Volume usage

Active data volumes are backed up daily; inactive data

volumes are backed up weekly. Each backup of a volume

takes an hour.

Backup frequencyand timing

Table 8-2 demonstrates that the savings in raw storage hardware, I/O bandwidth

consumed by backup, time during which application I/O performance is degraded

(because backup is running), and tape media consumption are all proportional to

how much of the file system’s data is inactive and storage on low-cost volumes.

Storage hardware cost varies by more than a factor of 2, and other metrics vary

by more than a factor of 4.

125Using Dynamic Storage Tiering: efficient backup of large numbers of inactive files
Characteristics of the two-tier volume level backup technique

Using Dynamic Storage Tiering: efficient backup of large numbers of inactive files
Characteristics of the two-tier volume level backup technique

126

Using Dynamic Storage

Tiering: placing data for

business reasons

This chapter includes the following topics:

■ Mapping business requirements to file characteristics

■ File placement by application

■ File placement by user and department

■ File placement by logical position in the file system name space

■ File placement by file size

■ Placing files to give preferential service to users

Mappingbusiness requirements to file characteristics
While relocating files among storage tiers in a cost, availability, and performance

hierarchy is themost obvious application for theDynamic StorageTiering facility,

the generality of DST architecture makes other uses possible as well. Table 9-1

lists three additional ways in which the flexibility of DST architecture makes

precise file placement based on a variety of business purposes possible.

9Chapter

Table 9-1 Dimensions of flexibility in DST file placement

DescriptionDimension of

flexibility

VxFS imputes no intrinsic meaning to placement classes. A

placement class name is an arbitrary character string attached

to volumes in a file system’s volume set, and used to identify new

file allocation sites aswell as the source and destination volumes

for file relocation.

Placement classes

The four file selection criteria (<PATTERN>, <DIRECTORY>,
<OWNER>, and <GROUP>) provide a variety of ways of organizing
files so that appropriate rules can be applied to them. Three of

these criteria, <OWNER>, <GROUP>, and <DIRECTORY>, are also
commonly used to organize files by application or user, making

it natural to dedicate volumes to data used by particular

applications or owned by particular users. The fourth criterion

(<PATTERN>) is commonly used by applications to identify files,
making it possible to discriminate in favor of or against files of

certain types.

File selection criteria

Files can be relocated or deleted based on activity level, but also

on the basis of size, making it possible to relegate very large files

to high-capacity storage devices and segregating them fromother

files in the file system.

File relocation

qualifiers

The sections that follow illustrate how these properties make it possible to locate

files on volumes to satisfy a range of business purposes.

File placement by application
Many enterprises use databasemanagement systems tomanage theirmost critical

digital data. A reasonable policy for an enterprise’s most critical data is to give it

preferential placement compared to other files in a file system. An enterprisemay

havemanydatabases processed bydifferent servers, but there is a strong likelihood

of all database-related files being named according to common patterns (usually

file name extensions) that are dictated or at least strongly influenced by the

databasemanagement system.Thesepatterns canbeused to control theplacement

and relocation of database files by specifying them in the SELECT statement of a

file placement policy rule. The Database_Rule in lines [1]-[8] of Fragment 9-1

illustrates the selection of database-related files for preferential treatment based

on their naming patterns. Preferential treatment might include allocation on

top-tier storage, specification of the any flag in the <ON> clause of a CREATE

statement, and unconditional upward relocation (so that if a preferred file is

Using Dynamic Storage Tiering: placing data for business reasons
File placement by application

128

created on other than top-tier storage due to lack of available top-tier space, it is

relocated to the top tierwhen space becomes available). Because theDatabase_Rule

occurs first in the policy, database files are placed according to it rather than rules

that appear later, even if they satisfy the selection criteria in those rules.

Fragment 9-1 Using file naming patterns to control placement

<RULE Name="Database_Rule">
<SELECT>

[1]
[2]

<PATTERN>*.db</PATTERN>[3]
<PATTERN>*.ora</PATTERN>[4]
<PATTERN>*.oralog</PATTERN>[5]

</SELECT>[6]
CREATE, RELOCATE, and DELETE statements for databases

</RULE>
[7]
[8]

<RULE Name="Undesired_Files_Rule">
<SELECT>

[9]
[10]

<PATTERN>*.jpg</PATTERN>[11]
<PATTERN>*.mp3</PATTERN>[12]

</SELECT>[13]
CREATE, RELOCATE, and DELETE statements for undesired files

</RULE>
[14]
[15]

<RULE Name="Ordinary_Files_Rule">
<SELECT><PATTERN>*</PATTERN></SELECT>

[16]
[17]

CREATE, RELOCATE, and DELETE statements for ordinary files
</RULE>

[18]
[19]

Name patterns that identify the applications that process a file can also be used

to discriminate against files, as the Undesired_Files_Rule in lines [9]-[15] of

Fragment 9-1 illustrates. This rule might relegate selected files to a low tier in

the storage hierarchy, and might also constrain the space that could be devoted

to such files by dedicating a placement class of limited capacity to them and not

specifying the any flag in the <ON> clause of its CREATE statement.

The rule in lines [16]-[19] of Fragment 9-1 is the “catchall” rule that specifies

placement for all files not selected by rules occurring earlier in the policy. The

four policy types built into VxFS follow this sieve structure—the preferred files

rule appears first (in the access age with preferred files policy), rules governing

files exempted from relocation appear next, and the rule governing all other files

appears last in the policy.

File placement by user and department
For file systems that are organized along user lines rather than application ones,

the <OWNER> and <GROUP> selection criteria make it possible to segregate files

along departmental or individual user lines. A large file server, for example,might

129Using Dynamic Storage Tiering: placing data for business reasons
File placement by user and department

be shared by engineering, sales, marketing, service, and finance departments.

Each of these might have its own allotment of storage, and indeed, in extreme

cases, its own storage hierarchy. Fragment 9-2 illustrates a sequence of policy

rules applied to files based on ownership.

Fragment 9-2 Using file ownership to control placement

<RULE Name=”Engineering_Rule”>
<SELECT>

[1]
[2]

<GROUP>Eng</GROUP>[3]
</SELECT>[4]
CREATE, RELOCATE, and DELETE statements for engineering

</RULE>
[5]
[6]

<RULE Name=”Admin_Rule”>
<SELECT>

[7]
[8]

<GROUP>Sales</GROUP>[9]
<GROUP>Mktg</GROUP>[10]
<GROUP>Service</GROUP>[11]

</SELECT>[12]
CREATE, RELOCATE, and DELETE statements for sales, marketing, & service

</RULE>
[13]
[14]

<RULE Name=”Finance_Rule”>
<SELECT>

[15]
[16]

<GROUP>Finance</GROUP>[17]
</SELECT>[18]
CREATE, RELOCATE, and DELETE statements for finance files

</RULE>
[19]
[20]

In Fragment 9-2, files owned by members of the Eng group are subject to

Engineering_Rule, which might have one or more private placement classes or

whichmight share some or all of its storage with files owned by other groups. The

Sales, Mktg, and Services groups’ files follow a common creation, relocation,

and deletion rule, again, either with dedicated storage or with some or all of its

placement classes shared with those specified in other rules. Finally, files owned

by users in the Finance group are subject to yet a different rule.

File placement by logical position in the file system
name space

The third selection criterion for file placement policy rules is the directory in

which a file resides. Files can be selected by placement rules based on their logical

locations in the file system name space. This facility can be used to control data

location in a variety of ways. For example, new or patched applications may be

placed on low-cost storage for testing against space-saving snapshots of live data.

When test results are satisfactory, the test versions can be moved to production

Using Dynamic Storage Tiering: placing data for business reasons
File placement by logical position in the file system name space

130

directories, and the superseded versions can be moved to archival directories on

low-cost storage. Assuming that rules for unconditional relocation of files in

production directories are part of the active policy, the next policy enforcement

relocates the superseded application images to archival storage (from which they

can be moved offline or deleted when a suitable confidence interval has elapsed)

and relocated the new versions to the appropriate volumes for production

applications.

Directory locations can also be used to achieve an effect similar to activity-based

relocation. For example, in any transaction-oriented application there are records

and documents whose access frequency is high when they are new and decreases

as they age. If I/O activity decreases to zero, the access age relocation qualifier

can be used. If I/O activity decreases but does not cease, average I/O temperature

or average access temperature can be used as the relocation qualifier. In both

cases, individual file locations reflect actual I/O activity against the files. Some

aged files may be on top-tier storage, while others of the same age may have been

relocated downward.

An alternative to these methods is to move files into alternate directories as they

age, and define policy rules that cause files in those directories to be relocated to

other storage tiers. Fragment 9-3 shows a policy rule in which logical location in

the file systemname space selects files for unconditional relocation to second-tier

volumes.

Fragment 9-3 Using directory location to control file placement

<RULE Name="Current_Transactions_Rule">
<SELECT>

[1]
[2]

<DIRECTORY>current</DIRECTORY>[3]
</SELECT>[4]
<CREATE><ON Flags="any"><CLASS>top_tier</CLASS></ON></CREATE>

</RULE>
[5]
[6]

<RULE Name="Aged_Transactions_Rule">
<SELECT>

[7]
[8]

<DIRECTORY Flags="Recursive">aged</DIRECTORY>[9]
</SELECT>[10]
<RELOCATE><TO><CLASS>second_tier</CLASS></TO></RELOCATE>

</RULE>
[11]
[12]

The first rule in lines [1]-[6] of Fragment 9-3 places new files in the top_tier

class, or in other placement classes if top_tier fills up. The second rule in lines

[7]-[12] unconditionally relocates files that reside in the /mnt/aged directory

and all of its subdirectories (as indicated by the Flags=”Recursive” attribute)

the second_tier placement class.

This policymight be appropriate for use with an operating procedure that created

new transaction and document files each month in a /mnt/current directory,

131Using Dynamic Storage Tiering: placing data for business reasons
File placement by logical position in the file system name space

and, atmonth’s end,moved all files in the directory to directories /mnt/aged/jan,

/mnt/aged/feb, and so forth. The next time this policy is enforced, it relocates

files in these directories to second_tier volumes without any further

administrative action.

File placement by file size
DST policies can relocate files based on their sizes at the time of policy

enforcement. This feature can be useful with files that start out small and grow

during their lifetimes to the point where they could overwhelm the volumes on

which they are originally allocated, preventing allocation of additional files.

Fragment 9-4 Size-based policy rules

<RELOCATE>
<FROM><SOURCE><CLASS>small_file_tier</CLASS></SOURCE></FROM>

[1]
[2]

<TO><DESTINATION><CLASS>large_file_tier</CLASS></DESTINATION></TO>[3]
<WHEN>[4]
<SIZE Units="MB"><MIN Flags="gt">100</MIN></SIZE>[5]

</WHEN>
</RELOCATE>

[6]
[7]

<RELOCATE>
<FROM><SOURCE><CLASS>large_file_tier</CLASS></SOURCE></FROM>

[8]
[9]

<TO><DESTINATION><CLASS>small_file_tier</CLASS></DESTINATION></TO>[10]
<WHEN>[11]
<SIZE Units="days"><MAX Flags="lteq">100</MAX></SIZE>[12]

</WHEN>
</RELOCATE>

[13]
[14]

Placing files to give preferential service to users
For service bureau-type data centers that cater to large numbers of external

clients, Dynamic Storage Tiering can be used as a business differentiator. Using

any of the aforementioned criteria, files that relate to individual users can be

placed on specific storage tiers. Fragment 9-5 gives two examples of how DST can

be used to provide different levels of service to different classes of users.

Fragment 9-5 Delivering different service levels to different classes of users

<RULE Name="Premium_User_Rule">
<SELECT>

[1]
[2]

<DIRECTORY Flags="Recursive">premium</DIRECTORY>[3]
</SELECT>[4]
<CREATE><ON Flags="any"><CLASS>top_tier</CLASS></ON></CREATE>[5]

</RULE>[6]

<RULE Name="Ordinary_User_Rule">[7]

Using Dynamic Storage Tiering: placing data for business reasons
File placement by file size

132

Fragment 9-5 Delivering different service levels to different classes of users

(continued)

[8]
[9]

<SELECT>
<DIRECTORY Flags="Recursive">ordinary</DIRECTORY>

[10] </SELECT>
[11] <CREATE><ON Flags="any"><CLASS>second_tier</CLASS></ON></CREATE>
[12] </RULE>

[13] <RULE Name="Alt_Premium_User_Rule">
[14] <SELECT>
[15] <GROUP>premium_group</GROUP>
[16] </SELECT>
[17] <CREATE><ON Flags="any"><CLASS>top_tier</CLASS></ON></CREATE>
[18] </RULE>

[19] <RULE Name="Alt_Ordinary_User_Rule">
[20] <SELECT>
[21] <GROUP>ordinary_group</GROUP>
[22] </SELECT>
[23]
[24]

<CREATE><ON Flags="any"><CLASS>second_tier</CLASS></ON></CREATE>
</RULE>

Lines [1]-[12] of Fragment 39 direct files anywhere in the premium directory

subtree to the top_tierplacement class and files in the ordinary subtree to the

second-tier class. This would be useful, for example, if users were assigned to

subdirectories in one or the other of these subtrees depending uponwhether they

paid for premiumor ordinary service. The rules in lines [13]-[24]make the same

assignments, but based on whether files' owners are in group premium-group or

in group ordinary_group. These rules would be more appropriate for systems in

whichusers controlled the directories inwhich they created files, butwere assigned

to one of the two groups based on the level of service forwhich theyhad contracted.

Fragment 9-5 illustrates file creation, but differential relocation and deletion

services are possible as well. For example, ordinary users might have files deleted

after 90 days of inactivity, while premium users' files are not subject to deletion.

Premium users might be allowed 30 days of inactivity before their files were

relocated downward, while ordinary users' files are subject to relocation after 7

days of inactivity. Size might also be used as a service discriminator. Premium

usersmight bepermitted to keep100megabyte files ontop_tiervolumes,whereas

ordinary users' files might be relocated if they grew beyond 10 megabytes. The

general principle of this example is that DST can be used to provide differential

quality of service to different classes of users, provided that the users can be

identified by one of the DST file selection criteria.

133Using Dynamic Storage Tiering: placing data for business reasons
Placing files to give preferential service to users

Using Dynamic Storage Tiering: placing data for business reasons
Placing files to give preferential service to users

134

Using Dynamic Storage

Tiering: storage reclamation

This chapter includes the following topics:

■ Getting the benefit of multi-tier storage

■ Reclaiming storage: an example

■ Preparing for multi-tier storage

■ Conclusion

Getting the benefit of multi-tier storage
TheDynamic StorageTiering facility reduces online storage costwithout offsetting

increases in administrative cost because it keeps infrequently-used data easily

accessible within a file system name space, while allowing it to be stored on less

costly storage devices. In many instances, retrofitting Dynamic Storage Tiering

to existing file systems and relocating inactive files to low-cost storage makes it

possible to reclaim premium-quality storage capacity for other uses. If a premium

volume is made up of disks whose capacity is not shared with other volumes, it

can be shrunk, and the freed capacity can be made available for other purposes.

With Storage Foundation Version 5 installed, the vxdg upgrade command in line

[3] upgrades the VxVM volume layout version to a level that is compatible with

Dynamic Storage Tiering. The mkfs command with the −m option in line [4] lists

the characteristics of an existing file system. This file system’s layout is version=6,

and must be upgraded to Version 7, which is accomplished by the command in

line [8].

10Chapter

Reclaiming and repurposing storage

Amulti-volume file system’s complement of storage can be expanded by adding

volumes to any of its storage tiers. One common use for this capability is the

addition of a second tier of one ormore low-cost volumes to a file system that was

originally created on a single premium-quality volume. Inactive, large, or

infrequently accessed files are then relocated to the second-tier volumes, freeing

space on the premium one and reducing the average cost of storage for the file

system as awhole. Premium-quality storagemade available by installing a second

tier can be redeployed in newapplications, deferring the need for future purchases

of such storage.

But the savings from moving less critical data to lower-cost storage cannot be

realized until the premium-quality storage capacity freed by relocating files has

been “taken away” from the file system and deployed elsewhere. The sections that

follow use a simple example to illustrate adding a second tier of low-cost storage

to a file system, relocating files to it, and reclaiming the excess unused top-tier

storage space. Figure 10-1 illustrates the file system’s volume set configuration

for this example before and after the addition of the second tier.

Figure 10-1 Two-tier volume set for storage reclamation example

Volume Set

top_tier placement class

File system originally created on
premium volume consisting of five
concatenated 100-gigabyte LUNs

second_tier placement class

Low-cost 200-gigabyte volumes added
to volume set to reduce average
storage cost for file system

low-cost-a

low-cost-b

disk-01 disk-03

disk-05disk-02 disk-04

premium vol

Reclaiming storage: an example
Figure 10-1 represents the storage complement of a file system thatwas originally

formatted on a single premium-quality volume, premium-vol, created from five

100-gigabyte LUNs presented by an enterprise-class disk array. If the LUNs

themselves are mirrored or RAID-protected, the volume might be concatenated

or striped by VxVM. Alternatively, the volume might be a VxVM-striped and

mirrored aggregate of non-redundant LUNs.

A second tier of storage consisting of two 200-gigbyte volumes created from

low-cost hardware devices is added to the file system’s volume set. The enterprise’s

Using Dynamic Storage Tiering: storage reclamation
Reclaiming storage: an example

136

intention is to reduce the overall cost of storage used by this file system by

retrofittingDynamic StorageTiering to it, relocating inactive files to the lower-cost

second-tier volumes, and if possible, reclaiming part of the premium volume’s

capacity for deployment elsewhere.

Table 10-1 lists the steps required of an administrator to retrofit DST to an existing

file system and use it to relocate inactive files to second-tier storage.

Table 10-1 RetrofittingDynamic Storage Tiering facility to an existing file system

DescriptionStep

A file system must reside on a VxVM volume set containing at

least two volumes in order for a meaningful DST policy to be

assigned to it.

Create volume set and

add volumes to it

The tiers of storage presented as volumes in a file system’s

volume set must be tagged with the

vxfs.placement_class.tag_name tagsused in theplacement
policy. The examples in this chapter use tier1 and tier2 as
the placement class names.

Tag volumes

The file placement policy specifies initial placement and

relocation of files to second-tier and other volumes based on

relevant business criteria such as file inactivity, size, average

I/O temperature, or average access temperature.

Define and assign file

placement policy

Enforcing the policy for the first time relocates lower-value data

to newly-added storage tiers. Later enforcements ensure that

premium-quality storage is reserved for files deemed critical

according to the active placement policy.

Enforce policy

The Dynamic Storage Tiering facility requires that file systems to which it is

applied be formattedwith VxFS layout Version 7 or a newer one, and that volumes

use VxVM layout Version 140 or a newer one. Dialog 10-1 illustrates a sequence

of commands that determine the volume layout version of the disk group

containing the file system’s volume set and upgrade it, as well as ascertaining the

file system layout and upgrading it to Version 7.

Dialog 10-1 Upgrading VxVM and VxFS layout versions

vxdg list dstdg | grep version: | awk '{ print $2 }'
105
vxdg upgrade dstdg

[1]
[2]
[3]

mkfs -F vxfs -m /dev/vx/dsk/dstdg/premium-vol
mkfs -F vxfs -o bsize=1024,version=6,inosize=256,logsize=1024,largefiles

[4]
[5]

/dev/vx/dsk/dstdg/premium-vol[6]

137Using Dynamic Storage Tiering: storage reclamation
Reclaiming storage: an example

Dialog 10-1 Upgrading VxVM and VxFS layout versions (continued)

[7]
[8]

524288
vxupgrade -n 7 /dst

Preparing for multi-tier storage
Dialog 10-2 shows the steps that prepare for retrofitting Dynamic Storage Tiering

to the file system for this example.

Dialog 10-2 Preparing tier2 storage for a multi-volume file system

umount /dst
vxvset -g dstdg make dstvset premium-vol

[1]
[2]

mount -F vxfs /dev/vx/dsk/dstdg/dstvset /dst
vxassist -g dstdg make low-cost-a 200G

[3]
[4]

vxassist -g dstdg make low-cost-b 200G
vxvset -g dstdg addvol dstvset low-cost-a

[5]
[6]

vxvset -g dstdg addvol dstvset low-cost-b
fsvoladm add /dst low-cost-b 419430400

[7]
[8]

fsvoladm add /dst low-cost-b 419430400
vxvoladm -g dstdg settag premium-vol vxfs.placement_class.tier1

[9]
[10]

vxvoladm -g dstdg settag low-cost-a vxfs.placement_class.tier2
vxvoladm -g dstdg settag low-cost-b vxfs.placement_class.tier2

[11]
[12]

The vxvset make command in line [2] creates the dstvset volume set from the

premium-vol volume. Conversion of a single volume into a volume set leaves data

on the volume intact. The vxvset addvol commands in lines [4]-[7] create two

low-cost volumes and add them to the dstvset volume set. The fsvoladm add

commands in lines [8]-[9]make the low-cost volumes accessible to the file

system. Finally, the commands in lines [10]-[12] tag the volumes, effectively

creating the tier1 and tier2 placement classes.

The purpose of retrofittingDST is to relocate less-critical files to low-cost volumes,

freeing space on the premium volumes so that one of them can be reclaimed and

used elsewhere. Less-critical filesmay be identified by inactivity, low temperature,

directory, naming pattern, owner or owner’s group, or any combination of these.

Fragment 10-1 shows a simple policy that classifies data for relocation to tier2

volumes based on a combination of naming pattern and inactivity.

Using Dynamic Storage Tiering: storage reclamation
Preparing for multi-tier storage

138

Fragment 10-1 Policy for supplanting top-tier storage with lower-cost second-tier

storage

<?xml version="1.0"?>
<!DOCTYPE PLACEMENT_POLICY SYSTEM "/opt/VRTSfspro/config/placement_policy.dtd">
<PLACEMENT_POLICY Version="5.0" Name="accmod">

[1]
[2]
[3]

<RULE Flags="data" Name="db_files">
<SELECT><PATTERN>*.db</PATTERN></SELECT>

[4]
[5]

<CREATE><ON>[6]
<DESTINATION><CLASS>tier1</CLASS></DESTINATION>[7]

</ON></CREATE>[8]
<RELOCATE>[9]
<TO><DESTINATION><CLASS>tier2</CLASS></DESTINATION></TO>[10]
<WHEN><MODAGE Units="days"><MIN Flags="gteq">7</MIN></MODAGE></WHEN>[11]

</RELOCATE>
</RULE>

[12]
[13]

<RULE Flags="data" Name="other_files">
<SELECT><PATTERN>*</PATTERN></SELECT>

[14]
[15]

<CREATE><ON>[16]
<DESTINATION><CLASS>tier2</CLASS></DESTINATION>[17]

</ON></CREATE>[18]
<RELOCATE>[19]
<TO><DESTINATION><CLASS>tier2</CLASS></DESTINATION></TO>[20]

</RELOCATE>[21]
</RULE>

</PLACEMENT_POLICY>
[22]
[23]

The placement policy in Fragment 10-1 treats database files, identified by the

naming pattern *.db, differently from all other files. Database files are created

on tier1 volumes, and relocated to tier2 volumes if they are inactive for seven

or more days. Once relocated to tier2 volumes, they are never relocated back to

tier1. Because the file system initially occupies only tier1 volumes, there are

no active database files on tier2 volumes if the policy is assigned to the file system

immediately after the tier2 volumes are added to its volume set.

The rule in lines [14]-[22] of Fragment 10-1 is the catchall rule that covers all

files other than database ones. New files that are not named according to the *.db

pattern are allocated on tier2 volumes. Existing files that reside on tier1 volumes

are relocated to tier2 unconditionally whenever the policy is enforced.

Enforcing a placement policy to reduce premium storage occupancy

Lines [1]-[6] of Dialog 10-3 illustrate the assignment of the policy to the file

system by an authorized administrator and the resulting distribution of data

immediately after assignment as well as after the passage of time.

139Using Dynamic Storage Tiering: storage reclamation
Preparing for multi-tier storage

Dialog 10-3 Space distribution prior to policy enforcement

/opt/VRTSfspro/bin/fsppadm assign /dst /tmp/accmod.xml
fsvoladm list /dst

[1]
[2]

devid size used avail name[3]
0 524288000 344288000 180000000 premium-vol[4]
1 209715200 16 209715184 low-cost-a[5]
2 209715200 16 209715184 low-cost-b[6]

... applications use file system...

fsvoladm list /dst
devid size used avail name

[7]
[8]

0 524288000 344289120 179998880 premium-vol[9]
1 209715200 61002040 148713160 low-cost-a
2 209715200 80998000 128717200 low-cost-b

[10]
[11]

As lines [5]-[6] ofDialog 10-3 suggest, the low-cost tier2 volumes donot contain

any data immediately after they are added to the file system’s volume set. (They

are not completely empty becauseVxFS uses the first the first 16 kilobytes of each

volume for internal purposes.)

Lines [7]-[11] of Dialog 10-3 show the state of volume occupancy after the file

systemhas beenused for some time, but before the active policy has been enforced.

Newly-allocatednon-database files occupy spaceon thetier2volumes, but because

there has been no enforcement, neither inactive database files nor non-database

files that existed prior to policy assignment have been relocated.

Dialog 10-4 shows the results of a fsppadm query command issued by an

authorized administrator to determine the probable impact of a policy

enforcement.

Dialog 10-4 Prediction of the effect of policy enforcement

fsppadm query /dst
Current Current Relocated Relocated

[1]
[2]

Class Volume Class Volume Rule File[3]
tier1 premium-vol tier2 low-cost-a db_files /dst/hist-oct.db[4]
tier1 premium-vol tier2 low-cost-a db_files /dst/hist-nov.db[5]

...additional database file relocations...

tier1 premium-vol tier2 low-cost-b other_files /dst/temp/file_a
tier1 premium-vol tier2 low-cost-b other_files /dst/temp/file_b

[6]
[7]

...additional non-database file relocations...

Using Dynamic Storage Tiering: storage reclamation
Preparing for multi-tier storage

140

Dialog 10-4 Prediction of the effect of policy enforcement (continued)

tier1 premium-vol db_files /dst/shares.db
tier1 premium-vol db_files /dst/employees.db

[8]
[9]

...additional database files not to be relocated...

The results of thefsppadm query command in lines[2]-[9]ofDialog10-3 indicate

that inactive database files would be relocated because of the db_files rule, and

non-database files would be relocated because of the other_files rule, if the

policy were to be enforced. Active database files (lines [8]-[9]) would be left in

place, again due to the db_files rule. The fsppadm query command does not

relocate the files; it provides a preview of what relocations would occur if the

active policywere to be enforced. It is primarily useful for determiningwhatwould

be the effect of enforcing the active policywithout actually incurring the overhead

of file movement during enforcement.

Dialog 10-5 illustrates an ad hoc policy enforcement command issued by an

authorized administrator, and the resulting distribution of allocated space across

the file system’s volume set.

Dialog 10-5 Policy enforcement and resulting allocated space distribution

fsppadm enforce /dst
Sweep path : /dst

[1]
[2]

Files moved : 2398
KB moved : 200000000

[3]
[4]

Tier Name Size (KB) Free Before (KB) Free After (KB)
tier2 419430400 277430360 142000040
tier1 524288000 179998880 379998880

[5]
[6]
[7]

fsvoladm list /dst
devid size used avail name

[8]
[9]

0 524288000 144289120 379998880 premium-vol[10]
1 209715200 141002040 68713160 low-cost-a
2 209715200 200998000 8717200 low-cost-b

[12]
[13]

The space distribution in Dialog 10-5 reflects the relocation of database files that

have been inactive for seven or more days prior to the time of enforcement, as

well as all non-database files, whether active or not, from tier1 to tier2 volumes.

Policy enforcement reacts to conditions in the file system at the time of

enforcement. If a file system’s active policy is enforced immediately following a

fsppadm query, the results will closely resemble the prediction from the query.

If, however, time elapses between the two, resultsmay differ, depending on activity

in the file system between the two events.

141Using Dynamic Storage Tiering: storage reclamation
Preparing for multi-tier storage

A file placement policy can be enforced at any time. If, however, the policy contains

any <IOTEMP> or <ACCESSTEMP> relocation qualifiers, no deletions or relocations

based on those qualifiers will occur unless the File Change Log is running,

filestats storage is enabled, and the amount of data saved in the FCL represents

a period at least as large as the largest <PERIOD> specified in the policy.

Reclaiming storage capacity released by file relocation

With occupancy of the premium-vol volume reduced to about 142 gigabytes,

volume’s size can be reduced, and the space reclaimed for other purposes using

the command sequence shown in Dialog 10-6.

Dialog 10-6 Reducing file system and volume size

vxresize -F vxfs -g dstdg premium-vol -300G
fsvoladm list /dst

[1]
[2]

devid size used avail name[3]
0 209715200 144289120 79998880 premium-vol[4]
1 209715200 141002040 68713160 low-cost-a[5]
2 209715200 200998000 8717200 low-cost-b
vxassist −g dstdg relayout premium-vol layout=stripe ncol=2

[6]
[7]

The vxresize command in Dialog 10-6 reduces the size of the premium-vol and

the por-tion of the file system that resides on it from 500 gigabytes to 200

gigabytes. If the vol-ume is a concatenated one, VxVM removes the sub-disks on

three of the 100 gigabyte LUNs that comprise it from the volume, and returns

them to the disk group’s pool, where they are available for other uses. If the volume

is a striped one, the vxresize step shrinks each of the sub-disks by an equal

amount, leaving the freed space distributed as the top half of Figure 10-2

illustrates.

Figure 10-2 Results of resize and relayout operations

Sub-disks
after vxresize
operation

Sub-disks after vxassist relayout operation

disk-02 disk-03 disk-04 disk-05disk-01

Original sub-disks

If premium-vol is striped, the space released by the vxresize operation must be

consolidated onto two of the sub-disks. The vxassist relayout command in line

[7] of Dialog 10-6 accomplishes this, leaving the premium-vol disk configuration

Using Dynamic Storage Tiering: storage reclamation
Preparing for multi-tier storage

142

as illustrated in the bottomhalf of Figure 10-2 and returning the three freed disks

to the dstdg disk group’s pool of available storage.

When reclaiming storage from a volume on which a single-volume file system

was originally formatted, caremust be taken to ensure that sufficient metadataok

storage capacity remains available to the file system to meet anticipated future

needs. If a file system runs out of metadataok storage, no files can be allocated or

extended, even though there may be free capacity on dataonly volumes in its

volume set. By default, the first volume in a file system’s volume set (premium-vol

in this example) is metadataok, and all other volumes are dataonly. Changing the

eligibility of a volume in a volume set to contain file systemmetadata is discussed

on Dialog 5-2.

Conclusion
For file systems created usingVersion 5 of the Storage Foundation, administrators

have the luxury of provisioning the estimated storage required in each tier in the

form of volumes that can easily be re-provisioned for other purposes by simply

evacuating them and removing them from the file system’s volume set. For file

systems that were created with earlier versions of the Storage Foundation,

however, Dynamic Storage Tiering must usually be retrofitted by converting the

file system’s volume to a volume set, adding additional storage tiers and volumes,

and assigning apolicy that relocates files across the expandedvolume set according

to business requirements. While this procedure can be followed with any type of

storage, the most frequent application is to reduce the overall cost of storage for

a large file system by adding second-tier storage to it and relocating inactive or

otherwise-qualified files to it. The storage capacity of the original volume that is

released by doing this can be consolidated by evacuating specified sub-disks, after

which the volume can be shrunk by removing the evacuated sub-disks from it.

Sub-disks reclaimed in this way can be repurposed, for example, by creating new

volumes and file systems on them, or by adding them to the volume sets of other

file systems that require additional storage of the type they represent. If the

sub-disks represent physical disks or LUNs presented by a disk array, they can

be deleted, and the disks or LUNS removed from their disk group and deployed

on other hosts.

143Using Dynamic Storage Tiering: storage reclamation
Conclusion

Using Dynamic Storage Tiering: storage reclamation
Conclusion

144

Using Dynamic Storage

Tiering: managing storage

for databases

This chapter includes the following topics:

■ Databases and file systems

■ Problem 1: infrequent relocation of Oracle tablespaces and partitions

■ Problem 2: identifying changes in activity level and relocating files

■ Problem 3: scheduled relocation of archive and flashback logs

■ Problem 4: relocating external files

■ Problem 5: preset placement policies for database files

■ Problem 6: increasing performance by load balancing

Databases and file systems
Reclamation of unneeded storage is the “rest of the story” of Dynamic Storage

Tiering. It makes application of DST to existing file systems practical because it

eliminates the need for massive data copy operations or lengthy service outages

to retrofit the facility and reclaim storage capacity that is freed by using it.

Most commercial databases store their data in files. The file systems they use are

unusual in that they typically contain relatively small numbers of large files with

long lifetimes. Particularly for large databases, it is crucial that each file reside

on the appropriate type of storage throughout its lifetime. The Dynamic Storage

Tiering facility offers unique capabilities for controlling placement of database

11Chapter

component files within a multi-volume file system. DST file placement policies

can place database files appropriately when they are created, and relocate them

as conditions change throughout their lifetimes.

The DBDST facility

The Database Editions of the Storage Foundation implement special functions to

manage database file placement for the market-leading database management

systems—DB2,Oracle, andSybase. Collectively, these functions are calledDatabase

DynamicStorageTiering (DBDST) facilities. DBDST functions are accessed through

commands that are designed to be natural for database administrators to use.

Database Edition software uses the capabilities of the Dynamic Storage Tiering

facility to control the placement of database fileswithin amulti-volume file system.

The DBDST facility simplifies the management actions that database

administratorsmust take tomanagemulti-tier storage in a database environment.

The sections that follow illustrate the capabilities of theDBDST facility by showing

how it can be used to solve common database storage management problems.

Preparing database storage to use the DBDST facility

Figure 11-1 Database storage configuration for use with the DBDST facility

Volume Set

top_tier placement class

File system originally created on
premium volume consisting of five
concatenated 100-gigabyte LUNs

second_tier placement class

Low-cost 200-gigabyte volumes added
to volume set to reduce average
storage cost for file system

low-cost-a

low-cost-b

disk-01 disk-03

disk-05disk-02 disk-04

premium vol

To make use of the DBDST facility, a database must store its data files in a VxFS

multi-volume file system whose volumes are tagged with placement class names

that are used in file placement policies created by the database administrator.

Figure 11-1 illustrates a volume configuration for a database originally created

using a file system (mounted at /oradata) on a single volume (oradata). The file

system’s volume configuration is augmented by the addition of both

high-performance and low-cost volumes so that the DST facility can be used to

manage file placement within the file system.

Using Dynamic Storage Tiering: managing storage for databases
Databases and file systems

146

By default, DBDST registers the placement class names PRIMARY, SECONDARY, and

BALANCE for each database file system registered with it. These class names may

optionally be used when tagging volumes and creating placement policies, or

other class names may be created and used. A database administrator uses the

dbdst_admin addclass command to register additional placement class names

with DBDST, as Dialog 11-1 illustrates.

Dialog 11-1 Adding volume tag names to the DBDST registry

dbdst_admin -S proddb −o addclass “tier1:Fast Storage for Production DB”
dbdst_admin -S proddb −o addclass “tier2:Slow Storage for Production DB”

[1]
[2]

The commands inDialog 11-1 register the placement class names tier1 and tier2

withDBDST for the file system that contains the proddbdatabase. Once registered,

these names can be used inDBDST file placement policy definitions for the proddb

database.

Converting database file systems

In the example of Figure 11-1, in order to use DBDST capabilities, the /oradata

file system must be converted into a multi-volume file system with at least two

volumes in its volume set, one of which is its original volume (oradata). The

dbdst_convert command illustrated in Dialog 11-2 creates a volume set based

on the original oradata volume, adds volumes new_vol1, new_vol2, and new_vol3

to it, and converts the /oradata file system into a multi-volume one.

Dialog 11-2 Converting to a multi-volume file system with multiple volumes

dbdst_convert −S proddb −g oradg −M /dev/vx/dsk/oradg/oradata \
new_vol1,new_vol2,new_vol3

[1]
[2]

VxVM does not permit a volume and a volume set to have the same name. During

conversion, DBDST renames the original volumeby appending the string _b4vset

to its original name. The original volume name becomes the volume set name. In

the example of Figure 11-1, the oradata volume is renamed as oradata_b4vset,

and the newvolume set is named oradata. Because volume sets behave as volumes

for administrative purposes, this permits any pre-existing storage administration

commands and scripts that operate on volumes to execute unaltered.

The single dbdst_convert command in Dialog 11-2 creates the volume set

configuration shown in Figure 11-1 and converts the /oradata file system to a

multi-volume one, effectively by issuing a series of Storage Foundation commands

similar to that contained in Dialog 4-2. DBDST encapsulates several Storage

Foundation management operations into this single command. Moreover, using

147Using Dynamic Storage Tiering: managing storage for databases
Databases and file systems

DBDST, a database administrator can perform the conversion without requiring

access to facilities normally restricted to system administrators.

Putting volumes in placement classes

When a database’s file system has been converted, and additional volumes have

been added, registered placement classes can be assigned to individual volumes

using dbdst_classify commands similar to those illustrated in Dialog 11-3.

Dialog 11-3 Assigning placement classes to volumes

dbdst_classify −S proddb −g oradg -M /dev/vx/dsk/oradg/oradata \
−v oradata_b4vset:tier1

[1]

dbdst_classify −S proddb −g oradg -M /dev/vx/dsk/oradg/oradata −v new_vol1:tier1[2]
dbdst_classify −S proddb −g oradg -M /dev/vx/dsk/oradg/oradata −v new_vol2:tier2
dbdst_classify −S proddb −g oradg -M /dev/vx/dsk/oradg/oradata −v new_vol3:tier2

[3]
[4]

The commands in Dialog 11-3 assign the tag tier1 to volumes oradata_b4vset

and new_vol1, and the tag tier2 to volumes new_vol2 and new_vol3. These tags

correspond to placement classes that are used in file placement policies.

With the execution of these commands, the example database’s storage

configuration is as shown in Figure 11-1. This configuration, with the /oradata

multi-volume file system, and two placement classes is ready for DST policy

assignment and enforcement. The sections that follow describe how DST

capabilities are invoked through the Database Dynamic Storage Tiering (DBDST)

facility to solve several common database storage management problems.

Problem 1: infrequent relocation of Oracle
tablespaces and partitions

Perhaps the simplest application of multi-tier storage to databases is relocation

of individual table partitions between different placement classes as usage

requirements change. If exact relocation times are unpredictable, or if relocation

is infrequent, administrators may wish to relocate table partitions as business

requirements surface rather than defining strict periodic relocation schedules.

Ad hoc relocation of table partitions can be useful, for example, with databases

that track sales and inventory for seasonal businesses such as sports equipment

or outdoor furniture retailing. As the selling season for one type of inventory (for

example, summer equipment or furniture) approaches, database table partitions

that represent in-season goods can be relocated to high-performance storage,

since they will be accessed frequently during the coming months. Similarly,

Using Dynamic Storage Tiering: managing storage for databases
Problem 1: infrequent relocation of Oracle tablespaces and partitions

148

partitions that represent out-of-season goods can be relocated to lower-cost

storage, since activity against them is likely to be infrequent.

For example, a table in an inventory database might be divided into winter and

summer partitions, with each of these partitions mapped to a separate data file.

As thewinter selling season approaches, the administrator for this databasemight

issue commands similar to those in Dialog 11-4.

Dialog 11-4 On-demand relocation of database table partitions (part 1)

dbdst_partition_move -S proddb -T product_table −p winter -c tier1
dbdst_partition_move -S proddb -T product_table −p summer -c tier2

[1]
[2]

The commands inDialog 11-4 relocate the files that comprise the winterpartition

of the product_tab table to placement class tier1, and the files that comprise

thesummerpartition toplacement classtier2 (assumingavolumeset configuration

similar to that illustrated in Figure 11-1). DBDST determineswhich files comprise

the winter and summer partitions of product_table, and uses underlying DST

services to immediately relocate those files to the tier1 and tier2 placement

classes respectively.

A similar pair of commands, illustrated inDialog 11-5 can be executed at the onset

of the summer selling season to reverse the respective positions of the partitions.

Dialog 11-5 On-demand relocation of database table partitions (part 2)

dbdst_partition_move -S proddb -T product_table −p winter -c tier2
dbdst_partition_move -S proddb -T product_table −p summer -c tier1

[1]
[2]

DBDST formulates DST policy rules that unconditionally relocate the files

containing the target partitions to the destination placement classes. It merges

these rules into the database file system’s active policy, assigns the resulting

composite policy to the file system, and enforces it immediately to relocate the

subject files. Because the added policy rules precede any other rules in the active

policy, the subject files remain in place until the dbdst_partition_move command

is next executed, at which time the rules are removed and replaced with others.

A similar DBDST command, dbdst_tbs_move, illustrated in Dialog 11-6, relocates

entire tablespaces to alternate placement classes.

Dialog 11-6 On-demand relocation of an entire table

dbdst_tbs_move -S proddb −t customer_tbs -c tier1[1]

149Using Dynamic Storage Tiering: managing storage for databases
Problem 1: infrequent relocation of Oracle tablespaces and partitions

The command in Dialog 11-6 relocates the files that comprise the customer_tbs

tablespace in the proddb database to tier1 volumes when the policy is enforced.

DBDST identifies the files that comprise the customer_tbs tablespace and adjusts

the file system’s DST policy accordingly.

Unscheduled on-demand relocation ofOracle database partitions and entire tables

is useful for databases with seasonal changes or those with variations in activity

that are not precisely predictable, as described in this example. Issuing the

commands when relocation is appropriate automatically adjusts for variations in

time-based events that necessitate relocation of partitions or tables. On-demand

partition and table relocation is also useful for dealingwith one-time events, such

as table addition and re-partitioning, aswell as changes in business circumstances

that change database table or partitionperformance and availability requirements.

Problem 2: identifying changes in activity level and
relocating files

One frequently-encountered business circumstances that affects data placement

is age-based change in activity level against one or more database files. This is

common, for example, in transaction-processing systemsand systems that support

customer service or relationshipmanagement applications. Files containing tables

that represent current transactions tend to be very active as new transactions are

added and clients inquire about recent activities. As records age, activity against

them tends to decrease, to the point where they become essentially archival in

nature.

For applications like billing, activity level as a function of time is quite predictable.

This type of data lends itself to regularly scheduled relocation of files that contain

aged transaction records to lower-cost storage tiers. For other applications, such

as customer relationship management, changes in activity against database files

may not be so easy to predict. To support the latter, database manager statistics

collection tools canbeused, or alternatively, theDatabaseDynamic StorageTiering

facility can collect statistics ondatabase file I/O activity. A database administrator

can use the dbdst_fstat start command to enable collection of I/O statistics

on specified lists of files, as line [1] of Dialog 11-7 illustrates.

Dialog 11-7 Collecting and using statistics on database file I/O activity

dbdst_fstat −S proddb −o start −f dbfile_list[1]

... database runs with statistics collection active ...

dbdst_file_move −S proddb −f inactive_dbfile_list -c tier2
dbdst_file_move −S proddb −f active_dbfile_list -c tier1

[2]
[3]

Using Dynamic Storage Tiering: managing storage for databases
Problem 2: identifying changes in activity level and relocating files

150

The command in line [1] of Dialog 11-7 starts collection of I/O activity statistics

against database files whose names are listed in the file dbfile_list, which is

created by the database administrator.WhenDBDST statistics collection is active,

DBDSTqueries the file systemwith a default frequency of 30minutes (changeable

by the administrator), and stores the results against the listed files in its own

repository.

After I/O statistics collection has been active for sufficient time to discern

meaningful activity patterns, database performance tools can be queried to

determine the database‘s most and least active files. Alternatively, the DBDST

graphical console can display a list of the most and least active files. From either

of these sources, an administrator can create a file listing the most or least used

of the database files on which statistics are being collected (inactive_file_list

andactive_file_list inDialog 11-7),which canbe input to thedbdst_file_move

command to relocate the files as required.

Problem 3: scheduled relocation of archive and
flashback logs

Because they are the primary mechanism for recovering from data corruption,

database logs are normally kept on premium storage, both for I/O performance

and data reliability reasons. Even after they have been archived, logs are normally

kept online for fast recovery, but the likelihood of referring to an archived log

decreases significantly as its age increases. This suggests that archived database

logs might be relocated to lower-cost volumes after a certain period of inactivity.

Similarly, Storage Foundation Database Edition Flashback technology creates

logs that can be used for quick recovery from database corruption by restoring a

database to its state at a previous time. Flashback logs are normally kept for a

shorter period than archived database logs—if used at all, they are typically used

within a fewhours of creation. Two or three days is a typical Flashback log lifetime.

The rapidly decaying probability of use for archive and Flashback logs suggests

that regular enforcement of a placement policy that relocates them to lower-cost

storage after a period of inactivity can reduce an enterprise’s average cost of

online storage. Figure 11-2 illustrates a three-tier volume configuration that is

suitable for automatic relocation and deletion of archive logs and Flashback logs.

151Using Dynamic Storage Tiering: managing storage for databases
Problem 3: scheduled relocation of archive and flashback logs

Figure 11-2 Database storage configuration for archived and Flashback log

relocation

Volume Set

NEW placement
class

MEDIUM
placement class

OLD placement
class

Original database volume Added top-tier volume Added mid-tier volume Added low-tier volume

oralog emc_v1 Clarion_v1 Clarion_v1

The file systemused by the production database in this example originally resides

on the single volume oralog; it must be prepared as in the preceding example,

additional volumes added to it, and placement classes assigned to its volumes.

Dialog 11-8 illustrates these preparatory steps.

Dialog 11-8 Preparing for automatic relocation of archived and database logs

dbdst_admin -S proddb −o addclass “NEW:EMC Storage for Production DB”
dbdst_admin -S proddb −o addclass “MEDIUM:Clarion Storage for Production DB”
dbdst_admin -S proddb −o addclass “OLD:JBOD Storage for Production DB”

[1]
[2]
[3]

dbdst_convert −S proddb −g oradg −M /dev/vx/dsk/oradg/oralog \
−v emc_v1,clarion_v1,jbod_v1

[4]
[5]

dbdst_classify −S proddb −g oradg -M /dev/vx/dsk/oradg/oralog emc_v1:NEW
dbdst_classify −S proddb −g oradg -M /dev/vx/dsk/oradg/oralog clarion_v1:MEDIUM
dbdst_classify −S proddb −g oradg -M /dev/vx/dsk/oradg/oralog jbod_v1:OLD

[6]
[7]
[8]

Lines [1]-[3] of Dialog 11-8 register the NEW, MEDIUM, and OLD placement classes

in the DBDST repository. Lines [4]-[5] convert the proddb database’s file system

and add volumes emc_v1, clarion_v1 and jbod_v1 to it. Lines [6]-[8] assign

placement classes (volume tags) NEW, MEDIUM, and OLD to the new volumes.

Once the volumes are configured for DST use, an administrator can define file

placement policy rules that specify access age-based relocation of selected files

and assign them to the database’s file system. Dialog 11-9 illustrates the use of

the dbdst_file_move command to define a rule that relocates files in the

flashback and archive1 directories to lower tiers in the new storage hierarchy.

Using Dynamic Storage Tiering: managing storage for databases
Problem 3: scheduled relocation of archive and flashback logs

152

Dialog 11-9 Defining policy rules that periodically relocate flashback and archive

logs

dbdst_file_move −S proddb −o flashback -c MEDIUM:2
dbdst_file_move -S proddb −o archive1 -c MEDIUM:7 -c OLD:15

[1]
[2]

The command in line [1] of Dialog 11-9 relocates files in the flashback directory

which have not been accessed for two days to the MEDIUM volume. The command

in line [2] relocates files in the archive1 directory that have not been accessed

for seven days to the MEDIUM volume, and files that have not been accessed for 15

days to the OLD volume.

DBDST translates these commands intoDSTaccess age-based policy rules,merges

them with the file system’s placement policy, and assigns the resulting policy to

the file system. By default, DBDST enforces the active policy daily. During

enforcement, the new rules relocate qualifying files to the destination storage

tiers specified in the commands in Dialog 11-9. Commands similar to these can

be used to relocate archive database logs and flashback logs for both Oracle and

DB2 databases.

Problem 4: relocating external files
Many databases contain metadata about large numbers of external files, such as

images, documents, experimental data, and so forth. Because external files tend

to be large, it can be advantageous to relocate inactive ones to lower tiers in the

storage hierarchy. If the external files reside in a known set of directories, a DBA

can use DBDST to create policy rules that relocate inactive ones during daily

placement policy enforcement. The dbdst_file_move command creates policy

rules for a list of directories specified in a file such as that shown in Dialog 11-10.

Dialog 11-10 Creating policy rule that relocates files from a list of directories

cat external_file_dirs
/proddb/pictures/Alabama

[1]
[2]

/proddb/pictures/California[3]
/proddb/binary/proprietary
^c

[4]

[5] # dbdst_file_move -S proddb −o external −f external_file_dirs -c MEDIUM:7 -c OLD:30

Assuming the volume set configuration illustrated in Figure 11-2, the

dbdst_file_move command in line [5] of Dialog 11-10 creates a DST policy rule

that relocates external files based on their access ages. The command results in

augmentation of the database file system’s active placement policy rules with a

rule that selects files in the directories listed in the external_file_dirs file,

153Using Dynamic Storage Tiering: managing storage for databases
Problem 4: relocating external files

relocates those that have been inactive for seven days to the MEDIUM volume, and

relocates those that have been inactive for 30 days to the OLD volume. This form

of access age-based external file relocation can be used with both Oracle and DB2

databases.

Problem 5: preset placement policies for database
files

In many cases it is desirable to permanently segregate certain types of database

files fromother datamanaged by a system for performance or availability reasons.

For example, a data center might choose to reserve its highest-quality storage for

database datafiles and index files, and relegate other data to a second tier in the

storage hierarchy.

DBDST preset file placement policies make such segregation possible. An

administrator can create a preset placement policy and assign it to a database’s

file system as the active DST policy.

DBDST preset policies are useful with DB2’s System Managed Storage (SMS)

feature. When SMS is in use, DB2 creates files as required by database operations

within the confines of a “tablespace container,” a designated directory in the

database’s file system. Figure 11-3 shows the storage configuration for a file

system that contains files for the DB2 database db2db as well as other files. The

enterprise wishes to reserve tier1 volumes for DB2 data and index files, and

allocate all other files on tier2 volumes.

Figure 11-3 Database storage configuration for DB2 SMS example

Volume Set for / db2data file system

tier1 volumes

Original location of

database files

Low-cost volumes

added for DST use

tier2 volumes

High-performance

volume added for DST use

db2data

new_vol1

new_vol1

new_vol3

Using the dbdst_preset_policy command, an administrator can create an SMS

directory, and create and assign a file placement policy, as Dialog 11-11 illustrates.

Using Dynamic Storage Tiering: managing storage for databases
Problem 5: preset placement policies for database files

154

Dialog 11-11 Creating a SMS container and a preset file placement policy

dbdst_preset_policy −D db2db −o sms −d /db2data/tbs01 \
-P tier1=*.DAT,*.INX

[1]
[2]

The command in Dialog 11-11 creates the SMS tablespace container directory

/db2data/tbs01, as well as a file placement policy similar to that shown in

Fragment 11-1 for the file system /db2data.

Fragment 11-1 Segregating database files from other files

<RULE Name=”DB2 Files Rule”>
<SELECT>

[1]
[2]

<DIRECTORY Flags="recursive">tbs01</DIRECTORY>[3]
<PATTERN>*.DAT</PATTERN>[4]
<PATTERN>*.INX</PATTERN>[5]

</SELECT>[6]
<CREATE><ON><DESTINATION><CLASS>tier1</CLASS></DESTINATION></ON></CREATE>[7]
<RELOCATE><TO><DESTINATION><CLASS>tier1</CLASS></DESTINATION></TO></RELOCATE>

</RULE>
[8]
[9]

<RULE Name=”Other Files Rule”>
<SELECT><PATTERN>*</PATTERN></SELECT>

[10]
[11]

<CREATE><ON><DESTINATION><CLASS>tier2</CLASS></DESTINATION></ON></CREATE>
</RULE>

[12]
[13]

The policy rule in lines [1]-[8] of Fragment 11-1 places files in directory tbs01

and its subdirectories whose names follow either of the patterns *.DAT or *.INX

on tier1 volumes. The rule in lines [9]-[12] places all other files on tier2

volumes.

Once the preset policy has been created and assigned to the database’s file system,

a database administrator can use DB2 administrative commands to create the

SMS tablespace tbs01 specifying /db2data/tbs01 as the tablespace container.

Space for data and index files created by DB2 during the course of operations are

allocated on tier1 volumes; all other files are allocated on tier2 volumes. DBDST

also enforces the policy to relocate already-existing database files to the

appropriate placement class.

If the DB2 SMS container directory exists, the form of the dbdst_preset_policy

command shown inDialog 11-12 can be used to create, assign, and enforce a policy

of the form shown in Fragment 11-1.

Dialog 11-12 Creating a preset file placement policy for an existing a SMS

container

dbdst_preset_policy −D db2db −o sms −t tbs01 -P tier1=*.DAT,*.INX[1]

155Using Dynamic Storage Tiering: managing storage for databases
Problem 5: preset placement policies for database files

Using DBDST with DB2 automatic storage path

DBDST can also be used to place different types of data in DB2 databases that use

DB2’s automatic storage path feature on different placement classes. Figure 11-4

illustrates one typical scheme for placing different types of database data on

different storage tiers.

Figure 11-4 Database storage configuration for separating different types of

DB2 data

Volume Set

CAT volume TMP volume USR volume LRG volume

db2vol_b4vset vol1 vol2 vol3

Dialog11-13 shows theDBDSTcommandsused to register theseplacement classes.

In each case, the comment field indicates the types of data to be stored in the

class.

Dialog 11-13 Placement class definitions for separating different types of DB2

data

dbdst_admin -D db2db −o addclass CAT:”system catalog tablespace”
dbdst_admin -D db2db −o addclass TMP:”system or user temporary tablespace”

[1]
[2]

dbdst_admin -D db2db −o addclass USR:”user or regular tablespace”
dbdst_admin -D db2db −o addclass LRG:”large tablespace”

[3]
[4]

The database in this example is originally stored in a file system on the db2vol

volume, the command in line [1] of Dialog 11-14 converts the hosting file system

and adds three additional volumes, vol1, vol2, and vol3, to it.

Dialog 11-14 Assigning placement classes to volumes

dbdst_convert −D db2db −M /dev/vx/dsk/db2dg/db2vol −v vol1,vol2,vol3
dbdst_classify −D db2db -M /dev/vx/dsk/db2dg/db2vol −v db2vol_b4vset:CAT

[1]
[2]

dbdst_classify −D db2db -M /dev/vx/dsk/db2dg/db2vol −v vol1:TMP[3]
dbdst_classify −D db2db -M /dev/vx/dsk/db2dg/db2vol −v vol2:USR
dbdst_classify −D db2db -M /dev/vx/dsk/db2dg/db2vol −v vol3:LRG

[4]
[5]

dbdst_preset_policy −D db2db −o ats −P CAT=*.CAT:TMP=*.TMP:USR=*.USR:LRG=*.LRG[6]

The commands in lines [2]-[5] assign placement classes to the four volumes,

resulting in the configuration shown in Figure 11-4.

Using Dynamic Storage Tiering: managing storage for databases
Problem 5: preset placement policies for database files

156

The automatic storage path feature of DB2 requires a directory, which for this

example is /db2db/ats. The dbdst_preset_policy command creates and assigns

a policy similar to the one shown in Fragment 11-2 that selects files in this

directory and creates them in the appropriate placement classes.

Fragment 11-2 Placing different database files on different placement classes

<RULE Name=”CAT Files Rule”>
<SELECT>[1]
<DIRECTORY Flags="recursive">ats</DIRECTORY>[2]
<PATTERN>*.CAT</PATTERN>[4]

</SELECT>[6]
<CREATE><ON><DESTINATION><CLASS>CAT</CLASS></DESTINATION></ON></CREATE>[7]
<RELOCATE><TO><DESTINATION><CLASS>CAT</CLASS></DESTINATION></TO></RELOCATE>

</RULE>
[8]
[9]

<RULE Name=”TMP Files Rule”>
<SELECT>

[10]
[11]

<DIRECTORY Flags="recursive">ats</DIRECTORY>[12]
<PATTERN>*.TMP</PATTERN>[13]

</SELECT>[14]
<CREATE><ON><DESTINATION><CLASS>TMP</CLASS></DESTINATION></ON></CREATE>[15]
<RELOCATE><TO><DESTINATION><CLASS>TMP</CLASS></DESTINATION></TO></RELOCATE>

</RULE>
[16]
[17]

<RULE Name=”USR Files Rule”>
<SELECT>

[18]
[19]

<DIRECTORY Flags="recursive">ats</DIRECTORY>[20]
<PATTERN> *.USR</PATTERN>[21]

</SELECT>[22]
<CREATE><ON><DESTINATION><CLASS>USR</CLASS></DESTINATION></ON></CREATE>[23]
<RELOCATE><TO><DESTINATION><CLASS>USR</CLASS></DESTINATION></TO></RELOCATE>

</RULE>
[24]
[25]

<RULE Name=”LRG Files Rule”>
<SELECT>

[26]
[27]

<DIRECTORY Flags="recursive">ats</DIRECTORY>[28]
<PATTERN> *.LRG</PATTERN>[29]

</SELECT>[30]
<CREATE><ON><DESTINATION><CLASS>LRG</CLASS></DESTINATION></ON></CREATE>[31]
<RELOCATE><TO><DESTINATION><CLASS>LRG</CLASS></DESTINATION></TO></RELOCATE>

</RULE>
[32]
[33]

<RULE Name=”Other Files Rule”>
<SELECT><PATTERN>*<PATTERN></SELECT>

[34]
[35]

<CREATE><ON><DESTINATION><CLASS>LRG</CLASS></DESTINATION></ON></CREATE>
</RULE>

[36]
[37]

Each of the first four rules in Fragment 11-2 (lines [1]-[8], lines [9]-[15], lines

[16]-[22], and lines [23]-[29]) selects one of the target file types based on

naming pattern and creates them in the desired placement class. The fifth rule,

in lines [31]-[34], is the catchall rule that selects all other files and places them

on the LRG volume. Without this rule, allocation of any files not selected by the

157Using Dynamic Storage Tiering: managing storage for databases
Problem 5: preset placement policies for database files

first four rules would fail, so omitting it would be a way of limiting the types of

files that can be created in the /db2db file system.

Once this policy has been created and assigned, the DB2 database can be created,

setting /db2db/ats as the automatic storagepath.Again, byusingDBDST facilities,

the database administrator avoids the necessity of coordinating with system

administration each time a database storage configuration is created or changes.

Although Oracle does not require specific name patterns for its data files,

pattern-based placement policies similar to those described in this section can be

adopted forOracle databases aswell, provided that database administrators follow

file naming conventions. For example, Oracle datafiles are named according to

the pattern *.dbf. Indexes are typically placed in separate tablespaces, in files

named according to pattern *.inx. If these naming conventions are adhered to,

it is possible to separate datafiles and indexes from other files in the file system

using the dbdst_preset_policy command as described in this section to create

a preset file placement policy similar to that shown in Fragment 11-2.

Problem6: increasing performance by load balancing
A heavily loaded database can exceed the I/O performance limits of its storage

devices. In some cases, the load can be distributed by segregating different files

or different types of files on different volumes. In other cases, this solution is not

possible, for example, because the load is due to accesses to a single table, partition,

or datafile.

When an I/O load saturates the capacity of the devices to which it is directed, the

most common solution is to distribute the load across more resources—across

more disks and I/O paths. DBDST includes a dbdst_makelbfs command that

creates a multi-volume file system and assigns it a DST policy containing the

<BALANCE_SIZE> sub-element that distributes the allocation of database files

across the volumes in its volume set. In principle, distributing the data in each

file across multiple volumes distributes the I/O load across them as well.

Dialog 11-15 illustrates the use of the dbdst_make_lbfs command to create the

load-balancing file system /customer_projects.

Dialog 11-15 Using DBDST to create a load-balancing file system

dbdst_make_lbfs -M /customer_projects -g proddg -C 1M -v vol1,vol2,vol3,vol4[1]

The command inDialog 11-15 creates the file systemonvolumes vol1, vol2, vol3,

and vol4 (all of which are placed in the BALANCE placement class by DBDST). In

addition, it creates and assigns a file placement policy that distributes files across

the four volumes with a <BALANCE_SIZE> of 1 megabyte. (For Oracle databases,

Using Dynamic Storage Tiering: managing storage for databases
Problem 6: increasing performance by load balancing

158

the balance size must be 1 megabyte.) When the database manager allocates or

extends files, VxFS distributes the allocated space randomly across the volumes

in the BALANCE placement class in extents of 1 megabyte. This has the effect of

randomly distributing the I/O load approximately evenly across the four volumes.

If the I/O capacity of a load-balancing file system proves inadequate, additional

volumes can be added to the file system using the dbdst_addvol command, as

Dialog 11-16 illustrates.

Dialog 11-16 Adding a volume to a DBDST load-balancing file system

dbdst_addvol −M /dev/vx/dsk/proddg/vol1 −v newvol:BALANCE[1]

The command inDialog 11-16 adds volume newvol to the volume set of file system

/customer_projects, and to placement class BALANCE. After the volume is added,

VxFS balances file allocations and extensions in the /customer_projects file

system across all five volumes in the BALANCE placement class.

159Using Dynamic Storage Tiering: managing storage for databases
Problem 6: increasing performance by load balancing

Using Dynamic Storage Tiering: managing storage for databases
Problem 6: increasing performance by load balancing

160

Using Dynamic Storage

Tiering: exploiting

MAID-based storage

This chapter includes the following topics:

■ The right storage for the right data

■ MAID: A new tier in the storage hierarchy

■ Applications for MAID-based storage

■ Dynamic Storage Tiering and MAID-based storage

The right storage for the right data
Chapter 2 presents the rationale for the multi-tier storage concept. In essence,

today’s storage hardware and configuration technology present userswith a range

of I/O performance and data availability options at different price points. Thus

it is possible for enterprises to choose storage for their data that is commensurate

with the data’s value to the business.

Storage configuration options range from simple or striped (non-failure-tolerant)

disk drives, through RAID LUNs instantiated by disk arrays, to multiply-mirrored

LUNs that are remotely replicated for disaster recovery. Almost any configuration

option can be implemented using a range of hardware technologies, from low-cost

disk drives embedded in the server enclosure, through mid-range disk arrays, to

enterprise disk arrays with high-performance components and advanced failure

tolerance and I/O performance features. The multi-tier storage premise is that

for every data set an enterprise stores online, there is a “right” type of storage

from an I/O performance, data availability, and cost point of view.

12Chapter

Why multi-tier storage works

The multi-tier storage concept “works” because of a simple fact of information

technology life—much of the data that enterprises store online is archival in

nature, and therefore seldomaccessed by applications. Suchdata changes seldom,

if at all, and only occasionally, if ever, does access by applications make I/O

performance an issue. The obvious conclusion is that seldom-accessed data can

be stored on low-cost storage devices at considerable savings to the enterprise

storage budget over time.

The preponderance of occasionally accessed data that must nevertheless be kept

online for operational or other business reasons has doubtless had a strong

influence on the introduction of disk arrays that utilize desktop disk drives to

provide low-cost storage for data that is not accessed frequently. Today, most

major storage vendors offer low-cost alternatives to their enterprise-class products,

and promote them specifically as storage for seldom-accessed data.

MAID: A new tier in the storage hierarchy
More recently, vendors have begun to offer even more specialized disk array-like

products for seldom accessed data that are called Massive Arrays of Idle Disks

(MAID). The underlying premise of MAID-based storage is simple: if most of the

data stored on the array is seldom accessed, the disks that hold it need not be

powered on and spinning most of the time. If most of the disks in an array are

powered off at any givenmoment, then the array’s power supplies, cooling devices,

and disk controllers can all be sized for the small fraction of disks that are powered

on and working at any instant. The result is greater packaging density, lower

power consumption, higher disk reliability, and lower cost, both for acquisition

and for operation. Table 12-1 describes each of these characteristics inmore detail.

Table 12-1 MAID storage system characteristics

DescriptionStorage

characteristic

Because only a fraction of the disks in a typical MAID storage system

are powered on at any instant (typically 25%), power supplies and

cooling devices can be configured for roughly a quarter of the cost

and volume of those in a conventional disk array in which all disks

are spinning all the time.

Power and cooling

Using Dynamic Storage Tiering: exploiting MAID-based storage
MAID: A new tier in the storage hierarchy

162

Table 12-1 MAID storage system characteristics (continued)

DescriptionStorage

characteristic

AMAID storage system occupies a considerably smaller footprint in

the data center than a conventional disk array of similar capacity for

two reasons. First, there are fewer power supplies, cooling devices,

and disk controllers than in a conventional array. Second, because

not all disks are powered on at the same time, they can be packaged

more densely than disks in conventional arrays without fear of head

damage. A MAID system typically stores about four times as many

gigabytes per square foot as a conventional disk array.

Packaging density

MAID storage systemsutilize low-cost disk drives because the expected

duty cycle is low. By powering disk drives down when they are not in

use, a MAID system tends to extend disk drive life beyond

manufacturer’s design expectations.

Disk reliability

As disk prices continue to fall, more of the cost of a disk array lies in

the enclosure, power and cooling components, and control logic.MAID

storage systems use fewer of these components per disk drive than

conventional disk arrays, typically by factors of 4-8, thusmaking them

less expensive per byte than conventional disk arrays that use low-cost

drives.

Acquisition cost

MAID storage systems have a lower operating cost per online gigabyte

than conventional storage devices simply because they consume less

power (for disk drives and for cooling fans) and floor space.

Operating cost

The MAID value proposition, then, is online storage for occasionally accessed

data at very low acquisition and operating cost compared to conventional disk

arrays. Typically, the MAID cost differential leads to lifetime savings of 60-75%

per online gigabyte.

Limitations of MAID-based storage

The very factor thatmakesMAID-based storage so cost-effective, power-managed

disks, limits the applications forwhich it is suitable.When an application requests

data on a disk that is not powered on, the disk must spin up to operating speed

before the request can be satisfied, a matter of seconds. Moreover, because MAID

systems are configured so that only a fraction (typically 25%) of their disks can

be powered on at any one time, other disks may have to be powered off before a

request canbe satisfied. Thus,MAID-based storage ismost suitable for applications

for which a time-to-first-byte of a few seconds is tolerable.Moreover,MAID-based

storage should be matched to applications in such a way that it is unlikely that

163Using Dynamic Storage Tiering: exploiting MAID-based storage
MAID: A new tier in the storage hierarchy

more than the number of disks that can be powered on simultaneously in a single

system will be accessed concurrently.

Applications for MAID-based storage
Like conventional disk array systems, MAID systems virtualize the LUNs they

present to hosts. In so doing, they provide disk failure tolerance (typically

RAID-based), and moreover, mask much of the complexity inherent in powering

the right disks up and down at the right times. Once powered on, disks in a

MAID-based system perform like equivalent disks in a conventional array. Disks

are powered off when they are idle or when I/O requests directed at other disks

in the array require that power be directed elsewhere. This suggests that the ideal

application for MAID-based storage is for large data sets that are accessed

occasionally, and when accessed, are read or written in their entirety. A number

of applications have this characteristic. Table 12-2 lists some of themore common

ones.

Table 12-2 Suitable applications for MAID-based storage

DescriptionApplication

Large streams of raw exploration data are typically stored and read

in their entirety by applications that reduce and analyze them.

Resulting data sets are stored as streams, and when accessed for

further processing, are accessed in their entirety as well.

Seismic

exploration

Large streams of raw or preprocessed data from experiments are

stored and read in their entirety by applications that reduce and

enhance themwith auxiliary information. Enhanced data streams are

stored, and when accessed for analysis, are read in their entirety.

High-energy

physics research

Streams of raw financial data (e.g., ticker tape data) are stored and

read in their entirety by applications that enrich them with auxiliary

information and store the resulting enriched streams. The enriched

streams are read in their entirety by applications that analyze the

data in them to deduce trends on which decisions can be based.

Financial analysis

Audio-visual segments are created and stored as streams. Streams

are read in their entirety by applications that ultimately create streams

representing finished pieces. Finished piece streams are stored, and

retrieved for enhancements such as sound effects and language

translation. Individual objects are also retrieved for reuse in creating

other finished pieces.

Entertainment

All four of these applications use storage in similar ways. All read and write large

streams of data. Any given stream is likely to be read infrequently (daily or less).

Using Dynamic Storage Tiering: exploiting MAID-based storage
Applications for MAID-based storage

164

Applications may hold the data in a stream locally during processing, but

ultimately they rewrite the original stream or create new streams based on the

originals. The new streams may be read and processed locally by additional

applications, but again, the ultimate result is yet another new stream that is stored

permanently and accessed occasionally.

Dynamic Storage Tiering and MAID-based storage
One additional characteristic of the data streaming applications described in the

preceding section is that their usage of data streams is adhoc.When an application

will read or write a permanent stream cannot be predicted based on the stream’s

access or modification age, on historical average I/O temperature or access

temperature, or on the size of the stream. From a Dynamic Storage Tiering point

of view, this means that the <WHEN> clause in the RELOCATE statement is of little

utility in relocating streams of data between volumes based LUNs presented by

MAID storage systems and volumes based on conventional storage devices. DST

can, however, be used in conjunction with some simple operating procedures to

manage the locations of these large data streams in a multi-volume file system

whose volume set consists partly of volumes based on conventional (always-on)

storage devices andpartly ofMAID-based volumes. Figure 12-1 illustrates a sample

of such a procedure.

Figure 12-1 Operating procedures for use with MAID and conventional storage

Volume Set

MAID volumes conventional volumes

/mnt/raw_data /mnt/int_files /mnt/results

Created on MAID
volumes and

never relocated

Relocated to MAID
volumes when

encountered during
policy enforcement

Created on Conventional
volumes and

never relocated

vola

volb

volc

vold

165Using Dynamic Storage Tiering: exploiting MAID-based storage
Dynamic Storage Tiering and MAID-based storage

Figure 12-1 illustrates an operating procedure that might be typical of any of the

applications listed in Fragment 12-1. Raw data (e.g., seismic traces, ticker data,

experimental results, etc.) that is to be retained long term is stored in the MAID

placement class. These volumes would be created using LUNs presented by a

MAID storage system.

Applications would read the raw data directly from the MAID volumes, and use

Conventional volumes to store and manipulate temporary intermediate files.

Presumably, the Conventional placement class would be based on conventional

disk array LUNs, and provide the performance typical of that type of device.

When producing permanent result files (e.g., final videos, enriched exploration

or experimental data, etc.), applications would create the files on Conventional

volumes, again for performance reasons. The Dynamic Storage Tiering facility

can relocate these files to MAID-based volumes when the policy is enforced.

Policies for using MAID-based storage

Fragment 12-1 lists policy rules that support the mode of operation in which

MAID-based volumes are used for long-term storage and conventional volumes

are used for intermediate processing.

Fragment 12-1 Policy rules for utilizing MAID-based volumes

<RULE Name=”Raw Data Rule”>
<SELECT><DIRECTORY Flags="recursive">raw_data</DIRECTORY></SELECT>

[1]
[2]

<CREATE><ON><DESTINATION><CLASS>MAID</CLASS></DESTINATION></ON></CREATE>
</RULE>

[3]
[4]

[5]
[6]

<RULE Name=”Intermediate Files Rule”>
<SELECT><DIRECTORY Flags="recursive">int_files</DIRECTORY></SELECT>

[7] <CREATE><ON>
[8] <DESTINATION><CLASS>Conventional</CLASS></DESTINATION>
[9]
[10]

</ON></CREATE>
</RULE>

[11]
[12]

<RULE Name=”Results Rule”>
<SELECT><DIRECTORY Flags="recursive">results</DIRECTORY></SELECT>

[13] <CREATE><ON>
[14] <DESTINATION><CLASS>Conventional</CLASS></DESTINATION>
[15] </ON></CREATE>
[16]
[17]

<RELOCATE><DESTINATION><CLASS>MAID</CLASS></DESTINATION></RELOCATE>
</RULE>

[18]
[19]

<RULE Name=”All Other Files Rule”>
<SELECT><PATTERN>*</PATTERN></SELECT>

[20] <CREATE><ON>
[21] <DESTINATION><CLASS>Conventional</CLASS></DESTINATION>
[22]
[23]

</ON></CREATE>
</RULE>

Using Dynamic Storage Tiering: exploiting MAID-based storage
Dynamic Storage Tiering and MAID-based storage

166

The policy rules in Fragment 12-1 are predicated on the observation of certain

standard operating procedures. For example, when raw data files are created from

input streams, they must be created in the directory /mnt/raw_data or in a

sub-directory. According to the rule in lines [1]-[4], these files are created on

MAID-class volumes, and, because the rule contains no RELOCATE statement, are

never relocated.

Similarly, the second rule in lines [5]-[10] is based on the assumption that

intermediate files created by applications from raw data will be created in

/mnt/int_files or one of its sub-directories. Space for files in these directories

is allocated on Conventional-class volumes, and the files are never relocated.

Presumably, these files would be short-lived, and so would not occupy expensive

conventional storage for long periods.

The third rule in lines [11]-[17] deals with result files that are to be retained

indefinitely. Long-term result files are assumed to be created in /mnt/results or

in oneof its sub-directories. These files are created onConventional-class volumes,

and relocated to MAID-class volumes when the policy is enforced. Applications

can either create their permanent result files directly in /mnt/results, or they

can create them elsewhere and move them into /mnt/results when they are

complete and ready to be relocated to MAID-class volumes for long-term storage.

Other policy considerations

What is unique about this type of policy is that the single RELOCATE statement

contains no qualifiers. Applications like those listed in Table 12-2 typically run

at irregular intervals, determined primarily by human interaction. The concepts

of access and modification age average I/O temperature, and average access

temperature are of little relevance. Raw data files that are created MAID volumes

should stay there indefinitely, and result files created on Conventional volumes

should be relocated to MAID volumes as soon as the policy is enforced. The function

that drives this policy is the directories in which files reside.

An additional policy consideration for MAID-based storage is enforcement

planning. There are two important and interrelated planning considerations,

defining MAID-based volumes and scheduling policy enforcement. MAID-based

volumes and the schedules on which they are used should be defined carefully

because of the limited number of disks in a MAID storage system that can be

powered on simultaneously. Because MAID systems provide internal failure

tolerance, volumes concatenated from LUNs presented by the array are usually

optimal, becausewhenavolume is accessed, only the LUNcurrently being accessed

need be powered on.As a corollary to this, the ideal number of volumes configured

is equal to the number of LUNs that can be powered on simultaneously. For

example, if a MAID system presents 32 LUNs, and can support 8 powered-on

167Using Dynamic Storage Tiering: exploiting MAID-based storage
Dynamic Storage Tiering and MAID-based storage

simultaneously, the ideal volume configuration would be 8 volumes, with each

consisting of four concatenated LUNs. If 8 applicationswrite or read data separate

to or from separate volumes simultaneously, each volume would have one LUN

active at a time (the one reading orwriting data), thus remainingwithin the array’s

power budget.

Using Dynamic Storage Tiering: exploiting MAID-based storage
Dynamic Storage Tiering and MAID-based storage

168

Appendixes

■ Sample XML for a built-in file placement policy

■ A file placement policy example

■ XML document type definition (DTD) for the VxFS file placement policy

document type

IIIPart

170

Sample XML for a built-in

file placement policy

This appendix includes the following topics:

■ Output of the built-in policy creation wizards

■ Summary: common properties of built-in file placement policies

Output of the built-in policy creation wizards
This appendix contains a representation of a placement policy document produced

by the built-in placement policy wizard example in Chapter 6. Some of the XML

text has been reformatted for readability, but the entire text of the policy is

represented.

The preferred files rule: file creation

The access aged-basedwith preferred files policy described from theVEAgraphical

wizard standpoint in Chapter 6 generates four rules—one for preferred files, one

each for exempt files pinned to the top and bottom storage tiers, and one for all

other files. The four appear in that order in the resulting policy. Fragment A-1,

in addition to the XMLheader lines, illustrates the SELECT and CREATE statements

for the Preferred-Files-Rule.

Fragment A-1 Preferred files rule—SELECT and CREATE statements

<?xml version="1.0"?>
<!DOCTYPE PLACEMENT_POLICY SYSTEM "/opt/VRTSfspro/config/placement_policy.dtd">

[1]
[2]

<PLACEMENT_POLICY Name="Database-Policy" Version="5.0" Guid="{dfaa5748-1dd1-
11b2-a73d-0003ba44a638}" Generation="1">[3]
<RULE Name="Preferred-Files-Rule" >[4]
<SELECT>[5]

AAppendix

Fragment A-1 Preferred files rule—SELECT and CREATE statements (continued)

[6]
[7]

<USER>dbadmin</USER>
<USER>chiefdba</USER>

[8] <USER>hrdba</USER>
[9] <PATTERN>*.db</PATTERN>
[10]
[11]

<DIRECTORY>database</DIRECTORY>
</SELECT>

[12]
[13]

<CREATE><ON>
<DESTINATION><CLASS>Tp</CLASS></DESTINATION>

[14] <DESTINATION><CLASS>T2</CLASS></DESTINATION>
[15]
[16]

<DESTINATION><CLASS>T3</CLASS></DESTINATION>
</ON></CREATE>

To be a preferred file selected by this rule, a file must be owned by one of users

dbadmin, chiefdba, or hrdba, must be in the database directory (relative to the

file system mount point), and in addition, must have a name that follows the

pattern *.db. Meeting only one or two of these conditions is insufficient.

The <DESTINATION> clauses of the CREATE statement in Fragment A-1 are a

priority-ordered list. VxFS allocates space for newly-created preferred files on

the Tp volume if possible, resorting to the T2 and T3 volumes (in that order) if the

Tp volume has insufficient free space. New preferred files are not allocated on T1

volumes unless all Tp, T2, and T3 volumes are fully occupied, causing VxFS to

choose locations for new files. (Preferred files are never relocated to the T1 volume.)

The preferred files rule: downward file relocation

Fragment A-2 illustrates the two RELOCATE statements that control the relocation

of inactive preferred files from higher storage tiers to lower ones. If a built-in

policy specifiesNplacement classes, thewizard createsN-1 RELOCATE statements.

In keeping with the general principle of placing less inclusive statements ahead

of more inclusive ones in a placement policy, the RELOCATE statement for files

inactive for 20 or more days occurs before the statement for files inactive for 10

or more days. The first RELOCATE statement (lines [1]-[8]) specifies that files

that reside on either the Tp volume or one of the T2 volumes and that are inactive

for 20 days or more should be relocated to one of the T3 volumes. The second

statement (lines [9]-[16]) specifies that files that reside on the Tp volume (only)

and that are inactive for 10 days or more should be relocated to one of the T2

volumes if space permits, and to one of the T3 volumes if not. In other words, files

that have been inactive for between 10 and 20 days are not relocated downward

unless they reside on the Tp volume.

Sample XML for a built-in file placement policy
Output of the built-in policy creation wizards

172

Fragment A-2 Preferred files rule—downward relocation statements

<RELOCATE>
<FROM>

[1]
[2]

<SOURCE><CLASS>Tp</CLASS></SOURCE>[3]
<SOURCE><CLASS>T2</CLASS></SOURCE>[4]

</FROM>[5]
<TO><DESTINATION><CLASS>T3</CLASS></DESTINATION></TO>[6]
<WHEN><ACCAGE Units="days"><MIN Flags="gt">20</MIN></ACCAGE></WHEN>

</RELOCATE>
[7]
[8]

<RELOCATE>
<FROM><SOURCE><CLASS>Tp</CLASS></SOURCE></FROM>

[9]
[10]

<TO>[11]
<DESTINATION><CLASS>T2</CLASS></DESTINATION>[12]
<DESTINATION><CLASS>T3</CLASS></DESTINATION>[13]

</TO>[14]
<WHEN><ACCAGE Units="days"><MIN Flags="gt">10</MIN></ACCAGE></WHEN>

</RELOCATE>
[15]
[16]

The preferred files rule: upward file relocation

Fragment A-3 shows the companion upward RELOCATE statements for preferred

files. Files are relocated from lower-tier volumes to higher-tier ones based on

average I/O temperature, calculated using both bytes read and bytes written.

Fragment A-3 Preferred files rule—upward relocation statements

<RELOCATE>
<FROM>

[1]
[2]

<SOURCE><CLASS>T2</CLASS></SOURCE>[3]
<SOURCE><CLASS>T3</CLASS></SOURCE>[4]

</FROM>[5]
<TO>[6]
<DESTINATION><CLASS>Tp</CLASS></DESTINATION>[7]
<DESTINATION><CLASS>T2</CLASS></DESTINATION>[8]

</TO>[9]
<WHEN>[10]
<IOTEMP Type="nrwbytes "><MIN Flags="gt">10</MIN><PERIOD>5</PERIOD></IOTEMP>[11]

</WHEN>
</RELOCATE>

[12]
[13]

<RELOCATE>
<FROM><SOURCE><CLASS>T3</CLASS></SOURCE></FROM>

[14]
[15]

<TO><DESTINATION><CLASS>T2</CLASS></DESTINATION></TO>[16]
<WHEN>[17]
<IOTEMP Type="nrwbytes "><MIN Flags="gt">5</MIN><PERIOD>5</PERIOD></IOTEMP>[18]

</WHEN>
</RELOCATE>

[19]
[20]

</RULE>[21]

173Sample XML for a built-in file placement policy
Output of the built-in policy creation wizards

The first RELOCATE statement in Fragment A-3 (lines [1]-[13]) specifies that

preferred files that reside on T2 and T3 volumes and whose five-day average I/O

temperatures are greater than 10 should be relocated to the Tp volume if space

permits, and to one of the T2 volumes if not. VxFSdoes not relocate files to volumes

whose placement classes appear below those of the files’ current classes in a list

of <DESTINATION> elements. This can happen if four or more tiers are specified

in one of the built-in policies.

The second RELOCATE statement (lines [14]-[21]) specifies that files residing on

T3 volumes whose five-day average I/O temperatures are higher than 5 should be

relocated to T2 volumes. As with downward relocation (Fragment A-2), this

sequence of statements demonstrates the principle that less inclusive

specifications should appear before more inclusive ones in a policy rule. In this

sequence, more active files (those with average I/O temperatures greater than 90)

from either T2 or T3 volumes are relocated first, to the Tp volume if possible,

whereas slightly less active files (those with average I/O temperatures above 80

but less than 90) are only relocated if they reside on T3 volumes, and are only

relocated to T2 volumes.

Rules for files exempted from relocation

Fragment A-4 shows the two rules that govern files that are exempt from

relocation. The first of these rules (lines [1]-[15]]) applies to files that reside in

the etc directory (relative to the file system mount point) or its subdirectories

and are either named special-file.dat or have a name extension equal to conf

following the period. These files are created on the T1 volume if space permits,

and on the T2 and T3 volumes respectively if not. The RELOCATE statement (lines

[12]-[14]) is unconditional, as indicated by the absence of both FROM and WHEN

clauses—it specifies relocation of any of the designated exempt files that reside

elsewhere to the T1 volume. This statement deals with situations in which space

for exempt files has been allocated on other volumes due to lack of free space on

T1 volumes, followed by T1 space becoming available at a later time.

Fragment A-4 Rules for exempt files pinned to top and bottom-tier volumes

<RULE Name="Key-Files-Rule" >
<SELECT>

[1]
[2]

<PATTERN>*.conf</PATTERN>[3]
<PATTERN>special-file.dat</PATTERN>[4]
<DIRECTORY Flags=”recursive”>etc</DIRECTORY>[5]

</SELECT>[6]
<CREATE><ON>[7]

<DESTINATION><CLASS>T1</CLASS></DESTINATION>[8]
<DESTINATION><CLASS>T2</CLASS></DESTINATION>[9]
<DESTINATION><CLASS>T3</CLASS></DESTINATION>[10]

</ON></CREATE>[11]

Sample XML for a built-in file placement policy
Output of the built-in policy creation wizards

174

Fragment A-4 Rules for exempt files pinned to top and bottom-tier volumes

(continued)

[12]
[13]

<RELOCATE>
<TO><DESTINATION><CLASS>T1</CLASS></DESTINATION></TO>

[14]
[15]

</RELOCATE>
</RULE>

[16]
[17]

<RULE Name="Low-Files-Rule" >
<SELECT>

[18] <DIRECTORY Flags=”nonrecursive”>tmp</DIRECTORY>
[19] </SELECT>
[20] <CREATE><ON>
[21] <DESTINATION><CLASS>T3</CLASS></DESTINATION>
[22] <DESTINATION><CLASS>T2</CLASS></DESTINATION>
[23] <DESTINATION><CLASS>T1</CLASS></DESTINATION>
[24] </ON></CREATE>
[25] <RELOCATE>
[26] <TO><DESTINATION><CLASS>T3</CLASS></DESTINATION></TO>
[27]
[28]

</RELOCATE>
</RULE>

The second rule (lines [16]-[28]), dealing with exempt files that are to be pinned

to the lowest tier in the hierarchy (T3), specifies that files in the tmp directory (but

not its subdirectories) are to be allocated on T3 volumes if possible, and on T2

volumes or the T1 volume respectively only if free space is not available on any

T3volume.Again, theRELOCATE statement (lines[25]-[27]) specifiesunconditional

relocation of qualifying files that reside elsewhere to T3 volumes. This statement

deals with situations in which files have been allocated on higher-tier volumes

due to lack of free space on T3 volumes, followed by free T3 space becoming

available at a later time.

Other files rule: file creation

Fragment A-5 shows the SELECT and CREATE statements in the policy rule that

governs non-preferred files (all files not covered by Preferred-Files-Rule,

Key-Files-Rule, and Low-Files-Rule). Because it occurs last, only files that are

not designated by the preceding rules are evaluated against it. It is a “catchall”

rule; its <PATTERN>*</PATTERN> clause selects all files that have not been selected

by one of the three preceding rules. This rule specifies space allocation on the T1

volume if possible, with overflow to the T2 and T3 volumes if necessary.

Non-preferred files are only allocated on the Tp volume if no free space is available

in the enumerated placement classes, causing VxFS to choose locations for new

files.

175Sample XML for a built-in file placement policy
Output of the built-in policy creation wizards

Fragment A-5 Non-preferred, non-exempt file rule—SELECT and CREATE

statements

<RULE Name="Normal-Files-Rule" >
<SELECT><PATTERN>*</PATTERN></SELECT>

[1]
[2]

<CREATE><ON Flags=”any”>[3]
<DESTINATION><CLASS>T1</CLASS></DESTINATION>[4]
<DESTINATION><CLASS>T2</CLASS></DESTINATION>[5]
<DESTINATION><CLASS>T3</CLASS></DESTINATION>

</ON></CREATE>
[6]
[7]

Other files rule: file relocation

Fragment A-6 shows the RELOCATE statements for relocating non-preferred files

from higher tiers in the storage hierarchy to lower ones. As with all built-in

policies, specifying a hierarchy of N placement classes results in N-1 RELOCATE

statements for both downward and upward relocation.

Fragment A-6 Non-preferred, non-exempt file rule—downward relocation

statements

<RELOCATE>
<FROM>

[1]
[2]

<SOURCE><CLASS>T1</CLASS></SOURCE>[3]
<SOURCE><CLASS>T2</CLASS></SOURCE>[4]

</FROM>[5]
<TO><DESTINATION><CLASS>T3</CLASS></DESTINATION></TO>[6]
<WHEN><ACCAGE Units="days"><MIN Flags="gt">20</MIN></ACCAGE></WHEN>

</RELOCATE>
[7]
[8]

<RELOCATE>
<FROM><SOURCE><CLASS>T1</CLASS></SOURCE></FROM>

[9]
[10]

<TO>[11]
<DESTINATION><CLASS>T2</CLASS></DESTINATION>[12]
<DESTINATION><CLASS>T3</CLASS></DESTINATION>[13]

</TO>[14]
<WHEN><ACCAGE Units="days"><MIN Flags="gt">10</MIN></ACCAGE></WHEN>

</RELOCATE>
[15]
[16]

The first RELOCATE statement in Fragment A-6 (lines [1]-[8]) specifies that

non-preferred files that reside on the T1 volumeor on one of the T2 volumes should

be relocated to one of the T3 volumes if they have not been accessed in 20 ormore

days, and from the T1 volume (only) to one of the T2 volumes if they have not been

accessed for 10 or more days (with T3 volumes for overflow in this case). If no T2

or T3 space is available, no relocation occurs until the policy is enforced at a time

when lower-tier space is available.

The 20 and 10 day inactivity periods are the same as those specified for preferred

files (FragmentA-2). They are based on the input specifications given in thewizard

Sample XML for a built-in file placement policy
Output of the built-in policy creation wizards

176

page shown in Figure 6-7. This is a simplifying property of the built-in policies,

not a limitation of the placement policy grammar. An administrator can use an

XML or text editor to create policies that contain more general rules and

statements. The attractions of the built-in policies are that they cover common

business cases for effectivemulti-tier storage utilization, that they are very simple

to create, and that they produce grammatically correct policy documents.

FragmentA-7 illustrates the final two rules in the access age-basedwith preferred

files policy. These rules govern the relocation of non-preferred files located on

other than the T1 volume to higher tiers in the storage hierarchy. The first

statement (lines [1]-[13]) specifies relocation of files on T2 and T3 volumeswhose

five-day average I/O temperatures are 90 or more to the T1 volume. The second

statement (lines [14]-[24]) specifies relocation of files on T3 volumes whose

five-day average I/O temperatures are 80 or more to T2 volumes. These qualifiers

are identical to those for relocating preferred files (FragmentA-3). Using the same

average I/O temperature parameters as with classes of files is a simplifying

property of the built-in policy mechanisms rather than a limitation of the

placement policy grammar. Fragment A-7 also shows the XML closing delimiters

for the Normal-Files-Rule and for the placement policy as a whole.

Fragment A-7 Non-preferred, non-exempt file rule—upward relocation statements

<RELOCATE>
<FROM>

[1]
[2]

<SOURCE><CLASS>T2</CLASS></SOURCE>[3]
<SOURCE><CLASS>T3</CLASS></SOURCE>[4]

</FROM>[5]
<TO>[6]
<DESTINATION><CLASS>T1</CLASS></DESTINATION>[7]
<DESTINATION><CLASS>T2</CLASS></DESTINATION>[8]

</TO>[9]
<WHEN>[10]
<IOTEMP Type="nrwbytes "><MIN Flags="gt">10</MIN><PERIOD>5</PERIOD></IOTEMP>[11]

</WHEN>
</RELOCATE>

[12]
[13]

<RELOCATE>
<FROM>

[14]
[15]

<SOURCE><CLASS>T3</CLASS></SOURCE>[16]
</FROM>[17]
<TO>[18]
<DESTINATION><CLASS>T2</CLASS></DESTINATION>[19]

</TO>[20]
<WHEN>[21]
<IOTEMP Type="nrwbytes "><MIN Flags="gt">5</MIN><PERIOD>5</PERIOD></IOTEMP>[22]

</WHEN>[23]
</RELOCATE>

</RULE>
[24]
[25]

</PLACEMENT_POLICY>[26]

177Sample XML for a built-in file placement policy
Output of the built-in policy creation wizards

Summary: common properties of built-in file
placement policies

This appendix illustrates an instance of the access age-based with preferred files

policy type created by the VEA wizard for a file system in which volumes are

classified in three placement classes for ordinary (non-preferred) files (T1, T2, and

T3), and a fourth class (Tp) is reserved for preferred files. Provision is made to

exempt designated sets of non-preferred files from relocation if appropriate, and

place them permanently on the top storage tier (“key” files) or the lowest tier

(“low” files). Exemptions from file relocation are optional. To bypass exemptions,

an administrator would make no entries in the wizard pages shown in Figure 6-8.

The other three built-in policies are identical in form to the access age-based with

preferred files one, differing only in the relocation qualifiers, and the absence of

rules for preferred files (Fragment A-1, Fragment A-2, and Fragment A-3).

Built-in policies can be created for between two and five storage tiers. The wizard

adjusts the number of RELOCATE statements and the number of relocation source

and destination placement classes in the statements appropriately.

Sample XML for a built-in file placement policy
Summary: common properties of built-in file placement policies

178

A file placement policy

example

This appendix includes the following topics:

■ Common placement policy elements

Common placement policy elements
This appendix presents a sample file placement policy that includes common

combinationsof statements, clauses, selection criteria, elements, and sub-elements.

The document, which in actual practice would be a single XML file, is presented

in six sections for readability and to allow emphasis on individual rules and

statements.

Files pinned to a storage tier

The first section, shown in Fragment B-1, contains the XML front matter, and

illustrates a rule that places files of a certain naming pattern that reside in a

certain directory on tier1 volumes, and does not relocate them.

Fragment B-1 Rule for movie files

<?xml version="1.0"?>
<!DOCTYPE PLACEMENT_POLICY SYSTEM "/opt/VRTSfspro/config/placement_policy.dtd">
<PLACEMENT_POLICY Name="Placement_policy" Version="5.0">

[1]
[2]
[3]

<RULE Name="Movie_Rule" Flags="none">
<SELECT Flags="Data">

[4]
[5]

<DIRECTORY Flags="recursive">movies</DIRECTORY>[6]
<PATTERN>*.wmv</PATTERN>[7]

</SELECT>[8]
<CREATE><ON><DESTINATION><CLASS>tier1</CLASS></DESTINATION></ON></CREATE>

</RULE>
[9]
[10]

BAppendix

The rule in lines [4]-[10] of Fragment B-1 places files named according to the

pattern *.wmv that reside in directory movies of the file system (relative to its

mount point) or any of its sub-directories in placement class tier1when they are

created. Because the rule does not contain a RELOCATE statement, selected files

are never relocated, even if they might have been selected by a later rule in the

policy. Because the <ON> clause does not contain a Flags=Anymodifier, creation

of wmv files in these directories fails if there is no available space for them on

tier1 volumes.

Multiple selection criteria

The second policy rule example illustrates both multiple SELECT statements and

multiple selection criteria within a statement. Fragment B-2 contains the rule’s

SELECT statements.

Fragment B-2 SELECT statements for Multi-Option_Rule

<RULE Name="Multi-Option_Rule" Flags="none">
<SELECT Flags="Data">

[1]
[2]

<DIRECTORY Flags="recursive">ora/db</DIRECTORY>[3]
<DIRECTORY Flags="nonrecursive">crash/dump/monthly</DIRECTORY>[4]
<USER>user1</USER>[5]
<USER>user2</USER>[6]

</SELECT>[7]
<SELECT Flags="Data">[8]
<DIRECTORY>home/user1</DIRECTORY>[9]
<PATTERN>*.jpg</PATTERN>[10]
<PATTERN>my_data.txt</PATTERN>

</SELECT>
[11]
[12]

The first SELECT statement in lines [2]-[7] of Fragment B-2 selects files that

reside either in the file system’s ora/db directory, in any of the subdirectories of

ora/db, or in the /crash/dump/monthly directory (but not its sub-directories), as

well as belonging to either user1 or user2. Filesmust reside in one of the specified

directories and belong to one of the specified users to be selected by this rule.

The second SELECT statement in lines [8]-[12] selects files in the home/user1

directory whose names follow the pattern *.jpg, as well as the file

home/user1/my_data.txt. Files selected by this statement need not be owned by

any particular user.

Multiple sources and destinations

Fragment B-3 shows the action statements for the Multi-Option_Rule whose

SELECT statements are illustrated in Fragment B-2.

A file placement policy example
Common placement policy elements

180

Fragment B-3 RELOCATE statements for Multi-Option_Rule

<CREATE><ON>
<DESTINATION>

[1]
[2]

<CLASS>tier1</CLASS>[3]
<BALANCE_SIZE Units="MB">2</BALANCE_SIZE>[4]

</DESTINATION>[5]
<DESTINATION><CLASS>tier2</CLASS></DESTINATION>[6]

</ON></CREATE>[7]
<RELOCATE>[8]
<FROM>[9]
<SOURCE><CLASS>tier1</CLASS></SOURCE>[10]
<SOURCE><CLASS>tier2</CLASS></SOURCE>[11]

</FROM>[12]
<TO>[13]
<DESTINATION><CLASS>tier3</CLASS></DESTINATION>[14]
<DESTINATION><CLASS>tier4</CLASS></DESTINATION>[15]

</TO>[16]
<WHEN>[17]
<SIZE Units="MB"><MIN Flags="gt">1</MIN><MAX Flags="lt">1000</MAX></SIZE>[18]
<ACCAGE Units="days"><MIN Flags="gt">30</MIN></ACCAGE>[19]

</WHEN>[20]
</RELOCATE>[21]
<RELOCATE>[22]
<FROM><SOURCE><CLASS>tier2</CLASS></SOURCE></FROM>[23]
<TO><DESTINATION><CLASS>tier4</CLASS></DESTINATION></TO>[24]
<WHEN>[25]
<IOTEMP Type="nrwbytes">[26]
<MIN Flags="gt">2.5</MIN><PERIOD>5</PERIOD>[27]

</IOTEMP>[28]
</WHEN>[29]

</RELOCATE>
</RULE>

[30]
[31]

The CREATE statement, in lines [1]-[7] of Fragment B-3, allocates space for

selected files on tier1 volumes if space is available, and on tier2 volumes if not.

Files allocated on tier1 volumes are distributed across them in extents of two

megabytes, but if lack of available space on tier1 volumes forces files to be

allocated on tier2 volumes, extents are not distributed.

The first RELOCATE statement, in lines [8]-[21] of FragmentB-3, relocates selected

files larger than one megabyte but smaller than 1,000 megabytes that have not

been accessed for 30 days and that reside on tier1 or tier2 volumes to tier3

volumes if space permits, and to tier4 volumes if not. If neither tier3 nor tier4

volumes have adequate space, for a selected file that qualifies for relocation, it is

not relocated, but no error is generated.

The second RELOCATE statement, in lines [22]-[31] of Fragment B-3, relocates

selected files that reside on tier2 volumes to tier4 volumes if their five-day

average I/O temperatures are greater than 2.5. Both reads and writes are included

in I/O temperature computations. A file selected by this rule qualifies for relocation

181A file placement policy example
Common placement policy elements

if the average daily amount of data read from and written to it is 2.5 times the

file’s size over the five-day period that immediately precedes policy enforcement.

The “Flags=Any” attribute

Fragment B-4 illustrates a rule that allocates new files if space is available

anywhere in the file system’s volume set.

Fragment B-4 Rule for database files

<RULE Name="Database_Rule" Flags="none">
<SELECT Flags="Data"><PATTERN>*.db</PATTERN></SELECT>

[1]
[2]

<CREATE><ON Flags=Any>[3]
<DESTINATION><CLASS>tier1</CLASS></DESTINATION>[4]

</ON></CREATE>
</RULE>

[5]
[6]

Files are selected by the rule in Fragment B-4 if their names follow the pattern

*.db, regardless of the directories in which they reside or their owners. They are

allocated on tier1 volumes if space permits, but if all tier1 volumes are fully

occupied, VxFS allocates themelsewhere in the file system’s volume set. Allocation

and extension of files selected by this rule does not fail unless no space is available

anywhere in the file system’s volume set. Once allocated, files selected by this

rule are not relocated. Once allocated, however, a file selected by this rule may be

extended on a different volume if the volume it occupies has no free space for

extension.

File deletion

Fragment B-5 illustrates a rule that automatically deletes selected files that meet

certain qualifications.

Fragment B-5 Rule for selective deletion of mpg files

<RULE Name="MPG_Rule" Flags="none">
<SELECT Flags="Data"><PATTERN>*.mpg</PATTERN></SELECT>

[1]
[2]

<CREATE><ON Flags=Any>[3]
<DESTINATION><CLASS>tier2</CLASS></DESTINATION>[4]

</ON></CREATE>[5]
<DELETE><FROM>[6]
<SOURCE><CLASS>tier1</CLASS></SOURCE>[7]
<SOURCE><CLASS>tier3</CLASS></SOURCE>[8]
<SOURCE><CLASS>tier4</CLASS></SOURCE>[9]

</FROM></DELETE>[10]
<DELETE>[11]
<FROM><SOURCE><CLASS>tier2</CLASS></SOURCE></FROM>[12]
<WHEN><ACCAGE Units="days"><MIN Flags="gt">30</MIN></ACCAGE></WHEN>[13]

A file placement policy example
Common placement policy elements

182

Fragment B-5 Rule for selective deletion of mpg files (continued)

[14]
[15]

</DELETE>
</RULE>

The rule in Fragment B-5 creates files whose names follow the pattern *.mpg on

tier2 volumes if space is available, and elsewhere in the file system’s volume set

if not. Files selected by the rule that reside on tier1, tier3, and tier4 volumes

(because no tier1 volume had sufficient free space when they were allocated) are

deleted unconditionally each time the policy is enforced. Selected files that reside

on tier2 volumes are deleted if they are inactive for 30 days.

The “catchall” rule

Fragment B-6 contains the “catchall” rule that governs placement of all files that

are not selected by any of the four preceding rules. These files are created on

tier3 volumes if free space permits, and on tier4 volumes if not. If they are

accessed during the 24-hour period immediately preceding a placement policy

enforcement, they are relocated to tier1 volumes if space permits, and to tier2

volumes if not. If no tier1 or tier2 space is available, files are not relocated, but

no error message is generated. Once a file selected by this rule is relocated to a

tier1 or tier2 volume, it does not relocate further because no statement in this

rule applies to selected files that reside on these volumes.

Fragment B-6 ”Catchall” rule

<RULE Name="Catchall_Rule" Flags="data">
<SELECT><PATTERN>*</PATTERN></SELECT>

[1]
[2]

<CREATE><ON>[3]
<DESTINATION><CLASS>tier3</CLASS></DESTINATION>[4]
<DESTINATION><CLASS>tier4</CLASS></DESTINATION>[5]

</ON></CREATE>[6]
<RELOCATE>[7]
<TO>[8]
<DESTINATION><CLASS>tier1</CLASS></DESTINATION>[9]
<DESTINATION><CLASS>tier2</CLASS></DESTINATION>[10]

</TO>[11]
<WHEN><ACCAGE Units="days"><MAX Flags="lt">1</MAX></ACCAGE></WHEN>[12]

</RELOCATE>[13]
</RULE>

</PLACEMENT_POLICY>
[14]
[15]

183A file placement policy example
Common placement policy elements

A file placement policy example
Common placement policy elements

184

XML document type

definition (DTD) for the

VxFS file placement policy

document type

This appendix includes the following topics:

■ The Storage Foundation Placement Policy DTD

The Storage Foundation Placement Policy DTD
This appendix contains theXMLdocument type definition (DTD) for file placement

policy documents. Certain elements and attributes in this version of the DTD are

marked as not being implemented. These represent functionality that may be

provided in a future (post Version 5.0) version of the Dynamic Storage Tiering

facility.

For readability, the continuous DTD XML document is presented in ten separate

parts.

Fragment C-1 DTD PLACEMENT_POLICY element definition

<?xml version="1.0"?>
<!-- The placement policy document definition file -->

[1]
[2]

<!-- Specification for PLACEMENT_POLICY element.[3]
It can contain the following[4]

1. 0 or 1 COMMENT element[5]
2. 1 or more RULE elements[6]

-->[7]
<!ELEMENT PLACEMENT_POLICY (COMMENT?, RULE+)>[8]

CAppendix

Fragment C-1 DTD PLACEMENT_POLICY element definition (continued)

[9]
[10]

<!-- The attributes of PLACEMENT_POLICY element -->
<!-- The possible and accepted values for Guid are

[11] 1. {a5191230-1dd1-11b2-a73e-0003ba44a638} - uncanned
[12] 2. {9d6eafe2-1dd1-11b2-a73c-0003ba44a638} - age based
[13] 3. {992a5fc0-1dd1-11b2-a73d-0003ba44a638} - update age based
[14] 4. {dfaa5748-1dd1-11b2-a73d-0003ba44a638} - preferred files
[15] 5. {c094e7e2-1dd1-11b2-a73d-0003ba44a638} - activity based
[16] The possible and accepted values for Generation are
[17] 1. 0 for CLI invoked at shell level
[18] 2. 1 for policy created by local GUI
[19] 3. > 2 for policies assigned from the central GUI
[20] TODO - The Guid and Generation attributes should not be documented
[21]
[22]

for public use.
>

[23]
[24]

<!ATTLIST PLACEMENT_POLICY
Name CDATA #REQUIRED

[25] Version "5.0" #REQUIRED
[26]
[27]

Guid CDATA #REQUIRED
Generation CDATA #REQUIRED

[28]
[29]

<!-- Specification for COMMENT element -->
<!ELEMENT COMMENT (#PCDATA)>

Fragment C-2 DTD RULE element definition

<!-- Specification for RULE element.
It can contain the following

[1]
[2]

1. 0 or 1 COMMENT element[3]
2. 1 or more SELECT elements[4]
3. 0 or 1 CREATE element[5]
4. 0 or more DELETE elements
5. 0 or more RELOCATE elements

[6]
[7]

The elements must appear in the above order, particularly,
DELETE elements, if any, must preceed RELOCATE elements, if any.

[8]
[9]

If any of the DELETE elements triggers an action, subsequent[10]
elements (DELETE and/or RELOCATE elements, if any) will not be[11]
processed.[12]

-->[13]
<!ELEMENT RULE (COMMENT?, SELECT+, CREATE?, DELETE*, RELOCATE*)>[14]
<!-- The attributes of RULE element -->[15]

<!-- The possible and accepted values for Flags are[16]
1. data[17]
2. metadata[18]
3. checkpoint
4. log

[19]
[20]

If Flags indicate "metadata", SELECT element must not
contain any DIRECTORY, PATTERN, USER or GROUP elements

[21]
[22]

in such SELECT element. There must not be any DELETE
element in the enclosing RULE element either.

[23]
[24]

If Flags indicate "checkpoint", SELECT element must not
contain any DIRECTORY, PATTERN, USER or GROUP elements

[25]
[26]

XML document type definition (DTD) for the VxFS file placement policy document type
The Storage Foundation Placement Policy DTD

186

Fragment C-2 DTD RULE element definition (continued)

[27]
[28]

in such SELECT element. There must not be any RELOCATE or
DELETE element in the enclosing RULE element either.

[29]
[30]

If Flags indicate "log", SELECT element must not
contain any DIRECTORY, PATTERN, USER or GROUP elements

[31] in such SELECT element. There must not be any RELOCATE
[32] element in the enclosing RULE element either.
[33] TODO - Remove metadata, checkpoint and log references from
[34] public use
[35] -->
[36] <!ATTLIST RULE
[37] Name CDATA #REQUIRED
[38]
[39]

Flags ("data"|"metadata"|"checkpoint"|"log") #REQUIRED
>

Fragment C-3 DTD SELECT element definition

<!-- Specification for SELECT element. This describes selection criteria.
It can contain the following

[1]
[2]

1. 0 or 1 COMMENT elements[3]
2. 0 or more DIRECTORY elements[4]
3. 0 or more PATTERN elements[5]
4. 0 or more USER elements[6]
5. 0 or more GROUP elements[7]
The elements can appear in any order.[8]

-->[9]
<!ELEMENT SELECT (COMMENT?, DIRECTORY*, PATTERN*, USER*, GROUP*)>[10]
<!-- The attributes of SELECT element -->[11]
<!ATTLIST SELECT[12]

Name CDATA
>

[13]
[14]

<!-- Specification for DIRECTORY element
The DIRECTORY element takes a path relative to the

[15]
[16]

mount point. So if the intention is to sweep from[17]
/db/finance/data and /db is the mount point,[18]
DIRECTORY element should contain finance/data[19]
Only one value can be specified per element.[20]

-->[21]
<!ELEMENT DIRECTORY (#PCDATA)>[22]
<!-- The attributes of DIRECTORY element -->[23]

<!-- The possible and accepted values for Flags are[24]
1. recursive
2. nonrecursive

[25]
[26]

If a given directory appears in more than one RULE,
all such DIRECTORY elements must all be recursive or

[27]
[28]

nonrecursive but can not be a combination. If no DIRECTORY[29]
element is specified, all the files under the mount point[30]
will be selected.[31]

-->[32]
<!ATTLIST DIRECTORY[33]

Flags ("recursive"|"nonrecursive") #REQUIRED
>

[34]
[35]

187XML document type definition (DTD) for the VxFS file placement policy document type
The Storage Foundation Placement Policy DTD

Fragment C-3 DTD SELECT element definition (continued)

[36]
[37]

<!-- Specification for PATTERN element
The PATTERN can be a full name of a file, i.e., can not contain

[38] "/" characters. Or it can have a '*' character. The first '*'
[39] character will be considered as wild character and any other
[40] character, including a second '*' as literals.
[41] Only one value can be specified per element.
[42]
[43]

-->
<!ELEMENT PATTERN (#PCDATA)>

[44]
[45]

<!-- Specification for USER element
The USER is a name string of the unix domain user

[46] Only one value can be specified per element.
[47]
[48]

-->
<!ELEMENT USER (#PCDATA)>

[49]
[50]

<!-- Specification for GROUP element
The GROUP is a name string of the unix domain group

[51] Only one value can be specified per element.
[52]
[53]

-->
<!ELEMENT GROUP (#PCDATA)>

Fragment C-4 DTD CREATE element definition part 1

<!-- Specification for CREATE element. This describes creation criteria.[1]
It can contain the following[2]
1. 0 or 1 COMMENT element
2. 1 ON element

[3]
[4]

The order of elements may be significant in future
-->

[5]
[6]

<!ELEMENT CREATE (COMMENT?, ON)>[7]
<!ATTLIST CREATE[8]

Name CDATA[9]
Flags CDATA "none"

>
[10]
[11]

<!-- Specification for ON element. This describes location criteria.
It can contain the following

[12]
[13]

1. 0 or more DESTINATION elements[14]
Though zero DESTINATION elements is defined in grammar, current[15]
implementation requires at least on DESTINATION.[16]

-->[17]
<!ELEMENT ON (DESTINATION*)>[18]
<!-- The attributes of ON element -->[19]

<!-- The possible and accepted values for Flags is[20]
1. any[21]
If this attribute is set, there may or may not be any CLASS[22]
elements in the DESTINATION elements under the ON element.[23]
If any of the DESTINATION elements have CLASS element, such[24]
CLASSes in the file system would be used first before other[25]
placement class storage is used.[26]

-->[27]
<!ATTLIST ON[28]

XML document type definition (DTD) for the VxFS file placement policy document type
The Storage Foundation Placement Policy DTD

188

Fragment C-4 DTD CREATE element definition part 1 (continued)

[29]
[30]
[31]

Name CDATA
Flags ("any")

>

Fragment C-5 DTD CREATE element definition part 2

<!-- Specification for DESTINATION element. This describes target location.
It can contain the following

[1]
[2]

1. 0 or 1 CLASS element[3]
2. 0 or 1 PERCENT element[4]
3. 0 or 1 BALANCE_SIZE element[5]

-->[6]
<!ELEMENT DESTINATION (CLASS?, PERCENT?, BALANCE_SIZE?)>[7]
<!-- The attributes of DESTINATION element -->[8]

<!-- The possible and accepted values for Flags[9]
(THIS IS NOT IMPLEMENTED) [[10]
1. disallow[11]
If this 'disallow' is set, there must not be any PERCENT or[12]
BALANCE_SIZE elements in such DESTINATION element but there[13]
must be a CLASS element. There must not be any RELOCATE and[14]
DELETE statements in the enclosing RULE element either.[15]

-->[16]
<!ATTLIST DESTINATION[17]

Name CDATA[18]
Flags ("disallow")

>
[19]
[20]

<!-- Specification for CLASS element
The file system resides on a multi-component volume set.

[21]
[22]

Each volume in the volume set will be in what is called a[23]
placement class. The placement classes are implemented as tags[24]
on the volumes. These tags are organized into a hierarchy prefix.[25]
The placement policy uses the vxfs.placement_class. prefix.[26]
The CLASS element specifies the placement class of the[27]
underlying storage, without the prefix. For example, if a[28]
volume has a placement class of vxfs.placment_class.gold[29]
then gold would be the value of CLASS element.[30]

-->
<!ELEMENT CLASS (#PCDATA)>

[31]
[32]

<!-- Specification for PERCENT element
(THIS IS NOT IMPLEMENTED)

[33]
[34]

If the PERCENT element is in DESTINATION element, it determines[35]
how much of its CLASS can be filled up with the files selected
by a given RULE.

[36]
[37]

If the PERCENT element is in SOURCE element, it determines
how much of its CLASS can be emptied when the files are relocated

[38]
[39]

our deleted from it.[40]
-->
<!ELEMENT PERCENT (#PCDATA)>

[41]
[42]

<!-- Specification for BALANCE_SIZE element
Multiple volumes may have the same placement class and there can

[43]
[44]

189XML document type definition (DTD) for the VxFS file placement policy document type
The Storage Foundation Placement Policy DTD

Fragment C-5 DTD CREATE element definition part 2 (continued)

[45]
[46]

be multiple DESTINATIONs (hence CLASSes) in a given ON (and TO)
element. If a BALANCE_SIZE is specified for a given CLASS,

[47] the usage of volumes of that given placement class will be used
[48] evenly by allocating BALANCE_SIZE amount of space for each
[49] volume for each allocation.
[50] -->
[51] <!ELEMENT BALANCE_SIZE (#PCDATA)>
[52] <!-- The attributes of BALANCE_SIZE element -->
[53] <!-- The possible and accepted values for Units are
[54] 1. bytes
[55] 2. KB
[56] 3. MB
[57] 4. GB
[58] -->
[59] <!ATTLIST BALANCE_SIZE
[60]
[61]

Units ("bytes"|"KB"|"MB"|"GB") #REQUIRED
>

Fragment C-6 DTD DELETE element definition

<!-- Specification for DELETE element. This describes deletion criteria.
It can contain the following

[1]
[2]

1. 0 or 1 COMMENT element[3]
2. 0 or 1 FROM element[4]
3. 0 or 1 WHEN element[5]

-->[6]
<!ELEMENT DELETE (COMMENT?, FROM?, WHEN?)>[7]
<!ATTLIST DELETE[8]
Name CDATA[9]
Flags CDATA "none"
>

[10]
[11]

Fragment C-7 DTD RELOCATE element definition part 1

<!-- Specification for RELOCATE element. This describes relocation criteria.
It can contain the following

[1]
[2]

1. 0 or 1 COMMENT element[3]
2. 0 or 1 FROM element[4]
3. 1 TO element
4. 0 or 1 WHEN element

[5]
[6]

The order of TO elements is significant. Earlier CLASSes would be
used before the latter ones.

[7]
[8]

-->[9]
<!ELEMENT RELOCATE (COMMENT?, FROM?, TO, WHEN?)>[10]
<!ATTLIST RELOCATE[11]

Name CDATA[12]
Flags CDATA "none"

>
[13]
[14]

<!-- Specification for FROM element. This describes source criteria.
It can contain the following

[15]
[16]

XML document type definition (DTD) for the VxFS file placement policy document type
The Storage Foundation Placement Policy DTD

190

Fragment C-7 DTD RELOCATE element definition part 1 (continued)

[17]
[18]

1. 1 or more SOURCE elements
-->

[19] <!ELEMENT FROM (SOURCE+)>
[20] <!ATTLIST FROM
[21] Name CDATA
[22]
[23]

Flags CDATA "none"
>

[24]
[25]

<!-- Specification for SOURCE element. This describes source location.
It can contain the following

[26] 1. 1 CLASS element
[27] 2. 0 or 1 PERCENT element
[28] -->
[29] <!ELEMENT SOURCE (CLASS, PERCENT?)
[30] <!ATTLIST SOURCE
[31] Name CDATA
[32]
[33]

Flags CDATA "none"
>

[34]
[35]

<!-- Specification for TO element. This describes destination criteria.
It can contain the following

[36] 1. 1 or more DESTINATION elements
[37] -->
[38] <!ELEMENT TO (DESTINATION+)>
[39] <!ATTLIST TO
[40] Name CDATA
[41]
[42]

Flags CDATA "none"
>

Fragment C-8 DTD RELOCATE element definition part 2

<!-- Specification for WHEN element. This describes relocation specifiers.[1]
It can contain the following[2]
1. 0 or 1 SIZE element[3]
2. 0 or 1 ACCAGE element[4]
3. 0 or 1 MODAGE element[5]
4. 0 or 1 IOTEMP element
5. 0 or 1 ACCESSTEMP element

[6]
[7]

The order of elements is significant.
-->

[8]
[9]

<!ELEMENT WHEN (SIZE?, ACCAGE?, MODAGE?, IOTEMP?, ACCESSTEMP?>[10]
<!ATTLIST WHEN[11]

Name CDATA[12]
Flags CDATA "none"

>
[13]
[14]

<!-- Specification for SIZE element -->
It can contain the following

[15]
[16]

1. 0 or 1 MIN element[17]
2. 0 or 1 MAX element[18]

-->[19]
<!ELEMENT SIZE (MIN?, MAX?)>[20]

191XML document type definition (DTD) for the VxFS file placement policy document type
The Storage Foundation Placement Policy DTD

Fragment C-8 DTD RELOCATE element definition part 2 (continued)

[21]
[22]

<!-- The attributes of SIZE element -->
<!-- The possible and accepted values for Prefer are

[23] (THIS IS NOT IMPLEMENTED)
[24] 1. low
[25] 2. high
[26] The possible and accepted values for Units are
[27] 1. bytes
[28] 2. KB
[29] 3. MB
[30] 4. GB
[31] -->
[32] <!ATTLIST SIZE
[33] Prefer ("low"|"high")
[34]
[35]

Units ("bytes"|"KB"|"MB"|"GB") #REQUIRED
>

[36]
[37]

<!-- Specification for ACCAGE element -->
It can contain the following

[38] 1. 0 or 1 MIN element
[39] 2. 0 or 1 MAX element
[40] -->
[41] <!ELEMENT ACCAGE (MIN?, MAX?)>
[42] <!-- The attributes of ACCAGE element -->
[43] <!-- The possible and accepted values for Prefer are
[44] (THIS IS NOT IMPLEMENTED)
[45] 1. low
[46] 2. high
[47] The possible and accepted values for Units are
[48] 1. hours
[49] 2. days
[50] -->
[51] <!ATTLIST ACCAGE
[52] Prefer ("low"|"high")
[53]
[54]

Units (""hours"|"days") #REQUIRED
>

Fragment C-9 DTD RELOCATE element definition part 3

!-- Specification for MODAGE element -->
It can contain the following

[1]
[2]

1. 0 or 1 MIN element[3]
2. 0 or 1 MAX element[4]

-->[5]
<!ELEMENT MODAGE (MIN?, MAX?)>[6]
<!-- The attributes of MODAGE element -->[7]

<!-- The possible and accepted values for Prefer are[8]
(THIS IS NOT IMPLEMENTED)[9]
1. low[10]
2. high[11]

The possible and accepted values for Units are[12]
1. hours[13]
2. days[14]

-->[15]
<!ATTLIST MODAGE[16]

XML document type definition (DTD) for the VxFS file placement policy document type
The Storage Foundation Placement Policy DTD

192

Fragment C-9 DTD RELOCATE element definition part 3 (continued)

[17]
[18]

Prefer ("low"|"high")
Units (""HOURS"|"days") #REQUIRED

[19] >
[20] <!-- Specification for IOTEMP element -->
[21] The value of IOTEMP represents bytes read (nrbytes),
[22] bytes written (nwbytes) or bytes transferred, i.e.,
[23] read and written (nrwbytes), divided by the size of the
[24] file, over a specified PERIOD (in days).
[25] It can contain the following
[26] 1. 0 or 1 MIN element
[27] 2. 0 or 1 MAX element
[28] 3. 1 PERIOD element
[29] -->
[30] <!ELEMENT IOTEMP (MIN?, MAX?, PERIOD)>
[31] <!-- The attributes of IOTEMP element -->
[32] <!-- The possible and accepted values for Prefer are
[33] (THIS IS NOT IMPLEMENTED)
[34] 1. low
[35] 2. high
[36] -->
[37] <!-- The possible and accepted values for Type are
[38] 1. nrbytes
[39] 2. nwbytes
[40] 3. nrwbytes
[41] -->
[42] <!ATTLIST IOTEMP
[43] Prefer ("low"|"high")
[44] Type ("nrbytes"|"nwbytes"| "nrwbytes") #REQUIRED
[45] >
[46] <!-- Specification for ACCESSTEMP element -->
[47] The value of ACCESSTEMP represents times read (nrbytes),
[48] times written (nwbytes) or times access i.e.,
[49] read and written (nrws) over a specified PERIOD (in days).
[50] It can contain the following
[51] 1. 0 or 1 MIN element
[52] 2. 0 or 1 MAX element
[53] 3. 1 PERIOD element
[54] -->
[55] <!ELEMENT ACCESSTEMP (MIN?, MAX?, PERIOD)>
[56] <!-- The attributes of ACCESSTEMP element -->
[57] <!-- The possible and accepted values for Prefer are
[58] (THIS IS NOT IMPLEMENTED)
[59] 1. low
[60] 2. high
[61] -->
[62] <!-- The possible and accepted values for Type are
[63] 1. nreads
[64] 2. nwrites
[65] 3. nrws
[66] -->
[67] <!ATTLIST ACCESSTEMP
[68] Prefer ("low"|"high")
[69]
[70]

Type ("nreads"|"nwrites"| "nrws") #REQUIRED
>

193XML document type definition (DTD) for the VxFS file placement policy document type
The Storage Foundation Placement Policy DTD

Fragment C-10 DTD RELOCATE element definition part 4

<!-- Specification for MIN element -->
<!ELEMENT MIN (#PCDATA)>

[1]
[2]

<!-- The attributes of MIN element -->[3]
<!-- The possible and accepted values for Flags are[4]
1. gt for >[5]
2. eq for =[6]
3. gteq for >=[7]
-->[8]

<!ATTLIST MIN[9]
Flags ("gt"|"eq"|"gteq") #REQUIRED

>
[10]
[11]

<!-- Specification for MAX element -->
<!ELEMENT MAX (#PCDATA)>

[12]
[13]

<!-- The attributes of MAX element -->[14]
<!-- The possible and accepted values for Flags are[15]
1. lt for <[16]
2. lteq for <=[17]
-->[18]

<!ATTLIST MAX[19]
Flags ("lt"|"lteq") #REQUIRED

>
[20]
[21]

<!-- Specification for PERIOD element -->
<!ELEMENT PERIOD (#PCDATA)>

[22]
[23]

<!ATTLIST PERIOD[24]
Units ("days") #REQUIRED

>
[25]
[26]

XML document type definition (DTD) for the VxFS file placement policy document type
The Storage Foundation Placement Policy DTD

194

Using Dynamic Storage Tiering

The Veritas Storage Foundation Dynamic Storage Tiering facility takes advantage of multi-tier storage by constantly
aligning files’ storage physical locations with policies that express changing business needs, without recurring adminis-
trative overhead or “time to first byte” penalties when files are accessed. The case for Dynamic Storage Tiering is simple:

Opportunity: Multiple online storage tiers create an opportunity for enterprises to reduce their overall cost of
storage by relegating less critical or less active data to lower cost storage devices.

Feasibility: The hardware technology and virtualization options available today make it possible to tailor online
storage to enterprise data requirements, whether they are expressed in terms of cost, availability, and performance,
or in terms of other business criteria such as organizational responsibility or profitability.

Paradigm: Files are an obvious unit for managing relationships between data and storage tiers. Effective utilization of
multi-tier storage means that files are created on the most appropriate type of storage, and relocated as their properties
change during their lifecycles.

Limitations of conventional mechanisms: The two conventional mechanisms for utilizing multi-tier storage are
ad hoc relocation and hierarchical storage management (HSM). Ad hoc relocation is labor-intensive and fragile. HSM
is limited to inactivity-based policies and incurs run-time delays when applications access migrated files.

This book describes how Dynamic Storage Tiering works, shows how administrators can use it to automatically optimize
online storage utilization, and presents some common use cases. It is a must for architects and administrators concerned
with controlling storage cost without sacrificing the quality of service delivered to applications and users.

Symantec Yellow Books deliver skills and know-how to our partners and customers as well as to the technical

community in general. They show how Symantec solutions handle real-world business and technical problems, provide

product implementation and integration know-how, and enhance the ability of IT staff and consultants to install and

configure Symantec products efficiently.

About Symantec Yellow Books™

www.symantec.com

Ganesh Karche

Murthy Mamidi

Paul Massiglia

Using Dynamic
Storage Tiering
How the Veritas Storage Foundation helps you
get the most from multi-tier online storage

S
ym

an
tec Yello

w
 B

o
o

ks™

Copyright © 2006 Symantec Corporation. All rights reserved. 03/06 10568547

U
sin

g D
yn

am
ic S

to
rage T

ierin
g

	Contents
	1. The challenge in using multi-tier storage effectively
	About this book
	Multi-tier storage economics and mechanics
	Storage tiers
	Requirements for multi-tier storage
	Differences among storage devices

	The challenge in using multi-tier storage effectively
	Conventional multi-tier storage techniques
	Advantages and limitations of ad hoc data relocation
	Advantages and limitations of hierarchical storage management
	Hardware-based multi-tier storage facilities
	An ideal multi-tier storage facility

	Part I. The technology: VxFS multi-volume file systems and the Dynamic Storage Tiering facility
	2. Using multi-tier storage
	The Dynamic Storage Tiering facility
	Properties of multi-volume file systems
	Using placement classes to manage file locations
	File placement policies
	File placement policy enforcement

	3. The VxFS file placement policy grammar
	VxFS file placement principles
	VxFS file placement policies
	File placement policies and Storage Foundation Management Server
	File placement policy rules
	The action statements in file placement policy rules
	The CREATE statement
	The RELOCATE statement
	The DELETE statement
	Calculating a file’s I/O temperature and access temperature
	Multiple selection criteria and qualifiers in file placement policy rule statements
	File placement policy rule and statement ordering
	File placement policies and extending files
	Summary: key properties of multi-volume file systems

	4. Using the Storage Foundation Dynamic Storage Tiering facility
	Implementing Dynamic Storage Tiering
	Tagging volumes
	Creating volume sets and multi-volume file systems
	Policies that use I/O temperature as a file relocation qualifier
	File Change Log considerations

	Assigning file placement policies
	Enforcing the active file placement policy
	File placement reports
	The fsppadm query command
	The fsppadm list command

	5. Advanced Dynamic Storage Tiering usage
	Advanced DST features
	The DST value proposition

	Volume accessibility: a key assumption behind multi-tier storage
	VxFS metadata placement
	VxFS dataonly volume configuration considerations
	Partially accessible file systems

	Using VxFS dataonly volumes
	Inaccessible dataonly volumes and file placement policies

	Discovering file and volume relationships
	The fsmap command
	The fsvmap command

	Placing data restored from file-based backups
	Distributed file allocation
	VxFS-directed file placement
	The effect of statement ordering on file relocation
	Serial application of policy rules
	Ordering of RELOCATE and DELETE statements

	Overlapping placement classes
	Unconditional file deletion
	Additional policy rule ordering considerations
	Enterprise-wide file placement policies
	Standardizing volume tags
	Policies for file systems with different placement class sets
	Applying a policy to file systems with different placement class sets
	File systems with three placement classes
	File systems with two placement classes

	Summary: considerations for enterprise-wide file placement policies

	6. Storage Foundation built-in file placement policies
	The built-in placement policy subset
	Launching the built-in policy wizard

	An example of built-in policy creation
	Choosing the policy type
	Choosing applicable storage tiers
	Policies created using the Storage Foundation Management Server
	Designating preferred files
	Defining relocation qualifiers
	Function vs. simplicity
	Pinned files
	The policy summary
	Naming and assignment

	Summary: built-in file placement policies

	Part II. The applications: using the Dynamic Storage Tiering facility
	7. Using Dynamic Storage Tiering: file relocation based on I/O activity
	The value proposition revisited
	The unit cost of storage
	The value of available data

	The multi-tier storage challenge
	Limitations of conventional techniques
	Matching policies to usage
	Discovering file characteristics

	Using file activity analysis to define placement policies
	Policies that contain I/O temperature
	Modification age-based relocation
	IOTEMP and ACCESSTEMP vs. ACCAGE and MODAGE

	8. Using Dynamic Storage Tiering: efficient backup of large numbers of inactive files
	File systems with millions of files
	Challenges in backing up large numbers of inactive files
	Advantages of volume-level backup
	Restoring data from a volume-level backup

	Characteristics of the two-tier volume level backup technique
	Quantitative benefits

	9. Using Dynamic Storage Tiering: placing data for business reasons
	Mapping business requirements to file characteristics
	File placement by application
	File placement by user and department
	File placement by logical position in the file system name space
	File placement by file size
	Placing files to give preferential service to users

	10. Using Dynamic Storage Tiering: storage reclamation
	Getting the benefit of multi-tier storage
	Reclaiming and repurposing storage

	Reclaiming storage: an example
	Preparing for multi-tier storage
	Enforcing a placement policy to reduce premium storage occupancy
	Reclaiming storage capacity released by file relocation

	Conclusion

	11. Using Dynamic Storage Tiering: managing storage for databases
	Databases and file systems
	The DBDST facility
	Preparing database storage to use the DBDST facility
	Converting database file systems
	Putting volumes in placement classes

	Problem 1: infrequent relocation of Oracle tablespaces and partitions
	Problem 2: identifying changes in activity level and relocating files
	Problem 3: scheduled relocation of archive and flashback logs
	Problem 4: relocating external files
	Problem 5: preset placement policies for database files
	Using DBDST with DB2 automatic storage path

	Problem 6: increasing performance by load balancing

	12. Using Dynamic Storage Tiering: exploiting MAID-based storage
	The right storage for the right data
	Why multi-tier storage works

	MAID: A new tier in the storage hierarchy
	Limitations of MAID-based storage

	Applications for MAID-based storage
	Dynamic Storage Tiering and MAID-based storage
	Policies for using MAID-based storage
	Other policy considerations

	Part III. Appendixes
	A. Sample XML for a built-in file placement policy
	Output of the built-in policy creation wizards
	The preferred files rule: file creation
	The preferred files rule: downward file relocation
	The preferred files rule: upward file relocation
	Rules for files exempted from relocation
	Other files rule: file creation
	Other files rule: file relocation

	Summary: common properties of built-in file placement policies

	B. A file placement policy example
	Common placement policy elements
	Files pinned to a storage tier
	Multiple selection criteria
	Multiple sources and destinations
	The “Flags=Any” attribute
	File deletion
	The “catchall” rule

	C. XML document type definition (DTD) for the VxFS file placement policy document type
	The Storage Foundation Placement Policy DTD

