LLM WEB SERVICE
SOAP API Developer

Reference

L0070} {1 0 | TP OO P PP POROPI 2
[4=] £ Yol OO OO OO OO OO O OO P USRI 5
THIS DOCUMENT ...ttt ettt ettt e s et bt e b e e e bt e s bt e eab e e sa bt e eas bt e s ab e e bt e e bbeease e e b e e eabeesab e e embeesabeeanebeesmbeenneeennnesanees 5
L =TaTo [<To YU Te 1= ool TSP UR PR 5
AV T o T Ty o T YA PRSP 5
LLIM SOAP APT OVEIVIEW ...ttt ettt sttt ettt sttt e sae st saa e s be s s be e s b e e s b e e sab e e sabeeaba s e s baesbeesebeesneeeneenane 6
SEIVICES ATCNITECTUIE ...ttt et e b e b e e bt e s bt e et e e sa bt e s ab e e bt e e abeesabeesabeesa b e e eabeesabeennneens 6
LLIM WSDL/XSD SCHEMA DEFINITIONS ..veeiuveeeieeeiiieeeereeceteeeiteecteeeiaeeetveeetteeeteeeetaeebeeeeeteeeseeeseeenbeseseesaseessseensesessseentesennseeenes 6
API CoNCEPLS aNd TEIMINOIOZY .. .eeeiueiiiiiiitee ettt sttt st e sa e s bt e he e e s bt e sbe e sab e e eabeesabeesabeesabeeanebeesmneeneas 6
DOCUMENT ADDIEVIGTIONS ...ttt ettt s e s re e a e e et s et e s reesb e e et e st e emeenne e sanesanesmeennee 7
K)ol 8 1 42 PP 7
Character Encoding, Data Types and FOrmats, and CUMTENCIESeeeiuveeeeiieeeeiieeesitieeeesenereessereeeessreeesssseeesssesessseeesnnes 7
L6 @ o T - Tt =Y ol = Tl Yo [1o V-SSP 7
DAt/ TIME FOIMATS ..c.veiivieitieetie ettt et e ettt e ete e ettt eeteeesteeeeteeeetaeebeeeabeeeaseesaseseeaseesaseeesssesaseesesenbeeeasessaseessseesareesessessareensees 7

e ¥ o o =T = L A Lo 4 OO PP OPPPR PPN 7

) 1 8 ot (U =TT P PPP PR OTPUPRPPRON 8
ROLES ...ttt et r et et b e s bt e bt et sae e s h e e s Rt e ae e e a e e b e e R e e Rt e e R e s bR e e Rt e Rt SRt sae e nRe e Rt e et eae e e b e e Rt e nenanenreenneennes 9
PrOZIaMIMING JANGUAEE tieeeeiii et et ee e e ettt e et e e ettt e e e etta e e et teeeesataeeaeasaeeseaaseeeastaeesassaeeasseeeanssseesansaaeassseeesesasseeennnsnens 9
Y= 01 To T TP PP T PP RRURRPPRRTON 12
SENIOIS STIUCTUIE ...ttt h ettt et s he e s bt e bt et e ea bt e b e e be s atesheesbeebeeabesaeeshe e bt eaeeeatesaeeenbeeabesasesaeennas 12
FA¥o Lo N oY A =T o T | T PP UR U PPRPPRTOPRPPRINE 13
EXAIMPIE Lttt et b e et e e st e e eh bt s bt e bttt e hb e e b et e b e e e be e e bt e ea bt e s bt e he e e abae e beeeebee e beeeaneenane 13

oo T Oy a1 ¥ =YY o 1o USRS 13
0T Lo o [0 SR 14
DS 1= Y=Y o T o TSP PURTRRPRRPIOE 14
EXAIMPIE Lttt e b e bt et e e st e e eh bt e s b et e bttt e e hE e e b et e b e e e b e e bt e ea bt e s bt e bt e e nbne e beeeebee e beeeaneenane 14

GO SENION/SENIONS . etveeitie et ettt ettt et e ettt e e eteeeaeestbeeeteeesteeeeseeeteeeaseeeabeseeseeerbeeeaseesabeeessseasseeesseetesentesentessensesentesenseesnts 14

T [] 1[I T PO T TP P PSP PP PRTUPRRTPPPUPPROE 15

LU =1 TSP UPPP S PUPPPPPPPPTORt 16
USER’S SEFUCKUIE ...ttt ettt ettt sttt h e bt s b e et e st esab e e sab e e sab e e shb e e he e e beeebe e s e b e e eaneesabeeeabeesabeesateesabeennneens 16
AGT NEW USEI ..ttt st ettt et b ettt et e bt e b e e st e as e saeese e e st e ae e e ae e e b e e bt e st e ae e eb e e n e e s e e nese e e sneenne e et eneeane 16

T Lo o [S 17
E It @XISTING USEI 1oeiiieiiieiiiieeetiee et e e e et e e ettt e s te e e et teeeesataeesaseee e staeeseassseessseeeassteeeeassaeeanseeeessseeesansseesennnseaessnseeennnnns 17
[T 0] 0] [T U UUPRPR 17
DEIETE USEN ..ttt ettt sttt st h et e b et b e s bt et esa bt e e ae bt e s b e e e ae e e sh Rt e he e e b et e b et e bt e e be e ea ke e e bttt s beeeneesareenaneens 18
[T 0] 0] [T U UUPRPR 18
GOE USEI/USEIS oeeeiieeeteieeeeeseeitteeeeeeseeeseetaerteessesasssaseeesssssassaasseessasaassssseessesesaaasssasesesssasasseeseessanasssasesesssansssnsasaeeeesssansrnrens 18
T Lo o [0 SR 18
[T T o] o [0 SRS 19

1Y =T 00T oL TSP P PSPPI 20
MM OIS SEIUCTUIE ...ttt ettt sttt e s it e e ab e s a b e e e ab e e s bb e e bt e e b et ebeesabeeeabeesabeeeeaneesareenaneens 20
GEE IMIEMDET .ttt b e et esa bt e et e st e e e ab e e sa bt e e ab e e b et e ebee e b et e beeeabebe e bt e s beeebeenane 20

[T] 0] [T U PUPR PR 21

(0 Y= o TTo T 2U=] =1 o Ta 1] 1o S 22
User — Senior RelationNShip’s SEIUCTUIEiiiccuiiie ettt e et e st e e e e e bt e e e enteeesasteeesssseeeansseeesssneesssseseeennns 22
Y 4 - [ol g IY=T Yo T G o U= PP SP PO PRRUP PSPPIt 22

[T] 0] [T U RUR PR 22
Delete Senior — UsSer ReIAtIONSHID ...uiiiii ittt e e e e e et e e e e e e e abat e e e e e e e e baareeeesesansbaseeeseaaenannes 23
[T 0] 0] [T U RUTR PR 23

[\ @l aaT oY oY=l oY a3 [o I Yox ¢ V7 4 =3 SRS 24

Intependent Living COMPONENT ILCcccuiiiiiiiieecciieeeeeee sttt e e et e e e e eee e e st e e e eateeeeeasteeesssseeaassseeeassseesansaeeasssaeesansssaeennnsenns 25
| O Yot 6 AV Y] 4 8 ot (U =SSP 25
FAND 1D | KO Y AV I I APPSO P TP PPUPTTRNN 25
GET TLC ACTIVITY ¢ttt ettt ettt e e e e ettt e e e e e e aabe bt e e e e e e an b et e eee e eeeaaaanbeeaeeeeaaansbeeeeeesaaannbeeeeeeeaannnnnneeeeeaesannnnaen 26
ILC COMIPONENT'S SEIUCTUIE ..eiiiiiiiiiee ettt e e ettt e e e e et v e e e e e e seeiaabaeeeaaeaaeaeabseaeaaeaesasssaseaeseaaassasseasssesasssassraneeaesannes 26

ADD ILC COMPONENT .cceiiiiiiiiiiiiiiiieeeeietereterttetteeteeteteteteteteteettteteteteteteteteteeeeeessterererereretereteteteteteeeeeeeeeeeeeeeeteeeeeeeerererererererens 27

[= I KO @0 Ty 4 e To T 0 1= o | SO P ORI 27

ILC SENIOI'S ACHIVITY SEIUCTUIE ...eeiiiiiiiieieiee ettt sttt et sa b e e bt e e b et e bt e s b e e ebee st e e sabeesabeenaneens 28
ADD TLC SENIOI'S ACTIVITY c..utteiiieiiee ettt ettt et e st e bt e e sat e e bt e e bt e sttt s bt e sabeesabeeaneeesbbeebee s neeebeeenneenane 29
(] = I O =T Y Lo Y Ny Vot 1Y/ SR 29
Cognitive Training COMPONENT CTCuuiiiiiiiiiiiiiiiee e eesciiee e e e e ee sttt e e e e e sssaaree et eeseesssasstseeeeessassaseeeesessassrnseaessesassseneenneeesennnns 30
[O Vot Y7 VA o U 0 SR 30
AADD CTC ACTIVITY ettt ettt ettt et e bttt e sbe et et e ehe e s bt e bt e ateeu e e eb e et e ea b e eabe 4 eaeesbeeabeeateeh e e bt embeeabeehbeebeenbeeabeeabe s sheenbeenbesneenas 31
GET CTC ACTIVITY ettt ettt ettt ettt ettt e s bt e bt e bt sate s aeesbe et e e ateeaee e bt e besabesateebeebeeabesaeeshe e bt e bt eaeesaeenabeenbesabesaaenais 32
CTC COMPONENT'S SEIUCTUIE. ...ttt ettt ettt ettt ettt e s he e st e e bt eat e s bt e bt e eabesabesheesbe e bt eaeesaeesbe e bt aaeeeaeesbeenbeesabesanesaes 32
ADD CTC COMPONENT c.ciiiiiiiiiiiittiieeteteteteterettetttttetetetetetetetettttettteteteteteteteteteteeterereteretetereteretetetetaeeeeeteeeteeeeeeeeeeeeeseerererereren 33
GET CTC COMPONENT it e e e e et e e et e e e e et et et et e e e e e e e e e e e e e e e eaeaeaaeeaeeeeeeeeseneneeerenanens 33
CTC SENION'S ACHIVILY STIUCTUIE . .eviieieiiie e ceee et ee ettt e e et e e et te e e s e e e e e bt e e e asseaeesanseeeessteeeassaeesssaeeasssaeesannnsaeesnnsens 34
FaY 0T o K Y=Y o 1To Y o Yot 4 L Y 2SRRI 35
GET CTC SNIOI'S ACTIVITY ..eeeeiieiiieiit ettt et st e e bt s bt e et esa bt e et e e eb bt e ssbe e bt e e abeeeabeesabneesabeeeneenane 35
Physical Training COMPONENT PTCciiiiiiiiiiiieeite ettt st st e st e sit et b e e et et e sbeesab et e bt e sabeesabeesabeesabeesseeesbbeenne e esnnesaneas 36
PTC ACTIVITY'S SEIUCTUIE. .. ettt ettt ettt sttt ettt st e sttt e at e s bt e bt et b e satesheesae e bt eateshe e beeabeeabeebeenbeenbeeabeesaeesbeenseeneene 36
ADD PTC ACTIVITY oottt ettt sttt st stt ettt eae e s bt e b et e b e b e st e e st s ee e sh e e st e ae e e ae e s he e Rt ear e e ateebe e s e e s e eanesaneesneenneenneeneene 37
GET PTC ACTIVITY ettt ettt sttt ettt ettt sttt et st s bt s bt e et et sme e e bt e n e s anesaeesb e e st eanesheesmee st e et smeesre e neearesanenreennee 37
[KO o aaT oTo g T=T o I U ot] o USRS 38
JAY DI e KON] ya] oY) g 1T o | TP PP PP P OPPPRTOTRPN 39
GET PTC COMPONENT ...ttt ettt ettt s ettt s et e e s e s b et e s e ba et e saba e e s s bt e e s e ab e e e sbae e e smb e e e s emnasesnnaeas 39
PTC SENIOr’'s ACTIVITY SEFUCTUIE .e.eiiiiiie ittt st e s et e sat e e sbe e e b et e bt e sab e e ebeesabeesaneeesareenaneens 40
PN DT o O =T o oY a3 Yot 4 V. Y ARSI 40
(] = I WO Y=Y o 1T T ol Yo o 1Y/ 1 A PSS 41
RETEIEICES ...ttt ettt st sh et et sh e e s Rt et e s et e s bt e s bt e et s ae e she e s Rt e bt e et e e Re e e Rt e st e aneseeenreene e e snee et 42

PREFACE

THIS DOCUMENT
This document describes the LLM SOAP Application Programming Interface (API) and service.
INTENDED AUDIENCE

This document is written for programmers familiar with application programming standards such as the Simple Object
Access Protocol (SOAP), the Web Services Description Language (WSDL), and XML Schema Definition (XSD) language.

REVISION HISTORY

Revision history for SOAP API Developer Reference.

TABLE P.1 Revision History

Date Description

04 Sept 2009 First Version of LLMWS is Published

10 Sept 2009 Error messages added to every LLMWS method
18 Sept 2009 Name of some structures have been changed

LLM SOAP APl OVERVIEW

The LLM SOAP APl provides programmatic access to LLM features and services. Developers can build custom
applications, tools, and services that correspond to the same services. Typical applications include add/edit and
searching for registered seniors, add senior’s progress to cognitive or physical training and add information about
senior falling or alarms. The APl is based on open standards known collectively as “Web Services,” which include the
Simple Object Access Protocol (SOAP), Web Services Definition Language (WSDL), and the XML Schema Definition
language (XSD). These standards are supported by a wide range of development tools on a variety of platforms.

SERVICES ARCHITECTURE

Like many web services, LLM SOAP is a combination of client-side and server-side schemas, hardware and software
servers, and core services.

In an object-oriented processing model, the interface to SOAP requests/responses is an object in your application’s
native programming language. Your third-party SOAP client generates business-object interfaces and network stubs
from LLM-provided WSDL and XSD files that specify the LLM message structure, its contents, and the LLM API service
bindings.

A business application works with data in the form of object properties to send and receive data by calling object
methods. The SOAP client handles the details of building the SOAP request, sending it to the LLM service, and
converting the response back to an object.

LLM WSDL/XSD SCHEMA DEFINITIONS

The LLM Web Services schema is required for developing applications with the LLM Web Services API. The following are
the locations of the WSDL and LLMWS.

LLM Web Service http://nosmoke.med.auth.gr/LLMWebService/LLMWebService.asmx

LLM Schema http://nosmoke.med.auth.gr/LLMWebService/LLMWebService.asmx?wsd|

APl CONCEPTS AND TERMINOLOGY

Here are some basic concepts and terminology relating to LLM’s API service and security authentication.

Term Definition

API Calls LLM Application Programming Interface services, by which users and seniors can add information
about senior progress and users interact with seniors data.

APl Username A LLM-generated identifying user’s account name and password that the user (or senior with less

and Password privileges) uses specifically for making API calls. You include your APl username and password with
every API call. The APl username and password is the same as the LLM login username and
password.

DOCUMENT ABBREVIATIONS

Here are some abbreviations used in this document.

Abbreviation Definition

LLMDB LLM DataBase

LLMWS LLM Web Service

LLMDR LLM Developer Reference (This document)
ILC Independent Living Component

CTC Cognitive Training Component

PTC Physical Training Component

SECURITY

The LLM SOAP API service is protected to ensure that only authorized LLM members (users and seniors) use it. There

are two levels of security:

1. Arequired APl username (Username field) and API password (Password field)

2. Secure Sockets Layer (SSL) data transport (not implemented yet)

CHARACTER ENCODING, DATA TYPES AND FORMATS, AND CURRENCIES

This section details allowed character encoding and character sets, date data types, and formats.

|UTF-8 CHARACTER ENCODING

The LLM SOAP API service assumes that all data in SOAP requests is in Unicode, specifically, the Unicode (or UCS)
Transformation Format, 8-bit encoding form (UTF-8). In SOAP responses, the service always returns data in UTF-8.

| DATE/TIME FORMATS

It'S TO BE UPDATED

The LLM SOAP APl schema defines date/time values as Coordinated Universal Time (UTC/GMT), using ISO 8601 format,
and of type ns:dateTime. An example date/time stamp is 2006-08-24T05:38:48Z

ENUMERATIONS

Enumeration Values
UserRole Administrator, Therapist, Relative, Unknown
UserCategory User, Senior

The enumeration UserCategory is used to describe if a member of the LLM Service is a User or a Senior. It is useful in
some methods which return member instead of user or senior. This is because the web service deals different with
Users and Seniors. But, in some situations, it is required from the system to return the member of the system, his/her
category and Role. Namely, the Logln function requires username and password and returns if there exists a member
with the provided credentials, in which category belongs and if is he/she a User provides his/her Role.

<s:simpleType name="UserCategory">
<s:restriction base="s:string">
<s:enumeration value="User"/>
<s:enumeration value="Senior"/>
</s:restriction>
</s:simpleType>

The enumeration UserRole is meaningful only if the member is a User.

<s:simpleType name="UserRole">
<s:restriction base="s:string">
<s:enumeration value="Administrator"/>
<s:enumeration value="Therapist"/>
<s:enumeration value="Relative"/>
<s:enumeration value="UnKnown"/>
</s:restriction>
</s:simpleType>

STRUCTURES

SOAP allows client programs to pass in almost any kind of data structure to the Web Service; that’s why Web Services
use SOAP instead of HTTP. The LLM API provides structures as inputs and outputs to the Methods. All structure are
explained to the appropriate section of this document. Some of them are shown to the table below.

Structure Description

senior

user

CTCSeniorActivity

PTCSeniorActivity

ILCSeniorActivity

The structure Senior include in the WSDL file

<s:complexType name="senior">
<s:sequence>
<s:element minOccurs="1" maxOccurs="1" name="senior_id" type="s:int"/>
<s:element minOccurs="0" maxOccurs="1" name="Iname" type="s:string"/>
<s:element minOccurs="0" maxOccurs="1" name="fname" type="s:string"/>
<s:element minOccurs="0" maxOccurs="1" name="address" type="s:string"/>

<s:element minOccurs="0" maxOccurs="1" name="city" type="s:string"/>
<s:element minOccurs="0" maxOccurs="1" name="country" type="s:string"/>
<s:element minOccurs="1" maxOccurs="1" name="birthdate" type="s:dateTime"/>
<s:element minOccurs="0" maxOccurs="1" name="sex" type="s:string"/>
<s:element minOccurs="0" maxOccurs="1" name="username" type="s:string"/>
<s:element minOccurs="0" maxOccurs="1" name="passwd" type="s:string"/>
<s:element minOccurs="1" maxOccurs="1" name="active" type="s:boolean"/>
<s:element minOccurs="1" maxOccurs="1" name="lastlogin" type="s:dateTime"/>
<s:element minOccurs="0" maxOccurs="1" name="tel" type="s:string"/>
</s:sequence>
</s:complexType>

ROLES

The system is able to deal with 4 Member Roles. The Role with the less privileges is the Relative (User) who is
able to get results about the relative senior. More privileges are attached to the Senior (Senior) who has not only the
right to see his/hers progress but also to add information about it (through his/her Logln to the ILC, CTC and PTC). The
Therapist has the authority to add/edit, delete and get results about all seniors that were created from him/her
(Seniors that are attached to the Therapist). Finally, the administrator has all the available rights.

PROGRAMMING LANGUAGE
The LLM web service was developed within the .NET framework (IDE VS2008) using C#. Following sections

include several examples written in .NET (C#) which implement the client —side call of web service’s methods. Within
the next versions of the LLMDR further examples will be documented in several other programming languages.

ERROR HANDLING

Errors are used in order to provide feedback about successful or not call of the methods. The error structure is provided
as the response of the LLMWS call of methods. It provides information about the privileges, etc. The next chapters of
this document deal with the structures of seniors, users, activities etc. The response of each method is a structure that
includes the requested object structure (senior, user, etc) and the error object structure. For this reason, the next
chapters will deal only with the requested object structure. A full example is provided in order to clarify general
concept.

ERROR’S STRUCTURE

<s:complexType name="Error">-
<s:sequence>
<s:element minOccurs="1" maxOccurs="1" name="ErrorCode" type="s:int"/>
<s:element minOccurs="0" maxOccurs="1" name="ErrorMessage" type="s:string"/>
</s:sequence>
</s:complexType>

Attribute Description Type

ErrorCode The unique code of the error (integer)0 in case of successful response
ErrorMessage | The error’s message String

ErrorCode ErrorMessage Description

0 Succesful

1 UnknownError

2 AccessDenied

3 InvalidCredentials

EXAMPLE 1

The “save_senior” method (it is explained in the next chapters) returns a combined structure instead of providing a
senior’s tructure.

The response of the save senior is

Hame alue Tvpe
El @ seniorResp {TestingLLMWebService LLMWebService, Senior TestingLLMwebSe
= f error {TestingLLMweb3ervice, LLMWeb3ervice, Errork TestingLLMweb3e
' 5 ErrorCode 0 int
& errorCodeField O int
ﬁ ErrorMessage "Succesful &, = skring
N ¢ errorMessageri "Succesful® &, = string
= ﬁ seniorList {TestingLLMwebIervice LLMWeb3ervice, senior[1]+ TestingLLMweb3e

|| "= #[0] [{TestinglLMwebService.LLM TestingLLMwebS
i active true bool
| o activeField true baol
o address "Karaiskaki 2" &, = string
& addressFielc "Karaiskaki 2" G, = string
ﬁ birthdate {12/7/19&1 12:00:00 nu} System,DateTime
o birthdateFie {12/7/1981 12:00:00 np} System, DateTime
ot ity "KOZAMNT" & - shring
& cityField "KOZAMI" &, = skring
¢ ot country "GREECE" 3, = string

The returned structure is the “seniorResp”. This structure includes the error object and an array of seniors “seniorList”
instead of a single senior object.

SENIOR’S STRUCTURE

<s:complexType name="senior">

<s:sequence>

<s:element minOccurs="1" maxOccurs="1" name="senior_id" type="s:int"/>
<s:element minOccurs="0" maxOccurs="1" name="Iname" type="s:string"/>
<s:element minOccurs="0" maxOccurs="1" name="fname" type="s:string"/>
minOccurs="0" maxOccurs="1" name="address" type="s:string"/>
minOccurs="0" maxOccurs="1" name="city" type="s:string"/>
minOccurs="0" maxOccurs="1" name="country" type="s:string"/>
minOccurs="1" maxOccurs="1" name="birthdate" type="s:dateTime"/>
minOccurs="0" maxOccurs="1" name="sex" type="s:string"/>
minOccurs="0" maxOccurs="1" name="username" type="s:string"/>
minOccurs="0" maxOccurs="1" name="passwd" type="s:string"/>
minOccurs="1" maxOccurs="1" name="active" type="s:boolean"/>
<s:element minOccurs="1" maxOccurs="1" name="lastlogin" type="s:dateTime"/>
<s:element minOccurs="0" maxOccurs="1" name="tel" type="s:string"/>
</s:sequence>
</s:complexType>

<s:element
<s:element
<s:element
<s:element
<s:element
<s:element
<s:element
<s:element

<s:complexType name="SeniorR">

<s:sequence>

<s:element minOccurs="0" maxOccurs="1" name="seniorList" type="tns:ArrayOfSenior"/>
<s:element minOccurs="1" maxOccurs="1" name="error" type="tns:Error"/>
</s:sequence>
</s:complexType>

Attribute Description Type

senior_id The Unique Identifier of the Senior. It is Is an integer starting from 1. If the senior_id is 0 it means
auto-generated by the LLMWS that the Senior is not saved in the LLMDB
(autoincrement)

Iname The Last Name of The Senior String

fname The First Name of The Senior String

address The home Address of The Senior String

city The City of The Senior String (it will be changed to integer)

country The Country of The Senior String (it will be changed to integer)

birthdate The Birthdate of The Senior Date

sex The Sex of The Senior Although it is a string it should be ‘M’ for male or ‘F’ for

female (it will be changed to enumeration)

username The username of The Senior (required for String (max 30 characters)
Login)

passwd The password of The Senior (required for String (max 30 characters)
LoglIn)

active If the Senior is Active or Not True: active, False: Not Active

lastlogin The date time of the last Log In Date

tel The telephone number of the Senior String

ADD NEW SENIOR

The method that is used in order to add a new senior to the System is called

save_senior

SeniorR save_senior(senior seniorx, string username, string password);

The Senior (seniorx) parameter must have as senior_id = 0. This requirement is used in order to facilitate the method to
separate if it is a new senior that should be added to the database or an already senior that he/she will be updated
(explained in Section Edit Senior). The method save_senior returns a SeniorR structure with the error message and a list
with one object (senior). The rest attributes of the senior Structure are store to the LLMDB. The username and
password that are passed to the parameters are the user’s credentials who is calling this method. If these credentials
belong to a Senior or Relative the procedure is terminated and returns an error. In case of these credentials belonging
to a Therapist or Administrator the procedure is running and the new added senior “belongs/attached” to the Therapist
or Administrator that Called the method (see Attach Senior To User).

EXAMPLE 1

LLMWebService.senior seniorx = new TestingLLMWebService.LLMWebService.senior();
seniorx.active = true;

seniorx.address = "Karaiskaki 2";
seniorx.birthdate = new DateTime(1981, 07, 12);
seniorx.city = "KOZANI";

seniorx.country = "GREECE";

seniorx.fname = "Pan";

seniorx.senior_id = 0;

seniorx.lname = "Bam";

seniorx.sex = "M";

seniorx.tel ="112345678";

seniorx.username = "panl";

seniorx.passwd = "panl";

LLMWebService.SeniorR seniorResp = LLMWebServ.save_senior(seniorx, clsStaticVariables.UserName,
clsStaticVariables.PassWord);

if (seniorResp.error.ErrorCode == 0)
{
seniorx = seniorResp.seniorList[0];

}

First a new instance of senior is created. Then each attribute of the structure is assigned a value. Finally, via the web
service method save_senior, the new instance is being stored into the LLMDB. It must be stressed out that the method
returns a structure (seniorResp) whose senior array contains (seniorList) the just saved senior with his ID, in case of
successful storage.

EDIT EXISTING SENIOR

The method that is used in order to edit an existing senior of the System is called

save_senior

SeniorR save_senior(senior seniorx, string username, string password);

The Senior (seniorx) parameter must have as senior_id the senior_id that will be edited. This requirement is used in
order to facilitate the method to separate if it is a new Senior that should be added to the database (explained in
Section Add New Senior) or an already Senior that he/she will be updated. The method save_senior returns a SeniorR
structure. The rest attributes of the senior Structure are updated to the LLMDB. The username and password that are
passed to the parameters are the user’s credentials who is calling this method. If these credentials belong to a Senior or
Relative the procedure is terminated and returns the appropriate error message. In case of these credentials belonging
to a Therapist, the Therapist must have attached the specified Senior in order to update him/her. If the senior doesn’t

belong to the Therapist who calls the method the procedure is terminated and returns the appropriate error message.
In case of the administrator the procedure runs independently of to whom the senior belongs to.

EXAMPLE 1

int senior_id = 5;
LLMWebService.senior seniorx;
LLMWebService.SeniorR senior_arrayx = LLMWebServ.get_senior(senior_id, “username”, “password”);
if (senior_arrayx.seniorList.Length > 0)
{
seniorx = senior_arrayx.seniorList[0];
seniorx.fname = "George";
LLMWebService.SeniorR seniorResp = LLMWebServ.save_senior(seniorx, “username”, “password”);
if (seniorResp.error.ErrorCode == 0)
{
seniorx = seniorResp.seniorList[0];
}
}

In this example, given the senior’s id we first get its corresponding instance (senior_arrayx.seniorList[0]) with the
method get_senior. After that any changes are possible concerning senior’s structure attributes, e.g. its fname. Finally
the altered instance of the senior structure is stored via save_senior method.

DELETE SENIOR

The method that is used in order to delete an existing senior from the System is called

Delete_senior

SeniorR Delete_senior(int senior_id, string username, string password);

The senior_id must be equal to the senior that you want to delete. If the senior_id is 0 the procedure is terminated and
returns in the SeniorR structure the appropriate error message. A Senior can be deleted only by a Therapist who has
privileges to the selected Senior or by an Administrator. The user’s credentials facilitate the recognition of the user’s
privileges.

EXAMPLE 1

int senior_id = 5;
LLMWebService.SeniorR seniorx = LLMWebServ.Delete_senior(senior_id, “username”, “password”);

In this example, given of the senior’s id, the LLMWS Delete_senior method deletes the corresponding senior user.

GET SENIOR/SENIORS

The method that is used in order to get an existing senior/seniors from the System is called
get_senior
SeniorR get_senior(int senior_id, string username, string password);

The senior_id must be equal to the senior that you want to get. If the senior_id is 0 all the available Seniors returned
from the System. The user credentials responsible for the Seniors that will be returned.

If the Member is a senior (based on the provided credentials) the system will return only his/her information. If a senior
tries to get data from another senior the system returns an empty seniorlList and the appropriate error message. The
relative is able to get only information about his/hers relative Senior. The therapist can see information about all
seniors attached to the specified by the credentials therapist. Finally, the administrator is able to get all the seniors.

EXAMPLE 1

int senior_id = 3;
LLMWebService.SeniorR senior_arrayx = LLMWebServ.get_senior(senior_id, “username”, “password”);

As mentioned above, get_senior method can provide a certain senior user or a list with the seniors available to the user
requested them. In this example, a senior with a certain id is requested and assigned to the array of senior structures as
the one and only element of it.

EXAMPLE 2

int senior_id = 0;
LLMWebService.SeniorR senior_arrayx = LLMWebServ.get_senior(senior_id,”username”, “password”);

senior_arrayx.seniorList[0] //First element access of seniorList, which contains a senior structure.
senior_arrayx.seniorList[0].city = "Thessaloniki"; // Set value of city attribute of the first element of seniorList.
senior_arrayx.error.ErrorMessage //Access to the error structure and specifically to the ErrorMessage attribute.

The example above represents the case of using get_senior method to acquire an array with all the available senior
users. For this reason, senior_id is assigned a zero value.

USER’S STRUCTURE

<s:complexType name="user">
<s:sequence>
<s:element minOccurs="1" maxOccurs="1" name="user_id" type="s:int"/>
<s:element minOccurs="0" maxOccurs="1" name="Iname" type="s:string"/>
<s:element minOccurs="0" maxOccurs="1" name="fname" type="s:string"/>
<s:element minOccurs="0" maxOccurs="1" name="username" type="s:string"/>
<s:element minOccurs="0" maxOccurs="1" name="password" type="s:string"/>
<s:element minOccurs="1" maxOccurs="1" name="role_id" type="s:int"/>
<s:element minOccurs="0" maxOccurs="1" name="role_name" type="s:string"/>
<s:element minOccurs="1" maxOccurs="1" name="Role" type="tns:UserRole"/>
</s:sequence>
</s:complexType>

<s:complexType name="UserR">
<s:sequence>
<s:element minOccurs="0" maxOccurs="1" name="userList" type="tns:ArrayOfUser"/>
<s:element minOccurs="1" maxOccurs="1" name="error" type="tns:Error"/>
</s:sequence>
</s:complexType>

Attribute Description Type

user_id The Unique Identifier of the User. It is Is an integer starting from 1. If the user_id is O it means
auto-generated by the LLMWS that the User is not saved in the LLMDB
(autoincrement)

Iname The Last Name of The User String

fname The First Name of The User String

username The username of The User (required for String (max 30 characters)
Login)

password The password of The User (required for String (max 30 characters)
Login)

role_id The role Id of the User The Id of the role as it is stored in the LLMDB

role_name The role name in string format of the User | String

Role The Role of the User (enumeration) Enumeration (UserRole)

ADD NEW USER

The method that is used in order to add a new user to the System is called

save_user

UserR save_user(user userx, string username, string password);

The user (userx) parameter must have as user_id = 0. This requirement is used in order to facilitate the method to
separate if it is a new user that should be added to the database or an already user that he/she will be updated
(explained in Section Edit User). The method save_user returns a UserR structure with the error message and a list with
one object (user). The rest attributes of the User Structure are store to the LLMDB. The username and password that
are passed to the parameters are the user’s credentials who is calling this method. If these credentials belong to a

Senior,Relative or Therapist the procedure is terminated and returns the appropriate error message. In case of these
credentials belonging to an Administrator the procedure is running.

In case of adding or editing a user it is obligated to provide only the Role and not the role_name and role_id.

EXAMPLE 1

LLMWebService.user userx = new TestingLLMWebService.LLMWebService.user();
userx.fname = "RALTEC";

userx.user_id = 0;

userx.lname = "RALTEC";

userx.username = "raltec";

userx.password = "raltec";

userx.Role = TestingLLMWebService.LLMWebService.UserRole.Administrator;
LLMWebService.UserR userResp = LLMWebServ.save_user(userx, “username”, “password”);
if (userResp.error.ErrorCode == 0)

{

userx = userResp.userList[0];

}

In this example, a new instance of user is created. Then each attribute of the structure is assigned a value. Finally, via
the web service method save_user, the new instance is being stored into the LLMDB. It must be stressed out that the
method returns a structure (userResp) whose user array contains (userList) the just saved senior with his ID, in case of
successful storage.

EDIT EXISTING USER

The method that is used in order to edit an existing user of the System is called

save_ user

UserR save_user(user userx, string username, string password);

The user (userx) parameter must have as user_id the user_id that will be edited. This requirement is used in order to
facilitate the method to separate if it is a new User that should be added to the database (explained in Section Add New
User) or an already User that he/she will be updated. The method save_user returns a UserR structure. The rest
attributes of the Senior Structure are updated to the LLMDB. The username and password that are passed to the
parameters are the user’s credentials who is calling this method. If these credentials belong to a Senior, Relative or
Therapist the procedure is terminated and returns the appropriate error message. In case of the administrator the
procedure runs.

In case of adding or editing a user it is obligated to provide only the Role and not the role_name and role_id.

EXAMPLE 1

int user_id = 5;
LLMWebService.user userx;
LLMWebService.UserR user_arrayx = LLMWebServ.get_user(user_id, “username”, “password”);
if (user_arrayx.userList.Length > 0)
{
userx = user_arrayx.userList[0];
userx.fname = "George";

” o u

LLMWebService. R userResp = LLMWebServ.save_user(userx, “username”, “password”);
if (userResp.error.ErrorCode == 0)

{

userx = userResp.userList[0];

}
}

In this example, given the user’s id we first get its corresponding instance (user_arrayx.userlList[0]) with the method
get_user. After that any changes are possible concerning user’s structure attributes, e.g. its fname. Finally the altered
instance of the user structure is stored via save_user method.

DELETE USER

The method that is used in order to delete an existing user from the System is called

Delete_user

UserR Delete_user(int user_id, string username, string password);

The user_id must be equal to the user that you want to delete. If the user_id is 0 the procedure is terminated and
returns the appropriate error message. A User can be deleted only by an Administrator. The user’s credentials facilitate
the recognition of the user’s privileges.

EXAMPLE 1

int user_id = 5;
LLMWebService.UserR userx = LLMWebServ.Delete_user(user_id,”username”,“password”);

In this example, given of the user’s id, the LLMWS Delete_user method deletes the corresponding user.

GET USER/USERS

The method that is used in order to get an existing user / users from the System is called

get_user

UserR get_user(int user_id, string username, string password);

The user_id must be equal to the user that you want to get. If the user_id is 0 the all available Users are returned from
the System. Every user can get only his/her data apart from the Administrator who is able to get all Users.

EXAMPLE 1

int user_id = 3;
LLMWebService. R user_arrayx = LLMWebServ.get_user(user_id, “username”, “password”);

user_arrayx.userlList[1].Iname = "Smith"; //Set last name of second element of userList, which is a list of user structures.
Int err_code = user_arrayx.error.ErrorCode;//Get ErrorCode of structure error, which is contained in user_arrayx User
structure.

As mentioned above, get_user method can provide a certain user or a list with the users available to the user requested
them. In this example, a user with a certain id is requested and assigned to the array of user structures as the one and
only element of it.

EXAMPLE 2

int user_id = 0;
”n u

LLMWebService.UserR user_arrayx = LLMWebServ.get_user(user_id,”username”, “password”);

The example above represents the case of using get_user method to acquire an array with all the available users (only
the administrator is allowed to perform this action). For this reason, user_id is assigned a zero value.

MEMBER’S STRUCTURE

<s:complexType name="userorsenior">
<s:sequence>
<s:element minOccurs="1" maxOccurs="1" name="usersenior_id" type="s:int"/>
<s:element minOccurs="1" maxOccurs="1" name="usercategory" type="tns:UserCategory"/>
<s:element minOccurs="0" maxOccurs="1" name="username" type="s:string"/>
<s:element minOccurs="0" maxOccurs="1" name="password" type="s:string"/>
<s:element minOccurs="1" maxOccurs="1" name="role_id" type="s:int"/>
<s:element minOccurs="0" maxOccurs="1" name="role_name" type="s:string"/>
<s:element minOccurs="1" maxOccurs="1" name="Role" type="tns:UserRole"/>
</s:sequence>
</s:complexType>

<s:complexType name="UserOrSeniorR">
<s:sequence>
<s:element minOccurs="0" maxOccurs="1" name="userorseniorList" type="tns:ArrayOfUserorsenior"/>
<s:element minOccurs="1" maxOccurs="1" name="error" type="tns:Error"/>
</s:sequence>
</s:complexType>

Attribute Description Type
usersenior_id | The Unique Identifier of the User or The Is an integer that is equal to the user_id (if it is a user),
Senior equal to the senior_id (if it is a Senior) or O if there is not
exist a Member with the provided credentials
usercategory | Ifitisa User or a Senior Enumeration (UserCategory)
username The username of The User or the Senior String (max 30 characters)
password The password of The User or the Senior String (max 30 characters)
role_id The role Id of the User (if it is a User) The Id of the user’s role as it is stored in the LLMDB
role_name The role name in string format of the User | String
(if it is a User)
Role The Role of the User (if it is a User) Enumeration (UserRole)
GET MEMBER

The method that is used in order to get an existing member from the System is called
find_username_and_password
UserOrSeniorR find_username_and_password(string username, string password);

The method returns a structure of UserOrSeniorR. If there is not a user or senior with the provided credentials the
appropriate error message is provided by the error object of the UserOrSeniorR structure. If the credentials belong to a
senior then the usercategory attribute is Senior, else the usercategory attribute is User. In the case in which the
usercategory attribute is User the Role attribute gives the User’s Role (Administrator, Therapist, Relative, UnKnown).
Based on the returned structure, the programmer is able to get the User’s or Senior’s information by using the Get User
or Get Senior according to the usercategory and the usersenior_id.

|EXAMPLE 1

” u

LLMWebService. UserOrSenior userorseniorx = LLMWebServ.find_username_and_password(“username”, “password”);

In this example, method find_username_and_password is called and returns an instance of the userorsenior structure.

USER SENIOR RELATIONSHIP

USER — SENIOR RELATIONSHIP’S STRUCTURE

<s:complexType name="UserSeniorRelation">
<s:sequence>
<s:element minOccurs="1" maxOccurs="1" name="userrelationid" type="s:int"/>
<s:element minOccurs="1" maxOccurs="1" name="user_id" type="s:int"/>
<s:element minOccurs="1" maxOccurs="1" name="senior_id" type="s:int"/>
<s:element minOccurs="1" maxOccurs="1" name="IsCreator" type="s:boolean"/>
</s:sequence>
</s:complexType>

<s:complexType name="UserSeniorRelationR">
<s:sequence>
<s:element minOccurs="0" maxOccurs="1" name="userseniorrelationList" type="tns:ArrayOfUserseniorrelation"/>
<s:element minOccurs="1" maxOccurs="1" name="error" type="tns:Error"/>
</s:sequence>
</s:complexType>

Attribute Description Type

userrelationid | The Unique Identifier of the User or The The unique identifier of the user-senior relation (auto —
Senior generated by the LLMWS)

user_id The User’s user_id User_id Integer

senior_id The Senior’s senior_id senior_id Integer

IsCreator If the User is the one who registered the True or False
Senior to the LLM System

ATTACH SENIOR TO USER

The method that is used in order to attach a Senior to a User is called
add_senior_to_user
UserSeniorRelationR add_senior_to_user(int user_id, int senior_id, string username, string password);

This method attaches a Senior to a User. If the User that provides thecredentials is an Administrator then he/she can
attach any Senior to any User. This method is called internally when the method Add New Senior or Edit Existing Senior
is called. In this case, it is automatically attaches the added or edited senior to the User (based on the Credentials)

EXAMPLE 1

int user_id = 22;
int senior_id = 18;
LLMWebServ. UserSeniorRelationR userseniorrelationx = LLMWebServ. add_senior_to_user(user_id, senior_id,

”ou

“username”, “password”);

DELETE SENIOR — USER RELATIONSHIP

The method that is used in order to delete an existing relationship between a user and a senior is called
Delete_senior_relations
UserSeniorRelationR Delete_senior_relations(int user_id, int senior_id, string username, string password);

If the user recognised by the credentials is a Therapist or a Relative , then they can delete only their relationship to the
Senior. If the User is an Administrator he/she can Delete any relationship or delete All relationships to a Senior by
providing the senior_id and as a user_id 0.

EXAMPLE 1

int user_id = 22;
int senior_id = 18;
LLMWebServ.UserSeniorRelationR userseniorrelationx = LLMWebServ. Delete_senior_relations (user_id, senior_id,

»ou

“username”, “password”);

LLM COMPONENTS AND ACTIVITIES

Each component, like ILC, CTC and PTC, supports a finite predefined number of activities. These well-described (by the
component’s providers) activities behave as the elementary entities of the Seniors Interaction. For example, the
movement activity in the kitchen may be named “KitchenActivityl”, the movement activity in the bedroom may be
named “BedroomActivityl”. These two activities are different entities. Another example may include the procedure of
software that shows to the senior 3 screens (with different multimedia material each time). This may be a CTC Activity.
Another activity may be a procedure of software that shows to the senior 4 screens (with different multimedia material
each time). In conclusion, activity is a set of exercises that is treated by the LLM System as an Activity. The activity is
performed by a Senior and a score for this activity is generated

The LLM System supports a finite number of activities. This number stems from the activities that are supported by the
CTC, the ILC and the PTC. These activities are provided by the providers of the components and added to the LLM
System once. If a new Activity is available, the administrator is responsible for adding it as a supported activity of the
LLM System.

The term Component is used in order to describe the system that is used by the ILC, CTC and PTC. For example, The
Components of the PTC may be a treadmill er100 model, a treadmill er200 model, a Balanced Board, a Wiimote, etc.
Each of the above activities may be available to more than one Components. For example, the “walking” activity may
take place at the treadmill erl00 model or the treadmill er200 model. If a new Component is available, the
administrator is responsible for adding it as a supported Component of the LLM System.

INTEPENDENT LIVING COMPONENT ILC

ILC ACTIVITY’S STRUCTURE

<s:complexType name="ILCActivity">
<s:sequence>
<s:element minOccurs="1" maxOccurs="1" name="ID" type="s:int"/>
<s:element minOccurs="0" maxOccurs="1" name="Name" type="s:string"/>
<s:element minOccurs="0" maxOccurs="1" name="Units" type="s:string"/>
</s:sequence>
</s:complexType>

<s:complexType name="ILCACTIVITYR">
<s:sequence>
<s:element minOccurs="0" maxOccurs="1" name="ILCActivityList" type="tns:ArrayOfILCActivity"/>
<s:element minOccurs="1" maxOccurs="1" name="error" type="tns:Error"/>
</s:sequence>
</s:complexType>

Attribute Description Type

ID ILC Activity ID The unique identifier of the ILC Activity
Name ILC Activity Name String

Units The ILC activity progress Units String

The ILC Activity is an integrated well-described activity that a Senior can achieve. For example, the movement activity in
the kitchen may be named “KitchenActivityl”, the movement activity in the bedroom may be named
“BedroomActivityl”. These two activities are different entities.

ADD ILC ACTIVITY

The method that is used in order to add a supported by the system ILC Activity called
AddILCActivity
ILCACTIVITYR AddILCActivity(ILCActivity ilcactx, string username, string password);

This method adds an ILC Activity as supported by the LLM System. Only an administrator has the privilege to use this
method. This method is described in this document for development purposes only and will be absent in the final
version of the LLMDR.

EXAMPLE 1

LLMWebService.ILCActivity ilcactx = new TestingLLMWebService.LLMWebService.ILCActivity();
ilcactx.ID = 0;
ilcactx.Name = "BedroomActivity1";
ilcactx.Units = "seconds";
LLMWebService.ILCACTIVITYR ilcactivity = LLMWebServ.AddILCActivity(ilcactx, “username”, “password”);
if (ilcactivity.error.ErrorCode == 0)//access to error’s structure ErrorCode attribute
ilcactx = ilcactivity.ILCActivityList[0]; //get the first element of ILCActivityList, which is a ILCActivity structure.

In the above example, a new instance of ILCActivity is created. Then each attribute of the structure is assigned a value.
Finally, via the web service method AddILCActivity, the new instance is being stored into the LLMDB. It must be stressed

out that the method returns an ILCACTIVITYR structure with an array (one element) of the new ILCActivity, in case of
successful addition.

GET ILC ACTIVITY

The method that is used in order to get all supported by the system ILC Activities called
GetILCActivity
ILCACTIVITYR GetlLCActivity(int ilcactivity_id, string username, string password);

This method gets the specified by the “ilcactivity_id” ILCActivity or all the available ILC Activities that are supported by
the LLM System.Every Member (User or Senior) has the privilege to use this Method.

EXAMPLE 1

intilcact_id =0;
LLMWebService.ILCACTIVITYR ilcactivity = LLMWebServ.GetILCActivity(ilcact_id, “username”,”password”);

The above sample of code represents the case of getting all the supported by the system ILCActivities, using the
GetILCActivity method. It must be stressed out that “ilcactivity_id” is set to zero, thus indicating the fact that the
method will return as a result all the available ILCActivities.

EXAMPLE 2

intilcact_id = 3;

LLMWebService.ILCACTIVITYR ilcactivity = LLMWebServ.GetILCActivity(ilcact_id, “username”,”password”);

String ilc_activity_name = ilcactivity.ILCActivityList[0].Name; //Access Name attribute of first element of ILCActivityList
String error_message_name = ilcactivity.error.ErrorMessage;//Access ErrorMessage(Name) attribute of error structure

The above sample of code represents the case of getting a specific ILCActivity corresponding to the provided
“ilcactivity_id"” , using the GetILCActivity method.

ILC COMPONENT’S STRUCTURE

<s:complexType name="ILCComponent">
<s:sequence>
<s:element minOccurs="1" maxOccurs="1" name="ID" type="s:int"/>
<s:element minOccurs="0" maxOccurs="1" name="Name" type="s:string"/>
<s:element minOccurs="0" maxOccurs="1" name="Comments" type="s:string"/>
</s:sequence>
</s:complexType>

<s:complexType name="ILCCOMPONENTR">
<s:sequence>
<s:element minOccurs="0" maxOccurs="1" name="ILCComponentList" type="tns:ArrayOfILCComponent"/>
<s:element minOccurs="1" maxOccurs="1" name="error" type="tns:Error"/>
</s:sequence>
</s:complexType>

Attribute Description Type

ID ILC Component ID The unique identifier of the ILC Component
Name ILC Component Name String

Comments The ILC Component Description String

ADD ILC COMPONENT

The method that is used in order to add a supported by the system ILC Component called
AddILCComponent
ILCCOMPONENTR AddILCComponent(ILCComponent ilccmptx, string username, string password);

This method adds an ILC Component as supported by the LLM System. Only an administrator has the privilege to use
this method. This method is described in this document for development purposes only and will be absent in the final
version of the LLMDR.

EXAMPLE 1

LLMWebService.ILCComponent ilccmptx = new TestingLLMWebService.LLMWebService.|LCComponent();
ilccmptx.ID = 0;
ilccmptx.Name = "AAL";
ilccmptx.Comments = "ALTEC";
LLMWebService.I[LCCOMPONENTR ilccomp = LLMWebServ.AddILCComponent(ilccmptx,”username”, “password”);
if (ilccomp.error.ErrorCode == 0) //Access to ErrorCode attribute of error structure which is contained in
ILCCOMPONENT
ilccmptx = ilccomp.ILCComponentList[0];

First, a new instance of ILCComponent structure is created. After that, each attribute of the structure is assigned a value
and the whole structure is passed as a parameter to the AddILCComponent method of the LLMWS. Finally the method
returns as a result an ILCCOMPONENTR structure with an array (one element) of the new ILCComponent, in case of
successful addition.

GET ILC COMPONENT

The method that is used in order to get all supported by the system ILC Components called
GetILCComponent
ILCCOMPONENTR GetlLCComponent(int ilccomponent_id, string username, string password);

This method gets the specified by the “ilccomponent _id” or all the available ILC Components that are supported by the
LLM System.Every Member (User or Senior) has the privilege to use this Method.

EXAMPLE 1

intilccmp_id = 0;
LLMWebService.I[LCCOMPONENTR ilccomp = LLMWebServ.GetILCComponent(ilccmp_id, “username”, “password”);

The above sample of code represents the case of getting all the supported by the system ILCComponents, using the
GetILCComponent method. It must be stressed out that “ilccomponent_id” is set to zero, thus indicating the fact that
the method will return as a result, the available ILCComponents.

EXAMPLE 2

intilccmp_id = 2;
LLMWebService.[LCCOMPONENTR ilccomp = LLMWebServ.GetILCComponent(ilccmp_id, “username”, “password”);
String provider_name = ilccomp.ILCComponentList[0].Comments;//Get Comments attribute of first element of
ILCComponentList
int error_code = ilccomp.error.ErrorCode;//Get ErrorCode attribute o ferror structured which is contained in ilccomp
ILCCOMPONENT structure.

The above sample of code represents the case of getting a specific ILCComponent corresponding to the provided
“ilccomponent_id” , using the GetILCComponent method.

ILC SENIOR’S ACTIVITY STRUCTURE

<s:complexType name="ILCSeniorActivity">
<s:sequence>
<s:element minOccurs="1" maxOccurs="1" name="ID" type="s:int"/>
<s:element minOccurs="1" maxOccurs="1" name="senior_id" type="s:int"/>
<s:element minOccurs="0" maxOccurs="1" name="seniorslname" type="s:string"/>
<s:element minOccurs="0" maxOccurs="1" name="seniorsfname" type="s:string"/>
<s:element minOccurs="1" maxOccurs="1" name="ilcactivityid" type="s:int"/>
<s:element minOccurs="0" maxOccurs="1" name="ilcactivityname" type="s:string"/>
<s:element minOccurs="1" maxOccurs="1" name="ilcid" type="s:int"/>
<s:element minOccurs="0" maxOccurs="1" name="ilcname" type="s:string"/>
<s:element minOccurs="1" maxOccurs="1" name="datetimestart" type="s:dateTime"/>
<s:element minOccurs="1" maxOccurs="1" name="datetimeend" type="s:dateTime"/>
<s:element minOccurs="0" maxOccurs="1" name="score" type="s:string"/>
<s:element minOccurs="1" maxOccurs="1" name="level" type="s:int"/>
</s:sequence>
</s:complexType>

<s:complexType name="ILCSENIORACTIVITYR">
<s:sequence>
<s:element minOccurs="0" maxOccurs="1" name="ILCSeniorActivityList" type="tns:ArrayOfILCSeniorActivity"/>
<s:element minOccurs="1" maxOccurs="1" name="error" type="tns:Error"/>
</s:sequence>
</s:complexType>

Attribute Description Type

ID ILC Senior Activity ID The unique identifier of the ILC Senior Activity
senior_id Senior ID The unique identifier of the Senior
seniorslname Senior’s Last Name String

seniorsfname Senior’s First Name String

ilcactivityid ILC Activity ID The unique identifier of the ILC Activity
ilcactivityname | ILC Activity Name String

ilcid ILC Component ID The unique identifier of the ILC Component
ilcname ILC Component Name String

datetimestart | Date Time Activity Started Datetime

datetimeend Date Time Activity Ended Datetime

score The score achieved by the Senior String

level The Difficulty Level of the Activity Integer

ADD ILC SENIOR’S ACTIVITY

The method that is used in order to add an activity that is performed by a senior and the score achieved is called
AddILCSeniorActivity
ILCSENIORACTIVITYR AddILCSeniorActivity(ILCSeniorActivity ilcsenacttx, string username, string password);

This method adds an activity that is performed by a senior. It behaves as a log file of the senior’s progress and activities.
The obligated fields that must be provided are:

senior_id: The senior that performs the activity (see Get Senior/Seniors)

ilcactivityid: The ILC Activity that is performed by the Senior (see Get ILC Activity)

ilcid: The ILC Component that is used by the senior in order to perform the Activity (see Get ILC Component)
datetimestart: The date and time that the activity started

datetimeend: The date and time that the activity ended

score: The score that achieved by the Senior (The Units of these are described in the Activity, see Get ILC Activity)

level: The level of difficulty of the performed ILC Activity (e.g. 1 - 10)

A senior has the privilege to use this method only for himself, the Therapist for all his/her Seniors and an Administrator
for all the Seniors. The common scenario is the Senior to provide his activities (by Logln to the LLM System).

EXAMPLE 1

LLMWebService.ILCSeniorActivity ilcactx = new TestingLLMWebService.LLMWebService.ILCSeniorActivity();
ilcactx.ID = 0;
ilcactx.senior_id = 18;
ilcactx.ilcactivityid = 1;
ilcactx.ilcid = 1;
ilcactx.datetimestart = new DateTime(2009, 6, 21,10,00,00);
ilcactx.datetimeend = new DateTime(2009, 6, 21, 11, 00, 00);
ilcactx.score = "good";
ilcactx.level = 2;
LLMWebService.ILCSENIORACTIVITYR ilcsenact = LLMWebServ.AddILCSeniorActivity(ilcactx, “username”, “password”);
if (ilcsenact.error.ErrorCode == 0)
ilcactx = ilcsenact.ILCSeniorActivityList[0];//Get first ILCSeniorActivity from the ILCSeniorActivityList.

A new instance of ILCSeniorActivity is created and each attribute of it is assigned with a valid value. Finally, the
AddILCSeniorActivity method stores the new instance of ILCSeniorActivity.

GET ILC SENIOR’S ACTIVITY

The method that is used in order to get all performed ILC Activities by a senior called

GetILCSeniorActivity

ILCSENIORACTIVITYR GetlLCSeniorActivity(int ilcsenioractivity_id, int senior_id, int ilcactivity_id, int ilc_id, int user_id,
string username, string password);

This method gets all the performed ILC Senior’s Activities (Log) based on the following criterias:
ilcsenioractivity_id: if it is O then the criteria is not used

senior_id: if it is O then the criteria is not used, else the method results include only for the specified senior.
ilcactivity_id: if it is 0 then the criteria is not used, else the method results include only for the specified activity.
ilc_id: if it is O then the criteria is not used, else the method results include only for the specified ilc component.
user_id: if it is O then the criteria is not used, else the method results include only for the specified ilc component.

If the provided credentials belong to a Senior, the results include only his/her performance. If the provided credentials
belong to a Therapist, the results include only his/her Seniors performance. If the User is an Administrator he/she has
the privilege to get all Seniors’ performance.

EXAMPLE 1

LLMWebService.ILCSENIORACTIVITYR ilcsenact = LLMWebServ.GetILCSeniorActivity(0,0,0,0,0, “username”,

“password”);

String senior_score = ilcsenact.ILCSeniorActivityList[0].score;//Get the score attribute of ILCSeniorActivity, which is the
first element of the ILCSeniorActivityList contained in
ilcsenact ILCSENIORACTIVITY structure returned by the
method.

The above example represents the case of getting all the supported by the system ILCSeniorActivities, using the
GetILCSeniorActivity method. It must be stressed out that “ilcsenioractivity_id”, “senior_id”, “ilcactivity_id”, “ilc_id”,
“user_id”, are set to zero, thus indicating the fact that the method will return as a result, the whole set of
ILCSeniorActivities.

EXAMPLE 2

int ilcsenioract_id = 4;
LLMWebService.ILCSENIORACTIVITYR ilcsenact = LLMWebServ.GetILCSeniorActivity(ilcsenioract_id,0,0,0,0, “username”,
“password”);

In this example, a specific ILCSeniorActivity is returned, passing its unique “ilcsenioractivity_id” as a parameter to the
GetILCSeniorActivity method.

EXAMPLE 3

int ilcsenior_id = 16;
LLMWebService.ILCSENIORACTIVITYR ilcsenact = LLMWebServ.GetILCSeniorActivity(0, ilcsenior_id, 0, 0, 0, “username”,
“password”);

The above example represents the case that the Get/LCSeniorActivity method returns a list of ILCSeniorActivities that
are performed by a specific senior, given his/her unique id. . Following the same convention, a user can retrieve e.g. all
the results achieved by all seniors using all kind of ILC equipment concerning a specific activity such as “moving in living
room” for example. This is accomplished by setting ilcactivity _id equal to the corresponding id of “moving in living
room” activity and concurrently by setting all other arguments, except for UserName and Password, to zero.

COGNITIVE TRAINING COMPONENT CTC

CTC ACTIVITY’S STRUCTURE

<s:complexType name="CTCActivity">
<s:sequence>
<s:element minOccurs="1" maxOccurs="1" name="ID" type="s:int"/>
<s:element minOccurs="0" maxOccurs="1" name="Name" type="s:string"/>
<s:element minOccurs="0" maxOccurs="1" name="Units" type="s:string"/>
</s:sequence>
</s:complexType>

<s:complexType name="CTCACTIVITYR">
<s:sequence>
<s:element minOccurs="0" maxOccurs="1" name="CTCActivityList" type="tns:ArrayOfCTCActivity"/>
<s:element minOccurs="1" maxOccurs="1" name="error" type="tns:Error"/>
</s:sequence>
</s:complexType>

Attribute Description Type

ID CTC Activity ID The unique identifier of the CTC Activity
Name CTC Activity Name String

Units The CTC activity progress Units String

The CTC Activity is an integrated well-described activity that a Senior can achieve. For example, the procedure of
software that shows to the senior 3 screens (with different multimedia material each time). This may be a CTC Activity.
Another activity may be a procedure of software that shows to the senior 4 screens (with different multimedia material
each time). These two activities are different entities.

ADD CTC ACTIVITY

The method that is used in order to add a supported by the system CTC Activity called
AddCTCActivity
CTCACTIVITYR AddCTCActivity(CTCActivity ctcactx, string username, string password);

This method adds a CTC Activity as supported by the LLM System. Only an administrator has the privilege to use this
method. This is method is described in this document for the purpose of development only and will be absent in the
final version of the LLMDR.

EXAMPLE 1

LLMWebService.CTCActivity ctcactx = new TestingLLMWebService.LLMWebService.CTCActivity();
ctcactx.ID = 0;
ctcactx.Name = "MemoryTest";
ctcactx.Units = "percent”;
LLMWebService.CTCACTIVITYR ctcactivity = LLMWebServ.AddCTCActivity(ctcactx, “username”, “password”);
if (ctcactivity.error.ErrorCode == 0)//Get ErrorCode attribute of error strucure contained in ctcactivity CTCACTIVITY
structure
ctcactx = ctcactivity.CTCActivityList[0];

In the above example, a new instance of CTCActivity is created. Then each attribute of the structure is assigned a value.
Finally, via the web service method AddCTCActivity, the new instance is being stored into the LLMDB. It must be
stressed out that the method returns an CTCACTIVITYR structure with an array (one element) of the new CTCActivity, in
case of successful addition.

GET CTC ACTIVITY

The method that is used in order to get all supported by the system ILC Activities called
GetCTCActivity
CTCACTIVITYR GetCTCActivity(int ctcactivity_id, string username, string password);

This method gets the specified by the “ctcactivity_id” or all the available CTC Activities that are supported by the LLM
System.Every Member (User or Senior) has the privilege to use this Method.

EXAMPLE 1

int ctcact_id = 0;

LLMWebService.CTCACTIVITYR ctcactivity = LLMWebServ.GetCTCActivity(ctcact_id, “username”, “password”);

String measure = ctcactivity.CTCActivityList[0].Units;//Get Units attribute of CTCActivity structure (CTCActivityList[0]),
which is contained in CTCACTIVITY structure ctcactivity.

The above sample of code represents the case of getting all the supported by the system CTCActivities, using the
GetCTCActivity method. It must be stressed out that “ctcactivity_id” is set to zero, thus indicating the fact that the
method will return as a result all the available CTCActivities.

EXAMPLE 2

int ctcact_id = 2;
LLMWebService.CTCACTIVITYR ctcactivity = LLMWebServ.GetCTCActivity(ctcact_id, “username”, “password”);

The above sample of code represents the case of getting a specific CTCActivity corresponding to the provided
“ctcactivity_id” , using the GetCTCActivity method.

CTC COMPONENT’S STRUCTURE

<s:complexType name="CTCComponent">
<s:sequence>
<s:element minOccurs="1" maxOccurs="1" name="ID" type="s:int"/>
<s:element minOccurs="0" maxOccurs="1" name="Name" type="s:string"/>
<s:element minOccurs="0" maxOccurs="1" name="Comments" type="s:string"/>
</s:sequence>
</s:complexType>

<s:complexType name="CTCCOMPONENTR">
<s:sequence>
<s:element minOccurs="0" maxOccurs="1" name="CTCComponentList" type="tns:ArrayOfCTCComponent"/>
<s:element minOccurs="1" maxOccurs="1" name="error" type="tns:Error"/>
</s:sequence>
</s:complexType>

Attribute Description Type

ID CTC Component ID The unique identifier of the CTC Component
Name CTCComponent Name String

Comments The CTC Component Description String

ADD CTC COMPONENT

The method that is used in order to add a supported by the system ILC Component called
AddCTCComponent
CTCCOMPONENTR AddCTCComponent(CTCComponent ctccmptx, string username, string password);

This method adds an CTC Component as supported by the LLM System. Only an administrator has the privilege to use
this method. This is method is described in this document for the purpose of development only and will be absent in
the final version of the LLMDR.

EXAMPLE 1

LLMWebService.CTCComponent ctccmptx = new LLMWebService.CTCComponent();
ctccmptx.ID = 0;
ctccmptx.Name = "BrainAge";
ctccmptx.Comments = "Nintendo";
LLMWebService.CTCCOMPONENTR ctccomp = LLMWebServ.AddCTCComponent(ctccmptx, “username”, “password”);
if (ctccomp.error.ErrorCode == 0)//Get ErrorCode attribute of error structure contained in CTCCOMPONENT structure
ctccomp.
ctccmptx = ctccomp.CTCComponentList[0];

First, a new instance of CTCComponent structure is created. After that, each attribute of the structure is assigned a
value and the whole structure is passed as a parameter to the AddCTCComponent method of the LLMWS. Finally the
method returns as a result an CTCCOMPONENTR structure with an array (one element) of the new CTCComponent, in
case of successful addition.

GET CTC COMPONENT

The method that is used in order to get all supported by the system ILC Components called
GetCTCComponent
CTCCOMPONENTR GetCTCComponent(int ctccomponent_id, string username, string password);

This method gets the specified by the “ctccomponent _id” or all the available CTCComponents that are supported by
the LLM System.Every Member (User or Senior) has the privilege to use this Method.

EXAMPLE 1

int ctccmp_id = 0;

LLMWebService. CTCCOMPONENTR ctccomp = LLMWebServ.GetCTCComponent(ctccmp_id, “username”, “password”);

int ctc_component_id = ctccomp.CTCComponentList[0].ID;//Get ID attribute of CTCComponent structure, which is the
first element of CTCComponentList attribute of ctccomp
structure.

The above sample of code represents the case of getting all the supported by the system CTCComponents, using the
GetCTCComponent method. It must be stressed out that “ctccomponent_id” is set to zero, thus indicating the fact that
the method will return as a result, the available CTCComponents

EXAMPLE 2

int ctccmp_id = 1;
LLMWebService. CTCCOMPONENTR ctccomp = LLMWebServ.GetCTCComponent(ctccmp_id, “username”, “password”);

The above sample of code represents the case of getting a specific CTCComponent corresponding to the provided
“ctccomponent_id” , using the GetCTCComponent method.

CTC SENIOR’S ACTIVITY STRUCTURE

<s:complexType name="CTCSeniorActivity">
<s:sequence>
<s:element minOccurs="1" maxOccurs="1" name="ID" type="s:int"/>
<s:element minOccurs="1" maxOccurs="1" name="senior_id" type="s:int"/>
<s:element minOccurs="0" maxOccurs="1" name="seniorslname" type="s:string"/>
<s:element minOccurs="0" maxOccurs="1" name="seniorsfname" type="s:string"/>
<s:element minOccurs="1" maxOccurs="1" name="ctcactivityid" type="s:int"/>
<s:element minOccurs="0" maxOccurs="1" name="ctcactivityname" type="s:string"/>
<s:element minOccurs="1" maxOccurs="1" name="ctcid" type="s:int"/>
<s:element minOccurs="0" maxOccurs="1" name="ctcname" type="s:string"/>
<s:element minOccurs="1" maxOccurs="1" name="datetimestart" type="s:dateTime"/>
<s:element minOccurs="1" maxOccurs="1" name="datetimeend" type="s:dateTime"/>
<s:element minOccurs="0" maxOccurs="1" name="score" type="s:string"/>
<s:element minOccurs="1" maxOccurs="1" name="level" type="s:int"/>
</s:sequence>
</s:complexType>

<s:complexType name="CTCSENIORACTIVITYR">
<s:sequence>
<s:element minOccurs="0" maxOccurs="1" name="CTCSeniorActivityList" type="tns:ArrayOfCTCSeniorActivity"/>
<s:element minOccurs="1" maxOccurs="1" name="error" type="tns:Error"/>
</s:sequence>
</s:complexType>

Attribute Description Type

ID ILC Senior Activity ID The unique identifier of the ILC Senior Activity
senior_id Senior ID The unique identifier of the Senior
seniorslname Senior’s Last Name String

seniorsfname Senior’s First Name String

ctcactivityid CTC Activity ID The unique identifier of the CTC Activity
ctcactivityname | CTC Activity Name String

ctcid CTC Component ID The unique identifier of the CTC Component
ctcname CTC Component Name String

datetimestart Date Time Activity Started Datetime

datetimeend Date Time Activity Ended Datetime

score The score achieved by the Senior String

level The Difficulty Level of the Activity Integer

ADD CTC SENIOR’S ACTIVITY

The method that is used in order to add an activity that performed of a senior and the score achieved is called
AddCTCSeniorActivity
CTCSENIORACTIVITYR AddCTCSeniorActivity(CTCSeniorActivity ctcsenacttx, string username, string password);

This method add an activity that is performed by a senior. It behaves as a log file of the senior’s progress and activities.
The obligated fields that must be provided are:

senior_id: The senior that performs the activity (see Get Senior/Seniors)

ctcactivityid: The CTC Activity that is performed by the Senior (see Get CTC Activity)

ctcid: The CTC Component that is used by the senior in order to perform the Activity (see Get CTC Component)
datetimestart: The date and time that the activity started

datetimeend: The date and time that the activity ended

score: The scored that achieved by the Senior (The Units of these are described in the Activity, see Get CTC Activity)
level: The level of difficulty of the performed CTC Activity

A senior has the privilege to use this method only for himself, the Therapist for all his/her Seniors and an Administrator
for all the Seniors. The common scenario is the Senior to provide his activities (by LogIn to the LLM System).

EXAMPLE 1

LLMWebService.CTCSeniorActivity ctcactx = new TestingLLMWebService.LLMWebService.CTCSeniorActivity();
ctcactx.ID = 0;
ctcactx.senior_id = 16;
ctcactx.ctcactivityid = 1;
ctcactx.ctcid = 1;
ctcactx.datetimestart = new DateTime(2009, 6, 21, 10, 00, 00);
ctcactx.datetimeend = new DateTime(2009, 6, 21, 11, 00, 00);
ctcactx.score = "16";
ctcactx.level = 8;
LLMWebService.CTCSENIORACTIVITYR ctcsenact = LLMWebServ.AddCTCSeniorActivity(ctcactx, “username”,
“password”);
if (ctcsenact.error.ErrorCode == 0)//Get ErrorCode attribute of error structure which is contained in ctcsenact
CTCSENIORACTIVITY structure.
ctcactx = ctcsenact.CTCSeniorActivityList[0];

A new instance of CTCSeniorActivity is created and each attribute of it is assigned with a valid value. Finally, the
AddCTCSeniorActivity method stores the new instance of CTCSeniorActivity.

GET CTC SENIOR’S ACTIVITY

The method that is used in order to get all performed ILC Activities by a senior called

GetCTCSeniorActivity

CTCSENIORACTIVITYR GetCTCSeniorActivity(int ctcsenioractivity_id, int senior_id, int ctcactivity_id, int ctc_id, int
user_id, string username, string password);

This method gets all the performed CTC Senior’s Activities (Log) based on the following criterias:
ctcsenioractivity_id: if it is O then the criteria is not used

senior_id: if it is O then the criteria is not used, else the method results include only for the specified senior.
ctcactivity_id: if it is O then the criteria is not used, else the method results include only for the specified activity.
ctc_id: if it is O then the criteria is not used, else the method results include only for the specified ilc component.

user_id: if it is O then the criteria is not used, else the method results include only for the specified ilc component.

If the provided credentials belong to a Senior, the results include only his/her performance. If the provided credentials
belong to a Therapist, the results include only his/her Seniors performance. If the User is an Administrator he/she has
the privilege to get all Seniors’ performance.

EXAMPLE 1

LLMWebService.CTCSENIORACTIVITYR ctcsenact = LLMWebServ.GetCTCSeniorActivity(0, 0, 0, 0, 0, “UserName”,

“PassWord”);

DateTime start_of_activity = ctcsenact.CTCSeniorActivityList[0].datetimestart;//Get date and time of senior’s start of
first activity stored in
CTCSeniorActivityList

The above example represents the case of getting all the supported by the system CTCSeniorActivities, using the
GetCTCSeniorActivity method. It must be stressed out that “ctcsenioractivity_id”, “senior_id”, “ctcactivity_id”, “ctc_id”,
“user_id”, are set to zero, thus indicating the fact that the method will return as a result, the whole set of
CTCSeniorActivities.

EXAMPLE 2

int ctcsenioract_id = 2;
LLMWebService. CTCSENIORACTIVITYR ctcsenact = LLMWebServ.GetCTCSeniorActivity(ctcsenioract_id, 0, 0, 0, O,

» o«

“username”, “password”);

In this example, a specific CTCSeniorActivity is returned, passing its unique “ctcsenioractivity_id” as a parameter to the
GetCTCSeniorActivity method.

EXAMPLE 3
int ctcsenior_id = 16;
LLMWebService. CTCSENIORACTIVITYR ctcsenact = LLMWebServ.GetCTCSeniorActivity(0, ctcsenior_id, 0, 0, 0,

” ou

“username”, “password”);

The above example represents the case that the GetCTCSeniorActivity method returns a list of CTCSeniorActivities that
are performed by a specific senior, given his/her unique id. Following the same convention, a user can retrieve e.g. all
the results achieved by all seniors using all kind of CTC software concerning a specific task such as memory. This is
accomplished by setting ctcactivity_id equal to the corresponding id of memory task and concurrently by setting all
other arguments, except for UserName and Password, to zero.

PHYSICAL TRAINING COMPONENT PTC

PTC ACTIVITY’S STRUCTURE

<s:complexType name="PTCActivity">
<s:sequence>
<s:element minOccurs="1" maxOccurs="1" name="ID" type="s:int"/>

<s:element minOccurs="0" maxOccurs="1" name="Name" type="s:string"/>
<s:element minOccurs="0" maxOccurs="1" name="Units" type="s:string"/>
</s:sequence>
</s:complexType>

<s:complexType name="PTCACTIVITYR">
<s:sequence>
<s:element minOccurs="0" maxOccurs="1" name="PTCActivityList" type="tns:ArrayOfPTCActivity"/>
<s:element minOccurs="1" maxOccurs="1" name="error" type="tns:Error"/>
</s:sequence>
</s:complexType>

Attribute Description Type

ID PTC Activity ID The unique identifier of the PTC Activity
Name PTC Activity Name String

Units The PTC activity progress Units String

The PTC Activity is an integrated well-described activity that a Senior can achieve.

ADD PTC ACTIVITY

The method that is used in order to add a supported by the system CTC Activity called
AddPTCActivity
PTCACTIVITYR AddPTCActivity(PTCActivity ptcactx, string username, string password);

This method adds a PTC Activity as supported by the LLM System. Only an administrator has the privilege to use this
method. This is method is described in this document for the purpose of development only and will be absent in the
final version of the LLMDR.

EXAMPLE 1

LLMWebService.PTCActivity ptcactx = new LLMWebService.PTCActivity();
ptcactx.ID = 0;
ptcactx.Name = "flexibility";
ptcactx.Units = "percent";
LLMWebService.PTCACTIVITYR ptcactivity = LLMWebServ.AddPTCActivity(ptcactx, “username”, “password”);
if (ptcactivity.error.ErrorCode == 0)//Get ErrorCode attribute of error structure, which is contained in PTCACTIVITY
structure
ptcactx = ptcactivity.PTCActivityList[0];

In the current example, a new instance of PTCActivity is created. Then each attribute of the structure is assigned a
value. Finally, via the web service method AddPTCActivity, the new instance is being stored into the LLMDB. It must be
stressed out that the method returns an PTCACTIVITYR structure with an array (one element) of the new PTCActivity, in
case of successful addition.

GET PTC ACTIVITY

The method that is used in order to get all supported by the system PTC Activities called
GetPTCActivity
PTCACTIVITYR GetPTCActivity(int ptcactivity_id, string username, string password);

This method gets the specified by the “ptcactivity_id” or all the available PTC Activities that are supported by the LLM
System.Every Member (User or Senior) has the privilege to use this Method.

EXAMPLE 1

int ptcact_id = 0;

LLMWebService.PTCACTIVITYR ptcactivity = LLMWebServ.GetPTCActivity(ptcact_id, “username”, “password”);

String ptc_activity_name = ptcactivity.PTCActivityList[2].Name;//Get Name attribute of PTCActivity structure
(PTCActivityList[2]), contained in PTCACTIVITY
structure ptcactivity.

The above sample of code represents the case of getting all the supported by the system PTCActivities, using the
GetPTCActivity method. It must be stressed out that “ptcactivity_id” is set to zero, thus indicating the fact that the
method will return as a result all the available PTCActivities.

EXAMPLE 2

int ptcact_id = 3;

LLMWebService.PTCACTIVITYR ptcactivity = LLMWebServ.GetPTCActivity(ptcact_id, “username”, “password”);
The above sample of code represents the case of getting a specific PTCActivity corresponding to the provided
“ptcactivity_id” , using the GetPTCActivity method.

PTC COMPONENT’S STRUCTURE

<s:complexType name="PTCComponent">
<s:sequence>
<s:element minOccurs="1" maxOccurs="1" name="ID" type="s:int"/>
<s:element minOccurs="0" maxOccurs="1" name="Name" type="s:string"/>
<s:element minOccurs="0" maxOccurs="1" name="Comments" type="s:string"/>
</s:sequence>
</s:complexType>

<s:complexType name="PTCCOMPONENTR">
<s:sequence>
<s:element minOccurs="0" maxOccurs="1" name="PTCComponentList" type="tns:ArrayOfPTCComponent"/>
<s:element minOccurs="1" maxOccurs="1" name="error" type="tns:Error"/>
</s:sequence>
</s:complexType>

Attribute Description Type
ID PTC Component ID The unique identifier of the PTC Component
Name PTCComponent Name String
Comments The PTC Component Description String

ADD PTC COMPONENT

The method that is used in order to add a supported by the system ILC Component called
AddPTCComponent
PTCCOMPONENTR AddPTCComponent(PTCComponent ptccmptx, string username, string password);

This method adds an PTC Component as supported by the LLM System. Only an administrator has the privilege to use
this method. This is method is described in this document for the purpose of development only and will be absent in
the final version of the LLMDR.

EXAMPLE 1

LLMWebService.PTCComponent ptccmptx = new LLMWebService.PTCComponent();

ptccmptx.ID = 0;

ptccmptx.Name = "TmCardio";

ptccmptx.Comments = "Techmed";

LLMWebService.PTCCOMPONENTR ptccomp = LLMWebServ.AddPTCComponent(ptccmptx, “username”, “password”);

if (optccomp.error.ErrorCode == 0)// Get ErrorCode attribute of error structure, which is contained in PTCCOMPONENT
structure

ptccmptx = ptccomp.PTCComponentList[0];

First, a new instance of PTCComponent structure is created. After that, each attribute of the structure is assigned a
value and the whole structure is passed as a parameter to the AddPTCComponent method of the LLMWS. Finally the
method returns as a result a PTCCOMPONENTR structure with an array (one element) of the new PTCComponent, in
case of successful addition.

GET PTC COMPONENT

The method that is used in order to get all supported by the system PTC Components called
GetPTCComponent
PTCCOMPONENTR GetPTCComponent(int ptccomponent_id, string username, string password);

This method gets the specified by the “ptccomponent _id” or all the available PTCComponents that are supported by
the LLM System.Every Member (User or Senior) has the privilege to use this Method.

EXAMPLE 1

int ptccmp_id = 0;
LLMWebService.PTCCOMPONENTR ptccomp = LLMWebServ.GetPTCComponent(ptccmp_id, “username”, “password”);

The above sample of code represents the case of getting all the supported by the system PTCComponents, using the
GetPTCComponent method. It must be stressed out that “ptccomponent_id” is set to zero, thus indicating the fact that
the method will return as a result, the available PTCComponents.

EXAMPLE 2

int ptccmp_id = 2;

LLMWebService. PTCCOMPONENTR ptccomp = LLMWebServ.GetPTCComponent(ptccmp_id, “username”, “password”);

String ptc_component_name = ptccomp.PTCComponentList[0].Name;//Get Name attribute of PTCComponent structure
(PTCComponentList[0]), the first element of

PTCComponentList, contained in ptccomp
PTCCOMPONENT structure.

The above sample of code represents the case of getting a specific PTCComponent corresponding to the provided
“ptccomponent_id”, using the GetPTCComponent method.

PTC SENIOR’S ACTIVITY STRUCTURE

<s:complexType name="PTCSeniorActivity">
<s:sequence>
<s:element minOccurs="1" maxOccurs="1" name="ID" type="s:int"/>
<s:element minOccurs="1" maxOccurs="1" name="senior_id" type="s:int"/>
<s:element minOccurs="0" maxOccurs="1" name="seniorslname" type="s:string"/>
<s:element minOccurs="0" maxOccurs="1" name="seniorsfname" type="s:string"/>
<s:element minOccurs="1" maxOccurs="1" name="ptcactivityid" type="s:int"/>
<s:element minOccurs="0" maxOccurs="1" name="ptcactivityname" type="s:string"/>
<s:element minOccurs="1" maxOccurs="1" name="ptcid" type="s:int"/>
<s:element minOccurs="0" maxOccurs="1" name="ptcname" type="s:string"/>
<s:element minOccurs="1" maxOccurs="1" name="datetimestart" type="s:dateTime"/>
<s:element minOccurs="1" maxOccurs="1" name="datetimeend" type="s:dateTime"/>
<s:element minOccurs="0" maxOccurs="1" name="score" type="s:string"/>
<s:element minOccurs="1" maxOccurs="1" name="level" type="s:int"/>
</s:sequence>
</s:complexType>

<s:complexType name="PTCSENIORACTIVITYR">
<s:sequence>
<s:element minOccurs="0" maxOccurs="1" name="PTCSeniorActivityList" type="tns:ArrayOfPTCSeniorActivity"/>
<s:element minOccurs="1" maxOccurs="1" name="error" type="tns:Error"/>
</s:sequence>
</s:complexType>

Attribute Description Type

ID ILC Senior Activity ID The unique identifier of the ILC Senior Activity
senior_id Senior ID The unique identifier of the Senior
seniorslname Senior’s Last Name String

seniorsfname Senior’s First Name String

ptcactivityid PTC Activity ID The unique identifier of the PTC Activity
ptcactivityname | PTC Activity Name String

ptcid PTC Component ID The unique identifier of the PTC Component
ptcname PTC Component Name String

datetimestart Date Time Activity Started Datetime

datetimeend Date Time Activity Ended Datetime

score The score achieved by the Senior String

level The Difficulty Level of the Activity Integer

ADD PTC SENIOR’S ACTIVITY

The method that is used in order to add an activity that performed of a senior and the score achieved is called
AddPTCSeniorActivity
PTCSENIORACTIVITYR AddPTCSeniorActivity (PTCSeniorActivity ptcsenacttx, string username, string password);

This method add an activity that is performed by a senior. It behaves as a log file of the senior’s progress and activities.
The obligated fields that must be provided are:

senior_id: The senior that performs the activity (see Get Senior/Seniors)

ptcactivityid: The PTC Activity that is performed by the Senior (see Get PTC Activity)

ptcid: The PTC Component that is used by the senior in order to perform the Activity (see Get PTC Component)
datetimestart: The date and time that the activity started

datetimeend: The date and time that the activity ended

score: The scored that achieved by the Senior (The Units of these are described in the Activity, see Get PTC Activity)
level: The level of difficulty of the performed PTC Activity

A senior has the privilege to use this method only for himself, the Therapist for all his/her Seniors and an Administrator
for all the Seniors. The common usage is the Senior to provide his activities (by LogIn to the LLM System).

EXAMPLE 1

LLMWebService.PTCSeniorActivity ptcactx = new LLMWebService.PTCSeniorActivity();

ptcactx.ID = 0;

ptcactx.senior_id = 16;

ptcactx.ptcactivityid = 1;

ptcactx.ptcid = 1;

ptcactx.datetimestart = new DateTime(2009, 6, 21, 10, 00, 00);

ptcactx.datetimeend = new DateTime(2009, 6, 21, 11, 00, 00);

ptcactx.score = "5”;

ptcactx.level = 2;

LLMWebService.PTCSENIORACTIVITYR ptcsenact = LLMWebServ.AddPTCSeniorActivity(ptcactx, “username”,

“password”);

if (ptcsenact.error.ErrorCode == 0)//Get ErrorCode attribute of error structure contained in ptcsenact
PTCSENIORACTIVITY structure.

ptcactx = ptcsenact.PTCSeniorActivityList[0];

A new instance of PTCSeniorActivity is created and each attribute of it is assigned with a valid value. Finally, the
AddPTCSeniorActivity method stores the new instance of PTCSeniorActivity.

GET PTC SENIOR’S ACTIVITY

The method that is used in order to get all performed ILC Activities by a senior called

GetPTCSeniorActivity

PTCSENIORACTIVITYR GetPTCSeniorActivity(int ptcsenioractivity id, int senior_id, int ptcactivity_id, int ptc_id, int
user_id, string username, string password);

This method gets all the performed PTC Senior’s Activities (Log) based on the following criterias:
ptcsenioractivity_id: if it is O then the criteria is not used

senior_id: if it is O then the criteria is not used, else the method results include only for the specified senior.
ptcactivity_id: if it is O then the criteria is not used, else the method results include only for the specified activity.
ptc_id: if it is O then the criteria is not used, else the method results include only for the specified ilc component.
user_id: if it is O then the criteria is not used, else the method results include only for the specified ilc component.

If the provided credentials belong to a Senior, the results include only his/her performance. If the provided credentials
belong to a Therapist, the results include only his/her Seniors performance. If the User is an Administrator he/she has
the privilege to get all Seniors’ performance.

EXAMPLE 1

LLMWebService.PTCSENIORACTIVITYR ptcsenioractivity = LLMWebServ.GetPTCSeniorActivity(0, 0, 0, 0, 0, “username”,

“password”);

int level_of_difficulty = ptcsenioractivity.PTCSeniorActivityList[0].level;//Get difficulty level of first PTCSeniorActivity
(PTCSeniorActivityList[0]) from the
PTCSeniorActivityList

The above example represents the case of getting all the supported by the system PTCSeniorActivities, using the

GetPTCSeniorActivity method. It must be stressed out that “ptcsenioractivity_id”, “senior_id”, “ptcactivity_id”, “ptc_id”,

“user_id”, are set to zero, thus indicating the fact that the method will return as a result, the whole set of

PTCSeniorActivities.

EXAMPLE 2

int ptcsenioract_id = 2;
LLMWebService.PTCSENIORACTIVITYR ptcsenioractivity = LLMWebServ.GetPTCSeniorActivity(ptcsenioract_id, 0, 0, 0, O,

n o«

“username”, “password”);

In this example, a specific PTCSeniorActivity is returned, passing its unique “ptcsenioractivity_id” as a parameter to the
GetPTCSeniorActivity method.

EXAMPLE 3

int ptcsenior_id = 16;
LLMWebService. PTCSENIORACTIVITYR ptcsenioractivity = LLMWebServ.GetPTCSeniorActivity(0, ptcsenior_id, 0, 0, O,

n o«

“userName”, “password”);

The above example represents the case that the GetPTCSeniorActivity method returns a list of PTCSeniorActivities that
are performed by a specific senior, given his/her unique id. Following the same convention, a user can retrieve e.g. all
the results achieved by all seniors using all kind of PTC equipment concerning a specific task such as flexibility. This is
accomplished by setting ptcactivity_id equal to the corresponding id of flexibility task and concurrently by setting all
other arguments, except for UserName and Password, to zero.

REFERENCES

