
Keg Master: a Graph-Aware Visual Editor for Scene Graphs

Hannah Slay, Dr Bruce Thomas, *Dr Rudi Vernik, *Matthew Phillips
School of Computer and Information Science

University of South Australia
Mawson Lakes Boulevard, Mawson Lakes 5095, South Australia

*Command & Control Division

Defence Science and Technology Organisation
West Avenue, Edinburgh 5111, South Australia

Hannah.Slay@unisa.edu.au Bruce.Thomas@unisa.edu.au Rudi.Vernik@dsto.defence.gov.au

Matthew.Phillips@dsto.defence.gov.au

Abstract
This paper describes the manner in which papers should be
formatted for papers adhering to the ACS series, Conference in
Research and Practice in Information Technology. The abstract
should be a maximum of 250 words and should clearly identify
the content of the paper. The text in the abstract should be in
style "abstract text". Note that the best way I have found to get
the styles correct is to copy the text into a copy of this template
rather than attempting to change the original file..

Keywords: Information Visualisation, multi display
environment.

1 Introduction
The goal of this research was to design a visual editor for
a 3-dimensional representation of a graph. Existing
visual editors for scene graphs are not graph-aware, and
therefore cannot manipulate or save a representation of
the underlying graph data structure (as opposed to the
scene graph) for use or analysis by other tools. Our
requirement was for the tool to support the importation of
both the graph data structure and its presentation into our
existing multi display environment. An extensive search
of existing off-the-shelf products was performed and
many applications were tested, but the applications we
found were all either too expensive or did not provide all
the tools we considered essential in scene graph creation
software. The decision was then made to create our own
application.

The criterion for our target application was a visualisation
environment that provided the user with a mechanism to
create graphs visually and save them using the Virtual
Reality Modelling Language (VRML). The motivation
for selecting this language was that it was already
supported by the existing elements of our multi display
environment, namely InVision and FOCAL. The
application had to allow users to automatically arrange
the elements of their graph, but also allow them to

Copyright © 2001, Australian Computer Society, Inc. This
paper appeared at the 2nd Australian Institute of Computer
Ethics Conference (AICE2000), Canberra. Conferences in
Research and Practice in Information Technology, Vol. 1.
J. Weckert, Ed. Reproduction for academic, not-for profit
purposes permitted provided this text is included.

manually move elements to new locations (to prevent
occlusion of essential information, etc). Most
importantly, when an element was moved to a new
location, all of its connections needed to be dynamically
resized and appear to move with the element.

As mentioned previously, InVision and FOCAL represent
two key technologies in the DSTO’s multi-display
framework. InVision has traditionally supported two
dimensional models and views of data. With the
Augmented Reality (AR) plugin, it now has the tools
necessary to allow users to display and interact with
three-dimensional models. The primary motivation for
creating Keg Master was therefore to provide a
mechanism of bridging the gap between the traditional
two-dimensional views supported by InVision and the
three-dimensional display capabilities provided by the
AR plugin and FOCAL.

In this paper, we first present related work to our field of
study, followed by an overview of InVision. Next we
provide an overview of the FOCAL. We then move on to
give an overview of the Keg Master system. We then
follow this with some concluding remarks.

2 InVision
InVision is a research initiative through which the
Information Technology Division (ITD) of the DSTO is
conducting research into tools and techniques for the
rapid assembly and deployment of information
visualisation solutions (Goodburn, Vernik, Phillips and
Sabine 1999; Pattison, Vernik, Goodburn and Phillips
2001). InVision uses an infrastructure framework with
pluggable components to deploy a large range of
visualisation solutions. A key goal of InVision is to
facilitate the integration and coordination of a wide
variety of disparate information visualisation view types
through the research, design and prototype development
of an open, component-based software architecture
hosted on the Java 2 platform.

This architecture also supports the location, collection
and modelling of the information to be visualised, and the
use of knowledge-enabled components (primarily
software agents) to ensure that the deployed visualisation
solution is able to adapt to changes in the deployment
environment. Research infrastructure for the exploration

of these research goals is provided by a prototype
JavaBean implementation of selected elements of this
architecture.

InVision uses the concept of workspaces to support the
management and integration of views for particular
individuals or roles (see Figure 1). These views specify
how the information in an underlying data model will be
represented. InVision models can be thought of as
attributed graphs that capture information about a set of
"things", the various relationships between these "things",
and sets of attributes that describe the "things" (eg size,
colour, name). The modelling approach is generic and so
can be used to support the visualisation of a wide variety
of artefacts such as software systems, intranets,
organisational structures, social networks, or financial
systems.

Figure 1: InVision Workspace

A variety of visual forms can be used to represent various
viewpoints of the model. These may include cluster
graphs, charts (scatter, bar, kiviat), tabular grids, or
textual representations (or any combinations of these).
InVision already has components that allow for the
specification and use of a wide variety of visual
representations. These views can be displayed on one or
more conventional display devices (eg workstation
screen, large screen projection). Interaction with these
more traditional visual forms is via direct manipulation
interfaces using devices such as a mouse.

Augmented Reality Visualisation (ARVIS), a component
in the InVision framework was create to allow any of the
views in an InVision workspace to be displayed through
an AR tangible interface (Slay, Thomas, Vernik and
Phillips 2002). AR refers to the process of overlaying
computer generated images onto the real world. By using
a head mounted display placed on the user’s head, it is
possible to completely replace the user’s view of the real
world with this computer-enhanced world. Numerous
different interaction devices are used in AR applications,
ranging from traditional interaction devices such as mice
and keyboards to more environment-specific devices such
as pinch gloves and twiddlers. ARVIS supports the use
of fiducial markers as its tangible user interaction device.
A fiducial marker is a black and white, asymmetric and
unique pattern mounted on a sturdy piece of cardboard.

The lower left window in figure 1 shows a model
superimposed on such a device.

The AR view capability was added by incorporating the
ARToolkit Version 2.52 (Kato and Billinghurst 1999) as
a component into the InVision framework. Figure 1
shows a screen shot of InVision with the AR plugin. The
main window shows a model displayed in a traditional
InVision view. The window in the lower left corner of the
image shows an AR view of this model. Right clicking
on a traditional view's tab allows the user to also display
the selected view in AR mode relative to a particular
fiducial marker pattern. The user can then inspect the
model by rotating it, changing the azimuth etc. This is
particularly useful for three-dimensional models. By
rotating the marker, the user can examine the model from
all viewpoints. By bringing the marker closer or further
from the user, their viewpoint can be zoomed in or out.
This provides an interaction that can be closely mapped
to the natural interactions between humans and the
objects that they want to analyse.

3 FOCAL
DSTO has established the Future Operations Centre
Analysis Laboratory (FOCAL), which will enable
research into the effectiveness of advanced visualisation
technologies in the Australian Defence Force’s (ADF)
situation awareness, mission planning and decision
making. The centre is currently equipped with a 12 foot
(3.5m) radius, spherical section screen, illuminated by 6
projectors and driven by a 3-pipe, 8 CPU Onyx 3400,
supplied by SGI and Trimension Systems(Lambert 2001).

While responsibility for decision-making rests with the
commander, typically many others will contribute
information and advice. A key factor in choosing this
display technology is its ability to support collaborative
decision-making by allowing up to 10 people to share an
immersive experience.

The facility breaks new ground by using Liquid Crystal
Display technology projectors. These projectors are
extremely bright and allow high contrast to be achieved
with reasonable levels of ambient light, enhancing the
collaborative workspace.

4 Keg Master
While undertaking our search for alternate applications,
we discovered a tool called Wilma(Dwyer and Eckersley
2001), a 3 dimensional UML viewer that came close to
what we wanted. We studied and extracted key features
from Wilma and used these as a base for Keg Master. In
particular these features include the mechanism for
attaching nodes to a canvas, and the means by which the
identity of a picked shape is found.

As well as providing the criteria mentioned in the
introductory section, Keg Master allows the user to load
and save models to a number of different formats. It was
first intended that the primary language used in Keg
Master would be VRML. However, later it was
discovered that VRML is predominately a scene graph
description language, as opposed to what we wanted - a

graph description language. The difference between
these language types may on first glance seem
insignificant, so the two terms shall be defined. We
understand a scene graph description language to include
all elements of a scene: the lighting, the fog, animations,
behaviours, and finally the elements of the graph.
Contrastingly, a graph description language is only
concerned with the elements of a graph, and the
connections between these elements. Because it is an
XML-based language, it exhibits behaviour synonymous
with XML. As stated by Blais, “XML describes 3D
scenes as structured data, which can be processed without
paying attention to how the data should be
presented”(Blais, Brutzman, Horner and Nicklaus 2001).
Another incentive for using graph description language is
that it is a higher-level language than scene graph
description languages. This means that a scene graph
description of a model can be created from a graph
description, but not vice versa. KEG, a new format was
therefore created to model our graphs. KEG can be seen
as an extension of the format supported by InVision, and
can even be loaded by InVision components.

Once resolved by the XML parser, the KEG model is
translated into a Java 3D scene graph. The user can
dynamically alter the Java 3D scene graph by dragging
and dropping primitive shapes onto the canvas (see
Figure 2 for a screen shot of Keg Master). Using
Extensible Stylesheet Language (XSL) the scene graph
can be parsed and output using numerous different
formats (including KEG and VRML).

As well as saving models to the KEG and VRML
formats, Keg Master also has the ability to save its
models to another new format, ARVIS. ARVIS is a
format supported by the AR component of InVision that
provides users with the ability to view models using
augmented reality (Slay, Thomas, Vernik and Phillips
2001).

Figure 2 Keg Master screen shot

As figure 2 shows, Keg Master is made of six
components, labelled 1 to 6, which will now be discussed.
Component 1 refers to the menu bar at the top of the
window. Component 2 shows the toolbar underneath the
menu bar. These two interfaces are the primary tools for
driving the application. All buttons on the toolbar are

also mapped to menu option in the menu bar. Component
3 indicates the tree on the left hand side of the screen.
This tree contains a list of all elements of the scene
graphs. Elements can be selected by either clicking on
the label associated with the element in this tree or on the
graphical representation of the object as seen in the centre
of the screen. Component 4 shows the canvas for the
application. The canvas provides a graphical
representation of the model as specified by the data inside
the tree (component 3).

Elements can be added to the canvas by selecting the
object from the tool bar or by selecting the object type
from the Add menu and clicking on the desired location
of the object in the canvas. An object is shown to be
selected when its axes are visible and its colour has been
inverted (note, the lower cone in figure 1, labelled
“another cone”, has been selected). Once an object has
been selected, its attributes can be changed by clicking on
the corresponding button in the tool bar, or by selecting
the corresponding menu option in the menu bar. Also,
when an object is selected, its position can be changed by
clicking and dragging with the right mouse button, until
the element reaches its desired position. The default
plane of movement is set to the X-Y plane. To move in
the X-Z plane, the button in the tool bar labelled X-Z
should be pressed (and vice-versa to re-select the X-Y
plane).

To rotate the selected object, the control key and the left
mouse button should be pressed simultaneously, and then
the mouse should be dragged in the direction the object
should be turned. Component 5 denotes the panel on the
right hand side of the screen. This panel provides four
text areas that specify features of the selected object. The
first area, labelled User Information, allows the user to
store extra information about the element. This
information is used as a reference to the elements in the
tree referred to by component 3. The next three areas
allow the user to manually specify the X, Y and Z
positions of the selected object. Finally, component 6
provides system messages to the user. Any major event
or error is reported to the user in this area.

1
2

As well as allowing users to create graphs, Keg Master
also allows them to view and manipulate the displayed
attributes of the model.

When a large graph is viewed, it can become complex for
the user to understand through the entangled connections.
We have resolved this problem by allowing the user to
decide which connections to show. By selecting nodes
singularly or as a group, the user can choose to show
connections associated with each node. Figure 3 shows
an example of this. In this image, the node
CreateGraph.node has been selected, and all of its
connections are displayed. This provides the user with a
simplified view of the graph (the whole graph can be seen
in Figure 2), which can aid to ease in the understanding
for the user.

3
4 5

6

Figure 3 Inspection of Model

5 Related Work
Several organisations have been researching creation of
models. However most of these projects are designed to
allow users to analyse a graph, but not to create them
graphically. The program Feijs and De Jong (Feijs and
De Jong 1998) describe in their research accepts as input
a module of code and using common objects to represent
data types, collections and tables, the program parses the
code, locates all “use” statements and creates a graphical
representation of the code hierarchy. This representation
is expressed in VRML allowing users to analyse it by
moving the camera viewpoint, but not to manipulate the
nodes. Schönhage (Schönhage, van Ballegooij and Eliëns
2000) for example created a program Diva, which was
used by Gak NL to visualise business processes. This
program allows users to manipulate an existing graph
(drill down techniques) but not to graphically create
them.

Several other organisations have been researching
methods of automatically laying out nodes in a graph.
Tim Dwyer’s research (Dwyer 2001) for example allows
users to graphically create nodes etc, but not to specify
their locations. Their placement is derived using the
Force Directed Algorithm. Neville Churcher (Churcher

and Creek 2001) uses a modification to this algorithm, the
big-bang modification to also calculate positions for
nodes.

6 Conclusion
Conclusions go here

7 References
Blais, C., Brutzman, D., Horner, D. and Nicklaus, S.
(2001). Web-based 3D Technology For Scenario
Authoring and Visualisation: The Savage Project.
Interservice / Industry Training, Simulation, and
Education Conference, Orlando, Florida, USA,
Simulation Systems and Applications, Inc.
Churcher, N. and Creek, A. (2001). Building Virtual
Worlds with the Big-Bang Model. Australian Conference
on Information Visualisation, Sydney, Australia.
Dwyer, T. (2001). Three Dimensional UML Using Force
Directed Layout. Australian Conference on Information
Visualisation, Sydney, Australia, Australian Computer
Society.
Dwyer, T. and Eckersley, P. (2001). WilmaScope, Lesser
General Public License.

Feijs, L. and De Jong, R. (1998). "3D Visualization of
Software Architectures." Communications of the ACM
41(12): 73 - 78.
Goodburn, D. P. J., Vernik, R. J., Phillips, M. P. and
Sabine, J. J. (1999) "Integrated Visualisation and
Description of Complex Systems" DSTO, Salisbury;
DSTO-RR-0154
Kato, H. and Billinghurst, M. (1999). Marker Tracking
and HMD Calibration for a Video-based Augmented
Reality Conferencing System. 2nd IEEE and ACM
International Workshop on Augmented Reality, San
Francisco USA.
Lambert, D. (2001). FOCAL. Future Directions for South
Australia. Adelaide, Channel 9.
Pattison, T. R., Vernik, R. J., Goodburn, D. B. J. and
Phillips, M. P. (2001) "Rapid Assembly and Deployment
of Domain Visualisation Solutions" DSTO, Salisbury;
DSTO-TR-110
Schönhage, B., van Ballegooij, A. and Eliëns, A. (2000).
3D Gadgets for Business Process Visualization - a Case
Study. Virtual Reality Modeling Language Symposium,
Monterey, California, USA, ACM Press.
Slay, H., Thomas, B., Vernik, R. and Phillips, M. (2001).
Interaction Modes for Augmented Reality Visualisation.
Conferences in Research and the Practice in Information
Technology, Sydney, Australia.
Slay, H., Thomas, B., Vernik, R. and Phillips, M. (2002).
Tangible User Interaction using Augmented Reality.
Australasian User Interface Conference, Melbourne,
Australia.

