
CSS
Cookbook

Christopher Schmitt
Foreword by Dan Cederholm

Quick Solutions to
Common CSS Problems

3rd Edition

Updated for Firefox 3,

IE 8, and Chrome

Free Sampler

Praise for CSS Cookbook, Third Edition

“There’s a lot to know about Cascading Style Sheets, but sometimes you just want a
quick answer to a specific problem. In CSS Cookbook, Christopher Schmitt delivers
clear, expert solutions to the most important CSS design tasks while also promoting
web standards, demonstrating current professional techniques, and providing useful
information about the latest CSS standards.”

— Dave McFarland, author of JavaScript: The Missing Manual

“Whether you’re a seasoned web professional or creating your very first site, CSS Cookbook
deserves a prominent place on your desk—it’s a fantastic reference and an indispensable
time-saver.”

— Dan Rubin, author of Web Standards Creativity and
Pro CSS Techniques

“Using straightforward and approachable language, Christopher Schmitt’s CSS Cookbook
delves directly into the how of web design, offering designers practical, accessible tips for
improving their work.”

— Ethan Marcotte, interactive design director at Happy Cog, and
coauthor of Designing with Web Standards and Handcrafted CSS

,praise.572 Page i Wednesday, December 9, 2009 10:46 AM

When you buy an ebook through oreilly.com, you get lifetime access to the book, and

whenever possible we provide it to you in four, DRM-free file formats—PDF, .epub,

Kindle-compatible .mobi, and Android .apk ebook—that you can use on the devices of

your choice. Our ebook files are fully searchable and you can cut-and-paste and print

them. We also alert you when we’ve updated the files with corrections and additions.

Learn more at http://oreilly.com/ebooks/

You can also purchase O’Reilly ebooks through iTunes,

the Android Marketplace, and Amazon.com.

O’Reilly Ebooks—Your bookshelf on your devices!

http://bit.ly/oreillyapps
http://www.android.com/market/
http://amazon.com
http://oreilly.com

,praise.572 Page ii Wednesday, December 9, 2009 10:46 AM

CSS Cookbook

THIRD EDITION

CSS Cookbook

Christopher Schmitt
foreword by Dan Cederholm

Beijing • Cambridge • Farnham • Köln • Sebastopol • Taipei • Tokyo

CSS Cookbook, Third Edition
by Christopher Schmitt

Copyright © 2010 O’Reilly Media, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Simon St.Laurent
Production Editor: Sumita Mukherji
Copyeditor: Audrey Doyle
Proofreader: Kiel Van Horn

Indexer: Seth Maislin
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

Printing History:
August 2004: First Edition.
October 2006: Second Edition.
December 2009: Third Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. CSS Cookbook, the image of a grizzly bear, and related trade dress are trademarks
of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-0-596-15593-3

[SB]

1260562909

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com

Table of Contents

Foreword . xv

Preface . xvii

1. Using HTML Basics . 1
1.1 Picking a Text Editor 3
1.2 Coding a Basic HTML Page 4
1.3 Understanding DOCTYPEs and Effects on Browser Layout 6
1.4 Marking Up Headers 10
1.5 Making Appropriate Quotations 12
1.6 Adding an Image 14
1.7 Adding Audio with HTML5 16
1.8 Incorporating Video with HTML5 17
1.9 Using strong and em Effectively 19

1.10 Creating Lists 20
1.11 Making a Link to a Web Page 22
1.12 Coding Tables 25
1.13 Creating an HTML vCard (hCard) 27
1.14 Marking Up an Event (hCalendar) 28
1.15 Validating HTML 29

2. CSS Basics . 33
2.1 Applying CSS Rules to a Web Page 35
2.2 Using Basic Selectors to Apply Styles 38
2.3 Applying Child Selectors 47
2.4 Applying Adjacent Selectors 49
2.5 Applying Attribute Selectors 51
2.6 Using Pseudo-Classes 53
2.7 Using Pseudo-Elements 54
2.8 Determining When to Use Class and ID Selectors 56
2.9 Understanding CSS Properties 61

vii

2.10 Understanding the Box Model 62
2.11 Associating Styles to a Web Page 70
2.12 Understanding the Origin 73
2.13 Understanding the Sort Order Within CSS 73
2.14 Using !important to Override Certain CSS Rules 76
2.15 Clarifying Specificity 77
2.16 Setting Up Different Types of Stylesheets 79
2.17 Adding Comments Within Stylesheets 83
2.18 Organizing the Contents of a Stylesheet 84
2.19 Working with Shorthand Properties 86
2.20 Setting Up an Alternate Stylesheet 88
2.21 Using Floats 89
2.22 Using Self-Clearing Floated Elements 92
2.23 Using Absolute Positioning 95
2.24 Using Relative Positioning 98
2.25 Using Shackling Positioning 99
2.26 Stacking Elements with z-index 101
2.27 Validating CSS Rules 102

3. Web Typography . 105
3.1 Specifying Fonts 106
3.2 Using Web-Safe Fonts 109
3.3 Setting an Ampersand Flourish 112
3.4 Embedding Font Files 114
3.5 Forcing a Break on Really Long Words 118
3.6 Specifying Font Measurements and Sizes 119
3.7 Gaining More Cross-Browser Consistency with Font Sizes 121
3.8 Setting Hyphens, Em Dashes, and En Dashes 125
3.9 Centering Text 126

3.10 Setting Text to Be Justified 126
3.11 Indicating an Overflow of Text with an Ellipsis 128
3.12 Removing Space Between Headings and Paragraphs 129
3.13 Setting a Simple Initial Cap 130
3.14 Setting a Larger, Centered Initial Cap 131
3.15 Setting an Initial Cap with Decoration (Imagery) 133
3.16 Creating a Heading with Stylized Text 135
3.17 Creating a Heading with Stylized Text and Borders 137
3.18 Stylizing a Heading with Text and an Image 139
3.19 Creating a Pull Quote with HTML Text 141
3.20 Placing a Pull Quote to the Side of a Column 143
3.21 Creating a Pull Quote with Borders 145
3.22 Creating a Pull Quote with Images 146
3.23 Setting the Indent in the First Line of a Paragraph 149

viii | Table of Contents

3.24 Setting the Indent of Entire Paragraphs 150
3.25 Creating a Hanging Indent 153
3.26 Styling the First Line of a Paragraph 156
3.27 Styling the First Line of a Paragraph with an Image 158
3.28 Creating a Highlighted Text Effect 159
3.29 Changing the Text Selection Color 160
3.30 Changing Line Spacing 161
3.31 Adding a Graphic Treatment to HTML Text 163
3.32 Placing a Shadow Behind Text 165
3.33 Adjusting the Space Between Letters and Words 168
3.34 Applying Baseline Rhythm on Web Typography 171
3.35 Styling Superscripts and Subscripts Without Messing the Text

Baseline 173
3.36 Setting Up Multiple Columns of Text 175

4. Images . 179
4.1 Transforming Color Images to Black and White in IE with CSS 179
4.2 Setting a Border Around an Image 180
4.3 Setting a Rounded Border Around an Image 182
4.4 Removing Borders Set on Images by Default in Some Browsers 184
4.5 Setting a Background Image 186
4.6 Creating a Line of Background Images 187
4.7 Positioning a Background Image 188
4.8 Using Multiple Background Images on One HTML Element 191
4.9 Setting Images on a Border 194

4.10 Creating a Stationary Background Image 197
4.11 Stretching Images As the Browser Resizes 199
4.12 Stretching an Image Across the Entire Browser Window 202
4.13 Making Images Scalable 203
4.14 Setting How a Browser Renders an Image 205
4.15 Rotating Images with CSS 206
4.16 Setting Gradients with CSS 208
4.17 Creating Transparent PNG Images for IE6 and Later 211
4.18 Using Transparent PNG Images with JavaScript 212
4.19 Overlaying HTML Text on an Image 215
4.20 Replacing HTML Text with an Image 217
4.21 Building a Panoramic Image Presentation 220
4.22 Combining Different Image Formats 222
4.23 Rounding Corners with Fixed-Width Columns 227
4.24 Rounding Corners (Sliding Doors Technique) 230
4.25 Rounding Corners (Mountaintop Technique) 235
4.26 Rounding Corners with JavaScript 239
4.27 Setting a Shadow on an Element with CSS 242

Table of Contents | ix

4.28 Placing a Drop Shadow Behind an Image 244
4.29 Placing a Smooth Drop Shadow Behind an Image 247
4.30 Making Word Balloons 251
4.31 Hindering People from Stealing Your Images 254
4.32 Inserting Reflections on Images Automatically 256
4.33 Using Image Sprites 258
4.34 Clipping Background Images 260
4.35 Applying Masks to Images and Borders 262

5. Page Elements . 265
5.1 Eliminating Page Margins 265
5.2 Resetting Browser-Style Defaults for Elements 268
5.3 Coloring the Scroll Bar in IE 272
5.4 Techniques for Centering Elements on a Web Page 275
5.5 Placing a Page Border 280
5.6 Placing a Border Around the Browser’s Viewport 283
5.7 Customizing a Horizontal Rule 285
5.8 Adding a Lightbox 287
5.9 Changing the Opacity on Elements 292

5.10 Adjusting the Opacity of Background Colors 294

6. Lists . 299
6.1 Changing the Format of a List 299
6.2 Changing the Color of a List Bullet 302
6.3 Writing Cross-Browser Indentation in Lists 303
6.4 Placing Dividers Between List Items 304
6.5 Creating Custom Text Markers for Lists 306
6.6 Creating Custom Image Markers for Lists 308
6.7 Inserting Larger Custom Image Markers for Lists 311
6.8 Making a List Presentation Rich with Imagery 313
6.9 Creating Inline Lists 318

6.10 Making Hanging Indents in a List 319
6.11 Moving the Marker Inside the List 321
6.12 Styling a Definition List 323
6.13 Styling a Screenplay with the HTML5 dialog Element 329
6.14 Turning a List into a Directory Tree 331
6.15 Creating a Star Ranking System 335

7. Links and Navigation . 341
7.1 Easily Generating Text-Based Menus and Submenus 341
7.2 Removing Underlines from Links (and Adding Other Styles) 343
7.3 Changing Link Colors 346

x | Table of Contents

7.4 Removing Dotted Lines When Clicking on a Link in Internet
Explorer 347

7.5 Changing Link Colors in Different Sections of a Page 348
7.6 Placing Icons at the End of Different Kinds of Links 349
7.7 Changing Cursors 351
7.8 Creating Rollovers Without JavaScript 353
7.9 Animating Rollovers on Links with CSS3 Transitions 354

7.10 Creating Text Navigation Menus and Rollovers 358
7.11 Adding Submenus to Vertical Menus 363
7.12 Building Horizontal Navigation Menus 365
7.13 Building Horizontal Navigation Menus with Drop-Down Menus 372
7.14 Building a Navigation Menu with Access Keys 374
7.15 Creating Breadcrumb Navigation 375
7.16 Creating Image-Based Rollovers 379
7.17 Creating Collapsible Menus 383
7.18 Creating Contextual Menus 386
7.19 Making Tool Tips with the title Attribute 389
7.20 Designing a Dynamic Tabbed Menu 389
7.21 Changing Styles on Anchored Links 392

8. Forms . 397
8.1 Modifying the Spacing Around a Form 398
8.2 Removing the Space Around a Form 399
8.3 Setting Styles for Input Elements 399
8.4 Changing Styles on Form Elements When a User Clicks on Them 402
8.5 Applying Different Styles to Different Input Elements in the Same

Form 403
8.6 Setting Styles for textarea Elements 404
8.7 Setting Styles for select and option Elements 406
8.8 Creating a Macintosh-Styled Search Field 408
8.9 Styling Form Buttons 411

8.10 Creating an Image Submit Button 415
8.11 Setting Up a Submit-Once-Only Button 416
8.12 Creating a Submit Button That Looks Like HTML Text 417
8.13 Making an HTML Text Link Operate Like a Submit Button 419
8.14 Designing a Web Form Without Tables 419
8.15 Designing a Two-Column Form Without Tables 422
8.16 Integrating Form Feedback with a Form 425
8.17 Styling Access Keys in Web Forms 428
8.18 Grouping Common Form Elements 429
8.19 Entering Data into a Form That Is Similar to a Spreadsheet 431
8.20 Sample Design: A Login Form 434
8.21 Sample Design: A Registration Form 441

Table of Contents | xi

9. Tables . 453
9.1 Setting the Borders and Cell Padding for Tables 453
9.2 Setting the Cell Spacing 456
9.3 Setting the Style for Captions 457
9.4 Setting the Styles Within Table Cells 458
9.5 Setting the Styles for Table Header Elements 460
9.6 Removing Gaps from Images Placed in Table Cells 462
9.7 Eliminating Gaps Between Table Cells 464
9.8 Creating Alternating Background Colors in Table Rows 465
9.9 Adding a Highlighting Effect on a Table Row 468

9.10 Sample Design: An Elegant Calendar 470

10. Designing Web Pages for Printing . 481
10.1 Applying a Stylesheet for Printing to a Web Page 481
10.2 Replacing a Color Logo for a Black-and-White Logo When Printing

Web Pages 484
10.3 Making a Web Form Print-Ready 486
10.4 Displaying URIs After Links 490
10.5 Inserting Special Characters Before Links 492
10.6 Setting Page Breaks for a Printed Document 493
10.7 Sample Design: A Printer-Friendly Page with CSS 495

11. Page Layouts . 505
11.1 Building a One-Column Layout 505
11.2 Building a Two-Column Layout 507
11.3 Building a Two-Column Layout with Fixed-Width Columns 511
11.4 Creating a Flexible Multicolumn Layout with Floats 514
11.5 Creating a Fixed-Width Multicolumn Layout with Floats 517
11.6 Creating a Flexible Multicolumn Layout with Positioning 520
11.7 Creating a Fixed-Width Multicolumn Layout with Positioning 523
11.8 Using Floats to Display Columns in Any Order 524
11.9 Designing an Asymmetric Layout 544

11.10 Designing Resolution-Independent Layouts 547

12. Hacks, Workarounds, and Troubleshooting . 551
12.1 Overriding Inline Styles 552
12.2 Diagnosing CSS Bugs and Browser Issues 552
12.3 Using Bookmarklets to Troubleshoot CSS 554
12.4 Using Browser Extensions to Troubleshoot CSS 555
12.5 Patching Up Internet Explorer 6 557
12.6 Patching Up Internet Explorer 6 with JavaScript 558
12.7 Using Conditional Comments to Deliver Styles to Different

Versions of Internet Explorer 559

xii | Table of Contents

12.8 Using CSS Filters to Deliver CSS Rules to Almost Any Browser 561
12.9 Setting Up an Intelligent CSS Delivery System for Modern

Browsers 562
12.10 Testing a Site Design on More Than One Platform with Only One

Computer 564
12.11 Testing a Website with a Text Browser 565

13. Designing with CSS . 569
13.1 Enlarging Text Excessively 570
13.2 Creating Unexpected Incongruity 571
13.3 Combining Unlike Elements to Create Contrast 574
13.4 Leading the Eye with Contrast 576
13.5 Checking for Enough Color Contrast 578
13.6 Emphasizing a Quotation with Smart Quotes 579
13.7 Setting a Moving Background Scene When a User Resizes the

Window 582
13.8 Adding Animation to Elements on a Page 584
13.9 Creating a Fireworks Display As a User Scrolls 588

13.10 Customizing the View Source Stylesheet for Firefox 590
13.11 Designing with Grids (CSS Frameworks) 591
13.12 Sample Design: A Cohesive Web Design 593
13.13 Sample Design: The U.S. Flag 609

14. Interacting with JavaScript . 623
14.1 Determining Whether JavaScript Is Available Within a Browser 623
14.2 Applying a Different Stylesheet Based on the Time of Day 625
14.3 Redirecting to a Mobile Site Based on the Browser’s

Screen Width 626
14.4 Adding a JavaScript Framework to a Web Page 627
14.5 Using CSS3 Selectors in IE6 and IE7 628
14.6 Zebra-Striping an HTML Table with JavaScript 630
14.7 Highlighting a Table Row with Mouseovers 632
14.8 Adding Effects to Simple Image Rollovers 634
14.9 Making a Row of Elements with a Variable Amount of Content the

Same Height 635
14.10 Setting a Link to Open a New Window 638
14.11 Making an Entire div Element Clickable 639
14.12 Supporting Transparent PNGs in IE6 with JavaScript 640
14.13 Delivering HTML5 and CSS3 to Browsers That Can Handle Them 642

A. Resources . 645

Table of Contents | xiii

B. CSS 2.1 Properties and Proprietary Extensions . 651

C. CSS 2.1 Selectors, Pseudo-Classes, and Pseudo-Elements . 669

D. CSS3 Selectors and Pseudo-Classes . 673

E. Styling of Form Elements . 677

Index . 845

xiv | Table of Contents

Foreword

Any great chef will tell you that the key to creating good food is using quality ingredi-
ents. Author Christopher Schmitt has just gone shopping for you. By compiling hun-
dreds of CSS recipes into this single book, he’s giving you a one-stop shop where you
can pick up the ingredients to create stylish, flexible web pages.

When I was first learning the wonders of CSS, trial and error prevailed as my primary
means for discovering its creative powers: “Hmm, I’d like to turn this list into a hori-
zontal navigation bar,” or “I need to stylize the components of a form using CSS for a
client.” Several hours (or days) would go by after plugging in various CSS rules, re-
moving some, and experimenting with endless combinations. This hit-or-miss ap-
proach worked (at times), and although a curious person like me may even consider it
“fun,” it sure ate up a lot of time in the process.

I wish I’d had this book. Instead of stumbling upon the solution for styling every ele-
ment of the page, I could have just thumbed through CSS Cookbook, grabbed the recipe,
and started baking. The guesswork would’ve been eliminated, and I could have instead
spent my time doing what I love to do best: creating.

The modular nature of this book makes it an indispensable reference for designers and
developers of any caliber. Posed with problems from how best to handle typography,
links, and navigation to even entire page layouts, Christopher clearly explains not only
the styles necessary to complete the task, but also the caveats that may be attached for
certain browsers. By additionally explaining the helpful workarounds to everyday CSS
problems, he’s arming you with the critical knowledge you need to be a successful CSS
designer.

For example, a recent article told of a common usability problem: when posed with a
Submit button at the end of a form, some users just can’t shake their double-clicking
habits. The button may get clicked twice, with the results of the form getting duplicated.
What to do? A solution wasn’t offered in the aforementioned article. However, unsur-
prisingly, there’s a recipe in this very book that’ll solve this little problem using CSS
and a dash of JavaScript.

xv

And that’s the heart of this book’s purpose: real problems and the goods that will deliver
real results. You’ve heard about how CSS will simplify your life, making pages lighter
and easier to maintain. Now it’s time to start using it, and with this book, you’ll have
one less excuse not to.

So, my advice is to clear off a space on your desk because CSS Cookbook will take up
permanent residency in the corner. Hopefully for you, that spot will be easily within
arm’s reach.

—Dan Cederholm
Founder, SimpleBits (http://www.simplebits.com)

Salem, Massachusetts

xvi | Foreword

http://www.simplebits.com

Preface

Every book tells a story—even books on web design tips and techniques.

This book is about Cascading Style Sheets, or CSS as it’s commonly abbreviated. CSS
is a simple standardized syntax that gives designers extensive control over the presen-
tation of their web pages and is an essential component of web design today.

Compared to 1990s-era development techniques, CSS gives web designers greater con-
trol over their designs so that they can spend less time editing and maintaining their
websites. CSS also extends beyond traditional web design to designing and controlling
the look of a web page when it is printed.

You don’t need any special hardware or software to design web pages. The basic re-
quirements are a computer, a modern browser such as Firefox, Safari, or Internet Ex-
plorer for Windows (to name a few), and your favorite web page editor. A web page
editor can be anything from a simple text editor such as Notepad (for Windows) or
TextEdit (for the Mac), to a full-fledged WYSIWYG tool such as Adobe Dreamweaver
set in code view.

Now you know what the book is about. Let me tell you its story, its history.

Some would say web design officially began when Tim Berners-Lee, inventor of the
World Wide Web, put together the first set of web pages. Others would say it began
when the center tag came about due to Netscape’s own extension of HTML.

Though it might seem ironic, I happen to believe that this new media really got started
with books. The books that helped lead the way to the dot-com boom in the 1990s
started with Lynda Weinman’s first full-color book about web graphics, Designing Web
Graphics (Pearson), which was published in January 1996, and then David Siegel’s
Creating Killer Web Sites (Hayden), published several months later that same year.
These two books helped to kick off the web revolution as much as those who invented
the technologies that made the Web possible.

xvii

However, the methods written in those books, although cutting edge for their time, are
out of date in today’s context. As I write these pages, it has been 13 years since those
initial books were published; the same year Weinman’s and Siegel’s first books about
web design came out describing how to use font tags, nested tables, and single-pixel
GIFs was the same year CSS was first introduced.

CSS has come a long way since then. With more than 13 years of development put into
it, it’s only now—with the advent of Internet Explorer 8 for Windows reaching a large
audience—that web designers, developers, and everyday users of browsers can use
CSS2 to its intended potential.

In addition to IE8, other browsers are making their presence known, and are often
ahead of Internet Explorer in supporting new features. Browsers such as Firefox, Safari,
Chrome, and Opera are implementing the latest specifications of CSS3 and HTML5 as
quickly as the World Wide Web Consortium (W3C) Working Groups’ members are
bandying them about.

If you are serious about building today’s usable and cutting-edge websites, use CSS and
CSS Cookbook, a collection of CSS-based solutions to common web design problems.
Together they can help you create your own bit of web design history.

Audience
This book is for web designers and developers struggling with the problems of designing
with CSS. With this book, web builders can solve common problems associated with
CSS-enabled web page designs.

CSS Cookbook is ideal for people who have wanted to use CSS for web projects but
have shied away from learning a new technology. If you are this type of reader, use the
solutions in the book one or a few at a time. Use it as a guidebook and come back to it
when you are ready or need to learn another technique or trick.

Even if you consider yourself an expert in CSS, but not in basic design knowledge, this
book is useful to have next to your computer. It covers elements of design from web
typography to page layouts, and even includes a chapter on designing with CSS to get
you motivated.

Assumptions This Book Makes
This book makes several assumptions about you, dear reader.

One assumption is that you possess some web design or development experience either
as a hobbyist, a student, or a professional.

Since CSS Cookbook is neither an introduction to CSS nor a book that goes into great
detail on how CSS should work in browsers, people at the start of their web design or

xviii | Preface

development education might find this book a bit more challenging than a general or
complete book on the theory of CSS.

If you are looking for a book that delves into such topics about the CSS specification,
you should look into CSS: The Definitive Guide, Third Edition, by Eric A. Meyer (O’Re-
illy), which serves as a solid complement to this book.

If you use a program such as Adobe Dreamweaver only in its WYSIWYG or design
mode and rarely, if ever, touch the markup in code view, you might have trouble getting
the most out of this book right away. To get an introduction to handcoding HTML,
look into Learning Web Design by Jennifer Niederst Robbins (O’Reilly).

Although WYSIWYG tools allow for CSS-enabled designs, some of the tools have not
caught up with some of the unorthodox approaches recommended in this book and
might cause some trouble if you attempt to implement them by editing solely in
WYSIWYG mode.

To benefit from this book, you must be able to edit HTML and CSS by hand. Some of
the code in this book can be re-created using dialog-box-driven web page building
applications, but you may run into some problems along the way trying to click tabs
and enter CSS values into said tabs.

Another assumption is that web designers and developers practicing their craft with
HTML table-based layouts, font tags, and single-pixel GIFs will find this book both
helpful and frustrating.

Web designers who are practicing or are more familiar with these old production
methods are going to find CSS challenging. The “browser hell” often associated with
cross-browser development still exists, as browser vendors tended to interpret the CSS
specification differently or didn’t implement the CSS specification completely. This
frustration is a natural part of the learning process. You should approach the process
of learning how to design with CSS with patience and a good sense of humor.

The good news is that the major browser vendors seem to have solved the problem.
The recent version releases of browsers appear to have implemented CSS correctly;
however, attempting cross-browser support for the older or less-popular browsers may
still be a challenging exercise.

Yet the benefits of CSS, including greater control over the look and feel of web pages
and easier maintenance over multipage websites, outweigh the hardships associated
with browser hell.

A handful of solutions within this book use JavaScript and the JavaScript framework,
jQuery. This book assumes that you have a general knowledge of the scripting language
as well as the ability to successfully include JavaScript code into a web document.

If this is a hurdle, I recommend that you download the code from the O’Reilly
website to get a firsthand look at a working example. On the other hand, if you were
looking for a solution-focused book that deals with recipes where CSS plays a minor

Preface | xix

http://oreilly.com/catalog/9780596527334/
http://oreilly.com/catalog/9780596527525/
http://www.oreilly.com/catalog/9780596155933
http://www.oreilly.com/catalog/9780596155933

role compared to JavaScript, that book would be JavaScript & DHTML Cookbook by
Danny Goodman (O’Reilly).

The final assumption is that you desire a resource that provides fast answers to common
CSS-based web design problems. The solutions in this book, covering everything from
web-based typography to multicolumn layouts, are geared for modern browsers with
version numbers later than or equal to 5, with the exception of Safari and Chrome.

Whenever possible, I mention when a technique might cause problems in modern
browsers. Although there is a chapter on hacks and workarounds to hide stylesheets
from browsers with poor implementations of the complete CSS specification, this book
makes no assurances that you are going to create pixel-perfect designs in every browser.
Even with traditional web design methods from the 1990s, this has never been
the case (see http://dowebsitesneedtolookexactlythesameineverybrowser.com/ for more
information).

Contents of This Book
For me, the best use for a book such as this is to crack it open from time to time when
trying to solve a particular problem, which I did with the first edition of the book to
refresh my memory while writing this edition. To that end, this book will serve you
well on or near your desk—always within reach to resolve a problem about CSS or web
design. However, feel free to read the book from its first page to its last.

The following paragraphs review the contents of each chapter and the appendixes.

Chapter 1, Using HTML Basics, goes over semantic markup solutions on content.

Chapter 2, CSS Basics, discusses the general concepts of CSS as well as some techniques
associated with best practices in development.

Chapter 3, Web Typography, discusses how to use CSS to specify fonts in web pages,
headings, pull quotes, and indents within paragraphs as well as other solutions.

Chapter 4, Images, discusses CSS techniques directly associated with manipulating
styles and properties related to web graphics.

Chapter 5, Page Elements, covers a loose collection of items that don’t necessarily fit
in every chapter, but that all carry a theme of affecting the design of the overall page.
Solutions in this chapter cover the topics of centering elements, setting a background
image, placing a border on a page, and other techniques.

Chapter 6, Lists, describes how to style basic list items in various ways. Solutions in-
clude cross-browser indentation, making hanging indents, inserting custom images for
list markers, and more.

Chapter 7, Links and Navigation, shows how to use CSS to control the presentation of
a link and sets of links. Solutions range from the basic, such as removing an underline
from links, to the more complex, such as creating a dynamic visual menu.

xx | Preface

http://oreilly.com/catalog/9780596514082/
http://dowebsitesneedtolookexactlythesameineverybrowser.com/

Chapter 8, Forms, discusses how to work around the basic ways browsers render forms.
You’ll learn how to set styles to specific form elements, set a submit-once-only button,
and style a login form, among other things.

Chapter 9, Tables, shows how to style HTML tables. Although CSS can help you elim-
inate HTML table-based designs, sometimes you may need to style tabular data such
as calendars and statistical data. This chapter includes solutions for setting cell padding,
removing gaps in table cells with images, and styling a calendar.

Chapter 10, Designing Web Pages for Printing, talks about how you can use CSS to
engineer layouts. The solutions in this chapter include methods for designing one-
column layouts as well as multicolumn layouts.

Chapter 11, Page Layouts, provides information on how to set styles that are used when
printing web pages. Solutions discuss how to add a separate print stylesheet to a web
page, set styles for web forms, and insert URLs after links.

Chapter 12, Hacks, Workarounds, and Troubleshooting, provides solutions that enable
you to hide stylesheets that certain browsers cannot handle. Recipes include hiding
stylesheets for browsers such as Netscape Navigator 4, Internet Explorer 5 for Win-
dows, and others.

Chapter 13, Designing with CSS, is an inspirational chapter. Focusing on the notion
that CSS is merely a tool that implements design, this chapter covers topics such as
playing with enlarging type sizes, working with contrast, and building a panoramic
presentation.

Chapter 14, Interacting with JavaScript, demonstrates how to use the JavaScript frame-
work, jQuery, in conjunction with CSS for more advanced effects.

Appendix A is a collection of links and websites you can access to learn more about CSS.

Appendix B is a listing of CSS 2.1 properties that can help you define the look and feel
of, or, in some cases, the sound of HTML elements on a web page.

Appendix C is a listing of selectors, pseudo-classes, and pseudo-elements available
within CSS 2.1.

Appendix D is a listing of selectors and pseudo-classes available from the new CSS3
specification.

Appendix E takes a look at how various modern browsers handle the display of form
elements. The print book version contains an introduction to this appendix, as well as
information on how you can access the full version. The online version of this appendix
contains lookup tables that allow you to quickly check out which CSS properties are
supported, as well as the entire form element review that contains screenshots of every
test.

Preface | xxi

http://oreilly.com/catalog/9780596155933/

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, file extensions, pathnames,
directories, and Unix utilities

Constant width
Indicates commands, options, switches, variables, attributes, keys, functions,
types, classes, namespaces, methods, modules, properties, parameters, values, ob-
jects, events, event handlers, XML tags, HTML tags, macros, the contents of files,
or the output from commands

Constant width bold
Shows commands or other text that should be typed literally by the user

Constant width italic
Shows text that should be replaced with user-supplied values

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your web pages and design. You do not need to contact us for permission
unless you’re reproducing a significant portion of the code. For example, writing a
program that uses several chunks of code from this book does not require permission.
Selling or distributing a CD-ROM of examples from O’Reilly books does require per-
mission. Answering a question by citing this book and quoting example code does not
require permission. Incorporating a significant amount of example code from this book
into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “CSS Cookbook, Third Edition, by Chris-
topher Schmitt. Copyright 2010 O’Reilly Media, Inc., 978-0-596-15593-3.”

xxii | Preface

If you feel your use of code examples falls outside fair use or the permission given here,
feel free to contact us at permissions@oreilly.com.

We’d Like to Hear from You
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://www.oreilly.com/catalog/9780596155933

This book also has another website:

http://csscookbook.com

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our website at:

http://www.oreilly.com

Safari® Books Online
Safari Books Online is an on-demand digital library that lets you easily
search over 7,500 technology and creative reference books and videos to
find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library online.
Read books on your cell phone and mobile devices. Access new titles before they are
available for print, and get exclusive access to manuscripts in development and post
feedback for the authors. Copy and paste code samples, organize your favorites, down-
load chapters, bookmark key sections, create notes, print out pages, and benefit from
tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full
digital access to this book and others on similar topics from O’Reilly and other pub-
lishers, sign up for free at http://my.safaribooksonline.com.

Preface | xxiii

mailto:permissions@oreilly.com
http://www.oreilly.com/catalog/9780596155933
http://csscookbook.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://my.safaribooksonline.com/?portal=oreilly

Acknowledgments
First, thanks to David Siegel and Lynda Weinman for their inspiration and support
from the beginning of web design.

I wouldn’t be writing any books for an industry I love so very much without the support
and friendship of Molly Holzschlag.

I’d like to acknowledge my appreciation and respect for the following fellow web
builders for pushing CSS-enabled web designs forward: Douglas Bowman, Tantek
Çelik, Dan Cederholm, Mike Davidson, Ethan Marcotte, Eric A. Meyer, Mark
Newhouse, Dave Shea, Nicole Sullivan, Stephanie Sullivan, and Jeffrey Zeldman.

Special thanks go to the technical editors, Opera Web Evangelist Bruce Lawson, Shelley
Powers, and Edd Dumbill, as well as copyeditor Audrey Doyle, for their time, expertise,
and patience.

Special thanks also go to Tatiana Diaz, my editor for the previous edition of this book.

Simon St.Laurent took over for Tatiana in the role of editor for this edition. His calm
demeanor and ability to guide this book through the production process made the
metallic bladelike swooshing sounds of deadlines bearable.

Thanks to my friends who know me as the web geek I truly am, and who are OK with
me not mentioning them all by name.

Thanks to Jessica, who made me a chocolate cake with homemade chocolate icing and
chocolate chips to celebrate my birthday and the release of the previous edition. I en-
joyed it immensely, and my dentist appreciated the extra work. I’m not expecting an-
other cake, but I did put you in my acknowledgments.

Thanks to my family for their love and appreciation. Your support through good times
and bad has been a rock. As always, I’m looking forward to our next reunion.

Thanks to Ari Stiles for being OK with me taking time out to work on this book. I love
you.

And to my dad, I dedicate this book once again. Thanks for being the best dad ever.

—Christopher Schmitt
Fall 2009

http://christopherschmitt.com/
http://twitter.com/teleject

xxiv | Preface

http://christopherschmitt.com/
http://twitter.com/teleject

CHAPTER 1

Using HTML Basics

1.0 Introduction
Using CSS effectively requires using HTML effectively. To set you on the right path
with HTML, this chapter runs through the basics of using HTML well. You’ll explore
basic but critical techniques for creating an HTML page, validating the markup to make
sure it’s free of any typos and errors, and taking advantage of new possibilities for
adding video and audio with HTML5.

If you feel you’re an old hand at this, feel free to skim the chapter. Even
a review of the chapter should help you build some good habits that will
ease your work.

Structuring Documents
To build a design for your web pages, first there must be content in a web document,
usually a simple text file. That content within a text file needs to be tagged with what
is called HyperText Markup Language, more commonly referred to as HTML. HTML
provides structure to documents through the use of elements.

When you wrap these elements with tags, such as p for paragraphs and h2 for headings,
throughout the content, the web page starts to form an inherent HTML document
structure.

The browser then applies its own stylesheet to render what is known as the default
rendering of the web page onto this document structure.

This default look and feel won’t win any design awards. It’s a starting point that allows
the presentation or design to be associated through Cascading Style Sheets (CSS) and
JavaScript more cleanly to provide appearance and movement to the web page.

1

Semantic Markup
This chapter is a primer on how to code semantic HTML. Semantic markup is the
“radical” notion that we use the appropriate HTML element for its respective content.

For example, to denote a paragraph, we use the simple p tag at the beginning and end
of the paragraph text:

<p>Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy
nibh euismod tincidunt ut laoreet dolore magna aliquam erat volutpat.</p>

Avoiding Old-Tag Soup
The semantic approach to HTML isn’t common on the Web. Since various HTML
elements look different when they appear in a browser, web designers occasionally brew
often-strange concoctions of HTML elements into what is commonly referred to as tag
soup to achieve the desired look and feel.

To gain control of this look and feel, designers might add presentational HTML tags
to otherwise semantically marked-up content, like so:

<p>Lorem ipsum dolor
sit amet, consectetuer adipiscing
elit, sed diam nonummy nibh euismod tincidunt ut laoreet dolore magna
aliquam erat volutpat.</p>

Those additional HTML tags are there to control the look and feel of just one paragraph.

When you use traditional HTML coding, every single element in a site’s HTML page
would therefore need to be coded with additional elements to create the specific colors,
fonts, alignment, and layout that a designer wants; such a process is extremely tedious
and prone to errors.

Imagine you were designing a website that consisted of 20 pages, and you wanted to
add certain design elements such as colors, fonts, sizing, and alignment to the site. Now
imagine maintaining a 1,000-page website. How about a 1,000,000-page website?

A site’s HTML documents quickly become bogged down with additional code that
makes both the content and the code all but unmanageable.

HTML Is Document Structure
So, it’s important to get the document structure right as much as possible with HTML.
Through the use of semantic, lean coding, web developers save time in terms of main-
tenance while also allowing the framework on which stylesheets can be applied.

If you feel knowledgeable enough about HTML and HTML5 already,
the information in this chapter might already be in your domain. If that’s
the case, you might want to skip through this chapter.

2 | Chapter 1: Using HTML Basics

1.1 Picking a Text Editor
Problem
You want to choose a text editor for marking up content with HTML.

Solution
Numerous software applications are geared toward coding HTML. Some are free and
some require payment.

Some basic text editors that come preinstalled with operating systems include:

• Notepad (Windows OS)

• TextEdit (Mac OS)

• gedit (Linux OS)

Here are some other free text editors that have more features:

• Notepad++ (Windows OS; http://notepad-plus.sourceforge.net/uk/site.htm)

• TextWrangler (Mac OS; http://www.barebones.com/products/TextWrangler/)

• jEdit (Windows OS, Mac OS, and Linux OS; http://www.jedit.org/)

For more professional-level, commercial integrated development environments (IDEs),
try one of the following:

• Adobe Dreamweaver (Windows OS and Mac OS; http://www.adobe.com/products/
dreamweaver/)

• Panic Software’s Coda (Mac OS; http://www.panic.com/coda/)

Discussion
For editing HTML, some applications come bundled with common operating systems
such as Mac OS X and Windows. They are TextEdit and Notepad, respectively.

Do not use word processing programs for working with HTML. Al-
though these programs are ideal for creating common documents that
you need to print, they add extraneous formatting to your text that you
don’t want or need.

Before using TextEdit, go to File→Preferences and check “Plain text” as the format
option. Otherwise, the text editor might strip out the HTML elements.

If you use Notepad, select Format→WordWrap. This option allows long lines to be
wrapped within the application window, making it easier to edit.

1.1 Picking a Text Editor | 3

http://notepad-plus.sourceforge.net/uk/site.htm
http://www.barebones.com/products/TextWrangler/
http://www.jedit.org/
http://www.adobe.com/products/dreamweaver/
http://www.adobe.com/products/dreamweaver/
http://www.panic.com/coda/

For both TextEdit and Notepad, make sure to save the HTML file with
an .html file extension. Do not append an additional .html extension
onto the file. For example, example.txt.html or example.html.txt only
leads to heartbreak.

Even though these code editors—which are free and already installed in the operating
system—do not offer many options, many web designers rely on them for working with
HTML.

More robust, still free

Another text editing option that is also free is TextWrangler from Bare Bones Software.
TextWrangler is not as full-featured as the company’s flagship product, BBEdit, but
it might suit your needs just the same. TextWrangler and BBEdit are Mac-only
applications.

For Windows, there are options such as Notepad++ and TextPad (see http://www.text
pad.com/).

If you use Unix, there are the vi/vim and Emacs editors. Another potential text editor
is jEdit, which is also available for Mac and Windows.

IDE solutions

More full-featured products often cost more, but they provide a complete solution for
dealing with almost every aspect of building websites. Popular products in this realm
include Adobe Dreamweaver and Panic Software’s Coda.

See Also
http://www.notepad.org/logo.htm, to get a “Made with Notepad” graphical banner to
place on your web page

1.2 Coding a Basic HTML Page
Problem
You want to create your first HTML page.

Solution
Start with basic content, such as the following:

My Basic Web Page
Epsum factorial non deposit quid pro quo hic escorol.

4 | Chapter 1: Using HTML Basics

http://www.textpad.com/
http://www.textpad.com/
http://www.notepad.org/logo.htm

Next, add an html element around the entire document:

<html>
My Basic Web Page
Epsum factorial non deposit quid pro quo hic escorol.
</html>

Then place the head and body elements in the document, like so:

<html>
 <head>
 </head>
 <body>
My Basic Web Page
Epsum factorial non deposit quid pro quo hic escorol.
 </body>
</html>

Insert a title element in the head element:

<html>
 <head>
 <title>CSS Cookbook</title>
 </head>
 <body>
My Basic Web Page
Sed quis custodiet ipsos custodes?
 </body>
</html>

The heading (h1) and paragraph (p) elements go inside the body element, and the page
should render as shown in Figure 1-1:

<html>
 <head>
 <title>CSS Cookbook</title>
 </head>
 <body>
 <h1>My Basic Web Page</h1>
 <p>Sed quis custodiet ipsos custodes?</p>
 </body>
</html>

Discussion
Every web page needs to have an HTML element wrapping the entire document. Within
each HTML element are two required elements: head and body.

The head element contains the information about the document, often called meta
information. The head element needs to have the title element within it. This text is
usually set in the top portion of the browser window and is used when creating book-
marks. It’s important to be concise and to avoid long descriptions when using the
title tag.

1.2 Coding a Basic HTML Page | 5

If the title element contains no text, browsers will use either the filename or the first
few words of the document instead.

Only text is allowed within the title element. Other HTML elements
aren’t allowed.

The content of a web document is placed within the body element. If you need to edit
or revise a web page, most of the time it is within this element.

For this example, the heading was set with an h1 element along with the standard
p element for the paragraph.

See Also
Recipe 1.1 for choosing a text editor

1.3 Understanding DOCTYPEs and Effects on Browser Layout
Problem
You want to make your web page standards compliant and valid.

Solution
HTML 4.01 has three document types: Strict, Transitional, and Frameset.

Both HTML5 and XHTML 1.1 have one document type, but XHTML 1.0, like HTML
4.01, has three.

Figure 1-1. The default rendering of a basic HTML web page

6 | Chapter 1: Using HTML Basics

Only one document type definition (DTD) appears in the HTML document. Use any
one of the following DOCTYPEs that best fits your project needs.

HTML 4.01 Strict DTD:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

HTML 4.01 Transitional DTD:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/1999/REC-html401-19991224/loose.dtd">

HTML 4.01 Frameset DTD:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Frameset//EN"
" http://www.w3.org/TR/1999/REC-html401-19991224/frameset.dtd">

HTML5 DTD:

<!DOCTYPE html>

XHTML 1.0 Strict DTD:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

XHTML 1.0 Transitional DTD:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

XHTML 1.0 Frameset DTD:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd">

XHTML 1.1 DTD:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">

Here’s a basic page with the HTML5 DTD and the required head, body, and html
elements:

<!DOCTYPE html>
<html>
 <head>
 <title>CSS Cookbook</title>
 </head>
 <body>
 <h1>My Basic Web Page</h1>
 <p>Epsum factorial non deposit quid pro quo hic escorol.</p>
 </body>
</html>

1.3 Understanding DOCTYPEs and Effects on Browser Layout | 7

Discussion
A DOCTYPE, short for document type definition, defines an HTML or XHTML docu-
ment’s building blocks and tells the browsers and validators which version of HTML
or XHTML your document uses.

The DOCTYPE declaration must appear at the beginning of every web page document,
before the html element, to ensure that your markup and CSS are standards compliant
and that browsers handle the pages based on the appropriate DTDs.

Quirks mode

XHTML requires a valid DOCTYPE at the top of the document; otherwise, the pages
won’t validate and the browsers will fall back into what is known as quirks mode.

Quirks mode occurs when a browser treats a web page as “buggy.” As a result, such
pages are treated as though they were written in invalid markup, and therefore will be
improperly rendered in modern browsers even if the XHTML and CSS are coded
perfectly.

A web page that is without a DOCTYPE, with an older DOCTYPE, or with a typo-
riddled DOCTYPE triggers quirks mode. So, when coding pages, make sure to check
that the DOCTYPE is both added to the page and typed correctly to ensure that brows-
ers do not render pages in quirks mode.

If a web page has an HTML5 DOCTYPE, modern browsers will trigger
standards mode, even though the actual markup isn’t coded with
HTML5 elements. Internet Explorer for Windows 6 and 7 ignores
HTML5 features.

Figures 1-2 and 1-3 show how a table contained within a div with a width of 100%
goes into quirks mode in Internet Explorer 6, and how the page should look in standards
mode.

Why not use the latest DOCTYPE?

Using newer DOCTYPEs such as HTML5 is an option. However, it’s not the only
option. Unlike software application releases, newer DOCTYPEs don’t make older
DOCTYPEs moot.

For example, you would be hard-pressed to install, much less run, Photoshop 4 on
today’s computers. However, you can still use HTML4 syntax and DOCTYPEs without
fear of browsers not rendering your content.

8 | Chapter 1: Using HTML Basics

Figure 1-2. Table width in Internet Explorer 6 in quirks mode with no DOCTYPE included

Figure 1-3. Table width in Firefox 1.5 in standards mode with HTML 4.01 Strict DOCTYPE

1.3 Understanding DOCTYPEs and Effects on Browser Layout | 9

The smallest web page ever

The Solution provides an example of a relatively short HTML5 page. However, an even
shorter and valid example can be made:

<!DOCTYPE html>
<title>Small HTML5</title>
<p>Hello world</p

These three HTML elements validate for HTML5 by checking out the page at http://
validator.w3.org/check?uri=http%3A%2F%2Fjsbin.com%2Fowata&ss=1.

See Also
HTML5 specification for DTD at http://dev.w3.org/html5/spec/Overview.html#the-doc
type; HTML 4.01 specification for DTD at http://www.w3.org/TR/html401/intro/
sgmltut.html#h-3.3; W3C validators at http://www.w3.org/QA/Tools/#validators;
DOCTYPEs article from A List Apart at http://www.alistapart.com/articles/doctype/;
Article from QuirksMode at http://www.quirksmode.org/index.html?/css/quirksmode
.html; Mozilla’s information on quirks mode, which explains the differences between
the rendering modes and how it handles quirks mode, at https://developer.mozilla.org/
en/Mozilla's_Quirks_Mode; Opera’s DOCTYPE page at http://www.opera.com/docs/
specs/doctype/

1.4 Marking Up Headers
Problem
You want to differentiate the importance of headings within the same document.

Solution
Use one of the six available headings, h1 through h6, as shown in Figure 1-4:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
 <head>
 <title>CSS Cookbook</title>
 </head>
 <body>
 <h1>My Basic Web Page</h1>
 <p>Epsum factorial non deposit quid pro quo hic escorol.</p>

 <h2>Secondary Heading</h2>
 <p>Feles mala! cur cista non uteris? stramentum novum in ea posui.</p>

 <h3>Tertiary Heading</h3>
 <p>Por scientie, musica, sport etc., li tot Europa usa li sam
 vocabularium.</p>

10 | Chapter 1: Using HTML Basics

http://validator.w3.org/check?uri=http%3A%2F%2Fjsbin.com%2Fowata&ss=1
http://validator.w3.org/check?uri=http%3A%2F%2Fjsbin.com%2Fowata&ss=1
http://dev.w3.org/html5/spec/Overview.html#the-doctype
http://dev.w3.org/html5/spec/Overview.html#the-doctype
http://www.w3.org/TR/html401/intro/sgmltut.html#h-3.3
http://www.w3.org/TR/html401/intro/sgmltut.html#h-3.3
http://www.w3.org/QA/Tools/#validators
http://www.alistapart.com/articles/doctype/
http://www.quirksmode.org/index.html?/css/quirksmode.html
http://www.quirksmode.org/index.html?/css/quirksmode.html
https://developer.mozilla.org/en/Mozilla's_Quirks_Mode
https://developer.mozilla.org/en/Mozilla's_Quirks_Mode
http://www.opera.com/docs/specs/doctype/
http://www.opera.com/docs/specs/doctype/

 <h4>Quaternary Heading</h4>
 <p>Lex clavatoris designati rescindenda est.</p>

 <h5>Quinary Heading</h5>
 <p>Ire fortiter quo nemo ante iit.</p>

 <h6>Senary Heading</h6>
 <p>Interdum feror cupidine partium magnarum europe vincendarum.</p>

 </body>
</html>

Figure 1-4. The default rendering of six heading levels

1.4 Marking Up Headers | 11

Discussion
You can choose from among six different levels of headings when marking up titles for
a document.

When marking up content, be sure to use the headings in order. For example, if you
use the h2 element, the header underneath it should be wrapped in the h3 element (not
h4 or h5). The title of the page should not be wrapped in the h2 element (use the h1
element). In short, don’t skip header tags!

It’s not important to use all of the headers when creating a document. However, be
sure not to overuse the h1 element, as that might lower your search engine ranking. Use
the h1 element once for the unique title of your blog post or page; then use h2 and h3
for the other portions of the document.

If you need to use h4, h5, and h6 elements in your document, break up
the content into separate pages or investigate the document structure.
A document requiring six different heading levels might be so loaded
down with content that it will fail to hold an average person’s attention
span.

Also, if you are concerned about the look of the headings, do not worry. Through the
power of CSS, the design of the headings (along with the rest of the page) can be
modified.

Using headers appropriately in a document benefits people using screen
readers. For a demonstration, see the video at http://www.youtube.com/
watch?v=AmUPhEVWu_E.

See Also
Chapter 3 for modifying headers and other common type treatments

1.5 Making Appropriate Quotations
Problem
You want to cite quotations with HTML, as shown in Figure 1-5.

Solution
Use the blockquote element when quoting a large amount of text:

<blockquote cite="http://www.example.com/">
 <p>Si fallatis officium, quaestor infitias eat se quicquam scire de factis

12 | Chapter 1: Using HTML Basics

http://www.youtube.com/watch?v=AmUPhEVWu_E
http://www.youtube.com/watch?v=AmUPhEVWu_E

 vestris.</p>
</blockquote>

Figure 1-5. The default rendering of quotations

For citing phrases, use the q element:

<p>Virgil said <q>Sic itur ad astra</q>.</p>

Discussion
The blockquote element is a block-level element. This means that text tagged with a
blockquote element separates itself from the rest of the text by forcing a line break above
and below itself.

The q element is an inline element, which does not force a line break. Inline elements
are useful for quoting small portions of text within a paragraph element.

The q element is typically rendered with quotation marks around the
text it envelops. However, these quotation marks do not appear in In-
ternet Explorer for Windows.

The cite attribute is optional for both the blockquote and q elements. The value of a
cite attribute is a URI where the source of the quote originated.

See Also
Chapter 3 for other common type treatments

1.5 Making Appropriate Quotations | 13

1.6 Adding an Image
Problem
You want to add an image to a web page, as shown in Figure 1-6.

Figure 1-6. An image placed within a document

14 | Chapter 1: Using HTML Basics

Solution
Use the img element to specify the location of the image file:

Add an alt attribute within the img element to provide alternative text in case images
are turned off or people are surfing with an assistive technology such as a screen reader:

<img src="saint-george-island.jpg" alt="St. George Island beach at sunset
with an approaching storm" />

Discussion
The img element does not address content within the web document itself. It merely
defines the location of its placement within the document and specifies its location
relative to the HTML document.

Additional tips

Even though a picture is worth a thousand words, the value of the alt attribute should
be a relatively short description.

As shown in Figure 1-6, some browsers display text next to a cursor, called a tool tip,
within the title attribute of an image:

<img src="saint-george-island.jpg" alt="St. George Island beach at sunset
with an approaching storm" title="St. George Island beach" />

File formats

Common image formats supported by browsers include GIF and JPEG. Both formats
have their own pros and cons in terms of which types of images are best for each.

Based on the compression scheme, which is the method with which an image’s file size
is reduced, GIFs are better at areas of flat color and fewer gradients, and JPEGs are
good for photos and subtle color changes.

All browsers support the PNG file format; however, alpha transparency is only now
supported in Internet Explorer 8 for Windows. Alpha transparency allows for opacity
or levels of transparency within an image, unlike the GIF format, which can assign only
one color to be transparent. If an older version of IE renders a PNG image with alpha
transparency, the transparent portions usually turn into blocks of solid white.

Character case sensitivity

When specifying an image file within HTML, make sure the filename does not contain
spaces and the lower- and uppercase characters match. Although your computer OS
might be OK with a difference in cases, chances are the web server hosting your web
files will not, and may keep images from appearing in the browser.

1.6 Adding an Image | 15

See Also
Chapter 4 for designing web pages with images

1.7 Adding Audio with HTML5
Problem
You want to add audio to a web page with HTML5.

Solution
Use the audio element to specify an audio file, as shown in Figure 1-7:

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>CSS Cookbook</title>
 </head>
 <body>
 <h1>Audio Example</h1>
 <audio src="html5audio.ogg" autoplay controls>
 Download audio
 </audio>
 </body>
</html>

Figure 1-7. Audio added to a web page

Discussion
The audio element has five attributes associated with it: src, autobuffer, autoplay,
loop, and controls. If you don’t have the controls attribute, the audio player
disappears.

16 | Chapter 1: Using HTML Basics

Audio compatibility

At the time of this writing, no one audio file type plays across all the browsers that
support the HTML5 audio element, as shown in Table 1-1.

Table 1-1. Audio file format support in HTML5

 Firefox 3.5 Safari 4 Chrome 3 beta Opera 10

Ogg Vorbis Y Y

MP3 Y Y

WAV Y Y Y

To create a cross-browser solution, use the audio element along with the source element
that cites both OGG and MP3 files. Then include Flash Player embed and object code
afterward:

<audio controls autobuffer>
 <source src="html5audio.ogg" />
 <source src="html5audio.mp3" />
 <!-- include Adobe Flash player EMBED and OBJECT code here -->
</audio>

If you do insert audio, setting the file to autoplay is not recommended,
as it interferes with the experience for web surfers using screen readers.

See Also
Recipe 1.8 for adding video to web pages

1.8 Incorporating Video with HTML5
Problem
You want to add video to HTML5.

Solution
Use the HTML5 video element, as shown in Figure 1-8:

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>CSS Cookbook</title>
 </head>
 <body>
 <h1>Video Example</h1>

1.8 Incorporating Video with HTML5 | 17

 <video src="html5video.ogg" width="320" height="240"
controls poster="html5video.jpg">
 Download movie
 </video>
 </body>
</html>

Figure 1-8. Video added to a web page

Discussion
You do not have to specify the width and height of the video element. If you do not set
the video element with its respective attributes, the movie will play to the default values
of the video file itself.

A video file might have its own poster, which is a static image that represents the video
as a whole, similar to a thumbnail. However, you can override this poster by using the
poster attribute. The poster image can be any file type the browser supports (e.g., GIF,
JPEG, or PNG).

18 | Chapter 1: Using HTML Basics

Although the controls attribute is optional, for the sake of usability I
suggest using it so as not to offend your site’s visitors.

You can place alternative text in between the video tags, including a link to download
the video file, for browsers that do not recognize the video element. This method allows
website visitors a method to view the content with third-party solutions other than
browsers.

At the time of this writing, Safari 3.1 and later, Firefox 3.5 and later, Opera 10 beta,
and Chrome 3 beta support the video element.

See Also
http://www.videolan.org/ for information on the export tools in the VLC software ap-
plication, which you can use to convert common video files to OGG format (supported
by Firefox and Opera)

1.9 Using strong and em Effectively
Problem
You want to emphasize certain words or phrases in a paragraph, as shown in Figure 1-9.

Figure 1-9. The default rendering of highlighted text

Solution
Use the strong and em elements to denote emphasis within a document:

<p>Ma quande lingues coalesce, li grammatica del resultant lingue
es plu simplic e regulari quam ti del coalescent lingues. Li nov lingua franca
va esser plu simplic e regulari quam li existent Europan lingues. It va esser
tam simplic quam Occidental: in fact, it va esser Occidental. A un
Angleso it va semblar un simplificat Angles, quam un skeptic Cambridge amico
dit me que Occidental es.</p>

1.9 Using strong and em Effectively | 19

http://www.videolan.org/

Discussion
The strong element’s default rendering is to make text bold, while the em element sets
text in italics.

You would use em to draw attention to or contrast one or more words from the rest of
a sentence. For example:

• Darth Vader translates loosely as Dark Father in Dutch.

• There are, not 57, but 50 states in the United States of America.

• If you join him, he will complete your training.

Strong is an alternative element to em to bring attention to words or phrases.

Although the use of em and strong helps to break up the monotony of text, be sure to
use these elements sparingly as well as consistently so that you do not overuse or abuse
their importance.

See Also
Chapter 3 for other common type treatments

1.10 Creating Lists
Problem
You want to create a list of items within a web page, as shown in Figure 1-10.

Figure 1-10. The default rendering of an unordered list

20 | Chapter 1: Using HTML Basics

Solution
Use the ul element to wrap around a list of phrases:

 First Item
 Secondary Item
 Tertiary Item
 Quaternary Item

Then use the li element to wrap around each item within the list:

First Item
Secondary Item
Tertiary Item
Quaternary Item

Discussion
There are three types of lists in HTML: unordered, ordered, and definition lists.

Marking up unordered lists and ordered lists is fairly straightforward. Use two ele-
ments, ul and li, to mark up a series of items for an unordered list, which typically
results in a circle appended to the left side of each list item.

An unordered list is typically used to create the base of a navigation
menu.

Ordered lists, which use an ol element instead of a ul element, have a numeral in
sequential order prepended to the list.

As shown in Figure 1-11, definition lists, which are used to define terms, work a little
bit differently from unordered and ordered lists. Each item is broken down into two
parts: the term (dt) and the definition (dd).

<dl>
 <dt>First Term</dt>
 <dd>Seriatim</dd>
 <dt>Secondary Term</dt>
 <dd>Sequentia</dd>
 <dt>Tertiary Term<dt>
 <dd>Sequens mirabitur aetas</dd>
</dl>

1.10 Creating Lists | 21

Figure 1-11. The default rendering of a definition list

See Also
Chapter 6 on lists and Chapter 7 on links and navigation

1.11 Making a Link to a Web Page
Problem
You want to link to another web page.

Solution
Using the anchor link:

<p>This book's Web site contains
links to download more materials.</p>

to link to another page in the same website, link to its file:

<p>Check out the About page for more information.</p>

Discussion
Along with the img element (see Recipe 1.6), some browsers display a tool tip if a title
attribute and value are present within the anchor link, as shown in Figure 1-12:

<p>This book's <a href="http://www.csscookbook.com/" title="Link to the book
site">Web site contains links to download more material.</p>

22 | Chapter 1: Using HTML Basics

Linking to another web page on the same site

When you are creating links within the same site, use relative links instead of anchor
links. Relative links are addresses that are valid only if you are visiting from certain web
pages.

For example, suppose you have a website composed of four pages within the same root
folder, the main directory that contains the website files, as shown in Figure 1-13:

• httpdocs/

— index.html

— aboutus.html

— contactus.html

— services.html

Figure 1-13. Sample directory structure

Including everything that is needed to point a web browser to a location in a link means
that you created an absolute link, which looks like this:

Services Page

Figure 1-12. A tool tip displayed over a link

1.11 Making a Link to a Web Page | 23

If you want to create a link from the index page to another page on the same website,
use a relative link. A relative link is a little bit leaner than an absolute link and, as in
this example, can cite just the filename itself within the href attribute:

Services Page

Relative links contain neither the full http:// protocol nor the domain name.

When a browser navigates to a relative link, it uses the domain name of the page it is
currently viewing to assemble the link to where it should go next.

Moving up folders

Just as your personal computer probably contains numerous folders holding numerous
files for a project, websites are also composed of folder sets and files. To link from one
document to another document within the same website, use relative links.

For example, say you have a main technical specs page within a specs folder, which
itself is in a widget folder. The organization of the files on the server might look some-
thing like this:

• products/

— widget/

— specs/

— specs.html

To provide a link to the main widget page from the technical specs page, use ../ to tell
the browser to go up to the parent directory:

Widget Page

If you want to go up two parent directories and link to the main products page from
the technical specs page, you would format the link like so:

Product Page

Using the root relative link

The process for using relative links to move between the folders of a large website can
sometimes be tricky, if not convoluted. Another type of link to use in such a case is a
root relative link.

Here is how you would use a root relative link to code the link from the technical specs
page to the main product page in the preceding example:

Product Page

The forward slash signifies the protocol and domain name of the URI, a sort of short-
hand for links.

24 | Chapter 1: Using HTML Basics

Linking to certain elements within a web page

You can also link to certain elements within an HTML document by creating anchors.
You can create an anchor by assigning an id attribute to an HTML element:

<h2 id="hireme">Hire Me</h2>

Then, link to that anchor by prefacing the id name with a hash symbol (#):

Hire Me

When clicked, the browser navigates to the part of the document that has the corre-
sponding id name.

If a document is not longer than the browser’s viewport or window,
there won’t be any noticeable change that the browser has skipped to
an anchored link.

Designers use anchors to create a table of contents at the top of a web page that lets
you quickly navigate to other parts of the document. This approach is particularly
useful on web pages with a large amount of content to help users avoid excessive
scrolling.

See Also
Chapter 7 on links and navigation

1.12 Coding Tables
Problem
You want to create a simple HTML table, as shown in Figure 1-14.

Figure 1-14. The default rendering of a basic HTML table

1.12 Coding Tables | 25

Solution
Use specific elements related to marking up tabular data:

<table border="1" cellspacing="1" cellpadding="1">
 <caption>
 Know Your IE6 Adoption Rate
 </caption>
 <tr>
 <th> </th>
 <th>2002</th>
 <th>2003</th>
 <th>2004</th>
 <th>2005</th>
 <th>2006</th>
 <th>2007</th>
 <th>2008</th>
 <th>2009</th>
 </tr>
 <tr>
 <td>%</td>
 <td>45</td>
 <td>62</td>
 <td>82</td>
 <td>81</td>
 <td>78</td>
 <td>50</td>
 <td>45</td>
 <td>36</td>
 </tr>
</table>

Discussion
First, add a table tag at the beginning and end of the tabular data. The table tag defines
the table as a whole.

The optional caption element is for the summary of the tabular data and appears im-
mediately after the opening table element.

Then, if your table has a header, add the thead tag to one or more rows as the table
header. Use the tbody tag to wrap the table body so that it is distinct from the table
header.

Next, add tr table row tags to mark off each table row. This element wraps groups of
individual table cells. First you define a row, and then you add the enclosed cells.

No tag exists for a table column. Only through building successive table
rows do columns emerge.

26 | Chapter 1: Using HTML Basics

After that, use the th tag for each cell you want to designate as a table header cell, which
includes years and percentages in the Solution. You should enclose the specific cell
content in the tag. By default, browsers make the text in header cells boldface.

Use the td tag to mark out individual cells in a table. Like the th tag, the td tag wraps
specific cell content.

For a simple, web-based HTML table generator to bypass handcrafting
numerous table cells, try http://www.askthecssguy.com/kotatsu/index
.html.

See Also
Chapter 9 on tables

1.13 Creating an HTML vCard (hCard)
Problem
You want to include in a web page contact information such as that found on a business
card, as shown in Figure 1-15.

Figure 1-15. The default rendering of an hCard

Solution
Use class attributes with specific attributes listed in the hCard microformat specifica-
tion (see http://microformats.org/wiki/hcard):

<div class="vcard">
 Josiah Bartlet

1.13 Creating an HTML vCard (hCard) | 27

http://www.askthecssguy.com/kotatsu/index.html
http://www.askthecssguy.com/kotatsu/index.html
http://microformats.org/wiki/hcard

 <div class="org">White House</div>
 <div class="adr">
 <div class="street-address">1600 Pennsylvania Avenue NW</div>
 Washington,
 DC,
 20500
 </div>
</div>

Discussion
The hCard microformat gives you a way to represent contact information, including
people, organizations, and places, using XHTML class attributes. It is one of many
standards detailed in the Microformats Project (see http://microformats.org/), the aim
of which is to provide standards for coding machine-readable information into web
pages using semantic HTML. Similar to a design pattern, an hCard standardizes the
way in which information is represented, which allows third-party software to glean
the information and put it to all kinds of good uses.

To save time and avoid typos, use the hCard Creator (see http://microformats.org/code/
hcard/creator) to generate the HTML syntax.

Extending hCards

The H2VX web service (see http://http://h2vx.com/vcf/), which is available to use on the
site and as a favelet, crawls the markup within a web page looking for hCard data from
a web address. If it finds an hCard or hCards, it prompts the site visitor to download
the data as a vCard.

The site visitor can then import the vCard into his favorite address book application,
such as Outlook (Windows) or Address Book (Mac OS X).

Operator (see https://addons.mozilla.org/en-US/firefox/addon/4106) is a Firefox add-on
that detects microformatted text on a web page and then provides you with options to
do various things with the data, depending on the type of microformat used.

A similar plug-in is available for Safari at http://zappatic.net/safarimicroformats/.

See Also
The hCard validator at http://en.hcard.geekhood.net/; Recipe 1.14 for using HTML to
mark up an event

1.14 Marking Up an Event (hCalendar)
Problem
You want to use HTML to mark up an event.

28 | Chapter 1: Using HTML Basics

http://microformats.org/
http://microformats.org/code/hcard/creator
http://microformats.org/code/hcard/creator
http://http://h2vx.com/vcf/
https://addons.mozilla.org/en-US/firefox/addon/4106
http://zappatic.net/safarimicroformats/
http://en.hcard.geekhood.net/

Solution
Use class and title attributes with specific attributes listed in the hCard microformat
specification (see http://microformats.org/wiki/hcalendar):

<div class="vevent" id="hcalendar-The-CSS-Summit">

 <abbr class="dtstart" title="2009-07-18T09:00-04:0000">July 18,
2009 9</abbr>
 - <abbr class="dtend" title="2009-07-18T18:00-04:00">6pm</abbr>
 : The CSS Summit
 at Online Conference
</div>

Discussion
Based on the iCalendar file format used to exchange event data, the hCard microformat
uses standardized HTML to encode event time and place information into a web
document.

Each separate event is designated with the vevent class. This specifies the content as
an hCalendar entry.

The beginning time of the event, dtstart and summary, is required for every hCalendar
event, whereas the end-time dtend and location properties are optional.

An hCalendar cheat sheet, available at http://microformats.org/wiki/hcalendar-cheat
sheet, provides a list of optional properties.

See Also
The hCalendar Creator (http://microformats.org/code/hcalendar/creator) and the Con-
ference Schedule Creator (http://dmitry.baranovskiy.com/work/csc/) to easily create
your own hCalendar; Recipe 1.13 for including contact information in a web page

1.15 Validating HTML
Problem
You want to make sure the HTML on your web page is properly coded.

Solution
Use the W3C validator (see http://validator.w3.org/) to input the URI of a web docu-
ment to test its HTML validity, as shown in Figure 1-16.

Alternatively, you can enter code for testing by uploading a CSS file or by entering the
CSS rules.

1.15 Validating HTML | 29

http://microformats.org/wiki/hcalendar
http://microformats.org/wiki/hcalendar-cheatsheet
http://microformats.org/wiki/hcalendar-cheatsheet
http://microformats.org/code/hcalendar/creator
http://dmitry.baranovskiy.com/work/csc/
http://validator.w3.org/

Discussion
The W3C hosts a robust HTML checker on its website. However, sometimes the
output can be hard to understand. When validating, make sure to select More
Options→Verbose Output.

This feedback option provides more background information regarding errors within
your code, giving you a better chance at troubleshooting problems.

Creating an HTML validator bookmarklet

Take any page you visit on the Web directly to the W3C’s HTML validator through a
bookmarklet. A bookmarklet is a tiny piece of JavaScript tucked away in the Address
portion of a bookmark.

Figure 1-16. Validating a web page

30 | Chapter 1: Using HTML Basics

Create a new bookmark, name it “HTML Validator,” and then replace whatever is in
the address field with this line:

javascript:void(document.location='http://validator.w3.org/check?
charset=%28detect+automatically%29&doctype=Inline&ss=1&group=0&
verbose=1&uri='+escape(document.location))

When visiting another site, clicking on the bookmarklet takes the page currently loaded
in the browser and runs it through the CSS validator.

See Also
Recipe 2.27 for validating CSS rules

1.15 Validating HTML | 31

CHAPTER 2

CSS Basics

2.0 Introduction
Cascading Style Sheets (CSS) provide a simple way to style the content on your web
pages. CSS may look complicated to first-time users, but this chapter shows how easy
it is to use CSS.

Here’s an exercise with the traditional “Hello, world!” example. First, open a text editor
or a favorite web page editor tool and enter the following:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
 <head>
 <title>CSS Cookbook</title>
 <head>
 <body>
 <p>Hello, world!</p>
 </body>
</html>

Save the file and view it in your web browser. There is nothing special about this line,
as shown in Figure 2-1.

Figure 2-1. The default rendering of HTML text without CSS

33

To change the style of the HTML text to sans serif, add the following CSS, as shown
in Figure 2-2:

<p style="font-family: sans-serif;">Hello, world!</p>

Figure 2-2. The font, changed to sans serif through CSS

To keep the default font but change the font size to 150%, use the following code, as
shown in Figure 2-3:

<p style="font-size: 150%">Hello, world!</p>

Figure 2-3. Increasing the size of the text

In this chapter, you’ll learn about selectors and properties, organizing stylesheets, and
positioning. These general recipes will prepare you for fancier recipes in upcoming
chapters.

34 | Chapter 2: CSS Basics

2.1 Applying CSS Rules to a Web Page
Problem
You want to use CSS rules to dictate the design of your web page.

Solution
Start with a blank page in Notepad, your favorite text processor, or HTML development
software such as Adobe Dreamweaver or Microsoft Expression.

If you use a basic text editor, make sure the preferences are set to save
as Plain Text (and not Rich Text).

Then add the following HTML between the body tags, and save the file as
cookbook.html:

<html>
 <head>
 <title>CSS Cookbook</title>
 </head>
 <body>
 <h1>Title of Page</h1>
 <p>This is a sample paragraph with a
link.</p>
 </body>
</html>

Now add the following code changes (shown in boldface) to redefine the style for links,
bulleted lists, and headers, as shown in Figure 2-4:

<html>
 <head>
 <title>CSS Cookbook</title>
 <style type="text/css">
 <!--
 body {
 font-family: verdana, arial, sans-serif;
 }
 h1 {
 font-size: 120%;
 }
 a {
 text-decoration: none;
 }
 p {
 font-size: 90%;
 }
 -->
 </style>

2.1 Applying CSS Rules to a Web Page | 35

 </head>
 <body>
 <h1>Title of Page</h1>
 <p>This is a sample paragraph with a
link.</p>
 </body>
</html>

Figure 2-4. Content rendered differently after adding CSS

Discussion
CSS contains rules with two parts: selectors and properties.

A selector identifies what portion of your web page gets styled. Within a selector are
one or more properties and their values.

The property tells the browser what to change, and the value lets the browser know
what that change should be.

For instance, in the following declaration block example, the selector tells the browser
to style the content marked up with h1 elements in the web page to 120% of the default
size:

h1 {
 font-size: 120%;
}

Table 2-1 shows a breakdown of the selectors, properties, and values in the Solution.
The “Result” column explains what happens when you apply the property and value
to the selector.

Table 2-1. Breakdown of selectors, properties, and values in the Solution

Selector Property Value Result

h1 font-size 120% Text size larger than default size

p font-size 90% Text size smaller than default size

36 | Chapter 2: CSS Basics

The standard for writing CSS syntax includes the selector, which is normally the tag
you want to style, followed by properties and values enclosed within curly braces:

selector { property: value; }

However, most designers use the following format to improve readability:

selector {
 property: value;
}

The addition of whitespace and line breaks helps make the CSS more readable. Both
are valid approaches to writing CSS. Use whatever method is more comfortable for you.

Also, CSS allows selectors to take on more than one property at a time, to create more
complex visual presentations. To assign multiple properties within a selector, use a
semicolon to separate the properties, as shown in the following code. Note the use of
the semicolon following the last property in the list, though there are no other properties
following it. This ensures that we can quickly add new items, without the potential of
adding errors by forgetting the separator:

selector {
 property: value;
 property: value, value, value;
 property: value value value value;
}
selector, selector {
 property: value;
}

Wrapping the CSS rules

For internal stylesheets (see Recipe 2.11), the CSS rules are wrapped within the HTML
style element:

<style type="text/css">
 <!--
 -->
</style>

The style element informs the browser that the content inside the element comprises
formatted CSS rules and that the browser should be prepared to process the content.
The HTML comment is there to shield older browsers that do not know how to render
CSS rules appropriately. For most modern browsers, the HTML comment is no longer
needed.

See Also
Recipe 2.2 for more information about CSS selectors; Appendixes C and D for lists of
selectors

2.1 Applying CSS Rules to a Web Page | 37

2.2 Using Basic Selectors to Apply Styles
Problem
You want to use basic selectors to associate styles to a web page.

Solution
Use different kinds of selectors to target different portions of web pages to style, as
shown in Figure 2-5:

<html>
 <head>
 <title>CSS Cookbook</title>
 <style type="text/css">
 <!--
 * {
 font-family: verdana, arial, sans-serif;
 }
 h1 {
 font-size: 120%;
 }
 #navigation {
 border: 1px solid black;
 padding: 40px;
 }
 li a {
 text-decoration: none;
 }
 p {
 font-size: 90%;
 }
 -->
 </style>
 </head>
 <body>
 <h1>Title of Page</h1>
 <p>This is a sample paragraph with a
link. Lorem ipsum dolor sit amet,
consectetuer adipiscing elit, sed diam nonummy nibh euismod tincidunt ut
laoreet dolore magna <em class="warning">aliquam erat volutpat. Ut
wisi enim ad minim veniam, quis nostrud exerci tation ullamcorper suscipit
lobortis nisl ut aliquip ex ea commodo consequat.<p>
 <ul id="navigation">
 Apples
 Bananas
 Cherries

 </body>
</html>

38 | Chapter 2: CSS Basics

Discussion
CSS allows for many, and sometimes ingenious, ways to pinpoint which parts of a web
page should be styled.

To better understand how to pick out portions of a web page using selectors, a devel-
oper needs to recognize that content marked up with HTML creates a structure.

Although the elements used in the HTML in the Solution might look like a jumbled
order, as shown in Figure 2-6, they do follow a certain structure.

This structure might be invisible to the visitor visiting the web page, but it’s a crucial
part of the rendering process a browser goes through.

When a browser pulls a web page from the server and begins to display the page, the
elements of the page are placed in a structure that the browser software assembles.

Although this process of placing the elements in an organizational structure is more
programming oriented, a good visual representation would be to view the structure
much like an organizational chart at a company.

Based on the HTML used in the Solution, the organizational chart would look like
Figure 2-7.

Figure 2-5. Web page with CSS styles

2.2 Using Basic Selectors to Apply Styles | 39

Type selectors

Type selectors are selectors that name the element or HTML tag to style. The following
rules apply font styles to the h1 and p elements within a web page, as shown in Fig-
ure 2-8:

Figure 2-6. Elements used in the Solution

Figure 2-7. Elements used in the web page arranged in a structure

40 | Chapter 2: CSS Basics

h1 {
 font-size: 120%;
}
p {
 color: blue;
}

Figure 2-8. The elements selected from the CSS rules

Class selectors

When you want to apply the same CSS rule on different elements, you can use a class
selector.

For example, you can use class selectors to identify warnings with boldface text in a
paragraph as well as a list item.

First, create a warning class selector preceded by a period (.), which is also known as a
full stop:

<html>
 <head>
 <title>CSS Cookbook</title>
 <style type="text/css">
 <!--
 * {
 font-family: verdana, arial, sans-serif;
 }
 body {
 }
 h1 {
 font-size: 120%;

2.2 Using Basic Selectors to Apply Styles | 41

 }
 #navigation {
 border: 1px solid black;
 padding: 40px;
 }
 li a {
 text-decoration: none;
 }
 p {
 font-size: 90%;
 }
 .warning {
 font-weight: bold;
 }
 -->
 </style>
 </head>
 <body>
 <h1>Title of Page</h1>
 <p>This is a sample paragraph with a
link. Lorem ipsum dolor sit amet,
consectetuer adipiscing elit, sed diam nonummy nibh euismod tincidunt
ut laoreet dolore magna <em class="warning">aliquam erat volutpat.
Ut wisi enim ad minim veniam, quis nostrud exerci tation ullamcorper suscipit
lobortis nisl ut aliquip ex ea commodo consequat.<p>
 <ul id="navigation">
 Apples
 Bananas
 Cherries

 </body>
</html>

Then add the class attribute to a link and a list item to style those elements, as shown
in Figure 2-9:

<html>
 <head>
 <title>CSS Cookbook</title>
 <style type="text/css">
 <!--
 * {
 font-family: verdana, arial, sans-serif;
 }
h1 {
 font-size: 120%;
 }
 #navigation {
 border: 1px solid black;
 padding: 40px;
 }
 li a {
 text-decoration: none;
 }
 p {
 font-size: 90%;

42 | Chapter 2: CSS Basics

 }
 .warning {
 font-weight: bold;
 }
 -->
 </style>
 </head>
 <body>
 <h1>Title of Page</h1>
 <p>This is a sample paragraph with a
link. Lorem ipsum dolor
sit amet, consectetuer adipiscing elit, sed diam nonummy nibh euismod tincidunt
ut laoreet dolore magna <em class="warning">aliquam erat volutpat. Ut wisi
enim ad minim veniam, quis nostrud exerci tation ullamcorper suscipit lobortis
nisl ut aliquip ex ea commodo consequat.<p>
 <ul id="navigation">
 <li class="warning">Apples
 Bananas
 Cherries

 </body>
</html>

Figure 2-9. The CSS class selectors modifying the look of the web page

2.2 Using Basic Selectors to Apply Styles | 43

Figure 2-10 shows which portions of the document are selected with this class selector.

Figure 2-10. The styled elements within the page structure

ID selectors

ID selectors resemble class selectors except they appear once in the HTML document.
An ID selector can appear multiple times in a CSS document, but the element an ID
selector refers to appears only once in an HTML document.

Often, ID selectors appear in a div to mark major divisions within a document, but you
can use them elsewhere.

To create an ID selector, use the hash symbol (#), followed immediately by a label or
name:

#navigation {
 border: 1px solid black;
 padding: 40px;
 }

Then add an id attribute with a value of navigation, as shown in Figure 2-11:

<ul id="navigation">
 <li class="warning">Apples
 Bananas
 Cherries

44 | Chapter 2: CSS Basics

Descendant selectors

Descendant selectors allow for more granular control in picking parts of a web page
than type and class selectors. Descendant selectors typically have two elements, with
the second element being a descendant of the first:

li a {
 text-decoration: none;
}

The following code adds the HTML in which a appears within li, as shown in Fig-
ure 2-12:

<ul id="navigation">
 <li class="warning">Apples
 Bananas
 Cherries

In this example, every time there is a link or a element within a list item or li element,
this CSS rule is applied.

Universal selectors

The universal selector is represented with an asterisk (*) and is applied to all elements,
as shown in Figure 2-13.

In the following code, every element containing HTML text would be styled with Ver-
dana, Arial, or some other sans serif font:

Figure 2-11. An unordered list element, styled

2.2 Using Basic Selectors to Apply Styles | 45

* {
 font-family: Verdana, Arial, sans-serif;
}

Figure 2-12. The links within the list items selected

Figure 2-13. Every element styled with the universal selector

46 | Chapter 2: CSS Basics

See Also
The CSS 2.1 specification for selectors at http://www.w3.org/TR/CSS21/selector.html;
Selectutorial, a tutorial of CSS selectors, at http://css.maxdesign.com.au/selectutorial/;
the browser selector support guide from Westciv at http://westciv.com/style_master/
academy/browser_support/selectors.html; Chapter 3 for more on web typography; Ap-
pendix C for a list of selectors

2.3 Applying Child Selectors
Problem
You want to style descendant selectors, but only child elements that are one level from
their parent element.

Solution
Use a child selector, which you signify by a right-angled bracket often set between two
type selectors, as shown in the following code:

strong {
 text-decoration: underline;
}
div > strong {
 text-decoration: none;
}

Discussion
With a child selector, an element is styled if it is the direct descendant of its parent
element.

Only the strong element that isn’t contained within another element, the div element
in this case, is not underlined, as shown in Figure 2-14:

Nothing happens to this part of the sentence because this
strong isn't the direct child of div.
<div>
 However, this strong is the child of div.
Therefore, it receives the style dictated in the CSS rule.
</div>

To see which elements are affected by this CSS rule in an organizational chart, take a
look at Figure 2-15.

As shown in Figures 2-14 and 2-15, the first strong element was not underlined because
it was placed within the div element.

2.3 Applying Child Selectors | 47

http://www.w3.org/TR/CSS21/selector.html
http://css.maxdesign.com.au/selectutorial/
http://westciv.com/style_master/academy/browser_support/selectors.html
http://westciv.com/style_master/academy/browser_support/selectors.html

Figure 2-14. The effect of the child selector rule

Figure 2-15. The child selector highlighted in the markup structure

If the direct parent-to-child relationship is not present, the style won’t hold. This is an
easy but powerful difference between a child selector and a descendant selector.

Child selectors are not supported in Internet Explorer 6 and earlier.

48 | Chapter 2: CSS Basics

See Also
The CSS 2.1 specification for child selectors at http://www.w3.org/TR/CSS2/selector
.html#child-selectors

2.4 Applying Adjacent Selectors
Problem
You want to assign styles to an element when it’s next to another, specific element.

Solution
Use an adjacent sibling, which is formed by a plus sign between two selectors, as shown
in the following code:

li + li {
 font-size: 200%;
}

Discussion
Adjacent siblings describe the relationship between two elements that are placed side
by side within the flow of a web page’s markup.

Figure 2-16 shows the effect of this adjacent sibling rule. Notice that only the second
and third list items are styled, since the second and third list items are placed side by
side. The first item is not styled because it does not meet the requirements of having a
list item come before it.

To see which elements are affected by this CSS rule showcasing adjacent sibling selec-
tors in an organizational chart, take a look at Figure 2-17.

Adjacent selectors are not supported in Internet Explorer 6 and earlier.

See Also
The CSS 2.1 specification for adjacent selectors at http://www.w3.org/TR/CSS2/selector
.html#adjacent-selectors

2.4 Applying Adjacent Selectors | 49

http://www.w3.org/TR/CSS2/selector.html#child-selectors
http://www.w3.org/TR/CSS2/selector.html#child-selectors
http://www.w3.org/TR/CSS2/selector.html#adjacent-selectors
http://www.w3.org/TR/CSS2/selector.html#adjacent-selectors

Figure 2-16. Adjacent sibling selectors, which affect the ordered list because it appears after the
unordered list

Figure 2-17. Showing which elements are being styled

50 | Chapter 2: CSS Basics

2.5 Applying Attribute Selectors
Problem
You want to use style elements based on preexisting attributes of HTML elements,
rather than adding an additional class attribute.

Solution
CSS2 attribute selectors have the following four main options for finding an element:

[attribute]
Searches for matches based on the attribute. For example:

a[href] {
 text-decoration: none;
}

As a result of the preceding code, whenever the href attribute appears within an
a element in the HTML, the link won’t have an underline.

[attribute=val]
Searches for matches based on the value. For example:

a[href="csscookbook.com"] {
 text-decoration: none;
}

As a result of the preceding code, whenever a link that points to csscookbook.com
appears in the HTML, the link won’t have an underline.

[attribute~=val]
Searches for matches that contain the space-separated attribute somewhere in the
value. For example:

a[title~="tv hd digital"] {
 text-decoration: none;
}

As a result of the preceding code, whenever the word digital appears in the title
attribute of an anchor element, the link won’t have an underline.

[attribute|=val]
Searches for matches that contain the attribute with a hyphen. For example:

a[title|="anti"] {
 color: red;
}

As a result of the preceding code, whenever the word anti appears in the title
attribute of an anchor element, the link is colored red.

2.5 Applying Attribute Selectors | 51

Discussion
Although CSS2 selectors enjoy support in major browsers (except for Internet Explorer
6 and earlier), the following new additions to attribute selectors in the CSS3 specifica-
tion, called substring matching attribute selectors, are just beginning to be adopted:

[attribute^=val]
Searches for matches where the attribute’s value begins with val. For example:

a[href^="mailto:"] {
 padding-right: 15px;
 background: url(icon-email.png) no-repeat right;
}

As a result of the preceding code, whenever a link contains mailto:, an email icon
is assigned at the end of that link.

[attribute$=val]
Searches for matches where the attribute’s value ends with val. For example:

a[href$='.rss'], a[href$='.atom'] {
 padding-right: 15px;
 background: url(icon-rss.png) no-repeat right;
}

As a result of the preceding code, whenever a link contains a reference to a syndi-
cation feed, an RSS icon is inserted at the end of the link.

[attribute*=val]
Searches for matches where the attribute value is anywhere within val. For
example:

a[href *="username"] {
 padding-right: 15px;
 background: url(icons-star.png) no-repeat right;
}

As a result of the preceding code, whenever a specific username appears in a link
on a social media site, a star icon is added to the right of the link.

See Also
The CSS2 specification for attribute selectors at http://www.w3.org/TR/CSS2/selector
.html#attribute-selectors; the CSS3 specification for attribute selectors at http://www
.w3.org/TR/css3-selectors/#attribute-selectors; the Opera Developer Community article
on CSS3 selectors at http://dev.opera.com/articles/view/css-3-attribute-selectors/

52 | Chapter 2: CSS Basics

http://www.w3.org/TR/CSS2/selector.html#attribute-selectors
http://www.w3.org/TR/CSS2/selector.html#attribute-selectors
http://www.w3.org/TR/css3-selectors/#attribute-selectors
http://www.w3.org/TR/css3-selectors/#attribute-selectors
http://dev.opera.com/articles/view/css-3-attribute-selectors/

2.6 Using Pseudo-Classes
Problem
You want to add styles to items that are not (typically) based on elements’ names,
attributes, or content.

Solution
Create a pseudo-class. Here is an example of a pseudo-class that creates a common
rollover effect on HTML links:

a:link {
 color: blue;
a:visited {
 color: purple;
}
a:hover {
 color: red;
}
a:active {
 color: gray;
}

Discussion
In this use of a pseudo-class, a basic link appears in blue. As soon as the mouse pointer
hovers over the link, the link changes to red. While the link is being clicked, the link
appears gray. When returning to the page with the link after visiting, the link appears
purple.

Three other CSS2 pseudo-classes include :first-child (which selects the first child
element), :focus (see Recipe 7.4), and :lang(n).

CSS3 pseudo-classes

The CSS3 specification introduces a new slate of pseudo-classes. Although Internet
Explorer does not support these new selectors, browser support is growing for them,
as shown in Table 2-2.

Table 2-2. Browser support for CSS3 pseudo-classes

Selector Firefox 2 Firefox 3.5 Opera 9 Opera 10 Safari 3.1 Safari 4 Chrome

:target Y Y Y Y Y Y Y

:enabled Y Y Y Y Y Y Y

:disabled Y Y Y Y Y Y Y

:checked Y Y Y Y Y Y Y

:default Y Y Y

2.6 Using Pseudo-Classes | 53

Selector Firefox 2 Firefox 3.5 Opera 9 Opera 10 Safari 3.1 Safari 4 Chrome

:valid Y Y Y Y

:invalid Y Y Y Y

:in-range Y Y Y Y

:out-of-range Y Y Y Y

:required Y Y

:root Y Y Y Y Y Y Y

:not() Y Y Y Y Y Y

:nth-child() Y Y Y Y

:nth-last-child() Y Y Y Y

:nth-of-type() Y Y Y Y

:nth-last-of-type() Y Y Y Y

:last-child Y Y Y Y Y

:first-of-type Y Y Y Y

:last-of-type Y Y Y Y

:only-child Y Y Y Y Y

:only-of-type Y Y Y Y

:empty Y Y Y Y Y

See Also
The CSS2 specification for pseudo-classes at http://www.w3.org/TR/CSS2/selector.html
#pseudo-class-selectors; the CSS3 specification for pseudo-classes at http://www.w3
.org/TR/css3-selectors/#pseudo-classes

2.7 Using Pseudo-Elements
Problem
You want to style certain aspects of an element without introducing new markup such
as a span element.

Solution
Use a pseudo-element. You can see an example of the ::first-letter pseudo-element
in Figure 2-18:

p::first-letter {
 font-size: 200%;
 font-weight: bold;
}

54 | Chapter 2: CSS Basics

http://www.w3.org/TR/CSS2/selector.html#pseudo-class-selectors
http://www.w3.org/TR/CSS2/selector.html#pseudo-class-selectors
http://www.w3.org/TR/css3-selectors/#pseudo-classes
http://www.w3.org/TR/css3-selectors/#pseudo-classes

A double-colon identifier was added in CSS3, but to add support for
Internet Explorer 8, you need to recopy the CSS rules with the original
single colon for cross-browser support.

Or you can use ::first-line (as shown in Figure 2-19) to style the entire first line. If
the first line isn’t a complete sentence or includes the start of a second sen-
tence, ::first-line still impacts only the first line:

p::first-line {
 font-size: 200%;
 font-weight: bold;
}

Discussion
With most selectors, a developer makes use of elements and their arrangement within
a web document to style a document.

However, sometimes developers can style an item that’s not marked up by
elements through the use of pseudo-elements. CSS2 pseudo-elements consist
of ::first-letter, ::first-line, ::before, and ::after.

Figure 2-18. The first letter, styled

2.7 Using Pseudo-Elements | 55

See Also
The CSS 2.1 specification for pseudo-elements at http://www.w3.org/TR/CSS2/selector
.html#pseudo-element-selectors; the CSS3 specification for pseudo-elements at http://
www.w3.org/TR/css3-selectors/#pseudo-elements

2.8 Determining When to Use Class and ID Selectors
Problem
You want to determine the best use for class and ID selectors.

Solution
Use class selectors when you need to apply a style multiple times within a document,
and ID selectors for one-time-only appearances within a document.

In the following stylesheet, #banner and #content are ID selectors and .title
and .content are class selectors:

Figure 2-19. The first line, styled

56 | Chapter 2: CSS Basics

http://www.w3.org/TR/CSS2/selector.html#pseudo-element-selectors
http://www.w3.org/TR/CSS2/selector.html#pseudo-element-selectors
http://www.w3.org/TR/css3-selectors/#pseudo-elements
http://www.w3.org/TR/css3-selectors/#pseudo-elements

body {
 margin: 0;
 font-family: Verdana, Arial, Helvetica, sans-serif;
 font-size: .75em;
 padding: 0;
}
#banner {
 margin-top: 0;
 margin-bottom: 0;
 background-color: #900;
 border-bottom: solid 1px #000;
 padding: 5px 5px 5px 10px;
 line-height: 75%;
 color: #fff;
}
#sub_banner {
 background-color: #ccc;
 border-bottom: solid 1px #999;
 font-size: .8em;
 font-style: italic;
 padding: 3px 0 3px 10px;
}
#content {
 position: absolute;
 margin-left: 18%;
 width: 40%;
 top: 100px;
 padding: 5px;
}
#nav1 {
 position: absolute;
 width: 30%;
 left: 60%;
 top: 100px;
 padding: 5px;
}
#nav2 {
 position: absolute;
 padding: 5px 5px 5px 10px;
 top: 100px;
 width: 15%;
}
#footer {
 text-align: center;
 padding-top: 7em;
}
.warning {
 font-weight: bold;
 color: red;
}
.title {
 font-size: 120%;
}
.content {
 font-family: Verdana, Arial, sans-serif;

2.8 Determining When to Use Class and ID Selectors | 57

 margin-left: 20px;
 margin-right: 20px;
}
.footer {
 font-size: 75%;
}

Here are the ID and class selectors in the HTML code:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
 <head>
 <title>CSS Cookbook</title>
 <link href="1-2.css" rel="stylesheet" type="text/css" />
 </head>
 <body>
 <div id="header">
 <h1>CSS Collection</h1>
 <h2>Showcase of CSS Web Sites</h2>
 </div>
 <div id="content">
 <h3>Content Page Title</h3>
 <p class="title">Content Item Title</p>
 <p class="content">Content goes here.</p>
 </div>
 <div id="navigation">
 <h3>List Stuff</h3>
 Submit a site

 CSS resources

 RSS

 <h3>CSS Cookbook Stuff</h3>
 Home

 About

 Blog

 Services

 </div>
 <div id="blipverts">
 <h3>Ads go here.</h3>
 </div>
 <div id="siteinfo">
 <p class="footer">Copyright 2006</p>
 </div>
</body>
</html>

Discussion
ID selectors identify unique attributes that have one instance in the document tree,
whereas class selectors can be used frequently throughout the web page. Remember
that ID selectors use a hash symbol (#) and class selectors begin with a period (.).

58 | Chapter 2: CSS Basics

Typically, web developers will use ID selectors to mark off unique sections of a web
page. In the Solution, notice that the page is divided into the following sections:

• Header

• Content

• Navigation

• Blipverts

• Siteinfo

By assigning these sections their own ID selector, designers are able to apply customized
styles to those areas of the page, while keeping those same styles away from the other
sections. This is accomplished through the combination of descendant selectors and
ID selectors.

In the following example, the different h3 elements get different CSS rules:

#content h3 {
 font-size: 2em;
 font-weight: bold;
}
#navigation h3 {
 font-size: 0.8em;
 font-weight: normal;
 text-decoration: underline;
}

HTML5 divisions

Although still a Working Draft at this stage, the HTML5 specification at the time of
this writing creates new elements that replace common division in an HTML document
with the div element. Some of these new HTML5 elements are:

• header

• nav

• section

• article

• aside

• footer

Instead of writing divisions in the HTML like so:

<div id="header">
 ...
</div>
<div id="content">
 ...
</div>
<div id="navigation">
 ...

2.8 Determining When to Use Class and ID Selectors | 59

</div>
<div id="blipverts">
 ...
</div>
<div id="siteinfo">
 ...
</div>

you write them within the HTML5 document as follows, resulting in cleaner markup:

<header>
 ...
</header>
<section>
 ...
</section>
<nav>
 ...
</nav>
<aside>
 ...
</aside>
<footer>
 ...
</footer>

You can start using HTML5 now, but there are a few caveats.

First you need to use the new DOCTYPE for HTML5, which is easy to memorize in
comparison to XHTML’s DOCTYPE:

<!DOCTYPE html>

Then you need to use JavaScript to get Internet Explorer to treat the new elements like
block-level elements:

<script type="text/javascript">
document.createElement("header");
document.createElement("section");
document.createElement("nav");
document.createElement("aside");
document.createElement("footer");
</script>

Although you might rely on JavaScript to enforce a block-level element
in Internet Explorer, some web designers have decided to take one step
back: they still use div elements, but set the values of the id attributes
to those of HTML5 elements.

Through this technique, they are preparing themselves for when
HTML5 has gained wider acceptance in browsers. At that time, they
can do a simple search and replace through their code to convert a page
to HTML5 elements.

60 | Chapter 2: CSS Basics

Also, when styling the elements be sure to set the elements as block level:

header, section, nav, aside, footer {
 display: block;
}

See Also
A clickable list of HTML5 elements at http://simon.html5.org/html5-elements; the CSS
2.1 specification for ID selectors at http://www.w3.org/TR/CSS21/selector.html#id-se
lectors; the CSS 2.1 specification for class selectors at http://www.w3.org/TR/CSS21/
selector.html#class-html

2.9 Understanding CSS Properties
Problem
You want to learn more about CSS properties.

Solution
Recipes in this chapter cook up popular properties such as color, font-family, font-
size, and text-decoration. Properties fall between the brackets and their values im-
mediately follow, as shown in the following generic example:

selector {
 property: value;
}

A real-world example might look like this:

li {
 list-style-type: circle;
}

Anytime li appears in the document, the bullet appears as a circle rather than as a
traditional bullet.

Discussion
Selectors identify what should be styled, whereas properties identify how the selectors
should be modified.

For example, the color property means the element’s color will change, but it doesn’t
indicate what color it will change to. That’s the job for value. Table 2-3 showcases a
few more properties and values, and what they do.

2.9 Understanding CSS Properties | 61

http://simon.html5.org/html5-elements
http://www.w3.org/TR/CSS21/selector.html#id-selectors
http://www.w3.org/TR/CSS21/selector.html#id-selectors
http://www.w3.org/TR/CSS21/selector.html#class-html
http://www.w3.org/TR/CSS21/selector.html#class-html

Table 2-3. A short list of CSS properties

Property Value Result

font-weight bold Adds bold to text

border-color Color name or color hexadecimal HTML value (e.g., #000000 for
black and #ffffff for white)

Adds color to a border

border-style solid

dotted

dashed

double

Adds a solid line

Adds a dotted line

Adds a dashed line

Adds two lines

text-align left

center

right

justify

Aligns text to the left

Aligns text in the center

Aligns text to the right

Fully expands text from left to right

Learning a new language, even one not as complex as CSS, can be daunting if you
cannot grasp what effects or features are available. If you are new to CSS, take some
time and code as many properties listed in Appendix B as you can. The more familiar
you are with CSS properties, the easier it will be to code web pages.

See Also
The W3C full property table at http://www.w3.org/TR/CSS21/propidx.html; the HTML
Dog CSS Properties at http://www.htmldog.com/reference/cssproperties/; a detailed look
at the border property in Recipe 4.4; the complete listing of CSS properties in Appen-
dix B

2.10 Understanding the Box Model
Problem
You want to better understand the box model and how margins, borders, and padding
work around content.

Solution
Every block-level element, such as a p or div element, contains a top, right, bottom,
and left edge. These sides of a block element are composed of three layers surrounding
the content, as shown in Figure 2-20.

62 | Chapter 2: CSS Basics

http://www.w3.org/TR/CSS21/propidx.html
http://www.htmldog.com/reference/cssproperties/

Figure 2-20. Box model viewed straight on and off to the side

Therefore, each block element contains four sections:

Content
Actual content such as text, images, Java applets, and other objects. The content
area is in the middle of the box.

Padding
Surrounds the content area.

Border
The next-outer layer that surrounds the padding and makes up the box border.

Margin
The transparent box that begins at the edge of the border and expands beyond.

The default margin value is 0, which lines up with the edge of the border. A border with
a value of 0 lines up with the padding edge.

Obviously, a padding value of 0 lies flush against the content. Values above 0 expand
the boxes.

Discussion
For a mental image of the box model, picture a cardboard box on the floor.

Looking down at the box you see its four sides: top, right, bottom, and left. The box
can be as big or as small as you want because you can modify the size of the box through
the height and width properties:

div {
 height: 150px;
 width: 150px;
}

2.10 Understanding the Box Model | 63

Add books into the box until you fill the box with books:

<div>
 Moby Dick
 The Red Badge of Courage
 The Catcher in the Rye
</div>

To help see the edges of the box, place a thin border around the box, as shown in
Figure 2-21:

div {
 border: thin solid #000000;
 height: 150px;
 width: 150px;
}

Figure 2-21. A border placed around the content

64 | Chapter 2: CSS Basics

The books overlap or sit next to each other, and that’s not good for books, especially
since in this example they’re collector’s items.

So, add padding between the books and the box with the padding property for a little
breathing room and protection. As you use more padding, you also reduce the number
of books you can place into the box. Some padding has been added to the example
shown in Figure 2-22:

div {
 border: thin solid #000000;
 height: 150px;
 width: 150px;
 padding: 10px;
}

Figure 2-22. Padding added

2.10 Understanding the Box Model | 65

Adding padding changes the overall size of the box, despite it being set
to a width and height of 150 pixels. With the addition of the padding
on all sides of the box, the new width is 170 pixels (a padding of 10
pixels is placed on both the right and left sides). Also, the height is now
170 pixels.

You need another box to hold the books that didn’t fit in the first box. So, create another
box, and enter the rest of the books. Put the new box next to the original below it, as
shown in Figure 2-23:

<div>
 Moby Dick
 The Red Badge of Courage
 The Catcher in the Rye
</div>
<div>
 The Red Queen
 The Awakening
 The Scarlet Letter
</div>

Figure 2-23. An additional listing of books added

66 | Chapter 2: CSS Basics

However, you want to space out the boxes so that they aren’t on top of each other. So,
modify the space between the boxes by using the margin property, as shown in Fig-
ure 2-24:

div {
 border: thin solid #000000;
 height: 150px;
 width: 150px;
 padding: 10px;
 margin: 25px;
}

Figure 2-24. Adding a margin to the block-level elements

2.10 Understanding the Box Model | 67

To help you distinguish the two boxes, modify the border property. Like the margin
and padding, the border can be as thick or thin as you like. In Figure 2-25, the border
was increased to 5 pixels:

div {
 border: 5px double #000000;
 height: 150px;
 width: 150px;
 padding: 10px;
 margin: 0px;
}

Figure 2-25. Border increased to 5 pixels

At this point, you’ve modified the box model fairly consistently across two elements.
You’ve adjusted the margin, padding, and borders around each side. However, you can
also modify specific edges of the box model.

68 | Chapter 2: CSS Basics

For example, if you want to adjust the right side of the div element, but keep the same
values for the other sides, the code could look something like the following (see Fig-
ure 2-26):

div {
 border: 5px solid #000000;
 height: 150px;
 width: 150px;
 padding: 10px;
 margin: 0px;
 border-right: 1px solid #000000;
 padding-right: 1px;
 margin-right: 1px;
}

Figure 2-26. Adjustments to the right side of the box

2.10 Understanding the Box Model | 69

You could also modify the other sides specifically as well. For example, using the
margin property, the code might look like the following:

div {
 margin-top: 1px;
 margin-right: 1px;
 margin-bottom: 1px;
 margin-left: 1px;
}

By adjusting the sides and different properties of the box model, developers are able to
better format the presentation of their web pages.

See Also
The CSS 2.1 box model at http://www.w3.org/TR/CSS21/box.html; the Brain Jar box
model at http://www.brainjar.com/css/positioning/default.asp; the interactive CSS Box
Model demo at http://www.redmelon.net/tstme/box_model/

2.11 Associating Styles to a Web Page
Problem
You want to know about the different ways to add styles to a web page.

Solution
You can apply styles in three ways: externally, internally, and inline. An internal style-
sheet appears near the top of the HTML document, within the head:

<style type="text/css">
<!--
#header {
 width: 100%;
 height: 100px;
 font-size: 150%
}
#content {
 font-family: Verdana, Arial, sans-serif;
 margin-left: 20px;
 margin-right: 20px
}
.title {
 font-size: 120%
}
-->
</style>

70 | Chapter 2: CSS Basics

http://www.w3.org/TR/CSS21/box.html
http://www.brainjar.com/css/positioning/default.asp
http://www.redmelon.net/tstme/box_model/

Note the use of HTML comments immediately after the style element.
Those are placed there to prevent the CSS content from showing up in
the web page layout or being rendered by the browser in some unwanted
fashion.

External stylesheets are stored in a separate file, which gets associated with the HTML
file through linking. The following code is saved in its own file:

/* CSS Document */
h1 {
 font-size: 150%;
}
h2 {
 font-size: 120%;
}
p {
 font-family: Verdana, Arial, Helvetica, sans-serif;
}

Notice that the style element is not present in the external stylesheet.

In the web page, add the following line between the head tags to link to the external
stylesheet that contains the preceding styles:

<link href="screen.css" rel="stylesheet" type="text/css" media="screen" />

Inline styles work similarly to font in that they appear with the markup they affect:

<h1 style="font-family: verdana, arial, sans-serif;
font-size: 150%; color: blue;">Page Title</h1>

<p style="font-family: sans-serif; font-size: 90%;">Hello, world!</p>

Discussion
The three different types of stylesheets are:

External
All web pages link to the external stylesheet that contains nothing but CSS styles.
If you want to change the font color on all pages linked to this stylesheet, just
update the external stylesheet. Link to the stylesheet with the link tag.

Internal
A unique web page might have its own stylesheet so that styles affect only that page
and not all web pages. Define internal styles within the style tags.

2.11 Associating Styles to a Web Page | 71

Inline
Inline styles work similarly to font with the style information applied to a specific
tag within a web page. Designers rarely apply inline styles and do so when they
know there is only one occurrence of a specific style.

External and internal stylesheets save time in terms of website maintenance compared
to inline styles. Skipping the use of font for every text item needing styling keeps the
file slim and trim.

For example, say you inherit a web page where all the text is blue and you use font to
control the size of the text. You receive orders to change the text to black, so you search
for every instance of <p> to change the color value from blue to black, as in the following:

<p>Text goes here</p>

To change all p elements from blue to black in an external stylesheet requires two steps:
open the CSS file and change the color:

p {
 color: black;
}

In an internal stylesheet, you can change the text from blue to black by searching for
the style at the top of the page and replacing blue with black:

<style type="text/css">
<!--
p {
 color: black;
}
-->
</style>

When to use inline styles

With inline styles, changing the color takes as much time as fixing the original file with
the font tag:

<p style="font-color: blue">Test goes here.</p>

Why would anyone want to use inline styles, considering it’s time-consuming to make
changes? It’s rare, but you may have content that appears once in the whole website
but that needs a special style. Rather than cluttering the external stylesheet with the
style for one item, you’d use inline styles.

When to use internal stylesheets

As for internal and external stylesheets, most sites use external stylesheets. However,
when writing the CSS code for a web page design, it’s best to start out with an internal
stylesheet. When you reach the point where the design is complete or starts to get a
little unwieldy, move the stylesheet to a separate file. Then make edits to the external
stylesheet as needed.

72 | Chapter 2: CSS Basics

Also, you may have a special page that’s not related to the website or that uses a special
style. In this case, an internal stylesheet could be easier to use as opposed to adding
more clutter to the external stylesheet.

See Also
The “Style Sheets” section in the HTML 4.01 specification at http://www.w3.org/TR/
html401/present/styles.html; W3Schools’ “CSS: How to Insert a Style Sheet” at http://
www.w3schools.com/css/css_howto.asp

2.12 Understanding the Origin
Problem
You want to know how many ways a CSS rule can be associated to a document.

Solution
You can apply styles to a document in the following ways:

• Via the browser’s or user agent’s own internal stylesheet

• Via the user’s stylesheet (if the user has created one)

• Via your (the author’s) stylesheet, which can be one of the following:

— Inline stylesheet

— Embedded stylesheet

— Imported stylesheet

— Linked or external stylesheet

Discussion
The higher up the list the CSS rules appear, the more prominence they have over other
CSS rules that originate elsewhere. Understanding this list is helpful when trouble-
shooting potential problems in web designs.

See Also
Recipe 2.13 for information on sort order within CSS; Chapter 11 for hacks, work-
arounds, and troubleshooting tips

2.13 Understanding the Sort Order Within CSS
Problem
You want to know how a browser handles the application of CSS rules.

2.13 Understanding the Sort Order Within CSS | 73

http://www.w3.org/TR/html401/present/styles.html
http://www.w3.org/TR/html401/present/styles.html
http://www.w3schools.com/css/css_howto.asp
http://www.w3schools.com/css/css_howto.asp

Solution
The basic rule of thumb is “any CSS rule that is closest to the content wins” over any
other CSS rule.

Discussion
With so many ways CSS can be associated to a web document (see Recipe 2.12), there
needs to be a way for the browser to handle potential conflicts if the same or a similar
rule appears from two different sources.

Follow this guideline when trying to determine how to resolve conflicts within your
CSS rules:

• The user’s own styles take priority over browser styles.

• The author’s (your) styles take priority over user styles.

• Embedded styles take priority over linked or imported styles.

• Inline styles take priority over embedded, linked, or imported styles.

For example, say we have a series of paragraphs, all set to a sans serif font, as shown
in Figure 2-27:

p {
 font-family: "Gill Sans", Trebuchet, Calibri, sans-serif;
}

Figure 2-27. Paragraphs set to a sans serif typeface

74 | Chapter 2: CSS Basics

But when we bring in another rule to style the paragraphs with a serif font and place
this new rule before the previous rule, as shown in the following code, the paragraphs
remain unchanged:

p {
font-family: Garamond, "Hoefler Text", "Times New Roman", Times, serif;
}
p {
 font-family: "Gill Sans", Trebuchet, Calibri, sans-serif;
}

Only when we place the serif font rule for the paragraphs after the sans serif font rule
does the change in the browser take place, as shown in Figure 2-28:

p {
 font-family: "Gill Sans", Trebuchet, Calibri, sans-serif;
}
p {
font-family: Garamond, "Hoefler Text", "Times New Roman", Times, serif;
}

Figure 2-28. Paragraphs set to a serif typeface

2.13 Understanding the Sort Order Within CSS | 75

Again, this occurrence follows the rule of thumb that “any CSS rule that is closest to
the content wins.”

However, there is an exception to this rule—and that’s where specificity (Rec-
ipe 2.15) comes into play.

See Also
Recipe 2.12 for information on how many ways a CSS rule can be associated to a docu-
ment; Recipe 2.15 for information on how to clarify specificity

2.14 Using !important to Override Certain CSS Rules
Problem
You want to make certain CSS rules more important than others.

Solution
Use the !important declaration to override another CSS rule:

p {
 font-size: 12px !important;
}

Discussion
The !important rule consists of an exclamation point (!) followed immediately by the
word important.

In some browsers, a user can have a stylesheet set up for browsing the Web that enables
him to set font sizes or other CSS properties to his liking.

However, as a designer of a web document, you might want to make sure your designs
render in the manner you planned. The !important rule gives you (very) little insurance
that your designs remain intact.

The user controls his experience

The nature of the Web means that designs are never precise or “pixel-perfect” from one
display to another. Therefore, the !important declaration doesn’t ensure that your own
styles are what you expect to show up on the user’s browser. The user has ultimate
control of how a page is viewed on his browser.

Also, although you as the web designer write the !important CSS rules, the user also
can write these rules in his own stylesheet.

In the CSS2 specification, !important rules that the user may wish to write override
any !important rules the designer writes.

76 | Chapter 2: CSS Basics

See Also
The CSS 2.1 specification on !important rules at http://www.w3.org/TR/CSS21/cascade
.html#important-rules

2.15 Clarifying Specificity
Problem
You want to understand how potential conflicts within CSS are resolved, if origin and
sorting order for a CSS rule are the same.

Solution
Each CSS rule carries information that lets the browser (and us) know its weight or
specificity.

Consider the following three CSS rules:

#header p.big {
 font-family: Impact, Haettenschweiler, "Arial Narrow Bold", sans-serif;
}
p.big {
 font-family: Futura, "Century Gothic", AppleGothic, sans-serif;
}
p {
 font-family: "Gill Sans", Trebuchet, Calibri, sans-serif;
}

The higher the specificity a CSS rule possesses, the greater the chance that the CSS rule
will win out over another rule. However, when viewed in the browser, the first CSS rule
(with the Impact font) wins out, as shown in Figure 2-29.

To determine why the first rule wins, determine the CSS rule’s specificity. Follow
Table 2-4 when trying to determine a CSS rule’s specificity.

Table 2-4. A guide for determining specificity

Selector example Inline style Number of ID selectors Number of class selectors Number of elements

p 0 0 0 1

p.big 0 0 1 1

#header p.big 0 1 1 1

According to Table 2-4:

• The p selector has a specificity value of 0,0,0,1.

• The p.big selector has a specificity value of 0,0,1,1 because of the class selector.

2.15 Clarifying Specificity | 77

http://www.w3.org/TR/CSS21/cascade.html#important-rules
http://www.w3.org/TR/CSS21/cascade.html#important-rules

• The #header p.big selector has a specificity value of 0,1,1,1 because of the class
and ID selectors.

In these examples, the last selector has a greater specificity, and therefore wins in a
conflict.

Figure 2-29. The winning CSS rule

Discussion
The origin and sorting order of CSS help a browser to determine which rules win out
over others (and the !important declaration allows certain rules to override others).
When those methods of determining which CSS rules should win fail, there is a conflict.
CSS has in place a way to deal with those conflicts: the specificity of the CSS rule
itself.

The higher the specificity of a CSS rule, the greater the likelihood that the CSS wins.

The universal selector carries a specificity of 0,0,0,0. Inherited values do
not have specificity.

78 | Chapter 2: CSS Basics

Several CSS specificity calculators are available online to help you determine the spe-
cificity of rules. One such calculator is available at http://www.suzyit.com/tools/specific
ity.php.

See Also
Eric Meyer’s post on specificity at http://meyerweb.com/eric/css/link-specificity.html;
Molly Holzschlag’s post about CSS2 and CSS 2.1 specificity at http://www.molly.com/
2005/10/06/css2-and-css21-specificity-clarified/

2.16 Setting Up Different Types of Stylesheets
Problem
You want to provide stylesheets for different media types such as aural, print, and
handheld.

Solution
Create separate external stylesheets for the different media and name them by their
media, such as print.css, screen.css, and handheld.css. Then use the link element with
the media type in the web page to link to these styles. Another option is to use the
@media rule.

Here’s print.css:

body {
 font: 10pt Times, Georgia, serif;
 line-height: 120%;
}

Here’s a new file called screen.css:

body {
 font: 12px verdana, arial, sans-serif;
 line-height: 120%;
}

And finally, here’s another file called projection.css:

body {
 font: 14px;
 line-height: 120%;
}

Now link to the three files from the web page, with the following lines within the
head section. Each link has a different media type:

<link rel="stylesheet" type="text/css" href="/css/print.css" media="print" />
<link rel="stylesheet" type="text/css" href="/css/screen.css" media="screen" />
<link rel="stylesheet" type="text/css" href="/css/projection.css"
media="projection" />

2.16 Setting Up Different Types of Stylesheets | 79

http://www.suzyit.com/tools/specificity.php
http://www.suzyit.com/tools/specificity.php
http://meyerweb.com/eric/css/link-specificity.html
http://www.molly.com/2005/10/06/css2-and-css21-specificity-clarified/
http://www.molly.com/2005/10/06/css2-and-css21-specificity-clarified/

You could use the @media rule instead to specify the different media rules within the
same stylesheet:

<style type="text/css">
<!--
@media print {
 body {
 font: 10pt Times, Georgia, serif;
 }
}

@media screen {
 body {
 font: 12pt Verdana, Arial, sans-serif;
 }
}

@media projection {
 body {
 font-size: 14pt;
 }
}

@media screen, print, projection {
 body {
 line-height: 120%;
 }
}
-->
</style>

Discussion
When creating styles for printing, add them to print.css and only these styles will be
applied during printing. This ensures that the page prints without wasting space or ink
by printing images. Only devices supporting the specific media type will see their related
media CSS styles. The media stylesheets don’t affect the appearance of other media or
the web page itself.

The @media rule allows you to put all the media in one stylesheet.

Figure 2-30 shows how the web page looks in its original screen format. Users don’t
need to print the side items, so copy the screen.css stylesheet and save it as a new one
called print.css. Rather than starting from scratch, modify screen.css to optimize the
web page for printing. The following items in screen.css have been changed in print.css:

#sub_banner {
 background-color: #ccc;
 border-bottom: solid 1px #999;
 font-size:.8em;
 font-style: italic;
 padding: 3px 0 3px 5px;
}
#nav1 {

80 | Chapter 2: CSS Basics

 position: absolute;
 width: 30%;
 left: 60%;
 top: 100px;
 padding: 5px 5px px 5px 0;
}
#nav2 {
 position: absolute;
 width: 15%;
 left: 1%;
 top: 100px;
 padding: 5px 5px px 5px 0;
}
h1 {
 text-align: left;
 color: #fff;
 font-size: 1.2em;
 text-align: left;
 margin-bottom: 5px;
 margin-top: 5px;
}
.entry {
 padding-bottom: 20px;
 padding: 5px;
 border: solid 1px #999;
 background-color: #fcfcfc;
 margin-bottom: 25px;
}

Figure 2-30. How the page would look if printed without print.css

2.16 Setting Up Different Types of Stylesheets | 81

Figure 2-31 shows how the page looks with print.css:

#sub_banner {
 display: none;
}
#nav1 {
 display: none;
}
#nav2 {
 display: none;
}
h1 {
 display: none;
}
.entry {
 padding: 5px;
}

Figure 2-31. Creating print.css and adding a link to the stylesheet results in a printer-friendly web page

82 | Chapter 2: CSS Basics

This takes out the sub_banner with the tagline and hides the two navigation columns.
The h1 element wasn’t necessary to have, and removing it saved space at the top. The
entries have a light gray box, a big waste of ink, so they’ve been simplified to show
padding only between entries.

Remember to add the link element in the HTML page:

<link rel="stylesheet" type="text/css" href="/css/print.css" media="print" />
<link rel="stylesheet" type="text/css" href="/css/screen.css" media="screen" />

That’s all there is to it. CSS simplifies many things, including design for different media.
Table 2-5 lists the current media types that appear in the CSS 2.1 specification.

Table 2-5. List of media types

Media type Devices

all Used for all devices

aural Used for speech and sound synthesizers

braille Used for Braille tactile feedback devices

embossed Used for Braille printers

handheld Used for handheld or small devices such as PDAs and smartphones

print Used for printers and print previews

projection Used for projected presentations

screen Used for color monitors

tty Used for fixed-pitch character grids such as teletypes, terminals, and portable devices with limited characters

tv Used for television and WebTV

See Also
Chapter 10 for setting up styles for printing; the section “Media types” of the CSS 2.1
specification at http://www.w3.org/TR/CSS21/media.html; A List Apart’s “ALA’s New
Print Styles” at http://www.alistapart.com/articles/alaprintstyles; A List Apart’s “Pocket-
Sized Design: Taking Your Website to the Small Screen” at http://www.alistapart.com/
articles/pocket

2.17 Adding Comments Within Stylesheets
Problem
You want to organize and keep track of the CSS with comments.

Solution
Add /* and */ anywhere in the styles to show the start and end of a comment:

2.17 Adding Comments Within Stylesheets | 83

http://www.w3.org/TR/CSS21/media.html
http://www.alistapart.com/articles/alaprintstyles
http://www.alistapart.com/articles/pocket
http://www.alistapart.com/articles/pocket

/* This is a comment */
a {
 text-decoration: none;
}
/* This is also a comment */
h1, h2 {
 font-size: 100%; /* This is also a comment, too */
 color: #666666;
}

Discussion
You might look at old code and not remember why you took certain steps with the
code. Comments can explain and organize code so that you can better understand it if
you review it at a later time. Comments also help those who didn’t create the original
code to understand its purpose. Browsers ignore content that appears between /* and
*/.

As you break your code into sections, comments come in handy in terms of identifying
each section, such as the header, footer, primary navigation, subnavigation, and so on.
Comments provide a great way to test your web pages. If you’re not sure whether a
style works or how it affects the page, add a comment around the style to turn it off:

/*
a {
 text-decoration: none;
}
*/

In the preceding code, the comments around text-decoration ensure that the text dec-
oration (including underlining) will not take effect. Unless there are other styles for a,
the underline appears under links until the comment is removed.

See Also
The CSS 2.1 specification on comments at http://www.w3.org/TR/CSS21/syndata.html
#comments

2.18 Organizing the Contents of a Stylesheet
Problem
You want to know how to effectively organize contents within a stylesheet for easier
management.

Solution
You can manage CSS by grouping the common visual elements of a web page together.
The following list suggests the order of items grouped in a stylesheet:

84 | Chapter 2: CSS Basics

http://www.w3.org/TR/CSS21/syndata.html#comments
http://www.w3.org/TR/CSS21/syndata.html#comments

1. Elements (h1 through h6, p, a, list, links, images)

2. Typography

3. Page layout (header, content, navigation, global navigation, subnavigation, side-
bar, footer)

4. Form tags (form, fieldset, label, legend)

5. Content (post, events, news)

Here are the comments from three stylesheets, with each one organizing the CSS
differently:

/* Typography & Colors
------------------------------------ */
[css code]

/* Structure
------------------------------------ */
[css code]

/* Headers
------------------------------------ */
[css code]

/* Images
------------------------------------ */
[css code]

/* Lists
------------------------------------ */
[css code]

/* Form Elements
------------------------------------ */
[css code]

/* Comments
------------------------------------ */
[css code]

/* Sidebar
------------------------------------ */
[css code]

/* Common Elements
------------------------------------ */
[css code]

Discussion
What works for one person may not work for another. The setup in the Solution is a
recommendation based on a combination of experience and best practices that should
work well for small to medium-size websites.

2.18 Organizing the Contents of a Stylesheet | 85

For different projects and your own personal preference, you might find a way that
works better for you. Visit your favorite websites and review their stylesheets to study
how they’re organized.

See Also
Doug Bowman’s “CSS Organization Tip 1: Flags,” a method for finding rules in your
CSS files, at http://www.stopdesign.com/log/2005/05/03/css-tip-flags.html

2.19 Working with Shorthand Properties
Problem
You want to use shorthand properties in stylesheets.

Solution
Begin with a properly marked up section:

<h3>Shorthand Property</h3>
<p>Combine properties with shorthand and save time, typing, and a
few bytes. Your stylesheets will also be easier to read.</p>

Then use just one instance of the font property instead of using font-style, font-
size, and font-family:

h3 {
 font: italic 18pt verdana, arial, sans-serif;
}
p {
 border: 2pt solid black;
}

Discussion
You can toss several CSS properties in favor of shorthand properties.

The border property is a shorthand property that combines three properties into one.
The border property can cover the values from the following properties:

• border-color

• border-width

• border-style

The font property is a shorthand property that combines five properties into one. The
font property can cover the values from the following properties:

• font-style

• font-size/line-height

86 | Chapter 2: CSS Basics

http://www.stopdesign.com/log/2005/05/03/css-tip-flags.html

• font-family

• font-weight

• font-variant

Enter the values just as you would with any other property, except for font-family and
font-size/line height. With font-family, enter the fonts in the priority you wish them
to have and use a comma between each.

If you use both font-size and line-height, separate their values with a forward slash:

h3 {
 font: italic 18pt/20pt verdana, arial, sans-serif
}

For a rundown of the shorthand properties available to web developers, see Table 2-6.

Table 2-6. Shorthand properties

Property Values Example

background background-color

background-image

background-repeat

background-attachment

background-position

background: url(book.gif)
#999 no-repeat top;

border

border-left

border-right

border-top

border-bottom

border-width

border-style

border-color

border: thin solid #000;

font font-style

font-variant

font-weight

font-size/line-height

font-family

caption

icon

menu

message-box

small-caption

status-bar

font: 14px italic Verdana,
Arial, sans-serif;

2.19 Working with Shorthand Properties | 87

Property Values Example

list-style list-style-type

list-style-position

list-style-image

list-style: circle inside;

margin margin-top

margin-right

margin-bottom

margin-left

margin: 5px 0px 5px 10px;

margin: 15px 0;

margin: 5px;

padding padding-top

padding-right

padding-bottom

padding-left

padding: 5px 10% 15px 5%;

padding: 7px 13px;

padding: 6px;

See Also
The CSS 2.1 specification for border shorthand properties at http://www.w3.org/TR/
CSS21/box.html#border-shorthand-properties and font shorthand properties at http://
www.w3.org/TR/CSS21/about.html#shorthand; Appendix B for a full list of CSS
properties

2.20 Setting Up an Alternate Stylesheet
Problem
You want to provide other style options for users who might want larger text or a
different color scheme.

Solution
Use the link element with a title and link it to the alternate stylesheets. The title lets
the user see what options are available when viewing the list of available styles. In
Firefox, select View→Page Styles to see the list.

<link href="default.css" rel="stylesheet" title="default styles"
type="text/css" media="screen" />
<link href="green.css" rel="stylesheet" title="green style"
type="text/css" media="screen" />
<link href="blue.css" rel="stylesheet" title="blue style"
type="text/css" media="screen" />

Unfortunately, this doesn’t work in Internet Explorer 6.0 or Safari.

88 | Chapter 2: CSS Basics

http://www.w3.org/TR/CSS21/box.html#border-shorthand-properties
http://www.w3.org/TR/CSS21/box.html#border-shorthand-properties
http://www.w3.org/TR/CSS21/about.html#shorthand
http://www.w3.org/TR/CSS21/about.html#shorthand

Discussion
Alternate stylesheets work similarly to the media type stylesheets in Recipe 2.16. But
instead of creating styles for media, you’re providing users with multiple choices of
styles for the screen. Furthermore, this technique doesn’t require use of JavaScript.
Some users have disabled JavaScript, which would affect a stylesheet switcher.

All you have to do is make a copy of your default stylesheet and rename it. Make the
changes to the stylesheet and add the link element with a title, as shown in Fig-
ure 2-32.

Figure 2-32. Switching stylesheets within the browser options

See Also
A List Apart’s article “Invasion of the Body Switchers” by Andy Clarke and James
Edwards, which shows how to create a JavaScript style switcher, at http://www.alista
part.com/articles/bodyswitchers; the Amit Ghaste CSS Style Switcher tutorial at http://
ghaste.com/pubs/styleswitcher.html

2.21 Using Floats
Problem
You want to place an image on the left or right side, with text wrapping around the
image instead of appearing above or below the image, as shown in Figure 2-33.

2.21 Using Floats | 89

http://www.alistapart.com/articles/bodyswitchers
http://www.alistapart.com/articles/bodyswitchers
http://ghaste.com/pubs/styleswitcher.html
http://ghaste.com/pubs/styleswitcher.html

Figure 2-33. Images not wrapping around the text by default

Solution
First create class selectors for the image:

.leftFloat {
 float: left
}
.rightFloat {
 float: right
}

90 | Chapter 2: CSS Basics

Using class names that describe the presentation, as I did in this Solu-
tion, is not recommended. This is for demonstration purposes only.

Then add the class selector to the markup (see Figure 2-34):

<p>This is the book cover for the CSS Cookbook.</p>

<p>This is the book cover for the CSS Cookbook.</p>

Figure 2-34. Text wrapping around the images, thanks to float

2.21 Using Floats | 91

Discussion
Before standards compliance was recommended, designers used the align attribute
with the img element to move images to the side with text wrapping. The W3C depre-
cated align and now recommends using float instead.

You can use floats with elements other than images to shift an item left or right from
its original placement.

In Figure 2-34, the second image overlaps the paragraph referencing the first image.
This looks confusing and needs to be fixed. To work around that, use clear:

p {
 clear: left;
}

The clear property tells the paragraph to appear after the end of the image flow. At the
second img, the clear property pushes the image down to the first line after the previous
line ends. Instead of lining up with the second p element, the image waits for a new line
before showing up.

See Also
The W3C 2.1 specification on floats at http://www.w3.org/TR/CSS21/visuren.html
#floats; Chapter 8, which provides recipes for using float with page columns; Eric
Meyer’s CSS/edge, which covers floats, at http://meyerweb.com/eric/css/edge/

2.22 Using Self-Clearing Floated Elements
Problem
You want to stop a floated element from overlapping other content, but without any
reliance on other HTML elements.

Solution
First, examine a situation where a float is overlapping part of a layout, as shown in
Figure 2-35:

<div>

 <p>Lorem ipsum dolor sit amet, consectetuer adipiscing elit,
 sed diam nonummy nibh euismod tincidunt ut laoreet dolore
 magna aliquam erat volutpat...
 </p>
</div>

Then set up the CSS rules for the sample:

div {
 border: 1px solid black;

92 | Chapter 2: CSS Basics

http://www.w3.org/TR/CSS21/visuren.html#floats
http://www.w3.org/TR/CSS21/visuren.html#floats
http://meyerweb.com/eric/css/edge/

 padding: 25px;
}
img {
 border-right: 1px solid #999;
 border-bottom: 1px solid #999;
 float: left;
 padding: 1px;
}
p {
 float: right;
 width: 87%;
}

Figure 2-35. The image and paragraph overlapping the border

To force the border of the div element to encapsulate the floated elements, use the self-
clearing float technique.

First, set up the CSS rules:

.clearfix:after {
 content: ".";
 display: block;
 height: 0;
 clear: both;
 visibility: hidden;
}
/* CSS rule for IE6 */
* html .clearfix {
 height: 1%;
}
/* CSS rule for IE7 */
*:first-child+html .clearfix {
 min-height: 1px;
}

2.22 Using Self-Clearing Floated Elements | 93

Then add a class selector to the parent div element with the value of clearfix, as shown
in Figure 2-36:

<div class="clearfix">

 <p>Lorem ipsum dolor sit amet, consectetuer adipiscing elit,
 sed diam nonummy nibh euismod tincidunt ut laoreet dolore
 magna aliquam erat volutpat...
 </p>
</div>

Figure 2-36. The floated elements, now cleared

Discussion
The clearing method discussed in Recipe 2.21 relies on the presence of an additional
element coming right after a floated element.

Another method that web developers use is to place a div or br element after a floated
element in the markup, and then set that element’s clear property:

<div>

 <p>Lorem ipsum dolor sit amet, consectetuer adipiscing elit,
 sed diam nonummy nibh euismod tincidunt ut laoreet dolore
 magna aliquam erat volutpat...
 </p>
 <div style="clear: both;"></div>
</div>

When many hands are often touching a web document or documents, it’s impractical
to make sure that a wedge like this is going to be consistently used by everyone.

94 | Chapter 2: CSS Basics

Self-clearing floats

The self-clearing float technique, originally published by Position is Everything (see
http://positioniseverything.net/easyclearing.html), showed a way to clear floated ele-
ments without the additional markup.

However, Internet Explorer 7 and earlier can’t execute auto-generated content
through :after pseudo-elements.

To get around the limitations of the browser, two CSS rules are needed—one for IE7
and another for IE6—to trick the respective browsers into clearing the floated elements.

You can tuck away these CSS rules using conditional comments so that
only IE browsers see them.

Using overflow

Another method for clearing floats is to use an uncommon CSS property, overflow:

div {
 border: 1px solid black;
 padding: 25px;
 overflow: hidden;
 zoom: 1
}

The overflow property makes sure the element clears all the floats that are inside it.
(The zoom property is for IE6, if you need it. If not, you can get rid of it.)

See Also
Recipe 2.21 for information on using floats; http://www.sitepoint.com/blogs/2005/02/
26/simple-clearing-of-floats/ for other ways to clear a float

2.23 Using Absolute Positioning
Problem
You want to position an element based on the window rather than its default position.

Solution
Use the position property with the absolute value in the stylesheet. Also use bottom,
left, or both bottom and left to indicate where to position an element:

.absolute {
 position: absolute;
 bottom: 50px;

2.23 Using Absolute Positioning | 95

http://positioniseverything.net/easyclearing.html
http://www.sitepoint.com/blogs/2005/02/26/simple-clearing-of-floats/
http://www.sitepoint.com/blogs/2005/02/26/simple-clearing-of-floats/

 left: 100px;
}

Discussion
The absolute value places the content out of the natural flow of the page layout and puts
it exactly where the CSS properties tell it to go within the current box or window. The
sample code used in the Solution tells the browser to position the element with the
absolute class exactly 40 pixels down from the top and 20 pixels over from the left edge
of the window.

Let’s look at the natural flow of an image and a paragraph, as shown in Figure 2-37.

Figure 2-37. Default rendering of the content

Apply the absolute positioning to the div that encompasses the content by adding the
class attribute and the absolute value, as shown in Figure 2-38:

<div class="absolute">

<p>Lorem ipsum dolor sit amet, consectetuer adipiscing elit,
sed diam nonummy nibh euismod tincidunt ut laoreet dolore
magna aliquam erat volutpat...
 </p>
</div>

96 | Chapter 2: CSS Basics

Figure 2-38. Absolute positioning, which places an element based on its location within a window

You can also use the right and bottom properties to change the absolute position.
Bottom represents the bottom of the window, no matter how big or small you make the
window.

Here we used absolute positioning of elements to shift a block of content
around to demonstrate how it works. However, you need to be careful
when doing absolute positioning because absolutely positioned ele-
ments will remain in place even as flexible web page layouts change due
to flexible browser and/or text resizes.

See Also
The W3C 2.1 specification on absolute positioning at http://www.w3.org/TR/CSS21/
visuren.html#absolute-positioning; W3Schools’ tutorial on positioning at http://www
.w3schools.com/css/css_positioning.asp

2.23 Using Absolute Positioning | 97

http://www.w3.org/TR/CSS21/visuren.html#absolute-positioning
http://www.w3.org/TR/CSS21/visuren.html#absolute-positioning
http://www.w3schools.com/css/css_positioning.asp
http://www.w3schools.com/css/css_positioning.asp

2.24 Using Relative Positioning
Problem
You want to place content based on its position in the document. In other words, the
element’s position is modified relative to its natural position as rendered by the browser.

Solution
Use the position property with the relative value in the stylesheet. Also add top,
left, or both top and left to indicate where to position the element.

Using the following CSS rule on the image, the image was able to move over the para-
graph content, as shown in Figure 2-39:

.relative {
 position: relative;
 top: 100px;
 left: 20px;
}

Figure 2-39. Relative positioning, which places an element based on its location within the document’s
natural flow

98 | Chapter 2: CSS Basics

Discussion
Unlike absolute positioning, the sample code doesn’t start at the top and left edges of
the window. Instead, it begins where p would be if left alone.

The code tells the browser to position the paragraph 100 pixels down from the top and
20 pixels over from the left edge of the original paragraph’s position instead of the edge.

With absolute positioning, the content is placed exactly where the properties state it
should go from the edges in the current box.

See Also
The W3C 2.1 specification on relative positioning at http://www.w3.org/TR/CSS21/
visuren.html#relative-positioning; W3Schools’ tutorial on positioning at http://www
.w3schools.com/css/css_positioning.asp

2.25 Using Shackling Positioning
Problem
You want to move an element within the constraints of another element’s dimensions.
For example, you want to place the image of the book cover within the confines of the
shaded box and not the upper-lefthand corner of the browser’s viewport, as shown in
Figure 2-40.

Figure 2-40. An image positioned absolutely to the upper-left corner of the browser’s viewport

2.25 Using Shackling Positioning | 99

http://www.w3.org/TR/CSS21/visuren.html#relative-positioning
http://www.w3.org/TR/CSS21/visuren.html#relative-positioning
http://www.w3schools.com/css/css_positioning.asp
http://www.w3schools.com/css/css_positioning.asp

Solution
First set the position property to a value of relative for the parent element:

#content {
 position: relative;
 width: 200px;
 height: 200px;
 margin: 10% auto;
 background: #2942c4;
}

Then set the child element to be positioned absolutely using the offset properties top,
right, bottom, and left, to move the element within the confines of the parent element,
as shown in Figure 2-41:

#positioned {
 position: absolute;
 top: 20px;
 left: 20px;
}

Figure 2-41. The image now shackled to the dimensions of its immediate parent element

100 | Chapter 2: CSS Basics

Discussion
When an element is absolutely positioned, it’s taken out of the normal flow and posi-
tioned according to its containing element. In most cases, this is going to be the base,
or root element, in the web document. That’s typically going to be the html element.

However, the context of that containing element can change.

If a parent element is also positioned, the absolutely positioned element doesn’t get
affixed to the root element (typically the upper-left corner of the viewport, if no offset
properties are set). This effect is called changing the context of the parent element. I call
it shackling because it’s shorter and I have a life to live.

See Also
Doug Bowman’s article, “Making the absolute, relative,” at http://stopdesign.com/ar
chive/2003/09/03/absolute.html

2.26 Stacking Elements with z-index
Problem
You have a positioned element overlapping another element, blocking it from view.

Solution
Use the z-index property in conjunction with a position property set to absolute,
relative, or fixed:

div.image {
 position: relative;
 z-index: 20;
 width: 13px;
 height: 14px;
 background-image: url(star.gif);
 background-repeat: no-repeat;
}

Discussion
Digital images are composed of layers. The layer on top hides whatever is on the layers
below it. This analogy also holds true for the z-index property. An element with a higher
z-index value overlaps an element with a lower z-index value.

The z-index property works when the element is positioned with a value
of absolute, relative, or fixed. Without the appropriate position prop-
erty, z-index is not applied.

2.26 Stacking Elements with z-index | 101

http://stopdesign.com/archive/2003/09/03/absolute.html
http://stopdesign.com/archive/2003/09/03/absolute.html

When you’re using more than one element with the z-index property, try to use values
factored by 10 (e.g., 10, 20, 30) instead of 1, 2, 3, and so on. This approach allows you
to fit in other, unplanned elements in the stacking order without having to reset their
values.

See Also
The CSS2 specification for the z-index property at http://www.w3.org/TR/CSS2/visuren
.html#z-index

2.27 Validating CSS Rules
Problem
You want to make sure your CSS rules aren’t maligned with typos.

Solution
Go to http://jigsaw.w3.org/css-validator/, as shown in Figure 2-42, and enter the URI of
the page to be validated.

You can enter code for testing via two additional methods: by uploading a CSS file or
by entering the CSS rules.

Discussion
Validating CSS is different from validating HTML in that you don’t declare what kind
of DOCTYPE is being used.

Although numerous tools on the market have built-in validators (e.g., Adobe Dream-
weaver), the W3C CSS Validator is the one that is usually up-to-date and provides
better feedback, especially with the CSS3 specification.

If CSS3 rules are being used in the stylesheet, be sure to select “CSS level
3” from the profile select menu. As of this writing, CSS rules are checked
against only the CSS 2.1 specification by default.

Creating a CSS validator bookmarklet

Take any page you visit on the Web directly to the W3C’s CSS Validator through a
bookmarklet. A bookmarklet is a tiny piece of JavaScript tucked away in the Address
portion of a bookmark.

102 | Chapter 2: CSS Basics

http://www.w3.org/TR/CSS2/visuren.html#z-index
http://www.w3.org/TR/CSS2/visuren.html#z-index
http://jigsaw.w3.org/css-validator/

Create a new bookmark, name it “CSS Validator,” and then replace whatever is in the
address field with this line:

javascript:void(document.location='http://jigsaw.w3.org/css-
validator/validator?profile=css21&usermedium=all&warning=1&lang=en&uri=
'+escape(document.location))

When you visit another site, clicking on the bookmarklet runs the page currently loaded
in the browser through the CSS Validator.

See Also
A Firefox extension for passing a currently viewed page to the W3C CSS Validator into
a new browser tab, available at https://addons.mozilla.org/en-US/firefox/addon/2289

Figure 2-42. Entering a web address for CSS validation

2.27 Validating CSS Rules | 103

https://addons.mozilla.org/en-US/firefox/addon/2289

CHAPTER 3

Web Typography

3.0 Introduction
Before CSS, web developers used font tags to set the color, size, and style of text on
different parts of a web page:

 Hello, World!

Although this method was effective for changing the appearance of type, the technique
was limiting.

Using multiple font tags across many, many pages resulted in time-consuming updates,
inflated the overall file size of the web document, and increased the likelihood that
errors would occur in the markup. CSS helps to eliminate these design and maintenance
problems.

First set content within a p element:

<p>Hello, World!</p>

Then set styles in the head of the document to dictate the look of the paragraph:

<style type="text/css" media="all">
 p {
 color: blue;
 font-size: small;
 font-family: Verdana, Arial, sans-serif;
 }
</style>

Through this technique, the paragraph’s structure and its visual presentation are sep-
arated. Because of this separation, the process of editing and maintaining a website’s
design, including typography, is simplified immensely. You can modify the style in a
stylesheet without having to make changes at the content level.

105

In addition, web developers get more editing capabilities over previous techniques, as
well as control over typography. Besides setting the color, style, and size of fonts, this
chapter also covers techniques for setting initial caps, creating visually compelling pull
quotes, modifying leading, and more.

3.1 Specifying Fonts
Problem
You want to set the typeface of text on a web page.

Solution
Use the font-family property:

body {
 font-family: Georgia, Times, "Times New Roman", serif;
}

Discussion
You can specify the fonts you want the browser to render on a web page by writing a
comma-delimited list for the value of the font-family property. If the browser can’t
find the first font on the list, it tries to find the next font, and so on, until it finds a font.

If the font name contains spaces, enclose the name with single or double quotation
marks.

At the end of the list of font choices, you should insert a generic font family. CSS offers
five font family values to choose from, as shown in Table 3-1.

Table 3-1. Font family values and examples

Generic font family values Font examples

serif Georgia, Times, "Times New Roman", Garamond, "Century Schoolbook"

sans-serif Verdana, Arial, Helvetica, Trebuchet, Tahoma

monospace Courier, "MS Courier New", Prestige

cursive "Lucida Handwriting", "Zapf-Chancery"

fantasy Comic Sans, Whimsy, Critter, Cottonwood

All web browsers contain a list of fonts that fall into the five families shown in Ta-
ble 3-1. If a font is neither chosen via a CSS rule nor available on the user’s computer,
the browser uses a font from one of these font families.

106 | Chapter 3: Web Typography

Problem finding fonts

The most problematic generic font value is fantasy because this value is a catchall for
any font that doesn’t fall into the other four categories. Designers rarely use this font
because they can’t know what symbols will be displayed!

Another problematic generic value is cursive because some systems can’t display a
cursive font. If a browser can’t use a cursive font, it uses another default font in its place.
Because text marked as cursive may not actually be displayed in a cursive font, de-
signers often avoid this generic font value as well.

If you want to use an unusual font that might not be installed on most people’s ma-
chines, the rule of thumb is to set the last value for the font-family property to serif,
sans-serif, or monospace. This approach maintains at least some legibility for the user
viewing the web document.

Inheriting fonts throughout a web page

You don’t have to set the same properties for every tag you use. A child element inher-
its, or has the same property values of, its parent element if the CSS specification that
defines a given property can be inherited. For example, if you set the font-family prop-
erty to show a serif font in a paragraph that contains an em element as a child, the text
in the em element is also set in a serif font:

<p style="font-family: serif;">The water fountain
with the broken sign on it is indeed broken.</p>

Inheritance doesn’t occur under two circumstances.

One is built into the CSS specification and concerns elements that can generate a box.
Elements such as h2 and p are referred to as block-level elements and can have other
properties such as margins, borders, padding, and backgrounds, as shown in Figure 3-1.

Figure 3-1. The box model for a block-level element

3.1 Specifying Fonts | 107

Because these properties aren’t passed to child block-level elements, you don’t have to
write additional rules to counter the visual effects that would occur if they were passed.
For example, if you applied a margin of 15% to a body element, that rule would be
applied to every h2 and p element that is a child of that body element. If these properties
were inherited, the page would look like that shown in Figure 3-2.

Figure 3-2. Hypothetical mock-up of margins and border properties being inherited

Because certain properties are defined to be inheritable and others aren’t, the page
actually looks like that shown in Figure 3-3 in a modern CSS-compliant browser.

Figure 3-3. How the page looks when block-level elements don’t inherit certain properties

108 | Chapter 3: Web Typography

The other circumstance under which inheritance doesn’t work is, of course, if your
browser doesn’t follow the CSS specification. Thankfully, this hasn’t happened in any
recent browser releases, as the most notable example of this came from the old Netscape
Navigator 4 browser.

See Also
The CSS 2.1 specification for inheritance at http://www.w3.org/TR/CSS21/cascade.html
#inheritance; the CSS 2.1 specification for font-family values at http://www.w3.org/
TR/CSS21/fonts.html#propdef-font-family; more about CSS and Netscape 4 issues at
http://www.mako4css.com/cssfont.htm

3.2 Using Web-Safe Fonts
Problem
You want to specify fonts that are on most of your site visitors’ machines.

Solution
Use what are commonly referred as web-safe fonts, which are type files that are prein-
stalled on Macintosh and Windows operating systems.

If you use Linux, you can install Microsoft TrueType fonts by installing
the msttcorefonts package. For more information, see http://embraceu
buntu.com/2005/09/09/installing-microsoft-fonts/.

Here are examples of sans serif web-safe font stacks:

font-family: Verdana, Geneva, sans-serif;
font-family: Arial, Helvetica, sans-serif;
font-family: Tahoma, Geneva, sans-serif;
font-family: "Trebuchet MS", Area, Helvetica, sans-serif;
font-family: "Lucida Sans Unicode", "Lucida Grande", sans-serif;

Here are examples of serif web-safe font stacks:

font-family: Georgia, "Times New Roman", Times, serif;
font-family: "Palatino Linotype", "Book Antigua", Palatino, serif;
font-family: "MS Serif", New York, serif;

The following are monospace web-safe font stacks:

font-family: "Courier New", Courier, monospace;
font-family: "Lucida Console", Monaco, monospace;

This is a cursive web-safe font stack:

font-family: "Comic Sans MS", cursive;

3.2 Using Web-Safe Fonts | 109

http://www.w3.org/TR/CSS21/cascade.html#inheritance
http://www.w3.org/TR/CSS21/cascade.html#inheritance
http://www.w3.org/TR/CSS21/fonts.html#propdef-font-family
http://www.w3.org/TR/CSS21/fonts.html#propdef-font-family
http://www.mako4css.com/cssfont.htm
http://embraceubuntu.com/2005/09/09/installing-microsoft-fonts/
http://embraceubuntu.com/2005/09/09/installing-microsoft-fonts/

Discussion
You can find approximately 13 fonts on both Windows and Macintosh operating sys-
tems, as shown in Table 3-2.

Table 3-2. Cross-platform fonts

Windows/Mac OS font Font family Example

Arial Sans serif

Arial Black Sans serif

Comic Sans MS Cursive

Courier New Monospace

Georgia Serif

Helvetica Sans serif

Impact Sans serif

Tahoma Sans serif

Times Serif

Times New Roman Serif

Trebuchet MS Sans serif

Verdana Sans serif

110 | Chapter 3: Web Typography

Windows/Mac OS font Font family Example

Wingdings (symbol)

Courier, Helvetica, and Times are installed on most X11 Unix/Linux
systems. The other fonts listed as web safe for both Windows and Mac
OS X in Table 3-2 do not commonly appear.

Extending web-safe font listings

The popular productivity software applications Microsoft Office and Apple iWork in-
stall additional font files. Assuming a large number of computer users have one of these
software applications installed on their machines (depending on the operating system),
it is possible to extend the web-safe font list.

Web designer Jason Cranford Teague did just that. Researching the font listings for the
software applications, he composed a directory listing extended web-safe fonts sortable
by font name, weight, OS, or rank (the likelihood it’s installed on a user’s machine), as
shown in Figure 3-4. To view the list, see http://tr.im/xGGi.

Figure 3-4. Directory of extended web-safe fonts

3.2 Using Web-Safe Fonts | 111

http://tr.im/xGGi

More robust stacking

Although simply stating the web fonts we know are on people’s machines is a good
solution for cross-platform development, the font-family property allows web design-
ers to select fonts beyond just the basics. So, don’t limit web page designs to a handful
of typefaces.

For example, Gill Sans is an excellent sans serif font; however, it’s not commonly in-
stalled on computers. To create a font stack that takes into account a desire to have
Gill Sans in the web page design, but provide alternatives, use this CSS code:

p {
 font-family: "Gill Sans", Trebuchet, Calibri, sans-serif;
}

Design Strategist Nathan Ford explores this approach and offers more potential font
stacks in his blog post “Better CSS Font Stacks” (see http://unitinteractive.com/blog/
2008/06/26/better-css-font-stacks/).

See Also
The Web Safe Fonts Preview at http://www.fonttester.com/web_safe_fonts.html

3.3 Setting an Ampersand Flourish
Problem
You want a stylish ampersand for a heading instead of the default web-safe font
ampersand.

Solution
First apply a span element around the ampersand within the heading:

<h1>The Lorem Ipsum & Dolor</h1>

Then set the font stack for the class selector to include fonts with stylish ampersand
characters, as shown in Figure 3-5:

span.amp {
 font-family: "Goudy Old Style", "Palatino", "Book Antiqua", serif;
 font-style: italic;
 font-weight: normal;
}

Discussion
To type an ampersand within the text of a web page, use its HTML entity name, &.
HTML entities are coded variations of special characters, such as the less-than (<) or
greater-than (>) signs, to keep the browser from rendering the characters like markup.

112 | Chapter 3: Web Typography

http://unitinteractive.com/blog/2008/06/26/better-css-font-stacks/
http://unitinteractive.com/blog/2008/06/26/better-css-font-stacks/
http://www.fonttester.com/web_safe_fonts.html

To add a less-than and greater-than sign in the text of a web document,
use < and >, respectively.

Styling ampersands

Typographer Robert Bringhurst suggests in his book, The Elements of Typographic
Style (Hartley and Marks), to use the best possible ampersand available when working
with text. He also states that often the italic versions of typefaces contain better am-
persand forms than the normal or roman counterpart.

Web designer Dan Cederholm approached this tenet for web design and even re-
searched ampersands in various typefaces found on both Windows and Macintosh
operating systems (see http://simplebits.com/notebook/2008/08/14/ampersands.html),
as shown in Figure 3-6.

See Also
http://htmlhelp.com/reference/html40/entities/latin1.html for a listing of HTML entities;
Richard Rutter’s The Elements of Typographic Style Applied to the Web at http://webty
pography.net/

Figure 3-5. The ampersand style changes to a more distinguished look

3.3 Setting an Ampersand Flourish | 113

http://simplebits.com/notebook/2008/08/14/ampersands.html
http://htmlhelp.com/reference/html40/entities/latin1.html
http://webtypography.net/
http://webtypography.net/

3.4 Embedding Font Files
Problem
You want to use a font file in your web page, as shown Figure 3-7, with the Museo
typeface.

Solution
Use the @font-face rule to assign a font-family name:

@font-face {
 font-family: "Museo 300";
}

Then associate the font file and file type:

@font-face {
 font-family: "Museo 300";
 font-style: normal;
 font-weight: normal;

Figure 3-6. A directory of fonts with stylized fonts

114 | Chapter 3: Web Typography

 src: url("fonts/Museo300-Regular.otf") format("opentype");
}

Next, place the embedded font’s font-family value at the start of the font stack:

h2 {
 font-family: "Museo 300", Verdana, Geneva, sans-serif;
 font-weight: normal;
}

Figure 3-7. Stylized ampersand cited through a font stack

Discussion
The specification for font embedding has been part of the CSS2 specification since 1998.
Internet Explorer for Windows has supported @font-face since version 4, but the IE
browser supports only the Embedded OpenType Font format (.eot), which contains
Digital Rights Management (DRM) code.

Other open file types for font embedding are supported in Safari 3.1 and later, Opera
10 and later, and Firefox 3.5 and later for the OpenType Face (.otf) and TrueType
Format (.ttf), as shown in Table 3-3.

3.4 Embedding Font Files | 115

Table 3-3. Browser file type support

 .ttf .otf .eot

Safari 3.1 and later Y Y

Opera 10 and later Y Y

Firefox 3.5 and later Y Y

IE4 and later Y

There is a new file format, Web Open Font Format (WOFF), that shows
some promise. Support is included in Firefox 3.6. For more information,
see http://hacks.mozilla.org/2009/10/woff/.

Creating cross-browser embedding

To convert a font file to an .eot file for cross-browser support, Microsoft provides an
application called Web Embedding Fonts Tool, or WEFT (see http://www.microsoft
.com/typography/WEFT.mspx). However, although the tool works, it has not been up-
dated in some time. Be sure to read the tutorial closely.

To code for cross-browser font embedding, the @font-face rule allows for referencing
multiple files:

@font-face {
 font-family: "Fontin Sans";
 src: url("fonts/font-file.otf")format("opentype"),
 url("fonts/font-file.eot") format("embedded-opentype");
}

This method also allows for linking to alternative locations in case one web server goes
down:

@font-face {
 font-family: "Museo 300";
 font-style: normal;
 font-weight: normal;
 src: url("http://example.com/fonts/font-file.otf")format("opentype"),
 url("http://example.com/fonts/font-file.eot") format("embedded-opentype"),
 url("http://csscookbook.com/fonts/font-file.otf")format("opentype"),
 url("http://csscookbook.com/fonts/font-file.eot")
format("embedded-opentype");
}

The problem with embedded fonts

As of this writing, a number of vendors that sell fonts do not license their files for
embedding in web pages. If they do sell a license for the font, the cost is relatively
prohibitive. (Embedding fonts is different from making an image with type set in it and
placing that image on a web page. That is still legal to do, if you bought the fonts you
are using to create the images in the first place.)

116 | Chapter 3: Web Typography

http://hacks.mozilla.org/2009/10/woff/
http://www.microsoft.com/typography/WEFT.mspx
http://www.microsoft.com/typography/WEFT.mspx

Although the .eot format was supposed to allow typographers to help control their
digital rights with work, embedding type has not taken off yet.

The typographers’ concerns are based on the fact that copying fonts from the embed-
ding technique is relatively easy and takes away from their livelihood, which are true
and valid points—especially since this is the type of behavior the Recording Industry
Association of America (RIAA) has been battling since Napster, and photographers
have been battling since the Mosaic browser introduced the img element.

Some typographers are finding a way to sell fonts and still allow their fonts to be avail-
able for embedding. For example, typographer Jos Buiveng, whose font is used in the
Solution, releases a few fonts in a font family for free (see http://www.josbuivenga.demon
.nl/). To obtain the additional weights to complete the set, you pay a small fee. Some
other typographers, such as Fonthead Design (see http://fonthead.com/), allow for em-
bedding simply as part of the typical license when buying their fonts.

For a list of free fonts available for embedding, see http://www.fontsquir
rel.com/.

Third-party workaround

A number of third-party solutions allow font embedding to occur without people steal-
ing the files. Web designer Richard Rutter proposed such a solution in July 2008 (see
http://clagnut.com/blog/2166/):

[D]esigners do not necessarily have to upload the font file to their own web server. They
can link to a font file on another server. And this is where the real opportunity lies.

When you embed a Google map on your web page, you don’t download a bunch of map
images from Google and stick them on your server, you link to Google which then serves
up the maps to registered domains. The same approach can be applied to fonts. Font
foundries could license their fonts for embedding and serve those fonts only to registered
websites, using their own hosted system or via a trusted third party.

New services such as Typekit (see http://blog.typekit.com/2009/07/21/serving-and-pro
tecting-fonts-on-the-web/) and Fontdeck (see http://fontdeck.com/) aim to do just that.
For a small recurring fee you can have a professionally crafted typeface on your website
that appeases the type vendors as well as makes font embedding easy to do.

Other techniques

Other alternatives to placing different typefaces into web page designs include Flash
and images.

sIFR 3 is the name for a type workaround that uses Flash and JavaScript to include
fonts without embedding. For more information, see http://wiki.novemberborn.net/
sifr3/How+to+use.

3.4 Embedding Font Files | 117

http://www.josbuivenga.demon.nl/
http://www.josbuivenga.demon.nl/
http://fonthead.com/
http://www.fontsquirrel.com/
http://www.fontsquirrel.com/
http://clagnut.com/blog/2166/
http://blog.typekit.com/2009/07/21/serving-and-protecting-fonts-on-the-web/
http://blog.typekit.com/2009/07/21/serving-and-protecting-fonts-on-the-web/
http://fontdeck.com/
http://wiki.novemberborn.net/sifr3/How+to+use
http://wiki.novemberborn.net/sifr3/How+to+use

Another solution is to set custom fonts in pages, to replace HTML text with images.
For more information, see Recipe 4.20.

See Also
The @font-face rule in the CSS specification at http://www.w3.org/TR/2008/REC-CSS2
-20080411/fonts.html#font-descriptions; Paul Irish’s “Bulletproof @font-face syntax”
blog post at http://tr.im/Gxhf

3.5 Forcing a Break on Really Long Words
Problem
You want to force a word break on a long word (or a long string of characters).

Solution
Use the word-wrap property with a value of break-word, as shown in Figure 3-8:

p {
 border: 1px solid black;
 width: 150px;
 padding: 12px;
}
p.break {
 word-wrap: break-word;
}

Figure 3-8. The longest word in the dictionary, split and wrapped within a border

118 | Chapter 3: Web Typography

http://www.w3.org/TR/2008/REC-CSS2-20080411/fonts.html#font-descriptions
http://www.w3.org/TR/2008/REC-CSS2-20080411/fonts.html#font-descriptions
http://tr.im/Gxhf

Discussion
Appearing in the CSS3 specification, the word-wrap property was first used in Internet
Explorer. Safari and Firefox 3.5 have since adopted it.

The default value of word-wrap is default, which would allow the normal behavior of
a long word to break the confines of the box.

See Also
The CSS3 specification for word-wrap at http://www.w3.org/TR/css3-text/#word-wrap;
Recipe 3.11 for clipping long passages of text

3.6 Specifying Font Measurements and Sizes
Problem
You want to set the size of type used on a web page.

Solution
Set the values of fonts using the font-size property:

p {
 font-size: 0.9em;
}

Discussion
The font-size property can take on different values and several units. In the Solution,
I used em units. Other units are also available, such as percentages.

Setting the size of the font with percentages causes the browser to calculate the size of
the font based on the size of the parent element. For example, if the font size for the
body is set to 12 pixels and the font size for the p element is set to 125%, the font size
for the text in paragraphs is 15 pixels.

You can use percentages, length units, and font-size keywords to set type size.

Length units

Length units fall into two categories: absolute and relative. Absolute length units in-
clude the following:

• Inches (in)

• Centimeters (cm)

• Millimeters (mm)

3.6 Specifying Font Measurements and Sizes | 119

http://www.w3.org/TR/css3-text/#word-wrap

• Points (pt)

• Picas (pc)

A point, in terms of the CSS specification, is equal to 1/72 of an inch, and a pica is equal
to 12 points.

A negative length value such as −25cm for the font-size property is not allowed.

Relative units

Relative units set the length of a property based on the value of another length property.
Relative length units include the following:

• Em

• X-height (ex)

• Pixels (px)

Em units refer to the default font size set in the preference of the user’s browser, and
x-height (ex) refers to the height of the lowercase letter x in the font.

A pixel is the smallest dot that can be made on a computer screen.

Setting the size of fonts to 0 or a negative value

The CSS specification doesn’t dictate how browser vendors should treat text when the
font-size property is set to a value of 0. Therefore, different browsers interpret the
value unpredictably.

For example, such text isn’t visible in the Firefox or Mozilla browser. In Internet Ex-
plorer for Macintosh and Safari, the text isn’t hidden, but rather is displayed at the
default value of the font size. The Opera browser displays the text at a smaller but still
legible size. And Safari 4 for Macintosh sets the type size to a small, illegible, but still
visible line of text that appears to be equal to the size of 0.1 em, as shown in Figure 3-9.

If you want to make text invisible, use the visibility or display CSS property instead
of setting the size of fonts to zero:

p {
 display: none;
}

A negative value for length, such as −25cm, for the font-size property isn’t allowed.

See Also
The CSS 2.1 specification for font-size at http://www.w3.org/TR/CSS21/fonts.html
#font-size-props

120 | Chapter 3: Web Typography

http://www.w3.org/TR/CSS21/fonts.html#font-size-props
http://www.w3.org/TR/CSS21/fonts.html#font-size-props

3.7 Gaining More Cross-Browser Consistency with Font Sizes
Problem
You want the size of type to be consistent across different browsers and operating
systems.

Solution
Set the font-size in the body element to 62.5%:

body {
 font-size: 62.5%;
}

Then set the font-size in the inherited form and table elements to 1em for Internet
Explorer for Windows:

input, select, th, td {
 font-size: 1em;
}

Now the font sizes in your document will be equivalent to 10 pixels for each 1 em unit.
For example, if you add the body declaration in the first part of the Solution, this rule
sets the font size for a paragraph to 19 pixels:

p {
 font-size: 1.9em /* displays text as 19 pixels */
}

Figure 3-9. Safari 4 for Macintosh showing illegible type when the font size is set to zero

3.7 Gaining More Cross-Browser Consistency with Font Sizes | 121

Discussion
Because browser displays vary due to different operating systems and video settings,
setting type in a fixed (or absolute) value doesn’t make much sense. In fact, it’s best to
avoid absolute measurements for web documents, unless you’re styling documents for
fixed output. For example, when you create a stylesheet to print a web document,
absolute length units are preferred. For more on creating stylesheets for printing, see
Chapter 11.

Using pixels

Although pixels appear to consistently control the size of typography in a web docu-
ment across most platforms and browsers, it’s not a good idea to use pixels when
designing for web typography.

The main issue in regard to setting type size in pixels isn’t one of accurate sizing, but
of accessibility. People with poor vision might want to resize the type to better read the
document.

However, if you use pixels to set the type on your web page, people using Internet
Explorer 7 will be unable to resize the type. Because Internet Explorer for Windows is
the most commonly used browser on the planet, the use of pixels to set type size be-
comes a problem for most users who need to resize the type in their browsers.

Internet Explorer 8 and all other browsers have zooming features that
expand fonts (even those set in pixels) and images.

If you do require an absolute size measurement, you should use pixels rather than
points, even though print designers are more accustomed to point measurements. The
reason is that Macintosh and Windows operating systems render point sizes differently,
but pixel size typically stays the same.

Even though pixels are technically a relative unit, designers refer to pix-
els as absolute units. A pixel is relative in terms of its actual physical
size, but it is absolute in terms of its size ratio on a web page, which is
what is important to a designer.

If accessibility is a concern, switch to em units. In the Solution, we set the text in the
paragraph to 0.9 em units. This value is equivalent to setting the font size to 90% of
the default font size set in the browser’s preference.

However, the use of em units raises another concern. This time the problem pertains
to usability. Although you might be able to resize the type in a web page, if you set a

122 | Chapter 3: Web Typography

font to a size that is smaller than the default text size of the browser (e.g., to 0.7 em),
Internet Explorer for Windows will display small, almost illegible lines of text, as shown
in Figure 3-10. So, the lesson here is be careful with relative sizes, as it is easy to make
text illegible.

Figure 3-10. Almost illegible type set with em units

Using font keywords

This brings up the possibility of another solution: the use of font-size keywords. The
CSS 2.1 specification has seven font keywords for absolute sizes that you can use to
set type size (see Figure 3-11): xx-small, x-small, small, medium, large, x-large, and
xx-large.

There are two other font-size keywords for relative measurements: larger and
smaller. If a child element is set to larger, the browser can interpret the parent’s font-
size value of small and increase the text inside the child element to medium.

Font-size keywords provide two benefits: they make it easy to enlarge or reduce the
size of the text in most browsers, and the font sizes in browsers never go smaller than
9 pixels, ensuring that the text is legible. If you do set text to a small size, use a sans
serif font such as Verdana to increase the chances for legibility.

Using em units to control type

Although using font keywords allows for general control over the size of the typogra-
phy, designers typically want more choices than the several that keywords provide. The
Solution offered in this recipe, developed by Richard Rutter (http://www.clagnut
.com/), delivers this kind of control.

Browsers set the default value of 16 pixels for web typography, which is equal to the
medium keyword. By setting the font-size in the body element to 62.5%, the default
value of 16 pixels reduces to 10 pixels:

(16 pixels)62.5% = 10 pixels

3.7 Gaining More Cross-Browser Consistency with Font Sizes | 123

http://www.clagnut.com/
http://www.clagnut.com/

As we discussed earlier, an em unit is the default font size of the user’s browser. With
the manipulation of the default font size on the body element, 1 em unit is now set to
10 pixels:

1em = 10px

This Solution then allows the web developer pixel-size control over her fonts without
the browser limitations manifested in the use of pixels as a value.

For example, if a web developer wants to set the size of a heading to 24 pixels and the
text in a paragraph to 15 pixels, the rule sets based on this Solution would look like the
following:

body {
 font-size: 62.5%;
}
input, select, th, td {
 font-size: 1em;
}
h2 {
 font-size: 2.4em;
}
p {

Figure 3-11. The font-size keywords on display

124 | Chapter 3: Web Typography

 font-size: 1.5em;
}

See Also
The original article by Richard Rutter detailing the Solution at http://www.clagnut.com/
blog/348/; the article “CSS Design: Size Matters,” written by Todd Fahrner (an invited
member to the W3C CSS Working Group), available at http://www.alistapart.com/ar
ticles/sizematters/; the CSS 2.1 specification at http://www.w3.org/TR/CSS21/cascade
.html#q1 for more on how a browser determines values; the CSS2 specification for
length units at http://www.w3.org/TR/REC-CSS2/syndata.html#length-units; the “Font
Size” section in Chapter 5 of CSS: The Definitive Guide by Eric A. Meyer (O’Reilly)

3.8 Setting Hyphens, Em Dashes, and En Dashes
Problem
You want to use em and/or en dashes instead of a hyphen, as shown in Figure 3-12.

Figure 3-12. Using em and en dashes

Solution
Use the em dash with the decimal representation —:

<p>Look I don't care if IE6 can’t render the page
correctl—what? we’re having a baby?</p>

For the en dash, use the decimal representation –:

<p>I took the Myers–Brigg test and all I got was this
“I'm hard to talk to” t-shirt at work</p>

3.8 Setting Hyphens, Em Dashes, and En Dashes | 125

http://www.clagnut.com/blog/348/
http://www.clagnut.com/blog/348/
http://www.alistapart.com/articles/sizematters/
http://www.alistapart.com/articles/sizematters/
http://www.w3.org/TR/CSS21/cascade.html#q1
http://www.w3.org/TR/CSS21/cascade.html#q1
http://www.w3.org/TR/REC-CSS2/syndata.html#length-units
http://oreilly.com/catalog/9780596527334/

Discussion
A common way to represent em and en dashes is through their HTML entities, &em;
and &en;, respectively. However, for improved cross-browser and cross-platform sup-
port, it’s better to use the decimal values instead.

See Also
A breakdown of em and en dashes at http://www.alistapart.com/articles/emen/

3.9 Centering Text
Problem
You want to center text within a paragraph or a heading.

Solution
Use the text-align property with the value set to center:

h3 {
 text-align: center;
}
p {
 text-align: center;
}

Discussion
The center value for the text-align property is designed to control the alignment of
inline content within a block element.

See Also
The CSS 2.1 specification for text-align at http://www.w3.org/TR/CSS21/text.html
#alignment-prop; Recipe 4.3 for centering various items in a web page

3.10 Setting Text to Be Justified
Problem
You want to align text to be justified on both the left and right sides, as shown in
Figure 3-13.

126 | Chapter 3: Web Typography

http://www.alistapart.com/articles/emen/
http://www.w3.org/TR/CSS21/text.html#alignment-prop
http://www.w3.org/TR/CSS21/text.html#alignment-prop

Figure 3-13. A paragraph justified on both sides

Solution
Use the text-align property:

P {
 width: 600px;
 text-align: justify;
}

Discussion
How well does web-based text justification work? According to the CSS 2.1 specifica-
tion, it depends on the algorithms developed by the engineers who made the browser
being used to view the web page. Because there isn’t an agreed-upon algorithm for
justifying text, the look of the text varies from browser to browser, even though the
browser vendor technically supports justification.

Browser support for the property is good in Internet Explorer, Safari, Firefox, Chrome,
and Opera. In those browsers, justified text looks pleasing to the eye. In other browsers,
justified text may look bad; for example, it might have a lot of whitespace between
words.

3.10 Setting Text to Be Justified | 127

Justified text is difficult for dyslexics to read. For more information on
designing for dyslexia, see http://www.thepickards.co.uk/index.php/
200512/designing-for-dyslexia/.

See Also
The CSS 2.1 specification for text-align at http://www.w3.org/TR/REC-CSS2/text.html
#alignment-prop

3.11 Indicating an Overflow of Text with an Ellipsis
Problem
You want to keep from expanding beyond the desired boundaries of a parent element,
as shown in Figure 3-14.

Figure 3-14. Additional text marked with an ellipsis

Solution
Use the text-overflow property (along with Opera’s proprietary -o-text-overflow
property):

p {
 border: 1px solid black;
 width: 150px;
 height: 100px;
 padding: 12px;

128 | Chapter 3: Web Typography

http://www.thepickards.co.uk/index.php/200512/designing-for-dyslexia/
http://www.thepickards.co.uk/index.php/200512/designing-for-dyslexia/
http://www.w3.org/TR/REC-CSS2/text.html#alignment-prop
http://www.w3.org/TR/REC-CSS2/text.html#alignment-prop

 border: 1px solid black;
 overflow: hidden;
 padding: 1em;
 text-overflow: ellipsis;
 -o-text-overflow: ellipsis;
}
p.nowrap {
 white-space: nowrap;
 height: auto;
}

Discussion
Currently, Safari and Opera support text-overflow for the clipping text and substitut-
ing ellipsis (...).

See Also
The CSS3 specification for text-overflow at http://www.w3.org/TR/2003/CR-css3-text
-20030514/#text-overflow

3.12 Removing Space Between Headings and Paragraphs
Problem
You want to reduce the space between a heading and a paragraph.

Solution
Set the margin and padding for both the heading and paragraph to 0:

h2 + p {
 margin-top: 0;
 padding-top: 0;
}
h2 {
 margin-bottom: 0;
 padding-bottom: 0;
}
p {
 margin: 1em 0 0 0;
 padding: 0;
}

Discussion
By using an attribute selector, you are setting the margin and padding between a para-
graph and a heading to 0.

3.12 Removing Space Between Headings and Paragraphs | 129

http://www.w3.org/TR/2003/CR-css3-text-20030514/#text-overflow
http://www.w3.org/TR/2003/CR-css3-text-20030514/#text-overflow

Browsers have their own internal stylesheets that dictate the default values for HTML
elements. These styles include predetermined values for margin and padding of ele-
ments for headings and paragraphs.

These default values make it easy for people to read nonstyled documents, but are often
undesired by web developers.

See Also
The CSS 2.1 specification’s default stylesheet for HTML4 at http://www.w3.org/TR/
CSS21/sample.html

3.13 Setting a Simple Initial Cap
Problem
You want a paragraph to begin with an initial cap.

Solution
Mark up the paragraph of content with a p element:

<p>Online, activity of exchanging ideas is sped up. The
distribution of messages from the selling of propaganda to the
giving away of disinformation takes place at a blindingly fast
pace thanks to the state of technology …</p>

Use the :first-letter pseudo-element to stylize the first letter of the paragraph, as
shown in Figure 3-15:

p:first-letter {
 font-size: 1.2em;
 background-color: black;
 color: white;
}

Figure 3-15. A simple initial cap

130 | Chapter 3: Web Typography

http://www.w3.org/TR/CSS21/sample.html
http://www.w3.org/TR/CSS21/sample.html

Discussion
The CSS specification offers an easy way to stylize the first letter in a paragraph as a
traditional initial or drop cap: use the :first-letter pseudo-element.

:first-letter has gained support in modern browsers, but another solution is needed
to support older versions of Internet Explorer.

Wrap a span element with a class attribute around the first letter of the first sentence
of the first paragraph:

<p>Online, activity of exchanging ideas is sped
up. The distribution of messages from the selling of propaganda
to the giving away of disinformation takes place at a blindingly
fast pace thanks to the state of technology …</p>

Then set the style for the initial cap:

p .initcap {
 font-size: 1.2em;
 background-color: black;
 color: white;
}

Initial caps, also known as versals, traditionally are enlarged in print to anything from
a few points to three lines of text.

See Also
The CSS 2.1 specification for :first-letter at http://www.w3.org/TR/CSS21/selector
.html#x52

3.14 Setting a Larger, Centered Initial Cap
Problem
You want to place a large initial cap in the center of a paragraph.

Solution
Create the decoration that sets the text indent for the paragraph (see Figure 3-16):

p {
 text-indent: 37%;
 line-height: 1em;
}
p:first-letter {
 font-size: 6em;
 line-height: 0.6em;
 font-weight: bold;
}

3.14 Setting a Larger, Centered Initial Cap | 131

http://www.w3.org/TR/CSS21/selector.html#x52
http://www.w3.org/TR/CSS21/selector.html#x52

Figure 3-16. A larger, centered initial cap

Discussion
This Solution works due to interaction through the use of the text-indent property.
The text-indent property moves the first line toward the middle of the paragraph.

The value is set to 37%, which is a little bit more than one-third the distance from the
left side of the paragraph, as shown in Figure 3-17, but not enough to “center” the
initial cap.

Figure 3-17. The indented text

132 | Chapter 3: Web Typography

Note that this recipe for centering the initial cap works, technically, when the charac-
ter’s width is equal to 26% of the paragraph’s width. In other words, if the letter for
the initial cap or the width of the paragraph is different for your own work, adjustments
to the values in the CSS rules are necessary to move the initial cap to the center.

See Also
Recipe 3.30 for adjusting leading with line height; the CSS 2.1 specification for text-
indent at http://www.w3.org/TR/CSS21/text.html#propdef-text-indent

3.15 Setting an Initial Cap with Decoration (Imagery)
Problem
You want to use an image for an initial cap.

Solution
Wrap a span element around the first letter of the first sentence of the first paragraph:

<p>Online, activity of exchanging
ideas is sped up. The distribution of messages from the selling of
propaganda to the giving away of disinformation takes place at a
blindingly fast pace thanks to the state of technology…</p>

Set the contents inside the span to be hidden:

span.initcap {
 display: none;
}

Then set an image to be used as the initial cap in the background of the paragraph (see
Figure 3-18):

p {
 line-height: 1em;
 background-image: url(initcap-o.gif);
 background-repeat: no-repeat;
 text-indent: 35px;
 padding-top: 45px;
}

Discussion
The first step of this Solution is to create an image for use as the initial cap. Once you
have created the image, make a note of its width and height. In this example, the image
of the letter measures 55 × 58 pixels (see Figure 3-19).

3.15 Setting an Initial Cap with Decoration (Imagery) | 133

http://www.w3.org/TR/CSS21/text.html#propdef-text-indent

Next, hide the first letter of the HTML text by setting the display property to none.
Then put the image in the background of the paragraph, making sure that the image
doesn’t repeat by setting the value of background-repeat to no-repeat:

background-image: url(initcap-o.gif);
background-repeat: no-repeat;

With the measurements already known, set the width of the image as the value for
text-indent and the height of the image as the padding for the top of the paragraph
(see Figure 3-20):

text-indent: 55px;
padding-top: 58px;

Then change the text-indent and padding-top values so that the initial cap appears to
rest on the baseline, as was shown in Figure 3-18.

Figure 3-18. An image used as an initial cap

Figure 3-19. The image of the initial cap

134 | Chapter 3: Web Typography

Figure 3-20. Adjusting the space for the initial cap

Allow for accessibility

Note that users with images turned off aren’t able to see the initial cap, especially since
the Solution doesn’t allow for an alt attribute for the image. If you want to use an image
but still have an alt attribute show when a user turns off images, use an image to replace
the HTML character:

<p>nline, activity of exchanging
ideas is sped up. The distribution of messages from the selling
of propaganda to the giving away of disinformation takes place at
a blindingly fast pace thanks to the state of technology…</p>

Note that although the alt attribute is displayed in this Solution, the ability to kern the
space between the initial cap and the HTML text is lost. The HTML text begins exactly
at the right side of the image and can’t be moved closer to the letter being displayed in
the graphic itself.

See Also
Recipe 3.13 for setting a simple initial cap

3.16 Creating a Heading with Stylized Text
Problem
You want to use CSS properties to design a heading that is different from the default.
For example, you want to put the heading in Figure 3-21 into italics, as shown in
Figure 3-22.

3.16 Creating a Heading with Stylized Text | 135

Solution
First, properly mark up the heading:

<h2>Designing Instant Gratification</h2>
<p>Online, activity of exchanging ideas is sped up. The
distribution of messages from the selling of propaganda to the
giving away of disinformation takes place at a blindingly fast
pace thanks to the state of technology…</p>

Then, use the font shorthand property to easily change the style of the heading:

h2 {
 font: bold italic 2em Georgia, Times, "Times New Roman", serif;
 margin: 0;

Figure 3-21. The default rendering of a heading

Figure 3-22. The stylized text of a heading

136 | Chapter 3: Web Typography

 padding: 0;
}
p {
 margin: 0;
 padding: 0;
}

Discussion
A shorthand property combines several properties into one. The font property is just
one of these timesavers. One font property can represent the following values:

• font-style

• font-variant

• font-weight

• font-size/line-height

• font-family

The first three values can be placed in any order; the others need to be in the order
shown.

When you want to include the line-height value, put a forward slash between the
font-size value and the line-height value:

p {
 font: 1em/1.5em Verdana, Arial, sans-serif;
}

When setting the style headings, remember that browsers have their own default values
for padding and margins of paragraphs and heading tags. These default values are gen-
erally based on mathematics, not aesthetics, so don’t hesitate to adjust them to further
enhance the look of your web document.

See Also
The CSS 2.1 specification for the font shorthand property at http://www.w3.org/TR/
CSS21/fonts.html#propdef-font

3.17 Creating a Heading with Stylized Text and Borders
Problem
You want to stylize the borders on the top and bottom of a heading, as shown in
Figure 3-23.

3.17 Creating a Heading with Stylized Text and Borders | 137

http://www.w3.org/TR/CSS21/fonts.html#propdef-font
http://www.w3.org/TR/CSS21/fonts.html#propdef-font

Figure 3-23. A heading stylized with borders

Solution
Use the border-top and border-bottom properties when setting the style for the heading:

h2 {
 font: bold italic 2em Georgia, Times, "Times New Roman", serif;
 border-bottom: 2px dashed black;
 border-top: 10px solid black;
 margin: 0;
 padding: 0.5em 0 0.5em 0;
 font-size: 1em;
}
p {
 margin: 0;
 padding: 10px 0 0 0;
}

Discussion
In addition to top and bottom borders, a block-level element also can have a border on
the left and right sides via the border-left and border-right properties, respectively.
The border-top, border-bottom, border-left, and border-right properties are short-
hand properties that enable developers to set the width, style, and color of each side of
a border.

138 | Chapter 3: Web Typography

Without the two shorthand border declarations in the Solution, the CSS rule for the
heading would be expanded by four extra declarations:

h2 {
 font: bold italic 2em Georgia, Times, "Times New Roman", serif;
 border-bottom-width: 2px;
 border-bottom-style: dashed;
 border-bottom-color: black;
 border-top-width: 10px;
 border-top-style: solid;
 border-top-color: black;
 margin: 0;
 padding: 0.5em 0 0.5em 0;
 font-size: 1em;
}

Also available is a shorthand property for the top, bottom, left, and right shorthand
properties: border. The border property sets the same style for the width, style, and
color of the border on each side of an element:

h2 {
 border: 3px dotted #33333;
}

When setting the borders, make sure to adjust the padding to put enough whitespace
between the borders and the text of the heading. This aids in readability. Without
enough whitespace on a heading element, the text of the heading can appear cramped.

See Also
Recipe 5.5 for more information on styles of borders and the shorthand border property

3.18 Stylizing a Heading with Text and an Image
Problem
You want to place a repeating image at the bottom of a heading, like the grass in
Figure 3-24.

Solution
Use the background-image, background-repeat, and background-position properties:

h2 {
 font: bold italic 2em Georgia, Times, "Times New Roman", serif;
 background-image: url(tall_grass.jpg);
 background-repeat: repeat-x;
 background-position: bottom;
 border-bottom: 10px solid #666;
 margin: 10px 0 0 0;
 padding: 0.5em 0 60px 0;
}

3.18 Stylizing a Heading with Text and an Image | 139

Discussion
Make a note of the height of the image used for the background. In this example, the
height of the image is 100 pixels (see Figure 3-25).

Figure 3-25. An image of tall grass

Set the background-repeat property to a value of repeat-x, which will cause the image
to repeat horizontally:

background-image: url(tall_grass.jpg);
background-repeat: repeat-x;

The image’s location for the value of url() is relative to its position to
the stylesheet and not the HTML document.

Figure 3-24. A background image used with a heading

140 | Chapter 3: Web Typography

Next, set the background-position property to bottom:

background-position: bottom;

The background-position property can take up to two values corresponding to the hor-
izontal and vertical axes. Values for background-position can be a length unit (such as
pixels), a percentage, or a keyword. To position an element on the x-axis, use the
keyword value left, center, or right. For the y-axis, use the keyword value top,
center, or bottom.

When the location of the other axis isn’t present, the image is placed in the center of
that axis, as shown in Figure 3-26:

background-position: bottom;

Figure 3-26. The image aligned on the bottom of the y-axis and in the middle of the x-axis

So, in this Solution, the image is placed at the bottom of the y-axis but repeats along
the x-axis.

See Also
Recipe 4.5 for setting a background image in an entire web page

3.19 Creating a Pull Quote with HTML Text
Problem
You want to stylize the text for a pull quote so that it is different from the default.
Undifferentiated quotes aren’t obviously from another writer, whereas stylized quotes
are (see Figure 3-27).

3.19 Creating a Pull Quote with HTML Text | 141

Figure 3-27. A stylized pull quote

Solution
Use the blockquote element to indicate the pull quote semantically in the markup:

<blockquote>
 <p>Ma quande lingues coalesce, li grammatica del resultant
 lingue es plu simplic e regulari quam ti del coalescent
lingues.</p>
 <div class="source">John Smith at the movies</div>
</blockquote>

With CSS, apply the margin, padding, and color values to the blockquote element:

blockquote {
 margin: 0;
 padding: 0;
 color: #555;
}

Next, set the style for the p and div elements nested in the blockquote element:

blockquote p {
 font: italic 1em Georgia, Times, "Times New Roman", serif;
 font-size: 1em;
 margin: 1.5em 2em 0 1.5em;
 padding: 0;
}
blockquote .source {

142 | Chapter 3: Web Typography

 text-align: right;
 font-style: normal;
 margin-right: 2em;
}

Discussion
A pull quote is used in design to grab a reader’s attention so that he will stick around
and read more. One easy way to create a pull quote is to change the color of a portion
of the main text.

Improve on this by adding contrast: change the pull quote’s generic font family so that
it is different from that of the main text. For example, if the main text of a web document
is set in sans serif, set the pull quote text to a serif font.

See Also
Recipes 3.21 and 3.22 for more information on designing pull quotes with CSS

3.20 Placing a Pull Quote to the Side of a Column
Problem
You want to place a pull quote to the side of a main passage of text.

Solution
Apply padding to the left side of the text:

#content {
 padding-left: 200px;
}

Then use the float property to let the content wrap around the pull quote:

blockquote {
 padding: 0;
 margin: 0;
 float: left;
 width: 180px;
 text-align: right;
 color: #666;
}

Next, set a negative margin value to pull the pull quote in the padding area on the left
side of the text, as shown in Figure 3-28:

blockquote {
 padding: 0;
 margin: 0;
 float: left;
 width: 180px;

3.20 Placing a Pull Quote to the Side of a Column | 143

 margin-left: −200px;
 text-align: right;
 color: #666;
}

Figure 3-28. A pull quote to the left of a column

Discussion
Setting the pull quote to the left side of the text is a two-step process.

First, set enough room for the pull quote through the use of padding on the element
that contains the entire passage. Then set a negative value for the blockquote on a floated
pull quote to pull it out of the passage of text completely.

This technique is not limited to pull quotes, but is also useful for placing photos to the
left of text to reinforce the content.

See Also
Chapter 10 for more ways to flow text in a web page

144 | Chapter 3: Web Typography

3.21 Creating a Pull Quote with Borders
Problem
You want to stylize a pull quote with borders on the top and bottom, as in Figure 3-29.

Figure 3-29. A stylized pull quote using borders

Solution
To put borders on the left and right instead of the top and bottom, use the border-
left and border-right properties:

border-left: 1em solid #999;
border-right: 1em solid #999;

Use the blockquote element to mark up the pull quote content:

<blockquote>
 <p>«Ma quande lingues coalesce, li
grammatica del.»</p>
</blockquote>

Next, set the CSS rules for the border and text within the pull quote:

blockquote {
 float: left;
 width: 200px;

3.21 Creating a Pull Quote with Borders | 145

 margin: 0 0.7em 0 0;
 padding: 0.7em;
 color: #666;
 background-color: black;
 font-family: Georgia, Times, "Times New Roman", serif;
 font-size: 1.5em;
 font-style: italic;
 border-top: 1em solid #999;
 border-bottom: 1em solid #999;
}
blockquote p {
 margin: 0;
 padding: 0;
 text-align: left;
 line-height: 1.3em;
}

Discussion
Set the float property as well as the width property for the blockquote element. These
two CSS properties allow the main content to wrap around the pull quote:

float: left;
width: 200px;

Contrast the pull quote with the surrounding text by changing the quote’s foreground
and background colors:

color: #666;
background-color: black;

Use the border-top and border-bottom properties to match the color of the text in the
pull quote:

border-top: 1em solid #999;
border-bottom: 1em solid #999;

See Also
Chapter 7 for several page-layout techniques that take advantage of the float property;
Recipe 3.17 for styling headings with borders; Recipes 13.3 and 13.4 for more on de-
signing with contrast

3.22 Creating a Pull Quote with Images
Problem
You want to stylize a pull quote with images on either side, such as the curly braces in
Figure 3-30.

146 | Chapter 3: Web Typography

Solution
Use the blockquote element to mark up the pull quote content:

<blockquote>
 <p>Ma quande lingues coalesce, li grammatica del resultant
lingue es plu simplic e regulari quam ti.</p>
</blockquote>

Then set the style for the pull quote, placing one image in the background of the
blockquote element and another in the background of the p element:

blockquote {
 background-image: url(bracket_left.gif);
 background-repeat: no-repeat;
 float: left;
 width: 175px;
 margin: 0 0.7em 0 0;
 padding: 10px 0 0 27px;
 font-family: Georgia, Times, "Times New Roman", serif;
 font-size: 1.2em;
 font-style: italic;
 color: black;
}
blockquote p {
 margin: 0;
 padding: 0 22px 10px 0;
 width:150px;

Figure 3-30. A pull quote with images

3.22 Creating a Pull Quote with Images | 147

 text-align: justify;
 line-height: 1.3em;
 background-image: url(bracket_right.gif);
 background-repeat: no-repeat;
 background-position: bottom right;
}

Discussion
For this Solution, the images for the pull quote come in a pair, with one at the upper-
left corner and the other at the bottom-right corner. Through CSS, you can assign only
one background image per block-level element.

The workaround is to give these images the proper placement; put one image in the
background of the blockquote element and the other in the p element that is a child of
the blockquote element:

blockquote {
 background-image: url(bracket_left.gif);
 background-repeat: no-repeat;
 float: left;
 width: 175px;
}
blockquote p {
 background-image: url(bracket_right.gif);
 background-repeat: no-repeat;
 background-position: bottom right;
}

Then adjust the padding, margin, and width of the blockquote and p elements so that
you have an unobstructed view of the images:

blockquote {
 background-image: url(bracket_left.gif);
 background-repeat: no-repeat;
 float: left;
 width: 175px;
 margin: 0 0.7em 0 0;
 padding: 10px 0 0 27px;
}
blockquote p {
 margin: 0;
 padding: 0 22px 10px 0;
 width: 150px;
 background-image: url(bracket_right.gif);
 background-repeat: no-repeat;
 background-position: bottom right;
}

A benefit of this Solution is that if the text is resized, as shown in Figure 3-31, the images
(braces) reposition themselves.

148 | Chapter 3: Web Typography

See Also
Recipe 7.20

3.23 Setting the Indent in the First Line of a Paragraph
Problem
You want to place an indent in the first line of each paragraph, as shown in Figure 3-32.

Solution
Use the text-indent property to create the indent:

p {
 text-indent: 2.5em;
 margin: 0 0 0.5em 0;
 padding: 0;
}

Figure 3-31. The background images staying in the corners as the text is resized

3.23 Setting the Indent in the First Line of a Paragraph | 149

Figure 3-32. Paragraphs with first lines indented

Discussion
The text-indent property can take absolute and relative length units as well as per-
centages. If you use percentages, the percentage refers to the element’s width and not
the total width of the page. In other words, if the indent is set to 35% of a paragraph
that is set to a width of 200 pixels, the width of the indent is 70 pixels.

See Also
The CSS 2.1 specification for text-indent at http://www.w3.org/TR/CSS21/text.html
#propdef-text-indent

3.24 Setting the Indent of Entire Paragraphs
Problem
You want to indent entire paragraphs, as shown in Figure 3-33.

150 | Chapter 3: Web Typography

http://www.w3.org/TR/CSS21/text.html#propdef-text-indent
http://www.w3.org/TR/CSS21/text.html#propdef-text-indent

Figure 3-33. Indented paragraphs

Solution
To achieve the desired effect, use class selectors:

p.normal {
 padding: 0;
 margin-left: 0;
 margin-right: 0;
}
p.large {
 margin-left: 33%;
 margin-right: 5%;
}
p.medium {
 margin-left: 15%;
 margin-right: 33%;
}

Then place the appropriate attribute in the markup:

<p class="normal">Lorem ipsum dolor sit amet, consectetuer
adipiscing elit, sed diam nonummy nibh euismod tincidunt ut
laoreet dolore magna al iquam erat volutpat.</p>
<p class="large">Epsum factorial non deposit quid pro quo hic
escorol. Olypian quarrels et gorilla congolium sic ad nauseum.
Souvlaki ignitus carborundum e pluribus unum.</p>
<p class="medium ">Li Europan lingues es membres del sam

3.24 Setting the Indent of Entire Paragraphs | 151

familie. Lor separat existentie es un myth. Por scientie, musica,
sport etc., li tot Europa usa li sam vocabularium</p>

Discussion
Class selectors pick any HTML element that uses the class attribute. The difference
between class and type selectors is that type selectors pick out every instance of the
HTML element. In the following two CSS rules, the first selector is a type selector that
signifies that all content marked as h2 be displayed as red, and the second selector is a
class selector that sets the padding of an element to 33%:

h2 {
 color: red;
}
.largeIndent {
 padding-left: 33%;
}

Combining both type and class selectors on one element provides greater specificity
over the styling of elements. In the following markup, the third element is set to red
and also has padding on the left set to 33%:

<h2>This is red.</h2>
<h3 class="largeIndent">This has a rather large indent.</h3>
<h2 class="largeIndent">This is both red and indented.</h2>

An alternative solution to class selectors is to apply the indent using margins and then
use adjacent sibling selectors to apply the style to the paragraphs:

p, p+p+p+p {
 padding: 0;
 margin-left: 0;
 margin-right: 0;
}
p+p, p+p+p+p+p {
 margin-left: 33%;
 margin-right: 5%;
}
p+p+p, p+p+p+p+p+p {
 margin-left: 15%;
 margin-right: 33%;
}

This method takes advantage of the adjacent sibling selectors, which are represented
by two or more regular selectors separated by plus sign(s). For example, the h2+p
selector stylizes the paragraph immediately following an h2 element.

For this recipe, we want to stylize certain paragraphs in the order in which they appear
on-screen. For example, p+p selects the paragraph element that follows another para-
graph. However, when there are more than two paragraphs, the third paragraph (as
well as others after the third paragraph) is rendered in the same style as the second
paragraph. This occurs because the third paragraph is immediately followed by a
paragraph.

152 | Chapter 3: Web Typography

To separate the styles from the second and third paragraphs, set up another CSS rule
for the third paragraph that selects three paragraphs that follow each other:

p+p+p {
 margin-left: 15%;
 margin-right: 33%;
}

Then, build off of these CSS rules by grouping the selectors. Instead of writing two CSS
rules to stylize the third and sixth paragraphs, separate the selectors by a comma and
a space:

p+p+p, p+p+p+p+p+p {
 margin-left: 15%;
 margin-right: 33%;
}

The main problem with adjacent sibling selectors is that they aren’t supported by all
versions of Internet Explorer for Windows. Therefore, these users will not see the
paragraphs indented. Adjacent sibling selectors are supported in Safari, Firefox,
Chrome, and Opera. Internet Explorer 8 has almost complete support.

Instead of using attribute selectors, another way to approach this Solu-
tion is to use the :nth-child() selector to pinpoint which paragraphs
will be applied. However, attribute selectors enjoy more browser sup-
port than :nth-child() at the time of this writing.

See Also
The CSS 2.1 specification for class selectors at http://www.w3.org/TR/CSS21/selector
.html#class-html; the CSS 2.1 specification for adjacent sibling selectors at http://www
.w3.org/TR/CSS21/selector.html#adjacent-selectors

3.25 Creating a Hanging Indent
Problem
You want to create a hanging indent.

Solution
Use a negative value for the text-indent property:

p.hanging {
 text-indent: −5em;
}

3.25 Creating a Hanging Indent | 153

http://www.w3.org/TR/CSS21/selector.html#class-html
http://www.w3.org/TR/CSS21/selector.html#class-html
http://www.w3.org/TR/CSS21/selector.html#adjacent-selectors
http://www.w3.org/TR/CSS21/selector.html#adjacent-selectors

Discussion
The typographic treatment of a hanging indent is already commonplace in most brows-
ers in definition lists. With this simple code, a series of hanging indents (see Fig-
ure 3-34) is created without breaking a proverbial sweat:

<dl>
 <dt>Hanging Indent</dt>
 <dd>A common typographic effect where the first line of a paragraph is aligned
with the left margin while the proceeding lines are indented. The technique
creates the visual effect where the first line is left hanging over other lines
of text.</dd>
</dl>

Figure 3-34. Definition lists that render hanging indents by default

When you want a hanging indent on just a paragraph (not a list), use of the definition
list markup will not suffice. The straightforward approach shown in the Solution in-
volves the use of the text-indent property in CSS.

Hanging indents safely

Before putting the text-indent property into a stylesheet, make sure the code is im-
plemented the right way. For example, if you put just the text-indent property into a
CSS rule along with some basic font styling properties, that hanging indent could cause
a legibility issue.

In Figure 3-35, notice that the hanging indent extends to the left of the viewport. Read-
ers might be able to determine the words being cropped off through the context of the
rest of the paragraph; however, that’s simply an unneeded burden to place on them.

154 | Chapter 3: Web Typography

To work around this situation, apply a value equal to the indent to the left margin of
the paragraph. The hanging indent then extends over the area already made clear by
the margin, ensuring that the text in the hanging indent remains visible:

p.hanging {
 text-indent: −5em;
 margin-left: 5em;
}

Figure 3-35. The hanging indent, exiting stage left

The paired hanging indent

In addition to having just the first line indent, moving a heading to the left as well results
in a paired hanging indent:

#content p.hanging {
 text-indent: −60px;
 margin: 0 0 0 60px;
 padding: 0;
}
#content h3 {
 text-indent: −60px;
 margin: 0 0 0 60px;
 padding: 0;
}

The HTML markup for this effect follows:

<div id="content">
 <h3>One more time with feeling</h3>
 <p class="hanging">
Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy nibh
euismod tincidunt ut laoreet dolore magna aliquam erat volutpat…</p>
</div>

3.25 Creating a Hanging Indent | 155

Or with some slight adjustment, have only the heading become the hanging indent:

#content p {
 margin: 0;
 padding: 0 0 0 60px;
}
#content h3 {
 text-indent: −60px;
 margin: 0 0 0 60px;
 padding: 0;
}

The refined HTML markup follows:

<div id="content">
 <h3>One more time with feeling</h3>
 <p>Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy
nibh euismod tincidunt ut laoreet dolore magna aliquam erat
volutpat…</p>
</div>

See Also
The CSS 2.1 specification for text-indent at http://www.w3.org/TR/CSS21/text.html
#propdef-text-indent

3.26 Styling the First Line of a Paragraph
Problem
You want to set the first line of a paragraph in boldface, as in Figure 3-36.

Solution
Use the :first-line pseudo-element to set the style of the first line:

p:first-line {
 font-weight: bold;
}

Discussion
Just like a class selector, a pseudo-element enables you to manipulate the style of parts
of a web document. Unlike a class selector, however, resizing a browser window or
changing the size of the font can change the area marked by a pseudo-element. In this
Solution, the amount of text in the first line can change if the browser is resized, as
shown in Figure 3-37.

156 | Chapter 3: Web Typography

http://www.w3.org/TR/CSS21/text.html#propdef-text-indent
http://www.w3.org/TR/CSS21/text.html#propdef-text-indent

See Also
The CSS 2.1 specification for :first-line at http://www.w3.org/TR/CSS21/selector
.html#first-line-pseudo

Figure 3-36. The first line set to bold

Figure 3-37. The amount of text changing when the browser is resized

3.26 Styling the First Line of a Paragraph | 157

http://www.w3.org/TR/CSS21/selector.html#first-line-pseudo
http://www.w3.org/TR/CSS21/selector.html#first-line-pseudo

3.27 Styling the First Line of a Paragraph with an Image
Problem
You want to stylize the first line of a paragraph and include an image, as shown in
Figure 3-38.

Figure 3-38. The first line with a background image

Solution
Use the background-image property within the :first-line pseudo-element:

p:first-line {
 font-size: 2em;
 background-image: url(background.gif);
}

Discussion
With the :first-line pseudo-element, you can apply styles only to the first line of text
of an element, and not the width of the element itself.

In addition to the background-image property, the :first-line pseudo-element also
supports the following properties, allowing for greater design control:

• font

• color

• background

• word-spacing

• letter-spacing

158 | Chapter 3: Web Typography

• text-decoration

• vertical-align

• text-transform

• text-shadow

• line-height

• clear

See Also
The CSS 2.1 specification for :first-line at http://www.w3.org/TR/CSS21/selector
.html#first-line-pseudo

3.28 Creating a Highlighted Text Effect
Problem
You want to highlight a portion of the text in a paragraph, as in Figure 3-39.

Figure 3-39. Highlighted text

Solution
Use the strong element to mark up the portions of text you want to highlight:

<p>The distribution of messages from the selling of propaganda
to the giving away of disinformation takes place at a blindingly
fast pace thanks to the state of technology… This
change in how fast information flows revolutionizes the
culture.</p>

3.28 Creating a Highlighted Text Effect | 159

http://www.w3.org/TR/CSS21/selector.html#first-line-pseudo
http://www.w3.org/TR/CSS21/selector.html#first-line-pseudo

Then set the CSS rule to set the highlighted text through the background-color property:

strong {
 font-weight: normal;
 background-color: yellow;
}

Discussion
Although the strong element is used in this Solution, you also can use the em element
instead of the strong element to mark highlighted text. The HTML 4.01 specification
states that you should use em for marking emphasized text, and use strong to indicate
“stronger emphasis.”

Once the text has been marked, set the highlighter color with the background-color
property. Because some browsers apply a bold weight to text marked as strong, set the
font-weight to normal. When using the em element, be sure to set the font-style to
normal as this keeps browsers from setting the type in italic, as shown in the following
code listing:

em {
 font-style: normal;
 background-color: #ff00ff;
}

See Also
The HTML specification for strong and em at http://www.w3.org/TR/html401/struct/
text.html#edef-STRONG

3.29 Changing the Text Selection Color
Problem
You want to set the color of highlighted text when it is selected, as shown in Figure 3-40.

Solution
Use the ::selection pseudo-element to set both the color and the background color of
text:

::selection {
 color: #90c;
 background: #cf0;
}

Discussion
At the time of this writing, the only browser supporting the ::selection pseudo-
element is Safari. However, Firefox has its own proprietary CSS selector.

160 | Chapter 3: Web Typography

http://www.w3.org/TR/html401/struct/text.html#edef-STRONG
http://www.w3.org/TR/html401/struct/text.html#edef-STRONG

To include support for Firefox in conjunction with Safari, duplicate the ::selection
CSS rule for the ::-moz-selection property:

::selection {
 color: #90c;
 background: #cf0;
}
::-moz-selection {
 color: #90c;
 background: #cf0;
}

See Also
The CSS3 specification for UI element fragments at http://www.w3.org/TR/2001/CR
-css3-selectors-20011113/#UIfragments

3.30 Changing Line Spacing
Problem
You want to leave more or less space between lines. Figure 3-41 shows the browser
default, and Figure 3-42 shows paragraphs with more space between lines.

Figure 3-40. Color set when selecting a passage of text with the mouse

3.30 Changing Line Spacing | 161

http://www.w3.org/TR/2001/CR-css3-selectors-20011113/#UIfragments
http://www.w3.org/TR/2001/CR-css3-selectors-20011113/#UIfragments

Figure 3-41. The default leading of a paragraph

Figure 3-42. Increased leading between the lines of text

162 | Chapter 3: Web Typography

Solution
Use the line-height property:

p {
 line-height: 1.5em;
}

Discussion
As the line-height value increases, the distance between the lines of text grows. As the
value decreases, the distance between the lines of text shrinks, and eventually the lines
overlap each other. Designers notice a similarity to line height and leading.

A line-height value can be a number and a unit such as points, just a number, or a
number and a percent symbol. If the line-height value is just a number, that value is
used as a percentage or a scale unit for the element itself as well as for child elements.
Negative values aren’t allowed for line-height.

The following example effectively sets the font-size to 12 pixels and the line-height
to 14.4 pixels [(10px * 1.2) * 1.2px = 14.4px]:

body {
 font-size: 10px;
}
p {
 font-size: 1.2em;
 line-height: 1.2;
}

You also can set the line-height property with the shorthand font property when
paired with a font-size value. The following line transforms any text in a p element to
have a font size of 1 em, to have a line-height of 1.5 em, and to display in a sans serif
typeface:

p {
 font: 1em/1.5em sans-serif;
}

See Also
The CSS 2.1 specification for line-height at http://www.w3.org/TR/CSS21/visudet.html
#propdef-line-height; Recipe 3.15 for more information on the font property

3.31 Adding a Graphic Treatment to HTML Text
Problem
You want to apply a repeating graphic treatment on top of HTML text—for example,
worn edges or stripes—as shown in Figure 3-43.

3.31 Adding a Graphic Treatment to HTML Text | 163

http://www.w3.org/TR/CSS21/visudet.html#propdef-line-height
http://www.w3.org/TR/CSS21/visudet.html#propdef-line-height

Solution
Place a span element after the opening tag of a heading element, but before the HTML
text:

<h2>Designing Instant Gratification</h2>

Next, use a version of the Gilder/Levin image replacement technique (http://www.mez
zoblue.com/tests/revised-image-replacement/#gilderlevin) to place a PNG file with a
seamless pattern over the HTML text:

h2 {
 font:3em/1em Times, serif;
 font-weight: bold;
 margin:0;
 position: relative;
 overflow: hidden;
 float: left;
 text-shadow: 0 1px 0 rgba(153,153,153,.8);
}
h2 span {
 position: absolute;
 width: 100%;
 height: 5em;
 background: url(title-glass.png);
}
p {
 clear: left;
}

Figure 3-43. A PNG image repeating over the top half of the HTML text to create a glassy appearance

164 | Chapter 3: Web Typography

http://www.mezzoblue.com/tests/revised-image-replacement/#gilderlevin
http://www.mezzoblue.com/tests/revised-image-replacement/#gilderlevin

Discussion
The text within the heading element is set to float to the left. This technique is designed
to allow the background image, placed in the span element, to be placed over the HTML
text through absolute positioning.

Normally, when floating an element the heading would move to the left and the content
would wrap on the right side. However, the clear property placed on the paragraph
stops this from happening.

The height property is set to 5 em and the overflow property is set to a value of
hidden to keep the background image from spilling out of the heading element and onto
the other portions of the web document, as in the preceding paragraph.

See Also
http://www.mezzoblue.com/tests/revised-image-replacement/#gilderlevin for additional
information on the Gilder/Levin image replacement technique

3.32 Placing a Shadow Behind Text
Problem
You want to place a shadow behind the text in a heading, as shown in Figure 3-44.

Figure 3-44. Instant drop shadows on HTML text

3.32 Placing a Shadow Behind Text | 165

http://www.mezzoblue.com/tests/revised-image-replacement/#gilderlevin

Solution
Use the text-shadow property to set the color and placement of the shadow:

h1 {
 font-size: 2.5em;
 font-family: Myriad, Helvetica, Arial, sans-serif;
 width: 66.6%;
 text-shadow: yellow .15em .15em .15em;
 margin: 0 0 0.1em 0;
}

Discussion
The first value of the text-shadow property sets the color. The first length unit val-
ue, .15em, moves the shadow on the x-axis relative to the position of the HTML text.
The next value moves the shadow on the y-axis. The last value is the blur radius of the
shadow. The larger the value the more disperse the shadow.

Setting the opacity of the shadow

By setting the color of the shadow using RGBA, you can set the color to a level of opacity.
This would allow the shadow color to blend better into the background:

body {
 Background-color: #000;
}
h1 {
 font-size: 2.5em;
 font-family: Myriad, Helvetica, Arial, sans-serif;
 width: 66.6%;
 text-shadow: rgba(205, 205, 0, .7) .15em .15em .15em;
 margin: 0 0 0.1em 0;
}

Creating a bevel look

By setting the distance of the shadow to one pixel off to the left along with 60% opacity,
you can accomplish a simple bevel effect with the text-shadow property, as shown in
Figure 3-45:

body {
 background-color: #999;
}
h1 {
 text-shadow: 0 1px 0 rgba(255,255,255,.6);
}

166 | Chapter 3: Web Typography

Add a red flame to the top of text

The text-shadow property can take more than one value (with each value separated by
a comma). This technique can allow you to create interesting effects (depending on
your point of view), such as a red flame on top of a heading, as shown in Figure 3-46:

h1 {
 color: red;
 text-shadow: rgba(0, 0, 0, .9) 0px 0px 1px,
 rgba(255, 255, 51, .9) 0px −5px 5px,
 rgba(255, 204, 51, .7) 2px −10px 7px,
 rgba(255, 153, 0, .6) −2px −15px 10px;
}

Known support

The only known browsers that support the text-shadow property are Firefox 3.5 and
later, Opera 9.5 and later, and Safari.

Text shadow for Internet Explorer

To set a text shadow for Internet Explorer 6 and later, use the proprietary filter
property:

h2 {
 filter:shadow(color=#999999,direction=270, strength=1);
}

Figure 3-45. Bevel look with a text-shadow

3.32 Placing a Shadow Behind Text | 167

In the preceding code, the color property is set with a hexadecimal value, direction is
a value between 0 and 360, and strength is the length of the shadow set in pixels.

In IE8, Microsoft is transitioning filter and other properties to use CSS
vendor extensions. See http://blogs.msdn.com/ie/archive/2008/09/08/mi
crosoft-css-vendor-extensions.aspx for more information.

See Also
The CSS 2.1 specification for text-shadow at http://www.w3.org/TR/REC-CSS2/text
.html#text-shadow-props

3.33 Adjusting the Space Between Letters and Words
Problem
You want to adjust the space between letters and words within HTML text.

Solution
To adjust the space between letters, use the letter-spacing property, as shown in
Figure 3-47:

Figure 3-46. Adding a red flame to text

168 | Chapter 3: Web Typography

http://blogs.msdn.com/ie/archive/2008/09/08/microsoft-css-vendor-extensions.aspx
http://blogs.msdn.com/ie/archive/2008/09/08/microsoft-css-vendor-extensions.aspx
http://www.w3.org/TR/REC-CSS2/text.html#text-shadow-props
http://www.w3.org/TR/REC-CSS2/text.html#text-shadow-props

h2 {
 font: bold italic 2em "Helvetica Nue", serif;
 margin: 0;
 padding: 0;
 letter-spacing: −0.1em;
}

Figure 3-47. The styled letter spacing of the text in the heading

To adjust the space between words, use the word-spacing property, as shown in Fig-
ure 3-48:

h2 {
 font: bold italic 2em "Helvetica Nue", serif;
 margin: 0;
 padding: 0;
 word-spacing: 0.33em;
}

Discussion
One of the main strengths of CSS is how the technology handles web typography. Web
designers and developers no longer have to use a puzzling array of nested fonts, b ele-
ments, and single-pixel GIF tricks to create compelling text treatments. An effect such
as adjusting the space between two letters or separating whole words within a para-
graph is exactly something that CSS can render with ease.

3.33 Adjusting the Space Between Letters and Words | 169

Kerning and tracking

Adjusting the space between letters to create a better aesthetic is an old tradition in
graphic design. Two terms describe how the change in space is adjusted: kerning and
tracking.

Kerning is a design term used to describe the process of changing the space between a
pair of letters to create a better visual effect. An example of kerning is adjusting just the
space between an uppercase letter T and a lowercase letter i. Tracking is defined as
involving more than a pair of letters to the point of adjusting the space between letters
to large amounts of text.

The word-spacing property is supported in Firefox, Internet Explorer 6 for Windows
and later, Opera 3.5 and later, and Safari.

Best practices

A best practice is to set the values of letter-spacing and word-spacing in relative unit
sizes instead of absolute length units. Since users can redefine the font sizes of their
browsers, a fixed width value of 5 points originally intended for a font size of 12 pixels
will still be 5 points, even if the user resizes the text to a larger value. In other words,
the 5-point spacing between letters is barely going to be noticeable when the font size
is set to 72 pixels or larger. With relative units such as em, however, a value of 1.5em
for the letter-spacing property scales along with the resizing of the text.

Figure 3-48. Words in the heading spaced farther apart

170 | Chapter 3: Web Typography

Also, it’s best to employ text effects so that the text being styled is still legible. If com-
munication is important to you or your client, a subtle effect is better than creating
esoteric text elements. As the text becomes illegible, you might annoy the very same
people you are trying to reach.

See Also
The CSS 2.1 specification for letter-spacing at http://www.w3.org/TR/CSS2/text.html
#propdef-letter-spacing and for word-spacing at http://www.w3.org/TR/CSS2/text.html
#propdef-word-spacing; http://desktoppub.about.com/cs/typespacing/a/kerningtracking
.htm for more on kerning and tracking

3.34 Applying Baseline Rhythm on Web Typography
Problem
You want to set two columns of text on the same baseline, as shown in Figure 3-49.

Figure 3-49. Column text lined up on the same baseline (with lines added for emphasis)

3.34 Applying Baseline Rhythm on Web Typography | 171

http://www.w3.org/TR/CSS2/text.html#propdef-letter-spacing
http://www.w3.org/TR/CSS2/text.html#propdef-letter-spacing
http://www.w3.org/TR/CSS2/text.html#propdef-word-spacing
http://www.w3.org/TR/CSS2/text.html#propdef-word-spacing
http://desktoppub.about.com/cs/typespacing/a/kerningtracking.htm
http://desktoppub.about.com/cs/typespacing/a/kerningtracking.htm

Solution
As stated in Recipe 3.6, set the font-size on the body selector to 62.5%:

body {
 font-size: 62.5%
}

Next, set the line-height (or leading), as discussed in Recipe 3.30:

body {
 font-size: 62.5%;
 line-height: 1.83em;
}

Determine the line-height of the other type-related HTML elements using the follow-
ing formula:

(body line-height / font-size of the HTML element) = HTML element’s line-
height in em units

For the h2 element with a font-size of 1.5em, the quotient is 1.2em:

(1.83em / 1.5em) = 1.2em

Update the CSS rules to include this new line-height value for the h2 element:

body {
 font-size: 62.5%;
 line-height: 1.83em;
}
h2 {
 margin: 0;
 font-size: 1.5em;
 line-height: 1.2em;
}

To ensure that the margins of the h2 element stay in tune with the line-height property,
apply the same value:

body {
 font-size: 62.5%;
 line-height: 1.83em;
}
h2 {
 margin: 0;
 font-size: 1.5em;
 line-height: 1.2em;
 margin-bottom: 1.2em;
}

Do the same calculation and setup for the rest of the type-related elements.

172 | Chapter 3: Web Typography

Discussion
Although the effect of lining up text in two or more columns along the same baseline
parlays a sense of professional craftsmanship often lacking in most web pages, its re-
quirement for detail-oriented calculations could make even the most patient web de-
signer a little frustrated, especially if that designer or her client requests changes in the
font-size value. That seemingly simple request results in a new set of calculations.

To help with that approach, web designer Geoffrey Grosenbach created a Baseline
Rhythm Calculator (see http://topfunky.com/baseline-rhythm-calculator/) to alleviate
people’s suffering.

See Also
Richard Rutter’s article on vertical rhythm at http://24ways.org/2006/compose-to-a-ver
tical-rhythm

3.35 Styling Superscripts and Subscripts Without Messing the
Text Baseline
Problem
You want to add superscripts and subscripts without adjusting the baseline of the text,
as shown in Figure 3-50.

Solution
Use the HTML elements sup and sub to set superscripts and subscripts, respectively:

<p>Lorem ipsum dolor sit amet, consectetuer adipiscing elit
^{1}, sed diam nonummy nibh euismod tincidunt
ut laoreet dolore magna aliquam erat volutpat. Ut wisi enim ad minim
veniam^{2}, quis nostrud exerci tation
ullamcorper suscipit lobortis nisl ut aliquip ex ea commodo consequat.
Duis autem vel eum iriure dolor in hendrerit in vulputate velit esse molestie
consequat, vel illum dolore eu feugiat nulla facilisis at vero eros et accumsan
et H₂0 iusto odio dignissim qui blandit praesent luptatum zzril
delenit augue duis dolore te feugait nulla facilisi.<p>

Then adjust the alignment of the text within the sup and sub elements:

sup, sub {
 vertical-align: baseline;
 position: relative;
 top: −0.4em;
}
sub {
 top: 0.4em;
}

3.35 Styling Superscripts and Subscripts Without Messing the Text Baseline | 173

http://topfunky.com/baseline-rhythm-calculator/
http://24ways.org/2006/compose-to-a-vertical-rhythm
http://24ways.org/2006/compose-to-a-vertical-rhythm

Figure 3-50. The baseline shifting in the Safari browser with the addition of superscripts and subscripts

174 | Chapter 3: Web Typography

Discussion
The Solution works by snapping the text within the sup and sub elements to the baseline
just like the rest of the text. Then you can position the text off of the baseline through
the use of relative positioning (see Recipe 2.24) to re-create the desired appearance of
superscript and subscript.

See Also
http://paularmstrongdesigns.com/weblog/stop-superscripts-from-breaking-line-heights
-once-and-for-all for web designer Paul Armstrong’s blog post about this technique

3.36 Setting Up Multiple Columns of Text
Problem
You want to set a long passage of text into multiple columns, as shown in Figure 3-51.

Figure 3-51. Words in the heading spaced farther apart

3.36 Setting Up Multiple Columns of Text | 175

http://paularmstrongdesigns.com/weblog/stop-superscripts-from-breaking-line-heights-once-and-for-all
http://paularmstrongdesigns.com/weblog/stop-superscripts-from-breaking-line-heights-once-and-for-all

Solution
Wrap a div element around the content passage to set it in columns:

<div id="column">
 <p>...<p>
 <h2>...</h2>
 <p>...<p>
 <h2>...</h2>
 <p>...<p>
</div>

Use proprietary column-gap and column-width tags:

#column {
 -moz-column-gap: 3em;
 -moz-column-width: 11em;
 -webkit-column-gap: 3em;
 -webkit-column-width: 11em;
 padding: 10px;
}

Then set line rules using the proprietary -column-rule properties:

#column {
 -moz-column-gap: 3em;
 -moz-column-width: 11em;
 -moz-column-rule: 1px solid #ccc;
 -webkit-column-gap: 3em;
 -webkit-column-width: 11em;
 -webkit-column-rule: 1px solid #ccc;
 padding: 10px;
}

Discussion
The use of the column properties saves web designers time as setting columns of text
is a laborious process.

To achieve the column effect for a design, web designers would need to count the
number of words for each column to make sure each column had an equal number of
words; set each equal number of words with their own div element; and individually
position or float those div elements into place.

Known issues

The CSS3 column properties make the process of setting columns easy and automatic
for web designers. The main problem is that they are supported only through propri-
etary CSS extensions in Firefox and Safari.

176 | Chapter 3: Web Typography

A JavaScript solution through a jQuery plug-in provides an alternative that avoids the
use of proprietary CSS properties (see http://welcome.totheinter.net/2008/07/22/multi
-column-layout-with-css-and-jquery/).

For techniques on how to set up column layouts, see Chapter 10.

See Also
The Peter-Paul Koch test column properties at http://www.quirksmode.org/css/multicol
umn.html

3.36 Setting Up Multiple Columns of Text | 177

http://welcome.totheinter.net/2008/07/22/multi-column-layout-with-css-and-jquery/
http://welcome.totheinter.net/2008/07/22/multi-column-layout-with-css-and-jquery/
http://www.quirksmode.org/css/multicolumn.html
http://www.quirksmode.org/css/multicolumn.html

You can find this book at oreilly.com

in print or ebook format.

It’s also available at your favorite book retailer,

including iTunes, the Android Market, Amazon,

and Barnes & Noble.

oreilly.comSpreading the knowledge of innovators

Want to read more?

http://bit.ly/oreillyapps
http://www.android.com/market/
http://amazon.com
http://www.barnesandnoble.com/
http://oreilly.com
http://oreilly.com

	Table of Contents
	Foreword
	Preface
	Audience
	Assumptions This Book Makes
	Contents of This Book
	Conventions Used in This Book
	Using Code Examples
	We’d Like to Hear from You
	Safari® Books Online
	Acknowledgments

	Chapter 1. Using HTML Basics
	1.0 Introduction
	Structuring Documents
	Semantic Markup
	Avoiding Old-Tag Soup
	HTML Is Document Structure

	1.1 Picking a Text Editor
	Problem
	Solution
	Discussion
	More robust, still free
	IDE solutions

	See Also

	1.2 Coding a Basic HTML Page
	Problem
	Solution
	Discussion
	See Also

	1.3 Understanding DOCTYPEs and Effects on Browser Layout
	Problem
	Solution
	Discussion
	Quirks mode
	Why not use the latest DOCTYPE?
	The smallest web page ever

	See Also

	1.4 Marking Up Headers
	Problem
	Solution
	Discussion
	See Also

	1.5 Making Appropriate Quotations
	Problem
	Solution
	Discussion
	See Also

	1.6 Adding an Image
	Problem
	Solution
	Discussion
	Additional tips
	File formats
	Character case sensitivity

	See Also

	1.7 Adding Audio with HTML5
	Problem
	Solution
	Discussion
	Audio compatibility

	See Also

	1.8 Incorporating Video with HTML5
	Problem
	Solution
	Discussion
	See Also

	1.9 Using strong and em Effectively
	Problem
	Solution
	Discussion
	See Also

	1.10 Creating Lists
	Problem
	Solution
	Discussion
	See Also

	1.11 Making a Link to a Web Page
	Problem
	Solution
	Discussion
	Linking to another web page on the same site
	Moving up folders
	Using the root relative link
	Linking to certain elements within a web page

	See Also

	1.12 Coding Tables
	Problem
	Solution
	Discussion
	See Also

	1.13 Creating an HTML vCard (hCard)
	Problem
	Solution
	Discussion
	Extending hCards

	See Also

	1.14 Marking Up an Event (hCalendar)
	Problem
	Solution
	Discussion
	See Also

	1.15 Validating HTML
	Problem
	Solution
	Discussion
	Creating an HTML validator bookmarklet

	See Also

	Chapter 2. CSS Basics
	2.0 Introduction
	2.1 Applying CSS Rules to a Web Page
	Problem
	Solution
	Discussion
	Wrapping the CSS rules

	See Also

	2.2 Using Basic Selectors to Apply Styles
	Problem
	Solution
	Discussion
	Type selectors
	Class selectors
	ID selectors
	Descendant selectors
	Universal selectors

	See Also

	2.3 Applying Child Selectors
	Problem
	Solution
	Discussion
	See Also

	2.4 Applying Adjacent Selectors
	Problem
	Solution
	Discussion
	See Also

	2.5 Applying Attribute Selectors
	Problem
	Solution
	Discussion
	See Also

	2.6 Using Pseudo-Classes
	Problem
	Solution
	Discussion
	CSS3 pseudo-classes

	See Also

	2.7 Using Pseudo-Elements
	Problem
	Solution
	Discussion
	See Also

	2.8 Determining When to Use Class and ID Selectors
	Problem
	Solution
	Discussion
	HTML5 divisions

	See Also

	2.9 Understanding CSS Properties
	Problem
	Solution
	Discussion
	See Also

	2.10 Understanding the Box Model
	Problem
	Solution
	Discussion
	See Also

	2.11 Associating Styles to a Web Page
	Problem
	Solution
	Discussion
	When to use inline styles
	When to use internal stylesheets

	See Also

	2.12 Understanding the Origin
	Problem
	Solution
	Discussion
	See Also

	2.13 Understanding the Sort Order Within CSS
	Problem
	Solution
	Discussion
	See Also

	2.14 Using !important to Override Certain CSS Rules
	Problem
	Solution
	Discussion
	The user controls his experience

	See Also

	2.15 Clarifying Specificity
	Problem
	Solution
	Discussion
	See Also

	2.16 Setting Up Different Types of Stylesheets
	Problem
	Solution
	Discussion
	See Also

	2.17 Adding Comments Within Stylesheets
	Problem
	Solution
	Discussion
	See Also

	2.18 Organizing the Contents of a Stylesheet
	Problem
	Solution
	Discussion
	See Also

	2.19 Working with Shorthand Properties
	Problem
	Solution
	Discussion
	See Also

	2.20 Setting Up an Alternate Stylesheet
	Problem
	Solution
	Discussion
	See Also

	2.21 Using Floats
	Problem
	Solution
	Discussion
	See Also

	2.22 Using Self-Clearing Floated Elements
	Problem
	Solution
	Discussion
	Self-clearing floats
	Using overflow

	See Also

	2.23 Using Absolute Positioning
	Problem
	Solution
	Discussion
	See Also

	2.24 Using Relative Positioning
	Problem
	Solution
	Discussion
	See Also

	2.25 Using Shackling Positioning
	Problem
	Solution
	Discussion
	See Also

	2.26 Stacking Elements with z-index
	Problem
	Solution
	Discussion
	See Also

	2.27 Validating CSS Rules
	Problem
	Solution
	Discussion
	Creating a CSS validator bookmarklet

	See Also

	Chapter 3. Web Typography
	3.0 Introduction
	3.1 Specifying Fonts
	Problem
	Solution
	Discussion
	Problem finding fonts
	Inheriting fonts throughout a web page

	See Also

	3.2 Using Web-Safe Fonts
	Problem
	Solution
	Discussion
	Extending web-safe font listings
	More robust stacking

	See Also

	3.3 Setting an Ampersand Flourish
	Problem
	Solution
	Discussion
	Styling ampersands

	See Also

	3.4 Embedding Font Files
	Problem
	Solution
	Discussion
	Creating cross-browser embedding
	The problem with embedded fonts
	Third-party workaround
	Other techniques

	See Also

	3.5 Forcing a Break on Really Long Words
	Problem
	Solution
	Discussion
	See Also

	3.6 Specifying Font Measurements and Sizes
	Problem
	Solution
	Discussion
	Length units
	Relative units
	Setting the size of fonts to 0 or a negative value

	See Also

	3.7 Gaining More Cross-Browser Consistency with Font Sizes
	Problem
	Solution
	Discussion
	Using pixels
	Using font keywords
	Using em units to control type

	See Also

	3.8 Setting Hyphens, Em Dashes, and En Dashes
	Problem
	Solution
	Discussion
	See Also

	3.9 Centering Text
	Problem
	Solution
	Discussion
	See Also

	3.10 Setting Text to Be Justified
	Problem
	Solution
	Discussion
	See Also

	3.11 Indicating an Overflow of Text with an Ellipsis
	Problem
	Solution
	Discussion
	See Also

	3.12 Removing Space Between Headings and Paragraphs
	Problem
	Solution
	Discussion
	See Also

	3.13 Setting a Simple Initial Cap
	Problem
	Solution
	Discussion
	See Also

	3.14 Setting a Larger, Centered Initial Cap
	Problem
	Solution
	Discussion
	See Also

	3.15 Setting an Initial Cap with Decoration (Imagery)
	Problem
	Solution
	Discussion
	Allow for accessibility

	See Also

	3.16 Creating a Heading with Stylized Text
	Problem
	Solution
	Discussion
	See Also

	3.17 Creating a Heading with Stylized Text and Borders
	Problem
	Solution
	Discussion
	See Also

	3.18 Stylizing a Heading with Text and an Image
	Problem
	Solution
	Discussion
	See Also

	3.19 Creating a Pull Quote with HTML Text
	Problem
	Solution
	Discussion
	See Also

	3.20 Placing a Pull Quote to the Side of a Column
	Problem
	Solution
	Discussion
	See Also

	3.21 Creating a Pull Quote with Borders
	Problem
	Solution
	Discussion
	See Also

	3.22 Creating a Pull Quote with Images
	Problem
	Solution
	Discussion
	See Also

	3.23 Setting the Indent in the First Line of a Paragraph
	Problem
	Solution
	Discussion
	See Also

	3.24 Setting the Indent of Entire Paragraphs
	Problem
	Solution
	Discussion
	See Also

	3.25 Creating a Hanging Indent
	Problem
	Solution
	Discussion
	Hanging indents safely
	The paired hanging indent

	See Also

	3.26 Styling the First Line of a Paragraph
	Problem
	Solution
	Discussion
	See Also

	3.27 Styling the First Line of a Paragraph with an Image
	Problem
	Solution
	Discussion
	See Also

	3.28 Creating a Highlighted Text Effect
	Problem
	Solution
	Discussion
	See Also

	3.29 Changing the Text Selection Color
	Problem
	Solution
	Discussion
	See Also

	3.30 Changing Line Spacing
	Problem
	Solution
	Discussion
	See Also

	3.31 Adding a Graphic Treatment to HTML Text
	Problem
	Solution
	Discussion
	See Also

	3.32 Placing a Shadow Behind Text
	Problem
	Solution
	Discussion
	Setting the opacity of the shadow
	Creating a bevel look
	Add a red flame to the top of text
	Known support
	Text shadow for Internet Explorer

	See Also

	3.33 Adjusting the Space Between Letters and Words
	Problem
	Solution
	Discussion
	Kerning and tracking
	Best practices

	See Also

	3.34 Applying Baseline Rhythm on Web Typography
	Problem
	Solution
	Discussion
	See Also

	3.35 Styling Superscripts and Subscripts Without Messing the Text Baseline
	Problem
	Solution
	Discussion
	See Also

	3.36 Setting Up Multiple Columns of Text
	Problem
	Solution
	Discussion
	Known issues

	See Also

