[image: image1.jpg]kapsch -~

Kapsch CarrierCom AG

Carrier Solutions

Interface Specification - MetawinDXT
Page 71

History

VERSION

DATE
REMARKS
ESTABLISHED

BY
INSPECTED

BY
RELEASED

BY

Issue 1.0
2006-04-07
First version
Rene Pilz

Issue 1.1
2006-04-28
IMEI-TAC Field added in Space Block 1

IMEI-FAC renamed to Reserved in Space Block 1
Rene Pilz

Issue 1.2
2006-05-01
Add Ipv4 Addr to Response 1

Use a 16 Bit version field instead of a 8 bit one for request 1 and response 1
Rene Pilz

Issue 1.3
2006-05-02
Major Additions
Rene Pilz

Issue 1.4
2008-03-14
Amendments in chapter 3.4.1.1 and 3.4.1.2
Several format changes
Franz Bauer

Issue 1.5
2006-05-23
Minor Corrections in 2.3.1.3 and 3.2
Andreas Ortner

Issue 1.6
2006-06-01
Add RAT in chapter 3.3.4.1
Add chapter feeder/protocol relationship
Change ticket name. The content is unchanged
Add Value block 2
Rene Pilz

Issue 1.7
2006-06-02
Rephrase Value block 2
Put the keywords in chapter 2.5 into sentences
Rene Pilz

Issue 1.8
2006-06-19
Fix connection close issue
Add data type
Rene Pilz

Issue 1.9
2006-07-18
Changed feeder default values to '0xff'
Added retry interval for case 'feeder not supported' in chapter 2.4.1.3
Correction of some typos
Peter Romirer-M.

Issue 2.0
2006-09-18
Finish chapter 2.4.2 State Diagram (no logical changes are made)

Add Compression mode 1 for tickets
Rene Pilz

Issue 2.1
2006-10-31
Add event based tickets
Rene Pilz

Issue 2.2
2006-12-05
- Changed fields in section 4.5
- Added Ipv4 address in section 4.5
- Introduced ticket version for event-
 based feeders in section 4.1
- Added event groups/types in 4.4
- Minor other changes
Peter Romirer-M.

Issue 2.3
2006-12-05
Added some fields TEID, PTMSI, TMSI and TLLI

Moved event group/types assigenment into a own chapter within event based feeders

Update 4.1

Add a chapter concerning robustness of event based transmission
Rene Pilz

Issue 2.4
2007-01-18
Correct field width in chapter 4.5.7 Imsi
Rene Pilz

Issue 2.5
2007-02-20
Update ticket type 3
Fix wrong length of SAC in 4.5.17
Add some general sentences to the event types
Rene Pilz

Issue 2.6
2007-03-28
Updated Space Block 1: All IMEI-Fields are in the order of 'IMEI-TAC'-'IMEI-SN'
Peter Romirer-M.

Issue 2.7
2007-04-31
Corrected specification of PDU and SDU in Value Block 1
Peter Romirer-M.

Issue 2.8
2007-05-24
New Response Block 2
New chapters 2.4.1.8-11
Rene Pilz

Issue 2.9
2007-05-30
In section 3.4.4.2: added specification of padding within APN-field of Space Block 2 for APNs having a length <= 15
Peter Romirer-M.

Issue 3.0
2007-07-18
Added RAT Type to event-based measurement (chapter 4.5.29).
Peter Romirer-M.

Issue 3.1
2008-03-02
Ticket type 4 added
Rene Pilz

Issue 3.2
2008-03-12
Space and Protocol Block 4 updated
Rene Pilz

Issue 3.3
2008-03-13
Protocol Block 4 updated
Space Block 4 updated
Value Block 3 updated
Ticket Type 4 updated
Rene Pilz

Issue 3.4
2008-03-14
Protocol Block 4: The length fields for transfer encoding and content type are now 2 bytes instead of only one byte
Rene Pilz

Issue 3.5
2008-03-14
Added specification of byte order of extracted IP addresses. IP addresses will be sent in big endian (network byte order) format (in Protocol Blocks 2,3,4 and event-based Ticket)
Peter Romirer-M.

Table of contents

 Metawin Consolidation
1

 Interface Specification - MetawinDXT
1

1. Introduction
9

2. General mechanisms
10

2.1. Introduction
10

2.2. Feeder/Protocol relationship
10

2.3. Connections
10

2.4. Control Connection
10

2.4.1. Request/Response processing
11

2.4.1.1. DataXtender and Metawin Feeder: case successful
11

2.4.1.2. DataXtender Feeder: closing connection
12

2.4.1.3. DataXtender and Metawin Feeder: feeder not supported
12

2.4.1.4. DataXtender Feeder: request time out
13

2.4.1.5. DataXtender and Metawin Feeder: mode not supported
14

2.4.1.6. Metawin Feeder: closing connection
16

2.4.1.7. Metawin Feeder: response time out
16

2.4.1.8. DataXtender and Metawin Feeder: Service temporarily not available
17

2.4.1.9. DataXtender and Metawin Feeder: Data base is not reachable
17

2.4.1.10. DataXtender and Metawin Feeder: Data base feeders are offline
18

2.4.1.11. DataXtender and Metawin Feeder: protocol not supported
19

2.4.2. State Diagrams
19

2.5. Data Connection
20

2.5.1. DataXtender Feeder
21

2.5.2. Metawin Feeder
21

3. Time interval based measurement
22

3.1. Control Connection
22

3.2. Compression Methods
22

3.2.1. Compression Method 1
22

3.2.1.1. Header
22

3.2.1.2. Algorithm
23

3.3. Measurement Tickets
23

3.3.1. Ticket Type 1
23

3.3.2. Ticket Type 2
24

3.3.3. Ticket Type 3
25

3.3.4. Ticket Type 4
26

3.3.5. Reserved
27

3.4. Basic Block Components
28

3.4.1. Generic Blocks
28

3.4.1.1. Request Block 1
28

3.4.1.2. Response Block 1
29

3.4.1.3. Response Block 2
30

3.4.2. Time Blocks
31

3.4.2.1. Time Block 1
31

3.4.3. Protocol Blocks
31

3.4.3.1. Protocol Block 1
31

3.4.3.2. Protocol Block 2
32

3.4.3.3. Protocol Block 3
33

3.4.3.4. Protocol Block 4
34

3.4.4. Space Blocks
37

3.4.4.1. Space Block 1
37

3.4.4.2. Space Block 2
40

3.4.4.3. Space Block 3
40

3.4.4.4. Space Block 4
42

3.4.5. Value Blocks
44

3.4.5.1. Value Block 1
45

3.4.5.2. Value Block 2
46

3.4.5.3. Value Block 3
47

4. Event based measurement
50

4.1. Control Connection
50

4.2. General Assumptions for Event Tickets
50

4.3. Robustness of Event Tickets
50

4.4. Basic Event Ticket Structure 1
50

4.4.1. Optional Field Type 1
51

4.4.2. Optional Field Type 2
52

4.5. Fields
53

4.5.1. Counter 16 Bit
55

4.5.2. Counter 32 Bit
55

4.5.3. Counter 64 Bit
55

4.5.4. Counter 16 Bit Unsigned
56

4.5.5. Counter 32 Bit Unsigned
56

4.5.6. Counter 64 Bit Unsigned
57

4.5.7. IMSI
57

4.5.8. IMEI
58

4.5.9. NSAPI
59

4.5.10. Cause
59

4.5.11. Timestamp
60

4.5.12. Duration
60

4.5.13. Cell-PS
61

4.5.14. Cell-CS
61

4.5.15. Location Area
62

4.5.16. Routing Area
63

4.5.17. Service Area
63

4.5.18. PLMN
64

4.5.19. APN
65

4.5.20. Local Device ID
65

4.5.21. Remote Device ID
66

4.5.22. Physical Link ID
66

4.5.23. Tap Group ID
67

4.5.24. IPv4 Address
67

4.5.25. TLLI
68

4.5.26. TEID
68

4.5.27. PTMSI
69

4.5.28. TMSI
69

4.5.29. RAT Type
70

4.6. Allocated Event Group/Type IDs
70

4.6.1. Event Group 255: PDP Context Information
71

1. Introduction

For data analysis and data presentation the analysed data needs to be transferred to a data base with an according reporting system. Therefore a protocol with certain requirements is necessary:

· efficient usage of the transmission resource

· reliable data transmission

· recovery mechanism in case of a malfunction

· data recovery when data transmission is stopped for a while

Base on the requirements several different methods and formats of transmission needs to be available which are described in this document.

2. General mechanisms

2.1. Introduction

Whenever a Metawin feeder establish a communication to a DataXtender feeder an initial procedure is necessary to determine the way the data is transmitted and which contents shall be expected. Beside that the time where the feed starts needs to be negotiated. All events which can happen within this handshake including the according action are described within this chapter.

2.2. Feeder/Protocol relationship

Every feeder requires a unique ID within the protocol ID space which inherits that a protocol ID refers to a specific feeder. A list of the existing protocol can be found in the table REF_PROTOCOL as defined in the reference specification.

As there are also feeders which does not correspond to a specific protocol anyway a protocol ID must be assigned which shall not collide to any protocol ID. Feeders which are associated to a specific protocol must use the predefined protocol number.

2.3. Connections

Every connection between the Metawin system (measurement system) and the DataXtender (analysis system) is handled via the TCP protocol. In any case where a data corruption is suspected the according connection has to be closed and the corresponding recovery procedure executed. The transferred data uses little endian byte order i.e. x86.

2.4. Control Connection

The concept behind a separate control connection is to keep the data connection as dump as possible. This should reduce the processing on the large data volume as low as possible. The control connection shall be used used in any case when Metawin feeder and DataXtender feeder communicates to each other i.e. event based data or time interval based data.

The control connection negotiate the content and method of data transmission:

· protocol: type of data

· physical link ID: position of the captured data

· version: combined with the protocol it defines the data format

· mode: method of transmission i.e. compression is used.

Every time when control connection procedure succeeds not necessary a data transmission has to follow.

2.4.1. Request/Response processing

The control connection handles only one request within one connection. If another request is required a further control connection must be established. In each connection several cases can appear:

· case successful (MW/DXT)

· feeder not supported (MW/DXT)

· request time out (DXT)

· response time out (MW)

· mode not supported (MW/DXT)

· closing connection (DXT/MW)

Scenarios which are not described within the given cases should be handled like a closing connection.

For all control communication the Request Block 1 by the Metawin feeder and Response Block 1 by the DataXtender feeder must be used. Other blocks are not allowed. When the blocks might be changed in the future a new control port have to be used.

2.4.1.1. DataXtender and Metawin Feeder: case successful

A successful control communication between DataXtender feeder and Metawin feeder provides all required information needed for the data stream.

 Metawin Feeder DataXtender Feeder DataXtender Database

|-------Connect------->| |

|-------Request------->| |

| |--Chk Metawin feeder support->|

| |<-Feeder supported @ Port&IP--|

| |--Request Time of PhyID&Prot->|

| |<---------------Time----------|

|<------Response-------| |

|---Close Connection-->| |

Figure 1 – DataXtender Feeder Flow

The procedures look like follows (Fig. 1):

· Metawin feeder connect to DataXtender Feeder control connection port

· Metawin feeder send a request

· DataXtender feeder checks if feeder is supported

· DataXtender feeder requests last transmitted time stamp of the DataXtender Database which corresponds to the according physical link ID and protocol. When no data is available the time '0' shall be used.

· DataXtender sends response

· After the reception of the response the Metawin feeder closes the connection.

The DataXtender Feeder is not allowed to close the connection as long as no anomalies within processing the request is reported.

2.4.1.2. DataXtender Feeder: closing connection

The Metawin feeder closes the connection when

· it has received a response,

· during reception of a request or

· preparing a response

all information shall be deleted at the DataXtender feeder and wait for a new request.

The DataXtender is never allowed to close the connection as long as it does not suspect corrupt data.

2.4.1.3. DataXtender and Metawin Feeder: feeder not supported

During upgrades within the system feeders might not have the same level of evolution. So there is a procedure required which controls this setup.

 Metawin Feeder DataXtender Feeder DataXtender Database

|-------Connect------->| |

|-------Request------->| |

| |--Chk Metawin feeder support->|

| |<-Feeder supported @ Port&IP--|

|<-Response with Ver 0-| |

|---Close Connection-->| |

Figure 2 – DataXtender Feeder Flow – Feeder not supported

The procedures look like follows (Fig. 2):

· Metawin feeder connect to DataXtender Feeder control connection port

· Metawin feeder send a request

· DataXtender feeder checks if feeder is supported

· DataXtender feeder sends a response with the version 0 and the reason 0

· After the reception of the response the Metawin feeder closes the connection.

The version '0' is reserved to signal an error response. In this case reason field must be set to 0 (equals feeder not supported). A request retry can be done after 60 minutes by the Metawin Feeder.

2.4.1.4. DataXtender Feeder: request time out

When the Metawin feeder cannot send a request to the DataXtender feeder within 30 seconds a dead connection can be assumed.

 Metawin Feeder DataXtender Feeder DataXtender Database

|-------Connect------->| |

| | |

| 30 Seconds later |

| | |

|<--Close Connection---| |

Figure 3 – DataXtender Feeder Flow – Request time out

The procedures look like follows (Fig. 3):

· Metawin feeder connect to DataXtender Feeder control connection port

· No request is send from the Metawin feeder within 30 seconds

· DataXtender feeder close the connection

After the connection is closed the DataXtender feeder shall delete all information and wait for new requests. The Metawin feeder can try the procedure after 5 minutes again.

2.4.1.5. DataXtender and Metawin Feeder: mode not supported

Future feeder might support several schema of compression. If a Metawin feeder requests a mode which is not supported by the DataXtender feeder it can propose another one. The mode '0' (uncompressed) must be always accepted.

 Metawin Feeder DataXtender Feeder DataXtender Database

|-------Connect------->| |

|----Request mode X--->| |

| |--Chk Metawin feeder support->|

| |<-Feeder supported @ Port&IP--|

| |--Request Time of PhyID&Prot->|

| |<---------------Time----------|

|<---Response mode Y---| |

|---Close Connection-->| |

Figure 4 – DataXtender Feeder Flow – Request Mode missmatch

The procedures look like follows (Fig. 4):

· Metawin feeder connect to DataXtender Feeder control connection port

· Metawin feeder send a request with mode X

· DataXtender feeder checks if feeder is supported with the according mode and propose another one

· DataXtender feeder requests last transmitted time stamp of the DataXtender Database which corresponds to the according physical link ID and protocol.

· DataXtender sends response with another mode Y i.e. 0 = uncompressed

· After the reception of the response the Metawin feeder closes the connection.

· The DataXtender Feeder is not allowed to close the connection as long as no anomalies within processing the request is reported.

In some circumstances the mode which is proposed by the DataXtender feeder is not valid by the Metawin feeder. So the Metawin feeder shall try another mode which is not proposed within the handshakes.

 Metawin Feeder DataXtender Feeder DataXtender Database

|-------Connect------->| |

|----Request mode X--->| |

| |--Chk Metawin feeder support->|

| |<-Feeder supported @ Port&IP--|

| |--Request Time of PhyID&Prot->|

| |<---------------Time----------|

|<---Response mode Y---| |

|<--Close Connection---| |

|-------Connect------->| |

|----Request mode A--->| |

| |--Chk Metawin feeder support->|

| |<-Feeder supported @ Port&IP--|

| |--Request Time of PhyID&Prot->|

| |<---------------Time----------|

|<---Response mode A---| |

|---Close Connection-->| |

Figure 5 – DataXtender Feeder Flow – Request and Response Mode missmatch

The procedures look like follows (Fig. 5):

· Metawin feeder connect to DataXtender Feeder control connection port

· Metawin feeder send a request with mode X

· DataXtender feeder checks if feeder is supported with mode X and propose mode Y

· DataXtender feeder requests last transmitted time stamp of the DataXtender Database which corresponds to the according physical link ID and protocol.

· DataXtender sends response with another mode Y

· After the reception of the response the Metawin feeder closes the connection.

· The Metawin feeder does not support mode Y and try it with another mode again

· Metawin feeder connect to DataXtender Feeder control connection port

· Metawin feeder send a request with mode A

· DataXtender feeder checks if feeder is supported

· DataXtender feeder requests last transmitted time stamp of the DataXtender Database which corresponds to the according physical link ID and protocol.

· DataXtender sends response with mode A i.e. 0 = uncompressed

· After the reception of the response the Metawin feeder closes the connection.

· The DataXtender Feeder is not allowed to close the connection as long as no anomalies within processing the request is reported.

When no mode is commonly known a retry can be done after 60 minutes. This should anyway not happen due to the fact that mode `0` must be supported.

2.4.1.6. Metawin Feeder: closing connection

During establishment a control connection should never be dropped. Closing a control connection is only allowed by the Metawin Feeder. If the connection is closed by the DataXtender Feeder the same request shall not be requested again within the next 5 minutes.

2.4.1.7. Metawin Feeder: response time out

When the DataXtender feeder cannot send a response to the Metawin feeder within 30 seconds after the request is sent a dead connection can be assumed.

 Metawin Feeder DataXtender Feeder

|-------Connect------->|

|-------Request------->|

| |

| 30 Seconds later |

| |

|---Close Connection-->|

Figure 6 – DataXtender Feeder Flow – Response time out

The procedures look like follows (Fig. 6):

· Metawin feeder connects to DataXtender Feeder control connection port

· Metawin feeder sends a request

· No response is sent from the Metawin feeder within 30 seconds after the request was received

· After this 30 seconds the Metawin feeder closes the connection.

After 5 minutes the Metawin feeder can try the procedure again.

2.4.1.8. DataXtender and Metawin Feeder: Service temporarily not available

Whenever the database of the DataXtender Feeder are not able to properly respond to a request an error shall be send with the reason “Service temporarily not available”. Then the Metawin Feeder will do a retry in a rather short time again.

 Metawin Feeder DataXtender Feeder DataXtender Database

|-------Connect------->| |

|-------Request------->| |

| |--Chk Metawin feeder support->|

| |<-Feeder supported @ Port&IP--|

|<-Response with Ver 0-| |

|---Close Connection-->| |

Figure 7 – DataXtender Feeder Flow – Service temporarily not available

The procedures look like follows (Fig. 7):

· Metawin feeder connect to DataXtender Feeder control connection port

· Metawin feeder send a request

· DataXtender feeder checks if feeder is supported

· DataXtender feeder sends a response with the version 0 and the reason 0x1000

· After the reception of the response the Metawin feeder closes the connection.

The version '0' is reserved to signal an error response. In this case reason field must be set to 0x1000 (equals Service temporarily not available). A request retry can be done after 5 minutes by the Metawin Feeder.

2.4.1.9. DataXtender and Metawin Feeder: Data base is not reachable

Whenever the data base if offline for e.g. maintanance this error shall be sent.

 Metawin Feeder DataXtender Feeder DataXtender Database

|-------Connect------->| |

|-------Request------->| |

| |--Chk Metawin feeder support->|

| |<-Feeder supported @ Port&IP--|

|<-Response with Ver 0-| |

|---Close Connection-->| |

Figure 8 – DataXtender Feeder Flow – Data base is not reachable

The procedures look like follows (Fig. 8):

· Metawin feeder connect to DataXtender Feeder control connection port

· Metawin feeder send a request

· DataXtender feeder checks if feeder is supported

· DataXtender feeder sends a response with the version 0 and the reason 0x2000

· After the reception of the response the Metawin feeder closes the connection.

The version '0' is reserved to signal an error response. In this case reason field must be set to 0x2000 (equals Data base is not available). A request retry can be done after 180 minutes by the Metawin Feeder.

2.4.1.10. DataXtender and Metawin Feeder: Data base feeders are offline

When the DataXtender is shutdown a further request is not necessary. Still a retry shall be done.

 Metawin Feeder DataXtender Feeder DataXtender Database

|-------Connect------->| |

|-------Request------->| |

| |--Chk Metawin feeder support->|

| |<-Feeder supported @ Port&IP--|

|<-Response with Ver 0-| |

|---Close Connection-->| |

Figure 9 – DataXtender Feeder Flow – Data base feeders are offline

The procedures look like follows (Fig. 9):

· Metawin feeder connect to DataXtender Feeder control connection port

· Metawin feeder send a request

· DataXtender feeder checks if feeder is supported

· DataXtender feeder sends a response with the version 0 and the reason 0x3000

· After the reception of the response the Metawin feeder closes the connection.

The version '0' is reserved to signal an error response. In this case reason field must be set to 0x3000 (equals Data base feeders are offline). A request retry can be done after 360 minutes by the Metawin Feeder.

2.4.1.11. DataXtender and Metawin Feeder: protocol not supported

During upgrades within the system feeders might not have the same level of evolution. So there is a procedure required which controls this setup.

 Metawin Feeder DataXtender Feeder DataXtender Database

|-------Connect------->| |

|-------Request------->| |

| |--Chk Metawin feeder support->|

| |<-Feeder supported @ Port&IP--|

|<-Response with Ver 0-| |

|---Close Connection-->| |

Figure 10 – DataXtender Feeder Flow – Protocol not supported

The procedures look like follows (Fig. 10):

· Metawin feeder connect to DataXtender Feeder control connection port

· Metawin feeder send a request

· DataXtender feeder checks if feeder is supported

· DataXtender feeder sends a response with the version 0 and the reason 0x0001

· After the reception of the response the Metawin feeder closes the connection.

The version '0' is reserved to signal an error response. In this case reason field must be set to 0x0001 (equals protocol not supported). A request retry can be done after 60 minutes by the Metawin Feeder.

2.4.2. State Diagrams

The state diagrams visualize the described handling of the control connection within chapter 2.4.1. If a state diagram contradicts to any statement within chapter 2.4.1 then the statement within chapter 2.4.1 is valid.

+----------------+ Client +----------------+

| Unconnected |---------------->|Wait for Request|

+----------------+ Connected +----------------+

^ ^ | |

Close | |Request Timeout (30sec) | |

Connection | -------------------------- |

| |

+----------------+ Start Data Feeder Server |

| Closing |<-------------------------------

+----------------+ Send Response

Figure 11 – DataXtender Feeder Server

+-----------------+ Connect to +-----------------+

| Unconnected |---------------->| Connection |

| | Control Server | Established |

+-----------------+ +-----------------+

^ ^ ^ | |

Data | | | Connection failed | |

Transfer | | -------------------------- |

| | Response Timeout (30sec) Send |

| ------------------------------ Request |

| | |

+-----------------+ Close Connection +-----------------+

| Closing |<-----------------|Wait for Response|

+-----------------+ +-----------------+

Figure 12 – Metawin Feeder Client

2.5. Data Connection

The data connection transfer any type of specified data e.g. tickets, events. The binary format is specified in the according chapters (chapter 3 – time interval based measurement, chapter 4 – event based measurement). Common/General mechanisms for the data connection are not available with the exception of handling the TCP connection in a abnormal way. This is specified within chapter 2.5.1 and 2.5.2.

2.5.1. DataXtender Feeder

The data connection shall be closed when a non-typical behavior is detected. Non-typical behavior is:

a) a data corruption has occurred or

b) no data is received within 60 minutes

2.5.2. Metawin Feeder

The Metawin feeder can experience the following failure scenarios:

· Connection to the data port fails

The Metawin feeder must close all connections to the DataXtender Feeder and wait for 10 minutes before the handshake procedure (control connection) shall start again.

· Connection got closed by the DataXtender Feeder

The Metawin feeder must close all connections to the DataXtender Feeder. Afterwards the handshake procedure (control connection) shall start again.

3. Time interval based measurement

3.1. Control Connection

See chapter 2.3

3.2. Compression Methods

3.2.1. Compression Method 1

The compression method 1 bases on the ideas from IP Header Compression RFC2509. It transmits only these data which has really changed between two consecutive tickets. At the beginning is a constant header where each bit is related to one field of the following blocks.

0 8 16 24 32

|--------|--------|--------|--------|

| |

~ Header ~

| |

+--------+--------+--------+--------+

| |

~ Ticket ~

| |

+--------+--------+--------+--------+

Figure 13 – Compression Mode 1 Frame

3.2.1.1. Header

The header is available for every ticket. The length is related to the amount of fields for the according ticket. The header is byte aligned. If there are unused bits these ones should be treated as padding and set to '0'.

0 1 2 3 4 5 6 7 8

|----|----|----|----|----|----|----|----|

|FdAv|FdAv|FdAv|FdAv|FdAv|FdAv|FdAv|FdAv|

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |

|----|----|----|----|----|----|----|----|

|FdAv|FdAv|FdAv|'0' |'0' |'0' |'0' |'0' |

| 9 | 10 | 11 | | | | | |

|----|----|----|----|----|----|----|----|

Figure 14 – Compression Mode 1 Header for e.g 11 fields

FdAv (Field Available) X:

If a Field Available bit is set to one the according field is transmitted. Otherwise the data of the previously transmission shall be used.

3.2.1.2. Algorithm

The algorithm bases on the assumption that the majority of the fields changes rarely while only very few changes always from one ticket to another one. The FdAv bits signals if the previous transmitted value should be used.

At startup the first transmitted ticket must set all FdAv's to 1 as there is no previous value available. Afterwards every FdAv value must be accepted by the receiver. The transmitter can transmit full tickets but should avoid this.

3.3. Measurement Tickets

3.3.1. Ticket Type 1

The Ticket Type 1 is a basic ticket which provides volumes and packets of certain protocols. For this type of ticket the version '1' must be used.

0 8 16 24 32

|--------|--------|--------|--------|

| |

~ Time Block 1 ~

| |

+--------+--------+--------+--------+

| |

~ Space Block 1 ~

| |

+--------+--------+--------+--------+

| |

~ Protocol Block 1 ~

| |

+--------+--------+--------+--------+

| |

~ Value Block 1 ~

| |

+--------+--------+--------+--------+

Figure 15 – Ticket Type 1

Time Block 1:

The time block 1 refers to the definition of time block 1 within this document.

Space Block 1:

The space block 1 refers to the definition of space block 1 within this document.

Protocol Block 1:

The protocol block 1 refers to the definition of protocol block 1 within this document.

Value Block 1:

The value block 1 refers to the definition of value block 1 within this document.

3.3.2. Ticket Type 2

The Ticket Type 2 is a basic ticket which provides volumes and packets of certain protocols. For this type of ticket the version '2' must be used.

0 8 16 24 32

|--------|--------|--------|--------|

| |

~ Time Block 1 ~

| |

+--------+--------+--------+--------+

| |

~ Space Block 2 ~

| |

+--------+--------+--------+--------+

| |

~ Protocol Block 2 ~

| |

+--------+--------+--------+--------+

| |

~ Value Block 1 ~

| |

+--------+--------+--------+--------+

Figure 16 – Ticket Type 2

Time Block 1:

The time block 1 refers to the definition of time block 1 within this document.

Space Block 2:

The space block 2 refers to the definition of space block 2 within this document.

Protocol Block 2:

The protocol block 2 refers to the definition of protocol block 2 within this document.

Value Block 1:

The value block 1 refers to the definition of value block 1 within this document.

3.3.3. Ticket Type 3

The ticket type 3 is designed for delay measurements, round trip time or response times. It shall transmit a histogram of an interval towards the DataXtender database. The histogram consists of an a arbitrary amount of bin which must only be known by the metawin feeder, where each bin covers a determined range of the delay interval (delaylower_bound <= delay < delayupper_bound). If a bin in a measurement period has counted a non-zero amount of samples it must be transmitted via this ticket. For this type of ticket the version '3' must be used.

0 8 16 24 32

|--------|--------|--------|--------|

| |

~ Time Block 1 ~

| |

+--------+--------+--------+--------+

| |

~ Space Block 3 ~

| |

+--------+--------+--------+--------+

| |

~ Protocol Block 3 ~

| |

+--------+--------+--------+--------+

| |

~ Value Block 2 ~

| |

+--------+--------+--------+--------+

Figure 17 – Ticket Type 3

Time Block 1:

The time block 1 refers to the definition of time block 1 within this document.

Space Block 3:

The space block 3 refers to the definition of space block 3 within this document.

Protocol Block 3:

The protocol block 3 refers to the definition of protocol block 3 within this document.

Value Block 2:

The value block 2 refers to the definition of value block 2 within this document.

3.3.4. Ticket Type 4

The ticket type 4 is designed for http billing measurements. It shall transmit the bytes which are relevant for billing towards the DataXtender database. For this type of ticket the version '4' must be used.

Compared to all previous ticket type his one has a different ordering of the blocks. This is cause by the idea to have all variable components of the ticket at the end. Additionally the 'Protocol Block 4' has at the end a ticket framing validation field which is introduced due to the higher complexity.

0 8 16 24 32

|--------|--------|--------|--------|

| Start Framing | |

| Word (0x2345) | |

+--------+--------+ + +

| |

~ Time Block 1 ~

| |

+--------+--------+--------+--------+

| |

~ Value Block 3 ~

| |

+--------+--------+--------+--------+

| |

~ Space Block 4 ~

| |

+--------+--------+--------+--------+

| |

~ Protocol Block 4 ~

| |

+--------+--------+--------+--------+

Figure 18 – Ticket Type 4

Start Framing Word:

The start framing word needs to be checked to verify that neither the sender nor the receiver lost synchronization. The previous ticket of the connection shall only be released for further processing when this verification has passed.

Time Block 1:

The time block 1 refers to the definition of time block 1 within this document.

Space Block 4:

The space block 4 refers to the definition of space block 4 within this document.

Protocol Block 4:

The protocol block 4 refers to the definition of protocol block 4 within this document.

Value Block 3:

The value block 3 refers to the definition of value block 3 within this document.

3.3.5. Reserved

Reserved.

3.4. Basic Block Components

The basic blocks are used by the tickets as component which are put together to form a message. The blocks can be seen as a leaf of a tree within a ticket. Basic Blocks can only consist of constant data fields or other basic blocks.

3.4.1. Generic Blocks

3.4.1.1. Request Block 1

The Request Block 1 is used for the control connection. It provides the data which is required to deliver data which is needed by the data connection.

0 8 16 24 32

|--------|--------|--------|--------|

| Version | Mode |Protocol|

| | | |

+--------+--------+--------+--------+

|Physical Link ID | Reserved |

| | |

+--------+--------+--------+--------+

| Reserved |

| |

+--------+--------+--------+--------+

| Reserved |

| |

+--------+--------+--------+--------+

Figure 19 – Request Block 1

Version (uint16_t):

Requested version of communication of the data communication i.e. Gb-Ticket.

Amendment statement FB: Different software versions of a specific Metawin protocol feeder will also be remarked by means of the field “Version”

Protocol (uint8_t):

Protocol defines the type of delivered information.

Mode (uint8_t):

Request the mode of data communication. Via this field methods of compression are communicated. For uncompressed data mode a value zero is used.

Physical Link ID (uint16_t):

The physical link ID is a unique identifier for the point where data is captured.

3.4.1.2. Response Block 1

As the Request Block 1 the Response Block 1 is used for the control connection. Additionally to the requested data it delivers the time where to analysis should start (for stateful analysis the pre-run time is not included) and where the data should send to.

0 8 16 24 32

|--------|--------|--------|--------|

| Version | Mode |Protocol|

| | | |

+--------+--------+--------+--------+

|Physical Link ID |Data Port Number |

| | |

+--------+--------+--------+--------+

| Data Server Ipv4 Address |

| |

+--------+--------+--------+--------+

| Time Block 1 |

| |

+--------+--------+--------+--------+

Figure 20 – Response Block 1

Version (uint16_t):

Supported version of communication of the data communication i.e. Gb-Ticket. This value shall be always similar to the requested version as long it is supported. In the case of an error the version zero must be used.

Protocol (uint8_t):

Protocol defines the type of delivered information.

Mode (uint8_t):

Valid mode for the data communication. Via this field methods of compression are communicated. For uncompressed data mode a value zero is used. In case when the mode is not supported by the receiver a new request shall be done.

Physical Link ID (uint16_t):

The physical link ID is a unique identifier for the point where data is captured.

Time Block 1:

The Time Block 1 is used as it is. It provides the time where the analysis should start and transferred to the DataXtender. In cases the analysis is stateful and need additional pre-run time, the Metawin feeder has to consider it.

Data Port Number (uint16_t):

Data Port Number at the data sever (dxt feeder data port)

Amendment statement FB: For each pair of “Version” and “Protocol” a unique “data Port Number” will be supplied by DataXtender Feeder.

Data Server Ipv4 Address (uint32_t):

Ipv4 address of the data extender feeder

3.4.1.3. Response Block 2

As the Request Block 1 the Response Block 2 is used for the control connection. It is sent by the data extender feeder to report an error.

0 8 16 24 32

|--------|--------|--------|--------|

| Version | Reason |

| | |

+--------+--------+--------+--------+

| Reserved |

| |

+--------+--------+--------+--------+

| Reserved |

| |

+--------+--------+--------+--------+

| Reserved |

| |

+--------+--------+--------+--------+

Figure 21 – Response Block 2

Version (uint16_t):

This field must set to zero.

Reason (uint16_t):

This field determines which type of error occurred. The following table shall be used:

Code
Reason

0x0000
Version not supported

0x0001
Protocol not supported

0x1000
Service temporarily not available

0x2000
Data base not reachable

0x3000
Data base feeders are off-line

3.4.2. Time Blocks

3.4.2.1. Time Block 1

The time block is providing the begin time stamp of the provided information. The end time stamp is indirectly known by the commonly known measurement period.

0 8 16 24 32

|--------|--------|--------|--------|

| Seconds since unix epoch |

| |

+--------+--------+--------+--------+

Figure 22 – Time Block 1

Seconds since unix epoch (sint32_t):

This counter measures the seconds since the unix epoch (1 January 1970).

3.4.3. Protocol Blocks

3.4.3.1. Protocol Block 1

The Protocol Block 1 is designed for Gb Signaling/User and Iu Signaling traffic and represents common fields in the protocols.

0 8 16 24 32

|--------|--------|--------|--------|

|Protocol|Message |Sub-Msg | Cause |

| | type | type | Value |

+--------+--------+--------+--------+

| Signal-|

| ing |

+--------+

Figure 23 – Protocol Block 1

Protocol (uint8_t):

The protocol identifier is an artificial ID used within the tracing system to identify them.

Message Type (uint8_t):

The message type uses the defined values of the corresponding protocol. If a protocol does not have a message type a the default value '0xff' must be used.

Sub Message Type (uint8_t):

Certain protocols have a sub message type to specify the message more precisely than the message type does. For the correlation of the event the message type and sub message type should be used. If a sub message type does not exist for the corresponding message type a default value of '0xff' should be used.

Cause Value (uint8_t):

Several protocols reply a cause value which indicates a procedure successful completed or the reason of failure.

Signaling (uint8_t):

For the separation of data traffic and signaling traffic the signaling field indicates signaling traffic via the value '1'. Otherwise the value '0' must be transmitted.

3.4.3.2. Protocol Block 2

The Protocol Block 2 is designed for Gn Ctrl/User and Iu User traffic and represents the important fields in these protocols.

0 8 16 24 32

|--------|--------|--------|--------|

| Core Port | Mobile Port |

| | |

+--------+--------+--------+--------+

| Server IP |

| |

+--------+--------+--------+--------+

|Protocol|Function| Layer | Signal-|

| | | | ling |

+--------+--------+--------+--------+

Figure 24 – Protocol Block 2

Core Port (uint16_t):

Core Port is the TCP/UDP port number towards the internet of TCP/UDP data.

Mobile Port (uint16_t):

Mobile Port is the TCP/UDP port number towards the mobile of TCP/UDP data.

Message Type (alias of Core Port):

The message type uses the defined values of the corresponding protocol. If a protocol does not have a message type a the default value '0xffff' must be used.

Cause Value (alias of Mobile Port):

Several protocols reply a cause value which indicates a procedure successful completed or the reason of failure.

Server IP (uint32_t):

The Server IP field consists of an Ipv4 address towards the internet when it is predefined in the system. In cases where the predefined value does not match with the seen IP address in the network an address '0xffffffff' (equals '255.255.255.255') is used. This can be used whenever server usages are evaluated. The IPv4 address is stored as big endian unsigned (network byte order).

Protocol (uint8_t):

The protocol identifier is an artificial ID used within the tracing system to identify them.

Function (uint8_t):

The Function field is used whenever the protocol TCP is used and reflects the TCP flags (SYN=1,FIN=2,RESET=4). Otherwise the value '0xff' should be used.

Layer (uint8_t):

Reports the amount of parsed protocols of the measurement system for the regarding data.

Signaling (uint8_t):

For the separation of data traffic and signaling traffic the signaling field indicates signaling traffic via the value '1'. Otherwise the value '0' must be transmitted.

3.4.3.3. Protocol Block 3

The Protocol Block 3 is designed for the ticket type 3. It consists additionally of a core port and server ip which might be useful for analysis of a service server.

0 8 16 24 32

|--------|--------|--------|--------|

|Protocol| Core Port | Server |

| | | IP |

+--------+--------+--------+--------+

| Server IP |

| |

+--------+--------+--------+ +

Figure 25 – Protocol Block 3

Protocol (uint8_t):

The protocol identifier is an artificial ID used within the tracing system to identify them.

Core Port (uint16_t):

Core Port is the TCP/UDP port number towards the internet of TCP/UDP data.

Server IP (uint32_t):

The Server IP field consists of an Ipv4 address towards the internet when it is predefined in the system. In cases where the predefined value does not match with the seen IP address in the network an address '0xffffffff' (equals '255.255.255.255') is used. This can be used whenever server usages are evaluated. The IPv4 address is stored as big endian unsigned (network byte order).

3.4.3.4. Protocol Block 4

The Protocol Block 4 is designed for the ticket type 4. It consists additionally several HTTP specific fields.

0 8 16 24 32

|--------|--------|--------|--------|

|Protocol| Server Port | Server |

| | | IP |

+--------+--------+--------+--------+

| Server IP | HTTP |

| |Res/Req |

+--------+--------+--------+--------+

| HTTP | HTTP Code |HTTP CT |

| Method | | Length |

+--------+--------+--------+--------+

|HTTP CT | |

| Length | |

+--------+ + + +

| HTTP Content Type |

~ ~

| |

+--------+--------+--------+--------+

| HTTP Transfer | |

| Encoding Length | |

+--------+--------+ + +

| HTTP Transfer Encoding |

~ ~

| |

+--------+--------+--------+--------+

|HTTP Host Length | |

| | |

+--------+--------+ + +

| |

~ HTTP Host ~

| |

+--------+--------+--------+--------+

|HTTP Path Length | |

| | |

+--------+--------+ + +

| HTTP Path |

~ ~

| |

+--------+--------+--------+--------+

Figure 26 – Protocol Block 4

Protocol (uint8_t):

The protocol identifier is an artificial ID used within the tracing system to identify them. Valid values are HTTP (65), HTTPS (66) and HTTP_RESIDUE (67). HTTP_RESIDUE represents all data which could not properly decoded by the HTTP parser. Therefore all HTTP fields are invalid. Core Port, Server IP and fields from other blocks are still valid. The amount of payload bytes cannot be calculated any more and so the value zero is used instead.

Server Port (uint16_t):

Server Port is the TCP port number of the server.

Server IP (uint32_t):

The Server IP field consists of an Ipv4 address towards the internet when it is predefined in the system. In cases where the predefined value does not match with the seen IP address in the network an address '0xffffffff' (equals '255.255.255.255') is used. This can be used whenever server usages are evaluated. The IPv4 address is stored as big endian unsigned (network byte order).

HTTP Res/Req - HTTP Request/Response (uint8_t):

When the method POST is used to send data towards the sever, it has its handled like a separate data transfer. This circumstance is signaled via this field. The mapping is defined as follows:

value
req/res

1
request

2
response

0xff
undefined

HTTP Method (uint8_t - enum):

The HTTP Method field consists of an integer value which corresponds to an HTTP method e.g. GET, POST. [Value – Method mapping missing]

HTTP Code (uint16_t):

Return code of an HTTP request.

HTTP CT Length - HTTP Content Type Length (uint16_t):

Length of the HTTP Content Type field.

HTTP Content Type (char*HTTP_Content_Type_Length - non-zero-terminated):

The content type of the HTTP request/response.

HTTP Transfer Encoding Length (uint16_t):

Length of the HTTP Transfer Encoding field.

HTTP Transfer Encoding (char*HTTP_Transfer_Encoding_Length - non-zero-terminated):

The transfer encoding of the HTTP request/response.

HTTP Host Length (uint16_t):

Length of the HTTP host field.

HTTP Host (char*HTTP_Host_Length - non-zero-terminated):

Host attribute of the HTTP request.

HTTP Path Length (uint16_t):

Length of the HTTP Path field.

HTTP Path (char*HTTP_Path_Length - non-zero-terminated):

The path of the URL attribute of the HTTP request.

3.4.4. Space Blocks

3.4.4.1. Space Block 1

The Space Block 1 consists beside the location of measurement point and mobile also information about the user, mobile, direction of the data and a QoS index number. Basically it answers who is where.

0 8 16 24 32

|--------|--------|--------|--------|

| IMSI - MCC | IMSI – MNC |

| | |

+--------+--------+--------+--------+

| |

| IMSI - MSIN |

+ + + + +

| |

| |

+--------+--------+--------+--------+

| CELL - MCC | CELL – MNC |

| | |

+--------+--------+--------+--------+

| CELL - LAC | CELL – CI |

| | |

+--------+--------+--------+--------+

| CELL | RAT | IMEI – TAC |

| RAC | | |

+--------+--------+--------+--------+

| IMEI – TAC | IMEI - SN |

| | |

+--------+--------+--------+--------+

| IMEI – SN | Physical |

| | Link ID |

+--------+--------+--------+--------+

| Device ID | Device ID |

| Local | Remote |

+--------+--------+--------+--------+

| TAP Group | Dire- | QoS |

| ID | ction | |

+--------+--------+--------+--------+

Figure 27 – Space Block 1

IMSI MCC (uint16_t):

Mobile Country Code of the IMSI i.e. 232

IMSI MNC (uint16_t):

Mobile Network Code of the IMSI i.e. 01

IMSI MSIN (uint64_t):

Mobile subscriber identification number of the IMSI i.e. 1324894342

CELL MCC (uint16_t):

Mobile Country Code of the Cell i.e. 232

CELL MNC (uint16_t):

Mobile Network Code of the Cell i.e. 01

CELL LAC (uint16_t):

Location Area Code of the Cell i.e. 65535

CELL CI (uint16_t):

Cell Identifier of the Cell i.e. 65535

CELL RAC (uint8_t):

Routing Area Code of the Cell i.e. 255

RAT (uint8_t):

Radio Access Type: It defines the used radio access network. The field is used as defined in TS 29.060.

IMEI TAC (uint32_t):

Type Allocation Code of the IMEI

IMEI SN (uint32_t):

Serial Number of the IMEI

Physical Link ID (uint16_t):

The physical link ID is a unique identifier for the point where data is captured.

Device ID Local (uint16_t):

Device ID local refers to the device i.e. SGSN which the tapped wire is connected to. Switches, routers or similar network devices are not seen as device as defined here.

Device ID Remote (uint16_t):

Device ID Remote uses the same definition of device as Device ID Local, but it to the addressed device of the packet.

TAP Group ID (uint16_t):

A TAP Group ID defines a bundle of Physical Link Ids which can be aggregated easily, represents the same type of interface and have logically the same hierarchy i.e. Gn-GGSN = Gn-GGSN1+Gn-GGSN2.

Direction (uint8_t):

The Direction field defines data, which are send from the mobile to the network as uplink data. For uplink the value '0' and for downlink the value '1' must be used.

QoS (uint8_t):

QoS is a reference number used within the measurement system to represent a known QoS setting for a mobile. QoS setting not known by the measurement system are reported via the value '0xff'.

3.4.4.2. Space Block 2

Additionally to the Space Block 1 an APN is required i.e. Gn. Therefore Space Block 2 appends to Space Block 1 the APN via a fixed length string.

0 8 16 24 32

|--------|--------|--------|--------|

| |

~ Space Block 1 ~

| |

+--------+--------+--------+--------+

| |

| |

+ + + + +

| |

| Access Point Name |

+ + + + +

| |

| |

+ + + + +

| |

| |

+--------+--------+--------+--------+

Figure 28 – Space Block 2

Space Block 1:

The space block 1 refers to the definition of space block 1 within this document.

Access Point Name (char[16] – String):

This name refers to an end point of the tunnel i.e. Mobile-GGSN, Mobile-Firewall. If the extracted APN has a length of less then 15 bytes, the APN field will contain a byte of value '0x0' after the end of the actual APN, followed by several bytes of value '0xff' in the remainder of the APN field. If the APN length is exactly 15 bytes the 16th byte has the value '0x0', while there are no trailing bytes of value '0x0' or '0xff', if the APN length is at its maximum of 16 bytes.

3.4.4.3. Space Block 3

The Space Block 3 consists beside the location of measurement points (originating and destined point) and mobile also information about the user. It consists of the information who is measured and between which points a correlation will be done.

0 8 16 24 32

|--------|--------|--------|--------|

| IMSI - MCC | IMSI – MNC |

| | |

+--------+--------+--------+--------+

| |

| IMSI - MSIN |

+ + + + +

| |

| |

+--------+--------+--------+--------+

| IMEI - TAC |

| |

+--------+--------+--------+--------+

| IMEI – SN |

| |

+--------+--------+--------+--------+

| Orig Physical | Dest Physical |

| Link ID | Link ID |

+--------+--------+--------+--------+

| Dire- | |

| ction | |

+--------+ + + +

| |

| |

+ + + + +

| |

| Access Point Name |

+ + + + +

| |

| |

+ +--------+--------+--------+

| | |

| | |

+--------+ + + +

Figure 29 – Space Block 3

IMSI MCC (uint16_t):

Mobile Country Code of the IMSI i.e. 232

IMSI MNC (uint16_t):

Mobile Network Code of the IMSI i.e. 01

IMSI MSIN (uint64_t):

Mobile subscriber identification number of the IMSI i.e. 1324894342

IMEI TAC (uint32_t):

Type Allocation Code of the IMEI

IMEI SN (uint32_t):

Serial Number of the IMEI

Originating Physical Link ID (uint16_t):

The originating physical link ID is a unique identifier for the point where data is captured the first time for delay measurement.

Destined Physical Link ID (uint16_t):

The destined physical link ID is a unique identifier for the point where data is captured the second time for the delay measurement.

Direction (uint8_t):

The Direction field defines data, which are send from the mobile to the network as uplink data. For uplink the value '0' and for downlink the value '1' must be used.

Access Point Name (char[16] – String):

This name refers to an end point of the tunnel i.e. Mobile-GGSN, Mobile-Firewall. If the extracted APN has a length of less then 15 bytes, the APN field will contain a byte of value '0x0' after the end of the actual APN, followed by several bytes of value '0xff' in the remainder of the APN field. If the APN length is exactly 15 bytes the 16th byte has the value '0x0', while there are no trailing bytes of value '0x0' or '0xff', if the APN length is at its maximum of 16 bytes.

3.4.4.4. Space Block 4

The Space Block 4 is used in the ticket type 4 which is used for HTTP(S).

0 8 16 24 32

|--------|--------|--------|--------|

| IMSI - MCC | IMSI – MNC |

| | |

+--------+--------+--------+--------+

| |

| IMSI - MSIN |

+ + + + +

| |

| |

+--------+--------+--------+--------+

| IMEI - TAC |

| |

+--------+--------+--------+--------+

| IMEI – SN |

| |

+--------+--------+--------+--------+

| Physical | Tap Group ID |

| Link ID | |

+--------+--------+--------+--------+

| Device ID | Device ID |

| Local | Remote |

+--------+--------+--------+--------+

| Dire- | RAT | |

| ction | | |

+--------+--------+ + +

| |

| |

+ + + + +

| Access Point Name |

| |

+ + + + +

| |

| |

+ + +--------+--------+

| |

| |

+--------+--------+ + +

Figure 30 – Space Block 4

IMSI MCC (uint16_t):

Mobile Country Code of the IMSI i.e. 232

IMSI MNC (uint16_t):

Mobile Network Code of the IMSI i.e. 01

IMSI MSIN (uint64_t):

Mobile subscriber identification number of the IMSI i.e. 1324894342

IMEI TAC (uint32_t):

Type Allocation Code of the IMEI

IMEI SN (uint32_t):

Serial Number of the IMEI

Physical Link ID (uint16_t):

The physical link ID is a unique identifier for the point where data is captured.

TAP Group ID (uint16_t):

A TAP Group ID defines a bundle of Physical Link Ids which can be aggregated easily, represents the same type of interface and have logically the same hierarchy i.e. Gn-GGSN = Gn-GGSN1+Gn-GGSN2.

Device ID Local (uint16_t):

Device ID local refers to the device i.e. SGSN which the tapped wire is connected to. Switches, routers or similar network devices are not seen as device as defined here.

Device ID Remote (uint16_t):

Device ID Remote uses the same definition of device as Device ID Local, but it to the addressed device of the packet.

Direction (uint8_t):

The Direction field defines data, which are send from the mobile to the network as uplink data. For uplink the value '0' and for downlink the value '1' must be used.

RAT (uint8_t):

Radio Access Type: It defines the used radio access network. The field is used as defined in TS 29.060.

Access Point Name (char[16] – String):

This name refers to an end point of the tunnel i.e. Mobile-GGSN, Mobile-Firewall. If the extracted APN has a length of less then 15 bytes, the APN field will contain a byte of value '0x0' after the end of the actual APN, followed by several bytes of value '0xff' in the remainder of the APN field. If the APN length is exactly 15 bytes the 16th byte has the value '0x0', while there are no trailing bytes of value '0x0' or '0xff', if the APN length is at its maximum of 16 bytes.

3.4.5. Value Blocks

3.4.5.1. Value Block 1

The 'Value Block 1' is used for measuring bytes and packets of specific protocol i.e. GTP.

0 8 16 24 32

|--------|--------|--------|--------|

| Number of packets at |

| the specified layer |

+--------+--------+--------+--------+

| Number of packets at |

| the physical layer |

+--------+--------+--------+--------+

| |

| Number of bytes of the PDU |

+ + + + +

| at the specified layer |

| |

+--------+--------+--------+--------+

| |

| Number of bytes of the SDU |

+ + + + +

| at the specified layer |

| |

+--------+--------+--------+--------+

| |

| Number of bytes |

+ + + + +

| at the physical layer |

| |

+--------+--------+--------+--------+

Figure 31 – Value Block 1

Number of packets at the specified layer (uint32_t):

This counter represents the amount of packets which was seen within a specified time period of a specific protocol.

Number of packets at the physical layer (uint32_t):

This counter represents the amount of packets which was seen within a specified time period at the layer 2 protocol.

Number of bytes of the PDU at the specified layer (uint64_t):

This counter represents the amount of bytes of a protocols header, payload and trailer which was seen within a specified time period and a specific protocol.

Number of bytes of the SDU at the specified layer (uint64_t):

This counter represents the amount of bytes of a protocols payload which was seen within a specified time period and a specific protocol.

Number of bytes at the physical layer (uint64_t):

This counter represents the amount of bytes which was seen within a specified time interval at the layer 2 protocol.

3.4.5.2. Value Block 2

The 'Value Block 3' is transmitting the information of a bin which consists the assigned boundaries and the according amount of samples which was measured of the interval.

0 8 16 24 32

|--------|--------|--------|--------|

| |

| Delay Interval |

+ + + + +

| Lower Bound |

| |

+--------+--------+--------+--------+

| |

| Delay Interval |

+ + + + +

| Upper Bound |

| |

+--------+--------+--------+--------+

| Amount of delay samples |

| in the according delay interval |

+--------+--------+--------+--------+

Figure 32 – Value Block 2

Delay Interval Lower Bound (uint64_t):

Delay interval lower bound represents the lowest measured delay of a bin in a histogram.

Delay Interval Upper Bound (uint64_t):

Delay interval upper bound is the ceiling of a bin in the delay histogram.

Amount of delay samples in the according delay interval (uint32_t):

This counter represents the amount of delay samples which had a value between delay interval lower bound and delay interval upper bound (delaylower_bound <= delay < delayupper_bound).

3.4.5.3. Value Block 3

The 'Value Block 3' is used for measuring bytes and packets of the HTTP protocol.

0 8 16 24 32

|--------|--------|--------|--------|

| |

| HTTP Billing Bytes |

+ + + + +

| signaling request |

| |

+--------+--------+--------+--------+

| |

| HTTP Billing Bytes |

+ + + + +

| signaling response |

| |

+--------+--------+--------+--------+

| |

| HTTP Billing Bytes |

+ + + + +

| content request |

| |

+--------+--------+--------+--------+

| |

| HTTP Billing Bytes |

+ + + + +

| content response |

| |

+--------+--------+--------+--------+

| |

| HTTP Content Bytes |

+ + + + +

| |

| |

+--------+--------+--------+--------+

Figure 33 – Value Block 3

HTTP billing bytes – signalling request (uint64_t):

This counter represents the amount of bytes from the client to the server where the TCP packet has transported not any byte (e.g. ACK only packets).

HTTP billing bytes – signalling response (uint64_t):

This counter represents the amount of bytes from the server to the client where the TCP packet has transported not any byte (e.g. ACK only packets).

HTTP billing bytes – content request (uint64_t):

This counter represents the amount of bytes from the client to the server where the TCP packet has transported any bytes

HTTP billing bytes – content response (uint64_t):

This counter represents the amount of bytes from the server to the client where the TCP packet has transported any bytes

HTTP content bytes (uint64_t):

This counter represents the amount of bytes transferred from/to the client to/from the server as HTTP payload and within a specified time period. The direction of the data in the view of the server is identified by the filed 'HTTP request/response' in the protocol block 4.

4. Event based measurement

4.1. Control Connection

See chapter 2.3. For all event-based feeders a ticket version of 0x8000 (decimal 32768) has to be used in the request block sent within the control handshake. In later versions of the event based feeder transmission a value higher than 0x8000 might be introduced.

4.2. General Assumptions for Event Tickets

Event based tickets can be multiplexed together with any other form of tickets as long as within one protocol version touple is unique regaring the type of the ticket.

4.3. Robustness of Event Tickets

A event based ticket has to have a framing which determines on the one hand which fields corresponds to one event and on the other hand ensure that the received data is properly not malformed. This can be done via two indicatiors:

· ticket length: The ticket length has to stay in a reasonable length. This is threshold shall set to 128. Later versions will most properly set the treshold higher.

· event group: As the event group is determineable via the control handshake a known value shall appear here. A less robust method would be to check if the event group value is known by the receiver.

4.4. Basic Event Ticket Structure 1

Every event based ticket shall have the given structure as shown in figure 25 where ticket length, event group, event type and time stamp are seen as mandatory fields. Following fields are optional and exists depending on the feeder.

0 8 16 24 32

|--------|--------|--------|--------|

| Ticket | Event | Event |

| Length | Group | Type |

+--------+--------+--------+--------+

| |

| Timestamp |

+ + + + +

| |

| |

+--------+--------+--------+--------+

| |

~ Optional Field Type 1 or 2 ~

| |

+--------+--------+--------+--------+

| More Optional |

~ ~

| Fields of Type 1 or 2 |

+--------+--------+--------+--------+

Figure 34 – Basic Event Ticket Structure 1

Ticket Length (uint16_t):

Total length of the ticket including all optional fields

Event Group (uint8_t):

Event group is the same field as the protocol in the time based tickets. It groups a set of data which can be delivered by one feeder.

Event Type (uint8_t):

Within a event group several different events can appear. Each of the events a unique event type within the event group must be assigned.

Optional Field (uint8_t):

According the event group and type a set of optional fields might be appended. This can also vary due to stateful processing within feeders.

4.4.1. Optional Field Type 1

An optional field which includes content of a variable length e.g. strings requires beside a type field a length field. Via both fields an interpretation of data can be found. The type is unique number which uniquely defines if the data should be decoded as an optional field type one.

0 8 16 24 32

|--------|--------|--------|--------|

| Type | Length | |

| | | |

+--------+--------+ + +

| |

~ Data ~

| |

+--------+--------+--------+--------+

Figure 35 – Optional Field Type 1

Type (uint8_t):

Type of the field

Length (uint8_t):

Total length of the optional field

Data (depends on the type field):

Depending on the type an interpretation of the data can be done.

4.4.2. Optional Field Type 2

The optional field type 2 is similar to the optional field type 1 but differs in the missing length field. The length is implicitly given via the type and therefore must not be transmitted. This shall save some bandwidth and is there preferred over the optional field type 1.

0 8 16 24 32

|--------|--------|--------|--------|

| Type | |

| | |

+--------+ + + +

| |

~ Data ~

| |

+--------+--------+--------+--------+

Figure 36 – Optional Field Type 2

Type (uint8_t):

Type of the field

Data (depends on the type field):

Depending on the type an interpretation of the data can be done.

4.5. Fields

The event based feeders only allow a predefined set of fields which can only transmitted once within one ticket and are specified as follows:

Field Name
Type
Field Type
Chapter

IPv4 address - a
3
2
4.5.24

IPv4 address - b
4
2
4.5.24

NSAPI
5
2
4.5.9

Cause Value
6
2
4.5.10

APN
7
1
4.5.19

Local Device ID
8
2
4.5.20

Remote Device ID
9
2
4.5.21

Physical Link ID
10
2
4.5.22

Tap Group ID
11
2
4.5.23

Cell CS
12
2
4.5.14

Cell CS alternative
13
2
4.5.14

Cell PS
14
2
4.5.13

Cell PS alternative
15
2
4.5.13

Location Area
16
2
4.5.15

Location Area alternative
17
2
4.5.15

Routing Area
18
2
4.5.16

Routing Area alternative
19
2
4.5.16

Service Area
20
2
4.5.17

Service Area
21
2
4.5.17

PLMN
22
2
4.5.18

PLMN alternative
23
2
4.5.18

IMSI
24
2
4.5.7

IMSI alternative
25
2
4.5.7

IMEI
26
2
4.5.8

IMEI alternative
27
2
4.5.8

TLLI
28
2
4.5.25

TLLI alternative
29
2
4.5.25

TEID
30
2
4.5.26

TEID alternative
31
2
4.5.26

PTMSI
34
2
4.5.27

PTMSI alternative
35
2
4.5.27

TMSI
36
2
4.5.28

TMSI alternative
37
2
4.5.28

RAT Type
40
2
4.5.29

Counter 16 bit - a
100
2
4.5.1

Counter 16 bit - b
101
2
4.5.1

Counter 16 bit - c
102
2
4.5.1

Counter 32 bit - a
120
2
4.5.2

Counter 32 bit - b
121
2
4.5.2

Counter 32 bit - c
122
2
4.5.2

Counter 64 bit - a
140
2
4.5.3

Counter 64 bit - b
141
2
4.5.3

Counter 64 bit - c
142
2
4.5.3

Counter 16 bit unsigned - a
160
2
4.5.4

Counter 16 bit unsigned - b
161
2
4.5.4

Counter 16 bit unsigned - c
162
2
4.5.4

Counter 32 bit unsigned - a
180
2
4.5.5

Counter 32 bit unsigned - b
181
2
4.5.5

Counter 32 bit unsigned - c
182
2
4.5.5

Counter 64 bit unsigned - a
200
2
4.5.6

Counter 64 bit unsigned - b
201
2
4.5.6

Counter 64 bit unsigned - c
202
2
4.5.6

Timestamp - a
220
2
4.5.11

Timestamp - b
221
2
4.5.11

Timestamp - c
222
2
4.5.11

Duration - a
240
2
4.5.12

Duration - b
241
2
4.5.12

Duration - c
242
2
4.5.12

Table TC "1" \f "A" \l 1 1 – Type list

An addition of this list can always happen in newer versions of the interface specification, but an existing one will never be changed. If a feeder receives more information than expected these one can be dropped but it must be reported to the administrator.

4.5.1. Counter 16 Bit

The data field consists of a 16 bit general purpose counter. As the value 100 up to 102 is available for the type field a multiple usage of a type value can be avoided.

0 8 16 24 32

|--------|--------|--------|--------|

| 100- | 16 Bit |

| 102 | Counter |

+--------+--------+--------+ +

Figure 37 – Field Counter 16 Bit

Counter (int16_t):

The counter is stored as little endian signed.

4.5.2. Counter 32 Bit

The data field consists of a 32 bit general purpose counter. As the value 120 up to 122 is available for the type field a multiple usage of a type value can be avoided.

0 8 16 24 32

|--------|--------|--------|--------|

| 120- | 32 Bit |

| 122 | Counter |

+--------+--------+--------+--------+

| 32 Bit |

|Counter |

+--------+ + + +

Figure 38 – Field Counter 32 Bit

Counter (int32_t):

The counter is stored as little endian signed.

4.5.3. Counter 64 Bit

The data field consists of a 64 bit general purpose counter. As the value 140 up to 142 is available for the type field a multiple usage of a type value can be avoided.

0 8 16 24 32

|--------|--------|--------|--------|

| 140- | |

| 142 | |

+--------+ + + +

| 64 Bit Counter |

| |

+ +--------+--------+--------+

| |

| |

+--------+ + + +

Figure 39 – Field Counter 64 Bit

Counter (int64_t):

The counter is stored as little endian signed.

4.5.4. Counter 16 Bit Unsigned

The data field consists of a 16 bit general purpose counter. As the value 160 up to 162 is available for the type field a multiple usage of a type value can be avoided.

0 8 16 24 32

|--------|--------|--------|--------|

| 160- | 16 Bit |

| 162 | Counter |

+--------+--------+--------+ +

Figure 40 – Field Counter 16 Bit Unsigned

Counter (uint16_t):

The counter is stored as little endian signed.

4.5.5. Counter 32 Bit Unsigned

The data field consists of a 32 bit general purpose counter. As the value 180 up to 182 is available for the type field a multiple usage of a type value can be avoided.

0 8 16 24 32

|--------|--------|--------|--------|

| 180- | 32 Bit |

| 182 | Counter |

+--------+--------+--------+--------+

| 32 Bit |

|Counter |

+--------+ + + +

Figure 41 – Field Counter 32 Bit Unsigned

Counter (uint32_t):

The counter is stored as little endian unsigned.

4.5.6. Counter 64 Bit Unsigned

The data field consists of a 64 bit general purpose counter. As the value 180 up to 182 is available for the type field a multiple usage of a type value can be avoided.

0 8 16 24 32

|--------|--------|--------|--------|

| 180- | |

| 182 | |

+--------+ + + +

| 64 Bit Counter |

| |

+ +--------+--------+--------+

| |

| |

+--------+ + + +

Figure 42 – Field Counter 64 Bit unsigned

Counter (uint64_t):

The counter is stored as little endian unsigned.

4.5.7. IMSI

The IMSI uniquely identifiers a user's SIM card. The valid values for MCC and MNC are assigned by ETSI. The assignment of the MSIN is only done by the operator itself.

0 8 16 24 32

|--------|--------|--------|--------|

| 1 or | MCC | MNC |

| 2 | | |

+--------+--------+--------+--------+

| MNC | |

| | |

+--------+ + + +

| MSIN |

| |

+ +--------+--------+--------+

| |

| |

+--------+ + + +

Figure 43 – Field IMSI

MCC (uint16_t):

Mobile Country Code e.g. 232

MNC (uint16_t):

Mobile Network Code e.g. 01

MSIN (uint64_t):

Mobile subscriber identification number

4.5.8. IMEI

The IMEI uniquely identifiers a mobile and a mobile type.

0 8 16 24 32

|--------|--------|--------|--------|

| 3 or | TAC |

| 4 | |

+--------+--------+--------+--------+

| TAC | SN |

| | |

+--------+--------+--------+--------+

| SN |

| |

+--------+ + + +

Figure 44 – Field IMEI

TAC (uint32_t):

Type Allocation Code

SN (uint32_t):

Serial Number

4.5.9. NSAPI

The NSAPI identifies a PDP context in a user session.

0 8 16 24 32

|--------|--------|--------|--------|

| 5 | NSAPI |

| | |

+--------+--------+ + +

Figure 45 – Field NSAPI

NSAPI (uint8_t):

Network Service Access Point Identifer.

4.5.10. Cause

A cause value is field in the 3GPP protocols which is used in response messages to indicate the successful completion of the request or reports the type of an error.

0 8 16 24 32

|--------|--------|--------|--------|

| 6 | Cause |

| | |

+--------+--------+ + +

Figure 46 – Field Cause

Cause (uint8_t):

Several protocols reply a cause value which indicates a procedure successful completed or the reason of failure.

4.5.11. Timestamp

Additionally to the event timestamp another timestamp might be required to a related event caused in the network.

0 8 16 24 32

|--------|--------|--------|--------|

| 220- | |

| 222 | |

+--------+ + + +

| Timestamp |

| |

+ +--------+--------+--------+

| |

| |

+--------+ + + +

Figure 47 – Field Timestamp

Timestamp (uint64_t):

Additional Timestamp related to the event.

4.5.12. Duration

A common scenario is to measure the duration of a procedure like PDP Context Create Request/PDP Context Create Response. In case Routing Area Updates procedures are measured more duration fields might be used as more these ones can exchange more than two messages.

0 8 16 24 32

|--------|--------|--------|--------|

| 240- | |

| 242 | |

+--------+ + + +

| Duration |

| |

+ +--------+--------+--------+

| |

| |

+--------+ + + +

Figure 48 – Field Duration

Duration (int64_t):

Duration of e.g a procedure

4.5.13. Cell-PS

Each event which are caused by a user must occurred in one or more cells which can be reported by the according analysis module.

0 8 16 24 32

|--------|--------|--------|--------|

| 14 or | MCC | MNC |

| 15 | | |

+--------+--------+--------+--------+

| MNC | LAC | RAC |

| | | |

+--------+--------+--------+--------+

| CI |

| |

+--------+--------+ + +

Figure 49 – Field Cell PS

MCC (uint16_t):

Mobile Country Code e.g. 232

MNC (uint16_t):

Mobile Network Code e.g. 01

LAC (uint16_t):

Location Area Code e.g. 65535

RAC (uint8_t):

Routing Area Code e.g. 255

CI (uint16_t):

Cell Identifier e.g. 65535

4.5.14. Cell-CS

Each event which are caused by a user must occurred in one or more cells which can be reported by the according analysis module.

0 8 16 24 32

|--------|--------|--------|--------|

| 12 or | MCC | MNC |

| 13 | | |

+--------+--------+--------+--------+

| MNC | LAC | CI |

| | | |

+--------+--------+--------+--------+

| CI |

| |

+--------+ + + +

Figure 50 – Field Cell CS

MCC (uint16_t):

Mobile Country Code e.g. 232

MNC (uint16_t):

Mobile Network Code e.g. 01

LAC (uint16_t):

Location Area Code e.g. 65535

CI (uint16_t):

Cell Identifier e.g. 65535

4.5.15. Location Area

In cases where only the location area is known e.g. Paging this might be a useful information when the procedure had failed.

0 8 16 24 32

|--------|--------|--------|--------|

| 16 or | MCC | MNC |

| 17 | | |

+--------+--------+--------+--------+

| MNC | LAC |

| | |

+--------+--------+--------+ +

Figure 51 – Field Location Area

MCC (uint16_t):

Mobile Country Code e.g. 232

MNC (uint16_t):

Mobile Network Code e.g. 01

LAC (uint16_t):

Location Area e.g. 65535

4.5.16. Routing Area

In several procedures a routing area is provided as information element and would also enrich the content of an event and the corresponding analysis possibilities.

0 8 16 24 32

|--------|--------|--------|--------|

| 18 or | MCC | MNC |

| 19 | | |

+--------+--------+--------+--------+

| MNC | LAC | RAC |

| | | |

+--------+--------+--------+--------+

Figure 52 – Field Routing Area

MCC (uint16_t):

Mobile Country Code e.g. 232

MNC (uint16_t):

Mobile Network Code e.g. 01

LAC (uint16_t):

Location Area Code e.g. 65535

RAC (uint8_t):

Routing Area Code e.g. 255

4.5.17. Service Area

In the UMTS network additionally the identifier of a service area is introduced. Future event based feeders might need them.

0 8 16 24 32

|--------|--------|--------|--------|

| 20 or | MCC | MNC |

| 21 | | |

+--------+--------+--------+--------+

| MNC | LAC | SAC |

| | | |

+--------+--------+--------+--------+

| SAC | |

| | |

+--------+ + + +

Figure 53 – Field Service Area

MCC (uint16_t):

Mobile Country Code e.g. 232

MNC (uint16_t):

Mobile Network Code e.g. 01

LAC (uint16_t):

Location Area Code e.g. 65535

SAC (uint16_t):

Service Area Code e.g. 65535

4.5.18. PLMN

This type is introduced basically only for completeness in regards to the other cell information.

0 8 16 24 32

|--------|--------|--------|--------|

| 22 or | MCC | MNC |

| 23 | | |

+--------+--------+--------+--------+

| MNC |

| |

+--------+ + + +

Figure 54 – Field Service Area

MCC (uint16_t):

Mobile Country Code e.g. 232

MNC (uint16_t):

Mobile Network Code e.g. 01

4.5.19. APN

Each PDP context has a specific APN which has determined behavior in regards of IP address assignment, firewall rules and exit point of the PDP tunnel. So a APN is crucial information to understand an event better.

0 8 16 24 32

|--------|--------|--------|--------|

| 7 | Length | |

| | | |

+--------+--------+ + +

| |

~ APN ~

| |

+ + + +--------+

| |

| |

+--------+--------+--------+ +

Figure 55 – Field APN

Length (uint8_t):

Length of the APN.

APN (Length * int8_t):

Access Point Name – This name refers to an end point of the tunne e.g. Mobile-GGSN, Mobile-Firewall

4.5.20. Local Device ID

The event shall be associated to an interface of an device which can be used for device depended analysis.

0 8 16 24 32

|--------|--------|--------|--------|

| 8 | Local |

| | Device ID |

+--------+--------+--------+ +

Figure 56 – Field Local Device ID

Local Device ID (uint16_t):

Device ID local refers to the device e.g. SGSN which the tapped wire is connected to. Switches, routers or similar network devices are not seen as device as defined here.

4.5.21. Remote Device ID

An event might have an association to an interface of an device which can be seen as a communication peer.

0 8 16 24 32

|--------|--------|--------|--------|

| 9 | Remote |

| | Device ID |

+--------+--------+--------+ +

Figure 57 – Field Remote Device ID

Remote Device ID (uint16_t):

Device ID remote refers to the device e.g. SGSN which the tapped wire is not connected but the traffic transferred to. Switches, routers or similar network devices are not seen as device as defined here.

4.5.22. Physical Link ID

This ID is rather mandatory as it represents the position where the data is retrieved from.

0 8 16 24 32

|--------|--------|--------|--------|

| 10 | Physical |

| | Link ID |

+--------+--------+--------+ +

Figure 58 – Field Physical Link ID

Physical Link ID (uint16_t):

The physical Link ID is a unique identifier for the point where the data is captured.

4.5.23. Tap Group ID

Usually in networks a type of link appears more often. In order to group these links a group identifier is introduced. This identifier is used if you want to have information over a group e.g. Gn-GGSN.

0 8 16 24 32

|--------|--------|--------|--------|

| 11 | Tap |

| | Group ID |

+--------+--------+--------+ +

Figure 59 – Field Tap Group ID

Tap Group ID (uint16_t):

A TAP Group ID defines a bundle of physical link ids which can be aggregated easily, represents the same type of interface and have logically the same hierarchy e.g Gn-GGSN= Gn-GGSN1+Gn-GGSN2.

4.5.24. IPv4 Address

In certain events e.g. spoofed IP address an according reporting is useful for the analysis.

0 8 16 24 32

|--------|--------|--------|--------|

| 3 or 4 | 32 Bit |

| | IPv4 address |

+--------+--------+--------+--------+

| 32 Bit |

|IPv4 ad.|

+--------+ + + +

Figure 60 – Field IPv4 Address 32 Bit

IPv4 address (uint32_t):

The IPv4 address is stored as big endian unsigned (network byte order).

4.5.25. TLLI

The TLLI is a common temporary identifier in the GPRS network and therefore might be reported rather often e.g. TLLI collision.

0 8 16 24 32

|--------|--------|--------|--------|

| 3 or 4 | 32 Bit |

| | TLLI |

+--------+--------+--------+--------+

| TLLI |

| |

+--------+ + + +

Figure 61 – Field TLLI

TLLI (uint32_t):

The TLLI is stored as little endian unsigned (host byte order).

4.5.26. TEID

The PTMSI is a common temporary identifier in the Gn Interface of the packet network and therefore might be reported rather often.

0 8 16 24 32

|--------|--------|--------|--------|

| 3 or 4 | 32 Bit |

| | TEID |

+--------+--------+--------+--------+

| TEID |

| |

+--------+ + + +

Figure 62 – Field TEID

TEID (uint32_t):

The TEID is stored as little endian unsigned (host byte order).

4.5.27. PTMSI

The PTMSI is a common temporary identifier in the GPRS/UMTS packet network and therefore might be reported rather often.

0 8 16 24 32

|--------|--------|--------|--------|

| 3 or 4 | 32 Bit |

| | PTMSI |

+--------+--------+--------+--------+

| PTMSI |

| |

+--------+ + + +

Figure 63 – Field PTMSI

PTMSI (uint32_t):

The PTMSI is stored as little endian unsigned (host byte order).

4.5.28. TMSI

The TMSI is a common temporary identifier in the GSM/UMTS packet network and therefore might be reported rather often.

0 8 16 24 32

|--------|--------|--------|--------|

| 3 or 4 | 32 Bit |

| | TMSI |

+--------+--------+--------+--------+

| TMSI |

| |

+--------+ + + +

Figure 64 – Field TMSI

TMSI (uint32_t):

The TMSI is stored as little endian unsigned (host byte order).

4.5.29. RAT Type

The Radio Access Technology Type identifies the Radio Access Technology a subscriber is currently using.

A type of 1 corresponds to UTRAN, type 2 represents GERAN and type 3 identifies WLAN.

0 8 16 24 32

|--------|--------|--------|--------|

| 40 | RAT- |

| | TYPE |

+--------+--------+ + +

Figure 65 – Field RAT Type

RAT Type (uint8_t):

Radio Access Technology Type.

4.6. Allocated Event Group/Type IDs

A short list of the used ID are covered in this chapter.

Name
Event Group ID

PDP Context Information
255

Figure 66 – Allocated Event Groups

A detailed description of the according feeder are only available in their FN and Dds. This list does not guarantee completeness or correctness of the provided data.

4.6.1. Event Group 255: PDP Context Information

The PDP Context Information feeder provides only one type of event – the PDP context activation.

Name
Event Type ID

Activation
1

Figure 67 – Specified Event Types for PDP Information

More event types might be specified in future releases of this event based feeder.

Metawin Consolidation

� TITLE �Interface Specification - MetawinDXT ��
�

MetawinDXT_Interface_Specification_v35.doc
Issue 3.4 / 2008-03-14

