
The Azul Virtual Machine

 REALIZING THE ELEGANCE OF JAVA™ TECHNOLOGY

Written by Brian Goetz

WHITEPAPER

Azul Systems, Inc.
January 2006
AWP-008-012

Version 1.2
Copyright © 2006 Azul Systems, Inc. All rights reserved.

2

EXECUTIVE SUMMARY

This paper describes the innovations in the Azul
®

 Compute Appliance

with a focus on the Azul Virtual Machine, including the new Vega
TM

processor, the relationship between the Azul VM proxy and the Azul VM

engine executing on the compute appliance, the synergies between the

Azul hardware and the VM, and powerful new optimizations enabled by

the unique features of the Vega processor. The paper is intended for

engineers and system managers who are responsible for application

architecture, development, and deployment.

3

The J2EE
TM

 platform has been wildly successful in the enterprise – Gartner estimates that by

2008, 80% of all new e-business application development will be based on virtual machine

technology. Many enterprises are running hundreds of J2EE platform based applications, with new

applications being deployed daily. The availability of commodity servers coupled with clustering-

savvy application servers makes it easy to deploy new applications or add processing capacity

to existing applications. But J2EE may have become a victim of its own success. The current

approach to capacity planning – provisioning processing resources on a per-application basis,

generally using cheap, rack-mounted servers, has created a serious management problem – a

proliferation of application host servers in the data center, presenting IT organizations with an

increasingly complex management challenge. Data center staff must provision and administer

hundreds of servers cost-effectively without compromising system availability, utilization, and

service levels.

Network attached processing is a new and innovative approach to data-center management,

delivering massive compute power to business applications while reducing the management

complexity of today’s server farm. Azul is at the forefront of this revolution. By providing traditional

host servers with a shared compute pool of mountable ultra-high capacity Azul Compute

Appliances, network attached processing provides virtually unlimited processor and memory

resources for the Java
TM

 and J2EE platforms.

Working in conjunction with conventional application host servers, the workload is transparently

redirected to the compute pool for execution while all interfaces to clients, databases and host

operation systems services remain on the application host server. This provides an easy migration

path for existing applications, while maintaining the flexibility to execute applications on any

appliance in the compute pool. Azul’s policy-based Compute Pool Manager
TM

 (CPM) provides

flexible and central control of application resources and execution policies. Changes to existing

application software, application servers, and other systems are not required.

This paper describes the high-level structure of the Azul virtual machine, the relationship between

the Azul VM proxy and the VM engine, and some of the advanced features of the Azul hardware-

software combination.

4

NETWORK ATTACHED PROCESSING

Network attached storage (NAS) technology has successfully enabled companies to reduce costs

and enhance flexibility by planning and managing storage capacity on an enterprise-wide basis.

Analogously, network attached processing separates the CPU resources from application server

hosts, managing a massive pool of compute resources which can serve the requirements of many

applications. Figure 1 shows a typical three-tier architecture consisting of a web tier, an application

tier, and a data tier; a single enterprise may deploy dozens or hundreds of separate applications

Figure 1 Typical Three Tier Architecture

The web and data tiers are typically treated as “IT infrastructure” and provisioned and managed on

an enterprise-wide basis, just like bandwidth, storage, and power. This enables capacity planning

on an enterprise-wide basis and lowers costs by increasing resource utilization. The standard

practice for the application tier, on the other hand, is to provision capacity on a per-application

basis – servers are allocated to a specific application, and cannot be easily shifted to other

applications as demand changes. Because application load varies over time, sufficient capacity

must be provisioned for each application’s peak load, which often results in application-tier CPU

utilization under 10 percent.

Application Hosts

Database TierWeb Tier Application Tier

5

Network attached processing enables enterprises to achieve the same consolidation benefits in the

application tier that they are already enjoying in the web and data tiers. Figure 2 shows the three-

tier architecture with network attached processing technology. The middle tier now consists of two

types of systems – traditional host servers (but fewer of them) and a pool of compute appliances.

The compute appliances form a massive pool of computing power that can be shared by many

applications and managed on an enterprise-wide basis. Azul compute appliances are designed for

continuous data center operation, sporting redundant power supplies and network controllers and

the ability to route processing around CPU and memory failures for high availability.

Figure 2 Three Tier Architecture with Network Attached Processing

With network-attached processing, host servers transparently mount virtualized CPU and memory

resources, and execute applications on virtual servers within the compute appliance. The Compute

Pool Manager (CPM) application provides monitoring of resource utilization across the pool and

centralized control of execution policies, allocating CPU and memory resources to applications

based on flexible policies. CPU and memory resources can be provisioned and reallocated without

any application-level reconfiguration. By provisioning and managing processing resources on an

enterprise-wide basis, utilization is improved and management overhead is reduced.

Migrating to a network-attached processing configuration is painless; the only change to host

servers is to swap out the existing JVM for the Azul VM proxy. The application software, including

the J2EE container and application classes, remains installed and configured on the host server,

and the host server accepts request from clients and accesses other middle- or data-tier services

just as if the application were executing locally.

Application Hosts

Compute Pool

Database TierWeb Tier Application Tier

Compute Appliances

6

THE AZUL VIRTUAL MACHINE PROXY

To tap the computing power of a compute appliance, the JVM on the host server is replaced with

the Azul Virtual Machine proxy, which delegates the computational workload to a virtual server

running in the compute pool. The VM proxy works in conjunction with the VM engine running

on the compute appliance; the application bytecodes are executed on the compute appliance

by the VM engine, with socket I/O, file I/O and native code execution delegated back to the VM

proxy for execution on the host server. From the perspective of the host server or other hosts,

the application is still executing locally because all interaction with clients, databases, and host

operating system services is performed through the host server. Because the compute pool offers

much more processing power and memory than the host server, each host server can service a

much higher volume of requests.

Application Startup

To execute an application on a compute appliance, the application is started on the host server

using the VM proxy. The first thing the VM proxy does is contact the Compute Pool Manager, to

request access to the pool. The CPM consults its policy database to identify a target compute

appliance, which the VM proxy then connects to directly. This startup sequence allows placement

to be controlled dynamically by configurable policy parameters such as redundancy requirements

and resource availability guarantees, and allows appliances to be added or removed from the

compute pool without reconfiguring applications. Figure 3 illustrates the interactions between the

host server, CPM, and compute appliance during application startup.

Figure 3 Startup Sequence for Executing an Application on a Compute Appliance

VM
Proxy

1

CPM Pool

An application launches on a host
and starts the VM proxy. The VM
proxy contacts the CPM Policy Server.
Where should the application be
placed?

3
CPM replies to the host with the
IP address of the assigned
compute appliance.

4

A handshake
authorization between
the compute appliance and the
host occurs. The transport link
is established, the VM engine
is started, and the application
is launched.

5

Real-time
monitoring
information is
continually sent from
the compute appliance
to the CPM Console

CPM retrieves placement
and resource allocation
parameters from the active
resource policy.

2

CPM

Monitoring
Information

VM
Engine

CPM Console
Application
Host

7

Once the VM proxy and the compute appliance are communicating directly, the proxy uploads the

JVM executable for the VM engine to the appliance. By having the client supply the VM engine

binary, different applications running within a single appliance can use different JVM versions. The

Azul VM engine leverages the hardware capabilities of the compute appliance to add features such

as pauseless garbage collection and optimistic thread concurrency, and users can be confident

of stability and compatibility because the Azul VM engine is based on Sun Microsystems
TM

 Java

HotSpot
TM

 technology and passes the tens of thousands of compatibility and compliance tests

required for Sun certification. The operating systems supported as host servers are listed in

Table 1. Applications initiated by different host server platforms can execute simultaneously on

a single compute appliance, allowing heterogeneous environments to access the compute pool

without restriction.

Table 1 Supported Combinations of Hardware, Operating System, and Java Platforms

Application Host Server
Hardware

Operating System Java Software Environment

Sun™ SPARC™ Environment Solaris™ 8, 9, and 10 BEA® WebLogic® 8.1

IBM® WebSphere® 5.1 and 6.0

JBoss™ Application Server 3.2 and 4.0

Native J2SE

Caucho® Resin® 2 and 3

Apache® Tomcat® 4 and 5

Intel® 32-bit Architecture RedHat™ Linux™ AS/ES 2.1 (Kernel 2.4.9) BEA WebLogic 8.1

IBM WebSphere 5.1 and 6.0

JBoss Application Server 3.2 and 4.0

Native J2SE

Caucho Resin 2 and 3

Apache Tomcat 4 and 5

RedHat Linux AS/ES 3.0 (Kernel 2.4.21) BEA WebLogic 8.1

IBM WebSphere 5.1 and 6.0

JBoss Application Server 3.2 and 4.0

Native J2SE

Caucho Resin 2 and 3

Apache Tomcat 4 and 5

SuSe™ Linux 9.x (Kernel 2.6) BEA WebLogic 8.1

IBM WebSphere 5.1 and 6.0

JBoss Application Server 3.2 and 4.0

Native J2SE

Caucho Resin 2 and 3

Apache Tomcat 4 and 5

8

File I/O and socket I/O are directed to the VM

proxy for execution on the host server. From the

perspective of the rest of the network, all I/O is

performed by the host server, and the application

appears to be executing there. The existence of

the compute appliance and segmented VM is

entirely transparent to the rest of the network.

Migrating to a network attached processing

environment therefore does not require any

changes to existing firewall, security, or other

system configurations.

When the VM engine starts up, it loads the main

class, core library classes, and other classes

required by the application, as well as other

resources that are loaded through the class loader

such as configuration files. Class loading is done

via normal file and network based I/O, which is

transparently performed through the VM proxy.

Each time a class loader requests a specific JAR

or class file, the VM engine accesses the file

through the VM proxy.

Once startup is complete, the application is ready

to accept requests from clients; clients interact with

the application via network connections directed

to the host server. The VM proxy transparently

forwards these connections to the VM engine,

where the application processes the client request.

Responses from the application are sent via the

VM proxy, which forwards the connection back

to the client. When the application initiates an

outbound connection to a database server, EJB

container, or web service, the VM engine similarly

forwards traffic through the VM proxy. From the perspective of network services, the connection

is initiated from the host server.

GLOSSARY OF TERMS

Azul Virtual Machine, Engine, and Proxy: The

Azul Virtual Machine separates a virtual machine

into two components; a virtual machine proxy and

a virtual machine engine. The proxy and engine

cooperate together to deliver all the services of

a virtual machine. The VM proxy runs on the

application host in place of a conventional virtual

machine. The VM proxy communicates with the

operating system on the application host, and with

external systems such as the web and database

servers. The VM engine runs on the Azul compute

appliance and offloads workload from the proxy

onto the compute appliance. An engine is started

automatically by each proxy, and there is always

one engine for each proxy running.

Compute appliance: The name for the type of

specialized server devices developed by Azul

Systems. Compute appliances provide enormous

compute capacity very cost effectively.

Compute pool: A group of Azul compute

appliances within the compute pool domain. An

appliance can be a member of only one compute

pool. Administrators use the CPM Console to

define compute pools.

Compute Pool Manager: The Compute Pool

Manager (CPM) is a distributed management

system that manages Azul compute appliances

and the application workload running on

those appliances. CPM provides policy-driven

management of application workloads, a web-

based user interface, event logging, status and

alerting for compute appliances and applications,

Bandwidth and latency

It may initially appear that relaying socket

connections through the host server would

increase bandwidth costs. Perhaps surprisingly,

the additional bandwidth required for connection

proxying has little effect on application

performance in practice. In the worst case,

a connection forwarding implementation that

simply relayed the raw IP packets would use

exactly twice the bandwidth as the equivalent

application running directly on the host server.

But efficiencies in the proxy-engine protocol

that multiplexes data from multiple connections

make the true bandwidth cost less than this – if

there are many connections proxied through the

host server, as there usually will be, data from

multiple connections can be combined into

a single packet. As packet header overhead

often represents a significant fraction of network

bandwidth consumption, the larger payload size

reduces the packet header overhead, driving

the bandwidth multiplier below two. And,

because the traffic between the host server and

the compute appliance can travel over a private

network segment, overall traffic levels on segments used for communication between the host

server and clients or services need not increase at all.

The additional bandwidth seen by the host server is unlikely to affect application throughput, as

J2EE applications tend to be compute-bound, not network-bound. Most J2EE applications use

only a few percent of their network interface capacity, so doubling the level of network traffic at the

host server will not constrain application performance at all. Because executing the application on

the compute appliance can dramatically increase the capacity of a single host server, throughput

for a single host server may eventually be limited by bandwidth – thought at a significantly higher

processing volume (see the white paper Effects of Network Attached Processing: Application

Response Time and Network Traffic Levels”)

NATIVE CODE

Java classes can have native methods,

whose code is contained in shared

libraries instead of Java class files.

Since native code is specific to the

executable format of the host server,

it must execute on the host server via

a remote call from the engine to the

proxy. But this is only true for native

code that is part of the application. All of

the native code that is part of the JVM

or class library is incorporated into the

VM engine, so native code that is not

part of the application executes natively

on the compute appliance without any

network traffic or other remote execution

penalty. As very few Java applications

use native code that is not part of the

class libraries, most applications will not

incur any cost at all due to execution of

native code.

9

Relaying client connections through the proxy does add some additional latency, similar to that of

an additional network hop, which can make some blocking I/O operations take slightly longer to

complete. In percentage terms, however, the effect is likely to be smaller than initially surmised,

because of the nature of typical outbound connections. J2EE applications only tend to initiate

outbound connections when they access “far away” data such as a database or web service.

The latency in servicing a database query is likely to dwarf the incremental latency due to the

additional network hop, so the degree to which this extra hop increases perceived response time is

negligible.

The other major source of I/O in a typical server application is incoming requests from clients. If

every byte read from a client socket required a round-trip to the proxy, this would indeed be a

problem. But the proxy and engine cooperate to ensure that this does not happen. Data received

from clients is streamed to the compute appliance, where the VM engine buffers it until it is needed

by the application. If the data is available, socket reads will complete without any additional

latency; if the data is not yet available, the limiting factor is going to be the rate at which the client

can send data, not the forwarding overhead. When sending response data back to clients, the

additional latency due to the extra network hop is again likely to be dominated by request service

time, just as was the case with an outbound connection to a remote resource.

ADVANCED SCALABILITY FEATURES OF THE AZUL PLATFORM

The Azul compute appliance offers far greater computing power than typical host servers

– hundreds of processors and hundreds of gigabytes of memory. But simply cramming lots of

CPUs and memory into a box doesn’t necessarily mean that applications can scale to exploit it. A

combination of hardware features in the Vega processor (see sidebar) and software features of the

Azul VM allow enterprises to leverage this massive pool of computing power without modifying

their applications. The transparent nature of the Azul VM allows this benefit to be realized without

changing the host operating system, replacing or re-installing servers, or porting applications to a

new environment.

On traditional processor architectures, the limiting factor for how many CPUs or how much memory

can be effectively utilized by a Java application has not been the availability of hardware, but the

ability of the garbage collector to keep up with many concurrently executing application threads

without incurring long collection pauses. Transaction processing applications often have “soft real-

time” response-time requirements, requiring that requests complete or are at least acknowledged

within a certain amount of time. If the garbage collector induces a “stop the world” pause that

exceeds the maximum acceptable response-time, transactions in progress or queued for execution

at the time of the pause will fail to meet these response-time requirements.

10

Generational garbage collection and the “mostly concurrent” collection algorithm employed

by most current JVMs can reduce the frequency of long pauses, but with enough CPUs the

application will eventually outrun the collector and a long pause will be required. The Azul platform

sidesteps this problem by providing pauseless garbage collection, enabled by a combination of

hardware features of the Vega processor and software features of the Azul VM. This allows Java

applications to break out of the “comfort zone” of sub-gigabyte heaps and a handful of processors,

and effectively utilize dozens or hundreds of processors and heaps as large as 96GB.

Coarse-grained resource locking within applications is another factor that can limit throughput

despite the availability of additional CPUs. When a lock protects a resource that is frequently read

but rarely modified, only one thread can access the data at once even when multiple reading

threads could have shared it safely. While this could be addressed by modifying the application

to use finer-grained locking or a multiple-reader, single-writer locking discipline, this is difficult and

error prone. Instead, the Azul platform provides optimistic thread concurrency, which can detect

when multiple threads are contending for a lock but not contending for any data, and safely allow

a greater degree of concurrent access.

PAUSELESS GARBAGE COLLECTION

Garbage collection technology has improved dramatically in recent years, consuming fewer

CPU resources and offering shorter pause times than older collectors running on the same

hardware. But hardware technology has improved too – systems have more processors and

heaps have grown larger. At the scale of existing commodity server hardware, some companies

have chosen not to adopt Java technology because of unpredictable pause times or chosen to

deploy applications on artificially small JVMs. At the scale of the Azul Compute Appliance, with

384 processor cores and 256 gigabytes of memory, existing garbage collections algorithms

would exhibit totally unacceptable pauses. To support a system with hundreds of processors

(and therefore hundreds of application threads allocating memory and modifying references at the

same time) required a new approach to garbage collection. Through a combination of hardware

and software, Azul developed a concurrent, parallel, relocating garbage collector that supports

true pauseless operation to deliver predictable response time even for JVMs with hundreds of

processors and heaps as large as 96 gigabytes. The result is the ability to scale Java applications

to an entirely new level.

11

12

The existing concurrent collectors, such as those provided by HotSpot 1.4.1 and later, are in fact

only “mostly concurrent” – while some of the garbage collection cycle can run concurrently with

the application, there are still potentially long stop-the-world pauses whose duration increases with

processor count. For HotSpot’s concurrent mark-sweep collector, the marking cycle is divided into

phases – a short “initial mark” phase, where application threads are stopped so the root set can

be identified; a “concurrent mark” phase, where a single collector thread runs concurrently with

application threads; and a “remark” phase, where application threads are again stopped so that

the collector can catch up with changes made by the application threads during the concurrent

mark phase. The problem with the “mostly concurrent” approach is that the duration of the

remark phase, during which all application threads are again paused, increases with the number

of object references modified by the application threads during the concurrent mark phase. With

a handful of processors and heaps of a few hundred megabytes, the application threads will

probably have not made too much extra work for the collector during the concurrent mark phase,

but with hundreds of processors and multi-gigabyte heaps, it is likely that the collector thread

will be overwhelmed with changes and will have to pause the application for a long time. The

“mostly concurrent” garbage collection algorithm simply does not scale to larger virtual machine

configurations.

Concurrent marking and relocation

In the Azul pauseless collection algorithm, the garbage collector threads run concurrently with

the application threads, marking objects known to be live. The runtime environment can monitor

the relationship between the reclamation rate of the collector threads and the allocation rate of

the application threads; if these are out of balance, more collector threads are added, ensuring

that application threads can make progress without running out of memory. The application

threads cooperate with the garbage collector by assisting in the marking process when they come

across an object that the collector has not yet marked. This is done with hardware assistance;

the memory subsystem provides some support for the garbage collector, allowing it to distinguish

between marked and unmarked objects when the collector is in the mark phase. If an application

thread uses an object that is not yet marked, it will trap to a fast user-mode trap handler that marks

the object and perform a small amount of garbage collection processing. Because the object is

now marked, subsequent use of the same reference by the application will not trigger another trap

in the same garbage collection cycle. The hardware support for identifying which objects have

been marked also simplifies the collection algorithm by eliminating a multitude of race conditions

between application and garbage collector threads.

Another problem in concurrent garbage collection algorithms is object relocation. Without object

relocation, the heap can become fragmented; by relocating objects at garbage collection time,

heap allocation can be made far more efficient. If a memory page is sparsely populated with

13

objects at the end of a garbage collection cycle,

the few remaining live objects in that page can be

relocated to another area of memory. In a stop-

the-world tracing collector, it is easy to relocate

objects, as references can be updated as the

heap is traced free of interference from application

threads. But in a concurrent relocating collector,

an efficient mechanism is needed for moving

objects even if they are in use by other threads.

Again, hardware features of the Vega processor

help achieve this goal. When a page containing

live objects is reclaimed, the objects are copied

elsewhere and their forwarding addresses

recorded, virtual memory protection is used to

mark the page as relocated, and the physical

memory is reclaimed. If a thread still holds a

reference to the old location, when that reference

is used a trap is triggered which resolves the

reference and updates it so that the trap will

not be triggered again for that reference during

this collection cycle. During the next garbage

collection cycle, remaining references to relocated

objects can updated so that the virtual memory

space occupied by the relocated page can then

be reclaimed.

The result is a concurrent, parallel, relocating,

compacting garbage collector which eliminates

stop-the-world pauses and delivers unprecedented

scalability and response-time predictability. For more

information on pauseless garbage collection, see

the white paper Improving Application Scalability and

Predicatability with Pauseless Garbage Collection.

THE VEGA PROCESSOR

Powering the Azul Compute Appliance

is the Vega processor (actually, many

Vega processors), a new general

purpose processor designed for running

virtual machines in highly concurrent

environments. The Vega chip includes

features not found in conventional

processors, enabling a variety of

optimizations that would otherwise be

impossible. With support for features

such as read and write barriers that help

optimized garbage collection and object

relocation, speculative locking to enable

safe concurrent execution of code that

would otherwise be serialized, and an

instruction set designed for the needs

of virtual machines, the Vega processor

is designed to provide consistently high

throughput to Java applications.

The Vega chip is a 64-bit RISC

processor, with 24 independent

processor cores per chip and multi-chip

coherency technology. An appliance

can support up to 16 chips for a total

of 384 processor cores in a symmetric

multiprocessor (SMP) architecture.

Memory access is uniform across all

cores through a passive, non-blocking

interconnect mesh, and MOESI cache

coherency. A fast uncontended CAS

operation reduces the need for JVMs

to rely on pipeline-stalling memory

barrier instructions for common runtime

operations such as lock management.

14

OPTIMISTIC THREAD CONCURRENCY

Amdahl’s law describes the performance of a system as more processors are added. In the limit,

performance is limited by the portion of the workload that cannot be parallelized. As shown in

Figure 2, even if only 1% of the code must be executed serially, an application cannot be sped

up by more than factor of 100, no matter how many processors it has available to it. On the other

hand, code which can minimize serial execution can achieve dramatic speedups.

Figure 2 Amdahl’s Law Effect of Throughput: Possible Speedup Affected by Serialization
Percentage and Number of Processors

The Java language relies on synchronization for coordinating access to shared state.

Synchronization enforces a mutual-exclusion semaphore (mutex) to guarantee exclusive access

to shared data. While this mechanism can provide thread-safety, this safety comes at a cost:

operations which access shared state must be serialized. In practice, many Java classes use

relatively coarse-grained locks to coordinate access to shared state. On a system with a handful

of processors, coarse-grained exclusive resource locks are not necessarily a serious scalability

bottleneck. But applications which exhibit acceptable throughput on a four-way system may

encounter limits in scalability as the processor count increases.

0

50

100

150

200

250

300

350

400

0 50 100 150 200 250 300 350 384 400

of Processors

Possible

Speedup

100% Parallel

99.9%

99.5%

99%

98%

97%

96%

95%

90%

 80%

70%

% Parallel

15

On a system with a handful of processors, and therefore only a handful of concurrently executing

threads, coarse-grained exclusive resource locks are not necessarily a serious scalability

bottleneck. But applications which exhibit acceptable throughput on a two- or four-way system

may encounter limits in scalability as processor count increases. As the Azul platform supports

hundreds of processors, code which uses coarse-grained, exclusive resource locks to ensure

thread-safety appears to be on a collision course with Amdahl’s law. But a feature of the Azul

architecture, optimistic thread concurrency (OTC), enables the Azul VM to identify code paths

that can safely be executed concurrently even when using exclusive locks, so as to eliminate the

serialization bottlenecks imposed by the overly coarse-grained locking used by many Java classes.

Just as with pauseless garbage collection, OTC is accomplished by a combination of hardware and

JVM support. The Vega processor supports a “speculative locking” memory access mode where

multiple threads can be granted the same lock simultaneously and the hardware will detect if they

actually contend for the same data. If there is no data contention, throughput has been improved

at no cost to safety by removing unnecessary serialization; if there is data contention, the hardware

detects this and alerts the JVM, which informs the hardware to “roll back” changes made since

the lock was speculatively acquired. In this way, OTC implements a form of software transactional

memory, using synchronized blocks to demarcate memory transactions.

This technique is called optimistic because it amounts to assuming that conflicts will be infrequent

and obtaining forgiveness later (rolling back the transaction) in the rare case that a conflict occurs,

instead of obtaining permission ahead of time (acquiring all locks exclusively before proceeding.)

The result is that existing code which may have serious scalability bottlenecks due to coarse-

grained locking can be executed safely with a much higher degree of concurrency without

software changes. For more information on optimistic thread concurrency, see the white paper

Optimistic Concurrency – innovative locking technology from Azul Systems.

64-bit heaps on 32-bit hosts

The performance of traditional garbage collectors may impose a limit on the heap size for a single

JVM; another limit on heap size is the address space of 32-bit memory architectures. Because the

operating system and JVM share the address space with the application, it is difficult to run Java

applications with heaps larger than 3GB on 32-bit platforms.

The Azul platform enables applications to use much larger heaps – up to 96GB – even when the

host server is a 32-bit machine. Because the application executes on the compute appliance,

which has a 64-bit address space, application heaps are not constrained by the address space of

the application server host, and applications can exploit the 64-bit address space without replacing

the server host hardware.

16

CONCLUSION

Working hand-in-hand with the Vega processor, the Azul VM enables Java applications to move

beyond the limitation of sub-gigabyte heaps and a handful of processors to effectively utilize

dozens or hundreds of processors and heaps as large as 96G, enabling unprecedented scalability

and response-time predictability for Java applications.

17

ABOUT THE AUTHOR

Brian Goetz has been a professional software developer for the past 18 years. He is a Principal

Consultant at Quiotix, a software development and consulting firm located in Los Altos, CA, and

he serves on several JCP Expert Groups. See Brian’s published and upcoming articles in popular

industry publications, and look for his upcoming book, Java Concurrency in Practice, in February

2006 from Addison-Wesley.

1818

ABOUT AZUL SYSTEMS

Azul Systems
®

 has pioneered the industry’s first network attached

processing solution designed to enable unbound compute resources for Java

and J2EE based enterprise applications. Azul compute appliances eliminate

capacity planning at the application level and much of the cost and

complexity associated with the conventional delivery of computing resources.

More information about Azul Systems can be found at www.azulsystems.com.

1600 Plymouth Street, Mountain View, CA 94043 T 650.230.6500 | F 650.230.6600 | www.azulsystems.com

Copyright © 2006, Azul Systems, Inc. All rights reserved. Azul Systems, Azul, the Azul arch logo, Compute
Pool Manager, and Vega are trademarks of Azul Systems Inc. in the United States and other countries. BEA
and WebLogic are registered trademarks of BEA Systems, Inc in the United States and other countries. IBM
and WebSphere are trademarks of International Business Machines Corporation in the United States and
other countries. JBoss is a registered trademark of JBoss Inc. Intel and IA-32 are registered trademarks of
Intel Corporation in the United States and other countries. Linux is a registered trademark of Linus Torvalds.
RedHat is the property of Red Hat, Inc. Sun, Sun Microsystems, Solaris, J2EE, J2SE, Java and all Java based
trademarks and logos are trademarks or registered trademarks of Sun Microsystems, Inc. in the United
States and other countries. SPARC is a trademark of SPARC International, Inc. in the United States and
other countries. Microsoft and Windows are registered trademarks of Microsoft Corporation in the United
States and/or other countries. Other marks are the property of their respective owners and are used here
only for identification purposes. Products and specifications discussed in this document may reflect future
versions and are subject to change by Azul Systems without notice.

	bp:
	transmit:
	xml: VALID
	document:
	id: 1138882671_269

	envelope:
	id: 1138882669_172
	version: VALID

	user:
	id: VALID

	adobe:
	type: VALID
	version: VALID

	os: VALID
	promo:
	source: edp

	token:
	id: NonUnique

	sorry:
	BlanketBean:
	0:
	3:

	TextBean:
	0: Registration information is required to view this document.
	1: To provide or update your registration,
	9: Registration information is required to view this document.
	10: To provide or update your registration,

	reset:
	0:
	2:

	dummy:
	BlanketBean:
	1:
	4:

	5:
	dummy:
	TextBean:
	2: This document is open for viewing in your web browser. Please switch to your browser to read this document.
	3: this document.
	11: This document is open for viewing in your web browser. Please switch to your browser to read this document.
	12: this document.

	close:
	1:
	3:

	4:
	dummy:
	TextBean:
	4: This document is open for viewing in your web browser. Please switch to your browser to read this document.
	13: This document is open for viewing in your web browser. Please switch to your browser to read this document.

	questions:
	BlanketBean:
	2:
	5:

	TextBean:
	5: To access this document, please return to page 1 to complete the form.
	6: By completing this form once, you will have access to all similar documents without needing to register again.
	14: Realizing the Elegance of Java Technology
	15: To access the full document, please complete all the fields below and click 'Read Document'. By completing this form once you will have access to all similar documents without needing to register again.
	16: Abstract:
	17: Many enterprises are running hundreds of J2EE platform based applications, with new applications being deployed daily. But J2EE may have become a victim of its own success. The current approach to capacity planning - provisioning processing resources on a per application basis, generally using cheap, rack-mounted servers, has created a serious management problem - a proliferation of application hosts servers in the data center, presenting IT organizations with an increasingly complex management challenge.
	18: This white paper discusses a new and innovative approach to data center management, which can deliver massive compute power to business applications while reducing management complexity of today's server farm. It is an absolute must-read for engineers and system managers who are responsible for application architecture, development and deployment.
	19: The information you are entering on this page and other information about your use of the attached document (described in the User Agreement and the Privacy Policy) will be stored in a file on your computer and transmitted to Bitpipe over the Internet. Bitpipe may provide this information to the owners of the document. Bitpipe and the document owner may use the data to track your use of the document, to contact you and to provide you with additional information about products and services that you might find of interest. In consideration of your access to the attached document you agree to such storage and uses as more fully described in the

	question:
	user:
	name:
	first: First Name:
	last: Last Name:

	email: Email Address:
	title: Job Title:
	phone: Business Phone:
	company: Company:
	address1: Address 1:
	address2: Address 2:
	city: City:
	state: State/Province:
	zip: Zip/Postal Code:
	country: Country:
	employees: # of Employees:
	department: Department:
	industry: Industry:
	applicationinstances:
	Azul: How many application instances are deployed to manage your largest application workloads?

	averageheapsize:
	Azul: What is the average heap size for your largest Java applications?

	experience:
	Azul: How often do you experience Garbage Collection pauses on your largest Java apps?

	howlong:
	Azul: How long do these Garbage Collection pauses last?

	degree:
	Azul: To what degree are these Garbage Collection pauses impacting your Service Level Agreements?

	response:
	user:
	name:
	first:
	last:

	email:
	title:
	phone:
	company:
	address1:
	address2:
	city:
	state: []
	zip:
	country: [US]
	employees: []
	department: []
	industry: []
	applicationinstances:
	Azul: []

	averageheapsize:
	Azul: []

	experience:
	Azul: []

	howlong:
	Azul: []

	degree:
	Azul: []

	submit:
	4:

	opt-out:
	5:

	link:
	0:

	warning:
	TextBean:
	7: Adobe Reader version 4.1 or higher is needed to view this document.
	8: Please visit http://www.adobe.com for your free upgrade.

	property:
	shouldPop: false
	unsentCount: 3

