

The Vertica Database
A DBMS Architecture Optimized for
Call Detail Record Analysis

Vertica Confidential. Copyright Vertica Systems Inc. June, 2007

The Scenario: “Where is the money leaking from the system?”
That is one of the questions Revenue Assurance analysts for communications service providers
try to answer every day. Primarily focused on detecting fraud, revenue sharing contract violations
and incomplete revenue collections, they query and analyze call detail record (CDR) databases
that grow by millions of new CDRs every day. The business angles they examine include:

Customer Analysis

Usage profiles
Aggregate reports for customers with multiple accounts/services
Customer segmentation reports
Customer retention and acquisition
Selling optional services

Product Management

Profit margin reports
Analysis of bundle profits
Competitive analysis
Reports of promotion ROI

Revenue Reporting

Lost revenue reporting (under-billing, etc.)
Verifying billing data with call data from switches
Verifying customer orders and billing
Sarbanes-Oxley verification/audits

Network Cost Analysis

Support data for negotiating access to competitors’ networks
Calculating most cost-effective network routes
Network utilization versus capacity reports

Led by database research pioneer Dr. Michael Stonebraker, Vertica has developed a break-
through SQL database that offers communications companies a competitively advantageous and
cost-effective new way to analyze terabytes of CDRs. In one benchmark based on 600 million
CDRs, here’s how Vertica, running on a cluster of four, $5,000 off-the-shelf servers, compared to
a popular proprietary data warehouse server (embedding 4 CPU cores, 48 disks and a derivative
of the Postgres database enhanced with MPP support). In the benchmark, Vertica:

• Answered queries 214x
faster on average

• Stores 1.5 years of CDR
data in the same space
the other system took to
store 90 days’ worth

• Ran on hardware costing
50% less than the
proprietary data
warehouse hardware

This white paper describes
the innovative architecture of
the Vertica Database and how
it is able to provide such
remarkable performance
compared to other data management solutions.

0

500

1000

1500

2000

2500

3000

3500

Q
ue

ry
 R
es
po

ns
e
Ti
m
es
 (s
ec
o
nd

s)

Queries

Call Detail Record Analysis (600M calls)

Vertica

Proprietary
Data
Warehouse
Hardware

THE TIME FOR DATABASE INNOVATION IS NOW
The number of subscribers to mobile, fixed-line and cable communications services is growing by
millions of people every year, and the volume of CDR data that communications companies must
store and analyze is exploding, reaching into the terabytes of new CDR data per year.

Yet, during the last 30 years, there has been little database management system (DBMS)
innovation to keep pace. Performing ad hoc queries on such large data volumes does not come
naturally for existing DBMSs, which use a row-oriented design optimized for write-intensive
transaction processing workloads rather than for read-intensive analytical workloads. Desperate
for better performance, row-oriented DBMS customers spend millions of dollars annually on stop-
gap measures such as adding DBA resources, creating and maintaining OLAP cubes or replacing
their DBMS with expensive, proprietary data warehouse hardware.

THE VERTICA DATABASE ADVANTAGE
Vertica believes it’s time for significant innovation in the database industry. Led by database
research pioneer Michael Stonebraker, Vertica has invented a brand-new SQL database that
provides blindingly fast query performance for databases scaling from hundreds of gigabytes to
hundreds of terabytes, and is optimized for environments where end-user requirements change
rapidly. Here is what sets Vertica apart:

RADICALLY IMPROVED DATABASE PRICE-PERFORMANCE
CDR analysis performance benchmarks by communications companies show Vertica out-
performs traditional RDBMSs and proprietary data warehouse hardware by 40x-215x. Vertica
runs on commodity hardware and compresses data to reduce storage requirements by 20x
enabling you to deploy large-scale, query-intensive databases for a fraction of the cost of other
solutions.

PAINLESS SCALABILITY

Vertica runs on shared-nothing
clusters of off-the-shelf Linux
hardware. Vertica scales simply
by adding additional servers to
the cluster (bonus: Vertica is
licensed based on the volume of
data you store—not how many
CPUs you deploy, so configure
your Vertica cluster in any way
you want to get the performance
you need without worrying about per-CPU fees).

DBA LIBERATION

Vertica includes a lot of built-in DBA “know-how” to keep it running efficiently without much
administrative overhead. High availability, disaster recovery, schema design and physical
optimization are performed automatically, freeing real-world DBAs to focus on higher-value-added
activities.

0%

20%

40%

60%

80%

100%
100%

61%

22%

Projected 3‐Year Ownership Cost for a 10‐TB Database

Appliance

OLTP DBMS

Vertica

WHAT MAKES VERTICA DATABASE UNIQUE – KEY INNOVATIONS
From a database developer perspective, the Vertica Database looks very standard; it supports
SQL, ACID transactions, JDBC, ODBC and works with popular ETL and BI reporting products.
Underneath the covers, it’s a different story. Vertica is designed to aggressively economize disk
I/O and is written natively to support grid computing. Vertica is a 21st-century solution for today’s
large-scale, read-intensive database applications, featuring ground-breaking architectural
features such as:

Column Store Architecture. In the Vertica Database, data for each column is independently
stored in contiguous blocks on disk. Column values are linked into rows implicitly, based on the
relative position of values in each column. Unlike most databases where all columns for each row
are stored together, Vertica only needs to retrieve those columns needed for a specific query,
rather than all columns in the selected rows (see Figure 4 below). Vertica’s vertical partitioning
approach produces dramatic I/O savings for the large majority of CDR queries that only retrieve a
subset of columns. For example, consider a telecommunications company that has call detail
records with 230 columns. Most queries touch fewer than 10 of these, reducing disk I/O time by
over 50% compared to row-oriented databases and proprietary data warehouse hardware.

Aggressive Compression. Vertica
employs multiple compression
algorithms, depending on data type,
cardinality, and sort order, to minimize
the space occupied by a column. These
include run length encoding, delta value
encoding and integer packing for integer
data, block-based dictionary encoding for
character data, and Lempel-Ziv
compression. Vertica automatically
chooses a good algorithm for
compressing data in each column, based
on a sample of the data. Compressing
data by column often improves
compression ratios because the data shares a common data type and value range. Run-length
encoding (RLE), for example works best for columns of ordered data, or data with few distinct
values compared to the number of rows. This ensures long runs of identical values, which RLE
compresses quite well. Vertica demonstrates overall compression ratios ranging from 4x to 10x
relative to the ASCII input data. The Vertica query engine processes data in compressed form.

Multiple Projections Stored. Instead of storing data in tables as defined in the logical schema,
Vertica physically stores views of the table data, called projections. Each projection contains a
subset of the columns of a table in a particular sort order. Rows in a projection consist of the
value at the same position in each of the column stores comprising the projection (see Figure 4).
Projections can also contain columns from multiple tables, thus materializing joins. To support ad
hoc queries, every data element is guaranteed to appear in at least one projection. Vertica
automatically selects appropriate projections to optimize query performance for the expected
workload. Benefiting from large storage savings due to its extensive use of compression, the
Vertica Database can maintain multiple projections with different and often overlapping sets of
columns, in several different sort orders, to improve performance for a wide range of expected
queries.

0

200

400

600

800

1000

Vertica
75GB

Proprietary
Appliance

948GB

G
ig
ab
yt
es

Space required to store 600GB of user data

Figure 4: Vertica Database Architecture

Shared-nothing Parallelism. The
Vertica Database is a shared nothing
system, designed to run on a
collection of homogeneous nodes of
a Linux cluster or grid connected by a
TCP/IP network. In Vertica parlance,
each node is called a site. Nodes
contain commodity, multi-core
processors with 2 to 4 GB of RAM per
core. Storage can be directly
attached to each node, or can be
SAN-based. In the Vertica Database,
parallelism is optimized for star or
snowflake data models. Fact tables
are range partitioned across the
nodes of the cluster (see Figure 4).
Dimension tables are typically
replicated on each site of the cluster.
Very large dimensions are partitioned
on the same key as the fact table.
This limits the need to share data
among sites during query execution.
Queries can be initiated on any site.
The query planner determines what
work needs to be done to answer the
query, distributes it to participating
sites, collects each site’s partial result
and prepares the final answer to be
sent to the requestor.

K-Safe based Availability. The Vertica Database maintains multiple stored projections, which
can also serve as redundant copies of the data for purposes of high availability. By imposing an
additional constraint, namely, that the system guarantees that projections are partitioned such
that each data element exists on multiple sites, Vertica implements intelligent data mirroring as an
integral part of the database. Vertica calls this K-Safety, where k is the number of site failures that
a given set of Vertica projections will tolerate. Vertica guarantees K-Safety by building k+1
replicas of all segmented projections - where each replica has the same columns and partitioning
key, though the sort order may differ – and offsetting the distribution of partitions across sites for
each replica. K-Safety allows requests for data owned by failed nodes to be satisfied by existing
projections on surviving nodes, even though the optimal projection may no longer be available.
Once the failed site is restored, Vertica uses the projections on the other sites to automatically re-
populate data on the previously failed site.

Automatic Physical Database Design. With the Vertica Database, users need only specify a
logical database schema. Today, Vertica targets star or snowflake schemas, so the logical model
must satisfy this constraint. Given a logical schema, the Vertica DB Designer automatically
generates an appropriate physical database design based on that schema, a sample of
representative data and queries, and a space budget for the database (see figure 5). The DB

Designer guarantees that any valid query on the schema can be answered by insuring that all
data appears in at least one projection. The DB Designer chooses compression technique to use
for each column. It determines which projections to build in order to optimize performance of the
sample workload, which columns and joins they will contain, and how each projection should be
sorted. It selects the appropriate partitioning key for each projection and guarantees that the
projections satisfy the specified K-Safety level. By taking over the details of the physical design,
the Vertica Database simplifies database implementation and allows database designers and
administrators to focus on the best logical data model to meet their business needs.

Figure 5: Vertica DB Designer Process

Hybrid Storage Model. The Vertica Database caches all database updates to a queryable main
memory cache called the Write-optimized Store (WOS) (see figure 6). The WOS organizes data
into projections that are stored as collections of uncompressed, unsorted column arrays,
maintained in update order. Periodically, an asynchronous background process on each site,
called the Tuple Mover, migrates recent updates to permanent disk storage in the Read-
optimized Store (ROS). Data in the ROS is sorted, compressed, and densely packed into variable
length disk blocks, optimized for query performance. Appended data is simply added to the end of
the appropriate column stores in the ROS. Data inserted into the middle of sorted projection
causes the Tuple Mover to rebuild and rewrite disk blocks to maintain the sort order and dense
data packing in the ROS. SQL queries can be issued to execute against data in the ROS only, or
the ROS+WOS if real-time results are required.

The Vertica Database supports snapshot isolation for query processing, which means that
queries and updates do not interfere with one another, and that read-only queries do not require
locking. Updates are collected in time-based buckets of fixed duration called epochs. At fixed
intervals, Vertica closes the current epoch and begins a new one. New updates are grouped in
the new current epoch. Data in older epochs is available for query processing and eventual
migration by the Tuple Mover to the ROS (see figure 4).

Vertica’s hybrid storage model supports both bulk loads and trickle-feed updates. The Vertica
Tuple Mover is regularly working in the background to drain the WOS and merge updates into the
ROS to keep it current. While clearly designed for read-mostly application, this approach also
works for near-real time data warehouses with high append data volumes, as long as the data
latency requirement exceeds the epoch period.

Figure 6: Vertica’s Hybrid Storage Model

N-3 N-2 N-1 N

Current
epoch

WOSROS

0-3 4-9 … N-4

Query Update

Tuple Mover

N-3 N-2 N-1 N

Current
epoch

WOSROS

0-30-3 4-94-9 …… N-4N-4

Query Update

Tuple Mover

IN SUMMARY: A DBMS ARCHITECTURE BUILT FOR CDR ANALYSIS
Together, the key features of the Vertica Database create an elegant architecture for large-
volume, high-speed CDR analytics applications. Vertica’s vertical partitioning by column,
extensive use of compression, and hybrid storage model reduce the I/O required to execute
queries. CDRs contain many columns per customer, but individual reports cull only a few of
these. The types of analytic applications that use a small, arbitrary subset of columns per query
are both common, and ideally suited for the vertical partitioning provided by the Vertica Database.
At the same time, Vertica’s data partitioning, which divides work across multiple nodes in a
computer cluster, supports the very large data volumes to which these applications often grow.
These analytic applications also typically support users from many disciplines, interrogating the
database from multiple individual perspectives. Here, Vertica’s ability to keep multiple physical
projections of the data is a natural fit for such usage patterns. In summary, the architecture of the
Vertica Database was designed specifically to handle the common characteristics of CDR
analytics applications.

BENCHMARK THE VERTICA DATABASE YOURSELF
Getting started with the Vertica Database is easy. It supports SQL, and integrates with ETL,
analytical and reporting tools, and business intelligence applications via JDBC, ODBC and
specific language bindings.

If you would like to learn more about how the Vertica Database can help your company more
effectively perform CDR analysis or if you would like to run your own benchmark test, please visit
and register at www.vertica.com to find out more.

Vertica Database System Requirements:
A cluster of 1 or more (at least 3 for production use) shared-nothing computers, each featuring:

• Dual-core CPU (at least 2.4GHz), 800MHz (or more) Front-side Bus
• At least 2GB of RAM per CPU core
• 500GB SATA [or any 150GB – 500GB drive, 7.2K RPM, SATA or SCSI]
• Red Hat Enterprise Linux 4, SuSE 10 or Fedora Core 6

