========================== HBIOS Management Functions ========================== RESET ($F0): B=Function A=Result VER ($F1): B=Function A=Result C=Reserved (set to 0) DE=Version (Maj/Min/Upd/Pat) L=Platform Id SETBNK ($F2): B=Function A=Result C=Bank Id C=Previous Bank Id GETBNK ($F3): B=Function A=Result C=Bank Id SETCPY ($F4): B=Function A=Result D=Destination Bank Id E=Source Bank Id HL=Count of Bytes to Copy BNKCPY ($F5): B=Function A=Result DE=Destination Address HL=Source Address ALLOC ($F6): B=Function A=Result HL=Size HL=Address of Allocated Memory Block FREE ($F7): B=Function A=Result HL=Address of Memory Block to Free GET ($F8): BC=Function/Subfunction A=Result Subfunctions: CIOCNT ($00): BC=Function/Subfunction A=Result E=Serial Unit Count DIOCNT ($10): BC=Function/Subfunction A=Result E=Disk Unit Count VDACNT ($40): BC=Function/Subfunction A=Result E=Video Unit Count TIMER ($D0): BC=Function/Subfunction A=Result DE:HL=Timer Value (32 bit) SECONDS ($D1): BC=Function/Subfunction A=Result DE:HL=Seconds Value (32 bit) C=Ticks within current second BOOTINFO ($E0): BC=Function/Subfunction A=Result DE=Boot Volume (Disk Unit/Slice) L=Boot Bank Id CPUINFO ($F0): BC=Function/Subfunction A=Result H=Z80 CPU Variant L=CPU Speed in MHz DE=CPU Speed in KHz MEMINFO ($F1): BC=Function/Subfunction A=Result D=# ROM Banks E=# RAM Banks BNKINFO ($F2): BC=Function/Subfunction A=Result D=BIOS Bank Id E=User Bank Id SET ($F9): BC=Function/Subfunction A=Result TIMER ($D0): BC=Function/Subfunction A=Result DE:HL=Timer Value (32 bit) SECONDS ($D1): BC=Function/Subfunction A=Result DE:HL=Seconds Value (32 bit) BOOTINFO ($E0): BC=Function/Subfunction A=Result DE=Boot Volume (Disk Unit/Slice) L=Boot Bank Id PEEK ($FA): B=Function A=Result D=Bank E=Byte Value HL=Address POKE ($FB): B=Function A=Result D=Bank E=Byte Value HL=Address INT ($FC): Interrupt vector management functions BC=Function/Subfunction A=Result Subfunctions: INTINF ($00): Query interrupt system information BC=Function/Subfunction A=Result D=Interrupt Mode E=Interrupt Vector Table Size Report interrupt interrupt management system information. Interrupt Mode: 0: Interrupts disabled 1: Z80 Interrupt Mode 1 active 2: Z80 Interrupt Mode 2 active Interrupt Vector Table Size: If interrupts are disabled, this will be zero. if interrupt mode 1, this will be the number of entries in the interrupt call list. if interrupt mode 2, this will be the number of slots in the interrupt vector table. INTGET ($10): Get interrupt vector BC=Function/Subfunction A=Result E=Interrupt Vector Table Position HL=Interrupt Vector Return the Interrupt Vector for the specified Interrupt Vector Table Position. INTSET ($20): Set interrupt vector BC=Function/Subfunction A=Result HL=Interrupt Vector HL=Previous Vector E=Interrupt Vector Table Position Set the Interrupt Vector for the specified Interrupt Vector Table Position to the specified Interrupt Vector. The previous value at the specified table position will be returned. The Vector Table Position is a zero-based index into the interrupt vector table and must specify a position less than or equal to the size of the table. The new interrupt vector must point to a proper interrupt handler located in the top 32K of CPU address space. Note that during interrupt processing, the lower 32K of CPU address space will contain the RomWBW HBIOS code bank, not the lower 32K of application TPA. As such, a dynamically installed interrupt handler does not have access to the lower 32K of TPA and must be careful to avoid modifying the contents of the lower 32K of memory. Invoking RomWBW HBIOS functions within an interrupt handler is not supported. The interrupt management framework takes care of saving and restoring AF, BC, DE, HL, and IY. Any other registers modified must be saved and restored by the interrupt handler. Interrupt handlers are different for IM1 or IM2. For IM1: The new interrupt handler is responsible for chaining (JP) to the previous vector if the interrupt is not handled. If the interrupt is handled, the new handler may simply return (RET) with ZF cleared (NZ). For IM2: The new interrupt handler may either replace or hook the previous interrupt handler. To replace the previous interrupt handler, the new handler just returns (RET) when done. To hook the previous handler, the new handler can chain (JP) to the previous vector. Note that initially all IM2 interrupt vectors are set to be handled as “BAD” meaning that the interrupt is unexpected. In most cases, you do not want to chain to the previous vector because it will cause the interrupt to display a “BAD INT” system panic message. The interrupt framework will take care of issuing an EI and RETI instruction. Do not put these instructions in your new handler. If the caller is transient, then the caller must remove the new interrupt handler and restore the original one prior to termination. This is accomplished by calling this function with the Interrupt Vector set to the Previous Vector returned in the original call. The caller is responsible for disabling interrupts prior to making an INTSET call and enabling them afterwards. The caller is responsible for ensuring that a valid interrupt handler is installed prior to enabling any hardware interrupts associated with the handler. Also, if the handler is transient, the caller must disable the hardware interrupt(s) associated with the handler prior to uninstalling it. ================ Serial Functions ================ IN ($00): BC=Function/Unit A=Result E=Byte Input Wait for a single character to be available at the specified device and return the character in E. Function will wait indefinitely for a character to be available. OUT ($01): BC=Function/Unit A=Result E=Character to Output Wait for device to be ready to send a character, then send the character specified in E. IST ($02): BC=Function/Unit A=Result *E=# Bytes Pending OST ($03): BC=Function/Unit A=Result *E=# Buffer Bytes Available INIT ($04): BC=Function/Unit A=Result DE=Line Characteristics L=Terminal Type? Line Characteristics: _______________________________ _______________________________ | | | encoded || | | | | | | |rts| Baud Rate ||dtr|xon| parity |stp| 8/7/6 | |_______|___|___|_______________||___|___|___________|___|_______| 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 D register E register QUERY ($05) BC=Function/Unit A=Result DE=Line Characteristics (Baud, Flow Control, etc.) L=Terminal Type? (TTY, VT-100, etc.) DEVICE ($06): BC=Function/Unit A=Result D=Device Type E=Device Number C=Device Attributes Serial Device Attributes Byte: 7: 0=RS-232, 1=Terminal 6: 1=Parallel Port If device is of type Terminal, bits 3-0 indicate attached Video Unit # ============== Disk Functions ============== STATUS ($10): BC=Function/Unit A=Result Return current status result code of specified unit. Does not clear the status. RESET ($11): BC=Function/Unit A=Result Reset the physical interface associated with the specified unit. Flag all units associated with the interface for unit initialization at next I/O call. Clear media identified unless locked. Reset result code of all associated units. SEEK ($12): BC=Function/Unit A=Result D:7=Address Type (0=CHS, 1=LBA) CHS: D:0-6=Head,E=Sector,HL=Track LBA: DE:HL Seek function establishes current sector for next I/O function for the specified unit. A seek must precede read/write/verify function calls. Physical seek is typically deferred until subsequent I/O operation. READ ($13) / WRITE ($14) / VERIFY ($15): BC=Function/Unit A=Result HL=Buffer Address E=Blocks Read D=Buffer Bank ID E=Block Count Read, write, or verify block count sectors to/from buffer bank/address starting at current target sector. Current sector must be established by prior seek function; however, multiple read/write/verify function calls can be made after a seek function. Current sector is incremented after each sector successfully read/written. On error, current sector is sector where error occurred. Block count indicates number of sectors successfully read/written. Caller must ensure buffer address is large enough to contain data for all sectors read/written. If buffer is not in upper 32K, then sectors will be double buffered. FORMAT ($16): BC=Function/Unit A=Result CHS: D=Head, HL=Cylinder E=Fill Byte Format the designated track using the current media_id. Many devices do not support a true format operation. If so, format should write sectors with designated fill byte. *** Need to specify interleave/sector id's somehow. DEVICE ($17) BC=Function/Unit A=Result D=Device Type (MD, FD, IDE, etc.) E=Device Number (0..n) C=Device Attributes Report the Device Type (Floppy, IDE, SD, etc.) and Device Number. Call does not perform any I/O and succeeds even if the device is in an error state. It does not reset the unit status. Disk Device Attributes Byte: 7: 1=Floppy, 0=Hard Disk (or similar, e.g. CF, SD, RAM) If Floppy: 6-5: Form Factor (0=8", 1=5.25", 2=3.5", 3=Other) 4: Sides (0=SS, 1=DS) 3-2: Density (0=SD, 1=DD, 2=HD, 3=ED) 1-0: Reserved If Hard Disk: 6: Removable 5-3: Type (0=Hard, 1=CF, 2=SD, 3=USB, 4=ROM, 5=RAM, 6=RAMF, 7=?) 2-0: Reserved Note: IDE value 848Ah in IDENTIFY DEVICE data word 0 indicates CF Card MEDIA ($18): BC=Function/Unit A=Result E:0=Enable Media Discovery E=Media ID (legacy) Report the media definition for media in specified unit. If bit 0 of E is set, then perform media discovery or verification. If no media in device, return no media error. DEFMED ($19): BC=Function/Unit A=Result E=Media ID (legacy) Define media in unit. CAPACITY ($1A): BC=Function/Unit A=Result DE:HL=Blocks on Device BC=Block Size Report current media capacity information. If media is unknown, return error (no media) GEOMETRY ($1B): BC=Function/Unit A=Result HL=Cylinders D:0-6=Heads D:7=LBA Capable E=Sectors BC=Block Size Report current media geometry information. If media is unknown, return error (no media) =============== Video Functions =============== ----------------------------------------------------------------------------------- Unit Device Type Capacity/Mode ---------- ---------- ---------------- -------------------- Disk 0 MD0: ROM Disk 384K, LBA Disk 1 MD1: RAM Disk 384K, LBA Disk 2 FD0: Floppy Disk 3.5", DS/HD, CHS Disk 3 FD1: Floppy Disk 5.25", DS/HD, CHS Disk 4 PPIDE0: Hard Disk 2345M, LBA Disk 5 IDE0: Compact Flash 2048M, LBA Disk 6 SD0: SD Card 4096M, LBA Disk 7 PRPSD0: SD Card 2048M, LBA Disk 8 RF0: RAM Floppy 4M, LBA Serial 0 UART0: RS-232 38400,8N1,HFC Serial 1 PRPCON0: Terminal Video 0 Serial 2 CVDU0: Terminal Video 1 Serial 3 VDU0: Terminal Video 2 Serial 4 TMS0: Terminal Video 3 Video 0 PRPCON0: CRT Text 80x25, ANSI Video 1 CVDU0: CRT Text 80x25, ANSI Video 2 VDU0: CRT Text 80x25, ANSI Video 3 TMS0: CRT Text 40x25, TTY Video 4 NEC0 CRT Graphics 600x400 Unit: Function Group & Unit Index Device: _DEVICE Device Type & Device Num Type: _DEVICE Type & Attributes Capacity/Mode: Disk: _DEVICE Attributes & _CAPACITY Serial: _QUERY Video: _QUERY ----------------------------------------------------------------------------------- _INIT: - INIT CRT HARDWARE - INIT KEYBOARD HARDWARE - CALL _VDARES () - ADD OURSELVES TO VDA_TBL - CALL TERM_ATTACH (C=VIDEO UNIT, DE=_DISPATCH) _VDARES: () - HOME CURSOR - CLEAR SCREEN - RETURN (A=STATUS) TERM_ATTACH: (C=VIDEO UNIT, DE=_DISPATCH) - CALL _INIT (B=TERM DEV NUM, C=VIDEO UNIT, DE=_DISPATCH) - ADD OURSELVES TO CIO_TBL USING _DISPATCH - RETURN (A=STATUS) _INIT: (B=TERM DEV NUM, C=VIDEO UNIT, DE=_DISPATCH) - SAVE TERM DEV NUM TO _DEVNUM - SAVE VIDEO UNIT TO _VDAUNIT - SAVE _DISPATCH TO _VDADISPADR - CALL _RESET () - RETURN (DE=_DISPATCH, A=STATUS) _RESET: () - QUERY ATTACHED VDA FOR SCREEN SIZE (VIA _VDADISP) - INITIALIZE ALL WORKING VARIABLES AND EMULATOR STATE - RETURN (A=STATUS)