
f o r

Ed i t ed  by G rego r y  B r i l l

The  deve loper ’s  shor tcu t .  S ta r t  he re .  

.N ET





cover



This book has been optimized for viewing 
at a monitor setting of 1024 x 768 pixels.

Note that legibility of charts in this book is greatly improved
with the magnification tool located in the navigation bar 

on the right side of your screen.



OT H E R  T I T L E S  I N  T H E  C O D E N OT E S  S E R I E S

CodeNotes for J2EE: EJB, JDBC, JSP, and Servlets

CodeNotes for XML

CodeNotes for Java: Intermediate and Advanced Language Features

CodeNotes for VB.NET

CodeNotes for Web-Based UI



CodeNotes® for .NET





CodeNotes®

for .NET

Edited by GREGORY BRILL

N E W  Y O R K



As of press time, the URLs displayed in this book link or refer to existing websites on the
Internet. Random House, Inc., is not responsible for the content available on any such site 

(including, without limitation, outdated, inaccurate, or incomplete information).

No part of this document may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission 

of Random House, Inc. Information in this document is subject to change without notice.
While every effort has been made to make this book as accurate as possible, 

the authors and the publisher assume no responsibility for errors or omissions, 
or otherwise for the use of the information contained herein.

Copyright © 2001 by Infusion Development Corporation

All rights reserved under International and Pan-American Copyright Conventions. 
Published in the United States by Random House, Inc., New York, and simultaneously 

in Canada by Random House of Canada Limited, Toronto.

Random House Trade Paperbacks and colophon are trademarks of Random House, Inc.

CodeNotes® is a registered trademark of Infusion Development Corporation.

Access, ActiveX, Authenticode, ClearType, DirectX, FrontPage, Internet Explorer,
JScript.NET, Microsoft, MS-DOS, MSDN, Outlook, PowerPoint, SQL Server, Visual Basic,
Visual Basic.NET, VBScript, Visual C#.NET, Visual C++, Visual C++.Net, Visual InterDev,

Visual Studio, Visual Studio.NET, Win32, Win64, Windows, Windows 95, Windows 98, Win-
dows 2000, Windows Me, Windows NT, and Windows XP are registered trademarks or trade-

marks of Microsoft Corporation in the United States and/or other countries.

Java and JavaServer Pages are trademarks or registered trademarks of Sun Microsystems, Inc.,
in the U.S. and other countries.

Library of Congress cataloging-in-publication data is available.

e-ISBN 0-679-64725-2

Website address: www.atrandom.com

v1.0

Cover design: Kapo Ng

http://www.atrandom.com


Using CodeNotes

PHILOSOPHY

The CodeNotes philosophy is that the core concepts of any technology
can be presented succinctly. Building from many years of consulting
and training experience, the CodeNotes series is designed to make you
productive in a technology in as short a time as possible.

CodeNotes Pointers
Throughout the book, you will encounter CodeNotes Pointers: (e.g.,
aNET010010). These pointers are links to additional content available
online at the CodeNotes website. To use a CodeNotes Pointer, simply
point a web browser to www.CodeNotes.com and enter the Pointer num-
ber. The website will direct you to an article or an example that provides
additional information about the topic.

CodeNotes Style
The CodeNotes series follows certain style guidelines:

• Code objects and code keywords are highlighted using a special
font. For example: System.Object. 

• Code blocks, screen output, and command lines are placed in in-
dividual blocks with a special font:

//This is an example code block

http://www.codenotes.com/cnp?cnp=NET010010
http://www.codenotes.com


WHAT YOU NEED TO KNOW BEFORE CONTINUING

The .NET Framework encompasses concepts ranging from distributed
computing to database access to public key cryptography. Because the
topics are so varied, the CodeNotes format is compressed and certain
background information has been omitted. However, a significant num-
ber of examples and background articles can be found on the CodeNotes
website (www.CodeNotes.com). 

viii . Using CodeNotes

http://www.codenotes.com


About the Authors

SHELDON FERNANDEZ is Senior Developer at Infusion Development
Canada in Toronto, Ontario. He has developed software for Silicon Val-
ley startups as well as financial and medical institutions in the United
States and Canada. He has worked with Microsoft technology for many
years, from his very first QuickBasic compiler to the latest suite of .NET
development tools. Sheldon holds a Computer Engineering degree from
the University of Waterloo and was the chief researcher on Applying
COM+, a definitive work on Microsoft’s enterprise component tech-
nology. 

DEREK BARNES works as a Consultant for Infusion Development Corpo-
ration. In both Canada and the United States, he has worked on major 
e-commerce sites and the infrastructure for large financial institutions.
His hobbies include piano, numerical analysis, and German and Chinese
literature. Derek currently lives in Manhattan’s Chinatown.

GREGORY BRILL is president of Infusion Development Corporation, a
firm specializing in architecting global-securities-trading and analytic
systems for several of the world’s largest investment banks in the United
States and Tokyo. He has written articles for C++ Users Journal and is
the author of Applying COM+. He lives in New York City.

More information about the authors and Infusion Development Corpo-
ration can be found at www.infusiondev.com/codenotes.

http://www.infusiondev.com/codenotes




Acknowledgments

First, thanks to John Gomez who saw the potential of the CodeNotes
idea before anyone else and introduced me to Random House. Without
John, there would be no CodeNotes. John, you are a true friend, a real
visionary. I’d also like to thank Annik LaFarge, who fearlessly champi-
oned the series and whose creativity, enthusiasm, and publishing savvy
has been instrumental in its creation. Thank you to Mary Bahr, our un-
flappable editor, who paved the way and crafted the marketing. Thank
you to Ann Godoff, whose strength, decisiveness, and wisdom gave
CodeNotes just the momentum it needed. And, of course, the produc-
tion, sales, and business teams at Random House, with particular thanks
to Howard Weill, Jean Cody, and Richard Elman.

On the Infusion Development side, thank you to Sheldon Fernandez
and Derek Barnes, the writers of this CodeNote, for taking on an impos-
sible task, in an impossible timeframe, and then turning around and de-
livering one of the best technical books I’ve ever read. Sheldon is a great
writer, and Derek a great researcher—the two make an incredible team.
Thank you also to the CodeNotes reviewers, who gave us invaluable
feedback and suggestions on our early drafts. And thank you to the en-
tire cast and crew of Infusion Development Corporation, who have sup-
ported and encouraged this venture throughout. I know CodeNotes was
extremely trying, tough to do, and involved an awesome amount of re-
search, writing, and editing. But here it is . . . as we envisioned it.

Gregory Brill





Contents

Using CodeNotes vii

About the Authors ix

Acknowledgments xi

Chapter 1: An Introduction to the .NET Framework 3

Topic: The Common Language Runtime 10

Topic: .NET Runtime Classes 12

Chapter Summary 17

Chapter 2: Installation 18

Chapter 3: Assemblies and MetaData 22

Topic: Metadata 23

Topic: Shared and Private Assemblies 34

Chapter Summary 46

Chapter 4: .NET Language Features 47

Topic: Attributes 48

Topic: Reflection 53

Topic: Delegates 68

Topic: Garbage Collection 84

Chapter Summary 89



Chapter 5: Migrating Native Code to .NET 90

Topic: PInvoke and DllImport 92

Topic: The COM Interop Service 95

Chapter Summary 102

Chapter 6: ADO.NET 104

Topic: Managed Providers 108

Topic: Datasets 114

Topic: Transactions 122

Chapter Summary 128

Chapter 7: Windows Forms 129

Topic: Visual Inheritance 138

Chapter Summary 144

Chapter 8: ASP.NET 146

Topic: VS.NET Web Forms 156

Topic: ASP.NET Applications and Configuration 163

Chapter Summary 171

Chapter 9: Web Services 172

Topic: HTTP POST and SOAP 182

Topic: WSDL 193

Topic: Web Service Discovery 198

Chapter Summary 204

Index 205

xiv . Contents



CodeNotes® for .NET





Chapter 1

AN INTRODUCTION TO THE .NET

FRAMEWORK

WHAT IS .NET?

.NET is Microsoft’s new strategy for the development and deployment
of software. Depending on your interests and development background,
you may already have a number of preconceived notions regarding
.NET. As we will see throughout this CodeNote:

• .NET fundamentally changes the way applications execute under
the Windows Operating System. 

• With .NET Microsoft is, in effect, abandoning its traditional
stance, one which favors compiled components, and is embrac-
ing interpreted technology (similar, in many ways, to the Java
paradigm).

• .NET brings about significant changes to both C++ and Visual
Basic, and introduces a new language called C# (pronounced 
“C sharp”). 

• .NET is built from the ground up with the Internet in mind, em-
bracing open Internet standards such as XML and HTTP. XML
is also used throughout the framework as both a messaging in-
strument and for configuration files.

These are all noteworthy features of .NET, or more accurately the .NET
Framework, which consists of the platform and tools needed to develop



and deploy .NET applications. The .NET Framework can be distilled
into the following three entities:

1. The Common Language Runtime (CLR), which is the execu-
tion environment for all programs in the .NET Framework. The
CLR is similar to a Java Virtual Machine (VM) in that it inter-
prets byte code and executes it on the fly, while simultaneously
providing services such as garbage collection and exception
handling. Unlike a Java VM, which is limited to the Java lan-
guage, the CLR is accessible from any compiler that produces
Microsoft Intermediate Language (IL) code, which is similar to
Java byte code. Code that executes inside the CLR is referred to
as managed code. Code that executes outside its boundaries is
called unmanaged code.

2. The Runtime classes, which provide hundreds of prewritten ser-
vices that clients can use. The Runtime classes are the building
blocks for .NET applications. Many technologies you may have
used in the past (ADO, for example) are now accessed through
these Runtime classes, as are basic operations such as I/O. Tra-
ditionally, every language had its own unique supporting li-
braries, accessible only from that particular language. String
manipulation, for example, was afforded to VB programmers
via the Visual Basic runtime, whereas C++ programmers de-
pended on libraries such as STL for similar functionality. The
.NET Runtime classes remove this limitation by uniformly of-
fering services to any compiler that targets the CLR. Those fa-
miliar with Java will find the Runtime classes analogous to the
Java Class Libraries. 

3. Visual Studio.NET (VS.NET), which is Microsoft’s newest ver-
sion of Visual Studio. VS.NET includes VB.NET, “managed”
C++, and C#, all of which translate source code into IL code.
VB.NET and VC.NET are the new versions of Visual Basic and
Visual C++, respectively. C# is a new Microsoft language that at
first glance appears to be a hybrid of C++ and Java. .NET de-
velopment does not have to be limited to these languages, how-
ever. Any component or program produced by an IL-aware
compiler can run within the .NET Framework. (As of this writ-
ing, other companies have announced IL compilers for Perl,
Python, and COBOL.) VS.NET also comes with a fully Inte-
grated Development Environment (IDE), which we will exam-
ine in Chapter 7. Note the VS.NET IDE now houses the
development environments for both Visual C++ and Visual
Basic. 

4 . CodeNotes® for .NET



OUTLINE OF THE BOOK

In this chapter we will examine the three fundamentals of the .NET
Framework previously listed. 

Chapter 2 provides brief installation instructions. Because .NET was
still in beta release at the time of writing, these instructions may be out
of date. Readers are encouraged to consult the online instructions at
aNET010001.

One of the goals of .NET was to eliminate the versioning problems of
traditional Win32 DLLs (a problem sometimes referred to as DLL Hell).
This is realized through a new type of component in the .NET Frame-
work called the assembly, the subject of Chapter 3. .NET eradicates
DLL Hell from the Windows environment by enforcing the versioning
of assemblies through public key cryptography. 

In Chapter 4, we will look at some of the new language features in the
.NET Framework, such as attributes, which are nonprogrammatic code
statements that can be used to influence application behavior, and dele-
gates, the new type-safe callback mechanism in the managed environ-
ment. Garbage collection, a service performed by the CLR, will also be
investigated, as will reflection, the ability to ascertain type information
about an application at runtime. 

The .NET Framework does not preclude the use of traditional COM
and Win32 components that have already been developed. Mechanisms
exist to allow these “unmanaged” components (those that do not run
under the auspices of the CLR) to run alongside their .NET counter-
parts. Such mechanisms will be investigated in Chapter 5. 

Chapter 6 looks at ADO.NET, the new data access model for the
.NET Framework. ADO.NET is a disconnected data access model,
which means that data manipulation is performed outside the context of
an open database connection. This model is especially appropriate for
web applications that are loosely coupled to their data sources. As its
name suggests, ADO.NET is an evolution of Microsoft’s ActiveX Data
Object (ADO) model. 

.NET also exposes new methodologies for developing standard
Win32 applications. Windows Forms, the subject of Chapter 7, is the
new way to construct desktop GUI applications for the Windows envi-
ronment. 

Internet developers will also welcome Web Forms, which brings the
traditional ease and versatility of Visual Basic forms to Internet applica-
tions. Web Forms is a feature of ASP.NET, the topic of Chapter 8.
ASP.NET is Microsoft’s new generation Active Server Page (ASP)
framework for developing robust web applications. 

Chapter 9 examines Web Services and an emerging communication

An Introduction to the .NET Framework . 5

http://www.codenotes.com/cnp?cnp=NET010001


protocol called SOAP, which allow components to interact (i.e., transfer
data, perform RPC calls) via open Internet standards such as XML and
HTTP. 

CORE CONCEPTS

Visual Studio.NET
Producing .NET applications and components requires a compiler that
translates source code into IL code. VS.NET, Microsoft’s new version of
Visual Studio, contains three such compilers: VB.NET, C#, and man-
aged C++. While a full examination of these languages is beyond the
scope of a CodeNote, each language is briefly discussed below. Code
examples throughout this book will demonstrate some of the nuances of
each language and the syntactical differences between them. 

In addition to the IDE, VS.NET contains a large assortment of com-
mand line utilities. Some of these utilities are directly incorporated into
the development environment, while others are stand-alone. We will ex-
amine some of these utilities throughout this CodeNote. 

Visual Basic.NET
VB.NET is the most recent version of Visual Basic, what was once
thought of as VB7. VB.NET is the first version of Visual Basic to sup-
port true object-oriented inheritance, which means it has the ability to
inherit and extend the interface and behavior of any class produced by
an IL compiler. This is significant, as previous versions of Visual Basic
could only inherit from classes written in VB itself. This feature is not
really an enhancement of VB.NET but a byproduct of the language neu-
trality of the CLR, which gives all IL compilers the ability to inherit
classes from one another. VB.NET also includes exception handling
constructs (try/catch) similar to those found in Java and C++. 

Unfortunately, VB.NET also brings about some syntax changes that
will break compatibility with old VB source code. Procedure parame-
ters, for example, are now passed by value (ByVal) by default, not by
reference (ByRef). Certain syntax elements such as GoSub, IsNull, and
IsMissing have been removed from the language altogether. For a com-
plete list of syntax changes, see aNET010002. Clearly, a considerable
amount of effort will be required to migrate existing Visual Basic proj-
ects to the .NET Framework. 

Although not exclusive to VB.NET, most VB users will be interested
in the Windows Forms (Chapter 7) portion of this book, which investi-
gates the new way Win32 screens are developed in the .NET Frame-
work. Windows Forms completely replaces the traditional Visual Basic

6 . CodeNotes® for .NET

http://www.codenotes.com/cnp?cnp=NET010002


Forms editor. Finally, VB.NET now ships with a command line com-
piler (VBC.EXE), allowing one to write applications outside the devel-
opment environment (using NOTEPAD, for example). In the first
example in this chapter, we will investigate VB.NET’s new compiler.

Managed C++
Managed C++ is a set of extensions added to the C++ language to allow
one to produce “managed code” (code that executes under the auspices
of the CLR). The most notable extension is the introduction of “man-
aged types,” which shift the burden of memory management from the
C++ programmer onto the CLR. Placing the __gc extension in front of
the declaration of a class, for example, allows instances of the class to be
garbage collected by the CLR. This convenience comes at a cost, how-
ever, as the “managed” class must adhere to the restrictions of CLR
types. It cannot, for example, inherit from two classes, even though mul-
tiple inheritance is a feature of the C++ language. 

Another extension is that of managed arrays, which allows these data
structures to be managed by the CLR. Managed exception handling is
another amendment, differing from C++ exception handling in both
syntax and behavior. Examples of managed extensions can be found at
aNET010003. Managed C++ is a part of Visual C++ .NET, which is the
only tool in the new Visual Studio suite capable of producing unman-
aged code. It is thus the only choice for producing applications that con-
tain both managed and unmanaged code, as is discussed in the online
article at aNET010010.

C#
C# (pronounced “C-sharp”) is a new language that Microsoft has touted
as a simplified version of C and C++. In this respect, C# is very much
like Java, eliminating some of the more complex features of C++ such as
pointers and multiple inheritance. Most of the examples in this Code-
Note are written in C# (and VB.NET), to give you a look at this new lan-
guage. Like Java and C++, C# is an object-oriented (OO) language and
contains expected OO features such as inheritance (the ability of a class
to extend another class), polymorphism (the ability to separate an inter-
face from its implementation), and encapsulation (the ability of objects
to hide certain methods and instance variables from other objects). 

Java and C++ developers will be immediately comfortable with C#,
while the language may present some challenges for Visual Basic devel-
opers. Even if you choose to develop in another language under the
.NET Framework, it is worthwhile to understand C#, as the majority of
MSDN .NET code is written in C#. In this sense, C# can be considered
the “intrinsic” language of the .NET Framework, as it was developed

An Introduction to the .NET Framework . 7

http://www.codenotes.com/cnp?cnp=NET010003
http://www.codenotes.com/cnp?cnp=NET010010


solely for the managed environment, as opposed to C++ and Visual
Basic, which had to evolve into their .NET manifestations. 

.NET and COM
While the .NET Framework is intended to simplify many of the com-
plexities that existed with COM, it in no way renders COM obsolete. All
versions of Windows today remain heavily dependent on COM, and
while Microsoft’s long-term vision may be to eradicate this component
model, it is not going anywhere soon. Chapter 5 will investigate how
.NET applications can call traditional COM components using Runtime
Callable Wrappers (RCWs).

.NET and COM+
COM+ services such as transactions, object pooling, and Just-in-Time
activation can be used from the .NET Framework and are accessed
through the System.EnterpriseServices namespace. Examples of man-
aged code using these services can be found at aNET010004. 

The .NET Runtime also implicitly uses COM+ to support some of its
services. In the Transactions section of Chapter 6, we will see how the
.NET Runtime automatically uses COM+ services behind the scenes to
provide transactional capability for managed classes. 

SIMPLE APPLICATION 

In this section we look at the proverbial “Hello World” program. For the
purposes of comparison, source code for all three .NET languages
(VB.NET, C#, and managed C++) is given below. Readers might want
to consult Chapter 2 to install the .NET Framework before proceeding. 

VB.NET Application
Visual Basic developers are reminded that VB.NET now includes a
command-line compiler (VBC.EXE), allowing one to develop applica-
tions outside the Visual Basic environment. In other words, you can
write the following program in a text editor such as Notepad. VB users
will also see from this example that VB.NET has the ability to produce
console applications, something previous versions of Visual Basic were
unable to do.

'VB.NET "Hello World" Program. 

Module HelloWorld
Sub Main 

8 . CodeNotes® for .NET

http://www.codenotes.com/cnp?cnp=NET010004


'Use the .NET Runtime Console method WriteLine,
'to output "Hello World" on the screen:
System.Console.WriteLine("Hello World!")

End Sub
End Module

Listing 1.1 VB.NET Hello World program

C# Application
As with the Visual Basic example, you can write this code using any text
editor. Notice that the syntax is very similar to C++ in that class defini-
tions and methods are encapsulated within curly braces and individual
lines of code end with semicolons.

// C# "Hello World" Program. 
public class HelloWorld {
static public void Main () {
System.Console.WriteLine("Hello World!");

}     
}

Listing 1.2 C# Hello World program

Managed C++ Application
Managed C++ is almost identical to normal C++. Notice that you must
use the a::b notation for namespaces, rather than the a.b notation of Vi-
sual Basic and C#.

// Managed C++ "Hello World" Program. 
// Reference the .NET Runtime Library, 
// for Console Input/Output functionality. 
#using <mscorlib.dll>

void main() {
System::Console::WriteLine("Hello World!");

}

Listing 1.3 Managed C++ Hello World program

Compiling and Running the Example
Assuming that these files were called Hello-World.vb, Hello-World.cs,
and Hello-World.cpp, respectively, .NET console applications could be

An Introduction to the .NET Framework . 9



created by invoking each language’s compiler from the command line as
shown below (alternatively, you could create VB.NET, C#, and C++
console projects and compile them from the VS.NET IDE).

• VB.NET: vbc.exe /t:exe Hello-World.vb
• C#: csc.exe /t:exe Hello-World.cs
• Managed C++: cl.exe /CLR Hello-World.cpp

The /t:exe option informs both the VB.NET and C# compilers to pro-
duce executable files, while the /CLR switch instructs the Visual C++
compiler to produce IL code (this option is OFF by default).

Source Analysis
The most notable difference between the three programs is that the man-
aged C++ example must explicitly reference the .NET Runtime classes,
which is implicitly done by the VB and C# compilers. This is ac-
complished by inserting the following line at the top of all managed 
C++ programs: #using <mscorlib.dll>. C++ COM/ATL developers
will find this command very similar to the #import directive used in Vi-
sual C++. 

Syntactical differences aside, the three programs are remarkably
similar in that they all use the Runtime Console method WriteLine() to
print “Hello World” on the screen. Such uniformity is a virtue of the
.NET Runtime—all three languages use a consistent set of classes to ac-
complish the same thing. The only difference lies in the way such
classes are accessed. C++ users might recognize that we had to tell the
compiler which namespace the Console class could be found in. The
concept of namespaces and their importance to the Runtime is addressed
in the .NET Runtime section of this chapter. 

Topic: The Common Language Runtime

At the heart of the .NET Framework is the Common Language Runtime
(CLR). In addition to acting as a virtual machine, interpreting and exe-
cuting IL code on the fly, the CLR performs numerous other functions,
such as type safety checking, application memory isolation, memory
management, garbage collection, and crosslanguage exception handling.

10 . CodeNotes® for .NET



THE COMMON TYPE SYSTEM

The CLR greatly simplifies crosslanguage communication through the
introduction of the Common Type System (CTS). The CTS defines all of
the basic types that can be used in the .NET Framework and the opera-
tions that can be performed on those types. Applications can create more
complex types, but they must be built from the types defined by the
CTS. 

All CTS types are classes that derive from a base class called Sys-
tem.Object (this is true even for “primitive” types such as integer and
floating point variables). This means that any object executing inside the
CLR can utilize the member functions of the System.Object class. The
methods of System.Object can be found at aNET010005, but for 
the purposes of illustration we will consider the Equals() method of this
class, which can be used to test two objects for equality. 

Consider the following straightforward C# fragment:

int a=5; 
int b=5;

if (a==b) {
System.Console.WriteLine("a is the same as b");

}  

Since all types inherit from System.Object, the code could be rewrit-
ten as:

int a=5; 
int b=5;

if (a.Equals(b)) {
System.Console.WriteLine("a is the same as b");

}  

COMMON LANGUAGE SPECIFICATION

A subsection of the CTS called the Common Language Specification
(CLS) specifies how .NET languages share and extend one another’s li-
braries. The example at the end of this chapter demonstrates how a class
written in one language can be inherited and extended by a class written
in another. 

An Introduction to the .NET Framework . 11

http://www.codenotes.com/cnp?cnp=NET010005


CODE ACCESS SECURITY

The CLR is also burdened with the responsibility of security. An integral
part of the .NET Runtime is something called Code Access Security
(CAS), which associates a certain amount of “trust” with code, depend-
ing on the code’s origins (the local file system, intranet, Internet, etc.).
The CLR is responsible for making sure that the code it executes stays
within its designated security boundaries. This could include such
things as reading and writing files from the user’s hard drive, making
registry entries, and so forth. 

You can modify the permissions that are granted to code from a cer-
tain location using a utility called CASPOL.EXE. You could specify, for
example, that all code originating from www.codenotes.com be granted
more privileges than other code that comes from the Internet. Examples
of CASPOL.EXE and an in-depth discussion of Code Access Security
can be found at aNET010006. 

Topic: .NET Runtime Classes

In the example earlier in this chapter, all three languages used the Con-
sole.WriteLine() method to print “Hello World” to the screen. The
.NET Runtime classes eliminate the need to master a different set of
APIs for different languages. Instead, developers need only familiarize
themselves with the appropriate Runtime classes and then call them
from the language of their choice. 

The .NET Runtime includes classes for many programmatic tasks,
including data access, GUI design, messaging, and many more. It also
acts as a wrapper around the Win32 API, eliminating the need to directly
communicate with this cryptic C-style interface. The most difficult part
of using the Runtime is figuring out which class you need to accomplish
the task at hand. A complete list of the .NET Runtime classes can be
found at aNET010007.

NAMESPACES

The .NET Runtime classes are organized in hierarchical manner using
namespaces. Namespaces provide a scope (or container) in which types
are defined. All of the .NET Runtime classes, for example, can be found
in the System namespace. In the “Hello World” example we had to in-

12 . CodeNotes® for .NET

http://www.codenotes.com/cnp?cnp=NET010006
http://www.codenotes.com/cnp?cnp=NET010007
http://www.codenotes.com


form the compiler that the Console class could be found in the System
namespace by qualifying it (System.Console). Namespaces can also be
nested. The System.IO namespace, for example, contains a number of
classes for I/O operations, whereas the System.Collections namespace
contains classes for common data structures such as arrays.

In the Hello World example we directly addressed the namespace.
You will frequently see code that uses implicit namespace referencing to
make it more concise. Each language uses a different keyword to in-
clude the contents of a namespace. We could have written the Hello
World program in VB.NET as follows:

'VB.NET "Hello World" Program. 
Imports System

Module HelloWorld          
Sub Main 
'Use the .NET Runtime Console method WriteLine,
'to output "Hello World" on the screen:
Console.WriteLine("Hello World!")

End Sub
End Module    

Listing 1.4 VB.NET Hello World program using namespaces

Notice that we added the Imports System line and no longer have to
qualify the Console object as System.Console. In C#, you can perform
the same action with the “using” keyword:

// C# "Hello World" Program.
// Implicit namespace referencing 
using System;

public class HelloWorld {
static public void Main () {
Console.WriteLine("Hello World.");  

}       
}

Listing 1.5 C# Hello World program using namespaces

As you can see, implicitly referencing namespaces can save you a lot of
typing and make your code easier to read. You will use namespaces
throughout the .NET framework to: 

An Introduction to the .NET Framework . 13



• Access the .NET Runtime classes 
• Access custom classes authored by other developers
• Provide a namespace for your own classes, to avoid naming con-

flicts with other classes and namespaces

We will use namespaces throughout this CodeNote as we develop our
own .NET components. 

ASSIGNING A NAMESPACE

When you want to assign a particular class to a namespace, you use the
namespace keyword. For example, the following class is assigned to the
CodeNotes.HelloWorld namespace:

//C# hello world
namespace CodeNotes.HelloWorld
//rest of class

You would address any of the methods or fields of this class by using the
CodeNotes.HelloWorld prefix. This naming command is identical for all
three languages.

EXAMPLE

Sorting an array of numbers is something every programmer must do at
some point in his or her career. C and C++ programmers have tradition-
ally relied on the C runtime library (i.e., qsort ()) for such functional-
ity. The universality of the .NET Runtime means that Visual Basic
programmers can also enjoy the luxury of prewritten routines. The VB
example below uses the .NET Runtime to sort through a list of ten ran-
dom numbers. C# and C++ examples can be found at aNET010008. 

'VB.NET Example that uses the .NET collection classes
'Use the System and System.Collections namespaces
Imports System              
Imports System.Collections

Module SortingExample
Sub Main()        

14 . CodeNotes® for .NET

http://www.codenotes.com/cnp?cnp=NET010008


dim k as integer
dim oArray as ArrayList  
dim oRandom as Random

oArray = new ArrayList()
oRandom = new Random()

'Add ten random numbers (0-99) to the list:
for k = 0 to 9
oArray.Add(oRandom.Next() mod 100) 

next

oArray.Sort()  'That's it!

'Print out the sorted numbers:
for k= 0 to 9
Console.Write(oArray(k))
Console.Write(",")

next                
End Sub

end module

Listing 1.6 Using the .NET Runtime classes to sort numbers

Compiling and running this program produces output similar to the fol-
lowing:

10,11,61,63,74,77,80,90,94,98,

The bolded portions of Listing 1.6, illustrating areas where the .NET
Runtime is being utilized, are worth more explanation. 

Imports System              
Imports System.Collections 

The first two lines (above) inform Visual Basic that we will be using the
System and System.Collection namespaces. Recall that namespaces are
a syntactical shortcut; they save us from having to fully qualify the Run-
time class names when we reference them. The following two lines in-
stantiate the Runtime classes that we will use.

An Introduction to the .NET Framework . 15



oArray = new ArrayList() 'no Set !
oRandom = new Random()

The ArrayList class is like a collection; elements can be added and re-
moved and it will automatically resize itself. The Random class generates
the random numbers that we will sort. Note that the new Visual Basic
syntax does not require the Set keyword when instantiating classes. 

for k = 0 to 9
oArray.Add(oRandom.Next() mod 100)
next

oArray.Sort()  'That's it!

The last code fragment adds ten random numbers to the list and sorts 
the array. This simply involves calling the Sort() method against the 
ArrayList class; the underlying operation is handled by the .NET Run-
time. 

As can be seen from Listing 1.6, using the .NET Runtime is simply a
matter of understanding the conventions of the classes you will be call-
ing. In the example above, the functionality of the program (sorting and
output) is provided by the Runtime; Visual Basic simply acts as a forum
to call it. To a large degree, your choice of .NET development language
will be a function of syntactical preference, due to the universal access
offered by the Runtime. 

You may be wondering why we did not use Visual Basic’s built-in Rnd
function to generate random numbers. While we could have done this
(see the How and Why section), the general practice under the .NET
Framework is to use the Runtime classes where we can. In several in-
stances, VB.NET has dropped intrinsic elements of the languages as
they have been made redundant by the Runtime Classes. For details, see
aNET010009.

HOW AND WHY

Can I Still Use Intrinsic Elements (Like Rnd, Round) in My VB
Programs?
To mitigate the effort required to convert existing VB projects, Mi-
crosoft has provided the Microsoft.VisualBasic.Compatibility run-
time DLL, which allows you to use some intrinsic elements of the Visual
Basic language. For examples, see aNET010009. However, not all in-
trinsic elements are supported. See aNET10009 for details.

16 . CodeNotes® for .NET

http://www.codenotes.com/cnp?cnp=NET010009
http://www.codenotes.com/cnp?cnp=NET010009
http://www.codenotes.com/cnp?cnp=NET10009


SUMMARY

The .NET Runtime is a collection of classes that can be uniformly ac-
cessed by any language capable of producing IL code. Functionality that
was traditionally provided by the language environment is now supplied
by the Runtime classes. This greatly simplifies the development process,
as one only has to familiarize oneself with a common framework, in-
stead of a language-dependent API. The Runtime classes are organized
using namespaces, which makes them easier to access and syntactically
more concise. We will also use namespaces when we design our own
components in the .NET Framework. 

Chapter Summary

The .NET Framework consists of the platform and tools needed to de-
velop and deploy .NET applications. It includes an execution environ-
ment for .NET programs (the Common Language Runtime, or CLR for
short), prewritten services that programs can access from this environ-
ment (the .NET Runtime classes), and the development tools to produce
such programs (VS.NET). 

Unlike traditional Windows applications, .NET applications are not
compiled to native machine code but are compiled to interpreted code
called Microsoft Intermediate Language (IL). IL code is the inherent
language of the CLR, which is similar to a Java VM, acting as an oper-
ating system on the operating system, interpreting the IL code in real
time. Since IL code is interpreted, responsibilities such as memory allo-
cation and exception handling become property of the CLR and not the
programmer. For this reason, IL code is referred to as “managed” code,
whereas native machine code is said to be “unmanaged.” 

One of the compelling reasons to develop applications in the .NET
Framework is the .NET Runtime classes. Similar to the Java Class Li-
braries, these classes are the building blocks for writing .NET applica-
tions. Throughout this book we will use the Runtime classes for more
complex operations such as database access and remote messaging. The
new .NET versions of traditional technologies such as ADO are also ac-
cessed through the .NET Runtime, as we will see in Chapter 6.

An Introduction to the .NET Framework . 17



Chapter 2

INSTALLATION

As of this writing the NET Framework is still in beta. As such, the con-
tents of this chapter are subject to change. Please consult the online 
reference at aNET020001 for up-to-date installation instructions. 

SYSTEM REQUIREMENTS

In order to install the .NET Framework on your machine, Microsoft rec-
ommends the following system configuration:

• Processor: Minimum Pentium II-450Mhz (Pentium III-650Mhz
recommended).

• Operating System: Windows 2000 (Server or Professional), Win-
dows XP, or Windows NT 4.0 Server. 

• Memory: 96 MB (128 MB recommended) for Windows 2000
Professional, 192MB (256 MB recommended) for Windows
2000 server.

• Hard drive: 500MB free on the drive where the OS is installed
(usually C:\) and 2.5 Gigs free on the installation drive (where
VS.NET will be installed).

http://www.codenotes.com/cnp?cnp=NET020001


.NET DISTRIBUTION

The .NET Framework is distributed on four CDs. The first three contain
the VS.NET development tools, and the fourth contains the Windows
Component Update. The Windows Component Update will install the
core framework files (the CLR, Runtime classes) and updated versions
of system files that the Framework requires in order to run on your ma-
chine. For information on obtaining the CDs either by mail or download,
please see www.microsoft.com/net/.

INSTALLING .NET

To install the .NET Framework, run SETUP.EXE, found on the first CD.
After a couple of minutes, you will be greeted with the screen in Fig-
ure 2.1.

Figure 2.1 VS.NET setup

As Figure 2.1 indicates, you must run the Windows Component Update
before installing VS.NET. After clicking Windows Component Update,
the setup program will analyze your machine for a few minutes to de-
termine which system files need to be updated. Depending on the oper-

Installation . 19

http://www.microsoft.com/net/


ating system and the applications that you have already installed, the
setup program may have to reboot the system several times during the
installation process. Because of this, it offers the Automatic Log On fea-
ture. 

When you supply your user ID and password, the system can auto-
matically log on and continue the installation every time it has to reboot
the machine. Because the setup program may have to reboot the ma-
chine as many as seven times during the installation routine, this option
can be a real timesaver. If you disable this option, you will have to log
on each time the computer reboots. (As of this writing there are some
beta issues with automatic log-on, so please consult aNET020002 for
the latest information). 

After you either enable or disable Automatic Log On, the setup pro-
gram will begin the Windows Component Update. Depending on the
files it must update, this procedure can take several minutes. After the
Windows Component Update has been completed, the setup program
will prompt you for the first VS.NET CD. It will then ask you to choose
which portions of VS.NET you want installed (the IDE, MSDN docu-
mentation, etc.).

After selecting those aspects of VS.NET that you want included,
click Install Now. (For the purposes of working with the examples in this
book, we recommend that you accept the default install options.) The
setup program will begin. Depending on the options you have selected,
installation will take anywhere from twenty to sixty minutes. After the
installation has been completed, your computer will contain all of the
necessary tools to build and deploy .NET applications. 

PROGRAM LOCATIONS

The .NET setup program will append two new items to your Start
menu’s Program folder. The first item is called Microsoft .NET Frame-
work SDK and contains MSDN documentation and Code samples. The
second item is called Microsoft Visual Studio.NET 7.0 and contains
links to the VS.NET IDE and to another folder called Visual Studio.NET
Tools. We will build the majority of programs in this CodeNote from the
VS.NET command line, which you can access by clicking the Visual
Studio.NET Command Prompt icon shown in Figure 2.2. 

Those familiar with previous versions of Visual C++ should note that
you can also bring up this command prompt by running the
vcvars32.bat file, found in the \%Program Files%1\Microsoft Visual
Studio.NET\Vc7\bin directory. 

20 . CodeNotes® for .NET

http://www.codenotes.com/cnp?cnp=NET020002


Figure 2.2 The Visual Studio.NET Command Prompt

Finally, note that many utilities we use throughout this CodeNote 
(ILDASM.EXE in Chapter 1, SN.EXE in Chapter 2, etc.) are found in
the \%Program Files%\Microsoft.NET\FrameworkSDK\Bin directory. If
you use the VS.NET Command Prompt in Figure 2.2, this directory will
automatically be included in your Path variable, so you can access the
.NET Framework utilities from within any directory. However, if you
use a normal Windows command prompt, you will have to manually add
the tool directory to your path or provide relative paths to the tools you
need to use (or run the aforementioned vsvars32.bat file).

Installation . 21



Chapter 3

ASSEMBLIES AND METADATA

We learned in Chapter 1 that a .NET application is compiled to Interme-
diate Language (IL) code, which is interpreted on the fly by the Com-
mon Language Runtime (CLR) when the application is executed. It
should come as no surprise, therefore, that .NET applications must be
packaged differently than traditional Windows executables, which are
compiled directly to native machine code and immediately executed by
the Operating System. 

In this chapter we cover the two fundamental aspects of component
development in the .NET Framework: Assemblies and Metadata. 

CORE CONCEPTS

Common Type System
As we discovered in the Common Language Runtime section in Chap-
ter 1, the Common Type System (CTS) defines all the basic types that
can be used in the .NET Framework and the operations that can be per-
formed on those types. The basic type in the CTS is the System.Object
class, from which all other types are derived. This means that any object
executing inside the CLR can utilize the member functions of the 
System.Object class. 



Topic: Metadata

In the Runtime Classes section in Chapter 1, we saw that the .NET Run-
time is a set of classes that can be uniformly accessed by .NET applica-
tions. This coherency is afforded by the CTS; because all languages are
restricted to using CTS types, a level of commonality between them can
be ensured. 

Consider what would happen if you were to design a .NET compo-
nent that used the structure depicted in Listing 3.1. 

'In VB.NET: 
public structure Age
dim years as short
dim days as short

end structure

// In C#: 
public struct Age
{
short years;
short days;

}

Listing 3.1 The Age Structure

As a result of the CTS, all .NET clients and components will agree on
the representations for a short (likewise for charts, floats, doubles, etc.).
The only information a client really needs is the “type” information 
for the Age structure (how the Age structure is built). This information
is stored as metadata, which is the universal format used to describe
types in the .NET Framework. As we will see, metadata is used to store
more than just type information. It is the format used to house security,
versioning, and dependency information about components themselves.
It is used by the CLR to ensure that components run against the proper
resources and that they have the proper security requirements to carry
out the functions they perform. 

ASSEMBLIES OR COMPONENTS?

Microsoft’s old Component Object Model (COM) had versioning and
type information stored in both the registry and a type library (which
was usually embedded as a resource in the component itself). .NET

Assemblies and Metadata . 23



eliminates COM’s awkward predicament of having component informa-
tion in two locations; the metadata for a .NET component is stored en-
tirely within the component itself. .NET components are thus fully
describing in that they contain both IL code and all of the necessary in-
formation needed to execute it. This glorified type of component has
been given a new physical structure in the .NET Framework, as well as
a new name: the assembly.

ASSEMBLIES DEFINED

We will deal with assemblies throughout the remainder of this Code-
Note, and so it is important to definitively establish what they are. An as-
sembly is the new way executable code is packaged in the .NET
Framework. What makes an assembly special is not the metadata that it
contains, but simply that the CLR can interpret it in some useful manner.
For example, the CLR uses metadata to:

• Ensure that an assembly’s methods are called in a type-safe man-
ner. 

• Ensure that an assembly runs against the proper versions of other
assemblies it depends on (the next section on Shared Assemblies
illustrates this). 

• Determine and provide other runtime requirements of the assem-
bly (in the Transactions section in Chapter 6, for example, we see
how one can specify that a class method execute within a trans-
action, which is important when database operations are being
performed). 

Although assemblies are still usually stored inside DLLs and EXEs,
a single assembly can span multiple files (called “modules” in .NET).
An assembly could, for example, span three modules. The first could
contain IL code, the second resources such as bitmaps and sounds, and
the third the metadata that glues them together. For this reason, an as-
sembly is more accurately referred to as a unit of deployment, rather
than a self-contained component. 

WHY METADATA?

The presence of type-describing metadata in an assembly allows one to
inherit a class from a compiled .NET component written in any lan-
guage as if it were an intrinsic class in the target language itself. Reflect

24 . CodeNotes® for .NET



on what this means for a moment. Visual Basic developers can now in-
herit both the interface and behavior of classes written in managed C++.
Classes written in Visual Basic can be treated as intrinsic classes in C#.
Such versatility was unseen before .NET’s introduction of the CLR and
CTS. 

EXAMPLE

To illustrate the use of metadata and assemblies, we construct a class in
managed C++ that uses the Age structure in Listing 3.1. (If you don’t
know the C++ language, don’t worry; this example is very straight-
forward.) The managed C++ class is then extended and used by a Visual
Basic program. This source can also be found online at aNET030001.

// Managed C++ Age Class.  
// Reference the .NET Runtime Library, 
// for Console Input/Output functionality. 
#using <mscorlib.dll>
using namespace System;

// Define the Age Structure to house
// information about a Person's Age.
__value public struct Age {
short years;
short days;

};

// Define the namespace that clients
// will use to reference our class:
namespace AgeExample
{
//__gc means garbage collection is on.  C++, by default, has
// no garbage collector to clean up orphaned or out of scope 
// object instances.  .NET provides one, however.

__gc public class AgeCpp 
{
public:
// ToDays() takes an Age structure, 

Assemblies and Metadata . 25

http://www.codenotes.com/cnp?cnp=NET030001


// and returns the persons Age in days.
void ToDays(Age age) 
{
unsigned long daysOld;
daysOld = 365*age.years+age.days;
Console::Write("C++ ToDays: ");
Console::WriteLine(daysOld.ToString());

}
};
}

Listing 3.2 The Age C++ class

There are a few lines in the code that merit attention. The definition of
the Age structure may raise a few eyebrows, particularly the extensions
in front of the struct keyword:

__value public struct Age {

The __value extension informs the C++ compiler that the Age struc-
ture will be managed by the CLR, which is required if we wish to share
the structure with other .NET components. Note that in VB.NET and C#
this extension does not have to be specified, as these languages have
their types implicitly managed by the CLR. Managed C++ is the only
language in which such a distinction is required. We will examine the
consequences of omitting the __value extension in the How and Why
section later in the topic. 

The public extension advises the C++ compiler that this structure
should be visible to all programs that attempt to access this component.
With .NET, one can specify the “visibility” of types to the outside world.
The public extension is the most lenient specification, allowing access to
all who want it. There are four other visibility extensions that can also be
used: 

• private — stipulates that a class’s method can only be called di-
rectly by the class itself. 

• protected – stipulates that a class’s method can only be called by
the class and derived classes. 

• friend and protected friend – these two extensions require an
understanding of concepts that we will explore in the next sec-
tion of this chapter. Details on these two keywords can be found
at aNET030002. 

26 . CodeNotes® for .NET

http://www.codenotes.com/cnp?cnp=NET030002


The next interesting line assigns the class to the AgeExample name-
space:

namespace AgeExample

The line above declares a new namespace that clients must use to access
our class. Thus, to access the AgeCpp class in Listing 3.2, clients must
use the AgeExample namespace, just as they would use the System name-
space to access the .NET Runtime classes. The __gc extension of the
next line:

__gc public class AgeCpp

informs the compiler that this type is to be garbage collected by the
CLR. If you are wondering why we used the __gc extension for the class
and the __value extension for the struct, it is because a struct is a value
type that is not dynamically instantiated, while a class is dynamically in-
stantiated and therefore requires garbage collection. A notable conse-
quence of the __gc extension is that a class’s destructor (if defined) will
not operate in the expected C++ manner. The implications of this will be
investigated in the Garbage Collection section in Chapter 4. 

The rest of the C++ code is straightforward; the ToDays() method of
the class accepts an Age structure and returns the individual’s age in
days. 

COMPILATION

If the code in Listing 3.2 was named Age-cpp.cpp, an assembly could be
created by invoking the Visual C++ compiler, where the /LD switch in-
dicates that a DLL should be created:

cl.exe /CLR /LD Age-cpp.cpp.

Recall that the produced assembly is not an ordinary Win32 DLL; 
it contains self-describing metadata in addition to IL code. To look at
this metadata we can use a tool provided by Microsoft called 
ILDASM.EXE, which allows us to inspect the makeup of a given as-
sembly. COM programmers will find this utility similar to the invaluable
OLEVIEW.EXE tool, which allows them to examine the internals of a
COM component.

Assemblies and Metadata . 27



Using ILDASM
Executing “ILDASM.EXE /Adv Age-cpp.dll” at the command prompt
allows us to inspect the assembly we just created and brings up some-
thing similar to Figure 3.1 below: 

Figure 3.1 ILDASM.EXE utility

Ignoring some boilerplate insertions by the C++ compiler, you can see
the makeup of both the Age structure and AgeCpp class (which is notably
in the AgeExample namespace). You can also examine the metadata gen-
erated by the C++ compiler by going to View ➝ Metadata ➝ Show!. The
metadata listing is quite verbose, but looking through it you will find the
following definition:

TypeDef #1
----------------------------------
TypDefName: Age (02000002)
Flags : [Public] [AutoLayout] [ValueType] [Sealed] 

[AnsiClass]  (00000141)
Version   : 0:0:0:0
Extends   : 01000004 [TypeRef] System.ValueType
Field #1
-------------------------------

28 . CodeNotes® for .NET



Field Name: years (04000002)
Flags     : [Public]  (00000006)
DefltValue: 
CallCnvntn: [FIELD]
Field type:  I2

Field #2
-------------------------------
Field Name: days (04000003)
Flags     : [Public]  (00000006)
DefltValue: 
CallCnvntn: [FIELD]
Field type:  I2

This listing is the metadata for the Age structure that we defined, and
contains all of the information that will allow other IL-Languages to use
the structure. Note the [Public] specifier in the Flags section of the meta-
data, which means that all clients can see and use the Age structure. 

Examine the metadata further and you will also find the definition for
the AgeCpp class. 

TypeDef #2
-------------------------------
TypDefName: AgeExample.AgeCpp (02000003)
Flags     : [Public] [AutoLayout] [Class] [AnsiClass]  

(00000001)
Version   : 0:0:0:0
Extends   : 01000005 [TypeRef] System.Object
Method #1 
-------------------------------
MethodName: ToDays (06000003)
. . . 
Argument #1:  ValueClass Age
1 Parameters
. . . 

Method #2 
-------------------------------
MethodName: .ctor (06000004)
. . .
. . . 
ReturnType: Void
No arguments.

Assemblies and Metadata . 29



It may surprise you to see that the AgeCpp class has two member func-
tions when we only defined one (ToDays). You may recognize the
.ctor() method as the class’s constructor (VB developers can think of
this as the Class_Initialize method). Note that the ToDays() method’s
first and only argument is the Age structure that we examined previously.

USING THE C++ CLASS IN VISUAL BASIC

As we can see, contained within the assembly is both the executable
code for the class and the type information to access it. It is thus possi-
ble to inherit the class directly from the compiled assembly, as the Vi-
sual Basic program in Listing 3.3 illustrates:

'VB.NET Example that inherits and extends a C++ class
'Use the System and AgeExample
Imports System
Imports AgeExample

'Inherit and extend the AgeCpp class:
Class AgeVB : inherits AgeCpp
public sub ToHours(age as Age)
dim minutes as long
minutes = age.years*365*24 + age.days*24
Console.Write("VB  ToMinutes:  ")
Console.WriteLine(minutes.ToString())

end sub  
End Class

Module Example
Sub Main()
dim objAge as AgeVB
dim MyAge as Age
objAge = new AgeVB

'I am 20 years, 20 days old:
MyAge.years = 20
MyAge.days = 20
objAge.ToDays(MyAge)    'How many Days?
objAge.ToHours(MyAge)   'How many Hours?

30 . CodeNotes® for .NET



End Sub
End Module  

Listing 3.3 Age-vb.vb – A Visual Basic program that inherits from the Age class.

We can compile the program by calling the Visual Basic compiler and
referencing the C++ assembly (Age-Cpp.dll) using the /r switch. 

vbc.exe  /r:age-cpp.dll /t:exe Age-Vb.vb

Run the Age-Vb.exe application that is produced, and the following out-
put will result: 

C++ ToDays: 73207
VB  ToHours:  175680

EXAMINING THE VB CLASS

Remember that Age-Vb.exe is not a standard Win32 application but an
assembly packaged in executable format. As we did with the C++ as-
sembly, we can use the ILDASM tool to examine the metadata of the Vi-
sual Basic application. Examine the metadata for Age-Vb.exe and you
will find that the metadata for the AgeVB class contains the line below:

Extends : 01000001 [TypeRef] AgeExample.AgeCpp

The metadata reflects what we expect: the AgeVB class extends the
AgeCpp class. Look elsewhere in the metadata and you will find the fol-
lowing:

AssemblyRef #3
-----------------------------
Token: 0x23000003
Public Key or Token: <null>
Name: Age-cpp
…

The AssemblyRef section of the metadata contains the dependency in-
formation of the assembly itself. This section of metadata allows the
CLR to determine that when the Visual Basic application is executed,
the Age-cpp assembly is required and should be loaded automatically. 

Assemblies and Metadata . 31



THE MANIFEST

The section of metadata that contains the configuration and dependency
information of the assembly itself is called the manifest. You can also
examine the manifest by clicking on the MANIFEST icon in the 
ILDASM utility, as shown below. 

Figure 3.2 Looking at an Assembly’s manifest

Clicking this icon brings up a textual representation of the manifest,
shown below. Certain parts of it have been omitted for brevity. 

.assembly extern mscorlib

.assembly extern Microsoft.VisualBasic

.assembly extern 'Age-cpp'

.assembly 'Age-vb'

.module 'Age-vb.exe'
// MVID: {7969D44A-EEC2-4609-B79B-335A9A012555}

As we can see, the Visual Basic application depends on three assem-
blies. The first is the .NET Runtime (mscorlib), the second is the Micro-
soft.VisualBasic assembly that provides intrinsic VB syntax elements,
and the last is our C++ Assembly. Also recall that assemblies can span
multiple modules. The manifest contains a list of the modules that con-
stitute the assembly (in our case only Age-vb.dll), as well as the Module
Version IDs (MVIDs) that uniquely identify them. 

From this example we can see the seamless crosslanguage communi-

32 . CodeNotes® for .NET



cation that the CLR facilitates. We wrote a class in managed C++, which
was extended and used by a Visual Basic program. 

HOW AND WHY

When Attempting to Run the Visual Basic Application I Get an Error
Telling Me That “An exception ‘System.TypeLoadException’ ” has 
occurred in C:\...\Age-vb.exe”
You must ensure that the C++ assembly is in the same directory as 
the Visual Basic application. This restriction occurs because the C++ as-
sembly that we created was a private assembly. The CLR locates private
assemblies through a process called probing, looking first in the appli-
cation’s directory and then in subdirectories. In the next section we will
look at shared assemblies that can be used in a global manner.

What Would Have Happened Had We Omitted the __value/__gc 
Extension in Front of the Age structure/AgeCpp Class in the 
Managed C++ Listing?
Remember that Managed C++ is the only VS.NET development tool in
which you must explicitly inform the CLR that it will be responsible for
memory management of a given type. By omitting these extensions you
take on such responsibility yourself, and disqualify the type from being
used in the CLR. Your C++ program will compile without fail, but the
Visual Basic compiler will issue an error indicating that you are trying
to use an unmanaged type that it cannot access. 

Age-vb.vb(9) : error BC30389: 'Age' is Private, and is not 
accessible in this context.

C# and VB.NET cannot interface with unmanaged types or code di-
rectly. Instead, they must use the native invocation services examined in
Chapter 5. 

What Would Have Happened Had We Omitted the “namespace 
AgeExample” Line in the C++ Program?
Namespaces are not required under the .NET Framework. Rather, they
are meant to organize your classes in a hierarchical fashion, prevent
name collisions with other classes, and simplify access in general. If we
had omitted the AgeExample namespace in our C++ listing, we could
have also omitted referencing the namespace in our VB program and
still accessed the C++ class. Namespaces are simply syntactical sugges-

Assemblies and Metadata . 33



tions, but they are a convention you should follow if others will be using
your components. 

What Is the Relationship Between an Assembly and a Namespace?
An assembly is a unit of deployment, whereas a namespace is a scope
for type definition. An assembly houses executable code, a namespace
simplifies the manner in which it can be accessed. A single assembly can
contain multiple namespaces. If you wrote an assembly to expose
mathematical functions, for example, you might partition your code into
standard and scientific services and group them into two namespaces
called MyCalc.Standard and MyCalc.Scientific.

SUMMARY

Assemblies are the new file format used to house executable code in the
.NET Framework. Assemblies can span multiple modules (files) and are
more accurately thought of as units of deployment, as opposed to tradi-
tional components. An assembly is self-describing, as it contains infor-
mation about the types it exposes and other assemblies it depends on.
This self-describing information is stored in a binary format called
metadata, which can be inspected using the ILDASM utility. 

Topic: Shared and Private Assemblies

THE DLL HELL PROBLEM

Microsoft has touted the assembly as the end of “DLL Hell.” To under-
stand the legitimacy of this claim, we must recognize that DLL Hell
came about due to the versioning problems of shared components. The
idea behind the DLL was that applications could share libraries for
common and useful routines. By sharing executable code, applications
would be smaller, conserving hard drive space. 

Problems arose with this model, because it became difficult to im-
pose a versioning scheme for these libraries. Installation scripts would
frequently and arrogantly update shared DLLs, unaware (or uncon-
cerned) that numerous other programs depended on them. If the new
shared DLL was for some reason incompatible with the old one (if func-
tions accepted new parameters or behaved differently), many programs
would cease to work. 

Microsoft’s Component Object Model (COM) attempted to tame

34 . CodeNotes® for .NET



such versioning problems by declaring that a component’s interface,
once published, could never change. Components could evolve through
new interfaces, but would never cease to be compatible with their older
variants. This was a voluntary constraint, however, and developers could
(and frequently would) change published interfaces, breaking compati-
bility with older components. Many “OLE Automation” and “ActiveX”
error messages were the result of developers breaking the rules of COM. 

With .NET, Microsoft has finally eradicated the problem of DLL Hell
through the introduction of two types of assemblies.

PRIVATE ASSEMBLIES

Private assemblies are not designed to be shared. They are designed to
be used by one application and must reside in that application’s direc-
tory or subdirectory. This isolated methodology is nostalgically reminis-
cent of the DOS days, when applications were fully contained within
their own directories and did not disturb one another. It is expected that
the majority of assemblies you create will be of the private type. 

SHARED ASSEMBLIES

For those special components that must be distributed, Microsoft offers
the shared assembly. The shared assembly concept is centered around
two principles. The first, called side-by-side execution, allows the .NET
Runtime to house multiple versions of the same component on a single
machine. The second, called binding, ensures that a client obtains the
version of the component they expect. Together, these principles free de-
velopers from having to ensure that their components are compatible
with their earlier versions. If a component evolves through versions 1.0,
1.1, and 2.0, the Runtime will maintain separate copies of each version
and invoke the correct one accordingly. 

SECURITY AND THE GLOBAL ASSEMBLY CACHE

What differentiates the shared assembly model from COM or Win32
DLLs is that the versioning policy is not voluntary or based on consid-
erate programming practices but is enforced through public key cryp-
tography. A full discussion of cryptography and its use by the .NET
Runtime would quickly bring us into the world of hashing, tokens, digi-
tal signatures, and other topics beyond the scope of this CodeNote.

Assemblies and Metadata . 35



These subjects can quickly become overwhelming, but all you have to
understand is that to enforce versioning, the Runtime must ensure:

1. that shared assemblies can only be updated by authorized par-
ties;

2. that if a component is updated and is incompatible with its 
predecessor, clients expecting the older version will receive it. 

These requirements are facilitated by two entities. The first is a private
key that you obtain to “sign” an Assembly, allowing you (and only you)
to update it. The second is the Global Assembly Cache (GAC), which
can house multiple copies of a shared assembly based on your “signa-
ture” and the version information used to build it. This information (sig-
nature and version) is stored in the manifest of all clients who wish to
access the assembly, allowing the CLR to load the appropriate version at
runtime. Shared assemblies are best illustrated through an example such
as the one below. 

SHARED ASSEMBLY EXAMPLE

In this example we will consider the evolution of a fictitious assembly
called WatSoft, a mathematical library for client applications. We will
use C# for our example, although managed C++ and VB examples can
be found at aNET030004.

WatSoft is a library that will allow clients to calculate the factorial of
a number. In order to deploy a shared assembly, we must first generate a
private key using the SN.EXE utility provided by the .NET SDK: 

SN.EXE –k WatSoft.key

SN.EXE writes a globally unique key into the file called WatSoft.
key. COM developers can think of this utility as somewhat similar to
GUIDGEN.EXE, which generates unique GUIDs. Unlike with a GUID,
however, we keep a private key in our sole possession and use it to sign
the assembly. If someone else gained access to WatSoft.key, they could
produce assemblies that looked like they were authored from us. For this
reason, the private key should be guarded carefully and kept in a safe
place. 

Having generated a private key, we create a shared assembly from the
source code in Listing 3.4 below. The code you would add to associate
your application with the private key appears in bold type:

36 . CodeNotes® for .NET

http://www.codenotes.com/cnp?cnp=NET030004


using System;
// the following line is needed to reference
// the two highlighted lines after
using System.Runtime.CompilerServices; 

[assembly:AssemblyKeyFileAttribute("WatSoft.key")]
[assembly:AssemblyVersionAttribute("1.0.0.0")]
namespace WatSoft {  
public class MathClass
{
public uint Factorial(uint a) {
uint nDigit, nAnswer;
nAnswer = 1;
for (nDigit=1; nDigit<a; nDigit++)
nAnswer = nAnswer*nDigit;

Console.WriteLine("Factorial v1.0.0.0");
Console.WriteLine("{0}! = {1}",a,nAnswer);
return nAnswer;

}    
}
}

Listing 3.4 The WatSoft library

The two boldface lines inform the compiler that this is version 1.0.0.0 
of the assembly and that it will be signed with the key contained in 
WatSoft.key. These two lines are called attributes, which are nonpro-
grammatic statements that influence code generation. Attributes are cov-
ered in detail in the Attributes section in Chapter 4.

If our source file was called WatSoft.cs, we could produce an assem-
bly by invoking C# compiler as usual:

csc.exe /t:library WatSoft.cs

The WatSoft.DLL file produced by the C# compiler can now be de-
ployed as a shared assembly. Before we consider how a client would in-
stall and use it, a few words need to be said about the versioning scheme
used by the .NET Framework.

Assemblies and Metadata . 37



VERSIONING AND COMPATIBILITY

The version number 1.0.0.0 is embedded into the manifest of Watsoft
.DLL. Version information in the .NET Framework takes on the follow-
ing form:

<major version>.<minor version>.<build number>.<revision>

The first two sections (major and minor) are referred to as the “incom-
patible” portions of the version number, whereas the last two (build and
revision) are the “compatible” portions. When a new version of a com-
ponent is released, if its major or minor number changes, it is deemed
incompatible with its predecessor. If the build or revision number
changes, however, it is considered compatible with its older variants. If
there are two compatible versions of a component on the same machine,
the default behavior of the CLR is to give a client the one with the latest
build and revision numbers. 

Thus, if a client is built against version 1.0.0.0 of our component and
we release version 1.0.1.1, the CLR assumes the two are compatible and
will give the client the component with the latest build and revision
numbers, in this case v1.0.1.1. If, however, we release version 1.5.0.0,
the CLR will assume they are incompatible, and clients will receive
v1.0.0.0. 

Keep in mind that this versioning scheme is a suggested nomencla-
ture. The CLR has no way of ensuring that version 1.0.1.1 of our as-
sembly is backwards-compatible with its predecessor. Since we are the
only ones who possess the private key, however, we need not worry about
a third party releasing an assembly that falsely claims to be compatible
with ours. The private key security afforded by the CLR ensures that if
we follow its versioning scheme, clients will be running compatible ver-
sions of our code. 

In addition to specifying the version number of an assembly, you can
optionally specify its culture, which can be used when you are deploy-
ing multilanguage assemblies. We will not use it in our example here,
but consult aNET030005 for details.

DEPLOYING THE ASSEMBLY

Suppose Samantha the student wishes to use v1.0.0.0 of our shared 
assembly. She downloads it from our website. Next, she must regis-
ter it with the Global Assembly Cache (GAC) using a utility called 
GACUTIL.EXE. (Remember, the Global Assembly Cache houses mul-
tiple versions of the same assembly.) 

38 . CodeNotes® for .NET

http://www.codenotes.com/cnp?cnp=NET030005


GACUTIL.EXE /i WatSoft.DLL

As a result of running this utility, the file is now registered and copied
into Samantha’s Global Assembly Cache, which she can view by using
the Windows Explorer and inspecting the \%Winroot%\assembly direc-
tory. Navigating to this area invokes the Assembly Cache Viewer, which
is a shell extension that provides a friendly view of all shared assemblies
on the system. (A shell extension is a component that extends some as-
pect of the Windows User Interface, such as the Windows Explorer.)
This is shown in Figure 3.3.

Figure 3.3 The Assembly Cache Viewer

Next to our component, we see the version number and something called
the publickeytoken. The publickeytoken can be thought of as a portion of
our private key that guarantees Samantha that any WatSoft.DLL updates
she receives will be from us. We will revisit the publickeytoken momen-
tarily, when we consider how the assembly is updated. 

Pleased that she will no longer have to compute factorials by hand,
Samantha writes the C# program in Listing 3.5, below. She also writes
VB and managed C++ examples that can be found at aNET030006. 

using System;
using WatSoft;

public class MathProg {
public static void Main() {
MathClass mClass;

Assemblies and Metadata . 39

http://www.codenotes.com/cnp?cnp=NET030006


uint result;
mClass = new MathClass();
result = mClass.Factorial(5);  // Should equal 120

}    
}

Listing 3.5 A program that uses the MathClass class

A client application is produced from the MathProg.cs listing above by
referencing the WatSoft.DLL as follows:

CSC.EXE /r:WatSoft.DLL MathProg.cs

It is important to note that even though WatSoft.DLL is stored in the
GAC, it must also be in the current directory so that the command line
compiler can reference it.

Samantha runs the MathProg.EXE application that is produced, and
is disheartened to see the following output:

Factorial v1.0.0.0
5! = 24

Unfortunately 5! (5x4x3x2x1) is 120, not 24. She alerts us of the prob-
lem, and consulting our source code we immediately recognize an ele-
mentary error that should have been caught. The line:

for (nDigit=1; nDigit<a; nDigit++)
should be changed to:

for (nDigit=1; nDigit<=a; nDigit++)

UPDATING THE ASSEMBLY

We promise to produce a new version of the component and e-mail it to
Samantha. But how can she be confident that the component she re-
ceives is, in fact, from us? Recall from Figure 3.3 that the publickey-
token of our component is e9f47cedc04f01e3. If you use ILDASM.EXE
to view MathProg.EXE’s manifest you will see:

.assembly extern WatSoft {

.publickeytoken = (E9 F4 7C ED C0 4F 01 E3 )

Samantha’s client application references both the assembly name (Wat-
Soft) and the publickeytoken, which can only be produced with our pri-

40 . CodeNotes® for .NET



vate key. Together, these two entities form a “strong name,” which is
guaranteed to be unique. Another company could use the WatSoft name-
space, but they could never generate the same publickeytoken. Similarly,
Steven, Samantha’s malicious classmate, cannot send her an authen-
tic version of our component because he does not possess our private 
key. The publickeytoken embedded in the client application ensures
Samantha that if we don’t share our private key she will always call a
component that is produced by us. 

Having updated our source code to reflect the new change, we also mod-
ify the AssemblyVersion attribute to reflect the Assembly’s new version.

[assembly:AssemblyVersionAttribute("1.0.0.1")]

It is important that we do NOT change the private key used to sign the
component. Doing this would give the component a different publickey-
token than v1.0.0.0, and the CLR would have no way of knowing that
our new assembly is an update to its predecessor. 

Having received the new assembly via e-mail, Samantha installs it as
she did before, using GACUTIL.EXE. If she examines the GAC’s con-
tents, she will see that there are now two versions of the component on
her computer. 

Figure 3.4 Two versions of the WatSoft assembly

Her client application does not need to be recompiled in light of 
the new assembly. The CLR will determine at runtime that v1.0.0.1 is
backwards-compatible with v1.0.0.0 and deliver the latest of the two.
The client application now outputs:

Assemblies and Metadata . 41



Factorial v1.0.0.1
5! = 120

Update with Broken Compatibility
A couple of months down the road, we decide that the Factorial()
method is limiting because it returns an unsigned integer whose maxi-
mum value is roughly 4 billion. This may seem like a lot, but it only al-
lows our clients to calculate factorials up to 12, because 13! > 4 billion.
It would be better if it returned an unsigned long, whose maximum value
is considerably larger (≈1.84 x 1019). This change breaks compatibility
with the old component, however, as the Factorial() method signature
is no longer the same. Realizing this, we signify to the CLR that this ver-
sion of the component is not compatible with its predecessor by giving
it an incompatible version number. The source for our new component is
given in Listing 3.6, below:

using System;
using System.Runtime.CompilerServices; 
// to use the 2 lines below
[assembly:AssemblyKeyFileAttribute("WatSoft.key")]
[assembly:AssemblyVersionAttribute("1.5.0.0")]

namespace WatSoft {  
public class MathClass 
{
public ulong Factorial(ulong a) {
ulong nDigit, nAnswer;
nAnswer = 1;
for (nDigit=1; nDigit<a; nDigit++)
nAnswer = nAnswer*nDigit;

Console.WriteLine("Factorial v1.0.0.0");
Console.WriteLine("{0}! = {1}",a,nAnswer);
return nAnswer;

}    
}

}

Listing 3.6 A new version of the WatSoft library

Even if Samantha installs this version of the component on her com-
puter, the CLR will direct her client to version 1.0.0.1 of the component.

42 . CodeNotes® for .NET



Because of the Runtime’s versioning semantics, new clients can take ad-
vantage of the new component while existing clients continue to rely on
an older, compatible one. 

If Samantha wanted to take advantage of the new method, she would
modify her code (Listing 3.5) by changing the result variable from a
uint to a ulong, and then recompile her application against the new as-
sembly. Her client application will now reference v1.5.0.0 of the assem-
bly, which will allow her to compute significantly larger factorials. 

Some of you may be wondering where exactly the various versions 
of Watsoft.DLL reside on Samantha’s machine (where exactly is the
GAC?). As of this writing, versions 1.0.0.0, 1.0.0.1, and 1.5.0.0 of the
component with the aforementioned publickeytoken can be found in 
the following directories (they are copied there by GACUTIL.EXE):

\%winroot%\Assembly\GAC\WatSoft\1.0.0.0__e9f47cedc04f01e3\
WatSoft.DLL
\%winroot%\Assembly\GAC\WatSoft\1.0.0.1__e9f47cedc04f01e3\
WatSoft.DLL
\%winroot%\Assembly\GAC\WatSoft\1.5.0.0__e9f47cedc04f01e3\
WatSoft.DLL

As can be seen, each version of the component is stored in a directory
that is based on its version number and publickeytoken. This is designed
to avoid name clashes. If another company released an assembly also
called WatSoft.DLL, it would reside in a different directory because its
publickeytoken would be different. Not surprisingly, the GAC’s directo-
ries can only be modified by someone with administrator privileges. 

BACK TO PRIVATE ASSEMBLIES

In light of our knowledge of shared assemblies, we can say a few things
about their private counterparts. Unlike shared assemblies, private as-
semblies are not signed with a key and thus do not have strong names.
This is permissible, because they are only to be used by one application,
so unique naming is not a concern. Private assemblies also cannot 
be registered in the GAC using GACUTIL.EXE. Futhermore, no ver-
sion checking is performed on private assemblies. While it is pos-
sible to embed a version number into a private assembly using the 
AssemblyVersion attribute we used in Listing 3.6, it is effectively ig-
nored by the Runtime. 

Finally, recall that the client application’s manifest contained the ver-
sion and publickeytoken of the WatSoft shared assembly. This allows

Assemblies and Metadata . 43



the CLR to load the proper version and ensure that the assembly was au-
thored by us. The publickeytoken also allows the CLR to determine that
the assembly’s contents (IL-code, resources, etc.) have not been cor-
rupted or tampered with. The CLR not only assures Samantha that she is
running our code, it also assures her that the integrity of the assembly
has not been compromised since we signed it. 

Likewise, if WatSoft.DLL uses an assembly itself, the CLR would
ensure that it ran against the proper version. These integrity checks are
performed throughout the chain of callers. Samantha is guaranteed not
only that she is calling our code, but that our code is calling who it ex-
pects, and so on. One can see that the versioning provided by the CLR is
truly rigorous. 

HOW AND WHY

Can I Change the Runtime’s Versioning Rules?
In some situations it may be desirable to change how the Runtime de-
termines the version of a component that is loaded. In our example, we
may wish for clients built on v1.0.0.0 of the WatSoft component to use
v1.5.0.0 if it is available, even though the semantics stipulate that the
version numbers are incompatible. We can accomplish this by using
XML configuration files to override the default versioning behavior of
the Runtime. An application configuration file can override the version-
ing rules for the application, while an administrator configuration file
can override the policy for the entire machine. Details on using both of
these file types can be found at aNET030007. 

Are Assemblies with Strong Names Trustworthy?
While a strong name can assure you that an assembly comes from 
the person who originally authored the component, it makes no guar-
antees about who that person is. Anyone can generate a private key 
using SN.EXE and distribute a shared assembly, claiming it origi-
nates from company XXX. Identity is only guaranteed through Mi-
crosoft’s Authenticode technology, information on which can be found
at aNET030008. 

Do Shared Assemblies Have to Have Version Numbers?
If you do not specify a version number when creating a shared assembly
(i.e., if we had omitted the AssemblyVersion attribute in Listing 3.5),
then the compiler will automatically give your component a version
number of 0.0.0.0. Clients will be bound to this version number with the
normal versioning rules. 

44 . CodeNotes® for .NET

http://www.codenotes.com/cnp?cnp=NET030007
http://www.codenotes.com/cnp?cnp=NET030008


Do I Have to Use Attributes to Specify the Key Location and Version
Number?
In our example we used the AssemblyKeyFile and AssemblyVersion at-
tributes to specify the private key file and component version number.
Alternatively, you can use a .NET utility called AL.EXE to specify this
information at compile time. This is a more involved process, however,
and results in an assembly that consists of two modules, one for your IL
code and one that contains the manifest with signature information. An
example that uses AL.EXE to build the WatSoft shared assembly can be
found at aNET030009. 

Do Assemblies with Strong Names Have to Be Registered in the GAC?
If you give an assembly a strong name by signing it with a private key,
you only have to register it with the GAC if you want it to be shared. If
it is not registered with the GAC, a strong-named assembly will function
much like a private one, being accessible only to applications within its
directory. The advantage of this approach is that these strong private as-
semblies will be more secure than normal private ones, because the CLR
will still perform version and signature checking on them. 

SUMMARY

Shared assemblies solve the problem of DLL Hell through the Global
Assembly Cache (GAC), which allows multiple versions of an assembly
to exist side-by-side on the same machine, and through public key cryp-
tography, which ensures that an assembly can only be updated by an 
authorized party. To create a shared assembly you must sign it using 
a private key (obtained through the SN.EXE utility) and give it a ver-
sion number using the CLR’s prescribed semantics. The version number
allows you to specify whether or not an assembly is backwards-
compatible with its predecessor, which allows the CLR to perform Run-
time version checking. The CLR also verifies the integrity of shared 
assemblies, ensuring that their contents (IL code, resources, etc.) have
not been compromised since they were created. 

Private assemblies don’t really solve the DLL Hell problem so much
as avoid it. They are intended to be called by one application and must
reside in that application’s directory or subdirectory. Because private as-
semblies don’t reside in a prescribed shared area, there is less chance of
these assemblies falling prey to malicious (or negligent) installation
scripts that wish to update them. Unlike shared assemblies, private ones
are not afforded the luxury of version and signature checking. 

Assemblies and Metadata . 45

http://www.codenotes.com/cnp?cnp=NET030009


Chapter Summary

Components and executables are now packaged differently in the .NET
Framework and have matured into assemblies. Assemblies contain both
IL code and metadata. Metadata describes the types an assembly ex-
poses, the assembly’s dependencies, and security and versioning infor-
mation of the assembly itself. The CLR uses an assembly’s metadata to
ensure that its methods are called in a type-safe manner and that an as-
sembly runs against its proper resources. 

The .NET Framework eradicates the DLL Hell problem through the
shared assembly, which must reside in the Global Assembly Cache
(GAC). A shared assembly must be signed with a private key (generated
with the SN.EXE utility), which allows only authorized parties to up-
date the assembly as it evolves. The GAC is capable of storing multiple
versions of the same assembly on one system, while the CLR’s version-
ing rules ensure that clients receive compatible versions of assemblies
they were built against. The CLR’s enforcement of versioning through
public key cryptography is considerably stronger than older shared-
component models such as Win32 DLLs and COM, where cooperative
versioning is dependent on considerate programming practices and vol-
untary rules.

46 . CodeNotes® for .NET



Chapter 4

.NET LANGUAGE FEATURES

In this chapter we examine some of the language features in the .NET
Framework. These are not really language-specific features, but rather
services provided by the language-neutral CLR. As such, the services
discussed in this chapter are available to any program written in C#,
VB.NET, or managed C++. 

The first two topics, Attributes and Reflection, are centered around an
assembly’s metadata. As you will recall, metadata makes an assembly
self-describing, and assists the CLR in ensuring that clients call methods
in a type-safe manner. Reflection extends the benefits of metadata by al-
lowing developers to inspect and use it at runtime. Using reflection one
could, for example, dynamically, determine all the classes contained in
a given assembly and invoke their methods, if desired.

Attributes are declarative tags in code that insert additional metadata
into an assembly, where it can be consumed by the CLR, or possibly
yourself, to influence some aspect of your application (how it behaves,
how it is deployed, etc.). 

The last two topics in this chapter, Delegates and Garbage Collection,
provide type safety for callback functions and automatic memory man-
agement, respectively. C++ programmers can think of delegates as glo-
rified callback functions, whereas Visual Basic developers should know
that delegates are the mechanism behind VB.NET’s Event model. Dele-
gates facilitate “multicasting,” which is equivalent to a single source
calling several function pointers or raising multiple events. 

Garbage collection, a service afforded to any application running



within the CLR, destroys objects once they are no longer being refer-
enced. Although garbage collection may sound like an innocuous opera-
tion, we shall see that is has important implications as to how objects
must release their resources.

CORE CONCEPTS

An AppDomain is the protection boundary for code executing in the
.NET Framework. Conceptually, you can think of it as the .NET equiva-
lent of a Win32 process. If IL code misbehaves, the CLR shuts down the
AppDomain, much as the Windows Operating System shuts down a
process that has executed illegal native code. And just as a process can
load multiple DLLs, an AppDomain can house multiple assemblies.
This information will be important when we consider the process of re-
flection and begin probing .NET entities to determine the types they
contain. 

Although conceptually similar, an AppDomain and a Win32 process
are different from a Windows architecture perspective. Win32 processes
must provide robust protection against native code, making them expen-
sive to create and tear down. Because IL code operates inside the CLR,
it can be afforded the same protection without the costly construction of
a process. The .NET Framework saves resources by allowing multiple
AppDomains to exist in one process. If the CLR must shut down an 
AppDomain, it can do so without disrupting other AppDomains in the
same process. It is proper, therefore, to think of an AppDomain as a
lightweight process, made possible by the increased protection provided
by the CLR. 

The relationship between AppDomains and Win32 processes will be
revisited in Chapter 5, when we investigate how to call native code from
the .NET environment. 

Topic: Attributes

Attributes are nonprogrammatic statements that embed additional meta-
data into an assembly. This metadata can then be extracted at runtime to
characterize aspects of an application or to influence its behavior. In the
section on private and shared assemblies in Chapter 3, for example, we
saw how the AssemblyVersion attribute was used to specify an assem-
bly’s version number: 

The following line in C#

48 . CodeNotes® for .NET



[assembly:AssemblyVersionAttribute("1.0.0.0")]

caused the C# compiler to embed the following metadata into the gener-
ated assembly:

.assembly WatSoft as "WatSoft"
{
... // other metadata
.ver 1:0:0:0

}

When an application uses the assembly, the CLR extracts this section of
the metadata to determine if the versioning requirements of the applica-
tion have been met. 

Attributes are used throughout the .NET Framework. The CLR uses
them to determine how objects are serialized, whether or not an object
will be utilizing COM+ services such as transactions, and so on. The
CLR is not the only consumer of attribute-generated metadata, however.
The Windows Forms designer that we will examine in Chapter 7, for 
example, uses attributes extensively to determine how controls are dis-
played. 

There exist two types of attributes in the .NET Framework: prede-
fined attributes such as AssemblyVersion, which already exist and 
are accessed through the Runtime Classes; and custom attributes, 
which you write yourself by extending the System.Attribute class. We
will explore custom attributes in the next section on Reflection, once 
we have a better feel for how attributes work. To this end, we will 
now explore the predefined Conditional attribute, which is a new 
way of writing conditional compilation statements in the .NET Frame-
work. 

EXAMPLE

For years, developers have relied on conditional compilation techniques
to reduce the size of their applications and to debug their programs. A
C++ program, for example, might #define a DBG directive to turn trace
messages on and off:

#define DBG
... 
#ifdef DBG

.NET Language Features . 49



Console::WriteLine("[TRACE]: In Function . . . ");
#endif 

A Visual Basic program would accomplish the same thing by using the
#CONST statement:

#Const DBG = True
...
#If DBG = True Then
Console.WriteLine("[TRACE]: In Function . . .");

#End If

In the .NET Framework, you can also use the Conditional attribute
found in the System.Diagnostic namespace to facilitate conditional
compilation. This may not seem terribly exciting, until you realize that
the Conditional attribute allows an assembly to determine how its client
will compile, depending on the directives defined in the client. The fol-
lowing VB example will clarify this. C# and managed C++ examples
can be found at aNET040001.

Imports System
Imports System.Diagnostics

namespace condExample 
public class condClass
'Apply the Conditional attribute to MyFunction:
<ConditionalAttribute("DBG")> public shared sub
MyFunction   
Console.WriteLine("DBG directive is defined...")

end sub    
end class

end namespace

Listing 4.1 condClass.vb

First, note that in Visual Basic attributes are defined with the syntax
<MyAttribute>, as opposed C#’s syntax [MyAttribute]. Also note that
nothing in this assembly is conditionally compiled. Rather, the Condi-
tional attribute poses the following question to all compilers that are
compiling applications that reference this assembly:

Does the application you are compiling have DBG defined?
• YES: I’ll allow your client to call MyFunction(), compile your

application as if it called the method. 

50 . CodeNotes® for .NET

http://www.codenotes.com/cnp?cnp=NET040001


• NO: Your client cannot call MyFunction(), compile your ap-
plication as if it never called the method.

This information is communicated via the assembly’s metadata, which,
if you inspect it using the ILDASM tool, resembles the following text
(don’t forget to create the assembly using the VB compiler: vbc.exe
/t:library condClass.vb):

MethodName: MyFunction (06000001)
. . .
System.Diagnostics.ConditionalAttribute . . . 
. . .
ctor args: ("DBG")

Keeping this metadata in mind for a moment, consider the following C#
client that uses the assembly:

using System;
using condExample;

public class MyClass {
public static void Main() {    
condClass.MyFunction();        

}  
}

Listing 4.2 condClassClient.cs

When we compile this application as follows:

csc.exe /r:condClass.dll condClassClient.cs

the C# compiler asks itself the question implied by Conditional at-
tribute to determine whether MyFunction() is called or not. In this case,
there is no DBG defined in the client application, and so MyFunction() is
not called (it would be as if the line were never in the source code in the
first place). If however, you were to add the following line to the top of
the listing:

#define DBG

MyFunction() would be called, resulting in the following output:

.NET Language Features . 51



DBG directive is defined...

You can confirm that the presence of the #define DBG statement tog-
gles, whether or not the function is being called, by using ILDASM to
examine the application’s IL code under both scenarios. 

This example illustrates yet another language-neutral aspect of the
.NET environment: compilation directives can be shared among any
compiler that targets the CLR. This is just one example of using attri-
butes, but it highlights the underlying premises behind them: 

• That an attribute embeds additional metadata into the assembly. 
• That metadata is used in some fashion to influence application

behavior. 

By convention, the names of all of the predefined attributes found in the
Runtime classes end with “Attribute” (e.g., AssemblyVersionAttribute,
ConditionalAttribute, etc.). To make your code less verbose, C#,
VB.NET, and managed C++ allow you to refer to attributes without
specifying this redundant ending. Thus, in our previous example we
could have referenced ConditionalAttribute simply as Conditional, a
convention we will follow throughout the remainder of this CodeNote. 

HOW AND WHY

Why Do I Get the Following Error When I Use the Conditional Attribute:
“CS0578: Conditional not valid on “MyFunction()” because its return
type is not void”?
The Conditional attribute can only be used on functions without return
values. Consider what would happen if a client had the following line of
code:

result = someConditionalFunction();

Remember that the Conditional attribute stipulates that if the client
doesn’t have a certain directive defined, the client is compiled as if the
call to the function had never proceeded. If this occurs, what will the
value of result be? Other portions of the client depending on result to
contain a valid value will be thwarted. Because of the problems associ-
ated with this scenario, the Conditional attribute can be used only on
functions without return values. 

52 . CodeNotes® for .NET



SUMMARY

There are two types of attributes in the .NET Framework, both of which
embed additional metadata into an assembly. Predefined attributes are
accessed through the Runtime classes, and the metadata they produce is
used by some Microsoft entity (such as the CLR or Windows Form De-
signer) for descriptive purposes or to influence application behavior.
Custom attributes allow developers to place their own metadata into as-
semblies, which can be retrieved using the reflection technique exam-
ined in the next topic. 

Topic: Reflection

Metadata is the language that glues the .NET Framework together. In
Chapter 3, we saw that assemblies use metadata to describe the types
they contain, so that applications can effectively communicate with
them. In the previous section, we saw that predefined attributes embed
additional metadata into an assembly, which, in turn, is used by some
entity in the .NET Framework (such as the CLR or the Windows Form
Designer) for informational purposes or to affect application behavior. 

The virtue of self-describing metadata becomes most apparent when
we consider the process of reflection, which allows a developer to probe
and use an assembly’s metadata directly. You can, for example, deter-
mine all the classes that an assembly contains, the members exposed by
the classes, and the parameters the members expect, all without prior
knowledge of the assembly. Using this information, you can call a class’s
method dynamically by constructing its parameters at runtime. COM
developers will find this analogous to late binding, which allows you to
call a component’s methods without a prior knowledge of its makeup. 

From an external point of view, an assembly is simply a collection of
exposed types. These types could be the basic types found in the Com-
mon Type System (CTS) such as integers and strings, or more complex
constructions of those types, such as classes, structures, and enumera-
tions. Recalling that an AppDomain can contain multiple assemblies
and that an assembly can contain multiple modules, we can construct the
following hierarchy of elements within the .NET Framework:

AppDomains:
Assemblies:

Modules:
Types:

.NET Language Features . 53



Fields
Properties
Events
Methods
Other Types

The classes found in the System.Reflection namespace allow you to
probe through an assembly’s metadata in a similar hierarchical fashion.
You can, for example, ascertain all the types contained within an assem-
bly (its classes, structures, etc.). Similarly, given a class, you could de-
termine the types it contains (the class’s methods and member variables)
as well as their constituent types (method parameters and return values).
Class inspection using reflection is demonstrated in the upcoming ex-
ample. 

Reflection can also be used to retrieve the metadata that has been em-
bedded as a result of an attribute. This is especially important for custom
attributes, whose metadata you will want to retrieve and use in some
meaningful way. The second example in this section will demonstrate
this tactic. 

Just as reflection can be used to retrieve and interpret metadata, it can
be used to construct and “emit” it. The classes found in the System
.Reflection.Emit namespace allow metadata for new types to be gener-
ated in memory and used at runtime. In fact, you can dynamically create
an entire assembly, its classes and methods, and the IL code behind them.
The “in memory” assembly can then be used by other applications. Ex-
amples of this versatile procedure can be found at aNET040002. 

BASIC REFLECTION

In this example we will consider how reflection can be used to probe and
call a mathematical library called WatSoft, written in C#. For the sake of
brevity, the method implementations have been omitted; however, full
versions of C#, VB, and managed C++ source code can be found at
aNET040003.

namespace WatSoft {    
public class MathClass {
public string SomeVar;
public ulong Factorial(ulong a) {      
// Implementation Omitted

}    
private int Add(int a, int b) {

54 . CodeNotes® for .NET

http://www.codenotes.com/cnp?cnp=NET040002
http://www.codenotes.com/cnp?cnp=NET040003


// Implementation Omitted
}    

}
}

Listing 4.3 WatSoft.cs

As usual, we would create a WatSoft DLL assembly using the C# com-
piler:

csc.exe /t:library WatSoft.cs

We know that the WatSoft.DLL file produced contains the metadata
needed to describe MathClass’s members: the public member variable
SomeVar; and the public and private methods, Factorial() and Add(). A
client program can probe this metadata using the System.Reflection
classes, as the following C# program demonstrates. VB and Managed
C++ examples can be found at aNET040004.

// Remember to run the compiler with /r:Watsoft.dll
using System;
using System.Reflection;
using WatSoft; 

public class Reflect  {
public static void Main() {    
MathClass MyClass;
MyClass = new MathClass();

// Print out the member information of Mathclass:
Type T = MyClass.GetType();
MemberInfo[] Members = 
T.GetMembers(BindingFlags.LookupAll);

foreach (MemberInfo mi in Members)     
Console.WriteLine(" {0} = {1}", mi.MemberType,mi);

}
}

Listing 4.4 WatDepict.cs

Running this program will print out all the members of MathClass (note
the inherited methods of System.Object, such as GetHashCode). 

Field = System.String PublicMemberVar
Method = Void Finalize()

.NET Language Features . 55

http://www.codenotes.com/cnp?cnp=NET040004


Method = Int32 GetHashCode()
Method = Boolean Equals(System.Object)
Method = System.String ToString()
Method = UInt64 Factorial(Uint64)
Method = Int32 Add(Int32, Int32)
Method = System.Type GetType()
Method = System.Object MemberwiseClone()
Constructor = Void .ctor()

The key to understanding the process of reflection is to familiarize your-
self with its underlying classes. An object’s metadata is accessed
through its Type class, which is retrieved using its GetType() method.
GetType() is implemented by the System.Object class from which all
classes derive, so it can be called on any object:

Type T = MyClass.GetType();

MyClass’s metadata can now be accessed through the Type class. One of
the members of the Type class is GetMembers(), which returns the mem-
bers of the underlying object as an array of MemberInfo objects:

MemberInfo[] Members =   T.GetMembers(BindingFlags.Instance|
BindingFlags.NonPublic|BindingFlags.Public);

GetMembers() can accept an optional parameter that specifies the mem-
bers it will return. In this case, we have requested that it return all mem-
bers (private, public, and constructor) by using the combination of
BindingFlag members found in the System.Reflection namespace. Had
we omitted this parameter and simply written:

MemberInfo[] Members = T.GetMembers();

GetMembers() would have only returned public methods (the default set-
ting). 

Having executed this method, we are now left with an array of 
MemberInfo objects, each of which represents a member of the Math-
Class class. We iterate through each element in the array and print its in-
formation:

foreach (MemberInfo mi in Members)     
Console.WriteLine(" {0} = {1}", mi.MemberType,mi);

56 . CodeNotes® for .NET



Visual Basic developers should be familiar with the for each construct,
which provides a straightforward way to iterate through arrays and col-
lections. As can be seen from the code above, this feature is also avail-
able in C#.

The System.Reflection classes provide access to the wealth of 
information embedded in an assembly’s metadata. You can retrieve and
use all of this data by using the appropriate combination of System
.Reflection classes. For some additional examples that use reflection to
probe metadata, see aNET040005.

ADVANCED REFLECTION

The basic reflection example may not seem particularly impressive, as it
doesn’t yield any information that we probably don’t already know.
After all, if we have access to WatSoft.DLL, then we can inspect the
MathClass’s methods using the ILDASM tool instead of using reflection
to interpret the metadata ourselves. 

The true versatility of reflection becomes apparent when you con-
sider the following C# program, which calls the WatSoft assembly with-
out any prior knowledge of its makeup. VB and managed C++ examples
can be found at aNET040006.

public class Reflect {
public static void Main()  {            
// Dynamically load the assembly:
Assembly asm = Assembly.LoadFrom("WatSoft.dll");

// Iterate through the Assembly, and search 
// all its classes for a method named "Add" 
// that takes two Int32s as parameters:
foreach (Type T in asm.GetTypes()) {
Console.WriteLine("Searching Class: {0} for an" +
"Add() method",t);

MethodInfo[] miarr = 
t.GetMethods(BindingFlags.Instance|
BindingFlags.NonPublic| BindingFlags.Public);

foreach (MethodInfo mi in miarr) {        
if (mi.Name == "Add") {  
ParameterInfo[] pInfo  = mi.GetParameters(); 

// Does this Add() take two int32 parameters?

.NET Language Features . 57

http://www.codenotes.com/cnp?cnp=NET040005
http://www.codenotes.com/cnp?cnp=NET040006


if (pInfo.Length == 2) {
if (pInfo[0].ParameterType.Equals(typeof(Int32)) &&
pInfo[1].ParameterType.Equals(typeof(Int32)))

{
Console.WriteLine("Add() found with two " +
"Int32 parameters.");

// Create an instance of the class:
object o = Activator.CreateInstance(t);

// Construct the parameters required to call
// the call the Add method using Invoke():
Object returnValue;
Object [] arguments = new Object[2];      
arguments[0] = 1;  
arguments[1] = 2;

// Dynamically Invoke Add():
returnValue = mi.Invoke(o,arguments);
Console.WriteLine("Dynamically Invoked " +
"Add(1,2) = {0}",returnValue);

}
}

}
}                     

}
}}        

Listing 4.5 WatCall.cs: dynamically calling MathClass.Add()

This program works in a fashion similar to that of the basic reflection ex-
ample, using the classes found in System.Reflection to probe the various
types in the assembly. The difference is that the assembly is loaded dy-
namically at runtime using the Assembly class’s LoadFrom() method, in-
stead of being linked at compile time. Every class in the assembly is
then searched for an Add() method that accepts two integer parameters.
When such a method is found, it is called using the Invoke() method of
the MethodInfo class:

Object returnValue;
Object [] arguments = new Object[2];      
arguments[0] = 1; arguments[1] = 2;
returnValue = mi.Invoke(o,arguments);

58 . CodeNotes® for .NET



As the code above illustrates, parameters are passed to the Invoke()
method as an array of objects, with the first element corresponding to
the first parameter and so on. It is up to us to ensure that we deliver an
object array whose size and contents match the parameters and types
that the method is expecting. If we fail to do this, the CLR will throw a
TargetParameter or Argument exception. 

Note that this example, unlike the previous program, does not require
compilation with the /r:WatSoft.DLL switch. Everything from loading
the assembly to calling its method is done dynamically at runtime. How-
ever, Watsoft.DLL must reside within the same directory as the appli-
cation program, because the DLL was identified without a path
(LoadFrom("Watsoft.DLL")). If the DLL were contained in another di-
rectory, we would have used a qualified name, such as Assembly
.LoadFrom("\SomeOtherDir\WatSoft.dll").

Running this program produces the following output:

Searching Class: WatSoft.MathClass for an Add() method
Found a method called Add with two Int32 parameters.
Dynamically Invoked Add(1,2) = 3

Look carefully and you’ll realize that we have done something that we
shouldn’t have been able to do: Add() is a private method in MathClass
(see Listing 4.3). In addition to dynamic-invocation services, reflection
has the dubious benefit of allowing you to invoke private methods on
classes. This can be useful for diagnostic utilities that need to interact
with classes beyond their public interfaces, but it raises security con-
cerns for class authors who thought their private methods would be,
well, private. Whether or not code can invoke private methods using re-
flection depends on the security policy wherever the code originates (lo-
cally, the Internet, etc.). By default, code that originates from the local
hard drive can detect and invoke the private methods of a class. You can
alter this behavior by changing the security policy for the entire machine
using a utility called CASPOL.EXE. Details on how to do this can be
found at aNET040007. 

Programmers familiar with COM would be right in thinking that the
code in Listing 4.5 is very similar to calling a COM component through
COM’s late-binding mechanism (IDispatch if you are a C++ program-
mer, or the Object type if you are familiar with Visual Basic). Not only
is the syntax very similar, but the premise is as well. Dynamic invoca-
tion through both reflection and late-binding can be used when a devel-
oper has no prior knowledge of the assembly. They can be used to
determine if a class (interface in COM) implements a certain method,
and to invoke it if desired. Unlike ordinary late-binding, however, you

.NET Language Features . 59

http://www.codenotes.com/cnp?cnp=NET040007


can use reflection to determine whether an object supports a given
method before trying to call it and receiving the corresponding result or
“Method Not Found” error.

CUSTOM ATTRIBUTES

In the previous example, the metadata in WatSoft.DLL allowed us to dy-
namically call the Add() method using reflection. This metadata was 
of the standard variety—it was produced by the C# compiler to describe
all the types contained within the assembly. Attributes also produce
metadata that we can exploit through reflection.

Up to this point, we have differentiated between predefined attri-
butes, which already exist, and custom attributes, which you write your-
self. The reality is that all attributes are custom attributes, the only 
difference being that predefined ones have already been written and
packaged by Microsoft. (There is one caveat to this generalization,
which we will examine momentarily.) To design a custom attribute, you
must write a class that inherits from the System.Attribute class. The ar-
guments of the class’s constructor define the parameters of the attribute.
If, for example, the class’s constructor accepts a single string argument,
then the attribute, when used by a client, must be declared with a single
string (the Conditional attribute in Listing 4.1 is an example of an at-
tribute that accepts a single string). 

To distribute your custom attribute you compile the class into an as-
sembly. Clients that reference the assembly, however, do not use the
class as they normally would (instantiating it, calling its methods, etc.).
Instead, they use the class like . . . an attribute, as a nonprogrammatic
statement with the proper parameters:

[SomeCustomAttribute(a=4,b=5)]

The important point to note is that an attribute’s parameter values (4 and
5 in the line above) get embedded as metadata into the client’s assembly.
When the client’s assembly is loaded, the CLR retrieves these parame-
ters and delivers them to your class, where it can do something useful
with them. The upcoming example will clarify this. 

Another important point to note is that the metadata produced by both
types of attributes (predefined and custom) is accessed in exactly the
same manner using reflection, something the following example demon-
strates. 

60 . CodeNotes® for .NET



Custom Attribute Example
In this example, we will write a custom attribute that can be used in the
following manner:

[HasBeenTested(50)]
class SomeClass { …

We want clients to be able to use this attribute to specify the extent to
which a class or method has been tested. A value of 0 indicates that the
entity has not been tested; 100 indicates complete and rigorous testing;
and values in between indicate partial testing. We stipulate that this nu-
merical value must be specified when using the attribute. In attribute ter-
minology, this makes the numerical value a named parameter, which
means it has to be specified when the attribute is used. We could also
give the user the option to specify the name of the person who has tested
the class or method:

[HasBeenTested(50, Tester="Alim Somani")]

This makes Tester a positional parameter, because its inclusion in the
attribute declaration is optional. For the sake of simplicity, we will not
leverage the positional capability in this example, but we will keep po-
sitional parameters in mind throughout our discussion. 

Returning our attention to mandatory, named parameters, we might
wonder how to inform the Runtime that our attribute must accept an in-
teger when the attribute is declared. Recalling that all attributes are
really classes that derive from System.Attribute, we can state the fol-
lowing axiom: The named parameters for an attribute are the same as
the parameters in the attribute class’s constructor. 

Keeping the above comment in mind, we write our custom attribute
in C#, whose source is in Listing 4.6. VB and managed C++ versions
can be found at aNET040008.

using System;

namespace TestAttribute
{
// Define the HasBeenTested attribute using AttributeUsage:
[AttributeUsage(AttributeTargets.Class|
AttributeTargets.ClassMembers)]

public class HasBeenTested : Attribute {
private int TestedLevel;    
public int GetConfidence() {return TestedLevel;}

.NET Language Features . 61

http://www.codenotes.com/cnp?cnp=NET040008


// Constructor determines signature
public HasBeenTested(int TLevel) {TestedLevel=TLevel;}      
public override string ToString() {
if (TestedLevel == 0) {
return "HasBeenTestedAttribute: " + 
"entity has not been tested.";

} else if (TestedLevel == 100) {
return "HasBeenTestedAttribute: " + 
"entity has been fully tested.";

} else {
return "HasBeenTestedAttribute: " +
"entity has been partially tested.";

}
}

}   
} 

Listing 4.6 Custom attribute, HasBeenTested.cs

The most important elements of the source have been highlighted. The
first line in particular is likely to catch your attention:

[AttributeUsage(AttributeTargets.Class | AttributeTargets.ClassMembers)]

This may seem odd, but in order to inform the compiler that this class 
is really an attribute, you must precede its declaration with the
AttributeUsage attribute. You may recognize that this puts us in the
ironic position of having to use a predefined attribute to write our cus-
tom one. 

AttributeUsage requires that we specify the entities on which the at-
tribute can be used (classes, methods of classes, etc.) by employing the
AttributeTargets enumeration found in the System namespace. We
specify that our attribute can only be used on classes and their members
by ORing those elements of the enumeration. In Visual Basic, this line
would be equivalent to:

<AttributeUsage(AttributeTargets.Class OR AttributeTargets.ClassMembers)>

We could have optionally specified that our attribute may be used multi-
ple times on the same class by using the AllowsMultiple parameter:

62 . CodeNotes® for .NET



[AttributeUsage(AttributeTargets.Class, AllowsMultiple=true)]}

Recall our earlier discussion on attribute parameter types, and you will
recognize that AllowsMultiple is a positional parameter because it is
optional, whereas the first parameter (called validon in the MSDN) is a
compulsory, named parameter. The AttributeUsage attribute exposes
one other positional parameter, called Inherited, which determines
whether the attribute will persist across inherited classes. Examples of
these two parameters can be found at aNET040009. 

Turning our attention to the class constructor, we see that it accepts
one integer parameter, informing the Runtime that the attribute has a
single named integer parameter. 

public HasBeenTested(int TLevel)

The remainder of the code is fairly straightforward: the public member
variable TestedLevel allows clients to ascertain the level to which an en-
tity has been tested, and the overridden ToString() method outputs a
user-friendly message if the attribute is printed. 

Compiling this listing with the C# compiler (csc /t:library 
HasBeenTested.cs) allows us to use the attribute from the second list-
ing given below. VB and managed C++ equivalents can be found at
aNET040010.

using System;
using TestAttribute;

namespace TestClass {     
[Serializable] //system attribute
[Obsolete("This class is outdated!")] //system attribute
[HasBeenTested(44)] //a "custom" attribute we created
public class Target {
public void SomeFunction() {      
// SomeFunction code . . . 

}    
}

}

Listing 4.7 TargetClass.cs

In addition to our custom attribute, “HasBeenTested,” we have applied
two other predefined attributes on the Target class (Obsolete and Serial-

.NET Language Features . 63

http://www.codenotes.com/cnp?cnp=NET040009
http://www.codenotes.com/cnp?cnp=NET040010


izable) for comparative purposes. The Obsolete attribute can be used to
inform clients that they are using an old version of the class, while the
Serializable attribute indicates that the class can be packaged and sent
to a remote location. We will revisit serialization in the Core Concepts
section of Chapter 6. 

Using the C# compiler again, we can produce a second assembly,
called TestClass.DLL:

csc.exe /r:HasBeenTested.dll /t:library TargetClass.cs

This assembly is then used by the client program below, which utilizes
reflection to inspect the Target class on which we have applied the 
HasBeenTested, CLSCompliant, and Serializable attributes. 

using System;
using System.Reflection;
using TargetClass;
using TestAttribute;

class Test  {
static void Main()
{
// Declare an instance of the Target class we used
// our custom attributes on:
Target tar = new Target();
attribute []attributes =
Attribute.GetCustomAttributes(tar.GetType());

Console.WriteLine("Custom attributes used on this type: {0}",
attributes.Length);      

// Interate through all the custom attributes defined
// on the Target class:
foreach (Attribute attrib in attributes) {

// Print out the attribute:
Console.WriteLine(attrib);

// Is this attribute our custom one? 
// If so, we can print out additional information:
if (attrib is HasBeenTested) {
// This is our custom attribute.  Cast it, and
// print out the level of testing that was done:

64 . CodeNotes® for .NET



HasBeenTested tested = (HasBeenTested)attrib;
Console.WriteLine("Confidence Level: {0} / 100 ",
tested.GetConfidence());        

}
} 

}
}

Listing 4.8 TargetClient.cs

Again, the important lines of the program have been highlighted. 
The attributes of the Target class are ascertained using the GetCustom
Attributes()method found in the System.Attribute class. 

Target tar = new Target();
attribute[] attributes = Attribute.GetCustomAttributes(tar.GetType());

GetCustomAttributes() returns an array of Attribute classes, each of
which represents a custom attribute that has been applied to the class.
After printing out each attribute, the program checks to see whether it is
our custom attribute:

if (attrib is HasBeenTested) {
HasBeenTested tested = (HasBeenTested)attrib;

The is keyword in C# can be used to test whether or not an expression
can be successfully casted to the given type. In this case, we want to
know whether the generic attribute is really our HasBeenTested attribute.
If it is, then we cast it to an instance of the attribute so that we can gar-
ner the appropriate information from it. 

If you compile this program from the command line:

csc.exe /r:TargetClass.dll /r:HasBeenTested.dll TargetClient.cs

you will see that applying the Obsolete system attribute on the Target
class we are attempting to use manifests itself in the form of a compiler
warning (this warning won’t prevent you from running the code):

TargetClient.cs(12,19): warning CS0618: 'TargetClass.Target' is obsolete: 
'This class is outdated!'

Running the TargetClient.exe application that is created produces the
following output:

.NET Language Features . 65



Custom attributes used on this type: 2
System.ObsoleteAttribute
HasBeenTestedAttribute: entity has been partially tested.
Confidence Level: 44 / 100

As can be seen, the program detected two custom attributes applied on
the Target class, Obsolete and our attribute, HasBeenTested. Having de-
tected that our custom attribute was applied to the class, the program
prints out the degree to which the class has been tested. 

Undoubtedly, many of you are wondering why we only picked up
two custom attributes, although we applied three to the class. What hap-
pened to the Serializable attribute? To answer this question, use the
ILDASM tool to inspect TargetClass.DLL. Examine its metadata using
ILDASM and you will find the following information:

TypDefName: TargetClass.Target  (02000002)
Flags     : [Public] [AutoLayout] [Class] [Serializable]
CustomAttributeName: System.ObsoleteAttribute :: instance void
.ctor(class System.String)
ctor args: (This class is outdated!)

CustomAttribute #2 (0c000003)
---------------------------------
CustomAttributeName: TestAttribute.HasBeenTested :: instance void
.ctor(int32)
ctor args: (44)

The metadata above shows that the Serializable attribute did not gen-
erate a new section of metadata as did Obsolete and HasBeenTested; it
simply appended metadata to the [Flags] section of the class. Because of
this, Serializable belongs to a small family of attributes referred to as
“pseudo attributes,” which, unlike their bona fide counterparts, do not
add a CustomAttribute section of metadata to the assembly. Thus,
pseudo attributes cannot be picked up by the reflection technique. For a
list of the pseudo attributes in the Runtime classes, see aNET040011. 

This is the exception to our generalization that all predefined attri-
butes are really custom attributes. And in case you are wondering, at the
time of this writing, you cannot write a “custom-pseudo” attribute. 

From the metadata above, we can see that attributes are nothing more
than classes with their construction arguments embedded into an assem-
bly’s metadata. When a client application uses a type that has attributes
applied on it, the CLR uses this metadata to instantiate the attribute

66 . CodeNotes® for .NET

http://www.codenotes.com/cnp?cnp=NET040011


classes so that they can be accessed through reflection. In our example,
the sequence of events would proceed like this:

1. The client application uses the Target class found in TargetClass
.DLL.

2. The CLR examines the metadata in TargetClass.DLL, and de-
termines that two attributes were applied on the Target class:
Obsolete and HasBeenTested.

3. The CLR retrieves the constructor arguments from the assem-
bly’s metadata, and instantiates each attribute class as follows:
a. Obsolete(“This class is outdated”)
b. HasBeenTested(44)

4. These instantiated classes can now be retrieved and inspected
using the GetCustomAttributes() method.

HOW DO I /WHY DO I?

How Do I Write a Custom Attribute with Positional (Optional)
Parameters?
To give a custom attribute positional parameters, you must give the at-
tribute a class public member variable or property with the same name
as the positional parameter.

Assume that we wanted to give the HasBeenTested attribute an op-
tional Tester parameter, as shown below: 

[HasBeenTested(50, Tester="Bill Baldasti")]

To accomplish this, the HasBeenTested class must expose a public
member string or property called Tester. Source code for the
HasBeenTested attribute with this added capability can be found at
aNET040012.

Can I Have Multiple Constructors in my Attribute Class?
Your attribute class (like any class) can have multiple constructors that
accept different arguments. Remember that a constructor defines the
named (mandatory) parameters of an attribute. This means that you can
use multiple constructors to give an attribute multiple named parameter
setups. We could, for example, stipulate that our HasBeenClass must ac-
cept either a number or a string by writing two equivalent constructors.
Examples of this approach can be found at aNET040013.

.NET Language Features . 67

http://www.codenotes.com/cnp?cnp=NET040012
http://www.codenotes.com/cnp?cnp=NET040013


SUMMARY

Reflection allows access to an assembly’s metadata by using the classes
found in the System.Reflection namespace. This can be the standard
metadata produced by IL-compiler to describe the types contained in an
assembly, or the metadata that is embedded by a predefined or custom
attribute. 

Using reflection, one can traverse through the .NET entity hierarchy
(AppDomain ➝ Assembly ➝ Module ➝ Class etc.), ascertaining infor-
mation about the types one is interested in, and invoking them, if de-
sired. The reverse process is facilitated by the classes found in the
System.Reflection.Emit namespace, whereby .NET entities can be con-
structed dynamically in memory, and invoked. 

Custom attributes are classes that inherit from the System.Attribute
class, and can be used by developers to extend an assembly’s metadata
for their own purposes. 

Topic: Delegates

Asynchronous notification schemes are incredibly efficient. If you call a
friend and he or she is not home, you don’t wait on the line for hours to
speak with them. Most often, you leave your phone number with the
person on the line, so that when your friend does get home, she can no-
tify you of her arrival by calling you back. By not waiting idly on the
line for an extended period of time, you are free to do other things. 

Callback functions facilitate exactly this type of asynchronous be-
havior. When calling a class’s method (your friend’s telephone number),
you provide it with a callback function (your telephone number) so that
you can be alerted when a particular event occurs (your friend returns
home). As a result of this exchange, your program (you) is free to do
other things in the interim.

Callback functions are equivalent to function pointers in C and C++,
and the AddressOf operator in Visual Basic. All of these constructs serve
the same purpose—to provide the address of a method (phone number)
that should be called back when an event occurs. The problem with call-
back functions was that they did not communicate parameter/return
value information, or guarantees about where they pointed. In other
words, the person taking down your phone number could not verify that
it was in the proper format, or even existed. 

In the .NET Framework, callback functions have evolved into dele-
gates. Delegates differ from callback functions in three respects:

68 . CodeNotes® for .NET



• They are type-safe, which means that they make guarantees
about the parameters they expect (the phone number is in the cor-
rect format). 

• The CLR will always ensure that they point to a valid function or
class method (the phone number exists). 

• They allow for multicasting, which means that you can specify a
chain of functions in one or many different objects and locations
that should be called back. This would be equivalent to leaving
numerous phone numbers at your friend’s place, and having him
call all of them back when he got home. 

Delegates must derive from the System.MulticastDelegate class, and
wrap the callback functions you specify. By acting as a buffer between
the real callback function and its caller, they can provide the guarantees
and services listed above. 

Delegates also remove one notable limitation of C++ function point-
ers and the AddressOf operator: they can point to a class’s methods,
whereas traditional callback schemes only allow global functions to be
used. You may be wondering how delegates handle a scenario where a
callback class has been deallocated. Remember, because both the class
and delegate are running within the CLR, such a situation will never
occur—the class will never be garbage-collected if a delegate is wrap-
ping one of its methods. 

EXAMPLE

Continuing with our phone number analogy, we consider the C# 
class below, which will call back a client if he provides it with a 
“PhoneNumber” delegate. Managed C++ and VB.NET examples can be
found at aNET040014.

using System;

namespace CallBackExample {
public class CallBack {

// In order to be called back, clients must provide
// the following delegate to the CallMyFriend() method.
public delegate void PhoneNumber(String message);

// To be called back, clients run the following
// method, providing the PhoneNumber delegate where

.NET Language Features . 69

http://www.codenotes.com/cnp?cnp=NET040014


// they can be called back. 
public void CallMyFriend(PhoneNumber wakeupFunc) { 
// Friend is home, call back:
wakeupFunc("I just got home, you called?"); 

}  
}
}

Listing 4.9 Callback class

Saving the code above as CallBack.cs, we produce an assembly in the
usual manner:

csc.exe /t:library CallBack.cs

To use this class, clients construct a PhoneNumber delegate (something
we’ll demonstrate in a moment) and pass it to the CallMyFriend()
method. When our friend arrives home (triggering the event), the
method calls the delegate:

wakeupFunc("I just got home, you called?");

Remember that delegates are really classes deriving from System
.MulticastDelegate. This being the case, it doesn’t seem as if the line
above should compile; you can’t invoke a class in such a manner. What
you’re seeing, however, is some trickery by the IL-compiler. Behind the
scenes it is calling the Invoke() method of System.MulticastDelegate,
which calls whatever function the delegate wraps. You can confirm this
by using ILDASM to inspect the generated IL code.

Having compiled the CallBack class, we can use the delegate with the
following C# code: 

using System;
using CallBackExample;

public class MyClass  {

// This function will be called when our friend 
// calls back:
static void MyPhoneNumber(String s)   {
// Print out what our friend says:
Console.WriteLine(S);

70 . CodeNotes® for .NET



Console.WriteLine("Thanks for calling me back!");  
}

public static int Main() {  
CallBack cBack;
cBack = new CallBack();

// Before calling our friend, we must construct a 
// delegate that is passed to the CallMyFriend() method. 
CallBack.PhoneNumber PhoneNum;
PhoneNum = new CallBack.PhoneNumber(MyPhoneNumber);

// Call our friend and pass it the PhoneNum 
// delegate so he can call us back:
cBack.CallMyFriend(PhoneNum);  
return 0;

}
}  

Listing 4.10 C# client delegate code

The Visual Basic syntax differs significantly in that you must use the
AddressOf operator:

imports System
imports CallBackExample

Module MyApp

'Our callback function:
Sub MyPhoneNumber(ByVal s As String)

System.Console.WriteLine(s)
System.Console.WriteLine("Thanks for calling me back!")

End Sub

Sub Main  
dim cBack as CallBack
cBack = new CallBack()  'Remember, no Set!

'Construct the delegate:
dim PhoneNum as CallBack.PhoneNumber 
PhoneNum = _ 
new CallBack.PhoneNumber(AddressOf MyPhoneNumber)

.NET Language Features . 71



' Call our friend and pass it the PhoneNum 
' delegate so he can call us back:
cBack.CallMyFriend(PhoneNum)

End Sub
End Module

Listing 4.11 Visual Basic client delegate code

The highlighted lines in both listings illustrate that a delegate must be
constructed before it can be passed to the CallMyFriend() method.
When creating an instance of the delegate, you must pass it the address
of the function it will wrap. Note that in Visual Basic you must use the
AddressOf operator to do this, whereas in C# you do not. Also note that
the function the delegate is wrapping must accept the same parameters
and have the same return value as the delegate itself. If the C# client
method MyPhoneNumber() had accepted an integer instead of a string, the
compiler would have informed you that:

CallBackClient.cs(23,39): error CS0123: Method 
'MyClass.MyPhoneNumber(int)' does not match delegate 'void 
CallBackExample.CallBack.PhoneNumber(string)'

Compiling and Running the Example
Compiling each listing with its respective compiler:

csc.exe /r:CallBack.dll CallBackClient.cs
vbc.exe /r:CallBack.dll CallBackClient.vb

produces two applications that produce the following output:

I just got home, you called?
Thanks for calling me back!

You could argue (correctly) that the Callback class presented in List-
ing 4.9 does not really facilitate asynchronous notification. Both client
applications call the CallMyFriend() function, which immediately calls
back the delegate it has been provided with. It would be like calling a
friend and then having him call back immediately on another line with-
out having hung up on the first one. 

To provide truly asynchronous behavior, CallMyFriend() should re-
turn immediately to the client and then call the delegate at some point
after that. This is a more involved procedure and requires using another
thread in the Callback class. For the sake of brevity, we have omitted this

72 . CodeNotes® for .NET



more complex approach. However, a truly asynchronous Callback class
can be found at aNET040015.

DELEGATE CHAINS

One of the most powerful features of delegates is that they can wrap a
“chain” of functions, all of which will be called when the delegate is in-
voked. This is accomplished by using the static Combine() method of the
Delegate class found in the Runtime library. The VB snippet below
demonstrates this procedure. The complete client source can be found at
aNET040016.

'Callback function 1: 
Sub MyPhoneNumber1(ByVal s As String)
System.Console.WriteLine(s)
System.Console.WriteLine("Friend 1: Thanks for calling back!")

End Sub

'Callback function 2: 
Sub MyPhoneNumber2(ByVal s As String)
System.Console.WriteLine(s)
System.Console.WriteLine("Friend 2: Thanks for calling back!")

End Sub

'Construct a delegate that wraps the chain of 
'functions: MyPhoneNumber1 and MyPhoneNumber2
dim PhoneNum1, PhoneNum2 as CallBack.PhoneNumber 
dim PhoneChain as CallBack.PhoneNumber 
PhoneNum1 = new CallBack.PhoneNumber(AddressOf MyPhoneNumber1)
PhoneNum2 = new CallBack.PhoneNumber(AddressOf MyPhoneNumber2)
PhoneChain = System.Delegate.Combine(PhoneNum1,PhoneNum2)

'Call our friend, passing him the delegate that
'now wraps the chain of functions. 
'cBack is an instance of the class in listing 4.9 
'(see full source online)
cBack.CallMyFriend(PhoneChain) 

Listing 4.12 Constructing delegate chains in VB.NET

As the highlighted code in Listing 4.12 depicts, a delegate that wraps a
chain of functions is constructed and passed to the CallMyFriend()
method. If you are wondering why we constructed the chain using 

.NET Language Features . 73

http://www.codenotes.com/cnp?cnp=NET040015
http://www.codenotes.com/cnp?cnp=NET040016


System.Delegate.Combine() instead of Delegate.Combine(), it is be-
cause the latter statement creates a syntactical dilemma for the VB com-
piler due to the Delegate’s keyword designation in the language (VB
can’t handle having “Delegate” as both a system level class instance and
a keyword used for creating new classes). 

In C#, the construction of delegate chains is syntactically cleaner be-
cause the compiler overloads the + operator for the delegate class, as
shown in the partial client listing below. The full version can be found at
aNET040017.

// This function will be called when our friend 
// calls back:
static void MyPhoneNumber1(string s) {
Console.WriteLine(s);    
Console.WriteLine("Friend 1: Thanks for calling me back!");

}

static void MyPhoneNumber2(string s) {
Console.WriteLine(s);    
Console.WriteLine("Friend 2: Thanks for calling me back!");

}

// Construct a delegate that wraps the chain of 
// functions: MyPhoneNumber1 and MyPhoneNumber2
// Note use of the "+" operator
CallBack.PhoneNumber PhoneChain;    
PhoneChain = new CallBack.PhoneNumber(MyPhoneNumber1);
PhoneChain += new CallBack.PhoneNumber(MyPhoneNumber2);  

// Call our friend, passing him the delegate that
// now wraps the chain of functions. 
cBack.CallMyFriend(PhoneChain);  

Listing 4.13 Constructing delegate chains in C#

You can, if you want, use the Combine() method to construct delegate
chains in C#, just as we did in Visual Basic. In fact, this is what the C#
compiler is doing behind the scenes when you use the + operator. In-
specting the IL code of the program above using ILDASM confirms this. 

Running the Code
Compiling and running either of the client programs given above results
in the following output:

74 . CodeNotes® for .NET

http://www.codenotes.com/cnp?cnp=NET040017


I just got home, you called?
Friend 1: Thanks for calling me back!
I just got home, you called?
Friend 2: Thanks for calling me back!

Keep in mind that the CallMyFriend() method that actually invokes the
delegate has no idea that it is calling a chain of functions. As you will re-
call from our earlier discussion, the IL compiler is calling the delegate’s
Invoke() method behind the scenes. At this point the CLR intercedes,
determines that the delegate wraps a chain of functions, and calls them
accordingly. 

Just as you can add a function to the chain using the Combine()
method, you can remove one using the Remove() method. Not surpris-
ingly, the “-” operator in C# can be used as a shortcut. Examples of 
removing functions from the chain can be found at aNET040018. 

VISUAL BASIC EVENTS

Note: This discussion is intended primarily for VB6 developers, al-
though developers unfamiliar with events in VB6 should still be able to
follow it. 

Visual Basic 6 is an event-driven programming language. A large por-
tion of VB development consists of writing code to handle events that
are raised by the objects in one’s application. If you wanted to display a
message box when a button is clicked, for example, you would insert the
following code in the button’s click event:

Private Sub Button1_Click()
MsgBox ("Button was clicked.") 

End Sub

Listing 4.14 Responding to a button click in Visual Basic 6

Button1_Click is called an event handler, because it handles the button’s
click event. It is important to realize that you rarely call the but-
ton’s event handler directly from your application. The VB Runtime au-
tomatically invokes Button1_Click for you when the button is clicked. 

Starting with Visual Basic 5, VB classes have been able to expose
their own events using the Events and RaiseEvents keywords. By ex-
posing an event, you invite clients to write code that would be invoked

.NET Language Features . 75

http://www.codenotes.com/cnp?cnp=NET040018


when the event occurred. This is best illustrated by the example below.
(The complete source code can also be found online at aNET040019.) 

Raising Events
Consider the VB6 StockInfo class in Listing 4.15, which exposes a sin-
gle event:

Public Event PriceChanged(ByVal price As Double)

Public Sub Start()
'Loop continually and trigger the PriceChanged 
'event with a random price every 5 seconds. 
Do
'Delay for 5 seconds. 
before = Timer
Do
DoEvents

Loop Until Timer - before > 5

'Raise the event, which will trigger any
'client code associated PriceChanged
RaiseEvent PriceChanged(rnd*100)

Loop
End Sub

Listing 4.15 VB6 StockInfo class

The StockInfo class exposes one event called PriceChanged. Clients
write code for this event (we will see how momentarily), which is trig-
gered when we raise the event using the RaiseEvent keyword. The idea
behind events is similar to the premise delegates: by “subscribing” to
our event, a client is free to do other things until the event is raised. (The
relationship between delegates and events is explained in the following
section, Events and Delegates.) 

Listening to Events
If we were writing a client that wanted to subscribe to the PriceChanged
event shown in Listing 4.15, we would declare an instance of the class
using the WithEvents keyword (this is VB6 code; we will examine
changes in VB.NET momentarily): 

dim WithEvents stck As StockInfo

76 . CodeNotes® for .NET

http://www.codenotes.com/cnp?cnp=NET040019


Because we used the WithEvents keyword when declaring the StockInfo
class, we can now write the code shown in Listing 4.16, which will 
be called whenever the class’s PriceChanged method is raised. Our 
subroutine must be called stck_PriceChanged, because in VB6 
event handlers must adhere to the following naming convention: 
ObjectName_EventName. 

Private Sub stck_PriceChanged(ByVal price As Double)
'Print out the stock price in the Debug Window
Debug.Print price 

End Sub

Listing 4.16 Attaching event code with the PriceChanged event

As a result of the code in Listing 4.16, any time the PriceChanged
event is raised by our component, the stock price will be printed in
VB6’s environment debug window. Look back at Listing 4.15 and you
will see that the PriceChanged event is repeatedly raised after we call the
class’s Start() method. This method loops forever and raises the
PriceChanged event with a random price every five seconds. In reality, it
would probably do something more sophisticated, such as query a live
stock feed and raise the event when the stock price changed. If we were
to add the following line of code to our VB6 project (in the form’s
Load() method, for example), the PriceChanged event would be raised
every five seconds.

Set stck = New StockInfo
stck.Start

If you were to run the application (again, full source at aNET040020),
the VB6 Debug window would display a new stock price every 5 sec-
onds, as shown in Figure 4.1. 

Figure 4.1 PriceChanged event raised every 5 seconds

.NET Language Features . 77

http://www.codenotes.com/cnp?cnp=NET040020


VB.NET EVENTS

Writing a class that exposes an event in VB.NET is very similar to doing
the same in VB6. You use the event keyword to declare the event, 
then use the RaiseEvent keyword to trigger it. Listing 4.17 illustrates 
the StockInfo class rewritten in VB.NET (source also available at
aNET040021). 

Class StockInfo

public event PriceChanged(ByVal price as double)
public sub Start()    
'For simplicity, just raise the event once, although
'in reality we would loop continually and raise the
'event whenever the stock price changed. 
RaiseEvent PriceChanged(100.00)        

end sub    
end Class

Listing 4.17 StockInfo class in VB.NET

As with the VB6 code in Listing 4.15, Listing 4.17 exposes a
PriceChanged event that clients subscribe to when they wish to be noti-
fied that the stock price has changed. Subscribing to an event in
VB.NET is a little different than VB6. You still declare a class using the
WithEvents keyword:

public WithEvents stck as StockInfo

What changes, however, is the name of the associated event handler. Re-
call from Listing 4.17 that VB6 events handlers must follow the naming
convention ObjectName_EventName, which was why our event handler
had to be called Stck_PriceChanged. In VB.NET, you can call your
event handler whatever you like, but you must associate it with the
class’s event using a new keyword, Handles.

private sub MyPriceChanged(Byval price as double) 
Handles stck.PriceChanged
Console.WriteLine("Stock Price: {0}",price)

end sub    

Listing 4.18 Writing event handler code using the Handles keyword in VB.NET

As a result of Listing 4.18, whenever the StockInfo PriceChanged event
is raised, our MyPriceChanged method will be called implicitly. VB.NET

78 . CodeNotes® for .NET

http://www.codenotes.com/cnp?cnp=NET040021


has an additional capability as well—you can write multiple event han-
dlers for a single event. Thus we could also write the following code,
which also responds to the PriceChanged event. 

private sub MyPriceChanged2(Byval price as double) 
Handles stck.PriceChanged
'Do something with the Stock Price

end sub    

Listing 4.19 Writing another event handler in VB.NET

Now, both the MyPriceChanged and MyPriceChanged2 methods will be
invoked whenever StockInfo’s PriceChanged event is raised. This cannot
be done in Visual Basic 6. 

EVENTS AND DELEGATES

Events and delegates both function in a similar manner: they both allow
a component to asynchronously notify a client that something important
has occurred (a stock price has changed, a database has been updated,
etc.). But delegates are, in fact, the underlying architecture behind
VB.NET events. When you use the event, RaiseEvents, and WithEvents
keywords in VB.NET (as we did in the previous example), the VB.NET
compiler translates your event statements into delegate equivalents be-
hind the scenes. 

If you are developing solely in VB.NET, you can use VB.NET events
as we have illustrated and let the VB.NET compiler take care of the de-
tails. If you wish to write events in C# or managed C++, however, you
are not afforded such abstraction and must understand the relationship
between events and delegates in the .NET Framework. To this end, we
will demonstrate how to write the StockInfo info class in C#, where we
must use the underlying delegate directly. This C# example can also be
found online at aNET040022. 

The relationship between delegates and events is best understood if
you consider the VB.NET code in Listing 4.17. Consider the line that
declares the PriceChanged event:

public event PriceChanged(ByVal price as double)

This line states that the StockInfo class exposes an event called
PriceChanged, which contains a parameter called price (of type double).
When the event is raised, the price variable contains some value that the
client is (presumably) interested in. 

.NET Language Features . 79

http://www.codenotes.com/cnp?cnp=NET040022


In C#, as in VB.NET, you still use the event keyword to expose an
event (as we will see in Listing 4.21). But in C#, what precedes the event
keyword must be a delegate that takes two parameters:

public delegate void PriceChangedDelegate(Object o, PriceEventArgs p);

The first parameter of the delegate (Object) contains the object that in-
voked the event (this is equivalent to whatever object called RaiseEvent
in VB.NET, which would be the StockInfo class itself). The second pa-
rameter, a class that inherits from System.EventArgs, is a class that con-
tains any information the event must communicate. In our case, our
event must communicate a double parameter called price, and even
though price is simply a double, we will still need to construct a class
called “price” that will house the double as a public member variable. (It
is possible for the second parameter of an event delegate to be a single
variable such as a string or integer, but the convention is that it be a class
inheriting from System.EventArgs.) 

The important thing to realize when using events in C# is, again, that
event parameters are communicated through a single class that contains
public member variables corresponding to the event parameters. For ex-
ample, our event could communicate two parameters (a stock symbol
and a stock price):

public event PriceChanged(ByVal price as double, _ 
symbol as string)

In that case we would need a class with two public member vari-
ables: price and symbol. Since we only need to communicate one 
parameter, however, all we need is a class that inherits from System
.EventArgs, with a public member variable called Price. Create a new
C# file (call it StockInfo.cs) and add the code in Lisitng 4.20 to it. 

public class PriceEventArgs : System.EventArgs
{
public double Price;
public PriceEventArgs(double StockPrice)
{  
Price=StockPrice;

}
}

Listing 4.20 The PriceEventArgs class

80 . CodeNotes® for .NET



The PriceEventArgs class in Listing 4.20 is straightforward: it con-
tains a public variable called Price that can be set in the class’s con-
structor. Having written a class that inherits from System.EventArgs, we
now declare a delegate that accepts this class as its second parameter: 

public delegate void PriceChangedDelegate(Object o, PriceEventArgs p);

Think about what a client could do if called back with such a delegate.
First, the client could determine who invoked the delegate by inspect-
ing the Object parameter. Second, the client could scrutinize the 
PriceEventArgs class, which happens to contain a member variable
called Price (this is why the Price variable has to be public in Listing
4.20—so that clients can retrieve it). 

We can now write a StockInfo class in C#, similar to the VB.NET
version in Listing 4.17. There are a couple of differences, however. First,
what follows the event keyword is the PriceChangedDelegate we just
created—not a method with parameters, as in the VB.NET example.
Second, our class does not use RaiseEvent to trigger the event but must
explicitly invoke the delegate. These differences are highlighted in List-
ing 4.21. 

public class Stockinfo
{  
public event PriceChangedDelegate PriceChanged;  
public void Start()
{
// Invoke the delegate.  This takes the place 
// of RaiseEvent in VB.NET:
PriceEventArgs price = new PriceEventArgs(100.00);
PriceChanged(this,price);

}

}  

Listing 4.21 The StockInfo class written in C#

The StockInfo class in Listing 4.21 is functionally identical to the
VB.NET version in Listing 4.17: it exposes a PriceChanged event that is
invoked when the class’s Start() method is called. You can compile this
class into a DLL assembly using the C# compiler:

csc.exe /t:library StockInfo.cs

.NET Language Features . 81



The C# compiler will produce a file called StockInfo.DLL, which you
can now use from Visual Basic, as depicted in Listing 4.22. 

module Example
private WithEvents stck as StockInfo
private sub OnPriceChange(Byval o as object, _
byval p as PriceEventArgs) Handles stck.PriceChanged
System.Console.WriteLine("Stock Price: {0}",p.Price)

end sub

sub main         
stck = new Stockinfo
stck.Start()

end sub
end module

Listing 4.22 Using the C# StockInfo class from VB.NET

The VB.NET program uses the C# StockInfo class, much like the
VB.NET one: it associates an event handler with the class’s
PriceChanged event using the Handles keyword, and then calls the
class’s Start() method, which triggers the event. The important differ-
ence is that the OnPriceChange event handler does not receive a price 
parameter (as it does in Listing 4.18). Instead, it receives an instance 
of the PriceEventArgs class, whose public member variables it can 
scrutinize for information. 

Look at listing 4.22 and you will notice that even though we explic-
itly used delegates in the C# StockInfo class, we are completely ab-
stracted from them in VB.NET. This prompts us to make the following
concluding observations:

• When you declare an event in a VB.NET class, the VB.NET
compiler converts it into a corresponding delegate behind the
scenes. 

• When you use RaiseEvent in VB.NET, the compiler implicitly
invokes the underlying event delegate.

• When you use Handles in VB.NET, the compiler is really regis-
tering your method with the underlying event delegate, so that
your method is invoked with the delegate called. 

As can be seen, delegates are the underlying mechanism behind
VB.NET events. Those familiar with COM will note that this marks the
end of the ConnectionPoint mechanism that drove events in VB6. 

82 . CodeNotes® for .NET



HOW AND WHY 

Can Delegates Be Used for Anything Besides Callbacks?
Even though delegates are the mechanism behind callbacks in the .NET
Framework, there is no stipulation that they be used only for this pur-
pose. Delegates can be useful in multicast/subscription situations, where
the number of functions triggered by an event can change dynamically.
See aNET040023 for an example that uses delegates in this manner. 

What Is the System.MulticastDelegate GetInvocationList() Method Used
For?
In our example, the PhoneNumber delegate did not have a return value.
Consider what would happen if it did. The CallMyFriend() method
would invoke the delegate as follows:

someResult = wakeupFunc("I just got home, you called?");

The delegate would invoke the function it wrapped and propagate what-
ever value the function returned to someResult. If the delegate wrapped
a chain function, however, the return value of the last function in 
the chain would be stored into someResult, while the rest would 
be discarded. This behavior is not always desirable. We might want
someResult to store some combination of the values returned by the
functions wrapped by the delegate. GetInvocationList() is designed to
address this situation. 

The GetInvocationList() method can be used to retrieve the chain
of functions that a delegate wraps. Once retrieved, each function can be
called individually and its return value can be manipulated as desired.
An illustration of the use of the GetInvocationList() method can be
found at aNET040024. 

SUMMARY

Delegates are classes that inherit from System.MulticastDelegate and
encapsulate one or more functions or class methods. The functions
wrapped by a delegate must match the return value and arguments of the
delegate signature. The Combine() and Remove() methods of a delegate
class can be used to add and remove the functions it wraps. When you
invoke a delegate, you implicitly invoke its contained functions. 

Delegates are used in the .NET Framework in place of callback func-
tions (function pointers in C++, AddressOf in Visual Basic). By acting
as a buffer between functions and their callers, delegate classes can en-

.NET Language Features . 83

http://www.codenotes.com/cnp?cnp=NET040023
http://www.codenotes.com/cnp?cnp=NET040024


sure that callbacks are performed in a type-safe manner. The ability of
delegates to be used for callbacks and to wrap multiple functions allows
for a phenomenon known as multicasting, whereby one source notifies
numerous functions of a given event.

Finally, delegates are now the underlying mechanism behind events
in VB.NET. With VB.NET, you can still use the Visual Basic 6 events
and RaiseEvents keywords to expose events in your classes, but you
must use the new Handles keyword to write VB.NET event handlers.
Behind the scenes, VB.NET translates your event statements into dele-
gates, which are used by the .NET Runtime to trigger events and invoke
their event handlers. You can also expose events in C# and managed
C++ classes, but you must explicitly write and manage the underlying
delegate. 

Topic: Garbage Collection

Like a Java Virtual Machine, the CLR removes the burden of memory
management from developers by destroying objects once they are no
longer being referenced. For years, Visual Basic programmers were af-
forded this service by the VB runtime, and this luxury is now inherent in
any language that targets the CLR. 

Before an object is removed from memory, it must free any resources
it has allocated during its lifetime. In C++, this “cleanup code” is usu-
ally housed in an object’s destructor, whereas in VB it is placed in the
Class Terminate() method. Under the .NET Framework, cleanup code
must reside in an object’s Finalize() method, which is called just be-
fore the object is garbage-collected by the CLR. 

Finalize() is a method in the System.Object class from which all
other .NET classes derive. You only have to override this method when
you have cleanup code that should be performed before the class is de-
stroyed. 

For C++ developers, implementing this change is not as painful as it
may seem. You still write destructors in the standard manner you always
did, as the managed C++ code below illustrates. (Note that in C# you
also use this destructor syntax.)

__gc public class MyObject
{
~MyObject ()
{
// My cleanup code goes here. 

84 . CodeNotes® for .NET



}
};

Behind the scenes, the compiler has taken the code in the destructor
and placed it in the class’s Finalize() method. Nevertheless, the in-
tended behavior is the same—the cleanup code is called just before the
object is destroyed. The compiler will also mimic destructor behavior in
one other respect: if your class has inherited another class, the compiler
will insert code to call the base class’s Finalize() method after your
cleanup code has executed. This would be equivalent to having a class’s
destructor call its parent destructor once it had executed. 

In managed C++ and C#, you must use this destructor syntax (you
cannot write a Finalize() method). In Visual Basic you must be 
more explicit, as the following code reveals (note that you must use the
overrides keyword, which is used to override the methods of inherited
classes). 

Class MyObject

protected overrides sub Finalize()
'Place VB cleanup code here  

end Sub
end Class

GARBAGE COLLECTION TIMING

From these examples, it would seem that the new destruction scheme in
the .NET Framework is nothing more than a syntax shuffle, one that
C++ and C# programmers don’t even have to be aware of, given that
their compilers mask such details. Unfortunately, this is not the case. For
although it is true that objects are destroyed when they are no longer
being referenced, under the .NET Framework there is no guarantee as to
when this will actually happen. If the processor’s workload is heavy, the
garbage collector may not get around to destroying an object until long
after it has no longer been referenced. If the object has allocated expen-
sive resources, it will hold on to them for this extended period of time.
This unpredictable behavior is referred to as nondeterministic finaliza-
tion.

Although nondeterministic finalization is the price paid for having
memory managed by the CLR, objects that have allocated expensive re-
sources (database connections, communication channels) should be able
to release them in a more timely manner. Microsoft’s solution is to have

.NET Language Features . 85



you expose a method that clients explicitly call when they are finished
using your object. By placing cleanup code in this method, as opposed
to Finalize(), resources can be freed immediately and do not depend
upon the next execution of the garbage collector. Under the .NET
Framework, the convention is to call this method Dispose(), although
you can certainly name it something else (Close, Release, etc.). 

The problem with this approach is that you are left in the precarious
position of hoping that clients call your Dispose() method. If they do
not, expensive resources will never be freed, which can be as problem-
atic as the original dilemma of having them freed in an untimely fashion.
Microsoft anticipated this situation as well, and the “solution to their so-
lution” requires using the SuppressFinalization() method found in the
System.GC class. 

Under this approach, objects have two methods that free resources:
Dispose() and Finalize(). Depending upon the client’s actions, re-
source deallocation can proceed in one of two ways:

1. The client calls Dispose(): Dispose() releases the object’s re-
sources and calls GC.SuppressFinalization(), informing the
CLR that Finalize() should not be called. 

2. The client forgets to call Dispose(): when the object is garbage-
collected the CLR calls Finalize(), which releases the object’s
resources.

The following Visual Basic code demonstrates this hybrid approach.
Managed C++ and C# examples can be found at aNET040025. 

Class MyObject
private Sub CleanUp
'Cleanup resources here       

end sub

public Sub Dispose()
'Free resources:
CleanUp()
'No need for CLR to call Finalize:
GC.SuppressFinalize(me)

end sub 

protected overrides sub Finalize()
'Client did not call Dispose!, free resources:
CleanUp()

86 . CodeNotes® for .NET

http://www.codenotes.com/cnp?cnp=NET040025


end Sub
end Class

Listing 4.23 Using Finalize and Dispose

The GC.SuppressFinalize(me) line informs the CLR that this object has
released its resources and it should not call Finalize(). The me construct
in Visual Basic is the equivalent to this in C++ and C#; it refers to the
current instance the method is executing on. 

In addition to guarding against the client’s failure to call Dispose(),
as we do here, you should also be able to handle clients that call your
Dispose() method multiple times. In the preceding code, this would
translate into determining whether resources have already been freed in
the CleanUp() method. 

Garbage Collection and Performance
If you are not careful, finalization can significantly degrade perfor-
mance. If a client instantiates a five-thousand-element array of finaliz-
able objects, for example, the garbage collector must call Finalize()
explicitly against every element. Because of this, finalizable objects are
typically destroyed later than their nonfinalizable equivalents. A
byproduct of this demoted status is that finalizable objects can unneces-
sarily prolong the destruction of other objects to which they have refer-
ences. 

For performance reasons, the Finalize() method should only be 
employed when efficiently freeing a particular resource is a prime con-
cern. Also, the Finalize() method cannot make any assumptions about
the thread on which it executes, because it is called by the CLR’s
garbage-collection thread. Thus, it cannot access thread-local storage
(TLS). 

Finally, if you expose a Dispose()method that clients call to explic-
itly free your object’s resources, you should prepare for the possibility
that they might call it numerous times. 

HOW AND WHY

Can I Prevent an Object from Being Destroyed in Its Finalize() Method?
The CLR garbage collects objects when they are no longer being refer-
enced. It is possible (although unlikely) to establish a reference to the
object in its own Finalize() method. This could involve setting some
global variable to the object instance, as demonstrated by the following
VB code:

.NET Language Features . 87



protected overrides sub 
Finalize()
someGlobalVariable = me

end Sub

As a result of this assignment, a reference to the object now exists, and
it can no longer be collected. The object has thus gone through the
unique cycle of having been alive, then deemed OK to be destroyed
(dead), then becoming alive again. This fortunate change in the object’s
fate is called resurrection. Information on this advanced and rarely used
technique can be found at aNET040026.

Is There a Way I Can Force the Garbage Collector to Destroy Outstand-
ing Objects?
Although the CLR will automatically run the Garbage Collector from
time to time, you can run it explicitly by using the GC.Collect()method
found in the Runtime classes. 

Can I Declare Types That Are Not Garbage Collected?
This is only an option for managed C++ developers, who can place the
__nogc expression in front of types so that they won’t fall prey to 
the CLR’s garbage collector when no longer being referenced. See
aNET040027 for examples of the __nogc expression. Another option to
forego garbage collection is to write native code and then call it from the
.NET environment, a topic addressed in Chapter 5. 

SUMMARY

Objects that require explicit notification of their destruction by the
CLR’s garbage collector must implement the Finalize()method. In C#
and managed C++, any class destructors you write will be automatically
replaced with this method by their respective compilers. This conve-
nience is not afforded to Visual Basic developers, who must explicitly
replace their Class Terminate() subroutines with Finalize(). Although
the Garbage Collector will call an object’s Finalize() method after it
has last been referenced, it makes no guarantee about the time between
these two events. As a result, objects that have allocated resources may
hold onto them well after the object is no longer being used. Microsoft
suggests writing an additional method called Dispose(), which clients
call explicitly once an object is no longer being used. If the client calls
Dispose(), Dispose() releases the objects resources and calls GC.Sup-

88 . CodeNotes® for .NET

http://www.codenotes.com/cnp?cnp=NET040026
http://www.codenotes.com/cnp?cnp=NET040027


pressFinalization() so that Finalize() is not called by the CLR when the
object is collected. If the client forgets to call Dispose(), the CLR calls
Finalize() when the object is garbage-collected, and resources are freed. 

Chapter Summary 

In this chapter we examined the various language features in the .NET
Framework. We first looked at attributes, which are nonprogrammatic
code statements that influence application behavior by embedding addi-
tional metadata into an assembly. An assembly’s metadata can be re-
trieved using reflection, the second topic of this chapter. Reflection can
be used when you have no prior knowledge of an assembly and wish to
use its classes dynamically at runtime. 

Delegates are the .NET equivalents of C/C++ functions pointers and
are most often used to facilitate asynchronous notification between a
component and client. Delegates are also the mechanism behind
VB.NET’s event model, marking the end of the COM ConnectionPoint
model that drove events in VB6. 

The final topic of this chapter, Garbage Collection, is a service af-
forded to all programs executing within the CLR. Garbage collection
presents some new issues for developers, most notably for C and C++
programmers who were previously burdened with the responsibility 
of memory management. Objects that wish to release resources before
they are garbage-collected must implement a special method called 
Finalize(). 

In the following chapters we will see some of the these language fea-
tures in practice. Attributes, for example, will be used in the next chap-
ter to call Win32 DLL functions from the managed environment, as well
as to give classes the transactional capabilities discussed in Chapter 6.
We will revisit delegates in Chapter 7, when we look at Windows Forms,
the new way to design Win32 screens in the .NET Framework. 

.NET Language Features . 89



Chapter 5

MIGRATING NATIVE CODE TO .NET

A natural question for many developers, given the advent of .NET, is 
the impending status of widespread technologies such as COM and
plain Win32 DLLs. Unlike the .NET Framework, these older tech-
nologies produce native code that runs outside the realm of the 
CLR. The .NET Framework would be of little value if developers were
forced to abandon their existing components and frameworks. Clearly,
there must be some way to integrate code from these two different
worlds.

In this chapter we will examine the two .NET technologies that 
allow native code to be called from the managed environment. The first,
called Platform Invocation Services (PInvoke for short) allows managed
applications to call functions exposed by Win32 DLLs. The second,
termed COM Interop, allows these same applications to transparently
use unmanaged COM components. Yet a third technique is a feature of
Microsoft’s next version of Visual C++, called VC.NET. This develop-
ment tool allows one to write native and managed code in the same
source file, while the compiler performs the necessary conversions be-
hind the scenes. Information on VC.NET’s native code capabilities can
be found at aNET050021.

Regardless of the mechanism used to call native code from the man-
aged realm, a performance hit is incurred, as the CLR must suspend its
execution and give way to code that operates outside its boundaries. It
must also “translate” the exchange of data from both sides of the fence
using a process called “marshaling.” For this reason, it is a wise practice

http://www.codenotes.com/cnp?cnp=NET050021


to develop new code exclusively in the .NET Runtime and limit the use
of native APIs wherever possible.

In addition to allowing native code to be invoked from the managed
environment, the .NET Framework also permits the reverse, allowing
managed code to be called from the unmanaged realm. This is accom-
plished either by using the managed form of C-style callback functions
called delegates that we saw in Chapter 4, or by using a feature of the
COM Interop called COM Callable Wrappers (CCWs). We will investi-
gate both methods in this chapter.

CORE CONCEPTS

Unsafe Code
Some of you may be aware of the unsafe keyword in C#, which allows
the use of pointers and gives rise to something called “unsafe code.” You
might imagine that these unsafe regions are yet another way to call na-
tive code in the managed environment. This is not, however, the case. To
understand why requires making a subtle distinction in the .NET termi-
nology, which can be confusing.

Native code is machine code that exists in a binary format that can be
read directly by the processor (hence the term native). Win32 DLLs and
COM components are compiled to this type of code. Native code is said
to run in the “unmanaged” environment because it executes outside the
boundaries of the CLR, whose job, after all, is to compile and interpret
IL code in real time. Unsafe code, on the other hand, still operates in the
managed environment but is not verified by the CLR for type safety or
memory access before being interpreted. As a result, unsafe IL code
may run faster than its “safe” counterpart, but it is not to be confused
with native machine code.

Confusion arises because the Microsoft documentation frequently
makes references to “unmanaged” code, without differentiating between
native machine code and unsafe IL code. And if that weren’t perplexing
enough, VC.NET is capable of producing both unsafe IL code (when
you use pointer manipulation that the CLR cannot verify) and native
machine code (when you utilize libraries that compile to native code,
such as the C-Runtime or Win32 API). A full discussion of VC.NET’s
code-generation nuances is beyond the scope of this CodeNote; but see
aNET050001 for details. You can also find C# examples that use the 
unsafe keyword at aNET050002. 

Proceed through this chapter with the understanding that you have
three options to call native machine code from the managed environ-
ment: PInvoke to call Win32 DLLs, COM Interop to call COM compo-

Migrating Native Code to .NET . 91

http://www.codenotes.com/cnp?cnp=NET050001
http://www.codenotes.com/cnp?cnp=NET050002


nents, and VC.NET that allows you to write native code and mix it in
with managed code.

Topic: PInvoke and DllImport 

In many respects, standard Win32 DLLs are still the backbone of the
Windows operating system. A quick glance at the windows\system32 
directory will reveal the hundreds of DLLs that are used to provide 
applications with services such as compression, encryption, and com-
munication. For years, Visual Basic programmers have relied on 
such DLLs for functionality that transcends the language. The 
GetSystemDirectory() function in kernel32.dll for example, allows one
to ascertain the full path of the windows\system32 directory, something
that cannot be done directly in VB6.

Calling functions that reside in Win32 DLLs from managed applica-
tions is very similar to doing the same from previous versions of Visual
Basic and is very straightforward. You simply declare the function pro-
totype and the DLL in which the function is contained, and then call the
function as if it resided directly in your source code. In the .NET
Framework, you make such a declaration using the DllImport attribute,
which can be found in the System.Runtime.InteropServices name-
space (attributes are covered in Chapter 4). DllImport informs the CLR
that the function exists in a DLL, and must be accessed using the CLR’s
Platform Invocation (PInvoke) services.

The C# code in Listing 5.1 calls the Sleep() function found in 
kernel32.dll, which delays program execution for a number of milli-
seconds. VB.NET and managed C++ versions can be found at
aNET050003.

using System;
using System.Runtime.InteropServices;

public class NativeExample
{
// Use the DllImport attribute to declare the
// Sleep function in kernel32.dll
[DllImport("kernel32.dll")]
public extern static void Sleep(uint msec);

public static void Main() 

92 . CodeNotes® for .NET

http://www.codenotes.com/cnp?cnp=NET050003


{    
Console.Write("Delaying 1 second...");     
Sleep(1000);
Console.WriteLine("done.");

}
}

Listing 5.1 Calling a Win32 DLL function from the managed environment

The extern keyword in the declaration of the Sleep() function in-
forms the C# compiler that the method implementation will be found in
the specified DLL. In Visual Basic, the declaration of an external DLL
function is slightly different, as shown below.

Public Shared Function <DllImport("kernel32.dll")> _ 
Sleep(byval msec as integer)

End Function

Whenever the Sleep() function is called by our program, the CLR will
look in kernel32.dll for a function with the corresponding name, and 
call it if it finds one. If the function cannot be found, then a System
.EntryPointNotFound exception will be thrown.

Calling Win32 functions from the managed environment frequently
involves additional complexities such as error handling, variable mar-
shaling, and aliasing. Such topics quickly plunge the developer into con-
cepts such as Unicode strings, HRESULT error codes, and DLL entry
points. Information on advanced PInvoke techniques can be found at
aNET050004.

HOW AND WHY

How Do I Handle Win32 DLL Functions That Use Callbacks?
Many functions in the Win32 API use callback functions. They accept a
C-style function pointer (AddressOf in VisualBasic) and call this func-
tion to notify you that something has occurred. The CopyFileEx() func-
tion found in kernerl32.dll, for example, will copy a file and call your
function repeatedly after a certain number of bytes have been copied.

To call a Win32 function that uses a callback from a .NET applica-
tion, you must use a managed type of function pointer called a delegate.
Delegates (covered in the Delegates section of Chapter 4) are similar to
function pointers, except that they are type safe and allow the CLR to
properly marshal data between the managed and unmanaged domains.

Migrating Native Code to .NET . 93

http://www.codenotes.com/cnp?cnp=NET050004


An example of using a delegate with the CopyFileEx() function can be
found at aNET050007.

A DLL I Have Written Exposes a Function I Want to Use in My Managed
Program, but the CLR Keeps Telling Me That It Cannot Find It. What
Am I Doing Wrong?
First, ensure that the DLL can be accessed by the CLR. The CLR will
look for the DLL in the directories specified by the PATH environment
variable and the application’s directory. Assuming that the DLL can be
found, use the DUMPBIN.EXE utility (see next question) to ensure that
your function is being properly exported by the DLL. Many C++ com-
pilers will obfuscate the exported function name through a phenomenon
called name mangling. For a list of ways in which to rectify this, see
aNET050008.

Is There a Way to Determine the Functions That Are Exported by a
Win32 DLL?
Microsoft provides a utility called DUMPBIN.EXE that allows you to
do just that. Running 

dumpbin.exe /exports MyDLL.dll 

will list all the functions that are exported by MyDLL.dll. Some com-
pilers also export functions by 16-bit “ordinal” numbers, which this util-
ity also lists. The DllImport’s Entrypoint option also allows functions to
be declared by ordinal number. Examples of ordinal number decleration
can be found at aNET050009.

SUMMARY

The DllImport attribute found in the System.Runtime.InteropServices
namespace allows managed applications to call functions that reside in
Win32 DLLs. When a DLL function is called, the CLR must marshal its
parameters and return values between the managed and unmanaged
realms.

94 . CodeNotes® for .NET

http://www.codenotes.com/cnp?cnp=NET050007
http://www.codenotes.com/cnp?cnp=NET050008
http://www.codenotes.com/cnp?cnp=NET050009


Topic: The COM Interop Service

The COM Interop service allows COM components to be called from
the .NET environment. Like the PInvoke mechanism previously exam-
ined, COM Interop uses attributes to precisely describe the characteris-
tics of the COM component being called. This helps the CLR construct
a Runtime Callable Wrapper (RCW) that acts as a proxy between the
COM component and your managed code. The RCW is responsible for
invoking the COM component, marshaling parameters between the
managed and unmanaged domains, and controlling the COM compo-
nent’s lifetime.

Many of the concepts discussed in this topic are very specific to
COM. If you are unfamiliar with COM terminology (such as coclasses,
IDL, interfaces, etc.), you can find a brief introduction at aNET050023.

The TLBIMP utility
A utility provided with the .NET Framework called TLBIMP.EXE
greatly simplifies COM integration, masking many of the conversion de-
tails from the developer. TLBIMP.EXE is a conversion tool; given a
COM component it will generate an “interop” assembly that can be used
in your managed programs. Your program uses the produced assembly
as it would any other, completely unaware that the assembly has con-
structed an RCW behind the scenes, and that it is secretly communicat-
ing with a COM component.

The TLBIMP.EXE utility is designed to work with COM components
that have type libraries. For those unfamiliar with type libraries, rest as-
sured that VB-produced COM components contain them, as do the ma-
jority of components produced with popular frameworks such as ATL
and even Visual J++. Calling the small minority of components without
type libraries relies on the reflection technique examined in Chapter 4;
an example can be found at aNET050010.

Behind the scenes, TLBIMP.EXE is really utilizing the ConvertType
LibToAssembly() method exposed by the System.Runtime.Interop-
Services.TypeLibConverter class. You can, if you wish, use this class
to programmatically convert COM type libraries into assemblies. In
fact, this is what the VS.NET IDE implicitly does when a COM compo-
nent is referenced from within a managed project.

Although Microsoft has tried to make the integration of COM com-
ponents with managed applications as simple as possible, COM is an 
admittedly complex framework that can be used to create similarly
complex components. Many of these complexities, such as aggregation,
containment, custom marshaling, and multithreaded components, have

Migrating Native Code to .NET . 95

http://www.codenotes.com/cnp?cnp=NET050023
http://www.codenotes.com/cnp?cnp=NET050010


been the sole privilege of C++ developers. While we will touch on tech-
niques that C++ developers can use to integrate these more esoteric
components throughout our example, a full discussion can be found at
aNET050011.

EXAMPLE

In this example we investigate how to call a C++ COM component
called StockInfo from a managed application. Visual Basic users should
also follow this example, as the migration of a VB component is identi-
cal. Portions of the COM and C# client code have been omitted for the
sake of brevity, but the full source, as well as VB and managed C++
client code, is available at aNET050012.

Assume that our component had one interface called IStockinfo, the
IDL of which is given in Listing 5.2.

interface IStockInfo : IDispatch
{
[ id(1), helpstring("method GetCurrentPrice") ]
HRESULT GetCurrentPrice([in] BSTR bstrSymbol, 
[out] double *price);

[ id(2), helpstring("method GetSymbolList") ]
HRESULT GetSymbolList([out,retval] SAFEARRAY(BSTR) *pSymbol);

};

Listing 5.2 The IDL for the StockInfo COM component

Visual Basic abstracts the details of IDL from COM developers, but VB
developers can assume that an IDL, similar to the one given in Listing
5.2, would have been generated by the language had they written an 
ActiveX class with the following methods:

Public Function GetCurrentPrice(ByVal Symbol As String) 
As Double
'Implementation

End Function

Public Function GetSymbolList(Symbol() As String)
'Implementation

End Function

96 . CodeNotes® for .NET

http://www.codenotes.com/cnp?cnp=NET050011
http://www.codenotes.com/cnp?cnp=NET050012


We will not provide the implementations for these methods (see
aNET050013), but for conceptual purposes assume that the Get-
CurrentPrice()method returns the current price of the given stock sym-
bol and GetSymbolList() returns an array of strings representing valid
symbols.

Assuming that our DLL was called StockInfo.DLL, we could create
an interop assembly using the TLBIMP utility as follows:

TLBIMP.EXE StockInfo.dll /out:StockInfoAsm.dll

If everything proceeds smoothly, TLBIMP will generate an assembly
called StockInfoAsm.DLL. It is important to realize that this assembly
is not a functional substitute for our COM component, as it doesn’t con-
tain executable code for either method. Rather, it contains the metadata
that the CLR requires in order to create an RCW, which acts as a bridge
between our managed program and the unmanaged COM component.
We can examine the metadata of the interop assembly using the 
ILDASM tool introduced in the Metadata section in Chapter 3. Doing so
brings up the following screen:

Figure 5.1 the StockInfoMeta Assembly

The Assembly’s metadata reveals some interesting things. Note the pres-
ence of both the IStockInfo interface and the StockInfo class. These
correspond to the COM component’s interface and coclass. Although
there is only one interface in our example, COM permits multiple inter-

Migrating Native Code to .NET . 97

http://www.codenotes.com/cnp?cnp=NET050013


faces per coclass, prompting developers to ask how these components
are handled. See the online article at aNET050018 for information on
how to handle multi-interface COM components.

Turning our attention to the StockInfo class, we see that the 
GetSymbolList() method no longer returns an array of BSTRs (Visual
Basic Strings), but rather an array of System.Strings. During the con-
version process, the TLBIMP utility translated our unmanaged COM
parameters into managed equivalents. This is especially nice for C++
developers, who no longer have to concern themselves with the deallo-
cation of BSTRs (VB developers were abstracted from these details by
the VB Runtime).

Another difference in the StockInfo class is that the new methods do
not return HRESULTs, the COM-specific method by which errors are
returned from components to their calling client. Visual Basic develop-
ers may be unfamiliar with HRESULTs, as the Visual Basic runtime ab-
stracts the details of COM error checking. HRESULTS are used by VB
behind the scenes, however, and failures communicated to the client via
HRESULTs are what trips VB’s “On Error Goto” mechanism. The
COM Interop service offers a similar form of simplification by trapping
errors from COM components and delivering them to your programs as
exceptions of type System.Runtime.InteropServices.COM. A COM
method that returned an HRESULT of E_OUTOFMEMORY, for exam-
ple, would manifest itself as an OutOfMemoryException in your managed
programs.

The one question that remains is the namespace used to access the as-
sembly. From Figure 5.1 you will see that the StockInfo class resides in
the StockInfoAsm namespace, which happens to have the same filename
as our assembly (StockInfoAsm.DLL). This is no coincidence, as the
namespace is derived directly from the interop assembly filename. Take
care, then, in choosing the filename of the output DLL, as it will also
serve as the namespace that clients use to access the COM component.
If you fail to specify the assembly filename (that is, if you omitted the
/out:StockInfoAsm.dll when executing TLBIMP), then the Runtime
will derive both the namespace and the output filename from the IDL li-
brary name (the Project name in Visual Basic).

CALLING THE COM COMPONENT FROM C#

Listing 5.3 illustrates how the COM component, StockInfo, can be
called from a C# application via the interop assembly that we generated

98 . CodeNotes® for .NET

http://www.codenotes.com/cnp?cnp=NET050018


with TLBIMP.EXE. VB.NET and managed C++ examples can be found
at aNET050015.

// Namespace reference to use the interop assembly.  If the 
// assembly is private then it must in the same directory as 
// the app. More on this in the assembly section in Chapter 3. 
using StockInfoAsm; 
using System.Runtime.InteropServices;
using System;

public class COMExample {

public static void Main() 
{  

// Create an instance of the StockInfo class contained
// in the StockInfoAsm assembly. Remember, this is not
// the COM object, but a 'proxy' to it. 
StockInfo stockObj; 
stockObj = new StockInfo();
double price = 0;

try {
String[] symbols = stockObj.GetSymbolList();

// print the prices of all available stocks
for (int i = 0; i < symbols.GetLength(0); i++) {
price = stockObj.GetCurrentPrice(symbols[i]);
System.Console.Write("Price of {0}:", symbols[i]);
System.Console.WriteLine("{0}",price.ToString());

}

// Try to get the price of an unavailable stock.  The 
// GetCurrentPrice method will return an HRESULT
// error if this happens.  
price = stockObj.GetCurrentPrice("III");

}

// Catch any COM exceptions that the CLR propagates to
// us if our COM component returns an error. 
catch (COMException e) {

Migrating Native Code to .NET . 99

http://www.codenotes.com/cnp?cnp=NET050015


System.Console.WriteLine("COM error: {0}", e.Message);
}  

}
}

Listing 5.3 Calling the StockInfo component from the managed environment

Running this program produces the following output:

Price of AAA:2.56
Price of BBB:85.25
Price of CCC:45.6
Exiting program on COM error: Unspecified error

As can be seen from Listing 5.3, accessing a COM component from the
.NET Framework is very straightforward once the interop assembly has
been generated. In fact, the only way one could even tell that Listing 5.3
uses a COM component is that a COMException is being checked for.
Other than that, the assembly is used like any assembly in the .NET
Framework.

COM CALLABLE WRAPPERS 

Just as COM components can masquerade as .NET assemblies, COM
Interop permits the reverse to occur, allowing managed assemblies to
masquerade as genuine COM components. To facilitate this, the COM
Interop constructs a COM Callable Wrapper (CCW), which appears to
unmanaged clients as a COM component. Like its RCW cousin, the
CCW is really a proxy object that colludes with another entity across the
managed/unmanaged boundary. The CCW also takes care of marshaling
parameters between the two realms, as well as enforcing the security re-
quirements of the managed assembly. Information on using CCWs in
.NET can be found at aNET050016.

HOW AND WHY

I Ran TLBIMP.EXE on My COM Component, but the Conversion Failed.
Where Do I Go from Here? 
There is a small class of components that will not work successfully
with TLBIMP. Conversion will fail if TLBIMP encounters difficulties in
translating a method’s parameters into managed equivalents. This oc-

100 . CodeNotes® for .NET

http://www.codenotes.com/cnp?cnp=NET050016


curs when your COM component is using a non-OLE data type, such as
a custom defined structure. Such data types cannot be used in Visual
Basic, and so (by implication) all VB COM components will convert
without a problem. If you do have a C++ COM component that is utiliz-
ing such special types, you must write a custom “managed wrapper” in
either C# or managed C++ in order to use it from the managed environ-
ment. An example of a managed wrapper that allows access to such a
COM component can be found at aNET050017.

What Is the Impact of COM Threading Models on My Managed Pro-
gram?
Unlike the .NET Framework, COM can synchronize access to a compo-
nent using apartments. Before a thread uses a COM component, it must
inform COM as to the manner in which the component will be accessed.
This allows COM to determine whether the component requires syn-
chronization protection.

Although a complete discussion of COM threading models is beyond
the scope of this CodeNote, you should be aware that all .NET threads
will declare multithreaded apartment (MTA) affiliation by default. If the
thread will be using single-threaded apartment (STA) components (such
as those produced by VB6), this may adversely effect performance. 
You can explicitly declare a thread’s concurrency model by using the
ApartmentState field, found in the System.Threading namespace. An
example of explicitly setting COM’s threading model from the managed
environment can be found at aNET050018.

NATIVE CODE CAUTIONS 

While many developers are likely to use the techniques in this chapter to
call native code from the managed environment, caution must be taken
when exercising this luxury. Recall that in the Core Concepts section of
Chapter 4 we discovered that the CLR uses lightweight Appdomains to
house .NET Applications.

Since a Win32 process houses multiple Appdomains (and thus multi-
ple .NET Applications), if your native code does something illegal (such
as referencing an invalid pointer) it will destroy the entire process, as
well as any other .NET Applications running within it. This behavior is
in contrast to misbehaving managed code, whereby the CLR would just
shut down the individual Appdomain.

In addition to the dangers associated with executing native code, a
performance hit is incurred any time native code is called from the man-

Migrating Native Code to .NET . 101

http://www.codenotes.com/cnp?cnp=NET050017
http://www.codenotes.com/cnp?cnp=NET050018


aged environment. For this reason, it is a good idea to reduce the num-
ber of transitions from the managed to unmanaged realms. If native
functions are to be used, you can reduce overhead by calling them a few
times and performing many tasks within each individual call, as op-
posed to calling them many times and having each individual call per-
form a few tasks.

Many developers reason that one of the advantages of native code
over managed code is the superior performance of the former. While this
may seem reasonable given that native code is not subject to the CLR’s
scrutiny, be careful when exercising this assumption, as the .NET Run-
time has been highly optimized. We have encountered a number of cases
where the Runtime equals or outperforms its unmanaged equivalent (see
aNET050022). Even if native code performs slightly better, any speed
gain can be easily nullified by the cost of transitioning to it in the first
place.

SUMMARY

COM Interop allows managed applications to call COM components
using interop assemblies. An interop assembly is produced from a COM
type library using the TLBIMP utility, and once created it can be called
from managed programs like any other assembly. Interop assemblies are
used by the CLR to construct Runtime Callable Wrappers (RCW),
which communicate with the actual COM component. The RCW takes
care of marshaling parameters between the managed program and the
unmanaged component.

COM Interop also allows managed components to be called by un-
managed clients, using COM Callable Wrappers (CCWs). CCWs give
unmanaged clients the illusion they are communicating with COM 
components, although in fact they communicate with the .NET assem-
bly. Like RCWs, CCWs take care of marshaling parameters between the
managed and unmanaged worlds.

Chapter Summary

The .NET Framework offers developers three choices to call native code
from the managed realm. Platform Invocation (PInvoke) services allow
functions residing in Win32 DLLs to be called using the DllImport at-
tribute. PInvoke exposes additional attributes to assist the CLR in mar-
shaling data to such functions, particularly string types, which can be

102 . CodeNotes® for .NET

http://www.codenotes.com/cnp?cnp=NET050022


problematic. PInvoke also has facilities for handling functions that re-
turn error information in the form of HRESULTS.

Developers can use COM Interop to call COM components from
managed applications, by generating interop assemblies from COM
type libraries using the TLBIMP utility. The interop assembly can then
be used as a genuine assembly in managed programs.

Migrating Native Code to .NET . 103



Chapter 6

ADO.NET

As relational databases become increasingly sophisticated, so too do the
methods in which they are accessed. Vendors continually create new ap-
proaches to programmatically push and pull data from these robust
storehouses, often to the frustration of developers, who are forever fa-
miliarizing themselves with the latest data access technologies. Over the
years Microsoft has unveiled a number of database access technologies,
each of which has been met with varying success: DAO, SQLDMO,
RDO, OLEDB, and ADO. ADO.NET is a significant appendage to this
lengthy list.

As its name suggests, ADO.NET is Microsoft’s ActiveX Data Object
(ADO) model for the .NET Framework. ADO.NET is not simply the mi-
gration of the popular ADO model to the managed environment but a
completely new paradigm for data access and manipulation. ADO.NET,
however, does not signal the end of ADO; developers can still use “tra-
ditional” ADO from the .NET environment using the COM Interop 
services discussed in Chapter 5. To call ADO from the managed envi-
ronment, see the online instructions at aNET06011.

Why ADO.NET?
The motivations behind ADO.NET can be best illustrated if we consider
the shortcomings of its predecessor, ADO. Those unfamiliar with ADO
should still be able to follow this instructional example. The following
Visual Basic 6 ADO code connects to a remote SQL Server database
called CodeNotes:

http://www.codenotes.com/cnp?cnp=NET06011


Dim mConnect As New ADODB.Connection
Dim mRecord As New ADODB.Recordset
Dim mCmd As New ADODB.Command

'Open Connection:
mConnect.ConnectionString = "driver={SQL 
Server};server=remoteServer;uid=sa;pwd=admin;
database=CodeNotes"

mConnect.Open

'Obtain an ADO recordSet of the Stocks Table:
mCmd.CommandText = "Select * From CompanyTbl"
Set mCmd.ActiveConnection = mConnect
Set mRecord = mCmd.Execute

'Print all the StockIDs in the Stocks Table
Do While Not mRecord.EOF
Print mRecord("StockSymb")
mRecord.MoveNext

Loop

'Close connection since we are done reading data:
mConnect.Close   

Listing 6.1 Accessing a remote database using ADO

We can make two observations about the preceding code. First, data ac-
cess (reading the Stock Symbols) is done in the context of an open data-
base connection. Second, the data retrieved is encapsulated as an ADO
Recordset. If we wish to “send” this Recordset to another machine, we
must do it using something called COM-marshaling, since ADO itself is
exposed through COM.

Neither of these restrictions is problematic for the client/server model
that ADO was originally designed for. Client/server applications are
tightly coupled to their data sources, so continually having a database
open is permissible. And, as the name suggests, client/server applications
involve only two entities (a client application that requests data and a
server application that provides it), both of whom, if they are using
ADO, are fluent in COM.

While these stipulations are not problematic for the client/server
model, they do present challenges for web-based scenarios. Web appli-
cations are loosely coupled, meaning they don’t maintain continuous
contact with their servers but communicate with them on a need-by-

ADO.NET . 105



need basis. Since ADO prescribes that database manipulation must be
performed in the context of an open connection, developers must ensure
that these connections persist as a web application changes state (this is
referred to as maintaining state). In addition to the problem of maintain-
ing state, if we wish to share this data remotely with another entity on
the Web, it must speak the underlying language of ADO, which is COM.

While it is true that ADO evolved to address some of these 
challenges—Remote Data Services (RDS), for example, introduced dis-
connected Recordsets—the ADO object model is still intrinsically 
connection-based, leaving room for improved Web integration.

Enter ADO.NET
Unlike ADO, ADO.NET is intended specifically for developing web 
applications. This is evident from its two major design principles:

1. Disconnected Datasets—In ADO.NET, almost all data manipu-
lation is done outside the context of an open database connec-
tion. Data is read into an entity called a Dataset and the
database is immediately closed. Operations (update/insert/
delete) are performed against the Dataset as required. When the
database is ready to be updated, it is reopened and data is im-
ported from the Dataset.

2. Effortless Data Exchange with XML—Datasets can converse in
the universal data format of the Web, namely XML. A Dataset
can export its contents to XML, or import data in XML format.
One is no longer restricted to exchanging data in proprietary
COM format. This is especially important in the Internet’s het-
erogeneous environment, where one may want to interoperate
with non-Windows machines that lack support for COM.

ADO.NET’s disconnected methodology leads to the natural division of
its object model into two layers, the Managed Provider, which actually
communicates with the database, and the disconnected Dataset, which
performs the desired data manipulation. These entities communicate to
each other using a Managed Provider’s DataAdapter object, as illus-
trated in the ADO.NET model in Figure 6.1.

From Figure 6.1, we can see that the Dataset is the object that glues
the ADO.NET Framework together, acting as a bridge between rela-
tional databases and the world of XML. The role of the Dataset as a me-
diator between these domains is significant, because it frees developers
from having to represent their data in only one of these formats. With
ADO.NET, one can take relational data and view it as hierarchical
XML, so it can be utilized by XML parsers and XML technologies. At 

106 . CodeNotes® for .NET



Figure 6.1 The ADO.NET Framework

the same time, one can take XML data and persist it to an SQL database.
Examples in this chapter will demonstrate the portable data access in-
herent in the .NET Framework. The topic of .NET transactions, which
falls more under the realm of general data access than of ADO.NET, will
also be investigated.

CORE CONCEPTS

Schema
A schema is an XML document that describes the structures, con-
straints, and relationships of an XML data file. Since a schema is itself
an XML document, it can be embedded in the XML data file that it de-
picts. Schemas are an important concept in this chapter, because of the
intrinsic XML support in ADO.NET. The relationships expressed in an
XML schema can be imported and enforced by a Dataset. Similarly, a
Dataset can export its constraints and relationships to an XML schema.

Relational/Hierarchical Datasets
ADO.NET Datasets can access relational data that is stored in a 
database and XML data that is hierarchical. Relational data is compart-
mentalized into tables, columns, and rows, while its semantics (relation-
ships, constraints, etc.), are stored separately from the data. Hierarchical
data, like XML, is based on a “family tree” structure (parent/child/sib-
ling elements). Because Datasets can read and write either of these for-
mats, developers are no longer restricted to using one model to represent
their data.

Serializable
An object is serializable if it can package itself as a sequence of bytes
(its private member variables, associated data, etc.). Why would an ob-

ADO.NET . 107

Dataset
DataReader

Connection

Command

DataAdapter

Managed Provider

ReadXml()

WriteXml()

Relational Databases XML

XMLDOM'S
XSLT

XPATH

Database
(SQL, Oracle, etc.)



ject want to be serializable? Most often, so that it can be transported to
a remote location where it can be recreated from those packaged bytes.
As we will see in the Datasets section of this chapter, Datasets can seri-
alize themselves as XML, making them easily transferable over the
Internet.

The OLEDB Provider
OLEDB is a Microsoft COM-based standard that applications can uti-
lize to exchange data with other applications. An OLEDB provider ad-
heres to the OLEDB standard to expose its data store (usually a
database) to clients (called OLEDB consumers). By offering a uniform
interface to provide and consume data, clients are abstracted from the
underlying particularities of the data store. In this sense, OLEDB is
similar to the Open Database Connectivity Standard (ODBC) that pre-
ceded it. Unlike ODBC, which was a C-Style API, OLEDB uses COM,
making it easily accessible from languages other than C and C++, such
as Visual Basic.

With the advent of .NET, the OLEDB provider has evolved into what
is now known as the Managed Provider. Like an OLEDB provider, a
Managed Provider exposes a uniform set of classes that clients use to
access data. Unlike OLEDB, Managed Providers speak in the language
of the CLR (IL code), not COM. Managed Providers, however, do not
make OLEDB providers obsolete. In fact, the .NET Framework includes
a Managed Provider that “wraps” OLEDB providers, making them ac-
cessible from the managed environment. Managed Providers are the first
topic of this chapter.

Topic: Managed Providers

Accessing a database using ADO.NET cannot proceed without a Man-
aged Provider. Like an OLEDB provider or ODBC driver, a Managed
Provider abstracts the specifics of its underlying database by exposing a
common set of classes to applications. Most developers will only inter-
act with a Managed Provider through these classes. The .NET Frame-
work also ships with a Managed Provider SDK, for developers who
want to write Managed Providers that expose a custom data store.

There are two Managed Providers that ship with the .NET Frame-
work. The first is a dedicated optimized provider for SQL Server 2000
that is accessed through the System.Data.SqlClient namespace. The
second, found in the System.Data.Oledb namespace, wraps existing
OLEDB providers to make them accessible from the managed environ-

108 . CodeNotes® for .NET



ment. Recall that an OLEDB provider is Microsoft’s COM-based stan-
dard for data access. As of this writing, the following OLEDB providers
ship with .NET:

1. SQLOLEDB: OLEDB provider for SQL Server 7.0 and above
2. MSDORA: OLEDB provider for Oracle
3. Microsoft.Jet.OLEDB.4.0: OLEDB provider for Jet (MS Ac-

cess, etc.)

You may recognize that with ADO.NET it is possible to communicate
with a SQL Server 2000 database in multiple ways. You can use either
the dedicated SQL Provider or the Managed Provider that wraps the
SQLOLEDB OLEDB provider. In general, a dedicated Managed
Provider will outperform its wrapped OLEDB equivalent. This is be-
cause native OLEDB providers are invoked using the COM Interop ser-
vices discussed in Chapter 5, whereas Managed Providers usually
execute entirely within the managed realm.

A Managed Provider consists of four classes:

1. Connection: Used to establish a connection between the appli-
cation and the data store. This class is very similar to the 
Connection object in ADO, as we will see in the upcoming ex-
ample.

2. Command: Used to execute queries against the data store,
whether stored procedures or standard SQL statements. Again,
those familiar with ADO will find this analogous to the ADO
Command object.

3. DataAdapter: As we will see in the next section, this class
serves as the bridge between the connected Managed Provider
and the disconnected Dataset. You will use this class to populate
a Dataset and to update the database with a Dataset’s modified
contents.

4. DataReader: The DataReader is the only class where data 
access is performed in the context of an open database connec-
tion. A DataReader can only read records in forward manner. It
is most often used to examine the results of a query, as we will
see in the upcoming example.

In practice, you never use the four classes above directly. Instead, you
will use Managed Provider classes, which inherit from these base
classes. To open a connection using the SQL provider, for example, you
would use the SQLConnection class. To do the same with the Managed
Wrapper Provider, you would use the OleDbConnection class. The fol-

ADO.NET . 109



lowing example demonstrates the use of the SQL Server Managed
Provider.

EXAMPLE

The Database
The examples in this chapter are centered around a simple SQL Server
financial database called CodeNotes, depicted in the following diagram.
We will use it to illustrate various ADO.NET features, such as con-
straints, XML integration, and schemas. Keep it in mind throughout this
chapter, and refer back to it if necessary.

Figure 6.2 CodeNotes database

Our database consists of two tables, CompanyTbl, which stores Stock
Symbols and their related company information, and TradesTbl, which
stores the sales of a given stock, including the time and amount of the
sale. You can create this SQL database either manually or by running the
script found at aNET060001.

The DataReader
This C# example will use the DataReader class to traverse through all
the companies in the database. For this example, we will start with a par-
tial listing and incrementally add lines of code until we have a working
program. The full listing can be found online at aNET060002.

The following block of code references the appropriate namespaces
and connects to a database using the SqlConnection object. In this ex-
ample, we are connecting to a local database called CodeNotes, with a
user ID of “Example” and no password.

using System.Data;
using System.Data.SqlClient;

public class SimpleData {
public static void Main()

110 . CodeNotes® for .NET

http://www.codenotes.com/cnp?cnp=NET060001
http://www.codenotes.com/cnp?cnp=NET060002


{
SqlConnection myConn = new SqlConnection(
"user id=Example;password=;database=CodeNotes;" +
"server=localhost");
// More code here

}
}  

Listing 6.2 SimpleData.cs framework and DB Connection

Having established a connection to the database, we now use the 
Command object to specify the SQL query we will use to retrieve data.
Keep in mind that the following statement does not retrieve data from
the database (the database hasn’t been opened yet). Rather, it is used to
specify the commands that will eventually execute against the database.

// Insert into Listing 5.2 after SQLConnection statement
SqlCommand myCommand =
new SqlCommand("Select * from CompanyTbl",myConn);

To actually inspect data from the database, we open it using the 
SQLConnection object, and use SqlCommand class’s ExecuteReader()
method, which returns a DataReader object. The DataReader object can
now be used to traverse through the records in the database.

// Insert into Listing 5.2 after the SQLCommand 
statement
myConn.Open();
SqlDataReader myReader = myCommand.ExecuteReader();    

while (myReader.Read()) {
Console.WriteLine("{0} {1} {2}",
myReader["CompanyID"], myReader["CompanyName"],
myReader["StockSymb"]);

}
myConn.Close();

As with our ADO example at the beginning of this chapter (Listing 6.1),
data is accessed in the context of an open connection. Note that you
must call the DataReader’s Read() method before you traverse through
its records, in contrast to an ADO Recordset, which automatically points
to the first record it contains.

The DataReader is the exception to ADO.NET’s disconnected para-
digm, and can be used when you want to quickly examine the results of

ADO.NET . 111



a data query. With a DataReader, unlike in the Dataset object we will 
examine in the next section, records are not copied into memory; in-
stead, reading each record requires hitting the database. For this reason,
using a DataReader is appropriate for low memory situations, where the
amount of returned records is large. Keep in mind, however, that a
DataReader only allows you to view records—it does not allow you to
modify them.

When compiling this program, don’t forget to reference the System
.Data.DLL assembly that is required to use the ADO.NET classes:

csc.exe /r:System.Data.dll SimpleData.cs

The line above produces the SimpleData.exe application, which, when
run, produces the following output:

1 ACME SOFTWARE                  AME
2 BABBLE CORP                    BBC
3 ME INC                         MIC

In this example, we have used the SQL Managed Provider. Alternatively,
we could have used the OLEDB Managed Provider in the
System.Data.Oledb namespace. This provider would have used
SQLOLEDB OLEDB provider to communicate with the SQL database.
An example can be found at aNET060003.

HOW AND WHY

How Do I Specify a Data Source Name (DSN) In My Connection String?
A popular way to connect to a database in the Windows environment is
to use a Data Source Name. This is demonstrated in the following ADO
code snippet:

Dim mConnect As New ADODB.Connection
mConnect.Open "DSN=MyDSN"

In order for this code to function correctly, a Data Source Name called
MyDSN must be set up using the Windows ODBC Data Source Admin-
istrator. Among other things, this setup involves configuring the data-
base’s physical location and appropriate ODBC driver (SQL Server,
Oracle, Access, etc.).

Recall that to communicate with a database using ADO.NET, 

112 . CodeNotes® for .NET

http://www.codenotes.com/cnp?cnp=NET060003


you need a Managed Provider. Unfortunately, neither of the Managed
Providers that ship with ADO.NET (SQL Server and OLEDB Wrapper)
allow you to specify a DSN when connecting to a database. At the time
of this writing, you must download the ODBC.NET Data Provider 
from Microsoft in order to specify a DSN in your connection string. 
This package will install an assembly called System.Data.Odbc.DLL
on your system. If you examine this assembly using ILDASM and 
look in the System.Data.Odbc namespace, you will find an ODBC 
Managed Provider that exposes the OdbcConnection, OdbcCommand, 
OdbcDataReader, and OdbcDataAdapter classes. You can now use the
OdbcConnection class to specify a DSN in your connection string, much
as in the preceding ADO code snippet. Example code, as well as in-
structions on how to download and install the ODBC.NET Data
Provider, can be found at aNET060004.

How Do I Obtain Data Using a Stored Procedure Instead of an SQL
Statement?
In the previous example we used a standard SQL statement to query
data. To use a stored procedure you must set the SqlCommand’s 
CommandType property to StoredProcedure. You must also denote the pa-
rameters the stored procedure will return using the SqlCommand’s Pa-
rameters collection. A stored procedure example can be found at
aNET060005.

SUMMARY

To access a database in ADO.NET you must use a Managed Provider.
The .NET Framework ships with two managed providers: an optimized
provider for SQL Server 2000 and a Managed Provider that wraps 
older COM-OLEDB providers, which were the preferred way to access
databases before .NET. A Managed Provider contains four classes: Con-
nection, Command, DataReader, and Dataset. The Connection and
Command classes are used to connect to a database and execute queries
against it. The DataReader class can be used to read the records of a
database in a forward-only manner. A DataReader is the only class in the
ADO.NET Framework that performs its operations against an open
database connection. In the next section on Datasets, we will see how
data can be manipulated in a disconnected fashion.

ADO.NET . 113

http://www.codenotes.com/cnp?cnp=NET060004
http://www.codenotes.com/cnp?cnp=NET060005


Topic: Datasets

ADO.NET is centered around the Dataset object. Using it together with
the DataAdapter object of a Managed Provider, one can manipulate data
outside the context of an open database connection.

Think of a DataAdapter as a messenger that ferries information from
the database to the Dataset and vice versa. Much of this section will con-
cern itself with the interplay between these two entities.

A DataAdapter is not the only way a Dataset can obtain data—XML
is also a viable source and target. Datasets can read XML, and can make
themselves available as XML to other clients. This is a significant fea-
ture; it means that developers can move data seamlessly between pro-
prietary databases and universal XML. Examples that follow will
explore the role of XML in the ADO.NET Framework.

It is tempting to think of a Dataset as an ADO Recordset, but this
analogy has its limitations. While it is true that a Dataset can be used to
access and modify data pulled from a database, it transcends the Record-
set concept in a number of ways. Unlike a Recordset, a Dataset can
house multiple tables and the relations between them. If the database has
constraints (perhaps the combination of two fields must be unique), a
Dataset can enforce this restriction. It is thus more accurate to think of a
Dataset as a lightweight in-memory database (as opposed to a Record-
set, which contains no relational information regarding the data it con-
tains).

Because a Dataset can house multiple tables, it exposes a collection
of DataTable classes. These in turn expose DataRow and DataColumn col-
lections, representing the records and fields in the table(s). The various
properties of the Dataset are illustrated in the following example.

EXAMPLE

In this example we demonstrate how the Dataset and DataAdapter
classes can be used to add data to the CodeNotes database (see Fig-
ure 6.2). Specifically, we will add the Widget company (stock symbol
WID) to the CompanyTbl table. When proceeding through this example,
keep in mind that the CompanyID field is the table’s primary key and must
be unique for all records.

This example, in C#, will be presented in the same incremental fash-
ion as the one in the last section. The full C# source is given at the end
of this example as Listing 6.3, and can also be found at aNET060006.

114 . CodeNotes® for .NET

http://www.codenotes.com/cnp?cnp=NET060006


As in the previous example, we begin by specifying the location of our
database using the SqlConnection object and the data we wish to re-
trieve from it using the SqlCommand object:

using System.Data;
using System.Data.SqlClient;

public class SimpleData {
public static void Main() {
SqlConnection myConn = new SqlConnection(
"user id=Example;password=;database=CodeNotes;" +
"server=localhost");

SqlCommand myCommand = new SqlCommand(
"Select * from CompanyTbl",myConn);

}
}  

The next step is to declare a SqlDataAdapter object. When doing so,
we give it the SqlCommand object we just created to provide it with the
SQL statement used to retrieve data from the database.

SqlDataAdapter myDA = new SqlDataAdapter(myCommand);

We could have also given the DataAdapter the SQL statement directly
and not used a Command object at all. The code below would be equiva-
lent to the preceding two lines.

SqlDataAdapter myDA = new SqlDataAdapter(
"Select * from CompanyTbl",myConn); 

Remember, the database has not been opened yet. The SQL statement
will be used when we use the SqlDataAdapter’s Fill() method to popu-
late a Dataset with data. We do that right now:

DataSet myDS = new DataSet(); 
myDA.Fill(myDS, "Companies");        

When it is executed, the DataAdapter’s Fill() method does the follow-
ing: it opens the database, executes the SQL statement, populates the
Dataset with the results, and closes the database connection. The second
parameter in the Fill() method specifies that data be stored in the
Dataset’s Companies table. This may seem confusing, given that we

ADO.NET . 115



pulled the data from the database’s CompanyTbl table. Remember that a
Dataset is in-memory data holder—the source of its data is irrelevant, be
it SQL Server, Oracle, or, as we will see, XML. You determine the
names of its tables, not the database that populates it. It may help to
think of this operation as the transfer of data from the database’s 
CompanyTbl table to the Dataset’s Companies table.

Each table in a Dataset (remember that a Dataset can store more than
one) exposes Column and Row collections, which represent the fields 
and records in the table. To obtain the names of all the fields in the 
Companies table, we iterate through the Columns collection like so:

foreach (DataColumn column in
myDS.Tables["Companies"].Columns) {
Console.WriteLine("{0}",column.Caption);

}

This code would print out the following:

CompanyID
CompanyName
StockSymb

The Rows collection of a table is also how we add, modify, and delete
records in a table. The following code adds the Widget company to the
Companies Table:

DataRow myRow = myDS.Tables["Companies"].NewRow();    
myRow["CompanyName"] = "Widget Corp.";
myRow["StockSymb"] = "WID";         
myDS.Tables["Companies"].Rows.Add(myRow);  

Notice that we specified the row’s field by name: myRow-
[“StockSymb”]. As in ADO, it is also permissible to reference the rows
by ordinal number: myRow[0], myRow[1], etc. It is important to realize
that the new record has not been added to the underlying database, only
to the in-memory table of the Dataset. To update the database we have to
use our bridge to the relational world—the DataAdapter.

Before we update the database (using the DataAdapter’s Update()
method), we need to consider how this operation is performed. Here, the
DataAdapter must perform the reverse operation of the Fill() method:
it must transfer the data from the Dataset’s Companies table to the data-
base’s CompanyTbl table.

Remember that a Dataset’s table is entirely within our jurisdiction.

116 . CodeNotes® for .NET



We could have added and removed fields from it, or (as we will see) es-
tablished relationships with other tables. The DataAdapter has no idea
how to map our possibly modified table to the one in the underlying
database. We need to help it out, and we can do so using a DataAdapter’s
InsertCommand, UpdateCommand, and DeleteCommand properties. These
properties accept SQL statements that a DataAdapter executes when it
has to insert, update, and delete rows in the database. It is important to
realize that these three properties are specific to DataAdapters whose
underlying data store is SQL-specific. If you were using a DataAdapter
for a non-SQL entity, it would have to expose some other mechanism to
update the underlying data store.

Providing an SqlDataAdapter object with three SQL statements every
time we wish to update a database is tedious. If our operation is simple
enough (if we will only be modifying one table), the SqlCommandBuilder
class can automate the process for us:

// Note myDA is the SqlDataAdapter
SqlCommandBuilder mBuild = new SqlCommandBuilder(myDA);

Including the line above in our source populates the DataAdapter with
the appropriate InsertCommand, UpdateCommand, and DeleteCommand
properties. If our update operation was more complex (if we wanted to
update multiple tables at once), we would have to manually provide
these statements. An example that uses the manual approach can be
found at aNET060007. With the SqlCommandBuilder statement in place,
we can update the underlying database.

myDA.Update(myDS,"Companies");

Note that when specifying the table to update you use the Dataset’s table
name, not the database’s one. The entire source for the Dataset update
operation is recreated in Listing 6.3:

// Note myDA is the SqlDataAdapter
using System.Data;
using System.Data.SqlClient;

public class SimpleData
{
public static void Main()
{
SqlConnection myConn = new SqlConnection(
"user id=sa;password=;database=CodeNotes;server=PooBong");

ADO.NET . 117

http://www.codenotes.com/cnp?cnp=NET060007


SqlCommand myCommand = new SqlCommand(
"Select * from CompanyTbl",myConn);

SqlDataAdapter myDA = new SqlDataAdapter(myCommand);   
DataSet myDS = new DataSet();     
myDA.Fill(myDS, "Companies");        

DataRow myRow = myDS.Tables["Companies"].NewRow();   
myRow["CompanyName"] = "WidgetCorp.";   
myRow["StockSymb"] = "WI1";         
myDS.Tables["Companies"].Rows.Add(myRow);  

// Note myDA is the SqlDataAdapter
SqlCommandBuilder mBuild = new SqlCommandBuilder(myDA);
myDA.Update(myDS,"Companies"); 

}
}  

Listing 6.3 Adding a company to the CodeNotes database

Compile and run the program (don’t forget to reference System.Data
.DLL), and the Widget company will be added to the CompanyTbl table—
something you can confirm using the SimpleData.exe application we de-
veloped in the previous section on Managed Providers.

You may have noticed that we did not specify a CompanyID when
adding the Widget company to the database. We got away with this be-
cause, in addition to being the primary key of the table, the CompanyID
field was configured to AutoIncrement in the SQL Server database.
When SQL Server received our request to add the new row, it examined
the CompanyID field, and seeing that it was empty, assigned it a unique
value based on those records already in the table.

We cannot always rely on the underlying database for this type of
protection. It is possible for a field to be unique but not AutoIncremented
so that the database rejects empty values. It would be more rigorous if
we could enforce this uniqueness programmatically. To do this, we need
to know that CompanyID is the table’s primary key—that is, we need the
database’s schema. We get this information using the DataAdapter’s
FillSchema() method:

myDA.FillSchema(myDS,SchemaType.Mapped,"Company");

You must run the FillSchema() method before you retrieve the 
table’s data using Fill(). As a result of the FillSchema() operation, 
the Dataset’s column that represents the CompanyID field has its 

118 . CodeNotes® for .NET



Unique and AutoIncrement properties set to true. Unfortunately, the
FillSchema() method does not set the column’s AutoSeed property. So,
although our Dataset is now aware that the CompanyID column is unique
and must increment itself automatically, it has no idea where the num-
bering should start. To combat this shortcoming, you must explicitly set
the AutoSeed property by iterating through all the returned records and
noting the highest number in the CompanyID field. Code that demon-
strates this can be found at aNET060008.

From this example, it should be apparent that a Dataset is more than
a representation of data, but rather a powerful in-memory relational data
store. Its versatility goes beyond what we have demonstrated here. You
can, for example, add your own constraints to one of its tables, or estab-
lish relationships between tables using foreign keys. Examples that
demonstrate these features can be found at aNET060009. Lastly, re-
member that the manipulation we performed (adding a new record) was
done outside the context of a database connection. The database was
only opened when we retrieved data using the Fill() method and up-
dated it using Update().

XML SUPPORT

The previous example illustrated how to transfer data between a Dataset
and a relational database. Here, we consider the other source and recipi-
ent of a Dataset’s contents: XML. In addition to the capabilities we have
already seen, a Dataset can serve as an intermediary between these two
mediums. Any data it obtains from a relational database can be manipu-
lated and saved as XML, and any data that is retrieved as XML can be
stored in a database.

Before we examine how a Dataset can read and write XML, it is
worth noting that a Dataset itself is serialized in XML. Why is this sig-
nificant? Recall our discussion on ADO earlier, where we discovered
that to transport an ADO Recordset to a remote location we had to use a
process called COM-marshaling. This prescribed that the remote ma-
chine be fluent in COM. Serialization in XML removes this limitation,
allowing us to send a Dataset to any remote machine in the ubiquitous
language of the Web. (This is something we will revisit in the SOAP 
section of Chapter 8.) Network gurus will also note that XML can be
sent over the unrestrictive HTTP protocol, whereas COM-marshaling
uses other protocols that can be problematic when firewalls exist be-
tween the two machines.

To save a Dataset’s contents to XML, you use its WriteXml() method.

ADO.NET . 119

http://www.codenotes.com/cnp?cnp=NET060008
http://www.codenotes.com/cnp?cnp=NET060009


We could save the contents of the Companies table from the previous ex-
ample to a file called Company.XML as follows:

myDS.WriteXml("Company.XML",XmlWriteMode.WriteSchema);

You may be wondering what the second parameter, XmlWriteMode
.WriteSchema, does. Remember that a Dataset contains both data and
the semantics to use it (constraints, relationships, etc.). The second pa-
rameter informs WriteXML() to include the Dataset’s relational schema
when writing the XML file. Alternatively, we can specify that the
schema be saved to a separate file:

myDS.WriteXml("Company.Xml",XmlWriteMode.IgnoreSchema);
myDS.WriteXmlSchema("CompanySchema.Xsd");

XSD is a standard for writing schemas, hence the .XSD extension on the
schema file. If you examine this schema (CompanySchema.Xsd) using a
text editor, you will see something like the file depicted in Listing 6.4.

<?xml version="1.0" standalone="yes"?>
<xsd:schema id="NewDataSet" targetNamespace="" xmlns=""
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:msdata="urn:schemas-microsoft-com:xml-msdata">
<xsd:element name="NewDataSet" 

msdata:IsDataSet="true">
<xsd:complexType>
<xsd:choice maxOccurs="unbounded">
<xsd:element name="Companies">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="CompanyID"

msdata:DefaultValue="NULL" type="xsd:int" minOccurs="0" 
msdata:Ordinal="0" />

<xsd:element name="CompanyName"
msdata:DefaultValue="NULL" type="xsd:string" 
minOccurs="0" msdata:Ordinal="1" />

<xsd:element name="StockSymb"
msdata:DefaultValue="NULL" type="xsd:string" 
minOccurs="0" msdata:Ordinal="2" />

</xsd:sequence>
</xsd:complexType>

</xsd:element>
</xsd:choice>

120 . CodeNotes® for .NET



</xsd:complexType>
<xsd:unique name="Constraint1">
<xsd:field xpath="CompanyID"/>

</xsd:unique>
</xsd:element>

</xsd:schema>

Listing 6.4 The Dataset’s structure exported to an XML schema file

As can be seen, the XML schema contains the fields in the Dataset, 
as well as the unique constraint on the CompanyID field. Most often, you
will want to save a schema directly with the XML file. The ability to do
this is important, because the XML file now fully describes the data it
contains. If another entity reads it, it can read the schema and enforce its
constraints and rules. Such an entity might be a database capable of
reading XML, like SQL Server, or a Document Object Model (DOM),
reader like Microsoft’s XmlDocument class found in the System.XML
namespace. Another potential recipient of XML could be . . . another
Dataset.

Reading XML into a Dataset is almost as simple as writing it:

myDS.ReadXml("Company.Xml",XmlReadMode.Fragment);

The counterintuitively named XmlReadMode.Fragment parameter tells
ReadXml() that the schema is contained within the XML file. It will read
the schema and construct the corresponding constraints and relation-
ships in the Dataset. You cannot, however, always ensure that an 
XML file will contain a schema. In such cases you must use the 
XmlReadMode.Auto and XmlReadMode.InferSchema parameters, the for-
mer when you are unsure of a schema’s presence in the XML file, the
latter when you are certain it is absent.

What happens if ReadXml() encounters an XML file without a
schema? In this case, it will try to infer a schema based on the data in 
the XML file. This heuristic approach is interesting and complex, but
beyond the scope of this CodeNote. For details, see aNET060010.

Before we finish with this topic, we have to mention that in addition
to reading and writing files, the ReadXML() and WriteXML() methods can
also read and write to streams, strings, and even the XmlReader and 
XmlWriter classes found in System.Xml namespaces. See aNET060011
for additional examples.

One last feature of ADO.NET that we must mention is typed Data-
sets. To access Recordset fields in traditional ADO, developers used
statements such as myRS["SomeField"] = "hello". With ADO.NET
typed Datasets, you can write the more intuitive and compiler-friendly

ADO.NET . 121

http://www.codenotes.com/cnp?cnp=NET060010
http://www.codenotes.com/cnp?cnp=NET060011


myRS.SomeField = "hello". The difference between these two state-
ments is that the second one can be type-checked by the compiler,
whereas the first one cannot. Information on typed ADO.NET Datasets
can be found at aNET06011.

HOW AND WHY

How Does a DataAdapter Determine the Rows That Have Been Modified
in a Dataset?
In order to Update() its underlying database, a DataAdapter must know
those rows that have been modified in the Dataset. To facilitate this, the
Dataset maintains four copies of the rows in its tables: Default/Origi-
nal/Current/Proposed. The two important ones are Original and Current,
respectively representing a row’s value when the Dataset was first cre-
ated and its current value, if it has changed. The DataAdapter compares
these two values to determine which rows should be updated.

Because a Dataset keeps track of changing row values, it exposes 
a rich event model whereby one can accept or reject changes to its 
underlying data. This involves using the BeginEdit(), EndEdit(), 
AcceptChanges(), and RejectChanges() methods. Details can be found
at aNET060010.

SUMMARY

Datasets are in-memory data stores that manipulate data outside the con-
text of database connections. Like a database, a Dataset can house mul-
tiple tables, and the relationships and constraints on the data within
those tables. A Dataset interacts with a database using a Managed
Provider’s DataAdapter class, using Fill() to read data and Update() to
write it. Datasets can also read and write data in XML and can im-
port/export their schemas as XML schemas. This capability allows de-
velopers to seamlessly expose a Dataset’s contents to XML-capable
entities such as XML parsers, XSLT, and so on.

Topic: Transactions

It is often desirable to have database access proceed in the context of a
transaction. In the context of a transaction, operations are atomic, mean-
ing they either all succeed or are not performed at all. This capability

122 . CodeNotes® for .NET

http://www.codenotes.com/cnp?cnp=NET06011
http://www.codenotes.com/cnp?cnp=NET060010


can sometimes be provided by the database itself. If, for example, you
INSERT several rows into a database table in the context of a transaction
and one of the insertions fail, the database can undo all the previous suc-
cessful INSERTs.

Scenarios may arise where you want explicit control over those op-
erations that are atomic. Consider the following code that might execute
when ten customers have purchased an item for twenty dollars:

cmd1.CreditAccounts(TenCustomerAccounts, 20.00); 
cmd2.DebitAccounts(SomeCompany,200.00);

While the underlying database(s) may assure us that each individual op-
eration is atomic (either all customer accounts are credited or they are
not), the code as it exists does not guarantee collective atomicity. It is
possible that after crediting each customer account, the system might
crash and the company account not be debited. This unfortunate
predicament is sure to confuse the company’s accountant.

To combat this situation, the .NET Framework allows us to place 
operations within a transaction, so they collectively either succeed or
fail. As the following examples illustrate, we can do this manually using
the Connection class of a Managed Provider, or automatically using the
Transaction attribute found in the Runtime classes.

EXAMPLE: MANUAL TRANSACTIONS

The Connection class of a Managed Provider exposes the Begin
Transaction(), CommitTransaction(), and RollbackTransaction()
methods that can be used to make a group of operations atomic. Con-
sider the following code fragment:

try {
// myName is a string, required to name the transaction
myConn.BeginTransaction(); 
cmd1.CreditAccounts(TenCustomerAccounts, 20.00); 
cmd2.DebitAccounts(SomeCompany,200.00);
myConn.CommitTransaction();

} catch (Exception e) {
Console.WriteLine("Error: Transaction Aborted.");
myConn.RollbackTransaction();

}

Listing 6.5 Manual .NET Transactions

ADO.NET . 123



Before both account operations execute, they are placed within a trans-
action. If both operations succeed, the transaction is committed
(changes are made permanent). If an exception occurs during either op-
eration, then both operations are undone using RollbackTransaction().
Manual transactions can only be used in the context of an open database
connection, so they cannot be used with connectionless Datasets.

EXAMPLE: AUTOMATIC TRANSACTIONS

Using the Transaction attribute (attributes are covered in Chapter 4),
you can specify that all the methods of a class be performed in the con-
text of a transaction. If a method proceeds without an exception being
generated, the transaction commits. If not, the transaction aborts.

To use an automatic transaction, apply the Transaction attribute
found in the System.EnterpriseServices namespace to a class that
must inherit from System.ServicesComponent. Its methods are then
marked with the AutoComplete attribute, also found in the System
.EnterpriseServices namespace. This is demonstrated in the code
below.

using Microsoft.EnterpriseServices;

[Transaction]
public class myAccountClass : ServicesComponent
{
[AutoComplete]
public void TransferMoney()
{
cmd1.CreditAccounts(TenCustomerAccounts, 20.00); 
cmd2.DebitAccounts(SomeCompany,200.00);

}
}

As a result of including the AutoComplete and Transaction attributes,
TransferMoney() is performed in the context of a transaction (created by
the CLR). Remember, the outcome of the transaction is determined based
on the behavior of the method; if the method completes normally, the trans-
action commits. If an exception is raised, the transaction aborts. 

You can explicitly inform the CLR of a transaction’s outcome using 
the SetComplete() and SetAbort() methods of the ContextUtil class. 
SetComplete() indicates to the CLR that the transaction should commit,
while SetAbort() indicates that the transaction should abort. It is important

124 . CodeNotes® for .NET



to realize that the CLR does not decide on the result of the transaction until
the method terminates. The rule of thumb, therefore, is that the last call to
either SetComplete() or SetAbort() determines the transaction’s outcome.
Thus, if a method encounters a problem, it can indicate that, for the time
being, the transaction should abort. If the problem is rectified at some later
point (in the same method), you can reverse the transaction’s outcome by
calling SetComplete(). The following code demonstrates SetComplete()
and SetAbort():

Using Microsoft.ComService; // Needed for ContextUtil
...
public void TransferMoney() {
cmd2.DebitAccounts(SomeCompany,200.00);
// some problem in our code, so indicate
// that we can't commit:
ContextUtil.SetAbort();    
// We rectify the problem, so indicate we can
// commit now:
ContextUtil.SetComplete(); 
// SetComplete() was called last, so transaction 
// commits.

}

The SetComplete() and SetAbort() methods first surfaced in Mi-
crosoft Transaction Server (MTS), and then later in MTS’s Windows
2000 incarnation, COM+. They continue to exist in the managed envi-
ronment, in what is more than just a coincidental naming scheme. When
an object that uses the Transaction attribute is instantiated, the CLR
creates a transaction-enabled COM+ component behind the scenes to
house it. You can influence the transaction properties of the created
COM+ component by using additional parameters in the Transaction
attribute. For details, see aNET060012.

Our realization that the CLR can cooperate with COM+ is important,
because it allows us to take advantage of additional COM+ services
from the managed environment. Look in the System.EnterpriseServices
namespace and you will find support for object pooling, queued compo-
nents, and role-based security. Note that any assembly that uses COM+
services must be signed with a private key so as to give it a strong name
(see the Shared Assemblies section in Chapter 3 for details on strong
naming).

ADO.NET . 125

http://www.codenotes.com/cnp?cnp=NET060012


INTERNAL VS. EXTERNAL TRANSACTIONS

At the beginning of this section we said that all the operations enclosed
within a transaction were collectively atomic. It is vital that we revisit
this assumption. If you modify two databases within a transaction and it
aborts, do both databases rollback? If so, who coordinates their efforts?
Clearly, if a transaction is to be distributed, there must be some entity
that oversees it and alerts participating databases of its outcome. In the
Windows environment, this entity is called the Distributed Transaction
Coordinator (DTC).

The DTC’s role in a transaction gives rise to two transaction types.
Internal transactions run against one database and the DTC knows noth-
ing about them. External transactions run under the auspices of the DTC
and can span multiple databases. In order for a database to participate in
an external transaction, it must be able to talk to the DTC—it must be
“DTC-aware.”

Consider the BeginTransaction() and CommitTransaction() meth-
ods that enable you to manually regulate transactions. Look back at the
manual transaction example (Listing 6.5) and you will see that these
methods are used in the context of a connection to a Managed Provider.
These are internal transactions that are not enlisted with the DTC, 
so they cannot involve other databases. The transaction is only valid
against the database the Managed Provider is talking to.

COM+ transactions, however, are external. Databases that are ac-
cessed from within such a transaction register themselves with the DTC
(assuming they are DTC-aware). When the transaction completes, the
DTC informs each database of the transaction’s outcome so that it can
act accordingly (i.e., either commit or undo changes).

Any database you access through an ADO.NET Managed Provider
(SQL Server, Oracle) is DTC-aware and can participate in an external
transaction. Nor are you limited to ADO.NET; if you access a DTC-
aware database through ADO or RDO, it too can participate in the trans-
action.

Using the Transaction and AutoComplete attributes, then, you can
place both ADO and ADO.NET code in the same method and have them
unanimously commit or abort. If the method completes, the DTC will
instruct both underlying databases to commit. If an exception is raised,
both databases will be told to undo any changes they’ve made. This as-
sumes that the ADO and ADO.NET code are communicating with dif-
ferent databases; it is possible that the same database is being used. For
examples of intermixing these two frameworks within a single transac-
tion, see aNET060014.

126 . CodeNotes® for .NET

http://www.codenotes.com/cnp?cnp=NET060014


HOW AND WHY

Do Multiple Methods Marked with the AutoComplete Attribute Share
the Same Transaction?
Consider what occurs when you use the AutoComplete attribute: a
method’s code executes within a transaction. If it completes without
error, the transaction is committed. If an exception is raised, the transac-
tion is aborted. In either case, the transaction is completed when the
method exits. If you call another method marked with the AutoComplete
attribute (or even the same method again), the CLR will create a new
transaction before the method executes.

Thus, each call to a method marked with AutoComplete results in a
new transaction being created and destroyed. The only way to share a
single transaction between multiple methods, or multiple calls to the
same method, is to forgo use of the AutoComplete attribute and use the
SetComplete() and SetAbort() methods of the ContextUtil class. An
example can be found at aNET060015.

SUMMARY

Database operations are often performed in the context of a transac-
tion. A transaction makes a group of operations atomic, meaning 
their results persist only if every operation is successful. The Connection
class of a Managed Provider exposes the BeginTransaction(), 
CommitTransaction(), and RollbackTransaction() methods that allow
one to manually create a transaction for a group of operations. Transac-
tions of this type are internal, meaning only those operations that exe-
cute against the Managed Provider’s underlying database are atomic.

The Transaction and AutoComplete attributes can be applied to a
class and its methods, respectively, which automatically makes the
methods of the class transactional. If a method proceeds to completion,
the transaction commits. If an exception is raised, the transaction aborts.
Transactions of this type are external, meaning they can span multiple
databases. To participate in an external transaction, a database must be
DTC-aware. The Managed Providers that ship with ADO.NET all com-
municate with DTC-aware databases.

ADO.NET . 127

http://www.codenotes.com/cnp?cnp=NET060015


Chapter Summary

ADO.NET is the data access model for the managed environment.
ADO.NET is based upon the disconnected paradigm, which means that
data manipulation is performed outside the context of an open database
connection.

To communicate with a database in ADO.NET you need a Managed
Provider, which abstracts an underlying database by providing four uni-
form classes: Connection, Command, DataAdapter, and DataReader, of
which the two most significant are Connection and DataAdapter. As 
its name suggests, the Connection class is used to establish a connec-
tion with the database, while the DataAdapter class acts as a bridge 
between the database and the most important class in the ADO.NET
Framework, the Dataset.

A Dataset is an in-memory data store that can house multiple tables,
and the relationships and constraints on the data within those tables. In
ADO.NET you populate a Dataset using a DataAdapter’s Fill()
method, manipulate the Dataset’s contents, and then sink changes back
to the database using the DataAdapter’s Update() method. Datasets can
also communicate with the world of XML, exporting their data/relation-
ships to XML data/schema files and vice versa. This is a significant fea-
ture of ADO.NET, as it means that developers can easily move data
between relational databases and hierarchical XML.

The .NET Runtime also allows one to place database operations
within a transaction, which makes those operations atomic—either 
they all succeed or they are not performed at all. Transactions can be 
either manual, using the Connection class of a Managed Provider, or 
automatic, using the Transaction and AutoComplete attributes found 
in the System.EnterpriseServices namespace. Manual transactions
must be explicitly committed or aborted using a Connection class’s 
BeginTransaction(), CommitTransaction(), RollbackTransaction()
methods. Methods marked with the AutoComplete attribute are auto-
matically housed within a transaction, which either commits, if the
method completes without failure, or aborts, if the method raises an ex-
ception.

128 . CodeNotes® for .NET



Chapter 7

WINDOWS FORMS

OVERVIEW

In this chapter we examine Windows Forms, a collection of classes that
wrap the Windows API and are used to create Graphical User Interfaces
(GUIs) for the managed environment. These classes can be called in a
programmatic manner (similar to C or MFC development) or can be uti-
lized by the Windows Form Designer (WFD) of the VS.NET IDE,
which calls them behind the scenes whenever you design a screen
graphically, as you do in Visual Basic 6. Because the Windows Forms
classes exist as managed code, they can be inherited across languages.
The Visual Inheritance topic in this chapter, for example, will demon-
strate how one can develop a GUI in Visual Basic and extend it in C#.

Windows Forms is not to be confused with Web Forms, covered in
Chapter 8, which is the new user interface framework for developing
web applications. There are remarkable similarities between these two
frameworks, however, and developers familiar with one can easily tran-
sition to the other.

Visual Basic 6 developers will be especially interested in Win-
dows Forms, since it is now the underlying engine behind VB.NET
Form Design. The changes from Visual Basic 6 to Windows Forms are
significant—many of the intrinsic controls in VB6 such as buttons,
textboxes, and labels have changed considerably and now exist in the
Windows Forms classes. This chapter will discuss some of these



changes, as well as some of the completely new features in the Windows
Forms framework.

Another new technology for designing desktop applications is 
GDI+, the managed version of the Windows Graphics Device Inter-
face (GDI) used to draw graphics on the video display. GDI+ is a pow-
erful graphics package that can be used for drawing shapes, filling 
surfaces with gradients and textures, and loading and manipulating im-
ages. Information on GDI+ and source examples can be found at
aNET070011.

GUI REVIEW AND THE WINDOWS FORMS CLASSES

To introduce Windows Forms, let’s ask ourselves how (prior to .NET)
we would create the following simple Windows application that closes
itself when its button is pressed.

Figure 7.1 Simple application

One option would be to write it in C and use the Windows API directly.
If we decided to take this route, we would use the CreateWindows() API
function to create the form and button, associate the form with a mes-
sage pump (similar to DoEvents in VB), process the application’s in-
coming messages, and write application termination code to respond to
the button’s click event, all the while ensuring that our C code set up the
function parameters properly and accounted for the numerous idiosyn-
crasies in the Windows API.

As you have probably guessed, it is unlikely that we would employ
this arduous approach. The eighty-some-odd lines of aforementioned 
C code could be replaced with the following three lines in Visual Basic
(after we had drawn a button on our resized form in the VB6 environ-
ment):

130 . CodeNotes® for .NET

http://www.codenotes.com/cnp?cnp=NET070011


Private Sub Command1_Click()
Unload Me 'They pressed the button -- unload the form. 

End Sub

Listing 7.1 Simple VB6 code.

How did we go from eighty lines of C to only three lines in Visual
Basic? The answer is the VB Forms Engine, which, behind the scenes,
performs all of the aforementioned grunt work for us. These operations
are buried somewhere in the VB Runtime but are implicitly invoked
every time a Visual Basic application executes. Because of this, VB de-
velopers are abstracted from the Windows API that is implicitly called
by their programs. While this is usually a blessing, it can be limiting
when one wants finer control over one’s applications. It would be nice if
VB exposed its underlying plumbing so we could, if we wanted, modify
and build on it—that is, it would be nice if the VB Forms Engine 
revealed the API calls it was making. .NET’s replacement for the 
VB Forms Engine, the Windows Form Designer, does just that. The only
difference is that it makes and reveals not Windows API calls but man-
aged classes found in the System.Windows.Forms namespace.

Creating applications using the WFD is much like in previous ver-
sions of Visual Basic: you draw your application’s graphical elements
on a form and then write the event handlers behind them. When you
draw a button or change its caption or change its size, the WFD trans-
lates your manipulations into VB or C# code that calls the Windows
Forms classes. This code is placed into a special region of the code list-
ing, marked with #region and #endregion tags (as seen in the upcoming
example).

At the heart of the Windows Forms classes lies the Control class. Any
managed component that has a GUI element must derive from this class,
which handles user input and operating system notifications such as re-
paint requests. Because of this, the Control class is at the top of the com-
ponent hierarchy depicted in Figure 7.2.

As can be seen in Figure 7.2, other controls in the Windows Forms
framework extend the basic functionality of the Control class. 
ScrollableControl adds scrolling ability to a control, while Container
Control gives a control the ability to house other controls by providing
focusing and tabbing functionality. Two descendents of this class, 
UserControl and Form, are the ones you will interact with most often.
The Form class is equivalent to a form in Visual Basic and is used to cre-
ate Window Screens and Dialog boxes in the managed environment,
while the UserControl class can be used to create your own custom
managed controls.

Windows Forms . 131



Figure 7.2 The Windows Forms class hierarchy

When you create a form (let’s call it MyForm) in VB.NET, the WFD pro-
duces a corresponding MyForm class that inherits from the Form class in
Figure 7.2. Likewise, many of the intrinsic controls in VB6 are now found
in the Windows.Forms namespace. If you examine the System.Windows
.Forms.DLL assembly using ILDASM and look in the Windows.Forms
namespace, you will find Button, Label, and Textbox classes, all of which
are used when the corresponding control is used in VB.NET.

The biggest challenge for VB developers will be to familiarize them-
selves with the way these classes have changed from their intrinsic VB6
counterparts. You cannot, for example, Unload a form as we did with the
VB 6 code in Listing 7.1. As we will see shortly, you must use the form’s
Close() method. Numerous other syntax changes are discussed in the
online article found at aNET070003.

If you remember that an assembly contains language-neutral IL code,
you’ll recognize that the Windows Forms classes are accessible in lan-
guages other than VB. To graphically construct applications as in VB6,
however, you need a tool such as the WFD to translate your graphical ma-
nipulations into code. As of this writing, the WFD can only generate code
in VB.NET and C#. So if you wish to call the Windows Forms classes
using other languages, such as managed C++, you must do so program-
matically, without the benefit of an intuitive design environment. This
means that you must instantiate and configure the Windows Forms
classes manually, much like when using MFC or the Windows API.

From a conceptual perspective, you can think of the Windows Forms
Designer as a powerful wizard that constantly translates your pictorial
constructions into either VB.NET or C# code.

132 . CodeNotes® for .NET

ContainerControl

Control

ScrollableControl

Form

Windows Forms Class Hierarchy

UserControl

user input (keyboard, mouse), layout, &
paint notifications

scrolling ability

 child management, focusing, & tabbing

http://www.codenotes.com/cnp?cnp=NET070003


EXAMPLE

Up to this point, we have compiled all of our programs from the com-
mand line. In this chapter, we will utilize the VS.NET IDE so that we
can use the Windows Form Designer. The VS.NET IDE is an amalga-
mation of the Visual Studio 6 and VB6 suites—gone are the days of
separate development environments for Visual Basic and C++. We will
write a simple GUI using the Windows Form Designer, and have the
WFD produce VB.NET code for us behind the scenes. We will then cre-
ate an identical GUI using the WFD, except that we will get it to produce
C# code for us the second time around.

After starting VS.NET, go to the File menu and select New and then
Project. This will bring up the screen in Figure 7.3. (The very first time
you bring up VS.NET, it will ask you to choose a keyboard scheme and
Windows layout based on the previous environment you are coming from,
VB or Visual Studio. Choose the one you are most comfortable with.)

Figure 7.3 New project in VS.NET

After bringing up this screen, select Visual Basic Projects under Project
Types, and Windows Application under Template. Give your project a
name (we called ours MyFirstApp), specify the directory in which it will
be contained, and click OK. VS.NET will create a Visual Basic Project
for you with an empty form. The environment looks very much like pre-
vious versions of Visual Basic: take a moment to explore it.

Drag a button from the toolbox onto your form and resize it so that
you have something like the following:

Windows Forms . 133



Figure 7.4 First Visual Basic application

Double-click Button1 and insert the line Me.Close() so that you have
the following code in front of you:

Figure 7.5 Project code

You have just written your first Windows Forms application, which
functions like the hypothetical application at the beginning of this chap-
ter, automatically closing itself when its button is pressed. You can run
the program by pressing F5 or by going to the Debug menu and clicking
Start. Note that the code in Figure 7.5 is different from the VB6 code in
Listing 7.1 in five respects:

1. The line Unload Me was replaced with Me.Close().
2. The method associated with the button’s click event 

(Button1_Click) is more complex than its VB6 equivalent. As
we learned in our Chapter 4 discussion of events and delegates,
event handlers in VB must be declared using the Handles
keyword, and must accept two arguments: System.Object and 
System.EventArgs.

3. The event subroutine is called Button1_Click and not Com-
mand1_Click, because the Windows Form Designer gives 
buttons the default name ButtonXXX, as opposed to Com-
mandXXX in VB6.

4. All of the code is contained in a class called Form1, which 
inherits from the Windows.Forms.Form class. (VB developers

134 . CodeNotes® for .NET



unfamiliar with the concept of inheritance can consult an online
explanation at aNET070001.)

5. There is a curious boxed and grayed-out section called “Win-
dows Form Designer generated code.”

When the WFD created the empty form for us (it did this by default
when we created the project), it generated the Form1 class code behind
the scenes. When we added a button to the form, the WFD inserted a pri-
vate member variable class called Button1 into the Form1 class. This
may not seem obvious looking at the code in Figure 7.5, but you can see
it if you expand the “Windows Form Designer generated code” section,
as depicted in Figure 7.6.

Figure 7.6 Expanding the WFD generated code

If you expand the WFD section, you will see that the WFD code is en-
closed within #Region and #End Region tags. Scanning through this
code (there is a lot of it), you will see the following two lines:

Private WithEvents Button1 
As System.Windows.Forms.Button
...
Me.Button1 = New System.Windows.Forms.Button()

The first line declares the button class, while the second instantiates it.
Notice that the button is declared with the WithEvents keyword, allow-
ing the button class to receive events from the form, such as mouse
clicks (see Visual Basic Events in Chapter 4 for an explanation of the
WithEvents keyword). Look closely and you will see that the second line
is contained in a private subroutine called InitializeComponent(). This
subroutine is called from the form’s New() method, which is similar to
the Form_Initialize method in VB6 (it is called before the form loads).
The New() method is also contained in the Windows Form Designer sec-
tion that you expanded above:

Windows Forms . 135

http://www.codenotes.com/cnp?cnp=NET070001


Public Sub New()
MyBase.New()
'This call is required by the Windows Form Designer.
InitializeComponent()

'Add any initialization after the call to   
'InitializeComponent() 

End sub

The InitializeComponent() method instantiates and configures all of
the form’s contained classes (buttons, labels, pictures, etc.). If you look
in this method, for example, you will see the following lines that deter-
mine the button’s size and location.

Me.Button1.Location = New System.Drawing.Point(80, 20)
Me.Button1.Size = New System.Drawing.Size(120, 50)

These lines were generated by the WFD when you placed the button on
the form. If you were to return to the form and resize the button, the
WFD would change the second line of code to match your actions. Vi-
sual Basic developers should notice that a control’s location and size are
now specified using the Location and Size properties (although the
Windows Forms classes still expose the Left, Top, Height, and Width
properties for backwards compatibility).

You may be wondering whether we can do the reverse—that is, can
we change the underlying code and see a corresponding change in the
button’s size in the design environment? We can, but it is not advisable.
The WFD doesn’t expect you to modify the code it generates; if you make
a change it doesn’t understand, it could damage your entire project file.
For demonstration purposes, however, let’s do something innocuous and
change the first parameter in the button’s size from 120 to 200. Return to
the design environment and the button’s width will have increased.

Look (but don’t touch!) through the rest of the WFD generated code
and you will begin to understand the intricacies of the Windows Forms
classes. Notice that the Form1 class has no Close() method, which may
seem odd given that we used this method to close the form and terminate
our application. Remember from Figure 7.2 that Form1 inherits from the
Form class, which itself inherits from the ContainerControl class and so
on. Our Form1 class thus inherited the Close() method of the Form class
as well as additional methods and events that VB developers expect 
(Activate, Hide, KeyDown, KeyPress, etc.).

136 . CodeNotes® for .NET



The code generated by the WFD in our example was VB code. Remem-
ber that the WFD is capable of producing C# code as well. You can see this
by starting a C# Windows application project and repeating the actions of
this example (placing a button on the form and so forth). Double-click the
button and insert the following line in the button’s event procedure:

private void button1_Click(object sender, 
System.EventArgs e) {
'this in C# is equivalent to "me" in VB
this.Close();

}

The application is now equivalent to the VB example in Figure 7.4,
the only difference being that the WFD generated C# code for us instead
of VB. In both VB and C#, the WFD encloses the code it generates with
the #Region and #End Region tags. If you examine the WFD generated
code, you will see C# equivalents of the VB code we examined earlier.
For example, the button’s size and location are now determined by the
following lines:

this.button1.Location = new System.Drawing.Point(
80, 20);

this.button1.Size = new System.Drawing.Size(120, 50);

There are a few differences, however. The following line may catch your
attention:

this.button1.Click += new 
System.EventHandler(this.button1_Click);

Remember from our discussion of events and delegates in Chapter 4 that
an event is a special type of delegate. While VB abstracts this relation-
ship with its WithEvents and Handles keywords (look at Figure 7.5) , C#
must use the underlying delegate up front. The line above registers the
button1_Click() method with Button1’s click delegate so that it is
called when Button1 is clicked (say that five times fast).

Also note that the Form does not have a New() method like the VB ex-
ample. In C#, the form’s constructor serves the same purpose, calling
InitializeComponent() and housing any initialization code you give
the form. The C# code generated by the WFD is more revealing than the
VB code it produces. The following C# code, for example, is not found
in the previous VB example we created:

Windows Forms . 137



static void Main() {
Application.Run(new Form1());

}

This code starts the application by calling the static Run() method of the
Application class found in the System.Windows.Forms namespace, ac-
cepting as a parameter the startup form of the application. VB develop-
ers should realize that VB.NET implicitly adds the following code
(though you will not see it) to the startup form of their projects:

Shared Sub Main()       
Application.Run(New Form1())

End Sub

It is possible for VB developers to override this method to determine
how an application starts. You could, for example, put initialization code
into this Main() method before the form loads and runs. For VB exam-
ples that override this method, see aNET070002.

VB developers should keep in mind that they do not have to examine
the code generated by the WFD; they can develop as they always did,
knowing that the WFD is taking care of the details behind the scenes.
The biggest change for VB developers will be getting used to the differ-
ences between the Windows Forms classes and the intrinsic controls in
previous versions of VB. In the online article at aNET070003, we dis-
cuss many of these intrinsic VB controls changes, as well as numerous
new controls exposed by the Windows Forms classes.

Topic: Visual Inheritance

Thus far, most of this chapter has focused on using Windows Forms to
create traditional GUIs: we have not done anything we couldn’t have ac-
complished using unmanaged alternatives such as VB6 or MFC. The
real benefit of the Windows Forms classes becomes apparent when you
recognize that they retain the virtues of managed execution, most no-
tably crosslanguage inheritance. As the upcoming example will illus-
trate, it is possible to create a GUI in one language and extend it in
another. And when inheriting a GUI, you not only inherit its physical
structure (control locations and sizes) but its associated code as well.

You have, in a sense, already used visual inheritance. Consider the
application we created at the beginning of this chapter (depicted in Fig-

138 . CodeNotes® for .NET

http://www.codenotes.com/cnp?cnp=NET070002
http://www.codenotes.com/cnp?cnp=NET070003


ure 7.4). When we created this project the VS.NET IDE automatically cre-
ated a form for us (called Form1) that inherited from the System Form
class:

Public Class Form1
Inherits System.Windows.Forms.Form

In this case, the inheritance was implicit; VS.NET did it for us behind
the scenes. The System Form class is just an abstract definition of a form
without any contained controls such as buttons or textboxes. If we
wanted, we could instruct Form1 to inherit from some other form we
created (say Form2). By doing this, Form1 would not only inherit the at-
tributes of Form2 (its size, location, etc.) but would also inherit any con-
trols it contained.

The most important facet of visual inheritance is the accessibility of
inherited controls. If Form1 inherited a button, for example, could we
change its size and modify its event code? As we will see, this depends
on the accessibility of the control in the inherited form (Form2). If 
Button1 is private, then it is off limits—we can look but not touch. If it
is public, then we can modify it however we desire. This is illustrated in
the following example.

EXAMPLE

In this example we will create a simple GUI in VB.NET, and then extend
it in C#. Complete source code for both projects can be found at
aNET070010.

To begin, create a Visual Basic project in VS.NET. Instead of select-
ing the Windows Application template, however, select ClassLibrary
(see Figure 7.3). A ClassLibrary is an assembly that is compiled as a
DLL file and exposes classes that can be used in other programs.

After selecting the ClassLibrary template, go to the Project menu, se-
lect Add Windows Form, and call your form MyBaseForm. Resize the
form and give it a button so that it resembles the form in Figure 7.4.
Double-click the button and insert the following line of code, which will
be executed when the button is clicked.

Private Sub Button1_Click(ByVal sender As System.Object, 
ByVal e As System.EventArgs) Handles Button1.Click
MsgBox("myBaseClass code: Button1 was clicked")

End Sub

Listing 7.2 Event code for Button1

Windows Forms . 139

http://www.codenotes.com/cnp?cnp=NET070010


Compile the ClassLibrary by going to the Build menu and selecting
Build Solution. You now have an assembly DLL file that exposes the 
MyBaseForm class. You can verify this by using the ILDASM utility to in-
spect the assembly, which is located in the \YourProjectDirectory\bin
directory.

Like all managed classes, MyBaseForm now exists as IL code and can
be inherited by any managed language. Save your project and create a
new C# Windows Application project. VS.NET will automatically cre-
ate an empty form for us called Form1. We will not be using this form
(we will create an inherited form momentarily), so right-click Form1.cs
in the Solution Explorer window and select “Exclude from Project.”
Now go to the Project menu and select Add Inherited Form. Call your
form MyInheritedForm and click Open. VS.NET will now invoke a tool
called the Inheritance Picker, which will allow you to choose the form
you wish to inherit from.

Click Browse and select the assembly DLL we previously created
(remember, it is contained in the \YourProjectDirectory\bin direc-
tory). The Inheritance Picker will examine the assembly and ask you to
choose which form you wish to inherit from (see Figure 7.7).

Figure 7.7 VS.NET’s Inheritance Picker

Select myBaseForm and click OK. VS.NET will now create a form called
MyInheritedForm that inherits from myBaseForm, something you can 
verify by examining the underlying code in your project:

public class MyInheritedForm : VbLib.myBaseForm

140 . CodeNotes® for .NET



Experiment with MyInheritedForm for a moment and you will find that
you cannot resize Button1 or modify any of its properties (they will all
be grayed out in the properties toolbox). If you attempt to click the but-
ton, VS.NET will politely inform you that it is inaccessible by graying
out its border (see Figure 7.8).

Figure 7.8 An inaccessible inherited control

If you consult the original VB.NET ClassLibrary, however, you will see
that this behavior is expected. Examine the code for MyBaseForm (open
the WFD generated code) and you will see the following line:

Private WithEvents Button1 As System.Windows.Forms.Button

As can be seen, Button1 is a private member variable of MyBaseForm.
It should come as no surprise, therefore, that it is off limits; object-
oriented principles tell us that although class inheritance inherits private
member variables and methods, they are not accessible in the child class
(MyInheritedForm in our case). As such, Button1 is completely inacces-
sible in the design environment—we can’t even attach event code to it.
The only time the button is accessible is when the application runs. Run
the application by pressing F5, click Button1, and you will see the mes-
sage shown in Figure 7.9.

Figure 7.9 Inheriting MyBaseForm’s code

If we wish to allow Button1 to be modified, we must make it accessi-
ble in the child class by making it public. We could do this by loading 
our VB.NET ClassLibrary and changing the Private keyword in But-

Windows Forms . 141



ton1’s declaration to Public. Remember, however, that this line was
generated by the WFD, and changing its code is not a good idea. A safer
approach is to change the button’s Modifiers property to Public using the
property toolbox in the design environment. After doing this, rebuild the
ClassLibrary and then reload the C# project application.

You will notice that the button can now be resized, its properties are
accessible, and we can even attach event code to it. When VS.NET
loaded our C# application, it consulted the VB.NET ClassLibrary and
determined that Button1 was now public. Double-click Button1 and
give it the following event code:

private void Button1_Click_1(object sender, 
System.EventArgs e)
{
MessageBox.Show("myInheritedClass code: " + 
"Button1 was clicked");  

}

Note that in C# we cannot use the MsgBox command available in
VB.NET (which is provided for compatibility with VB6); we must use
the MessageBox class in the Runtime classes. Also note that the method
is called Button1_Click_1, as opposed to Button1_Click in Listing 7.2.
Both these methods are now associated with the button’s click event. If
you run the application and click Button1 you will see two messages:
the one in Figure 7.10 and one that contains the message above.

You may be wondering if you can suppress the base class’s event
code. That is, can we prevent the message in Figure 7.9 from being dis-
played? This is possible, provided that the base class’s event handler for
Button1 is Public. Look in Listing 7.2, however, and you will see that it
is Private, so we are out of luck—the message will always be displayed
when the button is clicked. If the method were Public (if the base class
author explicitly made it Public in Listing 7.2), we could suppress the
message by “unregistering” the base class’s delegate with the button’s
click event:

this.Button1.Click -= new 
System.EventHandler(this.Button1_Click);

Adding this line of code to Form1’s InitializeComponent() method
suppresses the base class’s event code. You may find it confusing that 
the method in Listing 7.2 is private, even though we switched the but-
ton’s Modifiers property to Public. All the Modifiers property determines,
however, is whether or not objects can be modified in the inherited class;

142 . CodeNotes® for .NET



it doesn’t say anything about the base class’s event handlers. By default,
all the event handlers of a form are private. To make them suppressible
by inheriting forms, you must explicitly make them Public.

It is important to realize that base class’s author prescribes what can
and cannot be done with the GUI. If you don’t want a form’s control to
be modified, for example, set its modifiers property to Private. Like-
wise, for controls where modification is permissible, set their modifiers
properties to Public. The modifiers property can also be set to Assembly
or Family. Assembly makes the control accessible only to those entities
within the same assembly, while Family makes it accessible only to the
class and its decedents.

Visual inheritance can be useful when you have a collection of forms
that share common physical and behavioral characteristics. You could
create a base form to embody these overlapping attributes and then 
have multiple child forms inherit from it. If one of these characteristics
then changes—if a common button must be renamed or its event code
rewritten—you only have to change the base form; the descendent
classes will automatically inherit the modification. Also keep in mind
that visual inheritance doesn’t have to stop here; the descendent classes
can in turn be inherited by other forms, and so on. Any change in the
base class would be reflected right down the class hierarchy.

HOW AND WHY

How Do I Call a Base Class’s Method When I Override It?
If you override a method of an inherited class, it is often desirable to en-
sure that the method you are overriding is called by its replacement. As-
sume, for example, that we added the following code to the myBaseForm
class in Figure 7.4:

Protected Overrides Sub OnClosed(ByVal e As 
System.EventArgs)
MsgBox("myBaseForm: Form is about to close.")

End Sub

The OnClosed() method is automatically invoked when the form is
closed. Although the code above displays a message box, it would more
likely house cleanup routines for the form itself (release resources, etc.).
If we were to inherit the Visual Basic form into the C# program depicted
in Figure 7.8, the OnClosed() method above would get called when the
application shuts down.

We could override this method in the inheriting form by using the

Windows Forms . 143



override keyword. We should ensure that the OnClosed() method we
are replacing is also called, using the base keyword:

protected override void OnClosed(System.EventArgs e)
{
MessageBox.Show("myInheritedForm: " +
"Form is about to close"); 

// must call the base's OnClosed method too!
base.OnClosed(e); 

}

Two message boxes will thus be displayed when the form closes. In this
example, it is not necessary to call the base class’s method (doing so
would merely suppress the first message box). If the first OnClosed()
method contained vital cleanup code for the application, however, it
would be necessary to call it from the derived class as we have illus-
trated, a practice you should follow when dealing with the Windows
Forms classes.

SUMMARY

Because the Windows Forms classes exist as managed IL code, they can
be inherited across languages. Visual inheritance can either be done pro-
grammatically or using VS.NET’s Inheritance Picker. When you inherit
a form, you inherit its physical attributes, the controls it contains, and
the code associated with the controls and the form itself. Like any class
in the managed environment, the ability to modify the members of an in-
herited class depends on their accessibility. If a form’s button is private,
for example, it cannot be modified when the form is inherited; if it is
public, then it can. Using these rules, a designer can choose those por-
tions of a GUI that can be changed when inherited.

Chapter Summary

Windows Forms are a set of classes in the System.Windows.Forms name-
space that are used to create desktop GUIs for the managed environ-
ment. An integral part of Windows Forms is the Windows Form
Designer (WFD) tool of VS.NET, which allows you to graphically con-
struct GUIs as you can in VB6. When you resize a form or give it a label,
the WFD generates code that utilizes the Windows Forms classes (in ei-

144 . CodeNotes® for .NET



ther VB.NET or C#) to reflect your actions. VB developers must famil-
iarize themselves with the way these classes have changed from intrin-
sic VB6 controls; the frame control, for example, must be replaced with
either the GroupBox or Panel classes.

Windows Forms classes can be inherited across languages because
they exist as language neutral IL code. A GUI developed in C# can be
extended in Visual Basic, which can in turn be extended and used in
managed C++. Inheriting a GUI not only inherits its physical character-
istics but the GUI’s code as well. Visual inheritance adheres to the rules
of object inheritance: if a base form’s control is marked Private, then it
cannot be modified in the inherited form, but if it is marked Public, it
can.

Windows Forms . 145



Chapter 8

ASP.NET

WHAT IS ASP/ASP.NET?

Given the complexity and sophistication of today’s Web technologies, it
can be hard to remember that in its infancy the Internet was arguably a
glorified file-transfer system. Clients would request (and hopefully re-
ceive) files from servers using established transfer protocols such as
FTP and gopher. Eventually, these binary protocols gave way to the
Hyper Text Markup Language (HTML) protocol, which allowed for-
matted text to be transferred across the Internet. Clients would still re-
quest files from servers, but the files would be dynamically rendered on
a browser, which would format the HTML into readable content.

The next step along the evolutionary ladder was the generation of dy-
namic content. Instead of providing clients with static files, servers
would dynamically generate HTML files in response to a client’s re-
quests. Two of the earliest frameworks were the Common Gateway 
Interface (CGI) and Microsoft Active Server Pages (ASP). These frame-
works allowed for dynamic content creation in response to user actions. 

ASP.NET is Microsoft’s new version of ASP for the managed envi-
ronment. ASP.NET brings about significant changes from its prede-
cessor, most notably by supporting strongly typed and precompiled lan-
guages such as C# and VB. With ASP.NET you can also design web 
application GUIs using the drag-and-drop form design approach that
made Visual Basic popular. 

ASP.NET is a server-side technology that requires the installation of



Microsoft Internet Information Server (IIS). Without IIS installed, you
will not be able to build or test the examples in this chapter.

PROBLEMS WITH TRADITIONAL ASP

In the Introduction to Chapter 6, we compared ADO with ADO.NET. In
this section, we similarly examine the limitations of ASP in order to ap-
preciate its evolved .NET manifestation. 

1. ASP only supports scripting languages.
ASP scripting code is usually written in languages such as
JScript or VBScript. Typically, these languages provide only a
subset of the functionality exposed by a complete development
language (such as Java or Visual Basic). Scripting languages
such as JScript and VBScript are also weakly-typed. This means
that all variables are Variants (generic types). Also, no type-
checking is done at design time, which often results in error-
prone code.

The performance of ASP script code also suffers because it is
interpreted. Unlike desktop applications that are fully compiled,
ASP scripts are translated one line at a time by the ASP runtime,
degrading performance. Interpreted scripting code also raises
debugging issues. If line 50 of an ASP script contains a syntax
error, it will not be caught until the previous 49 lines have exe-
cuted. Modern development environments, in contrast, will
catch all of a program’s syntax errors in a single compilation
step. 

2. Script Code is combined with the HTML interface.
ASP files frequently combine script code with HTML. This re-
sults in ASP scripts that are lengthy, difficult to read, and switch
frequently between code and HTML. The interspersion of
HTML with ASP code is particularly problematic for larger web
applications, where content must be kept separate from business
logic.

3. COM Administration
Because ASP only supports scripting languages, developers fre-
quently move logic into COM components and then call them
from ASP scripts. By writing COM components in languages
such as C++, developers can leverage the strongly-typed fea-
tures that are absent from ASP.

Problems with the COM/ASP hybrid arise, however, when a
COM component evolves and must be updated. Because the

ASP.NET . 147



ASP runtime may keep objects loaded in memory, updating a
COM component can require shutting down the web server
(IIS) and possibly re-registering the component with the Win-
dows Registry. This scenario is unacceptable for large, high-
traffic web applications where reliable service is paramount. 

4. Application configuration is stored in a proprietary format that
is not easily ported to different machines.

The configuration information for an ASP web application
(such as session state and server timeouts) is stored in the IIS
metabase. Because the metabase is stored in a proprietary for-
mat, it can only be modified on the server machine with utilities
such as the Internet Service Manager. With limited support for
programmatically manipulating or extracting these settings, it is
often an arduous task to port an ASP application from one
server to another.

INTRODUCING ASP.NET

With .NET, Microsoft has completely redesigned ASP to address its 
limitations. To accomplish this task, backwards-compatibility with ASP
had to be sacrificed. As we will see, migrating ASP scripts to the man-
aged environment is not always a straightforward task. 

Since ASP is in such wide use, however, Microsoft ensured that ASP
scripts execute without modification on a machine with the .NET
Framework (the ASP engine, ASP.DLL, is not modified when installing
the .NET Framework). Thus, IIS can house both ASP and ASP.NET
scripts on the same machine. 

Among the advantages ASP.NET boasts over ASP are the following:

1. Separation of code from content. ASP.NET allows the devel-
oper to separate script code from HTML. This allows for a clean
separation of code from content and formatting and promotes
code reuse.

2. Support for compiled languages. While ASP.NET still supports
the traditional set of scripting languages, support is also pro-
vided for fully compiled languages. Instead of using VBScript,
a developer can use VB.NET and access features such as strong
typing and object-oriented programming.

Using compiled languages also means that ASP.NET pages
do not suffer the performance penalties associated with inter-
preted code. ASP.NET pages are precompiled to byte-code and
Just In Time (JIT) compiled when first requested. Subsequent

148 . CodeNotes® for .NET



requests are directed to the fully compiled code, which is
cached until the source changes.

3. Greater support for different browsers via server-side con-
trols and events. Following object-oriented design principles,
ASP.NET pages make use of server-side controls called 
ASP.NET web controls. These controls are instantiated on the
server, and like regular objects they have associated methods,
properties, and events. The advantage of server-side controls is
that they render themselves on the client as standard HTML 3.2
(and optionally DHTML), depending on the capabilities of the
client browser. In other words, an advanced browser will auto-
matically receive advanced features, while an older browser
will still receive readable HTML. Since the controls reside com-
pletely on the server and send standard HTML to the client,
browsers can be completely unaware of the .NET Runtime.
Thus, virtually any browser can access an ASP.NET page.

4. Intuitive GUI design. With ASP.NET you can design web appli-
cations as you did in Visual Basic 6, by dragging and dropping
GUI elements in a sophisticated design environment. The next
topic in this chapter demonstrates this feature. 

As you will see throughout this chapter, almost every new feature intro-
duced with ASP.NET is designed to provide tremendous improvements
for rapid web application development. The advanced GUI design, sepa-
ration of code from content, encapsulation of HTML, and masking of
client-side/server-side issues makes ASP.NET a very powerful platform
for designing web pages. 

CORE CONCEPTS

Caching
ASP.NET’s improved caching techniques will help you build more scal-
able and high-performance web applications. ASP.NET offers three
types of caching:

1. Page-level: With page-level caching, dynamic page output is
cached and served directly on subsequent requests. ASP.NET
thus does not have to regenerate dynamic content on every re-
quest, which can significantly reduce load time. With this type
of caching, you specify an expiration policy that determines
how long a given page is maintained in the output cache. It is
important to note that the output cache does not contain com-

ASP.NET . 149



piled page code (there is a separate cache used exclusively by
the ASP.NET Runtime for this purpose). Rather, the output
cache contains the HTML (and possibly DHTML) generated by
the compiled ASP.NET page code.

2. Fragment: Fragment caching allows the developer to explicitly
cache only portions of a page. Quite often, a certain portion of a
page must be dynamically generated on every request (a real-
time stock quote for example). By using fragment caching, a de-
veloper can separate those portions of the page that are static
and can be cached from those that require dynamic generation.
This sort of caching can provide tremendous improvements in
page access speeds.

3. The Cache API: The ASP.NET Framework exposes a rich
Cache API that gives developers the ability to manually cache
frequently requested data. The Cache API gives developers di-
rect access to ASP.NET’s cache engine, which can be used to
design custom caching solutions where page-level and fragment
caching are inadequate. 

For more details on ASP.NET’s caching abilities, as well as examples,
please consult aNET080012. 

SIMPLE APPLICATION

In this example we will create a simple ASP.NET page that can be used
to register a user with a website. Before continuing, make sure you have 
IIS installed. IIS can be installed from the Windows Control Panel by
choosing Add/Remove Programs ➝ Add/Remove Windows Compo-
nents, and selecting Internet Information Services (IIS). Figure 8.1 de-
picts the interface for our first ASP.NET page. 

To build this example, open your favorite text editor, create a file
named register.aspx, and save it to its own directory (say, C:\asp
Intro). Note that ASP.NET scripts end with the extension .aspx, while
ASP scripts end with .asp. Because these file extensions are kept dis-
tinct, IIS can invoke the older ASP engine when ASP scripts are refer-
enced and the ASP.NET Runtime for .aspx files. 

In the register.aspx file (also available online at aNET080001),
add the following code:

<HTML><HEAD><TITLE>ASP.NET Example</TITLE></HEAD>
<BODY>

150 . CodeNotes® for .NET

http://www.codenotes.com/cnp?cnp=NET080012
http://www.codenotes.com/cnp?cnp=NET080001


Figure 8.1 Our first ASP.NET application

<H2>Please enter the following required 
information:</H2>
<hr>
<form runat="server">
<table>
<tr>
<td>Last Name:</td><td><asp:TextBox id="txtLName"
runat="server" size=20 /></td>
</tr>
<tr>
<td>First Name:</td><td><asp:TextBox id="txtFName"
runat="server" size=20 /></td>
</tr>
<tr>
<td>Age:</td><td><asp:TextBox id="txtAge" runat="server"
size=5 /></td>
</tr>
<tr>
<td>Screen Name:</td><td><asp:TextBox id="txtSName"
runat="server" size=20 /></td>
</tr>
<tr>
<td>Password:</td><td><asp:TextBox id="txtPassWd"
TextMode="Password" runat="server" size=20 /></td>
</tr>
<tr>
<td>Confirm Password:</td><td><asp:TextBox 
id="txtConfirm" TextMode="Password" runat="server" 
size=20 /></td>

ASP.NET . 151



</tr>
</table>
<asp:Button Text="Submit" OnClick="OnSubmit" 
runat="server" />
<hr>
<asp:Label id="txtOutput" runat="server" />
</form>
</BODY>  

<script language="C#" runat="server">
void OnSubmit (Object sender, EventArgs e) 
{
txtOutput.Text = "Successfully registered user: " +
txtLName.Text + ", " + txtFName.Text; 

}
</script>
</HTML>

Listing 8.1 register.aspx

As you can see, this file contains a mix of HTML, specialized ASP tags (in
an XML format), and C# code. The important sections are discussed below.

WEB CONTROLS

ASP developers will note several features that differentiate register
.aspx from a typical ASP script. First, look closely at the runat=server
attributes bolded in Listing 8.1, which tell ASP.NET to run these lines on
the server. We applied this attribute on numerous controls that are pre-
fixed with the asp: keyword. For example: 

<asp:Label id="txtOutput" runat="server"/>

It may seem confusing that we are specifying that a control (a label, in
this case) should run at the server. What we are seeing, however, is
something called a “web control,” which does exactly that. When
ASP.NET processes register.aspx, it sees that txtOutput is a web con-
trol because of the asp: prefix. As a result, it generates client-side HTML
code that renders a label on the browser. 

Those familiar with HTML may be wondering why we didn’t simply
write an HTML label ourselves, instead of having ASP.NET generate

152 . CodeNotes® for .NET



one for us. The answer is that web controls are more sophisticated than
their intrinsic HTML equivalents. We can do things very easily with a
web control (resize it as we please, attach event code to it) that require
considerably more effort to code in HTML. By using web controls we
shift the burden of HTML specifics onto ASP.NET, which automatically
converts our control into HTML that the browser can understand. 

Also note that the Submit button registers the OnSubmit() handler for
the OnClick event. The OnSubmit() method is defined inside the <script>
tag as part of the server-side code. Event handlers for ASP.NET controls
are defined in the same format as Windows Forms controls examined in
Chapter 7. Refer to the Overview Example in Chapter 7 for the specifics
of declaring event handlers for the .NET Framework. 

As can be seen from Listing 8.1, OnSubmit() accepts two parameters:
sender of type Object, and e as type EventArgs. Recall from Chap-
ter 7 that sender is a reference to the object that raised the event. The
EventArgs parameter contains additional event-specific information,
such as which mouse button was clicked (on a mouse-click event). The
EventArgs class is detailed at <website>. One can see that Windows
Forms and Web Forms are very similar—truly highlighting how .NET
closely unifies the web design model with traditional desktop applica-
tion development.

The next topic on ASP.NET will highlight the advantages of web con-
trols. 

CREATING THE VIRTUAL DIRECTORY

To access the code we created in Listing 8.1, we must create a virtual
root on the IIS web server where the page will reside. Open the Internet
Services Manager by going to Start ➝ Settings ➝ Control Panel ➝

Administrative Tools ➝ Internet Services Manager. (Refer to Figure 8.2.)
Click on Default Web Site, and right-click in the directory view. Se-

lect New ➝ Virtual Directory from the pop-up menu. This will launch
the Virtual Directory Creation Wizard. You will be prompted to enter the
physical directory where the web content is stored (enter C:\aspIntro).
In addition, you will be asked to give an alias for the directory (enter 
aspIntro). This alias is simply a short-hand mapping to the physical di-
rectory. You will navigate to this alias in your web browser. Click Finish
and test the ASP.NET page by launching Internet Explorer and navigat-
ing to: http://localhost/aspIntro/register.aspx.

ASP.NET . 153



Figure 8.2 Creating a virtual directory

ANALYZING THE OUTPUT

After ASP.NET processes the .aspx file, you will see the interface de-
picted in Figure 8.1. If you look at the client-side code that was gener-
ated (by selecting View ➝ Source from the Internet Explorer menu), you
will notice that the source behind the interface is quite different from the
code we wrote in Listing 8.1. First, all the runat=server tags are not 
present. This should come as no surprise, since these lines were exe-
cuted at the server and we are inspecting client code. 

If you examine the client code further, you will note that all of the
web controls in Listing 8.1 (denoted by the asp: prefix) have been con-
verted into HTML equivalents. For example, the <asp:TextBox
id="txtFName"...> line has been changed to: <input name="txtFName"
type="text" id="txtFName" size="20" />. This change highlights the
fact that web controls are processed at the server and automatically ren-
dered as regular HTML on the client.

WEB CONTROLS AND HIDDEN FIELDS

Enter values in the Name and Age text fields, click on the Submit button,
and you will notice some interesting behavior. The ASP.NET page con-

154 . CodeNotes® for .NET



tacts the server, and as expected the message “Successfully registered
user . . .” appears at the bottom of the page. If you look carefully, how-
ever, you will notice that the values you entered in the text fields at the
top of the form do not disappear (they persist across the request to the
server). Had we developed this application in ASP, these text boxes
would have been empty; the page refresh would have cleared the values.
Normal HTML controls are inherently stateless; maintaining state (i.e.,
the values of a controls or variables) would require extra client-side
script. 

We did not, however, include any state code in Listing 8.1. One of the
virtues of a web control is that it automatically maintains state between
server invocations. But how does a web control do this, given that it is
ultimately converted into client-side HTML, which itself is stateless? If
you look once again at the client source, you will notice a line similar to
the following:

<input type="hidden" name="__VIEWSTATE" value="dDw4ODkyMzg3MDA7Oz4=" />

ASP.NET generated this line, which creates a hidden HTML control
called __VIEWSTATE in the client. The purpose of the control is to main-
tain the state of web controls across server invocations. Don’t worry
about the details of how Framework uses __VIEWSTATE (it is proprietary
and subject to change). Just realize that ASP.NET is performing some
HTML tricks behind the scenes to give your web controls characteristics
that would be otherwise difficult to obtain.

SCRIPTS AND LANGUAGES

Look back at Listing 8.1 and you will see the <script> tag in the .aspx
file. This tag must be specified before we write our ASP.NET code.
Scripts in ASP.NET are declared using the following notation:

<script language="C#" runat="server">

Underneath the <script> tag in Listing 8.1 is our actual ASP.NET script.
Note that this script uses the C# syntax. As mentioned earlier, ASP.NET
supports strongly-typed, fully compiled languages. The language at-
tribute of the <script> tag tells ASP.NET which compiler to use when
building the ASP.NET page. For example, language="VB" is used when
the server-side code is written in VB.NET. 

The runat=server attribute specifies that the compiled code should

ASP.NET . 155



reside on the server. If you take a look at the client-side source again (se-
lect View ➝ Source in Internet Explorer) you will notice that the
<script> tag does not appear in the client. The client simply forwards all
requests to the server, where the code to process the request resides.

The script code in Listing 8.1 follows the same strongly-typed syntax
we have used to create standard .NET components through this Code-
Note. This may not come as a surprise for developers new to web devel-
opment, but it is a feature ASP developers have long desired. Consider
the following fragment, which is how the script of Listing 8.1 would be
written in standard ASP:

<%
Response.Write( "Successfully registered user: " & _
Request.Form("txtLName") & ", " & 
Request.Form("txtFName"))

...
%>

One major problem with the weakly-typed scripting language of ASP is
that references are not checked at compile-time. In the code above, if we
had incorrectly referenced the txtLName control as txtLName2, our error
wouldn’t have been caught until a user requested the page. As we will
see in the next topic, syntactical errors can be caught at compile-time
with ASP.NET.

SUMMARY

This example barely scratches the surface of ASP.NET’s capabilities. In
the following topic, we will see how we can use the VS.NET IDE to in-
tuitively design a web page in a fashion similar to building a Visual
Basic 6 application.

Topic: VS.NET Web Forms

One of the most compelling features of ASP.NET is that you can design web
application GUIs as you do in Visual Basic 6, by placing and resizing con-
trols graphically. And, unlike with traditional web design tools such as
FrontPage and ColdFusion, you can also attach event code to the GUI ele-
ments in your application. 

We first looked at the VS.NET IDE in Chapter 7 (Windows Forms). If
you haven’t already done so, now would be a good time to read Chapter 7 to
familiarize yourself with the VS.NET IDE. We saw that whenever you de-

156 . CodeNotes® for .NET



sign a desktop GUI in the VS.NET IDE, the Windows Form Designer
(WFD) translates your actions into code that utilizes the System
.Windows.Forms classes. The premise behind Web Forms is similar; you
design a web GUI in the same intuitive manner you used in Chapter 7.
The difference with Web Forms is that the code uses System.Web.UI
classes to automatically generate user-interface code. 

WEB FORMS EXAMPLE

Building the Application
To write a web application with Web Forms, start the VS.NET and then
go to the File menu and select New and then Project. This will bring up
the New Project screen that we saw way back in Figure 7.3. Select web
application under Template and give your project the name MyWebApp
(the project location will default to http://localhost; ignore this for the
time being). 

Figure 8.3 The VS.NET web application environment

After a few moments, the VS.NET IDE will present you with a screen
that resembles the one in Figure 8.3.

Take a minute to investigate the new VS.NET web application envi-
ronment. As you can see, it strongly resembles the Windows Form envi-
ronment that we saw in Chapter 7. A toolbox to the right of the screen
exposes controls such as buttons and textboxes. To the bottom left of the

ASP.NET . 157



screen a Property Inspector, similar to the one found in Visual Basic,
shows the properties of the currently selected object. In the center of the
screen, however, a blank page exists in place of the expected windows
form. Think of this page as the web equivalent of a desktop form; you
place controls on this page, which represents the viewable area of the
web application. 

Click the page in the middle of the screen, then look at the language
property in the property inspector. You can set this property to 
C#, JavaScript, or VB, to determine the type of code the Web Form De-
signer will generate. Keep this property set to C#. 

Adding Controls
To create your first web application in the VS.NET IDE, drag both a
Textbox and Button control onto the page, so you have something that
resembles Figure 8.4. 

Figure 8.4 VS.NET web application

The button will have the default name Button1, and the textbox will
have the default name TextBox1. For now, leave these names intact.
Double-click on the button to bring up the code window and insert the
following code into the button’s event handler:

private void Button1_Click(object sender,
System.EventArgs e)
{
TextBox1.Text = "My Second Web Application!";

}

Listing  8.2 Button event handler

You have now written your first web application from within the
VS.NET IDE. Look at the other code surrounding your event handler,
however, and (if you’ve read Chapter 7) you might have a feeling of déjà

158 . CodeNotes® for .NET



vu. First, notice the #region and #end region tags that denote code auto-
matically generated by the Web Form Designer. Scroll to near the top of
the code and you will see the following:

public class WebForm1 : System.Web.UI.Page
{
protected System.Web.UI.WebControls.TextBox TextBox1;
protected System.Web.UI.WebControls.Button Button1;
...

}

Listing 8.3 The Page class

Just as the System.Windows.Form class represents a form for desktop ap-
plications, the System.Web.UI.Page class is the basis for web pages de-
signed in the VS.NET IDE. When we created the project, the Web Form
Designer automatically generated the WebForm1 class that inherited from
the Page class. Likewise, when you added the textbox and button to your
page, the Web Form Designer gave the WebForm1 class the TextBox1 and
Button1 classes as shown above. 

Remember, ASP.NET is built upon web controls, which dynamically
generate client-side HTML. By constructing your application graphi-
cally as you just did, you are implicitly describing the HTML that
clients will see. The good news is that you do not have to concern your-
self with the underlying HTML. Simply design your application in the
VS.NET IDE, and the Web Form Designer will do the hard work of cre-
ating client-side HTML that reflects your design. 

Running the Example
To run your web application, press F5 from within the VS.NET IDE.
After a moment, VS.NET will invoke a web browser that automati-
cally navigates to the following URL: http://localhost/MyWebApp/
WebForm1.aspx. The application you designed in Figure 8.4 will appear
inside the browser. If you click the button, “My Second Web Applica-
tion!” will appear in the textbox. It is tempting to think that this code is
executing entirely on the client, but in reality:

1. Clicking the button sends an HTTP Post request back to the web
server (IIS); 

2. The web server determines that the post is intended for an aspx
file, so it invokes the ASP.NET Runtime; 

3. The ASP.NET Runtime determines that Button1 was clicked, so
it invokes the Button1_Click method in your application; 

ASP.NET . 159



4. The Button1_Click method changes the Text property of
TextBox1 to “My Second Web Application!” and

5. The ASP.NET generates client-side HTML for both the Button
and TextBox web controls. Because the TextBox’s caption was
changed in Step 4, new equivalent HTML is generated and ap-
pears in the browser. 

To emphasize the server-side interplay that is occurring, add the follow-
ing line of code to the Button1_Click() event in Listing 8.2:

TextBox1.Width = (int)TextBox1.Width.Value + 50;

Rerun the application and you will observe some amusing behavior: the
textbox will successively increase its width as you click the button. Re-
member, the code is executing on the server. In Step 4 above, the But-
ton’s code now also changes the TextBox’s width. This, in turn,
influences the client-side HTML, resulting in the dynamically changing
textbox in your browser. 

You are encouraged to explore the other web controls in the VS.NET
IDE, such as the Table, RadioButton, and CheckBox controls. These
controls, coupled with the event code that you can attach to them, makes
developing web applications as straightforward as desktop design in
VB6. 

DEBUGGING AND BREAKPOINTS

One of the advantages of ASP.NET over ASP is the ability to compile an
application prior to deploying it. This capability ensures that a script is
free of syntax errors before it is deployed (logical errors, of course, must
be detected through testing). If, for example, we incorrectly referenced
TextBox1 in Listing 8.2 as TextBox2, when we attempt to run the appli-
cation (by hitting F5), ASP.NET will inform us:

The type or namespace name 'TextBox2' could not be found ...

ASP.NET gives one all the capabilities of a modern development en-
vironment. You can add a breakpoint to the same line in Listing 8.2 by
right-clicking the line and selecting Insert Breakpoint. Run the applica-
tion by clicking F5, then click the button in the browser. Instead of up-
dating the textbox as one might expect, you will return to the VS.NET
environment. Here, you can inspect program variables, step through the
rest of the program, make changes, and continue.

160 . CodeNotes® for .NET



PAGE DIRECTIVES

If you compare our development efforts in this section with those of the
Simple Application in Listing 8.1, you will note that:

1. We did not have to write a messy .asmx file. 
2. We did not have to create a virtual directory. 

Both of these points are virtues of the VS.NET IDE. The IDE will auto-
matically create .asmx files and a virtual directory to house the files for
us. Recall from the previous example that a virtual directory really maps
to a physical directory somewhere on the computer. At the beginning 
of this example, when we created the project, VS.NET put it in http:
//localhost. This virtual directory usually maps to the C:\InetPub\
wwwroot\ directory on the machine, meaning that our project’s files can
be found in: C:\InetPub\wwwroot\MyWebApp\. If you look in this direc-
tory, you will find files called WebForm1.asmx and WebForm1.asmx.cs,
which were produced by the VS.NET as we developed our project.
These files can be quite revealing if you examine them outside the 
design environment (using NOTEPAD, for example). Inspect Web-
Form1.asmx, and at the top of the file you will see a line similar to the fol-
lowing:

<%@ Page language="c#" Codebehind="WebForm1.aspx.cs"
Inherits="MyWebApp.WebForm1" %>

This line is called a Page Directive, and it tells ASP.NET how the script
should be compiled. The most important attribute in this directive is
CodeBehind, which tells ASP.NET that a Page class is associated with
this particular .aspx file. If you examine the WebForm1.aspx.cs file that
Codebehind points to, you will see the source for the WebForm1 class in
Listing 8.2. Thus, when you reference http://localhost/MyWebApp/
WebForm1.aspx from within your browser, ASP.NET realizes that it has
an associated class located in WebForm1.aspx.cs, JIT compiles it, and
delivers the HTTP the class produces back to your browser. 

HOW AND WHY

Can I Write My Own Web Controls?
You can write your own web controls by writing a class that inherits
from the System.Web.UI.Control class. An example of a custom web
control can be found at aNET080002. 

ASP.NET . 161

http://www.codenotes.com/cnp?cnp=NET080002


What Kinds of Web Controls Are Shipped with ASP.NET?
ASP.NET ships with a variety of web controls to enhance the interac-
tive nature of web applications. In the Simple Application of this chap-
ter, you were introduced to ASP.NET intrinsic controls—controls that
effectively wrap HTML equivalents. ASP.NET ships with packages of
other controls, including rich controls, data controls, and validation 
controls. While a full description of each control shipped with ASP.NET
is beyond the space considerations of this CodeNote, detailed documen-
tation and examples can be obtained on the companion website,
www.codenotes.com at aNET080003. Some of the web controls that
ship with ASP.NET are described below:

• Rich controls: At the time of this writing, ASP.NET comes with
two rich controls, namely the AdRotator and Calendar controls.
The ad rotator provides a simple and flexible way to present ad-
vertisements on your site, while the Calendar acts as a highly
customizable calendar control. Microsoft plans to ship ASP.NET
with a variety of other rich controls. Rich controls essentially
wrap complex HTML interfaces and control logic into reusable
components. Examples of using the AdRotator and Calendar
control can be found at aNET080003.

• Data controls: The heart of any enterprise system is its data.
ASP.NET provides extensive facilities for binding relational and
hierarchical (XML) data to web controls such as combo-boxes,
check boxes, lists, and labels. ASP.NET also ships with several
controls specifically designed for the display of data—the Re-
peater, DataList, and DataGrid. Each of these data controls is
geared at a specific kind of data organization, but they give you
the flexibility to customize their look-and-feel. Information and
examples on ASP.NET data controls can be obtained at the fol-
lowing link: aNET080004.

• Validation controls: ASP.NET provides a collection of controls
dedicated to validating user input. These controls are designed to
maintain user-friendly website interaction as well as data in-
tegrity (when user input is fed into a database). You can use vali-
dation controls to quickly determine if a field is entered, and
compare it against some value, range of values, or regular ex-
pression. The power of validation controls lies in their ability to
be used in combination to quickly implement complex input
validation. A complete discussion of validation controls is avail-
able at: aNET080005.

162 . CodeNotes® for .NET

http://www.codenotes.com/cnp?cnp=NET080003
http://www.codenotes.com/cnp?cnp=NET080003
http://www.codenotes.com/cnp?cnp=NET080004
http://www.codenotes.com/cnp?cnp=NET080005
http://www.codenotes.com


SUMMARY

Web controls are a quantum leap forward in rapid application design for
the Web. With ASP.NET, you can build incredibly complex server-side
forms using a paradigm familiar to anyone who has programmed in Vi-
sual Basic. Simply drag and drop controls on the form, add code to the
various control events, and program in the language of your choice. 

When a client requests the page, the ASP.NET Framework will auto-
matically convert your controls and code into browser-appropriate
HTML. In other words, application developers can once again concen-
trate on developing applications, without worrying about scripting, tags,
or HTML.

Topic: ASP.NET Applications and Configuration

OVERVIEW

Like ASP, ASP.NET encapsulates its entities within a web application. A
web application is an abstract term for all the resources available within
the confines of an IIS virtual directory. For example, a web application
may consist of one or more ASP.NET pages, assemblies, web services
(see Chapter 9), configuration files, graphics, and more.

In this section we explore two fundamental components of a web ap-
plication, namely global application files (Global.asax) and configura-
tion files (Web.config). 

Global.asax

Global.asax is a file used to declare application-level events and ob-
jects. Global.asax is the ASP.NET extension of the ASP Global.asa file.
Code to handle application events (such as the start and end of an appli-
cation) reside in Global.asax. Such event code cannot reside in the
ASP.NET page or web service code itself, since during the start or end
of the application, its code has not yet been loaded (or unloaded).
Global.asax is also used to declare data that is available across different
application requests or across different browser sessions. This process is
known as application and session state management.

The Global.asax file must reside in the IIS virtual root. Remember
that a virtual root can be thought of as the container of a web appli-
cation. Events and state specified in the global file are then applied to 

ASP.NET . 163



all resources housed within the web application. If, for example,
Global.asax defines a state application variable, all .aspx files within the
virtual root will be able to access the variable. 

Like an ASP.NET page, the Global.asax file is compiled upon the ar-
rival of the first request for any resource in the application. The simi-
larity continues when changes are made to the Global.asax file;
ASP.NET automatically notices the changes, recompiles the file, and di-
rects all new requests to the newest compilation. A Global.asax file is
automatically created when you create a new web application project in
the VS.NET IDE. 

Global.asax files consist of the following elements:

1. Event Declarations: Define event delegates, such as OnStart(),
that are global to an application (delegates are covered in Chap-
ter 4). 

2. Application Directives: Compiler-specific settings such as im-
port statements.

3. Object Tag Declarations: Instances of objects that are globally
accessible (state application variables).

All three elements are described in detail below.

Event Declarations
The ASP.NET Framework defines several event delegates specific to the
application or session as a whole. These are events that are fired before
or after an application resource, such as an ASP.NET page or web ser-
vice, processes a request. For instance, code that is handled once for
each user session is best handled in the Session_Start() method. The
Session_Start() method is called, for example, when the user opens a
new web browser session and navigates to a specific application re-
source.

The syntax follows the ASP.NET page syntax, as shown below:

<script language="C#" runat="server">
void Session_Start()
{
// Code here that initializes a user settings or data
// Executed once for each user (i.e. a browser client)

}
</script> 

Listing 8.4 Session Start Event

164 . CodeNotes® for .NET



Delegates exist for many other events, such as the Application_Start()
method, which is executed when the application is first started by any
client, or Application_End(), which is called when the application is
shut down. 

A list of all available delegates, typical functions, and applied exam-
ples can be obtained at aNET080010.

Application Directives
Application directives are placed at the top of the Global.asax file and
provide information used to compile the global file. Three application
directives are defined, namely Application, Assembly, and Import. Each
directive is applied with the following syntax:

<%@ appDirective appAttribute=Value ...%>

The Application directive has two corresponding attributes, which
may be used individually or in combination:

1. Inherits: This attribute allows you to identify the base class that
Global.asax will inherit from. For example, we might create a
generic CodeNotes.GlobalClass that acts as a base class for all
CodeNotes-specific web applications. By inheriting from this
class, Global.asax can access all the methods and configuration
information it exposes. The Global.asax files for each Code-
Notes web application would begin with the following line: 

<%@ Application Inherits="CodeNotes.GlobalClass" %>

2. Description: This attribute allows the programmer to add
human-readable documentation to the Global.asax file. The De-
scription attribute is ignored at compile time.

<%@ Application Description="Test harness for CodeNotes" %>

The Assembly directive is required to reference any assemblies used
throughout the Global.asax file. This directive is analogous to the /refer-
ence switch available when compiling .NET components via the com-
mand line. If methods in Global.asax access SQL Server, for example,
the following line would add a reference to the System.Data assembly:

<%@ Assembly Name="System.Data.dll" %>

ASP.NET . 165

http://www.codenotes.com/cnp?cnp=NET080010


After referencing a given assembly, the Import directive allows the
developer to access the .NET classes without having to use the fully
qualified namespace. The Import directive is the ASP.NET equivalent of
the C# “using” keyword (Imports in VB.NET). Note that a given class
assembly must first be referenced with the Assembly directive before its
namespace is qualified with Import. The following line allows methods
inside Global.asax to access the DataReader class (inside the
System.Data namespace) without using the fully qualified System
.Data.DataReader notation:

<%@ Import Namespace="System.Data" %>

Object Tag Declarations
Object tags allow the programmer to instantiate session and application
objects. The instantiated objects can be either .NET components or any
classic COM component. The syntax for declaring a session or applica-
tion object is as follows:

<object id="[someID]" runat="server" 

class|progid|classid=Value scope="[objScope]" />  

The “class” attribute is used to instantiate a .NET component, whereas
“progid” and “classid” reference a COM component by ProgID and
ClassID, respectively. The “scope” attribute is used to specify whether
the object maintains session or application state, as described below.

1. session: Setting scope=“session” specifies that each application
session (for example, a web browser client) will “own” an in-
stance of the object running on the server. The object lives as
long as the session is active. Assume that we have an object with
id=“myObj” that is an instance of CodeNotes.someClass. This
object would be specified in Global.asax as the following:

<object id="myObj" runat="server" 
class="CodeNotes.someClass" />

The global object myObj can be referenced inside any ASP.NET page in
the application via the following syntax:

<script language="C#" runat="server">
someClass obj = (someClass)Session("myObj");

</script>

166 . CodeNotes® for .NET



2. application: With scope=“application” an instance of the object
is shared amongst all sessions of an application throughout its
duration. For an ASP.NET page, this can be viewed as a single
object shared by multiple web browser instances, possibly on
different machines. The following line is used from within any
ASP.NET page in the application to access the global object:

someClass obj = (someClass)Application("myObj");

Remember that session scope is user-specific, while application scope is
server-specific. In other words, any object in application scope will have
a much longer life span than a session-level object.

Web.config

In ASP, configuration settings for an application (such as session state)
are stored in the IIS metabase. There are two major disadvantages with
this scheme. First, settings are not stored in a human-readable manner
but in a proprietary, binary format. Second, the settings are not easily
ported from one host machine to another. (It is difficult to transfer in-
formation from an IIS’s metabase or Windows Registry to another 
machine, even if it has the same version of Windows.) 

Web.config solves both of the aforementioned issues by storing con-
figuration information as XML. Unlike Registry or metabase entries,
XML documents are human-readable and can be modified with any text
editor. Second, XML files are far more portable, involving a simple file
transfer to switch machines.

Unlike Global.asax, Web.config can reside in any directory, which
may or may not be a virtual root. The Web.config settings are then ap-
plied to all resources accessed within that directory, as well as its subdi-
rectories. One consequence is that an IIS instance may have many
web.config files. Attributes are applied in a hierarchical fashion. In other
words, the web.config file at the lowest level directory is used. 

Since Web.config is based on XML, it is extensible and flexible for a
wide variety of applications. It is important, however, to note that the
Web.config file is optional. A default Web.config file, used by all
ASP.NET application resources, can be found on the local machine at:

\%winroot%\Microsoft.Net\Framework\version\CONFIG\machine.config

Note that the directory will vary depending on the version of 
Microsoft.NET installed.

ASP.NET . 167



If you examine machine.config in any text editor, you will observe
the following format:

<configuration>
<configSections>
<section name="appSettings" type=
"System.Web.Configuration.NameValueSectionHandler" 

/>
<sectionGroup name="system.web">
<section name="sessionState" type=
"System.Web.Configuration.SessionStateConfigHandler" 
/>
</sectionGroup>
</configSections>

<appSettings>
...

</appSettings>
<system.web>
...

</system.web>
...

</configuration>

Listing 8.5 Web.config configuration format

Configuration settings are stored in the Web.config file inside the 
root <configuration> tag. Let us now examine the various permissible
elements under the <configuration> tag.

<configSections> 
The <configSections> element is used to define the structure of the
Web.config file. Each <section> child declares a section that is permis-
sible in the configuration file, along with the .NET class that processes
configuration data in that specific section. For example, Listing 8.5
shows the <section> declaring the appSettings section. Because of this
declaration, you will notice an <appSettings> section later on in the
Web.config file. This tag is explored in the next section.

It is important to note that the Web.config file does not impose any se-
mantics for a given section, except that all sections must be contained
inside the <configuration> root, and each section must be declared in
<configSections>. The meaning of data stored in sections such as
<appSettings> is left completely to the .NET class that processes the

168 . CodeNotes® for .NET



data. The only stipulation for the .NET processing classes is that they
must inherit from an interface called /ConfigurationSectionHandler (de-
fined in System.Configuration).

The <configSections> element also allows you to create your own
custom sections in the configuration file. We could, for example, create
a section called <databases> that would contain the DSNs of all data-
bases used in an application. To do this, we would declare <databases>
in the <configSections> area, in the same manner with which 
<appSettings> is defined. Lastly, we must create a class that inherits
from /ConfigurationSectionHandler to process the data in <databases>.
This process is described in greater detail at aNET080011. 

<appSettings> 
The <appSettings> element can be used to store configuration informa-
tion as value name pairs, which can then be recalled by an ASP.NET
page or web service based on a key name. You could for example, embed
a Data Source Name (DSN) into the configuration file using the follow-
ing lines in Web.config:

<appSettings>
<add key="myDSN" 
value="Server=localhost;uid=sa;pwd=;
database=CodeNotes" />

</appSettings>

Listing 8.6 Using the <appSettings> Element

Any ASP.NET resource in the same directory (or subdirectory) as
Web.config can reference this key-value pair. For example, the follow-
ing line shows how to reference the DSN from an ASP.NET page.

String dsn = ConfigurationSettings.AppSettings("myDSN");

Note that the ConfigurationSettings object is a static object provided by
ASP.NET. 

<system.web>
If you look in machine.config, you will notice that <system.web> 

is a container for a variety of configuration sections, including 
<sessionState> and <authentication>. The <sessionState> element, for
example, can be used to configure the specific settings for an HTTP ses-
sion between a client and the web server. You can use this element to
specify whether the client uses cookies to maintain client-side state, or

ASP.NET . 169

http://www.codenotes.com/cnp?cnp=NET080011


whether the state is stored on a separate machine altogether. For exam-
ple, the following line in Web.config tells ASP.NET to store session state
(for the given web application) on the server, instead of using client-side
cookies, and to keep the session valid for 20 minutes:

<system.web>
<sessionState cookieless="true" timeout="20" />

</system.web>

Listing 8.7 Applying session state in Web.config

Another child of the <system.web> element is the <authentication>
element. The <authentication> allows you to include security features
such as HTML Forms Authentication, as well as user/role privileges, to
a web application. An article highlighting the specifics of ASP.NET au-
thentication can be obtained at CodeNotes link aNET080012. 

Examples of these three attributes, in additional to other Web.config
attributes, can be found at aNET080013. 

HOW AND WHY

Can ASP and ASP.NET Applications Share State Variables?
As we discovered in the beginning of this chapter, Internet Information
Server (IIS) is capable of housing both ASP and ASP.NET scripts. Be-
cause different engines are used to process each script, however, ASP
and ASP.NET scripts cannot share state variables. 

SUMMARY

The Global.asax and Web.config files are relatively small but highly sig-
nificant configuration files. First, the Global.asax file provides a com-
mon access point for your entire web application. You can use this file to
store common code, initialize application and session level variables,
and perform all sorts of shared functionality. 

Second, the Web.config file replaces both the metabase and Windows
Registry configuration hassles from ASP. This single XML file provides
powerful configuration features that can be changed and ported between
machines quite easily. 

170 . CodeNotes® for .NET

http://www.codenotes.com/cnp?cnp=NET080012
http://www.codenotes.com/cnp?cnp=NET080013


Chapter Summary

ASP.NET is an evolution of Microsoft’s Active Server Page (ASP) tech-
nology. Using ASP.NET, you can rapidly develop highly advanced web
applications based on the .NET framework. 

ASP.NET offers many significant advantages over ASP and many
other server-side web frameworks. Instead of being limited to scripting
languages, ASP.NET code can be written in strongly-typed languages
such as VB.NET and C#. Code is precompiled and later optimized at
runtime by a Just In Time compiler, offering significant performance im-
provements over ASP.

ASP.NET also features web controls, which are managed classes
with events and properties that render themselves as HTML on the 
client side. These controls are coupled with the Visual Studio Web Form
Designer, which allows the design of web applications in an intuitive,
graphical method similar to Visual Basic 6. ASP.NET ships with web
controls wrapping each of the standard HTML controls, in addition to
several controls specific to .NET. One such example is validation con-
trols, which intuitively validate user input without the need for extensive
client-side script.

ASP.NET web controls can be bound directly to any data source, from
a database to an array. Data-bound controls add a layer of abstraction be-
tween data and presentation that simplifies the development of datacen-
tric applications. In addition, web controls such as DataGrid, DataList,
and Repeater introduce the idea of templating. With templates, the de-
veloper has complete freedom over the appearance of displayed data and
is no longer limited to one predefined format.

ASP.NET also offers noteworthy administration improvements over
ASP. In ASP, web application configuration is stored in a proprietary
metabase format that is difficult to manipulate and transport. In contrast,
ASP.NET configuration is stored in XML format, where it can be parsed
and easily manipulated. 

In many respects, ASP.NET provides major improvements over ASP,
and can definitely be considered a viable alternative for rapidly devel-
oping web-based applications.

ASP.NET . 171



Chapter 9

WEB SERVICES

A web service is a software component that exposes itself through the
open communication channels of the Internet. Applications running on
remote machines, on potentially different platforms, can access these
components in a language and platform-independent manner. This chap-
ter presents the facilities .NET offers in creating versatile web services.

To appreciate the advantages of a web service, consider how tradi-
tional distributed components are implemented. Most often, distributed
components use proprietary distributed architectures such as DCOM,
CORBA, or Java RMI to handle request and response messages. While
DCOM, CORBA, and RMI are extensive and mature frameworks, they
are restrictive in three respects:

1. DCOM, CORBA, and RMI use proprietary object models to
communicate between client and server. This means to access a
DCOM component, a client must speak COM. Similarly, a
basic RMI client can only speak to an RMI server. (RMI and
CORBA can crosscommunicate to a certain degree through the
Internet Inter-ORB Operating Protocol (IIOP).)

2. Components written with DCOM, CORBA, and RMI commu-
nicate over network ports other than 80 (which is used for
HTTP). Most corporate IT departments are very strict about
opening extra ports on the main firewall, as extra ports increase
risk and require greater monitoring efforts.

3. No standardized method exists for publicly advertising DCOM,



CORBA, and RMI components. In this situation, public adver-
tising means that any given client on the Internet has the ability
to locate the web service and query its interface for a list of ex-
posed methods, types, and calling conventions.

Web services address the three preceeding limitations by basing their
communication mechanism on existing Internet technologies—HTTP
and XML. Any client that speaks HTTP and XML can interact with a
web service, regardless of language or platform. Also, since HTTP
transmits requests over port 80, firewalls are no longer an obstacle. 

The third limitation is overcome by two web service technologies:
Web Service Discovery (DISCO) and Web Service Description Lan-
guage (WSDL). DISCO files are XML documents used to advertise the
location of web services on the given server. WSDL is also an XML
document, but it describes the data types, methods, and calling conven-
tions of a web service. Both of these technologies are discussed in sepa-
rate sections in this chapter. 

Web services must reside on a web server—a dedicated system that
ferries incoming HTTP requests to the service and sends any responses
back to the client. .NET web services must reside within the Internet In-
formation System (IIS) web server. IIS, in turn, uses the ASP.NET Run-
time (Chapter 8) to compile and process the web services, similar to how
ASP.NET intervenes with ASP.NET pages.

CORE CONCEPTS

URI
URI stands for Uniform Resource Identifier. URI is a generic term that
is used for the addressing of units on the Internet. A Uniform Resource
Locator (URL), for example, is a type of URI.

XML Namespace
An XML Namespace is a unique URI that represents a collection of 
predefined XML elements and attributes. For example, the SOAP name-
space (“http://schemas.xml.org/soap/”) is used to represent the vocabu-
lary of elements and attributes predefined for the SOAP grammar (e.g.,
<Envelope>, <Body>, etc.). XML namespaces are generally associated
with a prefix, which can then be used to qualify elements and attributes
throughout the XML document. XML namespaces are not necessarily
existing URIs; they are simply unique strings, recognizable by any ap-
plication that uses the vocabulary defined within the namespace.

Web Services . 173



XML Schema
A schema is an XML document that describes the structures, con-
straints, and relationships of an XML data file. In other words, it pre-
scribes the format of an XML document. As we will see in the WSDL
and Web Service Discovery sections of this chapter, both WSDL and
DISCO files must adhere to certain schemas.

HTTP
HTTP stands for Hyper Text Transfer Protocol and is the underlying
communication protocol behind the Web. HTTP defines how requests
and responses between client and server are formatted and transmitted.

The Internet is datacentric—to obtain information, you usually have
to provide it. To perform an Internet search, for example, you must pro-
vide the subject of the search. This information is transmitted to the
search engine, and the search results are returned in a response. In
HTTP, this information is communicated as name-value pairs—the
name of the variable being sent (in our case it might be SearchSubject)
and the contents of the variable. HTTP defines two procedures for
querying data over the Internet, namely HTTP GET and HTTP POST.
The difference between GET and POST lies in the way the name-value
pairs are transported.

An HTTP message consists of two parts, namely the header informa-
tion and an optional message body. The header information consists of
items such as the HTTP protocol to use (GET or POST), the URI of the
requested resource, the content-type of the message body, and so on. As
we will see in the HTTP POST and SOAP section of this chapter, the
format of the message body depends on the protocol used.

HTTP GET
In an HTTP GET request, name-value pairs are transmitted as part of

the URI request itself. If you were to perform a search for “CodeNotes”
on the popular Google Internet search site, for example, the address on
your browser would look similiar to the following:

http://www.google.com/search?q=CodeNotes

Notice the name-value pair in the URI above. The name of the variable
is represented by “q,” which possibly stands for query. The value is as-
sociated with “q” in our search string, “CodeNotes.” HTTP GET re-
quests are formed in the above format, by appending name-value pairs
to the URI request, a process commonly referred to as url-encoding. 

174 . CodeNotes® for .NET



HTTP POST
Like GET, HTTP POST sends url-encoded name-value pairs to a des-

tination on the Internet. The difference is that name-value pairs are not
appended to the destination URI but are embedded in the HTTP request
as the message body. When you fill out a customer information form on-
line, POST is often used instead of GET. When using POST, transmitted
data is packaged in the message body and does not appear in the URL,
affording a greater amount of security.

Either GET or POST can be used to call a web service. GET is often
used when the amount of data passed to the component is small and not
secretive. POST is desirable in circumstances where the amount of data
is large (possibly thousands of bytes) or where security is a concern. We
will investigate how a web service uses the HTTP protocol in the fol-
lowing example, as well as the HTTP POST and SOAP and WSDL 
sections of this chapter. 

WEB SERVICE EXAMPLE

In this example we will create a simple Calculator web service that ex-
poses one function—GetRandomNumber(). Web services require that
ASP.NET and IIS are installed on the host machine. Both of these prod-
ucts should be installed automatically by the .NET Framework setup.

The first step is to create a directory on your machine that will house
your web service (call it C:\MyWebService). The IIS Configuration tool
is then used to turn this directory into a virtual directory, which makes
files stored in C:\MyWebService accessible to IIS and ASP.NET. Launch
the IIS Configuration manager by going to Start Menu ➝ Programs ➝
Administrative Tools ➝ Internet Services Manager. Right-click on De-
fault Web Site. Selecting New ➝ Virtual Directory from the popup menu
launches the Virtual Directory Creation Wizard. You will be prompted to
give the directory an alias (enter MyService), as well as the actual loca-
tion of the directory on your machine (enter C:\MyWebService). The 
creation of the virtual directory is now complete, and all files in 
C:\MyWebService are available to IIS and ASP.NET via the URI
http://localhost/MyService/.

The next step is to implement the actual web service. Using your 
favorite text editor, create a file in C:\MyWebService called 
Calculator.asmx. Note that web services are characterized by the .asmx
file extension, whereas ASP.NET pages (Chapter 8) have the extension
.aspx. As stated at the beginning of this example, our web service 
will expose one function called getRandomNumber(), which accepts 
two floating-point parameters x and y, and returns a random floating-

Web Services . 175



point number in-between. Copy the following C# source code 
into Calculator.asmx. A VB.NET equivalent can be obtained at
aNET090001.

<%@ WebService Language="C#" Class="CodeNotes.Calculator" %>

namespace CodeNotes {
using System;
using System.Web;  // Need these two references
using System.Web.Services;  // for Web Services.

[WebService(Namespace=
"http://www.codenotes.com/webservices/")]

public class Calculator 
{
[WebMethod(Description=
"Generates a random number between x and y")]

public double getRandomNumber(double x, double y)
{
Random r = new Random();
double randDouble = r.NextDouble();    
double returnVal = (y - x) * randDouble + x;
return returnVal;
}

}
} 

Listing 9.1 Calculator web service (Calculator.asmx)

Notice that the Calculator class in Listing 9.1 follows virtually the same
C# syntax that we have used to create other .NET components. Three
new syntax features, which are bolded in Listing 9.1, are added to trans-
form the Calculator class into a bona fide web service. 

1. <%@ WebService Language=“C#” Class=“CodeNotes.
Calculator” %>. Typically, a web service such as Calculator
.asmx remains uncompiled on the server until it is accessed.
When a web service is first accessed, it is Just In Time (JIT)
compiled by ASP.NET. The <%@ WebService %> descriptor is
used to specify the language in which the service is written
(C#), as well as the class that is to be exposed (CodeNotes.Cal-
culator). ASP developers will recognize the <% and %> tags
used to denote information intended for the web server. 

176 . CodeNotes® for .NET

http://www.codenotes.com/cnp?cnp=NET090001


When the Calculator service is first called, ASP.NET will
parse the <%@ WebService %> line and invoke the C# com-
piler (csc.exe) to compile the Calculator class. Alternatively,
you do have the option of precompiling your class into an 
assembly. See the How and Why section at the end of this ex-
ample for details.

2. [WebService(Namespace=“http://www.codenotes.com/web
services/”)]. The WebService attribute is used to define the
XML namespace for a web service. If you are unfamiliar with
attributes, please refer to the Attributes section in Chapter 4. As
discussed in the Core Concepts section above, XML name-
spaces uniquely define a collection of predefined XML ele-
ments. In this case, the predefined elements are the methods
exposed by the web service.

The application of the XML namespace will be examined in
more depth in the WSDL section of this chapter. At this point, 
it is important to note two points about the web service 
XML namespace. First, the namespace is required to ensure 
that the GetRandomNumber() method of our Calculator class is
unique, as compared to any other Calculator web services on the
Internet. Secondly, the specified namespace (in this case
http://www.codenotes.com/webservices/) does not represent the
location of a resource on the Web—the namespace could just as
easily have been declared as:

[WebService(Namespace="SomeServiceXYZ")]

URLs, however, are typically used for XML namespace, since
they are inherently unique.

3. [WebMethod(Description=“Generates a random number be-
tween x and y”)]. Every method exposed by a web service must
be marked with the [WebMethod] attribute. The [WebMethod]
attribute alone transforms the class method into a Web-callable
one. The optional Description parameter, on the other hand, al-
lows the developer to provide a human-readable description of
the method’s functionality. In a later section of this chapter,
Other Web Service Features, we will discuss additional [Web-
Method] parameters used to manage state and transactions for a
web service method.

The [WebMethod], [WebService], and <% WebService %> descrip-
tors transform the C# Calculator class into a Calculator web service. The

Web Services . 177



remaining lines in Listing 9.1 are straightforward C#. The System
.Random class is used to return a random number within the interval
specified by parameters x and y. 

To invoke the web service, launch Internet Explorer and navigate to
http://localhost/ MyService/Calculator.asmx. ASP.NET creates a default
page that depicts the methods exposed by Calculator.asmx, along with a
link called “Service Description.” The Service Description is the WSDL
(an XML interface) for this web service and is discussed in detail in the
WSDL section of this chapter. Click on GetRandomNumber() to obtain the
following screen:

Figure 9.1 Accessing our web service through IE

Note that the Description parameter of the [WebMethod] attribute we
specified in Listing 9.1, “Generates a random number between x and y,”
is parsed by ASP.NET, and appears in Figure 9.1.

Below the description, ASP.NET lists the parameters accepted by the
GetRandomNumber() method, and displays entry fields allowing you to
invoke the method for test purposes. Scroll down the default page, and
note the sections with headings “SOAP”, “HTTP POST,” and “HTTP

178 . CodeNotes® for .NET



GET.” These three sections present example request and response mes-
sages in the format required to access the web service. Keep these for-
mats in mind, as we will use this information in the following section,
HTTP POST and SOAP. 

Test the GetRandomNumber() method by entering values for x and y
(say, 0 and 100), and click Invoke. Doing so will bring up a screen with
the response from the service. Figure 9.2 shows the output obtained
from the GetRandomNumber() method call.

Figure 9.2 GetRandomNumber() results

Notice that GetRandomNumber() returned its result in XML format; this is
true for all web service methods. Also note that the XML element con-
taining the random number uses the XML namespace we specified with
the [WebService] attribute (Listing 9.1). This namespace distinguishes
the result returned by our component from results returned by other web
services. 

Look closely at the URL in Figure 9.2 and you will see that the x and
y values you specified are embedded into the URL itself. From the Core
Concepts section of this chapter, you should recognize this format as an
HTTP GET request. When the Invoke button (Figure 9.1) was clicked,
the following sequence of events occurred:

1. The browser (Internet Explorer, in our case) reads the x and 
y values from the fields in the HTML page and sends out the 
following HTTP GET request: http://localhost/myservice/
Calculator.asmx/GetRandomNumber?x=0&y=100

2. IIS and ASP.NET determine that the request is for the Calcula-
tor component located in the MyService virtual directory. (Re-
call that this actually points to the directory C:\MyWebService on
the local machine.)

3. If the web service is being requested for the first time, ASP.NET
JIT-compiles the component according to the first line in Listing
9.1. Remember the <%@ WebService %> descriptor instructed

Web Services . 179



ASP.NET to use the C# compiler (csc.exe) to build the Calcula-
tor component. After compilation, ASP.NET delivers the fol-
lowing HTTP GET request to the Calculator component:

GET /myservice/Calculator.asmx/GetRandomNumber?x=0&y=100 
HTTP/1.1

Remember that adding the <%@ WebService %>, [WebService]
and [WebMethod] tags transformed our C# Calculator class into
a web service. One virtue of a web service is that it inherently
interprets HTTP requests behind the scenes. The Calculator ser-
vice determines that a client is calling the GetRandomNumber()
method with parameters x=0 and y=100. The Calculator service
executes the method to produce a random number between 0
and 100.

4. The Calculator web service packages the result into the XML
format of Listing 9.3. This result is returned to the ASP.NET
Runtime with the instruction that it be delivered to the client.

5. IIS sends the XML result over HTTP back to the client (in this
example, the web browser). 

The above steps certainly seem like a roundabout method of obtaining a
random number! This scenario is more impressive, however, if you real-
ize that the client could have been anywhere (across the room, across the
ocean), and the exposed method could have done anything (queried a
database, traded a stock, etc.). Also keep in mind that our client does not
have to be a web browser. It can be any application capable of sending
HTTP over the Internet. In addition, parameter methods can be trans-
ferred using more sophisticated mechanisms such as HTTP POST and
SOAP. The next topic will examine these two protocols in detail. 

HOW AND WHY

Can My Web Service Class Reside in a Compiled Assembly?
In the previous example we didn’t compile Calculator.asmx. Instead, the
ASP.NET Runtime JIT-compiled the class when the GetRandomNumber()
method was first called. Situations may arise where you want ASP.NET
to invoke a web service that is already compiled. One such scenario is
when you want to write a web service in managed C++. Unfortunately,
ASP.NET can only JIT-compile components written in C#, VB.NET, 
or JavaScript (by using the Language="C#/VB/JS", options of the 
WebService attribute, respectively). 

180 . CodeNotes® for .NET



To expose a C++ version of the Calculator component as a web ser-
vice (the source code can be found at aNET090002), compile it into an
assembly using the Visual C++ compiler:

cl /CLR /LD Calculator.cpp

Place the Calculator.DLL assembly file that is produced in the virtual
root’s bin directory (C:\MyWebService\bin in our example). Now create
a text file called CalcCpp.asmx in C:\MyWebService that contains the fol-
lowing line:

<%@ WebService Class="CppCalc.CalcClass,Calculator"%>

The highlighted portion of the line above tells ASP.NET that the web
service resides in the Calculator.DLL assembly (ASP.NET automati-
cally looks in the bin directory for it). Note that when specifying the as-
sembly name, you omit the DLL extension. Also note that we do not
specify a Language, since ASP.NET will be executing code that is al-
ready compiled. 

Point your browser to http://localhost/myservice/CalcCpp.asmx and
ASP.NET will run the managed C++ class as a web service. This tech-
nique can also be used on languages that are not supported by ASP.NET
but may produce IL code in the future (COBOL, Java, etc.). You can, if
you wish, also use this procedure on classes written in C#, VB.NET, and
JavaScript. Because the component is already in an assembly, the initial
delay time it takes ASP.NET to JIT-compile it (the first time it is in-
voked) is eliminated. This is an especially attractive option if target class
is large and complex. 

SUMMARY

A web service is a component that can be accessed over the Internet. To
expose a web service, you must have it run within a web server that
feeds it incoming HTTP requests and sends method results back to the
client as HTTP responses. In the .NET Framework, web services are
housed by Internet Information Server (IIS) and ASP.NET. 

A web service resides in an .asmx file, which is JIT-compiled when
the web service is accessed, or in a precompiled assembly that is auto-
matically loaded when the web service is invoked. Every method in the
web service that is to be made publicly accessible must be marked with
the WebMethod attribute. 

Web Services . 181

http://www.codenotes.com/cnp?cnp=NET090002


Topic: HTTP POST and SOAP

In this Web Service Example section of this chapter, we used HTTP
GET to communicate with the Calculator service. Recall that HTTP
GET appends data in name-value pairs to the URI of the web service it
is calling. Calling the Calculator’s GetRandomNumber() method from the
web browser, for example, required the following url-encoded string:

http://localhost/myservice/Calculator.asmx/GetRandomNumber?x=0&y=0

While simple to use, HTTP GET can be limiting in two situations:

• When you need to pass a lot of information to the web service. If,
for example, you need to pass an array of one thousand numbers,
each number would have to be appended to the URI. While the
HTTP specification does not restrict the length of a URI, many
web servers and HTTP clients place practical limits on its length.

• When sensitive information is being transmitted (a credit card
number, for example). Appending confidential data to the URI is
unacceptable, since it can be easily intercepted and exploited.

In this section we examine two alternative methods of communicating
with a web service—HTTP POST and SOAP. 

HTTP POST EXAMPLE

When communicating with a web service via HTTP POST, data is em-
bedded as name-value pairs in the HTTP request’s message body. Un-
like HTTP GET, the name-value pairs do not appear as part of the URI. 

In this example we call the Calculator component that we developed
in the Web Service Example section of this chapter. Unlike in the Web
Service Example, however, we will not use the web browser to commu-
nicate via HTTP GET. Instead, we will use a properly formatted HTTP
POST request to access the Calculator service. To this end, we employ
an HTTP-capable component (Microsoft’s MSXML COM Component,
version 3.0) from Visual Basic 6.0. The use of VB6 is intentional—it
demonstrates that web services can be used outside of .NET with any
client capable of sending and receiving HTTP requests. Realize also that
our client need not be a Windows component. The client could just as
easily reside on a Linux or Macintosh machine.

182 . CodeNotes® for .NET



In Figure 9.1 we showed the default page generated by ASP.NET for
the Calculator service’s GetRandomNumber() method. Revisit this page
by launching IE with the following URL:

http://localhost/myservice/Calculator.asmx?op=GetRandomNumber

Scroll down this page and look under the heading HTTP POST. This
section of the page presents the message format required to access the
Calculator service via HTTP POST. The request and response messages
appear as follows:

POST /myservice/Calculator.asmx/GetRandomNumber HTTP/1.1
Host: localhost
Content-Type: application/x-www-form-urlencoded
Content-Length: length

x=string&y=string

Listing 9.2 Sample HTTP POST request for the Calculator service

HTTP/1.1 200 OK
Content-Type: text/xml; charset=utf-8
Content-Length: length

<?xml version="1.0" encoding="utf-8"?>
<double xmlns="http://www.codenotes.com/webservices/">
double</double>

Listing 9.3 Sample HTTP POST response from the Calculator service

The first four lines of Listing 9.2 are the required headers for the 
HTTP POST request. Note that /myservice/Calculator.asmx/
GetRandomNumber is the URI of the resource we are requesting—the
Calculator service’s GetRandomNumber() method. The Content-Type
specifies the format of the data in the message body. “x-www-form-url-
encoded” specifies that data is url-encoded as name-value pairs in the
message.

Listing 9.3 describes the format of results returned from the web ser-
vice. Of particular importance is the line “Content-Type: text/xml”. Re-
call that results from a .NET web service are encoded as XML,
regardless of the protocol used to request the service (HTTP GET/POST
or SOAP). Note also that the XML result from the service (the <double>

Web Services . 183



element) is prefixed with the XML namespace we used in Listing 9.1
(http://www.codenotes.com/webservices/). Remember, this does not
refer to a resource on the web—it is a namespace that distinguishes the
Calculator’s double result from other web services on the Internet.

Using Listing 9.2 as a template, we now write a Visual Basic applica-
tion that calls the GetRandomNumber() method. You can obtain the full
source code online at aNET090003, along with compiled binaries for
those who do not have access to a Visual Basic compiler. Alternatively,
create a new Standard EXE project in VB6. In the Projects menu, select
References and add a reference to the Microsoft XML, v3.0 component
(WinNT\System32\msxml3.DLL). Add a textbox and one button to
your form so that it resembles the interface in Figure 9.3.

Figure 9.3 Visual Basic HTTP POST application

Double-click on the HTTP POST button and add the code in List-
ing 9.4 to the button’s click event. This code uses the MSXML component
to call GetRandomNumber(), placing the obtained results in the textbox.

'Instantiate the MSXML component
Dim req As New MSXML2.XMLHTTP30

'Specify the URI of our component 
'(the second variable specifies synchronous behavior)
req.open "POST", 
"http://localhost/myservice/Calculator.asmx/GetRandomNumber",
False

'Set HTTP Headers
req.setRequestHeader "Host", "localhost"

184 . CodeNotes® for .NET

http://www.codenotes.com/cnp?cnp=NET090003
http://www.codenotes.com/webservices/


req.setRequestHeader "Content-Type", 
"application/x-www-form-urlencoded"

'Send the HTTP POST request and place results in the textbox
req.send "x=1&y=100"
Dim responseStr As String
responseStr = "Content-Type: " & 
req.getResponseHeader("Content-Type") & vbCrLf

responseStr = responseStr & "Content-Length: " & 
req.getResponseHeader("Content- Length") & vbCrLf

responseStr = responseStr & req.responseText
Text1.Text = responseStr

Listing 9.4 Calling GetRandomNumber() using HTTP POST

The req.open line specifies the HTTP Protocol, POST, as well as the
URI of the GetRandomNumber() method. The False parameter tells the
MSXML component to send the HTTP request synchronously—that is,
after calling req.send(), block program execution until a response is re-
ceived.

The two req.setRequestHeader() calls set the required HTTP head-
ers Host and Content-Type. You might notice that the Content-Length
header from Listing 9.2 is omitted. This header (the length in bytes of
the HTTP message) is automatically calculated and inserted by the
MSXML component.

The req.send() call appends the url-encoded string to the body of 
the HTTP message and sends the message to the specified HOST. When
the HOST responds, the message is displayed in the form’s textbox (Fig-
ure 9.3). Run the application by pressing F5, click the HTTP POST Re-
quest button, and you will see the following response in the textbox:

Content-Type: text/xml; charset=utf-8
Content-Length: 120
<?xml version="1.0" encoding="utf-8"?>
<double xmlns="http://www.codenotes.com/webservices/">
57.845199582560547</double>

Listing 9.5 HTTP response message

Listing 9.5 shows that the web service responds to our request with the
format described in Listing 9.3.

Web Services . 185



SOAP OVERVIEW

The third way to communicate with a web service is through SOAP, a
frequently acclaimed technology in the .NET Framework. SOAP stands
for Simple Object Access Protocol. SOAP prescribes how components
communicate with one another using XML messages. Because SOAP
uses XML to exchange information, it can more richly describe the data
that is exchanged between a client and component (when compared to
the HTTP POST and HTTP GET protocols). 

At the heart of the SOAP XML message is the SOAP Envelope,
which is a container for information being sent to the recipient. As the
following listing demonstrates, the Envelope typically defines the XML
namespaces used throughout the message.

<soap:Envelope 
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
... >
--> SOAP Message Contents here

</SOAP-ENV:Envelope>

Listing 9.6 SOAP Envelope

As Listing 9.6 shows, the SOAP Envelope is defined in the XML name-
space http://schemas.xmlsoap.org/soap/envelope/. Also defined in this
namespace is the Body element. The SOAP Body specifies the actual op-
erations and data to be processed by the recipient—method calls, for ex-
ample, along with any required parameters. The SOAP Body element is
always a child element of the Envelope, as depicted below:

<soap:Envelope 
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/" >
<soap:Body> ... </soap:Body>

</SOAP-ENV:Envelope>

Listing 9.7 SOAP body

As its name implies, SOAP is simple. Beyond the predefined ele-
ments such as Envelope and Body, SOAP requires only that the contents
of the body be a well-formed XML document. SOAP does not prescribe
any standard format for calling remote methods, or passing parameters.
The interpretation of the data embedded in the Body is left completely up
to the recipient of the message, in our case, the web service.

The SOAP specification also defines the elements Header and Fault
as children of the SOAP Envelope. The Header element is used to in-
clude optional data for the recipient, and is usually used to implement

186 . CodeNotes® for .NET



features such as authentication or transaction management. The Fault
element is a standard method of presenting error information within a
SOAP message. While a discussion of the Header and Fault elements is
beyond the scope of this CodeNote, information and examples of their
usage can be obtained at aNET090004.

When you call a web service method with HTTP POST, you pass the
method parameters in the message body as a url-encoded string. As long
as the data type to be transmitted to the service can be broken up into
name-value pairs, HTTP POST is sufficient. Consider a web service
method that accepts an ADO.NET Dataset as an input parameter (see
Datasets in Chapter 6). There is no way to represent this Dataset as a pa-
rameter list of name/value pairs. Thus HTTP POST is not sufficient
when complex types (nonprimitive) must be transmitted to and from the
web service.

SOAP is very similar to HTTP POST, except that the message body
is an XML document instead of a url-encoded string. SOAP has an ad-
vantage over HTTP GET/POST by virtue of XML’s support for repre-
senting complex data types. In the XML Support section of Chapter 6,
we showed how XML can be used to represent complex heirarchical
data structures. Thus, passing a complex structure (such as a Dataset) to
a web service requires writing the XML equivalent of the structure and
embedding it as the body of the HTTP message.

Although SOAP is more flexible than HTTP GET or POST, there are
situations where GET or POST is more appropriate. XML is verbose,
and the hierarchical nature of the data requires elements to be nested
within opening and closing tags, as depicted below:

<someTag>
<someElement> someValue </someElement>

</someTag>

HTTP GET and POST do not support hierarchical data, so you can get
away with simply writing:

someElement = someValue

Compare the HTTP POST and SOAP messages. It is apparent that
SOAP messages are significantly longer than their HTTP POST coun-
terparts. When web methods require only primitive data types as param-
eters, one achieves better performance by using HTTP POST instead of
SOAP.

Web Services . 187

http://www.codenotes.com/cnp?cnp=NET090004


SOAP Example
We will now revisit the default page generated by ASP.NET for the Cal-
culator service’s GetRandomNumber() method (Figure 9.1). The default
page can be viewed at the following URI:

http://localhost/myservice/Calculator.asmx?op=GetRandomNumber

Scroll down the default page and observe the section entitled SOAP,
which displays the SOAP format required to access the Calculator com-
ponent (recall that this page displays sample HTTP GET, HTTP POST,
and SOAP messages). The sample SOAP request message is provided in
the following listing:

POST /myservice/Calculator.asmx HTTP/1.1
Host: localhost
Content-Type: text/xml; charset=utf-8
Content-Length: length
SOAPAction: 
"http://www.codenotes.com/webservices/GetRandomNumber"

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<GetRandomNumber 

xmlns="http://www.codenotes.com/webservices/">
<x>double</x>
<y>double</y>

</GetRandomNumber>
</soap:Body>

</soap:Envelope>

Listing 9.6 Sample SOAP request message

Remember that a SOAP message is an HTTP POST with an XML mes-
sage body. The first line of Listing 9.6 shows that the POST protocol is
being used, and the request URI is the relative path to the Calculator ser-
vice. Compare this URI with the one used to call the web service with
standard HTTP POST (Listing 9.2). Note that when using standard
HTTP POST, the URI is of the web service’s method, whereas we sim-
ply specify the URI of the web service when using SOAP:

188 . CodeNotes® for .NET



POST /myservice/Calculator.asmx/GetRandomNumber (HTTP POST -- Listing 9.2)
POST /myservice/Calculator.asmx                 (SOAP      -- Listing 9.6)

The SOAP specification adds the SOAPAction HTTP header to the list
of required headers. Note that the SOAPAction header does not point to
a valid location on the Internet. Instead, it is the namespace-qualified
URI of the requested method.

When calling the service with HTTP POST (Listing 9.2), the 
Content-Type was set to application/x-www-form-urlencoded, since
the message body contains a string of name-value pairs. Since the body
of a SOAP message is an XML document, we set the Content-Type ac-
cordingly to text/xml (Listing 9.6). 

To call the GetRandomNumber() method using SOAP, we need to 
create an HTTP POST message, set the appropriate headers, and 
attach a SOAP Envelope (formatted according to Listing 9.6) to the 
message body. Listing 9.6 highlights that SOAP messages are 
much more verbose than their HTTP POST counterparts. To call the 
GetRandomNumber() method with HTTP POST, we passed the parame-
ters as a name-value string, for example:

x=0&y=100

With SOAP, we no longer assume that a parameter is a simple type that
can be expressed by name and value alone. The GetRandomNumber()
method is referenced as follows:

<GetRandomNumber xmlns="http://www.codenotes.com/webservices/">
<x> 0 </x>
<y> 100 </y>

</GetRandomNumber>

Note that x or y could just as easily been objects with child XML ele-
ments, each with their own data, allowing support for complex types.

To test calling the Calculator web service via SOAP, we will once
again use Visual Basic 6 and the Microsoft XML Component, as we did
in the HTTP POST example. Source code and compiled binaries for this
example can be found at aNET090005. To create the application your-
self, open Visual Basic and create a new Standard EXE. Design a form
similar to the following:

Using the code of Listing 9.4 as a template, we once again use the
MSXML component to send the SOAP request to the Calculator com-
ponent. In Visual Basic, double-click on the SOAP Request button (Fig-

Web Services . 189

http://www.codenotes.com/cnp?cnp=NET090005


Figure 9.4 SOAP example in Visual Basic

ure 9.4) and add the following code to format the SOAP message ac-
cording to Listing 9.6.

Dim req As New MSXML2.XMLHTTP30
req.open "POST", "/myservice/Calculator.asmx", False

'Set HTTP Headers
req.setRequestHeader "Host", "localhost"
req.setRequestHeader "Content-Type", "text/xml"
req.setRequestHeader "SOAPAction",
"http://www.codenotes.com/webservices/GetRandomNumber"

'Send the SOAP Message. 
req.send txtRequest.Text
txtResponse.Text = req.responseText

Listing 9.7 Calling the GetRandomNumber() method with SOAP

Note that in Figure 9.4, the top textbox (txtRequest) already contains the
SOAP Envelope required to call the Calculator service with parameters
x=0 and y=100. Run the application by pressing F5, then click the
SOAP Request button. The following information will appear in the bot-
tom text area (txtResponse):

190 . CodeNotes® for .NET



?xml version="1.0" encoding="utf-8"?>
<soap:Envelope 
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<soap:Body>
<GetRandomNumberResponse

xmlns="http://www.codenotes.com/webservices/">
<GetRandomNumberResult>96.088118383701953
</GetRandomNumberResult>
</GetRandomNumberResponse>

</soap:Body>
</soap:Envelope>

Listing 9.8 SOAP response message

Compare the response message in Listing 9.8 with the HTTP POST re-
sponse message in Listing 9.5, and another property of SOAP will be-
come evident: it embeds method results in a SOAP envelope as opposed
to the simple XML format used by HTTP GET and HTTP POST. 

This example shows that calling a web service with SOAP is a more
extensive process than with either HTTP GET or POST. We must first
decide on the calling protocol, package and send a properly formatted
HTTP request message, and then parse the HTTP response message for
the result. Fortunately, the .NET Framework can automate the majority
of these operations for us. It can only do this with self-describing infor-
mation from the component, however, and this is provided by a web ser-
vice’s interface, which is described in WSDL—our next topic. 

Given that .NET can abstract these intricate details for us (using
proxy classes, which we will examine in the next section), was it neces-
sary to persevere through the preceding example? Remember, you may
need to call a web service from a platform where no automation mecha-
nisms exist, in which case you would have to resort to our manual ap-
proach (our VB6 example could run on any Win32 environment even
without the .NET Framework). In addition, understanding what is oc-
curring behind the scenes is extremely valuable in those esoteric and
performance-critical situations where automation may be unacceptable. 

WEB SERVICE ALTERNATIVES

Although the web service infrastructure is a convenient way to remotely
converse with a component, it does have its disadvantages. Most no-

Web Services . 191



tably, information is transferred in either key-value pairs or verbose
XML over HTTP. Because HTTP is a text-based protocol, if you wish to
transfer binary data (an image, for example), it must be converted to a
text representation before it can be sent or received. This can severely
degrade response time, compounded by the fact that HTTP itself is not
a high-performance data protocol. 

For performance-critical applications, as well as those that exchange
binary data, an alternative worth considering is .NET remoting. Unlike
web services, remoting allows you to send data in its native format and
also enables you to use faster communication protocols (TCP, for exam-
ple). By using remoting, however, you forgo the interoperability of web
services, as well as the self-describing and discovery mechanisms that
we will discuss in the next sections. 

For an in-depth discussion of .NET remoting, please see
aNET090010, where we discuss the world of remoting, with subtopics
such as channels, leasing, activation and singletons. 

OTHER WEB SERVICE FEATURES

The .NET Framework exposes several advanced features that enable
you to create powerful web services. Some examples are application
state, which allows web service components to maintain state between
method invocations; transactions, which afford durable protection for
those web services that access databases; and security features, which
can be used to restrict those users who can access a web service. Infor-
mation on these advanced topics can be found at aNET090011.

SUMMARY

A web service can accept request messages in one of three protocols:
HTTP GET, HTTP POST, and SOAP. The difference between these pro-
tocols lies in how information is transferred between the web service
and the client. With HTTP GET, information is transferred as name-
value pairs, which are appended to the web service’s URI: http://.../
GetRandomNumber?x=0&y=100. Although HTTP GET is very simple,
appending value-name pairs to a URI can be restrictive when a lot of in-
formation needs to be transferred, or when security is a concern. 

With HTTP POST, value-name pairs are transferred as part of the
HTTP body itself (not appended as part of the URI). This affords a
greater amount of security than HTTP GET. SOAP is similar to HTTP
POST, except that the HTTP body contains a SOAP XML envelope in-

192 . CodeNotes® for .NET

http://www.codenotes.com/cnp?cnp=NET090010
http://www.codenotes.com/cnp?cnp=NET090011


stead of simple name-value pairs. A SOAP envelope is an XML docu-
ment that describes the information being transferred to the web service.
Because a SOAP envelope is XML, it can transmit complex data types
that cannot be described using the simple name-value pairs in HTTP
GET and POST. 

Topic: WSDL

WSDL stands for Web Service Description Language, and is the way in
which a web service describes its interface. WSDL files are XML docu-
ments that specify the methods, expected parameters, and types exposed
by a web service. WSDL files also contain additional information, such
as the transfer protocol (HTTP GET, POST, SOAP) supported by a web
service and how invalid method invocations are handled. Those familiar
with COM or CORBA can think of WSDL as the web service equivalent
of Interface Definition Language (IDL).

WSDL allows client applications to programmatically determine the
manner in which a web service is called. In the Web Service Example
section at the beginning of this chapter, we examined the default page
generated by ASP.NET and used the sample request message to cor-
rectly format our HTTP message (refer to Figure 9.1). This process,
however, is specific to Microsoft .NET. Remember that web services are
simply components accessible on the Internet via HTTP and XML.
Given the ubiquitous nature of HTTP and XML, web services can be
created in many languages other than C# and VB.NET, and on platforms
other than Windows. It is clear that a standard platform- and language-
agnostic method of querying a web service’s interface is required.
WSDL was designed to meet these requirements.

You do not have to manually write WSDL files for web services de-
veloped with the .NET Framework; this task is done automatically by
ASP.NET. Nevertheless, it is instructive to examine the structure of
WSDL for two reasons:

1. You may need to develop a web service for another platform for
which automatic WSDL generation is not provided.

2. WSDL exposes the nuts and bolts of a web service, which is
useful for debugging. (COM developers can draw analogies to
the invaluable OLEVIEW.EXE utility, used to examine a COM
component’s IDL.)

WSDL is also used by the .NET Framework to generate proxy classes
for web services. Proxy classes wrap a web service’s interface and 

Web Services . 193



hide all of the HTTP plumbing from the developer. Proxy classes allow
web services to be used in .NET as any other assembly. The structure 
of WSDL and proxy generation are demonstrated in the following 
example.

EXAMPLE

In this example, we will examine the WSDL for the Calculator web ser-
vice developed in the Web Service Example section at the beginning of
this chapter. We will then demonstrate the creation of a proxy class. A
proxy class allows us to call the web service from any IL language (C#,
VB.NET, managed C++) without having to manually process HTTP re-
quest and responses. 

To obtain the WSDL for a .NET web service you append “?WSDL”
to the web service’s URI. Open a web browser and navigate to http://
localhost/myservice/Calculator.asmx?WSDL. ASP.NET will automati-
cally generate the WSDL for the Calculator and display the XML docu-
ment shown in Listing 9.9. Notice the <definitions> element (the parent
of the WSDL document), also shown below:

<?xml version="1.0" encoding="utf-8" ?> 
<definitions xmlns:s="http://www.w3.org/2001/XMLSchema" 
xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/" 
xmlns:s0="http:// www.codenotes.com/webservices/" 

...
targetNamespace="http://www.codenotes.com/webservices/" 
xmlns="http://schemas.xmlsoap.org/wsdl/">

Listing 9.9 The <definitions> element of the WSDL document

The <definitions> element defines boilerplate XML namespaces used
throughout the WSDL document, such as the namespaces for XML
Schemas, HTTP, and SOAP. The <definitions> element also includes
the XML namespace of the Calculator service (http://www.codenotes
.com/webservices/), which we defined in Listing 9.1. Remember, this
namespace is essential to distinguish the Calculator service from any
other web services on the Internet. Underneath the <definitions> ele-
ment, you will see the <types> element that describes the methods our
web service exposes and the parameters they expect. The <types> ele-
ment is shown in Listing 9.10. 

194 . CodeNotes® for .NET



<types>
<s:schema attributeFormDefault="qualified" 
elementFormDefault="qualified" 
targetNamespace="http://www.codenotes.com/webservices/">
<s:element name="GetRandomNumber">
<s:complexType>
<s:sequence>
<s:element minOccurs="1" maxOccurs="1" name="x" 
type="s:double" />

<s:element minOccurs="1" maxOccurs="1" name="y" 
type="s:double" />

</s:sequence>
</s:complexType>

</s:element>
<s:element name="GetRandomNumberResponse">
<s:complexType>
<s:sequence>
<s:element minOccurs="1" maxOccurs="1" 
name="GetRandomNumberResult" type="s:double" />

</s:sequence>
</s:complexType>

</s:element>
<s:element name="double" type="s:double" />

</s:schema>
</types>

Listing 9.10 The <types> element of a WSDL document

As depicted in Listing 9.10, the <types> element contains two other ele-
ments, called GetRandomNumber and GetRandomNumberResponse. These
elements specify the parameters the GetRandomNumber() method accepts
and returns, respectively. Proceed through the rest of the WSDL and you
will see the following additional elements:

• <message> elements called GetRandomNumberSoapIn, GetRandom
NumberHttpGetIn, etc., which describe how method messages for
a certain protocol must be formatted. 

• <porttype> and <bindingtype> elements called CalculatorSoap,
CalculatorHttpGet, etc., which specify the methods that can be
called on a certain protocol. 

• A <service> element called Calculator, which specifies the URI
the web service can be found at. 

Web Services . 195



It is easy to become overwhelmed by how verbose the WSDL is.
Keep in mind that you are inspecting the web service at its most reveal-
ing level, which can be incredibly useful during the development
process. Examining the WSDL is a powerful way to obtain information
that would be otherwise difficult to ascertain (the transfer protocols a
web service supports for example). Try adding a new method to the 
Calculator.asmx file we developed in Listing 9.1, reexamine the com-
ponent’s WSDL, and you will get a better feel for the nuances of WSDL. 

Proxy Class Example
We now demonstrate how you can create a proxy class that allows you
to call a web service without worrying about the underlying HTTP re-
quests. This requires using a utility in the .NET Framework called
WSDL.EXE, which accepts the following parameters:

• /l—specifies the language the proxy class should be generated in.
Specify CS, VB, or JS for C#, Visual Basic, or JavaScript, respec-
tively. 

• /n—specifies the namespace the proxy class will be contained in. 
• /p—determines the transfer protocol the proxy class will use. Al-

lowable values are SOAP, HttpGet, and HttpPost. 

Using these parameters we produce a C# proxy class in the CalcProxy
namespace for our web service:

WSDL /l:CS /n:CalcProxy /p:SOAP 
http://localhost/myService/Calculator.asmx?WSDL

Notice that after specifying the parameters, we must tell the
WSDL.EXE utility where to find the Web Service’s WSDL. The utility
will produce a file called Calculator.cs containing our proxy class. We
now use the C# compiler to produce an assembly that we can call from
client applications:

csc /t:library Calculator.cs

The resulting Calculator.DLL assembly now contains a Calculator
proxy class that we can access from a C# program as follows:

using System;
using CalcProxy; // reference the namespace the proxy class is in. 

public class CallCalc 

196 . CodeNotes® for .NET



{
static void Main()
{
Calculator c = new Calculator();
Console.Write("Random number between 0-100: ");
Console.WriteLine("{0}",c.GetRandomNumber(0,100));

}
}

Listing 9.11 CallProxy.cs —calling the Calculator proxy class

Compiling and running this application (csc.exe /r:Calculator.DLL 
CallProxy.cs) produces the following output:

Random number between 0-100: 43.7905868253627

Notice that in Listing 9.11 we called the Calculator class like any nor-
mal class in the .NET Framework; the proxy took care of the HTTP
messages behind the scenes. By using a proxy class, we are completely
abstracted from the details of the web service. 

HOW AND WHY

What If I Use a Proxy Class That Wraps a Web Service That Cannot Be
Accessed?
If you utilize a proxy class that attempts to communicate with an inac-
cessible web service (if the hosting web server is down, for example),
the CLR will generate an error similar to the following:

Unhandled Exception: System.Net.WebException: The request 
failed with HTTP status 404: Not Found.

When using a proxy class, therefore, you must be prepared for the pos-
sibility that the underlying web service might be unreachable. This re-
quires that you handle any exceptions that a proxy class might generate.
Error-handling example code can be found at aNET090006. 

SUMMARY 

WSDL stands for Web Service Description Language and is an XML
file that describes the methods a web service exposes and the manner in
which such methods must be invoked. The most important part of a

Web Services . 197

http://www.codenotes.com/cnp?cnp=NET090006


WSDL file is the <types> section, which depicts the methods the web
service exposes and the parameters they expect. The <message> section
of the WSDL file describes how one must package HTTP GET, HTTP
POST, and SOAP messages to make requests to the component. Other
elements include <porttype> and <bindingtype>, which specify the 
protocols the web service supports, and the <service> element, which
identifies the URI the web service can be found at. You do not manu-
ally create WSDL files in the .NET Framework—you generate them 
automatically by appending “?WSDL” to the URI of the web service 
itself. 

Calling web services in the .NET Framework is greatly aided by a
utility called WSDL.EXE. WSDL.EXE will examine a web service’s
WSDL and produce a web service proxy class. The proxy class exposes
all the methods of the web service, and you use it as a generic class in
your .NET programs. When you call the proxy class’s methods, it pack-
ages and sends an appropriate HTTP request to the real web service, and
then parses the response that it delivers back to your program. By using
proxy classes, you are completely abstracted from the underlying web
service protocols. 

Topic: Web Service Discovery

In the previous section we learned that a web service advertises its in-
terface using WSDL. By examining a component’s WSDL XML file,
one can determine the methods exposed by a web service and the man-
ner in which they must be invoked. In order to access the WSDL file,
however, we have to know the exact location of the web service. To ac-
cess the Calculator service’s WSDL in the last section, for example, we
navigated to the following URI:

http://localhost/myservice/Calculator.asmx?WSDL

This scenario is acceptable when the location of the service is known
ahead of time. Without the exact location, however, there is no way of
determining the web services a site exposes (if it exposes any at all).
Moreover, one cannot guarantee the language or platform on which the
web services or clients run. We need a platform- and language-neutral
way to publicly advertise services. This issue is resolved via XML in a
process known as web service discovery.

Web service discovery allows others to locate your web services. The
location of web services is determined via discovery files, which are

198 . CodeNotes® for .NET



XML documents that itemize the services on a given site. There are two
types of discovery files:

1. A static discovery file explicitly lists only those web services
you wish to advertise to the outside world.

2. A dynamic discovery file instructs ASP.NET to enumerate and
advertise all web services under the URL where the discovery
file resides.

One glaring question remains: How does a client know where the dis-
covery document is? How do they discover the discovery file? The con-
vention is to place a link on your website’s default page to what is called
a global discovery file, which lists all the web services the site exposes
(the user must know the location of your website—there is no escaping
this requirement). As we will see in the following example, this global
discovery file can point to other static and dynamic discovery files on
your site. Alternatively, you can make a discovery file itself the default
page of your website. Using a discovery file as your site’s default page
is only feasible, however, if your website is nothing more than a web
service storehouse with no user interface. Otherwise clients navigating
to your website will be greeted with a verbose XML document.

Note that you are not required to write discovery files. If, for instance,
you wanted to keep all of your web services private, discovery files
would not be desired. As the following example will demonstrate, how-
ever, you can choose which web services are advertised by including
only references to them in the discovery file.

The .NET Framework also offers utilities to take advantage of dis-
covery files published by others. A utility called DISCO.EXE interro-
gates a specified URL and determines if it exposes any web services.
The WSDL.EXE utility, examined in the WSDL section of this chap-
ter, creates proxy classes for all the web services listed in a discovery
file. Both of these are illustrated in the following example. 

EXAMPLE

In this example we will create both static and dynamic discovery files
for the Calculator web service used throughout this chapter. We will
then show how to employ the DISCO.EXE and WSDL.EXE utilities.
The files for this example can be found online at aNET090007.

Static XML discovery files have the .disco extension and begin 
with the <discovery> element. The <discovery> element can contain
two types of child element: <contactRef>, which points to the WSDL

Web Services . 199

http://www.codenotes.com/cnp?cnp=NET090007


for a given web service, and <discoveryRef>, which points to another
discovery file. Since our site has only one web service, Calculator.asmx,
our static discovery file takes the form in Listing 9.12:

<?xml version="1.0" ?>
<disco:discovery xmlns:disco="http://schemas.xmlsoap.org/disco/"
xmlns:wsdl="http://schemas.xmlsoap.org/disco/wsdl/">

<wsdl:contractRef 
ref="http://localhost/myService/Calculator.asmx?WSDL"/>

</disco:discovery>

Listing 9.12 Static discovery file

Notice that we specify the location of the Calculator’s WSDL by ap-
pending ?WSDL to its URI. To add a reference to a second web service, we
would simply add another <contractRef> child to the <discovery> ele-
ment. Save Listing 9.12 into a file with the .disco extension (i.e., 
Calculator.disco) and place the file in the virtual root directory for the
Calculator service (i.e., C:\MyWebService). This file constitutes a static
discovery file that clients can peruse to determine the web services ex-
posed by your site. Clients would examine the <contractRef> element
in Listing 9.12, retrieve and examine the WSDL of our Calculator com-
ponent, and invoke it if desired (you can automate the inspection of dis-
covery files in the .NET Framework using the DISCO.EXE utility,
which we will examine shortly). 

With static discovery files, we choose which web services we would
like to advertise. If our site contained a second web service called 
Private.asmx, clients would have no way of determining its existence
unless we explicitly added it to the Calculator.disco file. 

Dynamic discovery files work in the opposite manner. With dynamic
discovery, ASP.NET advertises all web services under a given URI, un-
less you explicitly specify which directories to exclude (see the How
and Why section on how to do this). Dynamic discovery files begin with
the <dynamicDiscovery> element, as shown in the following listing:

<?xml version="1.0" encoding="utf-8" ?>
<dynamicDiscovery 
xmlns="urn:schemas-dynamicdiscovery:disco.2000-03-17">

</dynamicDiscovery> 

Listing 9.13 Dynamic discovery file

Save the contents of Listing 9.13 into a file called myService.vsdisco
and place it in the virtual root C:\MyWebService. Note that dynamic 
discovery files have a .vsdisco extension, whereas static discovery 

200 . CodeNotes® for .NET



files have a .disco extension. It is also important to note from 
Listings 9.12 and 9.13 that <discovery> and <dynamicDiscovery>
elements are defined in different XML namespaces: <discovery>
elements in the DISCO namespace (http://schemas.xml.org/disco/),
<dynamicDiscovery> in the namespace “urn:schemas-dynamic-dis-
covery:disco.2000-03-17”.

Dynamic discovery lists every web service under a given URI. When
the dynamic discovery file is requested, ASP.NET automatically
searches the directory containing the discovery file, along with all sub-
directories, for any web services. The search results are then returned 
as a static discovery file. You can test this procedure by opening a 
web browser and navigating to http://localhost/myService/myService
.vsdisco. Your browser will display results similar to the following:

<?xml version="1.0" encoding="utf-8"?>
<discovery xmlns="http://schemas.xmlsoap.org/disco/">
<contractRef 
ref="http://localhost/myService/calculator.asmx?wsdl"/>

<discoveryRef 
ref="http://localhost/myService/calculator.disco" />

</discovery>

Listing 9.14 ASP.NET-generated static discovery file

The results obtained from ASP.NET correctly locate the WSDL of the
Calculator service and report the location of the static discovery file
(calculator.disco) that we created earlier in this example. Thus, dy-
namic discovery not only locates web services, it also detects other dis-
covery files beneath the given URI.

In summary, the static and dynamic discovery files calculator.disco
and myService.vsdisco allow clients to determine that our site exposes
a Calculator web service. With this knowledge, clients can then obtain
the WSDL to determine how to invoke the web service.

DISCO.EXE AND WSDL.EXE

DISCO.EXE is a utility that automates the discovery process. If you
point the utility to a discovery file, it will automatically retrieve all the
elements to which the discovery file refers. If you execute the following
on the command line:

DISCO.EXE http://localhost/myService/myService.disco

Web Services . 201



DISCO.EXE will retrieve the following files:

1. calculator.wsdl—the WSDL for our calculator component. 
2. myService.disco—the dynamic discovery file we created
3. static.disco—the static discovery file we created

The utility will also create a file called results.discomap, which is an
XML report of the files that it retrieved above. 

In the WSDL section we saw that we could use the WSDL.EXE util-
ity to create a web service proxy class by pointing it to the WSDL of a
component:

WSDL /l:CS /n:CalcProxy /p:SOAP
http://localhost/myService/Calculator.asmx?WSDL

You can also point this utility to a discovery file, in which case it will
create proxy classes for all the web services the discovery file refers to:

WSDL /l:CS /n:CalcProxy /p:SOAP 
http://localhost/myService/myService.disco

HOW AND WHY

How Do I Exclude a Web Service from Being Reported by Dynamic 
Discovery?
With dynamic discovery, you can only specify exclusion on a per-
directory basis. This means that you should move any web services you
don’t want dynamically reported to a prescribed directory (privateDir,
for example). You then stipulate that this directory be excluded from dy-
namic discovery by using the exclude path element of the discovery file:

<?xml version="1.0" ?>
<dynamicDiscovery 
xmlns="urn://schemas-dynamicdiscovery:disco.2000-03-17"> 
<exclude path="privateDir" />

</dynamicDiscovery>

As a result of this specification, any web service in the privateDir di-
rectory will not be reported by dynamic discovery. 

202 . CodeNotes® for .NET



Can Dynamic Discovery Handle Nested Virtual Directories?
As its name suggests, a nested virtual directory is a virtual directory
within a virtual directory. In the example at the beginning of this chap-
ter, we created a virtual directory called MyService, which really
pointed to the local C:\MyWebService directory. We could create a nested
virtual directory by bringing up the Internet Services Manager, right-
clicking MyService, and then selecting New ➝ Virtual Directory. Give
the new virtual directory an alias (enter nestedDir), as well as the actual
location of another directory on your machine (enter C:\AnotherDir).
You now have a virtual directory within a virtual directory, and if 
you point your browser to: http://localhost/myService/nestedDir/
someWebService.asmx, IIS will load someWebService.asmx, located in
C:\AnotherDir\. The question arises as to whether or not dynamic dis-
covery can detect web services located in nested directories. That is, if
you have a dynamic discovery file in the MyService virtual directory
(which is really C:\MyWebService), will it detect web services located in
the nested virtual directory nestedDir (which is really C:\AnotherDir)? 

As of this writing, ASP.NET does not detect web services in nested
directories. So, if you point your browser to the dynamic discovery file
we developed in Listing 9.13, http://localhost/myService/myService
.vsdisco, it will not detect any web services in nestedDir. This is thus a
second technique (in addition to the exclude path mechanism discussed
in the previous question) to prevent a web service from being detected
by dynamic discovery; by placing an .asmx file in a nested virtual direc-
tory, it cannot be detected by dynamic discovery files in the virtual root. 

SUMMARY

Web service discovery files are XML files that advertise the web ser-
vices on an Internet site. There are two types of discovery files: static
and dynamic. With static discovery files, you must explicitly list all the
web services you wish to advertise to the outside world. A static discov-
ery XML file begins with the <discovery> element and can contain two
types of child elements: <contractRef>, which points to the WSDL of a
web service, and <discoveryRef>, which points to another discovery
file. Static discovery files must have a .disco extension. 

Dynamic discovery files begin with the <dynamicDiscovery> ele-
ment and instruct ASP.NET to tally all the web services under the URI
in which the discovery file resides. After ASP.NET has dynamically de-
termined all of the web services a URI contains, it produces a static dis-
covery file, which can then be inspected by the user. Unlike static
discovery files, dynamic ones end with the .vsdisco extension. 

Web Services . 203



By interrogating a discovery file, a user can determine what web ser-
vices are exposed on your Internet site. Since the discovery file points to
a web service’s WSDL, a user can scrutinize it to determine where the
web service actually resides and the manner in which it must be called. 

Chapter Summary

A web service is a component that can be accessed through the HTTP
GET, HTTP POST, and SOAP protocols. A web service must be housed
by a web server, which conveys incoming requests to the component and
then communicates the results back to the client. In .NET, Internet In-
formation Server (IIS) and the ASP.NET Runtime are used to house web
services. 

A web service resides in a .asmx file, which is JIT-compiled by
ASP.NET the first time the web service is invoked. To communicate
with a web service, you must send it a properly formatted HTTP GET,
HTTP POST, or SOAP message. The major difference between these
three protocols lies in how parameters are passed to the web service.
With HTTP POST and HTTP GET, parameters are passed as simple
name-value pairs (x=0, y=100). With SOAP, parameters are passed
using a more complex SOAP XML envelope. The advantage of a SOAP
envelope over name-value pairs is that it can describe complex data
types such as ADO.NET Datasets, which cannot be communicated
using HTTP GET and HTTP POST. The disadvantage of SOAP is that
XML envelopes are more verbose than value-name pairs, thus taking
more time to transfer and interpret. 

A utility in the .NET Framework called WSDL.EXE abstracts users
from the details of web service transfer protocols and messages by pro-
ducing a web service proxy class. The proxy class can be called as a nor-
mal class in your .NET programs and takes care of the underlying HTTP
response and request messages behind the scenes. 

Web services describe themselves to the outside world using WSDL
files. These XML files describe the methods a web service exposes, the
manner in which they must be called, and additional information about
the web service (e.g., the transfer protocols it supports). Another type of
XML file, called a discovery file, allows one to advertise all the web ser-
vices that a given Internet site contains. There are two types of discov-
ery files: static files, which must explicitly list those web services you
wish to advertise, and dynamic files, which instruct ASP.NET to auto-
matically advertise all the web services that a given site contains.

204 . CodeNotes® for .NET



Index

ADO (ActiveX Data Object),
104–106

ADO.NET, 5, 104–128
design principles of, 106–107

AllowsMultiple parameter, 62–63
AppDomains, 48

vs. Win32 processes, 48, 101
application directives, 164, 165–166
application scope, 167
<appSettings>, 168, 169
ArrayList class, 16
ASP (Active Server Pages)

state variables in, 170
ASP.NET, 146–171

advantages of, 160, 171
analyzing output of, 154
creating applications with,

150–152, 163–170, 175–180
scripts and languages in, 

155–156
assemblies, 24, 34–46

class inheritance from, 30
deploying, 38–40
location of, 24, 33, 35
vs. namespaces, 34
private, 35, 43–44, 45
registering in GAC, 45
shared, 35–37, 45

trustworthiness of, 44
types in, 53
updating, 40–43

Assembly directive, 165
AssemblyVersion attribute, 37, 41,

48–49
omission of, 44

atomic operations, 122–123
attributes, 37, 47, 48–53. See also

individual attributes
custom, 49, 53, 60–67, 68
metadata produced by, 60
multiple constructors in, 67
parameters in, 60–61, 67
predefined, 49, 52, 53, 60
syntax of, 50
uses of, 49

AttributeUsage attribute, 62
AutoComplete attribute, 127
Automatic Log On, 20
automatic transactions, 124–125

binding, 35
breakpoints, 160

C, creating GUIs in, 130–131
C++

vs. C#, 7–8



C++ (cont’d)
calling components from .NET,

96–98
class inheritance in, 7
compiling in, 27–30
constructing classes in, 25–27
conversion of COM components

in, 100–101
garbage collection in, 84–85
location of assemblies, 33
managed, 7, 9, 10, 33, 85
using classes in VB, 30–31

C#, 4, 7–8
vs. C++, 7–8
calling COM components from,

98–100
construction of delegate chains in,

74–75
creating callback functions in,

69–71
events in, 79–82
garbage collection in, 85, 88
vs. Java, 7–8
and SQL databases, 110–112,

114–119
using reflection in, 54–59
using shared assemblies in, 36–37
working with DLLs in, 92–93

Cache API, 150
caching, 149–150
callback functions, 68, 83–84

vs. delegates, 69
CAS (Code Access Security), 12
CASPOL.EXE, 12, 59
CCWs (COM Callable Wrappers),

100, 102
classes. See also individual classes

C++, in VB, 30–31
inheritance of, 6, 7, 24–25, 30,

140–141
in managed providers, 109
namespaces in, 12–14
proxy, 193–194, 196–197, 198,

204
Runtime, 4, 12–17

CLR (Common Language Runtime),
4, 10–12

functions of, 10, 12
vs. Java VM, 4
and native code, 90–91
security in, 35–36

uses of metadata in, 23, 24, 46, 
67

versioning in, 38, 41–45
CLS (Common Language

Specification), 11
code

managed, 4, 17, 91, 102
native, 90–103
security issues with, 12, 59
unmanaged, 4, 17
unsafe, 91

COM+, and .NET, 8
COM (Component Object Model),

23–24, 34–35
and ASP, 147–148
integrating into .NET, 5, 8, 95–101

COM Interop, 90, 95–101, 103
Command class, 109, 113
compilation, 7, 8–10, 22, 49–52
component interfaces, changes in, 35
COM threading models, 101
Conditional attribute, 50–52
<configSections>, 168–169
Connection class, 109, 113, 128
Control class, 131
CORBA, 172–173
CTS (Common Type System), 11,

22–23
types in, 11, 22

custom attributes, 49, 53, 60–67, 68
with positional parameters, 67

DataAdapter class, 109, 114, 122,
128

data controls, 162
DataReader class, 109, 110–112, 113
Datasets, 106, 114–122, 128

determining modified rows in, 122
hierarchical, 107
vs. Recordsets, 114
relational, 107
typed, 121–122
and XML, 106, 119–122

DCOM, 172–173
<definitions> element, 194
delegate chains, 73–75
delegates, 47, 68–84, 89, 93

vs. callback functions, 69
vs. events, 79–83
parameters in, 80
uses of, 83

206 . Index



Description attribute, 165
DISCO.EXE, 173, 199, 201–202
discovery files, 198–199, 203–204
Dispose( ) method, 86, 87
DllImport attribute, 92, 94
DLLs (Dynamic Link Libraries)

problems with, 34–35, 94
in Win32, 5, 92, 93, 94

DSNs (Data Source Names),
112–113

DTC (Distributed Transaction
Coordinator), 126

DUMPBIN.EXE, 94
dynamic discovery files, 199, 200,

201, 202–203

event declarations, 164–165
events

vs. delegates, 79–83
listening to, 76–77
raising, 76
in VB, 75–77
in VB.NET, 78–79

Events keyword, 75, 78, 79, 84
extensions. See also individual

extensions
omission of, 33
specification of, 26

Fill( ) method, 115–116, 128
Finalize( ) method, 84–88, 89
Form class, 131
fragment caching, 150
friend extension, 26

GAC (Global Assembly Cache), 
36

registering assemblies in, 45
garbage collection, 47–48, 84–89

forced, 88
and performance, 87, 88
preventing, 87, 88
timing of, 85–87

_gc extension, 27
GDI+, 130
GetCustomAttributes( ) method, 65
GetInvocationList( ) method, 83
GetMembers( ), 56
Global.asax, 163–167, 170
GUIs (Graphical User Interfaces),

creating, 129–145, 156–157

Handles keyword, 82, 84
hierarchical Datasets, 107
HRESULTs, 98
HTML (Hyper Text Markup

Language), 146
and ASP, 147, 155
vs. web controls, 153

HTTP (Hyper Text Transfer
Protocol), 174

HTTP GET, 174, 182, 192, 204
HTTP POST, 175, 182–185,

187–191, 192, 204

ILDASM.EXE, 27, 28–30
Import directive, 166
Inherits attribute, 165

Java, vs. C#, 7–8
Java VM, vs. CLR, 4

late-binding, vs. reflection, 59–60
loosely coupled applications, 105–106

managed C++, 7, 9, 10, 33
garbage collection in, 85, 88

managed code, 4, 17, 91
vs. native code, 102

managed providers, 108–113, 128
classes in, 109, 113, 128

manifests, 32–33
manual transactions, 123–124, 128
memory, management of, 7, 17, 84
metadata, 23–34, 46

advantages of, 24–25
produced by attributes, 60
reflection and, 47, 53–54, 68
uses of, 23, 24, 67
viewing, 27, 28, 31

methods, overriding, 143–144
Microsoft IL (Intermediate

Language), 4, 17
Modifiers property, 143

namespaces, 33–34
vs. assemblies, 34
assigning, 14–16, 98
in .NET Runtime classes, 12–14
uses of, 13–14
in XML, 173

native code
cautions about, 101–102

Index . 207



native code (cont’d)
vs. managed code, 102
migrating to .NET, 90–103
vs. unsafe code, 91

.NET
class inheritance in, 24–25
compilation in, 7, 8–10, 22, 49–52
and COM+, 8
component storage in, 24
distribution of, 19
entities of, 4
features of, 3
hierarchy of elements in, 53–54
installation of, 19–20
integrating COM into, 5, 8, 95–101
language features of, 47–89
languages used with, 4, 17
location of programs, 20–21
migrating native code to, 90–103
Runtime classes in, 4, 12–17
and SQL Server 2000, 108–113
system requirements for, 18
VB elements allowed in, 16
and Win32, 5

nondeterministic finalization, 85

object tag declarations, 164, 166–167
Obsolete attribute, 64
OLEDB provider, 108

Page Directives, 161
page-level caching, 149–150
PInvoke (Platform Invocation

Services), 90, 92–94, 102–103
predefined attributes, 49, 53, 60
private assemblies, 35, 43–44, 45
private extension, 26
private keys, 36, 38, 40–41, 45
protected extension, 26
protected friend extension, 26
proxy classes, 193–194, 196–197,

198, 204
pseudo attributes, 66
public extension, 26
publickeytokens, 39, 40–41, 43–44

RaiseEvents keyword, 75, 78, 79, 82,
84

RCWs (Runtime Callable Wrappers),
95, 102

Recordsets, 114

reflection, 47, 53–68, 89
vs. late-binding, 59–60
uses of, 54

relational Datasets, 107
resurrection, 87–88
rich controls, 162
RMI, 172–173
Runtime, 4, 12–17

namespaces in, 12–14
versioning in, 36, 38, 41–45

schemas, 107, 120–121, 174
Serializable attribute, 64, 66
serialization, 107–108, 119
server-side controls, 149
session scope, 166
SetAbort( ) method, 124, 125
SetComplete( ) method, 124, 125
shared assemblies, 35–37, 45
side-by-side execution, 35
SN.EXE, 36
SOAP (Simple Object Access

Protocol), 186–191, 204
SOAP envelopes, 193
SQL Server 2000, and .NET,

108–113
static discovery files, 199, 200, 203
stored procedures, 113
strong names, 41, 44, 45
System.MulticastDelegate

GetInvocationList( ) method, 83
System.Object class, 11, 22
System.Reflection classes, 54, 57
<system.web>, 170

TLBIMP utility, 95–98
problems with, 100–101

Transaction attribute, 124, 125
transactions, 122–127, 128

automatic, 124–125, 128
internal vs. external, 126, 127
manual, 123–124, 128
multiple methods with, 127

Type class, 56
types

in assemblies, 53
in CTS, 11, 22

unmanaged code, 4, 17, 33
unsafe code, 91
Update( ) method, 119, 122, 128

208 . Index



URIs (Uniform Resource Identifiers),
173

validation controls, 162
_value extension, 26
VB (Visual Basic)

and C++ assemblies, 33
conversion of COM components

in, 100–101
creating callback functions in,

71–72
creating delegate chains in, 73–74
creating GUIs in, 130–138
elements allowable in .NET, 16
events in, 75–77
examining classes in, 31
garbage collection in, 84, 85,

86–88
sorting arrays of numbers in,

14–16
using C++ classes in, 30–31
vs. VB.NET, 6–7
working with DLLs in, 93

VB Forms Engine, 131
VB.NET (Visual Basic.NET), 6–7

class inheritance in, 6
compiler in, 7, 8–10
creating GUIs in, 139–143
events in, 78–79
vs. managed C++, 8–10
vs. VB, 6–7

VB6, 75
and Windows Forms, 129,

131–132
VC.NET, 90
versioning in .NET Runtime, 36, 38,

41–45
virtual directories, 153, 161, 203

visual inheritance, 138–144
VS.NET (Visual Studio.NET), 4, 6
VS.NET IDE (Integrated

Development Environment), 4,
133, 161

Web.config, 167–170, 171
web controls, 152–153, 171

and ASP.NET, 162–163
and hidden fields, 154–155
vs. HTML, 153
writing own, 161

Web Forms, 129, 156–162
creating applications with,

157–160
web service discovery, 198–204
web services, 172–204

alternatives to, 191–192
classes in, 180–181

WFD (Windows Form Designer),
129, 131–132, 144–145

Windows Component Update, 19
Windows Forms, 6–7, 129–145

classes in, 131
Win32

DLLs in, 5, 92, 93
and .NET, 5
processes, vs. AppDomains, 48,

101
WithEvents keyword, 79
WSDL (Web Service Discovery

Language), 173, 193–198, 204

XML (Extensible Markup
Language), 3, 167

and Datasets, 106, 114, 119–122
namespaces in, 173, 184
schemas in, 107, 120–121

Index . 209




