
Agility at Scale: Become as Agile as You Can Be

By Scott W. Ambler
Chief Methodologist/Agile & SOA, IBM Rational

Agile software development is an evolutionary, highly collaborative, quality-
focused approach to software development where potentially shippable working
software is produced on a regular basis. Agile software development processes
include Scrum, Extreme Programming (XP), Open Unified Process (OpenUP)
and Agile Data (AD), to name a few. Although agile approaches are often
equated to the development of Web-based applications, in reality they’re also
being applied to mobile applications, fat-client applications, business intelligence
(BI) systems and even mainframe applications. They’re being applied by a range
of organizations, including but not limited to e-commerce companies, financial
companies, manufacturers, retailers and government agencies.

Agile software development techniques have taken the industry by storm, with 69
percent of organizations reporting that they had one or more agile projects under
way [1]. Agile is becoming widespread because it works — organizations are
finding that agile project teams, when compared to traditional project teams,
enjoy higher success rates, deliver higher quality, have greater levels of
stakeholder satisfaction, provide better return on investment (ROI) and deliver
systems to market sooner [2].

This eBook begins with an overview of the Agile Process Maturity Model (APMM),
a framework we use to provide context to the plethora of agile methodologies
available today. It then describes each of the three maturity levels in detail —
agile, disciplined agile and agility at scale — showing how they build on one
another. Then it works through an example of the development of an online
bartering system and finishes with some advice for successful agile adoption.

The Agile Process Maturity Model (APMM)
Within the software process realm, “maturity” is a loaded term, not the least
because of the Software Engineering Institute (SEI)’s Capability Maturity Model
Integrated (CMMI) [3]. A lot of good work has been done to show that agile and
CMMI can be applied together [4], and I look forward to seeing that strategy
come to fruition. However, whereas the goal of the CMMI is to provide a
framework for software process improvement, the goal of the Agile Process
Maturity Model (APMM) is much more modest — it merely strives to define a
framework that can be used to put the myriad agile processes into context.

Figure 1 shows an overview of the APMM, depicting how its three levels build
upon each other. The levels are:

1. Level 1 includes agile processes that address only a portion of the
development life cycle. Examples include Scrum and my own Agile
Modeling (AM).

2. Level 2 processes go further by covering the full agile system delivery life
cycle (SDLC). This includes disciplined agile software delivery processes,
such as Dynamic System Development Method (DSDM) and the Open
Unified Process (OpenUP).

3. Level 3 addresses disciplined agile delivery processes applied at scale,
which include tailored forms of level 2 processes as well as Enterprise
Unified Process (EUP). The scaling factors which an agile team may face
to a lesser or greater extent includes team size, physical distribution, and
regulatory compliance to name a few.

Figure 1. The agile process maturity model

The following sections describe each level in greater detail.

Level 1: Agile Software Development
Level 1 agile methods address a portion of the software development life cycle.
They conform to the values and principles of the Agile Manifesto [5, 6 written in
2001 by a group of 17 software development experts, and are typically described
as a cohesive collection of practices. Examples of Level 1 agile processes
include:

o Scrum. The focus of Scrum is project leadership and requirements
management. Scrum defines a high-level life cycle for construction iterations
(what Scrum calls “sprints”), see Figure 2, and several practices such as a
daily stand-up “Scrum” meeting, product owner, product backlog,
iteration/sprint planning and potentially shippable software.

o Extreme Programming (XP). XP is a collection of practices for software
construction, include refactoring, test-first design, pair programming, on-site-
customer, continuous integration, whole team and collective ownership.

o Agile Modeling (AM). AM is a collection of practices for light-weight modeling
and documentation, including requirements envisioning, executable
specifications, active stakeholder participation, prioritized requirements, and
prove it with code.

o Agile Data (AD). AD is a collection of practices for database development,
including agile data modeling, database testing, database refactoring, and
continuous database integration.

Figure 2. Scrum construction life cycle

Level 2: Disciplined Agile Software Delivery
Level 2 agile processes extend Level 1 to address the full system delivery life
cycle (SDLC). As the criteria suggest (see sidebar: Are You Really Agile?), they
also tend to “dial up” certain aspects of agile development, such as testing,
measurement and process improvement. Disciplined agile software delivery is an
evolutionary (iterative and incremental) approach that regularly produces high-
quality software in a cost-effective and timely manner via a risk- and value-driven

life cycle. It is performed in a highly collaborative and self-organizing manner,
with active stakeholder participation to ensure that the team understands and
addresses the changing needs of its stakeholders. Disciplined agile delivery
teams provide repeatable results by adopting just the right amount of ceremony
for the situation they face.

Examples of Level 2 agile processes include:
o Rational Unified Process (RUP). RUP is a comprehensive process

framework for iterative software delivery that can be instantiated anywhere
from a very agile form to a very traditional form as your situation warrants [5].
RUP practices include risk-value life cycle, whole team, test-driven
development (TDD), business process sketching and continuous integration.

o Open Unified Process (OpenUP). OpenUP, the definition of which is
available via open source, combines and extends practices from Scrum, XP,
AM and RUP for co-located agile teams that are building business
applications. OpenUP practices include whole team, daily stand-up meeting,
prioritized work items, risk-driven life cycle, TDD, active stakeholder
participation and continuous integration.

o Dynamic System Development Method (DSDM). DSDM is an agile delivery
process originally based on Rapid Application Development (RAD), which is
often used to develop user-interface intensive applications. DSDM practices
include prototyping, test throughout the life cycle, reversible changes and
feasibility study.

o Feature-Driven Development (FDD). FDD is a model-driven, short-iteration,
agile software delivery process. FDD practices include individual class
ownership, domain object modeling, development by feature, feature teams
and regular builds.

Figure 3 depicts a high-level view of a full agile SDLC [6], which expands upon
the Scrum construction life cycle in several important ways. First, it includes an
explicit project inception phase where you do some initial modeling, start putting
together your team, and gain initial project funding. Second, it includes parallel
independent testing to ensure that defects don’t fall through the cracks,
particularly problems associated with integration or nonfunctional requirements.
Third, it extends the product backlog concept to include not only functional
requirements but also defects and other work items such as providing feedback
on work from other teams, taking training courses, and so on. Fourth, it includes
explicit transition/release and production phases.

Figure 3. Agile system-development life cycle

Sidebar: Are You Really Agile?
A common problem in many organizations is that undisciplined “ad hoc” teams
will claim to be agile, often simply because they’re not writing any documentation
and have read an article or two about how cool agile is. Unfortunately, those ad
hoc teams often run into trouble and give actual agile teams a bad name. I
suggest the following criteria to determine whether a team is agile:

1. Working software. Agile teams produce working software on a regular
basis.

2. Regression testing. Agile teams do, at a minimum, continuous developer
regression testing. Disciplined agile teams take a Test-Driven
Development (TDD) approach.

3. Active stakeholder participation. Agile teams work closely with their
stakeholders, ideally on a daily basis.

4. Organization. Agile teams are self-organizing, and disciplined agile teams
work within an appropriate governance framework.

5. Improvement. Agile teams regularly reflect on, and disciplined teams also
measure, how they work together, and then act to improve on their
findings in a timely manner.

Several of the terms in the above criteria are underlined to indicate where your
strategy needs to be flexible. For example, some agile teams will produce
working software every two weeks, whereas others may be in a more complex
situation and may do so only every two months. Different situations require
different strategies, implying that one process size does not fit all.

Level 3: Agility at Scale
In the early days of agile, the applications where agile development was applied
were smaller in scope and relatively straightforward. Today, organizations apply
agile strategies to a broader set of projects. This is what Level 3 of the APMM is
all about —explicitly addressing the complexities that disciplined agile delivery

teams face in the real world. Figure 4 gives an overview of the eight scaling
factors of agile development.

Figure 4. Potential scaling factors for software development

Each factor has a range of complexities, and each team will have a different
combination and therefore will need a process, team structure and tooling
environment tailored to meet its unique situation. Level 1 agile processes on the
APMM work best when basically all factors are at the left-hand side (the low-
complexity side), although they can potentially be tailored to address greater
complexity with strategies from higher-level processes. Level 2 agile processes

typically assume that one or more of the factors are slightly to the right, and Level
3 agile processes have one or more factors significantly to the right (the high-
complexity side).

When it comes to tooling, many Level 1, and even some Level 2 teams, will find
that they can make do with open source tools. But, when they find themselves in
Level 3 situations, they soon discover that they need to adopt more sophisticated
tools. To succeed at scaling agile, you will need tools that integrate easily, are
sufficiently instrumented to provide the metrics required for effective governance,
support distributed development, enhance collaboration between disparate team
members, and automate as much of the work as possible to comply with
regulations.

Agile Online Bartering
The best way to understand agile software development at scale is by example.
SWA International, a fictitious company, wanted to extend its existing e-
commerce offerings by adding bartering functionality. With the current economic
times as they are, the company found that fewer people were online purchasing
products from them. Offline, SWA had noticed that some of its customers were
trying to barter, offering their services to help pay down their existing debt to
SWA. The company felt the time was ripe for online bartering.

SWA put together a team that would eventually grow to 25 people, composed of
two
subteams, one in Toronto and the other in San Francisco, plus several people
working from their home offices in other cities. The company chose to follow
OpenUP [7], a Level 2 disciplined agile process with two-week iterations. The
first iteration was spent doing initial-requirements envisioning, with four senior
business staff, four senior developers on the project, two operations staff
members and the chief technology officer (CTO).

The goals were not only to understand the scope of the new system but also to
come to stakeholder concurrence regarding what that scope was, thereby
reducing business risk. In parallel, the CTO and senior developers did high-level
architecture envisioning to identify the subsystems and their interfaces, critical
information required to split the work appropriately between the two subteams —
distributed agile teams prefer to organize themselves around the architecture
instead of around a job function (e.g., having the developers in one location, the
testers in another, the modelers in another and so on). One member of the
business staff was an expert in regulatory issues, an important issue because
SWA was entering a new line of business and publicly traded in the U.S. (hence,
Sarbanes-Oxley compliance was an issue). Two of the businesspeople became
product owners, one for each subteam, for the rest of the project. The product
owner is the person who prioritizes the requirements and provides detailed
information about the business to developers.

The second iteration focused on developing an end-to-end working skeleton of
the system to prove that the architecture actually works. To simplify this effort,
the work was performed in Toronto, the headquarters for SWA International, with
three members of the San Francisco team involved. The team built a simple Web
page that allowed an end user to select an item from a list and then make a
bartering offer for it. The offer was then persisted by the system, and an e-mail
notice was sent to the owner of the item for which the offer had been made. The
team ran load tests showing that the system worked with 500 concurrent users
for a period of 10 hours — a critical performance requirement for the system. At
the end of the iteration, they demonstrated the system to the original
stakeholders who had been involved in setting the requirements envisioning for
the previous iteration, proving that the architecture for the system worked. At the
end of the first month, they had reduced both their business and technical risks
substantially.

For the next four construction iterations, the work was split between the Toronto
and San Francisco teams, with the Toronto team focusing on the financial
processing (SWA takes a fee for each swap), tax calculation and remittance, and
management reporting, while the San Francisco team focused on the trading
functionality. Both teams needed to coordinate their work on a daily basis, with
the architecture owner on each team serving as the primary contact point for
technical issues (often putting together the right technical people on each team to
resolve an issue), and the product owners coordinating the requirements. A
person living in Maui was the “independent test team,” integrating the entire
system every day and performing exploratory testing on it to look for bugs the
developers had missed. Even though the development team was doing
comprehensive regression testing of its own, many problems still got past them,
so the defects the independent tester found were reported back to the
development teams via their shared bug-tracking system. The first version of the
system was delivered into production after three months, and subsequent
releases every six weeks (three iterations) after that.

Become as Agile as You Can Be
Many organizations have been successful at adopting agile software
development approaches in part because the greatest focus until now has been
on pilot projects or on a handful of projects within an organization. However,
successful process improvement across an entire organization can prove difficult
to implement in practice, often simply because by casting a wider net you run into
a wider range of challenges. I’ve found that the following strategies can help
increase your chances of success at improving your software process.

1. Recognize that the true goal is to improve. The reality is that nobody is
going to give you a little gold star for being agile. They might, however,
reward you for becoming more effective at system delivery. Agile

techniques can often help with this, but we need to remember that there
are still some pretty good ideas out there in the traditional community, too.

2. Have a plan. For your process-improvement efforts to be successful, you
should first determine what your goals are, what your current situation is
and what challenges you face.

3. Gain some experience. Adopt agile approaches on one or more medium-
risk pilot project(s) to gain organizational experience as well as build
expertise among your staff. It’s important to expect to run into a few
problems because pilot projects never go perfectly.

4. Explicitly manage your process-improvement efforts. A common agile
strategy is for a team to reflect regularly on its approach so as to identify
potential improvements, and then to act on those improvements. Teams
that explicitly track their progress at adopting improvements are more
successful than those that don’t [8].

5. Invest in your staff. You need to train, educate and mentor your staff in
agile philosophies, processes, practices and tooling. Focus on the people
involved with the pilots at first and train them on a just-in-time (JIT) basis.
Don’t forget senior management, project management and anyone
interfacing with the pilot team — because these individuals need to
change the way that they work, too.

Parting Thoughts
Many organizations have succeeded at applying agile at scale, and you can, too.
If you keep your wits about you and stay away from some of the rhetoric of the
Level 1 folks, you should be okay. Minimally, you want a disciplined agile system
delivery approach (Level 2) that addresses the full life cycle, not just parts of it.
Remember that you will often find yourself in a scaling situation (Level 3), and
that different teams will experience differing scaling factors, and that’s okay
because it is fairly straightforward to scale agile strategies with effective practices
and tooling. With a realistic approach to process improvement and with a bit of
help from the outside, you can increase your return on investment (ROI), quality,
stakeholder satisfaction and time to value through agility at scale.

References and Suggested Resources
1. Dr. Dobb’s Journal’s 2008 Adoption Survey.

www.ambysoft.com/surveys/agileFebruary2008.html
2. Dr. Dobb’s Journal’s 2008 Project Success Survey.

www.ambysoft.com/surveys/success2008.html
3. Capability Maturity Model Integrated Home Page. www.sei.cmu.edu/cmmi/
4. Glazer, H. , Dalton, J. , Anderson, D.J., Konrad, M., Shrum, S. (2008).

CMMI® or Agile: Why Not Embrace Both!
www.sei.cmu.edu/publications/documents/08.reports/08tn003.html

http://www.ambysoft.com/surveys/agileFebruary2008.html
http://www.ambysoft.com/surveys/success2008.html
http://www.sei.cmu.edu/cmmi/
http://www.sei.cmu.edu/cmmi/
http://www.sei.cmu.edu/publications/documents/08.reports/08tn003.html

5. Kroll, P. and MacIsaac, B. (2006). Agility and Discipline Made Easy:
Practices from OpenUP and RUP. Boston: Addison-Wesley.

6. Ambler, S.W. (2005). The Agile System Development Lifecycle (SDLC).
www.ambysoft.com/essays/agileLifecycle.html

7. The Open Unified Process (OpenUP).
www.eclipse.org/epf/downloads/openup/openup_downloads.php

8. Kroll, P. and Krebs, W. (2008). Introducing IBM Rational Self Check for
Software Teams.
www.ibm.com/developerworks/rational/library/edge/08/may08/kroll_krebs/i
ndex.html

9. IBM Agile Development — Rational Home Page.
www.ibm.com/rational/agile/

10. The Agile Manifesto www.agilemanifesto.org
11. The Principles Behind the Agile Manifesto

www.agilemanifesto.org/principles.html

About the Author
Scott W. Ambler is chief methodologist/agile with IBM Software Group, and he
works with IBM customers around the world to improve their software processes.
He is the founder of the Agile Modeling (AM), Agile Data (AD), Agile Unified
Process (AUP) and Enterprise Unified Process (EUP) methodologies. Ambler is
the (co-)author of 19 books, including Refactoring Databases, Agile Modeling,
Agile Database Techniques, The Object Primer 3rd Edition, and The Enterprise
Unified Process. He is a senior contributing editor with Information Week. His
personal home page is www.ibm.com/software/rational/leadership/leaders/#scott,
and his Agility@Scale blog is www.ibm.com/developerworks/blogs/page/ambler.

http://www.ambysoft.com/essays/agileLifecycle.html
http://www.eclipse.org/epf/downloads/openup/openup_downloads.php
http://www.ibm.com/developerworks/rational/library/edge/08/may08/kroll_krebs/index.html
http://www.ibm.com/developerworks/rational/library/edge/08/may08/kroll_krebs/index.html
http://www.ibm.com/rational/agile/
http://www.agilemanifesto.org/
http://www.agilemanifesto.org/principles.html
http://www.ibm.com/software/rational/leadership/leaders/#scott
http://www.ibm.com/developerworks/blogs/page/ambler

	Agility at Scale: Become as Agile as You Can Be
	The Agile Process Maturity Model (APMM)
	Level 1: Agile Software Development
	Level 2: Disciplined Agile Software Delivery
	Sidebar: Are You Really Agile?

	Level 3: Agility at Scale
	Agile Online Bartering
	Become as Agile as You Can Be
	Parting Thoughts
	References and Suggested Resources
	About the Author

