	Nobium d.o.o.

IV Vrbik 2

10000 Zagreb, Croatia
	[image: image1.png]nobium

ATT Design specification

Kapsch CC

Zagreb, October 2006

	VERSION

	RELEASE

DATE
	COMMENT
	AUTHOR
	VERIFICATION
	APPROVAL

	1.0
	
	Version for acceptance
	Nobium
	
	

	
	
	
	
	
	

Nobium d.o.o.

IV Vrbik 2

10000 Zagreb

Project team:

mr. sc. Mile Sikic, dipl. ing.

tel: +385-1-6129-883

fax: +385-1-6129-652

e-mail: mile.sikic@fer.hr

dipl. ing. Silvio Svecnjak

tel: +385-1-6129-883

fax: +385-1-6129-652

e-mail: silvio.svecnjak@fer.hr

dipl. ing. Andrej Dolmac

tel: +385-1-6129-956

fax: +385-1-6129-652

e-mail: andrej.dolmac@fer.hr

dipl. ing. Ivo Majic

tel: +385-1-6129-956

fax: +385-1-6129-652

e-mail: ivo.majic@fer.hr

dipl. ing. Ivan Klaric

tel: +385-1-6129-956

fax: +385-1-6129-652

e-mail: ivan.klaric@fer.hr

dipl. ing. Josip Mihel

tel: +385-1-6129-956

fax: +385-1-6129-652

e-mail: josip.mihel@fer.hr

Contents:

41
Introduction

2
Scope
5
3
Glossary
6
4
References
7
5
Overview
8
5.1
Basic Principles
8
5.2
System Architecture
10
5.2.1
Database connection configuration
11
6
System Description
12
6.1
Test Suite Processing Thread
12
6.1.1
Test Suite Run Ordering Phase
12
6.1.2
Test Case processing phase
15
6.1.3
Test Case Generator
18
6.1.4
Request Configurator
21
6.1.5
Data
23
6.1.6
Implementation
26
6.2
Request Processing Thread
27
6.2.1
RE Estimate Processor
31
6.2.2
Result Verificator
32
6.2.3
Data
33
6.2.4
Implementation
38
6.3
Simulator
38
6.3.1
Simulator as external component of Tariff tester
38
6.3.2
Simulator overview
38
6.3.3
Data
40
6.3.4
TariffModel
48
6.3.5
CallSimulator
49
6.3.6
Implementation
52
6.4
ATT Web GUI
53
6.4.1
User Management Page
54
6.4.2
Test Suite Management Page
55
6.4.3
Test Start/Schedule Page
57
6.4.4
Test Results Page
57
6.4.5
Configuration Page
60
6.4.6
Implementation
62
6.5
DB
65
6.5.1
Test Suite Processing Thread and Request Processing Thread
65
6.5.2
Simulator
66
6.5.3
Web-GUI and configuration
66
6.6
Error Resilience
76
6.6.1
Load Handling
76
6.6.2
Exception Handling
76
6.6.3
Error Protection
77
6.7
Alarming & Monitoring
78
6.7.1
Monitoring
78
6.8
Logging
80
6.9
Shutdown, Start Up and Recovery
82
6.9.1
Shutdown
82
6.9.2
Start Up and Recovery
82
6.10
Interfaces
84
6.10.1
External interfaces
84
6.10.2
Internal interfaces
90

1 Introduction

This document describes complete functionality of Automatic Tariff Tester (ATT) along with description of ATT architecture.

Purpose of this document is to present the functionality and design of ATT to KCC development team for review and approval prior to commencement of ATT implementation phase. It is also intended to be used as a base for knowledge transfer from Nobium to KCC development and maintenance team and facilitate debugging and production of software upgrades.

2 Scope

Scope of this document is specification of ATT software design, system architecture and implementation principles. Document first provides description of system architecture and basic working principles. Subsequent chapters contain detailed description of system components and interfaces, their functionality and implementation basics. Final chapters provide description of system components responsible for achieving availability requirements, error handling and recovery procedures.
3 Glossary

	Automatic Tariff Tester
	ATT
	Software intended for testing of Alcatel 8690 Rating Engine functionality

	Automatic Tariff Tester Database
	ATT DB
	Database used by Automatic Tariff Tester

	Automatic Tariff Tester Web Graphical Use Interface
	ATT Web GUI
	User interface for Automatic Tariff Tester.

	Automatic Tariff Tester Test Engine
	ATT Test Engine
	Automatic Tariff Tester main program and logic responsible for test generation, execution and result verification.

	Rating Engine
	RE
	Alcatel Rating Engine

	Test Suite
	TS
	Set of tests that are grouped together

	Test Suite definition
	TSD
	Set of parameters that uniquely define set of tests grouped together. Test Suite definition is unique. There can’t be two same Test Suite definitions.

	Test Suite run
	TSR
	Group of tests defined with Test Suite Definition that should be executed. There can be one or more Test Suite runs for a Test Suite definition, depending how many times tests defined with Test Suite definition were/should be executed.

	Test
	-
	Smallest unit of action that can be performed by Alcatel Rating Engine. One test consists of sending callculation request with some parameters to the Rating Engine end retreiwing calculation result.

	Test Case
	TC
	Same as Test. These two terms represent the same thing.

4 References

1. Functional Specification – Automatic Prepaid Tariff Tests – Phase 1, IN Alcatel 8690 Rating Engine, Version 1.1.

2. Alcatel 8690 – Rtccprep General Description, version 13

3. NumberingRequirements_5.2.3_auszug.xls document provided by O2

4. Datafill_Kapsch_061102.xls document provided by O2

5 Overview

Automatic Tariff Tester (ATT) is software intended for testing of Alcatel 8690 Rating Engine functionality. It provides functionality for defining and performing different tests against Alcatel 8690 Rating Engine and comparing results with results that are simulated by ATT itself in order to check proper functioning of Alcatel 8690 Rating Engine.

Tests that should be performed are grouped together within Test Suites. Each Test Suite can consist of one or more tests (test cases) defined by user.

ATT provides functionality for defining Test Suite where user can specify which particular set of tests should be performed within some particular Test Suite. After some test suite is defined, it can be run immediately or it can be scheduled for execution later on. Also, multiple runs of a particular Test Suite can be done (after Test Suite is defined it can be run any number of times).

After each Test Suite run, test results for each test defined within some particular Test Suite are stored into ATT DB and can be viewed through the ATT Web GUI in a form of report.

5.1 Basic Principles

Automatic Tariff Tester consists of two main parts, the Web based GUI, and the Test Engine.

Web based GUI is used for Test Suite definition and modification and starting or scheduling of Test suite runs, as well as viewing reports of Test Suite run results.

Test Engine is responsible for scheduling and execution of Test Suite runs, as well as result verification and storing of results into the ATT DB.

Overall system architecture is shown in the following figure.

[image: image2.png]Test Case
Request

Test Case.
Result

‘Application Server

Test Suite
Definitions
and
Test Suite Runs.

N

Test Suite Definitions.

Test Reports.

N TestResults

ATT Database

Figure 5.1 - Overall system architecture

Automatic Tariff Tester software runs upon two different hardware platforms. On the first one Oracle Application server is started and within the Application server ATT Web GUI is running. All users connect to the ATT Web GUI through standard Web browsers. On the other hardware platform ATT Test Engine itself is running.

Both, ATT Web GUI and ATT Test Engine are using ATT Database for information and data exchange. ATT DB can be located on any server within Local Area Network.

When new Test Suite Definition is created through the Web GUI, it’s stored directly into the ATT DB. If some Test Suit run should be started, Web GUI stores information about the Test Suite run starting time in the ATT DB.

ATT Test Engine checks periodically (check period is configurable) into ATT DB in order to see if there are some Test Suite runs that should be executed. If such Test Suite Runs are found, Test Engine reads the Test Suite definition data from the ATT DB and execution of the Test Suite run begins. During the Test Suite run execution, all test cases defined within Test Suite definition are being performed, both, on Rating Engine and internally by the Test Engine itself. Results are compared, verified and stored back into the ATT DB.

There are two different types of Test Suite Run execution that can be handled by ATT Test Engine. These are:

· Immediate execution of Test Suite Run – if a Test Suite Run Scheduled Type parameter is set to “IMMEDIATE” this Test Suite Run will be executed immediately since user is expecting the result data as soon as possible.

· Scheduled execution of Test Suite Run – if a Test Suite Run Scheduled Type parameter is set to “SCHEDULED” this Test Suite Run will be executed at scheduled time.

Test Suite Runs that have parameter Scheduled Type set to “IMMEDIATE” have higher priority than the other ones. This means that if this Test Suite Run appears, this will be the next Test Suite Run that will be executed regardless of how many other Test Suites Runs are scheduled for this point of time.
5.2 System Architecture

Internal ATT Test Engine components are presented on Figure 5.2.

[image: image3.emf]Request Processing

Thread

Test Suite Processing Thread

Test case

generator

GUI

Test Suite Run

DB

Test Case DB

Verification

results DB

Request

Configurator

Q

u

e

u

e

Alcatel RE

Result Verificator

Simulator DB

(Tariff tables DB)

Periodic check->

<-Test Suite Run ID

Test Suite Run ID->

<-Test suite params

Test case ID + Test case data

Test case ID + Test case

result data

Verification results

Tariff tables–>

<-Tariff data

CSV tariff tables

Simulator

Test Case

Response DB

Request Queue

RE Estimate

Processor

Alcatel

CORBA

Interface

Test suite data

Figure 5.2 - ATT Test Engine architecture

ATT test engine consists of the following components:

· Test Suite Processing Thread,

· Request Processing Thread,

· Simulator,

· Monitoring Thread.

Test Suite Processing Thread main task is to create parameters and requests for each Test Case that is found in a Test Suite Definition associated with a given Test Suite Run. This is done by determining all the Test Cases from the data stored in a Test Suite Definition, giving them adequate parameter values and creating the requests from these parameter values. Test Suite Processing Thread also checks periodically into the ATT DB in order to see if there are some new Test Suite Runs that should be executed.

Request Processing Thread is in charge of processing requests created by Test Case Processing Thread. Each enqueued request has to be sent to both the RE and the Simulator. Upon receiving results from RE and Simulator their values are stored into the ATT database, result comparison is performed and the result of this comparison is stored into the ATT Database.

Simulator component is in charge of simulating the work of Rating Engine and calculating the call cost based upon tariffs stored within ATT DB. After result is calculated for some test, it’s given back to the Configuration and Verification component of the ATT Test Engine for verification with results acquired from Rating Engine.

Monitoring thread is in charge for monitoring of proper work of all other components of the ATT Test Engine and, if necessary, restarting of components that stopped to work properly.

5.2.1 Database connection configuration
Both, ATT Web GUI and ATT Test engine will acquire configuration parameters from Naming Directory Service Provider in order to achieve ATT database location flexibility.

Path to the Naming Directory Service Provider will be configured in the ATT Configuration file which will be implemented as ordinary plain text ASCII file.

Whenever path to the Naming Directory Service Provider changes, ATT Configuration file needs to be changed and ATT components need to be restarted in order for new changes to take effect.

All other ATT Configuration parameters are stored and configured within ATT database and are described in chapter 6.4.5 of this document.
.

6 System Description
Following chapters describe each of the ATT software components.

6.1 Test Suite Processing Thread

The Test Suite Processing Thread is comprised out of two components:

a) Test Case Generator

b) Request Configurator,

and can be represented by the following figure:

[image: image4.emf]Test Suite Processing Thread

Test Case Generator

Request Configurator

Queue

ß

 Test Suite Run ID

Request data

Request

Queue

TestSuiteRun

table

Periodic Check

à

ß

 Test Suite Parameters

TestSuite

table

Test Suite Id

à

TestCase

table

Test Suite Id

à

ß

 Test Cases

Test Case parameters

TCVerifResult

table

REQUESTED

PendingTestSuiteRun

table

Test Suite Run ID

à

ß

 Test Suite Run Parameters

Delete ordered

Change status

CorbaReqParam

table

ConfigurationId

à

ß

 Configuration Parameters

Figure 6.1 - Test Suite Processing Thread

6.1.1 Test Suite Run Ordering Phase

Test Suite Processing Thread is responsible for Test Suite Run ordering. Choosing which Test Suite Run to execute next goes as follows:
1. When a given period, set by the administrator, expires the PendingTestSuiteRun table of the ATT database is checked for pending Test Suite Runs. Two pending Test Suite Runs can exist: Test Suite Runs scheduled for NOW (has priority) and Test Suite Runs scheduled for a given date and time.

2. Thread first checks the PendingTestSuiteRun table for Test Suite Runs scheduled for NOW, and if there are any the one that was defined earliest (the one with the earliest definition date) is ordered for execution. Go to step 5.

3. If there are no Test Suite Runs scheduled for NOW, the thread checks the ATT database if there are any scheduled Test Suite Runs ordered to be executed at this time (a Test Suite Run is ordered to be executed if its scheduled date and time are less or equal than the system’s and if its status indicates that it was not run before. If there are Test Suite Runs waiting for execution the one that is scheduled to be executed earliest is ordered for execution. Go to step 5.

4. If no Test Suite Runs (scheduled for NOW or for a given date and time) are to be ordered go to step 1.

5. After the Test Suit Run has been ordered for execution this is noted in the TestSuiteRun table and the Test Suite Run is deleted from the PendingTestSuiteRun table. This is done so that the next Test Suite Run could be ordered.

6. Start Test Case processing phase

Test Suite Run ordering phase can be represented by the following simplified flowchart:

[image: image5.emf]Any TSRs

scheduled for

NOW

Yes No

No

Any TSRs

scheduled for this

time

Order Test

Suite Run

Yes

Update DB

Test Suite Run

status

Time for

periodic DB

check expired

Start Test Case

processing

phase

Figure 6.2 - Test Suite Run ordering process flowchart

With the described Test Suite Run oredring process any Test Suite Runs scheduled for NOW are guaranteed to be executed before any Test Suite Runs scheduled for a specific date and time.

There are two possible cases in which a Test Suite Run scheduled for NOW can be delayed:

· If there are any Test Suite Runs for NOW defined before the moment when a new Test Suite Run is scheduled for NOW, that Test Suite Run’s execution is delayed for the time needed to execute all the Test Suite Runs that were defined before it

· If there are no Test Suite Runs scheduled for NOW at the moment when a new Test Suite Run is scheduled for NOW, but there is a Test Suite Run being executed (its Test Cases are being created), the new Test Suite Run execution is delayed for the time needed to finish the execution of the ordered Test Suite Run

6.1.2 Test Case processing phase

When a Test Suite Run is ordered for execution and the corresponding Test Suite ID is read from the ATT Database Test Suite Run table. A TestSuite object is then created from values read from the TestSuite table of the ATT Database. Then the Test Case processing phase begins. The Test Case processing phase consists of the following steps:

1. Determine if all Test Cases for the given Test Suite were previously generated by querying the Test Suite table of the ATT Database

· If all Test Cases were not previously generated new Test Cases are to be generated from the Test Suite parameters found in the Test Suite table of the ATT database

· If all Test Cases were previously generated (this means that user requested execution of already existing test suite), new Test Cases are to be generated from already existing Test Cases that belong to the Test Suite. The Test Case parameters are then read from the Test Case table (chapter 6.1.5.1)

2. Test Case Generator creates a new Test Case from the provided Test Suite or Test Case parameters

3. Status of Test Case Result associated with the Test Suite and the new Test Case is read from TCVerifiableResult table (chapter 6.2.3.3) (this step is done for Start-up and Recovery purposes

· if the status is “DONE” or “REQUESTED” no further processing is needed and the process is continued from step 9

· otherwise (if the entry for the Test Case Result does not exist in ATT Database) the process is continued from step 4

4. If Test Case does not already exist in the ATT Database (this is determined by querying if an entry with the same testCaseId and testSuiteId exists in the TestCase table) the new Test Case is written into the TestCase table of the ATT Database so it can be reused later (this step is done only if Test Case was generated from Test Suite parameters

5. Obtain Configuration identifier from Test Suite Run data and obtain Configuration data from the ATT database by querying the CorbaReqParam and CorbaRespParam tables. From CorbaReqParam table ReqConfigParam objects are created and from the CorbaRespParam table only the number of CORBA result parameters is read. The created objects are then stored in a list of ReqConfigParam objects; the list length is equal to the sum of request and result parameters. The list is populated so that that the position of the parameter in the list corresponds to its position in the CORBA estimate method (all places within the list that are not populated with request parameters (if there non of the request parameters occupy that position) have value NULL (this is done so that the RequestConfigurator could distinguish result and request parameter positions).

6. Request Configurator creates a Request Queue Data object (chapter 6.1.5.2) form Test Case parameters, Test Suite parameters and Configuration data

7. Request Queue Data object is enqueued into the Request Queue (chapter 6.10.2.2) and the “REQUESTED” value is written for the associated Test Case Result in the TestCaseResult table. Once a Request Queue Data object is enqueued, time of its execution depends only on the speed of RE and Simulator

8. Process from step 2 to step 7 is repeated until all Test Cases of the Test Suite are processed

9. When all Test Cases are generated this is noted in the TestSuite table so they would not have to be generated from the Test Suite parameters next time it is run (this step is done only if Test Case was generated from Test Suite parameters

10. Test Suite Run ordering phase is started again

Test Case processing phase can be represented with the following simplified flowchart:

[image: image6.emf]Get

Configuration

data

Create next

Test Case

All Test

Cases

processed

Create

Request

Enque Request

No

Start Test Suite

Run ordering

phase

Yes

Acquire Test

Suite

parameters

Test Cases

generated ?

Yes No

Acquire Next

Test Case

parameters

Create Test

Case

Write Test

Case to ATT

Database

Get

Configuration

data

Create

Request

Enque Request

All Test

Cases

processed

No Yes

DONE or

REQUESTED

?

No

Yes

Test Case

in DB?

DONE or

REQUESTED

?

No

Yes

Yes

No

Note

GENERATED

for Test Suite

Note

REQUESTED

for TCR

Note

REQUESTED

for TCR

(TCR = Teas Case Result)

Figure 6.3 - Test Case processing phase flowchart

6.1.3 Test Case Generator

Test Case Generator is responsible for creation of new Test Cases which can be done in two ways:

a) Generation from existing Test Case parameters

b) Generation from Test Suite parameters

Test Case generator can be represented with the following figure.

[image: image7.emf]Test Case Generator

New Test Case

Test Suite parameters

or

Test Case parameters

TariffModel

tables

Tariff

data

CallTimeList

tables

Date

and time

CallType

tables

CallType

data

Figure 6.4 - Test Case Generator

Test Case parameters that are dependent on the TariffModel, CallTime and CallType tables are being generated by Test Case generator based on Test Suite parameter values. Those parameters are the following:
· MSISDN
· destinationNumber
· callDate
· callTime

· callType
Actual parameter names used in CORBA requests are derived by Request Configurator component. Values of these parameters are stored in the TestCase table in ATT database which is described in the chapter 6.1.5.1.

The output of the Test Case generator is a list of Test Case parameters which are stored in Test Case object (described in chapter 6.1.5.4).

6.1.3.1 Generation of Test Cases from existing Test Case parameters

A new Test Case is created by simply copying existing input Test Case parameter values to its corresponding parameter values.

6.1.3.2 Generation of Test Cases from Test Suite parameters

When given Test Suite parameters Test Case Generator has to create one or more Test Cases by giving them parameter values derived from Test Suite parameters. Test Suite parameters and their possible values used for creating new Test Cases are the following:

· callDateTimeType – FIXED, PEAK, OFF_PEAK, WE_HOL, ALL, USER_DEFINED

· callDateTime – value used if the callDateTimeType value is “SINGLE”

· callDateTimeList – list name of date and time values used if the callDateTimeType has value “USER_DEFINED”

· callType – ALL, value to be used in Test Case (e.g. MOC)

· destinationType – SINGLE, ALL Short Codes, ALL Prefic, ALL Numbering Range, ALL DESTIN

· destinationNumber – value used when destinationType value is “SINGLE”

· usedTariffCode – SINGLE, ALL

Test Case parameters are determined in the following order:

1. MSISDN – one ore more Test Cases with different MSISDN values are generated

2. destinatioNumber – for each Test Case with a different MSISDN value one or more destinationNumber values are generated

3. callDate and callTime - determination of this parameter value can depend on the MSISDN and destinationNumber values so it’s determined after them. One or more values can be determined

4. callType – one or more values can be determined

When Test Case generation process is finished the total amount of Test Cases belonging to the given Test Suite can be described by the following formula:
NoTC = NoMSISDN * NoDestNum * NoDateTime * NoCallType

where:

· NoTC – number of generated Test Cases

· NoMSISDN – number of different tarifCode values determined

· NoDestNum – number of different destinationNumber values determined

· NoDateTime – number of different callDateTime values determined

· NoCallType – number of different callType values determined

6.1.3.2.1 Determining MSISDN Parameter

MSISDN parameter can be determined in two ways depending on the usedTariffCodeType parameter value.
· usedTariffCodeType has value “SINGLE” – the MSISDN value is simply copied from the usedTariffCode value

· usedTariffCodeType has value “ALL” – number of generated Test Cases equals the number of different tariffs that can be found in the ATT Database. For each tariffCode found in the TariffModel tables one MSISDN parameter value is read from the TariffModel tables and copied as the MSISDN value
6.1.3.2.2 Determining destinationNumber Parameter

Determination of the destinationNumber parameter value depends on the destinationType parameter value.

· destinationType has value “SINGLE” – the Test Case’s destinationNumber value is copied from the Test Suit’s destinationNumber value

· destinationType has value “ALL Short Codes” – the number of generated Test Case (for each Test Case with a different MSISDN) is equal to the number of short code numbers that can be found in the TariffModel tables

· destinationType has value “ALL Prefix” – the number of generated Test Case (for each Test Case with a different MSISDN) is equal to the number of “prefix” numbers that can be found in the TariffModel tables

· destinationType has value “ALL Numbering Range” – the number of generated Test Case (for each Test Case with a different MSISDN) is equal to the number of “Numbering Range” numbers that can be found in the TariffModel tables. For each range of numbers only one representative is chosen since this is sufficient for the Test Case to be properly processed

· destinationType has value “ALL DESTIN” – the number of generated Test Case (for each Test Case with a different MSISDN) is equal to the number of all numbers that can be found in the TariffModel tables, taking into the consideration that it is sufficient to take only one representative from a numbering range

When the destinationNumber value is determined it is subject for further reformatting as follows:

· destinationNumber begins without 0 (an F is prefixed (e.g. 11811 becomes F11811)

· destinationNumber begins with 0 (0 is replaced by 49 (e.g. 01791000 becomes 491791000)

· destinationNumber begins with 00 (00 is removed (e.g. 0088216 becomes 88216)

6.1.3.2.3 Determining callDate and callTime parameters

Determination of the callDateTime parameter value depends on the callDateTimeType parameter value.

· callDateTimeType has value “FIXED” – the Test Case’s callDate and callTime values are copied from the Test Suit’s callDateTime value

· callDateTimeType has value “PEAK”, “OFF_PEAK” or “WE_HOL” etc. – a date and time frame (of witch the start value is chosen) are acquired from the TariffModel tables by providing them with the MSISDN, destinationNumber and callDateTime values

· callDateTimeType has value “ALL” – the number of callDateTime values generated is equal to the number of different call time zones (PEAK, OFF_PEAK, WE_HOL etc.) because for each of them a date and time frame (of witch the start value is chosen) are acquired from the TariffModel tables by providing them with the MSISDN, destinationNumber and callDateTime values

· callDateTimeType has value “USER_DEFINED” – one or more callDateTime values are acquired from the ATT Database by referencing the CallTimesList and CallTimeListItem tables with the Test Suite’s callDateTimeList parameter value. From the CallTimeListItem the listDateTime value is read and copied as the callDate and callTime values – this is done for all database entries with the equivalent callDateTimeList parameter.

6.1.3.2.4 Determining callType Parameter

Determination of the Test Case callType parameter value depends on the Test Suite’s callType parameter value.

· Test Suite’s callType has value “ALL” – for each entry in the CallTypeItem table of the ATT Database a Test Case callType value is created
· Test Suite’s callType has any value different from “ALL”, that value is copied as the Test Case’s callType value
6.1.4 Request Configurator

Once all parameters of the Test Case are retrieved from the database or generated from Test Suite parameters they are used along with Test Suite parameters and configuration data as input values for the Request Configurator which creates a Request Queue Data object.

Request Configurator can be represented with the following figure.

[image: image8.emf]Request

Configurator

Request

Queue Data

Test Case

parameters

Test Suite

parameters

Configuration

parameters

Figure 6.5 - Request Configurator

Request Configurator is invoked by Test Suite Processing thread, and is given following input parameters:

· Test Suite parameters – parameters that belong to all Test Cases of the Test Suite (Test Suite Related CORBA parameters described in chapter 6.10.1.2.1.2). These parameters are provided via TestSuite object (chapter 6.1.5.3).

· Test Case Parameters – parameters determined by the Test Case generator (Test Case Related CORBA parameters described in chapter 6.10.1.2.1.1). These parameters are provided by Test Case generator via TestCase object (chapter 6.1.5.4).
· Configuration parameters – parameters read by the Thread from the CorbaReqParam and CorbaResParam tables. These parameters provide placeDesignators for CORBA Request parameters and values for common CORBA request parameters (described in chapter 6.10.1.2.1.3). These parameters are given by a list of ReqConfigParam objects (chapter 6.1.5.5).

All input parameters are mandatory since they have to be present in the CORBA estimate method call even if they are not used as simulator data.

Depending on configuration data a list of strings is populated by Test Case, Test Suite or common (acquired from configuration data) parameter values. The list is populated so that the position of the parameter in the list corresponds to its position in the CORBA estimate method (chapter 6.10.1.1) (positions correspond to those of Configuration parameter list. If the parameter is defined as an output parameter (the value in the Configuration parameter list is NULL) its value is set to NULL and otherwise its value is set according to the appropriate input parameter value.

Parameters needed for simulator request are inserted in a hashtable of string-string pairs. The Hashtable keys are identifiers of parameters and values are the corresponding parameters value. Parameters with following identifiers are inserted into the Hashtable:

· MSISDN
· destinationNumber
· callDate
· callTime

· qty2Reserve

After both list and Hashtable have been filled a new Request Queue Data object is formed and returned to the Test Suite Processing thread.

6.1.5 Data

In this chapter all the data created by Test Suite Processing Thread is explained.

6.1.5.1 TestCase table

This table is used for storing newly generated Test Case values, and for reading of already processed Test Case values.

	Column name
	Column description
	Value

	testCaseId
	Identifier of the Test Case
	LONG

	testSuiteId
	Identifier of the Test Suite the Test Case belongs to
	LONG

	callDateTime
	Date and time of day at which a call is to occur
	DATETIME

	callType
	Type of call
	CHAR[10]

	destinationNumber
	Number that is to be dialled
	STRING

	MSISDN
	MSISDN number of a tariff that is to be used
	STRING

Table 6.1 - Test Case Parameters

6.1.5.2 Request Queue Data

Each object enqueued in the Request Queue is comprised of the following parameters:

	Parameter name
	Description
	Value

	scheduleId
	Identifier of the Test Suite Run found in the Test Suite Run table
	LONG

	testCaseId
	Identifier of the Test Case
	LONG

	configurationId
	Identifier of the configuration used in the Test Suite Run
	LONG

	corbaParams
	Sorted list of string values for CORBA request method call (the list is sorted so that the position of the parameter in the list corresponds to its position in the request method. If value is NULL the string represents an output parameter, and otherwise an input parameter.
	list<string>

	simParams
	Hash table of parameters that is to be given as a request for the simulator. Hashtable is constructed out of string-string pairs and the Hashtable key is the identifier of the parameter.
	Hashtable

Table 6.2 - Request Queue Data

6.1.5.3 TestSuite object

TestSuite objects are created by the Test Suite Processing thread from the TestSuite table, and they are comprised out of following attributes:
	Attribute name
	Description
	Value

	callDateTimeType
	· Field specifies which way CallDate and CallTime parameters are specified.
	STRING

	callDateTimeList
	ID of a list containing callDateTime values.
	STRING

	callDateTime
	Specifies CallDate and CallTime parameters.
	DATETIME

	callType
	Type of Call.
	STRING

	destinationType
	Destination phone number type.
	STRING

	destinationNumber
	Destination phone number.
	STRING

	usedTariffCodeType
	Type of used tariff.
	STRING

	usedTarifCode
	Used tariff MSISDN.
	STRING

	origin
	Origin value.
	LONG

	callDuration
	Call duration in seconds
	INTEGER

	bearerId
	Bearer ID value.
	LONG

	casesGenerated
	Shows whether all Test Cases were previously generated for the Test Suite.
	BOOLEAN

Table 6.3 - TestSuite object

6.1.5.4 TestCase object

TestCase objects are created by the Test Case Generator component and they are comprised out of following attributes:
	Attribute name
	Description
	Value

	callDateTime
	Date and time of day at which a call is to occur
	DATETIME

	callType
	Type of call
	CHAR[10]

	destinationNumber
	Number that is to be dialled
	STRING

	MSISDN
	MSISDN number of a tariff that is to be used
	STRING

Table 6.4 - TestCase object

6.1.5.5 ReqConfigParam object

ReqConfigParam objects are created by the thread from CorbaReqParam table, and they are comprised out of following attributes:
	Attribute name
	Description
	Value

	paramId
	String which is used for parameter distinction in ATT. Common parameters don't have this ID (the value is NULL).
	STRING

	placeDesignator
	Shows the place of the parameter within CORBA estimate method.
	INTEGER

	paramValue
	Value of the parameter. Only common parameters (parameters with paramId=NULL) have value, otherwise the value is NULL.
	STRING

Table 6.5 - ReqConfigParam object

6.1.6 Implementation

[image: image9.emf]+TestCaseProcessingThread()

+run() : void

-generateTCs(in originTS : TestCase) : void

-generateTCs(in testSuiteId : string) : void

-createRequest(in originTC : TestSuite) : RequestQueueData

+enqueueRequest(in request : RequestQueueData) : void

-m_configParams

-m_testSuite : TestSuite

TestSuiteProcessingThread

+TestSuite()

-m_suiteId : long

-m_callDateTimeType : string

-m_callDateTimeList : string

-m_callDate

-m_callTime

-m_callType : string

-m_destinationType : string

-m_destinationNumber : string

-m_tariffCodeType : string

-m_tariffCode : string

-m_origin : long

-m_qty2Resv : int

-m_bearerId : long

-m_casesGenerated : bool

TestSuite

+TestCase()

-m_testCaseId : long

-m_testSuiteId : long

-m_callDate

-m_callTime

-m_callType : string

-m_destNumber : string

-m_msisdn : string

TestCase

+requestQueueData()

-m_scheduledId : long

-m_caseId : long

-m_corbaParams

-m_simParams

-m_configurationId

RequestQueueData

+TestSuiteRun()

-m_scheduleId : long

-m_suiteId : long

-m_scheduledDate

-m_scheduledTime

TestSuiteRun

«uses»

«uses»

«uses»

«uses»

+configParam()

-m_id : string

-m_value : string

-m_position : int

ReqCorbaParam

«uses»

Figure 6.6 - Test Suite Processing Thread class diagram

6.2 Request Processing Thread

Request Processing thread is comprised out of two main components:

a) RE Estimate Processor

b) Result Verificator,

and can be represented with the following figure:

[image: image10.emf]Request Processing Thread

RE Estimate Processor

Result Verificator

Queue

Request

Queue

CORBA

Interface /

Rating Engine

CORBA

method call

Simulator

simParams

simResult

TCVerifiResult table

VerificationResult

table

Verification

result

TariffModel tables Error table

Test Suite Run

table

CorbaRespParam

table

TCNonVerifResult

table

RE

verifResult

TCNonVerifResult

 TCVerifResult

Error table

Figure 6.7 - Request Processing thread

Request processing algorithm is comprised of the following steps:

1. The Request Queue is checked for pending requests until at least one Request Queue Data object is present in the queue

2. New Request Queue Data object (described in chapter 6.1.5.2) is taken from the queue.

3. SimParams Hashtable is taken from the Request Queue Data object and forwarded to the Simulator. The thread waits until the response from the Simulator is received (Simulator returns a verifResult object (chapter 6.2.3.1) containing simulation results.

4. CorbaParams list is taken from the Request Queue Data object and forwarded to the RE estimate Processor. The Thread waits until the response from RE Estimate Processor is received (RE Estimate Processor returns a verifResult object (chapter 6.2.3.1) containing RE results that can be verified, and a list of nonVerifResult objects (chapter 6.2.3.2).

5. Both Simulator and RE verifResults are forwarded to the Result Verificator for comparison

6. Result Verificator returns none, one or more Errors (Errors are described in chapters 6.2.3.6 and 6.2.3.7) if any occurred during verification

7. If there were one or more errors they are written into the VerificationResult table

8. Verified Test Case result is created from Simulator verifResult object, RE verifResult and written into TCVerifResult table (chapter 6.2.3.3)

· if there were one or more errors returned by the verificator the field isOK of the TCVerifResult table is reset; if there were no errors the field isOK is set

· field status of the TCVerifResult is set to “DONE”

9. NonVerifResult object returned by the RE Estimate Processor is written into the TCNonVerifResult table in the ATT database (chapter 6.2.3.4).

10. Acquire a new Request Queue Data object from the queue. If the new Request Data Item belongs to a different Test Suite Run then the previously processed Request Data Item (has a different Test Suite Run identifier) the Test Suite Run of the previously processed Request Data Item is declared processed by writing the adequate value in the TestSuiteRun table

11. Repeat from step 3. until queue is empty

12. If queue is empty the Test Suite Run of the previously processed Request Data Item is declared processed by writing the adequate value in the Test Suite Run table (this is done prevent Test Suite Run being processed more than once

13. Go to step 1

Note 1: If CORBA Interface produces an error (if RE Estimate Processor returns an adequate error code) steps 5 and 6 are skipped (since there are no RE results to verify). Verification Result is written into the VerificationResult table. TCVerifResult table is also written into (field isOK is reset, field status is set to “DONE” and only simulator results are written.
Note 2: If any attempt of writing into the ATT Database fails (if an exception occurs while writing) it is concluded that the Test Suite Run is cancelled, and there fore all Request Queue Data objects that belong to that Test Suite Run are read from the Queue, but not processed. That is every Request Queue Data object is skipped until an object with different Test Suite Run Id is read from the queue.
Tables below give an example of the Request Processing Thread input – output data dependency .
From the Request Queue Data values of scheduleId, testcaseId, and configurationId are as follows: 75; 3; 1.

Following string values are in a corbaParams list that is given in a Request Queue Data:

NULL; “01/04/2006”; “00:00”; “MOC”; “0”; “F11881”; “2”; NULL; “NULL”; “4917627959274"; “0”; “49”; “1”; “10”; “”; NULL; NULL; NULL; NULL; NULL “10”; ””; “<FIELD><NAME>bear_id</NAME><VALUE>0</VALUE></FIELD>”; NULL

SimParams Hashtable that is given to the simulator is as follows:
	Hashtable key
	Value

	MSISDN
	4917627959274

	destinationNumber
	F11881

	callDate
	01/04/2006

	callTime
	00:00

	qty”Reserve
	10

Table 6.6 - example of simParams Hashtable

Simulator returns the following verifResult object:
	Attribute name
	Value

	leafri
	tariff_H3_H4_offpeak

	qtyResv
	60

	resCred
	160

	valTime
	25200

Table 6.7 - example of verifResult object returned by simulator

CORBA estimate method return value is 0 (successful (no RE errors occurred), and from the returned values following verifResult object and nonVerifResultObjects are formed by the RE Estimate Processor:
	Attribute name
	Value

	leafri
	tariff_H3_H4_offpeak

	qtyResv
	60

	resCred
	160

	valTime
	25200

Table 6.8 - example of verifResult object formed out of returned estimate method values

	Attribute name
	String values

	BUND_IND
	“255”

	DISCOUNT
	“0”

	QTYRESV2
	“”

	RESC_SUB
	“0”

	CMDRESULT
	“”

Table 6.9 - example of nonVerifResult object out of returned estimate meethod values
Since there are no differences between simulator’s and RE Estimate Processor verifResult objects the Result Verificator returns no errors and nothing is written into the VerificationResult table.

The following data is written into the TCVerifResult table:

	Column name
	Value

	scheduleId
	75

	testCaseId
	3

	status
	1

	reLeafri
	tariff_H3_H4_offpeak

	reQtyResv
	60

	reResCred
	160

	reValTime
	25200

	simLeafri
	tariff_H3_H4_offpeak

	simQtyResv
	60

	simResCred
	160

	simValTime
	25200

	isOK
	true

Table 6.10 - example of TCVerifResult table
6.2.1 RE Estimate Processor

When RE Estimate Processor is invoked it reads the corbaReqParam list out of the Request Queue Data object and then invokes CORBA estimate method according to parameter values found in the list. In the list NULL values represent out values, and all other values represent input values for CORBA estimate method). Parameter position within the list corresponds to its place within the method call.

After CORBA estimate method finishes its return value is checked for any RE Errors (estimate method return value can be one of RE Error subtypes or a success value). If an error occurred its identifier is acquired from the Error table of the ATT Database and stored to be returned to the thread.
CORBA estimate method also fills in values of the out parameters that were given to it on invocation (these are the result parameter values some of which must be verified. Depending on their types response parameters are divided in two groups: verifiable and non-verifiable (types are read from CorbaRespParam table (if the paramId field in the table has a value the parameter is verifiable and otherwise it is not). Values of Verifiable parameters (chapter 6.10.1.1.1) are used to create a verifResult object and values of the rest (non-verifiable (chapter 6.10.1.1.2) are used to create nonVerifResult objects which are then inserted into a list. Both the verifResult object and list of nonVerifResult objects are output values of the RE Estimate processor.

Result Decoder can be represented with the following figure:

[image: image11.emf]RE Estimate

Processor

verifResult

NonVerifResult

list

CORBA result

parameters

CorbaRespParam

table

Error table

Error

code

CORBA Interface /

Rating Engine

CORBA estimate

method call

Request Queue

Data object

Figure 6.8 - Result Decoder

6.2.2 Result Verificator

Verification of RE results is performed by comparing them to the results received form the Simulator. Ccomparison is performed between simulator and RE Estimate Processor verifResult objects.

One or more errors types (described in chapter 6.2.3.7) can occur during verification as following:

· error Type 2 – if a parameter value of the RE result does not exist in the TariffModel tables

· error Type 3 – if the leafri value of RE and Simulator results are not equivalent

· error Type 4 – if the resCred value of RE and Simulator results are not equivalent

· error Type 5 – if the qtyResvd value of RE and Simulator results are not equivalent

· error Type 6 – if the valTime value of RE and Simulator results are not equivalent

For each error Result Verificator reads the specific error code from the Error table and returns the error code as output.

The Result Verificator can be represented by the following figure:

[image: image12.emf]Result Verificator

RE Result

Error Codes

Simulator Result

Tariff

data

TariffModel

tables

Error table

Error

code

Figure 6.9 - Result Verificator

6.2.3 Data

In this chapter data and tables used by the Request Processing Thread are described.

6.2.3.1 verifResult object

VerifResult objects are created by the RE Estimate Processor component and received from the Simulator. They are comprised of following attributes:
	Attribute name
	Description
	Type

	Leafri
	Tariff used for start of the request
	STRING

	qtyResv
	Quantity (time interval) that has been reserved for a request
	INTEGER

	resCred
	Reserved credit, amount spent for a request
	INTEGER

	valTime
	First Tariff validity. Remaining time (in seconds) during which tariff (LEAFRI) is still valid
	INTEGER

Table 6.11 – verifResult

6.2.3.2 nonVerifResult object

NonVerifResult objects are created by the Result Decoder component, and they are comprised of following attributes:
	Attribute name
	Description
	Type

	paramId
	Name of the parameter
	STRING

	paramValue
	Value of the parameter
	STRING

Table 6.12 – nonVerifResult

6.2.3.3 TCVerifResult table

TCVerifResult table is used for storing verifiable RE and Simulator parameters (described in chapter 6.10.1.1.1), and is comprised of the following columns:

	Column name
	Column Description
	TYPE

	scheduleId
	Identifier of the Test Suite Run
	LONG

	testCaseId
	Identifier of the Test Case
	LONG

	status
	Indicates what the current state of the request is. Can have following values:

· “DONE” (0) – set if the associated Test Case and the associated request were processed

· “REQUESTED” (1) – set if the associated Test Case request was enqueued for execution but was not executed
	BYTE

	reLeafri
	Tariff used for start of current request by the RE
	STRING

	reQtyResv
	Quantity (time interval) that has been reserved for a request by the RE
	INTEGER

	reResCred
	Reserved credit, amount spent for a request by the RE
	INTEGER

	reValTime
	First Tariff validity. Remaining time (in seconds) during which tariff is still valid returned by the RE
	INTEGER

	simLeafri
	Tariff used for start of current request the by Simulator
	STRING

	simQtyResv
	Quantity (time interval) that has been reserved for a request by the Simulator
	INTEGER

	simResCred
	Reserved credit, amount spent for a request by the Simulator
	INTEGER

	simValTime
	First Tariff validity. Remaining time (in seconds) during which tariff is still valid returned by the Simulator
	INTEGER

	isOK
	Indicates if the Test Case request processing produced any errors (value is set for no errors)
	BIT

Table 6.13 - TCVerifResult table

6.2.3.4 TCNonVerifResult table

This table is used for storing non-verifiable RE parameters (described in chapter 6.10.1.1.2), and is comprised of the following columns:

	Column name
	Column Description
	TYPE

	scheduleId
	Identifier of the Test Suite Run
	LONG

	testCaseId
	Identifier of the Test Case
	LONG

	paramName
	Name of the parameter
	STRING

	paramValue
	Value of the parameter
	STRING

Table 6.14 – TCNonVerifResult table

6.2.3.5 VerificationResult table

This table is used for storing errors that occurred during request response verification, and is comprised of following columns:

	Column name
	Column Description
	TYPE

	scheduleId
	Identifier of the Test Suite Run
	LONG

	testCaseId
	Identifier of the Test Case
	LONG

	errorId
	Identifier of the error that occurred
	LONG

Table 6.15 - VerificationResult table

6.2.3.6 Error table

The error table is used for storing error identifiers of all the errors that can occur during request result processing.

	Column name
	Column Description
	TYPE

	errorId
	Identifier of the error
	LONG

	errorType
	Type of error
	BYTE

	subtype
	Subtype of the error for a specific error type
	INTEGER

	description
	Description of the error
	STRING

Table 6.16 - Error table

6.2.3.7 Error Types

There are 7 different error types that can occur during Test Case execution and verification. Each error type can have none, one or more subtypes.
	Error Type
	Description

	0
	Unexpected reply (CORBA interface error)

	1
	RE result code != 0

	2
	Unknown parameter value received, a parameter value in the RE request response is non existent

	3
	leafri values of RE and Simulator results were not equivalent

	4
	resCred values of RE and Simulator results were not equivalent

	5
	qtyResv values of RE and Simulator results were not equivalent

	6
	valTime values of RE and Simulator results were not equivalent

Table 6.17 - Error Types

6.2.3.7.1 Error Type 0 (Unexpected reply)

Error Type 0 represents an error produced by invoking the estimate method of the CORBA interface (described in “Automatic-PP-Test-Phase_01-Alcatel-IN-Rating-Engine-1 1_EN” document). There are three error subtypes that can occur, and they are as follows:

	Error Subtype
	Description

	0
	inObject::envError

	1
	inObject::syntaxError

	2
	inObject::semanticError

Table 6.18 - Error Type 0 subtypes

6.2.3.7.2 Error Type 1 (RE Error)

Error Type 1 represents an error produced by the RE. For the list of error subtypes please refer the document “rtccprep_GD_ed_13_alcatel_07042006”.

6.2.3.7.3 Error Type 2 (Unknown parameter value)

Error Type 2 occurs if the RE Test Case Result contained an undefined parameter value (not found in the database). This Error Type has no subtypes, because the only parameter that can be verified in the database is leafri (initial Tariff used in a request).
6.2.3.7.4 Error Types 3 to 6 (Comparison errors)

Error Types 3 to 5 represent errors which occurred when a parameter value (one of which are compared) of a RE Test Case Result was different from the equivalent parameter value of the corresponding Simulator Test Case Result.

These Error Types do not have any subtypes.

6.2.4 Implementation

[image: image13.emf]+RequestProcessingThread()

+run() : void

+processReRequest(in resultString : string, in result : VerifResult) : void

+verifyResults(in reResult : VerifResult, in simResult : VerifResult, out errorCodes) : void

+writeResults() : void

+writeVerification() : void

+estimate(in requestString : string) : void

-m_request : RequestQueueData

-m_reResult : VerifResult

-m_simResult : VerifResult

-m_simulator

RequestProcessingThread

+RequestResult()

-m_leafri : string

-m_qtyResv : int

-m_resCred : int

-m_valTime : int

VerifResult

«uses»

«uses»

+requestQueueData()

-m_scheduledId : long

-m_caseId : long

-m_corbaParams

-m_simParams

-m_configurationId

RequestQueueData

+nonVerifResult()

-id : string

-value : string

nonVerifResult

«uses»

Figure 6.10 - Request Processing Thread class diagram
6.3 Simulator
6.3.1 Simulator as external component of Tariff tester

Simulator is actually external component of Tariff tester. As shown in figure 5.2, Simulator component is accessed via its member methods and is external to Request processing thread and can be easily changed if necessary (e.g when Tariff calculation algorithm changes.
6.3.2 Simulator overview
Simulator has two main components:

· TariffModel

· CallSimulator

TariffModel contains all the data about tariff codes, tariff classes, time and calendar and is used by CallSimulator to determine the price of call per second. CallSimulator is the main component that is used to calculate the total cost of the call. Relationship between these two components is depicted by the following figure.

[image: image14.png]getCost()

SIMULATOR

Tariffodel

TgetPnce() \Lresu\t

callsimulator

result

Figure 6.11 - Simulator overview

Simulator is invoked by calling its getCost() method which is given appropriate parameters for calculating total cost of the call like call start time, call duration, etc. Complete list of parameters Simulator receives is as follows:

· CALLTIME

· CALLDATE

· QT2RESV

· MSISDN

· DESTIN

These parameters are received via hash table consisting of corresponding key-value pairs. Details on how that hash table is built and sent into Simulator are described in chapter 6.1.4.
CallSimulator sends a request to TariffModel to retrieve price per second. TariffModel responds with required prices (One off price (“connection fee”), Price per minute (for a given call date and call time) and billing interval) and time until that price is valid.

If the tariff switch option is off, that price is used to calculate the cost for the whole call. However, if the tariff switch is turned on, that price is used to calculate the cost of the call until the tariff switch, and then a new request to the TariffModel is made for the rest of the conversation.

Tariff switch is a moment when billing time changes (for example, a moment when billing time is changed from “peak” to “off peak”). Every user can have the tariff switch option turned on or off. If the tariff switch option is turned off, the whole call is charged with the terms that were valid at the beginning of the call. However, if the tariff switch option is turned on, when a tariff switch occurs, the rates at which the call is charged are changed also.

After calculating total cost of the call, Simulator returns the value calculated by the CallSimulator. Result is returned as verifResult object described in chapter 6.2.3.1.
6.3.3 Data

In this chapter, data used in Simulator will be explained. Each table used in simulator is explained separately and its function in relation to equivalent table described in the document “Functional Specification Automatic Prepaid Tariff Tests – Phase 1 IN Alcatel 8690 Rating Engine, version 1.1” (this document is later referenced simply as “functional specification”).

6.3.3.1 ServiceRetailer Table

ServiceRetailer table is used for storing data about service retailers. Data for this table is contained in TOrig sheet in the “Datafill.xls” file. The table contains the following columns:

	Column name
	Column description

	s_id
	Integer, Service retailer's identification number – automatically assigned by the system

	name
	String, Service retailer's name („o2 Germany“, for example)

Table 6.19 - ServiceRetailer table

6.3.3.2 TariffClass Table

TariffClass table is used to identify the tariff class that is used in calculating the call price. Data for this table is contained in “Numbering Dokument” sheet in the “NumberingRequirements.xls” file. Table contains the following columns:

	Column name
	Column description

	tc_id
	Integer, Tariff class identification number

	tc_code
	String, Alpha-numeric field used for identifying the tariff class (for example, „AA3“)

Table 6.20 - TariffClass table

6.3.3.3 NumberType Table

This table is used to determine the number type for each number in the NumberTariffClass table. Data for this table is contained in “Numbering Dokument” sheet in the “NumberingRequirements.xls” file. Table columns are as follows:

	Column name
	Column description

	nt_id
	Integer, Number type identification number

	description
	String, Short description of the number type

Table 6.21 - NumberType table

6.3.3.4 Datafill Table

Datafill table is used to fill fields in NumberTariffClass table with user defined values. User can define certain strings that are replaced with appropriate numbers. Then, Datafill table is used like a lookup table to replace all occurrences of datafill strings in NumberTariffClass table with appropriate values. Data for this table is retrieved from DatafillValues.xls file provided by administrator, but it can also be administered via WEB GUI by administrator user directly. Table columns are as follows:

	Column name
	Column description

	datafill_name
	String, datafill value to be replaced. For example, “MSISDN”.

	datafill_value
	String, string with which all occurrences of datafill_name will be replaces. For example, “2345678”.

Table 6.22 Datafill table

6.3.3.5 NumberTariffClass Table

NumberTariffClass table is used to determine the tariff class id (tc_id) for a given DESTIN and/or NumberType values. This table is equivalent to „Numbering Dokument“ sheet in the „NumberingRequirements.xls“ file. Table contains the following columns:

	Column name
	Column description

	Shortcode
	String, short code of the dialled number

	PrefixedNumber
	String, Dialed number + Prefix

	NumberingRange
	String, Dialled number

	ParsedShortcode
	String, Shortcode field with parsed datafill values; value of this field is determined based on the value of the Shortcode field and the value of the corresponding field in Datafill table

	ParsedPrefixedNumber
	String, PrefixedNumber field with parsed datafill values; value of this field is determined based on the value of “PrefixedNumber” field and the value of the corresponding field in Datafill table

	ParsedRangeStart
	String, NumberingRange field with parsed datafill values (start of the range if the range with two values is defined); value of this field is determined based on the value of “NumberingRange” field and the value of the corresponding field in Datafill table

	ParsedRangeEnd
	String, NumberingRange field with parsed datafill values (end of the range if the range with two values is defined); value of this field is determined based on the value of “NumberingRange” field and the value of the corresponding field in Datafill table

	nt_id
	Integer, Number type ID

	tc_id
	Integer, Tariff class identification number

Table 6.23 - NumberTariffClass table

6.3.3.6 Tariff Table

Tariff table is used for storing data about tariff models provided by a service retailer. Data for this table is contained in TOrig sheet in the “Datafill.xls” file. For example, in the functional specification, seven different tariff models are described for example, „tc3 – LOOP Classic“, „tc5 – Tchibo prepaid“, etc...

Tariff table contains the following columns:

	Column name
	Column description

	t_id
	Integer, Tariff table's identification number – automatically assigned by the system

	s_id
	Integer, Identification number of service retailer the tariff is defined for

	t_code
	String, Tariff code (for example, „tc3“)

	name
	String, Tariff name (for example, „tc3 – LOOP Classic“)

Table 6.24 - Tariff table

6.3.3.7 Orig Table

Orig table has the same purpose as the table „TOrig“ in the functional specification. Its main purpose is to determine the tariff model for a given MSISDN. Table columns are as follows:

	Column name
	Column description

	msisdn
	String, MSISDN – used to identify a user

	t_id
	Integer, Tariff model's identification number used to identify user's tariff model defined in Tariff table

	tariff_switch
	Boolean, Boolean value used to determine if a user has tariff switch enabled or now (allowed values are „true“ or „false“)

	c_id
	Integer, identification number of calendar being used for this MSISDN

	s_id
	Integer, service retailer identification number

Table 6.25 - Orig table

6.3.3.8 Calendar table

Calendar table has the same purpose as the “TCalendar” sheet in the file “Datafill.xls”. This sheet is divided into two tables in database: Calendar table is used to define calendars while day types are stored in DayTypes table. Calendar table has the following columns:

	Column name
	Column description

	c_id
	Integer, calendar identification number – automatically assigned by system

	s_id
	Integer, service retailer identification number for which this calendar is defined

	name
	String, calendar name

	year
	Integer, year for which this calendar is defined

Table 6.26 Calendar table

6.3.3.9 DayTypes Table

DayTypes table has the same purpose as the TCalendar table in the functional specification. Data for this table is contained in “TCalendar” sheet in the “Datafill.xls” file. It is used to determine the day type for a given date. Table columns are as follows:

	Column name
	Column description

	c_id
	Integer, calendar identification number

	dt_id
	Integer, Day type identification number (refered to as „DayType“ in functional specification)

	date
	Date, Date for which this day type is applied

Table 6.27 - DayTypes table

6.3.3.10 TimeFrameClass Table

TimeFrameClass table is used to group a number of time frames together. This enables the user to define timeframes like “08:00:00-10:59:59&16:00:00-21:59:59”. It is possible to group any number of timeframes together. Data for this table is contained in “TTime” sheet in the “Datafill.xls” file. Table columns are as follows:

	Column name
	Column description

	tfc_id
	Integer, TimeFrameClass identification number – automatically assigned by the system

	tfc_num
	Integer, TimeFrameClass number used in .csv files

Table 6.28 TimeFrameClass table columns

6.3.3.11 TimeFrame Table

TimeFrame table is used to determine all the timeframes on a given date for a given tariff identification number (t_id), day type (dt_id) and time frame class identification number (tfc_id). Also, time frame class identification number (tfc_id) is used to group time frames together. This implementation is used to enable the definition of additional time frames. Data for this table is contained in “TTime” sheet in the “Datafill.xls” file. Table columns are as follows:

	Column name
	Column description

	tf_id
	Integer, TimeFrame identification number – automatically assigned by the system

	tfc_id
	Integer, TimeFrameClass identification number for this time frame

	dt_id
	Integer, Day type identification number

	t_id
	Integer, Tariff identification number

	tf_from
	Time, Time at which the time frame starts

	tf_to
	Time, Time at which the time frame ends

	tf_num
	Integer, Used for sorting the time frames of the same day type

Table 6.29 - TimeFrame table

6.3.3.12 BillingTimeType Table

BillingTimeType table is used to define groups of time frames which are grouped together using the BillingTime table (see next chapter). “billing time type” defines the period of the day which is used in determining the call price per minute. For example, in the functional specification, billing times are „peak“, „off-peak“ and „weekend and german holidays“. Data for this table is entered manually in the database. Table columns are as follows:

	Column name
	Column description

	btt_id
	Integer, BillingTimeType identification number – automaticalliy assigned by the system

	type_name
	String, Billing time type name (for example, “peak”, “off-peak”, “WE_Holiday”, ...)

Table 6.30 - BillingTimeType table

6.3.3.13 BillingTime Table

BillingTime table is introduced to group time frames of a given tariff and tariff class into the billing time groups. This table has the same purpose as the TCode table in the functional specification. This way, additional billing times can be defined. Table columns are as follows:

	Column name
	Column description

	bt_id
	Integer, BillingTime identification number – automatically assigned by the system

	tfc_id
	Integer, Time frame class identification number

	t_id
	Integer, Tariff identification number

	tc_id
	Integer, Tariff class identification number

	btt_id
	Integer, Billing time name type identification number

	alcaltel_tariffname
	String, Tariff name defined in Alcatel 8690 Rating engine. For example, „tariff_AAA2_peak“

Table 6.31 - BillingTime table

6.3.3.14 Price Table

Price table is used to define call price per minute for a given billing time and tariff. This table is equivalent to the „Tariff Codes National“ sheet in the NumberingRequirements.xls document. Table columns are defined as follows:

	Column name
	Column description

	bt_id
	Integer, BillingTime identification number – automaticalliy assigned by the system

	tc_id
	Integer, Tariff class identification number

	price_per_min
	Double, Price of call per minute for a given billing time and tariff

	one_off_price
	Double, One-off price, also known as „connection fee“

	bi_start
	Integer, Billing interval start. For example, if the billing interval is 60/10, billing interval start is 60.

	bi_end
	Integer, Billing interval end. For example, if the billing interval is 60/10, billing interval end is 10.

Table 6.32 - Price table

6.3.3.15 Input Files

The following input files are used to import tariff data into the ATT software:

	XLS Filename and sheet
	File/sheet description

	DataFill.xls – sheet “TCalendar”
	used for inserting data into DayTypes table

	DataFill.xls – sheet “TTimeRange”
	used for inserting data into TimeFrames table

	DataFill.xls – sheet “TCode”
	used for inserting data into BillingTime table

	DataFill.xls – sheet “TOrig”
	used for inserting data into Orig table

	NumberingRequirements.xls – sheet “Numbering Dokument”
	used for inserting data into NumberTariffClass, TariffClass amd NumberType tables

	NumberingRequirements.xls – sheet “Tariff Codes national”
	used for inserting data into Price table

Table 6.33 - Input files used for configuring the system
Requirement on format of input files are specified in detail in “ATT Reference Data Manual” document.

After uploading all the input files, each file is parsed with appropriate script and then its data is inserted into simulator database tables. Simulator does not use input files directly; it uses only parsed data from database tables. Therefore, correctly formatted input files are of the utmost importance. Each value in input file that is not compliant to the rules defined in the previous chapters will be regarded as ill-defined and reported as error in input files.
ATT design specification is based on the last known format of Tariff tables provided by O2 as referenced in 4. If any changes to Tariff tables format are introduced at later time ATT software based on this design may not be compatible with the changes and modifications to scripts for parsing input files or even to ATT software may be necessary for supporting the change of Tariff tables format.

Hence, it is essential for all data in input files to be consistent and well formed according to input files specification given in “ATT Reference Data Manual” document. Data in all cells has to be well structured and in accordance with the specified requirements so that efficient and error-prone input file parsing can be implemented.
6.3.4 TariffModel

6.3.4.1 Algorithm for Determining Call Price Per Second

6.3.4.1.1 Input Data

·
CALLDATE - date at which a call occured

·
CALLTIME - time of day at which a call occured

·
CALLTYPE - type of call

·
MSISDN - MSISDN of the calling number

·
ORIGIN - "49" for HPLMN MOC, "00" for MTC

·
DESTIN - dialled number

·
QT2RESV - call duration in seconds ("Quantity to reserve")

·
BEARER_ID - "voice", "data" or "fax"

6.3.4.1.2 Output Data

·
LEAFRI – Alcatel tariff name

·
Billing interval

·
Costs per minute

·
One-off price

6.3.4.1.3 Algorithm

1. Retrieve tariff identifier (t_id) for a given MSISDN using Orig table

2. Retrieve tariff class (tc_id) for a given DESTIN using TariffClass table

3. Retrieve day type identifier (dt_id) for a given date using DayTypes table

4. Retrieve time frame class identifier (tfc_id) for a t_id retrieved in step 1 (from Orig table) and dt_id retreived in step 3 (from DayTypes table)

5. Retrieve billing time identifier (bt_id) for tfc_id retrieved in step 4 and tc_id retrieved in step 2 (from TariffClass table)

6. Retrieve price_per_min, one_off_price, bi_start (billing interval start) and bi_end (billing interval end) from Price table using bt_id from step 4 and tc_id from step 2

6.3.5 CallSimulator

Billing interval is basis for all call cost calculation. Billing interval consists of two numbers and is written in the format: bi_start/bi_end. All calls shorter than bi_start are charged as if they lasted bi_start seconds and all calls longer than that are charged as if they lasted bi_start+n*bi_end. Parameter n is defined as minimal n that is needed so that this is true:

[image: image15.wmf]bi_start+nbi_endcall_length

×£

.

6.3.5.1 Algorithm for Calculating Total Cost of a Call without Tariff Switch

CallSimulator sends a request to TariffModel to retrieve the price_per_minute, one-off price and billing interval. Price is than calculated as follows:

1. One-off price is charged at the begining of the call (“connection fee”) if the one-off price is greater than zero

2. If the call is shorter or lasts as long as bi_start,

[image: image16.wmf]price_per_minute

60

bi_start

g

is charged

3. If the call is longer than bi_start, than

[image: image17.wmf]bi_startcall_lengthbi_startprice_per_min

ute

price_per_minute1

60bi_endbi_end

+floor+

æöæö

-

ç÷ç÷

èøèø

gg

is charged.
6.3.5.2 Algorithm for Calculating Total Cost of a Call with Tariff Switch

If the tariff switch option is turned off, call cost is always calculated by the tariff at which the call started. If the tariff switch option is turned on and billing time is changed during the phone call, tariff is switched.

For example, if the call started at 15:55:00 and lasted for 7 minutes and time peak billing time is until 15:59:59, than tariff switch will occur at 16:00:00.

If the tariff switch is turned on, the price is calculated as follows:

1. Price for the call is calculated up to the tariff switch as defined in the previous chapter. Price for the last time interval before the switch is calculated only for the part of the interval that was before the switch.

2. After the switch, new tariff is applied. Algorithm for calculating the call cost is the same as defined in the previous chapter. Time intervals (bi_start and bi_end) are used the same as in previous chapter, but only part of the interval that is used in the new tariff is used for calculating tha cost.

Let's describe this by example:

· Tariffs are defined as follows:

· tariff1 until 17:59:59, billing interval 60/1, price_per_minute 50 cents, one-off price 10 cents

· tariff2 from 18:00:00, billing interval 60/10, price_per_minute 10 cents, one-off price 20 cents

· Call started at 17:58:37 and lasted for 180 seconds

· Price is than calculated as follows:

1. at call start, 10 cents is charged

2. for the first 60 seconds, 50 cents are charged (17:59:37)

3. after that, for the next 22 seconds, 18 cents are charged (1/60)*50, rounded to nearest

4. tariff switch occurs at 18:00:00

5. call started 83 seconds, ago, so bi_end of the tariff2 is used continue calculating the price

6. for the next 90 seconds, 15 cents are charged ((10/60)*10)*9

7. for the next 7 seconds, 2 cents are charged because billing interval is 10 seconds

8. Total price of the call is 10+50+18+15+2 =95 cents
Also, let’s review another example:

· Tariffs are defined as follows:

· Tariff1 until 17:59:59, billing interval 60/1, price per minute 50 cents, one-off price 10 cents

· Tariff2 from 18:00:00, billing interval 60/10, price per minute 10 cents, one-off price 20 cents

· Call started at 17:59:30 and lasted 180 seconds

· Price is than calculated as follows:

1. at call start, 10 cents are charged (one-off price)

2. for the first 30 seconds, 25 cents are charged (price per minute is 50 cents, but only 30 seconds are used, so (30/60)*50 is charged)

3. call started 30 seconds ago, so the next 30 seconds are charged under tariff2, first period in billing interval (because call started less than 60 seconds ago) is used. So that period is charged additional 5 cents ((30/60)*10)
4. for the next 120 seconds, 20 cents are charged (12 slices of 10 seconds each, (10/60*12)*10)

5. Total price of the call is 10+25+5+20=60 cents

6.3.6 Implementation

[image: image18.png]Simulator
-m_tarifiodel - TarifiModel CaliCostData
- ciimtr Catomso s ot i
FcomRepmnie o sorey v oo by
Ry v
o . oy
| 7 :
i
Tatioat |
R weon |
it ! !
ik I
g
s Carsimer
e e e e
et [
. [
! [vate
! PG CaIOox BT DTG sy st i oo
! Sy
! !
- \ |
| |
i |
! !
i i
i
—_—
e
1 1 interval : Bilinginterval
g ot o
e
S ores
Finenagrs. o ey

CsVParser

T Tcalendar Stng

m_time :string

m_tcode: string

m_torig :sting

m_numbeing - siing

m_codesNalional - sting

m_bilingTimeTypes : sirng

CSVParser(n calendar, in fme, 11 tcode. I o1g,In number, i codes. 7 blime)
f+parseT Calendar(n lename - siing) int
|+parseTTimelin lename - sring) In.
parseTCoda(in flename : sting) - int
parseTOrign flename : string) nt
parseNumbering(in flename :sting) : int
f+parseCodesiational(in lename - siing) int
|+parseBilingTimeTypesiin flename - sing): int
parseAll() - int

Figure 6.12 Simulator class diagram
Simulator is implemented using these classes:

· CostData class – used for storing data about cost of call per minute

· CallCostData – used for storing data about cost of a specific call

· BillingInterval – used for storing billing intervals

· Simulator class – this is the main simulator class that is used by other classes in Tariff Tester

· TariffModel class – used by CallSimulator for determining cost data per minute for a given phone call

· CallSimulator class – main class used for calculating total call cost

· Input Files Parser scripts – used for parsing input files and storing retrieved data into the database

When Simulator receives input parameters, it parses them and generates a request to CallSimulator which calculates total call cost using calls to TariffModel class for retrieving call cost per minute. When Simulator receives total call cost data from CallSimulator, it encodes it to the appropriate format and returns the value.

Input Files Parser scripts are invoked through Web GUI and given the input files, they update the database with the data retrieved from input files. Each script returns the integer error code. If the returned integer is zero, no error occurred while parsing the file. If an error was detected file will not be parsed into the database.

6.4 ATT Web GUI

GUI is web-based. Structure of its main page is shown on the following figure:

[image: image19.emf]Web GUI

Header

Footer

Menu

Central

Figure 6.13 - Structure of GUI interface main page
The picture represents main web page which has four parts: header, footer, menu, and central part. According to the state of GUI (what task the user is currently performing), central part can be one of the following:

· Users management page,

· Configuration page,

· Test suites management page,

· Test schedule page, or

· Test results page.

Except the explained main page, there is Login page. It is conceptually very simple and its purpose is to ensure user authentication. According to the authenticated user and his permissions, after login succeeds, user is presented with appropriate options in menu part of the main page.

Each of mentioned main page parts has its distinctive purpose and is explained in detail in the remainder of this chapter.

6.4.1 User Management Page

User management page is composed of two sections. They are:

· Users list section (ULS)

· User details section (UDS).

ULS contains the list of currently configured user accounts. For every account there is one record in the list. Each record contains username, first and last name of the corresponding account.

User details section displays detailed information about user account currently selected in ULS or currently added to ULS. It contains the following data:

· Username

· Password (protected with "*" signs)

· First name of the user

· Last name of the user

· Permissions (can be one or more of the following)

· Administrator (can manage users, change the configuration of the Tariff Tester software and delete Test Suites and Scheduled tasks from other users)

· Can manage Test Suites

· Can schedule Test simulations

· Can view Test results

· Can log in to system

Except for viewing purposes, UDS can be used to change user details and permissions.

User, once added to the system, cannot be deleted from it, without deleting user’s test suites and test runs. However, it is possible to restrain all user rights by disabling user’s ability to log in to system.

6.4.2 Test Suite Management Page

Test suite management page is composed of two sections:

· Test suites list (TSL) section,

· Test suite details (TSD) section, and

· Test schedule (TSS) section.

TSL contains list of currently defined Test suites and means for their addition and deletion.

Deletion is only allowed if suite in question wasn't already used in any scheduled, running, or completed test run. If it was used in any scheduled or completed test run, user is presented with a choice: he can delete suite and ALL corresponding (both scheduled and completed) test runs, or he can leave everything as it was. Currently executing test suite cannot be deleted.

Change of the test suite isn't allowed, because it can lead to data inconsistency. However, user can create new test suite by changing some parameters of the existing one.

TSD section displays detailed information about currently added or currently selected suite in TSL. It contains the following fields:

· SuiteName – test suite id

· CallDate, CallTime – date and time of the call occurrence. Field is realized as a drop-down menu which offers the following options:

· FIXED – enables manual input of fixed date/time parameter through additional input field

· LIST - set of predefined (in Configuration page) date-time lists is offered through additional drop-down list.

· Set of strings which aren't "FIXED", "LIST", or "ALL". They designate suffixes of Alcatel tariff names (e.g. PEAK, OFF_PEAK, WE_HOL)

· ALL – means one automatically entered DateTime value for every suffix of Alcatel tariff name (e.g. PEAK, OFF_PEAK, WE_HOL).

· CallType – Field is realised as a drop-down menu and displays the following options:

· Set of strings which aren't "ALL". It designates one of the values listed in CallTypeItems table (e.g. MOC, RMOC, MTC).

· ALL – means one callType value for each specified value in CallTypeItems table

· Destination – dialled numbers. Field is realised as drop-down menu and can have following values:

· SINGLE – individual number. In this case additional drop down list is provided to specify which number will be used. List contains only the set of valid numbers.

· ALL Short Codes – all numbers from "Short Codes" number set.

· ALL Prefix – all numbers from "Prefix" number set.

· ALL Numbering Range – all numbers from "Numbering Range" number set.

· ALL – all numbers from "Short Codes", "Prefix" and "Numbering range" number sets.

· UsedTariffCode – MSISDN number. List of available MSISDN numbers can be changed through the Configuration page. Field is realised as drop-down menu and offers following choices:

· SINGLE Tariff Code – single MSISDN. In this case additional drop-down menu is provided specifying which MSISDN will be used.

· ALL Tariff Codes – one MSISDN is automatically chosen for each TarrifCode.

· Origin – call origin. List of available options can be changed through the Configuration page. Field is realised as drop-down menu and offers only available choices:

· CallDuration – call duration in seconds.

· BearerID – list of available options can be changed through the Configuration page. Field is realised as drop-down menu and offers only available choices:

TSS section of Test suite management page enables quick scheduling or starting for currently created test suite. It is displayed only for newly added suites and presents user with the following options:

· Test suite without execution – only test suite will be created. Execution will be started/scheduled later through Test start/schedule page.

· Immediate execution – Test suite will be started immediately.

· Scheduled execution – Test suite will be executed at scheduled time which is entered through additional input box.

6.4.3 Test Start/Schedule Page

Test start/schedule page consists of four sections:

· Test suites list (TSL) section,

· Scheduled tasks list (STL) section, and

· Scheduling data (SD) section.

TSL contains list of currently defined Test suites. Its contents can be changed only through Test suite management page.

STL contains one record for each started/scheduled and not completed task. This record consists of the following attributes:

· TaskID – automatically generated task ID

· SuiteName – ID of the test suite which is run under this task

· Task Start/Schedule time – start time (if exists) or scheduled time (for scheduled tasks

· TaskState – designates one of two possible task states: "In Progress", or "Scheduled".

List is sorted according to the task start/schedule time, starting from oldest tasks.

SD enables start/schedule of currently selected item in TSL. It contains following options:

· Immediate execution – Test suite will be started immediately.

· Scheduled execution – Test suite will be executed at scheduled time which is entered through additional input box.

When test suite is started/scheduled, it is added in STL. STL has means for deleting tasks that are not currently executed and canceling tasks that are.
6.4.4 Test Results Page

Test results page consists of four sections:

· Tasks list (TL) section,

· Selection filter (SF) section

· Results display (RD) section, and

· Test Cases List (TCL) section

TL has exactly same form as STL in Test schedule page. Only difference is type of items showed in the list. While STL shows only not completed tasks, TL shows all (Completed, In Progress, and Scheduled) of them.

TCL lists test cases belonging to the currently selected task in TL and already executed by ATT. Which test cases are displayed depends on filter configuration, which is explained later in this chapter. For each test case the following data is shown:

· CallDate, CallTime – date and time of the call occurrence.

· CallType

· Destination – dialled number.

· UsedTariffCode – MSISDN number.

· Origin – origin of the call

· CallDuration – call duration in seconds.

· Result – test result. Can be one of the following:

· OK - the result calculated by RE and the result calculated by ATT are equal in all their parts

· NOK - the result calculated by RE and the result calculated by ATT have at least one difference

· ERROR – error occurred during execution

· Details – this is a link which leads to a page showing all details about a single TestCase. These details include all the data sent to RE through CORBA interface, all data sent to ATT Simulator and all errors which occurred during execution of the TestCase.

RD section displays summary data about test cases currently displayed in TCL. If the task is completed the following information is shown:

· TaskStatus – Completed

· SuiteName – name of the executed test suite

· StartDate, StartTime – timepoint when execution started (or was scheduled)

· CallDate, CallTime – date and time of the TestSuite call occurrence. If CallDate and CallTime are set to user defined list, name of the list is displayed.

· NrQueries – number of sent requests

· NrResponseOK – number of valid replies (Result code is 0)

· NrResponseNOK – number of invalid replies (Result code isn't 0)

· NrErrors – number of requests which caused exceptions

· NrReErrors – number of requests which caused Rating Engine exceptions (RE Result code isn't 0)

· NrParmNOK – number of results with unexpected parameter (e.g. result with unknown Alcatel Tariff Name)

· NrLeafriOK – number of results with tariffs as expected

· NrLeafriNOK – number of results with tariffs not corresponding to expectation

· NrResCredOK – number of results with price as expected

· NrResCredNOK – number of results with price not corresponding to expectation

· NrQtyResvOK – number of results with expected time interval

· NrQtyResvNOK – number of results with time interval not corresponding to expectation

If the task was not started, only first three items of information are shown (TaskStatus, SuiteName, StartDate-StartTime). If the task was started and was only partially completed, all items are shown, but they contain summary information for completed test cases only.
SF section of the Test results page contains filtering options. They apply on the contents of the TCL and RD section and are used to reduce the amount of shown and obtained data.

Test cases on the result page (TCL section) can be filtered according to the value of the following properties (values in brackets are specified available filter types for every property):

· CallDate, CallTime (EXACT_MATCH, RANGE)

· CallType (EXACT_MATCH)

· Destination (EXACT_MATCH, WILDCARD)

· TariffCode – MSISDN (EXACT_MATCH, WILDCARD)

· Origin (EXACT_MATCH)

· CallDuration (EXACT_MATCH, RANGE)

· BearerID (EXACT_MATCH)

· ResultCode (EXACT_MATCH, RANGE)

· BundleIndex (EXACT_MATCH, RANGE)

· LEAFRI_RE (EXACT_MATCH, WILDCARD)

· ReservedQuantity_RE (EXACT_MATCH, RANGE)

· ReservedCredit _RE(EXACT_MATCH, RANGE)

· VALTIME_RE (EXACT_MATCH, RANGE)

· LEAFRI_ATT (EXACT_MATCH, WILDCARD)

· ReservedQuantity_ATT(EXACT_MATCH, RANGE)

· ReservedCredit _ATT(EXACT_MATCH, RANGE)

· VALTIME_ATT(EXACT_MATCH, RANGE)

· All Non-comparable Test Case Result properties (EXACT_MATCH, WILDCARD).

Except listed filtration parameters, two additional parameters will be used:

· Parameter which reduces display only to successive Test Cases (marked with OK)

· Parameter which reduces display only to failed Test Cases (marked with NOK or ERROR)

If filtration process uses more than one filtration parameter result is a list of Test Cases satisfying ALL of them.

Filtration process, except influence to the TCL, affects RD. This is because RD represents summary of the data displayed in TCL.

6.4.5 Configuration Page

Configuration page can be accessed only by an administrator. It is used for configuration parameters administration and consists of three sections, each displaying only part of configuration data. Data displayed in each section doesn't overlap. Basically, configuration data is split in order to avoid simultaneous input of mutually dependant information. Sections are as follows:

· Input files loading section – enables upload of input excel datasheets (files format is defined in “ATT Reference Data Manual” document):

· Section enabling view/change of ATT software configuration parameters:

· Database Check Period – period (in seconds) of database check. ATT lets this period of time passes before it checks for newly scheduled/started test suites in the database.
· CORBA IP – CORBA server IP address
· CORBA Username – User which connects to CORBA server
· CORBA Password – His password
· CORBA Port – CORBA server TCP port
· Section enabling CORBA Request parameters specification. Following properties can be adjusted:

· Constant parameters, their designators in CORBA request, and their values

· Designators of the Test Suite- and Test Case Related parameters

· Parameter order in the CORBA request

· Section enabling CORBA Response parameters specification. Following properties can be adjusted:

· Non verifiable attributes and their designators.

· Designators of the verifiable attributes.

· Parameter order in the CORBA request for both verifiable and non verifiable attributes.
· Section enabling log entries visualisation.
· Section enabling view/change of user defined data (ranges):

· Call Times Predefined Lists – user defined lists of timestamps. They are used for setting CallTimeDate suite attribute. User can only add new lists and delete lists which weren't already used in any Test Suite.

· Origin Predefined Values - set of values which can be used as Origin. User can only add new values and delete values which weren't already used in any Test Suite.

· BearerID Predefined Values - set of values which can be used as BearerID. User can only add new values and delete values which weren't already used in any Test Suite.

· CallType Predefined Values - set of values which can be used as CallType. User can only add new values and delete values which weren't already used in any Test Suite.

· Section enabling view/change of default Test Suite parameters:

· Default Suite Name – value can include the following placeholders:

· %u – current user

· %d – current date

· %t – current time

· Default CallDate Time Type – value can be one of the following:

· FIXED –fixed date/time parameter specified in next field

· LIST - set of predefined (in Configuration page) date-time lists is offered through additional drop-down list.

· Set of strings which aren't "FIXED", "LIST", "NOW", or "ALL". They designate suffixes of Alcatel tariff names (e.g. PEAK, OFF_PEAK, WE_HOL)

· ALL – means one automatically entered DateTime value for every suffix of Alcatel tariff name (e.g. PEAK, OFF_PEAK, WE_HOL).
· NOW – current timestamp will be used.
· Default CallDate Time
 - if Default CallDate Time Type is set to "FIXED", this value can be set to any timestamp.

· Default CallType – one of the values specified in Call Types Predefined Values or "ALL".

· Default Destination Type

· SINGLE – individual number. In this case actual default destination is entered in the Default Destination Number field.

· ALL Short Codes – all numbers from "Short Codes" number set.

· ALL Prefix – all numbers from "Prefix" number set.

· ALL Numbering Range – all numbers from "Numbering Range" number set.

· ALL – all numbers from "Short Codes", "Prefix" and "Numbering range" number sets.

· Default Destination Number - if Default Destination Type is set to "SINGLE", this value can be set to any valid destination number.

· Default TarrifCode Type

· "SINGLE" – single MSISDN. In this case actual MSISDN is entered in Default TarrifCode field.
· "ALL" – one MSISDN is automatically chosen for each TarrifCode.

· Default TarrifCode - if Default TarrifCode Type is set to "SINGLE", this value can be set to any valid MSISDN number.

· Default Origin - one of the values specified in Origin Predefined Values.
· Default BearerID - one of the values specified in BearerID Predefined Values
· Default Call Duration – integer number representing duration in seconds.

Every time user changes configuration parameters, it is required to restart ATT Engine in order for changes to take effect. User is informed about this fact by a message displayed before him after he successfully changes configuration.

6.4.6 Implementation

Web GUI is implemented as Java-based server side Web application. Its basic implementation concept is shown in the following figure:

[image: image20.emf]Display layer (JSF

pages)

Bussiness Layer (set of

JavaBeans)

Environment

Abstraction

Layer

Client Side

ATT Database

Automatic Tariff

Tester

Config

uration

file

Database

Abstraction

ATT

Abstraction

Configuration

File

Abstraction

Login page

Users page

Configuration page

Test Suites page

Test Schedule page

Test Results page

Logged User

Current

User&Privileges

Data

store/retrieval

Config file

read/change

ATT

notification

Login

data/actions

User

management

data/actions

Configuration

data/actions

Test suites

management

data/actions

Test schedule

management

data/actions

Test results

management

data/actions

Test Results Manager

User Manager

Configuration Manager

Test Suites Manager

Test Scheduler

Test Case page

CSV

Parser

Figure 6.14: Basic implementation concept of the Web GUI component

GUI implementation consists of three layers:

· Display layer,

· Business layer, and

· Environment abstraction layer.

Display layer is set of JSF (Java Server Faces) pages and it describes look&feel of the web application.

Business layer is set of Java Beans. Every Bean encloses program logic for the corresponding JSF page and essentially Beans don't communicate between themselves. Only exception is LoggedUser Bean and communication with it is necessary because every bean must be aware of the current user's permissions.

CSV Parser is only non-bean object in this layer. It encloses functionality needed for parsing input files on their upload.

Environment abstraction layer has a purpose of representing program environment to the Beans contained in the Business layer. This layer contains three objects:

· DatabaseAbstraction – object responsible for all communication with ATT Database

· ConfigurationFileAbstraction – object responsible for configuration file load/change

· ATT Abstraction – object responsible for every communication with Automatic Tariff Tester.

6.5 DB

6.5.1 Test Suite Processing Thread and Request Processing Thread

[image: image21.emf]TestSuite

PK,FK1 scheduleId LONG

PK suiteId LONG

U1 suiteName VARCHAR(40)

definitionDate DATETIME

... VARCHAR(20)

TestCase

PK caseId LONG

FK1 suiteId LONG

callDateTime DATETIME

callType CHAR(10)

destinationNumber VARCHAR(20)

tarrifCode VARCHAR(20)

request VARCHAR(200)

FK1 scheduleId LONG

TCVerifResult

PK,FK1 caseId LONG

status CHAR(10)

reLeafri VARCHAR(50)

reQtyResv INTEGER

reResCred INTEGER

reValTime INTEGER

simLeafri VARCHAR(50)

simQtyResv INTEGER

simResCred INTEGER

simValTime INTEGER

isOK BIT

Error

PK errorId LONG

errorType BYTE

subType INTEGER

description VARCHAR(200)

VerificationResult

PK,FK1 caseId LONG

PK,FK2 errorId LONG

TCNonVerifResult

PK,FK1 caseId LONG

paramName VARCHAR(40)

paramValue VARCHAR(40)

CorbaReqParam1

PK,FK1 configurationId LONG

PK paramId VARCHAR(30)

PK paramName VARCHAR(30)

U1 placeDesignator INTEGER

paramValue VARCHAR(100)

CorbaRespParam

PK,FK1 configurationId LONG

PK paramId VARCHAR(30)

PK paramName VARCHAR(30)

PendingTestSuiteRun1

PK,FK1 scheduleId LONG

scheduleType VARCHAR(20)

scheduledDateTime DATETIME

CorbaConfig

PK configurationId LONG

configurationDescription VARCHAR(100)

TestSuiteRun

PK scheduleId LONG

userId VARCHAR(30)

U1 suiteId LONG

FK1 corbaConfig LONG

scheduleType VARCHAR(20)

U1 scheduledDateTime DATETIME

status VARCHAR(20)

configurationId LONG

Figure 6.15 - Test Suite and Request processing tables
Description for each table in the database can be found in chapters 6.1.5 and 6.2.3.
6.5.2 Simulator

[image: image22.png]| ServiceRetailer

Orig P
PK_msisdn name
Tariff
FK1 [tid
tariff_switch /7K [
FK3 |c_id
FK2 |s_id t_code [
FK1 [s_id
name
BillngTime
PK
PKFK1
Price
e PKFK1 [the id
i PKFK1 [bt id
TimeFrame
FK2 [teid
price_per_min PK_|tid
FK2 |dtid
FK1
f_from
p| TarifiClass :_'0
_num
e PK |tc id FK3 | thc_id
umberTarifClass
> d
NumberType PK | destin tc_code
PK [nt id le et [BillingTimeType
description FK2 |te_id PK [btt id
type_name
P TimeFrameClass
DataFill Calendar PK |tie id DayTypes
PK | DataFillName PK [id tfe_num PK [date
DataFillValue name dui
year | 4—————————— dt_mnemonic
FK1 |s_id FK1

Figure 6.16 - Simulator database tables
Description for each table in the database can be found in chapter 6.3.3.

6.5.3 Web-GUI and configuration
Web-GUI is strictly responsible only for maintaining configuration and TestSuite/TestSuiteRun tables. They and their relations are shown in the following figure:

[image: image23.emf]TestSuite

PK suiteId

U1 suiteName

definitionDate

callDateTimeType

callDateTimeList

callDateTime

callType

destiantionType

destinationNumber

usedTarrifCodeType

usedTariffCode

origin

callDuration

bearerId

FK1 userId

casesGenerated

TestCase

PK caseId

FK1 suiteId

...

TestSuiteRun

PK scheduleId

FK2 userId

FK1,U1 suiteId

FK3 corbaConfig

scheduleType

U1 scheduledDateTime

status

TestCaseResponse

PK,FK1 scheduleId

PK,FK2 caseId

...

CallTimesList

PK,FK1 listName

isDisplayed

CallTimesListItem

PK,FK1 listName

PK listDateTime

BearerIdItem

PK,FK1 bidItemId

U1 bidItemValue

ConfigurationParam

PK paramId

User

PK userId

firstName

lastName

password

isAdmin

canModifySuites

canModifySchedule

canViewResults

canLogIn

OriginItem

PK,FK1 originItemId

U1 originItemValue

paramId

ConfigurationParamInt

PK,FK1 paramId

paramValue

ConfigurationParamDateTime

PK,FK1 paramId

paramValue

ConfigurationParamString

PK,FK1 paramId

paramValue

CallTypeItems

PK,FK1 callTypeId

CorbaReqParam

PK,FK1 configurationId

PK paramId

PK paramName

placeDesignator

paramValue

CorbaRespParam

PK,FK1 configurationId

PK paramId

PK paramName

placeDesignator

CorbaConfig

PK configurationId

configurationDescription

PendingTestSuiteRun

PK,FK1 scheduleId

scheduleType

scheduledDateTime

Figure 6.17 - Configuration and Test suite related database tables

ConfigurationParam tables (ConfigurationParam together with ConfigurationParamInt, ConfigurationParamString, and ConfigurationParamDateTime) are used for configuration parameters storage. Each parameter has one row describing its name in the ConfigurationParam table. Parameter type can be integer, character string, or datetime and parameter is placed in appropriate ConfigurationParam* table accordingly. The following table lists used data types and describes columns of ConfigurionParam* tables.
	Column
	Data type
	Description

	paramId
	VARCHAR(40)
	Parameter name.

	paramValue
	LONG (ConfigurationParamInt table)

VARCHAR(250) (ConfigurationParamString table)

DATETIME (ConfigurationParamDateTime table)
	Parameter value.

Table 6.34 - Data types and descriptions of ConfigurationParam, ConfigurationParamInt, ConfigurationParamString, and ConfigurationParamDateTime tables columns

User table stores data about users and their permissions. Its column data types and descriptions are shown in following table.
	Column
	Data type
	Description

	userId
	VARCHAR(30)
	Username. It's used for user identification.

	firstName
	VARCHAR(30)
	User's first name.

	lastName
	VARCHAR(30)
	User's last name.

	password
	VARCHAR(30)
	Password.

	isAdmin
	BOOLEAN
	Shows whether user is administrator. If user is administrator, he can change both configuration parameters and user permissions. He also can delete test suites and test suite runs from other users.

	canModifySuites
	BOOLEAN
	Shows whether user can add/delete Test suite definitions. User with this permission (and without admin permission) is restrained only to delete his own test suites.

	canModifySchedule
	BOOLEAN
	Shows whether user can start/schedule test runs. User with this permission (and without admin permission) is restrained only to delete his own test suite runs.

	canViewResults
	BOOLEAN
	Shoes whether user can view/filter test run results.

	canLogIn
	BOOLEAN
	Shoes whether user can log in to system.

Table 6.35 - Data types and descriptions of User table columns

CallTimesList and CallTimesListItem tables store information about user defined DateTime lists. DateTime lists are used to define contents of callDateTime* fields in table TestSuite. CallTimesList table contains one row for each defined list and CallTimesListItem contains one row for each DateTime value of each list.

	Column
	Data type
	Description

	listName
	VARCHAR(40)
	List name. It's used for list distinction.

	isDisplayed
	BOOLEAN
	Shows whether the list is displayed in CallDate/CallTime drop down list on Test Suite definition page. Setting this parameter false enables reduction of the mentined drop down list size without deleting user defined DateTime list

	listDateTime
	DATETIME
	DateTime value contained in list.

Table 6.36 - Data types and descriptions of CallTimesList and CallTimesListItem tables columns

OriginItem table stores information about available "origin" values, and BearerIdItem stores available "bearerId" values. Their columns are described in the following table.
	Column
	Data type
	Description

	originItemId
	LONG
	Origin identificator.

	originItemValue
	VARCHAR(10)
	Origin value. String which is concatenated in CORBA request.

	bidItemId
	LONG
	BearerID identificator.

	bidItemValue
	VARCHAR(10)
	BearerID value. String which is concatenated in CORBA request.

Table 6.37 - Data types and descriptions of OriginItem and BearerIdItem tables columns

There is a table which stores information about currently used Call types. It's CallTypeItem and it has only one column.
	Column
	Data type
	Description

	callTypeId
	VARCHAR(20)
	String describing Call type.

Table 6.38 - Data types and descriptions of CallType table
CorbaConfig table lists CORBA configurations as they were changed through time. Every configuration is automatically named after timestamp of its creation. This is used as more meaningful identifier of the configuration. CorbaConfig table has following attributes:
	Column
	Data type
	Description

	configurationId
	LONG
	Configuration identificator.

	configurationDescription
	VARCHAR(100)
	Origin value. String which is concatenated in CORBA request.

Table 6.39 – Data types and descriptions of CorbaConfig table columns
CORBA configuration parameters are stored in two tables: CorbaReqParam and CorbaRespParam. CorbaReqParam for every CORBA configuration enumerates corresponding CORBA request parameters. Every request parameter has its name and place designator. Constant parameters additionally have their values.Test suite and test case related parameters don't have constant values, but they have identifiers which are used for their distinction within ATT. CorbaReqParam has following attributes:

	Column
	Data type
	Description

	configurationId
	LONG
	Configuration ID.

	paramId
	VARCHAR(30)
	String which is used for parameter distinction in ATT. Constant parameters don't have this ID.

	paramName
	VARCHAR(30)
	Parameter name in CORBA request.

	placeDesignator
	INTEGER
	Shows the place of the parameter within CORBA request.

	paramValue
	VARCHAR(30)
	Value. Only constant parameters (parameters with paramId=null) have this.

Table 6.40 - Data types and descriptions of CorbaReqParam table columns

CorbaRespParam for every CORBA configuration enumerates corresponding CORBA response parameters. Every response parameter has its name which uniquely describes it in the context of CORBA response. Comparable parameters additionally have identifiers which are used for their distinction within ATT. CorbaRespParam has following attributes:
	Column
	Data type
	Description

	configurationId
	LONG
	Configuration ID.

	paramId
	VARCHAR(30)
	String which is used for parameter distinction in ATT. Non comparable parameters don't have this ID.

	paramName
	VARCHAR(30)
	Parameter name in CORBA response.

	placeDesignator
	INTEGER
	Shows the place of the parameter within CORBA request.

Table 6.41 - Data types and descriptions of CorbaRespParam table columns

TestSuite table stores information about defined test suites. Its columns are described in the following table.
	Column
	Data type
	Description

	suiteId
	LONG
	Test suite identificator.

	suiteName
	VARCHAR(100)
	Suite name. It has to be unique because it's used for test suite identification in Web-GUI.

	definitionDate
	DATETIME
	Timestamp containing test suite definition date.

	callDateTimeType
	VARCHAR(20)
	Field specifies which way CallDate and CallTime parameters are specified. Can have following values:

· FIXED – field callDateTime contains fixed timestamp

· LIST – field callDateTimeList contains ID of list defined in CallTimesList table.

· String which isn't "FIXED", "LIST", or "ALL". It designates suffix of Alcatel tariff name (e.g PEAK, OFF_PEAK, WE_HOL)

· ALL – means one automatically entered DateTime value for every suffix of Alcatel tariff name (e.g PEAK, OFF_PEAK, WE_HOL).

	callDateTimeList
	VARCHAR(40)
	ID of a list defined in CallTimesList table. Used only when callDateTimeType contains string "LIST".

	callDateTime
	DATETIME
	Field specifies which way CallDate and CallTime parameters in case field callDateTimeType contains string "FIXED".

	callType
	VARCHAR(20)
	Call type. Can be one of the following:

· String which isn't "ALL". It designates one of the values listed in CallTypeItems table.

· ALL – means one callType value for each specified value in CallTypeItems table.

	destinationType
	VARCHAR(20)
	Destination phone number type. Can be one of the following:

· SINGLE – field destinationNumber contains actual number

· ALL – means one number for every defined call number

· ALL Prefix

· ALL Short

· ALL Numbering Range

	destinationNumber
	VARCHAR(20)
	Destination phone number in case destinationType is "SINGLE".

	usedTariffCodeType
	VARCHAR(20)
	Type of used tariff. Can be one of the following:

· SINGLE - field usedTariffCode contains actual MSISDN

· ALL – one MSISDN is generated for each Tarrif Code (e.g. one for tc1, one for tc2...)

	usedTariffCode
	VARCHAR(20)
	Used tariff MSISDN in case destinationType is "SINGLE".

	origin
	LONG
	Origin field value. Can be one of the IDs specified in OriginItem table.

	callDuration
	INTEGER
	Call duration in seconds.

	bearerId
	LONG
	BearerID field value. Can be one of the IDs specified in BearerIdItem table.

	userId
	VARCHAR(40)
	ID of the user who added test suite.

	casesGenerated
	BOOLEAN
	Shows whether TestCases table contains all test cases generated from the current test suite. This field is used in recovery process.

Table 6.42 - Data types and descriptions of TestSuite table columns

TestSuiteRun table stores information about executed and scheduled test runs. Its columns are described in following table.
	Column
	Data type
	Description

	scheduleID
	LONG
	Autonumber identifying scheduled/executed task.

	userId
	VARCHAR(40)
	User which scheduled/executed the task.

	suiteId
	LONG
	ID of scheduled/executed task.

	corbaConfig
	LONG
	ID of actual CORBA configuration.

	scheduleType
	VARCHAR(10)
	Specifies if task is scheduled or immediately executed. Can have one of the following two values:

· IMMEDIATE – task is performed immediately

· SCHEDULE – task is scheduled

	scheduledDateTime
	DATETIME
	If task is scheduled, this field contains date and time of its execution start.

	status
	VARCHAR(20)
	Describes task status: Can be one of the following:

· STARTED – task execution was started

· COMPLETED – task execution was completed

· null – task is to execute

Table 6.43 - TestSuiteRun table columns descriptions and data types

Every time user schedules/starts new test suite run, GUI informs ATT about this action through PendingTestSuiteRun table. Its attributes are shown in following table:

	Column
	Data type
	Description

	scheduleId
	LONG
	Scheduled task ID.

	scheduleType
	VARCHAR(10)
	Specifies if task is scheduled or immediately executed. Can have one of the following two values:

· IMMEDIATE – task is performed immediately

· SCHEDULE – task is scheduled

	scheduleDateTime
	DATETIME
	Date and time of the task execution start.

Table 6.44 - PendingTestSuiteRun table columns descriptions and data types
Database referential integrity is maintained through cascade deletion by foreign key. This means all records having same foreign key are deleted from all tables with deletion of a record with the corresponding primary key.
6.6 Error Resilience

Any errors that could be propagated to the ATT Test Engine from its environment will be handled internally by the engine itself.

There are two types of errors that can propagate from ATT Test Engine surroundings into ATT Test Engine itself:

· badly formatted input files,

· Alcatel CORBA interface errors,

· database connection errors.

First kind of errors will be handled at the moment of detection (during parsing of input files). ATT Test Engine will detect and log this kind of error. Bad input file entry will be skipped and record for this entry won’t be created in the ATT DB.

Alcatel CORBA interface errors will be detected and couth through standard Java exception handling mechanism (try – catch blocks). ATT Test Engine will log appearance of such errors.

In the case that database connection brakes or cannot be established, ATT Test Engine will appropriately log occurrence of such events. Further processing of Test Suite runs will be stopped and ATT Test Engine will periodically try to reconnect to the database. If reconnection succeeds ATT Test Engine will resume normal work.
6.6.1 Load Handling

There is only one place where data is cached if system load is too high for the data to flow without problems. This can happen if Alcatel Rating Engine gets too slow and Requests start to cumulate in the Request Queue.
In the case that Request Processing Thread can’t handle in time all Requests generated by Test Case Processing thread, Test Case Processing Thread will stop generating new requests until Request Processing Thread processes all Requests that are in the Request Queue at the moment. This kind of behaviour will be logged through ATT Test Engine logging interface.
6.6.2 Exception Handling

For exception handling standard Java mechanism consisting of try-catch blocks will be used. All exceptions that may arise will be handled internally by ATT Test Engine and won’t be propagated to the surrounding environment. All exceptions will be treated as abnormal behaviour and will be logged by the engine as such. Depending on the exception type, some exceptions will generate an alarm as well to indicate symptomatic abnormal behaviour that has to be handled in some way by the engine administrator (for example lack of disk space).

6.6.3 Error Protection

Internal ATT Test Engine exceptions that may rise will be intercepted and handled internally by the engine and won’t be thrown to the surrounding environment (JVM). All internal exceptions will be logged by the engine. If exception is caused by the ATT Test Engine environment and cannot be resolved by the engine itself (for example lack of disk space) alarm and log will be generated through ATT Test Engine alarming and logging interface.

6.7 Alarming & Monitoring

6.7.1 Monitoring

For monitoring and control of the ATT Test Engine Monitor (EM) thread will be in charge. ATT Engine Monitor thread will perform four main tasks:

· monitoring of all other ATT Test Engine components,

· monitoring of internal resources,

· monitoring of external resources,

· alarming.

6.7.1.1 Monitoring of Other ATT Test Engine Components

Test Engine Monitoring thread periodically performs following actions:

· logs various ATT Test Engine and its environment’s parameters

· checks if all ATT Test Engine components are working and, in the case that some component crashed, restarts that component immediately

All ATT Test Engine components will report their working state to the Engine Monitor thread at all times. Working state can be:

· normal – component is working normally,

· malfunction – exception raised which cannot be handled by the component and action outside component has to be taken.

In the case that some component is malfunctioning (not working properly) because of some external reason Engine Monitor thread will try to take such an action that should restore components normal working state. In the case that some component crashed, Engine Monitor will restart that component immediately.

Every ATT Test Engine component, when working properly, will have to periodically set one flag to true in the shared memory object that will be used for communication with Engine Monitoring thread. Whenever Monitoring thread is checking if component is still working, it will set the same flag to false. If the ATT Test Engine component that is being monitored doesn’t set the flag to true again it’s a signal to Engine Monitor that this component isn’t working properly and that actions should be taken (restarting the component).

6.7.1.2 Internal Resource Monitoring

Other ATT Test Engine parameters that will be monitored by Engine Monitor thread besides proper work of all engine components are:

· number of requests in the Request Queue,

· number of requests in the Test Suite Run ID Queue,

· JVM heap memory consumption.
6.7.1.3 External Resource Monitoring

External resources that will be monitored by Engine Monitor thread are:

· disk usage on the system upon which engine is running,

· disk space available on the system upon which engine is running.

6.7.1.4 Alarming

If faulty condition arises that cannot be handled internally by the engine itself, Engine Monitor will generate an alarm through logging interface in order to inform its environment about this condition.
In addition to this, an eMail can be sent to specified address in order to inform system administrator about condition that caused alarm if eMail service will be available on the target platform.

6.8 Logging

For logging purposes ATT Test Engine will use log4j Java library. Following log levels will be used:

· debug,

· info,

· warn,

· error,

· fatal.

Debug level will be used only for development and testing purposes and will be turned off in production systems.

In the production system info, warn, error and fatal log levels will be used.

Info level will be used for logging engine start up and initialization as well as shutdown process. From these messages engine start-up and shut down will be monitored. Since start-up and shut down are not some time critical, this log level will cover engine initialization and shut down in high level of detail.

After the engine is started properly and enters the time critical processing phase log messages that indicate some kind of a warning (abnormal behaviour is detected but can be handled by the ATT Test Engine itself) and error (exceptions that cannot be handled by engine itself) will be logged by the engine.

Warn log level will be used for logging exceptions that do not influence normal work of the engine in any way and do not require any external action to restore normal working state of the engine.

Error log level will be used for logging serious exceptions that arise in runtime. These exceptions require external action system administrator in order to resume normal working state of the engine.

Fatal log level will be used for logging states when normal execution of the engine is not possible and engine has to be stopped.

Default layout used for logging will be pattern layout (standard Log4j layout).

Appenders that will be used are:

· FileAppender,

· RollingFileAppender,

· DailyRollingFileAppender,

· SMTPAppender
· SNMPAppender.

6.8.1.1 Data

Log messages of all ATT Test Engine components will be saved within same log file. Log file will be placed within the ATT software file structure which will be created during ATT software installation. Logs will be visible through ATT web GUI.
6.9 Shutdown, Start Up and Recovery

6.9.1 Shutdown

ATT Test Engine ensures its state and data persistence through the ATT DB.

Information about current state of the engine is stored in the ATT DB at all times since for each Test Suite run that is requested (either Immediate or Scheduled) there is a record in the database specifying if Test Cases for this Test Suite run are already generated or not. If they are not generated or just partially generated information about how many Test Cases was already generated can also be retrieved from the ATT DB (since whenever Test Case is generated it is immediately stored into ATT DB).
Same applies to the information about Test Suite Test Case execution. Whenever some Test Case executes its results are immediately stored into ATT DB. This way it is possible to keep track of Test Cases execution state also through ATT DB.

Complete persistence of ATT Test Engine state and data through ATT DB enables immediate shutdown of the system at any moment in time since complete state of the system before shutdown can be restored from ATT DB.

Shutdown of the system can be done immediate since there is no need for finalizing system state in a manner of completing active Test Suite run (Test Suite run that is active at the shutdown time will be recovered and continued when system starts up again).

Two different types of shutdown will be implemented:

· shutdown with start up recovery,

· shutdown without start up recovery.

Shutdown with start up recovery leaves all data stored within ATT DB intact. After ATT Test Engine is started up again Test Suite Run that was executing at the moment of shutdown will be recovered with all Test Suite runs that were scheduled for execution later on.

Shutdown without recovery will erase currently executing Test suite run data from the database together with all Scheduled Test Suit runs that are in a waiting state. After the system is started again there will be nothing to recover since all unfinished Test Suite runs will be erased from the database during shutdown. This feature enables system restart from scratch.

6.9.2 Start Up and Recovery

Start up procedure and Recovery procedure look the same since there is no graceful shutdown procedure and ATT Test Engine can be shut down at any point in time. Effects of such a shutdown are the same as in case that ATT Test Engine crashes so Start Up procedure and Recovery procedure are the same.

Since ATT Test Engine can be stopped at any point in time it can happen that some Test Suite Runs that was executing at the moment of shutdown were interrupted.

During engine shutdown two processes can be interrupted:

· Test Case Generation,

· Request Execution.

During start up of the system both have to be recovered to the state in which they were just before engine shutdown.

Besides this states of Test Suite Run ID Queue and Request Queue have to be restored to the state they were in before system shutdown.

System start up process consists of four steps:

· Restoring state of the Request Queue,

· Restoring test case generation process,

· Restoring state of the Test Suite Run ID queue.

In order to recover the state of the Request Queue ATT Test Engine checks in the ATT DB to see if there are any Test Suite Runs that have ‘state’ flag set to EXECUTING (in the ATT DB there can be more than one Test Suite Run in this state because of piling up of execution Requests in the Request Queue). If such Test Suite Runs are found they are checked for the flag ‘request execution’. If some Test Suite Runs are found with this flag set to ‘IN_PROGRES’ all Test Cases for these Test Case Runs that have state flag set to ‘WAITING’ are fetched from the ATT DB, Requests for them are created and put into the Request Queue.

Next step is restoring Test Case Generation process. Within Test Suite Runs in the ATT DB that have state flag set to ‘EXECUTING’ ATT Test Engine searches if there are any Test Suite Runs that have ‘test case generation’ flag set to IN_PROGRES (since Test Cases for Test Suite Runs are generated sequentially there can be only one Test Suite Run in the ATT DB that has ‘test case generation’ flag set to IN_PROGRES, all others can have this flag set to either WAITING or DONE). If such Test Suit Run is found it means that Test Case generation for this Test Suite Run was interrupted and has to be recovered (continued from the last Test Case that was generated). ATT Test Engine checks the last Test Case that was generated and sets Test Case generation from this Test Suite Run Test Case further on.

Last thing to do before resuming ATT Test Engine normal work is to recover the content of the Test Suite Run ID queue. In order to do this ATT Test Engine checks the ATT DB for Immediate Test Suite Runs that have ‘state’ flag set to WAITING and puts their Test Suite Run IDs into the Test Suite Run ID Queue.

6.10 Interfaces

6.10.1 External interfaces

6.10.1.1 Alcatel CORBA interface

Following CORBA interface is defined by Alcatel for remote use with Alcatel Rating Engine.

/**/

/* OBJECT : TARCHOIC */

/* VERSION : TR_SMS */

/* FILE : */

/* I:\O2Germany_view\Rel23Components\object\namurfolder\o2germanyfolder\lib\ */

/* tarchoic\tr_sms\tarif.idl */

/* DATE : 16/12/2005 */

/* TOOL : OBJMAKE */

/* COMPATIBLE : 2.3.8.315 */

/* DESC. : IDL CLASS DEFINITION */

/**/

// IDL for tarchoic-tr_sms

interface OBJECT_NAMUR_O2GERMANY_TARCHOIC_TR_SMS_ORBFact : inObject {

 // bund_ind parameter means Bundle index for first RUM

 // calldate parameter means Call Date

 // calltime parameter means Call Time

 // calltype parameter means RE Call Type

 // destalgo parameter means DestAlgo

 // destin parameter means Destination

 // desttype parameter means DestType

 // discount parameter means Discount for first RUM

 // leafri parameter means First price name

 // msisdn parameter means MSISDN

 // origalgo parameter means OrigAlgo

 // origin parameter means Origin

 // origtype parameter means OrigType

 // qt2resv parameter means Quantity to reserve

 // qt2resv2 parameter means Quantity to reserve (RUM2)

 // qty_resv parameter means Reserved quantity

 // qtyresv2 parameter means Reserved quantity (RUM2)

 // resc_sub parameter means RE result code

 // rescred parameter means Reserved amount

 // valtime parameter means First tariff validity

 // dmofield parameter means Data Model Description field

 // guifield parameter means Data Model Description field (from GUI)

 // method : long estimate (PARAMETERS, out string cmdResult)

long estimate(

out string bund_ind,

in string calldate,

in string calltime,

in string calltype,

in string destalgo,

in string destin,

in string desttype,

out string discount,

out string leafri,

in string msisdn,

in string origalgo,

in string origin,

in string origtype,

in string qt2resv,

in string qt2resv2,

out string qty_resv,

out string qtyresv2,

out string resc_sub,

out string rescred,

out string valtime,

in string dmofield,

in string guifield,

out string cmdResult)

raises (inObject::envError,inObject::syntaxError,inObject::semanticError);

};

Supported CORBA version is CORBA 2.3.
In order for ATT Test Engine to connect to the Alcatel Rating Engine following parameters need to be provided:

· IP address of the Alcatel Rating Engine,

· CORBA Server TCP port,

· Login,

· Password.

These parameters are stored in ATT Database as described in chapter 6.4.5 and are fetched by ATT Test Engine on engine start up. Each time those parameters are changed, ATT Test Engine needs to be restarted in order for change to take effect.
6.10.1.2 CORBA interface flexibility

In order to achieve some amount of CORBA interface flexibility, Alcatel CORBA interface will be accessed through CORBA Dynamic Invocation Interface since it enables certain interface changes without code recompilation.
Changes that will be supported in Alcatel CORBA interface are:

· changes of the parameter names of CORBA interface estimate method,

· changes of number of parameters of CORBA interface estimate method,

· changes of parameter sequence of CORBA interface estimate method.

Supported changes in Alcatel CORBA interface will be limited to the changes of name, number and the order of parameters that are passed to the Rating Engine through CORBA interface estimate method. This means that if some additional parameters that are not used in tariff calculations will be introduced by Alcatel into the Rating Engine CORBA interface, ATT software will be able to deal with those changes without code recompilation. In such case only ATT re-configuration within ATT database must be performed via ATT web GUI. After re-configuration has been made, ATT Test Engine needs to be restarted in order for the changes to take effect.

If the CORBA interface changes in such a way that new parameters used for tariff calculations are added to the estimate method, ATT software code modifications will be necessary since this implies tariff calculation algorithm changes within Simulator part of ATT Test Engine.
This means that ATT software supports changes of the fingerprint of the estimate method, but only if all calculation relevant parameters are intact in order for ATT Test Engine to work properly after CORBA interface change.

It also has to be noted that it is expected from a CORBA estimate method to return a LONG value because it is used (in this version) for returning RE type errors (chapter 6.2.3.7). Changes to the return value (its interpretation and/or type) will not be supported, and if this change occurs the software will have to be modified and recompiled.

Parameters that will be sent to the Rating Engine through estimate method of CORBA interface will be configured through ATT Database as described in chapter 6.4.5 of this document. Those parameters are divided into two main groups:

· Request or IN parameters,

· Result or OUT parameters.

Description of all parameters is stored within ATT Database and consists of the following attributes:
	Attribute name
	data type
	description

	identifier
	String
	Used for internal recognition of parameters and can not be changed by the administrator.

	name
	String
	Name of the parameter in an estimate method. It is used for filtering purposes only and its name does not have to be equal to the one in the corresponding estimate method.

	placeDesignator
	Integer
	Shows the place of the parameter within an estimate method call. Values of this attribute start with 0.

Table 6.45 – CORBA parameter attributes
If some of these parameters configuration changes, restart of the ATT Test Engine is necessary for the changes to take effect.
6.10.1.2.1 CORBA Request parameters

CORBA Request parameters are input parameters of the CORBA interface estimate method. These parameters are sent to the Rating Engine and based on their values Rating Engine calculates results.

CORBA type of all request parameters of estimate method is type string and this can not be changed without modifications to the ATT software.
Based on their use in ATT software there are three types of CORBA Request parameters:

· Test Case Related,

· Test Suite Related,

· Common.

6.10.1.2.1.1 Test Case Related Parameters

These parameters are derived from Test Suite parameters and can be different amongst Test Cases of a given Test Suite. Attribute identifier can never be changed for these parameters because it assures that the software will work properly. Name and placeDesignator attributes can be changed by the administrator when there is a change in CORBA Interface. Test Case related parameters are derived within the software, and there fore can not be deleted from the request parameter list. That is, if the change in CORBA interface is such that it requires one of these parameters to be removed from CORBA request parameter list the software will not work properly.

For this version of Rating Engine CORBA interface these parameters are:
	identifier
	name
	placeDesignator

	callDate
	CALLDATE
	1

	callTime
	CALLTIME
	2

	callType
	CALLTYPE
	3

	destinationNumber
	DESTIN
	5

	MSISDN
	MSISDN
	9

Table 6.46 - Test Case related CORBA request parameters

6.10.1.2.1.2 Test Suite Related Parameters

Some variable Test Suite parameters are needed for creating the CORBA request because they are common to all Test Cases of the Test Suite. They are not used for determining Test Case attribute values, but their values are copied into the request sent to the Rating Engine. These parameters can be set for each Test Suite via GUI therefore their identifier attribute can never be changed because it assures that the software will work properly. Name and placeDesignator attributes can be changed by the administrator when there is a change in CORBA Interface. In order for the software to work properly these parameters have to exist in the estimate method call, that is if the change in CORBA interface is such that it requires one of these parameters to be removed from CORBA request parameter list the software will not work properly.

For this version of Rating Engine CORBA interface these parameters are:
	identifier
	name
	placeDesignator

	origin
	ORIGIN
	11

	qty2Resv
	QT2RESV
	13

	bearerId
	BEAR_ID
	21

Table 6.47 - Test Suite related CORBA request parameters

6.10.1.2.1.3 Common parameters

These parameters are called common because they are common to all Test Suites and their values can not be changed by user creating Test Suites via GUI. Their values can only be changed by the administrator by writing their values into the database. Number of these parameters and their attributes are arbitrary and they are dependant on CORBA Interface. If and when there is a change to CORBA interface these parameters can be changed accordingly. The identifier attribute of this parameters is not necessary and thus not mandatory (administrator can leave this attribute blank).

For this version of Rating Engine CORBA interface those parameters are:
	identifier
	name
	placeDesignator

	blank
	DESTALGO
	4

	blank
	DESTTYPE
	6

	blank
	ORIGALGO
	10

	blank
	ORIGTYPE
	12

	blank
	QT2RESV2
	14

	blank
	DMOFIELD
	20

Table 6.48 - constant CORBA request parameters
6.10.1.2.2 Result parameters

Result parameters are output parameters of CORBA interface estimate method. These parameters are received from the Rating Engine and their values represent calculation results.
CORBA type of all result parameters of estimate method is type string and this can not be changed without modifications to the ATT software.

Based on their use in ATT software there are two types of Result Parameters:

· Verifiable,

· Non-verifiable.

6.10.1.2.2.1 Verifiable parameters

These are parameters whose values are calculated by the simulator to be compared with Rating Engine results. Attribute identifier can never be changed for these parameters because it assures that the software will work properly. Name and placeDesignator attributes can be changed by the administrator when there is a change in CORBA Interface. In order for the software to work properly these parameters have to exist in the estimate method call, that is if the change in CORBA interface is such that it requires one of these parameters to be removed from CORBA result parameter list the software will not work properly.

For this version of Rating Engine CORBA interface these parameters are:
	identifier
	name
	placeDesignator

	leafri
	LEAFRI
	8

	qtyResv
	QTY_RESV
	15

	resCred
	RESCRED
	18

	valTime
	VALTIME
	20

Table 6.49 - Verifiable CORBA result parameters

6.10.1.2.3 Non-verifiable parameters

These parameters are not important for the verification process of Rating Engine results. They are only written into the database so that result filtering by their values can be performed. Number of these parameters is arbitrary and has to be changed according to the changes made to the CORBA Interface. If these changes are not made the software will not function properly. Number and attributes of these parameters are completely arbitrary and their values are defined by the administrator. The identifier attribute of this parameters is not necessary and thus not mandatory (administrator can leave this attribute blank).

For this version of Rating Engine CORBA interface these parameters are:
	identifier
	name
	placeDesignator

	blank
	BUND_IND
	0

	blank
	DISCOUNT
	7

	blank
	QTYRESV2
	14

	blank
	RESC_SUB
	17

	blank
	CMDRESULT
	22

Table 6.50 - Non-Verifiable CORBA result parameters
6.10.2 Internal interfaces

6.10.2.1 Database Abstraction Layer

Database Abstraction Layer creates a layer of abstraction between DBMS implementation ant the ATT Test Engine. Instead of hard coding DBMS specific SQL statements within ATT Test Engine code itself, performing any kind of database operation is coded within Database Abstraction Layer and ATT Test Engine only calls different methods of the Database Abstraction Layer interface. This way, if underlying DBMS implementation is changed, only Database Abstraction Layer should be adapted to the new DBMS SQL syntax, and rest of the engine can stay intact.

Database Abstraction Layer is introduced as a separation of main engine source code from underlying DBMS. This separation should enable switching of underlying DBMS without any changes made in the source code of the engine itself.

Different DBMSs have different access and connection methods and require specific JDBC driver to be used in order to connect to specific DBMS. From the source code point of view this should not be a problem since JDBC API towards the client software is the same, only differences are on the DBMS interface so there should be no need to change client source code when different JDBC driver is used. But this is not completely true because there are some small differences concerning connection string that should be used when connecting to the particular DBMS so one requirement of Database Abstraction Layer is to provide uniform connection method regardless of the connection string for particular DBMS.

This problem will be resolved by using javax.sql.DataSource interface combined with JNDI Java API for naming and directory services as shown in the example below:

InitialContext ic = new InitialContext();

DataSource ds = (DataSource) ic.lookup(dbName);

Connection con = ds.getConnection();

The other problem is SQL syntax which differs from one DBMS to another. Queries written for Oracle look different for MySQL and vice versa. If both DBMSs are to be supported, queries for both DBMSs have to be generated. Although ISO SQL will be used whenever possible, some times specific SQL syntax will be used, because of performance optimization for particular DBMS. This is the reason for avoiding hard coding of SQL statements in the source code of the engine itself. Creation of appropriate SQL statements for certain DBMS should be done by Database Abstraction Layer.

Database Abstraction Layer shall be implemented as a separate class that will implement all methods necessary for database access. Instead of hard coding SQL statements into code of ATT Test Engine components, particular SQL statement will be hard coded within a method of Database Abstraction Layer class. ATT Test Engine components will call these methods in order to perform some database action.

When underlying DBMS is changed, only different implementation of the class Database Abstraction Layer has to be used. Nothing doesn’t have to be changed in the source code of the engine since all classes shall implement Database Abstraction Layer interface.

When support for another database is required within the Database Abstraction Layer, new implementation of Database Abstraction Layer class has to be created implementing SQL syntax for that particular database.

First version of ATT Test Engine will support just Oracle as underlying DBMSs and appropriate Database Abstraction Layer class shall be implemented.

6.10.2.2 Request Queue

This is a FIFO queue implementation used for data exchange between Test Case Processing Thread and Request Thread. Queue is synchronized.

[image: image24.png]nobium

_1223463039.unknown

_1223463040.unknown

_1223462911.unknown

