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EXECUTIVE SUMMARY

This paper describes the innovations in the Azul
®

 Compute Appliance 

with a focus on the Azul Virtual Machine, including the new Vega
TM 

processor, the relationship between the Azul VM proxy and the Azul VM 

engine executing on the compute appliance, the synergies between the 

Azul hardware and the VM, and powerful new optimizations enabled by 

the unique features of the Vega processor.  The paper is intended for 

engineers and system managers who are responsible for application 

architecture, development, and deployment. 
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The J2EE
TM

 platform has been wildly successful in the enterprise – Gartner estimates that by 

2008, 80% of all new e-business application development will be based on virtual machine 

technology.  Many enterprises are running hundreds of J2EE platform based applications, with new 

applications being deployed daily.  The availability of commodity servers coupled with clustering-

savvy application servers makes it easy to deploy new applications or add processing capacity 

to existing applications.  But J2EE may have become a victim of its own success.  The current 

approach to capacity planning – provisioning processing resources on a per-application basis, 

generally using cheap, rack-mounted servers, has created a serious management problem – a 

proliferation of application host servers in the data center, presenting IT organizations with an 

increasingly complex management challenge. Data center staff must provision and administer 

hundreds of servers cost-effectively without compromising system availability, utilization, and 

service levels. 

Network attached processing is a new and innovative approach to data-center management, 

delivering massive compute power to business applications while reducing the management 

complexity of today’s server farm. Azul is at the forefront of this revolution. By providing traditional 

host servers with a shared compute pool of mountable ultra-high capacity Azul Compute 

Appliances, network attached processing provides virtually unlimited processor and memory 

resources for the Java
TM

 and J2EE platforms.  

Working in conjunction with conventional application host servers, the workload is transparently 

redirected to the compute pool for execution while all interfaces to clients, databases and host 

operation systems services remain on the application host server. This provides an easy migration 

path for existing applications, while maintaining the flexibility to execute applications on any 

appliance in the compute pool.  Azul’s policy-based Compute Pool Manager
TM

 (CPM) provides 

flexible and central control of application resources and execution policies. Changes to existing 

application software, application servers, and other systems are not required. 

This paper describes the high-level structure of the Azul virtual machine, the relationship between 

the Azul VM proxy and the VM engine, and some of the advanced features of the Azul hardware-

software combination.  
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NETWORK ATTACHED PROCESSING

Network attached storage (NAS) technology has successfully enabled companies to reduce costs 

and enhance flexibility by planning and managing storage capacity on an enterprise-wide basis.  

Analogously, network attached processing separates the CPU resources from application server 

hosts, managing a massive pool of compute resources which can serve the requirements of many 

applications. Figure 1 shows a typical three-tier architecture consisting of a web tier, an application 

tier, and a data tier; a single enterprise may deploy dozens or hundreds of separate applications

Figure 1 Typical Three Tier Architecture

The web and data tiers are typically treated as “IT infrastructure” and provisioned and managed on 

an enterprise-wide basis, just like bandwidth, storage, and power.  This enables capacity planning 

on an enterprise-wide basis and lowers costs by increasing resource utilization.   The standard 

practice for the application tier, on the other hand, is to provision capacity on a per-application 

basis – servers are allocated to a specific application, and cannot be easily shifted to other 

applications as demand changes.  Because application load varies over time, sufficient capacity 

must be provisioned for each application’s peak load, which often results in application-tier CPU 

utilization under 10 percent.  

Application Hosts

Database TierWeb Tier Application Tier
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Network attached processing enables enterprises to achieve the same consolidation benefits in the 

application tier that they are already enjoying in the web and data tiers.  Figure 2 shows the three-

tier architecture with network attached processing technology.  The middle tier now consists of two 

types of systems – traditional host servers (but fewer of them) and a pool of compute appliances.  

The compute appliances form a massive pool of computing power that can be shared by many 

applications and managed on an enterprise-wide basis.  Azul compute appliances are designed for 

continuous data center operation, sporting redundant power supplies and network controllers and 

the ability to route processing around CPU and memory failures for high availability.

Figure 2 Three Tier Architecture with Network Attached Processing

With network-attached processing, host servers transparently mount virtualized CPU and memory 

resources, and execute applications on virtual servers within the compute appliance.  The Compute 

Pool Manager (CPM) application provides monitoring of resource utilization across the pool and 

centralized control of execution policies, allocating CPU and memory resources to applications 

based on flexible policies.  CPU and memory resources can be provisioned and reallocated without 

any application-level reconfiguration.  By provisioning and managing processing resources on an 

enterprise-wide basis, utilization is improved and management overhead is reduced.  

Migrating to a network-attached processing configuration is painless; the only change to host 

servers is to swap out the existing JVM for the Azul VM proxy.  The application software, including 

the J2EE container and application classes, remains installed and configured on the host server, 

and the host server accepts request from clients and accesses other middle- or data-tier services 

just as if the application were executing locally.  

Application Hosts

Compute Pool

Database TierWeb Tier Application Tier

Compute Appliances



6

THE AZUL VIRTUAL MACHINE PROXY

To tap the computing power of a compute appliance, the JVM on the host server is replaced with 

the Azul Virtual Machine proxy, which delegates the computational workload to a virtual server 

running in the compute pool.  The VM proxy works in conjunction with the VM engine running 

on the compute appliance; the application bytecodes are executed on the compute appliance 

by the VM engine, with socket I/O, file I/O and native code execution delegated back to the VM 

proxy for execution on the host server.  From the perspective of the host server or other hosts, 

the application is still executing locally because all interaction with clients, databases, and host 

operating system services is performed through the host server.  Because the compute pool offers 

much more processing power and memory than the host server, each host server can service a 

much higher volume of requests.

Application Startup

To execute an application on a compute appliance, the application is started on the host server 

using the VM proxy. The first thing the VM proxy does is contact the Compute Pool Manager, to 

request access to the pool.  The CPM consults its policy database to identify a target compute 

appliance, which the VM proxy then connects to directly.  This startup sequence allows placement 

to be controlled dynamically by configurable policy parameters such as redundancy requirements 

and resource availability guarantees, and allows appliances to be added or removed from the 

compute pool without reconfiguring applications.  Figure 3 illustrates the interactions between the 

host server, CPM, and compute appliance during application startup.

Figure 3 Startup Sequence for Executing an Application on a Compute Appliance
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Once the VM proxy and the compute appliance are communicating directly, the proxy uploads the 

JVM executable for the VM engine to the appliance.  By having the client supply the VM engine 

binary, different applications running within a single appliance can use different JVM versions.  The 

Azul VM engine leverages the hardware capabilities of the compute appliance to add features such 

as pauseless garbage collection and optimistic thread concurrency, and users can be confident 

of stability and compatibility because the Azul VM engine is based on Sun Microsystems
TM

 Java 

HotSpot
TM

 technology and passes the tens of thousands of compatibility and compliance tests 

required for Sun certification.  The operating systems supported as host servers are listed in  

Table 1.  Applications initiated by different host server platforms can execute simultaneously on 

a single compute appliance, allowing heterogeneous environments to access the compute pool 

without restriction.

Table 1 Supported Combinations of Hardware, Operating System, and Java Platforms

Application Host Server 
Hardware

Operating System Java Software Environment

Sun™ SPARC™ Environment Solaris™ 8, 9, and 10 BEA® WebLogic® 8.1

IBM® WebSphere® 5.1 and 6.0  

JBoss™ Application Server 3.2 and 4.0

Native J2SE 

Caucho® Resin® 2 and 3

Apache® Tomcat® 4 and 5 

Intel® 32-bit Architecture RedHat™ Linux™ AS/ES 2.1 (Kernel 2.4.9) BEA WebLogic 8.1

IBM WebSphere 5.1 and 6.0  

JBoss Application Server 3.2 and 4.0

Native J2SE 

Caucho Resin 2 and 3

Apache Tomcat 4 and 5 

RedHat Linux AS/ES 3.0 (Kernel 2.4.21) BEA WebLogic 8.1

IBM WebSphere 5.1 and 6.0  

JBoss Application Server 3.2 and 4.0

Native J2SE 

Caucho Resin 2 and 3

Apache Tomcat 4 and 5 

SuSe™ Linux 9.x (Kernel 2.6) BEA WebLogic 8.1

IBM WebSphere 5.1 and 6.0  

JBoss Application Server 3.2 and 4.0

Native J2SE 

Caucho Resin 2 and 3

Apache Tomcat 4 and 5 
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File I/O and socket I/O are directed to the VM 

proxy for execution on the host server.  From the 

perspective of the rest of the network, all I/O is 

performed by the host server, and the application 

appears to be executing there. The existence of 

the compute appliance and segmented VM is 

entirely transparent to the rest of the network. 

Migrating to a network attached processing 

environment therefore does not require any 

changes to existing firewall, security, or other 

system configurations. 

When the VM engine starts up, it loads the main 

class, core library classes, and other classes 

required by the application, as well as other 

resources that are loaded through the class loader 

such as configuration files. Class loading is done 

via normal file and network based I/O, which is 

transparently performed through the VM proxy. 

Each time a class loader requests a specific JAR 

or class file, the VM engine accesses the file 

through the VM proxy.

Once startup is complete, the application is ready 

to accept requests from clients; clients interact with 

the application via network connections directed 

to the host server. The VM proxy transparently 

forwards these connections to the VM engine, 

where the application processes the client request. 

Responses from the application are sent via the 

VM proxy, which forwards the connection back 

to the client.  When the application initiates an 

outbound connection to a database server, EJB 

container, or web service, the VM engine similarly 

forwards traffic through the VM proxy.  From the perspective of network services, the connection  

is initiated from the host server.

GLOSSARY OF TERMS

Azul Virtual Machine, Engine, and Proxy: The 

Azul Virtual Machine separates a virtual machine 

into two components; a virtual machine proxy and 

a virtual machine engine. The proxy and engine 

cooperate together to deliver all the services of 

a virtual machine.   The VM proxy runs on the 

application host in place of a conventional virtual 

machine. The VM proxy communicates with the 

operating system on the application host, and with 

external systems such as the web and database 

servers. The VM engine runs on the Azul compute 

appliance and offloads workload from the proxy 

onto the compute appliance.  An engine is started 

automatically by each proxy, and there is always 

one engine for each proxy running. 

Compute appliance:  The name for the type of 

specialized server devices developed by Azul 

Systems. Compute appliances provide enormous 

compute capacity very cost effectively. 

Compute pool: A group of Azul compute 

appliances within the compute pool domain. An 

appliance can be a member of only one compute 

pool. Administrators use the CPM Console to 

define compute pools.

Compute Pool Manager: The Compute Pool 

Manager (CPM) is a distributed management 

system that manages Azul compute appliances 

and the application workload running on 

those appliances. CPM provides policy-driven 

management of application workloads, a web-

based user interface, event logging, status and 

alerting for compute appliances and applications, 



Bandwidth and latency

It may initially appear that relaying socket 

connections through the host server would 

increase bandwidth costs.  Perhaps surprisingly, 

the additional bandwidth required for connection 

proxying has little effect on application 

performance in practice.  In the worst case, 

a connection forwarding implementation that 

simply relayed the raw IP packets would use 

exactly twice the bandwidth as the equivalent 

application running directly on the host server.  

But efficiencies in the proxy-engine protocol 

that multiplexes data from multiple connections 

make the true bandwidth cost less than this – if 

there are many connections proxied through the 

host server, as there usually will be, data from 

multiple connections can be combined into 

a single packet.  As packet header overhead 

often represents a significant fraction of network 

bandwidth consumption, the larger payload size 

reduces the packet header overhead, driving 

the bandwidth multiplier below two.   And, 

because the traffic between the host server and 

the compute appliance can travel over a private 

network segment, overall traffic levels on segments used for communication between the host 

server and clients or services need not increase at all.  

The additional bandwidth seen by the host server is unlikely to affect application throughput, as 

J2EE applications tend to be compute-bound, not network-bound.  Most J2EE applications use 

only a few percent of their network interface capacity, so doubling the level of network traffic at the 

host server will not constrain application performance at all. Because executing the application on 

the compute appliance can dramatically increase the capacity of a single host server, throughput 

for a single host server may eventually be limited by bandwidth – thought at a significantly higher 

processing volume (see the white paper Effects of Network Attached Processing: Application 

Response Time and Network Traffic Levels”)  

NATIVE CODE

Java classes can have native methods, 

whose code is contained in shared 

libraries instead of Java class files.  

Since native code is specific to the 

executable format of the host server, 

it must execute on the host server via 

a remote call from the engine to the 

proxy.  But this is only true for native 

code that is part of the application. All of 

the native code that is part of the JVM 

or class library is incorporated into the 

VM engine, so native code that is not 

part of the application executes natively 

on the compute appliance without any 

network traffic or other remote execution 

penalty.  As very few Java applications 

use native code that is not part of the 

class libraries, most applications will not 

incur any cost at all due to execution of 

native code.
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Relaying client connections through the proxy does add some additional latency, similar to that of 

an additional network hop, which can make some blocking I/O operations take slightly longer to 

complete.  In percentage terms, however, the effect is likely to be smaller than initially surmised, 

because of the nature of typical outbound connections.  J2EE applications only tend to initiate 

outbound connections when they access “far away” data such as a database or web service.  

The latency in servicing a database query is likely to dwarf the incremental latency due to the 

additional network hop, so the degree to which this extra hop increases perceived response time is 

negligible.  

The other major source of I/O in a typical server application is incoming requests from clients.  If 

every byte read from a client socket required a round-trip to the proxy, this would indeed be a 

problem.  But the proxy and engine cooperate to ensure that this does not happen.  Data received 

from clients is streamed to the compute appliance, where the VM engine buffers it until it is needed 

by the application.  If the data is available, socket reads will complete without any additional 

latency; if the data is not yet available, the limiting factor is going to be the rate at which the client 

can send data, not the forwarding overhead.  When sending response data back to clients, the 

additional latency due to the extra network hop is again likely to be dominated by request service 

time, just as was the case with an outbound connection to a remote resource.

ADVANCED SCALABILITY FEATURES OF THE AZUL PLATFORM

The Azul compute appliance offers far greater computing power than typical host servers 

– hundreds of processors and hundreds of gigabytes of memory.  But simply cramming lots of 

CPUs and memory into a box doesn’t necessarily mean that applications can scale to exploit it.  A 

combination of hardware features in the Vega processor (see sidebar) and software features of the 

Azul VM allow enterprises to leverage this massive pool of computing power without modifying 

their applications.  The transparent nature of the Azul VM allows this benefit to be realized without 

changing the host operating system, replacing or re-installing servers, or porting applications to a 

new environment.

On traditional processor architectures, the limiting factor for how many CPUs or how much memory 

can be effectively utilized by a Java application has not been the availability of hardware, but the 

ability of the garbage collector to keep up with many concurrently executing application threads 

without incurring long collection pauses.  Transaction processing applications often have “soft real-

time” response-time requirements, requiring that requests complete or are at least acknowledged 

within a certain amount of time.  If the garbage collector induces a “stop the world” pause that 

exceeds the maximum acceptable response-time, transactions in progress or queued for execution 

at the time of the pause will fail to meet these response-time requirements.  

10



Generational garbage collection and the “mostly concurrent” collection algorithm employed 

by most current JVMs can reduce the frequency of long pauses, but with enough CPUs the 

application will eventually outrun the collector and a long pause will be required.  The Azul platform 

sidesteps this problem by providing pauseless garbage collection, enabled by a combination of 

hardware features of the Vega processor and software features of the Azul VM.  This allows Java 

applications to break out of the “comfort zone” of sub-gigabyte heaps and a handful of processors, 

and effectively utilize dozens or hundreds of processors and heaps as large as 96GB.  

Coarse-grained resource locking within applications is another factor that can limit throughput 

despite the availability of additional CPUs.  When a lock protects a resource that is frequently read 

but rarely modified, only one thread can access the data at once even when multiple reading 

threads could have shared it safely.  While this could be addressed by modifying the application 

to use finer-grained locking or a multiple-reader, single-writer locking discipline, this is difficult and 

error prone.  Instead, the Azul platform provides optimistic thread concurrency, which can detect 

when multiple threads are contending for a lock but not contending for any data, and safely allow 

a greater degree of concurrent access.

PAUSELESS GARBAGE COLLECTION

Garbage collection technology has improved dramatically in recent years, consuming fewer 

CPU resources and offering shorter pause times than older collectors running on the same 

hardware.  But hardware technology has improved too – systems have more processors and 

heaps have grown larger.  At the scale of existing commodity server hardware, some companies 

have chosen not to adopt Java technology because of unpredictable pause times or chosen to 

deploy applications on artificially small JVMs. At the scale of the Azul Compute Appliance, with 

384 processor cores and 256 gigabytes of memory, existing garbage collections algorithms 

would exhibit totally unacceptable pauses.  To support a system with hundreds of processors 

(and therefore hundreds of application threads allocating memory and modifying references at the 

same time) required a new approach to garbage collection. Through a combination of hardware 

and software, Azul developed a concurrent, parallel, relocating garbage collector that supports 

true pauseless operation to deliver predictable response time even for JVMs with hundreds of 

processors and heaps as large as 96 gigabytes.  The result is the ability to scale Java applications 

to an entirely new level.   

11
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The existing concurrent collectors, such as those provided by HotSpot 1.4.1 and later, are in fact 

only “mostly concurrent” – while some of the garbage collection cycle can run concurrently with 

the application, there are still potentially long stop-the-world pauses whose duration increases with 

processor count.  For HotSpot’s concurrent mark-sweep collector, the marking cycle is divided into 

phases – a short “initial mark” phase, where application threads are stopped so the root set can 

be identified; a “concurrent mark” phase, where a single collector thread runs concurrently with 

application threads; and a “remark” phase, where application threads are again stopped so that 

the collector can catch up with changes made by the application threads during the concurrent 

mark phase.  The problem with the “mostly concurrent” approach is that the duration of the 

remark phase, during which all application threads are again paused, increases with the number 

of object references modified by the application threads during the concurrent mark phase.  With 

a handful of processors and heaps of a few hundred megabytes, the application threads will 

probably have not made too much extra work for the collector during the concurrent mark phase, 

but with hundreds of processors and multi-gigabyte heaps, it is likely that the collector thread 

will be overwhelmed with changes and will have to pause the application for a long time.  The 

“mostly concurrent” garbage collection algorithm simply does not scale to larger virtual machine 

configurations. 

Concurrent marking and relocation

In the Azul pauseless collection algorithm, the garbage collector threads run concurrently with 

the application threads, marking objects known to be live.  The runtime environment can monitor 

the relationship between the reclamation rate of the collector threads and the allocation rate of 

the application threads; if these are out of balance, more collector threads are added, ensuring 

that application threads can make progress without running out of memory.  The application 

threads cooperate with the garbage collector by assisting in the marking process when they come 

across an object that the collector has not yet marked.  This is done with hardware assistance; 

the memory subsystem provides some support for the garbage collector, allowing it to distinguish 

between marked and unmarked objects when the collector is in the mark phase.  If an application 

thread uses an object that is not yet marked, it will trap to a fast user-mode trap handler that marks 

the object and perform a small amount of garbage collection processing.  Because the object is 

now marked, subsequent use of the same reference by the application will not trigger another trap 

in the same garbage collection cycle.  The hardware support for identifying which objects have 

been marked also simplifies the collection algorithm by eliminating a multitude of race conditions 

between application and garbage collector threads.  

Another problem in concurrent garbage collection algorithms is object relocation.  Without object 

relocation, the heap can become fragmented; by relocating objects at garbage collection time, 

heap allocation can be made far more efficient.  If a memory page is sparsely populated with 
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objects at the end of a garbage collection cycle, 

the few remaining live objects in that page can be 

relocated to another area of memory.  In a stop-

the-world tracing collector, it is easy to relocate 

objects, as references can be updated as the 

heap is traced free of interference from application 

threads.  But in a concurrent relocating collector, 

an efficient mechanism is needed for moving 

objects even if they are in use by other threads.  

Again, hardware features of the Vega processor 

help achieve this goal.  When a page containing 

live objects is reclaimed, the objects are copied 

elsewhere and their forwarding addresses 

recorded, virtual memory protection is used to 

mark the page as relocated, and the physical 

memory is reclaimed.  If a thread still holds a 

reference to the old location, when that reference 

is used a trap is triggered which resolves the 

reference and updates it so that the trap will 

not be triggered again for that reference during 

this collection cycle.  During the next garbage 

collection cycle, remaining references to relocated 

objects can updated so that the virtual memory 

space occupied by the relocated page can then 

be reclaimed.  

The result is a concurrent, parallel, relocating, 

compacting garbage collector which eliminates  

stop-the-world pauses and delivers unprecedented 

scalability and response-time predictability.  For more 

information on pauseless garbage collection, see 

the white paper Improving Application Scalability and 

Predicatability with Pauseless Garbage Collection. 

THE VEGA PROCESSOR

Powering the Azul Compute Appliance 

is the Vega processor (actually, many 

Vega processors), a new general 

purpose processor designed for running 

virtual machines in highly concurrent 

environments.  The Vega chip includes 

features not found in conventional 

processors, enabling a variety of 

optimizations that would otherwise be 

impossible.  With support for features 

such as read and write barriers that help 

optimized garbage collection and object 

relocation, speculative locking to enable 

safe concurrent execution of code that 

would otherwise be serialized, and an 

instruction set designed for the needs 

of virtual machines, the Vega processor 

is designed to provide consistently high 

throughput to Java applications.   

The Vega chip is a 64-bit RISC 

processor, with 24 independent 

processor cores per chip and multi-chip 

coherency technology.  An appliance 

can support up to 16 chips for a total 

of 384 processor cores in a symmetric 

multiprocessor (SMP) architecture.  

Memory access is uniform across all 

cores through a passive, non-blocking 

interconnect mesh, and MOESI cache 

coherency.   A fast uncontended CAS 

operation reduces the need for JVMs 

to rely on pipeline-stalling memory 

barrier instructions for common runtime 

operations such as lock management.
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OPTIMISTIC THREAD CONCURRENCY

Amdahl’s law describes the performance of a system as more processors are added.  In the limit, 

performance is limited by the portion of the workload that cannot be parallelized.  As shown in 

Figure 2, even if only 1% of the code must be executed serially, an application cannot be sped 

up by more than factor of 100, no matter how many processors it has available to it.  On the other 

hand, code which can minimize serial execution can achieve dramatic speedups.   

Figure 2 Amdahl’s Law Effect of Throughput: Possible Speedup Affected by Serialization  
Percentage and Number of Processors

 

The Java language relies on synchronization for coordinating access to shared state.  

Synchronization enforces a mutual-exclusion semaphore (mutex) to guarantee exclusive access 

to shared data.  While this mechanism can provide thread-safety, this safety comes at a cost: 

operations which access shared state must be serialized.  In practice, many Java classes use 

relatively coarse-grained locks to coordinate access to shared state.  On a system with a handful 

of processors, coarse-grained exclusive resource locks are not necessarily a serious scalability 

bottleneck.  But applications which exhibit acceptable throughput on a four-way system may 

encounter limits in scalability as the processor count increases.

0

50

100

150

200

250

300

350

400

0 50 100 150 200 250 300 350 384 400

# of Processors

Possible

Speedup

100% Parallel

99.9% 

99.5% 

99% 

98% 

97% 

96% 

95% 

90% 

     80% 

70% 

% Parallel



15

On a system with a handful of processors, and therefore only a handful of concurrently executing 

threads, coarse-grained exclusive resource locks are not necessarily a serious scalability 

bottleneck.  But applications which exhibit acceptable throughput on a two- or four-way system 

may encounter limits in scalability as processor count increases.  As the Azul platform supports 

hundreds of processors, code which uses coarse-grained, exclusive resource locks to ensure 

thread-safety appears to be on a collision course with Amdahl’s law.   But a feature of the Azul 

architecture, optimistic thread concurrency (OTC), enables the Azul VM to identify code paths 

that can safely be executed concurrently even when using exclusive locks, so as to eliminate the 

serialization bottlenecks imposed by the overly coarse-grained locking used by many Java classes. 

Just as with pauseless garbage collection, OTC is accomplished by a combination of hardware and 

JVM support.  The Vega processor supports a “speculative locking” memory access mode where 

multiple threads can be granted the same lock simultaneously and the hardware will detect if they 

actually contend for the same data.  If there is no data contention, throughput has been improved 

at no cost to safety by removing unnecessary serialization; if there is data contention, the hardware 

detects this and alerts the JVM, which informs the hardware to “roll back” changes made since 

the lock was speculatively acquired.  In this way, OTC implements a form of software transactional 

memory, using synchronized blocks to demarcate memory transactions. 

This technique is called optimistic because it amounts to assuming that conflicts will be infrequent 

and obtaining forgiveness later (rolling back the transaction) in the rare case that a conflict occurs, 

instead of obtaining permission ahead of time (acquiring all locks exclusively before proceeding.)   

The result is that existing code which may have serious scalability bottlenecks due to coarse-

grained locking can be executed safely with a much higher degree of concurrency without 

software changes.  For more information on optimistic thread concurrency, see the white paper 

Optimistic Concurrency – innovative locking technology from Azul Systems.  

64-bit heaps on 32-bit hosts

The performance of traditional garbage collectors may impose a limit on the heap size for a single 

JVM; another limit on heap size is the address space of 32-bit memory architectures.  Because the 

operating system and JVM share the address space with the application, it is difficult to run Java 

applications with heaps larger than 3GB on 32-bit platforms.  

The Azul platform enables applications to use much larger heaps – up to 96GB – even when the 

host server is a 32-bit machine.  Because the application executes on the compute appliance, 

which has a 64-bit address space, application heaps are not constrained by the address space of 

the application server host, and applications can exploit the 64-bit address space without replacing 

the server host hardware.  
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CONCLUSION 

Working hand-in-hand with the Vega processor, the Azul VM enables Java applications to move 

beyond the limitation of sub-gigabyte heaps and a handful of processors to effectively utilize 

dozens or hundreds of processors and heaps as large as 96G, enabling unprecedented scalability 

and response-time predictability for Java applications.  
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