DXTMON – Architecture and Components

41
Introduction

42
System Architecture and Description

43
Logical Task Separation

53.1
Tracing Node

53.2
DXTPCI Feeding Node

63.3
Trace Fetching Node

73.4
Management Node

83.5
Multicast Linking Node

93.6
Key Storage Node

93.7
Inter-Node Relations

114
Node Components

114.1
Shepherd

114.1.1
Description

114.1.2
Dependencies

124.1.3
Configuration

134.2
BLR Daemon

134.2.1
Description

134.2.2
Dependencies

134.2.3
Configuration

144.3
Motra

154.3.1
Description

154.3.2
Dependencies

154.3.3
Configuration

164.4
Trace Fetcher Scripts

16Description

164.4.1
Dependencies

164.4.2
Configuration

174.5
RTABLE SQL Daemon

174.5.1
Description

174.5.2
Dependencies

174.5.3
Configuration

184.6
Ringbuffer Communication Daemon

184.6.1
Description

194.6.2
Dependencies

194.6.3
Configuration

194.7
Configuration Daemon

194.7.1
Description

194.7.2
Dependencies

194.7.3
Configuration

204.8
Configuration Interface Scripts

204.8.1
Description

204.8.2
Dependencies

214.8.3
Configuration

214.9
SNMP Proxy

214.9.1
Description

224.9.2
Dependencies

224.9.3
Configuration

234.10
Update Daemon

234.10.1
Description

234.10.2
Dependencies

244.10.3
Configuration

244.11
Delay Feeder Server

244.11.1
Description

254.11.2
Dependencies

254.11.3
Configuration

264.12
Libcom Relay

274.12.1
Description

284.12.2
Dependencies

284.12.3
Configuration

284.13
Kc Storage Daemon

294.13.1
Description

294.13.2
Dependencies

294.13.3
Configuration

294.14
Ringbuffer Browser Daemon

294.14.1
Description

294.14.2
Dependencies

294.14.3
Configuration

30References

1 Introduction

This document describes the architecture of a DXTMON Monitoring System. It points out the various tasks that are performed and where the corresponding components are located within the system.

Throughout the document, the following terms are used:

· A ‘probe’ identifies a set of hardware components that form an operative entity;

· A ‘node’ identifies a logical entity within the system responsible of carrying out one specific task (a node always belongs to exactly one probe, while one probe can host multiple nodes);
· A ‘component’ is a sub unit within a node and identifies a single executable program, e.g. a daemon;

The remainder of the document is organized as follows:

· Chapter 2 System Architecture and Description contains a ‘position plan’ of the system that shows where different components are located;
· In chapter 3 Logical Task Separation, the system is described in terms of ‘tasks’ that need to be performed (i.e. the different types of nodes are explained);
· In chapter 4 Node Components, the ‘building parts’ of each node are described;
2 System Architecture and Description
Figure 1 shows which nodes can be present in an DXTMON Monitoring System and which components they are composed of.
[image: image1.png]£ —{_Shepnerd
5
—{__Shepherd & L{Libcom Relay Snepherd
(" SNMP Proxy Multicast Linking Node Delay Feeder | | §
Server ES
S
|__[Ringbf. Browser, o
Daemon | Shephera Motra
Configuration Ringbuffer DXTPCl Feeding Node
Daemon 2 [Com. Daermon
o read/write =
5 §
8| | configuration read/write
& L{BLR Daemon Shepherd
Management
Database 8
— RTABLE SQL Ed
read/urite | Storase | Daermon s
Configuration
Interf, Scripts Tracing Node Trace Fetcher
Scripts
[| Update £ Shepherd Trace Fetching Node
Daemon 5
§
;/ 8 Ke Storage
Managerment Node Daermon
Ke Storage

Key Storage Node

Figure 1: Nodes and their components
Each of the grey boxes represents a node. The functionality of each node is described in chapter 3 Logical Task Separation. All components within the nodes are documented in chapter 4 Node Components.
Due to the complexity of the communication between nodes, the only communication paths that are indicated in Figure 1 are those that are restricted to a single probe. This affects the Trace Fetching Node and the DXTPCI Feeding Node, which requires access to a local BLR Daemon for ringbuffer access (which is only available on the Tracing Node).
3 Logical Task Separation
The following sections explain the various nodes present in a DXTMON Monitoring System. The nodes available are:
· Tracing Nodes are used t o record and store network traffic;
· DXTPCI Feeding Nodes aggregate statistics and forward tickets to the DXTPCI System;
· Trace Fetching Nodes provide interfaces for retrieving trace data;
· Management Nodes distribute configurations and offer administrative interfaces;
· Multicast Linking Nodes allow communication across multiple multicast domains;
· Key Storage Nodes store and forward cipher key information;
The final section (3.7 Inter-Node Relations) describes how these nodes interact.

3.1 Tracing Node

Tracing Nodes read traffic from network taps or splitters via Endace DAG cards (depending on the physical network interface, appropriate DAG cards need to be chosen).

At the moment, the following cards have been tested with the DXTMON monitoring system:

· DAG 3.6EP for 100MBit Ethernet

· DAG 4.5G4 for 1000MBit Ethernet (copper or optical)

· DAG 3.8S for ATM (STM-1/STM-4)
· DAG 7.1S for ATM (STM-1/STM-4)
Traffic is read from the DAG cards by a program called ‘motra’ (4.3 Motra). It analyzes the traffic and performs operations such as deciphering (on Gb), payload cutting and identifier tracking. The latter is used to map temporary 3GPP identifiers to static 3GPP identifiers such as the IMSI for later analysis.
The traffic data is then stored in a custom format called ‘RTABLE tables’ in a ringbuffer. Both the packet level data (‘raw’ data) and additional metadata (such as tracked information) are stored. Access to this ringbuffer is governed by a BLR Daemon (see 4.2 BLR Daemon).
Remote Access to the information stored in an RTABLE table is possible via a Ringbuffer Communication Daemon (4.6 Ringbuffer Communication Daemon).
All processes of a Tracing Node are supervised by a daemon (4.1 Shepherd) to guarantee high availability.
Access to the traffic data stored in the ringbuffer is granted via the functionalities provided by the Trace Fetching Nodes (see 3.3 Trace Fetching Node for more details).

The data stored by Tracing Nodes is analyzed by DXTPCI Feeding Nodes (see 3.2 DXTPCI Feeding Node) to generate statistical information in the form of tickets that are sent to a DXTPCI System for further analysis.

3.2 DXTPCI Feeding Node

DXTPCI Feeding Nodes read traffic data previously stored by a Tracing Node (3.1 Tracing Node), generate aggregate statistics and forward them to the DXTPCI System. The statistics are generated by the ‘motra’ program, which is also used for recording purposes in the Tracing Node.
DXTPCI Feeding Nodes operate on the same physical probe as the corresponding Tracing Node for which traffic should be analyzed.

At the moment, the following statistics are available:

· Active PDP Contexts per IMSI

· Attached subscribers per routing area

· GTPv1 statistics

· IPv4 statistics

· Log message statistics

· Mobile Layer 3 statistics

· PDP Context activation delays

· TCP statistics

· UDP statistics

· HTTP statistics
These statistics are generated by modules within the ‘motra’. It is possible to either generate all of these tickets in one single ‘motra’ process or to group them into separate processes (e.g. to distribute the computation load on multiple processors and/or cores).

Additionally, it is possible to compute delay sample statistics. These are generated by sending traffic samples to a central component, the Delay Feeder Server (see 4.11 Delay Feeder Server) which is then able to calculate the delay statistics and forward them as tickets.

All processes of a DXTPCI Feeding Node are supervised by a daemon (4.1 Shepherd) to guarantee high availability.

A detailed description of available ticket types and their contents can be found in [Intf08].

3.3 Trace Fetching Node

Trace Fetching Nodes are used to access the data stored in the ringbuffer by Tracing Nodes (3.1 Tracing Node). The following interfaces are available:
· A web interface for downloading traces (informally known as ‘Trace Fetcher’);
· An SQL interface that is utilized by a modified Wireshark version for online (i.e. real time) tracing;
Trace Fetching Nodes share the same probe as the according Tracing Node (3.1 Tracing Node).

The web interface for downloading traces uses a collection of Perl CGI scripts (see 4.4 Trace Fetcher Scripts) to generate a trace file using the utility ‘rtable2erf’. The resulting trace is provided to the user as a download. For a description of the usage of ‘rtable2erf’, refer to [Ref08].
The SQL Interface is provided by the RTABLE SQL Daemon (4.5 RTABLE SQL Daemon). It implements the PostgreSQL protocol and allows data retrieval using simple SQL queries (both on the metadata and on the actual packetdata). A modified version of the open source network analyzer Wireshark utilizes this SQL interface to retrieve and display traces in real time.
The RTABLE SQL Daemon is supervised by a daemon (4.1 Shepherd) to guarantee high availability. All other components of the Trace Fetching Node are started on demand (i.e. are not persistently available) and therefore require no process monitoring.

3.4 Management Node
Management Nodes typically occupy a dedicated probe and perform the following tasks:

· Management of configurations (see 4.7 Configuration Daemon and 4.8 Configuration Interface Scripts);

· SNMP access to DXTMON system variables (see 4.9 SNMP Proxy);

· Provide a central repository for RTABLE table information for remote access (see 4.6 Ringbuffer Communication Daemon);
· Distribute information on data changes for various data sources (see 4.10 Update Daemon);

Configurations are stored in a PostgreSQL database (see [Ref08] for a detailed description of the required database structure and instructions on how to set up the configuration database). The database can be manipulated using the web interface provided by the Management Node via Perl CGI scripts (see 4.8 Configuration Interface Scripts). Processes can retrieve configurations by contacting the Configuration Daemon (see 4.7 Configuration Daemon).
At the moment, the following components can retrieve configuration via the Management Node:

· Motra (used in Tracing Nodes and DXTPCI Feeding Nodes)

· SNMP Proxy (used in the Management Nodes)

· Delay Feeder Server (used as part of the DXTPCI Feeding Nodes)

· Libcom Relay (used in the Multicast Linking Nodes)

The SNMP Proxy running on a Management Node converts the proprietary query protocol called ‚Remote Protocol’ to SNMP V1 messages and therefore allows SNMP V1 access to all variables exposed by a process via the Remote Interface (see [Rmt07] for a in-depth description of the Remote Interface).
Currently, the following components provide information via the Remote Interface:

· Motra

· Delay Feeder Server

· SNMP Proxy

The functionalities offered by the Update Daemon (4.10 Update Daemon) can be used to notify running processes that a certain data source (e.g. a database table) has changed. The process can then choose to either ignore this notification or to act on it (i.e. re-read the data contained in the table).
The Update Daemon is triggered to send notifications via database triggers that are attached to the tables that should be monitored for changes.
All components of the Management Node (with exception of the web interface) are supervised by a daemon (4.1 Shepherd) to guarantee high availability.
3.5 Multicast Linking Node

The DXTMON Monitoring System is designed to support inter-process communication via multicast mechanisms. This reduces the number of messages that need to be transmitted (if messages are targeted at multiple probes) and also reduces the necessary system configuration (since multicast messages for lookup procedures can be used; i.e. a process can search for available Configuration Daemons via multicast and does not need a fixed configuration of its adddress).
To enable communication between multiple multicast domains, Multicast Linking Nodes are used as proxies. For each multicast domain, a dedicated Multicast Linking Node is required. These nodes communicate with each other using unicast messages to forward multicast messages to other multicast domains.
This forwarding is done by the Libcom Relay (4.12 Libcom Relay). The name results from the fact that the protocol used internally is called ‘libcom’ and the messages are relayed by this component.
The Libcom Relay is supervised by a daemon (4.1 Shepherd) to guarantee high availability.
3.6 Key Storage Node

On the Gb interface, GPRS LLC frames can be encrypted. To extract the information contained within these frames (e.g. for identifier tracking purposes), the corresponding Tracing Node needs to be able to decipher them. For this, it needs information such as the cipher key from other interfaces (notably from the Gn and Gr interfaces).

The Key Storage Node exchanges messages with Tracing Nodes on Gn, Gb and Gr and stores all information necessary for deciphering GPRS LLC frames. This enables the Gb Tracing Node to decipher its GPRS LLC frames. Furthermore, if the Tracing Node restarts, it can obtain its former state information from the Key Storage Node. This leads to a much faster increase in the decipher rate than would be possible without the Key Storage Node.

The Key Storage Node comprises a Kc Storage Daemon (see 4.13 Kc Storage Daemon) and a Kc Storage Area. This storage area is used to store cipher key information persistently (i.e. it remains available, even if the Kc Storage Daemon restarts). The storage area is formatted by the tool ‘make_storage’. This is documented in detail (together with the auxiliary tools ‘kc_listen’ and ‘kc_query’) in [Ref08] and [Inst08].
The Kc Storage Daemon is supervised by a daemon (4.1 Shepherd) to guarantee high availability.
3.7 Inter-Node Relations

Figure 1 demonstrates the relations between the nodes. Grey boxes signify probe borders, i.e. all nodes located within the same grey box must be located on the same physical probe. Note that other nodes can also be merged into one probe, but are not required to.
[image: image2.png]DXTPCI Feeding Node ‘

‘ Trace Fetching Node

data extraction

Tracing Node

Multicast Linking Node

1 per multicast domain
configuration e:

xchange

cipher key exchange

Key Storage Node

Management Node

1 for the whole

system

1 per cipher key domain

Figure 2: Node relations

The data written by a Tracing Node is read by the DXTPCI Feeding Node in order to aggregate the contained information into tickets. Since different ticket types (i.e. for different protocols) are generated (see [Ref08]), the following setups are possible:

· One DXTPCI Feeding Node generates all tickets; Trace Fetching Node and DXTPCI Feeding Node have a 1:1 relationship

· Ticket generation is distributed across multiple DXTPCI Feeding Nodes; Trace Fetching Node and DXTPCI Feeding Node have a 1:n relationship (the upper boundary for n is the number of different types of tickets that are generated)

The Trace Fetching Node also retrieves the data written by the Tracing Node in order to provide them to end users.
Tracing Nodes exchange cipher key information with the Key Storage Node. Only those Tracing Nodes located at either the Gn, the Gb or the Gr Tracing Node participate in the data exchange. Note that Key Storage Nodes can be distributed across the network depending on where cipher key information is needed.
For each multicast domain, one Multicast Linking Node should be present. Its relationship to other nodes is not easily depicted, since it forwards and distributes multicast messages from other multicast domains.
A single Management Node is sufficient to serve all nodes within the DXTMON Monitoring System (though it is possible to operate multiple Management Nodes). The only requirement is that all nodes are able to contact the Management Node via multicast (i.e. by deploying appropriate Multicast Linking Nodes).
The following nodes receive configuration information from the Management Node:

· Tracing Node

· DXTPCI Feeding Node

· Multicast Linking Node
4 Node Components

The following chapters explain the components that each node consists of. The description is not comprehensive, for an in-depth discussion for each of these components, refer to [Ref08]. Information about the exact location of each executable or script can also be found in this document, together with a list of required packages, which is additionally documented in [Inst08].
These components are installed via Debian packages that are provided for the DXTMON Monitoring System. The build process for these packages is documented in [Pkg07].
4.1 Shepherd

	Executable name:
	shepherd
	

	Commandline parameters:
	<configuration file>
	Configuration file to parse; mandatory

	Example:
	shepherd /etc/shepherd/recorders.config

4.1.1 Description

Shepherd is a process supervision daemon used to start, stop and monitor multiple processes (and is able to handle dependencies between them). The daemon increases service availability by automatically restarting stopped processes. Shepherd is configured via a local configuration file passed as commandline option.
The functionality and implementation of Shepherd is documented in detail in [Shep07].

4.1.2 Dependencies

None
4.1.3 Configuration

Configuration structure:

graceperiod

= [60]

waitdepend

= [5]

pidfile

= [(null)]

debugdir

= [(null)]

basedir

= [(null)]

fork

= [true]

daemon {

id

= [0]

exec

= [(null)]

args

= [{}]

uid

= [-1]

gid

= [-1]

depend

= [-1]

logfile

= [(null)]

enable

= [true]

}

Parameter description:

	Parameter Name
	Description

	graceperiod
	This parameter specifies the time to wait between two consecutive restarts of a child process; this duration is calculated from the time of the last restart (e.g. when the child process has been running for more than the time specified by this parameter, it will be immediately be restarted when if it exits)

	waitdepend
	This parameter specifies how long a child process is held back after the process it depends on has been started

	pidfile
	Location of the PID file of shepherd

	debugdir
	Location where core and output files of a child process will copied to in the case of a segmentation fault

	basedir
	Base location from which shepherd will operate (all path parameters are relative to this directory)

	fork
	If set to true tells shepherd to run in the background and write the PID file; setting this to false is usually used for debugging purposes

	

Daemon

	id
	Internal ID used to keep track of dependencies

	exec
	Path to the executable that should be started

	args
	List of command-line parameters to pass to the executable

	uid
	User ID with which to run the child process

	gid
	Group ID with which to run the child process

	depend
	ID of the daemon on which this process depends

	logfile
	File to redirect stdout/stderr messages to

	enable
	Whether to enable this process or not

4.2 BLR Daemon

	Executable name:
	blr-daemon
	

	Commandline parameters:
	<configuration file>
	Configuration file to parse; mandatory

	Example:
	blr-daemon /etc/metawin/blr.config

4.2.1 Description

The BLR Daemon governs access to the storage medium. Every process reading from or writing to the ringbuffer must do so via the BLR Daemon. Formatting the ringbuffer is done using the tool ‘blrpart’ (see [Inst08] and [Ref08]). The daemon is configured via a local configuration file passed as commandline option.

The functionality and implementation of the BLR Daemon is explained in [Blk07].
4.2.2 Dependencies

None
4.2.3 Configuration

Configuration structure:

partitions

= {}

index_reserve
= [10]

iplayer_skip
= [10]

block_size

= [32768]

block_count

= [2048]

max_aio

= [300]

Parameter description:

	Configuration Item
	Description

	partitions
	A list of all partitions that this BLR Daemon is responsible for; All partitions have to be correctly formated using the blrpart tool beforehand; Additional information about the volumes and tracks present within the partitions are automatically derived

Example: {/dev/sda, /dev/sdb}

	index_reserve
	Defines how many index entries should be freed in advance in order to sustain the maximum writing rate

	iplayer_skip
	Defines how many of the oldest index entries are ignored during read operations; Setting this value too low will result in a lot of failed read operations (because the block will be overwritten during the read operations); This value must not be lower than index_reserve

	block_size
	Size of one block of data that the BLR Daemon will handle; One BLR Daemon can always only handle one block size; The block size has to correspond with the block size of the partitions

	block_count
	Number of blocks used for the block cache

	max_aio
	Maximum number of pending asynchronous I/O events

4.3 Motra

	Executable name:
	motra
	

	Commandline parameters:
	--config <configuration file>
	Configuration file to parse; optional (either a configuration or an ID must be provided)

	
	--id <id>
	ID for configuration retrieval via Configuration Node; optional (either a configuration or an ID must be provided)

	
	--time <time>
	Specifys the start time (regarding the packet’s GPS timestamp); format: YYYY-MM-DD,HH:mm; optional

	
	--dur <duration>
	Duration (in minutes) of the input to evaluate; optional (requires ‘time’)

	
	--count <frame count>
	Number of frames to process before quitting; optional

	
	--config-options
	Shows a complete list of all available configuration parameters; optional (terminates ‘motra’ after all options have been printed)

	Example:
	motra --id 15001
motra --config test.config --time 2008-05-05,12:00 --dur 5

All parameters are optional. For proper operation, either the ‘id’ or the ‘config’ parameter must be specified.
4.3.1 Description

Motra is responsible for analyzing traffic. Its configuration typically specifies at least one input for data retrieval (e.g. a DAG card) and one or more outputs (debugging output or output into an RTABLE via the BLR Daemon).
It also performs tasks such as identifier tracking, payload cutting, Gb deciphering and DXTPCI feeding. In most cases, feeding is not performed in the recording Motra (the Motra that is writing to the ringbuffer), but by a separate reading process.
For communicating with other nodes (i.e. for configuration retrieval or cipher key exchange), the Motra uses the Inter/Intra MOTRA Communication described in [Com07]. Logging is done using the logging facilities documented in [Log06]. A running Motra process exposes a number of status variables via the Remote interface (see [Rmt07]). These variables can be queried either using the SNMP Proxy (see 4.9 SNMP Proxy) or the tool ‘control’. For a complete description of this tool, see either [Inst08] or [Ref08].
If the Motra is configured for DXTPCI feeding, the corresponding modules need to be enabled. See [Feed07] for an in-depth description of the functionality and implementation of these modules.
Reading and writing data is done in a format called RTABLE. This format is described in detail in [TblOv07], [TblMgt07], [TblBlk07], [TblPkt07] and [TblFilt07]
4.3.2 Dependencies

A recording Motra requires write access to a local BLR Daemon to access the ringbuffer. A DXTPCI feeding Motra requires read access to a local BLR Daemon and a running recording Motra to be able to continuously generate tickets.
4.3.3 Configuration

Abbreviated Configuration Structure:

input {

rtable_enable = [false]

blr_session { write_enable = [false] }

erf {

card = [“”]

linkid_list = [{}]

}

remote {}

log {

logfile = [“”]

loglevel = [0]

}

parser {

base = true

a list of all required parsers

}

hro {

output_rtable { table = [“”] }

}

A complete list and description of all available configuration parameters is available in [Ref08].
4.4 Trace Fetcher Scripts

	Executable name:
	fetch.pl

	Commandline parameters:
	none (CGI scripts)

	Example:
	none

Description

The Trace Fetcher Scripts are a collection of CGI scripts and templates to generate the web interface used to download ERF and PCAP traces (see 3.3 Trace Fetching Node). This is done using the utility rtable2erf, documented in [Ref08].
4.4.1 Dependencies

Access to a local BLR Daemon is required to download traces.
4.4.2 Configuration

The configuration file for the Trace Fetching Scripts is located in /var/www/metawin/fetch.config.

logfile: <logfile>

blr_exe: <path to the executable for blr2erf>

rtable_exe: <path to the executable for rtable2erf>

interfaces:

 <interface name>:

 output: <output file prefix>

 input_type: <blr|rtable>

 input:

 - <track or rtable 1>

 - <track or rtable 2>

 ...

 filters:

 - imsi

 - ip

 - cell

 - sigonly

 options: <additional options>

	Parameter Name
	Description

	logfile
	Location of the file to log requests to

	blr_exe
	Executable path for 'blr2erf' (legacy, set to ‘none’)

	rtable_exe
	Executable path for 'rtable2erf'

	<interface_name>
	Human-readable interface name

	output
	Output file prefix

	input_type
	Input type; either 'blr' or 'rtable' (set to ‘rtable’)

	input
	Input rtable names as defined in the ringbuffer

	filters
	Available filter options

	options
	Specify additional options to pass to the executable

4.5 RTABLE SQL Daemon

	Executable name:
	rtable-sql-daemon

	Commandline parameters:
	<id>
	ID to use for configuration retrieval via the Management Node; optional (either a configuration file or an ID must be provided)

	
	<configuration file>
	Local configuration file; optional (either a configuration file or an ID must be provided)

	Example:
	rtable-sql-daemon 111 local.config

Either an ID or a local configuration file must be provided for proper operation of the RTABLE SQL Daemon. If both parameters are provided, the ID takes precedence and the local configuration file is used as backup.
4.5.1 Description

The RTABLE SQL Daemon offers an SQL interface to data stored in the RTABLE. This is done by implementing the PostgreSQL interface.
4.5.2 Dependencies

The RTABLE SQL Daemon requires access to a local BLR Daemon to read data from the ringbuffer. Data access via the RTABLE SQL Daemon is read-only.
4.5.3 Configuration

Configuration structure:

main {

port

= [5432]

max_sessions
= [10]

max_conns

= [5]

login_script
= [(null)]
}

log {

logfile

= [(null)]

loglevel

= [0]

}

usage {

output {

type

= [txt]

file

= [(null)]

}

}

Parameter description:

	Parameter Name
	Description

	port
	Port number to listen on for connection requests; 5432 is the default port

	max_sessions
	Maximum number of simultanous read connections to the BLR

	max_conns
	Maximum number of simultanous connections to the RTABLE SQL Daemon

	login_script
	Script to be used for authentication purposes; The username and password provided by the client will be passed to this script via stdin, the return value determines whether the connection was successful or not

	log
	General log configuration of the daemon

	usage
	Used to specify a log destination (file, database, …) for access requests; normally the type ‘txt’ is used and file is used to specify the destination file

4.6 Ringbuffer Communication Daemon

	Executable name:
	rbcomd

	Commandline parameters:
	none

	Example:
	rbcomd

4.6.1 Description

The Ringbuffer Communication Daemon allows other nodes to remotely access a local ringbuffer. It publishes its local RTABLE tables to the Ringbuffer Browser Daemon (see 4.14 Ringbuffer Browser Daemon). A node that wants to access the ringbuffer via the Ringbuffer Communication Daemon first queries the Ringbuffer Browser Daemon for the actual location of the ringbuffer and then proceeds to contact the Ringbuffer Browser Daemon for data exchange. This is described in detail in [Ref08].
A documentation of the message exchange and the general functionality of the feature provided by the Ringbuffer Communication Daemon is provided in [IPCom07].
4.6.2 Dependencies

The Ringbuffer Communication Daemon requires a local ringbuffer and a running BLR Daemon instance for data access. A Ringbuffer Browser Daemon is required to enable access to the functionalities offered by the Ringbuffer Communication Daemon.
4.6.3 Configuration

none
4.7 Configuration Daemon

	Executable name:
	configd

	Commandline parameters:
	<configuration file>
	Configuration file to parse; mandatory

	Example:
	configd /etc/metawin/configd.conf

4.7.1 Description

The Configuration Daemon is used to distribute configurations throughout the DXTMON Monitoring System. It connects to a PostgreSQL database containing available configurations and passes these configurations to other components upon request.
At the moment, the following components can use this functionality:

· Motra (4.3 Motra)

· SNMP Proxy (4.9 SNMP Proxy)

· RTABLE SQL Daemon (4.5 RTABLE SQL Daemon)

· Delay Feeder Server (4.11 Delay Feeder Server)

· Libcom Relay (4.12 Libcom Relay)

Configurations can be viewed and edited using a web interface (see 4.8 Configuration Interface Scripts).

The Configuration Daemon distributes configurations by using the mechanisms offered by the Intra/Inter MOTRA Communication module (see [Com07]). The functional details of the daemon are documented in [ConfD07].
4.7.2 Dependencies

The Configuration Daemon requires a PostgreSQL database and access to a database as described in [Inst08] and [Ref08].
4.7.3 Configuration

Configuration structure:

user

= <username>

password
= <password>

dns

= <unixODBC DNS>

table

= <database table name>

logfile
= <path to log file>

loglevel
= <log level>

uid

= <user id>

gid

= <group id>

Parameter description:

	Parameter Name
	Parameter Description

	user
	The user name that is used to contact the database, 'none' by default

	password
	The password that is used to contact the database, '' by default

	dns
	The ODBC DNS that specifies the database to connect to, 'localhost' by default (this is the name that is provided in square brackets during ODBC Source Installation)

	table
	The table that contains the configuration information, 'configurations' by default

	logfile
	The file location that the Configuration Daemon should log event notifications to, stderr by default

	loglevel
	The minimum severity to be logged by the Configuration Daemon; ranges from 0 to 4, where 0 is the lowest and 4 the highest severity, 0 by default

	uid
	Numerical user ID the process should switch to after startup, no default

	gid
	Numerical group ID the process should switch to after startup, no default

4.8 Configuration Interface Scripts

	Executable name:
	MotraConfig.cgi

	Commandline parameters:
	none (CGI scripts)

	Example:
	none

4.8.1 Description

The configuration web interface is used to view, create, delete and modify configurations served by the Configuration Daemon (see 4.7 Configuration Daemon).
4.8.2 Dependencies

The configuration web interface requires access to the PostgreSQL database containing the configuration data. An Apache web server is required to serve the web interface to the end users.
4.8.3 Configuration

Configuration is done via the file /usr/lib/perl5/MotraConfig.cgi. The following parameters can be changed:
	Option Name
	Description

	$DBNAME
	Name of the database to connect to

	$DBHOST
	Hostname of the database server

	$TABLENAME
	Name of the table that contains configurations

	$TEMPLATEPATH
	Path to template files used for HTML generation

	$SNMPHOST
	Hostname of the SNMP Proxy (required for correct display of the status of a configuration)

	$SNMPCOMMUNITY
	Public community configured for the SNMP Proxy (required for correct display of the status of a configuration)

	$SNMPPREFIX
	Configured SNMP prefix in the SNMP Proxy (required for correct display of the status of a configuration)

4.9 SNMP Proxy

	Executable name:
	snmp_proxy

	Commandline parameters:
	--config <configuration file>
	Configuration file to parse; optional (either an ID or a local configuration file must be provided)

	
	--id <ID>
	ID used to retrieve a configuration from the Configuration Node; optional (either an ID or a local configuration file must be provided)

	
	--config-options
	List all available configuration options; optional (the SNMP Proxy terminates after printing all options)

	Example:
	snmp_proxy --id 300

4.9.1 Description

The SNMP Proxy converts messages from the Remote Interface (see [Rmt07]) to SNMP V1 messages and vice versa. This can be used to query the current status of a component.
The following components support this:

· Motra (4.3 Motra)
· SNMP Proxy

· Delay Feeder Server (4.11 Delay Feeder Server)
If both the local configuration file and an ID for retrieval via the Configuration Daemon are available, the ID takes precedence and the local file acts as backup.

The SNMP Proxy uses the logging system described in [Log06]. The implementation and functionality of the proxy itself is documented in [SNMP07].
4.9.2 Dependencies

If the configuration of the SNMP Proxy should be retrieved from a central configuration database, a Configuration Daemon must be available.
4.9.3 Configuration

Configuration structure:

log {

logfile

= [(null)]

loglevel

= [0]

trunc

= [false]

logdest

= [file]

exit_on_fatal
= [false]

}

remote {}

snmp {

port

= [161]

public_community
= [public]

private_community
= [private]

trap_community
= [public]

trap_dest_host
= [localhost]

trap_dest_port
= [162]

prefix

= [{1,3,6,1,4,1,20306,8}]

}

Parameter description:
	Option Name
	Description

	Log Options

	logfile
	Location of the file to which log messages should be written

	loglevel
	Minimum level that should be logged

1. 0 Debug

2. 1 Information

3. 2 Warning

4. 3 Error

5. 4 Fatal

	trunc
	Truncate log file on startup (true/false)

	logdest
	Destination device for log messages

· null (discards log messages)

· stdout

· stderr

· file (writes to file specified by parameter 'logfile')

	exit_on_fatal
	If set to true, the SNMP Proxy will terminate upon the encounter of a message with a log level of 'Fatal' (4)

	SNMP Options

	port
	UDP port to listen for SNMP requests; 161 is the default SNMP port

	prefix
	Common prefix to identify the MIB of the DXTMON Monitoring System

	public_community
	Community string that identifies the public SNMP community (read only access to variables)

	private_community
	Community string that identifies the private SNMP community (read/write access to variables)

	trap_community
	Community string that is used to forward SNMP Trap messages

	trap_dest_host
	Hostname or IP address to forward SNMP Trap messages to

	trap_dest_port
	Port that is used for forwarding SNMP Trap messages; 162 is the default port

4.10 Update Daemon
	Executable name:
	updated

	Commandline parameters:
	none

	Example:
	updated

4.10.1 Description
The Update Daemon is used to propagate changes in a data source (a database table) to all reachable nodes. Other components listen for the messages sent by the Update Daemon and can act upon them (e.g. by re-reading a data source that has changed).
The daemon receives information about changed data sources via a trigger that can be attached to a database table on various occasions (i.e. data change, data insertion, data deletion).
Upon receiving and analyzing such a notification, the Update Daemon sends an update message to all nodes via multicast and informs them that updates for this specific data source are available.
4.10.2 Dependencies
Since UNIX socket communication is used for data exchange, the Update Daemon can only supervise local database tables.
4.10.3 Configuration

None
4.11 Delay Feeder Server

	Executable name:
	delay_server

	Commandline parameters:
	<ID>
	ID used to retrieve a configuration from the Configuration Node; optional (either an ID or the local configuration file must be provided)

	
	<configuration file>
	Configuration file to parse; optional (either an ID or the local configuration file must be provided)

	Example:
	delay_server 15000 delay.config

4.11.1 Description

The Delay Feeder Server collects traffic samples from DXTPCI Feeder Nodes that are configured as Delay Client. The server is able to correlate these samples and extract the propagation delay of the packet.

Figure 2 shows an examplary setup where three DXTPCI Feeding Nodes (denoted as ‘Delay Feeder Clients’ in the graph) generate delay samples and send them to the Delay Feeder Server for further analysis and computation. The Delay Feeder Server in turn generates tickets that are forwarded to the DXTPCI analysis system.

[image: image3.png]Delay Feeder
Clients

Figure 3: Delay feeding

The exact format of the delay tickets is described in [Intf08].

If both an ID and a configuration file are provided on the commandline, the ID takes precedence and the configuration file is used as backup configuration.

The Delay Feeder Server is documented in detail in [Feed07].
4.11.2 Dependencies

The Delay Feeder Server requires at least two instances of the DXTPCI Feeder Nodes to be able to calculate delays. The exact number of instances required before calculating delay samples can be configured (see 4.11.3 Configuration).
4.11.3 Configuration

Configuration structure:

main {

log {

logfile
= [(null)]

logdest
= [file]

}

remote {}

server_port
= [12550]

required_links
= [2]

output_interval
= [60]

client_start
= [0]

odbc {

name

= [(null)]

user

= [(null)]

password
= [(null)]

type

= [(null)]

}

output {

type

= [txt]

file

= [(null)]

noheader
= [false]

ctrl_ip
= [(null)]

ctrl_port
= [(null)]

table
= [(null)]

odbc_type
= [hro]

}

}

Parameter description:

	Parameter Name
	Description

	log
	Section for configuring event logging

	remote
	Section for configuring remote interface of delay feeder server statistics

	server_port
	Port number on which to receive delay samples from clients

	required_links
	Number of connected link ids that is needed to start reporting to the DataXtender analysis system. One link id corresponds to one channel of a client's DAG card, thus one client may transmit delay samples for more than one link id.

	output_interval
	Interval between two consecutive tickets sent to the DataXtender analysis system

	client_start
	Start time that is transmitted to the delay feeder clients (specifying the start time for collecting samples). This parameter is used mainly for debugging purposes, when delay samples are printed into a file or a database. Within real operation, the start timestamp for the delay clients is received from the DataXtender analysis system

	Output

	type
	Defines how to output data; possible values are:

· txt
Write into a text file; normally only used for debugging purposes

· db
Write into a database; normally only used for debugging purposes

· dxt
Send the data to a DataXtender system

	file
	Specifies the filename to use; only evaluated if 'type' is set to 'txt'

	noheader
	Used to determine whether a file header should be written or not; only evaluated if 'type' is set to 'txt'

	ctrl_ip
	Specifies the IP address of the control connection for the DataXtender communication; only evaluated if 'type' is set to 'dxt'

	ctrl_port
	Specifies the port of the control connection for the DataXtender communication; only evaluated if 'type' is set to 'dxt'

	table
	Define the database table to write data to; only evaluated if 'type' is set to 'db'

	odbc_type
	ODBC source to use as data destination; only evaluated if 'type' is set to 'db'

4.12 Libcom Relay

	Executable name:
	libcom_relay

	Commandline parameters:
	<gateway IP>
	IP address of the Libcom Relay in the multicast domain of the Configuration Daemon; needed to retrieve a configuration from the central repository; mandatory

	
	<ID>
	ID used to retrieve a configuration; mandatory

	
	<configuration file>
	Local configuration file; optional (acts as backup if no configuration can be retrieved via the Configuration Daemon)

	Example:
	libcom_relay 192.168.0.1 101

4.12.1 Description

The Libcom Relay is used to connect multiple multicast domains. Messages from the local multicast domain are encapsulated into unicast messages that are sent to other Libcom Relays, which in turn unpack the messages and forward the multicast message within into their own multicast domain.
The configuration of the Libcom Relay defines so-called routes that act as Access Control Lists by specifying which messages should be forwarded and where to. The following message groups are defined:
	Group ID + Group Name
	Description

	1, OPERATIONS
	Internal communication messages

	2, ALIVE_NOTIFY
	Notifications sent by nodes to indicate that they are either starting or shutting down

	3, REMOTE
	Message exchanged as part of the remote interface communication

	4, RB_DAEMON_COM
	Ringbuffer Daemon communication

	5, FETCHER_COM
	Trace Fetching Node communication

	6, DXT_PDP_FEEDER
	DataXtender PDP Context Feeder messages

	7, DECIPHER
	Gb Deciphering message exchange

	8, IO_UPDATE
	Notifications about data source updates

	9, CONFIG
	Configuration information exchange (for discovering the nearest Configuration Daemon)

	10, DXT_DELAY_FEEDER
	DataXtender delay measurement message exchange

	11, LIBCOM_RELAY
	Multicast Linking Nodes message exchange (only between Multicast Linking Nodes)

	13, TRACK_TCAP
	Cipher key exchange communication

The Libcom Relay uses the logging facilities described in [Log06]. All messages (multicast and unicast) are sent and received using the Intra/Inter MOTRA Communication documented in [Com07].
4.12.2 Dependencies

A Configuration Daemon is required for configuration retrieval. The Libcom Relay within the multicast domain has to be started first (as ‘gateway IP’ an arbitrary, invalid IP address can be chosen). All other Libcom Relays contact this ‘central’ relay and use it to obtain configurations.
4.12.3 Configuration
Configuration structure (note that an arbitrary number of routes can be configured):

log {

logfile

= [(null)]

loglevel

= [0]

trunc

= [false]

logdest

= [file]

exit_on_fatal
= [false]

}

route {

group_id

= [0]

src_net

= [(null)]

src_netmask

= [(null)]

relay_ip

= [(null)]

}

Parameter description:

	Parameter Name
	Description

	logfile
	Destination file for logging

	loglevel
	Log level (between 0 and 4, where 0 is the most verbose level)

	trunc
	If set to ‘true’, the logfile will be truncated (emptied) upon each restart

	logdest
	Destination for logging (e.g. ‘file’ or ‘stderr’)

	exit_on_fatal
	If set to ‘true’, the Libcom Relay will stop after encountering a fatal error

	group_id
	The group ID of the message to forward (see table above)

	src_net
	The source network address for which messages should be forwarded

	src_netmask
	The source network mask for which messages should be forwarded

	relay_ip
	The IP address to forward messages matching the tuple (group_id, src_net, src_netmask) to

4.13 Kc Storage Daemon
	Executable name:
	kc_storage

	Commandline parameters:
	<storage file>
	Local file to use as cipher key storage; mandatory

	
	<page timeout>
	Timeout (in seconds) before a memory page is marked as invalid; optional (default: 600)

	Example:
	kc_storage ./storage.bin

4.13.1 Description

The Kc Storage Daemon receives and stores cipher key information from Recording Nodes. Upon request, it also provides this information to Recording Nodes.

The storage file is created by the tool ‘make_storage’. The Kc Storage Daemon can be manually queried using ‘kc_query’. The cipher key exchange can be displayed by using ‘kc_listen’. All of these tools are explained in detail in [KcTools07], [Inst08] and [Ref08].
Details about the implementation and functionality of the storage are available in [Sto07]. The implementation of the deciphering process is documented in [Deciph07].
4.13.2 Dependencies

Without Recording Nodes that send cipher keys and cipher key requests, the Kc Storage Node has no purpose.
4.13.3 Configuration

None
4.14 Ringbuffer Browser Daemon

	Executable name:
	browserd

	Commandline parameters:
	None

	Example:
	browserd

4.14.1 Description

The Ringbuffer Browser Daemon collects RTABLE names from Ringbuffer Communication Daemons (see 4.6 Ringbuffer Communication Daemon) and provides them for nodes that want to access ringbuffers remotely. This process is described in [IPCom07].

4.14.2 Dependencies

None
4.14.3 Configuration

None
References

[Ref08]
Kapsch CarrierCom AG, DXTPCI Reference Manual, Issue 3.1.2, May 2008

[Inst08]
Kapsch CarrierCom AG, DXTPCI Installation Manual, Issue 3.1.2, May 2008

[Intf08]

Kapsch CarrierCom AG, Interface Specification – MetawinDXT, Issue 3.5, March 2008
[Pkg07]
Werner Jäger, Debian Packages Build Process – FN & DD, November 2007
[Rmt07]
Tobias Witek, Remote Interface – FN & DD, August 2007

[Shep07]
Eduard Hasenleithner, Master Daemon – FN & DD, August 2007
[Blk07]

Eduard Hasenleithner, Block Layer – FN & DD, August 2007

[Log06]
Tobias Witek, Log System – FN & DD, December 2006

[Com07]
Peter Romirer, Inter/Intra MOTRA Communication – FN & DD, April 2007
[Feed07]
Peter Romirer, DataXtender Feeding – FN & DD, April 2007

[IPCom07]
Peter Romirer, Table Layer IP Communication – FN & DD, April 2007

[ConfD07]
Tobias Witek, Configuration Daemon – FN & DD, December 2006

[SNMP07]
Tobias Witek, SNMP Proxy – FN & DD, August 2007

[Sto07]

Rene Pilz, Storage – FN & DD, August 2007

[KcTools07]
Rene Pilz, Kc Tools – FN & DD, August 2007

[Deciph07]
Eduard Hasenleithner, Gb Deciphering – FN & DD, August 2007

[TblOv07]
Rene Pilz, Table Layer Overview – FN & DD, August 2007
[TblMgt07]
Rene Pilz, Table Layer Management – FN & DD, August 2007
[TblPkt07]
Rene Pilz, Table Layer Packet – FN & DD, August 2007
[TblBlk07]
Rene Pilz, Table Layer Block – FN & DD, August 2007
[TblFilt07]
Rene Pilz, Table Layer Filtering – FN & DD, August 2007

